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Abstract 

This thesis, completed in collaboration with Purification Process Development of Pfizer 

Biotherapeutics, is concerned with how mechanistic models of chromatographic 

bioseparations can be applied in industry to accelerate development and increase robustness 

of industrial protein purification processes, whilst also realising the benefits of a systematic 

development approach based on fundamental process and product understanding.  

 

The first results chapter considers the application of mechanistic models to provide a link 

between high throughput screening (HTS) and scouting runs conducted during early process 

development. The chapter focuses on an anion exchange (AEX) weak partitioning 

chromatography (WPC) polishing step in a platform monoclonal antibody purification 

process. Adsorption isotherms are formulated from experimental multicomponent batch 

adsorption studies of monomer – aggregate. A new approach is taken where the adsorption 

equilibria is characterised as a function of the product partition coefficient, enabling the 

model to be applied to new candidate monoclonal antibodies without additional 

experimental effort. Stochastic simulations conducted at an early stage of process 

development identify promising operating parameter ranges for challenging separations, 

directs optimal performance, and reduces development times. A detailed analysis of model 

predictions increases fundamental knowledge and understanding of the complex WPC 

multidimensional design space, which enables better informed process development at 

Pfizer. 

 

Resin fouling over a chromatography columns lifetime can cause significant (undesired) 

changes in process performance. A lack of fundamental knowledge and mechanistic 

understanding of fouling in industrial bioseparations limits the application of mechanistic 

models in industry. An experimental investigation was conducted into fouling of the AEX 

WPC considered in the first results chapter. Analysis of fouled resin samples by batch 

uptake experiments, scanning electron microscopy, confocal laser scanning microscopy and 

scale down column studies, indicated significant blockage of the pores at the resin surface 

occurred that after successive batch cycles. Mass transport into resin particles was severely 

hindered, but saturation capacity was not affected. The increased understanding of resin 

fouling can direct future efforts to mitigate this detrimental phenomenon and maintain 

process performance, whilst providing a basis for the development of new fouling models. 

 

The third results chapter considers an industrial hydrophobic interaction chromatography 

(HIC) separation at a late stage of process development. Resin lot variability, combined with 
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a variable feed stream, had resulted in serious performance issues during the purification of a 

therapeutic protein from crude feed material. The traditional approach to tackling this type of 

problem involves defining a design space based on an extensive experimental effort directed 

by factorial design of experiments conducted at great cost. The result is a fixed, inflexible 

manufacturing process, with a control strategy based on reproducibility rather than 

robustness, and little fundamental understanding of the source of the issue. In the third 

results chapter, the application of mechanistic models to identify robust operating conditions 

for the HIC is considered. A model is developed, validated experimentally, and used to 

generate probabilistic design spaces accounting the historical variability in the resin lots and 

load material. The stochastic simulation approach is extended to explore the impact of 

reducing variability in the load material on the design space. With historical process 

variability, no operating condition was found where the probability of meeting product 

quality specifications remained > 0.95 for all resin lots. Model simulations indicated that 

adopting an adaptive design space, where operating conditions are changed according to 

which resin lot is in use, is favorable for ensuring process robustness, which is a step change 

concept for bioprocessing. 

 

The conclusions and outcomes resulting from the application of mechanistic models to the 

two industrial systems in this thesis, provides a basis for the next generation purification 

process development platform. 
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Chapter 1. Introduction 

 

Therapeutic proteins are well established as a clinically and commercially important class 

of therapeutics. The key consideration when bringing a product to market remains the need 

to launch as early as possible. There is also increasing desire in industry to move to a more 

systematic approach to bioprocess development and operation based on fundamental 

process and product understanding. Innovation and engineering approaches based on first 

principles modelling have been proven in a variety of processing industries (e.g. refining, oil 

and gas, chemicals, energy). However, mechanistic models derived from first principles are 

seldom utilized in the biopharmaceutical sector. There remains a need to determine how to 

apply mechanistic models in industry, where production of a product of consistent quality in 

amounts satisfying demand remains the primary concern of bioprocess engineers, rather 

than traditional processing objectives. This engineering doctorate thesis, completed in 

collaboration with Purification Process Development of Pfizer Biotherapeutics, is 

concerned with how mechanistic models of chromatographic bioseparations can be applied 

in industry to accelerate development and increase robustness of bioseparations, whilst 

realising benefits of an approach based on fundamental process and product understanding.  
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1.1. Recombinant proteins market considerations 

Proteins are now used in a broad range of important clinical applications (Waldmann, 2003, 

Descotes and Gouraud, 2008), and are recognised as a commercially important class of 

therapeutics. Annual revenues for 2012 estimated to total in excess of $50 billion of the 

$600billion global pharmaceutical market (Walsh, 2010). Increasing incidence of many 

diseases due to aging populations, rising living standards and fast developing geographical 

markets (China and India have estimated markets approaching $10 and $2 billion, 

respectively) have provided strong drivers for this growth, which is predicted to continue in 

the future (Walsh, 2010). This is evident in industry with several hundred clinical candidate 

proteins currently estimated in company pipelines (Kelley, 2009), of which many serve 

significant unmet medical needs (Shukla et al., 2007). 

 

Until recently, the biopharmaceutical industry has relied primarily on blockbuster drug 

products such as Infliximab and Etanercept (Khanna, 2012). These are drugs with annual 

revenues in excess of $1billion which are highly desirable for companies as they provide 

consistent high revenues over long periods of time (>10 years). The desire to bring new 

blockbuster drugs to market remains strong. However, although there are numerous 

candidate biopharmaceuticals in development, few are predicted to reach blockbuster status 

as many target rare or orphan indications (Walsh, 2010). In addition, many first generation 

drugs have now reached or are reaching the end of patent protection, and their market value 

renders them attractive targets for biosimilars. This brings challenges for industry, both for 

companies trying to break into established markets, and for primary innovators protecting 

their investment in off patent products. 

 
Traditionally, the key considerations when bringing a newly discovered molecule to market 

have been: (i) the need to launch as early as possible in order to maximise the period of 

patent protection (which lasts 20 years), and (ii) the need to get the product first to market 

when companies are launching similar products, since this often results in better recognition 

from customers and increased sales. Both are significant challenges as development is 

typically long and costly. The average time to market is 10 years at a cost of $1billion (Di 

Masi et al., 2003, Di Masi and Grabowski, 2007). There is a high risk of clinical failure 

(82% of newly discovered molecules are estimated to fail). New drugs must follow strict 

regulatory pressures, and biopharmaceutical manufacturing processes are inherently 

complex. In addition, the increasing prevalence of biosimilars means that manufacturing 

efficiency and the reduction of cost are becoming additional considerations, and companies 

must strive to find a competitive edge which gives them an advantage over their rivals.  
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1.2. Production of recombinant proteins 

The aim of production is to consistently produce a quality product which delivers its 

intended performance (ICH, 2008). Protein therapeutics are typically required in amounts 

reaching several hundred kilograms of bulk drug substance per annum (Kelley, 2007). 

Consequently, compared to early biopharmaceutical products, large scale production 

processes are now necessary with manufacturing processes producing many tens of 

kilograms of product per batch (Aldington and Bonnerjea, 2007).  

 

Although varied, therapeutic protein production processes can typically be divided into cell 

culture/fermentation, cell harvesting, primary recovery and purification sections, which are 

often grouped into the upstream processing (cell culture/fermentation) and downstream 

processing sections (DSP) (cell harvesting, primary recovery and purification) of the  

manufacturing process (Shukla and Thömmes, 2010). Each is comprised of a number of unit 

operations that are selected and optimised according to the product being produced.  

 

The primary aim of cell culture and fermentation is a high productivity, low cost production 

of the therapeutic protein, whilst enabling a facile and inexpensive DSP (Chu and Robinson, 

2001). This is achieved by a combination of cell line development and process optimisation 

(Wurm, 2004, Costa et al., 2010). The goal is to grow the expression system to high cell 

densities, thus producing a large amount of product per unit volume per unit time with 

minimal production of contaminants to be removed. 

 

Material is passed from cell culture/fermentation to the primary recovery section of the 

manufacturing process. Here, cells and cell debris are removed from the culture broth, and 

cell culture supernatant that contains the product of interest is clarified for subsequent 

purification. Primary recovery may also involve the extraction of product from the host cell 

if the product is expressed intracellularly. Primary recovery is generally achieved through 

use of microfiltration, centrifugation, depth filtration and flocculation/precipitation (Roush 

and Lu, 2008). 

 

Material is then passed to the purification section, where the objective is to achieve 

acceptable product purity. Other important considerations include yield/recovery, process 

throughput and manufacturability criteria (e.g. robustness, reliability and scalability). 

Membrane filtration, crystallisation and liquid extraction see some use, however, 

chromatographic separations are currently the dominant technology for the purification of 

therapeutic proteins, as their very high selectivity is well suited to separating the product 
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from the heterogeneous mix of impurities present in biologically derived material (Kelley, 

2007).  

 

1.3. Chromatography 

In chromatography, a mobile phase (liquid or gas) moves through a bed of particles known 

as the solid or stationary phase. Species in the mobile phase are separated as they interact 

with the solid phase to different degrees via molecular interactions or chemical bonds. Many 

different configurations are available to bring the mobile phase into contact with the solid 

phase, including packed beds, stirred tanks and expanded beds. Radial flow packed beds and 

simulated moving beds are available, but most commonly the solid phase is packed into a 

column and the mobile phase flows along the axial dimension with material applied in 

batches. 

 

1.3.1. Operating modes 

Chromatographic separations can be operated in a number of different modes. The most 

commonly used are bind and elute mode (B/E), and flowthrough mode (FT). More recently, 

a third type designated weak partitioning (WPC) has been developed at Pfizer by Kelley et 

al. (2008). Further distinction is made between separations that occur with constant mobile 

phase conditions (i.e. pH, ionic strength, buffer composition) which are known as isocratic 

operation, or separations where the mobile phase conditions are changed during the 

separation either stepwise or continuously which are known as gradient elution. 

 

The key feature of B/E mode is that the protein product is strongly bound to the solid phase 

and impurities flow through to waste. Each batch is divided into distinct phases, which 

include column equilibration (where the column mobile phase is brought to the desired 

conditions), column loading (where the material to be purified is applied to the column), one 

or more wash steps (where mobile phase buffer without protein material is applied to the 

column in order to push out remaining impurities), elution (where the mobile phase 

conditions are changed to promote desorption of any bound material for collection), 

sanitisation (where the column is cleaned of any remaining material) and storage (where the 

column is put in mobile phase which preserves the resin bed for future use).  

 

In FT mode the opposite occurs, and the impurities are strongly bound to the solid phase, 

whilst the protein product flows through and is collected for further processing. The phases 

of FT include column equilibration, column loading, one or more wash steps, column strip 
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(where the mobile phase conditions are changed so that the bound impurities are eluted from 

the column to waste), sanitisation and storage.  

 

In WPC, the strength of the product binding is between those observed in B/E and FT mode. 

Although similar to FT as impurities bind to the resin and the protein of interest flows 

through to be collected as product, WPC is distinct, as it is performed under mobile phase 

conditions where in addition to impurities a significant amount of product also binds to the 

resin. The more stringent binding conditions improves removal of impurities, and any loss in 

yield due to adsorption of the product can be restored by extending the load challenge and 

conducting a wash step at the end of the load phase. Typically WPC employs equilibration, 

load, wash, strip, sanitisation and storage phases, respectively (Kelley et al. 2008a). 

 

1.3.2. Solid phase 

The solid phase in chromatographic separations is composed of particles known as resins. 

Their properties are highly customisable and have important implications as summarised in 

Table 1.1. Resin particles are made from polymerisation of various materials (e.g. agarose, 

methacrylate etc), and can be porous or non-porous. Particles are often modified with the 

addition of specialised functional groups in order to confer additional properties such as 

better mechanical properties or selectivity. Functional groups that are designed to directly 

interact with species in the mobile phase are known as ligands. 

 

Ligands are normally attached to the resin base matrix via covalent bonding. As molecules 

of interest propagate through a resin bed, the surface of the molecule interacts with the 

surface of the ligand, which forms the basis for separation.  Many different ligands are 

available and can be grouped according to the type of interaction they offer as summarised 

in Table 1.2. This variety makes orthogonal sequences of chromatographic bioseparations 

possible, where species are separated according to a different type of interaction in each 

column, giving unmatched selectivity. The main ligands related to this work are affinity, 

anion exchange and hydrophobic interaction. 

  



30 
 
 

 

Table 1.1. Chromatography resin properties and their implications (Hagel et al., 2007). 

Resin property Implication 

Mechanical properties Throughput, scale up, maximum flow rates 

Ligand density and distribution Binding capacity, selectivity, recovery 

Pore size distribution Dynamic binding capacity 

Particle size distribution Resolution, product recovery, impurity removal, dynamic binding capacity 

Chemical stability Lifetime, reusability 

Hydrophilicity/hydrophobicity Product recovery, cleanability 

 
 

Affinity ligands are specially designed to strongly bind to the target of interest through 

multiple molecular interactions giving unmatched selectivity (Fahrner et al., 1999). They are 

commonly utilised in the first step of chromatographic purification sequences (Ayyar et al., 

2012). The chromatography is typically operated in bind and elute mode, thus, the protein of 

interest binds to the resin and impurities flow through to waste. The protein is released from 

the affinity ligand to be collected for further purification by changing the mobile phase 

composition (usually by lowering the pH). Affinity separations yield very pure product, 

however, the resins are expensive and ligand leakage and the harsh conditions used for 

elution can introduce additional impurities that must be removed (Pollock et al., 2013). An 

example of an affinity ligand is Protein A, which binds to the Fc region of monoclonal 

antibodies, and is used extensively throughout the biopharmaceutical industry. 

 

Ion exchange chromatography separates molecules based on solute charge (Vermeulen et al., 

1984, Yamamoto, 1988). In anion exchange chromatography, ligands are positively charged 

and thus bind negatively charged solutes. Conversely, in cation exchange chromatography, 

ligands are negatively charged and therefore bind positively charged solutes. The charge on 

a protein is a function of the proteins’ isoelectric point (pI) and the pH of the mobile phase. 

At a pH below their pI, proteins carry a net positive charge. At a pH above their pI, proteins 

carry a net negative charge. Hence, the pH and the concentration of competing ions in the 

mobile phase (known as counterions) can be manipulated in order to selectively bind 

components in the feed material, and allow others to pass unhindered through the column. 

Anion exchange steps are commonly used as the second stage within chromatographic 

sequences, where positively charged product flows through the column unhindered, and 

negatively charged impurities, such as host cell proteins, nucleic acids, DNA and 
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endotoxins, are bound to the column (Shukla and Thömmes, 2010). Cation exchange steps 

are most commonly employed as polishing steps after the bulk of the purification has been 

completed to remove any remaining aggregated product and leached affinity ligand (Shukla 

and Thömmes, 2010). 

 

 
 

Table 1.2. Types of ligand chemistries used in the purification of therapeutic proteins. 

Type Examples of ligands Retention mechanism 

Affinity Protein A/G 

Glutathione 

Heparin 

Dye 

Antibody 

Recombinant protein 

Lectin 

Immobilised metal affinity 

Biospecific interaction, cooridination 
complex formation 

Anion exchange Diethylaminoethylene (DEAE) 

Quaternary aminoethyl (QAE) 

Quaternary ammonium (Q) 

Electrostatic interaction 

Cation exchange Sulfopropyl (SP) 

Methylsulfonate (S) 

Carboxymethyl (CM) 

Electrostatic interaction 

Hydrophobic interaction Phenyl- 

Butyl- 

Octyl- 

Hydrophobic complex formation 

Hydroxyapatite (Ca5(PO4)3OH)2 Cation exchange and coordination 
bonds (Between Ca2+ and 
carboxyl/phosphoryl groups) 

Mixed mode N-benzyl-N-methyl-ethanoline 

4-mercapto-ethyl-pyridine 

Phenylpropylamine 

Hydrophobic interaction and ion 
exchange 

Reversed phase 4-carbon alkyl (C4) 

18-carbon alkyl (C18) 

Hydrophobic complex formation 

Size exclusion N/A (porous inert base matrix) Size exclusion 
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Hydrophobic interaction ligands contain exposed hydrophobic groups (often Butyl or phenyl 

groups) which interact with hydrophobic groups present on the surface of proteins. A series 

of publications by To and Lenhoff provide a useful introduction to hydrophobic interaction 

chromatography (To and Lenhoff, 2007a, 2007b, 2008). The strength of the protein – ligand 

interaction is a function of the salt used, and the salt concentration in the mobile phase, 

commonly classified according to the Hoffmeister series. A decrease in salt concentration 

results in an increase in the exposure of hydrophilic regions of protein molecules, which 

leads to solute elution based on the order of decreasing hydrophobicity. HIC is used both as 

an intermediate and a polishing chromatographic step. In flow through mode HIC can 

remove product aggregates, and in bind and elute mode both process and product related 

impurities can be separated from the product. 

 

1.4. Purification Process Development  

The development of a chromatographic bioseparation that isolates a protein of interest as 

part of the DSP is known as purification process development (PPD). An optimal, safe and 

economic purification process which consistently delivers the desired product purity and 

yield must be found quickly, somewhere in an extremely large parameter space (Lightfoot 

and Moscariello, 2004). The amount of material available to work with during process 

development is often limited, and the work must be completed within constricted timelines 

to meet time to market constraints (Steinmeyer and McCormick, 2008).  

 

US Food and Drugs Administration (FDA) regulations require that the basic separation 

scheme is fixed prior to clinical trials, i.e. early on in the overall development process (ICH, 

2008a, 2008b). In addition, there are further complexities that must be accounted for, such as 

the inherent variability in biopharmaceutical manufacturing due to the biological nature of 

the materials used, and the high end product purity constraints due to the sensitive 

therapeutic nature of the products. The purification section is also the most expensive part of 

the manufacturing process, and often the processing bottleneck (Kelley, 2007). Against this 

background, purification process development is a very challenging prospect. 

 

The development of a chromatographic bioseparation in industry relies heavily on 

experienced engineers and scientists drawing from experience and heuristics to derive a 

skeleton process. An extensive experimental program is conducted to optimise the process 

which is usually conducted following a design by experiment (DOE) type approach. Process 

development involves experimentally testing a range of possible operating conditions using 

the minimal amount of time and material possible, until a combination is found which can 
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achieve adequate product quality. As confidence in the products clinical success grows 

through successful toxicology studies and clinical trials, the process is scaled up and further 

optimisation occurs via experimental studies conducted at laboratory and pilot scale. Final 

acceptance is achieved via the successful completion of three validation runs of the full sized 

manufacturing process (Jakobsson et al., 2005). Platform approaches, ultra scale down 

experimentation and statistical design of experiments are all key methodologies that are used 

in industry to ensure a satisfactory process is found in the limited time available for process 

development. 

 

1.4.1. Platform approaches 

Therapeutic proteins often have common biochemical structures, the obvious example being 

monoclonal antibodies which contain a fixed Fc region. This enables platform approaches, 

where generic purification processes are employed for similar molecules (Shukla et al., 

2007, Kelley, 2007). Molecules still have different physiochemical properties. Therefore, the 

exact operating conditions will differ from molecule to molecule. However, the platform 

strategy serves as a guidance that defines the overall scheme of operations, and often 

provides a template for process development to use when identifying specific operating 

conditions. 

 

The key advantage of a platform approach is that they greatly reduce the time and resources 

needed for process development (Nfor et al., 2009). Further wide ranging benefits include (i) 

better alignment between company business units with process development such as quality 

and manufacturing, where template documents can be integrated into systems to streamline 

communications and technology transfer, (ii) greater expertise and understanding of all 

parties concerned with associated benefits from extensive experience using the platform, (iii) 

a reduction in the number of raw materials required allows better deals can be negotiated 

with vendors, (iv) critical raw materials can be sourced from multiple vendors reducing 

organisational risk, (v) a common aligned philosophy can be adopted by multiple process 

development sites enabling better core focus, (vi) a site independent process can be 

developed that is straightforward to transfer between multiple manufacturing sites as 

business needs dictate, and (vii) easier planning across the entire organisation as it lays down 

a common set of expectations (Shukla et al., 2007). The disadvantages of using a platform 

approach are (i) they may hinder the long term improvement of biopharmaceutical 

production, as there is less desire to innovate and greater focus on utilizing the current 

platform for as many molecules as possible, (ii) if not guarded against, platform approaches 

can favour design based upon heuristic knowledge, rather than from process understanding 
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and fundamental knowledge, with a loss of the associated benefits, resulting in (iii) sub 

optimal processes, and (iv) difficulties when the platform does not perform as expected. 

 

1.4.2. Ultra scale down 

The limited availability of material and stringent time constraints during process 

development has given rise to ultra-scale down (USD) approaches to process 

characterisation (Chhatre et al., 2009, Li et al., 2012, Lau et al., 2013). Experimental data is 

generated with millilitre to microlitre scale devices and very small amounts of material. The 

data is then used to predict the performance of industrial scale unit operations (> 10 – 500 

L). In addition to chromatography, USD has been successfully utilised for many different 

unit operations such as centrifugation and depth filtration. In chromatographic separations, 

the most popular USD devices are micro columns in pipette tips and micro plate 

technologies (Bhambure et al., 2011). However, there is a continuing effort to develop 

devices that require smaller volumes of material which means that new technologies 

continue to appear.  

 

High throughput screening (HTS) is an approach to purification process development that 

makes use of USD through micro titre plates and robotic platforms (Coffman et al., 2008, 

Kramarczyk et al., 2008, Wensel et al., 2008, Kelley et al., 2008a). In this approach, each 

well in a 96 well micro titre plate represents an independent experiment. This enables a 

systematic exploration of many different combinations of operating conditions and 

processing strategies in parallel to predict trends in larger scale column performance. This 

approach enables unattended, rapid and automated process screening that significantly 

reduces material requirements and accelerates development times. Combinations and 

strategies that are undesirable can be quickly disregarded whilst those of interest can be 

taken forward to subsequent scale down column scouting runs. 

 

1.4.3. Statistical design of experiment methods 

Despite their success, significant differences still exist between USD predictions and 

chromatographic performance at an industrial scale. For example, USD devices by their 

nature have different hydrodynamic properties compared to the large scale columns they 

seek to predict, which results in differences in the quality of packed beds at different scales. 

These differences necessitate the use of qualified laboratory scale down column studies (i.e. 

that have been experimentally validated as representative of manufacturing scale), and the 

application of conventional scale up rules for final process characterisation, optimisation and 

validation, prior to biological license application submission. This experimental effort is 
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commonly conducted according to a multivariate statistical design of experiment (DOE) 

type approach (Ferreira et al., 2007, Dejaegher and Heyden, 2011, Hibbert, 2012), using 

factorial design to consider interactions between variables, in contrast with univariate 

studies, which are limited as they only optimise one factor at a time. The DOE approach 

uses a statistical regression model to generate a response surface that maps process 

performance over the complete range of conditions considered. Parameter estimation is 

based on a limited number of experiments conducted at specific combinations of variables, 

directed by the chosen factorial design (Ferreira et al., 2007). DOE approaches reduce 

experimental effort required to identify favourable operating conditions, whilst still using a 

system that has been qualified as representative of the large scale process. The type of 

factorial design and the range and number of operating variables selected for studies are 

important considerations, as the right balance must be found between experimental burden 

and the resolution and range of the generated response surface (Ferreira et al., 2007). In 

order to reduce the experimental effort, multiple DOE studies can be conducted in sequence, 

where initial scouting studies explore a wide range of process conditions in order to identify 

variable ranges for more detailed studies as the purification process approaches maturity.  

 

1.4.4. Key outstanding issues 

Although the modern approach to the development of chromatographic bioseparations is 

able to produce products of the desired quality, it is often at great time, effort and cost. 

Processes are developed and validated following an empirically driven experimental 

approach that results in a fixed, inflexible manufacturing process, a control strategy based on 

reproducibility rather than robustness, and end product testing via offline analysis. The 

approach to problems in manufacturing and/or deviations from the required product 

specification is reactive and done on a case by case basis. As a result, for many products, 

manufacturing efficiency is low, waste is high, and it is difficult to analyse and understand 

reasons for batch failures. The consequences of this are: (i) higher costs for products, (ii) a 

risk of drug shortages, (iii) a lack of improvements based on new technologies and (iv) a 

need for intensive regulatory oversight, resulting in (v) little flexibility in the regulatory 

process and thus little flexibility in manufacturing, (iv) problems with regulatory 

consistency, (vii) increasing and sometimes irrelevant information required in submission 

documentation, (viii) hindrance of innovation from manufacturers because of the need for 

time consuming and costly additional supplements, and (ix) slowed time to market (ICH, 

2005, 2008a, 2008b). 
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1.4.5. Proposed solution 

For these reasons, there has been a sustained effort in recent years to move to a more 

systematic approach based upon the principles of Quality by Design (QbD), which starts 

with predefined objectives, emphasise development based on product and process 

understanding, and encourages process control based on sound science and quality risk 

management. The objective of this initiative is to reach a desired state of biopharmaceutical 

development similar to that defined by Janet Woodcock (Director, Centre for Drug 

Evaluation and Research, FDA,) as, “a maximally efficient, agile, flexible pharmaceutical 

manufacturing sector that reliably produces high quality drug products without extensive 

regulatory oversight’’. The recommended systematic approach can be broken into different 

elements. The guidance issued for industry from the FDA is as follows: (ICH, 2005, 2008a, 

2008b). 

 

Identification of the quality target product profile (QTPP) 

As soon as a molecule has been identified as a viable candidate for commercialisation, the 

ideal quality characteristics of the drug product that ensure the safe implementation of the 

desired therapeutic effect should be established. This includes (i) dosage form, (ii) route of 

administration, (iii) bioavailability, (iv) pharmokinetic characteristics and (v) quality criteria 

such as sterility and purity. (ICH, 2005, 2008a, 2008b) 

 

Identification of critical quality attributes (CQA) 

Once the quality target product profile (QTPP) has been defined, the next step is to identify 

the physical, chemical, biological or microbiological properties or characteristics that should 

be within an appropriate limit, range or distribution to ensure the desired product quality, i.e. 

that the QTPP is met. These properties and characteristics, known as critical quality 

attributes (CQA), are initially derived from the QTPP and/or prior knowledge, and are used 

to guide process development. Commonly observed classes of CQA’s and the quality 

attributes associated with them include (i) identity (primary amino acid sequence), (ii) 

potency, (iii) host cell modifications (e.g. glycosylation, phosphorylation, truncation, 

glycation, methylation and isomerisation), (iv) process modifications (e.g. PEGylation, 

aggregation, oxidisation, deamidation, C-termial lysine and misfolding), (v) host cell related 

impurities (e.g. host cell proteins (HCP), DNA and andotoxins), and (vi) other 

characteristics (e.g. appearance, colour, particles, pH, osmolarity, effector function and 

concentration). (ICH, 2005, 2008a, 2008b) 
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Process development 

In a QbD type approach, process development is conducted with the aim of designing a 

manufacturing process and control strategy to consistently meet the defined critical quality 

attributes, thus assuring product quality (ICH, 2008a). This should follow a systematic 

procedure where manufacturing options are evaluated and subsequently refined based on: (i) 

first identifying the material attributes and process parameters associated with each 

manufacturing option that effects the product CQA’s, (ii) determining the functional 

relationship that links those material attributes and process parameters to the product CQA’s, 

and (iii) using enhanced product and process understanding combined with quality risk 

management to identify appropriate control strategies. Both the CQA’s and manufacturing 

process are modified and refined as product knowledge and process understanding increase 

throughout development, utilizing a combination of design of experiments, mathematical 

models, and studies that lead to mechanistic understanding. The outcome of process 

development is a product design space and a process design space. (ICH, 2005, 2008a, 

2008b) 

 

Product design space 

During the development effort, the criticality of product attributes should be determined 

such that a product design space can be created and documented in the regulatory filing that 

defines the acceptable variability in CQA’s. The size of this space will depend on a range of 

factors including: (i) process robustness or capability, (ii) stability of the drug substance or 

drug product, (iii) clinical data for the product or other similar platform products, (iv) non 

clinical data for the product or similar platform products e.g. binding assays, cell based 

assays and in vitro assays, (v) the capability of analytical methods, and (vi) the level of 

understanding on the impact of each CQA on the safety and efficacy of the product.  (ICH, 

2005, 2008a, 2008b)  

 

Process design space 

The relationship  between the material attributes and process parameters with product critical 

quality attributes is described in the process design space. This is defined by the 

International Conference on Harmonisation (ICH) guidance document as “the 

multidimensional combination and interaction of input variables and process parameters that 

have been demonstrated to provide an assurance of product quality” (ICH, 2008a). This can 

be shown in terms of parameter ranges, or more complex mathematical relationships, 

including time dependent functions, scale up factors, and combinations of variables, e.g. 

models. Not all process parameters and material attributes need be included in the design 
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space, as the increased understanding and knowledge gained during process development 

combined with quality risk management can provide the rational for inclusion or exclusion 

from the design space, which should be documented in the regulatory submission. 

Independent design spaces for each individual unit operation, or design spaces that span 

multiple unit operations, are both acceptable options. While single unit design spaces are 

simpler to develop, a design space that spans the entire process can provide more operational 

flexibility. (ICH, 2005, 2008a, 2008b) 

 

Control strategy 

Equally important to the development of the process is the development of how that process 

is controlled. The control strategy should be designed as part of the overall development of 

the therapeutic protein production process. Sources of variability that impact quality should 

be identified, appropriately understood, and subsequently controlled. Understanding the 

variability and its impact on product quality in combination with quality risk management 

can support the control of the process, such that variability is compensated for in an 

adaptable manner. This enables the attractive possibility that variability can be less tightly 

constrained, and instead, unit operations are responsive to the process input. In addition, 

enhanced understanding of how process performance relates to product quality can justify 

the use of alternative approaches to determine that process streams are meeting the desired 

quality attributes, supporting real time testing and resulting in an increased level of quality 

assurance compared to the traditional end product testing. (ICH, 2005, 2008a, 2008b) 

 

Process validation and filing 

After the process design space and the control strategy has been defined, process validation 

studies are performed to demonstrate that the process does indeed deliver a product of 

acceptable quality. The regulatory filing is then compiled including the acceptable operating 

parameter ranges specified in the process design space, in addition to the product design 

space, the control strategy, the outcome of the validation studies and a plan for ongoing 

process monitoring. (ICH, 2005, 2008a, 2008b) 

 

1.4.6. Advantages of a systematic approach  

The expected benefits of a systematic approach following QbD principles are numerous, and 

include: (i) better design of products, (ii) less problems in manufacturing, (iii) a reduction in 

the number of manufacturing supplements required for post market changes, (iv) increased 

understanding of the process risk bringing improved risk mitigation, (v) greater process 

robustness, (vi) enabling the implementation of new technologies to improve manufacturing 
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without regulatory scrutiny, (vii) increased process efficiencies and reduced waste resulting 

in reduction in the overall cost of manufacturing, (viii) continuous improvement possible in 

products and in manufacturing processes, (ix) manufacturing is related to the clinic through 

design, (x) better coordination, consistency, quality and flexibility across the full regulatory 

process (review, compliance and inspection) resulting in (xi) less haggle during regulatory 

review and (xii) quicker approvals. The key differences between the QbD and traditional 

approach are summarised in Table 1.3 (ICH, 2005, 2008a, 2008b). 

 

1.5. Issues with QbD 

Although the proposed systematic approach to process development and operation has 

important benefits to be released, in practice, there will be significant upfront costs, as 

fulfilling regulatory guidelines requires substantial additional effort by purification process 

development. There is a serious concern that this may hinder the effort to launch products as 

early as possible whilst maximising efficiency and reducing costs when bringing a product 

to market. This is a very important consideration in an increasingly competitive 

biopharmaceutical market. Therefore, approaches that can aid or provide an alternative to the 

existing experimental approach in a quality by design development paradigm are of 

increasing interest in industry. 

 

1.6. First principles models for QbD 

Innovation and engineering approaches based on first principles modelling have been proven 

in a variety of processing industries (e.g. refining, oil and gas, chemicals, energy). However, 

mechanistic models derived from first principles have so far been seldom utilized in the 

biopharmaceutical sector. Regulatory guidance regarding the implementation of Quality by 

Design has proposed greater use of mechanistic models (ICH, 2008a), and they have great 

potential for generating value and for reducing costs. Their use as an aid or an alternative to 

experimentation may provide a means for implementation of a Quality by Design 

development approach without increasing costs and development times. 

 

One of the most straightforward ways that mechanistic models can help to implementation 

of a Quality by Design without increasing costs and development times is by reducing the 

amount of drug substance used for experimentation. A reduction can be achieved by directly 

replacing experiments with model simulations or by leveraging increased knowledge and 

fundamental understanding from the model in order that fewer but more useful experiments 

are conducted during process development. The model may facilitate better informed 
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heuristics, or be used for more advanced mathematical methods such as optimisation 

(Avraam et al., 1998), or experimental design. 

 

A reduction in the amount of drug substance used for experimentation enables process 

development to become less dependent on the generation of material, which is usually 

deliberately kept small so that losses are reduced in the event that a molecule fails. This is 

very useful as in industry, if the amount of drug substance available for an experimental 

programme is insufficient, the result can be substantial costs and delay whilst new material 

is generated, or significant risk may be incurred by continuing development on the basis of 

limited information.  

 

A reduction in the size of the required experimental programme during process development 

also reduces direct costs associated with laboratory facilities and personnel. This does not 

necessarily result in a reduction in the number of personnel employed, as reducing the 

number of experiments required per molecule may increase the number of drugs that can be 

studied. Thus, the inclusion of mechanistic models in a systematic approach to process 

development can bring associated benefits in the opportunities that biopharmaceutical 

companies can exploit. 

 

The speed and efficiency with which model simulations can be conducted can enable the 

exploration of the process design space in ways that experimentation cannot, since 

experiments will always be limited by the amount of material and time that it takes to 

conduct them. Unlike experimentation, model simulations can be conducted quickly, and 

advances in process modelling technology mean that model deployment in industry is now 

straightforward (Pantelides and Urban, 2005). Models give more control when examining 

process sensitivity compared to experiments via techniques such as global sensitivity 

analysis, and the ability to quantify process risk using a model can help bring greater 

assurance of product quality than traditional qualitative approaches (e.g. failure mode effects 

analysis) can provide on their own. 
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Table 1.3. Key differences between the QbD and traditional approach (ICH, 2005, 2008a, 2008b) 

Aspect Traditional approaches Enhanced, Quality by Design approaches 

 
Overall pharmaceutical 
development 

 
� Mainly empirical 
� Development research often conducted one variable at a 

time 

 
� Systematic, relating mechanistic understanding of material attributes and process parameters to 

drug product critical quality attributes 
� Multivariate experiments to understand product and process 
� Establishment of design space 
� Process Analytical Technology tools utilised 

 
Manufacturing process � Fixed 

� Validation primarily based on initial full scale batches 
� Focus on optimisation and reproducibility 

� Adjustable within design space 
� Lifecycle approach to validation and ideally, continuous process verification 
� Focus on control strategy and robustness 
� Use of statistical process control methods 

 
Process controls � In process tests primarily for go/no go decisions 

� Off line analysis 
 

� PAT tools utilised with appropriate feed forward and feedback controls 
� Process operations tracked and trended to support continual improvement efforts post approval 

Product specifications � Primary means of control 
� Based on batch data available at time of registration 

� Part of the overall quality control strategy 
� Based on desired product performance with relevant support data 

 
Control strategy � Drug product quality controlled primarily by intermediates 

(in process materials) and end product testing 
� Drug product quality ensured by risk based control strategy for well understood product and 

process 
� Quality control shifted upstream, with the possibility of real time release testing or reduced end 

product testing 
 

Lifecycle management � Reactive (i.e. problem solving and corrective action) � Preventive action 
� Continual improvement facilitated 
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First principles modelling approaches surpass Design of experiments (DOE) and response 

surface models (RSM) for quality by design related tasks such as design space identification 

due to the increased process understanding gained during model development and 

application. Increased process understanding not only enables a reduction in the 

experimental programme and amount of material required during process development 

(which is also achieved through the use of DOE and RSM), but is very useful for answering 

operating questions during manufacturing. Testing hypotheses is greatly simplified with a 

predictive model enabling answers to be found in hours rather than days which is not 

possible with an empirical RSM which is limited to the data used for parameter estimation.   

 

More advanced applications of first principle models may also allow operators to intervene 

before unexpected deviations occur, as models can extract more information from laboratory 

and plant data. Processes can be monitored for key performance indicators by using model 

based soft sensing tools (de Assis and Filho, 2000), so that batch processes that are likely to 

fail can be terminated at an early stage of the batch, reducing the impact on the 

manufacturing campaign. When combined with process control, soft sensing allows for 

adjustments to manipulated variables in order to reduce the number of batch failures.  

 

Lastly, at a higher level, models allow companies to safeguard, develop and exploit their 

intellectual property to maximum advantage. Company knowledge can be captured and 

organised independently of employees in such a way that when key employees leave, 

knowledge is retained. This is can be extremely important in a biopharmaceutical sector 

where many companies utilise similar processes, and personnel regularly move between 

jobs.  

 

Concluding remarks 

Innovation and engineering approaches based on first principles modelling have been proven 

in a variety of processing industries (e.g. refining, oil and gas, chemicals, energy). However, 

mechanistic models derived from first principles have so far been seldom utilized in the 

biopharmaceutical sector. With the emergence of the quality by design initiative and the 

desire to move to a more systematic approach to process development, there are new 

opportunities for mechanistic modelling approaches in the biopharmaceutical industry. 

Regulatory guidance regarding the implementation of Quality by Design has proposed 

greater use of mechanistic models (ICH, 2008a), and they have great potential for generating 

value and for reducing costs, and research into this area is of great importance. 
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1.7. Summary 

Therapeutic proteins are now well established as a clinically and commercially important 

class of therapeutics (Leader et al., 2008) and they have played a key role in major advances 

in healthcare over the last quarter century (Waldmann, 2003). Their high specificity and 

relatively low immunogenicity means they are useful as therapeutic agents in the treatment 

of various disorders and diseases (Walsh, 2010, Carter, 2011). Annual revenues from 

therapeutic protein sales are now estimated to total in excess of $50 billion, nearly 10% of 

the $600 billion pharmaceutical market (Walsh, 2010). Continuing growth is evident in 

industry, with several hundred clinical candidate proteins currently in company pipelines 

(Kelley, 2009), of which many serve significant unmet medical needs (Shukla et al., 2007).  

 

The key considerations when bringing a product to market are launching as early as possible 

whilst maximising efficiency and reducing costs. The downstream section of the 

manufacturing process traditionally constitutes a significant proportion (50 – 80 %) of the 

total manufacturing costs (Lightfoot and Moscariello, 2004), and is now considered to be the 

manufacturing bottleneck (Nfor et al., 2009). Chromatographic purification is the 

predominant unit operation used in downstream processing, but developing a 

chromatographic bioseparation is a hugely complex task (Lightfoot and Moscariello, 2004). 

Process development must be completed within very constricted timelines (Steinmeyer et al., 

2008), and is both technically and economically challenging. 

 

The traditional approach to developing and operating biopharmaceutical processes relies 

heavily on empirical methods and experimentation guided by heuristics. However, in recent 

years, there has been a sustained effort to implement a more systematic approach based upon 

the principles of Quality by Design (QbD) (ICH, 2005, 2008a, 2008b). The goal is to 

develop a more efficient, agile, and flexible sector that can reliably produce high quality 

drug products without extensive regulatory oversight (Woodcock, 2005). The desired 

approach starts with predefined objectives, and emphasizes product and process 

understanding, and process control, based on sound science and quality risk management 

(Rathore and Winkle, 2009, Rathore, 2009). 

 

Model based innovation and engineering approaches have been proven in a variety of 

processing industries (e.g. refining, oil and gas, chemicals, energy), but are seldom utilized 

in the biopharmaceutical sector. Regulatory guidance regarding the implementation of 

Quality by Design has proposed greater use of mechanistic models (ICH, 2008a). Predictive 

chromatography models can help increase process understanding and fundamental 
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knowledge, whilst the speed and efficiency with which model simulations can investigate 

design alternatives, means they can help accelerate process development and increase 

process robustness. Mechanistic models therefore have great potential for generating value, 

and reducing costs in biopharmaceutical industry. As a consequence, biopharmaceutical 

companies are now increasingly interested in the development and application of 

mechanistic models of industrial chromatographic bioseparations, and research into this area 

is of great importance. 

 

1.8. Aim of this thesis 

Motivated by the desire to accelerate the development and increase the robustness of 

industrial protein purification processes whilst also realising the benefits from following a 

systematic QbD approach to process development and operation, the aim of this thesis is to 

derive fundamental process understanding of specific industrial chromatographic separations 

currently in development or operation at Pfizer, via the development and application of 

mechanistic models chromatography. 

 

1.9. Organisation of this thesis 

An introduction to the relevance of developing mechanistic models of industrial 

chromatographic bioseparations has been given, and the general aim of the project has been 

set out. The rest of the thesis is divided into five chapters. Chapter two provides a literature 

review of first principles modelling of chromatographic purification of therapeutic proteins 

with regard to model formulation, calibration and application.  

 

Chapter three considers the development and application of an anion exchange weak 

partitioning chromatography model at an early stage of process development for the 

purposes of; (i) increasing process understanding by providing a more informative method 

for exploring how process parameters can be controlled in order to raise product recovery to 

acceptable levels whilst maintaining impurity clearance, and (ii) accelerating process 

development by providing a link between high throughput screening and scale down column 

experiments.  

 

Chapter four addresses a lack of fundamental knowledge on the mechanistic impact of resin 

fouling experienced during the purification of a monoclonal antibodies in the anion 

exchange weak partitioning chromatography process considered in chapter three. A selection 

of experimental methods are used to characterise the fouling, which include, scanning 
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electron microscopy, confocal laser scanning microscopy, batch adsorption and scale down 

column studies. 

 

The fifth chapter considers the development and application of a model of a hydrophobic 

interaction chromatography process at a late stage of development for the purposes of (i) 

increasing process understanding by determining the mechanistic effect of resin lot to lot 

variability that was resulting in serious performance issues, and (ii) increasing process 

robustness via the application of stochastic simulation to generate probabilistic design spaces 

that  identify prospective operating conditions that assure product quality. 

 

The sixth chapter summarises the findings and conclusions from each part of the project.  A 

number of areas for future work are discussed. The chapter focuses in particular on the 

broader implications for the use of mechanistic models of chromatography in the 

biopharmaceutical industry.  
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Chapter 2. Literature Review 

 

This chapter provides a review of the current state of the art in first principles modelling of 

chromatographic bioseparations, categorised and discussed according to model 

formulation, model calibration and model applications. It will be shown that there is a 

fundamental lack of mathematical descriptions and approaches to characterise and 

calibrate relevant model parameters for describing the non-ideal phenomena and 

challenging feed material compositions experienced in industrial chromatographic 

separations. In addition, not enough consideration has been given to how to apply 

mechanistic models of chromatography (e.g. model calibration, optimisation, design space 

generation etc.) in an industrial environment with limited time and material.  
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2.1. Introduction  

The background presented in chapter 1 suggests first principles models of chromatography 

may have an important role to play in the systematic development and operation of industrial 

chromatographic bioseparations based on fundamental process understanding. However, 

before first principles modelling approaches are adopted by industry, a critical mass of 

evidence needs to be built demonstrating the unique advantages mechanistic models can 

give industry compared to a purely experimental approach. 

 

2.2. Model formulation  

Model formulation consists of deriving or selecting suitable descriptive equations that 

mathematically describe the physical phenomena encountered in chromatographic 

bioseparations, in order to meet the objectives of a modelling project. A wide range of 

options are available and have been presented in the literature. Two types of physical 

phenomena dominate chromatography; movement of solutes through the packed bed of 

porous particles via mass transfer mechanisms, and adsorption based on the fundamental 

thermodynamic interactions between migrating solutes and the stationary phase. Equations 

used to describe these phenomena are discussed in section 2.2.1 and 2.2.2, respectively. 

Chromatographic bioseparations where heat effects play a role are extremely rare, but 

exceptional cases are discussed in section 2.2.3. Very few chromatographic bioseparations 

have been designed where desired reactions occur whilst the species are separated. However, 

undesired isomerisation, association, aggregation of species, resin fouling and ligand 

leaching are commonly observed in practice, and are discussed in section 2.2.4.  

 
2.2.1. Mass conservation 

Mass conservation equations describe the movement of load material components through 

the packed bed. The main phenomena that can contribute to this are illustrated in Figure 2.1, 

and include convection, axial dispersion, diffusion through an external film surrounding 

resin particles, and intraparticle diffusion through the stagnant mobile phase within particle 

pores. Diffusion along the surface of pores may play a role in some cases, but is usually 

insignificant and therefore generally ignored (Guiochon et al., 2006). A range of different 

mass transport models have been published and are summarised in Table 2.1. 

 

The general system of equations used to describe the main mass transfer phenomena consist 

of two sets of partial differential mass conservation equations. One describes the bulk fluid 

phase across the column axial dimension, and contains terms for accumulation in the mobile 

phase, accumulation in resin particles, convection, and dispersion. The other describes the 
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intraparticle fluid phase across the radial particle dimension, which includes terms for 

accumulation in the intraparticle fluid phase, accumulation in the solid phase, and 

intraparticle diffusion. In addition to the two partial differential mass balances, a kinetic 

expression is used to describe diffusion through a stagnant film surrounding resin particles 

(Guiochon et al., 2006). When these equations are combined with an appropriate adsorption 

equation (which will be discussed in section 2.2.2), the model is known as a general rate 

model. 

 

The mass balance equations used in modern day general rate models are still similar to the 

original systems of partial differential equations derived in 1920 (Bohart and Adams, 1920), 

and again in 1939 (Wicke, 1939, 1940), used as a basis for the fundamental work on 

modelling of chromatography (Wilson, 1940, DeVault, 1943, Lapidus and Amundson, 1952, 

van Deemter et al., 1956). Mass transport equations almost always assume Fickian diffusion, 

although Maxwell – Stefan equations have also been used, in particular where surface 

diffusion has been found to have an important contribution to a separation (Kaczmarski et 

al., 2002, 2003, Sun and Yang, 2007). 

 

The fundamental assumptions made when deriving the mass conservation equations of the 

general rate model are universal for all its subsequent simplifications, and have been 

discussed in detail by Guiochon et al., (2006). They include; the incompressibility of the 

mobile phase, concentration independence of the mass transfer parameters, constant mobile 

phase viscosity, and constant molar volumes between species in the mobile and stationary 

phase. The column is assumed to be one-dimensional (radially homogeneous), and evenly 

packed with spherical, uniformly porous, constant sized particles. As a result, the radial 

column dimension is usually ignored (Guiochon et al., 2006). 

 

Table 2.1. Summary of common mechanistic mass transfer models of chromatography 

Model Name Convection 
Axial 

Dispersion 
Mass Transfer 

through external film 
Intra-particle 

diffusion 

General Rate Model YES YES YES 
YES 

(Heterogeneous 
particle) 

Lumped Kinetic 
Model 

YES YES YES NO 

Equilibrium 
Dispersive Model 

YES YES NO NO 

Ideal Model YES NO NO NO 
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Figure 2.1. Sources of mass transfer in packed bed chromatography.  

Column Inlet Column Outlet 

i. Convection: Bulk flow of mobile 
phase through the column 

ii. Axial Dispersion: Diffusion of 
components within mobile phase in the 
direction away from high concentration. 

iii. Mass transfer through 

external film: Movement of 
components through a stagnant 

film of mobile phase 
surrounding the resin particles. 

iv. Intra-particle diffusion: 
Diffusion of components 

through the stagnant mobile 
phase within the resin pores. 

v. Surface diffusion: 
Diffusion of components on 

the surface of resin pores 
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In practice, packed beds are almost always heterogeneous (Farkas et al., 1996, Shallikera et 

al., 2003), and particle size varies. However, it is commonly cited that any resulting radial or 

axial heterogeneity in concentration and velocity averages out when the ratio of column to 

particle diameter is high (typically greater than 30), as is true for most laboratory and 

manufacturing scale chromatography processes (Guiochon et al., 2006). For industrial 

systems, this assumption is dubious. Although bed consistency is checked by ensuring that 

the column asymmetry and plate height are within set ranges, often the ranges deemed 

acceptable are set very wide because tighter ranges result in many repacks wasting time and 

money. Therefore, packing quality can vary considerably. Wall effects, the low density of 

resin particles, variability in the particle diameter, the length of time that resin is left to 

settle, changes during scale up (McCue et al., 2007), and differences in the packing method 

can all play a role.  

 

For microscale devices in particular, hydrodynamic effects caused by non-ideal bed 

properties are dominant e.g. in microfluidic columns, microcolumns and microtips (Abia et 

al., 2009). Using a standard model which assumes homogeneous bed and particle structure 

will therefore result in inaccurate model predictions. An approach for simulation of micro 

scale devices has been demonstrated, which utilises a model based on computational fluid 

dynamics that is able to account for heterogeneity in particle and packed bed structure 

(Gerontas et al., 2013). However, the approach is not suitable for large scale systems, as the 

high level of discretisation required results in extremely long solution times. 

 

Another issue for bioseparations in particular, is assuming a uniformly porous resin 

structure.  Chromatography resin particles are known to exhibit a range of pore sizes with 

normal-like distribution (dePhillips and Lenhoff, 2000, Yao and Lenhoff, 2006). This is not 

an issue when all species are significantly smaller than the smallest pore size, as all species 

have equal access to resin binding sites. However, as the size of biomolecules often falls 

within the pore size distribution (i.e. biomolecule and particle pore sizes are similar), pore 

accessibility becomes dependent on component size. This can impact mass transfer 

performance, as there is more competition for binding sites in the larger pores which are 

accessible to all components, than in smaller pores where few species can enter. In addition, 

as adsorbed proteins occupy a finite space, the adsorption process itself can modify the 

effective pore radius as bound proteins partially obstruct pores, hindering intraparticle 

diffusion (Boyer and Hsu, 1992, Susanto et al., 2007). This is especially true where tentacles 

are used within resin pores to increase resin capacity (Thomas et al., 2013). A change of 

tentacle orientation (which can occur when the mobile phase composition changes) can 

result in large changes to pore accessibility of components. If the impact of changes to 
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particle structure is large, then the more detailed distributed pore model can be used which 

accounts for the pore size distribution of the stationary phase, and pore shrinkage due to 

protein adsorption (de Neuville et al., 2013). Alternatively, diffusion parameters can be 

calculated as a function of stationary phase concentration (Susanto et al., 2007).  

 

Despite the issues mentioned regarding model assumptions, the predictive capability of the 

general rate model is well proven. Older studies using the general rate model focused on 

increasing theoretical understanding of underlying phenomena such as displacement effects 

(Gu et al., 1990a), desorption (Gu et al., 1990b), restricted protein diffusion (Boyer and Hsu, 

1992), scale up (Li et al., 1998), intraparticle diffusion (Susanto et al., 2006), and 

hydrophobic interaction mechanisms (To and Lenhoff, 2008). Later, the general rate model 

was applied to process development tasks such as process design (Melter et al. 2008), 

optimisation (Karlsson et al., 2004, Degerman et al., 2006, Lienqueo et al., 2009), design 

space exploration (Degerman et al., 2009) and scale up (Gerontas et al. 2010), albeit most 

often using well known proteins. In recent years, the general rate model has been 

successfully used to simulate more complex chromatographic processes that are often 

nonlinear and contain streams with multiple species (Nagrath et al., 2011, Guélat et al. 2012, 

Osberghaus et al., 2012a, 2012b, 2012c). 

 

The problem with the general rate model is that it can be difficult to accurately estimate the 

large number of parameters required for simulations, and the model can take a long time to 

solve. This is of particular concern for industry, where minimising process development 

time is key, and processes are complex. In order to increase computational efficiency and the 

speed of model development, assumptions are commonly made to reduce model complexity 

by neglecting or lumping multiple phenomena into single terms. Successive simplification of 

the general rate model results in the lumped pore model, the lumped kinetic model, the 

equilibrium dispersive model and the ideal model, listed in order of decreasing model 

complexity (Kaczmarski et al., 2001). A summary of the main mass transport phenomena 

considered in each model is presented in Table 2.1. 

 
The lumped pore model simplifies the general rate model by assuming that particles are 

homogeneous. The partial differential equation describing intra particular mass transport 

across the radial particle dimension is modified accordingly. The intraparticle mobile and 

stationary phase concentrations are replaced with average concentrations, and the intra 

particle diffusion term is replaced with a kinetic expression. The kinetic expression describes 

mass transfer between the column mobile phase and intra particular mobile phase via an 
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overall mass transfer coefficient which is related to the external and internal mass transfer 

coefficients (Guiochon, 2002, Guiochon et al., 2006).  

 

Few studies have been conducted using the lumped pore model, as the lumped kinetic model 

provides identical solutions for experimental conditions typical of current chromatographic 

separations, but with greater computational efficiency, and less parameter estimation burden 

(Kaczmarski et al., 2001). The model achieves this by replacing the partial differential 

equation describing intraparticular mass transport with a kinetic expression, which links the 

column mobile phase concentration to the average intraparticular mobile phase concentration 

(Kaczmarski et al., 2001, Guiochon, 2002). Hence, intraparticular mass transport is still 

directly accounted for within the model, but the radial distribution domain is removed, 

which significantly reduces the number of equations.  

 

As a result, the lumped kinetic model has been used in a wide range of studies, most 

commonly considering process development tasks. These include process design (Mollerup 

et al., 2007), process optimisation (Chan et al., 2008, Teeters et al., 2009), design space 

exploration (Degerman et al., 2009, Gétaz et al., 2012), process control (Westerberg et al., 

2010), continuous chromatography (Muller – Spath et al., 2011), resin selection (Nfor et al. 

2011) and process synthesis (Nfor et al., 2013). There have also been studies where the 

focus was on increasing process understanding in areas such as hydrophobic interaction 

separations (McCue et al., 2008), and chromatographic separations involving complex 

feedstocks (Bak et al., 2007, Gétaz et al., 2013).  

 

Simplifications made in the equilibrium dispersive model go even further than the lumped 

kinetic model, and assume that the mass transfer kinetics between the mobile phase moving 

through the column bed and the resin particles is infinitely fast. Thus, the concentration of a 

component in the extraparticular mobile phase is equal to the average concentration of that 

component in the intraparticular mobile phase, and the mass balance over particle pores can 

be neglected. The kinetic expression used in the lumped kinetic model is removed, and the 

axial dispersion coefficient is replaced with an apparent axial dispersion coefficient, which 

lumps the contribution from all sources of mass transfer associated with resin particles and 

axial dispersion (Kaczmarski et al., 2001, Guiochon, 2002, Guiochon et al., 2006). Despite 

its simplicity, the model still gives useful predictions (Chan et al., 2008, Susanto et al., 2008, 

Gu et al. 2013), and its high computational efficiency is particularly useful when model 

applications are computationally expensive, such as optimization (Degerman et al., 2007, Ng 

et al., 2012), robustness analysis (Jakobsson et al., 2005, Westerberg et al., 2012), and 

exploring the effect of experimental uncertainty on parameter estimation (Borg et al., 2013). 
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2.2.2. Adsorption 

Adsorption of proteins refers to the reversible adhesion of molecules from the liquid phase 

to the resin surface, dictated by the fundamental thermodynamic interactions that occur 

when a load material component associates with a ligand or number of ligands covalently 

bound to the surface of the chromatographic adsorbent (Mollerup, 2008). The exact nature of 

the bonding between the resin ligand and molecule depends on the details of the species 

involved. The conformational entropy of proteins, hydrophobic interactions and electrostatic 

interactions can all contribute (Norde, 1998). At a macroscopic level, the mixture 

components distribute themselves between the stationary and mobile phase. 

 

Adsorption of therapeutic proteins and other molecules found in chromatography feed 

material is non-trivial. The application of models from theory alone is not yet possible due to 

many complicating factors. As explained in the review by Rabe et al., (2011): 

 

1. Each molecule contains many electrostatic and hydrophobic groups 

heterogeneously distributed throughout the entire protein structure, i.e. some are 

on the external surface while others are located inside the molecule. 

2. Proteins are typically asymmetric and so representing them as a sphere is 

unrealistic. 

3. Proteins often simultaneously interact with multiple binding sites, using 

contributions from multiple groups. 

4. Cooperative effects from proteins that are already adsorbed means that proteins 

are sometimes more likely to adsorb if there are pre-adsorbed proteins.  

5. During adsorption and/or desorption proteins often unfold and change structure, 

potentially changing the groups exposed at the surface of the protein. 

6. Due to the similar size of molecules to resin pore diameter, and the range of 

ionic strengths encountered, electrostatic force fields can interact causing the 

local conditions to vary. 

7. Proteins can also self-associate (aggregate), both in solution and on the 

stationary phase, so interactions between components are very important. 

8. Proteins often denature in extreme conditions or due to other components, e.g. 

proteases. 

9. Overshooting adsorption kinetics due to conformational rearrangement of 

adsorbed proteins on the resin surface have also been observed. 
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The complexity of protein adsorption means that adsorption equations are primarily based 

on experimentally correlated equations that are sometimes derived from rigorous 

thermodynamic principles (Mollerup, 2008), but are most commonly empirical or semi 

empirical (Guiochon et al, 2006). Models are composed of a generic function known as an 

adsorption isotherm which describes the relationship between the concentration in the 

mobile phase and the stationary phase of a chemical or biochemical species. There are many 

different adsorption isotherms available, which can be grouped into equilibrium models and 

kinetic models.  

 

Equilibrium isotherm models 

Equilibrium models predict the equilibrium state of adsorption (e.g. the bound protein 

concentration at steady state) using selected parameters such as unbound protein 

concentration, pH and ionic strength. Common equilibrium adsorption isotherms are 

summarised in Table 2.2. 

 

The simplest equilibrium model is the linear model, which assumes that the chromatography 

resin is under challenged and thus there are a large number of free binding sites (Guiochon 

et al, 2006). This is often the case in analytical chromatography where only small amounts 

of protein are applied to the chromatography column. However, this is rarely the case in 

industrial bioseparations, where columns are loaded as close to full capacity as possible in 

order to maximise productivity (Tugcu et al., 2007). Therefore, the ideal model has only 

been used in a few studies, where its simplicity was helpful in reducing the solution time of 

optimisation problems (Chan et al., 2008b, Ng et al., 2012). 

 

In practice, as the resin becomes increasingly saturated, it becomes more difficult for 

proteins to find free binding sites. After a certain amount of protein has been loaded onto the 

resin, all sites will be occupied and no more protein can bind. Many different isotherm 

models have been developed to represent this phenomena, such as Langmuir, steric mass 

action and quadratic isotherms (Foo and Hameed, 2010). Each isotherm makes a range of 

assumptions and often aims to address specific adsorption phenomena. 

 

The Langmuir isotherm is the most commonly used model, and assumes monolayer 

adsorption at a finite number of equivalent and identical binding sites, with no lateral 

interactions, steric hindrance, or migration of adsorbed molecules on the adsorption surface 

(Guiochon et al., 2006). Despite the idealistic nature of these assumptions, the Langmuir 

isotherm has been used in a number of different studies. Single component Langmuir 

isotherms are typically applied where simulation of a model chromatographic system is used 
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to derive understanding of a particular feature or aspect of chromatography. For example, 

Gu et al., (1990) used a single component Langmuir when considering optimisation of 

desorption chromatography, and Sun and Yang, (2007) used a single component Langmuir 

when studying the difference between mass transport models.  

 

The dependence of adsorption on mobile phase modulators, such as the counter ion 

concentration or pH, is often included in adsorption models if the model is intended for 

exploring potential operating conditions during process development. The Langmuir 

isotherm with mobile phase modulators has been used in numerous studies where models are 

used for process design and optimisation, considering a range of molecules (IgG, BSA, 

insulin, myoglobin and lactoferrin) and retention mechanisms (affinity, ion exchange, 

hydrophobic interaction and reversed phase chromatography) (Karlson et al., 2004, Melter et 

al., 2008, Degerman et al., 2009a, Westerberg et al., 2010, Gerontas et al., 2010, Ng et al., 

2012, Borg et al., 2013). 

 

Adsorption models can also be extended to deal with more than one component, including 

competition between components. In general, multicomponent adsorption isotherms are less 

rigorous than single component isotherms, as multicomponent adsorption is not well 

understood (Guiochon et al., 2006). For example, the multicomponent Langmuir isotherm is 

only thermodynamically correct when all components have identical saturation capacities, 

which is rarely the case for the extremely heterogeneous, multicomponent feed streams of 

industrial processes. Despite this limitation, the multicomponent competitive Langmuir 

isotherm is useful for systems with similar components, and has been used for hydrophobic 

interaction chromatography of alpha chymotrypsin and alpha amylase (Lienqueo et al., 

2009), IgG capture with cation exchange chromatography (Muller – Spath et al., 2011), and 

the separation of monoclonal antibody variants with ion exchange chromatography (Guélat 

et al. 2012).  
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Table 2.2. Common equilibrium adsorption isotherms 

Adsorption model Equation Notes Reference 

Linear  & = � ∙ �  Simplest isotherm available. Guiochon et 
al., (2006) 

Langmuir & = &	 ∙ �� ∙ �1 + �� ∙ � 
where &	 is the saturation 
capacity and �� is the 
equilibrium constant. 
Formulation assumes 
monolayer adsorption at a 
finite number of equivalent 
and identical binding sites, 
with no lateral interactions, 
steric hindrance and 
migration of adsorbed 
molecules on the adsorption 
surface.  

Gu et al., 
(1990), Sun 
and Yang, 
(2007) 

Bi – Langmuir & = &	C ∙ ��,C ∙ �1 + ��,C ∙ � +
&	E ∙ ��,E ∙ �1 + ��,E ∙ �  

Accounts for two different 
binding mechanisms. 

Kaczmarski 
et al., (2001) 

Competitive 
Langmuir &� = &	 ∙ ��,� ∙ ��1 + ∑��,� ∙ �� 

Langmuir isotherm where the 
adsorption of one component 
is influenced by all 
components in the system. 

Lienqueo et 
al., (2009), 
Muller – 
Spath et al., 
(2011) 

Steric mass action & = 	 ����� H
�	Λ − JK + =L�MN 

where ���� is the equilibrium 
constant, Λ is the total ionic 
capacity of the stationary 
phase, = is the steric factor, 
and K is the characteristic 
charge. 

 

Brooks and 
Cramer, 
(1992), 
Natarajan 
and Cramer, 
(2000) 

Preferential 
interaction 
quadratic (PI
 Q) 

& = ��′ O���� + ����EP
1 + ∑ ��′O���� + Q���EPRSTUC

 

 

ln ��′ = X� + 5� ∙ �	��� + Y� ∙ ln �	��� 
 

where �	and Z denotes the 
solutes, ��′  is the capacity 
factor, "[ is the number of 
components, �	���is the salt 
concentration, X, 5 and Y are 
retention factors, and �, �, Q, 
and � are isotherm 
parameters. The model 
assumes competitive binding, 
equilibrium parameters 
independent of solute and salt 
concentration, no aggregation 
of conformal change, and a 
constant saturation capacity.   

Xia et al., 
(2003) 

 
 

The steric mass action (SMA) isotherm was developed based on the stoichiometric exchange 

of components between the stationary and mobile phase (Rounds and Regnier, 1984, 

Regnier and Mazsaroff, 1987), and steric hindrance of adsorption sites due to protein size 

(Velayudhan and Horvath, 1988, Brooks and Cramer, 1993). In the SMA model, competitive 

binding is described by mass-action equilibrium where electroneutrality on the stationary 

phase is maintained. The multipointed nature of protein binding is represented by an 
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experimentally determined characteristic charge, and the steric hindrance of binding sites by 

adsorbed molecules is represented by a steric factor for each component (Brooks and 

Cramer, 1993). The obvious application of the SMA isotherm is for ion exchange 

chromatography where salt and proteins are exchanged. The model has been successfully 

applied to a range of systems, including alpha chymotrypsinogen A, ribonuclease A, 

nyomysin sulphate on a cation exchange system (Natarajan and Cramer, 2000), BSA on a 

strong anion exchanger (Susanto et al., 2006), IgG, BSA and myoglobin on an anion 

exchanger (Jakobsson et al., 2005), and most recently Lysozyme, ribonuclease A and 

cytochrome C on a cation exchanger (Osberghaus et al., 2012a, 2012b, 2012c). 

 

A more recent addition to the literature are the association isotherms (Mollerup et al, 2008a, 

Mollerup, 2008b), which are derived from thermodynamic principles. Association models 

include a primary equation used regardless of adsorption mechanism which relates the 

bound and unbound component concentrations. A separate equation is used to describe an 

initial slope term within the primary equation which varies according to retention 

mechanism. Protein adsorption is modelled as a reversible association between ligand and 

component. When the interactions are electrostatic, proteins displace counterions associated 

with the ligands. If the interaction is hydrophobic, then adsorption entails a reversible 

association of the protein with the ligand to form a complex by non-polar interactions. 

Mollerup et al., (2007) used the model for ion exchange chromatography, and were able to 

successfully simulate the gradient elution of β-Lactoglobulin A and B, and the purification 

of four closely related components. 

 

Kinetic isotherm models 

Kinetic isotherm models express the state of adsorption through rate expressions that 

describe relevant adsorption and desorption phenomena and mechanisms (Guiochon et al., 

2006). Rate expressions can be added or removed from kinetic models as needed, to 

represent the different adsorption phenomena relevant to the separation in consideration. 

Therefore, a very large number of expressions are possible. A simplified and schematic 

summary of kinetic adsorption models that have been proposed has been presented by Rabe 

et al., (2011).  

 

The kinetic Langmuir isotherm is the most widely used kinetic model, and has been applied 

for modelling affinity (Bak et al., 2007), ion exchange (Susanto et al., 2008, Gerontas et al. 

2010), and reversed phase chromatography processes (Degerman et al., 2007). A second 

order kinetic binding expression was used when modelling IgG elution during affinity 

chromatography by Sandoval et al. (2012), and a kinetic expression including a term 
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describing conformational change on the resin surface during HIC was used by To and 

Lenhoff, (2008).  

 

A useful feature of kinetic isotherms is that the kinetic parameters can include the 

contribution of mass transfer resistances taking place inside the pores of the adsorbents, 

when an explicit particle mass balance is not included in the chromatography model. 

Degerman et al., (2007) and Susanto et al., (2008) both took this approach when using the 

equilibrium dispersive mass transport model. Although these chromatography models give a 

good description of the experimental chromatograms, the kinetic parameters do not have 

physical meaning (Kaczmarski et al., 2001).  

 

2.2.3. Heat effects 

Heat effects have little consequence for conventional chromatographic columns, and no 

detectable influence of the heat of adsorption on the migration of species through a 

chromatography column has been demonstrated (Gritti and Guiochon, 2007). High mobile 

phase velocities can result in thermal heterogeneity due to mobile phase decompression 

(Gritti, and Guiochon, 2007). Therefore, a differential heat balance for the mobile and 

stationary phase may be useful when modelling high or ultra-performance chromatography 

(Guiochon et al., 2006).  In general, chromatographic separations are almost always assumed 

isothermal and adiabatic, thus the energy balance is usually entirely neglected without loss 

of model accuracy. 

 

2.2.4. Aging effects 

Fouling of chromatographic resin over operational lifetimes is a serious issue associated 

with industrial separations, attributed to repeated or prolonged exposure to the complex mix 

of components commonly seen in load material. This can result in significant reductions in 

binding capacities, and therefore altered process kinetics (Staby et al., 1998). Although 

standard clean-in-place (CIP) procedures can help restore columns towards their original 

state, fouling by certain types of material is often irreversible under typical conditions (Jin et 

al., 2009), and this must be balanced by the fact that more stringent cleaning can cause 

degeneration of the resin pore structure and loss of ligands (Jiang et al., 2009; Muller-Spath 

et al., 2009). Studies have shown that the binding capacity of Protein A affinity resins can 

decrease between 20 – 40 % due to ligand leaching, depending on the volume of material 

applied to the resin over its lifetime (Pollock et al., 2013).   

 

Against this background, aging effects are very important phenomena to consider in 

chromatographic models, but despite this, only one such study has been published, where a 
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term for irreversible binding was included in the model (McCue et al., 2008). Indeed, there 

are relatively few experimental investigations into chromatography column aging in the 

literature.  

 

The impact of fouling on a range of performance indicators such as pressure drop profiles, 

dynamic capacity and breakthrough curves have been measured at University College 

London, where scaled down columns were repeatedly loaded with fouling material 

(Boushaba et al., 2011; Bracewell et al., 2008; Chau et al., 2006; Shepard et al., 2000). 

Rather than considering fouling directly, other studies have focused on resin lifetime issues 

and CIP procedures (Muller-Spath et al., 2009; Norling et al., 2005). More recently, confocal 

laser scanning microscopy (CLSM), a tool that can monitor adsorption processes on a 

particle scale by observing the distribution of a fluorescent molecule within particles 

(Ljunglöf and Hjorth, 1996; Ljunglöf and Thömmes, 1998; Linden et al., 1999, Hubbuch et 

al. 2002), has been utilized to visualize fouling at the particle level (Jin et al., 2009; Siu et 

al., 2006, 2007). However, despite this progress, there remains only limited understanding of 

the mechanistic effect of aging phenomena, for example whether fouling impacts adsorption 

or mass transfer. Therefore, the development of mathematical descriptions of these 

phenomena is currently extremely difficult, which is a serious concern that needs to be 

addressed if models are to be used for process development in industry without resulting in 

unrealistic predictions.  

 

2.3. Model calibration 

Before chromatographic models can simulate a particular chromatographic separation, 

values for model parameters must be determined. In the following section of the chapter, 

methods to determine adsorption isotherm parameters, mass transfer parameters, and void 

volumes are reviewed. 

 

2.3.1. Methods to determine mass transfer parameters 

Mass transport equations are used to describe the movement of solutes through the packed 

bed of porous particles via mass transfer mechanisms. These equations include mass transfer 

coefficients and rate constants specific to each component. The methods used to determine 

these mass transfer parameters can be classified into three groups, correlations, inverse 

methods, and experimental methods.  
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2.3.1.1. Correlations 

Due to intensive study in classical chemical engineering mass transfer research, there are a 

large number of correlations (summarised in Table 2.3) available that attempt to relate 

dimensional groups (e.g. the Peclet number and the Biot number) and mass transfer 

parameters to fundamental properties of packed beds (e.g. porosity, tortuosity, pore size 

distribution) and/or molecules (e.g. size, structure etc). Correlations have been used to 

determine all the major mass transfer parameters used in rate models, such as the apparent 

axial dispersion coefficient (Charton et al., 1994, Ng et al., 2012), axial dispersion 

coefficient (Kaczmarski et al., 2001), the film mass transfer coefficient (Kaczmarski et al., 

2001, Karlsson et al., 2004, Gerontas et al. 2010), and intraparticle diffusivity (Nagarath and 

Cramer, 2000, Gallant, 2004). The advantage of using a correlation is that it is then not 

necessary to determine the parameters experimentally, which is challenging and can give 

inaccurate values due to difficulties distinguishing between the effects of each parameter on 

the shape of the measured chromatograms. Conversely, values of parameters used in 

correlations can themselves be unavailable and so must be assumed, and mass transfer 

parameter values determined using correlations are less specific to the system in question 

than parameters that are fitted to experimental data. Correlations are sometimes used in 

combination with other methods to ensure a good model fit to experimental data (Nagarath 

and Cramer, 2000, Teoh et al., 2001), and have been used to develop models for increasing 

process understanding (Li et al., 1998, Melter et al., 2008, Sandoval et al., 2012, Gu et al., 

2013), and assisting with process development tasks (Jakobsson et al., 2005, Degerman et 

al., 2006, Lienqueo et al., 2009, Nfor et al. 2011). 

 

2.3.1.2. Inverse methods 

Inverse methods can also be used to estimate the values of mass transfer parameters, and are 

similar to the method used when estimating adsorption isotherm parameters. An algorithm is 

used to minimize the error between experimental measurements and model predictions by 

changing the mass transfer parameter in question. The inverse method is usually applied to 

estimate parameters from a single phenomenon at a time, due to the difficulty separating the 

effects of mass transport and adsorption from measured chromatograms (Natarajan and 

Cramer, 2000, Kaczmarski et al., 2002, Borg et al., 2013). However, Gerontas et al., (2010) 

were able to estimate adsorption and mass transport parameters simultaneously using a 

genetic algorithm combined with derivative based search algorithm to ensure the search 

algorithm did not become trapped in local optima.  
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Table 2.3. Correlations for mass transfer parameters (continued on the following page) 

Description  Correlation Parameters 

The apparent dispersion 
coefficient (Guiochon et 

al., 2006). 

 

�� = <�
2"
 

where < is the 
superficial velocity, � is the column 
height and "
is the 

number of theoretical 
plates. 

 
The axial dispersion for 
liquid flow in packed 
beds with spherical 

particles (Ligny, 1970). 
 

��� = 0.7�� + 5(
-1 + 4.4��/J(
-L 
where �� is the 

molecular diffusivity, (
 is the particle 
radius and - is the 
interstitial velocity. 

 
Axial dispersion 

coefficient (van Deemter 
1956) 

 

��� = YC�� + YE�
 -89 where YC and YEare 
empirical 

constants,	�� is the 
molecular diffusivity, �
 is the particle 

diameter, - is the 
interstitial velocity 
and 89 is the bed 

porosity. 
 

Axial dispersion (Chung 
and Wen, 1968). 

 

��� = 	 2(
-890.2 + 0.011()+.bc 			J10dc < ()< 10fL 
where (
 is the 

particle radius, - is 
the interstitial 

velocity, 89 is the 
bed porosity and Re 

is the Reynolds 
number 

 
Molecular diffusivity 

(Polson, 1950). 
 

�� = 2.74 × 10d2J !LdC f⁄  where �� is the 
molecular diffusivity 

(cm2/s) and  !is 
the molecular weight 

of the solute. 
 

Molecular diffusivity 
(Young et al., 1980). 

 

�� = 8.34 × 10dc × ,
: !C f⁄  

where , is the 
column temperature, : is the kinematic 
viscosity, and  !is 
the molecular weight 

of the solute. 
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Table 2.4. Correlations for mass transfer parameters (continued) 
Description  Correlation Parameters 

Intraparticle 
diffusivity 
(Striegel et al., 
2009).  

 

��
=
���� k1 − 2.104H���
 M + 2.09 H

���
 M
f − 0.95 H���
 M

2m
>��/  

where �� is the 
molecular diameter 
(ÅL, �
 is the 
average particle 
macropore 
diameter (ÅL, ���� 
is the molecular 
coefficient, and >��/ is the particle 
tortuosity (usually 
unavailable so 
assumed around 2-
6 for commercial 
porous solids). 

 

Molecular 
diameter for 
proteins in water 
(Gu et al., 1999). 

 

�� = 1.44J !LC f⁄  where   ! is the 
molecular weight 
of the solute. 

Film mass transfer 
coefficient 
(Wilson and 
Geankoplis, 1966). 

 

� = 0.687-C f⁄ O89(
 ��⁄ PdE f⁄   (0.0016 < Re < 55) where - is the 
interstitial velocity, (
 is the particle 
radius, and �� is 
the molecular 
diffusivity (cm2/s). 

Film mass transfer 
coefficient 
(Kataoka et al., 
1972).  

� = 1.165-C f⁄ O(
 ��⁄ PdE f⁄ JJ1 − 89L 89⁄ LC f⁄ 				J()
< 100L 

where - is the 
interstitial velocity, (
 is the particle 
radius, and �� is 
the molecular 
diffusivity (cm2/s). 
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2.3.1.3. Experimental techniques 

A useful approach to estimating mass transfer parameters is to relate experimental data to 

empirical equations defining known relationships between experimental measurements and 

mass transfer parameters (Boyer and Hsu, 1992, Natarajan and Cramer, 2000, Persson et al., 

2006). This involves correlating the height equivalent to a theoretical plate (HETP) to the 

hydrodynamic properties of a column through the plate height equation (Gritti and 

Guiochon, 2010). In this methodology, pulse injections of the molecule of interest are 

conducted at linear adsorption conditions, and the retention time, *p, and the peak width at 

half peak height, 0+.2, are recorded as a function of superficial velocity and mobile phase 

conditions. This data is used to calculate the HETP using the following equation: 

 

    HETP = 	 u2.2b ∙ vwx.y�z {
E
     [2.1]  

 

where � is the column length. The HETP is plotted against the superficial velocity. The 

HETP vs velocity data is compared with a plate height equation which is derived from 

moment analysis of the rate model being used. The derived equations are complex, and the 

derivation is tedious, involving successive differentiations of the Laplace transform solution 

of the chromatography model used (Guiochon et al., 2006). However, once the plate height 

equation has been formulated, it is straightforward to relate mass transfer parameters to the 

experimental data (Muller – Spath et al., 2011, Ng et al., 2012, Gétaz et al., 2013). 

 

2.3.2. Methods to determine adsorption isotherms 

Adsorption isotherms are used in chromatography models to describe the relationship 

between a component’s concentration in the mobile phase and in the stationary phase. The 

complexity of protein adsorption means that adsorption isotherm parameters must usually be 

fitted to experimental data. Methods that are used to generate suitable data can be grouped 

into static experimental methods, dynamic experimental methods, the inverse method, and 

the retention time method. A summary of the key features of each method is presented in 

Table 2.5 . 

 

2.3.2.1. Static experimental methods 

In static methods, the equilibrium state of adsorption is measured in multiple experiments 

conducted over a range of material compositions and protein concentrations (Seidel-

Morgenstern, 2004). The data is combined to create an experimental adsorption isotherm to 

which the isotherm model is fit. The most popular static method is ultra-scale down batch 

adsorption, where solutions of the component under investigation are brought to equilibrium 
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in closed lots of low volumes of resin (< 1 ml). The mobile phase can be analysed and the 

concentration of protein bound to the resin determined by mass balance. Alternatively, the 

bound protein can be eluted and analysed directly.  

 

Ultra-scale down batch adsorption can be tedious, requiring labour intensive experiments, 

and can give inaccurate results. However, it only requires small amounts of protein and can 

be conducted in high throughput mode. In addition, automation by robotic liquid handling 

can greatly decrease the amount of time required whilst increasing accuracy due to better 

precision (Seidel-Morgenstern, 2004). The method has been used successfully in the 

development of models for a range of systems (Susanto et al., 2006, Sun and Yang, 2007, 

Susanto et al., 2008, Gu et al. 2013), including with crude feed material (Bak et al., 2007).  

 

Another static method involves completely equilibrating a column with feed solution of 

known protein concentration. Again, the amount of bound protein can be determined either 

by mass balance, or by eluting all bound protein and measuring the amount directly. 

However, unless the column volume used is very small, completely equilibrating the column 

at multiple compositions and concentrations is very material and labour intensive. Therefore, 

this method has been used in only very few studies, and only with widely available products 

such as pure IgG (Ng et al., 2012) and BSA (Gu et al. 2013). 

 

2.3.2.2. Dynamic experimental methods 

Dynamic methods are based upon the analysis of the dynamic response to defined changes 

in column inlet protein concentrations (Seidel-Morgenstern, 2004). It is assumed that the 

only source of mass transfer in the column is convection. The adsorption isotherm is then 

directly related to the shape of elution profiles and breakthrough curves. Although the data 

analysis in dynamic experimental methods is more complex that static experimental 

methods, dynamic experimental methods are popular as all experiments can be conducted on 

one column. The magnitude of the changes to column inlet concentration can be small, 

intermediate or large, and dictates the exact method to determine the adsorption isotherm i.e. 

the perturbation method, elution by characteristic points and frontal analysis, respectively 

(Lisec et al., 2001, Seidel-Morgenstern, 2004). Frontal analysis is commonly used due to its 

relative simplicity, and possible automation, although it requires large amounts of material. 

There are examples of the methods use for all major retention mechanisms, i.e. anion 

exchange (Kaczmarski et al., 2001, Jakobsson et al., 2005, Gallant, 2004, Osberghaus et al., 

2012a), cation exchange (Melter et al. 2008, Muller – Spath et al., 2011), hydrophobic 

interaction (Nagrath et al., 2011), and affinity separations (Ng et al., 2012). The perturbation 

method and elution by characteristic points method are described in the literature (Seidel-
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Morgenstern, 2004), but are rarely used as they are difficult to apply to systems with 

multiple components.  

 

2.3.2.3. The inverse method 

The inverse method involves using an algorithm to minimize the error between the measured 

elution profile from an experiment, and the profile calculated from the full chromatography 

model by varying isotherm parameters, thus determining best fit. Advancements in 

numerical methods used to solve parameter estimation problems have resulted in a large 

increase in the use of the inverse method over the past decade (Teoh et al., 2001, Chan et al., 

2008, Melter et al. 2008, Lienqueo et al., 2009, Westerberg et al., 2010, Gerontas et al. 2010, 

Muller – Spath et al., 2011, Osberghaus et al., 2012a, Gétaz et al., 2012), although problems 

have been reported where significant differences are observed in estimated parameter values 

depending on the choice of axial discretisation domain (Kaczmarski, 2007). Also, uncertain 

experimental data can result in large uncertainties in estimated parameter values (Borg et al., 

2013). 

 

2.3.2.4. Retention time methods 

Retention time methods use the retention time of components of interest under linear 

conditions to determine the initial slope of isotherms (Mollerup, 2008). The method is 

particularly useful as pulse injections of components onto columns are straightforward to 

conduct, and can be used to explore the impact of mobile phase conditions on the isotherm 

quickly and efficiently. The advantage of using this methodology is that the influence of pH 

and counter ion concentration are captured without having to generate the complete isotherm 

at each unique operating point. In addition, detailed thermodynamic information may be 

determined via comprehensive analysis of the results, which can aid the development of 

isotherms derived from fundamental thermodynamic principles such as the association 

models (Mollerup et al, 2008a, Mollerup, 2008b). However, the method does not give any 

indication of the maximum saturation capacity, and therefore further experiments must also 

be completed in order to complete the calibration of the adsorption isotherm. In addition, the 

methodology requires many experiments with different buffer compositions. In recent years, 

retention time methods have emerged as a popular tool and are now applied regularly in the 

literature because complex chromatographic problems are now being considered where the 

effect of mobile phase composition on adsorption is of key importance (Mollerup et al., 

2007, Melter et al. 2008, Muller – Spath et al., 2011, Nagrath et al., 2011, Nfor et al. 2011, 

Gétaz et al., 2012).  
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Table 2.5. Features of the different methods available for measuring adsorption isotherms, adapted from Seidel – Morgenstern, (2004).  

Method Type Material 
requirements 

Favourable features Unfavourable features Applicable to 
one solute 

Applicable to 
two solutes 

Applicable to more 
than two solutes 

Batch Static Small Automation Tedious, not accurate Yes Yes Yes 

Adsorption – 
desorption 

Static Small Accurate, automation Tedious Yes Yes Yes 

Frontal analysis  Dynamic Large Easy automation High material requirements Yes Yes Yes 

Perturbation Dynamic Small No detector calibration 
required 

Isotherm model required Yes Yes Difficult 

Dispersed front 
analysis 

Dynamic Intermediate Small number of 
experiments 

High column efficiency 
required 

Yes No No 

Chromatogram 
fitting 

Dynamic Intermediate Small number of 
experiments 

Models for isotherm and 
mass transfer required  

Yes Yes Difficult 

Retention time 
method 

Dynamic Small Straightforward to apply 
to systems with variable 
mobile phase conditions 

Only applied at linear 
section of adsorption 
isotherm  

Yes Yes Yes 
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2.3.3. Methods to measure void volumes 

Bed voidage, particle porosity and total column porosity are important parameters that are 

related to the bed and particle structure and they can be obtained experimentally by 

measuring the retention time of suitably sized unretained molecules. Molecules with very 

large molecular weight that do not penetrate particle pores, such as dextran blue, can be used 

to determine the bed voidage. Smaller molecules, such as sodium chloride or acetone, can be 

used to determine the total column porosity. With these values, a simple relation can be used 

to calculate the particle porosity.  

 

The bed voidage has been determined for many different resins and systems and is 

commonly around 0.37. Particle porosities are more varied (0.55 – 0.8), and are often 

specified by the resin manufacturer. The effective void volume experienced by the specific 

component may vary depending on the component size, and amendments to models that 

account for this effect have been suggested (de Neuville et al., 2013). The effective porosity 

can be characterised experimentally by conducting inverse size exclusion chromatography 

(iSEC), where dextran standards of known size are used as probe molecules. The fraction of 

the total particle porosity available as a function of molecule size can then be determined 

from the retention time of the dextran standards. Alternatively, the void volumes of a large 

number of commercially available resins have been studied and published in the literature 

(dePhillips and Lenhoff, 2000, Yao and Lenhoff, 2006), which can be used directly in 

models, or as a means of checking measured parameters. 

 

2.4. Model applications 

Models of chromatography can be applied to complete important process development tasks 

such as process optimisation, design space identification, robustness and sensitivity analysis, 

and scale up. In the following section the state of the art in the open literature in these areas 

is reviewed.  

 

2.4.1. Resin selection  

Many different chromatographic resins are now available. The most suitable resin must be 

identified from hundreds of potential candidates early in the development process to leave 

time for optimisation and validation studies. The identification is usually achieved via 

experimental high throughput screening methodologies. Model based approaches have been 

proposed which may provide advantageous as resins can be evaluated at their optimal 

operating conditions with minimal experimentation required (Nfor et al., 2011). 
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2.4.2. Purification process synthesis 

Purification process synthesis refers to the task of selecting the optimal sequence of 

chromatography unit operations to purify the clarified crude material following fermentation 

and primary recovery. This is nontrivial as a large number of process alternatives are usually 

possible, especially when the process does not utilize affinity chromatography. Nfor et al., 

(2013) recently demonstrated a methodology for selecting the most optimal process scheme 

for the purification of a monoclonal antibody from a crude mixture, employing a systematic 

cycle of flow sheet synthesis, optimisation, evaluation and rational elimination of the least 

feasible options at each purification step based on the specific needs of that step. The 

process evaluation was based on the performance of optimized mechanistic models for each 

step, and thus provided a more accurate indication of the most favourable sequence when 

compared to alternate approaches. 

 

2.4.3.  Process optimisation 

There are useful examples of mathematical optimisation of the chromatographic purification 

of therapeutic proteins using mechanistic models of chromatography, where mathematical 

optimisation refers to minimising or maximising an objective function by varying decision 

variables subject to constraints (Degerman et al., 2006, 2007, Ng et al., 2012, Osberghaus et 

al., 2012b). Common factors to consider in the objective function include the yield and 

productivity of the chromatographic separation, and the purity of the product. When 

considering multiple objectives, cost functions have been used which define the relative 

importance of each factor when optimising a particular process (Lienqueo et al., 2009). 

Alternatively, multiple optimisations can be completed where the objective function is 

changed each time so that each factor is weighted differently. The resulting optimal values 

can then be used to generate a Pareto front useful for exploring the trade-off between the 

different factors (Degerman et al., 2009, Gétaz et al., 2012).  

 

If the yield, productivity and purity are not included in the objective function, then they are 

usually included as a constraint. A wide range of decision variables are usually available in 

chromatographic separations. Column length, flow rate, volumes (wash, load and elution), 

buffer composition (e.g. ionic strength, pH) have all been considered. A recent study by 

Osberghaus et al. (2012a) compared mechanistic and empirical model based approaches for 

the optimisation of a three component separation, and concluded that for processes with low 

robustness, the performance of a DOE approach was significantly inferior to the 

performance of a mechanistic model, resulting in inaccurate predictions and a sub optimal 

process. However, discussion of the advantages and disadvantages revealed useful synergies 

between the two approaches, which suggested process optimisation should start with the 
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traditional DOE approach in order to comfortably and quickly reveal important factors 

which will generate a basic understanding of the chromatography. Then the outcomes from 

this study can be used to direct the development of a mechanistic model, using data from 

DOE experiments for model calibration and validation. The mechanistic model can then be 

used for detailed process optimisation, as well as other development tasks which are 

discussed in this section.  

 

Despite the examples seen in the literature, mathematical optimisation of the sort described 

above does not see regular use in industry due to the large and frequent variance of inlet 

material, uncertainties in controlled process parameters, and frequency of non-ideal 

phenomena such as resin fouling which promotes a focus on identifying the most robust 

operating conditions, rather than optimising for particular scenarios. 

 
 

2.4.4. Design space identification 

Mechanistic models are ideally suited to design space identification as they can explore 

different operating conditions and design parameters with greater efficiency and speed than 

an experimental approach, although few examples have been published in the literature. 

Degerman et al., (2009), used a mechanistic model to identify the design space for the 

purification of IgG from BSA by gradient elution using hydrophobic interaction 

chromatography. The method used was based on Pareto optimisation assuming that the 

process should only be run at optimal operating points, with Pareto fronts developed for 

different magnitudes of process disturbances which provide information that are used to 

determine a suitable design space. The method combines both process optimisation and 

design space determination whilst accounting for parameter uncertainty and operating point 

sensitivity. Although it requires a large number of simulations to be performed and does not 

provide information for non-optimal operating conditions, it is a very useful example of a 

model based approach to design space determination.  

 

Gétaz et al., (2013), use a similar approach to determine the design space for the purification 

of a 4.3 kDa polypeptide crude mixture via gradient elution using a Kromasil 100 A 10 |m 

C8 (hydrophobic interaction) high performance liquid chromatography (HPLC) column. 

Optimal operating conditions were determined by Pareto optimisation, and then the response 

of product critical quality attributes to variations in process parameters was plotted as a 

function of loading and elution volume in order to indicate the design space borders. Both 

examples highlight the importance of accounting for process variability in order to assure the 

registered design space is robust. In addition, although ideally the design space should 
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contain a dimension for every process parameter, in practice due to the complexity of such a 

multi-dimensional design spaces, the number of parameters considered is limited to two.  

 

The issue of how to communicate multidimensional design spaces is a wider challenge 

associated with design space identification that is not just limited to model based 

approaches, but is also a key challenge for experimental approaches, as it limits operating 

parameter ranges defined in regulatory submissions to linear combinations of process 

parameters, limiting design space size and excluding many feasible points of interest.  

 

2.4.5. Robustness and sensitivity analysis 

An important task in the development of a chromatographic step for purification of a 

therapeutic protein is concerned with ensuring that the process can cope with bioprocess 

variability (Rathore, 2009). Maximising process robustness, and minimising sensitivity to 

disturbances, are key aspects of this effort. Model based approaches to these tasks have been 

considered in the literature (Jakobsson et al., 2005, Degerman et al., 2009, Westerberg et al., 

2012, and Gétaz et al., 2013).  

 

Jakobsson et al. (2005), conducted a full factorial study of six factors on the purity and yield 

of the ion exchange purification of BSA, myoglobin and IgG. Using the results the relative 

importance and effect of each process parameter was determined.  Degerman et al. (2009) 

used a model based approach to determine which process parameters were critical to control 

in order to assure process robustness for three case studies: (i) purification of IgG from BSA 

with hydrophobic interaction chromatography, (ii) purification of insulin from desamido 

insulin with reversed phase chromatography, and (iii) purification of IgG from BSA and 

myoglobin with hydrophobic interaction chromatography. Parameters were ranked 

according to importance, and risk of batch failure was determined for each case study 

accounting for uncertainty in a selection of process parameters. Gétaz et al. (2013) varied 

both process parameters (flowrate, loading, column length, feed concentrations, and buffer 

compositions) and model parameters (mass transfer coefficient and saturation capacity) 

around the standard operating conditions that had been found via process optimisation. The 

results were used to determine critical process parameters depending on the position of 

operation within the design space, and to determine correlated effects. All studies described 

found that process disturbances significantly decrease design space size, and illustrate the 

importance of process robustness in order to assure product quality. 
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2.4.6. Process scale up 

Scale up strategies currently employed in industry are based on keeping the bed height and 

linear velocity constant. Process development experiments must therefore be conducted 

whilst keeping the bed height constant. This limits the minimum column volume that can be 

used for these experiments. Compared to a shorter bed height, the extra length of column 

means that experiments are more time consuming, and the extra volume means that larger 

amounts of material are required. As the mechanistic models of chromatography capture the 

underlying phenomena which are driving purification processes, they can provide useful 

information on alternative approaches to process scale up (Mollerup et al. 2007). Gerontas et 

al. (2010)  were able to demonstrate how a mechanistic model can be developed using scale 

down columns with reduced bed heights (and thus volumes), and then the validated 

mechanistic model can be used to predict process operation in columns at full bed height, 

thus achieving significant savings in terms of time and material. Despite the simplified 

composition of the feed material considered (BSA and lactoferrin were selected due to the 

difficulty in procuring the very large amounts of protein required to load the manufacturing 

scale columns), the study demonstrated how a relatively simple application of a mechanistic 

model can be of enormous value for industry where time and material constraints are of 

great importance. 

 

2.5. Concluding remarks 

In order for first principles modelling approaches to be applied in industry for the design and 

development of chromatographic processes for the purification of proteins, a large body of 

evidence and best practices must be developed in the literature. The literature review 

considered three key areas, model formulation, model calibration and model applications. 

The key findings are summarised in this section, and in Appendix A, which details the 

referenced studies, indicating the mode of chromatography, retention mechanism, molecule 

of interest, load material composition, adsorption model, mass transfer model, and any 

subsequent model applications. 

 

A large number of well understood options are available for modelling the movement of 

solutes through the packed bed of porous particles via mass transport mechanisms. The exact 

choice of model depends on the specific objectives of the modelling project. The most 

frequently used model is the general rate model, which describes convection, axial 

dispersion, diffusion through an external film surrounding resin particles, and intraparticlar 

diffusion through the stagnant mobile phase within particle pores (Guiochon et al., 2006). 

This is usually sufficiently accurate for most chromatographic separations. More complex 
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models are available if required, which include equations describing surface diffusion 

(Kaczmarski et al., 2002, 2003, Sun and Yang, 2007), pore shrinkage (de Neuville et al., 

2013), and heterogeneity in particle and packed bed structure (Gerontas et al., 2013). 

Alternatively, simpler models such as the lumped pore model, lumped kinetic model, and 

equilibrium dispersive model are available for circumstances where high computational 

efficiency or fast model development is important (Kaczmarski et al., 2001).  

  

Mass conservation equations are linked with equations describing adsorption to complete the 

chromatography model. Despite the wide range of options available, in practice, adsorption 

models are generally restricted to what is experimentally measurable, and the ability to 

distinguish between different adsorption phenomena is limited and difficult. In addition, it is 

desirable to keep the number of adjustable parameters to a minimum, as a higher complexity 

of model degrades the validity of the mechanistic meaning of the models parameters, i.e. the 

mechanistic model becomes more like a statistical model. As a result, the application of 

adsorption models has mainly been limited to simpler expressions, such as the Langmuir 

isotherm. Additional complexity is often described mathematically by extending simpler 

isotherms to account for competition, mobile phase modulators, and kinetic effects. In recent 

years, increasingly complex chromatographic systems have been considered (i.e. 

Osberghaus et al., 2012a, Guélat et al. 2012, Borg et al., 2013 etc), which has seen the 

utilisation of greater adsorption isotherm complexity such as the steric mass action (Bak et 

al., 2007), and association isotherms (Mollerup et al., 2008). However, the modelling of 

complex industrial systems is still extremely difficult because of the lack of options and 

approaches for describing heterogeneous, multi-component load material. 

 

One area that has so far seen little consideration in the chromatography modelling literature 

are aging effects such as resin fouling and ligand leaching, and undesirable reactions 

between material components during separations such as aggregation. These phenomena can 

seriously impact process performance (Staby et al, 1998, Jin et al., 2009). If first principles 

modelling approaches are to provide a true alternative to existing experimental approaches, 

mathematical descriptions must be formulated and integrated into chromatography models, 

otherwise there is a risk of dangerously optimistic performance predictions. In addition, the 

lack of discussion and emphasis on these undesirable phenomena in the modelling literature 

may result in many experimentalists disregarding and dismissing mechanistic modelling, 

without considering the benefits such an approach may bring. 

 

Model calibration involves determining values for model parameters. There are three main 

approaches for determining mass transfer parameters. The first involves the use of literature 
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correlations. The second is known as the inverse method, where an algorithm is used to 

minimise the error between experimental measurements and model predictions by changing 

the mass transfer parameter in question. The third approach involves relating experimental 

data to empirical equations defining known relationships between experimental 

measurements and mass transfer parameters. All are well understood, have been used 

extensively, and are often used together to increase confidence in estimated parameter 

values.  

 

Similarly, adsorption isotherm parameters can be determined using a range of approaches. 

Static experimental methods include batch adsorption experiments conducted using scale 

down and laboratory scale systems. Dynamic experimental methods include frontal analysis, 

perturbation analysis and elution by characteristic points (Seidel-Morgenstern, 2004). Other 

methods include the inverse method where isotherm parameters are fit to chromatograms 

from column runs (Teoh et al., 2001, Kaczmarski, 2007), and retention time methods which 

can quickly determine the isotherm at linear adsorption conditions over a range of mobile 

phase conditions (Mollerup et al, 2008a). As with the estimation of mass transfer 

parameters, although each method can be applied on its own, (Susanto et al., 2008, Gerontas 

et al. 2010, Ng et al., 2012), the complexity of protein adsorption means that in practice, 

multiple methods are often used together to ensure accurate isotherm parameters (i.e. 

Jakobsson et al., 2005, Nfor et al. 2011, Muller – Spath et al., 2011, Osberghaus et al., 

2012a).  

 

Void volumes are usually determined experimentally by measuring the retention time of 

suitably sized unretained molecules, or taken from the published literature. Care must be 

taken when the experimental approach is used, but in general it is straightforward to 

complete. However, assuming uniformly porous resin structure can result in prediction 

errors due to dynamic phenomena such as hindered diffusion. In this case, it may be 

necessary to use inverse size exclusion to characterise the pore size distribution.  

 

The application of chromatography models for process purification development has seen 

less consideration in the literature than model formulation and calibration, although the 

introduction of quality by design has seen a sharp increase in interest in recent years. There 

have been publications demonstrating the use of models for a wide range of development 

tasks, such as resin selection, whole process synthesis, process optimisation, design space 

formulation and analysis, robustness and sensitivity analysis, and process scale up. All of 

these studies show the great potential for first principles modelling approaches. However, 

only a few consider real industrial systems where crude feed material is purified rather than 
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well-known model proteins, and many proposed approaches require similar or greater time 

and material than alternative experimental approaches. 

 

In summary, the key areas that need addressing before first principles modelling approaches 

are accepted by industry as a feasible aid or alternative to experimental approaches are all 

related to the practical implementation of modelling approaches in industry. There is a 

fundamental lack of mathematical descriptions and approaches to characterise and calibrate 

relevant model parameters for describing the non-ideal phenomena and the challenging feed 

material compositions that are commonplace in industry. In addition, more often than not, 

little consideration is given to how to apply the relevant mathematical and experimental 

techniques described in this chapter in an industrial environment with limited time, material 

and money. More needs to be done to demonstrate how the advantages of a model based 

approach can be leveraged in an industrial environment to generate value, when there 

remains an established experimental alternative that is well understood by regulators and 

biopharmaceutical companies alike, which has been proven with many examples in the past. 

 

2.6. Aims of the thesis 

The aim of this thesis is to derive fundamental process understanding of specific industrial 

chromatographic separations currently in development or operation at Pfizer, via the 

development and application of mechanistic models chromatography, in order to accelerate 

the development and increase the robustness of industrial protein purification processes, 

whilst following guidance regarding the implementation of Quality by Design. A range of 

experimental and mathematical methods are used to achieve a number of objectives related 

to specific chromatography processes currently in development or operation at Pfizer: 

 

2.6.1. Chapter 3 - Weak partitioning chromatography 

Pfizer utilise an anion exchange chromatography step operated in weak partitioning mode as 

part of their two - step platform monoclonal antibody purification process (Kelley et al., 

2008a). The step has consistently provided excellent clearance of impurities whilst 

maintaining high step yields (> 90 %) for numerous proteins (Kelley et al., 2008, Iskra et al, 

2013). However, feed material with high levels of product aggregates can occasionally pose 

a purification challenge, where operating conditions need to be carefully chosen in order to 

assure impurity clearance. In extreme cases, additional chromatography columns may be 

required. The current experimental procedure used to identify operating conditions (high 

throughput batch binding studies (HTS) followed by scale down column studies), requires a 
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significant amount of time and material for challenging feed material compositions, contrary 

to industrial objectives at an early stage of process development.  

 

Developing an exhaustive chromatographic rate model is unlikely to be feasible at an early 

stage of process development due to limited time, material and analytics. Therefore, a 

simplistic ‘platform’ model of the WPC system that can be applied irrespective of the 

particular molecule will be developed. The aim is to aid the existing experimental process 

development procedure by providing a link between HTS and scale down column studies. 

The model will provide a more informative means for exploring how process parameters can 

be controlled in order to raise product recovery to acceptable levels and maintain impurity 

clearance. Stochastic simulation will be used to increase understanding of process 

robustness, and to identify prospective operating conditions for further development that can 

assure product quality when purifying material with challenging compositions. 

 

2.6.2. Chapter 4 - Resin fouling 

Resin aging/fouling during process operation can significantly decrease anion exchange 

chromatographic performance (Staby et al, 1998, Jin et al., 2009). There is a lack of 

fundamental knowledge and mechanistic understanding of fouling in industrial 

chromatographic processes. Therefore, the application of mechanistic models to industrial 

chromatographic processes is problematic, because model predictions are restricted to 

columns containing clean/new resin. Resin fouling of the anion exchange weak partitioning 

chromatography step considered in chapter three had been observed during purification 

process development of a monoclonal antibody. Significantly earlier breakthrough of 

impurities and premature loss of capacity was observed during experimental studies 

conducted by Iskra et al. (2013). The fouling was attributed to a unique quality of the 

particular feed stream.  

 

In this thesis, the location of the foulant will be revealed, and the effect of fouling on protein 

uptake kinetics and resin capacity will be determined. The knowledge gained can increase 

process understanding, and thus provide for better informed process development and model 

formulation. 

 

2.6.3. Chapter 5 - Resin lot variability 

Serious performance issues were observed in a hydrophobic interaction chromatography 

(HIC) step at a late stage of development, which were attributed to resin lot variability. 

(Note that the HIC is part of a different process to the one considered in chapters three and 

four of this thesis). The HIC provides impurity clearance whilst producing a complex final 
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product composed of six closely related variants of a dimer protein therapeutic (~30 kDa), 

with their monomer subunits in a specific ratio. Impurity removal is well understood, 

however, achieving the correct monomer subunit ratio poses a purification challenge. An 

extended range of resin lots had been obtained from the supplier for testing within normal 

process operating ranges. All resin lots were within the manufacturers’ specifications for 

ligand density and chloride capacity. Despite this, many resins failed to meet product quality 

specifications during testing, and would have incurred significant losses if used for the large 

scale manufacture of the product.  

 

A model is developed and used in a process scenario to allow specific variables critical to 

product quality to be studied. Stochastic simulation is used in order to identify robust 

operating conditions, and the level of control required on uncertain process 

parameters/variables to bring process robustness to an acceptable level. 
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Chapter 3.  Weak Partitioning Chromatography 

A model based approach for linking experimental high throughput batch bind screens (HTS) 

and scouting runs traditionally conducted during process development is proposed. The 

approach is specific to a weak partitioning chromatography (WPC) anion exchange (AEX) 

polishing step that is part of Pfizer’s two-step platform monoclonal antibody purification 

process. The approach involves the development of a simplistic ‘platform’ model that can be 

applied to new candidate molecules based on the results of a standard HTS. This is achieved 

by characterising the equilibrium isotherms of three critical components (monomer, dimer 

and multimer) of the WPC separation, as a function of the product partition coefficient, 

rather than the conventional approach of pH and counterion concentration. Use of the 

model is limited to an early stage of process development. This reduces the impact of 

inaccuracies due to simplifications made when formulating the model. Important advantages 

are realised by harnessing the models’ predictive power when (1) there are maximum 

degrees of freedom available for bioseparation design, and (2) minimal investment has been 

made in the product. The model can quickly identify operating parameter ranges that are of 

interest for the purification of load material with challenging compositions. When combined 

with stochastic simulation, the model can explore the impact of process variability on 

product quality and process performance. This approach enables the purification of 

previously impossible to purify feed streams using the two-step platform monoclonal 

antibody purification process. It also identifies promising parameter ranges to explore 

experimentally, thus accelerating process development and helping optimise column 

performance.  
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3.1. Introduction 

A typical platform for the purification of monoclonal antibodies (mAb) derived from 

recombinant cell culture employs three chromatographic steps. Protein A capture is followed 

by two polishing steps, usually anion exchange (AEX) chromatography in flowthrough 

mode, and one of either cation exchange, ceramic hydroxyapatite or hydrophobic interaction 

chromatography. The Protein A capture step removes the bulk of the impurities, and the two 

polishing steps ensure clearance of host cell protein, DNA, high molecular mass species 

(HMMS - also known as aggregated product), virus and leached Protein A. 

 

Weak partitioning chromatography (WPC) is an isocratic mode of protein purification that 

enables a two column purification process (e.g. Protein A affinity and AEX weak 

partitioning chromatography), rather than the established three column process (e.g. Protein 

A affinity, AEX and HIC chromatography). By reducing the number of chromatographic 

steps, process development is accelerated, and development and manufacturing costs are 

reduced. Although similar to flowthrough (FT) mode where impurities bind to the resin and 

the protein of interest flows through to be collected as product, WPC is distinct, as it is 

performed under mobile phase conditions where in addition to impurities a significant 

amount of product also binds to the resin. The more stringent binding conditions improve 

removal of impurities such that a third column is no longer required to assure impurity 

clearance, and any loss in yield due to adsorption of the product can be restored by 

extending the load challenge and conducting a wash step at the end of the load phase to 

recover the product. 

 

The weak partitioning mode is defined by the product partition coefficient, K�, falling 

between 0.1 and 20, which is distinct from bind and elute (K� > 100) and flowthrough (K� < 

0.1) modes of chromatography. The product partition coefficient is defined as the ratio 

between the concentration of bound and unbound product in equilibrium in the linear region 

of the adsorption isotherm. In AEX, the product partition coefficient is modulated by the 

mobile phase pH and counterion concentration. Figure 3.1 overlays chromatograms from 

column runs at WPC (K� = 2) and FT (K� < 0.1) conditions. The chromatograms show that 

product breaks through later under WPC conditions, indicating higher protein adsorption 

during the load phase. The additional bound protein is recovered during the wash, without 

reducing impurity removal as illustrated by the larger WPC strip peak. 

 

WPC operating conditions can be rapidly determined using high throughput batch binding 

studies (HTS), where resin is brought to equilibrium with small amounts of protein solutions 



79 
 

(< 5 g/L) at unique combinations of pH and counterion concentration. The protein 

concentration in the supernatant is measured and a mass balance is used to calculate the 

bound concentration and thus the partition coefficient. A response surface can be generated 

from the HTS data that plots the partition coefficient as a function of pH and counterion 

concentration. The response surface forms the basis for the development of a design space 

which provides sufficient clearance of impurities (e.g. host cell protein, DNA, HMMS, virus 

and leached Protein A). Initial ranges of pH and counterion concentration are defined for 

further characterisation by factorial design of experiment (DOE) studies on qualified scale 

down columns. 

 

Several clinical current good manufacturing practice cGMP processes at Pfizer have utilised 

AEX in WPC mode, which has consistently provided excellent clearance of impurities 

whilst maintaining high step yields (> 90 %). Studies have shown that WPC is a robust 

polishing step over a wide range of operating conditions. However, feed material with high 

levels of high molecular mass species (especially product dimer) can occasionally pose a 

purification challenge, where operating conditions (e.g. pH, counterion concentration) need 

to be carefully chosen in order to assure impurity clearance. In extreme cases, a third 

chromatography column may be required. Scale down design of experiment studies in order 

to identify robust operating conditions for these challenging material compositions require a 

significant amount of time and material, contrary to industrial objectives.  

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3.1. Overlay of chromatograms at flowthrough conditions (Solid line - }~  < 0.1) and weak partitioning 

conditions (dotted line - }~= 2) adapted from Kelley et al., 2008a.  
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A model based approach for application at an early stage of process development is 

proposed to provide a link between HTS and scale-down column studies. The objective is to 

enhance experimental efficiency, reduce the number of column studies necessary for process 

definition, and increase process understanding. The approach involves formulating a 

simplistic ‘platform’ model of the WPC containing a basic mass balance and a description of 

adsorption equilibrium. The key feature of the approach is that once the model has been 

developed, it can be applied to new candidate molecules based on the results of the standard 

HTS experiment conducted at the start of process development. This is achieved by prior 

characterisation of the equilibrium isotherms of three critical components of the WPC 

separation, namely the product monomer, dimer and multimer, as a function of the product 

partition coefficient, K�, rather than pH and counterion concentration. 

 

The approach is distinct, but complementary, to developing an exhaustive chromatographic 

rate model for each molecule, which may not be feasible at an early stage of process 

development due to limited time, material and analytics. The ability to quickly and 

efficiently explore potential operating conditions is particularly useful for scenarios where 

challenging feed material compositions pose problems for an experimental approach to 

process development. The approach is equally useful for increasing understanding of weak 

partitioning chromatography, and can indicate where enhancements to the WPC platform 

can be made. The difference between traditional development and the proposed approach is 

illustrated in Figure 3.2. 

 

In this chapter, the platform model is developed and then tested. Ultra-scale down batch 

adsorption experiments are used to collect the data required to fit model parameters. Existing 

platform knowledge of how WPC operates, and molecule specific information provided by 

Pfizer, is used to choose relevant mobile phase conditions to characterise the equilibrium 

isotherms of the three critical components (monomer, dimer and multimer). The model is 

applied to two case studies to demonstrate how the model can be applied during early 

process development. In addition, an in-depth analysis of monomer – dimer selectivity, 

maximum load challenge, recovery, and the impact of uncertainty in the AEX WPC system 

is conducted, supported by relevant experimental studies. The results show how a model 

based approach based on fundamental process understanding can be used at an early stage of 

process development for exploring how process parameters (e.g. partition coefficient, load 

challenge and load concentration) can be controlled in order to raise product recovery to 

acceptable levels, whilst maintaining robust impurity clearance. 
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Figure 3.2. The difference between a traditional and the proposed early stage development approach utilising 
simplistic ‘platform’ model of WPC to provide a link between high throughput screening experiments and scale 

down column studies 
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3.2. Experimental Materials and methods 

3.2.1. Materials 

Therapeutic protein and feed material 

Two different humanized IgG1monoclonal antibodies (mAb A and B) are used in this 

chapter. Both were produced in recombinant chinese hamster ovary (CHO) cells grown in 

serum free medium. Downstream processing prior to AEX WPC consisted of centrifugation 

and depth filtration, followed by Protein A chromatography. Load material used in 

experiments was derived from Protein A peak pools generated during either scale down 

process development or pilot plant studies. The correct pH and counterion concentration was 

achieved in load material by buffer exchange and dilution/concentration. Protein A peak 

pool material typically contained the product of interest, host cell proteins, DNA, residual 

Protein A which had leached from the affinity capture resin, and high molecular mass 

species (HMMS) comprised of dimer and multimer. 

 

Chromatography resin 

Fractogel® EMD TMAE HiCap (M) anion exchange resin was obtained from EMD Merck 

(Darmstadt, Germany). 

 

Equipment 

All preparative scale laboratory experiments were carried out using an ÄKTA FPLC 

chromatography system from GE Healthcare (Uppsala, Sweden). Laboratory columns used 

for WPC were 0.5 cm in diameter and 15 cm in height. A Tosoh TSK – GEL G3000SWXL 

high performance liquid chromatography (HPLC) column was used for analytics. 

 

3.2.2. Experimental methods 

 

Depth filtration 

Depth filtration was used to reduce the amount of negatively charged species that were not 

considered in the model (HCP, DNA and leached Protein A) in neutralised Protein A peak 

pool material, prior to batch adsorption experiments. A XOHC depth filter was obtained 

from EMD Millipore (Billerica, MA). 26 cm2 µPOD format filters were used for all 

experiments. The depth filter is based upon diatomaceous earth and is positively charged. It 

was used to reduce the amount of negatively charged species (HCP, DNA and leached 

Protein A) in neutralised Protein A peak pool material, prior to batch adsorption 

experiments. Before loading, the filters were flushed with 100 L/m2 RO water to remove 
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preservative followed by 50 L/m2 of equilibration buffer. Filters were loaded up to 200 L/m2 

at 200 LMH. After loading, any remaining protein was blown out of the filter with air. 

 

High throughput screening for �� contours 

High throughput screening had been conducted prior to this work by Pfizer for the two 

different candidate monoclonal antibodies, A and B. The data was used to estimate 

parameters of response surface models of the partition coefficient, K�, as a function of pH 

and counterion concentration for each mAb. The response surface model was used to help 

choose relevant mobile phase conditions to characterise the equilibrium isotherms of the 

three critical components (monomer, dimer and multimer). The high throughput screening 

methodology is presented in detail in the literature (Kelley et al., 2008a), showing the 

excellent fit (r2 > 0.985), and high significance of parameters (p < 0.01), typically achieved 

during parameter estimation. The regression equations for mAbs A and B are presented in 

Table 3.1 and Table 3.2. Figure 3.3 shows the product partition coefficient as a function of 

pH and counterion concentration for monoclonal antibodies A and B generated using the 

response surface models (RSM) provided by Pfizer.  

 

Table 3.1. Monoclonal antibody A regression equation terms and estimate 

Term Estimate 

Intercept -6.99 Total	Cl  - 0.015 pH  0.90 JpH − 8.3L × JpH − 8.3L  0.47 JCl − 45.23L × JCl − 45.23L  0.00013 JpH − 8.3L × JCl − 45.23L  - 0.018 
 
Regression Equation: 
 log	Kp = −6.99 + JTotal	Cl × −	0.015L + JpH × 0.90L + OJpH − 8.3L × JpH − 8.3L ×0.47P + OJCl − 45.23L × JCl − 45.23L × 0.00013P + JJpH − 8.3L × JCl − 45.23L × −0.018LL		  
 
 
 
 

Table 3.2. Monoclonal antibody B regression equation terms and estimate 

Term Estimate 

Intercept - 6.37 Total	Cl  -0.013 pH  0.91 JpH − 7.74L × JpH − 7.74L  0.38 JCl − 50.25L × JCl − 50.25L  0.000058 JpH − 7.74L × JCl − 50.25L  - 0.020 
 
Regression Equation: 
 log	Kp = −6.37 + JTotal	Cl × −	0.013L + JpH × 0.91L + OJpH − 8.3L × JpH − 8.3L × 0.38P +OJCl − 45.23L × JCl − 45.23L × 0.000058P + JJpH − 8.3L × JCl − 45.23L × −0.02LL		  
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Figure 3.3. Monoclonal antibody A and B product partition coefficient, K�, contours as a function of pH and 
counterion concentration. The contour plots were generated using response surface models generated from high 

throughput screening studies conducted prior to this work at Pfizer.  

 
 

Batch adsorption experiments 

Batch adsorption experiments were conducted using mAbs A and B to generate data for 

estimating isotherm parameters for monomer, dimer and multimer adsorption in the WPC 

AEX system. HCP, DNA and leached Protein A was removed prior to batch adsorption 

studies via depth filtration (mAb A) or WPC (mAb B). MAb A material contained 89% 

monomer, 8% dimer and 3% multimer. MAb B material contained 89% monomer, 2% dimer 

and 9% multimer. Response surface models (Table 3.1 and Table 3.2) provided by Pfizer 

were used to select pH and counterion concentrations (Table 3.3) for batch adsorption 

experiments. The experiments were designed in order to ensure broad coverage of the 

mobile phase conditions typically explored during process development. Figure 3.4 

illustrates the breakdown of the experimental study. The concentration of monomer, dimer 

and multimer in the solid and liquid phase was determined for three product partition 

coefficients (K� = 1, 3 and 10), at three unique counterion/pH combinations for each product 

partition coefficient, and 5 different load concentrations ([C0] = 0.2, 0.5, 1, 1.5 and 2 

mg/ml), with all experiments repeated in triplicate.  

 

The experiments were based on the work of Coffman et al. (2008), conducted in a 96-well 

800µl were round-well filterplates with 0.45 µm pore-size polypropylene membrane, and 

repeated in triplicate. 25µl of resin was taken from a bulk reservoir and dispensed by the 

robotic liquid handler into the individual wells as 25% (v/v) slurry in the appropriate 

B A 
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equilibration buffer. The plate was then centrifuged to evacuate excess liquid and leave 

damp resin. Subsequently, load material was added into wells containing the resin. The 

initial concentrations for each filter plate well were produced by mixing together protein 

from bulk solutions of known concentrations and compositions, with the appropriate amount 

of equilibration buffer from a bulk solution in order that the total volume of liquid dispensed 

into each well was 275µL (.���). The resin and solutions were then agitated on a platform 

shaker for 120 minutes. Studies have indicated that this incubation time was suitable for this 

system (Kelley et al. 2008a). Foil adhesive tape was used on the underside of the filter-plate 

to prevent liquid loss during shaking. 

 
 
 

Table 3.3. Mobile phase conditions used in batch adsorption isotherm experiments 

Target  K� Condition identifier Ionic strength (mM) pH 

1 A1 15 8.00 

1 A2 30 8.24 

1 A3 50 8.58 

1 B1 35 7.52 

1 B2 50 7.70 

1 B3 70 8.05 

3 A1 15 8.36 

3 A2 30 8.61 

3 A3 50 8.96 

3 B1 70 8.56 

10 A1 15 8.67 

10 A2 30 8.93 

10 A3 50 9.29 

10 B1 30 8.19 

10 B2 50 8.53 

10 B3 65 8.85 
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Figure 3.4. Breakdown of experimental batch adsorption studies used to characterise the adsorption equilibria of 
monomer, dimer and multimer 
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After incubation, a centrifuge evacuated the supernatant into a UV-transparent 96 well micro 

plate which was stacked beneath the filter plate for analysis. The supernatant was then 

analyzed by a 96-well UV spectrophotometer (SpectraMax 250, Molecular Devices, 

Sunnyvale, CA) to determine the concentration of protein in the supernatant, ���. Size 

exclusion chromatography (SEC) high performance liquid chromatography (HPLC) was 

used to determine the percentage of each component in the supernatant, $��. The 

concentration of the protein in the mobile phase is then calculated from Eq 3.1: 

 

��� = #�����∙���
C++     [3.1] 

 

where ��� is the concentration of component � in the mobile phase in mg/ml, ����� is the 

measured concentration in the supernatant of the micro well determined by UV 

spectroscopy, and $�� is the percentage of component � in the mobile phase as determined 

by SEC HPLC.  

 

An elution cycle was then conducted following the same methodology as the load cycle, 

where 275 µL of elution buffer was added to each well, the plate agitated on a platform 

shaker for 120 minutes and the supernatant subsequently collected as described previously 

and analysed using the spectrophotometer and SEC HPLC. The amount of protein adsorbed 

per unit volume settled resin, &�, was calculated using Eq 3.2:  

 

&� =		 v�������������� { ∙ �������� ∙ 	 H��
�������
C++ M   [3.2] 

 

where �������� is the concentration of the elution supernatant (mg/ml) determined by UV 

spectroscopy, $�������� is the percentage of component � in the elution phase as determined 

by SEC HPLC, .������� is the volume of the elution supernatant (275 µl in this work), and 

./�	�� is the settled volume of resin in the microwell (25 µl in this work). 

 
Size exclusion HPLC 

Size exclusion HPLC was used to determine the relative percentages of monomer, dimer and 

multimer in samples (taken from both batch adsorption experiments and column runs). The 

size exclusion (SEC) HPLC assay utilises a Tosoh TSK – GEL G3000SWXL stainless steel 

column, 7.8 mm ID × 30 cm length, 5 μm mean particle size. After equilibrating the 

column with 10 mM Sodium Phosphate, 500 mM Sodium Chloride at pH 7.3 for 90 minutes 

or until a stable baseline is established, 50 µl samples at approximately 3 mg/ml are injected 

onto a column at a flowrate of 0.5 ml/min. The separation is isocratic. Molecules are 
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separated by their hydrodynamic volume, and elute in order of molecular size (largest first). 

Absorbance at 280 nm is measured at the column exit. Integration of the resulting 

chromatogram and analysis of the relative percentage area of each peak indicates the 

percentage of each component in the sample. The total time to run each sample is 30 

minutes. 

 

Weak partitioning chromatography 

Column runs were conducted to validate model predictions. During all experiments the 

columns were first equilibrated with buffer at the desired pH and counterion concentration. 

Load material at the desired pH and counterion concentration was then applied to the 

column at 150 cm/hr.  In certain experiments the load was followed by a wash of the 

equilibration buffer. The load eluate (and wash if present) was collected as the process pool, 

and any remaining bound protein was removed using a 2 M NaCl strip buffer.  The columns 

were sanitized with 2 M NaCl, 0.5 M NaOH and stored in 16% ethanol, 150 mM NaCl, 50 

mM TRIS, pH 7.5. 

 

Summary 

In order to characterise the adsorption equilibria of the two monoclonal antibodies on 

Pfizer’s WPC AEX platform process, material was generated via column experiments, and 

prepared for batch adsorption studies by depth filtration, followed by buffer exchange and 

dilution/concentration. High throughput batch adsorption studies were then conducted. A 

robotic liquid handler deposited resin into 96 well plates, and protein was added to each well 

by hand. The liquid supernatant was collected for analysis via centrifugation following resin 

equilibration and resin strip. The total concentration and percentage of each species in the 

material were measured using UV spectroscopy and size exclusion high performance liquid 

chromatography, respectively. All experiments were repeated in triplicate, and the resulting 

data was used for estimating adsorption isotherm model parameters. In order to validate the 

model and test the proposed approach, multiple column studies were conducted. In all 

studies, material was prepared by buffer exchange and dilution/concentration, and the 

analytical techniques used for characterising flowthrough, wash and strip fractions collected 

during experiments were identical to those used in the batch adsorption studies. 
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3.3. Mathematical methods 

 

3.3.1. Chromatography model  

Adsorption isotherm 

Single component Langmuir isotherms were used to describe the adsorption of the 

monomer, dimer and multimer species in the AEX WPC system. The model assumes 

monolayer adsorption at a finite number of equivalent and identical binding sites, with no 

lateral interactions, steric hindrance, migration of adsorbed molecules on the adsorption 

surface, or competition for binding sites between species. In particular, assuming no 

competition for binding sites is unrealistic in the multicomponent AEX WPC system. 

However, the experimental effort required to elucidate competitive phenomena is prohibitive 

at an early stage of process development. The impact of this erroneous, but necessary, 

assumption on model predictions was minimised by: (i) fitting model parameters to data 

collected under competitive conditions typically experienced in the industrial process, where 

monomer accounts for 85-90 % of the load material, and (ii) restricting the application of the 

final model to an early stage of process development. The single component Langmuir 

adsorption isotherm was extended to cover the mobile phase conditions considered in 

experimental studies by writing the adsorption isotherm parameters, �� and ��, as a function 

of the product partition coefficient, K�, for monomer and dimer, and constant for multimer: 

 

  &� =		 ��∙#�C�9�∙#� 										∀� = Monomer, dimer,multimer     [3.3] 

  �������  = X������  ∙ 	K�     [3.4] 

  �¡¢��  = X¡¢��  ∙ 	K�      [3.5] 

  ��£¤¥¢��  = X�£¤¥¢��       [3.6] 

  �� �¡£¦¥ =	5¡¢��  ∙ K�      [3.7] 

  �¡¢��  =		5¡¢��  ∙ 	K� +γ     [3.8] 

  ��£¤¥¢��  = 5�£¤¥¢��       [3.9] 

where 

 

&� = Bound concentration of component i [mg/ml] 

�� = Mobile phase concentration of component i [mg/ml] 

�� = Adsorption constant of component i 

�� = Adsorption constant of component i 

X� = Adsorption constant of component i 

5¢ = Adsorption constant of component i 

γ = Adsorption constant 

K� = Product partition coefficient 
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Mass conservation 

A simple mass balance is used to predict the amount of each species collected in the 

flowthrough during column runs, i.e. the capacity of the column for each species (as 

predicted by the adsorption isotherm model) is subtracted from the amount of each species 

loaded onto the column. The flowthrough amounts can then be used to predict column 

performance such as product recovery and purity.  

 

3.3.2. Adsorption isotherm parameter estimation 

The ‘parameter estimation’ entity in gPROMSTM is based on the SRQPD sequential 

quadratic programming code, and was used to estimate parameters,	X¢ and 5¢, from the 

empirical equations, which link the Langmuir adsorption isotherm parameters, �� and ��, to 

the product partition coefficient, K�. Parameter estimation was based on the maximum 

likelihood formulation, which determines values for the uncertain physical and variance 

model parameters that maximise the probability that the model will predict measured values 

from development experiments (Process Systems Enterprise, 2013). Parameters were 

estimated by fitting the single component Langmuir isotherm model to batch adsorption 

experimental data (section 3.3.2). 

 

3.3.3. Stochastic simulations 

Stochastic simulations were conducted to explore the impact of uncertainty/variability on 

process performance. Uncertainty in process parameters of interest is accounted for by 

specifying a probability distribution function with appropriate arguments (e.g. a normal 

distribution defined by the average and standard deviation). During stochastic simulations, a 

built in function within gPROMS is used that returns a random value sampled from the 

probability distribution function. Each time a simulation is run, a different value is picked 

for the uncertain variable/parameter of interest. Multiple simulations are conducted (> 5000). 

Process performance parameters (e.g. recovery) and/or critical product attributes or interest 

(e.g. purity) are recorded. The data is used to generate process performance mean and 

variance as a function of process parameter/variable mean and variance. The performance 

parameters considered in this chapter are the monomer recovery and purity in the 

flowthrough material. The sequence of calculations is illustrated in an example shown in 

Figure 3.5. 
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Table 3.4. Uncertain process parameters

Process parameter Uncertainty Notes 

Equilibration buffer pH ± 0.05 pH Neutralised Protein A peak pool is brought to correct pH by titration. If 
TRIS is used, note it has a pI temperature dependence. 

Equilibration buffer counterion concentration (mM) ± 5 mM Counterion concentration from Protein A elution buffer. 

Bed height (cm) ± 0.5 cm - 

Compression factor 1.15 – 1.25 - 

Load volume (ml) ± 1 ml Usually ± 5% for a large scale column. The uncertainty for 
experimental studies conducted in this work was ± 1ml using a 50 ml 
super loop.  

Total load concentration (mg/ml) ± 0.2 mg/ml Measured using A280 reading of the neutralised Protein A peak pool, 
and includes contributions from all protein species in load. 

Load monomer, dimer and multimer composition  
(on a mass fraction basis)  

± 0.05  Not usually measured prior to AEX WPC but general range will be 
known from process development studies. 
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Figure 3.5. The sequence of calculations used for the stochastic simulations conducted in this work. 

  

START 

Step 1. Assign stochastic values to uncertain 

variables/parameters 

i) Assign a probability distribution function e.g. 
uniform, triangular, normal etc. 

ii) Define probability density function 
arguments, e.g. upper and lower bounds, 
average, standard deviation etc.  

Step 2. Conduct multiple simulations  

i) Randomly assign uncertain 
variables/parameters values from 
probability density function specified in 
step 1. 

ii) Each time the simulation is reset assign a 
new value for the uncertain 
variable/parameter. 

 

Step 4. Determine probability of meeting CQA 

of performance criteria 

i) Plot CQA/process performance parameter 
probability density function (pdf). 

ii) Probability is equal to the area under pdf 
where CQA/performance criteria are met. 

 

Step 3. Record critical quality attributes and 

process performance parameters 

i) At the end of each simulation record the 
value of critical quality attributes and 
process performance parameters 

 

END 
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The stochastic simulations considered uncertainty in multiple process variables and 

parameters as shown in Table 3.4. They include: (i) equilibration buffer ionic strength, (ii) 

equilibration buffer pH, (iii) total load material concentration, (iv) load material monomer, 

dimer and multimer composition, (v) resin compression factor for the packed bed, (vi) load 

volume and (vi) column volume. Uncertainty in the load material concentration and 

composition can be attributed to the biological source of load material, and the desire to 

minimise the use of analytics on process intermediates. The practical challenges of operating 

chromatographic equipment results in uncertain bed heights, resin compression, and 

volumes of material applied to the column. The pH and counterion concentration can only be 

controlled to the precision of measurement devices. Note that the uncertainty in the load 

volume is due to practical inaccuracies when applying the desired volume to the column, i.e. 

not due to uncertainty in the total load concentration and column volume, which are both 

assumed correct when calculating the load volume in the model. Further details are provided 

alongside simulation results.  

 
3.4. Model calibration 

The WPC AEX model developed in this work is based upon characterisation of the 

equilibrium isotherms of three critical components of the WPC separation (monomer, dimer 

and multimer), as a function of the product (monomer) partition coefficient, K�. This was 

achieved using batch adsorption experiments (sections 1.2.2.1 to 1.2.2.4). In the following 

section, the experimental adsorption isotherm data collected from the batch adsorption 

experiments is presented and discussed. The data is then used to fit the adsorption isotherm 

model parameters described in section 1.2.3 using parameter estimation in gPROMS (section 

1.2.4). 

 

3.4.1. Experimental adsorption isotherms 

Adsorption isotherms are shown for monomer in Figure 3.6, dimer in Figure 3.7, and 

multimer in Figure 3.8, at the mobile phase conditions described in Table 3.3. The initial 

slopes of all monomer isotherms (Figure 3.6) matched the target product partition 

coefficients, and confirming suitable mobile phase conditions were achieved in the batch 

adsorption experiments. The data scatter is due to experimental inaccuracies in the batch 

adsorption method. A robot was used to ensure high precision when dispensing resin 

solutions. However, all protein dispensing was completed by hand which introduced 

variability, especially during series dilution of the equilibration and elution supernatant, 

which was required for measurement of protein concentration by UV spectroscopy. It was 

also difficult to control the pH and counterion concentration of the mobile phase, which is 
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important as the partition coefficient and thus the binding strength is sensitive to small 

changes in these parameters. The pH was sensitive to temperature change as TRIS is used 

for buffering, and the RSM predictions used to identify operating conditions contain 

uncertainty themselves. Despite the scatter, the data was deemed adequate for early process 

development objectives where an exact process representation is unnecessary. 

 

Adsorption isotherms (monomer in Figure 3.6, dimer in Figure 3.7, and multimer in Figure 

3.8) at a constant product partition coefficient were similar regardless of the molecule or 

exact mobile phase conditions, suggesting that the adsorption isotherms can be 

approximated exclusively as a function of the product partition coefficient. This facilitates a 

generic model to be formulated for this system which can be applied irrespective of 

molecule, providing the unique relationship between the product partition coefficient and 

mobile phase conditions is determined using the traditional high throughput screening 

methodology, presented in detail in the literature (Kelley et al., 2008a). 

 

As the product partition coefficient increases, the monomer and dimer adsorption isotherms 

become increasingly nonlinear, and the bound concentrations increase (Figure 3.6 and 

Figure 3.7). It is interesting to consider dimer removal implications for a typical batch of 

load material which contains 3% dimer and 90% monomer at a total concentration of 8 

mg/ml, corresponding to 0.24 mg/ml dimer and 7.2 mg/ml monomer. At these industrially 

relevant concentrations, the amount of dimer that binds to the resin (Figure 3.7) is typically 

an order of magnitude lower than monomer (Figure 3.6), regardless of partition coefficient. 

The example illustrates the difficulty of developing a process which can achieve adequate 

dimer removal whilst maintaining monomer recovery without fundamental knowledge of the 

adsorption isotherms. The relative shapes of the monomer and dimer isotherms (Figure 3.6 

and Figure 3.7, respectively) suggest a reduction in load concentration may reduce monomer 

binding and thus increase monomer recovery, with minimal impact on dimer removal. 

 

The multimer batch adsorption data suggests multimer isotherms remain unchanged 

regardless of the partition coefficient (Figure 3.8). Matching isotherms were observed at 

partition coefficients of 1 and 3. A multimer capacity of 11 mg/ml ± 1 mg/ml was found, 

which is in agreement with understanding of the WPC AEX system at Pfizer. Experimental 

discrepancies found in SEC analytics indicated that insufficient multimer was present in the 

load material used for partition coefficient of 10 to reach a bound concentration of 11 

mg/ml, thus an isotherm could not be generated. Because of the very nonlinear isotherms at 

partition coefficients at 1 and 3, a conservative assumption is that the multimer isotherm at a 

partition coefficient of 10 is similar.  
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Figure 3.6. Monomer adsorption isotherm data from batch adsorption experiments at product partition 
coefficients, K�, of 1, 3 and 10.  
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Figure 3.7. Dimer adsorption isotherm data from batch adsorption experiments at product partition coefficients, K�, of 1, 3 and 10. 
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Figure 3.8. Multimer adsorption isotherm data from batch adsorption experiments at product partition 
coefficients, K�, of 1 and 10. 

 

 
Clearly the AEX WPC system provides extremely robust multimer removal provided the 

column is not over challenged. The data shown in Figure 3.8 suggests that even large 

changes in the pH and counterion concentration have no effect on the multimer isotherms 

within the WPC operating region considered (1 < K� <10), and the concentration of 

multimer in typical load material will seldom fall to levels where the resin capacity falls 

below 11 mg/ml (±0.05 mg/ml). 

 

 

Table 3.5. Values of estimated isotherm parameters in Equation 3.3 to 3.7 

Species ¨ StDev © StDev ª StDev 

Monomer 1.67782 0.056 0.031065 0.0019 - - 

Dimer 23.4248 1.8 4.28984 0.44 3.7612 0.53 

Multimer 2035.64 290 183.224 29 - - 
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3.4.2. Adsorption isotherm model fit 

The adsorption isotherm models were fit to averaged batch adsorption data as shown in 

Figure 3.9. Estimated parameter values are shown in Table 3.5. The model gave excellent 

predictions which was interesting given the simplistic nature of the empirical equations used 

to link the product partition coefficient, K�, to the isotherm parameters, �� and ��. Values for 

classical Langmuir parameters (i.e. saturation capacity and equilibrium constant) can be 

determined from the estimated parameters. The data suggest the saturation capacity of the 

monomer is constant regardless of the partition coefficient at 59 mg/ml settled resin. The 

saturation capacity of the dimer increases between partition coefficients of 0 – 4 and then 

levels off. At a partition coefficient of 4, the dimer saturation capacity has already reached 

90% of the saturation capacity at a partition coefficient of 10. Although this suggests that 

increasing the partition coefficient past 4 may not be helpful for increasing impurity removal 

whilst maintaining recovery, dimer removal at partition coefficients higher than 4 will be 

more robust because the adsorption isotherm will be less sensitive to changes in pH and 

counterion concentration. The estimated parameters suggest the multimer saturation capacity 

is constant at 11 mg/ml. As discussed previously, this is in agreement with understanding of 

the WPC AEX system at Pfizer. 

  

3.5. Model applications 

A model of the weak partitioning anion exchange chromatography process has been 

developed. The model consists of a basic mass balance and a description of adsorption 

equilibrium (section 1.2.3) which was calibrated using batch adsorption experimental data. 

The application of the model at an early stage of process development is now considered. 

The model is combined with stochastic simulation (section 1.2.5) and used to explore 

operating conditions for two case studies by generating probabilistic design spaces for 

molecules A and B. The stochastic calculations generate probability density functions of 

process performance parameters (flowthrough recovery) and critical quality attributes 

(product purity), as a function of the variability experienced in process variables (e.g. total 

load concentration and load composition) and process parameters (e.g. buffer pH, buffer 

counterion concentration, load volume, bed height, resin compression) shown in Table 3.4. 

The probabilistic design spaces are used to select promising operating conditions for 

providing robust impurity clearance whilst maintaining product recovery, which are 

subsequently tested experimentally via column runs. An in-depth analysis of monomer – 

dimer selectivity, maximum load challenge, recovery, and the impact of uncertainty in the 

process is then conducted, supported by relevant experimental studies. 
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Figure 3.9. Adsorption isotherm model (lines) fit to batch adsorption experiments, data points showing 1 standard 

deviation. A. Monomer and B. Dimer: ■ }~1, ● }~3, ▲ }~10. C. Multimer: ♦ }~ 1-10. 

B 

A 

C 



100 
 

3.5.1. Case studies 

Case study 1 considers monoclonal antibody A. The load material contains 89% monomer, 

9% dimer, and 2% multimer. Traditionally this composition would represent too great of a 

purification challenge for a two column process due to the high percentage of dimer. As a 

result, a third chromatography column would be required with an associated increase in 

costs. In this study, the model is used to explore whether there are conditions available in the 

design space which would achieve sufficient impurity removal with satisfactory product 

recovery to facilitate a two column process. Stochastic simulations were conducted to 

calculate the probability of meeting the desired product purity (> 0.98 monomer) across a 

knowledge space encompassing parameter ranges shown in Table 3.6. 

 

Case study 2 considers monoclonal antibody B. The load material contains 89% monomer, 

2% dimer and 9% multimer. The purification should be straightforward because the load 

material contains only small amounts of dimer. However, it is important to ensure that the 

load challenge is carefully selected so that no breakthrough of multimer occurs. In this 

study, the model is used to find conditions which achieve robust impurity removal whilst 

maximising product recovery. Stochastic simulations were conducted to calculate the 

probability of meeting the desired product purity (> 0.98 monomer) across a knowledge 

space encompassing parameter ranges shown in Table 3.6. 

 

 

Table 3.6. Parameter ranges explored during model simulations. 

Parameter Lowest value considered  Highest value considered 

MAb A MAb B MAb A MAb B 

Total load concentration 2 mg/ml 2 mg/ml 11 mg/ml 11 mg/ml 

Load challenge 40 mg/ml resin 60 mg/ml resin 120 mg/ml resin 140 mg/ml resin 

Product partition coefficient, K� 1 1 10 10 
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Figure 3.10 shows the knowledge space explored at a partition coefficient of 3 and 1 for 

Case studies 1 and 2, respectively. The shaded areas show the region where the predicted 

probability of assuring that flowthrough material purity  is greater than 98% is 1.0 (red), 0.9 

(purple) and 0.8 (pink). The contour lines show the predicted recovery mean. Interestingly, 

the probability of meeting the purity objective drops very sharply for case study 1 compared 

to a much more gradual drop in case study 2. This is reflecting the impact of uncertain 

process parameters on the resin’s capacity for binding dimer and multimer. Figure 3.10 

shows that multimer removal is extremely robust in this AEX WPC system regardless of 

uncertainty in pH and counterion concentration, however, dimer removal is not. Reasons for 

this will become clear when considered in depth in section 3.5.2. 

 
The probabilistic design spaces were used to select promising operating conditions.  For case 

study 1, a total load concentration of 3.3 mg/ml and a load challenge of 50 mg/ml resin was 

selected for testing experimentally. For case study 2, a total load concentration of 7.2 mg/ml 

and a load challenge of 102 mg/ml resin was chose for testing experimentally. In both 

studies, a two column volume wash was collected separately from the flow though material. 

The wash phase is a normal part of the AEX WPC process, and so it was interesting to 

examine what impact the wash had on the final product recovery and purity. 

 

Figure 3.11 shows the resulting chromatograms from the experimental studies conducted to 

test the operating conditions selected using the probabilistic design spaces, showing UV 

absorption at 280 nm of the material exiting the column during the experiment. Table 3.7 

shows the predicted and experimental flowthrough recovery and purity, and the final 

recovery and purity when the material collected during the wash phase is included. For both 

studies, model recovery predictions were good, and the desired purity was met. The results 

for case study 1 were particularly exciting, as a recovery of 82% was achieved when the 

wash material was included. Although lower than usually achieved in the AEX WPC 

platform step, it is equivalent to recoveries of approximately 90% for the second and third 

columns in the alternative 3 step process (i.e. 90% × 90% = 81%), but without the extra time 

and cost of developing and operating the third column. The reasons for the success of the 

experimental studies will be explored and discussed in detail in the following section. 
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Figure 3.10. A. Knowledge space explored at }~ = 3 for case study 1. B. Knowledge space explored at }~ 1 for 
case study 2. The shaded areas show the region where the predicted probability of assuring that flowthrough 

material purity is greater than 98% is 1.0 (red), 0.9 (purple) and 0.8 (pink). Contour lines show predicted product 
recovery.  
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Figure 3.11. Experimental chromatograms from A. case study 1, total load concentration = 3.3 mg/ml, load 

challenge = 50 mg/ml and }~ = 3. B. case study 2, total load concentration = 7.2 mg/ml, load challenge = 102 

mg/ml and }~ = 1. 
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Table 3.7. Showing model predictions and experimental results from Case study 1 (total load concentration = 3.3 
mg/ml, load challenge = 50 mg/ml and }~ = 3), and Case study 2, (total load concentration = 7.2 mg/ml, load 

challenge = 102 mg/ml and }~ = 1).  

 

Case study Data source Flowthrough 

purity 

Flowthrough 

recovery 

Final 

purity 

Final 

recovery 

1 Model 99.4% 64.1% - - 

Experimental 98.1% 68.1% 98% 82% 

2 Model 99.7% 88.0% - - 

Experimental 98.9% 93.3% 99% 100% 

 
 

 

Conclusion 

Operating conditions for the two case studies were chosen by manual exploration of model 

predictions. A systematic method for identifying optimal, robust operating conditions is 

desirable, but was beyond the scope of this work. Due to the complexity of the relationships 

between key process parameters and variables, and noting that each operating condition has 

a different robustness, it is clear that it is that exploration of the design space generated by 

the model by an inexperienced process developer will not be able to find the optimal 

operating space. Despite providing a more sophisticated methodology than the traditional 

experimentation only approach, an experienced process developer is required to analyse the 

data and identify optimal operating conditions in terms of any objective function, be it 

maximising purity, recovery, throughput or robustness. New tools and workflows such as 

incorporating mathematical optimisation studies into the development process are required 

to assist experienced process developers, and should enable them to spend more time 

making decisions based on their knowledge and understanding, rather than spending time 

generating data. 
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3.5.2. In depth analysis of WPC 

In the following section, an in-depth analysis of monomer – dimer selectivity, maximum 

load challenge, recovery, and the impact of uncertainty in the AEX WPC system is 

conducted, supported by relevant experimental studies. 

 

Selectivity 

Selectivity is the driving force of chromatographic separations, and is traditionally 

calculated by dividing the monomer partition coefficient (the product) by the dimer partition 

coefficient (the impurity). The partition coefficient is defined as the ratio between the 

concentration of bound and unbound protein in equilibrium in the linear region of the 

adsorption isotherm (Kelley et al. 2008a). However, in industrial separations, the load 

concentrations are rarely low enough for binding to occur in the linear region of the 

adsorption isotherm, and so selectivity in its traditional definition is misleading. In this 

work, we calculate a similar selectivity parameter that is useful for studying monomer and 

dimer binding in a column system. The selectivity is calculated using Eq 3.10, where q is the 

bound concentration (mg/ml) and C is the unbound concentration (mg/ml):  

 

   Selectivity	 = 	 ¯°±²±°³´ µ°±²±°³´¶
¯·°¸¹´·º» µ·°¸¹´·º»¼    [3.10]  

 

A high selectivity is desirable as it leads to a better separation between monomer and dimer. 

The model can be used to calculate the selectivity as a function of load material dimer 

composition and total load concentration at partition coefficients of 1, 3 and 10 (Figure 

3.12). Figure 3.12 shows that in general, a decrease in load concentration results in higher 

selectivity. The capacity of dimer decreases as the load concentration decreases (as shown in 

the dimer adsorption isotherms in Figure 3.9), thus, the increase in selectivity is a result of 

an increase in monomer recovery. The impact of decreasing the load concentration is 

specific to the exact dimer composition in the load material. Although operating at a 

partition coefficient of 10 may give the highest selectivity, the high selectivity occurs at 

industrially irrelevant compositions and concentrations. A partition coefficient of 1 gives the 

highest selectivity at industrially relevant load material compositions. However, it is 

important to note that although the selectivity is high, this isn’t conveying greater dimer 

removal, only higher monomer recovery, as the increase in selectivity is due to increasing 

monomer recovery. 
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Figure 3.12. Monomer - dimer selectivity (contours and colours) at product partition coefficients, K�, of 1, 3 and 

10. 
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Load challenge 

In practice, it is desirable to maximise the load challenge in order to increase throughput. 

Contour plots are shown in Figure 3.13 which show the (theoretical) maximum load 

challenge that enable full removal of dimer in the load material for partition coefficients of 

1, 3 and 10. The corresponding monomer recovery is shown in Figure 3.14. The nonlinear 

behaviour of the mass challenge and recovery contours is due to the nonlinear nature of the 

adsorption isotherms (Figure 3.9), in particular the dimer isotherms. As expected, the 

maximum allowable load challenges increase as the partition coefficient increases (Figure 

3.13). However, an increasingly lower load concentration must be used to reach an 

industrially acceptable recovery as the partition coefficient increases (Figure 3.14). The plots 

are particularly useful for showing the limitations of AEX WPC system for dimer removal. 

Notice that even at a partition coefficient of 10, once the dimer load composition increases 

above 6% the maximum load challenge becomes less than 100 mg/ml (Figure 3.13, bottom). 

 

Recovery 

Figure 3.14 shows that reducing the total load concentration is predicted to improve 

monomer recovery whilst maintaining impurity removal in the flowthrough material. 

Experimental column studies were conducted at partition coefficients of 1, 3 and 10, to test 

model flowthrough purity and recovery predictions. Depth filtered load material was used, 

therefore, the material contained negligible amounts of HCP, DNA and leached Protein A. 

Process parameters that were held constant during column studies are described in Table 3.8. 

An overlay of model predictions and experimental data is shown in Figure 3.15, and values 

are reported in Table 3.10. Model predictions in Table 3.10 are shown with associated 

uncertainty due to uncertain process parameters and variables. The stochastic simulation 

parameters used to calculate these are shown in Table 3.9. 

 

 

Table 3.8. Process parameters held constant during column studies to test model predictions 

Process parameter K� 1 K� 3 K� 10 

Load challenge (mg/ml resin) 42 66 70 

Superficial velocity (cm/hr) 150 150 150 

Load monomer composition 0.9 0.895 0.9 

Load dimer composition 0.075 0.08 0.075 

Load multimer composition 0.025 0.025 0.025 
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Figure 3.13. Maximum load challenge possible whist providing full removal of dimer in the load material 
(contours and colours) at product partition coefficients, K�, of 1, 3 and 10. 
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Figure 3.14. Predicted monomer recovery (contours and colours) when using the maximum load challenge 
possible whist providing full removal of dimer in the load material, at product partition coefficients, K�, of 1, 3 

and 10. 
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Model recovery predictions (Table 3.10) were satisfactory at all partition coefficients. The 

experimental recovery was consistently within one standard deviation of predicted recovery. 

Purity predictions were good for a partition coefficient of 3 and 10, but partition coefficient 

1 purity predictions were inaccurate, outside of the predicted variance in model predictions. 

Monomer recovery predictions at a partition coefficient of 1 were good, which supports the 

hypothesis that experimental error was not the cause of the discrepancy. The data suggests 

the column dimer capacity is less than experimental batch adsorption isotherms at K� = 1. 

The model does not account for dynamic phenomena occurring in the column, and therefore 

the disagreement may have been mass transfer related, although it is unusual that the 

partition coefficient 3 and 10 column studies would be unaffected by this. 

 

Despite the unsatisfactory predictions at a partition coefficient of 1, the experimental results 

were very encouraging as they revealed scope for previously unidentified process 

improvements. Both simulations and experiments were in agreement that reducing the total 

load concentration increases the monomer recovery in the flowthrough (Figure 3.15). The 

rate of increase in monomer recovery increases as concentration decreases for partition 

coefficients. Higher partition coefficients experience a greater increase in monomer recovery 

over the concentration range considered (4 – 12 mg/ml). However, higher partition 

coefficients have much lower recoveries at the high load concentrations than the lower 

partition coefficients, which mean that product recovery in the flowthrough material is not at 

industrially relevant levels until the load concentration is low. 

 

The result that reducing the total load concentration increases the monomer recovery in the 

flowthrough is exciting because reducing the load concentration may enable higher partition 

coefficients to be utilised for improved dimer removal. In the past, the low recovery at 

higher partition coefficients using conventional load concentrations (e.g. 7-10 mg/ml) may 

well have rendered a two column process infeasible. The data from studies at partition 

coefficients of 3 and 10 show that a reduction in load concentration from 12 mg/ml to 4 

mg/ml increased the product recovery from 50% to 72% for a partition coefficient of 3, and 

a reduction in load concentration from 8 mg/ml to 4 mg/ml increased product flowthrough 

recovery from 32% to 57% (Table 3.10). For both partition coefficients, dimer removal was 

not affected. The disadvantage of reducing the load concentration and the low load 

challenges is that the throughput of the AEX WPC step is reduced. However, the savings 

achieved by not requiring a third chromatography step may offset such losses, so this is an 

option worth exploring further.   
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Table 3.9. Stochastic simulation parameters (number of simulations = 1000) 

Factor Distribution Distribution 

type 

Average Standard 

deviation  

Upper  Lower 

Equilibration buffer pH Random Uniform Depends on partition coefficient - Average + 0.05 Average – 0.05 

Equilibration buffer 
counterion concentration 
(mM) 

Random Uniform 30 - 35 25 

Column volume (ml) Random Uniform 2.95 - 3.04 2.85 

Compression factor Random Uniform 1.2 - 1.25 1.15 

Load volume (ml) Random Normal Depends on load concentration 1 - - 

Total load concentration 
(mg/ml) 

Random Normal Varied during column studies 0.2 - - 

Load monomer, dimer and 
multimer composition 

Random Uniform Depends on partition coefficient - Average + 0.05 Average – 0.05 
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Figure 3.15. Overlay of model flowthrough recovery and purity predictions (lines) and experimental data from 
column studies (data points) at product partition coefficients, K�, of 1, 3 and 10. 
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Table 3.10. Predicted and experimental flowthrough recovery and purity (the standard deviation of model predictions are calculated as a result of process uncertainty), model predictions within 
standard deviations are shown in italic bold 

  

Partition 

coefficient 

Total load 

concentration 

Experimental 

purity 

Purity mean and 

stdev 

Experimental 

recovery 

Recovery mean 

and stdev 

Probability purity 

> 98% 

1 12.8 95.7 98.8 ± 0.8 57 53 ± 7.3 0.93 

7.9 95.0 99.6 ± 0.8 65 68 ± 4.4 0.94 

5.8 95.8 99.4 ± 0.8 79 75 ± 3.4 0.86 

3 12.3 97.8 98.2 ± 1.2 50 46 ± 6.3 0.67 

8.1 98.2 98.2± 1.0 61 56 ± 5.4 0.71 

6.2 97.8 98.1 ± 0.9 55 63 ± 4.9 0.69 

4.2 95.8 97.9 ± 0.8 72 71± 4.1 0.57 

10 8.1 100 100 ± 0.2 32 30 ± 6.8 1.0 

6.3 100 99.9  ± 0.3 39 36 ± 6.9 1.0 

4.0 100 99.9 ± 0.3 57 46 ± 7.0 1.0 
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Uncertainty 

The impact of uncertain process parameters and variables was considered in more detail for 

the studies conducted at a total load concentration of approximately 8 mg/ml. A total load 

concentration of 8 mg/ml is the most industrially relevant of the concentrations used in the 

column studies. Table 3.11, Table 3.12 and Table 3.13 show the mean, average and quartiles 

of the partition coefficient, monomer capacity, dimer capacity, load challenge, monomer 

loaded, dimer loaded, recovery and purity when the partition coefficient is 1, 3 and 10 

respectively.   

 

The stochastic simulations revealed the uncertainty in the partition coefficient as a function 

of uncertainty in the pH (± 0.05) and the counterion concentration (± 5mM) of the 

equilibration buffer. The product partition coefficient means and standard deviations were 1 

± 0.15, 3.1 ± 0.58 and 10.2 ± 2.39, respectively. As expected, higher product partition 

coefficients were more uncertain, as smaller changes in counterion concentration and pH 

have a larger effect on the product partition coefficients (Figure 3.3). However, the 

associated means and standard deviations in the dimer capacity were 8.9 ± 0.74, 13.6 ± 0.85 

and 17.1 ± 0.68, respectively. The standard deviations of dimer capacity are similar 

regardless of partition coefficient, because changes in the buffer conditions have smaller 

impact on dimer adsorption isotherms at higher partition coefficients. The implication for 

process development is that the impact of increased uncertainty of higher partition 

coefficients on impurity removal can be considered negligible for the AEX WPC system. 

 

For desired product partition coefficients of 1, 3 and 10, the highest and lowest values 

observed as a function of pH and counterion uncertainty were 0.74 – 1.44, 1.9 – 4.7 and 5.8 

– 17.3, respectively, which are surprisingly large The highest observed values were 

consistently further from the mean than the lowest observed values. This is preferable to the 

lowest observed values being further from the mean, because a lower than desired partition 

coefficient value reduces product purity, which can potentially mean the batch must be 

discarded, whereas a higher than desired  partition coefficient will reduce recovery, but the 

material may still be used. Uncertainty in the dimer capacity (8.9 mg ± 0.74, 13.6 mg ± 0.85 

and 17.1 ± 0.68, respectively) was similar to the uncertainty in the dimer loaded (9.3 mg ± 

0.74, 15.6 ± 0.91 and 15.3 mg ± 0.81, respectively) which is reassuring, considering that the 

dimer capacity is a function of uncertainty in the pH, counterion concentration, total load 

concentration, load composition, column volume and compression factor.  
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Uncertainty in the load challenge was due to uncertainty in the total load concentration 

(normal distribution, average = 8 mg/ml, standard deviation = 0.2 mg/ml), column volume 

(2.85 to 3.04 ml based on a bed height of 15 cm ± 0.5 cm), and load volume (normal 

distribution, average = dependent on load challenge, standard deviation 1 ml). The load 

challenge means and standard deviations were 42 ± 2.95 mg/ml resin, 66.1 ± 3.29 mg/ml 

resin and 70.2 ± 3.53 mg/ml resin for studies conducted at partition coefficients of 1, 3 and 

10, respectively. The corresponding maximum and minimum load challenges at each 

partition coefficient were 51.4 to 32.6 mg/ml resin, 76.0 to 56.9 mg/ml resin, and 81.5 to 

59.3 mg/ml resin, respectively. The large ranges and standard deviations in the load 

challenge show the importance of conservative use of the column capacity, in case the 

column becomes over challenged, resulting in impurities eluting into the flowthrough 

material. The data also illustrates how higher load challenges are more uncertain than lower 

load challenges. When the total load concentration is decreased but the load challenge 

remains constant, the uncertainty in load challenge increases further due to the larger impact 

of load concentration uncertainty.  

 

The important implications of the stochastic simulations for purification process 

development can be illustrated by model predictions at a partition coefficient of 3. Although 

the model predicts that the purity will be 97.8%, as shown by the mean (which is close to 

acceptable product quality), the median of 97.8% shows that approximately 50% of 

experimental studies will result in a purity that is lower due to uncertainty in process 

parameters. Clearly this is why safety margins are built into processes. These studies 

illustrate that models can be especially useful for uncertain processes such as bioseparations, 

because stochastic simulations can be used to help select conditions for which the 

uncertainty is allowed. In this case, the model can ensure that the lowest impurity capacity 

due to normal process uncertainty is always greater than the highest amount of impurity 

loaded due to process uncertainty. By incorporating process uncertainty into process models, 

and then designing the process around understanding of the impact of that uncertainty on 

process performance, greater assurance of product quality can be obtained, compared to the 

traditional approach where process robustness as designed by empirical rules of thumb and 

tested by repeated experiments.  
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Table 3.11. Statistics from stochastic simulation of column studies where the partition coefficient = 1, and the total load concentration = 7.86 mg/ml data 

 
      

Statistical parameters K� Monomer 

capacity 

(mg) 

Dimer 

Capacity 

(mg) 

Load 

challenge 

(mg/ml resin) 

Monomer 

loaded 

(mg) 

Dimer 

loaded 

(mg) 

Recovery Purity 

Mean 1.0 37 8.9 42.0 114.4 9.3 67.4 99.3 

Standard Deviation 0.15 4.50 0.74 2.95 7.70 0.74 4.39 0.78 

Quartiles 

100 Maximum 1.44 71 10.8 51.4 137.9 11.4 77.9 100.0 

99.5  1.40 69 10.6 49.6 135.8 11.1 76.2 100.0 

97.5  1.35 65 10.3 47.6 129.4 10.7 74.7 100.0 

90  1.24 62 9.9 45.8 124.3 10.2 72.9 100.0 

75 Quartile 1.14 59 9.5 44.1 119.7 9.8 70.8 100.0 

50 Median 1.01 54 8.9 42.1 114.3 9.3 67.6 99.5 

25 Quartile 0.91 50 8.3 39.9 108.8 8.7 64.4 98.7 

10  0.84 47 7.9 38.2 104.8 8.3 61.4 98.1 

2.5  0.79 44 7.6 36.8 100.2 7.9 58.3 97.6 

0.5  0.76 43 7.4 34.8 95.9 7.6 55.6 97.1 

0 Minimum 0.74 42 7.2 32.6 90.8 7.0 52.2 96.9 
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Table 3.12. Statistics from stochastic simulation of column studies where the partition coefficient = 3, and the total load concentration = 8.06 mg/ml data 

 
Statistical parameters K� Monomer 

capacity 

(mg) 

Dimer 

Capacity 

(mg) 

Load 

challenge 

(mg/ml 

resin) 

Monomer 

loaded 

(mg) 

Dimer 

loaded 

(mg) 

Recovery Purity 

Mean 3.1 78 13.6 66.1 179.9 15.6 56.2 97.9 

Standard Deviation 0.58 9.07 0.85 3.29 8.44 0.91 5.41 0.81 

Quartiles 

100 Maximum 4.7 106 16.2 76.0 203.8 18.4 70.4 100.0 

99.5  4.6 100 15.6 74.3 198.8 17.7 67.7 100.0 

97.5  4.3 96 15.2 72.2 195.2 17.3 65.5 99.7 

90  3.9 91 14.7 70.3 189.9 16.8 63.2 98.9 

75 Quartile 3.5 85 14.3 68.4 184.7 16.2 60.5 98.4 

50 Median 3.0 78 13.6 66.1 179.0 15.6 56.4 97.8 

25 Quartile 2.6 71 13.0 63.8 173.0 14.9 52.3 97.3 

10  2.3 67 12.5 61.7 168.3 14.4 49.0 96.8 

2.5  2.1 62 12.0 59.6 161.8 13.8 45.9 96.4 

0.5  2.0 60 11.7 57.9 157.2 13.3 42.8 96.0 

0 Minimum 1.9 55 11.2 56.9 155.5 12.9 37.5 95.7 
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Table 3.13. Statistics from stochastic simulation of column studies where the partition coefficient = 10, and the total load concentration = 8.09 mg/ml data 

  

Statistical parameters K� Monomer 

capacity 

(mg) 

Dimer 

Capacity 

(mg) 

Load 

challenge 

(mg/ml resin) 

Monomer 

loaded 

(mg) 

Dimer 

loaded 

(mg) 

Recovery Purity 

Mean 10.2 133 17.1 70.2 190.8 15.3 30.3 100 

Standard Deviation 2.39 10.14 0.68 3.53 8.64 0.9 6.1 0.2 

Quartiles 

100 Maximum 17.3 71 19.0 81.5 216.2 18.3 48.2 100.0 

99.5  16.6 162 18.8 78.7 211.2 17.6 44.6 100.0 

97.5  15.4 157 18.4 77.0 207.5 17.2 41.2 100.0 

90  13.6 152 18.0 74.9 202.0 16.7 38.1 100.0 

75 Quartile 11.9 146 17.6 72.6 196.7 16.1 34.6 100.0 

50 Median 10.0 140 17.1 70.1 190.9 15.5 30.3 100.0 

25 Quartile 8.4 133 16.6 67.8 184.8 14.8 25.9 100.0 

10  7.3 125 16.2 65.6 179.8 14.3 22.3 100.0 

2.5  6.6 119 15.8 63.7 173.5 13.8 18.7 99.3 

0.5  6.2 113 15.5 61.4 168.7 13.3 15.9 98.7 

0 Minimum 5.8 110 15.0 59.3 166.7 12.9 8.9 98.1 
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3.6. Conclusion 

A model based approach for linking experimental high throughput batch bind screens (HTS) 

and scouting runs, traditionally conducted during process development of a weak 

partitioning chromatography (WPC) anion exchange (AEX) polishing step (part of Pfizer’s 

two-step platform monoclonal antibody purification process), has been proposed. The 

approach involves formulating a simplistic ‘platform’ model, which once developed, can be 

applied to new candidate molecules based on the results of a standard high throughput 

screen. This is achieved by characterising the equilibrium isotherms of three critical 

components of the WPC separation, namely the product monomer, dimer and multimer, as a 

function of the product partition coefficient (rather than the conventional approach of pH 

and counterion concentration) via ultra-scale down batch adsorption experimentation. Use of 

the model is limited to an early stage of process development. This reduces the impact of 

inaccuracies due to simplifications made when formulating the model. Important advantages 

are realised by harnessing the models predictive power when (1) there are maximum degrees 

of freedom available for bioseparation design, and (2) minimal investment has been made in 

the product.  

 

It has been shown how the model based approach is useful for: (1) Increasing process 

understanding, by providing a more informative method for exploring how process 

parameters can be controlled in order to raise product recovery to acceptable levels, whilst 

maintaining impurity clearance, and (2) assisting process development, by providing a link 

between high throughput screen and scale down column studies. The model can quickly 

identify operating parameter ranges that are of interest for the purification of feed streams 

with challenging compositions. When combined with stochastic simulation, the model can 

explore the impact of process variability on product quality and process performance. This 

approach enables the purification of previously impossible to purify feed streams using the 

two-step platform monoclonal antibody purification process. It also identifies promising 

parameter ranges to explore experimentally, thus accelerating process development and 

helping optimise column performance. 

 

One of the problems with existing work on modelling chromatographic processes in industry 

is a lack of understanding as to how these models fit into industrial workflows which are 

dominated by significant time and material constraints, and a high risk of candidate failure. 

The proposed approach of using models at an early stage of process development can form 

part of a wider modelling approach, where the isotherms developed at this early stage are 

built upon as molecules move through the development pipeline. The necessary column 
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experiments required to determine mass transfer parameters are already conducted as part of 

the existing development approach. All that may be required is a fractionation of the 

flowthrough material and a greater analytical burden to determine the composition of 

samples. The number of parameters that need to be estimated depends on the complexity of 

the selected mass transfer model, so one possible approach is to increase model complexity 

as the development process proceeds. For example, a simple mathematical description (e.g. 

neglecting resin particles) of the mass transfer at standard processing conditions is 

developed during phase 3, and then more detailed descriptions of particle kinetics and or 

competitive adsorption can be developed post approval.  

 

An understanding of the mass transfer occurring in the AEX WPC system is particularly 

interesting as it would enable the wash phase to be studied. If the length of the wash phase is 

not an issue, then the implications for process development around use of the wash phase are 

intriguing. The current 1 CV wash phase is very successful at increasing monomer recovery 

whilst maintaining impurity removal at low partition coefficients. As the dimer isotherms 

become more nonlinear as the partition coefficient increases, it follows that the wash phase 

will be even more successful at separating dimer from monomer as the partition coefficient 

increases. An increase in the washlength can be leveraged to offset any loss in recovery 

incurred by higher partition coefficients. The model has shown that a decrease in load 

material concentration can increase recovery, however, this also decreases productivity. One 

possible approach is to load at high partition coefficients and a high load concentration to 

maximise the load challenge, productivity and capacity for impurities, but recover the extra 

bound monomer by washing for longer. Determining the washlength is very challenging 

experimentally, but is simple using a model. In addition, the model can predict how a non-

isocratic weak partitioning process, i.e. changing the product partition coefficient either 

during the load or the wash phase. An experimental effort to determine how to do this is 

extensive, but with the model developed in this work, the design space can be mapped 

quickly and efficiently. 

 

Clearly there are exciting opportunities for applying the model for elucidating a range of 

very interesting design and development questions. There is scope for a number of 

improvements to the AEX WPC platform. The problem with the model is that it assumes an 

ideal column system, which is rarely the case in industry where resin fouling and aging is 

commonplace. This will be considered in the following chapter (Chapter 4). 
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Chapter 4.  Resin Fouling 

Resin fouling over a chromatography column’s lifetime can cause significant (undesired) 

changes in process performance. A lack of fundamental knowledge and mechanistic 

understanding of fouling in industrial bioseparations limits the application of mechanistic 

models in industry. Scanning electron microscopy (SEM), batch uptake experiments, 

confocal laser scanning microscopy (CLSM) and small-scale column studies are applied to 

characterize fouling observed during process development of the AEX WPC considered in 

the first results chapter. Fouled resin samples analyzed by SEM and batch uptake 

experiments indicated that after successive batch cycles, significant blockage of the pores at 

the resin surface occurred, thereby decreasing the protein uptake rate. Further studies were 

performed using CLSM to allow temporal and spatial measurements of protein adsorption 

within the resin, for clean, partially fouled and extensively fouled resin samples. These 

samples were packed within a miniaturized flowcell and challenged with fluorescently 

labeled bovine serum albumin (BSA) that enabled in situ measurements. The results 

indicated that the foulant has a significant impact on the kinetics of adsorption, severely 

decreasing the protein uptake rate, but does not cause a decrease in saturation capacity. 

The impact of the foulant on the kinetics of adsorption was further investigated by loading 

BSA onto fouled resin over an extended range of flow rates. By decreasing the flow rate 

during column loading, the capacity of the resin was recovered. The data supports the 

hypothesis that the foulant is located on the particle surface, only penetrating the particle to 

a limited degree. The increased understanding of resin fouling can direct future efforts to 

mitigate this detrimental phenomenon and maintain process performance, whilst providing a 

basis for the development of new fouling models. 
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4.1. Introduction 

Fouling of chromatographic resin over operational lifetimes is a serious issue associated 

with industrial separations, attributed to repeated or prolonged exposure to the complex mix 

of components commonly seen in feed streams. Despite this, there have been very few 

(mainly experimental) studies conducted on this subject (Boushaba et al., 2011; Bracewell et 

al., 2008; Chau et al., 2006; Shepard et al., 2000; McCue et al., 2008). The lack of 

fundamental knowledge and mechanistic understanding of fouling in industrial 

bioseparations limits the application of mechanistic models in industry, and must be 

addressed in order for mechanistic models to be applied to industrial separations without 

giving increasingly unrealistic model predictions over the lifetime of a chromatographic 

separation. 

 
In this work, we consider a case study where resin fouling had been observed during process 

development; that of an industrial anion exchange polishing step following a protein A 

affinity capture step in a process for the purification of a monoclonal antibody. The anion-

exchange chromatography, which operates in weak-partitioning mode (Kelley et al., 2008), 

was characterized through high throughput screening experiments (Coffman et al., 2008; 

Kelley et al., 2008), as well as in-house cycling studies performed on qualified scale-down 

models, and large-scale manufacturing runs. 

 

The anion exchange resin has been successfully used as part of a two column platform 

process for the purification of numerous monoclonal antibodies in the past (Kelley et al., 

2008), with no significant fouling phenomena observed. Hence it was surprising that for this 

protein as column lifetime increased, when protein A elution pool material was loaded onto 

the AEX resin, significantly earlier breakthrough of impurities and premature loss of 

capacity was observed. Interestingly, it was found that the lifetime of the AEX resin was 

linked to the Protein A cycle number such that as Protein A cycle number increased, there 

was a consequent increase in capacity of the AEX polishing step. The data suggested a 

unique quality of the particular feed stream resulted in the fouling. Iskra et al. (2013) also 

found that the fouling could be accelerated by overloading the AEX resin well beyond 

normal operating conditions.  

 

Different control strategies were considered for preventing impurity breakthrough and 

improving resin lifetimes. An investigation using small-scale chromatography, dynamic light 

scattering, mass spectroscopy and fourier transform infrared spectroscopy (FTIR), indicated 

that the most likely hypothesis was that resin was being fouled by a combination of product 
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and host cell proteins. A detailed account has been presented in the literature (Iskra et al., 

2013). In this work, the objective is to elucidate on this resin fouling case study, by revealing 

the location of the foulant, and determining the mechanistic effects fouling has on protein 

uptake kinetics and resin capacity.  

 

Scanning Electron Microscopy (SEM), batch uptake experiments, Confocal Laser Scanning 

Microscopy (CLSM) on a miniaturised packed bed, and small scale column experiments are 

conducted on samples of fouled resin derived from the industrial process using the worst 

case feed stream and overloading conditions. SEM and batch uptake experiments are used to 

give initial indications of foulant location and resin performance as fouling progresses, 

before CLSM is used to conduct a more detailed investigation. TexasRed labelled BSA is 

used as a reporter molecule for protein uptake kinetics. The technique uses a flowcell to 

measure changes at various stages of fouling in resin capacity and uptake kinetics, at a 

particle level. The time and space distribution of the labelled BSA within the resin particles 

is recorded in situ in order to facilitate a comparison between clean, partially fouled and 

extensively fouled resin. Finally, column studies are conducted to investigate the effect of 

the foulant on protein uptake and breakthrough performance of a column system. Together 

these techniques (summarised in Table 4.1) enable us to determine the spatial location of the 

foulant and its effect on the process during protein uptake. 

 

4.2. Experimental materials and methods 

4.2.1. Chemicals 

All chemicals were purchased from Sigma-Aldrich (Dorset, UK) and were of analytical 

grade unless stated otherwise.  

 

4.2.2. Chromatography resin and equipment 

MabSelect Protein A affinity chromatography resin was obtained from GE Healthcare 

(Uppsala, Sweden).  Fractogel® EMD TMAE HiCap (M) anion exchange resin was 

obtained from EMD Merck (Darmstadt, Germany).  All laboratory experiments were carried 

out using an ÄKTA FPLC chromatography system from GE Healthcare (Uppsala, Sweden). 
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Table 4.1. Experimental methodology for investigating clean, partially found and extensively fouled resin samples. 

Experiment Results Purpose 

 
Batch experiments 

 
Uptake curves 

 
Initial indication of impact of fouling on uptake 
rate and saturation capacity 

Scanning electron microscopy Images of particle surfaces Morphology of resin surface 

Confocal laser scanning microscopy 
(CLSM) during live uptake experiments 

Radial light intensity profiles of a BSA reporter molecule 
during uptake in a miniature column 

Fouling effect on intraparticle profiles of bound 
BSA reporter molecule during uptake 

Column lifetime studies investigating load 
flowrate 

BSA reporter molecule breakthrough curves and dynamic 
binding capacities 

Fouling effect on BSA reporter molecule 
breakthrough and dynamic binding capacity at 
different loading flowrates 
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4.2.3. Proteins 

The monoclonal antibody (mAb) used in these studies was humanized IgG1 produced in 

recombinant Chinese hamster ovary (CHO) cells grown in serum free medium. Downstream 

processing prior to the anion exchange step considered in this work consisted of 

centrifugation and depth filtration, followed by Protein A chromatography. Bovine serum 

albumin (BSA) - Texas Red(R) conjugate was purchased from Invitrogen, Paisley, UK. 

 

4.2.4. Protein A Chromatography 

The column used in protein A chromatography was 1.6 cm in diameter and 30 cm in 

height.  The column was equilibrated with 0.15 M sodium chloride at pH 7.5 prior to 

loading.  Clarified condition media was then applied followed by a two column volumes 

(CV) wash of the equilibration buffer.  This was followed by 5 CV’s of 1.8 M calcium 

chloride at pH 7.5.  The elution pool consisted of material collected from start in UV rise, to 

a total of 2.5 CV’s, collected as the process pool.  The remaining bound protein was 

removed using an additional 5 CV’s of low pH followed by sanitisation with 50 mM NaOH, 

0.5 M Sodium Sulfate, and stored in 16% ethanol, 150 mM NaCl, 50 mM TRIS, pH 7.5.   

 

4.2.5. Anion exchange chromatography 

The anion exchange columns used in this study were 0.5 cm in diameter and either 5 or 15 

cm in height, and were operated in weak partitioning mode (Kelley et al., 2008, Iskra et al., 

2013).  The columns were equilibrated with 50 mM TRIS, 10 mM NaCl at pH 8.1. Protein A 

peak pools were applied to the column at 150 cm/hr followed by a 3 CV wash of the 

equilibration buffer. Protein A peak pools contained the product of interest, host cell protein, 

DNA and residual Protein A which had leached from the affinity capture resin, and 

approximately 3.5% high molecular mass species (HMMS). The turbidity of the Protein A 

pool was 28.1 NTU (Iskra et al., 2013). The load eluate and wash volumes were collected 

together as the process pool, and any remaining bound protein was removed using a 2 M 

NaCl strip buffer.  The columns were sanitized with 2 M NaCl, 0.5 M NaOH and stored in 

16% ethanol, 150 mM NaCl, 50 mM TRIS, pH 7.5. The loading conditions used during 

column runs (50 mM TRIS, 10 mM NaCl at pH 8.1) had been determined by high-

throughput screening (HTS) under batch binding conditions, and were confirmed using scale 

– down column chromatography experiments to provide sufficient clearance of impurities 

(residual HMMS < 1.5%, HCP clearance > 3.0 LRV, and leached Protein A clearance > 3.0 

LRV), while maintaining yield > 90%, prior to resin fouling. These conditions would be 

expected to produce the desired product quality in large scale manufacturing (Iskra et al., 

2013). 
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4.2.6. Generation of fouled resin samples 

Three resin samples were used in subsequent experimental studies to characterise the 

fouling. These were generated by conducting multiple cycles of the anion exchange 

chromatography on a column 0.5 cm in diameter and 15 cm in height, using the worst case 

feed stream and overloading conditions (Iskra et al., 2013), according to the standard 

operating procedure set out previously. The three resin samples are classified as follows: 

unused clean resin, fully fouled resin representative of resin at the end of the column’s 

lifetime (hereon referred to as extensively fouled resin), and partially fouled resin, 

representative of an intermediate state of fouling. 

 

4.2.7. Batch uptake experiments  

A set amount of TMAE HiCAP (M) resin was allowed to settle by gravity. After measuring 

the settled volume, the resin was washed with ultra-pure Millipore water to remove the 

storage ethanol solution and then equilibrated with 0.05 M TRIS Base pH 9.0 HCl adjusted 

buffer, giving a final concentration of 50% (v/v). 50 µl of this slurry was then aliquoted to a 

2 mL eppindorf tube. Adsorption was started by adding 2 mL of Texas Red labelled BSA to 

the resin sample (Overall BSA concentration: 5 mg/mL, dye to protein (D/P) ratio: 0.01). 

The eppindorf was kept under constant agitation, except at fixed times when the eppindorf 

tube was quickly centrifuged for 10 s at 1200 g, before a 50 µl sample was taken from the 

supernatant and collected for subsequent UV analysis at 280 nm and 593 nm by a Nanodrop. 

The sedimented resin particles were quickly resuspended by resuming agitation. For the 

duration of the experiment resuspension was ensured by placing the eppendorf tube onto an 

orbital shaker rotating at 2000rpm, and confirmed by visual inspection. 

 

4.2.8. Scanning Electron Microscopy (SEM) 

Sample preparation for SEM consisted of sample drying followed by gold coating. A thin 

layer of resin slurry was pipetted onto a glass slide which had been pre-coated in gold and 

mounted onto a copper block. Excess liquid was carefully adsorbed on filter paper without 

contacting the resin particles, before the sample was left for 30 minutes to allow any 

remaining ethanol to evaporate. The dried sample was thereafter transferred to a high 

resolution ion beam coater (Gatan Model 681, Oxford, UK), and ion sputtered with gold at 

an angle of 45o in order to form a 2-3 nm gold layer on the surface of the resin particles. The 

ion beam coater was operated at 6mA at an acceleration voltage of 10 keV. Coated surfaces 

were subsequently imaged with a JEOL JSM-7401F scanning electron microscope (JEOL 

Ltd., Tokyo, Japan) at 1 keV accelerating voltage. 



 

127 
 

4.2.9. Live uptake imaging by Confocal Laser Scanning Microscopy  

Image acquisition was performed on an inverted confocal laser scanning microscope (Leica 

TCS SPEinv, Leica Microsystems GmbH, Mannheim, Germany) equipped with 

krypton/argon (λ = 488 nm and  λ = 568 nm) and helium/neon (λ = 633 nm) lasers. Using a 

40x oil immersion objective, images (512×512) were captured (3 averages) through the 

Leica Application Suite (LAS) software (Version 2.0) (Leica Microsystems GmbH, 

Mannheim, Germany). Optimal laser settings, including laser intensity, signal gain, offset 

and emission detection range were determined to ensure that there were no auto fluorescence 

effects, and that even at full particle saturation the detected emitted light intensity stayed 

within the confocal laser scanning microscope’s detection range. The settings were then kept 

constant for the duration of the study.  

 

In order for BSA to be detected by the confocal laser scanning microscope, it must be 

labelled by a suitable fluorescent dye molecule (Ljunglöf and Thömmes, 1998). There are 

many different dye molecules currently available for this purpose. However, it has been 

reported that the attachment of dye molecules can significantly change the adsorption 

behaviour of the BSA and therefore must be carefully selected (Hubbuch and Kula, 2008; 

Teske et al., 2006).  BSA conjugated to TexasRed, AlexaFluoro488, Cy3 and Cy5 on a 

strong anion exchanger chromatographic system, similar to that considered in this work, has 

previously been screened to determine which was most suitable for CLSM (Susanto et al., 

2006). The elution profiles of the conjugates were compared with native BSA in relation to 

retention time and peak shape. BSA TexasRed conjugate showed the least deviation from 

the native BSA, and was therefore selected in this work. The ratio between native and 

TexasRed conjugated BSA was tested by measuring UV adsorption at 280 nm and 593 nm 

throughout the batch uptake experiments.  The constant ratio during protein uptake over 1 

hour confirmed that there were minimal competitive effects in our system.  

 

In order to minimise the readsorption of emitted fluorescence by other dye molecules, a dye 

to protein ratio (D/P) of 0.01 was used for the feed solution following recommended 

literature D/P ratios (Hubbuch and Kula, 2008). At this D/P ratio we were able to assume 

that the contribution of emitted fluorescence readsorption to light attenuation could be 

neglected.  
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Figure 4.1. A. Side elevation of the miniaturized flowcells setting within the confocal laser scanning microscope. 
XY image acquisition plane shown on diagram. B. Three dimensional representation of the miniaturized flowcell 

used for live imaging of the intra-particle uptake within a packed bed. 

 

Control experiments investigating fluorophore bleaching upon repeated use were completed, 

and confirmed that bleaching could be neglected for the purposes of this work. A range of 

precautions were taken to minimise fluorophore bleaching throughout the experimental 

work: the use of low laser powers, minimised exposure times and wrapping all samples in 

aluminium foil in order to minimise exposure to light during transition and storage. 

 

A miniaturized flowcell was fabricated similar in design to that used by Hubbuch and Kula 

(2008). Four horizontal channels (10mm length, 1mm diameter) were drilled into a Pyrex 

block with 45O inlets on both sides. A viewing window was then created by fixing a cover 

slip onto the open face of the block with epoxy glue Araldite® (Huntsman Advanced 

Materials, Cambridge, UK) in order to seal each channel. The resulting effective column 

volume was 0.02 mL. A schematic of the flowcell is shown in Figure 4.1. 
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Flowcell channels were packed by manually administering resin slurry (50% (v/v)) from a 

syringe. Great care was taken to ensure that the resin was not over or under packed. Frits 

were placed at either end of the channel, which was then connected to a syringe pump. The 

resin was washed with ultra-pure Millipore water to remove the storage ethanol solution (2 

mL, 150 cm/hr), before equilibration with 0.05 M TRIS Base pH 9.0 HCl adjusted 

equilibration buffer (2 mL, 150 cm/hr).  

 

Texas Red labelled BSA feed was adjusted to the required pH and salt concentration in the 

running buffer, and loaded onto the resin bed within the flowcell channel at 150 cm/hr for 90 

minutes. Images were recorded using a Confocal Laser Scanning Microscope at set time 

intervals with excitation at 568 nm and emission detection in the range 550 nm – 701 nm. 

The setting of the flowcell within the laser scanning confocal microscope is shown in Figure 

4.1 . 

 

4.2.10. Live uptake data processing 

The large number of confocal images from the flowcell experiments were processed to 

generate a reliable set of radial light intensity profiles. This was done in order to allow a 

direct comparison of the spatial location of BSA within resin particles during protein uptake 

between the clean, partially fouled and extensively fouled samples over the 90 minute 

experiments. For each experimental data set 5 particles were selected for data processing 

from the area of the flowcell imaged. We found that using more than 5 particles gave 

negligible benefits in terms of the reliability of our data. The appropriate XY image where 

the focal plane intersected with the centre of each particle was then selected at each time 

interval, as illustrated in Figure 4.2A. This was possible because at each time interval 

throughout the 90 minute flowcell experiments, images of XY planes of the flowcell bed 

area under scrutiny were taken over a range of z values at 5 µm intervals. The selection of 5 

particles from those available (up to 14) also helped us to ensure this centre cross-section 

positioning, as we were able to only select particles where the focal plane exactly intersected 

with the centre of each particle. 

 

The next step was to generate radial profiles of the emitted light intensity. This is typically 

done by a simple linear profile evaluation through the central cross section of a scanned 

particle (Hubbuch and Kula, 2008). However, this method neglects the inhomogeneous 

nature of protein uptake due to effects such as particle contact points and fouling. In this 

work, the emitted fluorescence intensity was measured as a function of the radial coordinate 

and subsequently averaged over particle circumference in order to account for this 

inhomogeneous uptake (Figure 4.2C). We utilized ImageJ v1.31 for this purpose, which is 
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an imaging software developed by the Research Services Branch of the National Institute of 

Mental Health in Bethesda, Md, USA and is freely available in the public domain 

(Abramoff, 2004; Rasband, 2011).  

 

The radial profiles of each particle were then normalised by dividing the radial dimension by 

the appropriate particle diameter. In this work the particle - fluid phase boundary was 

identified by the highest emitted light intensity across the radial profile, and subsequently 

used to calculate the particle diameter. It was found that the emitted light intensity values 

outside the determined particle - fluid phase boundary consistently dropped to an 

insignificant value within 4 µm of the particle diameter over the range of particle diameters 

analysed (50 - 90 µm), for all resin samples. This is in agreement with the literature, where 

lengths of this region typically fall between 2 - 10µm (Dziennik et al., 2005; Susanto et al., 

2006). All emitted light intensity data was corrected for light attenuation effects following 

the methodology set out by Susanto at al. (2006). Lastly, the corrected emitted light intensity 

radial profiles (normalised by particle diameter and averaged over particle circumference) 

were averaged over the 5 particles per resin sample. The resulting set of data thus describes 

the average time and space distribution of the BSA in the resin samples throughout the 90 

minute flowcell experiment. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
Figure 4.2. A. The XY plane intersecting with centre of the particle of interest (POI) is selected. B. The POI’s 

centre XY plane image from CLSM, also showing all available particles in the flowcell area imaged. C. 

Illustrating how the emitted fluorescence intensity is measured as a function of radial coordinates (dotted line), 
and is averaged over particle circumference (dashed line).  
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4.2.11. Column studies  

An iterative procedure where a column 0.5 cm in diameter and 5 cm in height was subjected 

to multiple anion exchange chromatography cycles using representative load material and a 

scheme of over challenge was performed, until the cumulative amount of protein from 

protein A peak pools that had been challenged onto the resin reached predefined amounts (1, 

2, 3, 4, and 5 g/ml). Each time the cumulative load challenge reached one of the predefined 

amounts, the cycle in progress was allowed to run to completion, i.e. the column washed, 

eluted, sanitized and placed into storage buffer according to the methodology set out 

previously (Section 4.2.5), and the anion exchange cycling paused. The effect of resin 

fouling that had occurred during the anion exchange cycling was then measured via full 

breakthrough of BSA at different flowrates (0.49, 0.33, 0.16, 0.08 ml/min). BSA 

breakthrough was conducted as follows: The column was equilibrated with 50 mM TRIS, 10 

mM NaCl at pH 9.0. BSA was then applied to the column at the specified flowrate (load 

concentration 10 mg/ml, load challenge 300 mg/ml). Any bound BSA was then removed 

using a 50 mM TRIS, 2 M NaCl, pH 7.5 elution buffer.  The column was further cleaned 

with 2 M NaCl, 0.5 M NaOH, and then placed in storage buffer (16% ethanol, 150 mM 

NaCl, 50 mM TRIS, pH 7.5). Once the breakthrough of BSA had been recorded at each 

flowrate, the column was returned to anion exchange chromatography cycling. 

 

4.3. Results and Discussion 

The overall objective of this work was to determine the location of fouling on resin particles 

and the effect of this fouling on protein kinetics and resin capacity in an anion exchange 

polishing step from an industrial purification process. In the following, the results from SEM 

imaging and batch uptake experiments are presented which give initial indication of the 

foulant location and the progressive nature of the effect with cycle number. Following this, 

the results from a detailed CLSM investigation are presented. This includes the intra-particle 

radial adsorption profiles during protein uptake within the miniaturized flowcell bed, 

accompanied by corresponding uptake curves. Finally, the results from column studies 

which include BSA breakthrough profiles and dynamic binding capacities over a range of 

flowrates with increasing cycle number and hence also increasing fouling.  

 

4.3.1. Batch Experiments 

The batch experiments were designed to give an initial indication of the effect that the 

foulant had on protein uptake, and to confirm that there were no competitive effects in the 

system due to modification of BSA binding characteristics when conjugated with the 

TexasRed flurophore, in preparation for the CLSM study. Figure 4.3 shows the batch uptake 
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curves of BSA with clean, partially fouled and extensively fouled resin samples.  For all 

samples the batch adsorption kinetics were consistant with previous literature results on 

tentacle exchangers (Almodóvar et al., 2011; Urmann et al., 2010).  However, a clear 

difference in the initial uptake rates was observed with clean resin having the fastest uptake, 

followed by partially fouled resin, then extensively fouled resin. More detailed analysis of 

the data indicated that the initial uptake of BSA by clean resin was roughly twice as fast as 

uptake by extensively fouled resin, indicating fouling significantly impacts mass transfer. 

  

Figure 4.3 shows that by the end of the experiment equilibrium had not been reached by any 

of the resin samples. Although the amount of BSA bound to the extensively fouled resin was 

lower than the amount bound to the clean resin (partially fouled resin ~87% amount bound 

to clean resin, extensively fouled resin ~ 82% amount bound to clean resin), uptake was still 

ongoing. Firm conclusions regarding the effect that the foulant had on the saturation 

capacity of the resin could therefore not be made. As there was a constant ratio between 

conjugated and non-conjugated BSA in the supernatant throughout uptake, confirmation that 

there were no competitive adsorption effects in the system was achieved (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Batch uptake curves of 5mg/ml BSA at 0.05M TRIS Base pH 9.0, by clean ■, partially fouled ●, and 
extensively fouled ▲ Fractogel® EMD TMAE HiCap (M) resin particles during batch experiments. (Feed to 

resin volume ratio 80:1 (80×)). A. Bound BSA concentration as a function of time. B. Bulk mobile phase BSA 
concentration as a function of time. 
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4.3.2. Scanning Electron Microscope Imaging 

Figure 4.4 shows high resolution SEM images of clean, partially fouled and extensively 

fouled resin particles at progressively higher magnifications. The area of the particle under 

analysis was kept constant for each sample. The images show distinct differences in the 

particle surface morphology between the three samples. In the clean resin (Figure 4.4A), the 

surface is well-defined, homogenous, and the pores are clearly accessible. By comparison, 

the extensively fouled resin (Figure 4.4C) shows a high amount of pore blockage by a 

material covering much of the surface. This is particularly clear on the highest magnification 

image (10000x for A3/B3/C3). In Figure 4.4, images CX and CY illustrate the magnitude of 

the fouling, with many particles showing completely clogged pore entrances over a 

significant percentage of particle surface area. Fouling on partially fouled resin surface is not 

as obvious, but does show an intermediate level of pore blockage (Figure 4.4B). 

 

Interestingly, circular patches were found on the extensively fouled resin which were 

comparable in surface morphology to that seen in the clean resin images in Figure 4.4C. 

These are regions where particle – particle contact occurs within the packed bed, and show 

little or no fouling. Previous studies have also shown such areas, clearly distinguishable 

from the rest of the particle surface, and have reported localised external mass transfer 

resistance through these regions (Hubbuch et al., 2002; Jin, 2010; Siu et al., 2007).  In 

addition to the pore blocking, images CX and CY show larger pieces of clumped material on 

the particle surface that were common throughout fouled and partially fouled particles. The 

SEM imaging suggests a mechanism where the foulant blocks pore entrances but does not 

penetrate a significant distance into the particle, instead continuously growing outwards over 

successive cycles. This is in agreement with results by Jin et al. (2010) who reported the 

progressive build-up of lipid based foulant on the surface of Sepharose® Butyl-S 6 Fast 

Flow resin over successive cycles.  

 

4.3.3. Live uptake experiments 

The purpose of the live uptake experiments was to conduct a direct comparison between the 

clean, partially fouled, and extensively fouled resin based on their intra-particle radial light 

intensity profiles, during uptake of a BSA reporter molecule in a packed bed using confocal 

laser scanning microscopy (CLSM). The light intensity is proportional to the concentration 

of bound protein, and therefore can be used to estimate differences in the intra-particular 

mass transfer and adsorption (Figure 4.5). Integrating the area underneath the radial light 

intensity profiles, and correcting for the spherical nature of resin particles, indicates the 

relative amount of BSA bound to the different resin samples throughout uptake (Figure 4.6). 
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Figure 4.4. Scanning electron microscopy images of A. Clean B. Partially fouled. C. Extensively fouled 
Fractogel® EMD TMAE HiCap (M) resin particles. A1. x1000 B1. x450 C1. x750 A2/C2. x3000 B2. x2000 

A3/B3/C3. x10000. CY. x2,000. CY. x7,000. 
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Figure 4.5 and Figure 4.6 show a dramatic difference was found in the protein uptake rate of 

the different samples. Clean resin had the fastest uptake, followed by partially fouled, then 

extensively fouled resin. Partially fouled resin took approximately twice as long as the clean 

resin to reach the highest light intensity seen in the experiments, and fouled resin still had 

not reached this value after 85 minutes of loading. However, the amount of BSA bound to 

the partially and extensively fouled resin samples was approaching that of the clean resin at 

the end of the experiment. Partially fouled resin was at 98%, and extensively fouled resin at 

83%, of the clean resin’s capacity, and adsorption was still ongoing. This suggests that if the 

partially fouled or extensively fouled resin is challenged for long enough, it will eventually 

reach the capacity of the clean resin, or somewhere near this.  

 

For all three resin samples there was minimal difference between the shape of the intra-

particle binding profiles. Some differences would have expected, either localized or in 

general, between the different resin samples had foulant been irreversibly binding to intra-

particular binding sites, but this was not the case. In Figure 4.5, the peak close to the exterior 

boundary of the particle does become marginally wider and less defined with fouling, but 

this effect is minimal. This flattened region of the profiles in the fouled resin samples is 

approximately 3 µm in length, and may indicate that slightly less protein may be binding to 

this region as fouling worsens. These results are all in agreement with the hypothesis that the 

foulant forms a layer on the surface of the resin and does not significantly penetrate into the 

particles. It appears that as the foulant blocks access to the pore entrances, the available 

surface area where protein can diffuse freely into the particle therefore decreases, which 

introduces increased resistance to mass transfer. This causes the dramatic differences in 

uptake, but minimal differences in capacity which we saw between the resin samples. Intra-

particle mass transfer thus does not appear to be a limiting step. 

 

4.3.4. Column studies 

Column breakthrough experiments were used for studying the effect of the foulant on resin 

performance. Scale down cycling studies provided fouled samples to measure BSA 

breakthrough over an extended range of flow rates. The use of BSA for breakthrough studies 

was not intended to replicate industrial process behaviour. Instead, the BSA was used as an 

analytical tool to test the pore blockage hypothesis where resin fouling would hinder mass 

transfer into the resin, only allowing capacity of the resin to be recovered at high residence 

times. 
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Figure 4.5. Average radial emitted light intensity of BSA (stationary phase: A. Clean. B. Partially fouled. C. 
Extensively fouled Fractogel® EMD TMAE HiCap (M) resin particles) over time (0, 5, 10, 30, 60mins), during 
the uptake of Texas Red labelled BSA from the process feed (5mg/ml BSA, D/P ratio = 0.01, 0.05M TRIS Base 

pH 9.0 HCl adjusted, 150cm/hr), during flowcell experiments.   
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Figure 4.7 shows that over the course of the column studies, both the shape and the position 

of BSA breakthrough changed drastically as cycle number increased. Figure 4.8 illustrates 

the corresponding decrease in dynamic binding capacity (DBC), which for the normal 

operating flowrate of 0.49 ml/min (~150 cm/hr), dropped by 71% over the course of the 

study. At this flowrate, Figure 4.7 shows that for clean resin, breakthrough begun after 

approximately 10 CV of material had been applied to the column. In contrast, when the resin 

was extensively fouled, onset of breakthrough was rapid, beginning after less than 1 CV, 

similar to what would be expected during operation in flow through mode with minimal 

protein binding.  

 

The shape of the breakthrough went from sharp to diffuse as fouling progressed (Figure 4.7), 

and indicated that the loss in capacity and rapid breakthrough observed at the end of the 

study was due to severe mass transfer resistance, rather than a decrease in capacity due to 

foulant binding in place of the protein molecule of interest. Breakthrough would have been 

expected to remain sharp if the mass transfer was not affected by fouling, which was not the 

case.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Relative uptake curves of clean ■, partially fouled ●, and extensively fouled ▲ Fractogel® EMD 
TMAE HiCap (M) resin calculated from integrating under intra-particle labelled BSA profiles during uptake in a 

packed bed in Figure 5, and correcting for the spherical nature of resin particles. 
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Figure 4.7. Breakthrough curves of 10 (mg/ml) BSA load in 0.05M TRIS Base pH 9.0 at different flow rates on a 
0.98ml TMAE HiCap (M) column, 5cm in length. Load phase begins at 10ml. The column had been previously 

challenged with Protein A peak containing 1g (A), 3g (B) and 5g (C) of mAb. The control experiment using 
clean resin at 0.49 ml/min (~150 cm/hr) is shown for reference on each graph. 
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Figure 4.8. Fractogel® EMD TMAE HiCap (M) resin BSA dynamic binding capacity (at 90% breakthrough) as a 
function of load flow rate on a 0.98ml TMAE HiCap (M) column, 5cm in length. The column had been 

previously challenged with Protein A peak containing 0g ■, 1g ●, 3g ▲, 5g ▼of mAb. The load concentration of 
BSA was 10mg/ml in 0.05M TRIS Base pH 9.0. Data arrived at from Figure 7. 

 
 

The data shows that by decreasing the flow rate, the dynamic binding capacity (DBC) lost 

due to fouling can be recovered (Figure 4.8). Reducing the flow rate from 0.49 ml/min (~150 

cm/hr) to 0.08 ml/min (~25 cm/hr) at the highest level of fouling (after 5g of feed material 

had been challenged), resulted in the DBC increasing from 47 mg/ml to 146 mg/ml resin, a 3 

fold increase. A linear equation with an r2 value of 0.997 was fit to the data from Figure 4.8. 

The y intercept of this equation showed that with the fouling levels experienced at the end of 

the study, the theoretical maximum DBC was 167 mg/ml resin, the same DBC as the control 

run conducted at the start of the study using clean resin. This further supports the hypothesis 

that the foulant is located on the particle surface, only penetrating the particle to a limited 

degree. The increase in time that particles are exposed to BSA at lower flow rates, enables 

the BSA to overcome the mass transfer limitations as a result of the fouling, thus restoring 

DBC to pre fouled levels. 
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4.4. Conclusion 

Batch experiments, Scanning Electron Microscopy (SEM) and Confocal Laser Scanning 

Microscopy (CLSM) and small scale column experiments are useful tools for characterizing 

fouling in chromatographic resin. In this study the foulant was shown to progressively build 

up on the particle surface using SEM. The batch and CLSM live uptake experiments were in 

agreement that the foulant reduced the uptake rate of the BSA reporter molecule, with little 

or no change in saturation capacity. The column study confirmed that binding capacity lost 

due to the foulant could be restored by decreasing the flow rate, providing further evidence 

to support the conclusion that the foulant is located on the particle surface, only penetrating 

the particle to a limited degree. The results suggest that progressive fouling of resin can 

severely impact the performance of chromatography columns. The knowledge and 

understanding of resin fouling gained can direct future efforts to mitigate this detrimental 

phenomenon and maintain process performance, whilst providing a basis for the 

development of new fouling models. 
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Chapter 5. Resin Lot Variability 

 

A model based approach is used to identify robust operating conditions for an industrial 

hydrophobic interaction chromatography at a late stage of process development. Resin lot 

and load material variability was resulting in serious performance issues during the 

purification of a multi component therapeutic protein from crude material. An equilibrium 

dispersive model is developed of the HIC. Stochastic simulations are conducted to generate 

probabilistic design spaces for resins that gave the highest and lowest protein recoveries 

during testing. The design spaces show the probability of meeting product quality 

specifications for a key critical quality attribute, over a range of possible operating 

conditions. The simulations account for historical variability experienced in the load 

material composition and concentration. The results are used to determine operating 

conditions that assure product quality despite the process variability. With normal process 

variability, no operating condition was found where the probability of meeting product 

quality specifications remained > 0.95 for all resin lots. The stochastic methodology is 

extended to identify the level of control required on the load material composition and 

concentration to bring process robustness to an acceptable level. This is not possible using 

an experimental method due to the impractical amount of resources that would be required. 

The results indicated that adopting an adaptive design space, where operating conditions 

are changed according to which resin lot is in use, was the favourable option for ensuring 

process robustness, which is a step change concept for bioprocessing. 
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5.1. Introduction 

Chapter 3 and 4 considered the use of mechanistic chromatography models to derive 

fundamental process understanding of specific industrial chromatographic separations 

currently in development or operation at Pfizer, at an early stage of development. The goal 

was to accelerate the development and increase the robustness of industrial protein 

purification processes, whilst following guidance regarding the implementation of Quality 

by Design. In this chapter, the same objectives are considered for a chromatographic 

separation at a late stage of development. 

 

Chapter 5 focuses on an industrial chromatographic separation where resin lot variability, 

combined with a variable feed stream, had resulted in serious performance issues during the 

purification of a therapeutic protein from crude feed material. The resin lot variability 

occurred on a hydrophobic interaction chromatography (HIC) that produces a complex final 

product composed of six closely related variants of a dimer protein therapeutic (~30 kDa), 

with their monomer subunits in a specific ratio. The desired ratio of monomer subunits must 

be met by this unit operation, and is a defined CQA of the final product. An extended range 

of resin lots were obtained from the supplier for testing within normal process operating 

ranges. All resin lots were within the manufacturers’ specifications for ligand density and 

chloride capacity. Despite this, many failed to meet product quality specifications during 

testing and would have incurred significant losses if used for the large scale manufacture of 

the product. No link between resin lot specifications and successfully meeting process 

objectives was found. 

 

The traditional approach to identifying an operating region where the product quality 

remains within the defined product specification is to conduct an extensive experimental 

effort directed by factorial design of experiments. The data would be used to generate a 

response surface model which functions as a deterministic design space. The approach is 

extremely time consuming and costly. The outcome the DOE is a fixed, inflexible 

manufacturing process, with a control strategy based on reproducibility rather than 

robustness. The experimental results are unlikely to bring any fundamental understanding of 

the source of performance issue, which means analysing and understanding reasons for 

further batch failures would be extremely difficult.  In addition, the experimental approach 

provides no contingency in case suitable operating conditions cannot be found, and the 

response surface model is limited to the data used to generate it.  
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In this chapter, a model based approach is used to identify robust operating conditions that 

ensure the desired product quality is met, despite the resin lot and inherent bioprocess 

variability. The HIC was at a late stage of process development and had predefined mobile 

phase conditions, flow rate and column dimensions that had been fixed prior to this work.  

The mass challenge and wash length were the only manipulated variables available for 

adjustment. An equilibrium dispersive model with competitive Langmuir adsorption is 

developed for the two most extreme resin lots which gave the highest (designated high 

binding resin) and lowest (designated low binding resin) protein recoveries at normal 

operating conditions (not shown for confidentiality purposes). Micro well batch adsorption 

and scale down column experiments are used for model calibration, and the model is 

validated against multiple scale down column experiments over an extended range of inlet 

variables and process parameters.  

 

Stochastic simulations are conducted using the validated models to generate probabilistic 

process design spaces for each resin lot. These show the probability of meeting product 

quality specifications (i.e. the product CQA), over a range of possible operating conditions, 

whilst accounting for historical variability experienced in the load material composition and 

concentration. The data is used to determine if operating conditions exist that are eligible for 

all resin lots, by assuming that the operating conditions that assure product quality for the 

polar extreme high and low resin lots are suitable for all other resin lots. The stochastic 

methodology used to generate probabilistic design spaces is then extended, demonstrating 

how stochastic simulation can be used to identify the level of control required on uncertain 

variables to bring process robustness to an acceptable level, when current uncertainty results 

in an unsatisfactory design space. In this work, the control required on the load material 

composition and concentration is determined. The presented approach can be used with any 

validated mechanistic model with parameters that are variable or uncertain, and enables the 

rapid exploration of the trade-off between control of process parameters and the robustness 

of the design space, which is not possible using DOE experimental methods due to the 

impractical amount of resources that would be required. 

 

FDA guidance encourages the application of mechanistic models to improve process 

understanding, based on fundamental knowledge of the underlying causes linking process 

parameters to product CQA’s. The methodology demonstrates how useful mechanistic 

models can be for this task, for as well as determining the functional relationship between 

process parameter values and the resulting value of the CQA, the use of models can quickly 

and efficiently determine the relationship between process parameter and CQA variances, a 

key aspect of providing assurance of product quality. 
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5.2. Experimental materials and methods 

 

5.2.1. Materials 

5.2.1.1. Therapeutic protein and feed material 

The product of interest is a disulphide linked dimer protein molecule (MW = 30 kDa), 

comprised of two monomer subunits. Three variations of the monomer subunit exist due to 

slight variations in the amino acid sequence, here denoted ½, ½̅ and ¿. This results in six 

possible isoforms of the dimer (½½, ½̅½̅, ½½̅, ½̅¿, ½¿	and	¿¿L as illustrated in Figure 5.1. 

The corresponding analytical chromatogram is shown in Figure 5.2 (Top). Each form is an 

active component of the final product which must contain a specific ratio of the monomer 

subunits, J½ + ½̅L: ¿, i.e. not just one product form at a given total amount is required, but 

six closely related dimer variants, with a specific ratio of their monomer subunits. 

Specifically, subunit ¿ must account for between 25 – 45 % of all monomer subunits in the 

product, i.e. 0.25 < ¿ < 0.45. In addition to the product, the HIC feed material contains 

several product related impurities accounting for up to 25% by mass of the feed material, 

including the individual monomer subunits (½, ½̅ and ¿), incorrectly formed product species 

(MW = 42, 60, 80 and 100 kDa), and host cell related contaminants consisting of mainly 

host cell protein (HCP) and DNA. The analytical chromatogram used to distinguish between 

the different product and impurity species is shown in Figure 5.2 (Bottom). 

 

5.2.1.2. Chromatography resin 

Multiple (>20) Butyl Sepharose 4B fast flow hydrophobic interaction resin lots were 

obtained from GE Healthcare (Uppsala, Sweden). The two most extreme resin lots were 

selected for use in this work based on protein recovery in process development experiments 

conducted at standard operating conditions (not shown). The resins are designated high and 

low binding resin, e.g. the high binding resin gave high protein recoveries and the low 

binding resin gave low protein recoveries. 

 

5.2.1.3. Equipment 

All preparative scale laboratory experiments were carried out using an ÄKTA FPLC 

chromatography system from GE Healthcare (Uppsala, Sweden). Laboratory columns were 

1.1 – 3.2 cm in diameter and 7.4 cm in bed height. A GE Healthcare Mono S column 

(5.0mm x 50mm) high performance liquid chromatography (HPLC) column was used for 

analytics, and a a TSK-Phenyl reversed phase column was used for the phenyl reverse phase 

assay.  
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Figure 5.1. The product is a disulphide linked dimer protein therapeutic (MW ≈ 30 kDa), comprised of two 
monomer subunits. Three variations of the monomer subunit exist due to slight variations in the amino acid 
sequence, here denoted ½, ½̅ and ¿. This results in six possible forms of the dimer, all of which are active 

components of the final product and that must be present in the elution peak in a specific distribution. 
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Figure 5.2. Analytical chromatogram of A. the product and B. the feed material. (Axis values deliberately 
removed for confidentiality purposes) 

 

. 

5.2.2. Methods 

 
5.2.2.1. Hydrophobic Interaction Chromatography 

During all runs, the columns were first equilibrated with 50 mM Tris, 1.0 M NaC1, 0.50 M 

Arg-HC1, pH 7 equilibration buffer. The elution peak from a preceding pseudo affinity 

capture chromatography was brought to the correct NaCl concentration and applied to the 

column at 4.2 CV/hr, followed by a wash step using the equilibration buffer. Elution buffer 

consisting of 20% Propylene Glycol, 50 mM Tris, 0.50 M Arg-HCl, pH 7 was then applied 

and the product peak collected. The pooling policy was fixed for all runs. Any remaining 

bound protein was removed in a strip step using 0.1 M Sodium Acetate, pH 4 sanitization 

buffer, and the column was stored in storage buffer when not in use. The efficacy of the 

elution stage is well understood, and was experimentally validated during process 

development. Negligible amounts of protein remain in the column after the elution stage and 

all mass balances were satisfactory during experimental runs. All experiments were 

conducted between 4 and 8 oC. 

 

A 
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5.2.2.2. Cation Exchange HPLC Assay 

The Cation Exchange (CEX) HPLC assay utilises a Mono S column and a gradient of 

sodium acetate, acetonitrile and sodium chloride at pH 5.0 in order to determine the relative 

percentages of the six dimer isoforms of the product in the sample. After equilibrating the 

column for 30 minutes, 100 µl samples at 0.5 mg/ml are injected onto a column at a flowrate 

of 1 ml/min. Over the course of the gradient, separation of the isoforms is accomplished 

based upon competitive ionic exchange of the sample ions with a counter ion in the mobile 

phase, for fixed cationic functional groups on the column resin. Absorbance at 280 nm is 

measured at the column exit. Integration of the resulting chromatogram and analysis of the 

relative percentage area of each peak indicates the percentage of each isoform in the sample. 

The total time to run each sample is 30 minutes (Figure 5.2. Top). 

 

5.2.2.3. Phenyl Reverse Phase HPLC Assay 

The Phenyl Reversed Phase (RP) HPLC assay utilises a TSK-Phenyl reversed phase column 

and a water/acetonitrile/trifluoroacetic acid gradient system to determine the relative amount 

of product and product related impurities in samples. After equilibrating the column for 30 

minutes, 100 µl samples at 1 mg/ml are injected onto a column equilibrated with a low 

percentage of acetonitrile mobile phase at a flowrate of 1 ml/min. As the organic modifier 

(acetonitrile) is increased over the course of the gradient, separation of the product related 

species and impurities is accomplished. Absorbance at 214 nm is measured at the column 

exit. Integration of the resulting chromatogram and analysis of the relative percentage area 

of each peak indicates the percentage of each species in the sample. The total time to run 

each sample is 80 minutes (Figure 5.2. Bottom). 

 

5.2.2.4. Generating purified product 

Protein solutions for model development experiments were generated from crude feed 

material, i.e. for batch adsorption experiments and impurity/no-impurity column 

experiments. Following initial purification by pseudo affinity capture, the material contained 

the 6 product forms of interest, as well as a range of product related impurities and host cell 

proteins (HCP’s). The product forms were further purified and isolated from impurities over 

multiple runs on the HIC considered in this work. Multiple runs were required as it was 

particularly challenging to separate the product isoform BB from similar product related 

impurities. Fractions were taken every column volume (CV) and analysed by CEX HPLC in 

order to determine the isoform distribution of the sample. Multiple samples with a range of 

isoform distributions were generated in this way, and later pooled in order to generate 

material with desired isoform distributions for development experiments. Removal of 

product related impurities and HCP’s was confirmed by phenyl RP HPLC. 
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5.2.2.5. Impurity/no-impurity column experiments 

To confirm that the product related impurities and HCP’s in the load material had a 

negligible impact on the separation of the product of interest, HIC column experiments were 

conducted with and without impurities in the load material. Experiments were identical in all 

other aspects i.e. load challenge, product concentration, product composition and 

washlength. In order to ensure that the product in the load material was the same for 

impurity and no-impurity experiments, material only containing impurities was combined 

with pure product. 

 

5.2.2.6. Batch adsorption experiments 

Batch adsorption experiments were required to generate data for calibrating the equilibrium 

adsorption isotherm parameters. Batch binding studies based on the work of Coffman et al. 

were conducted in a 96-well filter plate and were repeated in triplicate (Coffman et al., 

2008). The filter plates used throughout the experiments were round-well 800 µl plates with 

0.45 µm pore-size polypropylene membrane. 25 µl of resin was taken from a bulk reservoir 

and dispensed by the robotic liquid handler into the individual wells as 25% (v/v) slurry in 

the appropriate equilibration buffer. The plate was then centrifuged to evacuate excess liquid 

and leave damp resin. Subsequently, solutions composed of pure product, having various 

total protein concentrations (0.5 – 1 mg/ml) and isoform distributions (each component was 

varied between 20 – 60%) were added into wells containing the resin. The desired initial 

concentration and component distribution for each filter plate well was achieved by mixing 

together protein from bulk solutions of known component distributions and concentrations, 

with the appropriate amount of equilibration buffer from a bulk solution in order that the 

total volume of liquid dispensed into each well was 275µL (.���). The resin and solutions 

were then agitated on a platform shaker for 120 minutes. Separate batch uptake studies 

indicated that equilibrium was reached in less than 30 minutes (not shown), and therefore 

that this incubation time was suitable. Foil adhesive tape was used on the underside of the 

filter- plate to prevent liquid loss during shaking. After incubation, a centrifuge evacuated 

the supernatant into a UV-transparent 96 well micro plate which was stacked beneath the 

filter plate for analysis. The supernatant was then analyzed by a 96-well UV 

spectrophotometer (SpectraMax 250, Molecular Devices, Sunnyvale, CA) to determine the 

concentration of protein in the supernatant, ���. CEX HPLC was used to determine the 

percentage of each component in the supernatant, $��. The concentration of the protein in 

the mobile phase is then calculated from Eq 1:  

 



 

149 
 

��� = #�����∙���
C++     [5.1] 

 

where ����� is the measured concentration in the supernatant of the micro well (mg/ml), 

determined by UV spectroscopy. An elution cycle was then conducted following the same 

methodology as the load cycle, where 275 µL of elution buffer was added to each well, the 

plate agitated on a platform shaker for 120 minutes and the supernatant subsequently 

collected as described previously and analysed using the spectrophotometer and CEX 

HPLC. The total amount of protein added to each micro well was then determined by Eq 2:  

 

 � =	 #��������������� +	
#�����
������    [5.2] 

 

where  � is the total amount of protein added to the micro well (mg), �������� is the 

concentration of the elution supernatant (mg/ml), .�������is the volume of the elution 

supernatant (ml), ����� is the concentration of the equil supernatant (mg/ml), and .���� is 

the volume of the equil supernatant. The amount of protein adsorbed per unit volume settled 

resin, &�, is calculated using Eq 3:  

 

&� =
ÁÂ�∙Ã���ÄÅÆxx d#��∙������Ç

������    [5.3] 

 

where $����%is the percentage of component � in the load material and ./�	��is the settled 

volume of resin in the microwell (25 µl in this work). 

 

 

5.2.2.7. Pulse injection experiments 

Pulse injection experiments were required to determine the total column porosity, 67. Pulses 

of NaCl were injected onto the column system and the retention time measured, accounting 

for dead time in the system. All experiments were performed in triplicate. The total column 

porosity, 67, was calculated by the following equation: 

67 = �xÈ
�É     [5.4] 

 

where *+ is the retention time of the unretained molecule, � is the mobile phase flowrate and 

.# is the column volume. 
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5.3. Mathematical methods 

 

5.3.1. Process assumptions 

The similar amino acid sequence of two of the monomer subunits (½ and ½̅) results in 

similar separation properties of the product isoforms ½½, ½̅½̅, ½½̅ and of the product isoforms 

½̅¿, ½¿	. In order to simplify the modeling problem, the six product isotherms were reduced 

in the model to three species: ½½, ½¿, and	¿¿. Because all product isoforms that remain 

bound to the column after the load and wash steps are subsequently collected in the elution 

step, only the load and wash stages of the separation are simulated and the elution peak 

composition calculated by mass balance. 

 

5.3.2. Model 

An equilibrium dispersive model was chosen to simulate the HIC (Guiochon et al., 1994, 

Kaczmarski et al., 2001) as it is faster to solve than the general rate model, which was 

important for reducing simulation time, and because fewer model parameters need to be 

determined, whilst still predicting the product CQA sufficiently well (as will be shown in 

section 4). The model is discussed in detail in the literature review section of this work and 

so is not repeated here. Model equations are summarised in Table 5.1 and described in detail 

in Appendix B.  It is important to note that when the adsorption isotherm is linked with the 

mass conservation equation, the amount of protein adsorbed per unit volume of settled resin, 

&�, is converted to the amount of protein adsorbed per unit volume of stationary phase in the 

packed bed,  ��	
. Dividing &� by J1 − 67L accounts for the phase ratio (Mollerup, 2008), 

and multiplying &�	by a compression factor, ��, defined as the ratio between settled bed 

volume and packed bed volume, accounts for bed compression (Gerontas et al., 2010). The 

necessary compression had been determined experimentally during process development in 

order to prevent the formation of column headspace under flow conditions. All model 

equations were implemented and solved using the dynamic simulation tool gPROMSTM 

(Process Systems Enterprise, 2013). Discretisation of the column in the axial coordinate is 

done using the built-in orthogonal collocation on finite element method. 

 

5.3.3. Parameter estimation 

The ‘parameter estimation’ entity in gPROMSTM is based on the SRQPD sequential 

quadratic programming code and was used to fit adsorption isotherm parameters (&	, ��,�) 
and the apparent axial dispersion coefficient (��). Parameter estimation was based on the 

maximum likelihood formulation, which determines values for the uncertain physical and 

variance model parameters that maximise the probability that the model will predict 
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measured values from development experiments (Process Systems Enterprise, 2013). First 

the adsorption isotherm parameters are estimated by fitting the competitive Langmuir 

isotherm model to the three component competitive adsorption data from the micro well 

batch adsorption experiments (section 5.2.2.6). For estimation of the apparent axial 

dispersion coefficient, the full equilibrium dispersive model with competitive Langmuir 

adsorption is fitted to experimental product form distributions in samples taken every CV 

during the wash of a scale down column run (section 5.2.2.1). 

 
 

Table 5.1. Summary of equiliubrium dispersive model used in this chapter. For a detailed description of the 
model and variables please refer to Appendix B 

 

Equilibrium dispersive model with competitive Langmuir adsorption 

 
Mass conservation 
 

 
Ê#��Ê� + JCdËÌLËÌ ∙ Êµ��ÍÊ� + - ∙ Ê#�

�
ÊÎ = �� ∙ Ê

Ï#��ÊÎÏ 						∀� = 1, 2,… , "# 								3 ∈ J0, �L   
 
 

Boundary 
conditions 
 

k-���–�� Ó��
�
Ó3 m |Î	U	+ = 	-��,+� 													∀� = 1, 2,… , "# 

 Ó���Ó3 |Î	U	u = 	0												∀� = 1, 2, … , "# 

 
 
Initial condition 

 Ó���Ó* = 0										0 < 3 < �									∀� = 1, 2, … , "# 

 
 
Adsorption 
isotherm 
 

 

&� =		 &	 ∙ ��,� ∙ ��
�

1 + ∑��,� ∙ ��� 										∀� = 1, 2, … , "# 									3 ∈ J0, �L	 
 

��	
 = 	�� ∙ &�J1 − 67L										∀� = 1, 2, … ,"# 									3 ∈ J0, �L		
 

where 
 
       ��   Extra particular mobile phase concentration [mg/ml] 
       �	
  Stationary phase concentration [mg/ml]   						��  Compression factor [-] 
      ��  Apparent axial dispersion coefficient [cm2/s] 
      �     Component identifier [-] 
      ��   Equilibrium constant [-] 
      �    Column length [cm] 
      "#  Number of components [-] 
      &	   Saturation capacity [mg/ml] 
      &    Concentration per unit volume settled resin [mg/ml] 
      *     Time [s] 
      -    Interstitial velocity [cm/s]  
      3 Axial coordinate [cm] 
      67  Total column porosity [-] 
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Table 5.2. Historical average and standard deviations of product form inlet concentrations. 

Variable name Variable notation Average (mg/ml) Standard deviation 

ÕÕ inlet concentration �C,+�  0.108 0.024 

ÕÖ inlet concentration �E,+�  0.127 0.023 

ÖÖ inlet concentration �f,+�  0.104 0.023 

 

 

5.3.4. Stochastic simulation 

Stochastic simulations were conducted following the same procedure as described in 

Chapter 3, Section 3.3.3. In this chapter, the impact of variability in the load material 

concentration and composition on the ratio of the monomer subunits, J½ + ½̅L: ¿ in the 

elution pool (a defined CQA for the HIC process) was considered. The impact of errors in 

model predictions, as well as uncertainty in controlled variables such as ionic strength, bed 

height etc. was not considered. The rational for this is discussed later. The exact parameter 

varied in the mechanistic model was the inlet concentrations of the load material, ��,+� . 

Historical averages and standard deviations from manufacturing data were used to generate 

probabilistic design spaces for current process variability (Table 5.2).  

 

In this chapter, the stochastic simulation approach is extended to explore the impact of 

reducing variability in the load material on the design space. The aim is to identify the level 

of control required on uncertain variables to bring process robustness to an acceptable level 

when current uncertainty results in an unsatisfactory design space. Standard deviations in 

model simulations are manually assigned assuming that better control would result in less 

variability, and therefore a reduced standard deviation. Manually changing the load 

concentration average is also possible, and may be of interest as feed dilution is trivial, but 

this was not considered in this work. 

 

5.4. Results and discussion 

5.4.1. Impurities 

The FDA requires that the removal of various contaminants in the final drug product is 

validated (Lightfoot and Moscariello, 2004). The complexity and variety of these 

contaminants result in a range of issues when developing a mechanistic model that can 

accurately simulate their separation and thus fulfil this requirement. Impurities are often at 

levels on the lower detection limit of available assays, which require a large amount of 

material, time and resources in order to analyse.  
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Figure 5.3. A. Experimental comparison between column runs using feed material with and without impurities (7 
ml CV, 7.3 cm bed height, 5.7 CV/hr, inlet concentration = 0.34 mg/ml, load challenge = 2 mg/ml). Similar 

product form percentages and overlapping A280nm trace during wash and elution indicates that impurities have 
minimal impact on separation of product forms and can be neglected in the model. B. Chromatogram showing 

the A280nm trace and the percentage of product related impurities and product in samples taken every CV during 
a standard HIC run, determined by phenyl RP HPLC. The figure shows that the majority of impurities in the feed 
material elute from the column during the load phase, product forms begin to elute from the column at the end of 

the load phase and continue throughout the wash. 
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In this work, it was impractical in terms of time and material requirements to generate 

samples in high enough volumes and concentrations of impurities in order to develop a 

mechanistic model for simulating these components. From an industrial perspective, the 

experimental design of experiment (DOE) approach to developing and validating the 

removal of impurities during the chromatography is preferable to a mechanistic modelling 

approach. Therefore, the effect of impurities was not included in the model. Instead, it was 

assumed that the product related impurities and HCP’s in the feed stream had a negligible 

impact on the separation of the product of interest, as the impurities are observed to flow 

through during the load phase of the chromatographic cycle (Figure 5.3B). This assumption 

was confirmed by comparing the product form distributions in fractions collected every CV 

during HIC runs with and without impurities in the feed material. Runs were identical in all 

other aspects e.g. load challenge, product form concentrations and washlength. The results 

indicated that the impurities had no effect on the product distributions (Figure 5.3A). In 

addition, by comparing the UV traces in Figure 5.3A, one can clearly see where the 

impurities are flowing through during the load step, before the two UV traces merge and are 

in exact agreement. 

 

5.4.2. Model development 

Micro well batch adsorption experiments (3.2.2) were utilized to generate data for estimating 

the adsorption isotherm parameters, &	, ��,�. Figure 5.4 shows the multi-component 

competitive adsorption data from the micro well experiments for the high and low binding 

resin lots, at four different load material product distributions shown on the graphs in the 

ratio  ½½ % : ½¿ % : ¿¿ %. The product form distribution in the load material was varied to 

ensure that the competition between the closely related product forms was captured in the 

isotherm model. Note that although the graphs show the bound concentration of the product 

form as a function of its mobile phase concentration, the mobile phase concentration of the 

other two product forms are also affecting the bound concentration. 

 

The estimated isotherm parameter values are shown in Table 5.3. The standard deviations of 

the estimated parameters are approximately ten percent, indicating there is still some 

uncertainty in the parameter values. The coefficient of determination, r2, for the model fit to 

experimental data was 0.93 for the high resin and 0.96 for the low resin. This was found to 

be sufficient for satisfactory agreement between model predictions and experimental data 

given the inherent uncertainties of the batch adsorption experiments. Interestingly, the 

estimated saturation capacity of the Langmuir isotherm, &	, were similar for both resins, 

however, the equilibrium constants differed for all three components. This indicated that the 

source of the resin lot variability was associated with protein adsorption-desorption kinetics 
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and not the maximum saturation capacity. A detailed investigation into the exact mechanism 

behind this variability was beyond the scope of this work. 

 

Both resin lots showed significant competition between product forms, with component ¿¿ 

particularly vulnerable to displacement by the more strongly binding ½½ and ½¿ forms. In 

Figure 5.4C, the ¿¿ stationary phase concentrations are significantly higher compared to 

Figure 5.4B. This is due to the favourable product distribution in the load material resulting 

in fewer competing components, allowing more ¿¿ to bind (Figure 5.4C load material 25% 

½½ : 20% ½¿ : 55% ¿¿, Figure 5.4B load material 28% ½½ : 59% ½¿ : 13% ¿¿). It was 

found that the low binding resin had lower binding capacities than the high binding resin. 

This was especially clear for the ¿¿ component as shown in Figure 5.4C where the low 

binding resin ¿¿ stationary phase concentration is approximately half that of the high 

binding resin. 

 

Pulse injections onto scale down columns (section 5.2.2.7) using an unretained molecule 

(NaCl) found that both resin lots had the same total column porosity, 0.9 +/- 0.02, which was 

in agreement with previous literature estimations for this resin (McCue et al., 2007).  The 

apparent axial dispersion coefficient, ��, was first estimated from the number of theoretical 

plates of the column, "
, according to the following correlation (Guiochon et al., 1994): 

 

     �� = Nu
ERÍ     [5.5]  

  

 

Table 5.3. Model parameter values obtained for low and high binding resins based on batch adsorption and scale 
down column experiments, fitted using parameter estimation in gPROMS. Figure 5.5 gives an illustration of the 

fit between experimental data and simulations achieved by estimated parameters. 

Parameter name Parameter notation Low High 

ÕÕ equilibrium constant ��,C 4.33 6.33 

ÕÖ equilibrium constant   ��,E 1.49 2.30 

ÖÖ equilibrium constant  ��,f 0.52 1.01 

Saturation capacity &	 6.45 6.39 

Total column porosity 67 0.9 0.89 

Apparent axial dispersion coefficient �� 0.0029 0.003 
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Figure 5.4. High and low resin multicomponent competitive adsorption isotherms at a range of load material 
product distributions, as shown on the graphs in the order AA% : AB% : BB%. The experimental data is from 
micro well plate batch adsorption followed by CEX HPLC analysis. All experimental points were repeated in 

triplicate and standard error is shown on graphs.  

  

A. 53:26:21 B. 28:59:13 

C. 25:20:55 D. 31:37:32 
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Figure 5.5. Experimental and simulated multicomponent competitive adsorption isotherms for the high binding 
resin at a range of load material product distributions, as shown on the graphs in the order AA% : AB% : BB%. 

The experimental data is from micro well plate batch adsorption followed by CEX HPLC analysis. All 
experimental points were repeated in triplicate and standard error is shown on graphs. The competitive Langmuir 
isotherm model (Equation 9) was fitted to the experimental data, and simulations showed good agreement with 

experiments. 
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However, the model was unable to give satisfactory predictions of the chromatographic 

process using the value estimated from this correlation Figure 5.6. This was not unexpected, 

as the lumped mass transfer coefficient value was determined using the residence time of an 

unretained molecule (NaCl) that was significantly smaller than the protein, and thus would 

be expected to experience faster mass transfer. The apparent axial dispersion coefficient was 

therefore estimated by fitting the full equilibrium dispersive model to experimental product 

form distributions in samples taken every CV during the wash of a scale down column run. 

The value calculated by the correlation was used as the initial guess. We found that the 

estimated apparent axial dispersion coefficients for high and low binding resin lots were 

very similar (high resin = 0.029 and low resin = 0.03), indicating that mass transfer was not 

responsible for differences between the resin lots. 

 

5.4.3. Model validation 

Multiple scale down column runs were conducted for each resin lot in order to provide a 

rigorous test of model predictive capacity, where the product form distribution was 

measured across the wash phase and in the elution peak. An extensive experimental 

validation of model predictive capability across the complete design space to be explored 

was unfeasible due to industrial time and material constraints. However, the isoform 

distribution in the load material, total load concentration and load challenge were carefully 

selected (Table 5.3) to provide wide ranging coverage of the envisaged design space, and 

model predictions were also compared with existing elution peak product data from scale 

down experiments which had been conducted previously by Pfizer purification process 

development (Table 5.4), at load concentrations, load challenges and wash lengths 

considerably different from those conducted by the authors of this work. The flowrate, �, 

wash length, and bed height, �, were kept constant throughout all runs and a range of 

column volumes were used (7, 15 and 60 ml).  For both resins, the model was able to 

successfully predict the product form distribution across the wash and in elution peaks in all 

scale down model validation column runs, both from this work, and those conducted 

separately by Pfizer. Figure 5.7 shows examples where model predictions are compared with 

experiments. Model elution peak composition was consistently within +/- 5% of 

experimentally measured values (Table 5.5), which was similar to the accuracy seen in 

design of experiment driven statistical response surface models of this process at Pfizer. This 

is significant, as it demonstrates that despite the complex feed stream and wide range of 

conditions tested, a relatively simplistic equilibrium dispersive model can provide similar 

accuracy predictions to a DOE type approach to design space generation, often used in 

industry. 
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Table 5.4. Model validation runs: Product percentage in load, load concentration, and load challenge. 

Run identifier Load Challenge (mg/ml resin) Load Concentration (mg/ml) % ÕÕ % ÕÖ % ÖÖ 

A 1.5 0.26 35 35 30 

B 2.2 0.35 40 44 16 

C 2.4 0.44 14 38 48 

 

 

Table 5.5. Model validation runs: Experimental vs simulated percentage Õ and Ö in elution peaks  

Resin identifier Run identifier Exp % Õ Sim % Õ Difference Exp % Ö Sim % Ö Difference 

High 

A 81 79 -3 19 21 +3 

B 85 82 -3 15 18 +3 

C 71 68 -3 29 32 +3 

Low 

A 90 90 0 10 10 0 

B 93 93 0 7 7 0 

C 86 81 -5 14 19 +5 
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Figure 5.6. Experimental and simulated product form distributions for the low binding resin lot during load, wash 
and in final elution peak. A. Before model refinement. B. After model refinement. The apparent axial dispersion 

coefficient and the ½½ adsorption constant were modified from 0.0001 cm2/s to 0.003 cm2/s, and 5.31 to 3.5 
respectively. 
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Figure 5.7. Experimental and simulated product form distributions for the high (top) and low (bottom)  resin lots during load, wash and in final elution peak in model validation runs A (right) 
and B (left). (7 ml CV, 7.4 cm bed height, 4.2 CV/hr, load details shown in Table 5.4). Experiments and simulations were in good agreement.
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5.4.4. Stochastic simulations 

The mechanistic models developed for the high and low resin lots can determine the 

operating conditions where product quality specifications will be met for a known inlet 

concentration and composition. However, in practice, for industrial chromatographic 

separations the feed material is often uncharacterised prior to column loading, and will vary 

from batch to batch depending on upstream operations. In this work, a model based 

approach combining the validated mechanistic model with stochastic simulation is used to 

account for the inherent variability of inlet concentration and composition when determining 

the ability of a resin lot to meet the process objectives (or conversely the risk of batch 

failure).  

 

The methodology is illustrated in an example which shows the data generated at one 

potential mass challenge – wash length combination. The component inlet concentration 

distributions were generated from historical data, and are shown in Figure 5.8A. Averages 

and standard deviations are shown in Table 5.2. For illustrative purposes the first 1000 

randomly generated inlet concentrations of product form AA is shown in Figure 5.8B, and 

the corresponding value of the product CQA (i.e. subunit B must account for between 25 – 

45 % of all monomer subunits in the product, i.e. 0.25 < B < 0.45) is shown in Figure 5.8C.  

 

It is a straightforward procedure to generate useful statistical information with this data 

regarding CQA variance at each operating point, such as moments and quartiles, as shown in 

Figure 5.9 for the low binding resin. The statistical data can be conveniently displayed using 

a box and whisker plot. The bottom and top of the box are the first and third quartiles, and 

the band inside the box is the median. The end of the lower whisker represents the datum 

still within 1.5 interquartile range (IQR) of the lower quartile, and the end of the upper 

whisker represents the datum still within 1.5 IQR of the upper quartile. The minimum and 

maximum of the data is indicated in the whiskers by a straight line, and the 1% and 99% 

quartiles are represented by crosses. Outliers are plotted as dots. More sophisticated 

statistical techniques can be employed to analyse multivariate interactions and CQA 

dependencies. The derived data can play a key role in the quality risk assessments 

recommended by FDA guidance when developing quality products (ICH, 2005). The data 

was transformed into probability density functions which were used to calculate the 

probability of meeting the product CQA as a function of inlet uncertainty, as also shown in 

Figure 5.9. Probabilistic design spaces were then generated by plotting the probability of 

meeting the product CQA (%B) as a function of available manipulated variables, e.g. mass 

challenge and wash length. 
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Figure 5.8. Example of the stochastic modeling technique used in this work. A Normal distribution of inlet 
concentration of example product form from historical operating data. B. Example of randomly selected inlet 

concentrations of product form ½½ during the first 1000 stochastic simulations. C. Percentage ¿ in elution peak 
over the first 1000 simulations. (Mass challenge 2 mg/ml, 5 CV wash length). D. Probability density function of 

product CQA. 
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Accounting for uncertainty in controlled variables such as ionic strength was beyond the 

scope of this work, but can be integrated into simulations if desired. In this case, a suitable 

isotherm with a parameter that can be assigned uncertainty concerning ionic strength, such 

as the steric mass action (SMA) isotherm, would be required (Brooks and Cramer, 1992). In 

addition, the impact of model uncertainty on stochastic predictions can be included, although 

this was neglected in this work as the CQA variance (e.g. 10% - 42% in the example shown 

in Figure 5.9) was typically much larger than the largest model error found during model 

validation studies (+/- 5%). Despite this, the uncertainty in model predictions cannot be 

easily neglected and care must be taken to ensure that robust operating areas identified by 

model predictions are tested experimentally. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9. CQA data from stochastic simulation at mass challenge =  2 mg/ml, washlength = 5 CV in box plot 
and probability distribution form with associated moments and quartiles.low resin 
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Figure 5.10. Probabilistic design spaces for low binding (left) and high binding (right) resin lots, showing the 
probability that the resin will achieve the correct product form distribution in the elution peak over a ranges of 

possible mass challenges and wash lengths. 

 
 

Probabilistic design spaces for the low and high resin lots are shown in Figure 5.10. The 

design space is defined as the multidimensional combination and interaction of input 

variables and process parameters that have been demonstrated to provide assurance of 

product quality, i.e. that product CQA’s are met. The key characteristic of probabilistic 

design spaces is that they provide quantitative information on the assurance of quality, 

accounting for both the mean and the variance of uncertain process parameters and variables. 

No combination of mass challenge and wash length was found for either resin lot which had 

a probability of 1.0 for the historical variability experienced in the load material, i.e. that 

would guarantee the CQA is always met. However, the large size of regions where the 

probability < 0.95 meant that rarely would the process fail to meet its objectives if the 

operating condition was specific to the resin lot in use. The large difference between 

operating conditions that give p > 0.95 for each resin are somewhat surprising given the 

small difference between the adsorption isotherm parameters, but are due to the very 

challenging CQA constraint, combined with the mean and variance of the inlet composition 

and concentration. 

 

When the design space must be eligible for all resin lots, then the probability of achieving 

the correct product form distribution in the elution peak should be high for both resin lots. 

Figure 5.11 shows an overlay of the two resins’ probabilistic design spaces. Critically, there 

was no operating region where the probability of both the low and high resin lots remained > 

0.95, i.e. risk of batch failure < 5%. Even at the optimum operating condition where the two 

LOW HIGH 

0.75 
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curves intersect (e.g. mass challenge 2 mg/ml, wash length 4 CV), the probability only 

reaches 0.84. As a result, the operating parameter ranges available for manufacturing are 

small, and at best, 16 % of batches are still predicted to fail product quality specifications. In 

addition, the product form distribution will vary within the full allowable range (0.25 < B < 

0.45), which is undesirable when the objective is to produce a consistent product. 

 

 

 
 

 

 

 

Figure 5.11. Overlay of high and low resin probabilistic design spaces showing the operating parameter ranges 
where product quality is assured with p > 0.75 for all resins. 
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Selecting operating conditions that are eligible for all resin lots also means that high risk 

regions are selected, where deviations from usual inlet stream composition can result in 

further performance issues. For this case study, significant increases in process robustness 

can be made by adapting the design space based on the resin lot in use, rather than fixing the 

design space for all resin lots. In practice, this would involve varying the length of the wash 

length based on the resin lot in use. This adaptive approach significantly increases the size of 

potential operating regions, improves flexibility to variations in process inputs, provides a 

more consistent product composition, and enables operation further away from high risk 

regions. This conclusion, that adaptive operation can bring significant benefits is in 

agreement with literature (Gétaz et al., 2013), and is a viable mode of operation under FDA 

Quality by Design guidance (ICH, 2008a). 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12. Box plots showing variability of percentage ¿ in elution peak as a function of variability in 
component inlet concentration, with probability of meeting quality specifications indicated next to each box plot, 

for a mass challenge of 2 mg/ml and wash length 4 CV. 
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The probabilistic design spaces presented are particularly useful as they provide a 

quantitative measure of the assurance of product quality, which either validates the 

robustness of potential operating regions, or indicates a need for process improvement. The 

stochastic methodology can be easily extended to identify the level of control required on 

uncertain parameters/variables to achieve adequate assurance of quality, by systematically 

reducing the variance of uncertain parameters, and measuring the quality response. 

Alternatively, when parameter variability is reduced due to improvements and optimisation 

by process operators as experience is built over a process lifetime, the method can identify 

how operating ranges can be expanded to give greater flexibility to process operators during 

manufacturing.  

 

For this case study, the data indicates that if the operating parameter ranges must be fixed for 

all resin lots, then process improvements are needed. Without process improvements, 

operating regions that provide assurance of product quality are small and are not robust. We 

now consider how decreasing variability in the product form inlet concentrations via 

increased control of upstream unit operations can improve the assurance of quality when 

using an operating region fixed for all resins. Better control was assumed to result in less 

variability, and therefore a reduced standard deviation. A detailed description of how this 

can be achieved in practice is beyond the scope of this work, but could include modifications 

to upstream processes such as optimising the elution stage of preceding affinity 

chromatographic separations. In any case, the study is a useful exercise for illustrating how 

stochastic simulation and mechanistic models can be used not only for quantifying risk 

associated with uncertainty, but for exploring the relationship between parameter and  CQA 

variance, a key consideration when validating quality assurance. 

 

Figure 5.12 shows box plots indicating predicted variability of the product CQA (percentage 

B in the elution peak) as a function of the variability in the product form inlet 

concentrations. The mass challenge was 2 mg/ml and wash length 4 CV, previously 

identified as one of the optimal operating points for a fixed design space. The standard 

deviations considered include: 0.01, 0.015, 0.02 and 0.024. The probability of meeting the 

CQA specification is indicated next to each box plot (e.g. p = 0.998). As expected, reducing 

feed stream uncertainty (i.e. going from 0.024 towards 0.01) results in a reduction in product 

CQA variability, which translates into increases in the probability of meeting quality 

specifications (i.e. for low resin, p = 0.0895 to p = 0.998).  
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Figure 5.13. Fixed design space with highest level of feed stream control considered in this work, SD = 0.01, 

(left), and ideal design space assuming no feed stream variability (right). 

 

When this is completed for all operating conditions, the size of regions with p > 0.95 (i.e. 

<5% failure) increases. Figure 5.13A shows the region where p > 0.95 for both resins at the 

lowest inlet variability considered (SD = 0.01). Even with this high level of control over the 

feed material, operating regions where p > 0.95 were significantly smaller than those 

available if the operating conditions were adapted according to the resin lot in use under 

normal inlet variability (Figure 5.10). Figure 5.13B shows the design space which assures 

product quality for all resins in an ideal (but unrealistic) system with no inlet variability. The 

large difference in size between Figure 5.13A (ideal system with no inlet variability) and 

Figure 5.13B (lowest inlet variability considered, SD = 0.01), provides a stark demonstration 

of the importance of considering parameter variances when designing chromatography 

processes. If this is not accounted for, then the result may be unrealistically good 

expectations and in turn high failure rates. 

 

5.5. Conclusion 

A model based approach was used to identify robust operating conditions for an industrial 

hydrophobic interaction chromatography where resin lot variability, combined with a 

variable feed stream, was resulting in serious performance issues during the purification of a 

multi component therapeutic protein from crude feed material. FDA guidance encourages 

the application of mechanistic models to improve process understanding, based on 

fundamental knowledge of the underlying causes linking process parameters to product 

CQA’s. The methodology presented in this work demonstrates that mechanistic models can 

be very useful for this task, for as well as determining the functional relationship between 

process parameter values and the resulting value of the CQA, they can quickly and 
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efficiently determine the relationship between process parameter and CQA variances, a key 

aspect of providing assurance of product quality. This was not possible using a design of 

experiment type of approach for the HIC considered in this work, due to the impractical 

amount of resources that would be required. 

 

The model based approach combines mechanistic models and stochastic simulation, and was 

used to predict a key product CQA as function of mass challenge and wash length for two 

polar extreme resin lots, designated high and low binding resin, whilst accounting for 

uncertainty in feed stream composition and concentration. With normal process variability, 

no operating condition was found where the probability of both the low and high resin lots 

meeting product quality specifications remained > 0.95. The risk of batch failure when 

operating at the most favourable conditions found in this work was 16%, and selecting 

operating conditions that were eligible for both resin lots meant that operating conditions 

were not robust. Increasing control on the inlet concentration and composition was predicted 

to improve fixed design space robustness, but we found that using an adaptive design space, 

where operating conditions are changed according to which resin lot is in use, was the 

favorable option. 
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Chapter 6. Conclusions and Future Work 

 

The overall aim of this thesis was to derive fundamental process understanding of specific 

industrial chromatographic separations currently in development or operation at Pfizer, via 

the development and application of mechanistic chromatography models. The thesis 

contains three distinct contributions: (1) A platform model of weak partitioning anion 

exchange chromatography was developed to provide a link between high throughput 

screening (HTS) and scouting runs conducted during early process development. (2) An 

experimental investigation was conducted into fouling of the anion exchange weak 

partitioning chromatography, providing a basis for addressing a lack of fundamental 

knowledge and mechanistic understanding of fouling in industrial bioseparations. (3) A 

mechanistic model was used to identify robust operating parameter ranges for an industrial 

hydrophobic interaction chromatography, at a late stage of development, experiencing 

performance issues due to resin lot variability. The key outcome of the work is that there are 

significant advantages to be gained by the use of mechanistic models of chromatography in 

industry. The recommendation for future work is to develop a platform that brings the 

various models, tools, procedures and expert guidance together to allow industrial users to 

efficiently and quickly implement mechanistic models within industrial constraints. The key 

areas that need addressing are discussed related to the modelling framework, model 

parameters and physical properties, model calibration and model applications. 
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6.1. Review of Project Objectives 

The overall aim of this thesis was to derive fundamental process understanding of specific 

industrial chromatographic separations currently in development or operation at Pfizer, via 

the development and application of mechanistic chromatography models. The goal was to 

accelerate the development and increase the robustness of industrial protein purification 

processes, whilst following guidance regarding the implementation of Quality by Design. 

 
6.1.1. Weak partitioning chromatography 

Chapter 3 looked at developing and applying mechanistic models of chromatography at an 

early stage of process development, focusing on the platform anion exchange weak 

partitioning process. This key step in the purification process of monoclonal antibodies 

experienced difficulty delivering the required level of impurity removal, whilst maintaining 

product recovery, when facing challenging load material compositions. In addition, there 

was an overreliance on experimental process development and a lack of fundamental process 

understanding.  

 

A platform model was developed that was applicable at an early stage of process 

development. This was achieved by characterising the equilibrium adsorption isotherms of 

the three key species involved in the separation: the product (monomer) and two product 

related impurities (dimer and multimer) which were not previously known. In addition, a 

new approach was taken where the adsorption was characterised as a function of the product 

partition coefficient, enabling the model to be applied to new candidate monoclonal 

antibodies without additional experimental effort. A simple high throughput screening 

experiment, which can be automated and conducted in a few hours by a trained scientist, was 

all that was needed to calibrate the model to the particular molecule. This experiment is 

routinely conducted as part of the existing experimental approach to process development, 

and as such, does not comprise any additional effort.  

 

The model was applied in concert with stochastic simulation to generate probabilistic design 

spaces which predict the probability of achieving certain purity and recovery as a function of 

operating variables. In the first of two case studies, it was possible to select robust operating 

conditions using the probabilistic design spaces that enabled the purification of previously 

impossible to purify load material with extremely challenging composition. In the second 

case study, it was shown that the probabilistic design spaces could enable the required purity 

to be reached for material with a more standard load composition with very high product 

recovery.  
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The detailed analysis of the model simulations increased fundamental knowledge and 

understanding of weak partitioning chromatography, revealing the complex 

multidimensional design space. The impact of the mean and variance of load concentration, 

load challenge, pH, counterion concentration, and product partition coefficient among 

others, on the mean and variance of purity and recovery will allow for significantly better 

informed process development at Pfizer. 

 

6.1.2. Resin fouling 

Chapter 4 considered a key aspect of industrial chromatographic separations, which in the 

author’s opinion, has not been given sufficient consideration in the mechanistic modelling 

literature: resin fouling. The platform anion exchange weak partitioning chromatography 

process considered in chapter 3 had experienced performance issues due to suspected resin 

fouling. In chapter 4, the location of the fouling on the resin particles, and the mechanistic 

effect of the resin fouling on the chromatographic separation over the lifetime of a column, 

was elucidated. The foulant was found to be located on the resin surface through the use of a 

number of orthogonal experimental techniques. Thus, the primary effect of the fouling was 

to limit mass transfer into the resin particle, rather than reduce the binding capacity of the 

resin itself, which was shown to be recoverable by reducing the flowrate of material during 

column loading. The increased understanding of resin fouling is an important step to 

characterising this important phenomenon mathematically, in order that model predictions 

are more applicable in an industrial setting where column aging is commonplace.  

 

6.1.3. Resin variability 

Chapter 5 considered the development and application of mechanistic models of 

chromatography at a late stage of process development. The chapter considered a 

hydrophobic interaction chromatography process used in the purification of a complex 

multicomponent therapeutic protein. The drug substance produced by the downstream 

processing section of the manufacturing process had to contain a specific ratio of the 

different forms of the protein, but was experiencing serious performance issues due to 

suspected resin lot variability. Prior to this work, an extended range of resin lots were 

obtained from the supplier for testing within normal process operating ranges. All resin lots 

were within the manufacturers specifications for ligand density and chloride capacity. 

Despite this, many failed to meet product quality specifications during testing and would 

have incurred significant losses if used for the large scale manufacture of the product. 
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In chapter 5, a mechanistic chromatography model of the step was developed for the two 

most extreme resin lots which gave the highest (designated high binding resin) and lowest 

(designated low binding resin) protein recoveries at normal operating conditions, in the 

experimental study conducted prior to this work. Model development revealed that the resin 

lot variability manifested itself in the equilibrium adsorption isotherms of the different 

therapeutic protein variants, bringing increased understanding of the issue at hand. The 

model was applied with stochastic simulation to generate probabilistic design spaces for the 

two resin lots which were designated high and low resins. These design spaces showed the 

probability of the final product meeting product specification criteria as a function of the 

load challenge and washlength, the only two operating conditions that were available for 

manipulation because the process was in late stage development. The probabilistic design 

spaces revealed that the optimum solution for a robust process was to vary the washlength 

based on the particular resin lot in use, which is a step change concept for bioprocessing that 

has not been considered before. Model predictions shows that limiting the operating space to 

conditions that gave the highest probability of meeting the product specification for all 

resins, may result in an unacceptable number of batch failures, and a variable final product. 

 

6.2. Recommendations for future work 

It is clear from this thesis that there are significant advantages to be gained by the use of 

mechanistic models of chromatography in industry. However, there is still much work to be 

done before models are used in practice. In the following section, potential directions for 

future work related to use of mechanistic chromatography models in industry are discussed. 

 

The foremost need in order for mechanistic models of chromatography to be used in industry 

is the development of an expert driven software environment that provides users with: (1) a 

library of rigorous mathematical models based upon a chromatography modelling 

framework containing descriptions of all the key phenomena occurring in chromatography 

and supporting unit operations, (2) a database containing physical properties and parameters 

of existing process models, where values for new products and processes can easily be 

added, (3) recommended workflows and experimental standard operating procedures for 

calibrating model parameters for new chromatography processes, including guidelines on 

how to integrate model based approaches for development, design and operation of 

chromatographic processes with current industry procedures, and (4) recommended 

workflows and examples of key model applications such as optimisation, experimental 

design, global sensitivity analysis and automated design space generation. 
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6.2.1. Modelling framework 

 

Mass transfer 

As regards to the availability and quality of models of the various phenomena, the 

mathematical description of mass transport is currently the strongest part of the framework. 

This thesis has shown how even simplistic mathematical models such as the equilibrium 

dispersive model can describe complex multicomponent chromatographic separations as 

seen in the hydrophobic interaction process. More detailed descriptions of mass transport are 

available if required, such as the lumped kinetic and general rate models which account for 

intraparticlar diffusion. Greater understanding of particle level phenomena may be useful, 

especially regarding the impact of localised variations in pH and counterion concentration 

which may prove important when modelling non–isocratic separations. This extension 

would be useful if the mass transfer of the weak partitioning anion exchange system was 

characterised and salt gradients considered, but in general, this section of the framework is 

satisfactory. 

 

Adsorption 

Continued consideration needs to be given to developing fundamental understanding and 

mathematical descriptions of protein adsorption. Although progress has been made in recent 

years (Mollerup et al., 2008), a fundamental description based on thermodynamics of protein 

adsorption has not yet been achieved, and there is reliance on empirical and semi-empirical 

models with parameters fitted to experimental data. In addition, the complexity of feed 

streams and low concentrations of many species in process material means that often a great 

many simplifications and dubious assumptions must be made, as (1) there are limited 

options for modelling the adsorption equilibria seen in this type of system, and (2) accurately 

measuring the very low concentrations of species in heterogeneous material is an extremely 

difficult analytical challenge. In this work, the model of the anion exchange weak 

partitioning chromatography did not account for the impact of process related impurities in 

the load material, such as host cell protein, leached protein A, and virus, all of which would 

be expected to bind strongly to an anion exchange resin. It was assumed that the impact of 

these species would be minimal as they are typically present in very small quantities 

compared to the product related impurities which were considered in the model. This was 

acceptable because the model was for use at an early stage of development, and the impact 

of this assumption was leveraged by platform knowledge and subsequent experimental 

studies. However, in the future, approaches for incorporating these species will need to be 

found as their removal from the final drug substance is considered critical to product quality.  
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Reaction 

A description of the various reactions that occur in chromatographic separations is a critical 

area of weakness that needs to be addressed. As most of the reactions produce undesired 

species, it is important that they are understood and characterised to ideally prevent them 

from happening, but more realistically limit the impact when they occur. The work 

conducted on the fouling of chromatography resin demonstrated the importance of 

accounting for non-ideal reaction phenomena. Although it was determined that the foulant 

itself was composed of primarily protein, thought to have been a complex including protein 

A, product, product related impurities and host cell proteins, there was little understanding 

of the reactions involved in its creation. In particular, the reactions occurring between 

different product forms and species in the load material are of great interest, as it is generally 

understood that these reactions are reversible. If it was possible to describe these reactions 

mathematically, an envisaged extension of the model would be to determine operating 

conditions favourable for the formation of product rather than impurity. 

 

Ionic equilibria 

A further extension to the model framework which would be of great interest is 

characterising the chemical equilibria in the mobile phase. Ionic reactions involving the 

product may play an important role in the chemical reactions as charge plays a large role in 

protein aggregation. However, more importantly, this addition would enable the model to 

accurately assess non-isocratic separations during the load and the wash phases. In relation 

to this thesis, this would enable operating models such as partition coefficient gradients in 

the load and/or wash to be examined for the weak partitioning chromatography process, and 

the buffer conductivity to be considered as an extra manipulated variable in the hydrophobic 

interaction chromatography process.  

 

Chromatography system  

One element of mechanistic modelling of chromatography that is rarely considered, but has 

a large impact on separations, is the chromatography system itself. Most often, system 

parameters such as column length and porosity are measured and assumed to stay constant 

thereafter. However, in practice these parameters will change over a chromatography 

column’s lifetime, and in some cases will differ during each phase of a separation (e.g. load, 

wash, elution etc). Resin particles of the weak partitioning chromatography are known to 

swell and shrink based upon the buffer composition, and column packing is variable, 

especially when moving from laboratory scale to manufacturing scale. This work considered 

the impact of non-ideal, variable chromatography systems in the form of resin fouling of the 

weak partitioning anion exchange process, and the resin lot-to-lot variability of the 
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hydrophobic interaction chromatography. Deriving a mathematical description of the resin 

fouling in the weak partitioning chromatography system is the next logical step. Further 

experimental work is needed to understand the mechanistic effect of the other non-ideal 

phenomenon mentioned above, before mathematical descriptions can be developed.  

 

6.2.2. Physical properties and model parameters 

One of the challenges with developing mechanistic models of industrial chromatographic 

separations is that model parameters have to be determined for each process. The perceived 

experimental effort needed for finding these parameters dissuade the application of model 

based approaches in industry, as there is little guarantee that values will be found that give 

satisfactory model predictions, and it is difficult to conduct the required experiments without 

expert guidance. The makes the investment in a model based approach risky. This work has 

gone further than the usual approach to determining model parameters by developing a 

“platform” model of the anion exchange weak partitioning chromatography, utilising an 

adsorption isotherm model that is based upon the product partition coefficient, and can thus 

be reused for new molecules with minimal experimentation. The idea of reusing models is 

very powerful and one that should be explored further. In the weak partitioning anion 

exchange chromatography process, the next step is to validate the adsorption model by 

applying it to other monoclonal antibodies. However, in general there is a need for new 

approaches to reduce the experimental workload. One of the most important steps could be 

the creation of a physical properties package, containing a database where values for 

parameters of existing process models are stored, and where values for new processes can be 

calculated/added. In addition, emerging fields such as molecular dynamics simulations are of 

great interest for in silico calculation of model parameters. In particular, a relevant area for 

research in relation to this thesis is the use of a molecular model to estimate product partition 

contours, which would theoretically enable completely in silico process development of 

anion exchange weak partitioning chromatographic processes. 

 

6.2.3. Model calibration 

Although there are many different approaches for model calibration that have been 

published, there is a lack of guidance or comparisons on which approach to take in specific 

scenarios. In addition, not enough consideration has been given to how to incorporate model 

calibration approaches into existing industrial experimental development workflows and 

process development timelines. This work showed how it is possible to closely integrate a 

model based approach into the existing the weak partitioning anion exchange experimental 

development process. The next step for the anion exchange process is to extend the mass 
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transfer description and calibrate mass transfer parameters so that the wash phase may be 

modelled.  

 

6.2.4. Model applications 

 

Probabilistic design spaces 

The work conducted on the hydrophobic interaction chromatographic separation in this 

thesis has many areas of future work that can be considered relatively easy to complete. 

Similar to the weak partitioning simulations, there are a range of simple simulation studies 

that can be run with the existing model to evaluate the impact of uncertainty in many of the 

different factors by generating further probabilistic design spaces. The stochastic 

methodology can be easily extended to examine the impact of uncertainty in load challenge, 

column volume, compression factor etc. An interesting study would be to examine and 

compare the contribution from variability in the resin or the load material on the probability 

of meeting product quality specifications. An alternative approach to changing the wash 

length based on the resin lot in use would be to change the operating condition based upon 

the load material composition and concentration. This approach is possible in a Quality by 

Design paradigm. The other thing that is of interest is determining what the impact of 

relaxing or tightening constraints would be. In the case of the hydrophobic interaction 

chromatography, the recovery constraint did not play a role in choosing operating conditions 

as a recovery as low as 52% was still satisfactory. It would be of interest to tighten this 

constraint and determine how different the conclusions would be based on the probabilistic 

design spaces.  

 

Another interesting study would be to use stochastic simulations to determine an allowable 

standard deviation of resin characteristics to fit into a defined design space. In this 

workflow, each new resin would be put through a set of experiments to characterise the 

adsorption equilibria, and then its suitability for use would be determined based on its fit to 

validated ranges. 

 

The difficulty with the probabilistic design space methodology is that it currently requires 

many simulations to be conducted and managing the generated data is very time consuming. 

The time to complete the necessary simulations was reduced by utilising multiple computers 

for the simulations, with each computer considering at a single operating condition, and the 

results imported manually to a central file. Future research into automating this process and 

possible utilisation of multi-core machines, is of great interest.  
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In this work, the statistical analysis of the results from the stochastic simulations was limited 

to determining basic parameters such as probabilities, means and standard deviations of 

critical process parameters etc. The next step in both the anion exchange weak partitioning 

chromatography process and the hydrophobic interaction chromatography process is to 

conduct detailed global sensitivity analysis calculations. A very interesting application of 

this would be to examine interactions between different variables in order to determine 

where additional time and effort in process development should be targeted for the greatest 

increase in process robustness. In addition, another related area of research is to determine 

the actual variability and uncertainty experienced in industrial manufacturing processes, 

which can indicate where to focus future work (i.e. model development in order to gain 

better description of chromatographic processes, or model application to improve process 

robustness).  

 

Evaluation of continuous processing 

One area of great interest that has seen some work, but will require more, is using 

mechanistic models of chromatography to evaluate the move to continuous processing. It is 

relatively straightforward to extend a model that has been developed for a batch 

chromatography process to modelling a continuous process. Of interest with relation to this 

thesis, is evaluating how to convert the batch weak partitioning anion exchange 

chromatography process to a continuous one. In particular, it will be useful to understand the 

benefits with relation to different objectives at different stages in the drug development 

lifecycle, as it is possible that the process may switch from batch to continuous as the 

candidate molecule moves through the various development phases in order to leverage the 

advantages of each approach.  

 

Regulatory considerations 

Regulatory guidance regarding the implementation of Quality by Design has proposed 

greater use of mechanistic models (ICH, 2008a). However, there is no guidance on how this 

should be achieved in practice. Unless this is addressed, it is likely that the use of 

mechanistic models in industry will remain ad hoc and only as a worst case scenario to solve 

a particular problem or scenario. One of the most important areas of future work, if 

modelling approaches are to be used in industry, is that the regulator authorities are 

approached and discussion initiated into how models should, and should not, be applied. 

Formal model validation procedures need to be developed and guidance should be issued on 

how to communicate models and results in filings, in addition to the publication of 

exemplary modelling case studies and examples by the regulatory authorities. 
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Process optimisation 

Rigorous process optimisation has been used extensively for many years in traditional 

chemical engineering sectors such as oil and gas, and is a proven approach for gaining 

maximum value out of a process. However, despite optimisation of chromatographic 

processes being a topic that is often revisited in the literature, there is little uptake in 

industry. This is because the primary objective in industry is the production of a product of 

consistent quality in amounts satisfying demand, and as a year’s supply can be produced in a 

single manufacturing campaign lasting only a few weeks for many products, most 

optimisation examples, such as maximising the recovery or minimising the cost of a 

particular piece of equipment, are just not relevant. There is a real need for examples of 

optimisation where the objective function is more relevant, such as maximising process 

robustness. In addition, chromatographic processes often experience lots of variability and 

uncertainty (e.g. most have variable and unknown feed material compositions and 

concentrations), and since the solution to optimisation studies is heavily dependent on the 

input variables, most solutions are easy to write off as irrelevant in all practical sense. There 

is a need for new optimisation studies which demonstrate how to account for this uncertainty 

whilst searching for a solution. 

 

6.2.5. Summary 

Future work should focus on (1) reducing the required effort to implement a model based 

approach in industry, (2) demonstrating the value of the approach using case studies and 

exemplary examples, and (3) providing relevant regulatory guidance on its implementation. 

The current state of the art in mechanistic modelling of chromatographic separations should 

be brought together into a single software tool, to create a platform that enables more 

straightforward application in the biopharmaceutical industry. The tool should contain a 

library of mathematical models and physical properties, as well as guidance on model 

calibration, validation and application. In parallel to the development of such a tool, further 

work should be conducted on mathematical models of adsorption, reaction, ionic equilibria 

and column systems to increase the applicability of models in industry. Further work should 

also be conducted to demonstrate the industrial relevance of model applications such as 

design space generation, global sensitivity analysis and process optimisation. Lastly, and 

probably most importantly, regulators, biopharmaceutical companies, and modelling experts 

need to come together to develop formal guidance on good modelling practices which 

describe how models must be used in industry. 
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Chapter 8. Appendix A 

 

The following appendix contains a table summarising the literature reviewed in chapter 2 

with regard to the mode of chromatography, the retention mechanism, the molecules of 

interest, the impurities considered, the mass transfer model, and the adsorption model, in 

addition to brief notes on each study.  
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 Table 8.1. Studies using mechanistic models of chromatography for studies related to the purification of therapeutic proteins (part 1)  

Reference Mode Retention mechanism 
Molecules of 

interest 
Impurities 

Mass transfer 

model 
Adsorption model Notes 

Charton et al., 1994 Elution cellulose based  
Ketoprofen 
enantiomers 

N/A 
Equilibrium 
dispersive 

Bi-Langmuir  Explored recycling  

Boyer and Hsu, 1992 
Pulse 
injections 

None- sepharose matrix, 
size exclusion 

Myoglobin, Beta-
Lactoglobulin, 
Ovalbumin, 
Albumin, 
Hexokinase, 
Immunoglobin G, 
Catalase 

N/A General Rate model N/A 
Restricted protein diffusion in 
agarose matrix. Looked at 
mass transfer correlations. 

Li et al., 1998 elution Size exclusion 
Myoglobin, 
Ovalbumin 

N/A General Rate model N/A 
Scale up and sensitivity of 
mass transfer parameters  

Gu et al., 1990 

frontal, 
elution and 
displacemen
t 

N/A Not specific N/A General Rate model 
Multicomponent 
Langmuir  

Displacement phenomena in 
multicomponent systems 

Gu et al., 1990 elution N/A Not specific N/A General rate model Langmuir 
Considerations of desorption 
chromatography  

Natarajan and Cramer, 
2000 

N/A Cation exchange 

alpha 
chymotrypsinogen 
A, ribonuclease 
A, nyomysin 
sulphate 

N/A Lumped rate model Steric mass action 
Method for identifying 
appropriate mass transport 
models 
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Table 8.2. Studies using mechanistic models of chromatography for studies related to the purification of therapeutic proteins (part 2)  

Reference Mode Retention mechanism 
Molecules of 

interest 
Impurities 

Mass transfer 

model 
Adsorption model Notes 

Kaczmarski et al., 2001 elution Anion exchange 
Bovine Serum 
Albumin 

N/A 

General rate, 
lumped pore, 
equilibrium 
dispersive, transport 
dispersive 

modified bi-
Langmuir  

Comparing breakthrough 
curves from different models 
of chromatography 

Teoh et al., 2001 
isocractic 
elution 

size exclusion 

nitrobenzene, 
naphthalene, 
flourene, 
fluoranthene 

N/A 
Equilibrium 
dispersive 

Langmuir 
simulation and optimisation of 
a closed loop recycling HPLC  

Charton et al., 1994 Elution cellulose based  
Ketoprofen 
enantiomers 

N/A 
Equilibrium 
dispersive 

Bi-Langmuir  Explored recycling  

Kaczmarski et al., 2002 
isocractic 
elution 

cellulose tribenzoate 
1-phenyl-1-
propanol 
enantiomers 

N/A 

General rate model 
with the generalised 
maxwell stefan 
equation 

competitive toth  

Developing a extremely 
detailed model of the 
enantiomer separation where 
mass transpot is relatively 
slow 

Gallant,2004 N/A ion exchange 
alpha - 
Chymotrypsinoge
n, Cytochroma C 

N/A Particle model SMA 
Developing understanding of 
adsorption of protesin in 
spherical particles 

Persson et al., 2006 N/A N/A BSA N/A General rate model N/A 

To derive methods and 
understanding of flow rate and 
bead size dependency of mass 
transfer coefficients 
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Table 8.3. Studies using mechanistic models of chromatography for studies related to the purification of therapeutic proteins (part 3) 

  

Reference Mode Retention mechanism 
Molecules of 

interest 
Impurities 

Mass transfer 

model 
Adsorption model Notes 

Susanto et al., 2006 
Flowthroug
h 

Anion exchange BSA N/A General rate model Steric mass action 
Used insights from confocal 
microscopy for developing the 
particle model 

Bak et al., 2007 Bind/Elute Affinity 
Clarified rabbit 
antiserum 

HCP, DNA Ideal 
Lumped parameter 
approach with 
Langmuir kinetics 

Interesting as the study 
considered crude feed material 

Sun and Yang, 2007 
Batch 
uptake 

anion exchange 
Bsa and gamma 
globulin 

N/A Maxwell stefan  langmuir 
compared fickian diffusion 
with maxwelll stefan diffusion 

Chan et al., 2008 
isocratic and 
gradient 
elution 

ion exchange 
Many model 
proteins 

N/A 
equilibrium 
dispersive and 
general rate model 

linear 

Proposed approach for 
estimating model parameters 
using inverse method when 
feed material is unknown 

McCue et al., 2008 Bind/Elute Hydrophobic interaction Fusion protein 
Aggregated fusion 
protein 

Lumped pore model 
Competitive 
langmuir binary 

Included a term in the model 
for irreversible binding 

To and Lenhoff, 2008 
Isocratic 
elution 

Hydrophobic interaction 

Ribonuclease A, 
lysozome,  
lactalbumin, 
ovalbumin, BSA 

N/A General rate model 

Kinetic expression 
including 
conformational  
change on the resin 
surface 

The elution profiles of five 
model proteins were 
investigated in eight 
hydrophobic interaction resins 

Melter et al. 2008 
Isocratic 
elution 

Cation exchange 
Monoclonal 
antibody variants 

N/A General rate model 
Langmuir with 
mobile phase 
modifiers 

characterisation of mAb 
varaints 
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Table 8.4. Studies using mechanistic models of chromatography for studies related to the purification of therapeutic proteins (part 4) 

 

  

Reference Mode Retention mechanism 
Molecules of 

interest 
Impurities 

Mass transfer 

model 
Adsorption model Notes 

Muller – Spath et al., 
2011 

Bind/Elute Cation exchange 
Monoclonal 
Antibody 

Aggregate, HCP, 
DNA 

Lumped kinetic 
model 

Competitive 
Langmuir 

- 

Nagrath et al., 2011 
displacemen
t and 
gradient 

Hydrophobic interaction  
lysozyme and 
lectin 

N/A general rate model  
preferential 
interaction quadratic 
adsorption  

characteriosation and 
mdoelling of HIC using the 
PIQ isotherm 

Sandoval et al. 2012 
Gradient 
elution 

Affinity 
IgG, BSA, 
Haemoglobin 

N/A General rate model 
Second order 
kinetic binding 
expression 

Power law and exponential 
elution relationships were 
used to simulation gradient 
elution 

Guélat et al. 2012 

Bind/Elute 
(isocratc 
and gradient 
elution) 

Cation exchange 
Monoclonal 
antibody variants 

N/A General rate model 
competitive multi 
component 
Langmuir 

Henry constants were 
calculated using a statistical 
thermodynamic model based 
on properties of the proteins. 

Borg et al., 2013 
Isocratic 
elution 

reversed phase insulin n/A 
Equilibrium 
dispersive model 

Langmuir with 
mobile phase 
modulators 

analyse effects of uncertainty 
in estimation of model 
paramerers 

Gu et al. 2013 Bind/elute Anion exchange BSA N/A General rate model Langmuir - 
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Table 8.5. Studies using mechanistic models of chromatography for studies related to the purification of therapeutic proteins (part 5)  

Reference Mode Retention mechanism 
Molecules of 

interest 
Impurities 

Mass transfer 

model 
Adsorption model Notes 

Karlsson et al., 2004 
Gradient 
elution 

Ion exchange IgG and BSA N/A General rate model 
Langmuir with 
mobile phase 
modifiers 

Optimisation 

Jakobsson et al., 2005 
Isocratic 
elution 

Ion exchange 
IgG, BSA and 
myoglobin 

- 
Equilibrium 
dispersive 

Steric mass action Robustness 

Degerman et al., 2006 
Gradient 
elution 

Ion exchange IgG and BSA - General rate model 
Langmuir with 
mobile phase 
modifiers 

Optimisation 

Mollerup et al., 2007 
isocratic 
elution 

ion exchange 

BSA, Beta 
lactoglobulin A 
and B, and alpha 
lactalnumin 

N/A Reactive dispersive Association model optimistaion and scale up 

Degerman et al., 2007 
Isocratic 
elution 

Reversed phase Insulin Desamido insulin 
Equilibrium  
dispersive 

Kinetic Langmuir Optimisation 

Susanto et al., 2008 
Isocratic 
elution 

cation exchnage lysozyme N/A 
Equilibrium 
dispersive 

Kinetic langmur 
optmisation using high 
throughput screening 
development methods 

Chan et al., 2008 
Isocratic 
elution 

N/A N/A N/A kinetic dispersive linear 
Optimisation and 
understanding of HIC 
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Table 8.6. Studies using mechanistic models of chromatography for studies related to the purification of therapeutic proteins (part 6)  

Reference Mode Retention mechanism 
Molecules of 

interest 
Impurities 

Mass transfer 

model 
Adsorption model Notes 

Teeters et al., 2009 Elution Protein A 
Monomer and 
dimer mAb 

N/A Kinetic dispersice N/A 
optmisation of recovery and 
clearance during protein A 
elution 

Degerman et al., 2009 
Isocratic 
elution 

Ion exchange, 
hydrophobic interaction 
and reversed phase 

IgG and insulin 
BSA, Desamido 
insulin, myoglobin 

Kinetic dispersive 
and general rate 

Langmuir with 
mobile phase 
modifiers 

Robustness  

Westerberg et al., 2010 
Isocratic 
elution  

Reversed phase  human insulin kinetic dispersive 
Langmuir with 
mobile phase 
modifiers 

design and control  

Gerontas et al. 2010 
Isocratic 
elution 

Ion exchange 
BSA and 
lactoferrin  

- General rate 
Langmuir kinetics 
with phase modifier 

Scale up 

Nfor et al. 2011 
Isocratic 
elution 

Mixed mode 
BSA, ovalbumin, 
amyloglucosidase 

- Lumped kinetic 
Multi-component 
mixed mode 
formalisation 

Resin selection 

Ng et al., 2012 Bind/Elute Affinity IgG BSA 
Equilibrium 
dispersive 

Langmuir with 
mobile phase 
modifiers 

Optimisation 

Westerberg et al., 2012 
Isocratic 
elution 

Ion exchange 
Therapeutic 
protein 

A strong and weak 
impurity 

Equilibrium 
dispersive 

Self-association 
isotherm 

Robustness 
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Table 8.7. Studies using mechanistic models of chromatography for studies related to the purification of therapeutic proteins (part 7) 

 

Reference Mode Retention mechanism 
Molecules of 

interest 
Impurities 

Mass transfer 

model 
Adsorption model Notes 

Osberghaus et al., 2012a 
Gradient 
elution 

Ion exchange 
Lysozyme, 
ribonuclease A 
and cytochrome C  

- General rate Steric mass action Optimisation and scale up 

Osberghaus et al., 2012b 
Gradient 
elution 

Ion exchange 
Lysozyme, 
ribonuclease A 
and cytochrome C  

- General rate Steric mass action Optimisation and scale up 

Osberghaus et al., 2012c 
Gradient 
elution 

Ion exchange 
Lysozyme, 
ribonuclease A 
and cytochrome C  

- General rate Steric mass action Optimisation and scale up 

Gétaz et al., 2012 
Isocratic 
elution 

Reversed phase Peptide 

Complex mixture 
of over 20 
impurities 
simplified by 
classification into 
3 groups 

Lumped kinetic 

Combined a 
Langmuir with  
Moreau type 
isotherm 

Design space determination 

Gétaz et al., 2013 
Isocratic 
elution  

Reversed phase Peptide 

Complex mixture 
of over 20 
impurities 
simplified by 
classification into 
3 groups 

Lumped kinetic 

Combined a 
Langmuir with  
Moreau type 
isotherm 

Design space determination 

Nfor et al., 2013 
Isocratic 
and gradient 
elution 

Ion exchange, 
hydrophobic and size 
exclusion 

Monoclonal 
antibody 

Full set of 
impurities from 
HCCS cell line 

Lumped kinetic  
Multi-component 
mixed mode 
formalisation 

Process synthesis 
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Chapter 9. Appendix B 

 
The following appendix contains a description of the equations used in the general rate 

model, and the equilibrium dispersive model. 

  



 

203 
 

9.1. Equilibrium dispersive model 

The differential mass balance in the bulk mobile phase is: 

 

Ó���Ó* +
J1 − 67L67 ∙ ÓC�

	

Ó* + - ∙

Ó���Ó3 = �� ∙
ÓE���Ó3E 						 

   ∀				� = 1, 2, … , "# 								3 ∈ J0, �L   [9.1]  

where ��� is the concentration of component � in the mobile phase, * is the time, 67 is the 

total column porosity, C�	
 is the concentration of component � in the stationary phase, - is 

the interstitial velocity, 3 is the axial coordinate, �� is the apparent axial dispersion 

coefficient, "#  is the number of components in the system, and � is the column length. 

Ó��� Ó*⁄  is the rate per unit volume of accumulation of component � in the mobile phase  

JJ1 − 67L 67⁄ L ∙ OÓC�	
 Ó*⁄ P is the rate per unit volume of accumulation of component � in 

the stationary phase, - ∙ JÓ��� Ó3⁄ L is the rate per unit volume of mass transfer by 

convection down the column, and �� ∙ JÓE��� Ó3E⁄ L is the rate per unit volume of mass 

transfer by dispersion and particle mass transfer kinetics lumped into one term. The total 

column porosity, 67, is defined as the ratio between the void volume, .+, and the column 

volume, .#: 

    67 = �x
�É     [9.2] 

 

The boundary conditions for Equation [9.10] are the following (Guiochon, 1994): 

At the inlet of the column, i.e. at z = 0, the mobile phase concentration, ���, depends on 

convection and dispersion: 

 

  Ø-���–�� Ê#��ÊÎ Ù |Î	U	+ = 	-��,+� 											∀				� = 1, 2, … ,"#  [9.3] 

 

where ��,+�  is the inlet concentration.  

At the outlet of the column, only convective transport is considered: 

 

   
Ê#��ÊÎ |Î	U	u = 	0										∀� = 1, 2,… , "#       [9.4]  

 

An initial condition is also required to solve Equation [9.1] which states that the rate per unit 

volume of accumulation in the mobile phase of component � at * = 0 is zero at all points 

interior to the column: 

  
Ê#��Ê� = 0						0 < 3 < �		∀� = 1, 2,… , "#    [9.14] 
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Illustrating the equilibrium dispersive model 

  

i. Accumulation in 

the mobile phase 

ii. Accumulation in 

the stationary phase 

iii. Convection 

through the column 

iv. Diffusion through 

the column 

Ê#��Ê� + JCdËÚLËÚ ∙ Êµ��ÍÊ� + - ∙ Ê#�
�
ÊÎ = ��,� ∙ Ê

Ï#��ÊÎÏ 						∀� = 1, 2,… , Nµ			3 ∈ J0, �L  
1a. Mass Transfer through Column 

i ii. iii iv. 

C�	
 =	 ��∙#��C�∑ 9Ü#Ü��ÜÝÆ 						∀� = 1, 2,… , Nµ					3 ∈ J0, �L  
Adsorption 

Ø-���–��,� Ê#��ÊÎ Ù |Î	U	+ = 	-��,+� 		∀� = 1, 2, … , Nµ  

Boundary Condition at Þ = 0 
Ê#��ÊÎ |Î	U	u = 	0  

 Boundary Condition at Þ = � 

Initial Conditions 

Ê#��Ê� = 0						0 < 3 < �  
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9.2. General rate model 

In the general rate model, a differential mass balance over the packed bed of particles in the 

column describes convection through the column, axial dispersion and transport through the 

external film at the particle surface: 

 

Ó���Ó* +
3��J1 − 6ßL6ß ∙ v��� − ��
|/UpÍ{ + - ∙ Ó��

�
Ó3 = ��� ∙

ÓE���Ó3E 					 
  ∀				� = 1, 2, … , "# 			�à�			3 ∈ J0, �L    [9.6] 

 

where ��� is the concentration of component � in the extra particular mobile phase, * is the 

time, 6ß is the bed porosity, �� is the film mass transfer coefficient of component �, ��
 is the 

concentration of component � in the intra particular mobile phase, ' is the coordinate of the 

radial dimension through resin particles, (
 is the particle radius, - is the interstitial 

velocity, 3 is the coordinate of the axial dimension along the length of the column, ��� is the 

axial dispersion coefficient, "#  is the number of components in the system, � is the column 

length. Ó��� Ó*⁄  is the rate per unit volume of accumulation of component � in the extra 

particular mobile phase,  fá�JCdËÚLËÚ ∙ v��� − ��
|/UpÍ{ is the rate per unit volume of component � 
transferred from the extra particular mobile phase, through the external film, to the intra 

particular mobile phase at the surface of the particle, - ∙ JÓ��� Ó3⁄ L is the rate per unit 

volume of mass transfer by convection down the column, and ��� ∙ JÓE��� Ó3E⁄ L is the rate 

per unit volume of mass transfer by dispersion. The bed porosity, 6ß, is defined as the ratio 

between the void volume between resin particles, .ß, and the column volume, .#: 

 

    6ß = �Ú
�É     [9.7] 

 

The boundary conditions for Equation  [9.1] are the following (Guiochon, 1994): 

 

At the inlet of the column, i.e. at z = 0, the mobile phase concentration, ���, depends on 

convection and dispersion: 

 

  Ø-���–�� Ê#��ÊÎ Ù |Î	U	+ = 	-��,+� 											∀				� = 1, 2, … ,"#  [9.8] 

 

where ��,+�  is the inlet concentration.  

At the outlet of the column, i.e. at z = column length, only convective transport is 

considered: 
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Ê#��ÊÎ |Î	U	u = 	0										∀� = 1, 2,… , "#   [9.4] 

 

An initial condition is also required to solve Equation 9.6 which states that the rate per unit 

volume of accumulation in the extraparticular mobile phase of component � at * = 0 is zero 

at all points interior to the column: 

 

   
Ê#��Ê� = 0						0 < 3 < �		∀� = 1, 2,… , "#   [9.10] 

 

The differential mass balance over the resin particle pores in the radial dimension describes 

diffusion of components through the stagnant mobile phase within the resin pores: 

 

6
 Ó��


Ó* + O1 − 6
P

Ó&�Ó* −	6
��,� k
1
'E
Ó
Ó' Á'E

Ó��
Ó' Çm = 0					 
  ∀� = 1, 2, … , "					3 ∈ J0, �L					' ∈ J0, (L     [9.11] 

 

where 6
 is the particle porosity, &� is the concentration of component � per unit volume of 

the solid adsorbent phase, and ��,� is the molecular diffusivity of component � in the 

intraparticular mobile phase. The boundary conditions for Equation [9.6] are the following: 

  

At the surface of the particle the mass transport is controlled by film mass transfer: 

 

 
Ê#�ÍÊ/ = 	 á�

ËÃâ�,� ∙ v��� − ��
|/UpÍ{						∀� = 1, 2,… , "# 							' = 	(�  [9.12] 

 

At the centre of the particle there is no mass transfer due to the symmetrical geometry of the 

particle: 

 

   
Ê#�ÍÊ/ = 0					∀� = 1, 2,… , "# 							' = 0   [9.13] 

 

The initial condition required to solve Equation [9.6] states that the rate per unit volume of 

accumulation in the intraparticular mobile phase of component � at * = 0 is zero at all points 

interior to the column: 

   
Ê#�ÍÊ� = 0							∀� = 1, 2,… , "# 										0 < ' < (
  [9.14] 
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Illustrating the general rate model 

Mass transfer through resin pores 

6
 Ê#�ÍÊ� + O1 − 6
P Ê�Ê� −	6
��,� ã C/Ï ÊÊ/ H'E Ê#�
Í

Ê/ Mä = 0					∀� = 1, 2,… ,"					3 ∈ J0, �L					' ∈ J0, (L  

Adsorption 

Q�	
 =	�� ∙ Q�
				∀� = 1, 2, … , Nµ					3 ∈ J0, �L					' ∈ J0, (L  

Extraparticular mobile phase initial conditions 
Ê#��Ê� = 0						0 < 3 < �		∀� = 1, 2,… ,"#  

Ê#��ÊÎ |Î	U	u = 	0										∀� = 1, 2,… ,"#  

Boundary condition at 3 = � 

k-���–�� Ó��
�
Ó3 m |Î	U	+ = 	-��,+� 											∀				� = 1, 2,… , "# 

Boundary condition at 3 = 0 

Ó��
Ó' = 	
��6���,� ∙ v��

� − ��
|/UpÍ{						∀� = 1, 2, … ,"#  

Boundary condition at 							' = 	(�	 Boundary condition at ' = 0 

Ó��
Ó' = 0					∀� = 1, 2, … ,"# 								 

Ó���Ó* +
3��J1 − 6ßL6ß ∙ v��� − ��
|/UpÍ{ + - ∙ Ó��

�
Ó3 = ��� ∙

ÓE���Ó3E 						∀				�
= 1, 2, … ,"#

Mass Transfer through Column 

Intraparticular mobile phase initial conditions 
Ê#�ÍÊ� = 0							∀� = 1, 2, … , "# 										0 < ' < (
  


