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Abstract

We investigate how good people are at multitasking by comparing behavior to a
prediction of the optimal strategy for dividing attention between two concurrent
tasks. In our experiment, 24 participants had to interleave entering digits on a
keyboard with controlling a randomly moving cursor with a joystick. The difficulty
of the tracking task was systematically varied as a within-subjects factor.
Participants were also exposed to different explicit reward functions that varied the
relative importance of the tracking task relative to the typing task (between-
subjects). Results demonstrate that these changes in task characteristics and
monetary incentives, together with individual differences in typing ability,
influenced how participants choose to interleave tasks. This change in strategy then
affected their performance on each task. A computational cognitive model was used
to predict performance for a wide set of alternative strategies for how participant
might have possibly interleaved tasks. This allowed for predictions of optimal
performance to be derived, given the constraints placed on performance by the task
and cognition. A comparison of human behavior with the predicted optimal strategy
shows that participants behaved near optimally. Our findings have implications for
the design and evaluation of technology for multitasking situations, as consideration
should be given to the characteristics of the task, but also to how different users
might use technology depending on their individual characteristics and their

priorities.
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Introduction

People choose to multitask in many daily settings, as illustrated in a recent special
issue on multitasking [1]. For example, office workers frequently self-interrupt
themselves throughout a typical day [2,3], switching activities every two to three
minutes [4]. This desire to switch between activities remains even when performing
activities that really should demand our complete and undivided attention. A topical
example of this is driver distraction and the numerous reports of drivers using their

phones to write and receive messages while driving (e.g., [5-7]).

A core question for multitasking research has been to consider whether
people are good at multitasking (e.g., [8-11]). If people are not good at multitasking
then maybe this behavior should be discouraged. At one level the answer to this
question seems clear cut as there is an abundance of research demonstrating dual-
task interference effects: performance on a task is usually worse when it is
performed at the same time as another task compared to when that task is
performed alone [12]. Such dual-task interference effects often stem from the limits
on our basic cognitive and perceptual abilities: we often cannot actively engage in

two tasks at the same time, but instead must interleave our efforts between tasks

(e.g. [2,13-19])

For example, a driver who is writing a text message on a phone must take his
or her eyes off the road to perform the text-typing task. However, this gives the
driver a strategic choice. Should the driver write the entire text message at once and

so take his or her eyes off the road for a long period of time? This might seem like a
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reckless decision. Alternatively, a few characters might be typed and attention
returned to driving before a few more characters are typed. The choice of
interleaving strategy has implications for how well each task is performed, giving a
dual-task tradeoff (e.g., [14,20-25]). The person must decide which task is more

important and so prioritize performance of one task over the other.

The focus of this paper is on understanding how people make dual-task
interleaving tradeoffs. In doing so we seek to understand how good people are at
multitasking. To address this question we report the results of an experiment in
which participants had to perform two separate tasks at the same time but could
only work on one task at a time. Participants therefore had to decide when to switch
between tasks. Results show how this decision is systematically influenced by three
factors: task characteristics, incentives, and individual differences in skill. Before
describing the details of this study, and a computational model that was developed
to understand the results, we first review work of each of the primary factors of

interest.

Task Characteristics

Previous work has extensively investigated how task difficulty affects multitasking
performance (e.g., [21,26-28]). A theoretical interest has been in understanding the
general characteristics that makes tasks hard to perform in multitasking settings.
Two characteristics have been identified. First, task characteristics place limitations
on performance, as the task in part dictates how fast a participant can complete its

components (referred to as data-limitations in [27]). For example, a text message



10

11

12

13

14

15

16

17

18

19

20

21

will be faster written on a phone that auto-completes words compared to a phone
that does not auto-complete words, as in the first case less time is spent on typing
each individual word. How difficult it is to combine tasks in a multitask setting also
depends on the amount of overlap between the cognitive resources that are needed
for the tasks [29-31]; the larger the overlap between resources that are needed for
both tasks (e.g., vision, memory), the more difficult it is to perform tasks

concurrently.

In our previous work investigating multitasking behavior we have used a
tracking and typing task [18,32], which is inspired by the dialing-while-driving
scenario described in the introduction. In our set-up, participants interleave
between a typing task and a tracking task (described in more detail later) in a
discretionary way (cf. e.g, [13,16,18,32]). That is, participants can only see and
work on one task at a time and need to decide when to switch between tasks. The
benefit of this discretionary set-up is that it gives a quick and easy way to directly
infer the participant’s task interleaving strategy. However, a disadvantage of our
discretionary set-up is that explicit switching between windows is relatively costly,
requiring the participant to press a button on a joystick. There has been extensive
discussion within the literature on how such 'information access-costs' can
influence the emergence of interactive behavior (e.g., [33-39]). Eye-tracking has
been successfully used in some previous studies to infer dual-task interleaving

strategies, for instance see work by Hornof and colleagues [40,41].
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In our analysis of optimality of the chosen strategy, we craft a model which
also incurs these switch-costs and which is used to investigate the performance of
various discrete interleaving strategies. This includes extreme strategies, ranging
from a no-interleaving strategy, which does the typing task without checking on the
tracking task even once, to a maximum interleaving strategy in which checks are
made on the tracking task after entering each and every digit in the typing task. As
such, our investigation covers the full range of possible task interleaving strategies
and it is expected that performance will fall within these performance 'brackets’ (cf.

[42,43]).

We will now describe the two tasks, tracking and typing, in more detail.
Variations in the characteristics of each task can influence how people choose to

interleave attention when multitasking.

Tracking tasks have been used in various multitasking studies (e.g., [31,40-
42,44-47]), and the difficulty of this task can be easily manipulated. In our tracking
task, a moving cursor (10x10 pixels) needs to be kept inside a circular target area.
We can manipulate two factors to control the difficulty of the tracking task: the
radius of the target area and the function that controls the movement of the cursor.
The target area has a radius of either 80 pixels (small radius) or 120 pixels (large
radius). Keeping the cursor inside a small radius requires more frequent attention
to the task than keeping the cursor inside the large radius. This is comparable with
how it might be easier to keep a car inside a wide lane compared to a narrow lane.

We also manipulate the speed with which the cursor moves around at times when it



10

11

12

13

14

15

16

17

18

19

20

21

22

is not actively controlled by the participant. The position then updates following a
random walk with mean of 0 pixels and a standard deviation of 3 (low noise) or 5
pixels per update (high noise). When the cursor movement has a higher standard
deviation, it becomes less predictable and needs more attention. This is comparable
with how driving a car at a high speed on a busy multilane highway is far more
demanding and will require higher levels of vigilance than driving at a slow speed

along a quiet back road.

Digit typing tasks have also been used in multitasking research concerned
with driver distraction [14,24,25,48]. Previous research has shown that the way in
which digits are typed is influenced by how they are represented. If numbers are
displayed or memorized in a chunked manner, people tend to interleave at the
boundaries between chunks [14,24,25,48]. In our study we control for these
patterns by presenting the to-be-typed digits visually, thereby not relying solely on

memory of structured representations.

In addition, motor actions can also provide cues for the interleaving of digits.
Specifically, if a number contains both sequences of repeating digits and sequences
of different digits that require a finger movement, then there is a benefit to
interleave at points where the finger had to be moved [24]. In the current study we
control for this by using a limited set of three digits (1, 2, and 3) and by encouraging
participants to use dedicated fingers for typing each digit. We randomized the
frequency and positioning of each digit, with the added constraints that each digit

occurred at least six times and that each digit did not occur more than three times in
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sequence. How many digits are dialed in a sequence is also influenced by the
priorities that people set [14,24,25]. In our study we manipulate priorities through

the use of monetary incentives, which are discussed next.

Incentives

Incentives can influence performance by placing relatively more value on one task
compared to the other. In this study we use an explicit objective payoff function to
incorporate incentives. The payoff function translates performance on each of the
individual tasks into a single monetary value and combines these values into a
single total score that is reported to the participant. The participant can then use

this information to try and maximize their score.

Payoff functions have been used frequently in empirical studies, particularly
as a way to motivate participants [49-51]. More recently, payoff functions have been
advocated as being useful in combination with computational cognitive models
[18,32,52-56]. In a multitasking setting, the use of a payoff function has three
advantages. First, it provides the experimenter and the participant with an objective
criterion to assess optimal performance: optimal performance is that which leads to
the highest payoff score. Second, performance on individual tasks might be
expressed in different units (e.g., speed, accuracy) and it might not be trivial to
assess how a 'loss' on one task should be traded-off against a 'gain’' on another task
(but see [14,24] for one way of doing this). A pay-off function avoids this problem,
by explicitly specifying how performance translates into a single unit across tasks.

Third, people are known to have difficulties with maintaining internal scales of
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variance [57], for example to assess the exact brightness of a light. Such internal
scales are not required when scores are made explicit by a payoff function. Instead,
the objective monetary score can be used to assess whether performance on a

current trial was better or worse compared to performance in other trials.

We use payoff functions to investigate how flexible performance is. We
manipulate the payoff functions between participants, such that more or less value
is placed on each of the two tasks, and investigate how well participants adjust their
behavior to the payoff functions. This can be seen as a systematic way of changing
participants' priorities [18]. If participants are solely driven by the task
characteristics and not by incentives, then such changes should have little effect on
performance. That is, participants might then be expected to use "default" ways of

interleaving tasks [31]. However, we suspect that people are sensitive to incentives.

In preceding work, participants experienced one payoff function and we
analyzed how well they performed against that payoff function [18]. However, we
have not investigated how well participants perform in cases where the payoff
function changes. Here, we empirically test whether participants use different
strategies, and have different performance, when different payoff functions are
being used. @We then compare human performance to predictions by a
computational cognitive model to see whether participants achieved the best
performance that was possible given their characteristics and the payoff function

that they experienced.

10
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Individual Differences

We also investigate how performance is affected by individual differences in
task skill. There is a growing appreciation in the multitasking literature that task
skill can influence multitasking performance (e.g., [10,11,41,52]). One idea is that
the better an individual is at performing a task in isolation, the more able they are to
perform that task in a dual-task setting (e.g., see Chapter 6 in [58]). Applying this to
our tracking-while-typing task, we might expect individual differences in how
quickly and accurately a person can type digits. As will be demonstrated in the
empirical section, this individual difference in typing skill was found to influence
choice of interleaving strategy and dual-task performance. We refer to typing as a
"skill" in that typing ability is developed through years of practice (cf. e.g., [59,60]).
We did not expect that there would be acquisition or strong improvement of this

skill during our experiment.

The performance on individual tasks can influence performance in dual-task
settings if there is time pressure. For example, in our experiment the cursor cannot
be controlled while participants are working on the typing task. During this time the
cursor will drift, and participants eventually need to check again whether they need
to correct the trajectory of the cursor. Given the same time window, very skilled
typists might be able to type more digits per visit to the typing task compared to less
skilled typists. This is indeed what we find in our empirical results. The faster
typists type more digits per visit to the typing window, however, the average time
that is spent in the typing window is not affected by typing skill (see results). Such

subtle difference in skill can then also further affect performance. For example, in

11
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our task participants need to type a finite string of digits, and faster typists might be

faster at completing this task than slower typists - thereby achieving a better score.

Other individual differences might also have occurred during our
experiment. In particular, there might have been differences in how well
participants could control the joystick. However, the experiment did not contain an
independent session that could be used to assess joystick control. Although
participants practiced with the control of the joystick during the single-task tracking
trials, these sessions were not systematic enough to assess participants' general
tracking ability. We therefore did not include tracking as a skill factor in the

statistical analyses and the model.

Overview

In the remainder of this paper we first describe a dual-task experiment and
demonstrate how participants’ performance of these tasks is influenced by task
characteristics, incentives, and individual differences in skill. We then describe a
computational cognitive model that is used to make performance predictions for the
range of plausible dual-task interleaving strategies. The model is calibrated to the
constraints of the task, the incentives (payoff function), and the observed (single-
task) typing speed of individual participants. The model is used to identify the
optimal task interleaving strategy (i.e., the strategy that maximizes reward through
the payoff function in each condition for each participant). By taking this approach

we were able to directly compare how participants performed in the experiment

12
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against the prediction of their optimal dual-task performance. This allows us to ask,

in a very precise way, whether people are good multitaskers or not.

Typing-while-tracking experiment

Building on previous dual-task experiments [18,32], participants were required to
divide their efforts between two concurrent tasks. One task was to type a string of
twenty digits using a keyboard. In the other task, a randomly moving cursor needs
to be kept inside a circular target area using a joystick. Both tasks were presented
on the same display, but participants could only see and control one task at a time
and so needed to decide when to switch their attention between these tasks. For
each task it is possible to define a performance metric (i.e., speed at which the
typing task is completed and how well the cursor is kept inside the target area). It is
then possible to combine these separate task performance metrics into a single
payoff function, thereby allowing the relative value of each task to be varied
between different experimental conditions. Specifically, in one between-subjects
condition ('speed'), the payoff function puts relatively more value on fast
completion of the typing task. Whereas, in another condition ('accuracy'), the payoff
function puts relatively more value on keeping a randomly moving cursor inside a
target area. As we shall describe in detail below, these payoffs were used as a

monetary incentive scheme to reward participants in the experiment.

13
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Method

Participants

Twenty-four students (nine female) from the UCL psychology participant pool took
part for monetary compensation. All participants were 18 years of age or older (M =
24.3, SD = 6.6, Max = 46 years). Payment was based on how well each task was
performed (details in the Design section). Total payment ranged from £5.00 to
£13.03 (M = £8.72). The UCLIC Ethics Committee (the University College London
Interaction Centre's ethical committee) approved the study (approval number

Staff/0910/005) and written consent was obtained from each participant.

Materials

The dual-task setup was identical to that in [18] but differed in the payoff functions
used. The experiment required participants to perform a continuous tracking task
and a discrete typing task, presented on a 19-inch monitor with a resolution of 1280
x 1024 pixels (see Fig. 1). The typing task was presented on the left side and the
tracking task on the right. Each task was presented within a 450 x 450 pixels area,

with a vertical separation of 127 pixels between the tasks.

The tracking task required participants to keep a moving square cursor (10 x
10 pixels) inside a target circle (see Fig. 1). The target had a radius of either 80
(small radius) or 120 pixels (large radius). The movement of the cursor was defined
by a random walk function. The rate of drift was varied between different
experimental conditions. In a low noise condition, the random walk had a mean of

zero and standard deviation of 3 pixels per update, while in a high noise condition

14
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the random walk had a mean of zero and standard deviation of 5 pixels per update.
Updates occurred approximately once every 25 milliseconds. Participants used a
Logitech Extreme 3D Pro joystick with their right hand to control the position of the
cursor. The drift function of the cursor was suspended whenever the joystick angle
was greater than +/- 0.08 (the maximum angle was +/- 1). The speed at which the
cursor could be moved was scaled by the angle, with a maximum of 5 pixels per 25

milliseconds.

The typing task required participants to enter a string of twenty digits (chosen
from digits 1 to 3) using a numeric keypad with their left-hand. Digits were
presented in a randomized order with the constraint that no single digit was
presented more than three times in a row in the sequence. A digit was removed
from the string when it was entered correctly and all digits moved one position up.
In this way, the left-most digit was always the next one to be entered. When an

incorrect digit was typed, the string would not progress.

The study used a forced interleaving paradigm, in which only one of the two
tasks was visible and could be worked on at any moment in time. By default the
typing task was visible and the tracking task was covered by a gray square. Holding
down the trigger of the joystick made the tracking task visible and covered the
typing task. Releasing the trigger covered the tracking task and made the typing task
visible once more. Participants could only control the task that was visible (e.g., the
cursor would randomly drift and its position could not be corrected when it was not

visible).

15
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Design

The experiment followed a 2 x 2 x 2 mixed factorial design. Within subjects, two
factors of task characteristics were influenced: noise (high or low) and radius size
(small or large). Between subjects, the payoff function was manipulated with 2
levels. Each payoff function adhered to the same basic structure (see below), but
had different parameters so as to place different value on the typing and tracking
task (see Table 1 for values and Fig. 2 for an illustration). In both payoff conditions,
both the speed of completing the typing task and the accuracy of performing the
tracking task influenced the payoff score. However, between groups the relative
weight of these two components differed. For ease of reference we therefore refer to
the two groups as "speed" and "accuracy". In the 'speed' payoff condition, the
parameters placed more weight on fast completion of the typing task, whereas in
the 'accuracy' payoff condition more weight was placed on keeping the cursor inside
the target area. Participants were randomly assigned to one or the other payoff

condition in the experiment.

The payoff function had three components, as in equation 1:

Payoff = Gain + Tracking Penalty + Digit Penalty (1)

Participants could gain points on the typing task, where faster trial times lead

exponentially to higher scores, as in Equation 2:

Gain = 0.15 x e severityOfTrialTime x (TotalTrialTimeInSeconds / 20) + startValuegain (2)

16
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That is, gain had an exponential relationship with the total time that was needed to
complete the typing task (variable "TotalTrialTimelnSeconds"). Longer trial times
lead to lower gain scores. To offset the impact, this score was multiplied with a
parameter that could reduce the severity of longer trial times
("severityOfTrialTime") and the gain value was given a start value (startValuegain).
Having a higher start value and a smaller value for the severity of trial time lead to
higher gain scores. Table 1 provides the parameter values that were used in the two
payoff conditions. The top figure in Fig. 2 illustrates how the "gain" component of
the score changed as a function of the total trial time. It can be seen that in the

"speed" condition the decline in gain as a function of trial time is steeper.

Table 1. Parameter values for the payoff function.

Payoff function

Speed Accuracy
severityOfTrialTime ;}.6209812 -0.0854888
StartValuegain 1.1552453 | 0.0170978
compensation 0.02294 0
severityOfBeingOutside | 1.1090 2.2180
startValueracking 1.5 0.6931

A digit penalty of - £0.01 was applied for every digit that was typed incorrectly.

17
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An exponential tracking penalty was applied when the cursor moved outside of the

target area, as in Equation 3:

Tracking Penalty =

compensation - 0.10 x eSecOutside x severityOfBeingOutside - Startvaluetracking (3)

The tracking penalty function has an exponential relationship with the total time
that the cursor spent outside of the target area (parameter SecOutside). Longer
times outside of the target area lead to stronger penalties. Again, this function was
offset by a startvalue (startValuetracking) and multiplied with a parameter to reduce
the impact of time outside (parameter severityOfBeingOutside). To avoid
participants from losing all their money on a given trial, the payoff function had a
minimum score of - £0.20. Table 1 provides the parameter values that were used in
the two payoff conditions. Fig. 2 illustrates how the tracking penalty accumulated as
a function of time that the cursor was outside of the target area. In the "accuracy”
payoff condition, the penalty increases more rapidly compared to the "speed" payoff

condition.

Procedure

Participants were informed that they would be required to perform a series of dual-
task trials and that they would be paid based on their performance. A participant’s
payment was based on the cumulative payoff over the course of the study, in
addition to a base payment of £5 (participants in 'speed’ payoff condition) or £3
(participants in 'accuracy' payoff condition). Different base payments were chosen,

as the average gain per trial differed between conditions. By choosing a different
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base-rate, each participant had a guaranteed minimum payment of £5 (the

institute's default payment rate per hour).

After an explanation of the task, participants performed two single-task
training trials for each task and two dual-task practice trials. Participants were
instructed that in dual-tasks they could only see and control one task at a time and

had to actively switch between tasks by pressing the trigger button on the joystick.

Participants then completed four blocks of experimental trials (one for each
experimental condition). In the first two blocks, participants experienced a single
noise level, either low or high noise. The noise level was randomly assigned and
balanced across participants. On the first block a radius size (small or large) was
also randomly assigned, on the second block the other radius level was assigned. For
the third and fourth block this order of radius conditions was repeated, but with
another level for noise. For each block, participants completed five single-task
tracking trials, five single-task typing trials, and twenty dual-task trials. The dual-
task trials were further grouped into sets of five trials, with a short pause between

each set. The total procedure took about one hour to complete.

Participants were aware that the payoff that they received was influenced by
their performance on the typing task and by their performance on the tracking task.
Specifically, in all conditions, participants were told that they could gain points by
completing the typing task as quickly as they could and that faster trial completion
times would lead to higher scores. All participants were also instructed that they

lost points when the cursor went outside of the target area. They were also

19
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informed that they lost points when they made typing errors. Or to state differently:
all participants were informed that both speed (on the typing task) and accuracy (on
the tracking task) mattered. However, they were not informed of the exact
equations that underlie their payoff, nor of the relative weight of each component
(i.e., whether fast completion or tracking accuracy were more valuable). This
allowed us to investigate how well participants adapted their performance to the
feedback they received on their performance at the end of each trial. Do people
behave differently based on the payoff function, or do they apply "default"
interleaving strategies that are independent of the payoff function? For ease of
reference, we refer to our two groups of participants as "speed" and "accuracy" to
emphasize what task had a relatively stronger weight in the payoff function.

However, both aspects mattered in both payoff conditions.

Measures

In our main analysis we report results only for the last 5 trials of each block. The
motivation for this is that we are interested in participants’ behavior after they had
time to become accustomed to the payoff function and have received feedback on
their performance. For each metric we calculate a score (e.g., total trial time) per
trial and report the average score across the 5 trials. This average score is also used

in statistical analyses.

Performance is expressed in three metrics: total trial time, maximum
deviation of the cursor from the center of the target area, and total time the cursor

spent outside of the target area. Total trial time is defined as the time between the
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start of the trial and the time at which the last digit of the string of digits was

pressed.

For maximum deviation of the cursor we calculated per trial what the
furthest deviation of the cursor from the center of the target was. For each
participant we then calculated the average value across trials. This measure is of
interest given its similarity to a metric of driver distraction research: how far does a
car (here: cursor) drift outside of the lane boundary (here: target area) due to

inattention?

The third measure is the average total time that the cursor spent outside of
the target area. The metric is again related to measures of driver distraction: how
long was a car (here: cursor) outside of the lane boundary (here: target area) due to

inattention?

We also analyzed four related metrics that reflect participants' strategy for
interleaving between tasks. The maximum number of digits typed per visit to the
typing window reflects how long participants were willing to stay in the typing
window while the cursor drifted out of sight. Only correctly typed digits were
considered. The second metric is the average time that was spent per visit to the
typing window. The third metric is the average number of visits to the tracking
window. The fourth metric is the average time that is spent in the tracking window
per visit. Taken together, these four metrics describe how frequently participants
visit each task and how long they spend on each task before moving on to the next

task. This again relates to measures of driver distraction that investigate how
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frequently and how long participants glance at the road (here: number of visits to
tracking task and duration of that visit) and how much time they spend on a
distracting task (here expressed as maximum number of steps completed and as

average visit time).

In our analysis we found that participants differed in their typing speed and
that this affected performance and strategy. To incorporate this into our statistical
analysis, we split the participants of each payoff condition into two groups using a
split mean procedure on the average interkeypress interval times (IKI). This
resulted in four equal groups: fast typers in the speed payoff condition (IKIs of 184,
184, 198, 264, 286, and 309 msec), slow typers in the speed payoff condition (IKIs of
317, 382, 384, 394, 394, and 470 msec), fast typers in the accuracy payoff condition
(IKIs of 211, 224, 226, 255, 259, and 276 msec), and slow typers in the accuracy

payoff condition (IKIs of 290, 388, 403, 405, 443, and 451 msec).

For statistical analysis we used a 2 (payoff function: speed/accuracy) x 2
(cursor noise: low/high) x 2 (target size: small, large) x 2 (typing speed:
relatively slow/fast) ANOVA. We only considered main effects and two-way
interactions. A significance level of .05 was applied throughout. Table 2 gives an
overview of the statistical effects found. These are discussed in more detail in the

text.
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Results and discussion

Overall performance

Fig. 3 plots the performance space of total trial time versus the maximum distance
that the cursor moved away from the center of the target in one plot for all eight
conditions. The majority of the eight conditions roughly take up a unique point in
this performance space, suggesting that performance was different in each

condition.

In general, the cursor deviated more for the 'speed’ (of typing) payoff
condition (Fig. 3: black points) than for the 'accuracy' (of tracking) condition (grey
points). The cursor also deviated more when the noise was high (squares)
compared to low (circles), and when the radius was large (open points) compared
to small (closed points). For trial time, performance was mostly affected by task
difficultly, as trial times were shorter when noise was low (circles), or when the
radius was large (open points). Statistical analysis confirmed these findings. The
effects are summarized in Table 2, and discussed in more detail below. The raw data

is included together with an R analysis script as supplementary material, S1 file.
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Table 2. Summary of statistical effects in the experiment.
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ek p <=.001

Trial time was affected by the characteristics of the task. Specifically, the trial
time was longer when there was high noise (M = 13.62 sec, SD = 6.71 sec) compared
to low noise (M = 9.76 sec, SD = 3.89 sec), F(1, 21) = 26.38, p < .001, np? =0.557.
Similarly, trial time was longer when the radius of the target was small (M = 13.20
sec, SD = 6.54 sec) compared to large (M = 10.19 sec, SD = 3.99 sec), F(1, 21) =
21.93, p <.001, np? = 0.511. That is, people were slower when the task conditions
were more difficult. Total trial time was also affected by typing speed, F(1, 20) =
31.68, p <.001, np? =0.613. Perhaps not surprisingly, participants that were faster at
typing had a shorter trial time (M = 7.87 sec, SD = 1.74 sec) compared to those that
were slower at typing (M = 15.52 sec, SD = 4.47 sec). That is, trial time was almost
twice as short for those that were faster at typing compared to those that were
slower. Surprisingly, there was no main effect of payoff function. There were also
significant two-way interaction effects. The level of noise on the tracking task
interacted with interkeypress interval group, F(1, 21) = 4.66, p = .043, np? = .181.
Target radius also interacted with interkeypress interval group, F(1, 21) = 5.03, p =
.036, np? = .193. Finally, there was an interaction between cursor noise and target

radius, F(1, 23) = 4.893, p =.037, np? =.175. There were no other significant effects.

For maximum deviation, the cursor deviated more in the speed payoff
condition (M = 93.23 pixels, SD = 7.84 pixels) compared to the accuracy payoff

condition (M = 83.48 pixels, SD = 8.77 ), F(1, 20) = 14.55, p =.001, np? = .421 That is,
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when the penalty for being outside of the target area was harsher (accuracy
condition), participants kept the cursor closer to center. Not surprisingly, the cursor
also deviated more in the high noise condition (M = 103.77 pixels, SD = 13.76 pixels)
compared to the low noise condition (M = 72.93 pixels, SD = 8.21 pixels), F(1, 21) =
200.334, p < .001, np? = .905. The cursor also deviated more in the large radius
condition (M = 93.78 pixels, SD = 10.53 pixels) compared to the small radius
condition (M = 82.92 pixels, SD = 11.00 pixels), F(1, 21) = 29.50, p <.001, np? = .584.
The cursor also deviated more for slow typers (M = 93.85 pixels, SD = 8.74 pixels)
than for fast typers (M = 82.85 pixels, SD = 6.92 pixels), F(1, 20) = 18.55, p <.001, np?
= .481. There were two significant interaction effects. First, payoff function
interacted with noise level, F(1, 21) = 9.07, p =.007, np? = .302 . Second, noise and
radius interacted, F(1, 23) = 5.00, p = .035, np? = .179. There were no other

significant effects.

For total time that the cursor spent outside of the target area, there was a
marginal effect of payoff function, F(1, 20) = 4.12, p =.056, np? =.171, such that mean
time that the cursor was outside of the target area was longer in the speed payoff
condition (M = 0.57 sec, SD = 0.34 sec), compared to the accuracy payoff condition
(M = 0.33 sec, SD = 0.32 sec). The total time outside was also affected by the task
difficulty. The cursor was longer outside of the target area in the high noise
condition (M = 0.74 sec, SD = 0.63 sec) compared to the low noise condition (M =
0.16 sec, SD = 0.16), F(1, 21) = 26.616, p < .001, np? = .559. The cursor was also
longer outside of the target area when the radius was small (M = 0.71 sec, SD = 0.58

sec) compared to when it was large (M = 0.19 sec, SD = 0.19 sec), F(1, 21) =34.41,p <
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.001, np? = .621. Finally, the time outside was also affected by typing speed, F(1, 20)
= 10.08, p =.005, np? = .335. The time outside of the target area was almost twice as
long for slow typers (M = 0.63 sec, SD = 0.37 sec) compared to fast typers (M = 0.27
sec, SD = 0.20 sec). These patterns were affected by three interaction effects, namely
between payoff function and noise (F(1, 21) = 4.64, p = .043, np? = .181), between
noise level and radius (F(1, 23) = 8.86, p =.007, np? = .278), and between radius and
typing speed (F(1, 21) = 10.62, p = .004, np? = .336). Finally, there was a marginal
significant interaction effect between noise level and interkeypress interval group,

F(1,21) =3.211, p =.088, np? =.133. There were no other significant effects.

Taken together, the analysis shows that the difficulty of the tracking task (i.e.,
noise and radius) consistently affected performance on each task. Similarly,
individual difference in participants’ typing speed affected performance on each
task. Manipulation of the dual-task payoff function had an effect on how participants
performed on the tracking task (i.e., maximum cursor deviation and total time that
the cursor was left outside of the target). More specifically, participants tended to
allow the cursor to drift further, and let it remain outside of the target area for
longer, when the payoff function rewarded faster completion of the typing task
compared to accurate tracking performance. However, there was no effect of payoff
manipulation on total trial time. To better understand these results, we next

consider metrics related to how participants choose to interleave tasks.
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Dual-Task Interleaving Strategies

Fig. 4 plots two measures of dual-task interleaving strategy: the maximum number
of digits that participants’ choose to type during a visit to the typing window, and
the duration of time that was spent in the tracking window per visit to this window.
Again, each experimental condition has a relatively unique point in this strategy
space, especially when comparing the two payoff conditions (i.e., compare the black
with the grey points in Fig. 4). A summary of statistical effects is given in Table 2,

and discussed in more detail below.

For the maximum number of digits typed per visit to the typing window,
more digits were typed in the speed payoff condition (M = 12.48 digits, SD = 3.67
digits) compared to the accuracy payoff condition (M = 8.19 digits, SD = 1.33 digits),
F(1, 20) =29.56, p < .001, np? = 0.596. That is, more digits were typed when the
payoff condition encouraged fast completion of the typing task (speed payoff
condition). The maximum number of digits was also affected by task characteristics,
such that more digits were typed per visit to the typing window when the task
environment conditions were easier (i.e., low noise, large radius). Specifically, more
digits were typed when noise was low (M = 12.38 digits, SD = 4.03 digits), compared
to when noise was high (M = 8.29 digits, SD = 3.25 digits), F(1, 21) = 85.26, p <.001,
Np? = 0.802. More digits were also typed when the radius was large (M = 12.08 digits,
SD = 3.53 digits) compared to when the radius was small (M = 8.58 digits, SD = 3.69
digits), F(1,21) =73.11, p <.001, np? = 0.777 . The number of digits was also affected
by typing speed, F(1, 20) = 17.39, p <.001, np? = 0.465. Fast typers typed more digits

per visit to the typing task (M = 11.98 digits, SD = 4.07 digits) than the slow typers
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(M = 8.69 digits, SD = 1.67 digits). Two interaction effects further influenced these
results. There was a significant interaction between payoff function and
interkeypress interval group, F(1, 20) = 7.53, p = .012, np? = .273, and there was a
marginal significant interaction effect between noise level and interkeypress group,

F(1,21) =2.993, p =.098, np? =.125. There were no other significant effects.

That participants chose different strategies for the maximum number of
digits is also reflected in the average time that they spent in the typing window per
visit. More time per visit was spent in the speed payoff condition (M = 3.31 sec, SD =
0.80 sec) compared to the accuracy payoff condition (M = 2.03 sec, SD = 0.53 sec),
F(1, 20) = 20.86, p <.001, np? =.511. That is, more time per visit was spent on the
typing task when the payoff function weighed fast completion of the task more
strongly. The time was also affected by the task difficulty, such that shorter visits
were made when the tracking task was harder (e.g., due to a small radius or high
noise). Visit times to the typing window were shorter for the high noise condition
(M = 1.95 sec, SD = 0.68 sec) compared to the low noise condition (M = 3.39 sec, SD =
1.38 sec), F(1, 21) = 44.30, p < .001, np? = .678. Visit times to the typing window
were also shorter for the small radius condition (M = 2.19 sec, SD = 0.98 sec)
compared to the large radius condition (M = 3.14 sec, SD = 1.19 sec), F(1, 21) =
17.62, p < .001, np? = .456. Finally, there was an interaction effect between payoff
function and noise level, F(1, 21) = 5.117, p = .034, np? = .196. There were no other
significant effects. Specifically, there was no significant effect of typing speed. When
comparing these results with the analysis of maximum number of digits typed per

visit, the lack of a significant effect of typing speed on mean visit time to the typing
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window suggests that participants had set an objective criterion for how long they
could spend in the typing task and that this criterion depended on the payoff
condition and the task difficulty. Given this criterion, a participant can type more or
less digits depending on their typing skill - but still spends roughly the same time

per visit independent of typing skill.

These differences in the length of each visit to the typing task and in the
maximum number of digits typed per visit to the typing task also affected how often
participants visited the tracking task. Participants made more visits to the tracking
window when the payoff function promoted accuracy (M = 3.59 visits, SD = 1.70
visits) compared to when it promoted speed (M = 2.01 visits, SD = 1.38 visits), F(1,
20) = 9.05, p = .007, np? = .311. The number of visits was also affected by task
difficulty. More visits were made when noise was high (M = 3.79 visits, SD = 2.52
visits) compared to when noise was low (M = 1.81 visits, SD = 1.21 visits), F(1, 21) =
25.32, p <.001, np? = .547. More visits were also made when the radius of the target
area was small (M = 3.63 visits, SD = 2.40 visits) compared to when it was large (M =
1.98 visits, SD = 1.14 visits), F(1, 21) = 35.92, p <.001, np? = .631. Finally, more visits
were made by slow typists (M = 3.71 visits, SD = 1.65 visits) compared to fast typists
(M = 1.89 visits, SD = 1.27 visits), F(1, 20 ) = 12.15, p =.002, np? =.378. These
results were further influenced by two interaction effects: a significant interaction
between payoff function and radius (F(1, 21) = 5.15, p = .034, np? = .197) and a
marginally significant interaction between radius and typing speed (F(1, 21) = 3.41,

p =.079, np? =.140.
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Finally, we also analyzed the average time spent in the tracking window per
visit to this window. This time was affected by task difficulty, such that more time
was spent in difficult situations (e.g., small radius, high noise). More time was also
spent in the tracking window when noise was high (M = 1.53 sec, SD = 1.14 sec)
compared to when noise was low (M = 0.99 sec, SD = 0.80 sec), F(1, 21) =16.13,p <
.001, np? = .434. More time was also spent in the tracking task per visit when the
radius was small (M = 1.40 sec, SD = 0.96 sec) compared to when the radius was
large (M = 1.11 sec, SD = 0.92 sec) , F(1, 21) = 19.82, p <.001, np? = .486 Surprisingly,
the time spent in the tracking window per visit also changed with typing speed, F(1,
20) =5.36, p =.031, np? = .211. Slow typers spent more time in the tracking window
(M = 1.66 sec, SD = 1.14 sec) compared to fast typers (M = 0.86 sec, SD = 0.40 sec).
This result might be due to a floor effect: some fast typers could complete the typing
task without ever visiting the tracking window in some of the conditions (e.g., large
radius with low noise). In contrast, the slow typers always had to visit the tracking
task. This might have made their average time on the tracking task (i.e., the main

effect of typing group) slightly higher.

Taken together, the above analyses show that participants’ dual-task
interleaving strategy was affected by the three factors of interest: changes to the
payoff function, changes to the difficulty of the tracking task (noise and radius), and
individual differences in participants’ typing speed. For example, participants
dedicated more of their time to the typing task and paid fewer visits to the tracking
task when the payoff function rewarded fast completion of the typing task more

strongly. Similarly, when the tracking task was easier (i.e., when the cursor moved
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slower and the target was larger), visit times to the typing tasks were longer and
fewer visits were made to the tracking task. Typing speed only affected some
metrics. For example, it did not influence how long each visit to the typing task was,
but it did influence how productive each visit was: fast typers completed more of the

letter string than slow typers in the same time window.

Discussion of results

The results of this experiment show what performance metrics and dual-task
interleaving strategy were affected by our three factors of interest: task
characteristics (noise, radius), individual differences in skill (typing speed), and
incentives (payoff function). What these data do not reveal is whether participants
adopted strategies that would result in the highest possible monetary reward over
the trial - given the constraints that these factors place on performance. To better
understand this aspect of the data we developed a computational cognitive model of
task performance. The model is used to explore the performance of various dual-
task interleaving strategies so as to identify the range of strategies that would yield
the highest possible reward, given the constraints imposed on performance by the
task (e.g., cursor noise, radius size, payoff function) and the individual (e.g., typing

speed).
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Model

Model development

Our model of dual-task performance is a modification of the model of average
performance in [18]. The refinements are that the current model can capture
individual differences in typing speed and can account for typing errors. A detailed
description of model development and parameter choices is given in [54]. The
model is used to predict performance for various strategies for interleaving

attention between tasks.

The model captures each task (typing, tracking) as a series of discrete steps.
This is similar to other procedural models of dual-task performance (e.g., [31,41]).
However, compared to the preceding models, we model actions at the keystroke
level (cf, [43,61]) and don't make strong assumptions about actions at the
millisecond level. This level of abstraction has been valuable in other dual-task

models [14,18,24,32].

We refer to our model as a 'computational cognitive model'. The term
"cognitive" is used in reference to Newell's definition of the "cognitive band" of
cognition ([62], see also [63]). Newell describes different types of human behavior
that take place over different time scales (i.e., ranging from microseconds to months
or years). Within this framework the 'cognitive band' takes place between a few
hundred milliseconds to several seconds. Similarly, our model captures behavior

that takes place at this timescale by specifying actions that take several hundreds of
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milliseconds (the keystroke level, cf. [43,61]). We call our model a computational
model, as it is implemented as executable code; which is distinct from Marr's notion
of computational explanation [64]. We will now describe the structure of the model

in more detail.

Typing model

The typing model types in digits according to a pre-specified strategy that is set by
the modeler (see section on Strategy space below). The typing speed is calibrated to
each individual participant’s average interkeypress interval as measured in single-

task trials.

The model also makes typing errors, at the same rate as individual
participants in single-task typing trials. Errors are inserted at random positions in
the string of digits on each model run. It was assumed that typing an erroneous digit
required the same time as a correct digit. In addition, it was assumed that a post-
error slowing cost [65] slowed down typing speed on the immediately following
correct digit. The mean post-error slowing time was estimated by subtracting the
normal interkeypress interval time from the average time observed in the interval
for the first correct digit after an erroneous digit. This model captures the core
features of interest and is sufficient for making detailed predictions of typing time

across a range of different dual-task interleaving strategies..

Tracking model
The tracking model focuses on two core aspects of the experimental task: (1) that

the cursor can only be controlled when the tracking window is open, and (2)
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whenever the cursor is not controlled it drifts according to the drift function of the
experiment (see Methods section). At times when the model controlled the cursor
movement, this was done as follows. Every 250 msec the position of the cursor
relative to the center of the target area was determined. A linear function was then
used to determine the angle of the joystick to move the cursor towards the center

(this function was determined in [18]):

Angle = -0.01 * current distance from target center -1 <=angle<=1

Based on the angle, the position of the cursor was updated every 25 msec by
multiplying the angle value with 5 pixels. Both the frequency of the update and the

angle multiplication were identical to how this was implemented in the experiment.

Dual-task model

On each trial, the dual-task model typed a series of digits using the typing model
before switching to the tracking task. The number of to-be-typed digits was
specified as an explicit strategy choice. When the model switches between typing
and tracking, a switch cost was incurred (250 msec, taken from [18]). The model
then pursued active tracking of the cursor, based on the tracking model for a pre-
determined fixed period of time. After this time had passed, another switch cost was
incurred (180 msec, taken from [18]). The higher switch cost to switch from typing
to tracking intuitively reflects the need to first locate the cursor on the screen - the

digits are always in the same position and therefore require less time to locate.
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Once the model switched back from tracking to typing, it would continue
typing until it was time to switch again. It would continue this pattern until all 20

digits were typed in correctly.

Strategy Space

We explored how different explicit strategies for interleaving tasks affected
performance. A strategy was determined by two variables (1) a basic strategy
determined how many digits were typed per visit to the typing window before
switching to the tracking task, and (2) a strategy alternative determined how much

time was spent in the tracking window on each visit before switching back to the

typing task.

For the basic strategies (number of digits typed per visit), we explored
performance for a relatively simple set of twenty strategies in which a consistent
number of digits was typed per visit to the typing window. For example, a strategy
to always type 1 digit per visit would make twenty visits; a strategy to always type 2
digits per visit would make ten visits; a strategy to always type 8 digits per visit
would make two visits in which 8 digits were typed and one in which the remaining

4 digits were typed.

For each of these twenty basic strategies, we explored the performance of
various strategy alternatives. Strategy alternatives varied in how much time was
spent in the tracking window per visit to this window. We explored this for 12
alternatives, between 250 and 3,000 msec, in steps of 250 msec. Within a single

simulation we kept the time spent in the tracking window per visit constant (i.e., if
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the model spent 250 msec during the first visit in the tracking window, a similar

time was used the second visit).

For each of these distinct strategy variants the model was run multiple times
and performance predictions were made. In total this lead to the use of 229 strategy
alternatives. For 19 strategies (typing 1 to 19 digits per visit), we explored the effect
of 12 alternatives for time on the tracking task (giving 12 x 19 = 228 strategy
alternatives). There was one strategy without interleaving (typing all 20 digits in
one visit). We ran 50 simulations (i.e., 50 simulated trials) for each individual, each
experimental condition (noise, radius, payoff), and each strategy alternative. This
gave a total of 12 (participants per payoff function) x 2 (payoff functions) x 2 (noise)
x 2 (radius) x 229 (strategy alternative) x 50 (simulations) = 1,099,200 simulations.
For each model simulation we were able to derive performance measures
equivalent to those gathered for human participants (i.e., total trial time, maximum
deviation of the cursor, total time that the cursor spent outside of the target area).
Given these performance measures it was possible to calculate the payoff achieved
by the model on each simulated trial using the same objective function for rating

human performance in the experiment (see Equations 1 - 3).

Model Results and Discussion

Comparison of human performance with predicted

optimal performance

The empirical results demonstrated that participants adapted their strategies to the

payoff function, the task characteristics, and their individual typing skill. With the
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model, we now want to ask a different question, namely: were participants good

multitaskers?

To address this question, we selected for each individual participant, in each
experimental condition, the strategy alternative that, on average, was predicted to
achieve the highest payoff. We compared performance of this strategy on various
metrics with human performance (as reported above). For some individuals, in
some conditions, the model predicted that multiple strategies could achieve the
highest score (i.e., no one strategy alternative was better than all other strategy
alternatives). In these cases, performance for all measures of interest (e.g., trial time,
maximum deviation of the cursor, number of digits typed per visit) was averaged
across the set optimal strategies. This method allowed for a comparison between
model and data without additional assumptions about how participants might
choose between strategies that are otherwise equivalent in terms of their expected
payoff. For example, alternative selection methods might be to 'bracket’ the range of
good performance [42,43] or to select the strategy that achieved the best mean
value on some other measure of performance (e.g., trial time, or maximum deviation
of the cursor). This would require additional assumptions about what the most
representative/best metric is. Our approach does not require such additional

assumptions.

Fig. 5 shows the performance for the model (white bars) and human data
(grey bars) side by side for four measures: total trial time (top-left), maximum

deviation of the cursor (top-right), average maximum number of digits typed per
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visit (bottom-left), and mean time spent in the tracking window per visit (bottom-
right). Table 3 summarizes the fit of these metrics (and four other metrics, see [54]
for selected graphs) on: R2, RMSE (and RMSE%), and the number of conditions for
which the error bars between model and human data overlap. Following [66], an
ANOVA was applied to the model data to explore whether the same patterns of
statistical effects were present in the data as observed in the human data. In this
ANOVA, the model predictions for the best strategy alternative for each individual
and each condition were treated as if generated by a participant. We applied a
similar ANOVA structure as was used for the analysis of the empirical data - using a
split mean analysis on typing speed to distinguish relatively fast typers from
relatively slow typers. Table 4 reports these ANOVA results. In Table 3 we count
what proportion of effects in the ANOVA of model data (Table 4) was similar to the
ANOVA results of the empirical data (Table 2). In cases where one data set (i.e,,
model or human data) predicted a marginal effect and the other dataset predicted
no effect or a significant effect, this was counted as explaining “half” of the effect.
ANOVAs were not applied to the payoff score data, as the payoff function was an
independent variable. An effect was counted as "wrong" in cases where the model

predicted an effect that did not occur in the human results.

Table 3. Measures of fit between human performance and model predictions

for optimal strategies. See text for detail.

R2 RMSE RMSE | Nr ANOVA ANOVA | ANOVA ANOVA
error | main main inter-action | inter-action
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% bars effect effect correct wrong

correct wrong
Total time 089 | 5.2 44 4/8 3/3 1 3/3 2
Maximum 090 | 11.11 13 2/8 4/4 0 1.5/2 1.5
deviation of
cursor
Time outside of 0.63 | 0.34 101 3/8 2.5/3.5 0 1.5/3.5 3
target
Maximum nr of 097 | 2.83 27 4/8 4/4 0 1/1.5 0
digits typed
Typing visit time 091 | 0.56 21 3/8 3/3 0 0/1 0.5
Nr visits to 094 | 4.58 164 0/8 4/4 0 1/1.5 2.5
tracking
Tracking time 0.90 | 0.79 63 0/8 3/3 1 0/0 0
Payoff score 0.76 | 5.3 93 2/8 NA NA NA NA
Mean 0.86 66 2.3/8 | 96% 0.3 64% 1.4 effects

effects

Table 4. Summary of statistical effects in model. Predictions are generated by
treating model predictions for the best strategy alternatives as if they are generated
by the corresponding participants (i.e, one datapoint per participant, per

condition).

Dependent variable

Maximum cursor deviation

Total time cursor outside target
Maximum nr of digits per visit
Mean visit time, typing window
Nr visits to tracking task

Mean visit time, tracking window

Total trial time
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Payoff function (p) Kok *kokk *kokk *kokk *kokk *kokk Kok
Noise (N) Kok *kokk *kokk *kokk *kokk *kokk Kok
Radius (R) kksk | kskk | skskk | skskk | skksk | skoksk | oskekk
IKI group (I) rokok | kokok ook wokok | ook
PxN skkk | kkk | kkok *okok
PxR Fkk *kok sokk
NxR *kk . *kk
PxI *x
NxI *x
RxI *% * *
.05 < p <=.10;
*: .01 <p<.05;

**:.001<p<.01;
ek p <=.001

Our analysis shows that on at least two metrics the human performance data
was consistent with the performance predictions of the optimal model. First, R2
values were generally high (i.e., six out of nine measures were 0.89 or higher).
Second, the ANOVA analysis of the model data produced similar main effects and
interaction effects as the human data (e.g., 96% of main effects correct). Perhaps
more importantly, the model predicts that on almost all the dependent variables
there should be effects of payoff function, task characteristics (noise, radius), and
individual differences in typing skill. Taken together, this analysis shows that the
participants in the study were adopting strategies that were consistent with the

predicted optimal performance model.
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However, the model predictions of optimal performance did not always align
perfectly with the human data. First, only in few conditions did the standardized
error bars of the model and human data overlap (on average 2.3 out of 8),
suggesting a difference between human and model data. Second, RMSE percentage
scores were relatively high. Fig. 5 helps in exploring where these differences
occurred. For most measures, the largest discrepancy was in the hardest condition:
high noise, small radius. Other discrepancies also occurred in the high noise, large
radius condition. Inspection of the figures suggests that participants could have
spent less time on the tracking task. This discrepancy might be attributed to the
relative simplicity of the tracking model. For example, the model immediately
started tracking when the tracking window opened, whereas participants might
have needed some time to locate the cursor first. The model can be considered a
model of idealized tracking performance, as it does not take these effects into
account. More fine-grained data of human performance (e.g., eye-tracking data) is
needed to model these effects. More detailed assumptions about tracking behavior
would go beyond the level of granularity of the measurements in the current

experiment.

Exploratory analysis of learning to achieve optimum

performance

We also explored how the strategies that participants applied changed over time

and how this relates to expected performance as predicted by the model. Fig. 6 plots
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data for 6 representative participants, one participant per Figure (plots of all
individuals can be found in Chapter 4 of [54]). The points plot the maximum number
of digits per visit that was typed per trial over all trials (recall that the preceding
analysis focused on performance during the last 5 trials of each condition; here we
show data for all 20 trials of a condition). A red dashed line shows the trend line in

the human data per condition, as predicted by a linear regression model.

Behind the data of the participant, rectangular areas show the model's
prediction of relative success for each strategy in a particular condition. The three
grey tones show strategies for which the best scoring strategy alternative (i.e., time
spent on tracking) had a score that was maximum 0.5 pence (black), 0.1 pence (dark
grey), or 0.2 pence (light grey) from the predicted maximum score for that specific
condition and participant. Grey shade was always relative to a specific participant
and a specific condition. Hence, a comparison of grey levels should be made within a
participant and within a condition. Across conditions, different absolute scores

might have been achieved.

If participants adopted optimal strategies, then their performance should lie
inside the grey rectangular areas, especially inside the dark grey areas. However,
the degree of overlap varied between participants and conditions. Some participants
(e.g., participant 101 in the speed and participant 203 in the accuracy payoff
condition, see Fig. 6) adapted very well by almost always applying strategies that

fell in the optimum region. Although these participants did not always apply optimal
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strategies on all trials, in general the trend lines suggest that over time they

gradually reached optimal performance.

Some participants showed effects of strategy transfer between conditions.
For example, participants 106 (speed payoff) and 202 (accuracy payoff) seemed to
apply very similar strategies across conditions, which in general lead to good
performance, but not necessarily optimal performance. Finally, some participants'
strategy did not match predictions of the optimal strategy. For example, participant
201 consistently applied sub-optimal strategies on three blocks and did not vary

strategies between conditions.

To quantify these results, we counted on how many trials the participants'
chosen strategy fell in a grey area (i.e., where predicted score was less than 2 pence
away from the optimum score) and applied an ANOVA analysis with payoff function,
noise, and radius as factors. High scores were achieved on three times as many trials
in the low noise condition (M = 15.04, SD = 3.64) compared to the high noise
condition (M =5.73, SD = 4.35), F(1, 22) =121.57, p < .001, np? = 0.847. Performance
was better when the radius was large (M = 14.04, SD = 3.36), compared to when it
was small (M = 6.73, SD = 4.36), F(1, 22) = 73.07, p <.001, np? = 0.769. There was no
effect of payoff function, F < 1. There was a significant interaction effect between
payoff function and noise, F(1, 22) = 7.23, p =.013, np? = 0.247. There were no other
significant interaction effects. Very similar effects were found when the analysis was
performed when only counting strategies that achieved a score within 0.5 pence of

the maximum strategy (i.e., that fall inside the dark black bars, see [54] for analysis).
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These results suggest that how well participants performed in comparison
with their own payoff curve (i.e., with the location of the maximum strategy)
depended on the task characteristics, but not on the payoff function. When the tasks
were relatively easy, due to low noise or a large radius, participants on average
achieved a maximum score on more than half of the trials. The absence of a
significant effect of payoff function in this analysis is good. It implies that the
manipulation of payoff function did not pose any limitations on participants’ ability
to adapt performance to the payoff function. Stated differently, if there were a
significant effect of payoff function, it would suggest that participants applied more
optimal strategies in one payoff condition compared to another payoff condition.

This is not the case; participants were equally good in both payoff conditions.

As a final analysis, we investigated whether there were individual differences
in how frequently the optimum strategy was applied on the last five trials of each
block (i.e., 20 trials in total). Optimum strategy was applied here as a strategy that
fell in the grey zone of Fig. 6 (i.e,, with a predicted score within 2 pence of the
predicted optimal score). The resulting histogram in Fig. 7 suggest that in general,
21 out of the 24 participants applied an optimal strategy on at least half of the trials.
Within each bar, the percentage of participants from each payoff condition is
highlighted in a different color (accuracy: blue, right tilted lines; speed: red, left
tilted lines). Participants in the speed payoff condition applied the optimal
strategies more frequently. An analysis of the average minimum distance to the best
strategy (i.e., the shortest distance between the applied strategy and the black bars

in Fig. 6) across participants is plotted as histogram in Fig. 8. This data suggests that
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participants on average were only 2 digits away from a strategy that can be

considered optimal given the constraints on performance.

General discussion

Summary of results

In an empirical study we demonstrated how dual-task interleaving performance is
systematically influenced by task characteristics, monetary incentives, and
individual differences in skill. People spend longer on tasks if this is needed either
because of the task's difficulty (e.g., when the cursor moved fast), or when this
matched their priorities as formalized through an incentive (e.g., when this task is
more rewarding). They also calibrate their strategies to their own skill (e.g., typing

speed).

Using a computational cognitive model we assessed how well participants
chose strategies that were best suited for them given task characteristics, incentives,
and individual typing skill. The model analysis suggested that participants adapted
their performance in such a way as to achieve an (for them) optimum score, as
evidenced by high correspondence between the trend in the model and human data
(e.g., high R? and correspondence in ANOVA results). However, the exact strategies
that participants applied were not yet the ones that, on average, achieved the

highest mean score, as evident in for example relatively high RMSE values.
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An analysis of the learning path gave three explanations for why
performance did not always achieve the best scores. First, participants sometimes
were still adapting their performance to the task at hand by the end of the block.
Second, some participants transferred strategies from one block to the next and
hardly adapted it to the circumstances. For some participants this was because
these strategies optimized, or at least satisficed [67], performance (e.g., see
performance of participants 106 and 202 in Fig. 6), for others there was no clear
explanation for why these strategies were applied. Third, the number of times that a
participant applied the optimal strategy was influenced by the task characteristics.
On harder tasks (e.g., small radius, high cursor speed), participants were relatively

less successful in achieving the optimum score.

Relationship to existing literature

Systematic influence of task characteristics, in particular task difficulty (e.g., [21,26-
28]), on dual-task performance has been well-documented. Consistent with this
work, we show how task characteristics influences performance in our set-up:
performance declines when tasks are more demanding. In addition, task
characteristics influence the strategies that participants choose to interleave

between tasks. More time is spent on the more challenging tasks.

Incentives were used here to formalize participants' objective (cf. [18] ) and
to assess in an objective way whether participants achieved the best scores they
could. This provides support for the notion that rational agents optimize their

performance so as to maximize their payoff [18,35,53-56,68]. We showed that
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incentives have consequences for the strategies that are selected for interleaving
attention and for performance on each of the individual task (e.g., total time spent
typing, and maximum deviation of a cursor). Although participants adapted their
performance towards optimal performance, they did not reach the overall optimum
strategy in all cases. The computational models allowed us to identify reasons why

this happened: strategy transfer and longer learning times.

We also found that individual differences in skill influenced performance,
building on recent observations to include these in our understanding of
multitasking (e.g., [10,11,41,52]). Our modeling work is among the first efforts to
demonstrate how individual skills systematically influence the strategies with which

tasks are interleaved, and thereby performance [41,52,54].

It can sometimes be hard to determine "task difficulty” independently from
"skill". For example, cooking a steak exactly medium rare is easy for a seasoned chef,
but might pose a significant challenge for a novel cook. In the later case we would
perhaps call the preparation of a steak a "difficult” task, relative to the (lower) skill
level of the novel cook. In general, experience and training can help to develop skills
and can turn a difficult task into a simpler one. Various studies have looked at how
the acquisition of new skills can impact performance in dual-task settings (e.g., for

recent examples see [69,70]).

In our experiment, skill and task difficulty can more easily be distinguished in
an objective manner. We manipulate inherent properties of the tracking task, that

make the task relatively more easy (e.g., low noise, large radius conditions) or
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relatively more hard (e.g., high noise, small radius conditions). For the typing task,
we do not manipulate the difficulty (e.g., no strings are harder than others).
However, we observe that there are differences in typing skill: some participants
type faster than others. As typing is a skill that is acquired over years of practice we
did not expect that there is significant typing skill acquisition during our experiment

(cf. e.g., [59,60]).

Limitations and future work

The modeling analysis suggested that participants did not consistently apply
strategies that the model predicted to be optimal for them given the constraints on
performance. If we assume that the model is correct, this discrepancy might be due
to several shortcomings in the experiment. First, some participants needed more
trials to learn the optimal strategy. Providing more trials for learning would
specifically be successful if during some of these trials participants had time to
freely explore the value of different strategies without being penalized for this. This
can for example be done by using a no-choice/choice paradigm (e.g., [71-74]) in
which the participant is first forced to apply specific strategies (no-choice) to
explore performance of various specific strategies, and then allowed to choose their

own strategies (choice), given their knowledge of likely success-rate.

Performance feedback was only given at the end of the trial. More feedback
might be needed to guide the learning of new strategies. Providing feedback during
trials (instead of only at the end) increases the amount of information that is

available, as in [32]. Such feedback is particularly useful in the high noise condition,
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where more variability in the position of the cursor makes the outcome of specific

strategies more variable from one trial to the next.

More generally, the timing, objective function, and magnitude of rewards can
influence a model's predictions of optimal behavior [33] and influence whether
participants can find the optimum (as for example studied in the context of
melioration and maximization of performance, see e.g., [75,76] ). Stated differently,
different performance might occur when rewards are only a couple of cents (as in
our study) versus hundreds of dollars (i.e., a difference in magnitude). To reduce
ambiguity for the participant and the modeler on what should be optimized, we
provided explicit numeric feedback, so as to have a "golden standard" (cf. [18,32,52-

56]).

One conclusion from our analysis is that human participants do not always
seem to perform optimally. However, it might also be that human performance was
optimal, but that our model was not accurate. For example, although we assumed
that participants optimized the objective payoff function, perhaps internally other
factors (e.g., motivation, interest) were optimized. Following this line of reasoning,
our model can be seen as a method of capturing important aspects of the task
environment, individual differences, and the payoff and providing a detailed,
normative assessment of what should constitute "rationally bounded behavior"
given these constraints. The deviations of the optimal predictions are interesting, as

they pose new questions for study of human multitasking behavior.
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The above consideration reflects a broader concern within the cognitive
science community of identifying the appropriate normative theory (or using Marr’s
parlance: computational level of explanation [64]). Take for example the classic
problem of the Wason selection task [77,78]. In this task, participants need to turn
around a set of cards to test a logical rule that is provided by the experimenter (e.g.,
"All cards that have a vowel on one side, have an even number on the other side"). A
consistent finding is that participants do not follow the rules of logic in this task.
Although this could be interpreted as a deviation from rational behavior, later
analyses using a different model and theory demonstrated that behavior in the
selection task can actually be cast as optimal data sampling behavior ([79,80], for a
more recent version see [56]). That is, this work demonstrated that behavior that
was initially believed to show (and was modeled as) a deviation from optimality
could in fact be seen as optimal. In a similar vein, rational explanations have
recently been developed for other tasks were the assumption has been that people

act suboptimally (e.g., the gambler's fallacy [81] and anchoring [82]).

It is possible that behavior in our task is also more frequently optimal when
judged on a different criterion than what was used in our analysis. To avoid strong
assumptions on human behavior, the components of the model were grounded in
measurements that were taken in single-task (e.g., for interkeypress intervals) or
that were specified in preceding models of this task setting in which a different
payoff function was used (e.g., parameters for the control of the joystick and for
switch costs [18]). In this way, we attempted to craft a model that did not go beyond

the empirical data.
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That said, more detailed insights might be gained when the model is refined
further. Depending on the nature of the revision, alternative predictions regarding
optimality might arise. We see four general ways in which the model can be refined.
First, more details of the underlying psychological processes and the moment-to-
moment performance could be given for most components of the model. Such
theories can provide an account of performance at different levels of abstraction
[62]. For example, Zhang and Hornof [41] have developed models that predict
performance of various 'microstrategies’ for dual-tasking (i.e., systematic
combinations of cognitive processes at the millisecond to second level [83]).
Similarly, our model does not incorporate a theory of effort or motivation. It
provided a normative account for what performance might look like for different
strategies for interleaving between tasks. It did not account for different effort levels
that can be applied, given the choice for a specific strategy. It is possible that
participants adhered to general principles such as a minimization of effort [84,85]

and a richer model, with more assumptions, is needed to account for this.

Second, the model could be calibrated to take more variability of
performance into account. For example, most of the model's parameters are set to a
mean value (e.g., mean typing speed). This can be changed to take trial-to-trial

variability into account (e.g., by sampling values from a distribution).

Third, the strategy space might be broadened in two ways. First, the model
was only used to explore simple strategies in which a consistent number of digits

was typed during each visit. However, participants might have used more
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complicated strategies. For example, they might have varied the number of digits
they typed per visit, or they might have changed the number of digits they typed
based on the occurrence of "structure" in the number (e.g., see [24] for an example
where task structure influences interleaving). More fine-grained measurements
(e.g., eye-tracking) are needed to accurately model such strategies. As the current
model explored performance of extreme strategies (e.g., no interleaving, and
interleaving after every digit), as well as many strategies in between these extremes,
it is expected that performance of more "complex"” strategies falls in the same range

as the current model predicted (cf. the bracketing approach see [43,86]).

Fourth, the model could be improved by incorporating a formal theory of
how people learn to adapt to constraints over time. Although some theories of
learning in multitasking have been proposed (e.g., [58,87]), these theories are not
yet at a level of sophistication such that they can directly be applied to the current
context. In particular, it is unclear at what level of granularity feedback on
performance is cognitively processed, and how experience with one strategy is
generalized to other strategies. Insights from hierarchical reinforcement learning
might prove valuable here, as such models learn both the utility of small consistent
action units, while at the same time learning the utility of larger units (e.g.,

strategies) that are formed out of these smaller units [88].
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Conclusion

We provided a detailed analysis of how people adapt their interleaving strategies in
a dual-task setting to three factors: task characteristics (noise, radius), individual
differences in skill (e.g., typing speed), and incentives (a formal way of capturing
objective or priority). The modeling analysis suggests that people adapt their
performance in such a way as to try and maximize the payoff value. This is not to say
that performance was optimal on every trial. Several explanations have been given
for this. Some are related to the learning process (e.g., strategy transfer and
exploitation of successful strategies), others might have to do with the difficulty of

the task (e.g., the noise in the feedback).
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Figure legends

Fig. 1. Layout of the tasks. Participants performed a typing task, which involved
typing a string of 20 digits (left), and a tracking task (right), which involved keeping

a blue cursor inside a circular target area (yellow). Participants could only see 1 task

at a time and needed to determine when to switch their attention between tasks.
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1  Fig. 2. Illustration of how the two payoff functions affect score on each task.

2  The top figure shows how score diminishes as total typing time increases. The

3  bottom figure shows how score diminishes as the cursor spends more time outside

4  of the target area. The Figure shows two lines, one for each payoff condition.
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1  Fig. 3. Plot of the performance trade-off space for all eight conditions. Data
2  shows total time against maximum deviation of the cursor. Error bars show

3 standard errors.
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1  Fig. 4. Plot of the strategy trade-off space. Data shows maximum number of digits

2 typed and time spent tracking per visit. Error bars show standard errors.
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Fig. 5. Correspondence between human mean performance and model

predictions of the optimal strategies. Data shown for (top-left) total trial time,

(top-right) maximum deviation of the cursor, (bottom-left) maximum number of

digits typed per visit to the typing window, and (bottom-right) average time spent

in the tracking window per visit. Error bars show standard errors.
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Fig. 6. Progression of strategy choice over time versus model predictions of
optimal choice. Data points show strategy per trial. Red lines provide fitted linear
trend line. Dark rectangles highlight model predictions of optimal strategies, the
darker the rectangle, the closer the strategy is to the optimal score (see text for
details). Data is shown for five illustrative participants, see headings and text for

description.
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Fig. 7. Histogram of how frequent participants applied the optimum strategy.
Optimum strategies are those that achieved a score that was predicted to fall within
2 pence of the maximum score (i.e., that were highlighted in grey in Fig. 6). Within
each bar the proportion of participants from each payoff condition group is

highlighted. For each participant only the last five trials of each condition are

considered.
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Fig. 8. Histogram of average minimum distance from the predicted optimum
strategies. Optimum strategies are those that were predicted to achieve a score that
fell within 0.5 pence of the overall best strategy. Within each bar the proportion of
participants from each payoff condition group is highlighted. For each participant

only the last five trials of each condition are considered.
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Supporting Material

$1 File. Script and data for analysis of the empirical data. The zip-file contains a
R script and .Rdata file that can be used to analyze the empirical data. The script

explains the structure of the data file.
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