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Twist transition of nematic hyperbolic hedgehogs
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Stability of an idealized hyperbolic hedgehog in a nematic liquid crystal against a twist transition is investigated
by extending the methodology of Rüdinger and Stark [Liq. Cryst. 26, 753 (1999)], where the hedgehog is confined
between two concentric spheres. In the ideal hyperbolic-hedgehog the molecular orientation is assumed to rotate
proportionally with respect to the inclination angle, θ (and in the opposite sense). However, when splay, k11, and
bend, k33, moduli differ this proportionality is lost and the liquid crystal deforms relative to the ideal with bend
and splay. Although slight, these deformations are shown to significantly shift the transition if k11/k33 is small.
By increasing the degree of confinement the twist transition can be inhibited, a characteristic both hyperbolic
and radial hedgehogs have in common. The twist transition of a hyperbolic defect that accompanies a particle is
found to be well predicted by the earlier stability analysis of a thick shell.
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I. INTRODUCTION

Liquid crystals were first identified by their striking optical
textures due to the presence of topological defects [1–4]. In
the nematic phase, molecules collectively possess orientational
order but lack positional order. Locally, molecules align on
average in a direction defined by a unit vector n̂, known as
the director, which possesses head-tail symmetry such that n̂

is equivalent to −n̂. Points and lines can arise, termed defects,
where the director is ill-defined and correspondingly the degree
of orientational order drops.

Stable point defects, those of which are observed in
experiment [5], have a topological charge of one and are the
radial hedgehog, of charge +1, and the hyperbolic hedgehog,
of charge −1. Topologically equivalent, one type of hedgehog
can be transformed into the other via a twist deformation [6].
Detailed studies of both the radial hedgehog [7–10] and the
hyperbolic hedgehog [11,12] reveal that a ring defect of half
charge is normally favored at the core [13,14]. Only in highly
confined systems or at high temperatures is the core restricted
to a point [7]. Hedgehogs are relatively rare within the liquid
crystal bulk after a quench [5,15], but are commonplace
in specific geometries such as capillaries [16–19], droplets
[6–8,20], and in liquid crystal colloids [11,21].

Liquid crystals exhibit anisotropy in their elastic moduli,
k11, k22, and k33, respectively, the splay, twist, and bend
moduli. Theoretically, and for small deviations in the elastic
moduli from the isotropic case, idealized hedgehogs are good
representations of the true director configuration and a basis
from which the core structure, namely the ring radius, can be
calculated in both radial [8,9] and hyperbolic [12] cases as
functions of the elastic moduli.
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Relative to the splay and bend moduli, k22 is small.
Therefore, it can be energetically favorable for a hedgehog
defect to twist, breaking mirror symmetry.

For radial hedgehogs the twist transition has been ob-
served experimentally in nematic droplets with homeotropic
alignment [6,20,22]. Lavrentovich and Terentjev [6] derived a
relationship between the elastic moduli at the twist transition
by constructing an ansatz connecting a central hyperbolic
hedgehog to a radial configuration at the boundary of a droplet
via a twist deformation. With this approach, large deformations
of the director field are permitted, at the expense of fixing
an ansatz function. Rüdinger and Stark take an alternative
approach [20]. A linear stability analysis is performed whereby
the optimal director configuration is found, but which is
valid only for small twist deformations in the vicinity of the
transition.

In the case of the hyperbolic hedgehog, the twist transition
of the hyperbolic point defect associated with a spherical
particle has been studied by Stark [23]. In addition to defining
the twist threshold in terms of the elastic moduli, the defect
position is reported. Since therein a point defect was simulated
by means of the Oseen-Frank theory, the size of the defect
core relative to the particle did not enter the calculations.
As such the influence of confinement was not considered,
with the results corresponding to the unconfined case. The
Landau-de Gennes theory reveals that the twist associated
with such a companion defect (that exists typically as a
loop) extends over a length-scale comparable to the particle
radius, and the amount of twist and the twist transition itself
depend on the size of the defect core relative to the particle
radius [24].

In this paper the analysis of Rüdinger and Stark [20] is
extended to the case of an idealized hyperbolic hedgehog.
We aim to show how the elastic moduli and the degree of
confinement affect the stability of a hyperbolic hedgehog in
deciding whether it is twisted or not.

The ground state of the liquid crystal is assumed to be an
“ideal” untwisted hyperbolic hedgehog defined by the director
field n̂0 = (−x,−y,z)/|(x,y,z)| and constrained between two
concentric spheres (so as to circumvent the defect core) with
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FIG. 1. Geometry of an idealized hyperbolic-hedgehog confined
within a thick shell extending from rmin to rmax, where the gray
bars represent the fixed surface director orientation. After the twist
transition, the director rotates in the direction of êφ .

an inner radius of rmin and an outer radius of rmax, as sketched
in Fig. 1. It should be noted that although such an isolated
entity is contrived, it is convenient for studying the effect of
confinement. In reality hyperbolic defects are seen in more
complex configurations, most commonly in liquid crystal
colloids [21].

The Frank free energy of a nematic liquid crystal is given
by

F = 1

2

∫
dV {k11(∇ · n̂)2 + k22(n̂ · ∇ × n̂)2

+ k33[n̂ × (∇ × n̂)]2}, (1)

where surface terms have been neglected, since the director is
assumed fixed at rmin and rmax. Substituting the director field
of the ideal hedgehog yields the free energy (8/15)π (3k11 +
2k33)(rmax − rmin).

Strictly speaking, in a shell of liquid crystal where the
orientation is fixed at the interior and exterior boundaries
and set to follow the ideal hyperbolic-hedgehog, n̂0, the
ideal hyperbolic hedgehog is only obtained in the interior

when k11 = k33. When k11 and k33 differ, the director field
found by minimizing the free energy exhibits polar (bend-
splay) deformation relative to the ideal case, most prominently
in the vicinity of the inner boundary. The magnitude of
the relative deformation varies continuously as a function of
k11/k33; in other words, a transition is not observed and the
deformation is relatively small. For instance, with k11/k33 =
1/2 the tilt deviates by ±4◦ compared to the ideal hedgehog,
causing a 3% relative drop in the free energy (calculated by
the method outlined in Sec. III).

Section II proceeds under the assumption that the ideal
hyperbolic hedgehog is a good approximation of the ground
state, neglecting any bend-splay distortion from the ideal
that arises due to the elastic anisotropy. This simplifies the
analysis significantly since n̂0 is independent of the radius,
r . In Sec. III the twist transition is reevaluated allowing for
such bend-splay distortions by nonlinear analysis. Finally,
Sec. IV investigates whether or not the earlier analyses can
be applied to a wider class of geometries by considering the
twist transition of a hyperbolic hedgehog defect associated
with a spherical particle.

II. LINEAR STABILITY ANALYSIS

Following the approach of Rüdinger and Stark [20],
the local director n̂ is represented in spherical coordinates,
allowing for small deviations in the azimuthal, φ, direction
from the ground state,

n̂(r,θ ) = (
1 − 1

2b2f 2
)

[cos(2θ )êr − sin(2θ )êθ ] + bf êφ,

(2)

where f (r,θ ) is a general function and b is the magnitude
of the azimuthal (twist) deviation from the ideal hyperbolic
hedgehog. The cos(2θ ) and sin(2θ ) terms lead to more
complex expressions than seen in the radial case [20].
Simplicity could be restored through the use of hyperbolic
coordinates, but the natural boundary surface would also be
hyperbolic in shape and inconvenient for the study of confined
systems.

After substituting n̂(r,θ ) into the free energy and keeping
terms up to second order in b (linear terms are absent), the
free-energy difference relative to the untwisted case can be
written as

�F = πb2
∫ rmax

rmin

dr

∫ π

0
sin θ dθ

(
[k22 cos2(2θ ) + k33 sin2(2θ )]f 2

θ + (k22 − k33) sin(4θ ) rfrfθ

+ [k22 sin2(2θ ) + k33 cos2(2θ )]r2f 2
r − [4k11 cos2 θ + k22(4 sin2 θ − csc2 θ ) − 2k33] sin(2θ )ffθ

+{4k11 cos2 θ + 4k22[2 sec(2θ ) − 1] cos2 θ − 2k33} cos(2θ )rffr

−{4k11 cos4 θ + k22(4 sin4 θ − csc2 θ − 3) + k33[2 sin2(2θ ) + 2 cos(2θ ) + 1]}f 2
)
, (3)

where fr = ∂f/∂r and fθ = ∂f/∂θ . Here, due to the second term in frfθ , f (r,θ ) cannot be written as the product of two
independent functions of r and θ . In contrast, f (r,θ ) is separable in the radial hedgehog case. To alleviate this problem, the
canonical form of the second-order elliptic partial differential equation given by taking the first variation in �F is sought. This
suggests the following substitution for r ,

α = 1
4 ln[1 + (k22/k33 − 1) cos2(2θ )] + ln(r). (4)

It is now natural to set boundary conditions at fixed values of α and θ . A contour of fixed α forms a rounded diamond in r − θ

space, with an eccentricity that depends on k22/k33.
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After substituting r for α and, since b is arbitrary, the following inequality is obtained which, if satisfied, informs us that the
hyperbolic hedgehog will be twisted,∫ αmax

αmin

eαdα

∫ 1

−1

[
1 +

(
k22

k33
− 1

)
cos2(2θ )

]−1/4

d cos θ
{
[k22 cos2(2θ ) + k33 sin2(2θ )]f̄ 2

θ

+ [k22 cos2(2θ ) + k33 sin2(2θ )]−1k22k33f̄
2
α + [(k11 − k22)(12 cos4 θ − 10 cos2 θ )

+ (k33 − k22)(8 sin4 θ − 6) + k22(csc2 θ − 2)]f̄ 2} < 0. (5)

This has solutions f̄ (α, cos θ ) = f (r,θ ), subject to Eq. (4).
In the above expression further simplifications have been
made, namely the first-order terms in f̄ f̄α and f̄ f̄θ have
been eliminated. The terms in f̄ f̄α and f̄ f̄θ are rewritten in
a form to which the divergence theorem can be applied. This
procedure gives rise to additional terms in f̄ 2. After applying
the divergence theorem, boundary terms result that also depend
on f̄ 2. Following Ref. [20] we consider Dirichlet boundary
conditions for f̄ (α, cos θ ) at the boundaries, specifically
f̄ (αmin, cos θ ) = f̄ (αmax, cos θ ) = f̄ (α,−1) = f̄ (α,1) = 0.
Due to these fixed boundary conditions, the boundary terms
in f̄ 2 can be dropped since they do not contribute to the free
energy.

The left-hand side remains proportional to the free energy
relative to the untwisted state in the transformed coordinate
system. At this stage the coordinate transformation x = cos θ

is applied. After applying Green’s theorem and taking into
account the boundary conditions, the inequality becomes∫ αmax

αmin
dα

∫ 1
−1 dx rf̄ (Dα + Dx)f̄∫ αmax

αmin
dα

∫ 1
−1 dx rf̄ 2

< 2k22. (6)

The inequality Eq. (6) is best fulfilled when its left-hand
side assumes a minimum. This minimum, according to the
Ritz principle in quantum mechanics, is given by the lowest
eigenvalue of the operator Dα + Dx subject to the boundary
conditions given earlier [20]. The eigenvalue equation Dαf̄ +
Dxf̄ = λf̄ is separable into a radial part and an angular part,
with eigenfunctions defined as f̄ (α,x) = g(α)h(x).

For the radial dependence, we seek the lowest eigenvalue
of the operator Dα = −∂2/∂α2 − ∂/∂α, which is

λα = 1

4
+ π2

(αmax − αmin)2
, (7)

and corresponds to the eigenfunction

g(α) = exp
(
−α

2

)
sin

(
π

α − αmin

αmax − αmin

)
. (8)

When k22 = k33, this solution is identical to that found for the
radial hedgehog [20]. A sketch of this function may be found
in Ref. [20, Fig. 4].

The function g(α) contributes to the free energy in the
following fashion:∫ αmax

αmin

eαg(α)2 dα = 1

2
(αmax − αmin),

(9)∫ αmax

αmin

eαgα(α)2 dα = 1

2
(αmax − αmin)λα.

The angular dependence can be derived from the lowest
eigenvalue of Dx defined as

Dx = −[k22 − 4(k22 − k33)(1 − x2)x2](1 − x2)∂2/∂x2

+ [k22 + (k22 − k33)(1 − x2)(3 − 10x2)]2x∂/∂x

+ [k22 − 4(k22 − k33)(1 − x2)x2]−1k22k33λα

+ (k11 − k22)(12x4 − 10x2)

+ (k33 − k22)(8x4 − 16x2 + 2)

+ k22(1 − x2)−1. (10)

It is clear that all three elastic constants, as well as the degree
of confinement (provided k22 �= k33) acting via λα , affect
h(x). For the radial hedgehog, the situation is much simpler;
the minimum eigenvalue solution is independent of these
parameters. In the one elastic constant case the differential
operator is identical to that found in the radial case, namely the
associated Legendre differential equation, which has solutions
P m

	 (x), where P m
	 (x) are the associated Legendre polynomials.

For Eq. (10), m = 1. The minimum eigenvalue occurs when
	 = 1 and its corresponding eigenfunction is h(x) = P 1

1 (x).
In order to find how perturbations to the elastic constants

from the one elastic constant case affect h(x) to first order, the
differential operator is expanded as

Dx = D(0)
x + εD(1)

x , (11)

where ε is presumed to be small, D(0)
x is equal to Dx in the case

of equal elastic constants, and D(1)
x is the change in Dx caused

by a perturbation equal to ε in one of the elastic constants.
Note that when k22 = k33, the λα term contributes a constant
amount, which serves to shift the eigenvalue but has no effect
on the eigenfunction itself.

Change in a given eigenfunction due to the perturbation can
be written

h	(x) = h
(0)
	 (x) + εh

(1)
	 (x), (12)

where h
(0)
	 (x) = P 1

	 (x) and

h
(1)
	 (x) =

∑
n (�=	)

h(0)
n (x)

λ
(0)
	 − λ

(0)
n

∫ 1
−1 h(0)

n (y)D(1)
x h

(0)
	 (y) dy∫ 1

−1

[
h

(0)
n (y)

]2
dy

. (13)

For the (scaled) associated Legendre Eq. (10) the un-
perturbed eigenvalues are given by λ(0)

n = kλα + kn(n + 1),
where k is the elastic constant in the unperturbed case, which
we approximate by k = (k11 + k22 + k33)/3.

Difficulty in integrating [k22 − 4(k22 − k33)(1 − x2)x2]−1

of the λα term is alleviated by replacing it with its Taylor
expansion. In the case of a perturbation in k22, the Taylor
expansion is taken with respect to k22 about k22 = k. Keeping
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up to first-order terms (in ε) gives 4(1 − x2)x2λα as the
term’s contribution to D(1)

x . Similarly for a perturbation in
k33, the expansion with respect to k33 about k33 = k yields a
contribution of [1 − 4(1 − x2)x2]λα .

Of principal interest is the change due to the perturbation in
the eigenfunction with the lowest eigenvalue, 	 = 1, for which
nonzero terms in the above series arise only when n = 3 or
n = 5, such that

h(x) = P 1
1 (x) + a3P

1
3 (x) + a5P

1
5 (x). (14)

Summing contributions to the coefficients, ak , from perturba-
tions in k11, k22, and k33 considered separately gives

a3 = 2

225k
[3k11 − (24 + 2λα)k22 + (21 + 2λα)k33],

(15)

a5 = 8

2205k
[−3k11 + λαk22 + (3 − λα)k33],

revealing that a3 plays a dominant role on h(x) and that a3

itself depends largely on the values of k22 and k33.
Although ideally the full analytic solution to the differential

operator should be sought, its complexity makes this a chal-
lenge. Since our ultimate aim is to derive an equation for the
twist inequality (although we resort to approximations due to
the complexities of the expressions involved), the perturbation
method desirably gives a simple linear relationship between
the elastic constants and the coefficients ak . Later the validity
of the approximation is confirmed. An alternative approach
is to substitute the series h(x) ≈ ∑N

n=1 a2n−1P
1
2n−1(x) into the

operator and solve for the coefficients directly, but this gives
complicated terms even for the modest choice N = 3.

The approximation for h(x) given by the perturbation
method works particularly well for k11/k and k33/k but less
so for k22/k. Here, benefit could be seen by considering
higher-order terms in the perturbation. Figure 2 compares
this approximation to the numerical solution (calculated by a
pseudospectral method) with elastic constants corresponding
to the liquid crystalline material 5CB. Although the elastic

FIG. 2. Angular dependence of f̄ (α,x), h(x), (minimum eigen-
value solution) when αmax − αmin → ∞ for 5CB, with k11/k33 =
0.79 and k22/k33 = 0.43. Solid line is the full numerical solution
[normalized to conform to the form of Eq. (14)] and the dotted line
is the approximation given by first-order perturbation analysis.

constant ratios deviate strongly from unity for this material, the
approximation remains reasonable. Furthermore, the validity
of the linear analysis is limited to the vicinity of the twist
transition, whereabouts the deviation in the elastic moduli is
expected to be less extreme.

With f̄ (α,x) fully approximated, it is now possible to
evaluate the free energy and determine whether a set of elastic
constants satisfy the twist inequality Eq. (5). At this stage, two
further approximations are made for h(x). By assuming k11 =
(k22 + k33)/2 and λα = 1/4 in evaluating the coefficients ak ,
the variational inequality is simplified significantly; it becomes
linear in k11 and λα .

Subsequently, h(x) is multiplied by k/k33 before it is
substituted into the inequality Eq. (5). In evaluating the
integrals that appear in the inequality, the [1 + (k22/k33 −
1) cos2(2θ )]−1/4 term due to the coordinate transformation
is difficult to tackle directly. Instead it is replaced by its
Taylor expansion in k22/k33 about k22/k33 = 1, which is
1 − (1/4)(k22/k33 − 1) cos2(2θ ) to first order. Substitution is
similarly made for the [1 + (k22/k33 − 1) cos2(2θ )]−1 term. In
both cases, it proves sufficient to keep terms up to first order
in k22/k33.

Finally, the twist inequality is divided by k33 and integrated
with respect to θ . Solving for k11/k33 yields a rational
polynomial in k22/k33. If k11/k33 exceeds this polynomial, the
hedgehog will be twisted. Before truncating this polynomial
we substitute k22/k33 = exp(k), motivated by the fact that
the numerical solution for the threshold value of k11/k33 at
which twist occurs depends almost linearly on the logarithm
of k22/k33. Taking the Taylor expansion of the rational
polynomial in terms of k about k = 0 and keeping terms up to
first order yields

k11

k33
>

(
230 276

333 795
λα + 21

17

)
ln

(
k22

k33

)
+ 35

34
λα + 1. (16)

FIG. 3. White region indicates where the untwisted hyperbolic
configuration is stable as (i) αmax − αmin → ∞, calculated numeri-
cally. Dark-gray region indicates the stability region of the twisted
hyperbolic configuration with (ii) αmax − αmin = ln(50). Solid and
dotted lines correspond to the analytic approximation of Eq. (16) for
(i) and (ii). (+) Threshold value of k22/k33 below which twist occurs
with rmax/rmin = 50 given by the nonlinear analysis of Sec. III.
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Figure 3 shows the instability domain of the untwisted
hyperbolic hedgehog with respect to a twist transition as a
function of the elastic moduli, where both h(x) and the twist
inequality are evaluated numerically. Within the domain the
hedgehog is twisted. When αmax − αmin → ∞ the domain is at
its largest and corresponds to the union of the gray patches. As
the degree of confinement increases to αmax − αmin = ln(50),
which corresponds to rmax/rmin ≈ 50, the domain shrinks to
the dark-gray patch. The light-gray patch indicates where the
untwisted hedgehog is unstable for αmax − αmin > ln(50), but
stable for αmax − αmin = ln(50).

Solid and dotted lines correspond to the approximation
Eq. (16), which agrees well with the numerical solution. For
αmax − αmin → ∞, the thresholds as plotted are indistinguish-
able, but a slight departure is apparent for αmax − αmin =
ln(50), which is only reduced marginally by keeping terms
of higher order than first in Eq. (16). The root cause of the
departure (and slowed convergence; first-order terms should
suffice) is the approximation used for h(x) given by the
first-order perturbation analysis.

Clearly, αmax and αmin or equivalently rmax and rmin play a
critical role on the size of the instability domain. The extent
of the confining geometry sets the value of rmax, whereas
rmin relates to the size of the defect core and is not so
straightforward to estimate. At the core exists a defect loop,
inside which the director is approximately uniform. Twist
tends to zero at the loop origin, but peaks in the vicinity of
the loop radius. Therefore, we suggest rmin is approximately
proportional to the loop radius, which has been established as
function of the elastic moduli by Fukuda and Yokoyama [12].

III. NONLINEAR STABILITY ANALYSIS

In a shell with fixed boundary conditions corresponding
to an ideal hyperbolic hedgehog, there is inevitably some
deviation in tilt internally from the ideal when k11 and k33

differ. When they differ appreciably, the tilt deviation can no
longer be assumed small, and a simple linear analysis breaks
down. In this section, the stability criterion for the twisted
hyperbolic hedgehog is reevaluated, allowing for deviations in
the tilt from the ideal hedgehog, by nonlinear analysis. The
director field may be written as

n̂(r,θ ) = cos(χ )[cos(2ψ)êr − sin(2ψ)êθ ] + sin(χ )êφ, (17)

where the tilt and twist are represented by the general functions
ψ and χ , respectively.

Once again a spherical coordinate system is assumed.
When n̂(r,θ ) is substituted into the free-energy Eq. (1), mixed
derivative terms once again arise for both χ and ψ , which
cannot be eliminated by the same coordinate transform. Instead
we proceed using α = ln(r), which enables the r dependence
of χ to be well resolved when discretization is performed.

At the boundaries the twist is assumed to be zero,
χ (αmin,θ ) = χ (αmax,θ ) = χ (α,0) = χ (α,π ) = 0. The tilt is
assumed to follow the ideal hedgehog at the boundaries so
that ψ(α,θ ) = θ .

FIG. 4. (a) Twist, χ (α,θ ), and (b) tilt relative to the ideal
hedgehog, ψ(α,θ ) − θ , of a hyperbolic hedgehog given by the
nonlinear analysis assuming the elastic constants of 5CB and
αmax − αmin = ln(50). Minimum is shaded white and the maximum
black. Peak twist is 28.3◦ and deviation in tilt is at most ±2.4◦.

In the transformed coordinate system, the spatial derivative
terms in n̂ that appear in the free energy are given by

eα∇ · n̂

cos χ
= (χθ tan χ − 2ψα − cot θ ) sin(2ψ)

+ (2 − χα tan χ − 2ψθ ) cos(2ψ),

eα∇ × n̂

cos χ
= [χθ + tan χ cot θ ]êα − [χα + tan χ ]êθ

+ [(χα tan χ + 2ψθ − 1) sin(2ψ)

+ (χθ tan χ − 2ψα) cos(2ψ)]êφ. (18)

Taking the first variation in the free energy leads to the
Euler-Langrange equations for χ and ψ , which are solved
using a pseudospectral method on a 31 × 31 point grid
defined by the tensor product of Chebyshev-Gauss-Lobatto
points along α and θ . Simultaneously, the effectively two-
dimensional problem for ψ and χ is solved in linearized form
using Newton’s method.

At the twist threshold, χ is small and negligibly affects
ψ . Consequently, one may solve for χ and ψ independently.
However, this approach is not taken herein. Instead, the full
coupled system is solved.

In Fig. 4 the resulting twist and tilt of a hyperbolic hedgehog
are shown for 5CB. The twist, χ (α,θ ), is similar to that given
by the earlier linear analysis and the tilt ψ(α,θ ) departs from
θ by ±2.4◦ [in the case of the ideal hedgehog ψ(α,θ ) = θ ].

The twist transition is second-order [20,23] and can be
characterized by an order parameter, χmax, defined as the
maximum value taken by χ . Associated with the transition
is a breaking of symmetry from D∞h to C∞h. For a given
value of k11/k33 and in the vicinity of the transition χmax ∝√

[k22/k33]th − k22/k33, where [k22/k33]th is the threshold
value of k22/k33 beneath which twist occurs. By means of
this formula or using the bisection method [k22/k33]th can be
determined efficiently.

In Fig. 3 the threshold values given by the nonlinear
analysis are plotted as pluses. At k11/k33 = 1 the threshold
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FIG. 5. Twist transition threshold given by the nonlinear analysis
can be fitted by k22/k33 < mk11/k33 + c for a given value of λα , where
m and c are evaluated at k11/k33 = 1. (+) Numerical values of (a) 1/m

and (b) cλα as functions of λα , well approximated by the linear fits (−)
given by (a) 1/m = 1.159λα + 0.994, (b) cλα = 0.141λα − 0.027.

is almost identical to that given by the linear analysis of
Sec. II. The marginal difference, 0.2% for αmax − αmin =
ln(50) (which is more pronounced in highly confined cases),
is due to the geometry difference arising from the differing
definitions of α. The threshold can be well fitted by a straight
line k22/k33 < mk11/k33 + c. This linear dependence can be
directly attributed to the tilt deformation; if the tilt angle is
fixed to coincide with the ideal hedgehog, ψ = θ , the threshold
is identical to the earlier linear analysis. The same linear
relationship was found by Stark [23] for the twist transition of
a hyperbolic companion defect about a spherical particle.

To assess how the degree of confinement affects the
transition, λα proves to be a useful measure, defined identically
to Eq. (7). Figure 5 reveals that 1/m and cλα (evaluated at
k11/k33 = 1) as functions of λα can be well fitted by straight
lines.

From the linear fits, the twist transition can be approximated
by

k22

k33
<

1

1.159λα + 0.994

k11

k33
− 0.027

1

λα

+ 0.141. (19)

For comparison, the twist transition reported by Rüdinger
and Stark [20] for a radial hedgehog within a droplet is
k22/k33 < k11/k33 − λα/2. Typically, calamitic liquid crystals
satisfy k33 � k11 > k22. When k11/k33 = 1, the hyperbolic
hedgehog twists more readily than the radial (that is to say,
the twist transition occurs at a larger value of k22/k33) pro-
vided αmax − αmin < ln(129). Whereas with k11/k33 < 0.71
[estimated by Eq. (19)], the hyperbolic hedgehog twists more
readily for all λα . In part this increased tendency to twist can
be attributed to the fact that the free energy of the untwisted
configuration depends on k11 alone in the radial case, but on
both k11 and k33 in the hyperbolic. Hyperbolic hedgehogs alone
suffer the energetically costly bend and more readily twist to
alleviate it.

IV. TWIST TRANSITION OF A COMPANION DEFECT
ABOUT A SPHERICAL PARTICLE

This section, in contrast to those previous, considers a
geometry that contains a hyperbolic hedgehog which is easy
to realize in practice; a liquid-crystal colloid. This is the
most common setting in which hyperbolic hedgehogs are

observed. Here, a spherical particle in the dipole configuration
is considered in isolation. The twist transition of the hyperbolic
hedgehog that accompanies the particle is found and compared
to the previous analyses.

In order to study the influence of the defect size on the twist
transition using the Oseen-Frank theory, the defect is enclosed
within a sphere of cutoff radius rmin. At the sphere’s surface,
fixed hyperbolic alignment is assumed. Nearby a larger sphere
of radius rmax represents the particle, with fixed homeotropic
alignment at its surface. Finally, at infinity planar alignment is
assumed along êz.

Bispherical coordinates are a natural setting in which to
study such a pair of spheres within an unbounded domain
[25–27]. Bispherical coordinates (ζ , μ, φ) can be related to
cylindrical coordinates (ρ, z, φ) by

ρ = a sin μ

cosh ζ − cos μ
, z = a sinh ζ

cosh ζ − cos μ
, (20)

for μ ∈ [0,π ]. Limits for ζ ∈ [ζ1,ζ2] are set according to the
particle and cut-off radii as

ζ1 = − sinh−1

(
a

rmax

)
, ζ2 = sinh−1

(
a

rmin

)
, (21)

with a given by

a = 1

2rd

√
r4
d − 2r2

d

(
r2

max + r2
min

) + (
r2

max − r2
min

)2
. (22)

The distance between the particle and defect cores, rd , is
assumed fixed as rd/rmax = 1.243 [28]. Although, strictly
speaking, rd is a function of the elastic moduli [23,28], it
is found to affect the twist transition negligibly ([k22/k33]th
increases by 0.012 for rd/rmax = 1.30 with k11/k33 = 1 and
rmax/rmin = 50).

Cylindrical basis vectors for the director field are used, such
that

n̂(ζ,μ) = cos χ (sin ψêρ + cos ψêz) + sin χêφ, (23)

where the tilt and twist are represented by the general functions
ψ(ζ,μ) and χ (ζ,μ), respectively. This choice, over bispherical
basis vectors, is made because n̂ · êz remains continuous
asymptotically in real space (whereas n̂ · êζ is discontinuous

FIG. 6. Twist, χ (ζ,μ), about the dipole state of a spherical particle
assuming the elastic constants of 5CB and rmax/rmin = 50. Peak twist
is 30.7◦.
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FIG. 7. Threshold value of k22/k33 beneath which twist occurs for
(−) a companion defect about a particle and (- -) in a hyperbolic shell,
using the nonlinear analysis of Sec. III. In (a) k11/k33 is varied with
rmax/rmin = 50, whereas in (b) rmax/rmin is varied with k11/k33 = 1.

about infinity). At infinity in real space, where ζ = μ = 0,
n̂(0,0) = êz is enforced.

The expression for the director is substituted into the
free-energy Eq. (1), where the standard expressions for the
divergence and curl of n̂ in cylindrical coordinates are used
with ∂n̂/∂φ = 0, namely ∇ · n̂ = (1/ρ)∂(ρn̂ · êρ)/∂ρ + ∂(n̂ ·
êz)/∂z and ∇ × n̂ = [−∂(n̂ · êφ)/∂z]êρ + [∂(n̂ · êρ)/∂z −
∂(n̂ · êz)/∂ρ]êφ + [(1/ρ)∂(ρn̂ · êφ)/∂ρ]êz. Spatial derivatives
are transformed by the chain rule, which yields

[
∂
∂ρ
∂
∂z

]
= 1

a

[ − sinh ζ sin μ cosh ζ cos μ − 1

1 − cosh ζ cos μ − sinh ζ sin μ

][
∂
∂ζ
∂

∂μ

]
,

(24)

and the differential volume in bispherical coordinates is given
by

dV = a3 sin μ

(cosh ζ − cos μ)3
dζdμdφ. (25)

Euler-Langrange equations for ψ(ζ,μ) and χ (ζ,μ) are
determined with the help of Sage [29] and are lengthy.
Derivatives are evaluated numerically using 5 × 5 point finite
difference stencils. A 41 × 61 grid in ζ and μ is chosen
that is initially uniform, but shifted to include ζ = 0, since
ζ = μ = 0 must be present. The resulting nonlinear system of
equations is solved using Newton’s method, starting from the
ansatz for ψ(ζ,μ) given by Lubensky et al. [30].

Figure 6 reveals that the twist, χ (ζ,μ), about a hyperbolic
defect associated with a particle, much like in the hyperbolic
shell of Fig. 4, is double peaked, but in contrast is lopsided.

Comparing [k22/k33]th for the particle and shell, as shown in
Fig. 7, the agreement is remarkable (within ±0.02) considering
the difference in geometries. The lopsidedness of the twist
or the fixed value of rd could account for the discrepancy
of ±0.02. Larger values of rmax/rmin, or equivalently smaller
values of λα , than those plotted are better resolved by the
nonlinear analysis of Sec. III.

V. CONCLUSIONS

The twist transition of an isolated hyperbolic hedgehog
has been found by two methods. Linear analysis gives the
twist transition Eq. (16) valid in the vicinity of k11/k33 = 1.
When k11 and k33 differ, inevitably some deviation in the bend
and splay arises, typically a few degrees relative to the ideal
hedgehog. Although the deviation is slight, when taken into
account, the twist transition threshold comes to depend linearly
on k11/k33 and k22/k33, as revealed by the nonlinear analysis
of Sec. III. Correspondingly, Stark [23] found the same linear
relationship for the twist transition of a particle’s companion
hyperbolic defect.

Remarkably, the prediction of the twist transition given by
the nonlinear analysis for a hyperbolic shell appears to be valid
for a wider class of geometries containing hyperbolic defects.
In particular, we find that the companion hyperbolic defect
about a spherical particle, for example, a constituent particle
of a liquid-crystal colloid, twists in much the same way. The
threshold value of k22/k33 is almost identical, where the degree
of confinement is redefined as the ratio of the particle radius
to the defect core radius. Compared to previous works [6,23],
we find that the hyperbolic hedgehog twists less readily, that
is to say the twist transition occurs at a lower value of k22/k33.

Contrasting twisted hyperbolic and radial hedgehogs, the
radial dependence of the twist [with respect to α defined by (4)
and α = ln(r) respectively in each case] is identical and peaks
in the vicinity of the defect core. Its angular dependence is
more complex in the hyperbolic case, where it comes to depend
on the elastic moduli. Increasing the degree of confinement
shifts the twist transition for both hedgehogs and can even
inhibit twist entirely.
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