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Upper-Limb Neural Prostheses
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Abstract—Next generation neural interfaces for upper-limb
(and other) prostheses aim to develop implantable interfaces for
one or more nerves, each interface having many neural signal
channels that work reliably in the stump without harming the
nerves. To achieve real-time multi-channel processing it is impor-
tant to integrate spike sorting on-chip to overcome limitations in
transmission bandwidth. This requires computationally efficient
algorithms for feature extraction and clustering suitable for
low-power hardware implementation. This paper describes a new
feature extraction method for real-time spike sorting based on ex-
trema analysis (namely positive peaks and negative peaks) of spike
shapes and their discrete derivatives at different frequency bands.
Employing simulation across different datasets, the accuracy and
computational complexity of the proposed method are assessed
and compared with other methods. The average classification ac-
curacy of the proposed method in conjunction with online sorting
(O-Sort) is 91.6%, outperforming all the other methods tested
with the O-Sort clustering algorithm. The proposed method offers
a better tradeoff between classification error and computational
complexity, making it a particularly strong choice for on-chip
spike sorting.

Index Terms—Discrete derivatives, extrema sampling, feature
extraction, implantable neural interface, neural recording, online
sorting, spike sorting.

I. INTRODUCTION

A LTHOUGH mankind has provided artificial limbs for
amputees for millennia, modern upper limb prostheses
are far from ideal. There have been major advances in the
design of life-like hands that have many joints and look natural.
The current state-of-the-art uses myoelectric signals recorded
from the skin which is unreliable due to noise caused by
residual muscles in the stump. The patient must learn to operate
the hand in a slow and unnatural way handicapped by the fact
that there is no tactile feedback. Using motor cortical signals to
control hand prostheses is an alternative approach [1], [2] but
is very invasive. An appropriate site for detecting the intended
movement is in the peripheral nerves of the amputation stump.
At that site, there are many motor neurons corresponding to
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Fig. 1. Sketch of a microchannel nerve interface with a neural chip intimately
connected. Chip provides amplification and spike sorting.

the lost muscles, and sensory afferents which could provide
sensory feedback and reduce phantom pain. Recently Tombini
et al. [3] demonstrated acutely the use of four intrafascicular
(nerve-penetrating) probes as a bidirectional interface to a
robotic hand. In that study, each probe contained eight elec-
trodes detecting signals with amplitudes of the order of a few
microvolts from nearby nerve fibres. Signals were transferred
via percutaneous cables and processed external to the body.
Having an implantable neural interface with more electrodes
could be advantageous.

One other type of nerve-electrode interface suitable for long-
term use with peripheral nerves is the microchannel nerve in-
terface [4]. It combines features of both sieve and cuff elec-
trode designs by confining axons in approximately 100 pm di-
ameter microchannels. Since the microchannels greatly increase
the extracellular resistance, a natural amplification of record-
able voltage potentials is provided. Fitzgerald et al. [5] have
shown that peripheral nerves grow into microchannels, giving
large (~ 100 1V) action potentials (spikes), characteristic of
the active neurons, and are consistent for months. Using such
an implantable neural interface might offer the possibility of
controlling upper-limb prostheses with many actuators, thus en-
abling more natural and wide ranging movements rather than
just a few basic grasps. The concept of an “active” microchannel
nerve interface is shown in Fig. 1 where a custom integrated cir-
cuit is mounted very close to the microchannels. The chip must
amplify and reduce the data rate needed to represent the many
spike signals and perform real-time clustering of spike charac-
teristics. Stimulation may also be necessary for feedback. To
achieve real-time online (on-chip) processing it is important to
design an accurate feature extraction with low-power hardware
resources, suitable for implantable devices (including, but not
limited to, the microchannel nerve interface).

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 2. Overview of closed-loop control of a prosthetic hand.

With the aim of developing an energy-efficient neural
recording and spike sorting chip for the targeted application,
this paper reports a new feature extraction method based on
extrema analysis (positive and negative peaks) of spike shapes
and their discrete derivatives [6] with different sampling in-
tervals. The proposed method runs in real-time and does not
require any offline training. Compared to other methods it
offers a better tradeoff between accuracy and computational
complexity using online sorting. Unlike in other systems, the
spike sorting procedure eliminates multiplications which are
computationally expensive, power hungry and require appre-
ciable silicon area. These are important features in implantable
devices particularly where there is a high channel count.

The paper is organized as follows. Section II describes
prior-art and the new method. Section III outlines the synthetic
datasets used for evaluation. Section IV presents the results
and discussion of comparative performance analysis. These
include simulation results for classification accuracy using
synthetic data, clustering using synthetic and recorded in vivo
neural data, and complexity analysis. A metric based on the
projection test is proposed for quantifying the discrimination
degree of clusters. It is used to compare the sorting quality of
the proposed method against other work. In addition, the overall
complexity for sorting is optimized using the #1-norm distance
calculation. Finally, conclusions are discussed in Section V.

II. ALGORITHMS

The prosthetic hand signal processing control chain including
spike sorting is illustrated in Fig. 2. Spike sorting is the process
of grouping the recorded action potentials (spikes) into clus-
ters based on the similarity of their shapes. The process can be
divided into the following steps: 1) spike detection and align-
ment, separating spikes from noise and aligning the spikes to a
common point, 2) feature extraction, extracting features of the
spike shapes which gives a dimensionality reduction, i.e., going
from a space of dimension N (with NV the number of datapoints
per spike) to a low dimensional space of a few features, and 3)
clustering, grouping spikes with similar features into clusters,
corresponding to the different neurons. In this paper, the focus
is on the last two steps.

A. Off-Chip Feature Extraction Methods

Principal component analysis (PCA) [7] has been the most
commonly used algorithm for spike sorting because it yields an
efficient coding of spikes (only the first 2-3 principal compo-
nents need be retained). However, PCA requires offline training
which is not compatible with online real-time spike sorting,
and calculating the covariance matrix of the data demands high
computational cost and hardware resources. In addition, with
PCA there is no guarantee of optimal separation of clusters [8].
Another common technique is the discrete wavelet transform
(DWT). It is a multi-resolution algorithm that provides good
time resolution at high frequencies and good frequency resolu-
tion at low frequencies. But the convolution of the wavelet func-
tion with the original signal requires multiple multiplications
and additions per spike, resulting in a high computational cost.
Both PCA and DWT have traditionally been used for off-chip
spike sorting.

B. Proposed Method for On-Chip Feature Extraction

A simplified model of the DWT was presented in [6]. In
it, discrete derivatives (DDs) are computed by calculating the
slope at each sample point over a number of different time scales

DDs(n) = s(n) — s(n — 6) )

where s is the spike waveform, n is the sample point, and § is
the scaling factor (time delay). The equation shows subtraction
between the samples n and (n — &). Normally P DDs can be
calculated per spike with different scaling factors to give multi-
resolution spike decomposition, which corresponds to different
frequency bands. This yields P x dimensionality expansion of
feature space compared to the number of samples of an aligned
spike (i.e., N — P x N). For example, the size of the feature
space willbe N = (P = 3) x (N = 45) samples per spike for
DDs of three values of §. Feature space dimensionality directly
impacts the computational complexity of spike sorting. As an
illustration, the DDs of two typical spike waveforms with delay
values of 6 equal to 1, 3, and 7 are shown in Fig. 3.
Feature extraction based on extrema sampling (positive and
negative peaks of DDs) is proposed here as an efficient approach
not only in terms of computational simplicity but also accuracy.
Retention of a subset of features significantly reduces the di-
mensionality from P x N to K, where K is the number of
selected features for the clustering stage (K < N). For ex-
ample, using § = 1, 3, 7 the following features are identified
in Fig. 3: a) positive peaks DD|[s_; 3 7(max); b) negative peaks
DD|s=1.3,7(min) ; and ¢) peak-to-peak amplitude (V,,,,) of each
DD. Based on the concept of extrema selection, the following
nine permutations of features are proposed for comparison with
other work in terms of classification accuracy and computa-
tional complexity.
+ Combination 1: DD|s_1 3 7(max) and DD|s_1 3 7(min)-
* Combination 2: V,, of DD (ie.,
DD'&:I,S,?(maX) - DD|¢5:1,3,7(min))-

+ Combination 3: DD|s_3 5(max) and DD|s_3 5(min)-

+ Combination 4: DD|s_3 5(max) and DD|s_s 5(min), to-
gether with V,_;, of DD|s=3 5. DD|s=5 is not annotated
in Fig. 3 for brevity.

ls=1.3.7
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Fig. 3. Two spike waveforms (spike shapes) and their discrete derivatives. Pos-
itive peaks, negative peaks, and peak-to-peak amplitudes are annotated. Other
features such as spike gradients and peak position are also depicted.

+ Combination 5: DD|s_3 7(max) and DD|s_z3 7(min)-
* Combination 6: Features in Combination 5 together with
Vp,p of DD|5:377.
+ Combination 7: DDls_3 7(max) and DD|s_3 7(min) to-
gether with original spike positive and negative peaks.
+ Combination 8: DD|s_3 7(max) and DD|s_3 7(min) to-
gether with original spike height.
+ Combination 9: DD|s_7(max) and DD|s_7(yin) together
with original spike positive and negative peaks.
In addition to the above permutations, various values of ¢ and
geometric characteristics such as positive (or negative) signal
energy, half-height position, right (or left) spike gradients, peak
position and zero crossing points could be considered to define
other possibilities. Some of the mentioned features are anno-
tated in Fig. 3.

C. Other Feature Extraction Methods for Comparison

1) Waveclus [8]: In this algorithm, the combination of the
wavelet transform with super-paramagnetic clustering (unsu-
pervised clustering method with offline training) is used for un-
supervised and online spike sorting. Four-level multi-resolution
decomposition using Haar wavelets is calculated as feature ex-
traction which results in 64 wavelet coefficients for each spike.
Then the Kolmogorov—Smirnov test for normality is used to se-
lect the first 10 coefficients with the largest deviation from nor-
mality for the sorting stage.

2) Discrete Derivatives and Maximum Difference Test
(DDs-MDT) [9]: In this approach, the maximum difference
test (MDT) is applied to each scaling factor of DDs to extract
the multimodal coefficients. The MDT is a simplified model of

the Lilliefors test for selecting the uncorrelated directions (min-
imum mutual information) for blind signal separation. Samples
with bimodal distribution have deviation from unimodality or
Gaussian distribution, thus they exhibit multiple peaks and
valleys as a sign of multimodality.

3) First and Second Derivatives: The first and second deriva-
tives of a spike represent its geometrical characteristics. The first
derivative (FDV) interprets the gradient variations of a spike
shape. It is defined as

FDV(n) = s(n) — s(n — 1). )
The second derivative (SDV) highlights low frequency coeffi-
cients by computing the difference of the samples n and (n — 1)
of the FDV. That is
SDV(n) = FDV(n) — FDV(n — 1). 3)
In [10] the FDV and SDV extrema (maximum and minimum
peaks) were used to distinguish the clusters. This method is re-
ferred to as FDVSDV for the rest of the paper in the accuracy
and complexity discussions.

4) DDs and Uniform Sampling (DDs-USAMP) [11]: In this
method, after computing the DDs of the spike with three dif-
ferent values for the delay (6 = 1, 3, 7), uniform sampling was
performed to select the subset of features. Seven coefficients
were selected for each DD level (resulting in 21 coefficients per
spike) to achieve the highest median clustering accuracy across
a signal-to-noise ratio range of 15-20 dB. Uniform sampling is
a simple approach for decreasing the dimensionality from N to
K (in this case from 3 x 48 to 21) but this type of sample se-
lection could lead to non-segregation of clusters.

5) Spike Shape [12]: In this method all the samples of de-
tected and peak-aligned spikes (without upsampling) are used
for calculating the similarity measure between the mean of the
spikes in clustering.

D. Online Sorting (O-Sort Clustering)

For clustering O-Sort is used. It is the only online, automatic
and unsupervised algorithm that is suitable for hardware im-
plementation [13]. This algorithm provides real-time mapping
of spikes to single neuron activity for closed-loop applications.
The operation of O-Sort is as follows. 1) Initialization: Assign
the first data point to its own cluster. 2) Calculate the distance
between the next data point and each cluster centroid. The dis-
tance metric could use, for example, the Euclidean norm or the
£1-norm. 3) If the smallest distance is less than the merging
threshold T, assign the point to the nearest cluster and recom-
pute that cluster’s mean. Otherwise, start a new cluster. 4) Check
the distances between each cluster and every other cluster. If
any distance is below the sorting threshold T's, merge those two
clusters and recomputed its mean. Steps 2—4 are then repeated
indefinitely. In the simplified version of the algorithm (proposed
in [13] and used herein), T3y = Ts = T. The threshold 7" is
defined as T" = S(a,,,)2, where o, is the average standard devi-
ation of the data computed continuously with a long (~1 min)
sliding window, and S is the number of datapoints of a single
waveform.
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Fig. 4. Spike bank mean waveforms (peak-aligned) used for testing with corresponding Bray—Curtis similarity index (shown at the bottom). (a) C_Easy! noise,

(b) C_Easy2 noise, (¢) C_Difficult] _noise, and (d) C_Difficult?_noise.

O-Sort is simple in operation with good complexity-accuracy
tradeoff and satisfies online sorting constraints (memory and
power). This algorithm is adaptive thus nonstationarity of data
in time is applied to the cluster position and number of clusters.
A disadvantage of O-Sort is that it may split clusters into sub-
clusters leading to a reduction in clustering performance. The
created sub-clusters are not matched with any source and are
considered as noise clusters.

III. TEST DATASETS

To compare the performance of the proposed method with
other work the Waveclus spike bank! was used. The database
contains different average spike waveforms recorded from the
neocortex and basal ganglia in humans. To emulate the back-
ground noise activity, spike waveforms randomly chosen from
the data library were added to the generated datasets. There are
advantages in using this database. Firstly, each dataset provides
true spike classes, which is useful for accuracy calculations,
and the ground truth can be established. Secondly, the diversity
of the data allows evaluation of spike sorting algorithms from
a constant source. Datasets with different degrees of difficulty
(e.g., similarity of spike shape) and noise levels are provided.
The four datasets are C_Fasyl noise, C_Easy2 noise, C_Dif-
ficult] noise, and C_Difficult? noise, where noise denotes the
noise level in terms of standard deviation, namely, 0.01, 0.05,
0.15, and 0.2. “Easy” and “Difficulf” is the similarity index be-
tween the spike shapes in each dataset. Thirdly, the characteris-
tics of the datasets are similar to real practical recordings.

Fig. 4 shows the three different types of spike shape present
in each of the four test datasets and the calculated Bray—Curtis
similarity indexes [14] between all the spike shapes in each
dataset. The sorting difficulty becomes more demanding with
increasing the similarity between the spike shapes (width and
amplitude fluctuations). Fig. 5(a) shows color-coded spikes cor-
responding to different neurons from dataset 2 (C_Easy2_0.05),
Fig. 5(b) shows the two-dimensional (2-D) projection of spike
clusters, and Fig. 5(c) shows a short recording segment with
colored markers (with prior knowledge from simulation). Each
color corresponds to a single-unit activity. As the difficulty of a

1 Available online: http://www?2.le.ac.uk/centres/csn/spike-sorting
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dataset increases, sorting becomes increasingly challenging. For
realistic assessment, a 7-bit, 30 kS/s second-order delta sigma
modulator was used to digitize the raw data.

IV. RESULTS AND DISCUSSION

A. Determining the Optimal Threshold

The procedure adopted to determine the optimal threshold T’
is as follows.
1) The range of threshold values is determined via the dataset
with the highest similarity index between the spike shapes.
The maximum limit for threshold (7},.x) is defined using
dataset 4 (which has the highest similarity measure) when
no clusters are missed and there is no artificial clustering
(Fig. 6). Atrtificial clustering erroneously allocates spikes
to a cluster. The threshold value can be decreased to a
minimum limit (7%,;,,) below which overclustering occurs.
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Overclustering is the splitting of a single cluster into mul-
tiple clusters. Ty, is determined when clusters in dataset
4 start to overcluster. For Tin < T < Tiax Do clusters
will be missed and no overclustering will occur.

2) The optimal threshold (7, ) for each method (published
and proposed) is found by sweeping the threshold value
through the range 7}, ax — Tinin and determining the sorting
accuracy.

Using this procedure determines T for each method when
investigating its effectiveness using different metrics.

B. Classification Accuracy

In this subsection the nine feature combinations proposed in
Section II-B are evaluated in terms of classification accuracy
to determine in conjunction with O-Sort the best one. This is
then compared with the feature extraction methods outlined in
Section II-C. Classification accuracy is defined as

TPCC
— o7,
CAce = wipg X 100% (@)

where TPCC is the number of truly detected and correctly clas-
sified spikes and NTS is the number of truly detected spikes.
NTS = DTS — (FPS + MS), where DTS is the number of
detected spikes, FPS is the number of false alarm spikes due to
noise or overlapping spikes, and MS is the number of missed
spikes.

The average sorting results are summarized in Table 1. The
methods were evaluated across all datasets and noise levels.
Combination 5 with dimensionality (K) of 4 achieves the
highest CA.. whereas Combination 8 (with K = 9) achieves
the lowest CA ... The methods were also examined with over-
clustering ratio criteria. It was observed that Combination 5
achieves the lowest overclustering whereas Combination 1 in
conjunction with O-Sort generally tends to divide a cluster into
sub-clusters. Combination 5 is therefore selected and will from
hereon be referred to as the DD|5-Extrema method.

TABLE I
CLASSIFICATION ACCURACY COMPARISON OF THE EXAMINED
FEATURE COMBINATIONS

Average Classification Accuracy

Combination* | Dataset 1 | Dataset 2 | Dataset 3 | Dataset 4 | Mean
Combination 1

(K = 6) 94.8% 92% 88% 85.8% 90.1%
Combination 2

K =3) 76.2% 78.6% 73.4% 68.6% 74.2%
Combination 3

(K = 4) 91% 86% 77.2% 79.8% 83.5%
Combination 4

K = 6) 91.4% 86.8% 83. 6% 81.4% 85.8%
Combination 5

(K = 4) 95.8% 93.4% 87.8% 89.6% 91.6%
Combination 6

K = 6) 91.2% 89.6% 80.4% 79.8% 85.2%
Combination 7

K = 6) 89.6% 84.6% 79.2% 74.8% 82%

Combination 8

&=5) 75.6% 77.4% 70.4% 68.8% 73%

Combination 9

(K = 4) 80.4% 76.4% 75.4% 71.2% 75.8%

*See Section II-B for the features used in each Combination

** K = number of features

Dataset 1

s
3
<
[®) == = DD|,-Extrema
=¢~=- DDs-MDT
== A= Spike Shape
=Q==\Vaveclus
0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
Noise Level Noise Level
D
it ataset 3 e Dataset 4
B-o
90 'Y
g S
8 8
< 70 <
(@] (@]
~,
60, N,
\O
N,
50 ==
0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
Noise Level Noise Level

Fig. 7. Comparison of classification accuracy between the DD|>-Extrema
method and other methods as a function of noise level for the four datasets.
The result of Waveclus in [8] is used for comparison.

For comparison, the CA.. of the methods in Section II-C
was investigated, in particular, Waveclus (KX = 10}, DDs-MDT
(K = 21), DDs-USAMP (K = 21), Spike Shape (K = 45)
and PCA3 (projection of first three principal components). The
results (averaged across all noise levels) are shown in Fig. 7.
The CA.. of DDs-MDT drops significantly in datasets 2 and
3 due to the intense overclustering effect. The number of coef-
ficients (K) representing deviation from normality is 21, i.e.,
7 from each scaling factor (6 = 1, 3, 7). The results show
that DD|;-Extrema and DDs-MDT have similar performance in
dataset 1. The former has better similarity tolerance in datasets
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2 and 3 which means significant reduction in complexity or re-
quired memory. Spike Shape works satisfactorily for datasets
1 and 2 only. It significantly increases the computational com-
plexity without improvement in performance. In this method the
simplest metric to sort the spikes is the distance (e.g., Euclidean
distance) between the unclassified spikes and the stored tem-
plates. As discussed in [15] the classification accuracy of Spike
Shape declines when the spike waveforms have similar patterns
(increasing the similarity index).

PCA uses maximum variance, correlated coefficients, unlike
the Waveclus and DDs-MDT. In the test for C_Difficult] noise
and C Difficult? noise the sorting algorithm did not distinguish
one of the three clusters with PCA feature vectors. Although
PCA is computationally complex, there is no guarantee of ef-
ficient results. Selecting the coefficients with the largest vari-
ance does not necessitate deviation from normality and it may
compromise the sorting performance. Feature space probability
density function of two different clusters using PCA overlap
(correlated directions) was investigated in [16]. PCA and DDs-
USAMP did not perform well in the tests. Their average CA..
with the O-Sort classifier was 66.4% and 61%, respectively, and
therefore they are not plotted in Fig. 7.

In conclusion, the best performance for accuracy-dimension-
ality is demonstrated by DD|>-Extrema (K = 4). It exhibits
superior similarity tolerance and noise immunity.

C. Clustering Results With Synthetic Data

The evaluation of spike sorting with DD|3-Extrema is shown
in Fig. 8 using dataset 3 (C_Difficultl 0.05). Fig. 8(a) shows
color-coded spikes in each cluster and Fig. 8(b) shows color-
coded mapping to distinguish between the neurons. The clus-
ters are distinguished with the knowledge of true identities from
the neural simulator. For clarity, noise events and overlapping

spikes are not plotted. The typical way of illustrating the iso-
lated units is by superimposing detected spikes with different
colors.

The detailed sorting results using dataset 4 are shown in
Fig. 9. The two statistical tests, namely the inter-spike interval
histogram (ISIH) test and the projection test as discussed in
[17], were used to quantitatively assess the sorting quality.
A total of 3040 raw waveforms were detected, 2929 (96.4%)
of which were assigned to one of the three well-separated
single units (969, 986, and 974 for each cluster, respectively).
Fig. 9(a) shows the normalized raw waveforms and the mean
waveform for each of the three clusters. Fig. 9(b) shows the
firing pattern of each neuron across a time window of 0-28 s.
The mean firing rate (FR) [18] of neurons #1, #2, and #3 is
10.28 Hz, 10.64 Hz, and 9.98 Hz, respectively. Each diagram in
Fig. 9(b) also has the raster plot (or spike times) corresponding
to the temporal firing of each neuron. Fig. 9(c) shows the ISIH
for each neuron. The ISIH window should not be less than
the action potential refractory period (<2 ms after alignment).
Single-unit activity is stated when the spike waveform is clearly
distinguishable with no ISIH less than the refractory period.
Fig. 9(d) shows from left to right the 2-D projection of clusters
with increasing noise level (0.05, 0.1, and 0.15). Increasing the
noise level adversely affects the projection and may result in
some degree of overlap, but it is observed that the borders of
clusters are clear even in the most difficult dataset with noise
level of 0.15. Fig. 9(e) shows the results of the projection test
using probability density functions for three combinations of
cluster in C Difficult2 005. The projection test [13], [19] is
a one-dimensional representation between two known means
with a distance indicator (D) which assesses the quality of
clustering. This test shows whether or not spikes from multiple
neurons are artificially assigned to a particular cluster by the
sorting algorithm. Furthermore, it detects the invalid merging
of two clusters. In Fig. 9(e) the normalized distance between
probability density functions for the three combinations of
clusters are sufficiently large to permit correct assignment of
spikes to unique neurons.

Inspired by [16] a quantitative metric based on the projec-
tion test is proposed for assessing the level of distinctness of
the generated clusters. The metric for quantifying the discrim-
ination degree of clusters is the ratio of intercluster distance to
intracluster distance, defined as

M i=1,2,..9 > 3 PD;;
DisD inter A =S T )
isDcg = =

&~ lntra T

where P’D;; is the projection test distance between clusters :
and j. This ratio is a metric for cluster quality measurements
and is useful for optimization. The higher the value of DisDeg
the better the cluster separation quality.

Fig. 10 compares the separation confidence level of the
Graph-Laplacian feature (GLF) [16], DD|,-Extrema and
DDs-MDT. Increasing the similarity in each dataset from
Easyl to Difficult2 and noise level adversely affects the cluster
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Fig. 9. Sorting results of C_Difficult2 005. (a) Color-coded clusters with number of assigned spikes in each cluster. Amplitude is of arbitrary units. (b) Corre-
sponding firing pattern which depicts firing rate of each neuron (0-28 s). Approximated firing rate determined by the Gaussian window function. The mean firing
rate (FR) is annotated in each plot. (c) ISIH of each cluster. (d) 2-D projection of clusters for C_Difficult?2 0.05, C_Difficult? 0.01 and C_Difficult? 0.15. (Spikes

have been colored according to the ground truth). (e) Illustrates projection test
ficult2 0.05) in (d). For each combination of neurons the distance between the
value in each plot). Each neuron is color-matched across (d) and (e).

using probability density functions for the three combinations of clusters (C_Dif-
two distributions is described by how many standard deviations they are apart (D

Dataset 3

‘Dataset 4

== « DDs-MDT

=== DD|,-Extrema|
I | | I
%.05 0.1 0.15 0.2 0.05 0.1 0.15
Noise Level Noise Level Noise Level Noise Level

Fig. 10. Discrimination degree of GLF, DDs-MDT and DD|;-Extrema. For si

separation. The DisDeg results in Fig. 10 verify the sorting
efficiency of the proposed method.
D. Clustering Results With Recorded In Vivo Neural Data

Collected neural signals from the peripheral median nerve in
pig (obtained with a multi-electrode cuff in vivo) were used to

mplicity T = 1. DisDeg of GLF was calculated using the quality metric in [16].

test the sorting performance of the DD|,-Extrema. 6564 spike
waveforms were detected from 24 single neurons in four dif-
ferent channels: eight in channel 1, five in channel 2, five in
channel 3, and six in channel 4. The analysis of the sorting re-
sults is shown in Fig. 11 for three of the channels. Fig. 11(a)
shows the mean spike waveforms of channels 1-3; each color
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Fig. 11. Sorting results of the recorded in vivo neural data. (a) Illustration of found mean waveforms in channels 1-3. The amplitude is of arbitrary units. (b)
Color-coded clusters with number of assigned spikes in each cluster from channel 1 (#7 red, #5 blue, #4 cyan). (c) ISIH of the neurons from channel 1. (d) Results
of projection test using estimated probability density functions for all possible combinations in channel 2. 2-D projection of clusters is included for visual clarity.
The vertical axis shows the distribution amplitude and the horizontal axis is the distance between the two distributions.

corresponds to a unique neuron. Fig. 11(b) shows the sorting
results of three similar neurons from channel 1. The ISIH test
shown in Fig. 11(c) verifies the accurate segregation between
the chosen neurons. In Fig. 11(d), the projection test quantifies
the distance between every pair of clusters in channel 2. The
normalized distance between each pair (standard deviation cri-
terion) is large enough to conclude the efficient separation of
clusters. In total 5973 (91%) of all detected spikes were assigned
to the identified neurons.

E. Complexity Analysis

In order to assess the hardware requirements of different
methods the computation complexity metric was used. It is
defined as [9], [20]

COIHPUtCOInP = Nadd(sub) + IONIllult(di\') (6)

where N.qq is the number of additions (or subtractions),
and Ny 18 the number of multiplications (or divisions)
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TABLE II
COMPTUTATIONAL COMPLEXITY COMPARISON OF VARIOUS FEATURE EXTRACTION AND DIMENSIONALITY REDUCTION METHODS
Method Additianesature Exl\t/ﬁl(lzttilglr;cations Dimensionality Reduction illl;itlii;llﬁ *A(\I]lege Fl;l;ltrlrllriesr((g) Siﬁllljlgtor
DDJ],-Extrema M(@2N-10) - Max/Min/ Vp-pof DD|y(5=3 7 O-Sort 91.6% 4 v
PCA M(N?+1) M(N?+N) - O-Sort 66.4 % 3 first PCs v
FDVSDV M@2N-3) - Max/Min of FDV and SDV O-Sort 73.6% 4 v
“DDs-MDT M@BN-11) - MDT — (M- 1)(3N) O-Sort 71.8% 21 v
“DDs-USAMP M@GBN-11) - Uniform Sampling O-Sort 61% 21 v
Spike Shape - - - O-Sort 68.4% 45 v
¢ZCF [23] M(N) - - k-means >94.0% 27ZCFs=3 X
*DWT M(4N) M(8N-10) Kolmogorov-Smirnov SPC 592.6% 10 X

A = number of spikes; /N = sample number per spike
* Averaged across 4 datasets with varying degrees of noise level

“*DWT (four-level Haar wavelet) and Kolmogorov—Smirnov used in Waveclus

«—DDs-MDT and DDs-USAMP with scaling factors 6 = 1, 3,7
b—The results in [8] are used for comparison
«¢—ZFC performance was evaluated with a different spike bank

required. Table II compares the proposed method and seven
other published methods in terms of estimated computational
complexity, clustering algorithm used, average classification
accuracy {CA..) and number of features (dimensionality).
Compared to DDs-MDT, DD|5-Extrema has 3.6x lower com-
plexity with 19.8% higher average accuracy. FDVSDV has
5.76x and 1.62x higher complexity compared with DD|2-Ex-
trema and DDs-MDT, respectively. It was reported in [10] that
FDVSDV has 6.97% classification error with varying noise
levels across all four datasets and M (2N — 3) complexity with
the k-means classifier.

Since in FSVSDV extrema are selected using the attenuated
projections of a spike shape, the O-Sort sorting threshold needs
to be reduced to distinguish the clusters. The threshold level for
FDVSDV was found using 7' = S(« - )? where a(= 0.25) is
a factor derived from simulation. There are disadvantages with
the calculated threshold. They include: 1) the possible creation
of an impractically small threshold value (e.g., 0.001) which is
then very sensitive to noise variations, and 2) determining the
sorting threshold involves an extra multiplication (evaluating 7'
for recalculating the average standard deviation when using a
sliding window).

FSVSDV was implemented with O-Sort to provide a fair
comparison with the method proposed in this paper. The average
accuracy of FDVSDV is 73.6%. DDs-MDT has an average ac-
curacy of 71.8% with O-Sort. Six of the eight methods listed in
Table II use the O-Sort clustering algorithm. It should be men-
tioned that the average accuracy of O-Sort is around 70% while
both k-means and fuzzy c-means have over 90% discrimination
power. However, the only online and unsupervised algorithm in
the context of implantable sorting hardware is O-Sort. In addi-
tion, k-means and fuzzy c-means clustering require prior knowl-
edge of the number of clusters.

To test the accuracy of the classifiers, original spike shapes
were applied (without upsampling) to establish the accuracy
with unprocessed data. Waveclus is very efficient with an ac-
ceptable classification error (7.4%). However, its computational
complexity is much higher than that of either DDy-Extrema
or DDs-MDT. DD|;-Extrema without offline training re-
quires <5% of the computational complexity of Waveclus

(the computational complexity of Kolmogorov—Smirnov is
not considered). Although DD|>-Extrema and Waveclus have
comparable similarity immunity, there is a sustained improve-
ment in DD|,-Extrema performance with increasing noise level
(noise immunity).

The overall sorting complexity consists of creating clusters
and merging phases. It is defined as

Add Mult

——
SortComp = MK (3C — 3) + K(3C —3)+20MKC (7)

where M is the number of feature vectors, K is the number
of features representing each spike in feature space, and C' is
the number of clusters. The Euclidean distance calculation re-
quires the multiplication operation in (7) which leads to high
sorting complexity. The #1-norm distance metric makes O-Sort
a particularly good choice for hardware implementation since it
is much less dependent on the dimensionality of feature space.
The #1-norm distance is less susceptible to biological noise than
the Euclidean distance [21], hence resulting in a better average
CA.. Fig. 12 shows the classification error versus computa-
tional complexity of feature extraction and sorting. The best
tradeoff between classification error and complexity belongs to
the proposed method.

Fig. 13 displays the average classification error versus dimen-
sionality factor for various methods. The dimensionality factor
is the ratio of feature space dimensions to the number of samples
per spike. As can be seen, there are significant differences be-
tween DD|z-Extrema (K = 4) and FDVSDV (K = 4}, Spike
Shape (K = 45), DDs-MDT (K = 21), DDs-USAMP (K =
21) and PCA (K = 3). The competing methods for DD|3-Ex-
trema are ZCF [22] (2ZCFs = 3) and Waveclus (K = 10) with
2.4% and 1% lower classification error, respectively. It can be
clearly observed that DD|s-Extrema outperforms all the other
methods and provides the best tradeoff in complexity, accuracy
and dimensionality.

F. Proposed Data Reduction Application Example

As noted in Section I, one potential application is the de-
velopment of a custom integrated circuit for an implantable
multi-electrode neural interface for upper-limb prostheses. The
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chip will amplify and reduce the data rate needed to represent
the many spike signals. Each interface will typically have 20+
channels (microelectrodes) and there are four nerves in the
upper arm which carry most of the motor axons. Prior to spike
sorting the recorded data will be digitized by an analog-to-dig-
ital converter (ADC, see Fig. 2). Assuming each channel is
sampled at 30 kHz with 7-bit ADC resolution, the average
data rate at the input of the digital spike sorting processor will
be 21 Mb/s. A typical neuron generates on average 40 spikes
per second when active [23], and up to 25 active neurons are
estimated in each channel. Therefore, after detection and align-
ment the data rate will become 1.26 Mb/s (100 neurons x 40
spikes/(neuron.second) X 45 samples/spike x 7 bits/sample).
Using DD|>-Extrema to encode the spikes into four features
(28 bits/spike) the extracted coefficients will yield a data rate
of 112 kb/s or 0.53% of the original data rate. In the final
step typically the cluster number and channel number will be
processed via O-Sort, which will yield a final transmission data

rate of 56 kb/s (i.e., 0.265% of the original data rate). Such a
low data rate is feasible for wireless transmission using a single
pair of coils for both power and data [24]. Reducing the data
rate to only 0.265% of the original data rate should also be
attractive for high channel count recording microsystems for
other applications [25], [26].

V. CONCLUSION

This paper has investigated a new feature extraction method
based on spike waveforms and their discrete derivatives. Nine
combinations of extrema features have been examined with
the proposed DD|;-Extrema method offering the highest av-
erage classification accuracy. Specifically, DD|,-Extrema
with M (2N — 10) complexity and dimensionality factor of 4,
achieves 91.6% average classification accuracy. It requires > 1%
of the computational complexity of PCA while providing higher
accuracy. The combination of DD|,-Extrema with O-Sort pro-
vides a considerable accuracy-complexity tradeoff. This should
allow on-chip processing without any assumption of high level
of fidelity for sorting multi-unit activity. The results confirm
that the average classification error is less than 4% across all the
datasets tested using noise with a standard deviation of 0.05. This
theoretical limit can be used to determine the design parameters
ofthe analog front end (AFE, see Fig. 2) including data converter
resolution and sampling rate, filter type, bandwidth and order,
and amplifier noise, bandwidth and gain. The overall complexity
of spike sorting has been optimized using the £1-norm distance
calculation. The clustering performance of the proposed method
has been evaluated using both synthetic and recorded in vivo
neural data. DDJs-Extrema outperforms various online and
offline algorithms which have significantly more complexity. In
addition, it offers a better tradeoff between complexity, accuracy
and dimensionality than all the other methods considered herein.
DD|»-Extrema could be used as the basis of a future neural
amplifying and spike sorting chip for upper-limb prostheses or
other applications such as cortical neural recording [27] and
bladder control after spinal cord injury [28].
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