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Abstract: 

1. Accurate measures of extinction are needed in biodiversity monitoring and conservation 

management but ascertaining the exact time at which a species became extinct is difficult 

since a small population may go undetected for many years. 

2. For little-studied species, often the only information available is historical sighting data. 

Several statistical tests have been developed which use this information to make 

inferences about a species’ extinction. The increasing array of methods can present a 

daunting choice. 

3. We review the more frequently cited methods, for each model explaining its 

assumptions, the data required, the scenarios it was developed for and power 

considerations, if known.  We provide guidance on selecting the most appropriate method 

for a particular sighting record. 

4. We give examples from the literature to show how the methods have been usefully 

applied across conservation research, informing conservation decision-making and 

extinction inference. 

 

Introduction 

Extinction, the disappearance of the last individual of a species, is rarely observed, is very 

difficult to detect, and therefore usually must be inferred (Diamond 1987).  However, 

ensuring an accurate inventory of recent extinctions is important, not least to estimate a 

global measure of extinction rate to monitor biodiversity loss, particularly in light of 

international conservation targets (e.g. Convention on Biological Diversity 2010) and to 

provide a more detailed understanding of extinction trends over time.  Eight hundred and 

sixty species have been documented as becoming extinct in the wild since 1500 AD (IUCN 

2014) , almost certainly a considerable underestimation of the true extent of extinction 

during this period (Turvey 2009).   

 

Listing a species as extant (still in existence) when it is actually extinct is undesirable since it 

can lead to misallocation of funds, incorrect reporting of current extinction rates and loss of 

public credibility in conservation science.  It is hard, if not impossible, to know how often 
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such a mistake occurs but there are numerous examples of the converse, species which have 

been declared to be extinct, only to be rediscovered (e.g. Fuller 2001; Keith & Burgman 

2004; Butchart, Stattersfield & Brooks 2006; Fisher & Blomberg 2011).  Whilst these 

incidences can be viewed as happy mistakes, they too can lead to the aforementioned 

undesirable effects and in at least one case, to the extirpation of species – the rediscovery of 

the Cebu flowerpecker along with historical evidence of primary forest where it had been 

thought none remained suggest that Cebu and 8 of its endemic birds were written off too 

early (Collar 1998). 

 

When species extinction is not directly observed, observations can be used to infer the 

extinction date of a species.  A variety of information can be used:  a time series of historical 

sightings, a time series of absences (i.e. dates at which surveys have failed to record the 

species), the likelihood of detection given that the species is present, the effort expended in 

searching for the species, change in abundance over time (i.e. population trajectories), 

potential remaining habitat and its relationship to abundance, the severity and extent of 

processes threatening the species, and intrinsic taxon information (e.g. life history traits).  

Ideally all available information would be used to infer extinction (for example, non-

sightings, measures of sighting effort, the likelihood of observing a species if it is extant). 

However, data is often restricted to sightings data and quantitative techniques have thus 

been developed for this purpose (Solow 1993a; Burgman, Grimson & Ferson 1995; Roberts & 

Solow 2003; McInerny et al. 2006) (see Table 1 for full list). There has been a tendency in the 

literature to apply multiple methods to a sightings record (e.g. Burgman, Grimson & Ferson 

1995; Duffy et al. 2009) although the power of the methods differs depending on the nature 

of the sighting data (e.g. Rivadeneira, Hunt & Roy 2009).  The aim of this review is to guide 

the user through the methods that use contemporary sightings data to infer extinction. We 

summarise these methods explaining the scenarios to which each could be applied, describe 

how they have been used in recent literature, and suggest how they could be incorporated 

into conservation decision-making. 

 

Sighting records 

We define a time series of sighting records as the times at which a species has been 

recorded as present.  Although commonly referred to as a ‘sighting’ in the literature, the 
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presence may be represented by a museum specimen, an acoustic record, a visual 

observation or some other diagnostic indicator of presence such as a hair or faecal sample.  

Following earlier literature, we also use the term ‘sighting’ to mean any reliable record of a 

species’ presence.  For the purposes of the methods described here, sightings must be 

independent of one another (see Box 1):  multiple sightings of a taxon made at the same 

location and on the same day would not be viewed as independent. 

Uncertain veracity of sighting data can present difficulties.  In particular, anecdotal 

occurrence data should be verified before use.  Recent developments for inferring extinction 

can incorporate uncertain sightings (Solow et al. 2012; Lee 2014; Lee et al. 2014; Solow & 

Beet 2014; Thompson et al. 2014) (see Table 3), the complications arising from uncertainty 

in sighting data are discussed in detail elsewhere (McKelvey, Aubry & Schwartz 2008; 

Elphick, Roberts & Reed 2010; Roberts, Elphick & Reed 2010; Lee et al. 2014; Solow & Beet 

2014; Thompson et al. 2014). 

 

Methods 

Frequentist and Bayesian methods have both been developed to analyse sighting records 

(see Table 2) but they have important differences in their outputs. One type of frequentist 

method, null hypothesis significance testing (NHST) models generate a p-value, which is the 

probability of obtaining the sighting data (or more extreme sighting data further from the 

null hypothesis), given the null hypothesis that the species is extant.  If this p-value is small 

enough, say < 0.05, we have observed an event that is highly improbable given that the 

species is extant and therefore can ‘reject’ the null hypothesis (understanding that there is 

still a chance that this rejection is incorrect).  The probability statement can also be 

rearranged to generate an estimate of extinction time.  In contrast, Bayesian methods give 

the probability that a species is extant, given the sighting data.  There are several instances 

in which these two outputs have been confused in the existing literature (e.g. Burgman, 

Grimson & Ferson 1995; McCarthy 1998; McPherson & Myers 2009; Jaric & Ebenhard 2010; 

Chong et al. 2012).  It is important to remember that in classical, frequentist statistics, the 

species either is or is not extinct; there is no ‘extinction probability’.  In Bayesian statistics, 

however, a hypothesis is treated as a random variable with a probability of being true, thus 

an extinction probability may be calculated.  All of the methods assume that sightings occur 

as a Poisson process (Box 1). 
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Frequentist methods 

Using a time series of historical sightings, Solow (1993a) proposed a simple method for 

testing the hypothesis that a taxon is extant or estimating the time at which extinction 

occurred.  This time series occurs over an observation period [0,T], where T is usually the 

present time (Figure 1).  There are n recorded sightings of the taxon within this time, with 

the most recent occurring at time tn.  Like all of the methods, Solow’s 1993a method  

assumes the sighting record is a Poisson process (Box 1). The extinction of the taxon occurs 

at some unknown time TE, until which the sighting rate λ(t) is constant, and after which λ(t) 

falls to zero.  The method tests the null hypothesis that extinction has not already occurred 

(i.e. TE > T) using the likelihood ratio statistic; an unusually large ‘gap’ between tn and T 

makes it more probable that the population has gone extinct during that interval.  

 

The p-value corresponding to the null hypothesis that extinction has not occurred is (tn / T)n.  

The smaller tn is relative to T, the smaller this p-value, i.e. the smaller the probability that all 

n sightings would occur before time tn given that the species is extant.  (As mentioned 

earlier, the p-value should not be confused with the probability that the species is extant.) If 

a fixed significance level α is assumed, and extinction occurs at TE < T, then by rearranging 

the probability statement an upper (1-α) confidence limit of  α-1/n tn is obtained for the time 

of extinction TE.   Solow’s original equation (1993a) has been modified in various ways: for 

example, Burgman, Grimson & Ferson, (1995) (equation 2) outline a discrete-time form that 

accommodates multiple independent sightings within a single time interval, while McInerny 

et al. (2006) aim to reduce the influence of the length of the observation period by using n/tn 

as an estimate of the overall sighting rate.  McCarthy (1998) introduced a ‘Partial Solow 

equation’, a discrete-time equation that used indices of the collection or survey effort 

expended each year. For worked examples of the methods, see Table 2, Box 2 and the 

Supplementary Information. 

The above methods assume that the species is already in existence at the start of the 

observation period (t = 0). In some contexts (e.g. fossil records) this may not be appropriate, 

and Strauss & Sadler (1989) modify the basic method from Solow (1993a) to allow both the 

start and the end of the species sighting range to be unknown. Marshall (1997) further 

generalises this to allow λ(t) to vary.  We mention these two methods since they regularly 

crop up in the literature.  However, they have limited conservation applications being mainly 
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used to test for a common extinction time in a group of taxa known to be extinct and we do 

not discuss them further. 

The Solow 1993a method extends naturally to the case when the sighting rate λ(t) is not 

constant (McCarthy 1998).  A general equation for the p-value of the null hypothesis that 

extinction has not occurred is [Λ (tn)/ Λ(T)]n where Λ (t) = .  By making an 

assumption about the form of the sighting rate function λ(t), it is possible to calculate this p-

value.  For example, Solow (1993b) calculates the significance level given a log-linear sighting 

rate function of the form λ(t) = exp(a + bt). 

 

An alternative simple approach that does not require specifying a parametric form for λ(t) is 

discussed by Solow & Roberts (2003).  The method is based on the work of Robson and 

Whitlock (1964) who considered the estimation of the end point of a distribution using an 

independent sample of data.  Again it relies on the property described in Box 1 that, given 

the number n of sightings, the sighting times are independently and identically distributed.  

The method tends to overestimate the extinction date, particularly when λ(t) is constant or 

increasing (Rivadeneira, Hunt & Roy 2009; Clements et al. 2014) (Table 1). 

 

Solow and Roberts’ method has been modified by Jaric and Ebenhard (2010), replacing the 

time elapsed between the two last sightings with the average time elapsed between each 

pair of successive sightings.  The equation is further modified for the case of a species where 

sighting rate has been changing over time, introducing a coefficient of trend in sighting 

intervals (c). 

 

An alternative frequentist approach, optimal linear estimation, (Cooke & Li 1996; Roberts & 

Solow 2003) outputs the year of extinction although the model can be rearranged to 

produce an approximate p-value for testing for extinction (Solow 2005).  Optimal linear 

estimation, also termed nonparametric, uses extreme value theory.  This theory applies to 

the properties of the maximum of independent and identically distributed random variables 

(here, the latest sighting, tn,) conditionally upon there being n observations in [0,T].  It shows 

that regardless of the distribution of the sightings, the distribution of the maximum is well-

approximated by a particular 3-parameter distribution known as the generalised extreme 
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value distribution.  Note, however, that the justification is an asymptotic one, and the 

approximation will not be a good one unless n is large.  This approach does not require the 

specification of a parametric form for λ(t) but does still assume that the underlying process 

of sightings is a Poisson process.  The extreme value theory is applied to the k most recent of 

the n sightings, so that the appropriate choice of k is an issue; if k is too small estimation will 

suffer from the small sample size but if k is too large the asymptotic assumption  may not 

hold (Solow 2005).  Collen et al. (2010) found that the technique generally gave accurate 

predictions when applied to more than 5 of the last sightings although upper confidence 

limits increased with increased gaps between sightings. The method was uninformative for 

assigning extinction times for species with 5 or fewer sightings since upper confidence limits 

were often millennia into the future.  Rivadeneira et al. (2009) found that including large 

numbers of sightings increased the upper bounds of the estimates.  Using experimental data 

from microcosms and considering extinction date alone, Clements et al. (2013) found, 

precision increased with the number of sightings used except when search effort decreased 

over time, and Clements et al. (2014) strongly recommend k > 10.  Clements et al. (2014) 

found optimal linear estimation to be the most robust of the methods in general, showing 

no bias towards over or underestimation and having the lowest mean error of methods 

investigated for both experimental and real populations.  It appeared to perform better than 

other methods when a species is undergoing gradual abundance decline and when the 

probability of observing the species is low (Rivadeneira, Hunt & Roy 2009; Clements et al. 

2014) (Table 1). 

 

Model selection 

Much of the literature covering the frequentist models is devoted to testing their 

performance using either simulated data (e.g. Burgman et al. 2000; Solow & Roberts 2003; 

Rivadeneira, Hunt & Roy 2009; Collen, Purvis & Mace 2010) or species of known 

conservation status (e.g. Burgman, Grimson & Ferson 1995; Solow & Roberts 2003; Collen & 

Turvey 2009; Duffy et al. 2009), with a recent addition testing models on experimental 

microcosm data (Clements et al. 2013; Clements et al. 2014).  Each model has different 

responses to variation in number of records and change in λ(t) (summarised in Table 2), 

being sensitive to different patterns of change in abundance and search effort and therefore 

to different patterns of deviation from homogeneity (Burgman, Grimson & Ferson 1995; 

Burgman et al. 2000) (but see (Vogel et al. 2009).  In studies to date, optimal linear 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

estimation (Roberts & Solow 2003) seems to give the most accurate extinction estimates in 

the majority of, but not all, circumstances (Rivadeneira, Hunt & Roy 2009; Clements et al. 

2014).  However, given that the number of actual cases in which extinction is known with 

certainty is so small, we would caution against extrapolating these findings into a general 

rule. 

 

The performance of hypothesis testing methods can be assessed by examining rates of Type 

I (the null hypothesis is true but rejected) and Type II (the null hypothesis is false but not 

rejected) errors. These error rates can be calculated through simulation, and compared with 

expected levels given the significance level of the test (usually 0.05) (Collen, Purvis & Mace 

2010). Simulations can also be used to compare estimated dates of extinction with actual 

dates (Clements et al. 2014), and to assess the coverage of confidence intervals around the 

estimated date of extinction, that is, the probability that the true parameter value occurs 

within the bounds of the confidence interval (Rivadeneira, Hunt & Roy 2009). Ideally, 

coverage should equal the nominal level of the confidence interval so that, for example, a 

95% confidence interval covers the true extinction time of 95% of simulation runs on 

average (Rivadeneira, Hunt & Roy 2009). 

 

Tests performed on simulated and microcosm data have shown a tendency for higher 

accuracy across models when population decline is rapid (except Solow 1993b) (Rivadeneira, 

Hunt & Roy 2009; Clements et al. 2013; Clements et al. 2014) and accuracy tends to increase 

with number of sightings (Clements et al. 2014).  The sighting rate (affected by search 

regime) also affects accuracy, models responding differently to different rates (Clements et 

al. 2014) (see Table 1).  If information regarding λ(t) is known, the most appropriate model 

can be selected (Tablee 2).  However, care must be taken in interpreting sighting records.  

Contrary to expectations based on simulations and microcosm data, tests on well-studied 

wild populations showed greater accuracy on populations experiencing gradual rather than 

rapid decline (Clements et al. 2014).  This is probably due to the limited time from which 

temporally sporadic sightings of wild populations can be gathered, meaning the change in 

sighting rate does not mirror the population trajectory (Clements et al. 2014).  When the 

probability of observing a species decreases over time, the species is less likely to be 

observed in the period immediately preceding extinction, overstating evidence for early 
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extinction and producing confidence intervals that are too narrow (Rivadeneira, Hunt & Roy 

2009). 

 

It has been suggested that sightings data should be analysed using multiple models in order 

that significant changes are not missed due to one test faring poorly on a particular dataset 

(Grimson, Aldrich & Wanzer Drane 1992; Burgman, Grimson & Ferson 1995; Burgman et al. 

2000).  This is broadly sensible providing of course models are not applied to data that 

violate their assumptions (see Table 2), dueallowance is made for multiple model testing and 

that the models’ underlying processes are understood.  The different models can give quite 

different results, as illustrated in Box 2 by the three hypothetical sighting records containing 

a typical (Collen, Purvis & Mace 2010) 7 records spanning 126 years, with the last sighting 60 

years ago.  The effect of constant, decreasing and increasing sighting rates is explored (Box 

2) with p-values ranging from 0.032 to 0.271, 0.356 to 0.920 and 0.032 to 0.123 respectively.  

(When interpreting results, it must be remembered that the p-value does not relate to the 

species’ threat status.  A very recent sighting of the last remaining individual of a species will 

lead to a high p-value despite the species’ rapidly approaching and unavoidable extinction, 

see the sensitivity analysis in Table 2.)  These examples illustrate the importance of 

understanding the underlying processes of the models and the ‘natural history’ of a sighting 

record (Solow & Beet 2014).   

 

Three of the frequentist methods (Solow (1993a), Burgman, Grimson & Ferson (1995) and 

McInerny et al. (2006)) can only be used for records with a constant sighting rate.  With p-

values ranging from 0.044 to 0.065, these methods indicate that the null hypothesis might 

be rejected and thus that extinction is plausible.  The methods use only the first and last 

sightings and number of records, thus give the same p value regardless of sighting rate.  

However, applying these methods to records with a decreasing/increasing sighting rate 

would violate their assumption of a constant sighting rate meaning extinction might be 

incorrectly inferred/dismissed.   

The other methods (Solow (1993b), Roberts & Solow (2003), Solow & Roberts (2003) and 

Jaric & Ebenhard (2010)) do not assume a constant sighting rate and thus are affected by the 

distribution of one or more gaps within the sighting record, giving lower p-values when the 

sighting rate is increasing and higher p-values when the sighting rate is decreasing.  Solow 
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(1993b) assumes an exponentially declining population and cannot be used if the sighting 

rate is increasing although can be run on records with a constant sighting rate (an infinitely 

slow decline).  Jaric & Ebenhard’s (2010) method makes most use of the sighting record 

data, reflecting the change in sighting rate and might thus be preferred (if data available) 

over Solow & Roberts (2003) which uses only the last two sighting records.  Optimal linear 

estimation, which makes no assumptions about the sighting rate, estimates the year of 

extinction at 1988, 2089 or 1956 depending whether the sighting rate is constant, decreasing 

or increasing (Table 2).  

 

A sensitivity analysis using the hypothetical sighting records given in Box 2 shows the effect 

on the p-values/estimated extinction year if the last sighting is moved forward in steps of 10 

years to 50, 40,…10 years ago (Table 2).  As the last sighting year becomes more recent, the 

gap between p-values/extinction year tends to widen.  Even with a last sighting of 10 years 

ago there is a wide variation of p-values ranging from 0.642 (Burgman, Grimson & Ferson 

1995) to 0.989 (Solow 1993b decreasing sighting rate) although none of the methods gives 

reason to doubt that the species is extant.  The upper confidence limits given by optimal 

linear estimation increase as the last sighting year becomes more recent and, in the case of 

the decreasing sighting rate, reach over 2000 years into the future. 

 

Given the paucity of data for many species and lack of understanding of their sightings 

history these models can rarely be expected to provide a definitive answer to whether a 

species is extinct.  However, in the absence of additional information, they can be used to 

decide whether further survey effort/conservation action might be justified alongside 

factors such as the available financial resources and the role of the species (see ‘Deciding to 

declare extinction’ below). 

Table 2 shows each models’ data inputs and assumptions, with the aim of allowing the 

reader to quickly select which models may (not) be appropriate for their data.  For example, 

choice of model may be constrained by the number of sightings, or the sighting rate. 

An understanding of the process by which sightings data were generated is imperative when 

using these models since the majority of methods assume some level of continual survey 

effort across the observation period (Table 2).  If sightings arise from systematic surveys (e.g. 

Pan-European Common Bird Monitoring Scheme (European Bird Census Council 2006)) or 
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from incidental observations then this assumption may be reasonable (Solow & Roberts 

2003).  However, if sightings occur from sporadic expeditions separated by periods of no 

effort or if survey effort has been halted perhaps due to a period of political instability, this 

assumption may not be justifiable. Additionally, since the observed λ(t) is proportional to 

effort as well as to abundance there is a risk that the recent trend in increasing survey effort 

for threatened species (e.g. Boakes et al. 2010) could mask an abundance decline.  The 

relationship between sightings rate and abundance may not be linear according to how 

factors such as group size and population density change with abundance (McCarthy et al. 

2013).  This relationship may differ across species and could lead to a premature estimation 

of extinction time. If search effort is well understood, the sighting record could be 

standardised across periods of equal effort rather than years. 

 

Applications 

One widely cited application of the probabilistic methods is in conservation priority-setting; 

ranking taxa according to their p-value is a strategy that has been used to assess relative 

taxon vulnerability in several plant groups (Burgman et al. 2000; Ungricht, Rasplus & 

Kjellberg 2005; Robbirt, Roberts & Hawkins 2006; Maxted et al. 2008).  However, as 

mentioned above, it is incorrect to use the p-value as a measure of extinction risk since the 

methods test for extinction rather than population decline, and a very recent sighting will 

generate a high p-value regardless of trends in population abundance or sighting frequency.  

There are alternative statistical methods that can be used to infer population declines from 

sighting data (McCarthy 1998; Solow 1999; McPherson & Myers 2009). 

 

To our knowledge there are no instances in which the hypothesis-testing methods have 

been used to support a formal declaration of a taxon’s global extinction.  Indeed, in this 

respect their most useful application may be to provide a quantitative check on more 

qualitative conclusions about extinction (Solow 2005).  However, these methods do not 

need to be restricted to the topic of global extinction and we advocate their application to 

other conservation problems. There are several instances in which they have been applied 

informatively at smaller spatial-scales.  For example, they have been used to infer the 

probability of local extinctions of the Atlantic sturgeon Acipenser sturio and the ship 

sturgeon A. nudiventris (Dulvy et al. 2004; Jaric et al. 2009) and of the smalltooth sawfish 
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Pristis pectinata (del Monte-Luna et al. 2007; del Monte-Luna, Castro-Aguirre & Brook 2009).  

The methods can be used in protected area management; Patten, Gomez de Silva & Smith-

Patten (2010) were able to establish a sightings history for non-migrant birds in the Palenque 

national park, Mexico, prior to 1970, finding that species which were likely to have been lost 

from the park had also been the first to be lost from forest fragments in other areas of the 

Neotropics and lending support to theories that some species are particularly vulnerable to 

extinction (e.g. Bennett et al. 2005). 

 

In a similar vein, van der Ree and McCarthy (2005) used the methods to infer the persistence 

of mammals in the greater Melbourne area, Australia, comparing persistence between inner 

and outer local government areas and investigating how persistence varied between species 

groups.  Hamer and McDonnell (2010) repeated the exercise for frogs and reptiles.  Likewise, 

Farnsworth and Ogurcak (2006) inferred persistence of plant taxa in New England states.  On 

an even more local scale, survey data has been used in conjunction with the methods to 

estimate survey site abandonment in the endangered Cape Sable seaside sparrow 

Ammodramus maritimus mirabilis in the Everglades (Cassey, Lockwood & Fenn 2007).  

Cassey, Lockwood & Fennl (2007) concluded that long-term survey data, even if statistically 

flawed with regard to their original collection purpose, actually contain far more information 

than many managers realise and their study provides an excellent example of how sightings 

data can be used to provide new insights into population dynamics. 

Jaric et al (2012) make innovative use of Solow’s 1993a model to investigate the expansion 

of an invasive species, the Amur sleeper Perccottus glenii, in the Danube River.  By 

substituting the one dimensional spatial distribution of river length for temporal distribution, 

ordering sighting records from the most downstream to the most upstream, they estimate 

the probability that a species is present at a certain locality in the river.  Although the 

method gives a very simplistic species distribution assessment it is quick to apply and 

therefore of potential value to conservation managers as a preliminary assessment of 

riverine invasive species distributions. 

 

Bayesian methods 

As can be seen in Table 2, not all the current methods in the literature use sighting records 

to calculate a p-value for the null hypothesis that the taxon is extant.  Bayesian methods can 
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be used to make probabilistic statements about the state of the world (McCarthy 2007). In 

the context of sighting record methods, they can directly calculate the variable of interest: 

the probability that the taxon is extant, given the observed data.  This is an advantage firstly 

because it avoids any potential confusion over interpretation of p-values and secondly 

because it obtains a measure that can be applied unambiguously in a structured framework 

to inform management decisions (see next section). 

 

Solow (1993a) included a Bayesian adaptation of his aforementioned hypothesis test.  As 

with the analogous hypothesis test, this Bayesian model assumes the sighting record 

represents a Poisson process, and that extinction occurs at some unknown time TE until 

which the sighting rate λ(t) is constant but unknown and after which λ(t) falls to zero (Table 

2).  From Bayes theorem, the probability that the taxon is extant given the sighting record t 

is: 

)1)(|()|(

)|(
)|(

ππ
π

−≤+>
>=>

TTpTTp

TTp
TTp

EE

E
E tt

t
t , 

where p(t | TE > T) is the likelihood of the sighting record t given that the species is extant at 

time T, p(t | TE ≤ T) is the likelihood of the sighting record if the species is extinct by T, and π 

is the prior probability that the taxon is extant, independent of the observed sighting record.  

Studies that have applied this method to species data (e.g. (van der Ree & McCarthy 2005; 

Gerlach 2007; Hamer & McDonnell 2010) appear to have used non-informative prior 

probabilities of 0.5, which means that without the information from the sighting data, the 

taxon is judged as equally likely to be extant or extinct.  Using a non-informative prior allows 

the sighting data to dominate the calculation of the posterior probability.  The influence of 

the prior then depends on the amount of sighting data available. If sighting data are scarce 

and thus contain little information, the probability that the species is extant will remain close 

to the prior probability of 0.5. When specified appropriately, informative priors can increase 

the precision of estimates without systematically reducing accuracy (Morris et al. 2015). 

Priors can be elicited from experts (Martin et al. 2005)  or predicted through meta-analysis 

(McCarthy & Masters 2005). An informative prior for the probability a taxon is extant could 

be generated independently from sighting history by considering, for example, the type and 

extent of threats affecting the species. Within the above equation, the prior could be 
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expressed as a probability distribution instead of a fixed value, although this would make the 

calculation less accessible. 

As with the analogous frequentist method, this simple model provided a basis for further 

development. It has been extended to account for a decreasing sighting rate, as would occur 

in a population declining to extinction (Rout, Salomon & McCarthy 2009). Because of 

difficulties in obtaining analytical solutions for this more complex Bayesian model, a 

probability of extinction was obtained by estimating the magnitude of sighting rate decline 

from the sighting record rather than providing a solution for all possible magnitudes (Rout, 

Salomon & McCarthy 2009). (Similarly, Rout, Heinze & McCarthy (2010) used trapping data 

to estimate the magnitude of decline in sighting rate – we have not included this in Table 2 

because it uses additional data outside of the historical sightings record).  

 

Solow’s 1993a Bayesian method has also been extended to accommodate uncertainty as to 

the validity of sightings (Solow et al. 2012; Lee 2014; Lee et al. 2014; Solow & Beet 2014; 

Thompson et al. 2014) as summarised in Table 3. For example, sightings based on visual or 

aural observation can be termed ‘uncertain’ since they could potentially be false (mistaken) 

as opposed to valid. Decisions on whether to exclude uncertain sightings or treat them as 

valid can be difficult to make and often have a substantial effect on the results of extinction 

calculations (Roberts, Elphick & Reed 2010; Rout, Heinze & McCarthy 2010).  Solow et al. 

(2012) extended the 1993a Bayesian method to incorporate sightings of uncertain validity, 

using as an example the controversial sighting record of the ivory-billed woodpecker 

Campephilus principalis. Sightings based on physical evidence are classed as certain, the 

others as uncertain. Certain and uncertain sightings were assumed to follow independent 

stationary Poisson processes, with certain sightings occurring first, followed by uncertain 

sightings. Uncertain sightings comprised both false uncertain and valid uncertain sightings, 

with the latter occurring at the same rate as certain sightings.  

 

Subsequent papers aimed for more general characterisations of this problem where 

uncertain sightings can occur at any time throughout the sightings record, and at a different 

rate to certain sightings (Thompson et al. 2014, Lee et al. 2014, Solow and Beet 2014). 

Thompson et al. 2013 and Lee et al. 2014 account for the fact that different types of 

sightings vary in uncertainty, e.g. photographs, expert visual records, audio records, local 
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reports. Both methods partition the sighting record into discrete uniform time intervals 

rather than continuous time. Thompson et al. 2014 also takes into account historical search 

effort, accommodating cases where sightings occur both within and outside of structured 

surveys, using expert-derived estimates of the probability of sighting the species during a 

survey. Whilst this feature reduces the uncertainty in extinction when compared to three 

other Bayesian models in which search effort is not incorporated  (C.F. Clements, T.E. Lee & 

M.A. McCarthy, unpublished data), in practice, search effort is rarely known. One of 

Thompson et al.’s (2014) solution methods is provided within a freely available Excel 

spreadsheet that can also include uncertainty in the prior probability the species currently 

persists (Lee 2014). 

 

Regan et al. (2006) developed a simple model for calculating the probability a species is 

extant given its annual probability of detection, calculated from its sighting record, and the 

probability it will persist from year to year. In assuming constant probabilities of detection 

and persistence, this essentially assumes a constant population size up until the point of 

extinction (we have not included this in Table 2 because it uses additional data outside of 

the historical sightings record). Caley and Barry (2014) used this as a basis for a more general 

model in which detection and persistence probabilities can vary as a function of population 

size. Using only the sighting record as input, this model can be applied to species where 

population size is not constant prior to extinction, but no assumptions are made about the 

population trajectory (it could be decreasing or increasing). 

 

Applications 

Fewer tests on simulated and/or real data have been conducted on the Bayesian methods 

described here (Table 1) than the frequentist.  This is likely due to a number of factors: the 

relative recentness of many of the Bayesian methods compared to frequentist, several of the 

Bayesian methods being developed for a particular set of circumstances and thus being less 

comparable, a lack of communication between theorists and empiricists (Alroy 2014), and 

perhaps conservation biologists tending to be more familiar with frequentist than Bayesian 

statistics.  Consequently, less is known regarding the performance of the Bayesian methods. 

The incorporation of prior information can be an advantage of Bayesian methods because it 

allows the user to combine and utilise different types of information in a transparent way 
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(McCarthy 2007).  Additional information relevant to assessing extinction but independent 

of a historical sighting record includes information about the timing and severity of 

threatening processes (including the interaction between threatening processes and the 

species’ life history traits), and the outcomes of recent targeted surveys.  For example, 

experts estimated a prior probability of between 0.24 and 0.48 that the Pohnpei Mountain 

Starling Aplonis pelzelni was extant in 2014, based on the severity, duration and geographic 

scope of threats to which it has been exposed (Lee 2014).  Regardless of the type of 

information used, prior probabilities can have an important influence on the calculation of 

the posterior, so they must be constructed in a logical and repeatable fashion (McCarthy 

2007)  (A recent ‘Bayesian’ method which uses the sighting data to set the prior (Alroy 2014) 

appears to be robust in predicting extinction, but we urge caution in its use since Bayesian 

principles require the prior to be set independent of the data.) 

There has been much recent development of Bayesian methods for inferring extinction (e.g. 

Thompson et al. 2014, Lee et al. 2014, Lee 2014) and with code generally now being 

provided with published methods we hope that conservation practitioners will feel more 

confident to test the power and accuracy of Bayesian methods as well as to utilise them (as 

appropriate) in management decisions. 

 

Deciding to declare extinction 

While these statistical methods provide a measure of the certainty of extinction, it still falls 

to decision makers to determine the level of certainty at which a taxon should be declared 

extinct, i.e., what is a “reasonable level of doubt”? (IUCN 2001).  In setting this threshold, it 

is important to consider the implications of declaring extinction, such as the cessation of 

conservation management, and the risks and consequences of making the wrong decision. 

 

Regan et al. (2006) provide the first formal analysis of this decision for a taxon, although in 

the context of declaring eradication of an invasive species.  They argue that the level of 

certainty at which a species should be declared eradicated depends on the cost of increasing 

certainty by performing more surveys, balanced against the cost of declaring eradication 

when the species is still present.  For invasive species, falsely declaring eradication can lead 

to damaging impacts caused by a remnant population allowed to grow undetected.  Regan 
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et al. (2006) calculate when a species should be declared successfully eradicated, expressed 

as a number of surveys without detection, to minimise the total expected cost.  

 

Rout, Heinze & McCarthy (2010) adapt this approach to making cost-effective decisions 

about declaring extinction.  They describe the consequence of wrongly declaring extinction 

as the increased expectation that the species will go extinct if management intervention is 

ceased.  They translate this into an expected monetary loss, and calculate when taxa should 

be declared extinct to minimise the total expected cost.  Chadès et al.(2008) also take an 

economic approach to the management of possibly extinct taxa, finding scenarios when it is 

cost-effective to manage and when it is cost-effective to survey, given the probability that 

the taxon is extant.  

Within these decision analyses, a variety of methods have been used to calculate the 

probability an undetected taxon is extant (Regan et al. 2006; Chadés et al. 2008; Ramsey, 

Parkes & Morrison 2009), including the Bayesian analysis of historical sighting records (Rout, 

Salomon & McCarthy 2009; Rout, Heinze & McCarthy 2010). 

 

Conclusions 

In this review we summarise the range of statistical methods used to infer extinction from a 

time series of sighting records.  By providing information on the assumptions and limitations 

of each method (main text and Tables 1, 2 and 3), we hope to enable users to choose the 

most appropriate method for their taxon.  In the instances in which knowledge of a 

population is limited to opportunistic sightings, these methods are a practical way to put this 

limited knowledge to use.  Their correct application can increase our understanding of a 

population’s status and help inform conservation decision-making.  However, when 

assessing the status of a population it is important to incorporate all available information, 

not just the limited information contained in a sighting record and we strongly recommend 

the development of a framework for the systematic integration of sighting records with 

other forms of information relevant to the assessment of extinction. 

Two related developments are required to make further progress in inferring extinction 

using sighting records.  First, many of the assumptions that are required for the various 

models are either extremely hard to judge, or rarely achievable in the haphazard manner 
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with which many sightings records are accumulated.  Better ways are needed to incorporate 

uncertainty into analyses of time-series of records, account for record quality, and 

incorporate survey effort and threat intensity.  Second, many of the limitations of inferring 

extinction are no longer the models, but the data required to produce them.  Techniques 

such as those covered here, will be most appropriate in settings, where quality, survey effort 

and decisions on thresholds can be made dependent on the desired use. 

 

Box 1: The Poisson process 

The basic assumption underlying most statistical methods for inferring extinction is that 

species sightings can be represented by a Poisson process, one in which events occur singly 

in continuous time and numbers of events in non-overlapping intervals of time are 

statistically independent of one another.  In the statistical methods discussed here, the 

events of interest are sightings of a particular taxon through time. 

 

We denote the rate function of a Poisson process by λ, which in this case represents the rate 

of sightings of the taxon.  A taxon is sighted if it is observed (or otherwise detected) 

anywhere in the study region at a particular time.  The chance of any given sighting depends 

on both the abundance of the taxon, and the amount of effort that is made to observe it as 

well as the conspicuousness of the taxon, i.e. whether it is cryptic, camouflaged, nocturnal 

etc.  The interpretation is that λ(t) is the instantaneous rate of sightings at time t and a 

natural assumption is that λ(t) is directly proportional to both abundance and effort so that, 

for example, if abundance were decreasing but sufficient effort were made to obtain and 

record sightings then the overall sighting rate could remain constant or even increase. If λ(t) 

is a constant for all t, then the Poisson process is homogeneous (stationary). 

For a Poisson process, the number of sightings in a fixed time period [0,T] has a Poisson 

distribution, where the mean of the distribution is given by the integrated rate Λ(T) = ∫ λ(t) 

dt over that time interval. Then, given that there are n sightings in [0,T], these sightings are 

independently and identically distributed over the time period with probability density f(t) = 

λ(t)/ Λ(T). In the special case when λ(t) is a constant, f(t) = 1/T so that the sightings are 

uniformly distributed over the time period. The standard methods for testing extinction are 

based particularly on this last property. 
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In a Poisson process, events occur in continuous time, while in practice, sightings data are 

often discretised. That is, rather than being a list of exact times of sightings at a particular 

location, they consist of records of the presence or absence of sightings in a discrete set of 

time intervals (usually years although any unit may be used provided the data are 

adequately resolved (Burgman, Grimson & Ferson 1995)). In the descriptions below, it is 

convenient to ignore this distinction and assume that the sightings occur in continuous time. 

As long as the sightings are relatively rare in the study region, then this distinction is unlikely 

to be important.  However, if data are aggregated into larger spatial regions resulting in 

frequent sightings, then the Poisson assumption will become less appropriate; this situation 

can be resolved if temporal resolution allows the time intervals to be shortened. 

 

Box 2: Example Calculations 

Here we calculate p-values (as calculated for T = 2014) or estimated year of extinction using 
three hypothetical sighting records with constant, decreasing and increasing sighting rates 
using 7 of the frequentist methods described.  To illustrate the case of multiple sightings 
within one time period in the discrete time form (Burgman, Grimson & Ferson 1995) we 
calculate the p-value based on an extra sighting in one of the time periods.  

 

Sighting records: 

Constant 
sighting 
rate 

1828 1849 
1849 

1870 1891 1912 1933 1954 

Decreasing 
sighting 
rate 

1828 1830 1834 1842 1858 1890 1954 

Increasing 
sighting 
rate 

1828 1892 1924 1940 1948 1952 1954 

 

             Sighting record 

 

Method Constant
sighting rate 

Decreasing 
sighting rate 

Increasing 
sighting rate 

Solow 1993a frequentist1 0.065
Solow 1993b1 0.271 0.920
Discrete time form (Burgman, 
Grimson & Ferson 1995)1 

0.044
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Solow & Roberts (2003)1 0.259 0.516 0.032 
McInerny et al. (2006)1 0.032
Jaric & Ebenhard (2010) eqn 61 0.258 0.356 0.123 
Optimal linear estimation (Roberts 
& Solow 2003)2   

1988
(1956, 2178) 
 
 

2089
(2020, 2089) 
 
 

1956  
(1954, 2006) 
 
 

 

1 p-value for the null hypothesis that the species is extant 

2 Estimated year of extinction with lower and upper confidence limits calculated for α = 0.05 
given in brackets 
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Model 

Tends to 

underestimat

e extinction 

time 

Tends to 

overestimat

e extinction 

time 

Accuracy 

increases 

with 

number of 

sightings 

Notes 

Solow 1993a 1  1 
Accuracy decreases with decreasing search effort1  and gradually decreasing 

population2. 

Solow 1993b 1  1 

Low power  if extinction time is close to the end of the observation period3 , if n

< 153  or if search effort is increasing1 . 

Upper confidence interval can be infinitely high3. 

Discrete-time form 

(Burgman, Grimson & 

Ferson 1995). 

 1  
Tends to overestimate extinction time, particularly when search effort is 

constant or increasing1 . 

Partial Solow Equation 

(McCarthy 1998). 
   Accuracy decreases with gradually decreasing population2 . 

Optimal Linear 

Estimation (Roberts & 
  1,4 

No bias towards under/over estimation but greater mean error in 
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Solow 2003). underestimates1 . 

Accuracy increases with number of sightings1,4  with a recommended k >5 and 

preferably >10. 

Type I (extant species declared extinct) and Type II (extinct species declared 

extant) errors high under exponential, accelerating and linear abundance 

declines. Upper confidence interval can be millennia into the future for species 

with few or widely spaced sightings4 . 

Accuracy declines with irregular and/or decreasing search effort5 . 

Robust to gradual population decline and low sighting probability2 . 

Solow and Roberts 

2003 
 1,2  

Tends to overestimate extinction time, particularly when search effort is 

constant or increasing1,2. 

Confidence interval can be very wide (Solow 2005). 

McInerny et al. 2006    

Unaffected by n and by the length of the observation period thus suitable for 

taxa that have been discovered relatively recently. 

Accuracy decreases with gradually declining population2 . 
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Jaric and Ebenhard 

2010 
 6  Unaffected by n and by the length of the observation period . 

 

Table 1.  Summary of the frequentist models’ performance on simulated and microcosm data.  For a detailed study of the models’ error rates see 1Clements 
et al. (2014), 2Rivadeneira, Hunt & Roy (2009), 3Solow (1993b), 4Collen, Purvis & Mace (2010), 5Clements et al. (2013) and 6Jaric & Ebenhard (2010). 
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Table 2.  Summary of the models’ outputs, assumptions, data requirements and code 
availability.  Sensitivity analyses have been conducted for models which do not require 
information additional to sighting records using the hypothetical records given in Box 2 and 
with the last sighting data increasing in increments of 10 years from 1954 to 2004, constant 
sighting rate -blue, decreasing sighting rate - red, increasing sighting rate - yellow), 
corresponding in an increase in p-value, extinction year or P(extant). 

1 sExtinct package (2013), in R: A Language and Environment for Statistical Computing (2012) 

2 Lee et al. (2014) 

3 Lee (2014) 

4 Caley and Barry (2014) 

 

Table 3. Summary of the data requirements of the Bayesian models that allow for 

uncertainty in sightings.   

 

 

 

 

Figure 1: A schematic representation of a sighting record (with credit to Burgman, Grimson & 

Ferson (1995)).  The first sighting may be used to define the start of the observation period 

t0, and in this case would be omitted from the total number of sightings to leave n = 5.  For 

example, consider that T = 100, and the most recent observation t5 was made at t = 55.  

Using Solow’s 1993a method, the p-value of the null hypothesis that the species is extant is p 

= (55/100)5 = 0.0503 (Burgman, Grimson & Ferson 1995). 
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