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Small-angle X-ray and neutron scattering techniques characterize proteins in

solution and complement high-resolution structural studies. They are of

particular utility when large proteins cannot be crystallized or when the

structure is altered by solution conditions. Atomistic models of the averaged

structure can be generated through constrained modelling, a technique in which

known domain or subunit structures are combined with linker models to

produce candidate global conformations. By randomizing the configuration

adopted by the different elements of the model, thousands of candidate

structures are produced. Next, theoretical scattering curves are generated for

each model for trial-and-error fits to the experimental data. From these, a small

family of best-fit models is identified. In order to facilitate both the computation

of theoretical scattering curves from atomistic models and their comparison with

experiment, the SCT suite of tools was developed. SCT also includes programs

that provide sequence-based estimates of protein volume (either incorporating

hydration or not) and add a hydration layer to models for X-ray scattering

modelling. The original SCT software, written in Fortran, resulted in the first

atomistic scattering structures to be deposited in the Protein Data Bank, and

77 structures for antibodies, complement proteins and anionic oligosaccharides

were determined between 1998 and 2014. For the first time, this software is

publicly available, alongside an easier-to-use reimplementation of the same

algorithms in Python. Both versions of SCT have been released as open-source

software under the Apache 2 license and are available for download from

https://github.com/dww100/sct.

1. Introduction

Small-angle X-ray and neutron scattering (abbreviated as

SAXS and SANS, and collectively as SAS) are diffraction

techniques used to investigate the structural properties of

condensed matter systems, including proteins, metal alloys,

colloids and synthetic polymers in bulk or in solution (Perkins

et al., 2008, 2011; Blanchet & Svergun, 2013). SAS is widely

used to study biological macromolecules in solution, in

particular to characterize large proteins that cannot be crys-

tallized or where solution conditions affect the structure. The

advantage of working in near physiological solution conditions

with SAS is counterbalanced by the lower resolution of the

structural information compared to techniques such as crys-

tallography. In the absence of crystalline order in SAS, the

results are necessarily averaged over the orientations and

conformations occupied in solution. Consequently, SAS is

generally viewed as a complement to higher-resolution tech-

niques. Structural information from SAXS/SANS data is

extracted by the use of curve fitting for general shape metrics

(such as Guinier fits for the radius of gyration, Rg), ab initio

shape determination and rigid-body refinement (Svergun &

Koch, 2003), or constrained modelling based on known crystal
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structures (Perkins et al., 2011). In this paper we describe a

software suite, SCT, designed to facilitate the constrained

scattering modelling of protein, glycoprotein and carbohy-

drate systems (Perkins et al., 2011).

Constrained modelling is based on the comparison of the

theoretical scattering curves generated from conformationally

randomized trial atomistic models of the target protein with

those obtained from experiment. Known structures for the

domains or subunits (such as crystal structures) are combined

with linker models that join these to produce candidate global

conformations. By randomizing the global conformation,

thousands of candidate structures can be produced and their

theoretical scattering curves calculated. These curves are used

for trial-and-error fits to the experimental data in order to

identify a family of best-fit models. It should be noted that

fitting detailed models to low-resolution data is an under-

determined problem. No unique solution is available, and the

end result represents the average structure. Nonetheless, the

method is effective in rejecting structures that are not

compatible with the scattering data. The SCT suite was

developed for both the computation of theoretical scattering

curves from atomistic models and their comparison with

experiment. The original Fortran SCT software, which we will

refer to as the ‘classic’ version, has been used to determine

77 structures (24 antibodies, 27 complement proteins and 24

oligosaccharides) deposited in the Protein Data Bank (PDB;

http://www.pdb.org/) between 1998 and 2014 (Supplementary

Table S11). Here we describe the classic version of SCT for the

first time and make this publicly available, alongside a new

easier-to-use reimplementation of the same algorithms in

Python (this version will be referred to as the ‘modern’

version). Both versions of SCT are available as open-source

software from https://github.com/dww100/sct. Version 1.0.0 of

SCT is also archived in Zenodo at the CERN data centre for

long-term accessibility and storage (http://dx.doi.org/10.5281/

zenodo.16083).

2. Background to small-angle scattering and
constrained modelling

In order to explain constrained modelling, it is necessary to

outline the SAS experiments that generate the data to be

modelled. Whilst there are fundamental differences in the

elastic scattering of X-rays and neutrons, these processes can

be described using the same mathematical framework (Glatter

& Kratky, 1982). Fig. 1(a) shows the scattering of an incident

beam by two point scatterers within a globular macro-

molecule. The diffracted rays are in phase with one another

but out of step by � at a scattering angle of 2�, resulting in

constructive interference. The accumulation of these events at

low angle gives rise to the scattering curve. The important

difference between SAXS and SANS is that X-ray scattering

involves diffraction events from electrons, whereas neutrons

are scattered by atomic nuclei. The significance of this

difference for constrained modelling is that a hydration layer

of water surrounding the target protein is ‘visible’ in SAXS

but not for SANS experiments performed in 2H2O buffers

(Perkins, 2001).

The basic setup of a SAS experiment involves irradiation of

a sample by a monochromatic beam of X-rays or neutrons

(Glatter & Kratky, 1982; Perkins et al., 2011; Blanchet &

Svergun, 2013). Differences in the scattering density contrast

between solute and solvent give rise to diffraction (Fig. 1b).

The scattering is characterized by the scattering vector q

(Fig. 1b), the magnitude of which is given by Q ¼ 4�=� sinð�Þ,
where 2� is the scattering angle and � the wavelength. Small

angles correspond to low Q values. If the sample is idealized as

a dilute solution of monodisperse, non-interacting, identical

particles, the experiment results in the radially averaged

scattered intensity IðQÞ as a function of Q. The IðQÞ curve

reduces sharply as Q increases. IðQÞ can be interpreted as a
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Figure 1
Schematic representation of a scattering experiment. (a) An incident
beam is shown scattering from two point scatterers (represented by the
black dots) within a globular macromolecule. The diffracted rays are in
phase with each other but out of step by � at the scattering angle 2�
shown, causing constructive interference. The accumulation of these
events at low angles gives rise to the scattering pattern of the
macromolecule. (b) In a typical small-angle scattering experiment,
diffraction from high-scattering-density macromolecules in a low-
scattering-density solution gives rise to a scattering pattern on an area
detector. q is the scattering vector ks � ki. The radial average of the
scattering pattern about the position of the direct main beam gives rise to
the scattering curve IðQÞ in reciprocal space.

1 For literature related to these structures see Abe et al. (2010), Almogren et al.
(2006), Aslam & Perkins (2001), Aslam et al. (2003), Boehm & Perkins (2000),
Boehm et al. (1999), Bonner et al. (2007, 2008, 2009a,b), Fernando et al. (2007),
Furtado et al. (2004, 2008), Gilbert et al. (2005), Gilbert, Aslam et al. (2006),
Gilbert, Asokan et al. (2006), Hu et al. (2005), Khan et al. (2010, 2011), Khan,
Gor et al. (2013), Khan, Fung et al. (2013), Li et al. (2010, 2012), Nan et al.
(2010), Miller et al. (2012), Okemefuna et al. (2008, 2009, 2010), Perkins et al.
(1991), Rayner et al. (2013, 2014, 2015), Rodriguez et al. (2015) and Sun et al.
(2004, 2005).



Fourier transform (reciprocal space) representation of the

distance distribution of the point scatterers within the system

of interest. Typical experimental Q ranges extend from 0.05 to

2 nm�1 and correspond to a real-space resolution of

approximately 2–4 nm if no other constraints are applied.

Guinier analyses of the experimental scattering curves

involve a linear fit of the low-Q region of the ln IðQÞ curve

against Q2 to determine Rg and the forward scattered intensity

at zero, Ið0Þ:

ln IðQÞ ¼ ln Ið0Þ � R2
gQ2=3: ð1Þ

The approximation in the Guinier fit requires that the QRg

values in the fit range are between approximately 0.5 and 1.5.

For elongated macromolecules, the mean cross-sectional

radius of gyration Rxs is determined using fits in a larger Q

range that does not overlap with that used for the Rg deter-

minations [see equation (2)]:

ln IðQÞQ½ � ¼ ln½IðQÞQ�Q!0 � R2
xsQ

2=2: ð2Þ

These analyses can be applied just as easily to theoretically

generated curves as those from experiment.

Constrained modelling combines SAXS and SANS data

with known crystal structures and sequence information to

obtain atomistic models of the global macromolecular struc-

ture (Perkins et al., 2011). Initially, a library of plausible

candidate global models is created, which is used to generate

theoretical scattering curves for comparison with the SAS

data. For this, existing crystal structures alongside homology

modelling techniques (Venselaar et al., 2010) are combined

with simulation methodologies such as molecular dynamics or

Monte Carlo simulations to produce structurally varied,

atomistic, candidate global models of the target macro-

molecule. Examples of these methods used in classic SCT

include DISCOVER3 in INSIGHT 98 (Accelrys) and the

TorsionKick function in Discovery Studio (Accelrys) (Boehm

et al., 1999; Khan et al., 2010). From this point, the constrained

scattering modelling corresponds to the tools provided by SCT

(Fig. 2). First, a grid transformation produces coarse-grained

sphere models from the original atomistic structures. Second,

the Debye equation is used to calculate a theoretical scattering

curve from each sphere model. For modelling SAXS data, a

hydration monolayer is added to the sphere model before the

scattering curve is calculated. For modelling SANS data, a

beam-smearing correction is applied to the theoretical curve.

Third, the two curves are compared to see if the calculated

curve reproduces what is observed experimentally in the same

Q range. A quantitative measure of the agreement between

the two curves is required. Two quantities are widely used in

the literature, namely the R factor and �2. The former is

employed within SCT. Models showing good curve fits are

accepted as potentially representative of the average solution

structure. Accepted models can also be filtered from

comparisons of Rg and Rxs values calculated from Guinier

analyses of the theoretical and experimental curves.

Depending on the method used to generate the structures it

may also be necessary to rule out models where atomic

overlap is too high. SCT computes the theoretical volume

from the protein sequence in order to exclude unphysical

overlapping models.

3. Algorithms used in SCT

Here, we describe each stage of constrained modelling

employed by SCT, followed by the programs for each task and

the algorithms they use. Table 1 summarizes the programs

used for the various tasks in the process in both the classic and

modern versions of SCT. At the heart of the constrained

modelling process is the computation of a theoretical scat-

tering curve from a protein structural model. Whilst the

scattering curve can be calculated from an atomistic structure,

this has traditionally been too computationally expensive,

although atomistic approaches may become commonplace

with improvements in hardware, especially through the

availability of modern general-purpose computing on graphics

processing units. The widely used alternative employed by

SCT is to reconstruct the initial atomistic model as a coarse-

grained structure using homogeneous, identical spheres of

diameter less than the resolution of the scattering experiment.

computer programs
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Figure 2
Constrained modelling algorithm in SCT. First, candidate full atomistic
structures of the target macromolecule are generated. That illustrated is
for human IgA1, taken from Boehm et al. (1999). A grid transformation is
performed on each structure to produce a lower-resolution (coarse-
grained) sphere model, which is used to calculate a theoretical scattering
curve via the Debye equation. The R factor determines if the theoretical
curve reproduces the experimental curve in the same Q range. Models
with low R factors are inferred to represent the average solution
structure.

Table 1
Tasks involved in the constrained modelling process and the programs
within the SCT suite that perform them.

The programs in both the classic (Fortran-based) and modern (Python-based)
versions are shown for each task.

Task Modern Classic

Volume calculation sluv2.py sluv
Sphere model parameter

optimization
optimize_model_params.py –

Sphere model creation pdb2sphere.py brktos
Sphere model hydration hydrate_spheres.py hypro
Calculate Rg from sphere model sphere_rg.py aps
Theoretical scattering calculation calculate_curve.py sct
Calculate Rg from curve sas_curve_analysis.py sctpl
Curve comparison calculate_rfactor.py rfacXN
Workflow sct_pdb_analysis.py do_curve.sh



Improvements in the computational resources available

usually lead to enhanced conformational sampling and

consequently an increase in the number of coarse-grained

structures for which curves must be calculated. The Debye

equation adapted to spheres is used to calculate IðQÞ from the

sphere model. We describe first how the sphere models are

generated and adapted for analysis of SAXS data (in which

the hydration layer is observable) and then our implementa-

tion of the Debye equation calculation. The modern Python

version of SCT calls the original Fortran code to perform the

scattering calculations, both to increase its speed and to

preserve its previously validated method (Smith et al., 1990;

Perkins et al., 1993; Ashton et al., 1997).

3.1. Generation of sphere models

The generation of a sphere model from an atomistic struc-

ture is conceptually simple. Starting from the x, y, z coordi-

nates of the original atomistic model, a histogram of the

number of atoms is constructed on a three-dimensional grid

with equally sized divisions (grid boxes). Those boxes

containing more than a specified cutoff number of atoms are

represented by a sphere for the sphere model with the coor-

dinates of the centre of the box and a radius of half the box

width. For the SCT studies in Supplementary Table S1, the

cutoff is usually set to 4. This process is shown schematically in

two dimensions in Fig. 3(a). The width of the box (and

consequently the radius of the spheres in the final model) is

chosen to reproduce the correct protein volume calculated

using the sluv2.py program of SCT (the classic sluv program is

also included in SCT for comparison). The volume of the

sphere model is measured by summing the volume of the

component spheres.

sluv2.py calculates properties including volume, partial

specific volume, scattering densities and absorption coefficient

of a protein, glycoprotein or carbohydrate from their

sequence. For constrained modelling, the most important is

the protein volume. This is calculated from the sum of the

unhydrated residue volumes (Perkins, 1986, 2001). While

several volumes are provided using different parameter sets

computer programs
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Figure 3
Grid transformation algorithms in SCT. (a) A two-dimensional schematic
of the grid conversion shows how coarse-grained sphere models are
derived from atomistic structures. A grid of equal divisions is created that
contains all atoms within the input structure. If more than a specified
cutoff number of atoms is found within a division, a ‘sphere’ is added to
the final model with a radius of half the grid box width. This algorithm is
applied in three dimensions to create sphere models from atomistic
structures. (b) This schematic shows how up to 26 hydration spheres as
required are added to each existing sphere in the ‘dry’ model to produce a
hydrated sphere model. Hydration spheres are located on the corners and
mid-points of the sides of a cube, with a dimension of four times the
sphere radius (r). The original sphere is shown in green, with the
hydration locations in black. (c) A hydration layer is required when
modelling X-ray scattering data. The hydration layer of water molecules
at the surface is added by surrounding each green sphere in the coarse-
grained sphere model of the dry protein (top view) with blue hydration
spheres of the same radius as shown (middle view). Overlapping and
excess blue hydration spheres are subsequently filtered out to match the
hydrated volume calculated from the macromolecular sequence, as shown
at the bottom.

Table 2
Residue volumes for both amino acids and monosaccharides used by
sluv2.py in SCT to calculate the macromolecular volumes used in
constrained modelling (Perkins, 1986).

In the ‘classic’ output option, as well as the output of classic sluv, these residue
volumes are labelled PER85. The non-agreement of the naming with the 1986
publication is maintained for historical reasons.

Residue name Residue code Volume (�10�3 nm�3)

Alanine ALA 97.1
Arginine ARG 192.9
Asparagine ASN 127.4
Aspartic acid ASP 125.3
Cysteine CYS 112.4
Glutamine GLN 147.3
Glutamic acid GLU 148.0
Glycine GLY 68.2
Histidine HIS 158.3
Isoleucine ILE 170.1
Leucine LEU 182.8
Lysine LYS 184.5
Methionine MET 176.0
Phenylalanine PHE 203.9
Proline PRO 129.0
Serine SER 103.3
Threonine THR 129.0
Tryptophan TRP 228.9
Tyrosine TYR 202.3
Valine VAL 142.3
Fucose FUC 160.8
Galactose GAL 166.8
Glucose GLC 171.9
Mannose MAN 170.8
N-Acetylglucosamine NAG 222.0
N-Acetylgalactosamine NGA 232.9
Sialic acid SIA 326.3



(all of which can be examined in the aa_volumes.yml file

within the SCT distribution), only the consensus unhydrated

crystal structure values are used for modelling (Table 2).

sluv2.py offers four output methods, namely ‘classic’ (which

mimics the output of the original sluv), ‘model’, ‘AUC’ and

‘project’. The data contained in the latter three methods are

summarized in Table 3, and a full list of the data output for the

classic output is provided in the supporting information.

The sequence can be read in three ways, each of which has

different advantages and limitations. These are directly from a

PDB file, a FASTA file or a YAML file. A PDB file sequence is

read from the ATOM and HETATM records, so any missing

residues are not incorporated into the model. FASTA files

contain only protein residues. YAML (yet another markup

language; http://www.yaml.org/) is a widely used markup

language designed to store data in a human-readable and

editable format. The organization of the sequence data in the

YAML file is proprietary but the format is simple; key, value

pairs of three-letter residue codes and frequencies separated

by colons (Supplementary Figure S1). Furthermore, residue

frequencies can be obtained in YAML format from either

FASTA or PDB files using the program sct_get_sequence.py

provided in the SCT package. For example, this makes it

straightforward to add glycan residues to a protein sequence

in a FASTA file.

3.2. Hydration of sphere models

SAXS reveals the hydrated dimensions of the macro-

molecule because the hydration shell water has a higher

electron density than that of bulk water. This hydration shell is

well represented as a monolayer of water molecules that forms

a well defined hydrogen-bond arrangement with the protein

surface, leading to a shell volume of 0.0245 nm3 per bound

H2O molecule. In contrast, hydrogen bonds continuously

break and re-form in bulk water, leading to a volume of

0.0299 nm3 per H2O molecule. Approximately 0.3 g of water

binds per gram of protein or glycoprotein (Perkins, 1986,

2001), making macromolecular structures appear bigger when

measured by SAXS compared to SANS in 2H2O buffers.

Consequently, SAXS modelling needs to include this hydra-

tion layer (Fig. 3b). SCT employs a four-step hydration algo-

rithm for the sphere model in order to reach the correct

hydrated volume predicted by sluv, using the sequence and the

volume of bound water equivalent to 0.3 times the protein or

glycoprotein molecular mass (Ashton et al., 1997):

Step 1. For each sphere in the unhydrated model, add 26

spheres in positions located on the corners and mid-points of

the sides of a cube with a dimension of four times the sphere

radius and centred on the original sphere (Fig. 3c).

Step 2. Filter out excess spheres by using a grid conversion

similar to that used to create the original unhydrated sphere

model from the atomistic structure. As large numbers of

spheres are added in Step 1, a high cutoff is used at this stage

(typically 10–12 spheres per grid box).

Step 3. The spheres from the original unhydrated model are

added back to the results of Step 2. This is done because some

extended structures may be lost in the filtering process of

Step 2.

Step 4. A final grid conversion with a cutoff of one sphere

per grid box is used to filter out any remaining overlapping

spheres.

In the classic version of SCT the hypro program only

performs Step 1 of this process. The other steps are incorpo-

rated in the do_curve.sh script, which runs the whole

constrained modelling workflow. For most of the 77 structures

(Supplementary Table S1), application of SCT involved the

selection of a single extended model of the target macro-

molecule, then applying the above procedure repeatedly using

the same cube side chosen for the original dry sphere model,

but varying the cutoff used in Step 2. The Python version of

SCT provides the program optimize_model_params.py. This

automatically optimizes the cube side and hydration cutoff

values to match the theoretical volume derived from the input

protein sequence.

3.3. Scattering curve calculation using the Debye equation

The Debye equation relates the spatial distribution of

spheres to the scattered intensity as a function of Q. When

adapted to small spheres, a histogram of the distances d

between all spheres is constructed. In classic SCT the histo-

gram is generated from 400 equally sized bins using a bin

width defined by the user. The modern version of SCT defines

the bin width from the maximum and minimum pair distances

between the spheres. Should the user select the minimum and

maximum values of the distance histogram to coincide with

those found in the structural models, the classic and modern

procedures are identical. Once this histogram has been

calculated, the IðQÞ curve as a function of Q is obtained from

the Debye equation:

ITheorðQÞ ¼ IðQÞ=Ið0Þ ¼ gðQÞ n�1 þ 2n�2
Xm

j¼1

Aj

sin Qdj

Qdj

 !
;

ð3Þ

where dj is the distance between spheres represented by the

jth histogram bin, Aj the number of distances that fall into bin

j, m the number of bins in the histogram and n the number of

spheres in the model. The squared form factor gðQÞ is given by

gðQÞ ¼
3 sin Qr�Qr cos Qrð Þ½ �

2

Q6r6
; ð4Þ
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Table 3
Data output from the three new output modes introduced in sluv2.py.

All data are included in the ‘classic’ output mode and output from sluv.

Output
type

Macromolecular
molecular weight
(�10�3 kg mol�1)

Absorption
coefficient

Partial
specific
volume
(nm�3 kg�1)

Macromolecular
volume
(�10�3 nm�3)

Model No No No Yes
AUC Yes Yes Yes No
Project Yes Yes Yes Yes



where r is the radius of the spheres in the model and is almost

unchanged in the Q range of interest.

3.4. Wavelength spread, beam divergence and incoherent
scattering corrections

Instrumental effects that systematically alter results away

from their idealized form are significant in SANS, which is a

flux-limited technique, unlike SAXS when this is performed at

synchrotron sources. SAXS measurements with laboratory

benchtop slit-geometry X-ray instruments are outside the

scope of the present SCT modelling, because SCT was

developed for applications at large multi-user X-ray and

neutron facilities. In SANS, the main sources of error in the

curves come from finite-beam angular divergence (��),

wavelength spread (��=�) and finite detector resolution

(Mildner & Carpenter, 1987; Barker & Pedersen, 1995). These

effects ‘smear’ the neutron scattering profile, reducing the

definition of sharp features, which can significantly impact

further analyses. Experimentally, the optimization of the

resolution (decreases in �� and ��=�) results in reduced

scattered intensities; by reducing the resolution, increased

SANS intensities are obtained. To account for these effects in

SANS modelling, SCT enables the user to apply a smearing

function to the theoretical curve before comparison with

experiment (Perkins & Weiss, 1983). This is achieved by

convoluting the scattering curve with a Gaussian scattering

function ðQ;Q0Þ:

GðQ;Q0Þ ¼ �Qð2�Þ
1=2

� ��1
exp �ðQ�Q0Þ

2=2�2
Q

� �
; ð5Þ

where �2
Q is given by

�2
Q ¼ ð8 ln 2Þ�1 2Q

��

�

� �2

þ ��
�

2�

� �2
" #

ð6Þ

and the �� and ��=� parameters are user specified and

tailored to the SANS instrument. While a Gaussian function

has proved to be adequate for many earlier SCT analyses,

more recently developed analyses suggest that other functions

such as triangular profiles are more accurate for SANS

smearing corrections.

Occasionally, correction is required for the incoherent

scattering proton content of a sample measured in heavy

water, in which the experimental IðQÞ intensities are higher

than those calculated at large Q values. The correction arises

either from the non-exchangeable proton content of the

sample at higher concentrations of several mg ml�1 or from a

minor residual proton content in an incompletely dialysed

heavy water buffer. These corrections are typically 0.5–1.5%

of the I(0) value and are applied as a flat baseline to the

theoretical IðQÞ intensities after the curve fitting is completed.

3.5. Curve comparison

The final stage of constrained modelling compares the

theoretical scattering curve with the experimental one. In

SCT, the theoretical IðQÞ values are matched to the experi-

mental IðQÞ values by taking the theoretical IðQÞ value

corresponding to the closest Q value seen experimentally. This

procedure permitted comparison of the same theoretical curve

with multiple experimental data sets, including those from

different sessions. After this, the R factor is computed, by

analogy with crystallography, using the formula

R ¼

P
kIExptðQÞk � �kITheorðQÞk
�� ��P

kIExptðQÞk
� 100; ð7Þ

where � is a scaling factor used to match the theoretical curve

to the experimental Ið0Þ. The R factor is expressed as a

percentage, with lower values representing better fits. An

iterative search to minimize the R factor is used to determine

�. Graphs of the R factor versus Rg values are of great utility in

assessing the progression of a modelling fit analysis.

4. Application of SCT

All the tools in the classic version of SCT are command line

utilities which prompt the user directly for input (with the

exception of aps, which reads sphere models from standard

input). A more consistent interface is provided by modern

SCT, with a series of standardized command line flags passed

to the various scripts, and the parameters for analysis and

model generation contained in YAML files. The flags for each

script are found by running the script with no inputs chosen

with the --help flag. The YAML input file format is described

in Supplementary Figure S1 and the input parameters are

described in Table 4. The programs used to perform each of

the above steps in the constrained modelling workflow are

described in Table 1. Full documentation for all scripts of the

SCT package is included with the distribution and is available

at http://dww100.github.io/sct. A tutorial is also provided with

the code and on the web site.

4.1. Workflows

The analysis of thousands of structures requires scripts in

both versions of SCT to automate the entire process. In the

classic version, a bash script do_curve.sh is provided, but this

requires extensive user editing to ensure that the correct

inputs are passed into the individual programs. In the Python

version of SCT, a single YAML parameter file (Supplementary

Figure S2) and the directory containing the input models (in

PDB format) are the only inputs required for the sct_pdb_

analysis.py program to execute the constrained modelling

analysis workflow.

Prior to running sct_pdb_analysis.py, the sphere model

parameters are optimized to reproduce the theoretical volume

of the target protein. The optimize_model_params.py script

automates this process. It takes a PDB structure and option-

ally a separate target sequence and obtains the cube side value

which best reproduces the unhydrated protein volume, toge-

ther with a list of hydration cutoff values in order to enable the

user to determine the optimal hydration cutoff to recreate the

hydrated volume. These values should then be added to the

YAML file. A typical command line used to run the optimi-

zation procedure is
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optimize_model_params.py -p params.yml -i pdbs/

extended.pdb -o optimized_cutoffs.dat -s sequence.

fas

where params.yml is a YAML parameter file, pdbs/extended.

pdb is the path to a PDB file with no overlapping atoms,

optimized_cutoffs.dat is the output file and sequence.fas

is a FASTA file containing the full sequence for the target

protein. A sequence file is used when a small number of

residues are missing from the structure to ensure that a sphere

model of the correct volume is constructed. Nonetheless, it is

preferable to complete the initial input model using molecular

modelling software, because the extra volume is otherwise

unlikely to be correctly distributed in the generated sphere

models.

The main SCT workflow is performed by the script

sct_pdb_analysis.py. This takes the path to a directory of PDB

files, and to the experimental data for comparison, and inputs

(alongside the YAML parameter file) and returns curves and

sphere models in PDB format for each atomistic input along

with two output data files, which are formatted as tab-sepa-

rated columns. The first output lists the input experimental

data files and the Rg and Rxs1 values calculated for them. The

second output provides the comparison of the PDB structures

with each curve. Examples from the SCT tutorial are supplied

in the supporting information. The Rg and Rxs1 values are

calculated for each theoretical curve, together with the R

factor comparing it with each experimental curve. The para-

meters for the sphere and curve fitting and comparison, such

as Q ranges, are supplied in the input YAML file. A typical

command to run the full workflow is

sct_pdb_analysis.py -p params.yml -i pdbs/-x expt/

x.dat -n expt/n.dat -o sct_output
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Table 4
Explanation of the parameters in the YAML input to the modern version
of SCT.

The same parameters are required for Rxs1 and Rxs2, consequently they are
both denoted rxs?. The format of the YAML file is shown in Supplementary
Figure S2.

Parameter Type Meaning

wide qmin Float Minimum Q value used in wide-angle plot
wide qmax Float Maximum Q value used in wide-angle plot
rg qmin Float Minimum Q value used in Q2 versus ln I plot

(from which Rg is calculated)
rg qmax Float Maximum Q value used in Q2 versus ln I

plot (from which Rg is calculated)
rg fitmin Float Minimum Q value used in linear fit of Q2

versus ln IðQÞ from which Rg is calculated
rg fitmax Float Maximum Q value used in linear fit of Q2

versus ln IðQÞ from which Rg is calculated
rxs? qmin Float Minimum Q value to be plotted in the

region used to calculate Rxs1/Rxs2

rxs? qmax Float Maximum Q value to be plotted in the
region used to calculate Rxs1/Rxs2

rxs? fitmin Float Minimum Q value used in the linear fit from
which Rxs1/Rxs2 are calculated

rxs? fitmax Float Maximum Q value used in the linear fit from
which Rxs1/Rxs2 are calculated

sphere cutoff Integer Cutoff of the number of atoms in a grid box
over which a sphere is added to a sphere
model

sphere boxside Float The length of the side of the grid boxes used
in sphere model creation

hydrate positions Integer Number of positions surrounding each atom
onto which a ‘hydration sphere’ should be
added when creating a hydrated sphere
model (see Fig. 1c)

hydrate cutoff Integer Cutoff used to remove excess hydration
spheres when creating a hydrated sphere
model

curve qmax Float Maximum Q value for the theoretical
scattering curve

curve npoints Integer Number of points at which to calculate I in
the scattering curve (between 0 and
qmax)

curve radbins Integer Number of bins in the distance histogram
used with the Debye equation

curve smear Boolean Choice of whether to include a smearing
correction in the scattering curve

curve wavelength Float Wavelength used in smearing calculation
curve spread Float Wavelength spread ��=� used in smearing

calculation
curve divergence Float Beam divergence �� used in smearing

calculation
rfac qmin Float Minimum Q value used to compare curves

(calculate the R factor)
rfac qmax Float Maximum Q value used to compare curves

(calculate the R factor)

Figure 4
Comparison of neutron and X-ray scattering data with models of human
immunoglobulin IgG4 composed of Fab and Fc regions (Rayner et al.,
2014). (a) Atomistic structures of an extended asymmetric (left) and a
compact asymmetric (right) IgG4 model. In these, the Fc region is viewed
in a similar orientation. (b), (c) Comparisons of the calculated scattering
curves for sphere models generated by SCT from the atomistic models
with neutron and X-ray experimental data, respectively. The Q range is
depicted from 0.2 to 1.6 nm�1. In both cases, the compact asymmetric
model (blue curve: PDB code 4pto) gives good fits to the experimental
data, whereas the extended model (red curve) does not.



where params.yml is a YAML parameter file, pdbs is a

directory containing the atomistic model PDB files, expt/

x.dat and expt/n.dat are the experimental SAXS and SANS

curves, respectively, and sct_output is the path into which the

calculated output will be placed. The generated sphere models

and curves are placed in directories <method>/models and

<method>/curves under sct_output, where <method> is

either xray or neutron.

The application of the modern SCT workflow is illustrated

for two human immunoglobulin IgG4 models (Rayner et al.,

2014) (Fig. 4). The two conformations are significantly

different, one being extended with the two Fab regions distal

from one another, and the other being highly asymmetric with

both Fab regions packed together. The sphere models provide

good visual representations of the atomistic conformations.

The scattering curve from the compact model reproduces the

SANS and SAXS experimental curves better than that of the

extended model.

4.2. Python package

All of the functionality used to build the scripts of the SCT

package is accessible via a Python package, allowing advanced

users to create their own modified workflows. The Python

package contains five modules termed seq, pdb, sphere, curve

and param. As the names of the first four imply, these four are

each concerned with the processing of different types of data

(sequence, atomistic structures, sphere models and scattering

curves, respectively). The param module reads and validates

the YAML parameter files. The package has three main

dependencies, termed PyYAML (http://pyyaml.org/wiki/

PyYAML), NumPy and SciPy (both available from http://

www.scipy.org/), and utilizes matplotlib (http://matplotlib.org/)

for graphing. Elements of the classic code are linked using

F2PY, which is provided with NumPy. All of these depen-

dencies are freely available and found in common scientific

Python distributions. Once installed the package is loaded

using

import sct

Full technical documentation of the SCT package can be

found at http://dww100.github.io/sct or generated from the

source code using Epydoc (http://epydoc.sourceforge.net/).

5. Conclusions and outlook

In this report, we describe, update and publicly release the

SCT suite, which enables the computation of theoretical

scattering curves from atomistic models via coarse-grained

sphere models and their comparison with experimental SAXS

and SANS data. Whilst these tools have a history stretching

back several decades, this is the first time they have been

described together and released as open source. In addition to

the classic Fortran version of SCT, we provide a modern,

easier-to-use reimplementation in Python that makes calls to

this classic validated Fortran code. Our two design goals with

the Python version are to maintain the SCT algorithms and

functionality that have produced 77 structures to date

(Supplementary Table S1) and to provide SCT with a simpler

interface to (i) assist the programs’ application to larger

numbers of trial models in more ambitious projects and (ii)

allow SCT to be integrated into a user’s own workflow. To

further this goal, we are incorporating SCT as the primary

scattering curve calculator in the modelling tool SASSIE

(Curtis et al., 2012) in the CCP-SAS project. The aim of the

CCP-SAS project is to provide a suite of open-source simu-

lation and analysis tools for the atomistic modelling of scat-

tering curves within a unified graphical user interface,

including a web-based front-end and a back-end based on

high-performance computing hardware.
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