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Abstract 
 
The pharmaceutical industry is under increasing pressure to deliver new medicines 

quickly and cost effectively; traditional small molecule product pipelines have dried up 

and companies are increasingly investing into biopharmaceuticals. To date, the most 

successful biopharmaceuticals have been monoclonal antibodies. The ability to 

construct common manufacturing platforms for a range of antibody products has 

underpinned this interest. Antibodies are most often produced as heterologous proteins 

at large scale in stirred tank reactors. However, at manufacturing scale there is limited 

opportunity to undertake process development and optimisation. If a manufacturing 

process can be ‘scaled down’ experiments could be carried out at much greater 

throughput and occur in parallel throughout the entire product lifecycle. In creating a 

small scale model, the fundamental challenge lies in accurately recreating the 

engineering environment experienced at large scale in order to yield process relevant 

data. 

 

In this thesis a miniature, single use, 24-well shaken bioreactor platform was 

investigated as a small scale cell culture device. This plate format can operate either 

using direct (REG plate) or headspace sparging (PERC plate) i.e. with either the 

presence or absence of a dispersed gas phase. Initial work involved the experimental 

and theoretical characterisation of the novel, miniature bioreactor (7 mL) and the 

conventional stirred bioreactors (1.5 L), themselves mimics of pilot scale GSK cell 

culture processes. Under typical operating conditions in the miniature bioreactor, 

measured mixing times were 0.8 – 13 s and apparent kLa values in the range 5 – 50 hr-1.  

 

Based on these findings, cell culture kinetics were investigated. A methodology for 

consistent, parallel cell cultures was first established and then used to determine the 
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impact of the dispersed gas phase on culture kinetics of a model CHO cell line. Cultures 

performed with head space aeration showed the highest viable cell density (15.2 × 106
 

cells mL-1) and antibody titre (1.58 g L-1). Final cell density in the PERC plate was 

nearly 40 % greater than shake flask cultures due to the improved control of process 

conditions. In contrast, cultures performed with direct gas sparging showed a 25 – 45% 

reduction in cell growth and 40 – 70 % reduction in antibody titre. The platform nature 

of the system was confirmed with similar findings obtained using a second antibody and 

cell line cultured under different conditions. The miniature bioreactor was then 

investigated for use as an early stage, cell line selection tool. A strong positive 

correlation between PERC and shake flask data was found (0.88), indicating the 

suitability of the platform for this application. In contrast, selection results in the REG 

plate format differed notably, highlighting the fact that the presence of a dispersed gas 

phase can significantly alter cell culture kinetics; and potentially cell line selection. 

 

A panel of four CHO clones was then investigated alongside bench scale bioreactors, 

operating at matched mixing times; the REG plate format provided the most comparable 

match in terms of cell growth and product titre. Primary recovery studies investigated 

use of a small scale depth filtration tool to analyse material generated previously with 

regards to ease of processing. Data showed that cells cultures in the presence of a 

dispersed gas phase yielded the most accurate prediction of primary recovery data. 

Subsequently, detailed product quality analysis confirmed consistent product quality 

attributes across the different cell culture formats.  

 

In summary, this work shows the utility of miniature bioreactor systems for high 

throughput strain selection under process relevant conditions. 
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Symbol Description Unit 
A Constant used in equation 1.6 - 
A280 Absorption at 280 nm Absorbance Units 
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a Area m2 
Ab Antibody titre g L-1 
b Term used in equation 2.8 - 
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c Constant used in equation 1.3 - 
C  Constant used in equation 1.10 - 
c1 Constant used in equation 1.14 m-1 
cIVC Cumulative integral of viable cell concentration 106 cells.day mL-1 
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Di Impeller diameter m 
DO2 Oxygen diffusion coefficient m2 s-1 
ds Shaker diameter m 
DT  Tank diameter m 
dw Microwell diameter m 
Fr Froude number (ds(2πN)2/2g) Dimensionless 
g Gravitational acceleration m s-2 
[glucose]  Glucose concentration g L-1 
hL Displaced liquid height m 
HT Tank height Tank height, m 
IVC Integral of viable cell concentration 106 cells.day mL-1 
kLa Volumetric oxygen mass transfer coefficient hr-1 
kLaapp Apparent volumetric oxygen mass transfer coefficient hr-1 
N Agitation rate s-1 
Ncrit Critical shaking frequency rpm 
OD600 Optical density at 600 nm Absorbance Units 
P Power input W 
Pg Gassed power input W 
Ph Phase number as defined in equation 1.11 Dimensionless 
Po Power number (P/ρN3Di

5) Dimensionless 
P’

o Modified power number as defined in equation 1.9 Dimensionless 
Pog Gassed power number Dimensionless 
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t Timepoint Days 
tm Mass transfer time kLa-1, s 
tm  Mixing time s 
Q Volumetric airflow rate m3 s-1 
Qgluc (avg) Average specific glucose consumption rate ng cell-1 day-1 
QP Instantaneous cell specific productivity pg cell-1 day-1 
QS Specific impeller pumping rate (∝ND3/VL) s-1 
Sc Schmidt number (µ/ρDO2) Dimensionless 
U Tip speed (πND) m s-1 
VL Liquid volume m3 
vs Superficial gas velocity m s-1 
W  Wetting tension N m−1 
Wb Impeller blade width m 
x Viable cell density 106 cells mL-1 
Z Term used in equation 2.3 - 
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Greek symbol Description Unit 
α Constant used in equation 1.6 - 
β Constant used in equation 1.6 - 
 Average energy dissipation rate W kg-1 or W m-3 
ε Local energy dissipation rate W kg-1 
εI Energy dissipation rate in the impeller discharge zone W kg-1 
εb Energy dissipation rate in the bulk liquid W kg-1 
εΤg Total energy dissipation rate in a gassed bioreactor W kg-1 or W m-3 
εig  Gassed energy dissipation rate from the impeller W kg-1 or W m-3 
εsg  Energy dissipation rate as a result of gas sparging W kg-1 
 Average shear rate s-1 
λK  Kolmogorov microscale of turbulence m 
ν Kinematic viscosity (µ/ρ) m2 s-1 
µ Viscosity N m-2 s 
ρ Density kg m-3 
σ Liquid surface tension N m-1 
τP Probe response time s 
 

 

ε

γ&
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Chapter 1. Introduction 

 

1.1. Pharmaceutical industry overview 

 

Whilst the value of the pharmaceutical market is continuing to increase with time, the 

rate of growth is declining (Figure 1.1). This is as a result of the limitations of the ‘big 

pharma’ blockbuster drug business model. Currently, development pipelines are failing 

to create products to meet the needs of the therapeutic market since most of the ‘easier’ 

indications have already been targeted and older product patents are expiring leading to 

generic drug competition. 

 

 

Figure 1.1. Global pharmaceutical industry sales (bars, US$ billions) against sector growth rate (lines, %) 
(2001-2008). Raw data current as of 2009 (IMS Health Market Prognosis) is presented in Appendix C. 
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A recent article from IMS Health indicated three challenges to existing pharmaceutical 

companies which helps explain the current surge in investment in biological 

therapeutics; a transition in growth rate, market segment and research and development 

(R&D) focus. Firstly, the global growth rate has decreased; major markets have 

moderated whilst “pharmerging” markets, e.g. China, Brazil, Mexico and Turkey have 

rapidly increased (IMS Health, 21st Century Pharma). This creates a shift in the 

indications that pharmaceutical companies need to target. 

 

The focus of pharmaceutical markets has also altered dramatically. Traditionally, the 

focus was on large numbers of patients within the primary care sector, with treatments 

for conditions such as infectious diseases, high cholesterol or blood pressure. However, 

this has realigned towards small niche groups of patients, requiring innovative, 

molecularly targeted products for more complicated diseases such as cancer or 

rheumatoid arthritis (Nelson et al. 2010). Finally, pharmaceutical companies have relied 

heavily on the blockbuster drug model; at the middle of the last decade 44.3% of growth 

was attributed to blockbusters; thus blockbuster drugs were at the centre of R&D 

strategy. However, as blockbuster R&D targets have decreased, pharmaceutical 

companies need to expand their product portfolios and redirect R&D budgets (IMS 

Health, 21st Century Pharma). The decline in growth in the market and recent successes 

with biologics, in particular antibody based therapeutics, has resulted in a huge 

investment of traditional ‘big pharma’ companies in biopharmaceuticals. 
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1.2. Biopharmaceutical industry 

 

Pharmaceutical companies are becoming increasingly reliant on biopharmaceuticals, or 

biologics, product sales as a means of generating revenue (Figure 1.2). This is largely 

due to recent successes in the field, hence driving up sales and interest in these products. 

 

Global prescription sales of biopharmaceutical products increased 12.5% in 2007 to 

more than $75 billion, and the global biotech market grew at nearly double the rate of 

the global pharmaceutical market, which increased only 6.4% that same year (IMS 

Health, Press Release). More recently, the global biopharmaceutical market value is 

estimated to account for 15.6% of the total pharmaceutical market, reaching a global 

market value of $138 billion in 2011 and is expected to increase to more than £320 

billion by 2020 (GBI Research, 2012). 

 

In 2007, 22 biopharmaceuticals generated sales exceeding $1 billion, compared with 

just 6 products in 2002; and in 2007, biopharmaceuticals represented 25% of the total 

pharmaceutical drug development pipeline (IMS Health, Press Release). One attractive 

feature of biotechnology products is the perceived lower associated risk; a recent 

analysis showed that the success rate of biopharmaceutical medicines had an overall 

higher success rate over chemically-derived medicines at 30% compared to 21.5% 

(Simoens, 2009). However, it should also be noted that biopharmaceutical products had 

a lower Phase III clinical trial success rate (Simoens, 2009). 
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Figure 1.2. Total pharmaceutical sales (dark grey), biopharmaceutical sales (light grey), values in US$ 
billions. (Adapted from IMS Health; Biogenerics: A Difficult Birth). 
 

The demand for antibody therapeutics triggered parallel efforts to increase production 

capacity through construction of large bulk manufacturing plants as well as 

improvements in cell culture processes to raise product titres (Kelley, 2009). Factors 

such as fermentation titre and overall yield are deemed critical determinants of 

economic success (Farid, 2007). 

 

There is now increased pressure for the cost-effective manufacture of antibodies, given 

the fact they are administered at high doses and show an increasing market potential 

(Farid, 2007).  However, biopharmaceutical products are expensive and time-consuming 

to develop (Section 1.6.). This highlights the need to establish and implement an 

efficient, small scale, cell culture model in a high throughput format that can be used to 

screen for high producing, high potency cell lines and rapidly advance them through 

development. 
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1.3. Overview of cell culture processes 

 

The advent of genetic manipulation led to the ability to manufacture heterologous 

protein products in a variety of cell lines (Rai and Padh, 2001). The choice of cell line 

largely depends on the nature of the product. These different cell lines have varying 

characteristics which can be advantageous for certain product types, but can also present 

different engineering challenges, e.g. in terms of the design of the production scale 

vessel and subsequent purification of the product. Many different cell types have been 

investigated for the production of heterologous proteins as therapeutic agents (Lee and 

Lee, 2005; Walsh, 2001). It is paramount that the cell line selected is not only capable 

of producing the protein properly, i.e. correctly folded with the necessary post-

translational modifications required for clinical efficacy, but also in sufficient quantities 

per manufacturing run so that production costs are not excessive. Table 1.1 summarises 

some of the commonly used cell types along with some brief comparisons between 

them with regard to heterologous protein production as therapeutic agents. 
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Table 1.1. Summary of different cell line characteristics with respect to the manufacture of heterologous 
protein products. Table adapted from Lee and Lee (2005) with information from Rai and Padh (2001). 
 

Cell Type Advantages Disadvantages 

Bacterial 

– High growth rate 

– High cell densities achievable 

– Inexpensive media 

– Misfolds large or complex protein products 

– No post-translational modifications or protein 

glycosylation 

– Must ensure removal of bacterial endotoxins 

from final product 

Insect 

– High growth rate 

– Correct folding of proteins 

– Correct protein glycosylation 

– High culture cost 

– Currently no manufacturing facilities or 

regulatory experience for this cell type 

Yeast 

– High growth rate 

– High cell densities achievable 

– Inexpensive media 

– Certain post translational 

modifications achievable 

– Often hypermannosylates the protein product 

rendering it ineffective 

Plant 
– Already used to make some 

pharmaceuticals 

– Slow growth rate 

– Expensive to culture 

Mammalian 

– Correct (‘human like’) folding of 

proteins 

– Correct protein glycosylation 

– Correct post-translational 

modification 

– Expensive media 

– Slow growth rate 

– ‘Shear sensitive’ cells due to lack of cell wall 

 

 

For the production of heterologous proteins for use as biopharmaceuticals, especially in 

the case of full length monoclonal antibody (mAb) molecules, it is often necessary to 

use mammalian cells. This is because these protein products are often difficult to fold 

and require significant amounts of post-translational modifications, not always possible 

in other cell types. Ideally, recombinant glycoprotein products will have high structural 

fidelity with the ‘natural’ product. Alterations to the protein in, for example, protein 
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folding and post-translational modifications could cause the product to actually become 

immunogenic, consequently resulting in an anti-therapeutic antibody response which 

can impact therapeutic efficacy, i.e. reduced circulation time in blood, and perhaps more 

significantly might precipitate an adverse reaction (Jefferis, 2009). Thus, whilst 

screening cells as potential manufacturing scale candidates, it is not only essential to 

analyse for high productivity in terms of amount of protein expressed, but also in terms 

of the quality of the protein expressed. Very high titres can be offset by the fact that the 

protein product itself is not therapeutically active or in fact immunogenic. 

 

One significant development with regard to recombinant glycoprotein production is the 

work of Glycofi Inc. (owned by Merck). This company is genetically engineering yeast 

cells to perform the necessary glycosylation post-translational modifications equivalent 

to human cells (Hamilton and Gerngross, 2007). This group have pioneered the 

glycoengineering of the yeast Pichia pastoris, which has led to the production of fully 

humanized sialylated glycoproteins (Hamilton and Gerngross, 2007). As described in 

Table 1.1, yeast cells have very high growth rates and inexpensive media requirements. 

If the ability to perform human-like glycosylation protein modifications could be 

integrated into this host line, then this is potentially the one future expression system 

that could rival mammalian cell culture for the production of recombinant glycoprotein 

products, in particular mAb therapeutics. 

 

Biopharmaceuticals may be produced in a range of mammalian cell types, e.g. 

immortalized Chinese hamster ovary (CHO) cells, mouse myeloma (NS0), baby 

hamster kidney (BHK), human embryo kidney (HEK-293) and human retinal derived 

cells, i.e. Per.C6 (Butler, 2005; Wurm, 2004). However, all currently licensed mAb 

products are manufactured in one of three mammalian cell lines: CHO, NSO or mouse 
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Sp2/0 myeloma cells (Jefferis, 2009). To date, no other mammalian cell lines, for 

example, the mammalian BHK line or human Per.C6 line, have been licensed for the 

production of mAbs (Flickenger, 2013). The industrial advantage to using CHO and 

NSO cells is that these are well-characterised platform technologies, which allow for 

transfection, amplification and selection of high-producer clones rapidly for a range of 

different products (Butler, 2005). There is further evidence that both NSO and Sp2/0 

perform unusual glycosylation; inserting additional oligosaccharide residues in some 

recombinant mAb products, but CHO cell lines do not and therefore may be preferred 

over these alternative mammalian cell hosts (Jefferis, 2009). 

 

The industrial scale culture of cells expressing a product of interest will most often 

occur in a bioreactor, in which conditions for growth of the cells and expression of the 

desired product are optimised. There are many reactor types that may be employed, but 

the most frequently used format is the stirred tank reactor (STR) (Doran, 1999). An 

STR is able to adequately mix, even at large volumes, providing homogenous culture 

conditions for the cells, i.e. uniform temperature, pH, dissolved oxygen, and nutrients. 

When using ‘fragile’ mammalian cells, there have been fears that high hydrodynamic 

shear, especially in the impeller discharge zone, may damage the cells. This led to the 

development of airlift reactors. Airlift reactors have to be very tall in order to operate 

effectively, and thus are awkward to install in manufacturing facilities. While they do 

not generate particularly efficient mixing they do have the capacity for high gas transfer 

rates. However, with the advent of shear protectants, like Pluronic F-68, airlift reactors 

have largely been made redundant in favour of STR’s (Nienow, 2006). In addition, 

research has suggested that cell death is more dependent on energy dissipation released 

as a result of bubble bursting rather than shear as a result of the impeller (Figure 1.3) 

(Heath and Kiss, 2007; Nienow, 2006). The chosen bioreactor may also be operated 
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under a variety of fermentation strategies, e.g. batch, fed-batch and perfusion, whereby 

the aim of the latter methods are to extend the culture length and thus increase the 

amount of time the cells are at their highest density and producing large amounts of the 

product of interest (Bailey and Ollis, 1986). 

 
 

 

Figure 1.3. Effects of various energy dissipation values on mammalian cells (Adapted from Godoy-Silva 
et al., 2010). ‘Maximum’ refers to the peak energy dissipation rate observed in a stirred tank bioreactor, 
i.e. in the impeller discharge zone, whereas ‘average’ refers to the average energy dissipation rate 
observed in the bulk of the liquid. 
 

Symbol Mode of growth Cell line Effect
A Anchored CHO-K1 Necrosis
B Suspension Hybridoma Necrosis
C Suspension Mouse myeloma Necrosis
D Suspension CHO-K1 Necrosis

Symbol Process Description Energy Dissipation Rate
1 Agitation Typical animal cell bioreactors Average
2 Agitation 10 L STR (Rushton, 700 rpm) Average
3 Agitation 10 L STR (Rushton, 700 rpm) Maximum
4 Agitation 22,000 L STR (Rushton, 240 rpm) Average
5 Agitation 22,000 L STR (Rushton, 240 rpm) Maximum
6 Flow through a micropipette tip Flow through a 200 µL tip in 0.2 s N/A
7 Bubble rupture Pure water, bubble diameter 6.32 mm N/A
8 Bubble rupture Pure water, bubble diameter 1.7 mm N/A

Cell Response

Hydrodynamic Conditions
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The successful manufacture of a heterologous protein in a production scale bioreactor 

will require significant optimisation before full productivity can be reached. It would be 

costly and time consuming to perform all process development and optimisation at large 

scale, therefore small scale mimics of large scale bioreactors have been developed to 

allow process assessment and optimisation before scaling up to production conditions. 

 

1.4. Monoclonal antibodies 

 

Within the biopharmaceutical sector there has been a range of highly successful 

products; however, the overriding driver in the sector has been as a result of the success 

of mAbs (Pavlou and Belsey, 2005). Nearly 40 recombinant antibody molecules have 

been licensed for therapeutic indications in Europe or the United States (2013), largely 

for cancers and chronic diseases (Dübel and Reichart, 2014). Table 1.2 highlights the 

number of mAbs that exist within the top 10 biopharmaceuticals in the world market. 

 

As shown in Table 1.2, over half of the top 10 biopharmaceutical products are mAb 

therapies, and together these 10 products account for half the total global biotechnology 

market. In addition it is estimated that 30% of new drugs to be licensed in the next 

decade will be based on antibody products (Jefferis, 2009). 
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Table 1.2. Top 10 biopharmaceutical products (2013). rHU = recombinant humanised, EPO = 
erythropoietin, PEG = Polyethylene glycol, G-CSF = Granulocyte colony-stimulating factor, TNF = 
Tumour necrosis factor. Adapted from Walsh, 2014. 
 

 

Ranking Product Type Indication Sales 

($ billions) 

Company 

1 Humira (adalimumab) Whole human mAb 

(anti-TNFa) 

Autoimmune diseases 11 AbbVie & Eisai 

2 Enbrel (etanercept) Fusion Protein 

(anti-TNFa) 

Autoimmune diseases 8.76 Amgen, Pfizer, 

Takeda 

Pharmaceuticals 

3 Remicade (infliximab) Whole chimeric 

mAb (anti-TNFa) 

Autoimmune diseases 8.37 J&J, Merck & 

Mitsubishi 

Tanabe Pharma 

4 Lantus (insulin glargine) Insulin analogue Diabetes 7.95 Sanofi 

5 Rituxan/MabThera 

(rituximab) 

Whole chimeric 

mAb (anti-CD20) 

Lymphomas/leukemia/ 

autoimmune diseases 

7.91 Biogen-IDEC, 

Roche 

6 Avastin (bevacizumab) Whole humanised 

mAb (anti-VEGF) 

Angiogenesis inhibitor 

(cancer) 

6.97 Roche/Genentech 

7 Herceptin (trastuzumab) Whole humanised 

mAb (anti-HER2) 

Metastatic breast 

cancer 

6.91 Roche/Genentech 

8 Neulasta (pegfilgrastim) PEGylated rHu 

G-CSF 

Neutropenia 4.39 Amgen 

9 Lucentis (ranibizumab) Humanised fAb 

(anti-VEGF) 

Anti-angiogenic  

(wet AMD) 

4.27 Roche/Genentech, 

Novartis 

10 Epogen/Procrit/Eprex/ESPO 

(epoetin alfa) 

rHu EPO Anaemia (renal 

failure/ chemotherapy) 

3.35 Amgen, J&J, 

KHK 
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Antibodies are complex protein molecules (Figure 1.4.a), which have the ability to bind 

to foreign entities, thus targeting them for destruction by other agents of the immune 

system. In order to combat the vast array of pathogens that an individual may encounter, 

lymphocytes of the adaptive immune system have evolved to recognise a great range of 

antigens, small protein fragments (Janeway et al., 2005; Lodish et al., 2004; Mathews et 

al., 2000) that might either be on the surface of, or within, a pathogenic organism. The 

antigen-recognition molecules of B cells are the immunoglobulins (Ig), which are 

themselves produced in a vast range of antigen specificities, with each B cell producing 

an Ig of a single specificity (Janeway et al., 2005; Mathews et al., 2000). Ig molecules 

can be membrane bound on the surface of B cells, and are thus known as B-Cell 

Receptors (BCR’s) or secreted from terminally differentiated B cells, or plasma cells, as 

antibody molecules (DeFranco et al., 2007).  

 

Antibody molecules have two distinct functions; the first is to bind specifically to 

antigens of the pathogen, whether it is, for example, a viral surface protein or a bacterial 

toxin. The second function is to recruit other cells or molecules of the immune system 

to destroy the pathogen once the antibody has bound to it (Lodish et al., 2004), as well 

as bind to molecules that determine the biodistribution of the antibody (Brekke and 

Sandlie, 2003). As such, the antibody molecule is composed of two different regions 

(Figure 1.4.c), one that binds the antigen and the other that brings about a certain 

response. The variable region, or V-region, is the antibody binding domain. The great 

degree of variation that occurs in this part of the protein structure means that a huge 

range of antigens may be recognised by the antibody (Lodish et al., 2004). The region 

that brings about the effector functions is much less varied and is therefore known as the 

constant region, or C region. The most common effector functions are complement-
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dependent cytotoxicity (CDC), phagocytosis and antibody-dependent cellular 

cytotoxicity (ADCC) (Brekke and Sandlie, 2003). 

 

All antibodies are composed from paired heavy and light polypeptide chains, and within 

these immunoglobulins there are five classes based on their different constant regions: 

IgM, IgD, IgG, IgA and IgE, with IgG being the most abundant form (DeFranco et al., 

2007; Mathews et al., 2000), and therefore the most relevant as a therapeutic agent. IgG 

molecules are approximately 150 kilo Daltons (Da) and are composed of two different 

polypeptide chains: the Heavy or H chain is approximately 50 kDa and the Light or L 

chain is approximately 25 kDa (Janeway et al., 2005; Mathews et al., 2000). Each IgG 

molecule is constructed from two light chains and two heavy chains, with disulphide 

bonds linking the two heavy chains, and each heavy chain to a light chain (Brekke and 

Sandlie, 2003; DeFranco et al., 2007). The IgG molecule is a Y-shape with each 

variable, antigen binding domain at the ends of the arms of the Y-shape. In this way, the 

antibody molecule is also capable of cross-linking antigens and binding to them more 

stably (Janeway et al., 2008). 

 

Figure 1.4. Illustrations of typical features of an antibody, as represented in the form of an IgG molecule; 
firstly by a) ribbon diagram highlighting how the heavy and light chains interact, b) block diagram 
showing the structural features of the antibody where C = Constant Region, V = Variable Region, L = 
Light Chain and H = Heavy Chain and c) simplified block diagram highlighting the key features of an 
antibody. Adapted from Janeway et al., 2005.  
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1.4.1. Fragment antibodies 

 

Whilst mAb’s have proven very successful as therapeutic agents, there has been further 

innovation in the field which has led to the development of variations of these Ig 

molecules, including fragment antibodies (fAb’s) and single-chain variable fragments 

(scFv’s) (Brekke and Sandlie, 2003). With a mass of approximately 57 kDa, a Fab 

fragment comprises a VH–CH1 polypeptide disulphide-bonded to a VL–CL polypeptide 

and at 27 kDa, a scFv fragment contains only the VH domain fused to the VL domain via 

a polypeptide linker (Holt et al., 2003). Figure 1.5 shows some of the different isoforms 

generated as therapeutic agents, which have been molecularly engineered from natural 

Ig molecules (Enever et al., 2009), and are currently on the market or in development. 

Figure 1.5 also shows some novel antibody variations, often combining multiple 

components from different Ig molecules and/or synthetic components. 

 

IgG Fab scFv Vk dAb Vh dAb

mAb-dAb Fab PEG Fab toxin
 

Figure 1.5. Schematic representation of different antibody molecules that have been identified as 
potential therapeutic agents (Adapted from Enever et al., 2009). PEG = Polyethylene glycol. 
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Figure 1.6. Schematic representation of a domain antibody. (Adapted from Holt et al., 2003). 
 

Domain antibodies, dAbs are between 11 – 15 kDa and can either exist as an isolated 

antibody VH domain, as shown in Figure 1.6 or as an isolated antibody VL domain (Holt 

et al., 2003). Each dAb will therefore retain three of the six naturally occurring 

complementarity determining regions, CDRs, (Lodish et al., 2004) from the original 

VH–VL pairing; these CDRs are highlighted in red in Figure 1.6. 

 

Domain antibodies are a relatively new development in antibody technologies as they 

can be used independently as a therapeutic agent but also may be employed as a way of 

augmenting mAb mode of action and pharmacokinetics. In the former context, a human 

dAb product is, for example, being investigated for HIV treatment, and it is thought that 

due to the small molecular weight of the product that the agent may be capable of 

penetrating into virally infected tissues (Dimitrov and Chen 2008; Chen et al., 2008). 

However, using a dAb as an independent therapeutic agent may cause problems with 

‘stickiness’ due to their high binding capacity yet small size (Ward et al., 1989). In 

terms of using dAbs as molecule or in, this context, mAb modulators, dAbs which are 

capable of specifically binding to serum albumin could be used to enhance the half-life 

and efficacy of any molecule attached to them (Domantis Patent, 2006). This could help 
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in terms of product efficacy, lower product dosage and reduce the number of doses 

required, for example. 

 

1.5. Cell culture process development 

 

Due to the high manufacturing costs associated with mammalian cell culture (Lee and 

Lee, 2005; Rai and Padh, 2001) there is a great demand to improve cell growth and 

increase fermentation titres. Historically, process development for biopharmaceutical 

products, has occurred in incremental stages. Long development periods can mean that 

by the time the manufacturing process is optimised, the product patent may be coming 

to the end. This highlights the need for faster, higher throughput development pathways. 

Figure 1.7 shows a historical case study for the process development of a mAb product, 

illustrating the kind of process improvements that can be achieved over time. 

 
Figure 1.7. Cumulative enhancement in mAb titre and bioreactor productivity (Figure produced from 
data compiled from a Genentech presentation given at Cell Culture Engineering X, 2006). 
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With regard to recombinant protein biopharmaceuticals, and in particular antibody 

manufacturing, industrial production typically takes place in mammalian cell lines, for 

reasons described previously. For recombinant protein products, the gene of interest, 

GOI, will be cloned into an expression vector, which is then used to transfect the cells 

(Lodish, 2004). The expression vector will typically combine a promoter sequence with 

some form of selection marker, e.g. antibiotic resistance or auxotrophic selection, i.e. an 

enzyme conferring the ability to synthesise a metabolite not present in the culture 

media, which can therefore be utilised to select cells that have stably integrated the 

exogenous genes (Lodish et al., 2004; Matasci et al., 2008). The cell line chosen must 

be able to efficiently transcribe the recombinant protein genes; this is determined by the 

expression vector used. It must be capable of translating the GOI’s messenger 

ribonucleic acid (mRNA) efficiently, assembling and modifying the GOI mRNA at high 

rates with minimal accumulation of incorrectly processed material. Also, the cell line 

must be able to achieve high cell densities within acceptable production timeframes and 

achieve desired product quality (Birch and Racher, 2006). 

 

There are two main expression vector systems used for mammalian cell production of 

recombinant proteins; Glutamine Synthetase (GS) System (Lonza Biologics) and those 

based on dihydrofolate reductase (DHFR) genes (Birch and Racher, 2006). 

Methotrexate (MTX) and Methionine Sulfoximine (MSX) are inhibitors of DHFR and 

GS, respectively (Matasci et al., 2008). Cells can be transfected with the expression 

construct using a variety of methods including viral vectors, lipofection, electroporation 

and chemical methods, e.g. CaPO4. Successive rounds of increased enzyme inhibitor 

can also be applied in such a selection system in gene amplification strategies, 

attempting to amplify the amount of integrated deoxyribonucleic acid (DNA) and 

increase productivity (Matasci et al., 2008). One example of an industrially used CHO 
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cell line that lacks DHFR activity is CHO-DG44.  The CHO-DG44 cell line was 

generated from a proline dependent CHO-pro3- strain, itself a derivative of the original 

CHO line, through mutagenesis to yield CHO-DG44. This cell line has deletions of both 

dhfr alleles; requiring glycine, hypoxanthine, and thymidine (GHT) for growth (Hacker 

et al., 2009). 

 

Transfected cells next undergo a screening process in order to select clones that exhibit 

the desired characteristics as described previously. The main difficulty is that the 

creation of a clone that exhibits all the desired characteristics is a very rare event, thus 

there are large numbers of cells to sort through in order to select high producing cell 

lines; making the process slow and labour intensive. One way to reduce the number of 

cell lines involved in screening is to increase the selection pressure (Hacker et al., 

2009). Additionally, a high throughput screening mechanism can be applied. One 

example cotransfects the cells with the GOI and a gene for the green fluorescent protein 

(GFP); thus, if the genes are genetically linked, the amount of GFP expressed will 

correlate with the expression of the desired protein product, allowing single cells to be 

selected based on expression of this fluorescent protein using fluorescent activated cell 

sorting (FACS) (Mancia et al., 2004; Matasci et al., 2008). Another example involves 

immobilisation of cells in a semi-solid matrix containing a fluorescent protein 

conjugated anti-antibody molecule, which then allows for the highest antibody 

producing cells to be selected by the relative amounts of stained antibody expressed into 

the matrix surrounding the individual cell, e.g. the ClonePix system (Genetix Ltd) 

(Hacker et al., 2009; Hanania et al., 2005). 

 

A case study from Wurm (2004) has shown the significant improvements that have 

occurred in a mAb process. In this article a theoretical process from 1986 is compared 
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to data from an actual industrial process in 2004. In 1986, cells typically reached a 

maximal density of ~2 × 106 cells mL-1; the product titre reached approximately 50 mg 

L-1 during a 7 day batch production process with a specific productivity of ~10 pg cell-1 

day-1. In the 2004 process, the culture rapidly grew from a seeding density of 2 × 105 to 

more than 1 × 107 cells mL-1; the accumulative yield over the three week fed-batch 

process reached ~4.7 g L-1 with a specific productivity up to ~90 pg cell-1 day-1. The 

author attributes the significant improvements in bioprocess productivity to a better 

understanding of gene expression, metabolism, growth and apoptosis delay in 

mammalian cells. Ongoing research in the field has led to improvements in vectors, host 

cell engineering, medium development, screening methods and process engineering and 

development (Wurm, 2004) particularly with respect to feeding strategies (Hacker et al., 

2009). 

 

Crucially, as discussed earlier, processes have historically been developed 

incrementally, in a step-wise manner (Figure 1.7). However, with increasing pressure 

for the biopharmaceutical sector to develop products, process development times must 

be shortened. Therefore there is an increased priority for high throughput, small scale 

unit operation mimics to investigate and optimise multiple process choices 

simultaneously; thus acquiring an optimised manufacturing process much earlier in the 

product lifetime. Such high-throughput systems for a cell culture process will require 

accurate scaling down of the manufacturing scale bioreactor thus providing a 

representative environment to perform process development and optimisation. In doing 

so, cells can be grown, transfected, screened and selected in an environment that reflects 

that in which they will be cultured at the manufacturing scale. This will allow for much 

more accurate selection of high producing clonal lines and further precision in 

optimisation studies for media and feed development or process optimisation studies. 
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1.6. Commercial drivers to accelerate product/process 

development 

 

Herceptin, a mAb therapeutic agent used in the treatment of metastatic breast cancers, 

costs in the region of $60,000 per patient per year (Waltz, 2005). Whilst there is 

increasing pressure from government and health bodies to decrease prices, 

manufacturers argue they must recoup their losses from product failures in clinic and 

expensive R&D procedures. It is reported that it costs on average $1.2 billion and takes 

approximately 10 years to develop a new biopharmaceutical (Tufts CSDD, Press 

Release). Furthermore, as shown in Figure 1.8, the top 10 pharmaceutical companies 

spend, on average, approximately one sixth of total revenue on R&D. Therefore, to 

meet such pressures yet remain economically viable, companies must find a way to 

accelerate their R&D programs and increase product pipeline throughput. To highlight 

this factor, even when looking at the top 10 biopharmaceutical products it takes, on 

average, approximately two years before development costs are recouped, assuming an 

average development cost of a biologic product of $1.2 billion (Purvis, 2009; La Merie, 

Top 20 Biologics 2008). Should selling prices need to fall, reaching break-even point 

would take even longer, and might even make some of these products non-viable. All 

these factors are driving for increased throughput in the R&D process, without losing 

quality of data that might risk product safety and therefore patient well-being, which 

could negatively affect public and private confidence, and thus investment in the sector. 
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Figure 1.8. Illustration of the significant investment required by pharmaceutical companies for ongoing 
R&D projects. Information from 2008, published October 2009 from Scrip's Pharmaceutical Company 
League Tables – 2009, raw data in Appendix D. 
 

1.7. Engineering characterisation of conventional cell culture 

bioreactors 

 

It is important to characterise any cell culture system in terms of key engineering 

parameters that are known to have a significant effect on process performance. 

Knowledge of the qualitative values of these parameters, and the availability of 

correlations to predict them, aid process optimisation and allow for effective scale 

translation. 

 

1.7.1. Stirred tank reactors 

 

STRs are the most common format of cell culture bioreactor, and are the predominant 

format used for large scale cell culture (10L+). Power input into the system is via a 

centrally rotated shaft; equipped with one or more impellers. Power input is required to 
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create a homogeneous environment for cell culture by: minimising local concentration 

gradients of toxins or feeds; dispersing gas bubbles; aiding cell suspension and 

dispersion; and by increasing mass, heat and gas transfer. The number and type of 

impellers used is dependent on the scale of the bioreactor and also the nature of the cells 

grown in the bioreactor. The geometry, number and location of the impellers used, as 

well as the geometry of the bioreactor itself, will significantly affect the fluid flow. 

Fluid flow perpendicular to the impeller shaft is termed radial flow, whilst parallel to 

the shaft is axial flow. Impellers which create predominantly radial fluid flow include 

Rushton or concave impellers. This type of impeller has the potential for hydrodynamic 

shear, due to the flat, sharp-edged impeller paddles; although the impact of such shear 

forces is now known to be significantly less than previously thought (Godoy-Silva et al., 

2009; Heath and Kiss, 2007; Nienow, 2006). Rushton impellers also provide excellent 

gas dispersion into the fluid and have high impeller power numbers. Radial flow 

impellers include marine impellers, which are regarded as low shear, have lower power 

numbers and provide good liquid mixing within the system. 

 

Air is sparged into the culture to provide oxygen for metabolism and to strip CO2 from 

the liquid. Gas sparging also affects fluid flow; gassing decreases the density of the 

culture medium thus decreasing the power requirement. Baffles are thin plates fixed 

perpendicular to the tank wall at regular intervals. These fixtures help to prevent liquid 

vortexing and aid the formation of a turbulent fluid flow regime within the system. 

Typically operating at medium to large scales, STRs can accommodate multiple probes 

to allow for online monitoring of key parameters, e.g. pH, DO and temperature, as well 

as control systems that can automatically adjust the operating conditions to maintain the 

process within certain set parameters, i.e. pumps attached to base to adjust pH upwards. 
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The nature of the fluid flow within a stirred tank reactor can be described by the 

dimensionless impeller Reynolds number, Rei; values greater than 1 × 104 describe 

turbulent flow regimes for stirred tank systems: 

 
µ

ρ 2
i

i
ND  Re =  (1.1) 

where ρ  is the liquid density, N is the agitation rate, Di is the impeller diameter and µ is 

the liquid viscosity (Doran, 1999). The power input, P imparted by the impeller is given 

by: 

 5
i

3
o DNP  P ρ=  (1.2) 

where Po is the impeller power number (Doran, 1999). Subsequently, the gassed power 

requirement, Pg can be determined on the basis of the ungassed power requirement by, 

for example, the Michel-Miller (1962) correlation: 

 
45.0

0.56

3 
i

2

g Q
NDPc  P 








=  (1.3) 

where c is a constant and Q is the volumetric airflow rate (Michel and Miller, 1962). 

The constant, c is based on the geometry of the impeller, with the most common value 

being 0.72. However, this original correlation has become widely questioned and 

therefore Amanullah et al. (2004) compares experimental data with a series of 

correlations in order to try and select one such equation for further use. They conclude 

that despite a lot of research in the field, no satisfactory correlation exists for accurately 

predicting the gassed power consumption (Amanullah et al., 2004). Further to this, 

Amanullah et al. (2004) and Nienow (2006) report that as agitation rates and sparged air 

flow are both relatively low for mammalian cell cultures, Pg can effectively be assumed 

equal to Pug. The mean energy dissipation rate, ε  can be determined given the power 

requirement of the system: 
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LV

P  
ρ

ε =  (1.4) 

where VL is the liquid volume (Nienow, 2006). Note that equation 1.4 calculates energy 

dissipation in W kg-1. Energy dissipation in W m-3 can be calculated by P/VL. An 

indication of the impact of the energy dissipation on cells cultured in an STR can be 

obtained using Kolmogorov’s microscale of turbulence, λK. This method predicts the 

smallest eddy size generated in the fluid, and if on a relative level of magnitude to the 

cell size, may result in cell damage: 

 
4
1

3









=

ε
ν

λK  (1.5) 

where ε is the local energy dissipation rate and ν  is the kinematic viscosity (ν  = µ/ρ)  

(Patterson et al., 2004; Tennekes and Lumley 1972). Local energy dissipation rates will 

vary depending on location in the bioreactor, i.e. the local energy dissipation rate will be 

highest in the impeller discharge zone. The bulk liquid and the impeller discharge zone 

energy dissipation rates, εb and εi respectively, can be estimated from the mean energy 

dissipation rate (Patterson et al., 2004). From such values the Kolmogorov microscale 

of turbulence can be determined for different regions in the STR. Another important 

characteristic is kLa, the volumetric oxygen mass transfer coefficient, a measure of the 

aeration capacity of a cell culture reactor (Stanbury and Whitaker, 1984). The following 

equation is typically used to determine the kLa for a given system operating under a 

given set of process conditions: 

 ( ) ( )βαε svak
gTL A  =  (1.6) 

where vs is the superficial gas velocity, εΤg is the total energy dissipation rate in a gassed 

bioreactor and A, α and β are all constants. εΤg is the sum of the gassed energy 

dissipation rate imposed by the impeller, εig and that caused by air sparging, εsg. Whilst 
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εsg = vsgρ, Nienow (2006) proposes that εsg can be ignored due to the low gas flow rates 

used in mammalian cell cultures. In addition, whilst εig = PogN
3Di

5/V (where Pog is the 

gassed power number) due to the fact that air flow into a bioreactor is relatively low for 

mammalian systems, Pog ≈ Po, therefore εig ≈ εi, and as such it can be assumed that εΤg ≈ 

εi. Nienow (2006) proposes that both α and β values should always be 0.5 ± 0.1, whilst 

van't Riet (1979) states values of A = 2×10-3, α = 0.7 and β = 0.2 for salt solutions (non-

coalescing) and values of A = 2.6 × 10-2, α = 0.4 and β = 0.5 for coalescing fluids.  

Stanbury and Whitaker (1984) state the same values as the second van’t Riet 

correlation, with the exception of α = 0.6. Mammalian cell culture media is a coalescing 

fluid (Betts and Baganz, 2006) therefore it is likely that Nienow’s proposal (2006) will 

be suited to this work. Typical kLa values for mammalian cell culture media are in the 

range 1 - 15 hr-1 (Nienow 1996; Nienow, 2006) 

 

Mixing time, tm is a value used to describe the length of time required in order for the 

fluid in the STR to become homogenous following addition of a tracer compound. 

Whilst this value varies greatly depending on the vessel geometry, Nienow (1998) 

proposes the following equation, in circumstances where the tank height, HT is equal to 

the tank diameter, DT: 

 ( ) 67.0
T

0.33 

T

i33.0
Tm D

D
D5.9 t

g

−
−









= ε  (1.7) 

Osman (2001) reports mixing time values of less than 60s for a 2L working volume 

(wv) STR. 
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1.8. Technologies for accelerating upstream process 

development 

 

As described in Section 1.5, small scale, high throughput models are now required to 

improve process development timelines. Creation of such small scale models allows for 

faster development prior to product launch and subsequent process optimisation parallel 

to manufacturing. Such a system is beneficial to a pharmaceutical company as: material 

can be generated quicker for clinical trials; further experimentation may provide a better 

understanding of the cell line and process; it will provide increased throughput therefore 

leading to quicker process development cycles, thus reducing development times and 

costs and, crucially, decrease time to clinical trials and product launch. Reducing 

timescales and development costs in this manner could mean that products are faster to 

market, cheaper and more readily available. 

 

Typically, a cell culture process can be scaled down from manufacturing size equipment 

(500L+ format) to varying degrees: pilot plant scale (large, 10L+ format), laboratory 

scale STR (medium, 0.5L+ format), shake flask systems, miniature bioreactors (small, 

>0.5L format), microwell plate formats and microfluidic bioreactors (micro, >1mL 

format). With decreasing scale, less process materials are required and therefore each 

run becomes cheaper. This allows for the throughput to be increased; however, it also 

becomes more difficult to recreate the engineering environment of the largest scale 

system. In addition, the ability to monitor and control the system also becomes harder. 

Therefore there is an apparent trade off between the degree of information that can be 

obtained from each run and the number of runs that can be performed in parallel (Figure 

1.9). 
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Figure 1.9. Apparent trade off between experimental throughput and the information that can be obtained 
from each experiment (Doig et al., 2006). 
 

In addition, how and where the system will be placed in the product development 

process will affect the type of system adopted, i.e. for initial cell line selection, a 

microwell plate format may be desired for highest throughput, however, for process 

optimisation studies this tool may not be appropriate; a system with greater potential for 

process monitoring and control may be required. Both the production scale and small 

scale systems will need to be fully characterised in terms of the engineering 

environment in order to try and predict how the cells will behave when scaling down. 

Following this characterisation work, suitable scaling parameters can be adopted in an 

attempt to recreate the environment of the production scale system in the small scale 

model. The following are typical scaling criteria used in industry when scaling down 

bioreactor systems (Flickinger and Drew, 1999; Hemrajani and Tatterson, 2003): 

 

– Equivalent power input per unit volume 
– Maintaining geometric similarity 
– Equal impeller tip speed (U) 
– Constant mixing times 
– Maintain constant kLa 
– Constant volumetric gas flow rate per unit volume 
– Constant superficial gas velocity 
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In addition the following combinations of criteria have been proposed for stirred vessels 

and are typically used with animal cell cultures (Ju and Chase, 1992; Xing et al., 2009): 

 
– Maintain geometric similarity, constant kLa, and constant specific 

impeller pumping rate (Qs) 
– Maintain geometric similarity, constant kLa, and constant maximum 

shear, defined by impeller tip speed 
– Constant kLa, constant impeller tip speed, and constant specific impeller 

pumping rate 
 

Ultimately, the scaling criteria must be based on the cell culture environment at the 

production scale. For example, if hydrodynamic shear is identified as a greater issue at 

large scale than oxygen transfer, this will affect the scaling mechanism adopted, i.e. 

scale-down with equivalent tip speed might be appropriate.  Furthermore, it is necessary 

to fully characterise the production scale environment in order to understand the unique 

set of scale-down challenges that the system presents. With regard to this, Nienow 

(2006) highlights some of the engineering challenges with cell culture operations 

carried out at very large scale. In such systems mixing time becomes a critical 

parameter; with poor mixing leading to non-homogeneous culture conditions in which 

physical and chemical concentration gradients can develop. Another critical parameter 

is that of CO2 removal. Often at large scale pure oxygen is used to try and support the 

high cell density without increasing the overall gas flow through the system, thus CO2 is 

generated faster than it is removed and can accumulate in the bioreactor over time 

(Nienow, 2006) which can be toxic to the cells at high concentrations. 

 

In this manner there are inherent problems working with small scale systems. Due to the 

small liquid volume, process analysis can be more difficult, accuracy can be an issue 

and physical forces including surface tension become more significant, thus greatly 
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affecting orbital shaking, for example. However, one of the main problems is that 

caused by evaporation, which affects osmolality, cell growth and productivity (Ho et al., 

2006). It is important to try and recreate the environment which the cells will experience 

at production scale when working with a scale-down device. One example of such a 

procedure is that employed by Godoy-Silva et al (2009). Attempting to recreate the 

maximum energy dissipation rate of a large scale bioreactor in a scaled down model, the 

group implemented a ‘torture chamber’ into which cells were routinely fed through in 

order to exert different degrees of physical pressure. The necessity is to first characterise 

the small and large scale formats, before scaling the cell culture operation with sound 

justification of the scaling criteria adopted. By doing so, greater understanding of the 

cells growing in the different scales will be achieved thus leading to greater ability to 

predict how the cells will behave in the large scale culture format, consequently 

improving process scale up and shortening development times. 

 

1.8.1 Overview of high throughput systems for cell culture 

 

Many commercially available systems have been employed to scale down cell culture 

processes for a wide variety of cell lines, each presenting a different set of engineering 

challenges at small scale. Some of these different formats are presented in Table 1.3. 
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Table 1.3. Examples of different commercial High Throughput Systems (HTS’s) for cell culture. DOT = Dissolved Oxygen Tension, ISFET = Ion-sensitive field-effect 
transistor, MTP = microtitre plate, N/A = not applicable, NR = not reprted and OD = Optical Density (Modified from Betts and Baganz, 2006). 
 

Device Format Volume 
(mL) Agitation / Aeration pH, DOT and OD 

Instrumentation KLa (hr-1) 
KLa 

Prediction 
Method 

Multiplexing Manufacturer / 
Reference 

Fedbatch-
Pro 

Based upon 
Shake Flask 50-500 Orbital / Surface pH (sterilisable probe) NR N/A 16 Dasgip (www.dasgip.com) 

µ24 MTP with 
Microfabrication 3-5 Orbital / Gas Sparging pH and DOT (optical probes) NR N/A 24 MicroReactor 

(www.Pall.com) 

SimCell Microfluidic 
Chip 0.3-0.7 Rotation of MBR chips / 

Surface via membrane 
pH, DOT and OD (at-line via cell-

reading station) Up to 500 CFD 
estimation 1500 Seahorse Bioprocessors 

(www.seahorsebio.com) 
MBR 
Array 

MTP with 
Microfabrication 0.25 Orbital / Electrochemical 

O2 Generation pH;OD (ISFET;optically) NR N/A 8 Maharbiz et al., 2004 

Polymer 
MBR Microfabrication 0.15 Magnetic Stirrer Bar / 

Surface via membrane pH, DOT and OD (optical probes) 20-75 Static Gassing 
Out 8 Szita et al., 2005; 

Zhang et al., 2006 
Stirrer-Pro 

Flask STR 200-275 Magnetic Stirrer Bar / 
Sparger pH and DOT (sterilisable probe) NR N/A 8 Dasgip (www.dasgip.com) 

Xplorer STR Up to 100 Single Turbine Impeller / 
Sparger pH, DOT and OD 400 Static Gassing 

Out 16 BioXplore 
(www.bioxplore.net) 

Cellstation STR Up to 35 Dual Paddle Impeller / 
Sparger pH, DOT and OD (optical probes) NR N/A 12 Fluorometrix 

(www.fluorometrix.com) 

MSBR STR 18 Triple Turbine Impeller / 
Sparger pH, DOT and OD (optical probes) Up to 480 Dynamic 

Gassing Out NR Betts et al., 2005 

Bioreactor 
Block STR 8-12 Gas-inducing Single 

Impeller 
DOT; pH and OD (optically; plate 

reader) 700-1600 Dynamic 
Gassing Out 48 Puskeiler et al., 2005 

Parallel 
BCR Bubble Column 200 Gas sparging pH and DOT Up to 540 Dynamic 

Gassing Out 16 Weuster-Botz et al., 2001 

MBCR Bubble Column 2 Gas sparging pH and DOT (optical probes) Up to 220 Dynamic 
Gassing Out 48 Doig et al., 2005 

Ambr STR 10-15 Single Marine Impeller / 
Sparger pH and DOT (optical probes) 2-13 Static Gassing 

Out 24-48 
TAP Biosystems 

(www.tapbiosystems.com); 
Nienow et al., 2003 

Micro-
Matrix 

MTP with 
Microfabrication 1-7 Orbital / Gas Sparging pH and DOT (optical probes) NR N/A 24 Applikon Biotechnology 

(www.applikon-bio.com) 

http://www.dasgip.com)
http://www.Pall.com)
http://www.seahorsebio.com)
http://www.dasgip.com)
http://www.bioxplore.net)
http://www.fluorometrix.com)
http://www.tapbiosystems.com);
http://www.applikon-bio.com)
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As can be seen from Table 1.3, various systems offer different features: the number of 

experiments that can be performed in parallel; the degree of monitoring and 

subsequent control; and actual culture conditions that can be generated, i.e. working 

volumes and type of agitation/aeration employed. In terms of the scaling parameters 

that are used, P/V is the most commonly adopted scaling criterion for microbial 

fermentations (Junker, 2004). In a recent scale-up study with  E. coli in a miniature 

bioreactor, 100 mL working volume, and a laboratory scale 3 L bioreactor, 1.5 L 

working volume, very similar growth kinetics were observed at matched kLa values 

(Gill et al., 2008a). Constant kLa is also used as a scaling parameter for an E. coli 

fermentation overexpressing transketolase in a microwell plate format with working 

volume of 1000 µL, and is successfully scaled to a 1.4 L bioreactor (Micheletti et al., 

2006). 

 

1.9. High throughput experimentation and mammalian cell 

culture 

 

There are a different set of challenges that need to be addressed when devising small 

scale high throughput experimentation (HTE) models for mammalian cell culture. 

There are many different systems on the market, which offer varying degrees of 

throughput, process control, and automation. However, there are a limited number of 

research papers on this particular topic, and in general there is a lack of detail 

regarding any engineering characterisation performed and subsequently the scaling 

criteria adopted. Table 1.4 summarises some of the recent scale-down work with 

regard to using mammalian cell hosts. In some cases, computational fluid dynamics 

(CFD) and particle tracking velocimetry (PTV) have been adopted to theoretically and 



John Paul James Betts   Chapter 1 
 
 

 - 52 -

experimentally characterise the culture environment in terms of power input and 

energy dissipation within the system.  

 

A device called the SimCell (Seahorse Bioscience, SimCell website) has been 

evaluated for use in HT cell line characterisation experiments (Legmann et al., 2009). 

This cell culture chamber is rotated, allowing an internal gas bubble to provide 

mixing. The system was used to culture antibody producing CHO cells at a working 

volume of 700 µL and a Design of Experiments (DoE) approach was used to select 

the optimum cell line which was then cultured in a 1 L working volume bioreactor to 

verify the successful selection of an optimum cell line and matched growth kinetics 

(Legmann et al., 2009). In other work, a VPM8 hybridoma cell line expressing 

antibody was found to exhibit similar growth kinetics and productivity when scaling 

from 800 µL microwell plate to 100 mL shake flask on the basis of constant mean 

energy dissipation (P/V), and these results were also indicative of those expected from 

a 3.5 L working volume bioreactor (Micheletti et al., 2006). 
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Table 1.4. Summary of selected scale-down work that has been performed with industrially relevant cell processes or theoretically determined engineering characterisation. 
 

Cell Line Reactor Type Scale Up Analysis Notes Reference 
CHO 
 

Applikon µ24: 24 Deep Well MTP 
 

- pH, DO and Temperature sensors 

- Thermal heat conductor 

- 0.2 µm sparge membrane 

µ24 (5 mL wv) and 2 L wv Bioreactor 
 
Matched parameters: 

• VCD, Viability, Titre, Offline pH and 
Metabolites: 

- Matched Lactate, Glutamine,  
  Glutamate and Ammonia 
- Glucose utilisation profile did not match 

Scale up criteria not specified 
 
Problems with foaming and uneven gas distribution 

Chen et al., 2008 
(Genentech) 

SP 2/0 
Mouse 
Myeloma 
 

3 L STR (Rushton, no baffles) with 75 L, 300
L, 2500 L (2 x pitched blade) 
 

- Formats not geometrically equivalent 

Step-wise prediction, with constant: 
1. impeller tip speed, 
2. shear rate at tip, 
3. circulation time 
4. overall mixing time 

Predictions used to estimate conditions where variables are 
most similar 

-  i.e. 1 and 4 impracticable at largest scale 
 
End up scaling with constant rpm 

Yang et al., 2007 
(Immunomedics) 

CHO 
 

5000 L bioreactor scaled from 5 and 20 L 
bioreactors 
 
 - Geometrically similar 

Address particular issues at very large scale: 
 

1.Bulk Mixing  
2.Oxygen Transfer 
3.CO2 Removal Rate 

 
Developed specific equations for CHO cell line 

Outcomes: 
1. Tm more dependent on volume than agitation rate 

Try to reduce overall feeding volume 
2. kLa more dependent on air flow rate than P/V 

Configuration only capable of supporting 7 x 106 cells 
mL-1 

3. Increased headspace airflow rate 200% with no effect 
Consider changing configuration to allow higher sparge 
flow rates 

Xing et al., 2009 
(Bristol-Myers 
Squibb) 
 

N/A 
 

a) Volumetric mass transfer coefficient (kLa) 
determination from 20mL wv to 1000L wv 
 
b) CFD Analysis of free-surface from 20mL 
wv to 13.4L wv 

a) Correlated kLa values against shaking speed  
 
b) Matched experimentally and by CFD simulation 
the free-surface shapes 

Dominant effect of free-surface turbulence on gas transfer in 
orbitally shaken bioreactors 
 
Proposed feasibility of orbital shaken systems for mammalian 
cell culture up to 1000L wv 

Zhang et al., 2009 
(ExcellGene) 
 

N/A 
 

Used energy dissipation rate (ε) values to 
quantify shear 
 
PTV to determine ε distribution within the 
impeller discharge zone 

εmax in the impeller region can be approximated: 
 
 
 
With geometric equivalency, E does not alter 
significantly over a large range of impeller speeds 

ε high in the impeller discharge stream 
 

- 43.5% and 70.5% of mechanical energy is dissipated in the 
impeller region for RT and PBT respectively 

 
This work does not account for gas-liquid interfaces 

Mollet et al., 2004 
(Genentech) 
 E =

εmax

N 3D 2ρ
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Both Zhang et al. (2008) and Barrett et al. (2010) preformed detailed theoretical and 

experimental engineering characterisation of the microwell plate cell culture format. 

Subsequently, Barrett et al. (2010) utilised a matched energy dissipation rate as a 

suitable scaling parameter and obtained similar growth and productivity results in a 24 

well microtitre plate and shake flask using a VPM8 hybridoma cell line. Other work has 

utilised matched mixing times as a scaling parameter when scaling up from 800 µL 

working volume microwell plates to 50 mL shake flasks using an antibody producing 

CHO cell line achieving comparable cell growth kinetics and productivity (Silk et al., 

2010). Utilising a diluted bolus, fed-batch culture mode, in conjunction with a sandwich 

lid style microwell plate covering, the issue of evaporation at small scale was overcome 

(Silk et al., 2010). At medium to large scale, Lonza Biologics have shown comparable 

growth kinetics and productivity data using constant P/V and vs as a scaling parameter 

for their stainless steel reactors, but also in 50L, 250L and 1000L disposable single use 

bioreactors (SUBs) (Valentine, 2009). 

 

Thus it is crucial to create a small scale model that accurately mimics the large scale 

equipment by employing a suitable scale translation criteria, based on theoretical and 

experimental characterisation of the cell culture system. 

 

1.9.1 Engineering characterisation of shaken cell culture bioreactors 

 

Shaken bioreactors are often used as small scale cell culture tools, for example, shaken 

flasks, and more recently, microwell plates. Such formats exploit smaller volumes of 

culture medium therefore allowing for higher throughput. The use of microwell plates 

also lends itself to automation. Whilst shaken systems are currently used at small to 

medium scales, Zhang et al. (2009) proposes that such a system could be used at up to 
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1000 L industrial scales. Due to the different mechanism for energy input, i.e. shaken 

not stirred, different engineering characterisation equations must be employed in order 

to define the cell culture environment. In contrast to the stirred systems described in 

Section 1.7 these geometries are less well defined in engineering terms and the available 

correlations tend to be more limited in their scope, i.e. to particular geometries and 

operating ranges. Büchs et al. (2000) propose the following modified power equation in 

order to determine the power requirements for a shaken culture system, in particular to 

shake flasks: 

 

 -0.2'
o Re C  P =  (1.8) 

 

where  P '
o is the modified power number which takes the form: 

 

 3/143
'
o VdN

P  P
fρ

=  (1.9) 

 

Leading to an overall expression for power input into a shaken system: 

 

 0.2-
2/3

43

Re
V

dN
C.  

V
P fρ=  (1.10) 

 

Here the Reynold’s number, as defined in equation 1.1, is calculated using the 

maximum inner flask diameter, df as the characteristic length scale and C is a constant 

found to equal 1.94. 

 

For shaken formats, Büchs et al. (2001) also discovered a phenomenon specific to 

shaken systems described as the phase number, Ph. This characterises two flow regimes 

observed in shaken systems. The ‘in-phase’ flow regime describes that which is seen 

when the majority of the fluid circulates around the edge of the shaken flask, 
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synchronized with that of the orbital motion of the shaker. On the other hand, an ‘out of 

phase’ fluid flow regime occurs when a minority of the fluid circulates along with the 

shaker platform, and a larger proportion of the fluid remains stationary in the centre of 

the flask. Thus, in an ‘out of phase’ flow regime the mixing and oxygen transfer are 

greatly reduced (Büchs et al., 2001). The following equation can be used to determine 

Ph: 
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where ds is the shaker diameter (Buchs et al., 2001). This group state that for Ph > 1.26 

the shaken fluid will be ‘in-phase’ and that for Ph < 1.26 the fluid will be ‘out of phase’ 

and thus poorly mixed and aerated. Barrett et al. (2010) use this correlation to predict 

the phase number for 24-standard round well (SRW) microtitre plates, at a shaking 

diameter of 20 mm, fill volumes from 800 µL to 2000 µL and agitation rates from 120 

rpm to 300 rpm. Under all conditions the fluid flow was found to be in-phase. 

 

Work carried out using microwell plates by Hermann et al. (2003) showed the presence 

of a critical shaking speed, Ncrit. It was shown that at shaking speeds below Ncrit there 

was little fluid movement within the well, and therefore there would be relatively little 

mass or oxygen transfer. However, at shaking speeds greater than Ncrit, there is a much 

greater degree of fluid movement. A correlation to predict Ncrit in 96 well microtitre 

plates was derived as follows: 
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s

w

dV4
d N
ρπ

σ
=crit  (1.12) 

 

where σ is the liquid surface tension (Hermann et al., 2003). Hermann et al. (2003) 

propose that the predominant influence on the hydrodynamic flow is that of surface 

tension. Therefore the correlation is based on the justification that the critical shaking 

frequency is reached when the labour delivered by the centrifugal force is equal to the 

surface tension of the liquid in the microtitre plate well (Hermann et al., 2003).  Barrett 

et al. (2010) determined that Ncrit was 230 rpm for 24 SRW at 800 µL fill volume. 

 

With regards to mixing times within shaken systems, Barrett (2008) determined the 

mixing times in 24 SRW microtitre plates when Re = 1,830. In this case the mean 

mixing time was estimated at 1.7 ± 0.06 s for both 800 µL and 1000 µL fill volumes. 

Hydrodynamic shear can be determined using an equation that relates the power input 

per unit volume to the average shear rate, γ&  (Barrett et al., 2010): 
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In addition, due to the different mechanism of agitation and the fact that microwell 

systems are not sparged; previous work has developed an equation from 24 SRW 

systems that can be used to determine the kLa for a non-sparged microwell system: 
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where DO2 is the oxygen diffusion coefficient, c1 is a constant, Fr is the Froude number 

(= ds(2πN)2/2g), g is the gravitational acceleration, Bo is the Bond number (= ρgdw
2/W), 

dw is the shaken microwell diameter, W is the wetting tension and Sc is the Schmidt 

number (=µ/ρDO2) (Doig et al., 2005). With reference to equation 1.10 it is expected 

that increasing the shaking frequency or throw will increase the power input into the 

system. Similarly, with reference to equation 1.14 and the work carried out by Barrett 

(2008) on mixing times within microwells, it is expected that increasing the well 

diameter and decreasing the liquid fill volume will have the effect of increasing the kLa 

and decreasing the mixing time within the fluid of the shaken system. 

 

CFD has previously been implemented as a tool to estimate the fluid mixing, energy 

dissipation rates and mass transfer in orbitally shaken 250 mL shake flask, 24 SRW, 

deep square 24 and 96 well microtitre plates (Barrett et al., 2010; Zhang et al., 2005; 

Zhang et al., 2008). It was reported that the numerical calculations fitted well with 

experimental data. Liquid motion was determined to be more dependent on the shaking 

throw than that of the agitation frequency (Zhang et al., 2008). Average power 

consumptions between 70 – 100 Wm−3 and 500 – 1000 Wm−3, and kLa values between 

18 - 100 hr−1 and 200 - 360 hr−1 were obtained for 24 well and 96 well microtitre plates 

respectively at an orbital shaking amplitude of 3 mm and shaking frequencies ranging 

from 500 rpm to 1500 rpm (Zhang et al., 2008). 
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1.9.2. Analytical tools for high throughput experimentation 

 

An intrinsic problem working with small scale cell culture devices is that there is less 

volume for traditionally designed probes to fit into and there is a further limitation on 

the volume of sample that can be removed for offline analysis. Therefore, to fully utilise 

a small scale device effectively, alternative analytical tools must be employed to allow 

for online monitoring without affecting the culture environment. In addition, as the 

number of cell culture experiments that can be performed in parallel increases, there is 

an ever-increasing need for faster analytical techniques that can match the potential 

throughput of the cell culture system. As described earlier with regard to the choice of 

different small scale cell culture systems that might be used at different stages in 

process development, the same argument can be applied to analytical tools employed. 

For example, it may not be necessary to monitor or control process conditions if the 

high throughput device is used in an initial cell line screening stage; however, for 

process optimisation experiments it would be more appropriate to implement a device 

with some degree of online monitoring and control of process conditions. 

 

Instruments such as the Vi-Cell (Beckman Coulter) or the CASY (Innovatis) are able to 

measure cell number and viability using the trypan blue exclusion method and 

electronic pulse area analysis respectively (Beckman Coulter website; CASY website). 

Both systems offer significant advantages in terms of speed and consistency of analysis, 

analytical throughput and accuracy over the traditional manual haemocytometer 

method. In addition, these systems can be validated for process monitoring as well as 

being able to provide additional data on average cell size and cell size distribution. Cell 

size is itself a parameter that can be monitored to assess the culture environment. The 

cell size can indicate the process of cell death, either apoptosis or necrosis, programmed 
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cell death or accidental cell death as a result of cell injury, respectively.  With respect to 

changes in cell size, the process of apoptosis causes cell shrinkage and ‘blebbing,’ the 

release of small apoptotic bodies; whilst necrosis leads to cell swelling (Lodish et al., 

2004). Cell size can also be interpreted in relation to specific recombinant protein 

productivity, QP. Recent articles have determined that cells do not necessarily express 

recombinant protein only in specific phases of the cell cycle, but instead that cell size is 

a major determinant of QP (Dinnis and James, 2005; Lloyd et al., 2000). 

 

Cell cycle distribution analysis can be determined by flow cytometry (Carroll et al., 

2007). Metabolites and byproducts such as glucose, glutamine, lactate, ammonium and 

also osmolality can be assayed in a high throughput manner using equipment like the 

Nova Bioprofile (Nova Biomedical) or the YSI system (YSI Life Sciences). Antibody 

productivity can be qualitatively measured using ELISA techniques, involving detection 

of the product by staining with fluorophore molecules attached to secondary antibodies. 

However, a more rapid and less labour intensive method is the use of Protein A/G 

affinity High Performance Liquid Chromatography (HPLC) that can utilise microwell 

plates to increase throughput and also provides a quantitative measurement of the level 

of product. Near-infrared (NIR) spectroscopy has also been used to measure levels of 

recombinant protein produced (Harthun et al., 1997; Henriques et al., 2009) as well as 

for metabolite levels including glucose, glutamine, lactate and ammonia; though 

currently only at conventional cell culture scales (Yeung et al., 1999). 

 

Optical sensors generally offer the advantage of noninvasive, nondestructive, and 

continuous process monitoring. This helps with the small working volume issue, often 

experienced in scaled down models, as culture volume is not removed for offline 

measurement. PreSens GmbH offer a range of non-invasive sensor spots for pH and O2, 
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which are fixed to the inside of the culture vessel and a transmitter is directed at the 

probe to determine the levels of the respective components. Microwell plates are 

commercially available with such PreSens sensors integrated into the plate format.  The 

µ24 MicroReactor system utilises single-use culture cassettes with integrated sensor 

spots for monitoring of both pH and dissolved oxygen for each well of the bioreactor 

cassette (MicroReactor Technologies website). The main issue with use of this system is 

that the integrated analytical sensor probes are relatively expensive and thus this adds to 

development costs and limits the adoption of such online sensor systems in HTE, 

especially in early round cell screening experiments. 

 

It is important to not only monitor process conditions, but also examine the cells at the 

physiological and molecular levels. Recent work has utilised surface-enhanced laser 

desorption/ionization (SELDI) in conjunction with time-of-flight (TOF) mass 

spectrometry in an attempt to screen, and subsequently characterise, cell culture 

supernatant material for secreted ‘biomarkers’ that may be indicative of process 

performance. Woolley and Al-Rubeai (2009) showed that a protein fragment of 

galnectin-1 was actively secreted in response to physiological stress in CHO cell 

culture. Such a technique could be further employed to identify biomarkers indicative of 

certain secondary characteristics, i.e. response to feed, and used in a high throughput 

format to rapidly examine cell culture supernatants and select for such characteristics. 

 

In addition to the amount of recombinant protein produced, the quality of the expressed 

product is crucial, especially when considering that the selection procedure will aim to 

create and select highly productive cell clones, but high productivity itself might 

compromise post-translational modification machinery and result in low product quality 

(Jefferis, 2009). Thus it is essential to examine for critical product quality attributes, 
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which can include: protein charge heterogeneity; glycosylation profile; low molecular 

weight and aggregate species; and deamidation. Protein glycosylation can, for example, 

be determined by first treating the glycoprotein with enzymes to liberate the glycan 

residues and then analyse the sample using matrix-assisted laser desorption/ionization 

(MALDI) mass spectrometry (Colangelo and Orlando, 2001). To prevent protein 

aggregation in mammalian cells, misfolded proteins are ‘sensed’ in the Endoplasmic 

Reticulum (ER) and the unfolded protein response (UPR) is activated. This response 

attempts to either refold the protein or degrade the misfolded protein, but also slows 

protein production mechanisms thus allowing the misfolded proteins to be dealt with 

before they have a chance to accumulate (Schröder and Kaufman, 2005). Prolonged 

activation of the UPR can lead to cellular apoptosis (Schröder and Kaufman, 2005). For 

this reason there have been attempts to engineer ER-resident protein folding machinery 

to be able to process more recombinant proteins without activating the UPR; however 

results have been varied (Schröder, 2008). In a similar manner however, cell lines may 

be screened for characteristics such as elevated ER-resident chaperone levels or other 

signaling proteins involved in the UPR, i.e. XBP1 or eIF2α, if they do in fact prove to 

be indicative of recombinant protein quantity or quality. 

 

1.9.3. High throughput experimentation and automation 

 

Automated systems can be invaluable both in cell culture processes and for analytical 

purposes. As well as increasing throughput, automation can be more accurate and 

consistent in comparison to a human performing the same manipulation repeatedly. 

With regard to implementing high throughput cell line characterisation or cell culture 

optimisation, without automated capacity, costs will increase rapidly on increased staff 

requirements, and also human error will most likely increase with greater number of 
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operations, particularly when dealing with small, intricate devices. In comparison, with 

automation, personnel numbers can be reduced, thus reducing development costs, or 

alternatively can release personnel for more complex tasks such as data analysis and 

interpretation. The key to making full use of high throughput cell culture systems will 

be if the culture is automated and can be integrated with high throughput automated 

analytical tools to examine online process performance alongside collated offline data, 

thus while increasing speed and throughput, precision and reliability do not deteriorate. 

 

There are a variety of systems commercially available that could be employed to assist 

in high throughput automation of cell culture operation and analysis. Liquid handling 

robotic platforms, e.g. Tecan systems, might be employed for cell culture, feed 

additions during culture and sample removal for analysis in a microwell plate format. 

Similarly, TAP Biosystems offer a variety of automated cell culture robotic units, 

varying from the SelecT for T-175 flasks, the Cellmate for roller bottle culture to the 

new advanced microbioreactor (ambr) that cultures cells in a sparged, 24 vessel STR 

microbioreactor format (10-15mL) (TAP website). MicroReactor Technologies offer a 

similar product to the ambr (TAP) called the µ24 MicroReactor, operating in a 24 well 

microplate format (3-7mL working volume) (MicroReactor Technologies website). 

 

1.10. Critical evaluation of the published literature 

 

One of the main issues in the published literature regarding the scale-down of 

mammalian cell culture process development experimentation has been a lack of 

definition around suitable scale translation parameters. Primarily, there is a lack of 

fundamental engineering characterisation for the majority of the available small scale 
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bioreactor systems (Table 1.4). The key issue is a failure to critically evaluate the scale-

down environment and subsequently devise suitable scaling parameters that may then 

be used to establish HTE in conditions that accurately replicate the production scale 

system. In practice, there have been numerous studies displaying seemingly matched 

growth kinetics (e.g. Chen et al., 2008; Yang et al., 2007) with limited explanation as to 

how this has been achieved or on what basis the authors believe this method to be 

successful in achieving such scaled down cell culture. Failing to perform basic 

bioreactor characterisation leads to a lack of fundamental information regarding the cell 

culture system and therefore uncertainty over how scale translation has been achieved in 

published papers.  

 

In this area of research, mammalian cell culture in small scale systems will be most 

successful, and yield the most valuable data, if the culture format has firstly been 

thoroughly characterised both experimentally and theoretically. Further work is required 

to develop small scale systems in which process conditions can be monitored, and 

preferably also controlled online. The adoption of small scale devices that allow for 

such monitoring and subsequently a more precise control of environmental parameters 

will help establish the critical factors that are affecting cell culture performance or 

experimental outcomes. With respect to this, whilst it is undoubtedly key to provide 

small scale bioreactors with appropriate analytical tools to assay for basic process 

variables, e.g. pH and DOT, it remains unclear what other analytical tools, e.g. 

metabolite or product measurement, can be successfully applied at such a scale and at 

what cost this can be achieved. On the basis of understanding the device in terms of 

mixing, oxygen transfer, etc., suitable scaling criteria may then be implemented in order 

to replicate cell growth and productivity kinetics at small scale. Further effort is 
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required in this field to create a truly representative scaled down system that can easily 

be used for HTE.  

 

It is also crucial to better understand how cells and the products they make respond to 

the environment in which they are cultured. Further work is required in evaluating large 

scale cell culture performance, in understanding why some cells are better able to grow 

or express heterologous proteins to the desired product quality and in defining 

biomarkers that can identify cells suitable for large scale culture. It is also crucial to 

appreciate what are the correct indicators for successful cell culture scale translation; 

whilst it may generally be perceived that cell growth, metabolite concentrations and 

product titre are the key indicators of successful scale translation, product quality may 

actually represent a more accurate marker with regard to replicating the cell’s 

metabolome between culture scales. With regard to this, greater data and insight of the 

nature of large scale cell culture is required from industry in order to provide a 

benchmark for researchers to work towards. This work aims to address such issues and 

investigate the novel relationship between scale translation and the introduction of a 

specific engineering characteristic, namely the presence of a dispersed gas phase. 

 

1.11. Aim and objectives 

 

Based on the current limitations described in Section 1.10, the aim of this project is to 

establish a small scale cell culture platform for the rapid selection of robust and scalable 

cell lines. The miniature bioreactor platform investigated is the µ24 microbioreactor 

system (MicroReactor Technologies, owned by Pall Life Sciences), given the scale of 

operation, the degree of parallel operation and the ability to monitor and control pH, 
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temperature and DOT in individual wells (Table 1.3). The industrial relevance of the 

work will be ensured by use of a fed-batch culture process with two GlaxoSmithKline 

(GSK) CHO cell lines expressing mAb products.  

 

Given this overall aim, the specific project objectives are as follows: 

 

• To perform a detailed engineering characterisation of the novel, shaken 

miniature bioreactor system and the conventional stirred bioreactors used as 

scale-down mimics of pilot scale GSK cell culture processes. This work is 

described in Chapter 3 and will inform the criteria used for scale comparison 

between miniature and stirred bioreactor formats. 

• To establish a fundamental understanding of how changes in the engineering 

environment in the miniature bioreactor affect cell culture kinetics. This work is 

described in Chapter 4 and will inform how best to use the miniature bioreactor 

system as a tool for clone ranking and selection. 

• To evaluate cell culture performance in miniature and scale-down bioreactor 

formats and establish an engineering methodology for predictive scale 

translation. This work is described in Chapter 5 and will rigorously assess scale 

translation in terms of culture kinetics, product titre and quality as well as the 

downstream processing characteristics of the culture broth. 

 

Finally, the conclusions arising from this work and suggestions for further 

investigations are covered in Chapter 6. The wider issues regarding industrial adoption 

and validation of the miniature bioreactor technology are discussed in Appendix A as 

part of the requirements for award of the UCL EngD degree in Biochemical 

Engineering. 
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Chapter 2. Materials and methods 

 

2.1. Bioreactor formats and engineering characterisation 

 

In order to accurately recreate the STR engineering environment in the small scale 

bioreactor, both systems were fully characterised so that the small scale system could be 

operated in a manner to reflect the STR environment as closely as possible. In this work 

all experimental characterisation experiments were performed in triplicate. 

 

2.1.1. Stirred tank reactor 

 

For this work a standard GSK bench scale STR was used as the model system. This 

format is itself a scale-down model of GSK pilot scale bioreactors. 

 

2.1.2. Description of the STR 

 

The STR (Applikon, Tewkesbury, UK) used was an unbaffled vessel of 3 L total 

volume and 2 L working volume. The bioreactor internal tank diameter is 0.13 m. The 

impeller shaft was equipped with a Rushton impeller, with a power number of 5 (data 

provided by GSK, Stevenage). This impeller has a diameter of 0.045 m, thus resulting 

in a Di/Dt ratio of 0.35. 
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2.1.3. Experimental determination of mixing time 

 

Liquid phase mixing times for the 3 L Applikon STR were measured experimentally 

using the iodine decolourisation method as described by Barrett (2008) with all 

experiments carried out at 25°C. The brown 5 mM iodine solution (Sigma, Cat No. 

35089) turns colourless upon addition of a 1% v/v 1.8 M sodium thiosulphate solution 

(Sigma, Cat No. S8503). The iodine solution was transferred into the STR and the test 

conditions set. The sodium thiosulphate addition was made rapidly using a serological 

pipette positioned 2-3 cm under the liquid surface. Dye decolourisation was measured 

using a digital stopwatch and followed by eye where approximately 95% 

decolourisation was defined as the mixing time. 

 

2.1.4. Theoretical determination of the power input 

 

For gassed power correlations a value of 0.014 m was used for the blade width of the 

pitched blade impeller. Volumetric gas flow rates can be converted to superficial gas 

velocities by dividing volumetric values by the area of the vessel. For theoretical 

calculations, the test liquid was assumed to be very close to water and therefore have a 

density of 998.2 kg m-3, a viscosity of 1.003 × 10-3 Nm-2 s and a liquid-air surface 

tension of 0.072 N m-1.  

 

Various equations have been proposed to predict the gassed power consumption rate 

from the ungassed power values (Table 2.1). Van’t Riet (1975) noted that the presence 

of gas-filled cavities that occupied the space behind the blade of the impeller; and 

defined three cavity forms dependent on impeller speed and gas flow rate: vortex, 
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clinging and large cavities. Subsequently, Warmoeskerken (1986) identified flow 

regimes that relate the formation of these cavities to the power consumption of Rushton 

impellers and proposed the following correlations, which also take into account gas 

recirculation, to calculate the gassed power input for each type of cavity structure. 

 

 

Table 2.1. Literature gassed power correlations. 
 

Author Equation No. Notes Abbreviation 
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2.1.5. Experimental determination of kLa values 

 

The kLa for the 3 L Applikon STR was measured experimentally using the static gassing 

out method as described by Barrett (2008) and Betts et al. (2005), with all experiments 

carried out at 37°C. The dissolved oxygen (DO) probe was first calibrated to 0% DO 

using 100% N2 gas and then to 100% DO saturation with air. Probe calibration was 

performed using the test fluid and temperature used for the experiment. kLa studies used 

water supplemented with 0.5 g L-1 Pluronic-F68 (Sigma Aldrich, P1300), to match 

standard bioreactor setup. Test fluid was sparged with N2 gas until the measured DO 

saturation was below 5%. The bioreactor was then set to the test conditions for agitation 

rate and N2 sparging was switched off. The test gas was then sparged at the desired flow 

rate and run until the probe reading reached greater than 55% DO. The kLa was 

determined from this raw data by first calculating the natural log of 100% DOT – the 

DOT at each data point (Appendix E, Figure E.1). These calculated results are then 

plotted against time and the negative value of the slope is equal to the kLa at a given test 

condition. 

 

The probe response time was determined as described by Barrett (2008). The probe was 

first positioned inside a cap into which was sparged the air supply. Once at 100% DO 

saturation the gas supply was switched to N2. The probe response time is determined as 

the time taken for the probe DO reading to drop below 37%. If 1/ kLa >> than the probe 

response time, then the response time is insignificant and can be ignored. In determining 

the kLa it is necessary to also take into account the probe response time. The probe 

response time is determined using Equation 2.10 (Dunn and Einsele, 1975): 
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where CP is the normalised dissolved oxygen concentration measured by the probe at 

time t, tm is 1/kLa and τP is the probe response time.  

 

2.1.6. Theoretical determination of kLa values 

 

Various equations have been proposed to predict the kLa for a bioreactor under given 

process conditions. These equations all follow the form of Equation 1.6 with various 

values proposed for the constant A and exponents α and β as shown in Table 2.2. 

 

Table 2.2 Literature values for kLa equation constant and exponents. 
 

Reference 
Value 

A α β 
Gill et al. (2008b) 0.224 0.35 0.52 

van't Riet [non-coalescing] (1979) 0.002 0.7 0.2 
van't Riet [coalescing] (1979) 0.026 0.4 0.5 
Stanbury and Whitaker (1984) 0.026 0.6 0.5 

Vilaca et al. (2000) 0.00676 0.94 0.65 
Linek et al. (2004) 0.01 0.699 0.581 
Smith et al. (1977) 0.01 0.475 0.4 
Zhu et al. (2001) 0.031 0.4 0.5 

 

2.2.1. µ24 bioreactor system 

 

For this work the µ24 bioreactor system (MicroReactor Technologies, Pall, Port 

Washington, USA) was investigated for potential use as an industrial scale-down model 

of bench scale STR’s. 

 

2.2.2. Description of µ24 bioreactor platform 

 

The µ24 bioreactor platform (MicroReactor Technologies) has previously been 
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described by Isett et al. (2007) and Chen et al. (2009). Briefly, the µ24 consists of a 

single shaking base plate, with an adjustable shaking frequency from 0 to 800 rpm at a 

fixed 2.5 mm orbital diameter. The cell culture cassette comprises a pre-sterilised 24 

deep well microtitre plate, available in PERC (headspace gas sparging) or REG (direct 

gas sparging) designs as shown in Figure 2.1. Each well has a working volume (wv) of 

3 to 7 mL. Individual wells are equipped with two thermistors that correspond to 

equivalent temperature monitoring and heating elements on the µ24 base plate. In 

addition, each well also has fluorescent pH and DO patches to allow optical monitoring 

via LED’s and detectors on the base plate. During shaking a vacuum is applied to seal 

the cell culture cassette to the base plate. Individual gas injection ports from the base 

plate feed into 0.2 µm hydrophobic membranes within each of the wells. For the PERC 

plate design gas enters the vessel via a sparge tube which is above the liquid surface, 

and therefore passes into the head space of the well to provide surface aeration only. For 

the REG plate design, gas is sparged directly into the base of each well creating a 

dispersed gas phase. Up to three different gases can be used at any one time; for 

mammalian cell culture purposes these will typically include an oxygen source for DO 

control and a carbon dioxide containing gas for pH control. 
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Figure 2.1. Images of the (a) PERC and (b) REG plate designs for use with the µ24 bioreactor system 
and (c, d) details of individual wells, respectively. 
 

2.2.3. Mixing time determination  

 

Liquid phase mixing times were measured experimentally using the iodine 

decolourisation method as described by Bujalski et al. (1999). The brown 5 mM iodine 

solution (Sigma-Aldrich, Cat No. 35089) turns colourless upon addition of an equimolar 

sodium thiosulphate solution (1.8 M) (Sigma-Aldrich, Cat No. S8503). Experiments 

were performed from either a static start with sodium thiosulphate added directly to the 

base of the well or with a dynamic start where sodium thiosulphate addition was made 
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down the side of the well at a fixed position 2 cm above the liquid surface. Mixing 

times were quantified as described in Section 2.3 from analysis of video images as 

described previously (Nealon et al. 2006).  

 

2.2.4. kLa determination  

 

The kLa values were determined experimentally using the static gassing out method as 

described by van’t Riet (1979). All experiments were carried out at 37°C. The 

fluorescent  DO sensor of an individual well from a µ24 cassette (PERC or REG design) 

was pre-calibrated to 100% oxygen saturation in air at 37°C. The system was operated 

in ‘constant flow’ mode, with oxygen control turned on to enable DO logging but 

operated such that there was no active oxygen sparging. The purge line was used to 

sparge test gases at defined flow rates. The test fluid was then sparged with N2 until the 

DO reached zero. The required bioreactor operating conditions (shaking frequency, 

aeration rate, etc.) were then set and the air sparged until the probe reading reached 

approximately 100%. The kLa was determined taking into account the probe response 

time using Equation 2.10. The response time of the optical probe, 18 s, was calculated 

by determining the time required for the DO reading to drop from 100% to below 33% 

by sparging the probe directly, firstly with air and then rapidly switching to N2. Since 

the µ24 software contains a proprietary algorithm for averaging DO readings over time 

all kLa values reported here are represented as apparent, kLaapp, values, which will 

slightly under predict the true kLa values.  
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2.2.5. Determination of evaporation levels  

 

Specific evaporation levels from individual wells were determined based on measured 

changes in the concentration of a blue dye (Super Cook, Leeds, UK; at an initial 

concentration of 0.002% v/v) over time. Control experiments showed that the measured 

increase in optical density (OD) at 630 nm was directly proportional to the reduction in 

liquid volume. To determine the specific well evaporation rate, a PERC plate was filled 

with dye stock solution (7 mL fill volume) and set in the µ24 bioreactor system at 37°C 

for 9 days. Standard culture conditions were simulated by using a shaking frequency of 

650 rpm and a constant purge gas flow rate of 10 mL min-1. The OD was determined for 

each well by transferring 100 µL of sample to a standard microtitre plate and measuring 

the absorbance in a plate reader (Safire, Tecan, Männedorf, Switzerland). Measurements 

were blanked against 100 µL reverse osmosis (RO) water. The fold evaporation per well 

could then be calculated using Equation 2.11: 

 

 
( )
( )blank 630,initial 630,

blank 630,final 630,

A -A
A - A

 n Evaporatio Fold =  (2.11) 

 

2.2.6. Visualisation of liquid phase hydrodynamics and gas-liquid 

dispersion 

 

A high speed camera was used to study the liquid phase hydrodynamics, the motion and 

deformation of the gas-liquid surface and for bubble size and size distribution 

measurements. The camera used was a DVR Fastcam (Photron, California, USA). The 

resolution was set to 640 x 480 pixels for all experiments. For mixing time experiments 
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the camera was set to record at 125 frames per second with a shutter speed of 1/frame 

rate. For the bubble size and distribution experiments and the surface deformation 

experiments the camera was set at 500 frames per second with a 1/1000 second shutter 

speed and twice normal gain. Image analysis was performed using ImageJ software 

(http://rsbweb.nih.gov/ij/). For these experiments individual wells from PERC and REG 

cassettes were cut from a cassette to aid visualisation and subsequent image analysis. A 

small Perspex box was constructed around each individual well and this was filled with 

glycerol so as to prevent image distortion. A chemically defined CHO cell media (CD-

CHO) was used to provide a comparison to the proprietary production growth media 

(PPG media) used for cell culture. Pluronic-F68 (Sigma-Aldrich, P1300) was added to 

RO water at 0.5 g L-1 to determine the effect of this component on bubble size and 

distribution.  

 

For both the PERC and REG plate designs image analysis of the wells at varying 

shaking frequencies was performed using ImageJ to determine the displaced liquid 

height (hL) and thus the area of the gas-liquid surface (a). The displaced liquid height 

values were determined for both plate designs at a 7 mL fill volume assuming an oval 

geometry. The gas sparging mechanism in the µ24 bioreactor delivers ‘pulses’ of gas, 

opening valves for 22 ms an appropriate number of times to equal the programmed gas 

flow rate. As such, discrete gas pulses were analysed and compared to determine 

reproducibility of pulses with variation of gas bubble size and number. From these 

values the relative gas-liquid surface area per pulse was determined. From the pulse 

beginning and ending frame number, and known frame rate, the average gas bubble 

residence time was determined. The measurement of the bubble diameter and displaced 

liquid height assumed that all the bubbles were spherical in order to calculate the 

surface area.  

http://rsbweb.nih.gov/ij/)
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2.2. Cell lines and culture 

 

Multiple clones from two model CHO DG44 (dhfr -/-) cell lines were provided by GSK, 

Stevenage, and used for cell culture experiments in this thesis (Sections 4.2; and 

Sections 4.3, 4.4 and Chapter 5 respectively). These cell lines differ in that they express 

two different whole IgG1 mAb products and were developed for a non-chemically 

defined (CHO-A) and a chemically defined process respectively (CHO-B). 

 

2.2.1. Cell line banking 

 

CHO dhfr-/- cell line clones were laid down in banks using a standard GSK CHO cell 

line banking procedure. Samples were removed from the cell culture vessel for viable 

cell density analysis as described in Section 2.3.1. Using this value, the appropriate 

volume of cell culture was removed and centrifuged at 1000 rpm for 5 minutes using a 

Sorvall Legend RT centrifuge. The supernatant was removed and the pellet gently 

resuspended in the remaining media by tapping. A proprietary freezing media solution 

was added to resuspend the pellet and mixed by gentle aspiration using a serological 

pipette to break up any clumps. Cells were aliquoted into Cryotube vials (Nunc, 

ThermoFisher, Massachusetts, USA, Cat No. 363401) of 1 mL volume at a 

concentration of 1.8 × 107
 cells mL-1 and frozen using an EF600 Control Rate Freezer 

(Asymptote, Cambridge, UK). Cell banks were stored in liquid nitrogen. 
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2.2.2. Cell line revival 

 

CHO dhfr-/- cell line clones were revived using a standard GSK CHO cell line revival 

procedure. All cell culture work in this thesis was undertaken in a Class 2 Biological 

Safety Cabinet (BSC) and employed standard tissue culture techniques throughout. 

Vials taken from liquid nitrogen storage were transferred to a BSC and gently thawed 

by holding in sterile, pre-warmed media, taking care not to immerse the vial past the lip 

of the lid. Vial contents were next transferred into a 30 mL universal tube containing 18 

mL pre-warmed media specific for each cell line. The universal tube was centrifuged at 

1000 rpm for 5 minutes using a Sorvall Legend RT centrifuge (Thermo Scientific). The 

supernatant was discarded and the pellet gently resuspended in the remaining media by 

tapping. A 125 mL shake flask was filled with 20 mL pre-warmed media. 5 mL media 

from the shake flask was transferred to the pellet and mixed by gentle aspiration using a 

serological pipette to break up any clumps. The cell suspension was added to the shake 

flask, and a further 5 mL media was taken from the same flask to wash the contents of 

the universal tube before replacing in the flask. A sample was removed for viable cell 

density analysis and the shake flask culture adjusted to 0.6 × 106
 cells mL-1. The shake 

flask was incubated in a Multitron incubator (Infors HT) at 140 rpm, 37°C, 5% CO2 for 

4 days before passaging and routine subculture. 

 

2.2.3. Cell subculture 

 

CHO-A cells were routinely passaged in a proprietary, non-chemically defined growth 

media (Gibco, Cat No. 041-96214V) supplemented with methotrexate (MTX) (Hanna 

Pharmaceutical Supply Company, Delaware, USA, Cat No. 55390-033-10) at a final 
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concentration of 50 nM. CHO-B cells were routinely passaged in a proprietary, 

chemically defined medium (Gibco, Cat No. 041-96330V) supplemented with MTX 

and Glutamax (Gibco, Cat No. 35050-038) at final concentrations of 50 nM and 0.02 M 

respectively. 

 

Cultures were maintained in disposable vented cap shake flasks in a Galaxy S incubator 

(Wolf Laboratories, York, UK) at 37°C and 5% CO2, on an orbital shaker (Certomat 

MO II, Sartorius Stedim, Aubagne, France) at a shaking frequency of 150 rpm with a 25 

mm orbital shaking diameter. Both CHO dhfr-/- cell lines were repeatedly subcultured 

by dilution at 3 to 4 day intervals using a seeding density of 6 × 105
 cells mL-1. Cultures 

were maintained in disposable vented cap shake flasks in a Multitron incubator (Infors 

HT, Bottmingen, Switzerland) at 37°C and 5% CO2, on an orbital shaker at a shaking 

frequency of 140 rpm with a 25 mm orbital shaking diameter. 

 
2.2.4. Fed-batch cell culture experiments 

 

For fed-batch experiments, CHO-A cells were seeded at 8 × 105
 cells mL-1 into a non-

chemically defined proprietary, production growth media (PPG media) supplemented 

with MTX, at a final concentration of 50 nM, and an additional proprietary amino acid 

solution. A standard GSK fed-batch culture protocol was followed using a single 5% 

v/v proprietary feed solution added on day 7. The CHO-B cells were seeded into 

chemically defined passage media but again at a concentration of 8 × 105
 cells mL-1. A 

standard GSK chemically defined fed-batch cell culture protocol was followed with 

10% v/v Feed 6 AGT solution (Gibco, Cat No. 041-96360A), supplemented with an 

additional proprietary amino acid solution, added on days 3, 6, 8, 10, 13. Cells were 

cultured at 35°C for CD fed-batch processes. Cells were not used for fed-batch cell 

culture experiments past passage 50. 
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Shake flask fed-batch experiments utilised disposable, vented cap 125 mL or 250 mL 

Erlenmeyer shake flasks (Corning Life Sciences, Amsterdam, Netherlands) with 

working volumes of 20 to 60 mL and 100 to 140 mL respectively. 

 

For PERC and REG plate cultures in the µ24 system, the temperature set point of all 

wells was 35°C, with an environment temperature set point of 33°C. In addition, each 

well used a pH set point of 6.95 and a DO set point of 30%. All wells were sealed with 

a cap which has a central gas permeable filter and a check valve to limit evaporation 

from the culture. For cell culture with the PERC plate design enough stock inoculum 

was made to fill an entire plate using a 7 mL fill volume per well, in order to minimise 

well to well variability. Similarly, for cell culture using the REG plate design the 

required volume of media with Antifoam C emulsion (0.003% v/v) (Sigma-Aldrich, Cat 

No. A8011) was aliquoted per well, the plate was placed into the µ24 so that the desired 

control set points could be reached before inoculation from one inoculum suspension. 

The antifoam was added in REG plate cultures due to the presence of the sparged gas 

phase. The µ24 bioreactor allows for ‘active’ gas flow to control pH and DO set points. 

There is also the ability to use a ‘constant’ gas flow mode which sparges a purge or 

background gas at a desired flow rate as well as having gases for ‘active’ control. PERC 

plates were operated using a ‘constant flow’ mode only whereas REG plate cultures 

were operated either in the ‘constant flow’ or ‘active flow’ modes. The µ24 operating 

conditions for these different cultures are shown in Table 2.3. The cassettes were 

weighed at regular stages to determine the dilution factors required for the stock base 

feed (1 M sodium bicarbonate, 1 M sodium hydrogen carbonate) additions. Large 

volume inoculum additions were made using a Rainin AutoRep E (Mettler Toledo, 
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Greifensee, Switzerland). Plate agitation was provided by an orbital microplate shaker 

(MS3 Digital, IKA, Staufen, Germany; agitation rate set equivalent to bioreactor 

operating frequency) in between individual well sampling.  

 
For the STR cultures, 3 L bioreactors (Applikon Biotechnology, Tewkesbury, UK) were 

run at a 1.5 L working volume. These reactors have a single rushton impeller operated 

at 350 rpm, an open pipe sparger using a 40% oxygen/air supply for DO control at a 200 

mL min-1 flow rate, CO2 for downwards pH control at a 100 mL min-1 flow rate and a 

1M sodium carbonate base supply for upwards pH control. The DO set point was 30% 

and the pH set point was 6.95. 

 

2.2.5. Scaling criteria between different bioreactor geometries 

 

The shaking frequencies for the µ24 plate formats, shake flasks and the stirrer speed for 

the STR’s were selected in order to provide a matched mixing time, tm ≈ 7s (Sections 

4.2 to 4.4 and Section 5.2) This scaling criterion was chosen as it had previously been 

shown to be successful in scaling a mammalian cell culture process from the microwell 

to shake flask scale (Silk, 2014). A summary of the operating conditions used is shown 

in Table 5.1.  

 
Table 2.3. Details of µ24 cell culture operating conditions using the PERC plate design, under ‘constant 

flow’ gassing mode, or the REG plate design, in either ‘constant flow’ or ‘active flow’ modes. 
 

 PERC 
(No dispersed gas phase) 

REG (Dispersed gas phase) 
‘Constant Flow’ ‘Active Flow’ 

Shaking frequency (rpm) 650 550 550 
Fill volume (mL) 7 7 7 

Constant flow gas 5% CO2 Air N/A 
Constant flow rate (mL min-1) 0.5 0.05 N/A 

Oxygen control 40% O2 40% O2 40% O2 
pH control 20% CO2 100% CO2 100% CO2 

Active gas flow limit (mL min-1) 10 0.5 0.5 
N/A Not Applicable 
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2.3. Analytical techniques 

 

2.3.1. Viable cell density 

 

Viable cell density (VCD) and cell viability values were determined using the Trypan 

Blue exclusion method using a Vi-Cell XR (Beckman Coulter, High Wycombe, UK). 

Samples were diluted as appropriate with TryplExpress (Gibco, Invitrogen, Cat No. 

12605) and incubated at 37°C for 10 minutes whilst being agitated at 175 rpm using an 

Innova 4000 benchtop incubator shaker (New Brunswick Scientific, Eppendorf, 

Connecticut, USA) before analysis to break up any cell clumps. Offline pH was 

measured using a Rapidlab 1240 blood gas analyser (Siemens AG, Munich, Germany). 

 

2.3.2. Metabolite analysis 

 

Supernatant samples were generated by spinning cell culture broth at 13,000 rpm using 

a microcentrifuge (Centrifuge 5424, Eppendorf) for 10 minutes. Metabolite analysis 

was performed using a 7100 Multiparameter Bioanalytical System (YSI, Ohio, USA) or 

a CEDEX BioHT (Roche, Indianapolis, USA). In both cases supernatant samples were 

diluted with PBS as appropriate for analysis. These systems utilise immobilised 

enzymes in biosensor patches which enable measurement of specific dissolved 

metabolite levels in solution (Büntemeyer, 2007). 
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2.3.3. Antibody titre 

 

Product titre from the CHO dhfr-/- cell lines was determined from supernatant samples 

using an IMMAGE nephelometer (Beckman Coulter, High Wycombe, UK) in 

conjunction with the IMMAGE immunoglobulin G reagent (Beckman Coulter, Cat No. 

446400). End-point supernatant samples were stored in a -80°C freezer (Eco VIP 

Freezer, Panasonic, Leicestershire, UK) for subsequent product quality analysis. 

 

Statistical analysis of the data displayed in Figure 5.5 used two sets of statistical testing. 

An ANOVA was used to determine whether there was a statistical difference between 

the groups in each sample set, i.e. between the culture formats for each clone. Secondly, 

an unpaired student’s t-test was used to determine two-tailed p values, performed such 

that each cell culture format was evaluated against the relevant bioreactor data for that 

particular clone. 

 

2.4. Product quality analysis 

 

Cell culture broth samples for product quality evaluation were analysed for aggregate 

content using Size Exclusion Chromatography (SEC), the glycosylation profile was 

measured using Quantitative Time of Flight (Q-TOF) Liquid Chromatography Mass 

Spectrometry (LC/MS) and for Non-Glycosylated Heavy Chain (NGHC) levels using 

the Agilent Bioanalyser. Samples were Protein A purified prior to analysis. 
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2.4.1. Protein A purification 

 

The purification method used here is a mimic of the in-house Protein A purification 

process for mAbs (GSK, Stevenage, UK) and is scaled down so that the purification 

process can use small volume chromatography columns in combination with a TECAN 

Freedom EVO robotic platform (TECAN, Männedorf, Switzerland) for automated 

liquid handling. Supernatant samples were filtered to remove any particulates using a 

syringe driven 0.22 µm Polyethersulfone (PES) filter unit (Millex GP PES filter unit, 

Millipore, Cork, Ireland) prior to loading on to the Protein A chromatography columns. 

The small scale, automated TECAN Protein A chromatography protocol loads 2 mL of 

supernatant onto a 200 µL ATOLL column (MediaScout RoboColumn, ATOLL, 

Weingarten, Germany) that is pre-packed with MabSelect SuRe Protein A resin (GE 

Healthcare, Uppsala, Sweden). The protocol uses a pH 7.50 55 mM Tris base 45 mM 

acetic acid buffer to equilibrate the column, a 55 mM Tris base 45 mM acetic acid 300 

mM sodium acetate 100 mM sodium capryolate wash buffer and a 1.8 mM sodium 

acetate 28.2 mM acetic acid elution buffer at pH 3.6. The column is cleaned using a 0.1 

M sodium hydroxide solution and stored in a 20% v/v ethanol solution. 

 

Samples are eluted in to 10 100 µL fractions that are collected directly into a 96 well 

plate and can be chilled in the TECAN Freedom Evo if required. Pathlength corrected 

absorbance readings measured at 280 nm, taken on the Infinite plate reader (TECAN) 

are used to identify and pool fractions over 1 g L-1 antibody concentration. 10 µL of 3 

M Tris base is added to the pooled fractions to neutralise the acidic pH. Antibody 

concentration is then measured at a wavelength of 280 nm using an ND-1000 

spectrometer (Nanodrop, Wilmington, USA) and samples diluted to 1 g L-1 with 
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equilibration buffer to make a stock solution. This stock solution is diluted 50% v/v 

with a 200 mM DTT solution and incubated at 37°C for 20 minutes in order to reduce 

the antibody product for glycosylation or NGHC analysis. 

 

2.4.2. Aggregates 

 

Sample aggregate levels were determined using a standard GSK HPLC-SEC method. 10 

µL sample was injected onto a TSKgel G3000SWxl column (Tosoh Bioscience, 

Stuttgart, Germany. 7.8 mm i.d. x 30 cm column length, 5 µm particle size with 250 Å 

pore size). A 100 mM sodium phosphate monobasic, 400 mM sodium chloride mobile 

phase was used at pH 6.8 and a 1 mL min-1 flowrate. Protein was detected at a 

wavelength of 214 nm. Samples were maintained on an autosampler prior to analysis at 

5°C ± 3°C. 

 

2.4.3. Glycosylation profile 

 

Antibody glycosylation profiles were determined using a standard GSK LC-MS Q-TOF 

method. Samples were injected onto a Zorbax Poroshell 300SB-C8 guard column 

(2.1mm x 12.5mm, Agilent Technologies, Stockport, UK), desalted by washing with 

0.1% v/v formate in 5% acetonitrile, and then eluted with 0.1% v/v formate in 90% 

acetonitrile at a flow rate of 0.5 mL min-1.  The eluate was split such that a flow of 0.2 

mL min-1  was directed to the electrospray ionization interface via a standard Z-spray 

source fitted with an electrospray probe, of a Micromass Q-TOF API-US mass 

spectrometer (Waters, Massachusetts, USA) controlled from a PC running MassLynx 

(version 4.1, Waters) software. The source temperature and desolvation temperature 
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were set to 100°C and 150°C respectively. The capillary voltage was 3.0 kV and the 

sample cone voltage was 35 V. The mass spectrometer was routinely calibrated against 

myoglobin or sodium iodide to ensure that peaks in the mass/charge spectrum 

accurately represent the samples. Raw data were externally mass corrected and 

deconvoluted to the parent mass spectrum using the MaxEnt 1 algorithm of MassLynx. 

 

2.4.4. Non-glycosylated heavy chain 

 

NGHC levels were determined using an Agilent 2100 Bioanalyzer (Agilent 

Technologies) in which the NGHC can be separated and quantified under reduced 

condition by SDS electrophoresis. Samples were reduced using a ß-mercaptoethanol 

containing reducing buffer. Samples were prepared using the Agilent Protein 230 kit 

(Agilent Technologies, Cat No. 5067-1517) and samples analysed according to running 

conditions recommended by the manufacturer (Agilent Protein 230 Kit Guide, Agilent 

Technologies). Relative NGHC levels were determined compared to the amount of 

antibody heavy chain present in the sample. Peak areas were calculated using the 

Bioanalyzer software. 

 

2.5. Derived growth parameters 

 

2.5.1. Integral viable cell concentration 

 

The integral of viable cell concentration (IVC) is a measure of the number of viable 

cells in the culture with time; an approximation of the area underneath a graph plotting 
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viable cell density with culture duration between two time points. The following 

equation was used to determine the IVC: 
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where IVC is the integral of viable cell concentration, x is the viable cell density and t is 

the time point. The sum of the IVC values gives the cumulative IVC (cIVC). 

 

2.5.2. Instantaneous specific productivity 

 

The instantaneous specific productivity, QP is a measure of the cell specific rate of 

antibody produced between two time points. The following equation was used to 

determine QP: 
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where QP is the instantaneous specific productivity and Ab is the antibody titre. The 

average specific productivity over the cell culture period is given by the total antibody 

titre at the end of the culture divided by the cumulative IVC value. 

 

2.5.3. Average specific glucose consumption rate 

 

The average specific glucose consumption rate, Qgluc (avg) is a measure of the rate at 

which cells utilised glucose from the culture media over the culture period. The 

following equation is used to determine Qgluc (avg): 
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where Qgluc (avg) is the average specific glucose consumption rate and [glucose] is the 

glucose concentration in the cell culture.  

 

2.6. Cell culture broth characterisation and processing 

 

2.6.1. Ultra scale-down primary recovery 

 

For the Ultra scale-down (USD) depth filtration studies, 05SP grade filters (CUNO Zeta 

Plus 05SP grade, 3M Purification Inc, Meriden, USA) were cut to an effective filter area 

of 0.28 cm2. These discs were used in conjunction with a USD depth filtration rig 

(originally developed by Jackson (2011) and adapted for depth filtration studies by 

Kong et al (2010)) (Figure 2.2) (constructed in-house by the UCL Mechanical 

Workshop). The depth filtration rig is designed to fit on the vacuum filtration manifold 

on the TECAN Freedom Evo robotic platform where all samples were run at a constant 

pressure of 300 mbar. Between each experiment water flux tests were performed to 

ensure that filters were of a constant and reproducible standard. The cell culture feed 

material for the experiments described in this work were harvested at approximately 50 

– 60% viability. 
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Figure 2.2. Image of (a) a single USD depth filter membrane housing and (b) the set up of the USD filter 
housings placed on the vacuum manifold situated in the TECAN platform. 
 

2.6.2. Broth quality analysis 

 

To determine the efficiency of the primary recovery step two different analyses were 

performed: percentage solids remaining and filter capacity (L m-2). The relative 
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performance in terms of amount of solids remaining is calculated as described in 

Equation 2.15:  

 100
ODOD
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where S (%) is the percentage solids remaining in the filtrate, ODs is the OD600 value of 

the filtrate sample, ODo is the OD600 value of the well spun sample material and ODf is 

the OD600 value of the feed material. With regard to membrane sizing, the gradual pore 

constriction model was applied to the filtration data (Zydney and Ho, 2002). The 

linearised version of the equation is described in Equation 2.16: 

 t
V

1
Q
1

V
t

max0








+= ∗∗∗  (2.16) 

where V* is the total volume of filtrate per unit filter area collected over time, t, Q*
max is 

the initial specific volumetric filtrate flow rate per unit filter area and V*
max is the 

predicted maximum volume of fluid per unit filter area that can be filtered before the 

filter is completely plugged by fouling, calculated directly from the flux decay data as 

the inverse of the slope of a plot of t/V. 
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Chapter 3. Engineering characterisation of scale-down and 

miniature bioreactor formats* 

 

3.1. Introduction and aim 
 
 

Biopharmaceuticals are ultimately manufactured at large scale; however, at this size 

there is limited opportunity to perform process development and optimisation. 

Consequently, most companies have validated scale-down models of their pilot and 

manufacturing scale bioreactors (Doig et al. 2006). These usually take the form of 0.5 to 

10 L scale stirred tank bioreactors (Nienow, 2006; Szita et al. 2005) and are used for 

cell culture process development. Nevertheless, there is a need for more efficient, high 

throughput and miniaturised biorecactors that can be used earlier during process 

development to further reduce time and costs. 

 

The need to bring new biopharmaceutical products to market more quickly and to 

reduce final manufacturing costs is driving early stage, small scale bioprocess 

development. Large scale bioreactors are inefficient clone ranking or process 

development tools due to the limited number of clones or conditions that can be 

investigated. Small scale, high throughput bioreactors are required to help resolve this 

bottleneck, as discussed in Section 1.8. 

 

The aim of this chapter is to fully characterise the cell culture formats that will be 

investigated in this thesis. The bench scale STR system (described in Section 2.1.2) is 

                                                 
* The work presented in Section 3.3 of this chapter has been published as: Betts et al. (2014) Impact of 
aeration strategies on fed-batch cell culture kinetics in a single-use 24-well miniature 
bioreactor. Biochemical Engineering Journal, 82, 105 - 116. 
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itself a scale-down model of GSK pilot scale bioreactors. This STR format will be used 

as a reference in the scale translation of a novel, single-use 24-well parallel miniature 

bioreactor system (described in Section 2.2.2 and illustrated in Figure 2.1). Thus, a 

detailed engineering characterisation of this large scale bioreactor is performed in order 

to benchmark a set of operating parameters that can be replicated at small scale yielding 

analogous engineering conditions. 

 

The specific objectives are as follows: 

 

• To characterise the scale-down STR format including investigating the liquid 

mixing times and gas transfer capacity. 

• To apply existing engineering correlations available for STRs in order to be able 

to predict key engineering parameters such as power input and verify 

experimental measurements. 

• To investigate two distinct plate types with the small scale bioreactor format, 

allowing for either headspace or direct gas sparging. 

• To characterise the miniature bioreactor format including an evaluation of the 

fluid mixing, gas transfer capacity, dispersed gas phase and evaporation across 

the 24 well plate cell culture format. 

 

3.2. Engineering characterisation of the 3 L stirred scale-down 

bioreactors 

 

The 3 L bench scale STR is the standard scale-down bioreactor format currently used 

for cell culture process development at GSK, Stevenage. By characterising this system 
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over the range of typical operating parameters, it is possible to set a benchmark for the 

engineering parameters that will be used to characterise miniature shaken bioreactor 

performance (Section 3.3). The power consumption, volumetric oxygen mass transfer 

coefficient, kLa and the mixing time, tm are all key engineering parameters (Section 

1.7.1) that can be experimentally determined in STRs and which are commonly used as 

a basis for fermentation and cell culture scale up (Section 1.8).  

 

3.2.1. Power consumption prediction 

 

For standard STR geometries the ungassed power consumption can readily be 

calculated using Equation 1.2 and knowledge of the particular STR design and 

operating conditions (Section 2.1.2). Values calculated for the GSK STRs fitted with 

either Rushton turbine (Po = 5) or pitched-blade turbine (PBT) (Po = 1.7) impellers over 

a range of agitation rates are presented in Table 3.1. As expected from Equation 1.2, the 

power consumption is greater for the Rushton impeller than the PBT, as both the power 

number and the impeller diameter are greater. The corresponding impeller Reynold’s 

numbers calculated for the various conditions studies can be determined using Equation 

1.1, and values are shown in Table 3.2. Again, as expected the Reynolds numbers are 

greater for the Rushton impeller due to the fact that the impeller diameter is greater than 

the PBT diameter. In both cases, however, the Re values would indicate turbulent flow 

at all but the lowest agitation rate. 

 

Various correlations have been proposed to correlate the ungassed power consumption 

to the gassed power consumption during bioreactor operation (Section 1.7.1, Table 2.1). 

However, no single correlation has been shown to satisfactorily predict the gassed 

power consumption in smaller scale bioreactors, primarily because most of them do not 
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take into account the flow regime, which can significantly affect the power consumption 

(Amanullah et al. 2004). For this reason, multiple correlations from literature (Section 

2.1.4) have been considered here to estimate typical gassed power consumption values 

that might be expected. Figure 3.1 shows the gassed to ungassed power ratio as a 

function of the flow number (Table 2.1). In accordance with Amanullah et al. (2004) 

and Nienow (2006), the majority of the correlations predict gassed power consumption 

to be approximately equal to the ungassed power, with all but one correlation predicting 

less than 15% decrease in power consumption even at the highest flow number 

investigated. Thus, in agreement with Nienow (2006), for mammalian cell culture 

systems, as the gas flow rates used are relatively low, Pg can effectively be assumed 

equal to P. Values calculated range from 1 – 500 x 10-3 W (0.6 – 260 W m-3) (Table 3.1)  

agree with those found in the literature for similar systems (Heath and Kiss, 2007; 

Nienow, 2006) which refer to values ranging from 10 - 1000 W m-3. 

 

 
Table 3.1 Calculated ungassed power consumption as a function of agitation rate and impeller design in 
the 3 L scale-down STR. Values were determined using Equation 1.2 and STR dimensions and operating 
ranges (Section 2.1.2). 
 

Ungassed Power Input (x10-3 W) N (rpm) 
 100 200 300 400 500 

Rushton turbine 4.3 34.1 115.1 272.9 533.0 
Pitched blade turbine 1.2 9.2 31.2 73.9 144.4 

 
 
 
Table 3.2 Calculated impeller Reynolds number values as a function of agitation rate and impeller design 
in the 3 L scale-down STR. Values were determined using Equation 1.1 and STR dimensions and 
operating ranges (Section 2.1.2). 
 

Reynolds Number N (rpm) 
 100 200 300 400 500 

Rushton turbine 3359 6718 10077 13435 16794 
Pitched blade turbine 3067 6133 9201 12268 15335 
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Figure 3.1 Gassed-ungassed power consumption ratio as a function of the flow number. Values were 
determined using equations described in Section 2.1.4 and STR parameters described in Section 2.1.2. 
 

3.2.2. kLa prediction and measurement 

 

As mentioned in Section 3.2, kLa is an important scale translation parameter and so was 

investigated here as a function of the impeller agitation rate and the gas flow rate of air 

sparged into the test fluid. In this case water was used to replicate the culture media and 

was supplemented with the shear protectant, Pluronic-F68 which is typically used in 

mammalian cell culture media since this has been shown to significantly lower kLa 

(Nienow, 2006). Experiments were carried out at 37°C as this is the typical operating 

temperature for mammalian cell culture and test conditions were chosen to span the 

typical operating values for an STR for mammalian cell culture. 

 

As highlighted by Equation 1.6 it is expected that kLa will increase with both power 

input and gas flow rate.  Increasing gas flow rate will provide a higher quantity of 

oxygen carrying gas bubbles however it is also important that the agitation rate is able 
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to effectively break up larger bubbles and distribute these bubbles around the system 

and therefore aid oxygen transfer. Calculated kLa values are presented in Table 3.3. 

 

As expected, experimental data shows that increasing either the gas flow rate or the 

agitation rate will increase the kLa value. However, there is an observed decrease in kLa 

from 175 to 250 mL min-1 at 300 rpm. It is possible that the increased gas flow rate 

causes the impeller to flood with gas, thus reducing power input and hence kLa. In 

addition, the kLa values at 500 rpm are lower than those at 300 rpm. This effect may be  

as a result of liquid vortexing around the impeller, reducing the liquid height between 

the sparger and liquid surface therefore bubbles may be entrained for a shorter period of 

time and thus effectively reducing the gas transfer area. 

 

Subsequently, the experimentally determined kLa values were compared with equations 

from the literature (Section 1.7.1; Section 2.1.6) and shown in Figure 3.2. Theoretically 

determined kLa values were calculated using Equation 1.6. εΤg is calculated as the sum 

of εsg and εig, which is estimated by assuming that Pg = P, as reported by Amanullah 

(2004), Nienow (2006) and results of the theoretical gassed power correlations 

investigated in Section 3.2.1. Whilst no single literature correlation is able to 

satisfactorily predict kLa values and their variation with impeller agitation rate and gas 

flow rate in the STR, typically, required kLa values for mammalian cell culture 

processes are 1 – 15 hr-1 (Nienow, 2006) therefore experimentally determined values 

presented here are comparable to the values expected from literature correlations and 

should be sufficient to meet the oxygen requirements of a typical mammalian cell 

culture process. 
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Table 3.3 Calculated kLa values in the 3L scale-down STR as a function of agitation rate and volumetric 
gas flow rate. Values determined using Equation 1.6 and STR parameters as described in Section 2.1.2. 
Values in brackets represent r2 values linearised experimental data. 
 

kLa (hr-1) 
Volumetric Airflow Rate (mL min-1) 

25 100 175 250 

Agitation Rate 

(rpm) 

100 1.6 (0.99) 4.4 (0.99) 6.4 (1.00) 12.3 (0.80) 

300 5.0 (1.00) 34.2 (0.99) 47.4 (0.99) 45.8 (0.99) 

500 5.5 (1.00) 27.0 (0.98) 35.4 (0.98) 39.9 (0.99) 

 

 

Figure 3.2 Comparison of experimentally determined kLa values (described in Section 2.1.5) at 100, 300 
and 500 rpm (a, b, and c respectively) compared with literature correlations as described in Section 2.1.6. 
Gill et al. (2008) (closed circles), van't Riet [non-coalescing] (1979) (open circles), van't Riet [coalescing] 
(1979) (closed downward triangles), Stanbury and Whitaker (1984) (open triangles), Vilaca et al. (2000) 
(closed squares), Linek et al. (2004) (open squares), Smith et al. (1977) (closed diamonds), Zhu et al. 
(2001) (open diamonds) and experimental results (dashed line, closed upward triangles). 
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3.2.3. Mixing time measurement 

 

Given the importance of maintaining a homogeneous culture environment for process 

monitoring and control (Birch, 1999) mixing time, as defined in Section 1.7.1, was 

measured as a function of operating conditions in the scale-down STR. Referring to 

Equation 1.7 it can be seen that mixing time is inversely proportional to the total energy 

dissipation rate in a gassed bioreactor. Therefore, it is expected that increasing either the 

power input or the gas flow rate will decrease the mixing time. 

 

As shown in Table 3.4, it is clear that the measured mixing time values rapidly decrease 

with increased agitation rate. The effect of the gas flow rate is only observable at 100 

rpm, the lowest agitation rate tested. At this condition, there is an observable decrease in 

the mixing time with increasing gas flow rate, indicating that gas flow from the sparger 

does indeed impact on the overall mass transfer. Mixing time values were calculated 

and are plotted alongside experimentally determined values in Figure 3.3. It is clear that 

Equation 1.7 provides an accurate prediction of the liquid phase mixing time, although 

the correlation provides less accurate values below an agitation rate of 200 rpm. Osman 

(2001) reports mixing time values of less than 60 s for a 2 L working volume (wv) STR, 

therefore values presented here agree with the literature. 

 

Table 3.4 Mean mixing time values measured in the 3L scale-down STR. Values were determined using 
the iodine decolourisation method as described in Section 2.1.3. A working volume of 2 L was used for 
all experiments, and carried out at 25°C. Error represent one standard deviation about the mean (n = 3). 
 

Mixing Time (s) 
Volumetric Airflow Rate (mL min-1) 

25 100 175 250 

Agitation Rate 
(rpm) 

100 52 ± 3 38 ± 1 21 ± 1 19 ± 1 
200 14 ± 1 13 ± 0 13 ± 1 13 ± 1 
300 6 ± 1 7 ± 1 6 ± 1 7 ± 1 
400 6 ± 1 5 ± 1 5 ± 0 5 ± 0 
500 5 ± 1 4 ± 1 4 ± 0 4 ± 0 
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Figure 3.3 Experimental and theoretical mixing time values in the 3 L scale-down STR as a function of 
agitation and gas flow rates. Dashed bars represent experimental measurements while solid bars represent 
correlation predictions. Experimental values determined using the iodine decolourisation method as 
described in Section 2.1.3. Theoretical values determined using Equation 1.7 and STR parameters as 
described in Section 2.1.2. 
 

3.3. Engineering characterisation of the shaken miniature bioreactor 

 

3.3.1. Liquid phase hydrodynamics and mixing times 

 

Initial experiments in the novel miniature bioreactor format aimed to characterise the 

fluid flow in individual wells from each of the two plate designs (described in section 

2.2.2) and to quantify the liquid phase mixing times. As shown in Figure 3.4, for all the 

shaking frequencies studied orbital shaking induced deformation of the liquid surface 

which then moved in an orbital motion around the walls of the well. Visually there was 

no difference in the nature of the fluid flow between the two plate designs. 
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Büchs et al. (2001) discovered a phenomenon specific to shaken systems depicted by 

the Phase number, Ph. The ‘in-phase’ flow regime describes conditions where the bulk 

liquid circulates around the edge of the shaken vessel, synchronized with the orbital 

motion of the shaking platform. ‘Out of phase’ fluid flow occurs when only a small 

portion of the fluid circulates around the walls of the well with the majority of the fluid 

remaining stationary in the centre of the vessel (Büchs et al. 2001). The Phase number 

can be calculated according to Equation 3.1: 
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where df is the inner diameter of the shaken vessel, ds is the shaker diameter, N is the 

shaking frequency and V is the liquid volume (Büchs et al. 2001). For Ph > 1.26 the 

shaken fluid will be ‘in-phase’ while for Ph < 1.26 the fluid will be ‘out of phase’ 

(Buchs et al. 2001). Barrett et al. (2010) have applied this correlation to calculate Ph for 

standard 24-round well plates (24 SRW), at a shaking diameter of 20 mm, fill volumes 

from 800 – 2000 µL and shaking frequencies from 120 – 300 rpm. Under all conditions 

the flow of fluid was found to be ‘in-phase’ (Ph 8.2 - 12). For the µ24 system used here, 

assuming the liquid properties of water, Equation 3.1 predicts flow conditions to be ‘in-

phase’ for fill volumes between 3 – 7 mL and shaking frequencies above 100 rpm. This 

is in agreement with video image observations at all conditions investigated. 
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Figure 3.4. Visualisation of fluid flow during iodine decolourisation mixing time experiments for (a) 
PERC plate and (b) REG plate designs. Images show minimum time required to achieve complete 
decolourisation in each case from a dynamic start. Experimental conditions: 5 mM iodine solution; 7 mL 
fill volume; 800 rpm shaking frequency; do 2.5 mm; 25°C. Video images captured as described in Section 
2.2.6. 
 

Liquid phase mixing times were subsequently determined under non-aerated conditions. 

Mixing times were determined from a dynamic start, i.e. shaking platform is in 

operation, which is important with regards to bioreactor monitoring and control; and 

also from a stationary start which is unique to this bioreactor system due to the fact that 

the plate is removed from the shaker platform for liquid handling operations and is 

therefore important for initial set up, sampling, and nutrient or base feeds. 

 

Representative time courses of these experiments for each plate design are illustrated in 

Figure 3.4. Mean values of the calculated mixing times over all the conditions 

investigated are given in Table 3.5. Increasing the shaking frequency and decreasing the 

fill volume is seen to decrease the mixing time. This is in line with results for 
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conventional 24 SRW plates (Barrett et al. 2010) where tm values ranged from 2 – 

12,900 s with fill volumes ranging from 800 – 2000 µL. Tissot et al. (2011) reported tm 

values below 30 s for a 1.5 L STR fitted with a single 45 mm pitched blade impeller at 

agitation rates between 80 – 150 rpm and Nienow reports all values below 40 s for a 

range of different STR configurations (Nienow, 1997). Thus, the tm values reported in 

Table 3.5 are within the ranges previously reported for conventional microwell plates 

and at shaking frequencies above 500 rpm, are of a comparable magnitude to those seen 

in laboratory scale bioreactors under cell culture conditions. Specifically with the PERC 

plate, the central sparge tube appears to retard mixing at low shaking frequencies, 

however, at higher shaking frequencies differences between the two well designs are not 

significant. 

 
 

In conventional stirred tank cell culture reactors the presence of a dispersed gas phase is 

known to decrease liquid phase mixing times (Nienow, 2006). Similarly, the presence of 

a dispersed gas phase in the REG plate designs is seen to improve mixing as indicated 

in Table 3.6. Increasing gas flow rate leads to an almost 20-fold decrease in the mixing 

time. The influence of the dispersed gas phase on liquid mixing in shaken systems is 

particularly pronounced since the bubbles add an additional axial component to the fluid 

flow. In Table 3.6, the gas flow rates are also shown as the volumetric gas flow per unit 

liquid volume per minute, or VVM. This is a useful term to consider when scaling up 

cell culture systems. Catapano et al. (2009) reports that for mammalian cell culture in 

stirred bioreactors the VVM should be lower than 0.1. 
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Table 3.5. Measured liquid phase mixing times for PERC and REG plate designs from either a stationary 
or dynamic start. Experiments performed at 25°C over a range of shaking frequencies and fill volumes 
with do 2.5mm.  Errors represent one standard deviation about the mean (n = 3). Mixing time 
measurements made as described in Section 2.2.3. 
 

Mixing Time (s) 
Shaking Frequency (rpm) 
500 650 800 
REG PERC REG PERC REG PERC 

Fill 
Volume 
(mL) 

Static 
Start 

3 11 ± 1 14 ± 4 4.3 ± 0.6 4.3 ± 0.6 3.3 ± 0.6 3.0 ± 0.1 

5 31 ± 2 190 ± 34 5.0 ± 0.1 5.0 ± 0.1 4.3 ± 0.6 3.7 ± 0.6 

7 210 ± 78 3700 ± 1000 6.0  ± 0.1 6.7 ± 0.6 4.0 ± 0.1 4.0 ± 0.1 

Dynamic 
Start 

5 ND ND 1.4 ± 0.2 1.0 ± 0.2 0.8 ± 0.1 0.8 ± 0.2 

7 13 ± 1 ND 2.0 ± 0.1 2.0 ± 0.2 1.5 ± 0.2 1.3 ± 0.2 

ND: not determined 

 
Table 3.6. Measured liquid phase mixing times for the REG plate design as a function of gas flow rate. 
Experimental conditions: stationary start; shaking frequency 500 rpm; do 2.5mm; 7 mL fill volume; 25°C. 
Errors represent one standard deviation about the mean (n = 3). Mixing time measurements made as 
described in Section 2.2.3. 
 

Gas Flow Rate 
(mL min-1) 

Normalised Gas Flow 
Rate (VVM) Mixing Time (s) 

0 0.00 210 ± 78 

0.2 0.03 59 ± 18 

2 0.29 31 ± 7 

4 0.57 26 ± 5 

6 0.86 20 ± 5 

8 1.14 12 ± 2 

10 1.43 11 ± 2 

 

3.3.2. kLaapp determination and gas-liquid interfacial area 

 

Apparent kLa values (kLaapp) for both the PERC and REG plate designs are shown in 

Figure 3.5. These were determined as described in Section 2.2.4 and are reported as 

‘apparent’ values since the µ24 software contains a proprietary algorithm for averaging 

DO readings over time. It is important to understand how these kLa values vary with 

bioreactor operating conditions as they will influence oxygen transfer and CO2 removal 
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(Nienow, 2006). Overall, increasing shaking frequency or increasing gas flow rate 

increases kLa. In general kLaapp values in the REG plate are higher and show a stronger 

dependency on gas flow rate than in the PERC plate. This is expected given the 

presence of the dispersed gas phase. For the REG plate at high shaking frequencies 

however, i.e. 800 rpm, kLaapp values seem to decrease, rather than increasing. This is 

likely due to fluid vortexing, thus decreasing the height of liquid above the sparger and 

reducing the bubble residence time. Pluronic is a non-ionic surfactant that stabilises 

bubble formation which will therefore cause the bubbles to separate, thus increasing a 

and hence kLa. However, the water-pluronic solution values, shown in Figure 3.5, are 

most likely lower than values in actual culture media due to the presence of additional 

salts. Increasing salt concentration will decrease the mean bubble size (Villadsen et al. 

2011), thus increasing a, hence leading to increased kLa values. 

 

Various methods have been used to assess kLa values in shaken microwells. Doig et al. 

(2006) used a dynamic gassing out method to measure kLa values and compared these to 

calculated values from the mass transfer limited growth rate of a strict aerobic 

microorganism. For a 24-well plate, fill volume of 1182 µL, orbital diameter from 3 – 8 

mm and shaking frequencies from 200 – 900 rpm, kLa values were reported between 36 

– 180 hr-1. Furthermore these authors established a correlation in order to predict kLa 

values in microwell systems as a function of fluid properties, shaking frequency and 

well geometry (Doig et al 2006). Hermann et al. (2003) utilised the sulphite oxidation 

method to determine kLa values for a 96 well plate design, with reported values ranging 

from approximately 25 – 150 hr-1. For mammalian cell cultures, however, the oxygen 

demand is less severe (Nienow, 2006). Barrett et al. (2010) reported values ranging 

from 1.1 – 29 hr-1 for 24 SRW plates at shaking frequencies from 120 – 300 rpm. In 

comparison to stirred bioreactors Micheletti et al. (2006) reports a value of 61.2 hr-1 for 
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a 3.5 L STR equipped with a 70 mm three-blade segment impeller at an agitation rate of 

150 rpm and 0.1 VVM gas flow rate; whilst Tissot et al. (2011) reports a value of 4 hr-1 

for a 1.5 L STR employing a 45 mm pitched blade impeller and a gas flow rate of 0.3 

mL min-1 and agitation rates up to 150 rpm. Therefore, kLaapp values reported here 

ranging from 4 – 22 hr-1 and 4 – 53 hr-1 for media; and from 4 – 24 hr-1 and 4 – 46 hr-1 

for water with 0.5 g L-1 Pluronic solution for the PERC and REG plate designs 

respectively are within the ranges reported for similar systems. In terms of cell culture, 

specific oxygen uptake rates (qO2) range from 2.3 × 10–17 – 1.7 × 10–16 mol oxygen cell-

1 s-1 (Godoy-Silva et al. 2010) and so kLaapp values of this magnitude would appear 

adequate to satisfy the oxygen transfer demands of most mammalian cell culture 

processes. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5. Apparent kLa values determined using the static gassing out method for (a, b) PERC and (c, 
d) REG plate designs with RO water containing 0.5 g L-1 Pluronic F-68 and PPG media respectively. 
Experimental conditions: 7 mL fill volume; do 2.5 mm; 0.1 – 10 mL min-1 gas flow rates; shaking 
frequencies 500 (♦), 650 (■) and 800 rpm (▲). Error bars represent one standard deviation about the 
mean (n = 3). kLa values determined as described in Section 2.2.4. 
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In order to understand how the available gas-liquid interfacial area impacts on the 

measured kLaapp values, the displaced liquid height was quantified by analysis of high 

speed camera images (Section 2.2.6). For either plate design, the displaced liquid height 

increases by 17, 23 and 32 mm at agitation frequencies of 500, 650 and 800 rpm with 

gas-liquid interfacial areas of 220, 310 and 410 mm2 respectively. Subsequently, the 

gas-liquid transfer area at the surface of the liquid was calculated based on these values. 

As expected, increasing the shaking frequency increases the displaced liquid height for 

both plate designs and thus the calculated liquid area in contact with the gas at the liquid 

surface. This reinforces the trends seen in kLaapp values indicating that increasing the 

shaking frequency increases the available gas-liquid transfer area and thus kLaapp. For 

the PERC plate, where there is no dispersed gas phase, the relationship between a and 

kLaapp is almost linear over the range of shaking frequencies tested. An increase in 

shaking frequency from 500 to 800 rpm is seen to approximately double the gas-liquid 

transfer area; leading to an approximate doubling in kLaapp (Figure 3.5 a, b). This 

indicates that the increases in kLaapp and hence oxygen transfer are primarily due to the 

increase in a while the fluid hydrodynamics have little influence on kL. As seen in 

Figure 3.4 the plate design also has little impact on the displaced liquid height and the 

available gas-liquid transfer area at the surface. 

 
Table 3.7. Analysis of gas bubble size, size distribution and volumetric gas hold up in the REG plate 
design for RO water (with/without 0.5 g L-1 Pluronic F-68), PPG and CD-CHO media. Experimental 
conditions: 7 mL fill volume; do 2.5 mm; 0.5 mL min-1 gas flow rate; shaking frequency 650 rpm. Values 
based on image analysis of high speed video images as shown in Figure 3.6. Errors represent one standard 
deviation about the mean (n = 3). 
 

Fluid Bubbles Per 
Pulse 

Mean Bubble 
Diameter, d (mm) 

a (mm2) Per 
Pulse 

Bubble Residence 
Time (s) 

Gas Holdup Per 
Pulse (% v/v) 

Water 5.0 ± 0.1 4.8 ± 0.2 370 0.21 ± 0.06 4.4 

Water + 0.5 g L-1 
Pluronic F-68 22 ± 2 2.4 ± 1.1 410 0.11 ± 0.04 2.4 

CD-CHO 56 ± 2 1.8 ± 0.5 560 0.15 ± 0.02 2.4 

PPG 34 ± 4 2.9 ± 0.6 930 0.14 ± 0.02 6.5 
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When the REG plate is aerated, Figure 3.6 shows the nature of the gas-liquid dispersion 

produced. Visually this varies greatly between water (coalescing) or the water-pluronic 

solution and the two types of cell culture media (non-coalescing) studied. In all cases, 

there is no significant entrainment of the gas bubbles, but rather an ‘imperfect bubbly’ 

(Kantarci et al. 2005) flow regime. Bubble packing is also observed resulting in a 

‘foam’ layer appearing at the surface of the well, a phenomenon which is less likely to 

occur in a traditional STR under cell culture conditions. This foam layer was observed 

to persist for up to 4 minutes and hence antifoam was used during all REG plate cell 

culture experiments. 

 
Analysis of the number and size distribution of the dispersed gas bubbles produced is 

presented in Table 3.7. This indicates a complex series of interactions between media 

composition and the resultant gas phase characteristics in the bioreactor, which can be 

attributed to the presence of electrolytes in solution (Sideman et al. 1966). For example, 

in contrast to water, for the water-pluronic solution or either media, the mean bubble 

diameter d is smaller, therefore there are an increased number of bubbles and surface 

area, a, available for oxygen transfer with each gas pulse. The bubble size will also be 

affected by the orifice diameter and the gas flow rate; in this case the high gas flow rate 

will dominate this relationship as observed by the relatively small gas bubbles produced 

(Kantarci et al. 2005). The gas bubble size has a dramatic impact on energy dissipation 

as a result of gas bubble disengagement at the liquid surface (Al-Rubeai et al. 1990). 

Similarly, there is a progression to a decrease in average bubble residence time per 

pulse. For the different fluids tested, as residence times change, the gas-liquid surface 

area changes inversely. Accordingly, there is relatively little difference between the 

media in terms of the total gas-liquid surface area available per gas pulse when averaged 

out over the pulse duration. It is worth noting that the gas bubble distribution and 
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dynamics observed here will be rather different in an STR, due to impeller-induced 

bubble break-up and their subsequent interaction and coalescence (Nienow, 2006). 

 

 

Figure 3.6. Visualisation of gas bubble number and size distribution in the REG plate design for (a) water 
(b) water with 0.5 g L-1 Pluronic-F68, (c) CD-CHO media and (d) PPG. Experimental conditions: 7 mL 
fill volume; 650 rpm shaking frequency; do 2.5 mm; 5 mL min-1 gas flow rate. Images taken as described 
in Section 2.2.6. 
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3.3.3. Evaporation studies 

 

Due to the extended culture periods required for cell culture, evaporation, particularly 

from small scale systems with low working volumes can be problematic leading to 

uncontrolled changes in metabolite levels and culture osmolality (Silk et al. 2010). It 

has been reported that high osmolality conditions increase cell specific productivity (Oh 

et al. 1989) therefore evaporation effects need to be minimised to overcome these non-

specific influences on culture performance. 

 

In the µ24 system, the cassette is positioned such that column 1 is closest to the fans 

that control the environmental temperature and 6 is furthest away whilst rows A and D 

are at the outside of the plate. Each well on the µ24 plate has a cap (Section 2.2.2.) with 

a plastic check valve and sterile membrane barrier to help reduce evaporation. The 

specific fold evaporation values over 9 days of a simulated batch culture are shown in 

Figure 3.7. These were measured as described in Section 2.2.5. It can be seen that not 

only is there very little culture volume reduction by evaporation over this time (average 

of 0.6% per day over the whole plate) but evaporation rates are generally consistent 

across the plate and less than 10% v/v overall.  
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Figure 3.7. Variation of evaporation per well across a µ24 PERC cassette during a typical batch culture 
period. Evaporation was measured as described in Section 2.2.5. Experimental conditions: Initial 0.002% 
v/v blue dye in RO water; 37°C; 9 days duration; shaking frequency 650 rpm; do 2.5 mm; purge gas flow 
rate of 10 mL min-1. Average (a) represents the mean with error bars indicating one standard deviation. 
Dashed lines represent ± 10% variation about the mean. Evaporation rates measured as described in 
Section 2.2.5. 
 

3.4. Summary 

 

This chapter aimed to characterise the cell culture systems that are used in this thesis; 

delivering an essential set of engineering parameters across a range of typical operating 

conditions for mammalian cell culture.  

 

For the characterisation of the scale-down, 3L stirred bioreactor the basic engineering 

parameters were first quantified and compared to existing literature correlations. Under 

typical operating conditions mixing times were in the range 4 – 52 s (Figure 3.3; Table 

3.4), kLa values in the range 2 – 40 hr-1 (Table 3.3) and 1 – 500 x 10-3 W (0.6 – 260 W 

m-3) (Table 3.1). As discussed previously, in comparison to literature data for similar 3 

L STR systems these experimental and calculated values fit well with reported values. 
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In the case of the miniature shaken bioreactor a fundamental engineering 

characterisation of this cell culture platform had not previously been reported. The 

critical difference between the two plate designs investigated is the absence (headspace 

sparging; PERC plate) or presence of a dispersed gas phase (sparging directly into the 

fluid phase; REG plate). Under typical operating conditions, dynamic mixing times 

were in the range 0.8 – 13 s (Table 3.5) and apparent kLa values in the range 5 – 50 hr-1 

(Figure 3.5). Little work has been done to characterise such small scale bioreactors; a 

full engineering characterisation of the µ24 bioreactor system was necessary to aid our 

fundamental understanding of the engineering environment in such a system.  

 

Comparing the two different bioreactor formats, the work completed in this chapter 

emphasises the fact that it is possible to operate systems at different scales in a manner 

which will generate comparable engineering environments. Overlapping ranges of key 

engineering characteristics illustrate that it is possible to match the fundamental 

engineering parameters despite the different scales of operation and mechanism of 

energy input to the two systems (mechanical agitation as opposed to orbital shaking). 

 

This chapter underlines the fact that the small scale bioreactor system is capable of 

achieving comparable physical conditions to that of the existing scale-down stirred 

bioreactor. This is crucial for any future cell culture experiments in order to establish 

comparable physical environments in which the cells will grow. Significant differences 

in such engineering parameters are likely to cause distinct cellular metabolism effects 

and result in altered cell culture kinetics. In the next chapter the impact of the different 

µ24 plate formats on cell culture performance will be determined.
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Chapter 4. Miniature bioreactor cell culture kinetics and 

clone ranking* 

 

4.1. Introduction and aim 

 

Typically in industry, large numbers of cell line clones are screened in simple static 

microwell or small scale shake flask cultures in order to select high productivity lines 

(Markusen and Robinson, 2013). A small sub-set of high producers subsequently enter 

process development studies and before selecting the ‘best’ cell line for final large scale 

manufacture of a biopharmaceutical product. Crucially however, the engineering 

environment in such simple cell line selection systems may not yield the optimum lines 

for cultivation in bench scale, scale-down bioreactors (10 - 200 L) and ultimately at 

manufacturing scale. At the bench scale and above virtually all bioreactors will involve 

suspension culture of cells in the presence of a dispersed gas phase in fully instrumented 

and controlled mechanically stirred bioreactors (Nienow, 2006). Therefore, cell culture 

systems used for initial cell line selection might not identify the ‘best’ or most robust 

cell lines for large scale culture. 

 

This chapter investigates the fundamental impact that the distinct physical environments 

found in the different microbioreactor plate formats, described in Section 3.3, have on 

cell growth and antibody productivity. Particular emphasis is placed on the aeration 

strategies adopted at this small scale (7 mL) either by headspace sparging alone or by 

direct gas sparging into the culture medium. It is hypothesised that the absence of a 

dispersed gas phase will provide a good mimic for existing clone ranking tools, and the 

                                                 
* The work presented in Section 4.2 of this chapter has been published as: Betts et al. (2014) Impact of 
aeration strategies on fed-batch cell culture kinetics in a single-use 24-well miniature 
bioreactor. Biochemical Engineering Journal, 82, 105 - 116. 



John Paul James Betts   Chapter 4 
 
 

 - 113 -

presence of a dispersed gas phase will provide a better prediction of larger scale STR 

formats. This will be a novel set of experiments attempting to prove that the presence of 

a dispersed gas phase is critical to cell culture performance. In this chapter, the strength 

of the hypothesis is also tested across a range of cell clones. Given these differences, the 

aim in this chapter is to investigate use of the single-use 24-well parallel miniature 

bioreactor system for use as a clone ranking tool in a cell line selection scenario. 

 

The specific objectives are as follows: 

 

• To establish the basic methodologies for reproducible culture performance in the 

microbioreactor system to minimises well-to-well variation. 

• To investigate cell culture in the miniature bioreactor system using a model 

CHO DG44 cell line expressing a whole IgG1 mAb in a non-chemically defined 

media. 

• To examine the impact of aeration, and the gassing strategy adopted, on cell 

growth kinetics and antibody productivity. 

• To establish the miniature bioreactor as a platform system by replicating cell 

culture results using a model CHO dhfr-/- cell line expressing an IgG1 mAb in a 

chemically defined media. 

• To evaluate a range of clones in the two plate formats against traditional shake 

flask screening tools. 

 

4.2. µ24 cell culture kinetics 

 

4.2.1. Achievement of consistent well-to-well performance 
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As shown in Figure 4.1 (a) initial parallel batch cultures (n = 24) of the CHO dhfr-/- cell 

line in PERC plates showed considerable well-to-well variation even though all wells 

were controlled at the same set points. By day 8 the maximum VCD was 10.5 × 106 

cells mL-1 and there was a maximum difference of 6.4 × 106 cells mL-1 equivalent to an 

88% difference in final maximum and minimum VCD values. Subsequent experiments 

investigated ways to reduce this variability. Initial  experiments identified inconsistent 

cell growth in some wells, either due to variation in the inoculum added or due to cell 

settling whilst sampling. 

 

To counter these issues a microplate shaker was used to gently agitate the culture 

cassette when removed to a biological safety cabinet for sampling. In addition, a large 

volume, automated electronic pipette was employed to inoculate the wells in parallel. 

Using the optimised methodology cell culture kinetics across all wells were virtually 

identical as shown in Figure 4.1 (b) and the final VCD increased to 19.3 × 106 cells mL-

1. There was no apparent systematic variation in performance across the plate with well-

to-well variation in viable cell number reduced to less than 2.6 × 106 cells mL-1 at day 

11, equivalent to a 14% difference in maximum and minimum VCD values. 

 

4.2.2. Fed-batch cell culture kinetics in PERC plates 

 

As shown in Section 3.3 the PERC plate design provides a homogeneous culture 

environment with adequate gas-liquid mass transfer for cell culture occurring solely via 

head space aeration. The detailed kinetic performance of 24 parallel fed-batch cultures 

of the CHO dhfr-/- cell line grown in PPG media under optimised conditions using the 

PERC plate is shown in Figure 4.2 (a). Under the conditions used the measured tm 
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during shaking was 2.0 s (Table 3.5) while the maximum kLaapp was approximately 8 hr-

1 (Figure 3.5 (b)).  A standard fed-batch process was carried out for this cell line using a 

single 5 % v/v bolus feed addition on day 7 as described in Section 2.2.4. 

 

As shown in Figure 4.2 (a) (i) reproducible performance is again seen across all 24 

wells. In terms of cell growth the peak cell density was almost 20.4 ×106 cells mL-1 at 

day 14 and viability remained above 60% for all wells. The on-line parameters (Figure 

4.2 (a, ii)) demonstrate that the system was capable of maintaining all wells at their set 

points and that the control was reproducible across the culture cassette. DO was 

maintained at 57 ± 12% and pH at 6.95 ± 0.3. The spikes seen in the pH trace, for 

example at day 7, corresponds to manual sodium bicarbonate base feeding to readjust 

online pH. The metabolite data (Figure 4.2 (a) (iii)) and antibody titre (Figure 4.2 (a) 

(iv)) was shown to be consistent across the wells. The antibody titre reached a peak of 

approximately 1.6 g L-1 at day 14. 

 
Figure 4.1. Parallel fed-batch culture kinetics of a dhfr-/- cell line grown in PERC plates using (a) initial 
and (b) optimised operating conditions. Bold line represents mean with error bars showing one standard 
deviation (n = 24). Experimental conditions: shaking frequency 650 rpm; do 2.5 mm; temperature set 
point 37°C; pH set point 6.95; DO set point 57%. Experiments performed as described in Section 2.2.4. 
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4.2.3. Fed-batch cell culture kinetics in REG plates 

 

In contrast to the PERC plate, wells in the REG plate are individually aerated leading to 

the formation of a dispersed gas phase (Figure 3.6). Using the REG plate format 

different operating strategies for aeration were investigated. The presence of the 

dispersed gas phase was believed to affect cell growth and antibody production (Godoy-

Silva et al. 2010) as described in Section 4.1. 

 

In a traditional bioreactor a carrier gas is sparged through the culture in a continuous 

manner, and other control gases, i.e. oxygen or carbon dioxide, are actively blended in 

as appropriate in order to control the system pH and DO set points (Nienow, 2006). This 

aeration strategy was replicated in the µ24 ‘constant flow’ protocol as reported in 

Section 2.2.4 and Table 2.3, whereby air is constantly sparged at a desired flow rate, 

interspersed by the appropriate active sparging of gases to control pH (CO2) and DO 

(40% O2). In order to evaluate the effect of gas sparging on the system an ‘active flow’ 

protocol was also investigated as described in Section 2.2.4 and Table 2.3. In this case 

no purge gas was used to constantly sparge the culture and therefore only ‘active’ 

sparging of gasses occurred in order to maintain pH and DO set points. 

 

The performance of 24 parallel fed-batch cultures of the CHO dhfr-/- cell line in PPG 

media using the REG plate with either ‘constant flow’ or ‘active flow’ protocols is 

shown in Figures 4.2 (b) and (c) respectively. Under the operating conditions used the 

measured tm values was approximately 7.0 s (Table 3.5) and the kLaapp was 

approximately 12 hr-1 (Figure 3.5 (d)). The mean bubble size was 2.9 mm and the gas 

phase hold-up was 6.5% v/v (Table 3.7). 
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As shown in Figure 4.2 (b) (i) the REG plate experiments operated using the ‘constant 

flow’ protocol again showed reproducible culture performance. The peak cell density 

was almost 12.9 ×106 cells mL-1 at day 14 and viability remained above 70% for all 

wells. Gassing in this case appeared to retard cell growth at the beginning of the growth 

phase, but the cells maintained a higher percentage viability over this time when 

compared to the PERC experiments. DO was maintained at 57 ± 32% and pH at 6.95 ± 

0.4 (Figure 4.2 (b) (ii)). Glucose and lactate concentrations were consistent across the 

parallel experiments (Figure 4.2 (b) (iii)) and antibody concentration is seen to peak 

at 1.15 g L-1 (Figure 4.2 (b) (iv)). 
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Figure 4.2. Influence of plate design on 24 parallel fed-batch culture kinetics of a dhfr-/- cell line for (a) 
PERC plate, (b) REG plates operated in ‘constant flow’ mode, and (c) REG plates operated in ‘active 
flow’ mode: (i) VCD and viability (ii) online pH and DO values, (iii) glucose and lactate concentrations 
and (iv) mAb titre. Experimental conditions: do 2.5 mm; shaking frequency 650 rpm for the PERC plate 
and 550 rpm for the REG plate design. Experimental set points as described in Figure 4.1 and feeding 
performed as described in Section 2.2.4. 
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In contrast, use of the ‘active flow’ protocol (Figure 4.2 (c) (i)) showed a greater degree 

of variability in growth profiles. However, in general, there is good consistency across 

the wells in the plates, and the effect of bubble damage on cell culture performance is 

clearly shown. In this case the cell growth follows a pattern resembling that shown for 

the PERC plate, with a visible exponential growth phase, reaching a peak VCD of 15.5 

×106 cells mL-1 at day 11. However, after this point there is a more rapid decline in cell 

viability, leading to a final average viability below 60% at day 14. This can be 

explained due to the increased frequency in active gassing, at the higher cell densities, 

in order to control bioreactor set points. Online parameters are maintained with DO at 

57 ± 24% and pH at 6.95 ± 0.2 (Figure 4.2 (c) (ii)). Glucose and lactate concentrations 

follow cell growth, but with increased glucose utilisation and lactate production (Figure  

4.2 (c) (iii)). This is assumed to be because the cells are undergoing a greater degree of 

environmental stress, and are thus utilising more energy for cellular repair (Heath and 

Kiss, 2007; Ho et al. 2006). The peak antibody concentration was 1.40 g L-1 (Figure 4.2 

(c) (iv)). 

 

Taken together these results highlight the significant impact that gas sparging has in 

small scale cell culture formats like the µ24. Energy dissipation rate increases rapidly 

with decreasing bubble size, e.g. in pure water for a bubble diameter of 6.32 mm energy 

dissipation is 1 x 105 W m-3 which increases to 1 x 108 W m-3 for a bubble diameter of 

1.7 mm (Godoy-Silva et al. 2010). In comparison, the energy dissipation generated by 

an impeller which will have an approximate 1 x 101 W m-3 volume average for a typical 

animal cell bioreactor (Godoy-Silva et al. 2010). The constant gassing protocol appears 

to significantly retard cell growth at the exponential growth phase. However, this 

appears to condition the cells to the stress as a result of bubble damage. This is seen in 

the active gassing strategy; after approximately day 11 when there is a significant 
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decrease in the viability of the cell population as a result of a significant increase in the 

frequency of gas sparging in order to control the bioreactor set points at these now high 

cell densities. 

 

Another issue that could be affecting cellular metabolism with regard to the different 

gassing strategies is that of CO2 toxicity. It is widely believed that CO2 build up is 

primarily an issue in large scale bioreactors where the increased hydrostatic pressure 

increases CO2 solubility, and the low VVM gas flow rates that use an enriched oxygen 

air supply are unable to sufficiently strip the CO2 and hence lead to cellular toxicity 

(Nienow, 2006). However, this is not believed to be the cause of the lower VCD and 

titres exhibited by the REG plate cultures in ‘constant flow’ gas mode. Due to the low 

bioreactor volume and use of the ‘constant flow’ gassing regime, CO2 stripping would 

be greater than that of the REG plate in the ‘active flow’ mode and thus the build-up of 

dissolved CO2 to toxic levels is unlikely to occur. Thus the reduced growth kinetics 

under the ‘constant flow’ regime is most likely solely attributed to the increased gas 

sparging frequency. 

 

4.2.4. Comparison of µ24 and shake flask culture kinetics 

 

In the previous section, comparison of PERC and REG plate designs under similar 

operating conditions (well mixed, i.e. low tm, adequate kLaapp) showed that differences 

in cell culture performance were primarily attributed to the presence of the dispersed 

gas phase in the REG plates. Here the performance of the two plate designs is compared 

to conventional shake flask fed-batch cultures also at a matched mixing time (~7 s) as 

shown in Figure 4.3. 
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Figure 4.3. Comparison of fed-batch culture kinetics of a dhfr-/- cell line between PERC (♦, ◊) and REG 
plate designs operated in ‘constant flow’ mode (▲, Δ), and ‘active flow’ mode (●,○). Reference shake 
flask data (■, □) indicated with dashed line: (a) VCD (♦, ■, ▲, ●) and viability (◊, □, Δ, ○), (b) glucose 
(◊, □, Δ, ○) and lactate (♦, ■, ▲, ●) concentrations and (c) mAb titre. The PERC and REG cultures were 
performed as described in Figure 4.2 with shake flasks shaken at 250 rpm at a 25 mm orbital diameter. 
Error bars represent one standard deviation about the mean (n = 24 for µ24 data; n = 6 for shake flask 
data). Shake flask cultures performed as descried in Section 2.2.4 



John Paul James Betts   Chapter 4 
 
 

 - 122 -

 
 
As shown in Figure 4.3 (a) the cell growth kinetics in the PERC plates outperform those 

measured in the shake flask systems due to better control of culture parameters in the 

µ24. The observed higher antibody titre in the shake flask (Figure 4.3 (c)) is in fact not 

significantly different from that observed in the PERC plate (P = 0.91 between the two 

data sets). The shake flask titre data is believed to be comparable to that of the PERC 

plate results due to the fact that the viability is lower and therefore incomplete antibody 

fragments will be released, thus over predicting the shake flask antibody titre value. 

Alternatively, as the pH is not controlled for the shake flask culture, the pH may drift 

towards a value that is favoured for cell growth and antibody production. The REG 

plate results are lower due to increased cellular stress as a result of gas sparging, and 

hence lower VCD values and lower product titre. 

 

Derived growth parameters are calculated and presented in Table 4.1 for the four culture 

conditions. The Integral Viable Cell (IVC) count shows the measure of viable cells in 

the culture at a given time point. The PERC plate has the highest maximum IVC, thus 

illustrating the capacity for this system to support the highest number of viable cells. 

Similarly, the PERC plate has the highest instantaneous cell specific productivity (Qp) 

value. This highlights that the system is able to support a high number of cells, and also 

because of the monitoring and control capabilities, the cells also express a greater 

amount of product. The maximum specific growth rate reflects the cell growth data, 

with the growth rates in the REG plate lower than that of the PERC format. This also 

highlights the fact that the negative impact due to the cellular damage caused by the 

bubbles in the REG cultures has a greater impact than the positive impact of monitoring 

and controlling culture conditions. 
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Monitoring and control of culture parameters, pH and DO, in the µ24 as in conventional 

bench and production bioreactors, means that more representative data is obtained as 

opposed to other scale-down formats, e.g. shake flasks, normal microtitre plates. The 

PERC plate design appears most suited to identifying very high VCD/producing cell 

lines, i.e. in the context of early stage clone screening and selection. However, for the 

REG plate, whilst relative culture performance was not as good, this design introduces a 

dispersed gas phase and so is expected to be more similar to conventional bioreactors. 

Therefore, when looking to devise a scale-down mimic of a conventional STR the REG 

plate design may be preferable. Conditions in bench and production scale bioreactors 

are not uniform or constant engineering environments and do challenge cells to grow, 

therefore early screening of cells by introducing demanding processing conditions may 

actually be beneficial to aid early stage cell culture process development and 

identification of scalable cell lines.  

 
 
Table 4.1. Derived growth parameters calculated from average cell culture data for shake flask, µ24 
bioreactor using a PERC plate, and REG plate designs operated in a ‘constant flow’ or ‘active flow’ mode 
respectively, as described in Section 2.2.4 and Table 2.3. Values calculated from Figure 4.3. 
 

System Maximum IVC 
(x 106 cells day mL-1) 

Cumulative IVC 
(x 106 cells day mL-1) 

Instantaneous 
Qp 

(pg cell-1 day-1) 

Maximum 
volumetric 

productivity 
(mg L-1 day-1) 

Maximum 
specific 

growth rate 
(day-1) 

Maximum 
doubling 

time 
(day-1) 

Shake Flask 125 261 13.6 111 0.37 11.0 

PERC ‘constant flow’ 128 253 14.4 113 0.34 7.7 

REG ‘constant flow’ 62 119 12.2 53 0.32 8.7 

REG ‘active flow’ 87 173 12.1 71 0.33 5.8 
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4.3. Validating the small scale bioreactor system as a platform 

process technology 

 

As described in Section 4.2.4, the PERC plate design and controlled culture conditions 

in the µ24 provide an optimal engineering environment for the culture of mammalian 

cell lines. Improved growth and productivity in PERC plates compared to shake flasks 

was demonstrated for a cell line expressing a whole IgG1 mAb product, as illustrated in 

Figure 4.3 (a). This data was obtained for a model CHO DG44 (dhfr-/-) cell line in a 

non-chemically defined, fed-batch process (CHO-A). It is possible to reproduce this 

effect for a different CHO DG44 (dhfr-/-) cell line, expressing a different IgG1 mAb 

product (Figure 4.4). This second cell line operates under a chemically-defined, fed-

batch process (CHO-B). Thus, it appears that the µ24 platform displays similar 

operational characteristics, including key cell culture outputs such as VCD and titre, in 

either case, and for very different product, cell lines and processes. Establishing 

technologies such as the µ24 as a platform cell culture technology is crucial in order to 

encourage the uptake of such products into the relevant companies, and therefore 

improve process development economics and timescales. 
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Figure 4.4. Comparison of fed-batch culture kinetics between PERC (♦) and reference shake flask (■) 
data: (a) VCD and (b) mAb titre for three CHO-B cell line clones (i) B5, (ii) B6 and (iii) L4. The PERC 
and shake flask cultures were performed as described in Section 2.2.4 Error bars represent one standard 
deviation about the mean (n = 3 for µ24 data). 
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4.4 Cell line selection under process relevant conditions 

 

Having established the reproducibility of the miniature bioreactor system it was 

attractive to evaluate its use for early stage clone ranking experiments and in particular 

to evaluate clone ranking in unaerated (PERC) and aerated (REG) plate designs. In 

order to do this, a group of 24 cell clones expressing an IgG1 mAb were chosen. These 

clones represent an actual range of clones that were transfected and initially selected at 

GSK, Stevenage, before further refinement of clones prior to bioreactor screening and 

finally cell culture process development. The rationale for this experimental approach is 

to reduce the time and cost required for cell line selection and process development by 

recreating the engineering environment and, in particular, the presence of a dispersed 

gas phase comparable to that of the final cell line and process development tool earlier 

on in the cell line selection process and process development cycle. In addition, certain 

clones that may have previously been discarded by a shake flask screening process may 

actually have been incorrectly removed from this process due to the fact that the 

environment experienced in this cell culture format is so dissimilar to a bench, or 

production, scale bioreactor. Thus, whilst not only reducing time and costs in the 

development process, further gains in productivity may actually be realised because the 

right clones are being selected in the first place. 

 

As shown in Figure 4.5, the 24 cell clones were initially screened based on antibody 

titre in the traditional manner, i.e. in shake flasks, and in parallel were also screened 

using the µ24 PERC plate format. In general, there was a positive correlation between 

the performance of clones in both formats. For the purpose of the subsequent 

experiments, clones of varying performance were selected from this screen. Selection 

criteria entailed picking clones of high performance in both formats (green), poor 
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performance in both formats (red) and finally clones that performed significantly better 

in one format as opposed to the other (purple), as illustrated in Figure 4.5.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5. Parity plots comparing relative ranking of day 15 titres between the µ24 PERC plate cultures 
and shake flasks for 24 clones of a mAb expressing CHO cell line in a fed-batch process. Experimental 
conditions for µ24 PERC plates as described in Section 2.2.4: fill volume 6.5 mL; shaking frequency 650 
rpm; do 2.5 mm; pH set point 6.95; DO set point 30%. Shake flask experimental conditions as described 
in Section 2.2.4: 50 mL wv; shaking frequency 140 rpm; do 25 mm. Cultures in either system were 
maintained at 35°C and fed on days 3, 6, 8, 10 and 13 with a 10% v/v Feed 6 AGT feed solution 
supplemented with additional proprietary amino acid solution. 
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Figure 4.6. Graphs of relative ranking performance comparing PERC versus shake flask cultures (♦) and 
REG versus shake flask cultures (□). Graph (a) displaying day 15 titre data, g L-1, with graph (b) 
displaying specific productivity, pg cell-1 day-1, data. PERC and shake flasks were performed as described 
in Figure 4.5. Experimental conditions for µ24 REG plates: fill volume 6.5 mL; shaking frequency 550 
rpm; do 2.5 mm; pH set point 6.95; DO set point 30%. Trendline (solid line) in both graphs fitted by 
linear regression to the PERC and shake flask dataset. Dashed line represents line of parity. 
 

Table 4.2. Correlation analysis between the shake flask and PERC data sets and the shake flask and REG 
plate data sets  
 

Shake Flask : PERC Shake Flask : REG 
Titre Rank SPR Rank Titre Rank SPR Rank 

0.84 0.88 -0.11 0.31 
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These 12 clones were subsequently screened in parallel, once again in shake flasks and 

µ24 PERC plates, but also the µ24 REG plates. Shake flask data is compared to µ24 

PERC data (solid diamonds) in Figure 4.6, together with µ24 REG plate data compared 

to shake flask data (open squares). As expected, there is once again a good correlation 

between the PERC and shake flask data, for either (a) day 15 rank titres, or (b) specific 

productivity values, as illustrated by the R2 values in both graphs and the highly positive 

correlation coefficients displayed in Table 4.2. This data confirms that the small scale 

µ24 bioreactor system operating with the PERC plates can be used as an early stage cell 

line selection tool in place of the traditional shake flask platform. 

 

However, when considering the REG plate data there is a significant difference in the 

ranking of this plate format in comparison to the shake flask, and also therefore the 

PERC plate, cultures. Both the REG plate titre and SPR correlation coefficients (Table 

4.2) are lower and the titre rank correlation is negative between the shake flask and 

REG plate titre ranking. The fact that there is a greater reduction in the titre correlation 

titre rather than the SPR ranking indicates that the SPR is less affected by the change in 

culture conditions, i.e. the presence of a dispersed gas phase, than the titre is. This 

indicates that the cell growth, and therefore the IVC, is the major factor affected by 

introducing a dispersed gas phase into the cell culture environment, as opposed to the 

SPR, or the amount of product made per cell.  This data extends previous work to show 

that not only does the dispersed gas phase impact on cell line performance in the REG 

plate design it also impacts on clone ranking. This latter observation suggests that 

different cell clones may respond differently to larger scale bioreactor culture 

conditions. 
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The data illustrated in Figure 4.5 is expanded upon in Table 4.3. Here it is clear to see 

the significant differences in individual clone performance with an obvious correlation 

between the shake flask and µ24 PERC plate data. Again, the REG plate data generally 

do not following this same correlation. A further round of clone selection occurred at 

this stage in order to choose a small number of interesting clones for scale translation 

studies, as illustrated in Table 4.3; selected clones are shown with an asterisk and 

highlighted in the table in bold. The reasons for selecting these clones are as follows: 

BH1 due to the fact that this clone displays a high REG performance with average to 

poor shake flask and PERC results respectively; BH7, this is the lead clone in any of the 

cell culture formats; B1 as this exhibits the worst performance in any of the cell culture 

formats; and L6, in a converse manner to BH1, this clone shows poor REG performance 

but high PERC and shake flask results. As such a range of clone cell culture 

characteristics have been selected to test the robustness of the theory and the cell culture 

system that is being investigated. 

 

Table 4.3. Ranking data for the 12 clones across the three cell culture formats. Experiments performed as 
described in Figures 4.5 and 4.6. Selected clones shown with an asterisk and highlighted in the table in 
bold. Selection reasons: BH1 – high REG performance with average to poor shake flask and PERC 
results; BH7 – high performance in all cell culture formats; B1 – poor performance in all cell culture 
formats; L6 – poor REG performance but high PERC and shake flask results. 
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4.5. Summary 
 

This chapter aimed to establish the microbioreactor as a cell culture platform system. 

Initial work focussed on optimising the cell culture methodology in order to increase 

well-to-well consistency (Figure 4.1). Successful application of the µ24 bioreactor was 

demonstrated for a model cell line in terms of cell growth and productivity kinetics 

(Figure 4.2; Figure 4.3). Results in the REG plate were also reproducible but showed 

the impact that a dispersed gas phase can have on cell culture performance (Figure 4.2; 

Figure 4.3). 

 

A second cell line, expressing a different product, was subsequently tested in order to 

validate the small scale bioreactor as a platform cell culture system (Figure 4.4). A 

selection of 12 clones from this second cell line were subsequently screened in the 

different cell culture systems investigated here. There is good correlation between the 

PERC and shake flask data (Figure 4.6), illustrating its use as an early stage cell line 

selection tool in place of the traditional shake flask platform. However, the same clones 

screened in the REG plate format differ significantly to either the PERC or shake flask 

cultures (Figure 4.6). This data highlights the fact that the presence of a dispersed gas 

phase can significantly alter cell culture kinetics; and potentially impact cell line 

selection. In the following Chapter the scale-up performance of the different cell clones 

selected in the distinctive microbioreactor plate designs is investigated. 
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Chapter 5. Scale translation between miniature and scale-

down bioreactors: culture kinetics, broth harvesting and 

product quality 

 

5.1. Introduction and aim 

 

Complex biopharmaceutical products are manufactured at production scale in, 

generally, large stirred tank bioreactors. At such a scale it is not possible to perform 

extensive experimental studies; therefore, small scale models of such systems are 

required. With decreasing scale, less process materials are required and therefore each 

run becomes cheaper. This allows the throughput to be increased; however, it also 

becomes more difficult to recreate the engineering environment of the largest scale 

system. At such scales, fewer analytical methods can be employed, whether this is in 

terms of online monitoring tools or product quality and downstream processing 

analysis. Therefore there is an apparent trade off between the degree of information that 

can be obtained from each run and the number of runs that can be performed in parallel 

(Doig et al. 2006). 

 

Work performed in Chapter 4 described the use of a 24-well parallel miniature 

bioreactor system for use as a clone ranking tool in early stage cell line selection. In this 

chapter, cell culture performance is investigated in order to establish the scalability of 

miniature bioreactor results (7 mL scale) to bench scale reactors (1.5 L scale), which are 

themselves scale-down models of pilot scale systems (50 L scale). The engineering 

characteristics of the different bioreactor formats were previously investigated in 

Chapter 3. In particular, this work will test the novel aim of this thesis whereby matched 
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cell culture performance requires comparable engineering parameters and, crucially, the 

presence of a dispersed gas phase. If successful, such a small scale device would prove 

invaluable in a process development setting; an accurate and high throughput miniature 

scale system to explore the process operating space would be ideal as a Quality by 

Design (QbD) tool; this will be further explored in Chapter 6. 

 

Subsequently, work investigates whether material generated across the different scales 

exhibit similar Down Stream Processing attributes. Finally, a small scale preparative 

Protein A purification technique is used to generate material for detailed product quality 

analysis across the different cell culture scales. This will determine if not only the cell 

culture kinetics are similar across the systems investigated, but also the product quality 

attributes which are a critical factor in validating the microbioreactor format as a scale-

down tool.  

 

Specific objectives are therefore: 

 

• To evaluate a subset of four clones, investigated in Chapter 4, in each of the 

miniature bioreactor formats against the standard bench scale STR model. 

• To replicate bench scale STR performance in these clones using the miniature 

bioreactor system with matched engineering parameters and the presence of a 

dispersed gas phase. 

• To implement an Ultra Scale-Down primary recovery technique to evaluate how 

material generated at different scales compares in terms of Down Stream 

Processing. 

• To analyse mAb product generated across the range of scales for an array of 

product quality characteristics including aggregate level, non-glycosylated heavy 

chain content and glycosylation profile. 
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5.2. Scale translation of µ24 bioreactor cell culture kinetics 

 

The selected four clones (as described in Section 4.4) were subsequently cultured in 

parallel in the four different cell culture systems: shake flask, µ24 PERC and REG plate 

formats and 1.5L wv bench scale STRs. Details of the operating conditions for these 

different formats are described in Section 2.1.2 and are summarised in Table 5.1. The 

cell culture formats were matched using mixing time as a scaling criterion (tm ≈ 7s) as 

previously suggested by Silk (2014) for culture of GS-CHO cells in miniature and 

stirred bioreactor formats. Under these conditions all kLa values were above 10 hr-1 

(Section 3.2.2 and 3.3.2) and so oxygen transfer would not be considered a limiting 

regime. Representative data for one of the selected clones (BH1) is presented in Figure 

5.1 while data for the other clones is presented in Figures 5.2 to 5.4. In general the µ24 

data shows similar performance to that reported previously in Section 4.4. Comparing to 

the other bioreactor designs, however, there is a clear distinction in the cell culture 

performance between the shake flask and PERC plate formats (solid lines), and that of 

the REG plate format and the bench scale STR’s (dashed lines). In this case it is evident 

that the reduced performance in the STR is reflected in the REG plate data. In contrast 

the shake flask and PERC plate data are well matched. The effect of the dispersed gas 

phase is reflected on cell growth and productivity which decreased by 24% and 27% 

(VCD) and equally by 40% and 36% (titre) respectively at their peak values. 

 

This phenomenon has been described previously, whereby the presence of a dispersed 

gas phase causes cell damage thus diverting energy from cell growth and productivity to 

cellular repair mechanisms (Heath and Kiss, 2007; Ho et al. 2006). From the data shown 

here it can be clearly seen that in this case the REG plate format is a much better 
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indicator of stirred bioreactor performance. Matched mixing time was used as a scaling 

criterion to ensure that culture composition is homogenous in each case. Due to the fact 

that the REG and PERC plate formats are identical apart from the presence of this 

dispersed gas phase, differences in cell culture performance can be directly linked to 

this individual characteristic. 

 

Identical sets of matched cell cultures in the different culture formats were performed 

for the further three selected clones (Figures 5.2 to 5.4). A similar picture emerges in 

that cell growth and antibody production kinetics in the µ24 REG plate format provides 

the closest match to the larger scale STR data for each of the clones. In particular, this 

work reveals the issue with using a cell line selection or process development tool that 

does not closely mimic an STR format. As can be seen in Figures 5.2 and 5.4 (clones 

BH7 and L6 respectively), there is a significant disparity between the cell culture 

profiles as seen in the shake flask and PERC plate, as compared with the STR. The µ24 

REG plate provides the most comparable small scale cell culture data and therefore the 

most valuable data. 

 

Table 5.1. Details of cell culture operating conditions for the four different culture formats investigated 
and associated engineering characteristics. Cell culture performed in these different systems as described 
in Section 2.2.4. 
 

  Shake Flask PERC REG Bench Scale STR 
Shaking / stirring frequency (rpm) 140 650 550 350 

Orbital shaking diameter (mm) 25 2.5 2.5 N/A 
Fill volume (mL) 50 6.5 6.5 1500 
Aeration Strategy Headspace Headspace Dispersed Dispersed 
Constant flow gas 5% CO2 5% CO2 N/A N/A 
Constant flow rate 

(mL min-1) N/A 0.5 N/A N/A 

Oxygen control N/A 40% O2 40% O2 40% O2 
pH control N/A 20% CO2 100% CO2 100% CO2 

Active gas flow limit (mL min-1) N/A 10 0.5 
O2 at 200; 
CO2 at 100 

N/A     Not applicable 
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Figure 5.1. Cell culture kinetics for clone BH1 in shake flask (■), PERC (♦) and REG (▲) µ24 
plate formats and 1.5L wv bioreactors (●). Cell cultures performed as per Figures 4.5 and 4.6. 
Bioreactor conditions: single rushton impeller at 350 rpm; horseshoe sparger at 200 mL min-1 
40% oxygen/air gassing, 100 mL min-1 CO2; DO set point 30%; pH set point 6.95; temperature 
set point 35°C. Error bars represent one standard deviation about the mean (n = 6 for µ24 data; 
n = 3 for shake flask data, n = 3 for bench scale bioreactor data). Solid and dashed lines 
represent pairs of cell culture formats displaying the most similar performance. Experiments 
performed as described in Section 2.2.4. 
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Figure 5.2. Cell culture kinetics for clone BH7 in shake flask (■), PERC (♦) and REG (▲) µ24 
plate formats and 1.5L wv bioreactors (●). Cell cultures performed as per Figure 5.1 Error bars 
represent one standard deviation about the mean (n = 6 for µ24 data; n = 3 for shake flask data, 
n = 3 for bench scale bioreactor data). Solid and dashed lines represent pairs of cell culture 
formats displaying the most similar performance. Experiments performed as described in 
Section 2.2.4. 
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Figure 5.3. Cell culture kinetics for clone B1 in shake flask (■), PERC (♦) and REG (▲) µ24 
plate formats and 1.5L wv bioreactors (●). Cell cultures performed as per Figure 5.1 Error bars 
represent one standard deviation about the mean (n = 6 for µ24 data; n = 3 for shake flask data, 
n = 3 for bench scale bioreactor data). Solid and dashed lines represent pairs of cell culture 
formats displaying the most similar performance. Experiments performed as described in 
Section 2.2.4. 
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Figure 5.4. Cell culture kinetics for clone L6 in shake flask (■), PERC (♦) and REG (▲) µ24 
plate formats and 1.5L wv bioreactors (●). Cell cultures performed as per Figure 5.1 Error bars 
represent one standard deviation about the mean (n = 6 for µ24 data; n = 3 for shake flask data, 
n = 3 for bench scale bioreactor data). Solid and dashed lines represent pairs of cell culture 
formats displaying the most similar performance. Experiments performed as described in 
Section 2.2.4. 
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In order to compare the key product titre data for all clones, Figure 5.5 summarises the 

day 15 titres for the four clones (see Figures 5.1 to 5.4 for full culture profiles). 

ANOVA analysis (raw data in Appendix F) indicates that there is a statistical difference 

between each of the cell culture formats for each of the clones. For all four of the clones 

investigated it is also apparent that the REG plate provides a much better indicator of 

STR performance than either shake flask or PERC plate formats (see p-values in Figure 

5.5 calculated using an unpaired Student’s T-test). 

 

This study also indicates an interesting phenomenon with regards to the scalability of 

specific clones. The logic for the choice of each clone was described in Section 4.4. 

Briefly, this can be characterised as: BH7, lead clone in all formats; B1, poor clone in 

all formats; BH1, good performance in the REG plate format but poor performance in 

the PERC and shake flask formats; and finally L6 behaving in an opposite manner to 

BH1. As shown in Figure 5.5 and ANOVA data in Appendix F, clone B1 exhibits the 

smallest difference between PERC/Shake Flask day 15 titres and that of the REG/STR 

titre. This would imply that this clone is in fact robust, or scalable, in so far as being 

resistant to the energy dissipation caused by gas bubble bursting (Godoy-Silva et al., 

2010), as opposed to, for example, clones L6 and BH7. Along with the ability to use the 

REG plate format as a better cell line selection tool, or in this case a bioreactor mimic, 

this type of analysis may be invaluable in terms of rapidly selecting robust, scalable 

clones that would perform predictably, i.e. with similar growth kinetics and final 

product titre, when scaling the process to manufacturing scale STR. Conversely, a high 

ranking clone selected by a shake flask screening process, for example L6, would not 

necessarily ensure selection of the best clones in terms of STR performance (Figure 

5.5).  
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Figure 5.5. Graph comparing day 15 antibody titre data for the selected four clones across the 
different cell culture formats for shake flask (white), PERC (light grey) and REG (dark grey) 
µ24 plate formats and 1.5L wv bioreactors (black). Experimental conditions as per Figures 5.1 
to 5.4. Error bars represent one standard deviation about the mean (n = 6 for µ24 data; n = 3 for 
shake flask data, n = 3 for bench scale bioreactor data. p-values for each of the cell culture 
formats as compared to the STR data are displayed in a table below the chart and are 
highlighted in the chart as * = P < 0.05, ** = P < 0.01). Experiments performed as described in 
Section 2.2.4. 
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5.3 Scale translation of µ24 bioreactor broth harvesting 

characteristics 

 

In addition to matching cell growth and product formation kinetics in the µ24 REG 

plate formats and larger scale STR it is important for further scale-down studies that the 

cell culture broth displays similar physico-chemical properties that might impact on 

primary product recovery steps. 

 

This work will investigate the downstream processing of cell culture material for the 

clones used in Section 5.2. Downstream processing, and product recovery, is a crucial 

factor in the overall biopharmaceutical manufacturing process. For mammalian cell 

culture processes, filtration is now frequently used for cell removal and primary product 

recovery as opposed to centrifugation, for example (Liu et al. 2010). Consequently, 

established Ultra Scale-Down methods for depth filtration processes, as described in 

Section 2.6, were applied here to examine broth downstream processing characteristics. 

These have the advantage that they can operate with just 3-5 mL of material and so are 

compatible in scale with the broth volumes harvested from parallel µ24 cultures. Key 

process metrics will be filter capacity and the level of solids remaining (Lau et al. 

2013). 

 

As the nature of the cell culture broth will directly influence this process step, it would 

appear important to also investigate this effect in the overall context of cell line 

selection and process development. Similarly, the nature of the engineering 

environment, in which the cells are cultured, will greatly affect the cell morphology and 

therefore influence the ease of processing this material downstream of the cell culture 

phase. As shown in Figure 5.6,  predicted filter capacity appears to be relatively similar 
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across the cell culture formats (29 ± 7 L m-2). The filter capacity values, whilst lower 

than might be expected in industry (100 – 175 L m-2 (Pegel et al. 2011)), are 

comparable to values obtained from other small scale studies (24 – 45 L m-2 (Lau et al. 

2013)). It is evident that the REG and STR systems show similar and lower % solids 

remaining values compared to the shake flask and PERC formats. The µ24 PERC plate 

format and shake flask systems exhibit a high degree of similarity with regard to the 

amount of solids remaining post depth filtration in comparison to both the REG plate 

format and the STR data. As can be seen in Table 5.2 this trend holds true for all but 

clone BH7.  

 

These findings mirror the cell culture kinetics described in Section 5.2. Again, it 

appears that there are pairs of data; the REG and STR exhibit similarly low % solids 

remaining values as opposed to the relatively high values from the shake flask and 

PERC data. The low solids remaining values in the case of the REG plate and STR cell 

culture systems may be as a result of the presence of a dispersed gas phase in the cell 

culture process. This phenomenon has been reported previously with regard to USD 

centrifugation (Tait et al. 2009); indicating similar findings where cells that have been 

exposed to high levels of cell damage during the cell culture phase actually exhibit a 

more robust cell morphology. In this work, due to gas bubbles in the dispersed gas 

phase present in the STR and REG plate formats, cells cultured in these systems may be 

more robust than those from the PERC or shake flask formats.  In this scenario, it is 

feasible that fragile cells may be broken open when filtered, thus allowing a greater 

degree of solids through the filter into the permeate during the filtration process, as seen 

in the PERC and shake flask USD depth filtration data (Figure 5.6). 

 

It is clear that the downstream processing of the REG plate samples are much more 
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comparable to that of the STR than the PERC plate or shake flask samples. This again 

highlights the fact that it is the presence of the dispersed gas phase that is necessary in 

order to truly replicate the engineering environment of the STR cell culture format. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6. USD depth filtration data displaying the percentage of solids remaining (bars) and 
predicted filter capacity (diamonds) for clone BH1 across the cell culture formats. Experimental 
conditions: 05SP filters of an effective filter area of 0.28 cm2 run at 300 mbar, cultures 
harvested approximately between 50 – 60% viability. Experiments performed as described in 
Section 2.6. 
 
Table 5.2. USD depth filtration data presenting the percentage of solids remaining and 
predicted filter capacity for all clones across the cell culture formats. Experiments performed as 
described in Figure 5.6 and Section 2.6. 
 

Clone Cell Culture System % solids remaining Predicted filter capacity (L m2) 

BH1 

Shake Flask 11 36 
PERC 13 22 
REG 6 32 

Bioreactor 8 24 

BH7 

Shake Flask 4 14 
PERC 9 21 
REG 9 27 

Bioreactor 3 21 

B1 

Shake Flask 19 51 
PERC 17 36 
REG 2 32 

Bioreactor 11 37 

L6 

Shake Flask 10 45 
PERC 20 36 
REG 4 32 

Bioreactor 3 35 
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5.4. Scale translation of µ24 bioreactor product quality attributes 

 

A biopharmaceutical product not only needs to display actual therapeutic effect but also 

product purity, safety and efficacy (Section 1.3). Manufactured commercially, the 

product needs to be made in consistent batches; differences in product quality can 

greatly impact on the previously stated factors. Divergent engineering environments 

will affect cell culture kinetics and in turn alter the ensuing product quality attributes 

(Hossler et al., 2009); therefore it is imperative to achieve comparable engineering 

environments across scales of cell culture formats. Such is the importance of optimal 

and consistent product quality profiles, it has been proposed that quality screening 

should occur even in early stage cell line selection in addition to typical cell growth and 

productivity analysis (Walsh and Jefferis, 2006). 

 

Having shown that choice of µ24 cell culture format greatly influences culture 

performance and predictability of scaled-up performance, it is appealing to also 

distinguish how product quality attributes vary in the different bioreactor formats. In 

this work, product quality analysis has been performed on the mAb formed in each of 

the different cell culture systems to identify any additional effects the engineering 

environment may have on product formation. To this end, key product quality attributes 

were determined experimentally as described in Section 2.4. 

 

As shown in Figure 5.7, for clone BH1, overall there is very good comparison in 

product quality across all the different bioreactor formats and scales of production. The 

presence of non-glycosylated heavy chain (NGHC) in a drug product may affect the 

efficacy of the biopharmaceutical (Wong et al. 2012). As can be seen in Figure 5.7 (a) 
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there is a relatively low level of this attribute across the cell culture formats. In addition, 

there is not a significant difference in this product quality characteristic between the 

different formats. 

 

The product glycosylation profile for this IgG1 mAb is shown in Figure 5.7 (b). A 

legend of typical mAb glycan residues is illustrated in Figure 5.8. One of the key 

aspects of glycosylation for a mAb is the degree of galactosylation; a ratio of G0, G1 

and G2 species with an increasing number of galactose residues. A consistent product 

glycoform profile is essential due to regulatory requirements (Hossler et al. 2009). 

Again, as shown in Figure 5.7 (b) there is little difference between the proportions of 

these fractions. The proportions of G1 and G2 species are highest for the STR system, 

thus potentially, and as might be expected, this is highlighting that this format can 

achieve the most uniform and consistent engineering environment, providing the most 

ideal conditions for cells to incorporate the utmost amount of glacatose residue 

additions. 

 

Finally, Figure 5.7 (c) illustrates the proportion of monomer, low molecular weight 

fragments and aggregate species in the samples from the different cell culture formats. 

Overall there is a high degree of monomer species in the samples, with very little 

aggregate present. This is most important as aggregate species are most often non-

functional and can cause issues with product immunogenicity (Filipe et al. 2012). The 

most significant result in this work is the presence of a high degree of low molecular 

weight species in the REG plate sample (Figure 5.7 (c)). Elevated levels of low 

molecular weight species are also found in REG plate samples for two of the other three 

clones (Table 5.3). Protein A positive, low molecular weight species occur as a result of 

mAb product fragmentation. A high degree of low molecular weight species may 
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Figure 5.7. Product quality analysis for clone BH1 product generated in Section 5.2 showing (a) non-
glycosylated heavy chain content, (b) glycosylation profile and (c) antibody aggregates and fragments. 
Experiments performed as described in Section 2.4. Product quality attributes measured as described in 
Section 2.4. Abbreviations: HC: Heavy chain, NGHC: Non-glycosylated heavy chain; G0-G2: ratio of 
galactose residues; LMW: Low molecular weight species. 
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indicate a greater presence of protease enzymes in the sample (Janeway et al., 2005). 

This is an interesting observation which reflects on the cell culture environment in the 

REG plate format. While the cell culture kinetics illustrated in Figures 5.1 to 5.4 

indicate very similar profiles between the REG and STR formats, this observation may 

point towards subtle differences. Amplified protease levels in the REG plate sample 

may indicate a greater level of cell death, or more specifically necrotic cell death 

experienced in this cell culture format, thus leading to the release of proteases into the 

cell culture broth. 

 

Product quality profiles from all the clones investigated are shown in Table 5.3. The 

same overall trends can be seen across the other three clones investigated in this work; 

in general there are very comparable product quality profiles across the different cell 

culture formats.  

 

 

Figure 5.8. Index of typical mAb N-linked glycan residues. 
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Table 5.3. Product quality analysis summary for material generated in Section 5.2. Experiments 
performed as described in Section 2.4. Product quality attributes measured as described in Section 2.4.  
 

Clone Culture Format 
Antibody Aggregates/Fragments Non-glycosylated Heavy Chain Glycosylation Profile 

% Aggregate % Monomer % LMW % NGHC % Intact HC G0 G1 G2 

BH1 

Shake Flask 0.2 99.7 0.1 2.1 97.9 68.3 21.4 10.3 

PERC 0.2 99.7 0.2 2.3 97.7 72.0 20.7 7.2 

REG 0.0 92.5 7.5 1.9 98.1 71.9 21.4 6.8 

Bioreactor 0.2 99.9 0.1 2.9 97.1 64.1 26.5 9.3 

BH7 

Shake Flask 0.2 99.6 0.2 1.2 98.8 74.6 18.7 6.7 

PERC 0.2 99.6 0.2 9.2 90.8 72.7 20.2 7.1 

REG 0.3 99.6 0.1 2.3 97.7 59.8 30.7 9.5 

Bioreactor 0.2 99.7 0.2 4.1 95.9 66.0 24.9 9.0 

B1 

Shake Flask 0.2 99.6 0.2 1.1 98.9 74.5 18.8 6.7 

PERC 0.0 99.8 0.2 1.2 98.8 71.2 20.8 8.1 

REG 0.2 98.3 1.5 1.0 99.0 72.5 20.5 7.0 

Bioreactor 0.2 99.7 0.2 1.4 98.6 58.3 30.5 11.3 

L6 

Shake Flask 0.2 99.5 0.3 1.1 98.9 73.1 19.9 7.0 

PERC 0.2 99.6 0.2 1.0 99.0 73.0 19.6 7.3 

REG 1.2 65.1 33.7 2.4 97.6 55.1 32.1 12.8 

Bioreactor 0.2 99.4 0.4 1.4 98.6 66.6 25.0 8.4 

 
 

5.5. Summary 

 

Work carried out in Chapter 4 demonstrated the use of the miniature bioreactor system 

as a platform cell line selection tool. In this Chapter, work illustrates the versatility of 

the miniature bioreactor system by demonstrating its scalability using matched mixing 

times as a scaling criterion and, critically, using the different plate designs, the fact that 

the presence of a dispersed gas phase is necessary in order to accurately recreate the 

bioreactor environment at small scale. This is shown in Figure 5.2 which illustrates that 

there is a 5 – 24% difference in day 15 titre values between the bioreactor and dispersed 

gas phase miniature bioreactor format across 4 clones, as opposed to 30 – 92% 

difference between the bioreactors and headspace sparged miniature bioreactor format. 
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Subsequently, the quality of the cell culture broth itself is analysed using an Ultra Scale-

Down primary recovery depth filtration system. Taking advantage of the small volume 

required for this technique it was possible to identify how comparable the culture broth 

is to the bench scale STR system. Whilst there appears to be no significant difference in 

the estimated filter area required, there is a clear trend in the % solids remaining post 

filtration. For this attribute, it would appear that the relatively gentle engineering 

environments in the PERC and shake flask formats yield fragile cells and subsequently 

large amounts of solids post filtration, conversely, the comparatively harsh 

environments in the STR and REG plate formats result in more sturdy cells and thus 

lower levels of solids post filtration.  

 

Finally, work was undertaken to understand the product quality attributes of the 

expressed product across the different cell culture systems, in particular the non-

glycosylated heavy chain content (Figure 5.7 (a)), the glycosylation profile (Figure 5.7 

(b)) and the proportion of product aggregates and fragments (Figure 5.7 (c)). Overall 

there is a high degree of similarity between the different profiles for all the systems. 

Potentially the most emphatic effect illustrated here is that the host cell line appears  to 

be reasonably robust; despite significant differences in the cell culture kinetics (Figures 

5.1 to 5.4; and Figure 5.5) this product quality analysis highlights only slight differences 

in the expressed Protein A positive product species. There is however an interesting 

finding in terms of the relative proportion of low molecular weight species present in 

the REG plate format samples. The next chapter will discuss the overall conclusions 

that can be made from this thesis and potential directions for future work. 
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Chapter 6. Conclusions and future work 

 

6.1. Conclusions 

The work carried out in this thesis undertakes a detailed engineering characterisation of 

a miniature bioreactor system which is used to establish a novel methodology for 

selecting robust cell lines with predictable cell growth and heterologous protein 

production kinetics in larger scale bioreactors. These were the main aims of this thesis 

as described in Section 1.11. This thesis demonstrates, for the first time, that a REG 

plate cell culture format is capable of predicting titre in large scale CHO cultures. 

Moreover, this is performed for a number of industrially relevant CHO cell clones. 

 

A thorough engineering characterisation of the different cell culture systems was carried 

out in Chapter 3. The necessity is to first characterise the small and large scale formats 

to establish a suitable engineering basis on which to scale between the systems. By 

doing so, greater understanding of the cells growing in the different scales will be 

achieved thus leading to greater ability to predict how the cells will behave in the large 

scale culture format and thus improving process scale up and shortening development 

times. Under typical operating conditions, the existing 1.5 L scale-down STR model 

was shown to have kLa values >30 hr-1 (Figure 3.2; Table 3.3) and mixing times ≤7 s 

(Figure 3.3; Table 3.4). In the case of the 24-well miniature bioreactor system two 

different plate designs were investigated; the PERC plate, implementing headspace 

sparging, and the REG plate, in which gas is sparged directly into the cell culture, 

thereby generating a dispersed gas phase (Figure 2.1).  Here it was shown that the 

sparged and non-sparged vessels exhibited similar engineering parameters; under 

typical operating conditions, dynamic mixing times were in the range of 0.8 – 13 s 
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(Table 3.5) and apparent klLa values in the range 5 – 50 hr-1 (Figure 3.5). Following on 

from the work carried out by Silk et al. (2010), matched mixing time was used as a 

scaling criterion for cell culture studies. 

 

Initial cell culture studies (Section 4.2.1.) explored the practical methodologies that 

were necessary to implement in order to achieve accurate and reproducible cell culture 

kinetics across the small scale system. Work then investigated the effect of the dispersed 

gas phase on cell culture kinetics (Section 4.2.4.). In general it was shown that the 

presence of the dispersed gas phase retarded cell growth, leading to a 38% decrease in 

IVC (Table 4.1). This decreased growth was associated with a typical 40% decrease in 

final antibody titre (Figure 4.3).  

 

Crucially, in order to be relevant to industrial applications, a small scale cell culture 

format, such as the one investigated in this thesis, must be a platform system. As such, 

work investigated whether the results generated in Section 4.2 using a mAb expressing 

cell line in a non-chemically defined fed-batch cell culture process could be replicated 

for a different mAb expressing cell line in a chemically defined fed-batch cell culture 

process (Figure 4.4). This work illustrates that results are reproducible between such 

cell lines and processes. 

 

Using this chemically defined process, 24 clonal lines expressing a range of cell culture 

and productivity characteristics were selected in order to assess the miniature scale 

bioreactor as a cell line selection tool (Section 4.4). Work undertaken shows how the 

headspace sparged plate format is able to accurately reproduce the clone ranking effect 

of a conventional shake flask system, while the direct sparged plate format does not 

(Figure 4.6). The ‘ideal’ environment offered by the PERC plates appears best suited for 
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cell line selection studies under precisely controlled suspension culture conditions. Here 

the small scale of the µ24 format with the PERC plate design offers around a 5-30 fold 

reduction in scale and approximately a threefold increase in throughput, in terms of 

laboratory footprint, compared to commonly used shake flask systems. 

 

Chapter 5 investigates how a number of clones from the work undertaken in Section 4.4 

perform when scaled up to a bench scale STR format. All systems were scaled using a 

matched mixing time as a scaling criterion (Section 2.2.5); it is shown that the presence 

of the dispersed gas phase in the REG plate design makes this format more 

representative of a laboratory or pilot scale stirred bioreactor (Figures 5.1 to 5.4). The 

PERC plate design was shown to consistently over predict sparged bioreactor 

performance, consequently use of this format for cell line selection could lead to 

identification of non-robust, less scalable cell lines. The REG plate is a valuable culture 

format for early stage cell culture process development studies and the ranking of clones 

under process relevant conditions, as is shown for a number of clones investigated in 

this work (Figure 5.5). In this context, the miniature 24-well format provides 

approximately a 200 fold reduction in scale and in the perspective of laboratory 

footprint, approximately a twentyfold increase in throughput as compared to an 

equivalent number of bench scale STR systems.  

 

Finally, to enable rapid and robust process development pathways, upstream cell line 

selection and process operating conditions must also be informed by downstream 

processing studies. However, with small scale upstream technologies, there comes a 

new challenge in reduced amounts of material for such downstream processing studies. 

In Section 5.3, work was undertaken to show that it is possible to couple two small 

scale, high throughput process technologies, one for upstream mammalian cell culture 
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and the other for primary recovery to generate industrially relevant data for primary 

recovery purposes in terms of filter sizing and the degree of solids removal. In this case 

it was demonstrated that the presence of a dispersed gas phase in the cell culture system 

was necessary in order to reproduce the nature of the cell culture broth for primary 

recovery studies (Table 5.2). Finally, work was undertaken to investigate how the cell 

culture format impacts on key product quality characteristics. It is known that changes 

in the cell culture process can affect product quality of expressed CHO mAb products. 

However, work carried out in this thesis demonstrates that there is very little change in 

the product quality attributes with varying cell culture format (Table 5.3). Overall this 

work has provided novel insights into cell culture performance in miniature bioreactor 

formats and has established predictive methodologies for identification and scale-up of 

robust cell lines and cell culture processes. The generic nature of these findings have 

also been demonstrated on two different cell culture processes establishing the wider 

applicability of the work and also helping to establish the use of the specific miniature 

bioreactor platform in ‘Quality by Design’ driven bioprocess development approaches 

(this is explored further in Appendix A).  

 

6.2. Future work 

 

The implementation of this work at GlaxoSmithKline demonstrates the industrial 

application of such small scale, high throughout cell culture systems for the rapid 

selection of robust and scalable cell lines, ultimately, for biopharmaceutical production 

at manufacturing scale. However, there are a number of areas where further work could 

be carried out either to provide more fundamental insights into bioreactor performance 

or to establish the miniature bioreactor format as an industrial high throughput 

bioprocess development tool. 
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In terms of the engineering fundamentals there are a number of areas that might benefit 

from additional experimental techniques or the application of other approaches. For 

example, the literature correlations for shaken well formats (Section 3.3) do not 

necessarily hold true for this plate system due to significant differences in the well 

geometry, fill volume, typical agitation rates and orbital diameter throw of the shaker 

platform. As such, it would be most informative to apply a Computational Fluid 

Dynamics (CFD) approach, as previously used for different shaken well formats (Zhang 

et al., 2005; Zhang et al., 2008) for this miniature bioreactor system. Experimental 

mixing time and kLa values determined in this work could be used to validate the 

computational model. The model could then be used to determine energy dissipation 

rates and shear forces within the cell culture system providing additional engineering 

insights that are not directly measureable. Also, whilst the iodine decolourisation 

method has been widely used for mixing time determination, alternative methods such 

as Particle Image Velocimetry (Odeleye et al., 2014) can be employed to accurately 

determine the mixing throughout a bioreactor system. This would help to understand the 

fundamental fluid dynamics of the small scale system and could help to highlight any 

significant differences between the two plate formats. 

 

As discussed in Section 4.2.4. two assumptions are made as to why shake flask titre 

values are as high as the PERC plate data, which represents the ‘ideal’ culture 

conditions. To test the first of these theories, that shake flask cell viability decreases 

towards the end of the culture, thus allowing the release of antibody fragments, mass 

spectrometry or SEC could be used to identify such species. Similarly, the second 

assumption, that the pH drifts in a shake flask, could be tested with a standard pH probe 
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in a modified shake flask vessel. If the pH profile was captured, this could be replicated 

in a pH controlled system to determine if such a pH profile increases cell productivity. 

 

In a similar vein, a more thorough theoretical or experimentally verified understanding 

of how gas-liquid interfaces interact with cells would be beneficial. Gas bubbles are 

believed to interact with cells in a number of ways; for example, as a dispersed gas 

phase within the cell culture system, as a foam layer on the cell culture surface and at 

the point when bubbles disengage at the liquid-air interface. Investigation of these 

phenomena on a fundamental level would help to distinguish the most important of 

these factors and as such this element could be independently introduced to a small 

scale bioreactor system to increase the comparability of data generated with larger scale 

STR formats. 

 

In terms of establishing the industrial adoption of the miniature bioreactor system it 

would also be necessary to explore operation in a more high throughput manner since, 

at present, the methodology is practically still a large burden in terms of operator 

workload. It would therefore be interesting to explore options for automation as this 

would reduce the workload for the operator whilst also improving liquid handling 

accuracy and reducing the chance for contamination.  

 

As discussed in Section 5.4, the cell line used appears to be fairly robust in terms of the 

product quality profile of the expressed product across the different scales. Thus, whilst 

there is a large range of engineering environments in the different cell culture systems, 

there are only fairly limited product quality differences. In this context it would be more 

interesting to use a less robust cell line/product to see if any changes to the engineering 

environment changes are reflected in the cellular product assembly and processing. 
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Building on the scale-up results here, obtained under a single set of process conditions, 

it would also be necessary to explore whether comparable performance is achieved over 

a wider area of process design space. As such, the miniature bioreactor system 

examined in this thesis would provide an excellent cell culture tool in a Quality by 

Design setting implementing a Design of Experiments style approach to explore the 

process space. This type of application would require further work in order to 

understand whether the miniature bioreactor system maintains it’s accuracy in 

replicating bench scale STR data when at the limits of the process design space.  

 

Finally, following on from this type of application, it would be industrially valuable to 

construct a full small scale process mimic. Work undertaken in this thesis demonstrated 

coupling the small scale cell culture system to a USD primary recovery technique in 

order to assess processing of the cell culture material generated from the different cell 

culture systems. Future work might include using this USD tool in a preparative 

manner, generating material for a second filtration step, or proceeding directly to, for 

example, a preparative, small scale, chromatography step, which was itself also 

implemented in this thesis (Section 2.4.1). By combining such technologies alongside 

automated liquid handling systems, complete process pathways can be mapped out at 

small scale to provide whole bioprocessing data. As a QbD tool in this manner, this 

would generate a greater degree of knowledge earlier in the process development 

pathway such that, for example, clones could be selected not only on cell culture 

performance but also in a more holistic approach, accounting for any issues that might 

be discovered from such primary recovery, and further downstream, small scale studies. 
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Appendix A. Industrial implementation and economic 

comparison of the miniature bioreactor system as a cell line 

selection tool or bioreactor mimic‡ 

 

A.1. Introduction and aim 

 

As discussed in Chapters 4 and 5, it has been shown that the small scale bioreactor 

platform investigated in this work has potential applications both as a cell line selection 

tool but also a scale-down bioreactor mimic, dependent on the plate type used. 

However, such applications will not be realised unless there is an economic driver for 

the relevant company to adopt such technologies. There will be an obvious degree of 

inertia in replacing existing technologies that are tried and tested due to the fact that any 

delays in the process development pathway will have a major impact on the commercial 

viability of the product in question. 

 

The aim of this chapter is to explore the industrial implementation and economic 

feasibility of adopting this technology as either a cell line selection tool (during cell line 

development) or as a scale-down bioreactor mimic (during cell culture process 

development). Specific objectives are: 

 

• To investigate how this miniature bioreactor system might fit into a traditional 

cell line selection/cell culture process development pathway. 

                                                 
‡ This Chapter is included as part of the UCL requirements for award of the EngD in Bioprocess 
Engineering Leadership   
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• To examine the economic viability of implementing a small scale cell culture 

tool to replace traditional bench scale bioreactor systems. 

• To explore the use of a small scale, high throughput system within a ‘Quality by 

Design’ context. 

 

A.2. Practical implementation analysis 

 

Figure A.1. illustrates a typical process flow diagram for a standard mammalian cell 

culture process for the manufacture of a biopharmaceutical product. Typically, 

transfection of the host cell line is followed by an initial cell culture period before single 

cell sorting. Single cells, or clones, are then typically cultured in static microwell plates. 

Rounds of cell line selection then occur with only the highest producing lines being 

transferred onto the next cell culture format. 

 

As is shown in Figure A.1., the majority of bioreactor formats used for cell growth 

during cell line selection differ significantly from that of the final cell culture format for 

product manufacture. Therefore, the clones that perform well at the initial cell line 

selection phases may not necessarily be the ‘best’ clones from the entire pool of 

available cells. As illustrated in Chapters 4 and 5, there is an opportunity to introduce 

the small scale bioreactor format, investigated in this thesis, much earlier in the process 

development process in order to help ensure that robust and scalable clones are actually 

being selected. 

 

At the shaken microwell stage there is an opportunity to utilise the PERC plate format 

as this would enable cells to be selected under more precisely controlled culture 
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conditions than in conventional microwell plates. However, there are still a vast number 

of clones that need to be screened at this point. Therefore, economically, the PERC 

system may not be feasible both in terms of consumables costs (PERC plates are over 

100 times more expensive than a conventional microwell plate), but also in terms of 

capital costs for the number of base units required. Subsequent to this, the PERC plate 

format is well suited (as demonstrated in Section 4.4) to replace the shake flasks stage 

of the process because of the more realistic numbers involved. Alternatively, the REG 

plate system may be suited to utilisation at this stage in order to provide a more realistic 

screening method, selecting the most robust and scalable cell lines. (Section 4.4) Most 

companies will have small scale STR’s as validated scale-down models of their 

production processes; the REG plate is ideal to be implemented alongside these 

systems. In this manner the REG plate can be used to perform high throughput 

experimentation, reducing the burden on the STR format and reducing the number of 

experiments that are required at the larger scale.  
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Figure A.1. Typical process flow diagram for a mammalian cell culture biopharmaceutical product. * 
represents where the PERC µ24 may be implemented and similarly ** represents potential 
implementation of the REG µ24 bioreactor format. 
 

A.3. Economic feasibility analysis 

 

No matter the practical utility of a process development tool, like the commercially 

available µ24 system, there must also be a clear economic incentive in order for 

companies to adopt the technology in practice. Table A.1. presents results from a 

preliminary economic model to help guide decision making. Data is normalised relative 
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to a bench scale bioreactor values. Raw data, assumptions and factors not included in 

the model are included in Appendix B. 

 

In this analysis there is a clear decrease in cost per experiment from right to left, i.e. 

with decreasing culture volume. This trend is due to the relatively high price for media 

which dominates the costing side of the model. The small scale systems are all single 

use, thus they also have lower labour costs in terms of turning the cell culture format 

around and prepping for a next experiment. Importantly they also do not have 

associated CIP/SIP costs. The combination of these two factors results in significantly 

lower experimental costs for the small scale systems. 

 

In order to compare absolute experimental costs across cell culture formats, two scoring 

parameters are introduced; information content and format utility. In the case of 

information content, this is based upon the percentage difference in average day 15 titre 

for the four clones investigated in Section 5.2 as compared to the bench scale STR. This 

actual experimental data is used to quantify how accurately each of these systems can 

predict cell culture performance; relative to the bench scale STR. Information content 

scoring values for the microwell format and the pilot and manufacturing scale STRs are 

assumed. A low information content value for the microwell format is a result of 

significant differences to the engineering environment of the bench scale STR and small 

culture volumes which reduces the amount of online and offline analysis that can be 

performed. Conversely, successively high values for the pilot and manufacturing scale 

STRs is a consequence of the fact that these systems will include full process 

instrumentation and automation as well as the fact that at a larger volume there will be 



John Paul James Betts  Appendix A 
 
 
 

 - 163 -

further opportunity to perform process relevant DSP studies or toxicology studies, for 

example.  

 

The second scoring parameter, format utility, attempts to reflect the flexibility of the 

cell culture system. All values are assumed in this case. The small culture volume in the 

microwell system necessitates sacrificial sampling, or end point sampling, thus reducing 

format flexibility. Microwell and shake flask systems are penalised as they have no 

online process monitoring or control capabilities, which therefore limits these systems 

to experimentation at a limited range of process parameters, a single temperature set 

point, for example. All the small scale systems are penalised due to the fact that they are 

not automated in any way, thus reducing the complexity of experimentation that can be 

performed. The larger scale STR formats have an advantage in this criterion in that they 

will have a greater degree of instrumentation and process control, therefore increasing 

the utility of the system. 

  

Scoring parameters are combined to exaggerate the requirement of having an accurate, 

yet functional bioreactor system. Absolute and relative cost per experiment values can 

be generated (described in Appendix Table B.1.). Accounting for data value and system 

flexibility, as described above, the REG plate miniature bioreactor system is highlighted 

as an economically viable alternative to a bench scale bioreactor system; used in a high 

throughput manner this system could reduce the number of experiments required at the 

bench scale (Table A.1.). This type of analysis also highlights that a shake flask system, 

might in principle at least, return valuable experimental data for less expenditure than 

the PERC plate miniature bioreactor system. This is particularly interesting and again 

highlights the need to effectively balance data value alongside economic burden.  
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Table A.1. Economic comparison of typical cell culture formats in mammalian cell culture process development. 
 

Factor 

Cell culture format 

Microwell 
Shake 
Flask PERC REG 

Bench scale 
STR 

Pilot scale 
STR 

Manufacturing 
scale STR 

Throughput 24 1 24 24 1 1 1 
Throughput (per unit capital) 30 24 1 1 1 1 1 
Total number of runs possible per year 23 23 23 23 18 18 15 
Total number of experiments possible per year 16,560 552 552 552 18 18 15 
Capital costs (per experiment) (£) 0.06 1.8 13 13 97 1,541 19,334 
Consumables costs (per experiment) (£) 0.12 9.1 10 10 87 8,700 435,000 
Turn around cost (per experiment) (£) 14 14 29 29 58 175 3,260 
Labour cost (per experiment) (£) 101 101 202 202 404 808 1,212 
                
Total cost (per experiment) (£) 116 126 253 253 646 11,224 458,805 
Information content score* 0.06 0.58 0.36 0.93 1 4 10 
No. of runs to be confident in data* 18 2 3 2 1 1 1 
Format utility score* 0.10 0.25 0.50 0.50 1 2 4 
Absolute cost factoring in scores (per experiment) (£) 19,825 867 1,414 545 646 1,403 11,470 
Relative cost factoring in scores (per experiment) 
(£)* 30.67 1.34 2.19 0.84 1 2.17 17.75 

*Relative to bench scale STR 
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A.4. Utility as a ‘Quality by Design’ tool 

 

Whilst one of the primary aims of this thesis was to evaluate a small scale system for 

use as a tool in the rapid selection of robust and scalable cell lines (Section 1.11) it is 

interesting to also explore the option of using this device in a ‘Quality by Design’ 

driven, bioprocess development scenario (Section 5.1; Section 6.2). Given the fact that 

the miniature bioreactor, using mixing times as a scaling criterion and implementing a 

dispersed gas phase, accurately replicates cell culture kinetics, broth harvesting and 

product quality performance of the bench scale STR format (Chapter 5), the small scale 

system could in the future be utilised for process design space exploration. Due to the 

online monitoring and control capabilities, the high throughput nature of the format and 

the ability to integrate with DSP unit operations (Section 5.3) the miniature bioreactor 

system would be ideal, as a platform technology, by which to investigate process 

operating ranges within a QbD approach.  

 

One of the major validation issues faced in a process design/optimisation scenario is 

that of experimental consistency. As a living organism is used to generate the 

biopharmaceutical product, there will be an inherent degree of variability in the process. 

Cell culture processes make use of monitoring and control systems in order to maintain 

the experiment within set critical process parameters that are designed to manufacture a 

product to set critical quality attributes; which are typically regarded as the cell growth 

and viability, expressed product titre, product quality (e.g. charge heterogeneity; 

correctly assembled or folded forms; non-aggregated/truncated forms and correctly 

glycosylated forms) and process impurity levels (e.g. amount of product aggregates 

formed in the processing; levels of host cell protein or DNA within the final product 
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form). To this extent, a significant validation issue lies in creating and maintaining a 

process such that it produces consistent batches of material of the desired critical quality 

attributes; thus process control and sensitivity is critical. 

 

With regard to process validation, there is a move towards developing manufacturing 

processes that are based upon a Quality by Design foundation. As such, rather than 

having strict, and sometimes arbitrary, process control limits, temperature must be 

controlled to 37°C ± 1°C, for example, a Quality by Design developed process will have 

explored the process design space in order to gain better process/product understanding 

and thus build a set of operating conditions that may have greater degrees of tolerance 

(Shimoni et al, 2014). Thus even if an individual parameter moves outside of a set limit, 

this could be mitigated by a second parameter which remains within its own limit. Poor 

process/product understanding can lead to a lack of control, low productivity/product 

quality and failed manufacturing batches. 

 

Use of a small scale, high throughput bioreactor model will enable the rapid evaluation 

of the process design space. Integrating this alongside small scale DSP unit operations, 

for example, will add further value to the exercise. As a QbD tool in this manner, this 

would generate a greater degree of process/product knowledge earlier in the process 

development pathway, thus reducing product development timelines and yielding more 

robust manufacturing processes in the long term (Shimoni et al, 2014; Tescione et al, 

2014). 
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A.5. Summary 

 

The aim of this chapter was to explore the practical and economic feasibility of 

integrating the miniature bioreactor system examined in this thesis into a traditional 

process development pathway and to investigate further use of this system in a Quality 

by Design format.  

 

Figure A.1. illustrates a standard process development pathway and highlights the 

position that either the PERC or REG plate small scale bioreactor format may integrate 

into these screening stages. As highlighted, there is an opportunity to replace up to three 

elements of a traditional process with the miniature scale bioreactor system. As 

discussed in Section 4.4, cell line ranking differs significantly between the REG plate 

system and either the PERC plate format or a shake flask culture. The ability to select 

for robust and scalable cell lines, as demonstrated in Section 5.2, early in the cell culture 

process development pathway, is a unique ability of the miniature bioreactor system 

implementing a dispersed gas phase. As such it may be advantageous to perform 

industrial cell line screening using the REG plate miniature bioreactor format. 

 

A preliminary economic analysis of typical cell culture formats used in cell culture 

process development was undertaken in Section A.3. Weighted experimental costs, 

relative to a bench scale STR system, indicated that the REG plate format was 

economically viable as a small scale cell culture model, which could reduce the number 

of experiments required at the bench scale (Table A.1.). Crucially, the model also 

revealed that the PERC plate system might generate relative bench scale STR data at 

almost double the financial burden as compared to the shake flask format. 
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Finally, Section A.4 investigated the concept of using a small scale cell culture format 

in a QbD scenario. Due to the comparable bench scale STR data, and the high 

throughput nature of the format, the system would be ideal to rapidly explore process 

design space. In this manner, product development timelines could be reduced as greater 

process/product knowledge could be gained early on in the product development 

pathway, and ultimately, more robust manufacturing processes could be designed. 
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Appendix B. 

 
B.1. Economic model calculations 

 
Factor Calculation 

Throughput Culture format throughput 

Throughput (per unit capital) 
Number of systems that can be used in parallel per unit 
captial 

Total number of batches possible per year Number of working weeks per year/Experiment duration 

Total number of experiments possible per year 
Total number of batches possible per year*Throughput (per 
unit capital) 

Capital costs (per experiment) (£) 
(Capital cost/10)/Total number of experiments possible per 
year 

Consumables costs (per experiment) (£) Sum of all consumables 

Turn around cost (per experiment) (£) CIP/SIP costs (if applicable) plus associated labour hours 

Labour cost (per experiment) (£) Time per day*Experiment Duration 

Total cost (per experiment) (£) Sum capital, consumable, turn around and labour costs 

Information content weighting 
% difference in average day 15 titre (Section 5.2) relative to 
bench scale STR 

Format utility Assumed as described in Section A.I.3. 

Weighted absolute cost (per experiment) (£) Total cost/(Information content weighting*Format Utility) 

Weighted relative cost (per experiment) (£) 
Weighted absolute cost/Weighted absolute cost for the 
bench scale STR 

 

 

Exponential 6/10 rule used to calculate capital costs with scale: 
For example: 
2 L STR = £17,500 
200 L STR = (200/2)0.6 × £17,500 
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B.2. Economic model raw data and assumptions 
 
Data: 
 
Capital Costs 

System Volume (L) Costing Total (£) 
µ24 N/A Quote 69995 

Bench scale STR 2 Quote 17,500 

Pilot scale STR 200 Exponential 6/10 rule 277,356 

Manufacturing scale STR 10,000 Exponential 6/10 rule 2,900,147 

Microwell/shake flask incubator N/A Quote 10,187 
 

 

Consumables Costs 

Item Costing Total (£) 
Shake flask (50) Quote 163.2 

SRW microwell (100) Quote 180 

µ24 plate (6) Quote 1170 

µ24 caps (6 ) Quote 156 

Media (1 L CD-CHO) Quote 58 
 
 
Assumptions: 
 
Throughput (per unit capital) 
30 microwell plates per incubator (5 across, 2 deep, 3 tall) 
24 shake flasks per incubator (8 across by 3 deep) 
 
Total number of batches possible per year 
Each experiment is 2 weeks  
46 working weeks per year 
0.5 week turnaround for bench/pilot scale STR; 1 week turnaround for manufacturing 
scale STR 
 
Capital costs (per experiment) (£) 
All equipment lasts 10 years and depreciation is linear per year 
 
Turn around cost (per experiment) (£) 
CIP/SIP for STR systems, assume £0.2/L 
 
Labour costs 
Assumes a wage of £30,000 p.a. 
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Labour cost (hour units) Cell Culture Format 
Turnaround cost Microwell Shake Flask PERC REG Bench scale STR Pilot scale STR Manufacturing scale STR 
CIP     1 2 6 
SIP     1 2 6 
Prep 1 1 2 2 2 4 6 
Total 1 1 2 2 4 8 18 
Experiment cost Microwell Shake Flask PERC REG Bench scale STR Pilot scale STR Manufacturing scale STR 
Time per day 0.5 0.5 1 1 2 4 6 
Total (per experiment) 7 7 14 14 28 56 84 

 

 

Model does not consider: 

− Installation costs 

− Equipment maintenance costs 

− Disposal of single use systems, disposal of contaminated waste streams 

− Utilities 

− Laboratory footprint and cost 
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Appendix C. 
 
 
Table C.1. Global pharmaceutical industry sales (2001-2008) (IMS Health Market Prognosis). 

 
Year 2001 2002 2003 2004 2005 2006 2007 2008 

Total World Market (Current 

US$ in Billions) 393 429 499 560 605 648 715 773 

Growth Over Previous Year 

($Constant US$ Growth (%)) 11.8 9.2 10.2 7.9 7.2 6.8 6.6 4.8 
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Appendix D. 

 

Table D.1. Scrip's Pharmaceutical Company League Tables (2009) 
 

Company 
Total World Market 
Sales (US$ Millions) 

R&D Expenditure 
(US$ Millions) 

R&D Expenditure 
as a Percentage of 
Total Sales (%) 

Pfizer 44174.00 7945.00 18.0 

Roche 33315.71 7322.58 22.0 

GlaxoSmithKline 37810.42 6828.92 18.1 

Sanofi-Aventis 40561.90 6731.38 16.6 

Novartis 33888.00 6383.00 18.8 

AstraZeneca 31601.00 5179.00 16.4 

Johnson & Johnson 24567.00 5095.00 20.7 

Merck & Co 23619.90 4805.30 20.3 

Takeda 14050.20 4394.55 31.3 

Eli Lilly 19284.70 3840.90 19.9 
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Appendix E. 
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Figure E.1. Example DOT data from gassing out experiments as a function of aeration rate. kLa was 
determined using the static gassing out method described in Section 2.1.5.  
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Appendix F. 
 
Table F.1. Raw 
ANOVA data used in 
Section 5.2.L6 

SS df MS F P 

Between: 0.453 3 0.151 73.771 1E-08 

Within: 0.029 14 0.002   

Total: 0.481 17    

 

BH1 SS df MS F p 

Between: 0.124 3 0.041 13.841 0.00018 

Within: 0.042 14 0.003   

Total: 0.166 17    

 

B1 SS df MS F p 

Between: 0.039 3 0.013 11.106 0.000537 

Within: 0.016 14 0.001   

Total: 0.055 17    

 

BH7 SS df MS F p 

Between: 0.454 3 0.151 145.575 0.0 

Within: 0.015 14 0.001   

Total: 0.468 17    
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