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Introduction
The aim of any medical treatment is to individualise 
therapy, boosting the efficacy and minimising potential 
toxicity. It is estimated that response to over 25% of 
common medications, including analgesics, is influ-
enced by some type of genetic variation, knowledge of 
which could be useful to prescribers. Furthermore, 
variation in drug efficacy may vary from 2- to 10-fold 
or even 100-fold among members of the same fam-
ily.1–3 A similar pattern emerges when considering the 
frequency and intensity of side effects.4

The completion of the Human Genome and 
HapMap projects, together with advances in high-
throughput genotyping, has revolutionised our under-
standing of the importance of genetic predisposition 
and environmental variables, such as diet and general 
state of health, in individual drug responses.

According to the recent National Centre for Health 
Statistics report, analgesics constitute the most dangerous 

group of medications used legally. Opioids alone attribute 
to more than 15,000 fatalities annually with 343,000 
emergency medicine (EM) department attendances in 
the United States alone due to drug overdose.

Pharmacogenetics is commonly defined as the study 
of genetic variation that gives rise to differing responses 
to drugs. More recently, another term has been 
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introduced, pharmacogenomics, which covers the 
broader application of genomic technologies to new 
drug discoveries and the further characterisation of 
older drugs. Some authors use those two terms inter-
changeably; therefore, a clear distinction, as well as 
consensus definitions, needs to be agreed upon.5 
Behind the emergence of pharmacogenetics as a sepa-
rate specialty lies our desire to understand how herita-
bility affects the difference in responsiveness of 
different people to therapeutic agents.

Molecular genetics
The amino acid sequence of every protein is encoded 
by nucleotides, which form deoxyribonucleic acid 
(DNA).6 Clearly identified DNA regions function as 
templates for the synthesis of messenger RNA 
(mRNA), and this process is called transcription. 
Messenger RNA leaves nucleus and is transported to 
the ribosome. Here, the RNA sequence is translated 
into a specific amino acid. Later, during the process of 
folding, the polypeptide chain of amino acids is trans-
formed into an active molecule and then trafficked 
towards its final destination. A detailed description of 
the genetic code and the central dogma of molecular 
biology7 is beyond the scope of this review but can be 
easily found elsewhere.8–10

Genetic polymorphism
A genetic polymorphism occurs when two or more dis-
tinct genotypes exist in the same population of a spe-
cies. Polymorphism is also a main driver of natural 
selection and evolution. A single-nucleotide polymor-
phism (SNP) is a variation in the sequence of DNA 
when a single nucleotide (adenine (A), guanine (G), 
thymine (T) or cytosine (C)) differs between members 
of the same species. In human population genetics, it 
has been noted that the prevalence of certain SNPs can 
differ substantially between different ethnicities. SNPs 
can be inherited or occur de novo. Within a gene, an 
SNP may occur in intronic, non-coding regions or 
exonic, coding regions, where the change may be syn-
onymous (no difference in amino acid sequence) or 
non-synonymous (alters the amino acid sequence). A 
non-synonymous SNP may lead to protein truncation 
(nonsense mutation) or affect folding or biophysical 
properties (missense mutations) and therefore may 
have important functional consequences. The Online 
Mendelian Inheritance in Man (OMIM) database 
defines the relationship between polymorphisms and 
diseases.11 The Single Nucleotide Polymorphism 
Database (dbSNP) gathers information about minor 
genetic variation in the growing list of species.12 In 

2012, dbSNP contained over 187,000,000 SNPs in 
humans.

SNP nomenclature
At least three different ways of identifying genetic 
polymorphisms exist. All changes can be reported at 
the coding DNA-level (cDNA). For example, the 
SCN9A abbreviation c.2572C>T identifies a C to T 
substitution at position 2572 of the SCN9A gene in 
exon 15.13 This is an example of the missense muta-
tion, which leads to the replacement of leucine with 
phenylalanine in the alpha-subunit of the Nav1.7 
sodium channel at amino acid position 858 (p. 858 
Leu > Phe). The same SNP can be referred to by its 
dbSNP allocation number (rs80356476). In addition, 
nomenclature of all of the wild-type P450 enzymes is 
different. By convention, CYP2C9, for example, iden-
tifies three different variants labelled accordingly as 
CYP2C9*1, CYP2C9*2 and CYP2C9*3. Subjects 
may be homozygous or heterozygous for a particular 
allele; their genotype can be recorded as CYP2C9*3/*3 
(homozygous) or CYP2C9*1/*3 (heterozygous).

Copy-number variations
Copy-number variation (CNV) is an example of a 
more significant alteration in the genetic code. 
Deletions, insertions and inversions are some other 
possible alterations that can occur. CNVs may involve 
an abnormal number of copies of the same gene or a 
complete deletion of the region. This is very common 
and up to 0.4% of the genome of two individuals dif-
fers with respect to CNVs.14 The P450 2D6 enzyme 
gene CYP2D6 CNV, for example, can produce a com-
plete CYP2D6 gene deletion (CYP2D6*5) or duplica-
tion (CYP2D6*x2), which can result in the reduced or 
increased metabolism of many xenobiotics.15

Heritability of pain traits
Heritability estimates derived from inbred strains of 
laboratory animals suggest that up to 30–76% of the 
variance in pain behaviour can be explained by genetic 
influences.16,17 A variety of chronic pain conditions, 
including sciatica, irritable bowel syndrome and 
mechanical back pain have been studied utilising 
human twin-studies. Some important initial estimates 
of trait variants attributed to the inherited genes were 
made based on this work.18–20 Individual variability 
attributed to the genetic factors in twins was further 
studied with experimental pain induced by a variety of 
noxious thermal and chemical stimuli in twins. Up to 
50% of variability in experimental pain sensitivity was 
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attributed to inherited factors.21 In normal individuals, 
as well as chronic pain sufferers, it is not easy to cor-
relate one cohort of twin subjects to the other, as it 
appears that the influence of genetic variables cannot 
be generalised from one pain state to another. The 
same generalisation can equally apply to data extracted 
from the experimental pain modalities.

The development of chronic pain is a good example 
of gene and environment interaction. Only a small 
minority of all individuals exposed to a noxious event, 
such as inflammatory or traumatic nerve tissue injury, 
actually develop chronic pain.22,23 Once the acute or 
chronic pain has occurred, pain severities,24,25 as well 
as responses to analgesics, can also be very variable 
among sufferers.26,27 Both experimental and clinical 
twin and family studies in humans have contributed to 
our understanding of altered pain behaviour and vari-
ability in the intensity of response to the same 
stimulus.28,29

An overview of peripheral pain circuitry and genes 
responsible for the variety of anatomical entities has 
been well described.30

Pain genes
Association and linkage human studies have identified 
a number of genes responsible for heritable conditions 
involving dramatic alterations in pain perception. The 
hereditary sensory and autonomic neuropathies I–IV 
(HSANs I–V) are examples of a family of syndromes in 
which pain perception and responses are reduced or 
absent as the result of single point mutations.31 More 
recent scientific discoveries have confirmed a pivotal 
role for the sodium channel Nav1.7 in a growing range 
of human familial and de novo gain-of-function and 
loss-of-function pain syndromes.32,33 Gain-of-function 

lesions in SCN9A were identified in three distinct dis-
orders: primary erythromelalgia (PEM), paroxysmal 
extreme pain disorder (PEPD) and idiopathic small 
fibre neuropathy (SFN).33–35 To date, 14 PEM muta-
tions have been identified, most of which map to the 
first three domains of Nav1.736 Human monogenic 
pain syndromes provide important insights into the 
molecular mechanisms that underlie normal and path-
ological pain states.37 Gene mapping of human mutants 
carrying an extremely altered pain phenotype spec-
trum, ranging from a complete loss of pain32,38 as well 
as severe gain-of-function variants, such as inherited 
erythromelalgia,33 has provided an exceptional oppor-
tunity to study key molecular mechanisms that are 
involved in the regulation of pain signalling. The 
knowledge thus obtained may be used towards a better 
understanding of the wider patient population affected 
by numerous chronic pain conditions.

Pharmacological concepts applied 
on pharmacogenetics
Figure 1 schematically portrays the function of differ-
ent genes in influencing pharmacokinetic and pharma-
codynamic properties.

Pharmacodynamics is the study of the effects of a 
drug on the human body. When describing different 
analgesic classes, the pharmacodynamics section of 
this article will focus on the polymorphisms in amino 
acid sequence variations of cell-surface proteins such 
as receptor and ion channels as well as SNPs in genes 
coding for various intracellular signalling pathway 
structures. Pharmacokinetics is supplementary to phar-
macodynamics and is the study of drug absorption, 
distribution, metabolism and drug excretion. The aim 
of metabolism is to make molecules more water 

Figure 1.  Heritable factors influencing drug–organism interaction.
Source: American Society of Anesthesiologists, Inc.39 (p. 302).
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soluble and ready for renal or other excretion. 
Corresponding sections will look into how gene varia-
tions affect the metabolism of various pro-drugs as well 
as active metabolites. It will also investigate what effect 
genes have on the development of side effects of com-
monly used analgesics. We will start our review with 
the strongest and arguably most valuable group of 
analgesic drugs available – opioids.

Pharmacogenetics of opioid 
analgesics
Opioids are routinely used in the treatment of moder-
ate or severe acute and chronic pain. There are several 
alternative strong opioids available, for example, mor-
phine, oxycodone, hydromorphone and fentanyl, each 
with comparable efficacy at a population level.40 At an 
individual level, however, there is wide variation in opi-
oid analgesic efficacy and side effects, the reasons for 
which are not fully understood, but may in part be 
genetic. In cancer-related pain, up to 30% of patients 
do not respond well to morphine, either due to inade-
quate pain relief and/or intolerable side effects. The 
majority of these morphine ‘non-responders’ achieve a 
better clinical outcome when given an alternative opi-
oid.41,42 Common adverse events evoked by opioids 
include nausea and vomiting, drowsiness, confusion 
and hallucinations.

Pharmacodynamics
Opioid receptors.  Opioid receptors belong to the family 
of G-protein-coupled receptors (GPCRs). There are 
three types of classical opioid receptor: mu (µ), kappa 
(κ) and delta (δ). Structurally similar, they contain an 
extracellular N-terminus, seven transmembrane 
domains and an intracellular C-terminus, and each 
share a high degree of homology. Most variation is 
found in the N-terminal domain and extracellular 
loops.43,44 The extracellular loops determine ligand 
binding and are therefore particularly important. 
Splice variation of opioid receptor mRNA has been 
shown to produce receptor subtypes, which may be of 
functional importance.45

Gene knockout studies in mice have demonstrated 
that analgesic response to opioids is primarily medi-
ated by the µ-opioid receptor.46 Genetic variation in 
the human µ-opioid receptor gene (OPRM1) has been 
associated with opioid response in several different 
clinical settings, including acute post-operative 
pain,47–49 chronic non-cancer pain50,51 and cancer-
related pain.2,52

The non-synonymous exonic SNP c.118A>G 
(rs1799971) is the most consistently reported example 
of association between genetic variation in OPRM1 

and opioid response. This SNP results in an aspara-
gine-to-aspartic acid change at position 40, a putative 
N-glycosylation site in the important extracellular 
N-terminal region; however, the functional signifi-
cance remains uncertain.50 The variant G allele of 
c.118A>G has been associated with increased dose 
requirements of morphine in cancer patients2,52 and 
patients following surgery.47–49 Similarly, the common 
A allele has been associated with improved analgesia 
from morphine in cancer-related pain.52 Nevertheless, 
when these opioid pain studies were combined in 
meta-analysis, no association with increased pain was 
found, and only a weak association with increased 
morphine dose requirements in homozygous carriers 
of the variant G allele.53 c.118A>G has also been asso-
ciated with the opioid-related side effects. In one post-
operative study of patients receiving morphine, carriers 
of the variant G allele had less sedation and less nau-
sea.54 Another post-operative study of intrathecal mor-
phine and one of tramadol for osteoarthritis also 
reported an association with the variant G allele with 
less nausea/vomiting.49,54,55 The c.118A>G genotype 
was, however, not associated with fentanyl-induced 
post-operative nausea and vomiting in another study of 
post-operative pain.56 The pattern of less analgesia, in 
addition to less side effects (upper gastrointestinal and 
central), suggests reduced receptor sensitivity to 
opioids.

Other SNPs from OPRM1 and the other classical 
opioid receptor genes, including OPRK1 and OPRD1, 
have been tested, for example, in the European 
Pharmacogenetic Opioid Study (EPOS). EPOS is the 
largest genetic association study of opioid response to 
date, with 2294 patients taking opioids for cancer-
related pain. A total of 112 SNPs in 25 genes, includ-
ing OPRM1, OPRK1 and OPRD1, were investigated 
for relationship to oral equivalent morphine dose 
requirements. However, no association was identified 
with any of the SNPs tested in both development and 
validation analyses.57

When morphine response phenotypes were mathe-
matically determined by principal component analysis 
in one cancer-related pain study (n = 207), two main 
components were identified: analgesia and central side 
effects. Multivariate regression analysis was used to 
combine clinical and genetic factors (ORPM1, OPRD1 
and OPRK1 SNPs) to predict response. A total of 
16% of variability in analgesic response was predicted 
by a model, including the OPRK1 SNP rs7824175, 
two types of concomitant medication: beta-blockers, 
and anti-emetic and daily morphine dose. A total of 
10% of variability in central side effects for morphine 
was predicted by two SNPs, OPRM1 rs2075572 and 
OPRK1 rs10504151, including concomitant use of 
steroid medications, and a diagnosis of sarcoma 
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malignancy. This is an innovative way of defining phe-
notypes and involving both clinical and genetic fac-
tors58 (Table 1).

STAT6.  STAT6 is an important transcription factor 
involved in the regulation of OPRM1 expression by 
TH2 cytokines such as interleukin 4 (IL-4).59 Polymor-
phisms in STAT6 have been associated with overall 
response to morphine in cancer-related pain and opi-
oid switching.60

β-arrestin 2.  β-arrestin 2 is an intracellular protein that 
is integral to µ-opioid receptor inactivation and inter-
nalisation.61 On binding, opioid receptor agonists dif-
ferentially trigger receptor phosphorylation and 
recruitment of β-arrestin 2.62,63 Knockout studies have 
shown that mice lacking the β-arrestin 2 (ARRB2) 
gene exhibit prolonged analgesia from morphine treat-
ment at lower doses.64 It is worth noting, however, that 
prolonged analgesia in mice lacking β-arrestin 2 may 
also be due to a combination of more complex effects 
transduced by multiple GPCRs in the knockout 

animal model. Polymorphisms in ARRB2 have been 
associated with overall response to morphine and opi-
oid switching.60

Pharmacokinetics
Opioid metabolism.  Different enzymes in phase 1 and/
or phase 2 metabolism are important for the metabo-
lism of different opioids (Figure 2).

Phase 1 metabolism
Cytochrome P450 2D6.  The cytochrome P450 

enzyme 2D6 (CYP2D6) is central to the metabolism of 
several different opioids, including codeine, tramadol 
and oxycodone, all of which have active metabolites. 
Over 70 CYP2D6 alleles have been described which 
have the potential to alter enzyme function, including 
SNPs, deletions, insertions and copy CNVs.65 The 
overall phenotype produced has been classified into 
four major groups based on function: poor metabolis-
ers, intermediate metabolisers, extensive metabolis-
ers and ultra-rapid metabolisers, for which, tests are 

Table 1.  Selected post-operative and chronic pain studies assessing polymorphisms in opioid receptor genes and opioid 
response.

Opioid Gene Variant Study population Route Results Reference

Experimental pain studies
  Morphine OPRM1 A118G 102 surgical 

patients
IV/PCA No difference in pain scores 

or dose requirement. 
Decreased sedation and 
nausea.

54

  Morphine OPRM1 A118G 80 female 
surgical patients

IV/PCA Increased morphine dose 
requirements. No difference 
in pain scores

47

  Morphine OPRM1 A118G 120 surgical 
patients

IV/PCA Increased dose requirements. 
No difference in pain scores

48

  Morphine OPRM1 A118G 588 female 
surgical patients

IV/PCA Increased dose requirements 
and pain scores. Decreased 
nausea/vomiting

49

  Fentanyl OPRM1 A118G 189 surgical 
patients

IV/PCA Increased dose requirements. 
No difference in nausea and 
vomiting scores

59

Clinical pain studies
  Morphine OPRM1 A118G, -172G>T, 

IVS2+31G>A, 
IVS2-291G>C

207 (99) cancer 
patients

NA Increased dose requirements 
(A118G only)

  2

  Morphine OPRM1 A118G 137 cancer 
patients

Various Decreased pain relief 52

  Various OPRM1, OPRK1 
and OPRD1

Various 2294 cancer 
patients

Various No difference in opioid dose 
requirements

57

  Tramadol OPRM1 A118G 160 patient with 
pain from knee 
osteoarthritis

Oral Decreased nausea and 
vomiting

55

OPRM1: µ-opioid receptor gene; OPRK1: κ-opioid receptor gene, OPRD: δ-opioid receptor gene, NA: not available; PCA: patient- 
controlled analgesia; IV: intravenous.
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available commercially. In Caucasians, approximately 
10% of the population are poor metabolisers and 3% 
are ultra-rapid metabolisers.66 A small but significant 
proportion of codeine (10%) is metabolised to mor-
phine by CYP2D6.67 In response to codeine treat-
ment, poor metabolisers experience little analgesia68,69 
and ultra-rapid metabolisers have a higher incidence 
of side effects.1 In addition, there have been cases 
reported of fatal neonatal opioid toxicity in children 
breastfed by CYP2D6 ultra-rapid metabolising moth-
ers taking codeine.70

Oxycodone has two main metabolites: noroxyco-
done (CYP3A4/5) and oxymorphone (CYP2D6), 
which account for approximately 90% and 10% of 
metabolites, respectively. Oxymorphone is reported to 
have greater analgesic potency compared to oxycodone, 
whereas noroxycodone is inactive.71,72 Oxymorphone 
subsequently is rapidly O-glucuronidated to form 
oxymorphone-3-β-glucuronide by uridine 5′-diphos-
pho-glucuronosyltransferase-2B7 (UGT2B7) and is 
excreted so its overall analgesic contribution is probably 
minimal.

It is currently unclear whether variation in CYP2D6 
activity significantly alters the efficacy of oxycodone; 
experimental studies showing a relationship have not 
been replicated in the clinical setting.73–75 In experimen-
tal pain, it has been demonstrated that ultra-rapid 
metabolisers experience a 1.5- to 6-fold increase in the 
analgesic effects of oxycodone as compared with exten-
sive metabolisers, and poor metabolisers had a 2- to 
20-fold reduction of the analgesic effects as compared to 
extensive metabolisers.74 However, a large study of 
patients receiving oxycodone for cancer-related pain (n 
= 450) showed that, although CYP2D6 metaboliser sta-
tus influenced oxycodone metabolite ratios as expected, 
there was no clinically measurable difference in terms of 
analgesia or side effects (nausea or sedation).76

Two post-operative pain studies have found that 
poor metabolisers use more tramadol when given as 
patient-controlled analgesia compared to other pheno-
types (extensive metabolisers or intermediate metabo-
lisers).77,78 CYP2D6 metaboliser status has also been 
linked to tramadol-related side effects, specifically nau-
sea/vomiting. In Korean patients, taking tramadol for 
osteoarthritis of the knee, CYP2D6 intermediate 
metabolisers experienced less nausea/vomiting than 
extensive metabolisers55 (Table 2).

Cytochrome P450 3A.  The CYP450 3A superfam-
ily of enzymes is involved in the metabolism of 50% 
of all known drugs. Some 3A substrates, including 
opioids, for example, oxycodone and fentanyl, can 
be metabolised equally by 3A4 or 3A5; therefore, a 
defect in one enzyme may be compensated for by the 
other. The interaction between 3A4 and 3A5 genetic 
polymorphisms was studied in Chinese women with 
post-operative pain following gynaecological surgery. 
Results showed that while 3A5 variation was not inde-
pendently important, interactions between 3A4 and 
3A5 polymorphisms were additive and significant.79

Phase 2 metabolism
UGT2B7.  The hepatic isoenzyme UGT2B7 is pri-

marily responsible for morphine metabolism. In vitro 
work has suggested that functional genetic variants in 

Morphine
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Morphine-3-
glucuronide

~55-80%

Morphine-6-
glucuronide

~10-15%
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Noroxymorphone

Oxycodone

Oxymorphone
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Figure 2.  Major metabolic pathways for (a) codeine and 
morphine, (b) oxycodone and (c) tramadol.

 at University College London on June 25, 2015bjp.sagepub.comDownloaded from 

http://bjp.sagepub.com/


Cregg et al.	 195

UGT2B7 are linked to altered levels of mRNA expres-
sion80,81 and enzyme activity with differential metabo-
lite production.81 The main metabolites of morphine: 
morphine-3-glucuronide (M3G) and morphine-
6-glucuronide (M6G) account for approximately 50% 
and 10% of metabolites, respectively.82 M3G binds 
poorly to opioid receptors and may be responsible for 
neuroexcitatory effects such as hyperalgesia, allodynia 
and myoclonic jerks.83 M6G, however, has been used 
as an analgesic agent in its own right.84 Clinical stud-
ies have linked genetic variation to differences in mor-
phine/metabolite ratios,85 but not to overall clinical 
response to morphine.86

Multi-drug resistance gene.  The multi-drug resistance 
gene or adenosine triphosphate (ATP)-binding cas-
sette subfamily B, member 1 (MDR1 or) encodes 
P-glycoprotein. P-glycoprotein is a membrane trans-
porter with a central role in the regulation of drugs 
crossing the blood–brain barrier, and actively removes 
drugs from the central nervous system (CNS). Hetero-
zygosity for the ABCB1 3435T allele has been associ-
ated with decreased morphine equivalent daily dose in 
a mixed chronic pain population51 and increased pain 
relief from morphine in cancer-related pain.52 Side 
effects have also been associated with ABCB1 poly-
morphisms with conflicting results. In an experimental 
pain study, the variant alleles 2677A and 3453T were 
protective against nausea and vomiting.87 However, in 
a post-operative pain study, use of anti-emetics for 
morphine-related nausea and vomiting was decreased 
in patients who were homozygous for the 
2677GG/3435CC diplotype.88 The presence of the A 
allele at position 2677 of ABCB1 has been reported to 
be protective of central side effects, that is, drowsiness 
and confusion, in patients treated with morphine for 

cancer-related pain.89 Functional variants changing 
transporter activity may influence drug concentrations 
and parent drug/metabolite ratios in the CNS and con-
sequently adverse reactions; G2677T/A has been shown 
to be linked to altered expression of P-glycoprotein in 
vivo90,91 (Table 3).

Modifying systems
Catechol-O-methyltransferase.  The enzyme cat-

echol-O-methyltransferase (COMT) metabolises 
catecholamines, such as noradrenaline and dopa-
mine; therefore, changes in activity may influence 
neurotransmission. The most commonly studied 
SNP in the COMT is p.158V>M (rs4680), which 
results in the substitution of valine to methionine 
at amino acid position 158. This change has func-
tional consequences as enzyme activity is reduced by 
between three- and four-fold. The p.158V>M poly-
morphism has been associated with increased mor-
phine dose requirements in cancer-related pain.92 
Genetic variation in COMT has also been associated 
with opioid-related side effects in patients treated for 
cancer-related pain. In a subgroup analysis of EPOS, 
COMT polymorphism was associated with severity 
of nausea and vomiting (n = 1579).93 Three COMT 
SNPs were found to be weakly associated with less 
nausea/vomiting: rs165722C, rs4633T and rs4680G, 
although the significance was lost after correcting for 
multiple testing.93 COMT metabolises dopamine, 
which is an important neurotransmitter in the area 
postrema and vomiting centre. In cancer patients 
receiving morphine, the common G allele at posi-
tion -4873 (rs740603) of COMT has been reported as 
protective of central side effects.89 The effect of this 
allele was independent of and additive to the ABCB1 
2677A allele (rs2032582), which demonstrates the 

Table 2.  Selected clinical pain studies assessing polymorphisms in CYP2D6 and opioid response.

Opioid Gene Variant Study population Route Results Reference

Post-operative pain studies
  Codeine CYP2D6 PM and EM 11 female 

surgical patients
IV/PCA PM poor analgesia 69

  Tramadol CYP2D6 PM and EM 271 surgical 
patients

IV/PCA Increased dose requirements 
(PM > IM/EM)

78

  Tramadol CYP2D6 PM, IM, EM 
and UM

177 surgical 
patients

IV/PCA Increased dose requirements 
(PM > IM/EM)

79

Clinical pain studies
  Tramadol CYP2D6 IM and EM 160 patients, 

with knee 
osteoarthritis

Oral IM decreased nausea/
vomiting

55

  Oxycodone CYP2D6 PM, EM 
and UM

450 patients 
with cancer

Oral/
SC/IV

No difference in pain 
intensity between phenotypes

77

CYP: cytochrome P450; IV: intravenous; PCA: patient-controlled analgesia; SC: subcutaneous, PM: poor metaboliser; IM: intermediate 
metaboliser; EM: extensive metaboliser; UM: ultra-rapid metaboliser.
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importance of considering interactions between mul-
tiple genes.

HTR3B.  Activation of 5-HT3 (serotonin) recep-
tors in the gastrointestinal tract or chemoreceptor 
trigger zone is pro-emetic. Three SNPs in the 5-HT 
receptor 3B gene (HTR3B) have been associated with 
opioid-related nausea/vomiting in cancer patients in a 
large study: carriers of rs1176744G, rs3782025T and 
rs1672717T were found to suffer from less nausea/
vomiting.93 Notably, the association with the G allele 
of rs1672717 remained significant when corrected for 
multiple testing.

Cytokines.  Cytokines are vital to the co-ordina-
tion of the immune system and the inflammatory 
response. Cytokines may be broadly classified as pro-
inflammatory (tumour necrosis factor α (TNFα), 
IL-6, IL-8) or anti-inflammatory (IL-10, IL-4, 
transforming growth factor beta β (TGFβ)). Spinal 
administration of morphine in animal models stimu-
lates the release of pro-inflammatory cytokines by 
CNS glial cells, and has been shown to inhibit acute 
opioid analgesia and induce opioid tolerance after 
repeated administration.94,95 In cancer-related pain 
studies, SNPs in several cytokine gene promoters 
(IL-8, IL-6 and TNF) have been associated with pain 
severity and morphine dose requirements.96,97 Poly-
morphisms in the promoter region may influence 
transcription factor binding sites, thereby modifying 
gene expression.

Pharmacogenetics of non-steroidal 
anti-inflammatory drugs
Non-steroidal anti-inflammatory drugs (NSAIDs) are 
the most commonly prescribed painkillers in the world, 
as many of them are easily accessible over the counter; 
these also possess anti-inflammatory and antipyretic 
properties. Annual National Health Service (NHS) 
prescriptions for all causes have reached 25 million in 
2012. They are associated with 12,000 hospital admis-
sions per year in order to treat side effects, and they 
reportedly contribute to 2600 deaths in the United 
Kingdom per annum.98,99

Pharmacodynamics
Cyclooxygenase enzymes.  The molecular target of 
NSAIDs is blockade of the cyclooxygenase (COX) 
enzymes in the arachidonic acid cascade. Inhibition 
of COX-1 accounts for most of the side effects,100,101 
while COX-2 inhibition produces therapeutic 
effects.102,103 Current literature describes variability 
in the genetic expression of these COX isoforms with 
functional and sometimes clinically relevant 
results.104,105 For instance, carriers of the COX-1 
c.1676- >T (rs1330344) allele were found to have a 
significant risk of non-malignant gastric ulcers when 
using NSAIDs,106 while the COX-1 c.50C>T poly-
morphism was linked to an impaired inhibitory effect 
on aspirin,107 although it failed to demonstrate risk of 
peptic ulcer bleeding.108

Table 3.  Selected pain studies assessing polymorphisms in drug transporter (ABCB1) gene and opioid response.

Opioid Gene Variant Study 
population

Route Results Reference

Post-operative pain studies
  Morphine ABCB1 C3435T and 

G2677T/A
74 patients IV/PCA No difference in 

pain scores and 
dose requirements. 
2677GG/3435CC 
diplotype decreased 
nausea and vomiting

89

Clinical pain studies
  Morphine ABCB1 C3435T 137 patients 

with cancer
NA Increased pain relief 52

  Morphine ABCB1 C-129T, C139T, 
C1236T, C3435T 
and G2677T/A

228 patients 
with cancer

NA No difference in pain 
scores. 2677A protective 
of central side effects

90

  Various ABCB1 C3435T 352 patients 
with pain of 
various origin

NA Decreased dose 
requirements. No 
difference in pain scores

51

  Various ABCB1 Various 2294 cancer 
patients

Various No difference in dose 
requirements

57

ABC: ATP-binding cassette; IV: intravenous; NA: not available; ATP: adenosine triphosphate.
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The main COX-2 functional polymorphism is 
c.765G>C and is associated with a reduced risk of myo-
cardial infarction and stroke,109 and of developing Crohn’s 
disease.110 However, adverse effects have also been identi-
fied and include increased monocyte prostaglandin pro-
duction causing a more severe course of asthmatic disease, 
reflected by the need for oral corticotherapy,111 and a sig-
nificant association with poor outcome in stroke patients 
from its effect on aspirin resistance.112

Pharmacokinetics
CYP2C9 is one of the most abundant P450 
cytochromes in the liver and works in the phase 1 
metabolism of approximately 15% of clinically useful 
drugs, including various NSAIDs.113,114

Common polymorphisms of the CYP2C9 gene exist, 
with three main alleles: CYP2C9*1, CYP2C9*2 and 
CYP2C9*3.115 These have been shown to affect 
cytochrome activity. For example, the allele CYP2C9*3, 
in which isoleucine 359 is changed to leucine (p.359I>L), 
shows a marked decrease in CYP2C9 activity, and indi-
viduals carrying the homozygous genotype CYP2C9*3/*3 
were shown to have between 5- and 10-fold reduced 
activity depending on the study design.115–117 The allelic 
variants CYP2C9*2, CYP2C9*1/*2 and CYP2C9*1/*3 
were also associated with a slower metabolism in a num-
ber of drug substrates with up to 50% reduction in the 
Vmax/Km ratio.118,119 NSAID pharmacological activity is 
almost exclusive to the S(−) enantiomer,120 and CYP2C9 
contributes to its metabolism.121 Studies indicate that 
NSAID-induced common adverse reactions are proba-
bly related to inherited impairment of the CYP2C9 gen-
otype activity.122 Individuals carrying the gene variants 
CYP2C8*3 (rs11572080; rs10509681), CYP2C9*2 
(rs1799853) or CYP2C9*3 (rs1057910) show an 
increased risk of developing acute gastrointestinal bleed-
ing following the use of NSAIDs.123 Similar research 
revealed that the highest bleeding risk from NSAID use 
was in patients who possessed both the CYP2C8*3 and 
CYP2C9*2 alleles.122 While CYP2C9 contributes to the 
metabolism of most NSAIDs, recent data show that 
CYP2C8 polymorphisms may influence inter-individual 
variability in the pharmacokinetics of some NSAIDs, 
namely, ibuprofen and diclofenac.124 Individuals who 
are homozygous or double-heterozygous for CYP2C8*3 
and CYP2C9*3 variant alleles (8% of the population) 
had extremely low ibuprofen clearance rates, with values 
ranging from 7% to 27% of the mean clearance rates 
among non-carriers of mutations.125

Voltage-gated sodium channel 
modulators
Voltage-gated sodium channels (VGSCs) expressed at 
the terminals of nociceptive poly-sensors act as 

downstream targets in the process of stimulation, and 
their activation leads to the initiation of action poten-
tials that are propagated from the periphery to the 
CNS.126 The VGSC family consists of nine proteins 
(Nav1.1–Nav1.9) that are expressed on the membrane 
of excitable cells and allow intermittent passage of Na+ 
ions into these cells. Three isoforms – Nav1.7, Nav1.8 
and Nav1.9 – are predominantly expressed in the 
peripheral nervous systems, both somatic as well as 
autonomic.127 Nav1.7 is thought to serve a ‘threshold 
channel’ function, so when activated, Nav1.7 (and 
Nav1.9 in some cells) is likely to bring the neuron 
towards the threshold, and Nav1.8 is largely responsi-
ble for the overshooting action potential.128,129 In addi-
tion to classic local anaesthetic (LA) molecules, sodium 
channels seem to be modulated by a range of other 
heterogeneous drugs such as carbamazepine, mexile-
tine, amitriptyline, ketamine and alcohol, all used as 
analgesics in clinical practice. These modulators inter-
act with the channel on the molecular level in many 
different ways.130

Pharmacodynamics
Mutations within the family of sodium channel 
genes are known to correlate with varied binding 
characteristics and clinical actions of the LAs. An 
example of inherited drug-resistance is demon-
strated by the p.395N>K mutation in the SCN9A 
gene, which produces an increased resistance to 
lidocaine.131 Inherited conditions, altering electro-
genesis by prolonging fast inactivation of VGSCs, 
such as PEPD, are known to be preferentially respon-
sive to carbamazepine.34

SNPs causing the development of inherited eryth-
romelalgia (PEM), leading to the enhancement of 
channel activation, can be better controlled with oral 
mexiletine.132 Treatment of both of these gain-of func-
tion sodium channelopathies (PEM and PEPD) with 
systemic non-selective VGSC blockers has been proven 
to be rather disappointing overall.133

In addition to the involvement of MC1R in pain 
modulation,134 it appears that red-haired individuals 
were less affected by the anaesthetic effect of subcu-
taneous lidocaine, as measured by the pain percep-
tion and tolerance thresholds.135 The MC1R gene is 
not known to be expressed at the periphery, around 
the nerve fibres,136 and it is unclear what association 
there is between the sodium channel blockade in the 
periphery and melanocortin-1 G-protein–coupled 
receptor gene. Interaction at the higher, pain modu-
latory level could play a role in this mechanism.137 It 
remains to be studied how other more subtle varia-
tions in pain perception phenotypes, such as the 
recently described association between the A allele  
of p.1150R>W (rs6746030) and altered pain 
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threshold,138 are affected by pharmacological modu-
lation of the sodium channel.

Pharmacokinetics
Ester and amide LAs undergo quite different meta-
bolic processes in humans. Most esters are broken 
down rapidly by plasma esterases to inactive com-
pounds and are excreted renally. Similar to diamor-
phine, cocaine breakdown is catalysed by 
pseudocholinesterases human liver carboxylesterase 
(hCE) 1 and 2.139,140 It is well known that polymor-
phism in the pseudocholinesterase peptide is related 
with apnoea following administration of the muscle 
relaxant succinylcholine.141 What is less known is the 
fact that individuals who carry an inactive copy of this 
enzyme are also unable to hydrolyse diamorphine to its 
active metabolite, morphine, and those who have only 
partially active pseudocholinesterase do so to a much 
lesser extent than carriers of a fully active isoform.142 
Xie et al.143 in 1999 examined how variants of human 
cholinesterase affect cocaine breakdown and found 
that the substitution of aspartic acid with glycine at 
position 70 of the enzyme led to a 10-fold lower bind-
ing efficiency for cocaine and 10-fold lower catalytic 
efficiency. It has long been proposed that individuals 
who demonstrate this abnormality should wear a med-
ical alert bracelet or a similar identifier in order to 
highlight the risk of death or permanent damage when 
exposed to ester-type LAs.144 While a small amount of 
ester-type LAs may be administered to atypical 
homozygotes, as a general rule, these compounds are 
best avoided. Amide-type LAs should be used instead.

Amide LAs are metabolised by the phase 1 modifi-
cation process of hydrolysis (by amidases) and oxida-
tion (by CYP450 oxidase system) in the liver. Both of 
these pathways are slower than plasma ester hydrolysis, 
so these molecules have a higher tendency to accumu-
late in human circulation. The authors are not aware of 
any evidence linking polymorphisms in the genes cod-
ing for amidase and LA metabolism, unlike in the 
cytochrome P450 system, where variations in drug 
metabolism can occur in up to 30% of people in cer-
tain ethnic groups with up to 30-fold magnitude of dif-
ference.145 The main CYP isoforms involved in the 
oxidation of LAs are CYP3A4 for lidocaine and bupiv-
acaine and CYP1A2 in case of ropivacaine. Activity 
assays of CYP3A4 reveal 10- to 100-fold inter-
individual differences.146 One C>T SNP in particular, 
located in intron 6 of the CYP3A4 gene (rs35599367 or 
CYP3A4*22 variant), was found to significantly affect 
the metabolism of xenobiotics, which depend on this 
enzyme.147 The cytochrome P450 enzyme CYP1A2 
metabolises 5–10% of medications in clinical con-
sumption, including ropivacaine and paracetamol.148 

As with any other enzymatic process, there is consider-
able variation in 1A2 metabolic activity primarily due 
to three variables: genetic factors, environmental fac-
tors and drug–drug interference. The wild-type allele is 
conventionally labelled as CYP1A2*1. Two functional 
SNPs have been identified in this gene. G3860A 
(CYP1A2*1C type) is associated with decreased meta-
bolic activity in the enzyme produced when compared 
with the control carriers. The CYP1A2*1F allele is the 
result of a single point mutation (C163A) and is linked 
to a hypermetabolic phenotype, particularly under the 
influence of environmental nicotine when compared 
with the CYP1A2*1A variant.149,150 (Table 4). Carriers 
of the 1A2 hyperinduction phenotype, mostly those of 
Japanese, Egyptian or Caucasian origin, account for up 
to 45% of the population.149,151 Commercially availa-
ble kits testing for these 1A2 variants using polymerase 
chain reaction (PCR), allele-specific primer extension 
and subsequent hybridisation using immobilised 
nucleic acid probes enabling fluorescent detection 
already exist.

Other analgesics
Paracetamol
Paracetamol (N-(4-hydroxyphenyl)-acetamide) is one 
of the most widely used over-the-counter analgesics. 
Many studies indicate that paracetamol can offer rapid 
pain relief for acute pain.152,153 In chronic pain, par-
acetamol can be effectively used in treating migraine 
pain154 and osteoarthritis.155 The pharmacodynamic 
properties of paracetamol, as well as the newly 
described active metabolite AM404 molecule,156 are 
inadequately explained and may involve a diverse range 
of pathways which include transient receptor potential 
cation channel subfamily V member 1 (TRPV1) recep-
tors via inhibition of the reuptake of the endogenous 
cannabinoid/vanilloid anandamide, modulation of 
VGSC currents,157 5-HT receptors158 or the COX sys-
tem.159 Candidate genes involved in these biological 
systems, with time, are likely to reveal a degree of inter-
individual differences.

Paracetamol hepatotoxicity is the most common 
cause of acute liver failure in the United Kingdom.160 
Under normal conditions, paracetamol is extensively 
conjugated with glucuronic acid and sulphate as part 
of phase 2 metabolism in order to make it water solu-
ble, preceding its excretion via the kidneys. A total of 
5% of the remaining drug undergoes phase 1 oxidation 
in the liver via the CYP system. Cytochrome P450 2E1 
and 3A4 convert paracetamol to a toxic intermediary 
metabolite, N-acetyl-p-benzoquinoneimine (NAPQI), 
which is instantly cleared by conjugation with glu-
tathione to form cysteine and other conjugates.161 This 
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Table 4.  Selected experimental and chronic pain studies assessing polymorphisms in genes involved in action of sodium 
channel blockers.

Drug Gene Variant Study 
population

Route Results Reference

Pharmacodynamics
Clinical studies:
LA class SCN9A Recessive 

variant 
R1150W

1277 
people in 
total

NA An altered pain 
threshold and the effect 
mediated through 
C-fiber activation

139

Lidocaine MC1R Recessive 
alleles 
R151C, 
R160W, 
D294H

SC Increased sensitivity 
to thermal pain and 
reduced subcutaneous 
lidocaine efficacy

136

Biophysical and pharmacological ex vivo characterisation of most significant phenotypic alterations:

Drug Gene Variant Study 
design

Results Reference

Lidocaine SCN9A N395K Ex vivo Reduced sensitivity to LAs 132
Ranolazine SCN9A L858H Ex vivo Current normalisation 185
Mexiletine SCN9A L858F and 

V872G
Ex vivo Corrects altered channel activation 

kinetics and frequency dependence
186, 187

Carbamazepine SCN9A V400M Ex vivo Corrects altered channel 
inactivation kinetics

178

Carbamazepine SCN9A R996C, 
V1298D, 
F1462V, 
M1627K, 
V1298F

Ex vivo Corrects altered channel 
inactivation kinetics and reduces 
the persistent sodium current

  34

Lacosamide SCNxA 
(TTX-s)

Wild type Ex vivo Selectively enhances slow 
inactivation

188

Pharmacokinetics

Clinical Studies:

Drug Gene Variant Study 
population

Results Reference

Lidocaine and 
bupivacaine

CYP3A4 T20070C 
(L293P)

72 Increased activity 189

Ropivacaine CYP1A2 C163A Hypermetabolic phenotype 150, 151
Ropivacaine CYP1A2 G3860A Decreased metabolic activity in the 

enzyme produced
150, 151

Biophysical and pharmacological ex vivo characterisation of most significant phenotypic alterations:

Drug Gene Variant Study 
design

Results Reference

Cocaine BChE D70G and 
A328Y

Ex vivo Altered binding efficiency for 
cocaine and deranged catalytic 
efficiency

144

LA: local anaesthetic; SCN9A: Nav1.7 is a sodium ion channel gene; MC1R: melanocortin 1 receptor gene; TTX-s: sodium channels sensi-
tive to tetrodotoxin; BChE: butyrylcholinesterase (pseudocholinesterase) gene; CYP: cytochrome P450; NA: not available; IV: intravenous; 
SC: subcutaneous.
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glucuronidation process was first noted to be impaired 
in sufferers from the inherited bilirubin disglucuroni-
dation condition called Gilbert’s syndrome, increasing 
the risk of paracetamol toxicity in affected individu-
als.162 Furthermore, evidence, collected by Patel 
et al.163 indicated that up to 33% of Oriental subjects 
displayed relatively extensive glucuronidation with 
clinically relevant lower incidence of a fulminant liver 
failure in patients belonging to this ethnic group who 
ingested large amounts of paracetamol.164 Activity of 
CYP2E1 can be decreased by variety of environmental 
factors such as liver cirrhosis, chronic alcohol abuse 
and so on.165

Ketamine
Ketamine is metabolised to several phase 1 metabo-
lites, including alkylhydroxy-ketamine, nor-ketamine 
and dihydro-norketamine. CYP enzymes involved in 
this process are 3A4 (>60% metabolism), 2C9 and 
2B6.166 Norketamine subsequently undergoes phase I 
liver processing with the aid of 2B6 and 2A6.167 When 
tested in a Swedish Caucasian population, 3A4 normal 
and slow metabolisers demonstrated no difference in 
overall pharmacokinetic parameters or in ketamine-
related side effects.168

Tricyclic antidepressants
Amitriptyline belongs to the tricyclic antidepressant 
(TCA) group of drugs. It has been a first-line treat-
ment for neuropathic pain and fibromyalgia for many 
years.169,170 Disappointingly, however, there is still little 
robust evidence for a beneficial outcome in treating of 
these chronic pain states.171 Amitriptyline acts as a 
combined serotonin–norepinephrine reuptake inhibi-
tor as well as a sodium channel blocker. Descending 
noradrenergic inhibitory mechanisms are augmented 
by this class of drugs, and this is thought to be the main 
mechanism of the anti-neuropathic action of amitrip-
tyline.172 The norepinephrine transporter (NET) is a 
peptide that is encoded by the SLC6A2 gene. SLC6A2 
polymorphism seems to be associated with altered pain 
thresholds in humans.173 The influence of SNPs in 
SLC6A2 on the efficacy and TCAs in patients suffering 
with neuropathic pain has not yet been studied.174

Carbamazepine
An anticonvulsant carbamazepine is used in post- 
herpetic and trigeminal neuralgias as well as autoim-
mune-mediated pain states such as Guillain–Barré syn-
drome.175 Rare heritable severe pain conditions such as 
PEPD and some forms of inherited erythromelalgia are 
treated with this drug as well.176 Characterisation of 

sodium current alterations caused by p.1627M>K, 
p.1464T>I mutations affecting SCN9A gene have 
revealed that the likely mechanism of action of carba-
mazepine is via a normalisation of voltage dependence 
of inactivation and activation in VGSC action.177–179

Carbamazepine is mainly metabolised by the 
CYP3A4 enzyme to carbamazepine-10,11-epoxide. 
This drug has been linked to severe, type B (idiosyn-
cratic, dose-independent) adverse cutaneous and sys-
temic reactions varying from Stevens–Johnson 
syndrome (SJS) to toxic epidermal necrolysis 
(TEN).180,181 There is an association of the develop-
ment of both TEN and SJS in carriers of the human 
leukocyte antigen (HLA) HLA-B*1502 allele. This is 
observed explicitly in Asians who are prescribed carba-
mazepine. More recently, both HLA*3101 and 
HLA*1511 alleles have also been identified as poten-
tially contributory to the increased risk of development 
of these reactions.182–184 As a result, the Food and Drug 
Administration (FDA) recommends that before intro-
ducing carbamazepine, all Asian patients be genotyped 
for the HLA-B*1502 allele. 

Discussion
Pharmacogenetics has the potential to provide clinical 
guidance on drug dosing and timing in order to reach 
maximum efficacy and minimum side effects and com-
plications. However, with the vast scope of genetic vari-
ables likely to contribute to pain phenotypes, ‘bedside’ 
clinically available kits have limited applicability.185

There have been two main approaches to popula-
tion-based genetic association studies: candidate gene 
studies and, more recently, genome-wide association 
(GWA) studies. Candidate gene studies tend to focus 
on a small set of SNPs in genes, which are hypothe-
sised to have biological relevance to the condition 
being studied. In analgesic response studies, these have 
mainly been in key genes from either pharmacody-
namic or pharmacokinetic pathways. The SNPs 
selected usually include functional SNPs, which may 
have direct causal relevance. GWA arrays can type as 
many as one million SNPs across the genome to pro-
vide the highest possible coverage of common genetic 
variation. Associations generated from GWA studies 
may not have any direct causal relevance and are more 
likely to be in linkage disequilibrium with underlying 
causative variants. This approach may also identify 
novel contributing genes previously unidentified in our 
current understanding of pain pathways and represents 
an exciting technique for future investigations.

Population-based genetic association studies, which 
aim to correlate genotype to phenotype in complex 
traits, including pain and analgesic response, have had 
variable success; the reproducibility of results has 
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remained low. Twin studies demonstrate that up to 
60% of the observed variability in response to painful 
stimuli is genetically determined. However, genetic 
and environmental factors known to contribute to pain 
experience are only moderately correlated across dif-
ferent pain modalities, which suggests that different 
genes influence different types of pain. In pain of mixed 
aetiology, such as cancer-related pain, genetic influ-
ences may therefore not be clearly identified in clinical 
studies.186

The majority of genetic association studies that 
investigate inter-individual variability in analgesic 
response have used relatively small sample sizes. There 
are several factors which contribute to the required 
sample size, including the prevalence of disease/trait in 
the general population, the frequency of the suscepti-
bility allele and its effect size and the number of SNPs 
to be tested. The lower the frequency of the suscepti-
bility allele and lower the effect size, the larger the sam-
ple size required. Complex traits are likely to be 
influenced by multiple genetic variables, all with small 
or modest effect sizes. Any variant strongly associated 
with a disease or trait is likely to be rare.187 Therefore, 
large sample sizes, possibly of many thousands, are 
generally preferable in the study of complex traits. The 
sample sizes in the studies described in this narrative 
review are generally small and therefore many associa-
tions, particularly with small effect sizes, may not have 
been identified.

The candidate gene approach used to study rare dra-
matic human phenotypes has identified a variety of 
promising therapeutic targets. NTRK1, SCN9A and 
P2X family of genes have been the focus of drug devel-
opment for the last decade with some molecules reach-
ing phase 3 clinical trials. Undesirable side effects and 
idiosyncratic reactions aside, as a proof of concept, these 
examples greatly encourage more work and research to 
be done in order to identify more potential drug targets. 
A recent review article produced by Lotsch and 
Geisslinger188 has explored this particular area further.

Pain experience and analgesic response are complex 
traits, and as such are likely to be influenced by a host 
of gene–gene and gene–environment interactions. A 
few studies have started to investigate interactions 
between polymorphisms from more than one gene; 
however, so far, this has been limited to two candidate 
SNPs at once.90,189 Environmental and patient varia-
bles such as compliance, concomitant medications, 
diet and psychosocial issues also contribute to the ulti-
mate endpoint of analgesic response. The exploration 
of potential gene–gene/gene–environment interactions 
or epistasis provides a huge challenge for future phar-
macogenomic research, both practical and analytical. 
Such work requires exponential increases in sample 
size and focused phenotype definitions.

Other variations besides the DNA sequence may 
influence phenotype in epigenetic processes, for 
example, histone modifications and DNA methyla-
tion. The purpose of this complex process seems to 
be the activation or silencing of specific genes. The 
inherited phenotypic change may be achieved with-
out any alteration in the DNA sequence.190,191 This 
phenomenon has already been associated with many 
other neural functions, including plasticity of synap-
tic transmission and memory. In the context of 
peripheral nerve injury, animal studies have revealed 
epigenetic changes, down-regulating the expression 
of some members of both the opioid and sodium 
channel expressing family of genes.192 This is achieved 
via the neuron-restrictive silencer factor (NSRF), 
which is a transcriptional repressor of genes expressed 
in the peripheral C-fibres. Nociceptor-related targets 
include OPRM1, SCN10A and KCND3.193 It 
remains to be seen if coding polymorphisms of the 
NSRF complex and related neuron-restrictive 
silencer element (NRSE) in any way influence our 
pain perception and alter the way analgesic drugs 
interact with humans.

The majority of the human genome is transcribed 
into non-protein coding RNA (ncRNA) molecules, 
which seem to play a part in genetic adjustments of our 
traits.194 Other molecules, 20- to 30-base-pair-long 
RNAs called microRNAs (miRNAs), target specific 
sites and alter phenotypes by regulating expression of 
the whole cluster of genes in a tissue-specific manner. 
We have only just started to appreciate their influential 
role on nociceptor-related gene expression patterns 
and regulation of pain signalling.195 How to utilise this 
knowledge of miRNA represents an exciting new chap-
ter of drug discovery.

Any further implementation of pharmacogenetic 
assays into day-to-day pain management practice faces 
many obstacles such as ethical, legal and social issues, 
a lack of readily available resources, as well as the sci-
entific quality of information itself.196

Conclusion
Phenotypic differences in pain perception and its phar-
macological modulation are significantly dependent on 
human genetic factors. Knowledge about genes gov-
erning pharmacodynamic and pharmacokinetic pro-
cesses involving analgesic molecules is gaining more 
consideration among prescribers. Lack of robustness 
and reproducibility in pain pharmacogenetics correla-
tion studies is one of many significant limitations in 
development of readily available bedside genotyping 
devices. Personalised drug selection and dosing for 
individual patients with acute or chronic pain is still a 
long way off.
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