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� We explore a biophysical mechanism of speciation.
� We develop a novel coarse-grained stochastic dynamics of sequence evolution.
� Analytical results show that hybrid binding energies diffuse neutrally.
� Sequence entropy and drift poise common ancestors closer to incompatible regions.
� So as population size decreases hybrid incompatibilities arise more quickly.
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a b s t r a c t

Speciation is fundamental to understanding the huge diversity of life on Earth. Although still
controversial, empirical evidence suggests that the rate of speciation is larger for smaller populations.
Here, we explore a biophysical model of speciation by developing a simple coarse-grained theory of
transcription factor-DNA binding and how their co-evolution in two geographically isolated lineages
leads to incompatibilities. To develop a tractable analytical theory, we derive a Smoluchowski equation
for the dynamics of binding energy evolution that accounts for the fact that natural selection acts on
phenotypes, but variation arises from mutations in sequences; the Smoluchowski equation includes
selection due to both gradients in fitness and gradients in sequence entropy, which is the logarithm of
the number of sequences that correspond to a particular binding energy. This simple consideration
predicts that smaller populations develop incompatibilities more quickly in the weak mutation regime;
this trend arises as sequence entropy poises smaller populations closer to incompatible regions of
phenotype space. These results suggest a generic coarse-grained approach to evolutionary stochastic
dynamics, allowing realistic modelling at the phenotypic level.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Speciation underlies the diversity of life on Earth today. Yet the
detailed genetic mechanisms by which distinct species arise are
still largely not understood. Darwin (1859), despite the title of his
magnus opus, struggled to understand how natural selection could
give rise to hybrid inviability or infertility. If the hybrid inviability
were due to a single locus, how could two species evolve from a
common ancestor, as one of these species would have to evolve
past an inviable heterozygotic state. A resolution came with the
understanding that epistatic (non-linear) interactions between

different loci can give rise to the so-called Dobzhansky–Muller
incompatibilities (DMI) between independently evolving lineages
(Dobzhansky, 1936; Muller, 1942; Bateson, 1909; Gavrilets, 2004).
For example, two lineages evolving independently through geo-
graphic isolation (allopatric evolution) from a common ancestor ab
can fix the genotypes aB and Ab, yet the hybrid genotype AB may
be inviable. Through a similar mechanism incompatibilities can
arise in polygenic systems, where the effective contribution to
fitness of the many loci coding a quantitative trait fitness is
epistatic. Even if the loci contribute additively to the trait,
stabilising selection (usually modelled as quadratic) on a trait
value induces epistasis. Populations diverge, under the action of
drift, by shifting between different stable equilibria that encode
the same optimal trait value, but with different allelic combina-
tions (Wright, 1935a,b); when combined in hybrids this can lead to
hybrid incompatibilities (Barton, 1989). Field data (Coyne and Orr,
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2004; Mayr, 1963) and specific introgression studies (Wu and
Beckenbach, 1983; Vigneault and Zouros, 1986) suggest that the
most dominant form of speciation involves the generation of
hybrid incompatibilities in geographically isolated populations
with no or very little gene flow.

The development of quantitative models that can predict specia-
tion rates will allow better understanding of the different factors
that maintain bio-diversity along with the processes of extinction
and environmental change (Coyne and Orr, 2004; Rosenzweig,
2001). An important aspect of such models is the dependence of
speciation rate on population size. Although, the question of a
population size dependence of the rate of speciation has received
little empirical attention and there have yet to be any definitive
studies, there is indirect evidence that the rate of speciation is
higher in smaller populations (Santos and Salzburger, 2012; Mayr,
1970; Glor et al., 2004), including the large species diversity of fish
in the East African Great Lakes (Owen et al., 1990) compared to
marine animals (Mayr, 1970, 1954; Rubinoff and Rubinoff, 1971) and
birds (Fitzpatrick, 2004) which have large ranges and populations
sizes, and the population size dependence observed in net diversi-
fication rates inferred from phylogenetic trees (Coyne and Orr,
2004; Nee, 2001; Barraclough and Nee, 2001). Strikingly, although
cichlid fishes in Lake Malawi, whose effective population sizes are
of order 100–10 000 (Oppen et al., 1997; Fiumera et al., 2000),
develop reproductive isolation within 1–10 Myr after divergence
(Stelkens et al., 2010), domestic chickens (Gallus gallus) can still
hybridise with helmeted guineafowl (Numida meleagris) after
roughly 55 Myr divergence (Cooper and Penny, 1997), potentially
reflecting the large effective population size of domestic chickens
estimated to range between 105 and 106 (Sawai et al., 2010).

Models of speciation that require positive selection to drive
divergence are unlikely to be able to explain these trends as larger
populations take less time to fix beneficial mutants and so evolve
more quickly (Gavrilets, 2003). Founder event or peak shift models
where reproductive isolation arises when a small population
passes through a fitness valley could explain this trend, as the
rate of valley crossing increases at small population sizes (Lande,
1979, 1985; Barton and Charlesworth, 1984; Barton and Rouhani,
1987). However, these models require a small fitness valley to give
speciation on realistic timescales, meaning that the reproductive
isolation this model seeks to explain is generally destroyed. In the
strong mutation regime (mutation rate large relative to the inverse
population size), polymorphisms will be common, and the larger
variation found in larger populations is predicted to result in a
slower average substitution rate, reducing the rate of speciation
(Gavrilets, 1999; Nei et al., 1983). Polygenic models of divergence
of additive traits under stabilising selection, also in the strong
mutation regime, predict that smaller populations can shift
between stable equilibria more quickly, leading to more rapid
isolation (Barton, 1989). More recently, sequence-level simulations
of protein–DNA binding similar to the model we examine here,
showed in the intermediate to strong mutation regime, that hybrid
fitness decayed more rapidly for smaller populations (Tulchinsky
et al., 2014); however, the underlying mechanism or growth of
DMIs was not explored. Despite these results in the strong
mutation regime, many traits involved in speciation are found to
be monogenic or oligogenic (involving only one or a few loci) (Orr,
2001) and so are expected to arise in monomorphic populations in
the weak mutation regime. In this respect, Orr constructed a
model that considers the combinatorics of how potential incom-
patibilities grow between two independent lineages in the weak
mutation regime. For pair-wise interactions between loci this
growth is quadratic in the number of substitutions by which they
are separated (Orr, 1995; Orr and Turelli, 2001); however, the
model assumes that populations diverge neutrally and so predicts
no population size dependence. To summarise, although theory

predicts that in the strong mutation regime we would expect a
slower rate of accumulation of DMIs for larger populations, there
are no theories of speciation that predict this population size effect
in the very relevant weak mutation regime.

In this paper, we examine the process of how incompatibilities
arise in allopatry for a biophysical model of a transcription factor
binding to DNA by developing a coarse-grained model of how the
transcription factor protein and DNA sequences co-evolve within a
stochastic dynamics framework. Our key innovation is to develop a
general equation of phenotypic evolution in the weak mutation
regime, which accounts for the fact that selection acts on pheno-
types, but variation in phenotype arises from mutations in
sequence through the mapping of genotype to phenotype. In
particular, we need to include the number of sequences corre-
sponding to a particular phenotype, the log of which we call the
“sequence entropy” in analogy to statistical mechanics entropy.
This approach normally gives rise to an often intractable master
equation. By considering the continuous limit, however, we can
convert the master equation into a diffusion equation called the
Smoluchowski equation, which includes selection, sequence
entropy, and random drift. By including the effects of sequence
entropy, the stochastic dynamics framework we present allows
investigation of the effect of population size on evolution in the
weak mutation regime, including its role in speciation dynamics.
Our work differs from previous diffusion-based models of pheno-
typic evolution, such as Lande (1976), by considering a generic
genotype–phenotype map and also in focusing on the weak
mutation regime where we can ignore polymorphisms and restrict
our attention to movement between monomorphic genotypes.
What we find is a picture of speciation different from that of the
Orr model, in that it features a latency in the development of DMIs
as hybrid populations need a finite time to reach incompatible
regions of phenotype space. Importantly, the model predicts a
higher rate of speciation in smaller populations in the weak
mutation regime, providing an explanation for the trend seen in
the observations described above.

Gene expression divergence has been shown to be a major
factor in driving differences between species (King and Wilson,
1975; Wolf et al., 2010; Wray, 2007; Wittkopp et al., 2008), and
there is direct evidence of speciation driven by the evolution of
genes related to transcription factors in Drosophila (Ting et al.,
1998; Brideau et al., 2006). Thus the binding of transcription
factors to DNA to control gene expression is arguably one of the
most important co-evolving systems for organisms and crucial for
their correct development, making them an ideal case study for a
biophysical model of speciation. However, despite our focus on
transcription factor binding, the model is in fact very generic and
could form the basis for the co-evolution of a number of interact-
ing macromolecules including protein–protein interactions, anti-
body–antigen interactions, or the interaction of genes expressed
by nucleus and mitochondria.

We first derive a diffusion equation (Smoluchowski equation)
for studying the coarse-grained stochastic evolutionary dynamics
of co-evolving sequences, and then adapt this model to the case of
two interacting genes represented by the binding of a transcrip-
tion factor to a region of DNA. We then consider two populations
evolving independently from a common ancestor, and consider
the viability of reproductive crosses between these populations.

2. A Smoluchowski equation for evolutionary stochastic
dynamics

Natural selection acts on phenotypes. In general, however,
many genotypes code for the same phenotype (Fontana, 2002;
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Force et al., 1999; Gerland and Hwa, 2002; Berg et al., 2004; Khatri
et al., 2009; Mustonen and Lassig, 2005) exemplified by proteins
with near identical structures but divergent sequences or different
RNA sequences that give rise to the same RNA secondary structure.
This can give rise to a bias in evolution towards phenotypes
corresponding to a larger number of sequences. A powerful
approach to dealing with this degeneracy is through the concept
of sequence entropy, representing the (log) number of sequences
encoding a given phenotypic state, in analogy to the concept of
entropy in statistical mechanics. By including sequence entropy
explicitly in the formulation, we can develop a novel coarse-
grained approach to evolutionary dynamics that allows study of
changes that occur at the phenotypic level where selection acts,
while still accounting for the fact that variation or mutations arise
at the sequence level.

We consider the weak mutation regime where nμ0Ne{1,
where μ0 is the effective base pair mutation rate, n is the number
of all contributing sites or base pairs, and Ne is the effective
population size. In this regime, rare mutations are sequentially
fixed or eliminated in an otherwise monomorphic population
(Wright, 1931). Under this condition, Iwasa (1988) and Sella and
Hirsh (2005) showed that the probability of observing genotype g
is given by a Boltzmann-like distribution pðgÞ ¼ ð1=ZÞeνFðgÞ, where
FðgÞ ¼ lnWðgÞ is the log fitness (or equivalently the additive
Malthusian fitness) of genotype g;ν is proportional to the effective
population size (analogous to the inverse temperature of the
canonical ensemble from statistical mechanics), and Z is the
normalisation factor (or partition function) that makes sure the
probabilities sum to one. Here we assume that either the environ-
ment is fixed or that the fitness is an average over the variation in
phenotypes produced by environmental variation or stochasticity.
For the rest of the paper we will assume a diploid Wright–Fisher
process, where ν¼ 2ð2Ne�1Þ � 4Ne.

We wish to consider distributions of phenotypes rather than
genotypes. Assuming a genotype to phenotype map ξ¼ΞðgÞ that
maps each genotype g to corresponding phenotype ξ, we can
consider the number (or degeneracy) of genotypes ΩðξÞ that map
to any specific phenotype ξ. We can then sum over genotypes to
give the probability of observing a specific phenotype (Barton and
Coe, 2009):

pðξÞ ¼ 1
Z
ΩðξÞe4NeFðξÞ ¼ 1

Z
e4NeΦðξÞ: ð1Þ

where the effective potential function of the evolutionary
dynamics is given by the “free fitness” (in analogy to the free
energy in statistical mechanics),

ΦðξÞ ¼ FðξÞþ 1
4Ne

SðξÞ; ð2Þ

where the sequence entropy S is given by

SðξÞ ¼ lnðΩðξÞÞ ð3Þ
A similar entropy was used to understand the equilibrium solu-
tions of polygenic traits under the balance of stabilising selection
and mutation (Barton, 1989). Eq. (2) shows that the equilibrium
distribution of phenotypes is in general described by a balance
between increasing fitness and increasing sequence entropy
(Iwasa, 1988; Sella and Hirsh, 2005).

We expect that in the monomorphic weak mutation regime,
stochastic evolutionary dynamics will give rise to diffusion in
phenotype space with diffusion constant μ¼ nμ0, combined with
directed motion driven by gradients in the free fitness function
with respect to changes in phenotype ξ.1 Note that this gradient

includes derivatives of fitness as well as sequence entropy. As we
are dealing with a stochastic system, we will describe the time
evolution of the probability distribution of phenotypic states pðξÞ.
The flux J of probability in phenotype space can be written as
(Gardiner, 2009):

J ¼ �1
2
μ∇pðξÞþ1

ζ
pðξÞ∇ΦðξÞ ð4Þ

where ζ is a coefficient representing the strength of evolutionary
change in response to the gradient in free fitness, and the factor of
a 1

2 for the mutation rate comes from converting from a discrete
randomwalk to a continuous one. We can determine the value of ζ
by considering the equilibrium state; strictly in the monomorphic
regime (nμ0Ne{1), when the distribution of phenotypes is in
equilibrium, as represented by Eq. (1), we would expect the flux to
be zero. This condition is satisfied as long as

ζ ¼ 1
2Neμ

; ð5Þ

which is the evolutionary equivalent of the Einstein relation that
relates the friction constant to the diffusion constant of a Brownian
particle (Einstein, 1905). Using the continuity equation, which
guarantees that probability is locally conserved as it flows from
point to point, ∂tpðξÞ ¼ �∇ � JðξÞ, we generate the Smoluchowski
equation in its final form:

∂p
∂t

¼ 1
2
μ∇ � ð∇pðξÞ�4NepðξÞ∇ΦðξÞÞ: ð6Þ

In Appendix A, we derive the same diffusion equation more
rigorously in one-dimension using the Kramers–Moyal expansion
of a generalised master equation.

In physics, a diffusion equation with fluxes in probability
(Eq. (4)) which are proportional to the gradient of a potential
function, and whose strength is related to the strength of stochas-
tic interactions is the Smoluchowski equation. Here, the stochastic
interactions correspond to genetic drift, whose relative strength
diminishes with increasing population size.

The Smoluchowski equation is equivalent to the set of stochas-
tic differential equations representing the time dependence of the
values of individual traits (Gardiner, 2009; van Kampen, 1981)

dξi
dt

¼ 2Neμ
∂ΦðξÞ
∂ξi

þηiðtÞ; ð7Þ

where i corresponds to the ith trait of ξ and where ηi is a white
noise Gaussian process with moments 〈ηiðtÞ〉¼ 0 and 〈ηiðtÞηjðt0Þ〉
¼ μδijδðt�t0Þ. Eq. (7) is a generalisation of the Ornstein–Uhlenbeck
process for phenotypic evolution described by Bedford and Hartl
(2009), but for an arbitrary free fitness landscape and including
the correct population size dependence of the strength of the drift
term via the Einstein relation Eq. (5). This set of stochastic
differential equations is similar to those used by Nei et al.
(1983), but includes the effects of sequence entropy. Eq. (6) is also
similar to the phenotypic diffusion approximation developed by
Lande (1976), but here represents the longer timescale stochastic
exploration of phenotype space due to the sequential fixation of
mutations, rather than the shorter scale dynamics of co-existing
and competing alleles.

3. Coarse grained biophysical model of protein–DNA binding

We aim to use this stochastic dynamics to study speciation for a
co-evolving pair of loci representing the binding of a transcription
factor (TF) to a region of DNA corresponding to the TF binding site
(TFBS). The key to this approach is the calculation or specification
of a sequence entropy function that represents the mapping
between genotype and phenotype. The two-state approximation

1 This latter term would be called the drift in the physics literature, which we
avoid here and reserve this name in association with genetic drift.
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(von Hippel and Berg, 1986; Gerland et al., 2002) for transcription
factor binding assumes that amino acid base pair hydrogen-
bonding binding energies are approximately additive and that
each non-optimal interaction increases the energy of binding by
approximately the same amount. The rationale for this model is
the observation that there tend to be preferred nucleotides for
each amino acid which hydrogen bond well, while non-preferred
nucleotides cause a large destabilisation by blocking the formation
of water–DNA hydrogen bonds. Rather than considering a more
realistic quaternary alphabet, for simplicity we only consider
whether the amino-acid DNA nucleotide pair is favourable or not
by replacing DNA and amino acid sequences by binary strings g1
and g2 of length ℓ and letting the binding energy be proportional
to the number of mismatches (Hamming distance) r between
them, so ΔG¼ εr where

r¼ ðg1�g2Þ � ðg1�g2Þ; ð8Þ

The binding energy phenotype is additive in each amino-acid
nucleotide position, analogous to polygenic models of quantitative
traits where trait values are assumed additive with respect to each
contributing loci (Wright, 1935a,b; Barton, 1989). In the model
described here, however, the binding energy is a non-linear
function of the sequences at each loci, as is clear from Eq. (8).
Epistasis arises directly from the molecular interactions, as
whether or not a position at the binding interface is mismatched
depends on a comparison between the amino acid and nucleotide
in opposing positions, which each come from different loci.

Relating the fitness of an organism to the binding energy of a TF to
its binding site is in principle very complicated and is controlled by a
number of factors dependent on the particular context of the gene
being regulated. Genomewide studies of the distribution of binding
energies for given TFs in E. coli (Mustonen and Lassig, 2005) and yeast
(Mustonen et al., 2008; Haldane et al., 2014) suggest that maximum
fitness arises for strongest binders when the number of mismatches
between TF and TFBS is minimised, with a non-linear dependence for
increasing binding energy with negative curvature; although such
studies relate to an average over different fitness contexts for each
binding site, they are indicative of a fitness landscape that favours the
fewest mismatches. Binding to the TFBS must compete with non-
specific binding to other sites in the genome suggesting that fitness
would be a sigmoidal function of the binding energy (Gerland et al.,
2002). For simplicity, we represent this as a quadratic log fitness
function (corresponding to a Gaussian fitness landscape) up to a
specific Hamming distance rn. r4rn, corresponding to ΔG4ΔGn ¼
εrn, represents an inviability boundary for binding energies, when non-
specific binding to all other sites becomes more thermodynamically
favourable than binding to the TFBS. The hard limit at rn also allows us
to calculate how the probability of an incompatibility increases with
divergence time and make comparison to the work of Orr (Orr and
Turelli, 2001); we would not expect any scaling of incompatibilities
with divergence time to be too sensitive to the exact choice of
threshold. The fitness is then

F rð Þ ¼ �1
2κFr

2 for rrrn

�1 for r4rn

(
ð9Þ

where κF is the curvature of the fitness landscape and biologically,
roughly corresponds to the strength of selection of this trait; as κF
decreases the fitness landscape becomes more shallow, and so for a
fixed effective population size the landscape becomes more neutral.

The number of sequences corresponding to a given Hamming
distance r is simply proportional to the number of ways of plac-
ing a mismatch amongst a pair of sequences, Ωr ¼ ℓ

r

� ��
2ℓ ffiffiffiffiffiffiffiffiffiffiffiffi

2=πℓ
p

expð�ð2=ℓÞðr�ℓ=2Þ2Þ when ℓ is large. So according to
Eq. (3), to a good approximation the sequence entropy is quadratic

in Hamming distance r:

SðrÞ ¼ �2
ℓ
ðr�ℓ=2Þ2þconst: ð10Þ

We see that entropy is maximised for r� ℓ=2, reflecting the fact
that matches and mismatches are equally likely.

The master equation governing the dynamics with entropy S(r)
is in general difficult to handle analytically. Instead, we take
advantage of the observation that at sufficiently small population
sizes the population size is larger than the typical change in fitness
between discrete states so that many mutations are nearly neutral
(Sawyer and Hartl, 1992; Bustamante et al., 2002; Eyre-Walker
et al., 2006; Piganeau and Eyre-Walker, 2003; Yampolsky et al.,
2005). As shown below, in this limit the discrete dynamics can be
accurately approximated by the effective stochastic dynamics
described by Eq. (6) or Eq. (7) by replacing each sequence gi with
a continuous variable xi and equating the Hamming distance r
with a distance-like variable ξ¼ j x1�x2 j , which is proportional to
the binding energy with scaling constant ε; as the value of ε will
not affect the qualitative behaviour, we set ε¼ 1 so that ξ
represents the binding energy. This is the key novelty of our
approach that allows us to model coarse-grained evolutionary
dynamics at a phenotypic level, at which natural selection acts,
while accounting for the fact that variation arises at the sequence
level. This approximation involves replacing a high-dimensional
space of possible binary sequences with a one-dimensional con-
tinuous space, where the effect of high-dimensionality is included
through the explicit consideration of sequence entropy through
the entropy function in Eq. (10); as selection only acts on
phenotypes, our approach ensures that we produce a continuous
distribution of phenotypes from our continuous variables xi that
closely approximates the discrete distribution from real sequences
gi.

Making the substitutions gi-xi and r-ξ and the sequence
entropy given by Eq. (10) the free fitness is given by

Φ ξð Þ ¼ �1
2κðξ�ξ0Þ2 for ξrξn

�1 for ξ4ξn

(
ð11Þ

to within an irrelevant constant, where the curvature in the free
fitness landscape

κ ¼ κFþ
1

ℓNe
; ð12Þ

is the sum of the curvatures due to fitness and sequence entropic
potentials, and

ξ0 ¼
1

2κNe
¼ 1=2
κFNeþ1=ℓ

ð13Þ

is the phenotype with maximum free fitness (see Fig. 1A) corre-
sponding to the most probable phenotype. Note that as the
equilibrium probability density pðξÞ ¼ ð1=ZÞe4NeΦðξÞ ¼ ð1=ZÞ
e�2Neκðξ�ξ0Þ2 is Gaussian, the standard deviation or width of
populations on the free fitness landscape is approximately

Δξ� 1ffiffiffiffiffiffiffiffiffiffiffi
4κNe

p : ð14Þ

Although the fitness landscape is independent of population size,
the free fitness landscape has an explicit dependence on popula-
tion size due to the contribution from sequence entropy. In
particular, Eqs. (12) and (13) show that in the limit of large
population sizes, where κFc1=Neℓ, we have a simple stabilising
fitness landscape with a population scaled strength of selection
4Neκ ¼ 4NeκF , which increases with increasing effective popula-
tion size, as we would expect from standard theory when selection
dominates. Conversely, for small population sizes (κF{1=Neℓ), the
population scaled curvature in free fitness becomes 4Neκ ¼ 4=ℓ

B.S. Khatri, R.A. Goldstein / Journal of Theoretical Biology 378 (2015) 56–64 59



which is independent of population size, again as we would expect
from standard neutral theory. The free fitness in this quadratic
form thus relates to previous studies of quadratic fitness with an
optimum trait value (Kimura, 1965; Lande, 1975; Turelli, 1984;
Barton and Turelli, 1987), although these studies mainly focussed
on the maintenance of variation under stabilising selection in the
strong mutation regime.

From Eq. (7), we can write down a pair of stochastic differential
equations describing the dynamics of these sequence-like vari-
ables in a quadratic truncated landscape:

dx1
dt

¼ 2Neμ
∂Φðx1; x2Þ

∂x1
þη1ðtÞ;

dx2
dt

¼ 2Neμ
∂Φðx1; x2Þ

∂x2
þη2ðtÞ; ð15Þ

where the free fitness is as given by Eq. (11) and shown schematically
by the solid black line in Fig. 1B. In this form the equations are not
easily solved analytically and so we next make some approximations
to make them tractable; in the results section we compare the
numerical integration of the above equations with the approximate
analytical theory.

Although the free fitness landscape has a single peak with respect
to ξ¼ jx1�x2 j (Fig. 1A), the free fitness as a function of x1�x2 has
twomaxima corresponding to x1�x2 ¼ 7ξ0 ¼ 71=2κNe with a cusp

valley at x1�x2 ¼ 0 as shown in Fig. 1B. We are mostly interested in
the short time evolutionary behaviour; as demonstrated below, it is
unlikely that the populationwill sample either the inviability threshold
x1�x2 ¼ ξn or the cusp at x1�x2 ¼ 0. This allows us to assume that
each lineage evolves in a single peak quadratic free fitness landscape
shown by the dotted lines in Fig. 1B. We can then set ξ¼ x1�x2, from
which it follows:

dx1
dt

¼ �2Neκμðx1�x2Þþμþη1ðtÞ;

dx2
dt

¼ �2Neκμðx2�x1Þ�μþη2ðtÞ; ð16Þ

where the characteristic relaxation rate of the system is given by
2Neκμ. With this approximation 〈ξ〉¼ ξ0; in reality the free fitness
landscape, as shown in Fig. 1A, is effectively truncated for ξo0 and
ξ4ξn, so strictly 〈ξ〉aξ0; however, as we show below this small error
has little effect on the dynamics, particularly for short times (μt{1). It
is straightforward to take the Laplace transform of these equations,
solve the resulting matrix equation to give solutions in Laplace space
and find the inverse Laplace transform to give

xðtÞ ¼ Jxð0Þþ 1
4Neκ

ð1�e�4NeκμtÞ 1
�1

� �
þ
Z t

0
Jðt�t0Þηðt0Þ dt0 ð17Þ

where x¼ ðx1; x2ÞT , η¼ ðη1;η2ÞT , the matrix J is given by

J¼ 1
2

 
1þe�4Neκμt 1�e�4Neκμt

1�e�4Neκμt 1þe�4Neκμt

!
; ð18Þ

and the integral of the vector above is an element by element
operation.

4. Independently evolving populations and the probability of
Dobzhansky–Muller incompatibilities

Let us imagine two separate allopatric populations, each containing
the two interacting genes. The two lineages are characterised by
x¼ fx1; x2g and x0 ¼ fx01; x02g; at the point of allopatriation
x0ðt ¼ 0Þ ¼ xðt ¼ 0Þ. For simplicity, we assume that the binding energy
of the common ancestor is ξð0Þ ¼ ξ0 the most probable value of the
binding energy Eq. (13). (In reality it would be described by a
distribution pðξÞ ¼ e4NeΦðξÞ=Z of initial conditions, which is centred
around ξ0.) The two populations then evolve independently as
described by Eq. (16) with solutions xðtÞ and x0ðtÞ given by Eq. (17).

We assume no linkage between loci, so that there is free recombi-
nation between loci in hybrids; note, however, that as we are in the
weak mutation limit, recombination is irrelevant for evolution within
each lineage. Speciation occurs when cross-mating between the two
diverged lineages result in incompatible sets of interacting alleles. In
the current model, these consist of combining x1 with x02 or x01 with x2.
If we let w¼ x1�x02 and w0 ¼ x01�x2, where jwj and jw0 j are the
binding energies of the hybrids, it is straightforward to show using Eqs.
(17), (18) and ξð0Þ ¼ ξ0 that

⟨w tð Þ⟩¼ ⟨w
0
tð Þ⟩¼ ⟨ξ tð Þ⟩¼ ⟨ξ

0
tð Þ⟩¼ 1

2κNe
ð19Þ

which is the most probable value of binding energy Eq. (13).2

Fig. 1. (A) Schematic plot of free fitness landscape ΦðξÞ as a function of population
size (with ξn ¼1). Free fitness is given by ΦðξÞ ¼ FðξÞþð1=4NeÞSðξÞ, so when both
fitness and sequence entropy are quadratic, it is also quadratic with maximum
given by ξ0 ¼ 1=2κNe , where κ¼ κF þ1=ℓNe is the sum of curvatures due to fitness
and entropy. For large population sizes (2κFNec1=ℓ), fitness dominates, so that
ΦðξÞ-FðξÞ and the most probable phenotype ξ0-0 (black). For small population
sizes sequence entropy dominates, so that ΦðξÞ-ð1=4NeSÞðξÞ and the most probable
phenotype ξ0-ℓ=2 (blue). For intermediate population sizes, there is balance
between fitness and sequence entropy, shown by quadratic curves with maxima
0oξ0oℓ=2 (green) that shift to the left for increasing population size. It is this
mechanism that shifts common ancestors closer to the inviability boundary that is
responsible for the faster growth of DMIs at small population sizes. (B) Free fitness
landscape as a function of x1�x2 is doubled welled with a cusp barrier at x1 ¼ x2.
The approximation that leads to Eq. (16) amounts to assuming the landscape is
single peaked with maximum at ξ0, as shown by the dotted line. (For interpretation
of the references to colour in this figure caption, the reader is referred to the web
version of this paper.)

2 As discussed above, we would expect that in the long time limit,
〈w〉¼ 〈w0〉¼ 0, as x1�x02 and x01�x2 will be equally likely to positive as negative
given the co-evolution of x1�x2 and of x01�x02 on the bistable free fitness landscape
shown in Fig. 1B; however, as the analytical approximation only considers
evolution of x1�x2 and x01�x02 on the single-peaked landscape shown by the
dotted line of Fig. 1B, the averages of w and w0 will be ξ0, since this is the value of
the binding energy for the common ancestor. The accuracy of the analytical results
for short times (μt51) is demonstrated below.
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If we define the vector w¼ ðw;w0ÞT , we find that the covariance
matrix Σ¼ ðw�〈w〉ÞT ðw� 〈w〉Þ〉 is symmetric and has elements

Σ11 ¼ μtþ 1
8Neκ

1� e�8Neκμt
� �

;

Σ12 ¼ � μtþ 1
8Neκ

1� e�8Neκμt
� �

:
ð20Þ

The variance in the hybrid binding energies is due to a pure
diffusive term μt, which represents how the two lineages diffuse
apart by independent mutations, plus a termwhich represents the
saturating growth of variance of each lineage after divergence due
to the constraint provided by the free fitness landscape; at short
times, Σ11 � 2μt, where an extra μt comes from the intra-lineage
exploration of binding energies which is effectively diffusive at
short times. For short times (8Neκμt{1), the off-diagonal terms
are zero, meaning that the binding energies of the two hybrids are
uncorrelated. However, for long times (8Neκμtc1) they become
anti-correlated, again due to the constraints imposed by the fitness
landscape.

The average hybrid fitness is given by 〈FhðtÞ〉¼ �1
2κF 〈w

2〉¼
�1

2κF ðΣ11þ 〈w〉2Þ:

〈FhðtÞ〉¼ Fhð0Þ�
1
2
μκF t�

κF
16Neκ

1�e�8Neκμt
� �

: ð21Þ

We see that on short times 〈FhðtÞ〉� Fhð0Þ�μκF t, so hybrid fitness
decreases linearly with time.

The dynamics of the probability of a DMI for each hybrid,
irrespective of whether the other hybrid has a DMI or not, is
simply given by the probability that the hybrid fitness Fh falls
below the threshold fitness Fn ¼ �1

2κF ðξ
nÞ2, or jwj4ξn:

PIðtÞ ¼ 1�
Z ξn

�ξn
pðw; tÞ dw; ð22Þ

The variable w is given by the sum of a number of Gaussian
processes, so pðw; tÞ itself must be Gaussian which is completely
specified by its mean Eq. (19) and variance Σ11 ¼ 〈w2〉� 〈w〉2 (20).
From Eq. (22), the probability of a DMI is then simply an integral of
a Gaussian, which can be expressed in terms of complementary
error functions:

PIðtÞ ¼
1
2
erfc

ξn� 〈w〉ffiffiffiffiffiffiffiffiffiffiffi
2Σ11

p
 !

þ1
2
erfc

ξnþ 〈w〉ffiffiffiffiffiffiffiffiffiffiffi
2Σ11

p
 !

: ð23Þ

Note that both the average hybrid fitness and the probability of
incompatibilities (Eq. (23)) are functions of dimensionless quan-
tities such as μt, 4κFNe, and Fn=κF .

Eq. (23) represents a very different functional form for the growth of
DMIs compared to that of Orr (Orr, 1995; Orr and Turelli, 2001), who
predicted a power law form with divergence time. Here the growth of
DMIs at short times has the form PIðtÞ � erfcð1= ffiffi

t
p Þ� ffiffi

t
p

e�1=t which
has an essential singularity for t¼0 and thus does not have a Taylor
series expansion about t¼0. The Laurent series in negative powers of t
only becomes exact for small t with an infinite number of terms and
when ta0. As seen in Fig. 2, this means that on a log–log plot at small
times PI(t) can never be approximated by a straight line and always has a
negative curvature. This form arises since a finite time is required for
hybrids to diffuse to the region of incompatibility (jξj4ξn).

5. Results

All results shown below assume an effective sequence length
ℓ¼ 10, Fn=κF ¼ �25 (ξn ¼

ffiffiffiffiffiffi
50

p
� 7) and ξð0Þ ¼ ξ0 ¼ 1=2κNe, which

is the most probable value of ξ in equilibrium. Fig. 2 shows the
probability of an incompatibility, for various values of 4κFNe,
where solid lines are the analytical calculation and the dotted
lines are from the numerical integration of Eq. (15), where no
approximation is made regarding the values of x1 and x2. Firstly,

we see that the analytical predictions compare well to integrating
the full stochastic differential equations, validating our simplifying
assumptions. Secondly, we see our coarse-grained continuous
model predicts that there is a large population size effect for the
probability of an incompatibility, where the characteristic time for
incompatibilities to arise becomes much shorter as the population
size decreases. In addition, it predicts that the dynamics of PI(t)
become insensitive to differences in population size both for
small population sizes (κFNe{1=ℓ) and large population sizes
(κFNec1=ℓ). Note that, as we have not bounded the Hamming
distance to a maximum value of ℓ, PI continues to increase at
longer times (μt{1); the limitations due to finite sequence length
could be approximated by including additional sequence entropic
potentials between hybrids in Eq. (11). However, it is the short
time limit that is most relevant to speciation: if only a single DMI
is needed for reproductive isolation, and there is a large number
(M� 105) of pair-wise interacting loci in a genome, speciation
would likely occur when PI � 1=M� 10�5.

To understand this general behaviour, we can consider what
happens to the time-dependent probability density of x1 and x2 for
the first lineage, versus x1 and x02 for the one of the hybrids, as
shown in Fig. 3 (The probability density for x01 and x02 and x01 and x2
are equivalent.). In the plots the lines represent some arbitrary
contour of probability and how it changes with time. Initially, both
lineage and hybrid populations diffuse neutrally and equally in all
directions (variance � 2μt) up to the time � ð2NeκμÞ�1, when the
change in free fitness is of order the mean fitness � 1=4Ne and the
accumulated variance of the parental lineages approaches the
characteristic width of the potential Δξ (Eq. (14)). After this time
the co-evolutionary constraint of the free fitness landscape is felt
on each lineage and the probability density is then squeezed along
a tube whose axis is defined by x1 ¼ x2þξ0 (assuming an initial
condition x1ð0Þ4x2ð0Þ) and width Δξ. The tube of probability
density is effectively squeezed from below by the requirement that
populations on each lineage maintain good fitness, and from above
by the constraint of sequence entropy, preventing populations
from exploring unlikely phenotypes. As the marginal probability
density for x1 and x02 will be identical, in the hybrid phase-space,
pðx1; x02; tÞ are not affected by the inviability constraint and will
continue to grow equally in all directions; incompatibilities arise
when hybrid populations have diffused to one or the other critical
binding energy at x1�x02 ¼ 7ξn. From Eq. (23) and Fig. 3, we see

10-1 100 101 102
10-6

10-4

10-2

100

Fig. 2. Log–log plot of the probability of a DMI PI(t) for a single hybrid as a function
of time for fitness-scaled population sizes 4κFNe ¼ f0:001;0:01;0:1;1;10;100g. Solid
lines are the approximate analytical calculations using Eq. (23) and dotted lines are
numerical integration of Eq. (15) using Eq. (22). The numerical simulations are split
into two sets, one averaged over 104 independent realisations extending to
μt ¼ 1000 and one averaged over 106 independent realisations extending to
μt ¼ 1. The latter simulations are required to reach the smaller probabilities of an
incompatibility. (For interpretation of the references to colour in this figure caption,
the reader is referred to the web version of this paper.)
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that there will in general be two characteristic times for DMIs to
arise, given by ðξn�1=2κNeÞ2 �Σ11ðtÞ and ðξnþ1=2κNeÞ2 �Σ11ðtÞ;
however, the contribution of DMIs due to this second path will not
be important at short times.

It is now simple to see where the populations size dependence
of the growth of DMIs arises. As seen from Fig. 1A, at a given
population size the balance between fitness and sequence entropy
occurs for different values of binding energy; in other words at
lower population sizes there is an increased probability for the
acceptance of slightly deleterious mutations so that the balance
between this tendency and selection leads to less fit equilibrium
phenotypes. This means that the initial value of ξ0 is closer to the
inviability boundary ξn for smaller populations and so ξ and ξ0

have to change less in order to produce Dobzhansky–Muller
incompatibilities. For very small and very large populations, the
value of ξ0 saturate at ℓ=2 and 0 respectively, representing the
domination by sequence entropy and fitness, giving rise to an
independence of speciation rate on the population size in these
limits. At a sufficiently large population size, however, we might
expect the continuous prediction to fail as populations probe the
discrete changes in fitness due to mutations, causing a slow down
of the substitution rate on each lineage and the rate of speciation.

6. Discussion and conclusion

Although the question of the population size dependence of
speciation has received little empirical attention, there is indirect
evidence from field data (Santos and Salzburger, 2012; Glor et al.,
2004; Owen et al., 1990; Mayr, 1970, 1954; Rubinoff and Rubinoff,
1971; Fitzpatrick, 2004), as well as phylogenetic analyses
(Coyne and Orr, 2004; Nee, 2001; Barraclough and Nee, 2001)
and comparison of rates of developing reproductive isolation
(Stelkens et al., 2010; Cooper and Penny, 1997) that smaller
populations tend to speciate more quickly. Many of these traits
are likely to involve only a few loci (Orr, 2001) and so evolve in the
weak mutation, monomorphic regime; however, until recently,
there have been no strong theoretical candidates to explain this
speciation trend in the low mutation rate monomorphic regime,
aside from founder event or peak-shift models that require a fine
tuning of population reduction and growth on a fitness landscape
with valleys.

In this paper, we address this question with a coarse-grained
model of sequence evolution within a stochastic dynamics frame-
work; this allows modelling at the continuous phenotypic level,

where selection acts, while accounting for the fact that variation
arises from mutations in sequences. The approach requires calcu-
lation of the sequence entropy of the genotype–phenotype map,
which is the (log) number of sequences corresponding to a given
phenotypic value. Although a master equation with this entropy
function can be written down, in most cases it will be intractable,
and require simulation; instead here we take the continuous limit
of this master equation, which as shown rigorously in the
Appendix, gives a Smoluchowski equation for the time-varying
probability distribution of the phenotype, which is a diffusion
equation where the mean change in phenotype per unit time is
due the gradient of a potential function. The potential, or Lyapu-
nov, function of evolution in the weak mutation regime is a sum of
the fitness of phenotypes as well as the sequence entropy
weighted by the inverse of the population size (Eq. (2)) and
termed the free fitness (Iwasa, 1988). Our results predict that
smaller populations develop hybrid incompatibilities more
quickly. This can be understood with a simple picture of how
incompatibilities arise; on each lineage protein and regulatory
DNA sequences co-evolve within a free fitness landscape with a
balance between good binding affinity and high sequence entropy,
yet the hybrid binding affinities diffuse neutrally in a manner
independent of population size. As the effect of sequence entropy
is stronger at smaller population sizes, the common ancestor
populations are poised closer to incompatible regions and so
hybrids have a smaller phenotypic distance to diffuse, giving rise
to a higher rate of speciation.

The coarse-grained model predicts that this population-size
effect diminishes for large population sizes 4κFNec1, as fitness
dominates and the phenotypic distance needed to diffuse does not
change; however, in reality, since κF is roughly the scale of fitness
differences for discrete sequence evolution, this is also the regime
where evolution on each lineage can feel the discreteness of the
changes in fitness and the substitution rate diminishes. This may
lead to an additional mechanism that slows down the rate of
speciation as the population size increases; this is not seen by the
low population size effective coarse-grained theory presented in
this paper. In this respect, real TF–TFBS pairs at large population
sizes (4κFNec1) likely share a similarity to incompatibilities in
polygenic traits (Barton, 1989), since in both cases optima are
separated by deleterious intermediates, causing a slow down of
divergence with increasing population size. A simple way to
account for this discreteness in the coarse-grained theory is to
replace the mutation rate with the average substitution rate
expected from discrete sequence evolution. Another way to
account for this heuristically in a coarse-grained theory would
be to introduce a characteristic phenotypic scale of mutations,
below which the dynamics becomes frozen, for example, by
introducing terms proportional to the time-derivative of the
curvature of the probability distribution in the Smoluchowski
equation (Khatri and McLeish, 2007). Although this theory strictly
applies to the monomorphic regime, we would also expect the
effect of sequence entropy to lead to a similar trend of an
increasing rate of speciation for decreasing population size for
polymorphic loci; we expect the effects due to sequence entropy
and discreteness of fitness differences would be reinforced by the
slowed divergence of allopatric lineages due to the mechanism of
Gavrilets (1999) and Nei et al. (1983), where highly diverged
members tend to produce a higher fraction of inviable offspring.
In particular, recent sequence-level simulations have shown indi-
cations that such a population size effect also exists in the
intermediate strength regime of mutations 4Neμ� 1, although
the growth of DMIs with divergence time was not investigated
in detail (Tulchinsky et al., 2014).

Finally, the biophysical model of speciation we present pro-
vides a very different picture on how incompatibilities develop

, , , , , ,

Fig. 3. Evolution of pðx1; x2 ; tÞ (left) and pðx1 ; x02 ; tÞ (right) shown schematically,
assuming the approximate single-peaked free fitness landscape �1

2κF ðx1�x2�ξ0Þ2
(indicated by the dotted lines in Fig. 1B). Contours represent values of variables for
some fixed arbitrary value of probability and how these contours move outwards
with time. Variables x1 and x2 co-evolve and variables x01 and x02 co-evolve (x01 and
x02 not shown) within the constraints set by the free fitness landscape on each
lineage, while the hybrid density is a product of the marginal probability densities
(pðx1 ; x02 ; tÞ ¼ pðx1; tÞpðx02 ; tÞ) and evolves in a spherically symmetric manner into the
regions of incompatibility.
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compared to the Orr model (Orr, 1995; Orr and Turelli, 2001).
Hybrid populations have to diffuse a finite distance and so there is
a latency in the development of incompatibilities; mathematically,
this gives rise to a non-polynomial functional form for the growth
of DMIs, in contrast to the polynomial increase suggested by Orr. In
particular, this manifests itself as a negative curvature for small
times in a log–log plot of the number or probability of DMIs versus
time. However, we note that this result assumes diffusion from a
fixed common ancestral phenotypic state (assumed here for
simplicity to be the most probable), whereas in reality, there will
be a range of phenotypic values drawn from the equilibrium
distribution, potentially changing this law of growth of DMIs,
particularly at small population sizes, where the common ancestor
distribution is broad. The alternative hypothesis for the growth of
DMIs we present may be tested with more detailed studies of
species divergence at different population sizes, similar to current
works (Matute et al., 2010; Moyle and Nakazato, 2010) which
show a rapid increase of hybrid incompatibilities with divergence,
which given the paucity of data points is consistent with both the
Orr model and the one presented here. In particular, recent cross-
species ChiP-seq analysis of transcription factor binding (Schmidt
et al., 2010) suggests a way to explicitly test our predictions at the
level of actual binding affinities of hybrid TF–TFBS combinations
for recently diverged species.

Gene expression divergence is thought to underly many differ-
ences between species (King and Wilson, 1975; Wolf et al., 2010;
Wray, 2007), for example, in the Galapagos finches (Abzhanov
et al., 2006), the various species of Drosophila (Wittkopp et al.,
2008) and with more direct evidence of a role in speciation
through the evolution of genes related to transcription factors
(Ting et al., 1998; Brideau et al., 2006). Protein binding DNA to
control gene expression is a prototypical co-evolving system and
critical for the proper development of organisms; here we have
explored a realistic coarse-grained stochastic dynamics approach
to modelling phenotypic change that incorporates, through an
appropriate sequence entropy function, the effects of mutations on
protein and DNA sequences. We suggest that such a coarse-
grained approach will allow tractable modelling of more compli-
cated gene regulatory systems and thus provide insight on their
evolution and their role in speciation. Finally, although we have
studied TF–TFBS binding, molecular recognition between two
sequences arises in many different biological contexts, such as
antibody–antigen binding, protein–protein interactions and the
interaction between genes expressed in the nucleus and mito-
chondria and we expect our results to have relevance to these
systems.

Acknowledgements

We acknowledge useful discussions with David Pollock, Uni-
versity of Colorado. RAG was supported by the Medical Research
Council under grant U117573805 and BSK by The Francis Crick
Institute which receives its core funding from Cancer Research UK,
the UK Medical Research Council and the Wellcome Trust.

Appendix A. Kramers–Moyal expansion of a generalised
master equation for sequence driven phenotypic evolution

In this appendix, we derive the one-dimensional Smoluchowski
equation for phenotypic evolution with sequence entropic effects,
starting from a master equation for the probability distribution of
fixed phenotypes. The general master equation for a phenotypic

variable ξ is

∂pðξ; tÞ
∂t

¼
Z

dξ0ðWðξjξ0Þpðξ0; tÞ�Wðξ0 jξÞpðξ; tÞÞ: ðA:1Þ

We make the assumption that a generalised genotype–phenotype
map has the property that mutations give rise to transitions in
phenotype that are local, such that the rate W is of the form

Wðξ0 jξÞ ¼W þ ðξÞδξ0 ;ξþδξþW � ðξÞδξ0 ;ξ�δξ: ðA:2Þ
where δξ is the size of discrete jumps and δξ¼ 1 would represent,
for example, the Hamming distance between two sequences; we
are interested in taking the continuous limit of Eq. (A.1), as δξ-0.
The Kramers–Moyal expansion is simply a Taylor expansion about
the state ξ in the jump size δξ and retains the first and second
order terms, assuming that these will be most important as δξ-0.
This in general gives rise to a non-linear Fokker–Planck equation.
With the rates W in this form, the resulting Fokker–Planck
equation is (Gardiner, 2009; van Kampen, 1981)

∂pðξ; tÞ
∂t

¼ � ∂
∂ξ

ðα1ðξÞpðξ; tÞÞþ
1
2
∂2

∂ξ2
ðα2ðξÞpðξ; tÞÞ ðA:3Þ

where the functions α1 and α2 are the 1st and 2nd order moments
of the transition rates, respectively:

αnðξÞ ¼
Z

dξ0ðξ0 �ξÞnWðξ0 jξÞ ¼ δξnðW þ ðξÞþð�1ÞnW � ðξÞÞ: ðA:4Þ

We now make the assumption that the transition rates are of the
form

W7 ξð Þ ¼ 2μ0Nen7 ξð Þπ F ξð Þ; F ξ7δξð Þð Þ; ðA:5Þ
where μ0 is the mutation rate per site, Ne is the effective
population size, nþ is the number of mutational paths that
increase the phenotype from ξ-ξþδξ and n� is the mutational
paths that decrease the phenotype from ξ-ξ�δξ, with the
constraint that nþ þn� ¼ n, i.e. the total number of mutational
paths is fixed to the total number of sites n.

We assume the fixation probability π is of the Kimura (1962)
form:

πðFðξÞ; Fðξ7δξÞÞ ¼ 1�e�2ðFðξ7δξÞ� FðξÞÞ

1�e�4NeðFðξ7δξÞ� FðξÞÞ: ðA:6Þ

We are interested in the form of the rate, and hence the fixation
probability, in the limit that δξ-0, for which we expect that to
first order Fðξ7δξÞ � FðξÞ7δξ∂ξFðξÞ ¼ FðξÞ7δFðξÞ. In this limit
πðFðξÞ; Fðξ7δξÞÞ ¼ πð7δFÞ, which can be expanded to first order
in δF as

πð7δFÞ � 1
2Ne

ð172NeδFÞ: ðA:7Þ

To calculate the dependence of the moments on the change in
entropy, we note that the ratio of the forward and backward
mutational paths will be equal to the ratio of the number of states
for ξ7δξ, assuming that in the limit that δξ-0, the number of
states varies slowly:

nþ
n�

¼ΩðξþδξÞ
ΩðξÞ ¼ ΩðξÞ

Ωðξ�δξÞ ¼ eδS: ðA:8Þ

Given nþ þn� ¼ n, it is then simple to show that

δS� 2ðnþ �n� Þ=n: ðA:9Þ
Plugging these results into Eq. (A.4) for the 1st and 2nd moments,
we find

α1ðξÞ ¼ 2μ0nNeδξ δFþ δS
4Ne

� �
¼ 2μ0nNeδξδΦ: ðA:10Þ

and

α2ðξÞ ¼ nμ0ðδξÞ2ð1þNeδFδSÞ � nμ0ðδξÞ2; ðA:11Þ

B.S. Khatri, R.A. Goldstein / Journal of Theoretical Biology 378 (2015) 56–64 63



where in α2 we ignore the 2nd term as it will be of order ðδξÞ2.
Then taking the limit that δξ-0, such that the combination
nμ0ðδξÞ2-μ remains finite, and limδξ-0δΦ=δξ-∂ξΦ we arrive
at the Smoluchowski equation:

∂p
∂t

¼ 1
2
μ
∂
∂ξ

∂p
∂ξ

�4Nep
∂Φ
∂ξ

� �
: ðA:12Þ

Our particular choice of the effective diffusion constant of the
dynamics as μ=2 means that μ represents the overall mutation rate
for all base-pairs, n, in the loci involved; in particular, this means
that the overall dynamics of results from discrete simulations will
agree with solutions of the continuous diffusion theory, for
example, represented by Eqs. (A.12) and (6).
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