
This article was downloaded by: [University College London]
On: 18 June 2015, At: 02:48
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Click for updates

Hydrological Sciences Journal
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/thsj20

Projections of hydrology in the Tocantins-Araguaia
Basin, Brazil: uncertainty assessment using the
CMIP5 ensemble
Joon Ting Hoa, Julian R. Thompsona & Chris Brierleya

a UCL Department of Geography, University College London, Gower Street, London,
WC1E 6BT, UK
Accepted author version posted online: 03 Jun 2015.

To cite this article: Joon Ting Ho, Julian R. Thompson & Chris Brierley (2015): Projections of hydrology in the Tocantins-
Araguaia Basin, Brazil: uncertainty assessment using the CMIP5 ensemble, Hydrological Sciences Journal, DOI:
10.1080/02626667.2015.1057513

To link to this article:  http://dx.doi.org/10.1080/02626667.2015.1057513

Disclaimer: This is a version of an unedited manuscript that has been accepted for publication. As a service
to authors and researchers we are providing this version of the accepted manuscript (AM). Copyediting,
typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication
of the Version of Record (VoR). During production and pre-press, errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal relate to this version also.

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of
the Content. Any opinions and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied
upon and should be independently verified with primary sources of information. Taylor and Francis shall
not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other
liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://crossmark.crossref.org/dialog/?doi=10.1080/02626667.2015.1057513&domain=pdf&date_stamp=2015-06-03
http://www.tandfonline.com/loi/thsj20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02626667.2015.1057513
http://dx.doi.org/10.1080/02626667.2015.1057513
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Acc
ep

ted
 M

an
us

cri
pt

 1 

Publisher: Taylor & Francis & IAHS 

Journal: Hydrological Sciences Journal 

DOI: 10.1080/02626667.2015.1057513 

Projections of hydrology in the Tocantins-Araguaia Basin, Brazil: 

uncertainty assessment using the CMIP5 ensemble 
 

Joon Ting Ho, Julian R. Thompson and Chris Brierley
 

 

 
UCL Department of Geography, University College London, Gower Street, London, WC1E 6BT, UK 

Email: joon.ho.11@alumni.ucl.ac.uk 

 

Abstract A semi-distributed hydrological model is developed, calibrated and validated against 

unregulated river discharge from the Tocantins-Araguaia River Basin, northern Brazil. Climate 

change impacts are simulated using projections from the 41 Coupled Model Intercomparison 

Project Phase 5 climate models for the period 2071–2100 under the RCP4.5 scenario. Scenario 

results are compared to a 1971–2000 baseline. Most climate models suggest declines in mean 

annual discharge although some predict increases. A large proportion suggest that the dry season 

experiences large declines in discharge, especially during the transition to the rising water 

period. Most models (>75%) suggest declines in annual minimum flows. This may have major 

implications for both current and planned hydropower schemes. There is greater uncertainty in 

projected changes in wet season and annual maximum discharges. Two techniques are 

investigated to reduce uncertainty in projections, but neither are able to provide more confidence 

in the simulated changes in discharge.  

 
Key words Tocantins-Araguaia Basin; climate change; uncertainty; hydrological modelling; CMIP5 

 

 

INTRODUCTION  

 

Many recent studies have assessed the impacts of climate change on the water resources of different 

river basins around the world using a range of hydrological models (see for example Gosling et al. 

2011). In many cases considerable uncertainty in the sign and magnitude of change in mean annual 

flow and the seasonal distribution of river discharge has been identified (e.g. Arnell, 2011, Hughes 

et al. 2011, Kingston et al. 2011, Xu et al. 2010). Several sources of uncertainty exist (Döll et al. 

2015), the largest of which, in many cases, has been attributed to the different projections of future 

climate provided by different global climate models (e.g. Graham et al. 2007, Prudhomme and 

Davies, 2009). Nonetheless, other factors including those related to hydrological model structure 

may not be negligible (Haddeland et al. 2011, Thompson et al. 2013a). Most of the existing studies 

are driven by projections created by the previous generations of climate models, rather than those of 

the Coupled Model Intercomparison Project Phase 5 (CMIP5). We adopt the convention of 

referring to these models as GCMs (an abbreviation of General Circulation Model; despite the fact 

that some CMIP5 contributors can include interactive carbon cycles and so could be called Earth 

System Models) to prevent confusion with the hydrological model developed herein. The CMIP5 

ensemble has only recently been available and is significantly larger than those of previous 

generations of GCMs (Knutti and Sedlacek 2013). This study hence employs the CMIP5 ensemble 

to investigate GCM-related uncertainty upon future water resources of the Tocantins-Araguaia 

River Basin, northern Brazil. To date, the impacts of climate change upon this basin have not been 

systematically investigated despite its importance to both human society, including major 
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investments in hydropower generation, and biodiversity (Soito and Freitas 2011, Valente et al. 

2013). 

The CMIP5 GCMs forced under the Representative Concentration Pathway (RCP) 4.5 

scenario (radiative forcing is stabilised at 4.5 W m
−2

 in the year 2100 without ever exceeding this 

value – Thomson et al. 2011) all project an increase in temperatures over the northern region of 

South America for the period 2081–2100 (Collins et al. 2013). Nonetheless, there is a range in the 

projected increases amongst the models with the 25
th

 percentile showing an increase of between 

1.0°C and 3.0°C and the 75
th

 percentile showing an increase of between 2°C and 4°C (van 

Oldenborgh et al. 2013). Likewise there is large inter-GCM variation in the projections of 

precipitation change over the region for the same period. However, unlike the temperature 

projections, the GCMs do not show a consensus on even the sign of change in precipitation. The 

25
th

 percentile of models project a decline in precipitation of between 0 and 30%, while the 75
th

 

percentile show an increase of up to 10% over most of the region (van Oldenborgh et al. 2013). The 

underlying causes of the spread of projected precipitation change among the GCMs are still not well 

understood (Collins et al. 2013).  

The aim of this study is to assess the hydrological impacts of projected climate change on 

the Tocantins-Araguaia River Basin by running RCP 4.5 scenario outputs from the CMIP5 GCMs 

for the period 2071–2100 through a conceptual, semi-distributed hydrological model calibrated and 

validated for a 1971–2000 baseline period. Simulated, unregulated discharge at a number of 

gauging stations for the 2071–2100 time slice is compared with baseline results to assess the 

impacts of climate change on river flows. The use of two alternative approaches to constrain 

uncertainty is investigated (ensemble weighting and identification of an emergent, observational 

constraint). The broader implications of future climate change on both the aquatic ecosystems of the 

river basin and hydropower are discussed. 

 

METHODS  

 

Tocantins-Araguaia River Basin  

 

The Tocantins-Araguaia River Basin is located in the northern region of Brazil (Fig. 1). It has a 

total drainage area of 767 000 km
2
, which makes up approximately 7.5% of Brazil’s landmass 

(Barrow 1987). The Tocantins River originates from the Planalto Central do Goiás at an altitude of 

1070 m above sea level and runs northwards, largely parallel to the Araguaia River, before their 

confluence some 2500 km downstream at Marabá. The Araguaia River is of great ecological 

significance as it contains the Bananal Islands along the middle of its course, which sustain the 

largest wetlands of the Cerrado biome (Valente et al. 2013). The average flow at Marabá, located 

toward the downstream end of the basin is around 11 000 m
3
 s

-1
 and the river eventually flows into 

the Amazon River near Belém. 

Mean annual rainfall over the river basin is 1752 mm and contrasts with mean annual 

potential evapotranspiration of 1768 mm (both based on CRU TS 3.10.01 data discussed below). 

The river basin has an extremely well defined hydrological regime, which is a consequence of the 

strongly seasonal rainfall (Ribeiro et al. 1995). The rainy season occurs from December to March, 

while the dry season extends from June to August. There is a lag time between precipitation and 

discharge due to the size of the catchment (Costa et al. 2003). The low gradients and inundation of 

the Bananal floodplains further contribute to this lag. As a result, the high flow season is between 

January and April, whilst low flows occur between August and October. 

The landscape of the basin is dominated by a Cerrado savannah ecosystem, which is 

composed mainly of grassland, trees and shrubs (Valente et al. 2013). Approximately 44% of the 

plant species are endemic to the region, making it one of the world’s top biodiversity hotspots 

(Myers et al. 2000). Riparian areas are estimated to be the habitat of 117 species of mammals, 120 

species of reptiles and amphibians and 294 species of birds (La Rovere and Mendes, 2000). The 

rivers contain about 300 species of fish, most of which are migratory, including long-whiskered 
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catfish (Hypophthalmus marginatus) and flannel mouth characiforms (Prochilodus nigricans) 

(Ribeiro et al. 1995). Freshwater dolphins, including the recently discovered Inia araguaiaensis, are 

also known to reside in the river (Hrbek et al. 2014). 

Water management within the river basin is strongly focussed on harnessing its hydropower 

potential (Freitas and Soito 2009). Currently, there are seven hydroelectric dams in operation 

(Fig. 1), with three more planned for construction in the near future   inist rio de  inas e  ner ia 

2013). These dams have been constructed solely for the generation of hydropower, with no use for 

flood regulation and irrigation (La Rovere and Mendes 2000). Most of the hydropower produced is 

used in electro-intensive export industries, especially aluminium production (Fearnside 2009).  

 

Data   

 

We choose to use only quality-assured data that has passed through external quality control 

procedures and plausibility checks. As such, monthly discharge data from 13 gauging stations 

located within the Tocantins-Araguaia River Basin were acquired from the Global Runoff Data 

Centre (Table 1, GRDC 2014). Although the baseline model period (discussed below) was 1971–

2000, records for some stations did not cover this full period with a number beginning in 1974 and a 

few slightly later. The record for one, Tocantinopolis, ends in 1989 whilst others have periods of 

missing data (see Fig. 2). 

A Digital Elevation Model (DEM) of the region was extracted from the United States 

Geological Survey (USGS) GTOPO30 dataset, which has a spatial resolution of approximately 1 

km × 1 km (USGS-EROS Data Centre 1993). The ‘Watershed Delineation’ function of the 

ArcSWAT (Version 2012.10.1.9) extension for ArcGIS 10.1 (Winchell et al. 2013) and the DEM 

were used to define the stream network and the spatial extent of the river basin and each sub-

catchment above the 13 gauging stations (Fig. 1). 

Historical monthly mean temperature, diurnal temperature range and precipitation data for 

the period 1971–2000 were extracted from the CRU TS 3.10.01 dataset (Harris et al. 2014), which 

is available from the Royal Netherlands Meteorological Institute (KNMI) Climate Explorer 

database (Trouet and Van Oldenborgh 2013). The gridded dataset has a resolution of 0.5° × 0.5° 

and the river basin lies within 297 grid cells. The mean temperature, diurnal temperature range and 

precipitation of each of the cells lying in the 13 sub-basins were averaged to give sub-basin values. 

Potential evapotranspiration (PET) was calculated using the Hargreaves equation 

(Hargreaves and Samani 1985). Although the CRU TS 3.10.01 dataset provides a PET field 

computed using the Penman-Monteith approach (Harris et al. 2014), whilst other more complex 

estimates of PET could have been derived using CRU TS 3.10.01 data (e.g. Thompson et al. 

2014a), not all of the required fields were at the time available from the CMIP5 archive for the 

computation of scenario Penman-Monteith PET. In addition, some meteorological data employed in 

approaches such as Penman-Monteith, such as humidity, wind speed and net radiation, tend to be 

less reliable in gridded datasets due to measurement difficulties and limited number of 

meteorological stations (New et al. 1999). The temperature-based Hargreaves approach, which is 

often used in situations where data are insufficient to calculate Penman-Monteith (e.g. Allen et al. 

1998, Thompson 2012), was therefore used throughout for consistency and to avoid uncertainty 

associated with the application of different PET methods (e.g. Thompson et al. 2014a). PET sub-

basin-averaged time series estimated from the CRU TS dataset using the Hargreaves approach show 

a similar seasonal response to those seen in the Penman-Monteith derived estimates of Harris et al. 

(2014). 

 

Hydrological model 

  

The hydrological model developed for the Tocantins-Araguaia River Basin was implemented in the 

STELLA systems modelling software (Version 7.0.3, High Performance Systems Inc, now isee 

systems). This high level visual-oriented software and simulation language has been employed in a 
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number of hydrological modelling studies (e.g. Zhang and Mitsch 2005, Voinov et al. 2007, 

Thompson et al. 2013a). The model had a monthly time step with an initial baseline period of 

1971–2000 being used to simulate river flows at the 13 gauging stations for which discharge 

records were acquired. 

Each of the 13 sub-basins defined by the location of gauging stations was modelled within 

individual sub-models in STELLA, although the structure of each sub-model was identical except 

for the Conceição do Araguaia sub-basin which had an additional component to simulate the 

month-long delay in flow caused by the Bananal floodplains. This lag was based on a comparison 

of upstream and downstream discharge records and is assumed to be constant throughout the 

simulation period as well as for subsequent climate change scenarios. Sub-models were linked with 

discharge simulated by an upstream sub-model providing inflow to the sub-model of the next sub-

basin downstream. A series of stores (surface water storage, soil moisture storage, groundwater 

storage and river channel storage) were defined within each sub-model and were linked via flows 

(overland flow, infiltration, throughflow, percolation and baseflow). Precipitation and 

evapotranspiration (defined as the product of monthly totals and sub-basin area) were specified as 

the meteorological inputs to each sub-model and were added to or removed from surface and soil 

moisture storage. Subsequent flows were defined based on a simple conceptual model of runoff 

processes. Overland flow, which contributed to river channel storage, was assumed when surface 

and soil stores exceeded specified maxima that were defined through calibration. Infiltration 

depleted surface storage and supplemented soil storage and was evaluated using an infiltration rate 

also defined through calibration. Throughflow, percolation and baseflow were simulated as the 

product of soil storage (throughflow and percolation) or groundwater storage (baseflow) and 

reservoir constants (possible values between 0 and 1) subject to threshold volumes of storage being 

exceeded. These thresholds and the reservoir constants were modified during calibration. 

Throughflow and baseflow contributed to river channel storage, which also received simulated 

discharge from upstream sub-models, whilst percolation entered groundwater storage. Finally 

discharge from the downstream end of the sub-catchment was simulated using the reservoir 

constant approach with the value of this term being established through calibration. Simulated 

monthly discharge volumes were distributed evenly through the month for comparison with 

observed discharge. 

The Klemeš (1986) split-sample approach was adopted for calibration and validation. 

Calibration was undertaken by manually adjusting model parameters in an iterative manner whilst 

comparing model results with observed discharge records (Refsgaard and Storm 1996). This was 

undertaken in a downstream sequence beginning at the upper sub-catchments. For each sub-basin, 

the available discharge data for the period 1971–1985 were used for calibration, while the period 

1986–2000 was used for validation. The Tucuruí and Serra da Mesa dams (Fig. 1) were closed in 

September 1984 and October 1996, respectively. In the absence of details of their design and 

operation these schemes were not included in the model.  Formal calibration and validation of the 

downstream sub-basins affected by flow regulation by these dams was therefore limited to the 

period prior to dam construction. 

Model performance was first determined through a visual comparison of simulated and 

observed discharges (Krause et al. 2005). This was followed by the calculation of statistical 

measures of model performance: Pearson’s correlation coefficient  r), Nash-Sutcliffe coefficient 

(NSE) and percentage deviation of simulated mean flow from observed mean flow (Dv). The 

Pearson’s correlation coefficient determines the de ree of linear relationship between the simulated 

and observed discharge (Moriasi et al. 2007). The Nash-Sutcliffe coefficient determines how well 

the model is able to simulate the variation in discharge by comparing the magnitude of the residual 

variance with the measured data variance (Nash and Sutcliffe 1970). Dv serves as a measure of the 

ability of the model to simulate the average runoff at each gauging station. Model performance 

were judged according to performance ratings based on Henriksen et al. (2003) and Henriksen et al. 

(2008). An individual sub-model was deemed appropriate for use only when performance for the 

validation period was similar to that of the calibration period  Klemeš 1986). 
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Climate change scenarios  

 

Projected temperature and precipitation for the 2071–2100 time slice and the RCP4.5 scenario were 

derived from simulation outputs of 41 GCMs that participated in the CMIP5 (Table 2). The delta 

factor approach was used to downscale GCM results to create scenarios of a higher spatial 

resolution suitable for application to the hydrological model (Wilby and Wigley 1997). Mean 

monthly maximum, mean and minimum temperatures as well as precipitation were derived for both 

the 1971–2000 baseline and 2071–2100 future time slice for all 41 GCMs. From these, monthly 

delta factors (expressed in °C for temperature and % for precipitation) were derived and used to 

perturb the original CRU data. Hargreaves PET was then re-evaluated using the new temperature 

time series. The advantage of this approach is that the new time series retains climate variability, 

but are unaffected by biases in the GCMs’ simulation of it (Anandhi et al. 2011, Willems et al. 

2012). It does have the disadvantage of being unable to incorporate projected changes in either 

interannual variability or extremes (Diaz-Nieto and Wilby 2005). Area-averaged delta factors were 

applied across the entire basin to avoid incorporating GCM grid-scale noise. Such noise contains 

little realism and hence valuable information. Moreover, the IPCC AR5 projections show that 

climate change across the study area is consistent under RCP 4.5 scenario for a given GCM (van 

Oldenborgh et al. 2013). 

The idea behind the use of a model ensemble is that errors tend to cancel with the 

assumption that those errors are independent, whether they arise from internal conditions or model 

uncertainty. The use of a multi-model approach, such as that adopted in this study, has been 

increasingly popular. This is because, unlike a perturbed physics ensemble created with a single 

GCM, it incorporates the structural uncertainty that is inherent in the use of a range of GCMs with 

varying fundamental designs (Tebaldi and Knutti 2007). As such, as the number of models used 

increases, the level of uncertainty should decrease (Knutti et al. 2009). Some studies have provided 

empirical evidence to show that the multi-model ensemble mean tends to have a better agreement 

with observed data compared to any single model on its own (Lambert and Boer 2001, Gillett et al. 

2002, Palmer et al. 2005). Hence, according to this argument, the CMIP5 ensemble mean should 

serve as a better indicator of the hydrological impacts of climate change than the results of a single 

GCM. Therefore an additional case was developed which established mean temperature and 

precipitation time series for the baseline and 2071–2100 time slice from the 41 GCMs prior to 

computation of the delta factors and perturbed meteorological inputs.  

 

RESULTS  
 

Hydrological model calibration and validation 

 

Figure 2 shows observed and simulated discharge at the 13 gauging stations for the baseline 

simulation period of 1971–2000. The calibration and validation periods are indicated with data 

availability being responsible for some inter-gauging station differences in the length of these 

periods. In addition, and as discussed above, the model excludes the two existing hydropower dams 

(Tucuruí and Serra da Mesa) that regulate downstream river flow. For the Tucuruí Dam (closed 

September 1984), only one gauging station (of the same name) is impacted but its closure in 1984 

does mean that flows are affected throughout the validation period. The Serra da Mesa Dam on the 

upper Tocantins River impacts discharge at the five gauging stations on this river as well as at 

Tucuruí. Its influence is, however, limited to the last four years of the validation period following 

dam closure in October 1996.  

Figure 2 demonstrates good model performance at most gauging stations throughout the 

river basin for both the calibration and validation period for those gauging stations unaffected by 

upstream dams and for the period prior to dam construction at those stations downstream of the 

dams. The impact of the Serra da Mesa dam are clearly evident in the loss of the generally good 
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agreement between observed and simulated discharge at the end of the validation period (Fig. 2A-

D). These impacts are, unsurprisingly, most evident at the São Salvador gauging station. During the 

filling of the Serra da Mesa reservoir between 1996 and 1998 observed discharge is much lower 

than the naturalised flow simulated by the model. For example, the observed seasonal peak in 

March 1997 is 72% lower than that simulated by the model (Fig. 2A). Once the Serra da Mesa Dam 

filled, the observed flow in the last two years of the simulation period is characterised by higher 

flows during the dry season and lower flows during the wet season. The impacts of the Serra da 

Mesa Dam are also visible at gauging stations further downstream on the Tocantins River (Peixe, 

Miracema do Tocantins and Carolina, whilst data for Tocantinopolis are not available and are 

limited for Marabá). However, the differences between observed and simulated discharges become 

smaller with movement downstream due to the progressively larger contributions from runoff in 

lower sub-basins. Nonetheless reductions in seasonal peak discharges and higher baseflow are 

evident at all of these gauging stations. These changes are also apparent further downstream at 

Tucuruí although discharges are also influenced by the Tucuruí Dam. Closure of this dam in 1984 

and the subsequent filling of its reservoir does appear to have had some influence on discharge 

although subsequently impacts are small due to the large volume of discharge in comparison to the 

reservoir volume (Fig. 2M). 

Table 3, which provides values of the three performance statistics for both the calibration 

and validation periods of each gauging station, confirms the generally good performance of the 

model. For the calibration period five of the 13 gauging stations have NSE values in the ‘excellent’ 

category of the Henriksen et al. (2008) classification scheme, while the remaining eight are in the 

‘very  ood’ cate ory. This scheme was initially desi ned for comparing observed and simulated 

discharges at daily time steps. Higher NSE values are expected when comparing monthly observed 

and simulated discharges (Thompson et al. 2014a). Nonetheless, even if the lower boundary of the 

‘very  ood’ class is raised from 0.65 to 0.75, 11 out of 13 gauging stations will still be in this 

category or higher. Gauging stations that have high NSE values tend to also have r and Dv values in 

the top two bands. Likewise for the validation period, good model performance is achieved for most 

gauging stations. Values of the performance indicators are in general close, although in most cases 

lower than, those for the calibration period. Even at Tucuruí, which is subject to the impacts of the 

Tucuruí Dam throughout the validation period (and the Serra da Mesa Dam for the last four years) 

the model performance statistics are classed as very good to excellent demonstrating the relatively 

small impact of this particular dam. 

An obvious exception to the good performance of the model is the Fazenda Alegria gauging 

station on the Itacaiúnas River. NSE values are either classified as very good or good. However 

values of r are generally lower than at other gauging stations whilst the values of Dv demonstrate 

that the model overestimates river discharge by over 20% during the calibration period (although 

there are many gaps in the observed data), but underestimates discharge by a comparable magnitude 

during the validation period (Fig. 2L). A major shift in model performance occurs from 1987 

onwards. The Itacaiúnas River drains a humid tropical upland where there were considerable 

mining developments and expansion of human settlements over the 1970s and 1980s (Barrow 

1987). It is possible that these land use changes have impacted runoff characteristics that cannot be 

represented within the model. Whilst it was possible to reduce the overestimation of discharge 

during the calibration period, this only increased underestimation in the validation period. The 

results of this gauging station represent a compromise between these two extremes. 

The problems with Fazenda Alegria may have implications for the Tucuruí gauging station, 

the only station below Fazenda Alegria and at the downstream end of the Tocantins-Araguaia River 

Basin. Discharge at Fazenda Alegria, however, only contributes approximately 4% of the total 

outflow from the basin. Although, as discussed above, the model performs well at Tucuruí despite 

the influence of upstream dams, it is not possible to undertake a formal validation at this gauging 

station. This, combined with problems with Fazenda Alegria, mean that the lowest gauging station 

that is used in subsequent analyses is Marabá (Fig. 2K) where the Tocantins and Araguaia rivers 

converge (Fig. 1). This station accounts for 91% of the total river discharge of the basin so that it is 
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still considered appropriate for assessing the integrated impacts of climate change on the river 

basin.  

 

Projected precipitation and PET 

 

Figure 3 shows projected mean monthly precipitation and PET averaged across the Tocantins-

Araguaia River Basin for each of the 41 CMIP5 GCMs as well as for the ensemble mean. It is clear 

that the 41 GCMs give rise to a range of projections for both precipitation and PET. However, there 

is greater uncertainty associated with precipitation rather than PET. Projected changes in mean 

annual precipitation vary between a decline of 440.3 mm (-25.1%) to an increase of 381.5 mm 

(21.8%). In contrast, mean annual PET increases for all the GCMs with the magnitude of these 

increases varying between 34.0 mm (1.92%) and 245.6 mm (13.9%). On a monthly basis the 

average difference between the maximum and minimum projected precipitation is 92.2 mm 

compared to only 22.5 mm for PET. 

 The CMIP5 ensemble mean projects a decline in precipitation from the baseline in most 

months, except during the wet period (December–February). At this time increases are, however, 

small and average only 4.0 mm or 1.4%. The average monthly precipitation decline for the 

remaining months is 12.9% with the greatest reduction occurring in October (-30.2 mm / -20.4%). 

Overall mean annual precipitation for the ensemble mean declines by 71.3 mm (-4.1%). The CMIP5 

ensemble mean projects a consistent increase in PET from the baseline across the year. On average 

monthly PET increases by 9.7 mm (6.5%) contributing to an annual total increase of 116.5 mm 

(6.6%) The largest monthly increase of 14.4 mm (8.8%) occurs in October.  

 

Projected river discharge 

 

Figure 4 shows for each of the 41 GCMs and the ensemble mean the projected percentage changes 

from the baseline in mean annual discharge for six gauging stations. These stations are 

representative of results for the upper, middle and lower courses of the Tocantins and Araguaia 

rivers. As discussed above, calibration problems, potentially associated with land cover change, for 

the Fazenda Alegria sub-basin and knock-on downstream impacts, combined with limitations in 

observed discharge records for the Tucuruí gauging station, means that Marabá is the lowest station 

used in this analysis. The large range in projections by the 41 GCMs for each sub-basin clearly 

demonstrates very large uncertainties in projected unregulated river discharge. It further justifies the 

use of a multi-model ensemble in order to capture the envelope range of uncertainty (Tebaldi and 

Knutti 2007, Knutti et al. 2009). There is limited variability in the climate change signal amongst 

the gauging stations since the same change factors were applied to all sub-basins, an approach 

justified given the relatively homogeneous response to climate change across the catchment 

suggested by a review of results for the different GCMs in the IPCC AR5. Therefore the following 

analysis will focus predominantly on simulated discharge at Marabá, the lowest gauging station 

which provides an indication of the integrated impacts of climate change within the Tocantins-

Araguaia River Basin. 

Out of the 41 GCMs, 30 simulate a decline in mean annual discharge at Marabá, the 

remaining 11 projecting increases (Fig. 4F). The CMIP5 ensemble mean projects a 10.4% decline 

from the baseline 11 142 m
3
 s

-1
. This is a marginally larger decline than the average of the annual 

discharge changes from the 41 GCMs (9.2%). However, the inter-GCM range of projections is 

extremely large ranging from -53.8% (for the CanESM2 GCM) to +47.6% (IPSL-CM5A-MR 

GCM). Of the 30 models that project a decrease in mean annual discharge, 20 suggest that 

discharge will decrease by more than 10%. In contrast, more than half (six out of ten) of the GCMs 

associated with an increase in mean annual discharge project gains of less than 10%. 

Although mean annual discharge is a convenient indicator to assess the overall impacts of 

climate change on the river basin, it is insufficient and often over simplistic when used in isolation 

(Gosling et al. 2011). Changes in other aspects of simulated discharge, including the annual 
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maximum and minimum flows, should also be assessed not only because they are of great 

ecological significance (Poff et al. 1997). High flows are important for evaluating changes to flood 

risks, while low flows are critical in assessing impacts on reservoir yields and the potential for low 

head hydropower schemes (Shaw et al. 2011).  

Figure 5 shows the projected flow regimes at the same six selected gauging stations for the 

baseline period and, for each of the 41 GCMs and the ensemble mean, the RCP4.5 scenario. At all 

six gauging stations, the flow regimes for the CMIP5 ensemble mean show that mean monthly 

discharges throughout the whole year are lower than those of the baseline. At the Marabá gauging 

station (Fig. 6), for example, the mean monthly discharge of the CMIP5 ensemble mean is on 

average 14.4% lower than that of the baseline. Across the basin the reduction in discharges are 

more obvious during the low water season compared to the high water season. This is apparent at 

Marabá (Fig. 6) where the CMIP5 ensemble mean suggests a decline in mean monthly discharge 

during the high water season (January–April) of 10.1% compared to 20.5% for the low water season 

(August–November). Moreover, while only 66.5% of GCMs project a decline in mean monthly 

discharges during the high water period, 87.0% of GCMs project declines during the low water 

period.  

The largest decline in mean monthly discharge for the CMIP5 ensemble mean at all of the 

gauging stations occurs in November, the end of the dry season (Fig. 5). For Marabá this decline is 

35.6% (Fig. 6). Declines in November discharges at gauging station on the upper courses of the 

Tocantins and Araguaia rivers – São Salvador (Fig. 5A), Miracema do Tocantins (Fig. 5B) and 

Trecho Medo (Fig. 5D) – appear to cause more pronounced delays in the start of the annual rise in 

discharge, compared to those stations on lower sections of the two rivers.  

 

Assessment of uncertainty 

 

Both the hydrological and climate models used in this study are subject to error introduced by 

different sources of uncertainty. With regards to the hydrological model, a source of data input 

uncertainty is the use of the CRU TS dataset, which is created based on the interpolation of data 

from weather stations in the region. Therefore the climate data inputs are only approximates (Harris 

et al. 2014) due to the absence of measured weather data in the river basin itself and the spatial 

distribution of weather stations providing data for CRU. Our use of the Hargreaves PET method 

instead of more sophisticated approaches (see methods) leads to some additional uncertainty 

(Thompson et al. 2014a). Furthermore, the observed discharge data, which were used for 

comparison against the simulated discharge, may be subjected to human or instrumental error in the 

observations of river stage and/or inaccuracies in the rating curves which are all developed for 

natural river sections subject to erosion and deposition (Shaw et al. 2011). 

Parameter uncertainties arise when some of the physical processes of the hydrological or 

climate system cannot be explicitly resolved. Instead, they have to be incorporated through 

parameterisations, which contain some uncertain constants (Tebaldi and Knutti 2007). Structural 

uncertainties are associated with the inherent model design and so are impractical to investigate in 

isolation (Tebaldi and Knutti 2007). A multi-model ensemble, such as the CMIP5 used here, 

samples both structural and parameter uncertainty associated with the climate models. However, as 

it is an ensemble of opportunity rather than a specifically designed experiment, the sampling is 

neither optimal nor random, making probabilistic assessment of its outcome misleading. Parameter 

uncertainty, on the other hand, can be sampled systematically through the creation of perturbed 

physics ensembles (Collins et al. 2007). 

It was not possible to assess the structural uncertainty associated with the STELLA model 

since it is the only hydrological model employed in this study. However, prior studies have shown 

that often, the structural uncertainties associated with a hydrological model are far less significant 

than GCM-related uncertainty (Kay et al. 2009, Blöschl and Montanari 2010, Kingston and Taylor 

2010, Gosling et al. 2011, Thompson et al. 2013b).  
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Likewise, it is also evident from the results of this study that the combined parameter and 

structural uncertainties associated with the GCMs lead to a wide range of projections for discharge 

in the Tocantins-Araguaia River Basin under climate change. This range encompasses zero and the 

sign of any changes is not certain. Given that this range of flow projections was achieved despite 

the use of a calibrated and validated hydrological model, it would be expected that the spread of 

results would increase even more with the sampling of further uncertainty associated with the 

hydrological model. Therefore, we have not performed a systematic quantification of the 

uncertainties associated with the hydrological model as it would not help to reduce uncertainty and 

give a more confident message. 

On the other hand, the CMIP5 ensemble, as discussed above, has been used to investigate 

the uncertainties associated with the GCMs. Moreover, the logic behind including the CMIP5 

ensemble mean as an additional scenario to those of the individual GCMs is that by averaging over 

the full range of climate models, it is possible to eliminate parameter and structural uncertainties 

associated with the climate models. This has been shown to be effective for seasonal climate 

forecasting (Lambert and Boer 2001, Gillett et al. 2002, Palmer et al. 2005). However, this 

argument is only valid if the models under consideration are independent of each other (Pirtle et al. 

2010). In recent years, the value of this assumption has been questioned, since institutions 

responsible for the different GCMs share literature, parameter values and even sections of their 

model codes with each other (Abramowitz 2010). Moreover, some institutions have submitted more 

than one GCM or GCM version to CMIP5. The extreme case is the Goddard Institute for Space 

Studies (GISS) who provided eight different GCMs. In such cases, these models are clearly not 

independent of each other and their biases from reality would similarly not be random (Tebaldi and 

Knutti 2007). Therefore, if these models were treated with equal weighting, those institutions 

responsible for a number of GCMs or multiple versions of one GCM or who have shared model 

codes with other institutions would likely have greater influence over the ensemble mean (Knutti et 

al. 2013). For example, the GISS models comprise four of the eight GCMs with the largest 

projected reductions in annual mean discharge at the Marabá gauging station (Fig. 4).  

The correct treatment of the CMIP5 ensemble of opportunity is an active topic of statistical 

research (e.g. Chandler 2013). We adopt a pragmatic approach inspired by the concept of ‘model 

 enealo y’ su  ested by  asson and Knutti (2011) and Knutti et al. (2013) and with knowledge of 

the different GCMs heritage. Through this approach, we identified 12 groups to which we assigned 

each of the 41 GCMs. Five groups consist of only a single model, while the remaining seven groups 

contain between three and eight GCMs (Table 4). We treated each group as independent, but the 

GCMs within them as different realisations of the same overarching GCM. In each group, the GCM 

outputs were considered equally valid and averaged. A “weighted” CMIP5 ensemble mean was 

then calculated from the average of the climate variables of the 12 groups (as opposed to the 41 

GCMs directly). The projected mean climate values of the 12 groups and this weighted CMIP5 

ensemble mean were used to derive the delta factors for the meteorological inputs to the 

hydrological model. Results of this analysis were then re-analysed for the Marabá gauging station. 

We see this approach as providing the other extreme from the conventional assumption of GCM 

independence and anticipate that the ‘true mean’ of the ensemble lies between these two 

approaches. 

The percentage change in mean annual discharge of the Marabá gauging station projected 

using this weighted approach is presented in Fig. 7. There is little difference between the weighted 

and unweighted CMIP5 ensemble means, indicating that independence of the GCMs is not a poor 

assumption in this situation. There is still uncertainty in the sign of projected changes of river 

discharge under climate change among the different GCM groups. This method of weighting has 

however reduced the range of the projections. The largest positive projected percentage change in 

mean annual discharge in the weighted analysis is 23.3% (IPSL Group), compared to 47.6% (IPSL-

CM5A-MR) in the unweighted analysis. Nonetheless, the largest negative projected percentage 

change in mean annual discharge remains the same in both analyses as the GCM responsible, 

CanESM2, remains ungrouped. It is unclear whether the reduction in spread of projected changes 
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occurs solely as a result of the smaller effective ensemble size. Meanwhile, the weighted analysis 

gives a greater percentage decline in discharge during the dry season at Marabá compared to the 

unweighted ensemble mean (Fig. 8). During the dry season (August–November), the average 

decline in mean monthly discharge as projected by the weighted CMIP5 ensemble mean is 22.1% 

compared to 20.5% for the unweighted CMIP5 ensemble mean (Fig. 8). Nonetheless, the general 

conclusions from this re-analysis do not differ much from those based on the unweighted analysis.  

A recent development used to reduce uncertainty in climate projections is the identification 

of emergent constraints (e.g. Boé et al. 2009, Cox et al. 2013). These are quantities that have skill 

as good predictors of future response, yet can be estimated from observations. This can be thought 

of as a form of Bayesian GCM weighting, where the conventional ensemble distribution (a uniform 

prior) is updated in response to the additional relevant information provided by the observations to 

create a posterior distribution. With the availability of large GCM ensembles, it becomes easier to 

assess the impact of weak observational constraints. 

We suspect that the projected changes in precipitation appear to dominate the uncertain 

discharge response (Fig. 3). One could hypothesize that erroneous future rainfall patterns (and 

hence discharge) would be related to model biases seen in the present simulated climate over the 

basin. We therefore investigate several physically plausible relationships (Table 5) to see if a 

correlation emerges across the CMIP5 ensemble. For example, one may expect projected changes in 

minimum discharge to be related to how well the GCM simulates dry season precipitation. 

Unfortunately, we are unable to find any obvious emergent relationships that could provide an 

observational constraint (the correlation coefficient between the aforementioned properties is, for 

example, only -0.15). Searching beyond obvious physical connections was not undertaken to avoid 

falsely detecting a chance relationship (Caldwell et al. 2014).      

 

DISCUSSION 

 

The STELLA hydrological model developed in this study has been able to simulate unregulated 

river flow in the Tocantins-Araguaia River Basin for the baseline period of 1971–2000 to a 

reasonable degree of accuracy based on the Henriksen et al. (2008) classification scheme (Table 3). 

However, there are several issues that have impacted the simulations. These include the presence of 

operational dams in the basin combined with a lack of knowledge of their operating regime. This 

limited the model’s ability to simulated re ulated river flow after the closures of the Serra da  esa 

dam and Tucuruí dams. Therefore, the decision was made to exclude these from the hydrological 

model and to therefore simulate unregulated river flows.  

We were able to simulate unregulated discharges at gauging stations affected by the Serra da 

Mesa dam as dam closure in late 1996 was towards the end of the simulation period therefore 

permitting model validation. Comparisons of post-1996 simulated unregulated discharge and 

observed regulated river flows reveal the impacts of the dam during the reservoir filling and dam 

operation periods. These impacts decline in magnitude downstream due to runoff contributions 

from lower sub-basins, such that while the impacts of the dam are apparent at São Salvador, its 

impacts are negligible at Marabá. Hence, it appears appropriate to employ the use of the 

hydrological model to investigate the integrated impacts of climate change at Marabá, even without 

simulating the operation of the Serra da Mesa dam. 

However, simulation of unregulated discharges at the Tucuruí gauging station was not 

possible since the Tucuruí dam was closed in 1984, before the end of the calibration period. This 

prevented robust validation of the model at this station. Moreover, possible land-use changes in the 

Fazenda Alegria sub-basin, which lies directly upstream of Tucuruí, may have limited model 

performance at the Fazenda Alegria gauging station. For these two reasons, the Fazenda Alegria 

and Tucuruí gauging stations were excluded from the analyses of climate change impacts on river 

flows. The lowest point on the river system for which these analyses were undertaken, the Marabá 

gauging station, nonetheless still accounts for 91% of the total basin discharge. 
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Of the projected hydrological impacts of climate change, there are two particularly worrying 

trends that could potentially be detrimental to the river basin’s aquatic ecosystems; (i) the projected 

reduction in the magnitude of low flows and (ii) the delay in the rise of the annual flood. A decrease 

in low flow could lead to increases in the incidence of periods of extreme low river flow and drying 

out of floodplains (Poff et al. 1997). Even if it is only for a relatively short period of time, such 

atmospheric exposures can lead to high mortality rates among benthic organisms and result in 

massive decreases in primary productivity (Weisberg et al. 1990). Reductions in the magnitudes of 

low flows could further restrict the geographic range of some aquatic organisms, limit dry season 

refugia (Ross et al. 1985, Schlosser 1991, Thompson et al. 2014b) and promote invasions by exotic 

species (Poff and Ward 1990, Bunn and Arthington 2002). Changes in floodplain flows, including 

those associated with flow-related modifications to vegetation, represent an additional source of 

uncertainty that could, for example, impact the hydrological processes represented within the model 

such as the floodplain storage and its impact on the downstream propagation of the annual flood. 

Similarly, alterations in the timing of flow events could have ecological impacts since the 

life cycles of many aquatic and riparian species are synchronised to flows of different magnitudes 

(Welcomme and FAO 1985). The natural timing of high or low discharge provides life cycle signals 

for many aquatic species such as migration, spawning and egg hatching (Poff et al. 1997). The 

projected potential delay in the rise of the annual floods within the Tocantins-Araguaia River Basin 

is caused by large declines in November discharges (Fig. 6), a period which usually signals the start 

of the two to three month-long upstream summer fish migration (Ribeiro et al. 1995). A delay in the 

start of the rising water period could therefore affect the subsequent timings of spawning and egg 

hatching and possibly overall reproduction rates.  

Furthermore, although the design lifespan of electro-mechanical equipment (e.g. turbines 

and generators) and hydro-mechanical steel structures (e.g. pipes and gates) are relatively short (20–

50 years), the main structural components of hydropower plants (e.g. reservoir and dams) have 

lifespans of around 100 years (IEA, 2000 Ribeiro and da Silva 2010, Wieland 2010). The 

hydrological impacts of climate change on the Tocantins-Araguaia River Basin for the period 2071–

2100 are therefore relevant to the existing dams within the river basin, with the earliest (Tucuruí) 

being constructed in 1984.  

Hydroelectric generation capacity is determined by river discharge so that alterations in 

runoff would directly result in changes in the hydropower potential (Harrison and Whittington 

2002). The CMIP5 ensemble mean suggests a reduction in mean annual flow towards the 

downstream end of the Tocantins-Araguaia River Basin of 10.4% although the maximum projected 

decline reaches 53.8% (Fig. 4F). Such declines would be unfavourable for the operation of the 

Tucuruí plant downstream of Marabá. Even with the large storage capacity of the Tucuruí reservoir, 

which confers it with some buffering capacity and allows for greater flexibility in plant operation 

(Hamududu and Killingtveit 2012, Aronica and Bonaccorso 2013), reductions in mean annual flow 

reaching a magnitude of over 50% would likely impact generating capacity. Moreover, the storage 

capacities of reservoirs tend to reduce over time due to sediment deposition, further reducing the 

resilience of these structures to climate change (Iimi 2007). 

The CMIP5 ensemble mean also suggests a consistent decline in mean annual flow for all 

the sub-basins above Marabá (Fig. 4). There are currently six operational plants upstream of 

Marabá that, with the exception of Serra da Mesa dam, became operational after the simulation 

period employed in the current study. These dams have smaller storage capacities and hence are 

likely to be more vulnerable to decreases in river discharge and alterations in flow regime. It is 

possible that these hydropower plants may need to alter their operation rules in order to compensate 

for the reduced flows while electricity generation may need to be augmented by other power plants 

especially during the low flow season (de Lucena et al. 2009). 

Given that there is less certainty over the impacts of climate change on high flows (Fig. 5), 

water resource managers need to be prepared for the potential of both increases and decreases in 

discharges during the annual flood period. Increases in high flows are of particular concern since 

higher peak discharges may necessitate changes in specifications of dam spillways in order to avoid 
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the catastrophic consequences of dam failure. Ultimately, the proposals for new hydropower plants 

as well as the operation of existing plants within the Tocantins-Araguaia River Basin will need to 

take account of the hydrological impacts of projected climate change. Not only do such schemes 

need to be economically cost-effective but they must also ensure that the flows required to sustain 

the proper ecological functions of the river basin are not compromised, especially during the low 

flow season when results from this study suggest the largest changes are to be expected (Lehner et 

al. 2005).  

 

CONCLUSION 
 

A semi-distributed hydrological model is capable of reproducing observed river discharges in the 

Tocantins-Araguaia River Basin. The model is used to project the unregulated river discharge in the 

river basin using climate outputs from 41 GCMs run under the RCP4.5 scenario for the 2071–2100 

time slice. The projected changes in unregulated river discharge encompass a wide range dominated 

by the large uncertainty in projected precipitation from the different GCMs (Gosling et al. 2011). 

Although there is a lack of definite consensus on the sign of projected changes in discharge, a larger 

proportion of GCMs suggest a decline in mean annual discharge. The least uncertainty (a consensus 

amongst over 80% of the GCMs) is associated with changes in the dry season for which declines in 

discharge are projected, especially during the transition to the rise of the annual flood. Although the 

CMIP5 ensemble mean still suggests declines in flow magnitude during the wet season, there is a 

less consensus among the GCMs, thereby reducing the confidence in projected changes. Re-

analyses were carried out after re-grouping and weighting the GCMs based on their genealogy, but 

similar conclusions were obtained. 

Both the declines in flow magnitude and alterations in flow regime under climate change 

may impact the ecological integrity of the Tocantins-Araguaia River Basin as both flora and fauna 

are highly sensitive to flow modifications (Poff et al. 1997). Moreover, the reductions in mean 

annual discharge combined with possible changes in the distribution of flow frequencies would 

decrease the hydropower potential of the river basin (Harrison and Whittington 2002). This 

suggests that the sustainability and resilience of existing and proposed hydropower schemes within 

the Tocantins-Araguaia River Basin needs to be assessed.  

This analysis highlights the large role of uncertainty associated with climate models, 

especially with regards to precipitation. This is in line with the conclusions drawn from previous 

studies (Gosling et al. 2011, Hughes et al. 2011, Kingston et al. 2011, Nóbrega et al. 2011, 

Thompson et al. 2013b). There is an urgent need for improvements to be made with regards to our 

understanding of the climate system in order to either directly improve model performance or 

identify relevant observations that can act as effective constraints on future projections. Only then 

can there be a more robust assessment of the impacts of future climate change on freshwater 

resources within the Tocantins-Araguaia River Basin and elsewhere.  
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Tables 

 

Table 1. Gauging stations within the Tocantins-Araguaia River Basin. 

 
River Gauging station Latitude (°) Longitude (°) 

Araguaia Trecho Medo -14.0867 -51.6964 

Aruanã -14.9019 -51.0819 

São Felix do Araguaia -11.6181 -50.6625 

Conceição do Araguaia -8.2694 -49.2594 

Araguatins -5.6344 -48.1297 

Itacaiúnas Fazenda Alegria -5.4867 -49.2214 

Tocantins São Salvador -12.7425 -48.2367 

Peixe -12.0231 -48.5328 

Miracema do Tocantins -9.5675 -48.3786 

Carolina -7.3375 -47.4731 

Tocantinopolis -6.2886 -47.3919 

Marabá -5.3386 -49.1244 

Tucuruí -3.7578 -49.6533 
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Table 2. CMIP5 GCMs used in this study. 

 

 Model Institution 

1 ACCESS1.0 Commonwealth Scientific and Industrial Research Organisation (CSIRO) 

and Bureau of Meteorology (BOM), Australia 2 ACCESS1.3 

3 BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration 

4 BCC-CSM1.1(m) 

5 BNU-ESM College of Global Change and Earth System Science, Beijing Normal 

University 

6 CanESM2 Canadian Centre for Climate Modelling and Analysis 

7 CCSM4 National Center for Atmospheric Research 

8 CESM1(BGC) Community Earth System Model Contributors 

9 CESM1(CAM5) 

10 CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici 

11 CMCC-CMS 

12 CNRM-CM5 Centre National de Recherches Météorologiques/ Centre Européen de 

Recherche et Formation Avancée en Calcul Scientifique 

13 CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organisation in 

collaboration with Queensland Climate Change Centre of Excellence 

14 EC-EARTH EC-Earth consortium 

15 FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 

16 FIO-ESM The First Institute of Oceanography, SOA, China 

17 GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory 

18 GFDL-ESM2G 

19 GFDL-ESM2M 

20 GISS-E2-H p1 NASA Goddard Institute for Space Studies 

21 GISS-E2-H p2 

22 GISS-E2-H p3 

23 GISS-E2-H-CC 

24 GISS-E2-R p1 

25 GISS-E2-R p2 

26 GISS-E2-R p3 

27 GISS-E2-R-CC 

28 HadGEM2-AO Met Office Hadley Centre (additional HadGEM2-ES realizations 

contributed by Instituto Nacional de Pesquisas Espaciais) 29 HadGEM2-CC 

30 Had-GEM2-ES 

31 INM-CM4 Institute for Numerical Mathematics 

32 IPSL-CM5A-LR Institut Pierre-Simon Laplace 

33 IPSL-CM5A-MR 

34 IPSL-CM5B-LR 

35 MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), 

National Institute for Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology 

36 MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and 

Ocean Research Institute (The University of Tokyo), and National Institute 

for Environmental Studies 

37 MIROC-ESM-CHEM 

38 MPI-ESM-MR Max-Planck-Institut für Meteorologie (Max Planck Institute for 

Meteorology) 

Meteorological Research Institute 

39 MPI-ESM-MR 

40 MRI-CGCM3 

41 NorESM1-M Norwegian Climate Centre 
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Table 3. Model performance statistics for 13 gauging stations within the Tocantins-Araguaia River 

Basin for the calibration (1971–1985
+
) and validation (1986–2000

+
) periods. 

 
 Calibration

+
   Validation

+
   

Gauging Station r  NSE Dv r NSE Dv 

São Salvador 0.88 

✓✓✓ 

0.77 

✓✓✓✓ 

-0.68 

✓✓✓✓✓ 

0.91 

✓✓✓✓ 

0.74 

✓✓✓✓ 

-15.09 

✓✓ 
Peixe 0.92 

✓✓✓✓ 

0.85 

✓✓✓✓✓ 

-2.46 

✓✓✓✓✓ 

0.93 

✓✓✓✓ 

0.82 

✓✓✓✓ 

0.68 

✓✓✓✓✓ 
Miracema do Tocantins 0.91 

✓✓✓✓ 

0.82 

✓✓✓✓ 

-4.62 

✓✓✓✓✓ 

0.90 

✓✓✓✓ 

0.81 

✓✓✓✓ 

-7.09 

✓✓✓✓ 
Carolina 0.92 

✓✓✓✓ 

0.83 

✓✓✓✓ 

0.32 

✓✓✓✓✓ 

0.92 

✓✓✓✓ 

0.81 

✓✓✓✓ 

-2.03 

✓✓✓✓✓ 
Tocantinopolis 0.91 

✓✓✓✓ 

0.81 

✓✓✓✓ 

-0.15 

✓✓✓✓✓ 

0.95 

✓✓✓✓ 

0.85 

✓✓✓✓ 

-6.29 

✓✓✓✓ 
Trecho Medo 0.84 

✓✓ 

0.66 

✓✓✓✓ 

-2.89 

✓✓✓✓✓ 

0.88 

✓✓✓ 

0.75 

✓✓✓✓ 

6.72 

✓✓✓✓ 
Aruanã 0.90 

✓✓✓✓ 

0.81 

✓✓✓✓ 

2.17 

✓✓✓✓✓ 

0.89 

✓✓✓ 

0.79 

✓✓✓✓ 

-3.43 

✓✓✓✓✓ 
São Felix do Araguaia 0.89 

✓✓✓ 

0.78 

✓✓✓✓ 

0.58 

✓✓✓✓✓ 

0.92 

✓✓✓✓ 

0.83 

✓✓✓✓ 

-7.13 

✓✓✓✓ 
Conceição do Araguaia 0.93 

✓✓✓✓ 

0.86 

✓✓✓✓✓ 

-4.06 

✓✓✓✓✓ 

0.93 

✓✓✓✓ 

0.82 

✓✓✓✓ 

-13.15 

✓✓✓ 
Araguatins 0.94 

✓✓✓✓ 

0.89 

✓✓✓✓✓ 

-2.42 

✓✓✓✓✓ 

0.93 

✓✓✓✓ 

0.87 

✓✓✓✓✓ 

-3.76 

✓✓✓✓✓ 
Marabá 0.96 

✓✓✓✓✓ 

0.92 

✓✓✓✓✓ 

-3.24 

✓✓✓✓✓ 

0.96 

✓✓✓✓✓ 

0.91 

✓✓✓✓✓ 

-5.93 

✓✓✓✓ 
Fazenda Alegria 0.87 

✓✓✓ 

0.68 

✓✓✓✓ 

-21.17 

✓ 

0.82 

✓✓ 

0.61 

✓✓✓ 

25.75 

✓ 
Tucuruí

†
 0.96 

✓✓✓✓✓ 

0.91 

✓✓✓✓✓ 

-6.98 

✓✓✓✓ 

0.93 

✓✓✓✓ 

0.85 

✓✓✓✓✓ 

-8.31 

✓✓✓✓ 

Performance indicator 
a
  Excellent 

✓✓✓✓✓ 

Very Good 

✓✓✓✓ 

Good 

✓✓✓ 

Poor 

✓✓ 

Very Poor 

✓ 
r 

b
 ≥ 0.95 0.90 – 0.94 0.85 – 0.89  0.80 – 0.84 < 0.80 

NSE 
c
 ≥ 0.85 0.65 – 0.84 0.50 – 0.64 0.20 – 0.49 < 0.20 

Dv 
d
 < 5 5 - 9 10 – 14 15 – 19 ≥ 20 

+ Calibration and validation periods for individual gauging stations vary according to the availability of observed data (Fig. 2) whilst 

the validation period for stations on the Tocantins River ends in October 1996 with the closure of the Serra da Mesa Dam, † The 

Tucuruí Dam (completed 1984) impacts discharge at Tucuruí throughout the simulation period so that whilst performance indicators 

are provided, robust validation at this gauging station is not possible, a. Performance ratings adapted from Henriksen et al. (2003) 

and Henriksen et al. (2008), b. Pearson correlation coefficient, c. Nash-Sutcliffe coefficient, d. Percentage deviation in simulated 

mean flow from observed mean flow. 
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Table 4.  GCM groups based on model genealogy. 

 

Group Name 

Number of 

GCMs GCMs  

CanESM2 1 CanESM2 

CSIRO-Mk3.6.0 1 CSIRO-Mk3.6.0 

FGOALS-g2 1 FGOALS-g2 

INM-CM4 1 INM-CM4 

MRI-CGCM3 1 MRI-CGCM3 

GFDL 

 

3 GFDL-CM3  

GFDL-ESM2G  

GFDL-ESM2M 

GISS 

 

8 GISS-E2-H p1  

GISS-E2-H p2  

GISS-E2-H p3  

GISS-E2-H-CC  

GISS-E2-R p1  

GISS-E2-R p2  

GISS-E2-R p3  

GISS-E2-R-CC 

IPSL 

 

3 IPSL-CM5A-LR 

IPSL-CM5A-MR  

IPSL-CM5B-LR 

MIROC 

 

3 MIROC5  

MIROC-ESM  

MIROC-ESM-CHEM 

UKMO 

 

5 ACCESS1.0  

ACCESS1.3  

HadGEM2-AO  

HadGEM2-CC  

Had-GEM2-ES 

European 

 

6 CMCC-CM  

CMCC-CMS  

CNRM-CM5  

EC-EARTH  

MPI-ESM-MR  

MPI-ESM-MR 

NCAR 

 

8 BCC-CSM1.1  

BCC-CSM1.1(m)   

BNU-ESM   

CCSM4 

CESM1(BGC) 

CESM1(CAM5)  

FIO-ESM  

NorESM1-M 
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Table 5. Correlations between various properties simulated by the 41 GCMs that can be compared 

to observations precipitation (columns) and properties of the hydrological projections. None of the 

correlations are statistically significant. 

 
Projected change in 

discharge at Marabá 

Basin-averaged climatological precipitation simulated over 1971-2010 

Annual Mean Summer (DJF) Winter (JJA) Range 

Annual Mean -0.05 -0.02 -0.11 0.14 

Maximum Monthly -0.11 -0.08 -0.13 0.08 

Minimum Monthly  0.02  0.00 -0.04 0.13 

Annual Range -0.13 -0.09 -0.14 0.06 
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Figure captions 

 

Figure 1. The Tocantins-Araguaia River Basin including the sub-catchments and their downstream 

gauging stations for which separate sub-models were developed. 
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Figure 2. Monthly mean observed and simulated discharges for 13 gauging stations within the 

Tocantins-Araguaia River Basin for the period 1971–2000. The calibration (1971–1985) and 

validation (1986–2000) periods are indicated. Shaded sections indicate periods when the discharge 

is regulated by upstream dams. 

 

Fig2a 
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Fig2b 

 

 
 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 0
2:

48
 1

8 
Ju

ne
 2

01
5 



Acc
ep

ted
 M

an
us

cri
pt

 28 

Fig2c 
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Figure 3. (A) Mean monthly precipitation and (B) PET over the Tocantins-Araguaia River Basin for 

the baseline, each GCM and the ensemble mean. Note different y-axis scales. 

 

 
 

 

 

Figure 4. Percentage changes from the baseline in mean annual discharge at six gauging stations 

within the Tocantins-Araguaia River Basin for each GCM and the ensemble mean (highlighted). 

GCMs are ordered according to Table 2. 
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Figure 5. River regimes for the baseline, each GCM and the ensemble mean for six gauging stations 

within the Tocantins-Araguaia River Basin. Shaded bands represent percentile ranges of the 

distribution of the CMIP5 ensemble. 
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Figure 6. Percentage changes from the baseline in the mean monthly discharges at Marabá for each 

GCM and the ensemble mean. Shaded bands represent percentile ranges of the distribution of the 

CMIP5 ensemble. 
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Figure 7. Percentage changes from the baseline in mean annual discharge at Marabá for each group 

of GCMs and the weighted (black) and unweighted (grey) ensemble means. 
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Figure 8. (A) River regimes for the baseline, each group of GCMs and the weighted and 

unweighted ensemble means; (B) percentage differences in mean monthly discharge for each group 

of GCMs and the weighted and unweighted ensemble means. 
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