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Abstract

Given its biological significance, determining the dispersal kernel (i.e., the distribution of dispersal distances) of spore-
producing pathogens is essential. Here, we report two field experiments designed to measure disease gradients caused by
sexually- and asexually-produced spores of the wind-dispersed banana plant fungus Mycosphaerella fijiensis. Gradients were
measured during a single generation and over 272 traps installed up to 1000 m along eight directions radiating from a
traceable source of inoculum composed of fungicide-resistant strains. We adjusted several kernels differing in the shape of
their tail and tested for two types of anisotropy. Contrasting dispersal kernels were observed between the two types of
spores. For sexual spores (ascospores), we characterized both a steep gradient in the first few metres in all directions and
rare long-distance dispersal (LDD) events up to 1000 m from the source in two directions. A heavy-tailed kernel best fitted
the disease gradient. Although ascospores distributed evenly in all directions, average dispersal distance was greater in two
different directions without obvious correlation with wind patterns. For asexual spores (conidia), few dispersal events
occurred outside of the source plot. A gradient up to 12.5 m from the source was observed in one direction only.
Accordingly, a thin-tailed kernel best fitted the disease gradient, and anisotropy in both density and distance was correlated
with averaged daily wind gust. We discuss the validity of our results as well as their implications in terms of disease diffusion
and management strategy.
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Introduction

The dispersal kernel, i.e., the probability density function of

dispersal distances relatively to a point source, constitutes the most

basic and synthetic descriptor of the dispersal process [1]. Interests

in dispersal kernels increased recently, jointly with the recognition

of the importance of long distance dispersal (LDD). The

magnitude and frequency of LDD events, determining the shape

of the tail of the dispersal kernel, has been shown to play an

important role in a variety of ecological and genetic processes such

as i) the rate of spread of an expanding population [2,3], ii) the

spatial distribution of neutral genetic diversity [4–8], iii) the

transfer of genes between locally adapted populations [9] and iv)
the response to climate changes [10]. Dispersal kernels have thus

been estimated in various taxonomic groups dispersing actively

(insects, [11,12]; birds, [13]; mammals, [14]), or passively (plants,

[15–17]; larvae of marine organisms, [18–20]). For self-dispersing

pathogens, i.e., those that do not require any host or biological

vector movement to disseminate such as most spore producing

fungal plant pathogens, a better knowledge of wind-dispersal

processes, including LDD is required to better predict patterns of

disease spread at both local and global scale [21–23] and/or to

define new efficient control strategies [24–27]. However, despite

its importance, LDD remains challenging to characterize accu-

rately [28] and very little is known about the dispersal ecology of

self-dispersing pathogens.

Three complementary approaches are used to study wind-

dispersed propagules such as pollen, seeds or spores [29]. The first

relies on mechanistic models that include a fine modelling of
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physical processes contributing to the release, transport and

deposition of propagules [30–33]. These approaches have much

developed in the last years, especially thanks to the new

possibilities to conduct intensive numerical simulations that

demonstrate the effect of air turbulence on LDD (see [34] for a

review on seeds). The second approach estimates gene flow from

genetic data through measures of genetic differentiation among

populations or individuals (i.e., indirect approaches) [35]. Indirect

methods generally allow the estimation of a single synthetic

parameter (e.g., average dispersal distance per generation) that

quantifies gene flow averaged over time and space. They cannot

differentiate different types of dispersal events, especially LDD (but

see attempts in [36–39]. The third approach is based on direct

measurements of dispersal distances, achieved by tracking

propagule movement (see [40] for a review on such direct

methods in plants), often using genetic markers. While direct

approaches are costly, fastidious and time-consuming [41], they

allow an experimental measure of the magnitude and frequency of

LDD events through the estimation of the dispersal kernel [1].

In principle, dispersal kernels can experimentally be estimated

from the real-time tracking of propagules (Lagrangian methods) or

from the amount and/or diversity of propagules observed at

different distances from a source (Eulerian approach) [40].

Lagrangian methods have mostly been applied to animals or

animal-dispersed propagules (e.g., seeds, pollen) using mark/

recapture or tracking designs [1]. They can barely be applied to

wind-dispersed pathogen propagules because of their small size

(but see [42]). In such situation, the Eulerian approach appears to

be more suited in determining how many propagules originating

from an isolated or identifiable source of inoculum arrive at

specific distant location. While some experiments based on the

Eulerian approach have successfully been performed on plants

(e.g., [40,43–47]), their application to wind-borne plant pathogens

have been so far extremely limited to small-scale plots and/or

artificial (e.g., wind tunnel) conditions [48–52]. This may be

because Eulerian approaches require a number of precautions in

the experimental design [40], which can be fastidious when

dealing with disease gradients caused by infectious spores. First,

external contamination must be avoided, which requires perform-

ing the experiment in a disease-free area or to use a traceable

source of inoculum. Second, secondary dispersal events (which

occur when inoculum disperse from a plot that has itself been

infected by the primary source of inoculum) must be either

distinguishable or avoided. Third, the sizes of the experimental site

and of the inoculum source are both critical and must be large

enough to provide measurable disease levels at long distances.

Fourth, because spore dispersal might be anisotropic (i.e.,

direction-dependent) [48], trapping should be arranged in several

directions [53–55]. Fifth, trapping design as well as the sizes and

shapes of trap plots need to be carefully conceived [40,56], which

generally requires a priori knowledge about the dispersal abilities

of the species under study [1].

In this article, we show how taking such precautions in the

design of a large-scale trap experiment, combined with dedicated

statistical analysis, allow estimating anisotropic dispersal kernels

under natural conditions in a wind-dispersed plant pathogen. We

focus on the fungus Mycosphaerella fijiensis, the causal agent of

Black Leaf Streak Disease (BLSD) of banana and plantain. This

ascomycete species, considered as one of the most important crop

pathogen in the world [57], is a major cause of yield loss and the

massive use of fungicides for its control is detrimental to the

environment [58,59]. In addition to accidental transport of

infected plant material, the species naturally spreads via the

dispersal of both sexually-produced (ascospores) and asexually-

produced (conidia) spores. Lesions being asynchronous, both types

of spores are continuously produced: conidia are produced first in

the younger stages while ascospores are produced in necrotic spots

at the latest stage of the disease. Air release of both types of spores

is noticeably different and influenced by climatic conditions [60].

Conidia are lightly attached to conidiophores, laid on the leaf

surface, and are blown off passively by wind or water, whereas

ascospores are expulsed actively into the air from perithecia during

wet periods [61,62]. Previous studies used spore traps to clarify the

relative importance of ascospores vs. conidia dispersal inside and

outside plantations [61–64]. It was concluded that ascospores

might be carried over long distances whereas conidia would be

dispersed mainly over short distances or at the plant level (see

review in [65]). Other studies were carried out to measure

dispersal distances through spore trapping or disease gradient

analysis but none estimated accurately dispersal kernels: either

external contaminations were impossible to avoid ([65], Abadie et

al., unpublished data) or disease gradients were observed over

several disease cycles [62,66]. Interestingly, Rieux et al. [67]

recently generated the first indirect (based on genetic data)

estimate of dispersal in M. fijiensis, which makes this pathogen

species a good model to directly assess the dispersal kernel as

comparison between direct and indirect estimations can prove

useful [68].

Materials and Methods

Experimental design
Field work was performed on a private piece of land, belonging

to the SOCAPALM Company, who provided us the permit to

perform our experiment on their domain. Our field study did not

involve endangered or protected species Two experiments were

conducted within an industrial rubber tree plantation in southwest

Cameroon (4u149N, 9u579E) in a flat area with no obstacles to

spore dispersal (rubber trees were young and thin). Banana trap

plants (cultivar Grande Naine) were planted in June 2010

following two trapping designs and controlled infected plants were

introduced in the centres of the two designs on October the 20th

(day 0, D0).

Ascospore experimental site. Trap plants were planted at

27 different distances, from 4 to 1000 m, on each of eight transects

(E, NE, N, NW, W, SW, S, SE) radiating from a 464 m central

square (Figure 1). In order to measure accurately short-distance

gradient, single banana trees were densely planted (one plot every

8 meters) up to 104 m from the centre. At larger distances (from

104 to 1000 m), the distance between consecutive plots was

increased (one plot every 50 meters) and the number of trap plants

per plot was doubled every 100 m (i.e, 1 plant at 100 m, 2 plants

at 200 m and 10 plants at 1000 m, see Appendix S1 in File S1) to

improve rare long distances dispersal events detection, as

previously shown using Monte Carlo simulations [56]. In

directions E, NW and SW, the dimensions of the rubber tree

plot did not allow the installation of plants at the largest distances.

A total of 511 banana plants were planted in 192 plots. We have

chosen the distances at which sampling was denser or looser

following previous empirical knowledge about M. fijiensis
ascospore dispersal (Abadie et al., unpublished data). The total

number of potted plants was fixed by practical experimental

constrains.

Conidia experimental site. Traps were planted in an open

area without rubber trees, 3 km SW away from the ascospore site.

Because we expected that conidia disperse much closer than

ascospores, the size of this experiment site was smaller. One

banana trap plant was planted every 2.5 m from a central point up
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to a distance of 25 m in each of eight directions (indexed e, ne, n,

nw, w, sw, s, se) (Figure 1).

Initial conditions
Two distinct sources of inoculum, highly resistant to Quinone

outside inhibitors fungicides (QoI) were carefully prepared for

ascospores and conidia (See Appendix S2 in File S1). The number

of spores potentially released by each of the two inoculum sources

was both experimentally and theoretically assessed (See Appendix

S3 in File S1). During the five months prior to the start of the

experiment (D0), standard cultural practices including fertilization

were applied. The week before D0, all banana trap plants were

Figure 1. Plots layout of both ascospores and conidia experimental designs implanted in Cameroon. For the ascospores system (upper
panel), the sizes of the squares (schematizing sampling sites) are proportional to the number of trap plants and the number into brackets indicates
for each axis the distance between the centre and the most distant sampling site.
doi:10.1371/journal.pone.0103225.g001
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sprayed with QoI fungicide (under conditions described in

Appendix S2 in File S1) and all their leaves were removed except

the last unfurled leaf (called the cigar), and the first leaf under the

cigar (F1). This aimed at eliminating all undesirable inoculum

sources inside the experimental site. At D0, most banana plants

showed good physiological conditions in the ascospore site,

whereas 29 plants over 80 (36%) died due to bad soil conditions

in the conidia site. The inoculum sources were then installed at the

centre of each of the two experimental sites (Figure 1 & Figure S2-

2 in in File S1). Fungicide treatments were applied weekly until the

end of the experiments.

Measuring disease gradient
Observations were realized on the leaf that was unfurled at D0.

Inoculum source was removed once we detected the first

symptoms. The first lesion (i.e., characteristic streak typic of M.
fijiensis infection [69]) was observed 17 days after inoculation on

both experimental sites. This is considered as the latent period

(LP). To avoid assessing lesions from a second generation of spores

the final counting of lesions was made between days 26 and 30.

Only stage 2 and 3 lesions (i.e., streaks longer than 1 mm) were

considered since stage 1 lesions can be confused with other leaf

injuries [69]. For each trapping plot, we noted TNL, the total

number of lesions and DL- the density of lesions (in number of

lesions/leaf m2). The area of each leaf analysed was estimated

from leaves length and width as length6width 6 0.83 [70].

Meteorological data
We used a WS2800 (La crosse Technology) weather station to

record wind gust and speed at a frequency of one measurement

every 15 minutes. Daily rainfall was recorded using a rain gauge.

We computed two different indices reflecting wind patterns. First

we calculated the cumulative wind speed in each direction as the

sum of wind speeds blowing in that direction over all measurement

points. Second we considered the frequency of wind records in

each specific direction. We also computed those indices consid-

ering only the measures between 5 and 9 am because intense

ascospore discharge occurs during this period in M. fijiensis due to

rapid variations in relative humidity induced by dew or higher

rainfall [61].

Molecular detection of QoI-resistant strains
Molecular detection of QoI resistance was performed at three

instances. We first evaluated resistance in the source of inoculum.

To do so, we collected 30 lesions/plant over 10 plants at 7

different dates during the preparation of inoculum. Secondly, we

checked the absence of resistance in the experimental environment

before inoculation. For this purpose, we collected 30 lesions/plant

over one plant at the extremity of each axis, one plant in the centre

of the experimental site, and 15 plants outside the experimental

site. Thirdly, we evaluated the rate of non-resistant lesions at D30

by constantly and randomly collecting up to 32 lesions per plot

after lesion counting. For plots containing several plants, lesions

have been randomly sampled among the different plants. Bulks of

maximum 10 lesions from the same leaf were constituted for DNA

extraction and the frequency of the G143A mutation conferring

resistance to QoI fungicides in M. fijiensis was assessed for each

bulk through pyrosequencing (See Appendix S4 in File S1). We

denote GNL, the number of genotyped lesions, and GNRL, the

number of genotyped resistant lesions.

Statistical analyses
We assumed that the total number of resistant lesions (TNRL)

on a leaf follows either a Poisson or a negative-binomial

distribution with mean S(x, y), the infectious potential at location

(x, y). We further assumed that GNRL follows a hypergeometric

distribution with parameters TNL, TNRL and GNL, because

sampling is made without replacement [71]. Details and equations

for the likelihood calculation of the dispersal models are given in

Appendix S5 (in File S1).

Anisotropic dispersal kernels. Dispersal is anisotropic

when propagules disperse differently depending on the direction.

We focused on two types of angular dependence, anisotropy in

density and distance, represented by two independent angular

functions [54,55]. The first ( f(Q))describes the distribution of spore

dispersal directions. The second (g(Q)) ( ) provides the expected

distance travelled, given the direction. We used the unimodal von

Mises functions [72] (i.e., with only one main direction) for those

two angular functions (See Appendix S6 in File S1 for details).

The infectious potential, S(x,y), was computed as:

S(x,y)~s0A
X5

i~1

K(x{~xxi,y{~yyi) ð1Þ

where s0 represents the number of spores released from each of the

5 sources (hereafter called source intensity) assuming that the 5

sources produced the same amount of inoculum, A represents the

surface area of a trap leaf, (~xxi,~yyi) is the location of source i, and

K(x, y) is a 2D anisotropic kernel.

We considered 4 different anisotropic kernels: exponential [36],

exponential power (thin or fat tailed according to the value of the

shape parameter [36], geometric (fat tailed, [36]) and WALD (fat

tailed, a closed-form simplification of a mechanistic model for seed

dispersal by wind [73]).

K x,yð Þ~ f (Q)

g(Q)2
exp

{r

g(Q)

� �
for the exponential kernel ð2Þ

K x,yð Þ~ f (Q)(b{1)(b{2)

g(Q)2
1z

r

g(Q)

� �{b

for the geometric kernel

ð3Þ

K x,yð Þ~ f Qð Þb
g Qð Þ2C 2=bð Þ

exp {
r

g Qð Þ

� �b
 !

for the exponential power kernel

ð4Þ

K x,yð Þ~f (Q)

ffiffiffiffiffiffiffiffiffiffiffi
b

2pr5

s
exp {

b r{g Qð Þð Þ2

2g Qð Þ2r

 !

for the WALD kernel

ð5Þ

where f Qð Þ!exp dcos Q{mð Þf g and g(Q)!exp kcos(Q{n)f g are

Von Mises density functions (See Appendix S6 in File S1 for

details on parameters and normalizing constants). In equations 2–

5, (r, Q) holds for the polar coordinates of (x, y), b for the shape

parameter and C for the gamma function.
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Parameter estimation and tests of significance. In the

different models, 6 or 7 parameters were estimated: the source

intensity s0, the density (m and d) and the distance (v and k)

direction parameters of the von Mises functions, and g0, a

parameter proportional to the average distance travelled. For

geometric, exponential power and WALD kernels, parameter b
additionally describes the shape of the tail. When considering the

negative-binomial distribution, we jointly estimated the associated

dispersion parameter t (See Appendix S5 in File S1 for details). All

parameters were estimated simultaneously by maximizing the

likelihood using an adaptive barrier algorithm [74]. The AIC

criterion was used to investigate whether the directional density

function is uniform (d = 0) or not (d.0), the mean distance

travelled is constant over all directions (k = 0) or not (k.0) and for

model selection. The 95% confidence intervals for parameters

were computed for the best model using 1000 nonparametric

bootstrap [75]. All calculations were realized using the R software

[76]. The code used to perform statistical analyses is given in File

S2.

Mean distance travelled by spores and standard deviation

of parent-offspring dispersal distances (s). We computed

different types of mean distance travelled by spores. The first one

was calculated from the raw data (i.e., without fixing any kernel),

and on each direction independently as

D~

PH
h~1

rh fhsh

PH
h~1

fhsh

ð6Þ

To obtain independent values for all 8 directions, we divided the

total surface of the experimental area S into 8 circular sectors,

each divided into H sectors of circular ring including one sampling

plot, the hth sector of circular ring being of surface sh, of density in

resistant lesions fh, at distance rh from the centre The second

estimate was obtained from the inferred dispersal kernel (i.e.,

averaged over the different directions by taking the anisotropy

patterns into account) with or without considering the tail of the

kernel at distances longer than 1 Km, as detailed in Appendix S6

in File S1.

From the estimated kernels we also computed s, the standard

deviation of parent–offspring axial dispersal distances (also known

as the average quadratic axial travelled distance). We computed

one value for each of the 8 directions radiating from the inoculum

source for ascospores only without considering the tail of the

kernel at distances longer than 1 Km (Appendix S8 in File S1).

Correlation with wind patterns. We used the Spearman

rank correlation coefficient and the associated two-sided p-value to

test for significant correlation between spore density or distance

travelled by spores and wind patterns.

Results

Lesions counting
Ascospores. Lesions were detected in 168 of the 192 trapping

plots (87.5%). The density of lesions (DL) observed on each plot

ranged between 0 (24 plots) and 5182 lesions.m22 (NE4, the site

localized 4 m North-East direction away from the source). A sharp

decrease in the disease gradient was observed over the first

100 meters in all directions (see Figure 2A). In directions W, S, NE

and SE, the DL increased at greater distances from the source

(between 800 and 1000 m), suggesting external contamination

from the vicinity of the experimental site in these directions.

Conidia. We observed lesions on 16 plants (31%). The DL

ranged between 0 (35 plots) and 392 (SW2.5). No lesion was

detected at a distance larger than 12.5 m from the central source

(Figure 2C).

Molecular detection of resistance
High levels of resistance (96 and 98% for conidia and ascospore

respectively) were monitored in the two distinct sources of

inoculum (See Appendix S2 in File S1). Before inoculation, none

of the 720 lesions or necrotic tissue sampled inside or outside the

experimental site displayed the QoI-resistance SNP. After lesion

counting on the ascospore experimental site, the percentage of

resistance detected varied from 0% (mainly for plots situated at

extreme distances, close to the borders of the experimental site) to

100%, with an average value of 75%. We observed resistant

lesions up to 1000 m from the source (DRL = 1.8 lesions.m22 at

W1000 and DRL = 5.6 lesions.m22 at S1000) suggesting the

occurrence of LDD events (Figure 2B & Figure S7 in File S1).

On the conidia experimental site, the percentage of resistance

detected varied from 0% (at two plots) to 100%, with an average

value of 71%. However, unlike the situation at the ascospore site,

the frequency of susceptible strains was not higher at the border of

the experimental design (Figure 2 C&D).

Weather report
The highest cumulative wind speed and frequency over the

dispersal period was in the NE to SW direction (See Figure S9 in

File S1). However, for data recorded between 5 and 9 a.m the

highest cumulative wind speed were in the SW to NE and S to N

directions. Rainfall occurred on 6 days over this period and

represented a total of 109 mm.

Statistical analysis
On both the ascospores and conidia datasets, the negative-

binomial distribution was preferred to the Poisson distribution for

TNRL as the former led to smaller AIC values (See Table S5.1 in

in File S1). As reported in Table 1, the dispersion parameter in the

negative-binomial distribution was smaller (i.e, higher value of t)

when assuming the exponential power kernel.

Ascospores. The mean distance travelled by ascospores (raw

data estimate) varied across the different directions, ranging from

104 m (North direction) to 613 m (South direction) (Table 2). The

exponential power kernel best fitted the data (Table 1, Figure 3 &

Figure S7 in File S1). The estimated shape parameter (b = 0.064,

CI [0.033–0.077]) indicated a fat-tailed kernel (b,1). The

directional density and mean distance functions (calculated using

the exponential power kernel) revealed contrasted patterns of

anisotropy in the dispersion of M. fijiensis (Table 1, Figure 4).

Anisotropy in density was not significant (i.e., d not statistically

different from 0, DAIC = 1.03), whereas anisotropy in the mean

distance travelled was significant (i.e., k statistically different from

0, DAIC = 11.52). This indicated that although there is no

significant preferential direction taken by spores, they are

predicted to disperse further in the SW direction (angle v = 226

degrees). The mean dispersal distance (averaged over the various

directions) obtained from the dispersal kernel shown substantial

variation whether we considered or not the tail of the kernel at

distances longer than the study plot maximum size (1000 m). We

obtained a value of D1000 = 213.83 m CI [144.23–542.17] and

DInf = 14 721.49 m CI [2 134.65–184 267.03]. Finally, the

average value of s computed over the 8 directions obtained

by truncating the kernel over distances .1000 m was s =

200.961 m/generation1/2 (Table S.8.1 in in File S1).
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Conidia. The mean distance travelled by conidia (raw data

estimate) varied between 0 m (S and SE directions) and 7.6 m (SW

direction) (Table 2). The exponential power kernel provided also

the best fit (Table 1) but indicated a thin-tailed kernel (b = 1.86, CI

[1.36–2.38]). Anisotropies in both density and distance were

significant (i.e., d and k statistically different from 0, DAIC = 6.73

and 7.81 respectively) with more dispersal and longer dispersal

distances towards the SW (angle m = 215 degrees and angle

v = 226 degrees; Table 1, Figures 3&4). In contrast with the

ascopore analyse, the mean dispersal distance (averaged over the

various directions) obtained from the dispersal kernel was pretty

similar whether we considered the tail of the kernel at distances

longer than the study plot maximum size (D25 = 3.15 m CI [1.01–

6.78]) or not (DInf = 6.12 m CI [2.79–8.16]).

Correlation between density, distance and wind

patterns. Correlation between spore dispersal (in terms of both

density and distance) and wind patterns in each direction (in

frequency or speed; for all records or records between 5 and 9

a.m.) provided contrasting results for ascospores and conidia. No

significant correlation was found for ascospores but we found a

positive correlation for conidia between wind frequency in a given

direction and dispersal density (R = 0.91; P = 0.0001) or mean

distance travelled (R = 0.95; P = 0.00001) (See Table S10 in File

S1).

Discussion

We provide the first direct estimate of dispersal kernel in the

fungal banana pathogen M. fijiensis. It is also among the first

estimates obtained at landscape scale, demonstrating the occur-

rence of LDD events in fungal plant pathogens, a group that

comprises most emerging infectious plant diseases [77], and for

which ecology is strikingly poorly known.

Figure 2. Disease gradient measured in the field. Density of lesions (i.e., DL, A & C) and density of resistant lesions (i.e., DRL, B & D) as a function
of geographical distances from the central source. Top: ascospores site (A & B); Bottom: conidia site (C & D). The different axis of the experimental
design are represented separately using different symbols. DL and DRL are plotted in ‘‘log (1+the value)’’ scale but values are indicated in natural
scales.
doi:10.1371/journal.pone.0103225.g002
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An accurate experimental design
Our experimental design differs from the majority of previous

studies focusing on self-dispersing pathogens in three points, which

might have been instrumental in the success of the dispersal kernel

estimation.

First, we minimized the influence of external and secondary foci

contamination by i) inoculating a marked fungicide-resistant strain

in an environment where it was absent and where the presence of

the fungal pathogen was scarce and ii) measuring the disease

gradient during a single generation. Our a posteriori molecular

assessment results indicated that despite a weekly application of

fungicide treatments, sensitive spores induced lesions on many trap

plants. On the ascospore site, those sensitive strains were mostly

found at the edge of the field, thus suggesting an influence of

surrounding banana plantains. On the conidia experimental site,

the frequency of susceptible strains was not higher at the border of

the field suggesting that most of those strains could originate from

the central source itself, which was composed of 96% resistant

lesions according to molecular analyses. Susceptible conidia might

be over-represented if the sporulation of resistant lesions was

affected by a cost of QoI-resistance. Besides, recent observations

showed a large variance of sporulation among young lesions from

a same banana leaf (from 10 to 1000, unpublished data), which

could account for a stochastic distribution of susceptible lesions

within the small number of lesions counted (255 in total). Since the

experiment was not designed to quantify external contamination,

no further attempt was made to analyse the spatial distribution of

susceptible strains or to trace back their origin.

Second, we managed to concentrate a heavy inoculum source

on a tiny area and adopted a large and intensive sampling design

particularly adapted to the detection of LDD events and

anisotropy patterns. Those precautions were particularly efficient

on the ascospore experimental site where 75% of the trap plants

have been infected by a resistant spore, including two plots located

at 1000 m from the source. Two previous studies managed to

measure large scale single-generation disease gradients from an

identified source of inoculum in a windborne pathogen fungus.

First, Sackett and Mundt [78] investigated spore dispersal up to

170 m in one-dimension from a primary source of a specific strain

of Puccinia striiformis, causing wheat stripe rust. They detected

rare LDD events at 80 m from the source and showed that a non-

exponentially bounded (i.e., fat-tailed) model best fitted their field

data. However, they could not investigate anisotropy in their 1D

Table 1. Ascospores and Conidia experimental sites model fit results.

Ascospores Exponential Geometric WALD Power Exponential

N 7 8 8 8

LL 2677.96 2589.69 2612.20 2574.22

S0 8.50E+06 1.36E+07 1.04E+07 2.34E+07 CI (2.02E+07; 4.05E+07)

m 323.72 321.43 2500.95 178.76 CI (158.13; 241.21)

d 0.22 0.12 0.7 0.49 CI (0.11; 0.92)

g0 6.73E+02 2.37E+01 9.05E+52 9.32E-20 CI (1.14E-33; 2.31E-10)

v 258.97 233.76 246.37 226.32 CI (213.14; 244.65)

k 1.54 1.91 2.08 3.38 CI (2.84; 4.99)

b 2.002 17.329 0.064 CI (0.033; 0.077)

t 0.34 1.03 0.85 1.20

R2 0.21 0.43 0.41 0.55

AIC 1369.93 1195.38 1240.41 1164.45

Conidia Exponential Geometric WALD Power Exponential

N 7 8 8 8

LL 262.68 263.05 265.58566 259.03

S0 7.43E+03 4.38E+06 4.71E+05 1.96E+04 CI (2.09E+03; 1.05E+05)

m 227.67 224.33 215.16 217.85 CI (174.75; 287.05)

d 2.28 3.43 4.03 4.73 CI (3.61; 5.09)

g0 3.23 2.01 8.64 8.08 CI (6.44; 10.37)

v 212.56 247.51 229.75 225.74 CI (194.23; 258.40)

k 1.18 223.4 5.03 9.72 CI (6.73; 12.14)

b 2.02 4.78 1.86 CI (1.36; 2.38)

t 0.21 0.09 0.11 0.44

R2 0.42 0.30 0.28 0.48

AIC 139.36 142.11 147.17 134.07

Maximum likelihood estimation of the different parameters considering the different dispersal kernels tested. N holds for the number or parameters, LL for maximum
likelihood, So is the source strength, m and v (degree) are the direction of the density and distance anisotropy functions respectively, d and k are the variability around
the mean for the density and distance anisotropy functions respectively, g0 is a constant that cannot be compared between different kernel, b is the parameter of the
shape of the tail and t is the negative-binomial dispersion parameter. R2 is the coefficient of determination between observed and predicted densities of resistant
lesions. AIC was calculated as AIC = 2*N - 2LL. CI for 95% confidence intervals calculated for the best model only. Best model (i.e., lower AIC) and significant values of
anisotropy functions are highlighted in bold.
doi:10.1371/journal.pone.0103225.t001
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design. Later, Soubeyrand et al. [54], focused specifically on the

detection of anisotropic patterns for the same pathogen. They also

used a specific strain of P. striiformis as inoculum source and

assessed the disease gradient up to 400 m through a large array of

small plots arranged randomly in two-dimensions around the

source. They detected rare LDD events at 225 m and investigated

spore dispersal anisotropy in both density and distance. However,

they did not characterize the shape of the kernel tail since they

fitted a unique exponential model to their data. Here, we extended

this approach to three other kernel families and simultaneously

tested the patterns of anisotropy in density or distance in BLSD

disease gradients.

Third, we simultaneously measured disease gradients caused by

both sexually- and asexually-produced spores under similar

environmental conditions which, as far as we know, has never

been done before. This provides a unique opportunity to compare

the dispersal abilities of these two types of propagules.

Figure 3. Observed vs predicted disease gradients. (A) Ascospore and (B) conidia experimental sites. Dispersal kernels (DK) parameter values
are given in Table 1. Density of resistant lesions (DRL) is expressed in a ‘‘log (1+ of the value)’’ scale. Smallest dots represents sites where DRL = 0 and
gaps (B) represents missing data due to plants mortality.
doi:10.1371/journal.pone.0103225.g003
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Spores dispersal in M.fijiensis
For ascospores we detected both a steep gradient in the first few

metres of each direction and LDD events up to 1000 m from the

source in two of the eight directions. Such rapid and sharp

gradients have been described previously for airborne fungi

[48,78] including M. fijiensis [63]. However, the detection of

dispersal events up to 1 km from a localized primary source of

inoculum far exceeds the distance over which LDD had been

characterized experimentally for any plant pathogen fungi [54,78],

even if intercontinental aerial dispersal has been suspected for

some species and particularly for rusts [79]. Previous studies

suggested that ascospores of M. fijiensis, could disperse over

several kilometres [65,66], but the occurrence of contamination

(either external or due to several foci) could not be excluded. Here,

our results clearly show that ascospores of this pathogen can

effectively disperse at least up to 1 km in a single generation.

Following the recent developments in movement ecology [1],

we used our data to estimate a 2D dispersal kernel including a full

accounting of anisotropy [54,80]. Disease gradient was best fitted

by a fat-tailed exponential power. This result is consistent with

theoretical considerations showing that wind dispersal is a major

mechanism of LDD, and that windborne fungi frequently display

such patterns [7,48,81]. It is noteworthy that the relation between

the log of the total density of resistant lesions and distance

appeared linear up to 150 m (see Figure 2b), which would be

characteristic of an exponential decrease at this scale. In other

words, our conclusions would have been different if we had carried

out this experiment up to 150 m only, illustrating how the

reliability of dispersal models is relative when field data are

measured along a truncated part of the dispersal distance

distribution [78,82]. Anisotropy functions indicated no significant

preferred direction for ascospores, although they dispersed on

average further in the SW direction. However, because the von

Mises functions we used are unimodal they can characterize only

one unique preferred direction. The SW anisotropy in distance

estimated could thus result from higher mean distances travelled in

both the South and West directions, as suggested by the mean

dispersal distances independently calculated along the 8 directions

(Table 2). And the higher distances travelled in the South and

West directions are probably due to the highest wind speeds

recorded in those directions. Soubeyrand et al. [54] also reported

two significant anisotropies that did not coincide (different

directions). These authors hypothesized that several factors, such

as topography, wind speed or wind direction could be implicated

Figure 4. Anisotropy functions estimated from the exponential power dispersal kernel. Estimated directional functions (solid lines, A&C
for the density and B&D for the mean distance) are compared to their equivalent uniform functions (dotted lines) for both the ascospores (A&B) and
conidia (C&D) experimental site. See Table 1 for details on values and statistical support. Directional angles are given in degrees.
doi:10.1371/journal.pone.0103225.g004
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in this difference but the accuracy of meteorological data did not

allow a more thorough understanding. Here, we hypothesize that

the dispersal direction is fixed by the direction of the wind at

expulsion time. In M. fijiensis, it has been suggested that

ascospores discharge would be more important during the time

interval of 5–9 a.m [61]. According to the recorded wind patterns,

if most ascospores had been discharged during this period,

anisotropy in density would probably have been observed in the

North and North-East directions. Then, it is more probable that

ascospore discharge occurred at different periods of the day with

different wind directions but unfortunately the daily rainfall data

do not allow a better understanding.

For conidia, the spatial patterns of resistant lesions showed a

gradient in 1 of the 8 axes only (SW direction), and only up to

12.5 m. In other directions, either no lesions were detected or

lesions were found only on the first plants surrounding the source.

Previous data on the dispersal of M. fijiensis conidia were based on

air trapping methods within the banana canopy (Rutter and Burt

1998) and cannot be compared to ours. However, our results are

consistent with several studies on different species with comparable

conidia, which found dispersion over just a few metres from the

source [49–52]. Interestingly, disease gradients were also best

fitted by an exponential power kernel but contrary to ascospores,

the shape parameter indicated a thin tailed dispersal kernel.

Anisotropy in density and in distance were oriented in the same

direction as the strongest winds, suggesting that higher wind

speeds in a given direction result in higher numbers of conidia

dislodged and higher distances travelled. Such relationship

between wind speeds and conidia liberation has been previously

reported for several fungal pathogens [49].

The differences between ascospores and conidia in average

dispersal distance, weight of the kernel tail and anisotropy patterns

are likely due to contrasted physical properties and liberation

mechanisms. Conidia are long, generally 5–7 septate (30–130 mm),

and formed at the apex of conidiophores, directly at the leaf

surface where they will be dislodged by wind. Ascospores are

smaller, bi-cellular (15 mm) and formed in perithecia before being

expulsed in the air after water immersion [60]. Such physical

differences may lead to differences in the way air turbulences affect

the two types of spores. Another non-exclusive explanation would

be that both types of spores are not dispersed at the same period of

the day as reported previously [61]. Recent studies have

demonstrated the importance of the conditions at release on the

dispersal pattern eventually realized [83–86]. Further develop-

ments in this way will surely improve our understanding of the M.
fijiensis system.

Model extrapolation and experiment limitations
We observed considerable variation between the ascopores

average dispersal distance (as well as the width of its associated

confidence interval) predicted by the model whether we included

or not in the calculation the tail of the kernel at distances longer

than 1 km (the maximum detectable dispersal distance in our

study plot). As previously described [78,82,87,88], this result

illustrates how risky extrapolating dispersal over observed distanc-

es is, especially in the case of heavy-tailed kernel. The fact that the

maximum detected dispersal distances (1 km) match the plot size

indicates that ascospores dispersal in M. fijiensis is likely to occur

at a larger scale. This observation naturally suggests that

performing such a release/capture experiment over longer

distances would probably improve the kernel estimation as well

as model extrapolations.

Another potential limitation of the experiment is related with

the aerobiology of M. fijiensis spores. In theory, two major

differences between experimental and natural plantation condi-

tions may have had an aerological influence on spore release and

transport. The first one is related with the phenotype (e.g., height

and shape) of the sources of dispersal. Our artificial banana plants

Table 2. Mean and longest distance travelled along each direction.

Axis Mean distance travelled (m) Length of the axis (m) Longest distance travelled (m)

E 273.129 900 800

N 104.583 1000 500

W 443.466 1000 1000

S 613.684 1000 1000

SE 367.537 1000 900

NE 133.473 1000 600

NW 140.638 700 700

SW 195.115 500 500

Axis Mean distance travelled (m) Length of the axis (m) Longest distance travelled (m)

e 2.566 25 5

n 5.797 25 10

w 3.4 25 7.5

s 0 25 0

se 0 25 0

ne 2.6 25 5

nw 3 25 5

sw 7.647 25 12.5

Mean and longest distance travelled along each of the axis of both ascospores (top panel) and conidia (bottom panel) experimental site. Mean distances were obtained
from raw data (Eqn. 6). Minimum and maximum values are highlighted in bold.
doi:10.1371/journal.pone.0103225.t002
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(ascospore source of dispersal) were on that sense pretty well

representative of natural banana trees which should limit such

potential bias. The second one is linked to the plant density as it

directly influences local air movements [89]. On the ascospore

experimental site, we concentrated the amount of inoculum (i.e.,

necrotic tissue) of <50 natural plants on 5 artificial trunks to limit

at maximum the spore emission area surface. In addition, the

density of plants over the entire study site was much lower than

what can be observed in natural banana plantations. It is thus

possible that such a lower plant density in our experimental site, as

compared with natural conditions, may influence the dispersal

kernel estimation. Further investigation of spore dispersal patterns

through mechanistic models by wind would be needed to

specifically assess this question.

Direct vs indirect estimation of dispersal
Direct estimations of dispersal kernel have previously been

criticized for two main reasons. First, when they rely on physical

traps, they inform on the dispersal of particles independently on

their viability. Here, because we used biological traps, our kernel

reflects ‘‘effective dispersal’’, including release, transport, deposi-

tion and establishment on a leaf. Second, direct measurements can

be sensitive to the ecological and environmental conditions of the

location and period of the experiment. Dispersal kernels are thus

expected to be valid under the experimental conditions but

evaluating their generality for the species is challenging [1]. One

way to investigate the repeatability of our results would have been

to perform the experiment a second time. This was unfortunately

not feasible in our case because of the consequent contamination

of the banana plant traps by the source of inoculum and also for

logistic reasons. An alternative way to gain insights on the validity

of our estimation can potentially be achieved by comparing the

kernel estimated with an indirect measure of gene flow which

integrates migration movements over several generations. From

our knowledge, this has never been realized for a plant pathogen

species before (see Table S11 in File S1 for a few examples found

in few other species). The indirect estimate of the parent-offspring

dispersal distances obtained in Rieux et al. [67] is <6-fold more

important (s = 1.2 km/generation1/2) than the demographic

estimate computed over the 8 directions from the dispersal kernel

(s = 201 m/generation1/2). This ratio appears consistent with the

values measured in other species (Table S11 in File S1).

Nevertheless, several factors can explain discrepancies between

our direct and indirect estimations. First, environmental conditions

could differ if experiments are realized in contrasted location/

season. This should not be a major issue here as the indirect

estimation has been realized in a neighbouring area (i.e., 50 km

away from the direct experimental site) and obtained by averaging

dispersal processes over <2 years, thus integrating a wide range of

environmental conditions. Second, most classical indirect ap-

proaches are expected to be sensitive to leptokurtic dispersal [68],

which might explain differences between direct and indirect

estimates in case of fat-tailed dispersal kernel. This is neither

supposed to hold here because Rieux et al. [67] used simulations to

show that their neutral genetic approach was robust to deviation

from a Gaussian kernel, even in the case of extremely high

kurtosis. Third, the difference in number of generations during

which the estimation is realized can also be a source of disparity.

Because the kernel was measured over a single generation, one

may want to convolve (i.e., reproduce) it 15 times to properly

compare the two values. Such a procedure is not trivial and has

not been implemented here but previous theoretical results allow

predicting qualitatively the pattern we would obtain. It has indeed

been shown that fat-tailed kernel (as measured in the present

study) generate increasing speeds during colonization [2]. This

suggests that the average distance travelled and the standard

deviation of axial dispersal distances should be higher if computed

from a 15 times convolved kernel in comparison to single

generation estimation. Last, the indirect estimation could also

have been over-estimated if integrating potential human mediated

transport of infected material [67]. This is likely to occur in this

area where plant exchanges occur commonly between villages

separated by several kilometres. Altogether those arguments

suggest that accounting for the above listed factors may lead to

a reduction of the ratio between M.fijiensis direct and indirect

estimates of dispersal, which constitutes a good case for them to be

biologically relevant.

New insights into BLSD management
The results we obtained improve our understanding of

M.fijiensis epidemiology. The observed combination of short

and long distance spore dispersal has significant consequences in

terms of disease spread. Indeed, long distance ascospore dispersal

is expected to generate new populations far (at least 1 km) from the

front. A subsequent rapid growth via conidia may contribute to the

rapid establishment of such populations at the edge of the

expansion front because this pathogen is heterothallic and needs

high population densities for sexual reproduction. The iteration of

both processes, known as ‘‘stratified dispersal combination’’ is

expected to generate a mosaic of relatively homogeneous genetic

patches and to accelerate BLSD spatial expansion [4,90,91].

Interestingly, Rieux et al. [92] reported such a patchy genetic

structure in a neighbouring area. A cautious use of the kernels

estimated in the current study (e.g., truncating the ascospore

kernel tail over distances ..1 km) is likely to be helpful for the

design of future BLSD management policies. For instance, it could

help to better predict the patterns of disease propagation at the

local parcel scale. Also, the major influence of ascospore vs the

local contribution of conidia underlined in the current study

support currently applied management guidelines in commercial

banana plantations, which consist in thinning out necrotic leaves

from which ascospores are produced [93] to slow down the

diffusion of the disease. Our results might thus be helpful to make

current fungicide resistance management strategies more sophis-

ticated [26,59]. Indeed, dispersal processes influence the diffusion

of both sensitive and resistant strains between parcels and

consequently the evolutionary potential of pathogen populations.

To illustrate this point, Lernormand & Raymond [24] theoreti-

cally demonstrated that management strategies based on gene flow

between untreated and treated areas are potentially efficient to

prevent resistance genes frequency reaching high equilibrium

value in treated areas. In West-African agricultural landscapes, the

important dispersal abilities of ascospores may induce asymmetric

gene flow from surrounding untreated food-crop plantations,

where ascospore population size is very large, towards commercial

plantations where only conidia are found as a consequence of

common cultural practices [94]. This may represent a favourable

situation for setting up an integrated management of fungicide

resistances relaying on refuge strategy, through a rational

management of treated and untreated areas. For that purpose,

integrating the estimated kernel of ascospores and conidia in

theoretical and spatially explicit models (e.g., including both the

sizes and position of treated and untreated parcels at a landscape

scale) could help predicting spatial patterns of fungicide resistance

evolution under different management strategies.
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Conclusions
Our study on the Mycosphaerella fijiensis/banana plant patho-

system illustrates the benefits of combining several technical and

statistical precautions in the design of experiment and data analysis

to get a direct estimation of wind-dispersed fungal pathogens

dispersal kernel, including some of its long-distance dispersal

component. Obtaining such landscape-scale estimates of contem-

porary dispersal in a wider range of species and environments is

crucial for ecological and evolutionary principles to guide the

design of quarantine and management policies of invasive crop

pests. In the specific case of M.fijiensis, a cautious use of the

kernels estimated should be helpful to support local landscape

scale strategies aiming to manage fungicide resistance or the

deployment of new banana plant resistant varieties.
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