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ABSTRACT 

Three-dimensional domain swapping is an important mode of protein association leading to the 

formation of stable dimers. Monomers associating via this mechanism mutually exchange a 

domain to form a homodimer. Classical cadherins, an increasingly important target for anti-

cancer therapy, use domain swapping to mediate cell adhesion. However, despite its importance, 

the molecular mechanism of domain swapping is still debated. Here we study the conformational 

changes leading to the activation and dimerization via domain swapping of E-cadherin. Using 
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state-of-the-art enhanced sampling atomistic simulations, we reconstruct its conformational free 

energy landscape, obtaining the free energy profile connecting the inactive and the active form. 

Our simulations predict that the E-cadherin monomer populates almost equally the open and the 

closed form, in agreement with one of the proposed mechanisms, the "selected fit", in which 

monomers in an active conformational state bind to form the homodimer, in analogy to the 

conformational selection mechanism often observed in ligand-target binding. Moreover, we find 

that the open state population is increased in the presence of calcium ions at the extra-cellular 

boundary, suggesting their possible role as allosteric activators of the conformational change. 

INTRODUCTION  

Protein-Protein interactions play such a fundamental role in living organisms that proteins are 

prevalently found in a multimeric aggregation state. Oligomerization can occur in different ways. 

A common and intriguing mode of association is the so-called three-dimensional (3D) domain 

swapping,1 in which oligomers are formed from monomers by exchanging domains. The 

swapping domains, connected to the remaining part of the protein by a portion called the ‘hinge 

loop’, can either be a single secondary structure element, such as a β-strand, or a more extended, 

multi-structured polypeptide chain. In the monomeric state, the swapping domains are folded 

inside an acceptor pocket (‘closed form’), while in the oligomeric form, they extend onto the 

corresponding pocket of another protein (‘open form’).2 

Among proteins exhibiting 3D domain swapping, cadherins are of particular interest. A large 

family of calcium-dependent adhesion molecules found at intercellular junctions, cadherins 

mediate cell-cell adhesion by forming dimers between the N-terminal domains of two proteins 

localized on adjacent cells.3 Cadherins pivotal role in cell adhesion explains the involvement of 
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several of these proteins in tumor progression, making them a promising target for anticancer 

therapies. For instance E-cadherin, regarded as the prototypical member of classical cadherins, 

has been reported to play a critical role in the proliferation of various types of cancer.4,5 For this 

reason, new anti-cancer agents targeting cadherins are being developed.6,7 

Classical cadherins consist of an N-terminal extracellular (EC) portion, constituted by five 

domains (EC1-EC5) rigidified at the interface by calcium ions. Dimerization occurs through the 

mutual exchange of a highly conserved N-terminal sequence, comprised of the six residues 

DWVIPP (the “adhesion arm”). In particular, the Trp residue, which in the closed form is 

inserted in a hydrophobic pocket within the EC1 of the same protein, is docked into the 

corresponding binding site of the partner protein in the swap dimer (Figure 1). 

 

Figure 1. The adhesive binding mechanism of classical cadherins as an example of 3D domain 

swapping. In the closed form Trp2 is inserted in its hydrophobic pocket while in the swapped 

dimer it binds to the hydrophobic pocket of another cadherin molecule (pdb code: 3Q2V). On the 

left, the salt bridge formed in the closed monomer between the side chain of Glu89 and the N-

terminus NH3
+ of Asp1 can also be appreciated. Structure for the closed monomer derives from 

our simulations. 
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Clusterization of such swap dimers at the cellular interface leads to the formation of organized 

oligomers.8 

In the last decade, experimental data suggesting the existence of two possible 3D swapping 

mechanisms, a selected fit and an induced fit pathway (Figure S1), have been reported.9–13 The 

former mechanism assumes that monomers in the closed form first undergo a conformational 

change leading to the active open form and only in a second step they bind each other. According 

to the induced fit mechanism, the dimerization occurs via an intermediate complex, the 

‘encounter complex’, that lowers the energy barrier required for the swap dimer formation. The 

mechanism through which the two monomers form the encounter complex, as well as the 

conformational changes that lead to the swap dimer from the encounter complex, are currently 

unknown. Moreover, the encounter complex has not been yet structurally characterized, although 

it is usually associated with the so-called X-dimer, an alternative dimer conformation which is 

formed when swap-impaired cadherins aggregate.14 However, it is worth noting that mutations 

that prevent the formation of the X-dimer do not alter the ability of classical cadherins to form 

swap dimers.12 This suggests the existence of at least two alternative mechanisms of dimerization 

of classical cadherins. Herein, we investigate the selected fit hypothesis by reconstructing the 

free energy profile of the conformational transition of the type I E-cadherin monomer, from its 

closed inactive state to the open form. This represents the first step of the supposed two-step 

selected fit mechanism. Only if the free energy and population of the two forms are comparable a 

selected fit mechanism would be possible.  

The timescale involved in the swapping mechanism prevents the observation of cadherins 

conformational changes with conventional Molecular Dynamics (MD) simulations. For this 
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reason we used a state-of-the-art enhanced sampling technique, namely a combination of parallel 

tempering and metadynamics PT-MetaD15.  

This method has been successfully used to converge the multi-dimensional free energy 

landscape associated with the folding of small proteins,15,16 complex conformational changes in 

protein kinases17,18 and the folding and oligomerization of fibritin foldon domains.19 In the Well 

Tempered Ensemble (WTE) methodology, used in the present study, a static bias on the potential 

energy of the system is applied in the PT-MetaD simulation, with the purpose of increasing the 

energy overlap between replicas and thus enhancing the sampling efficacy.20 

Since calcium ions modulate cadherins biological activity, we also investigated their role in the 

E-cadherin monomer closed-to-open transition. First, we assessed the stability of the EC1-EC2 

domain with and without calcium ions, by performing two 100 ns unbiased MD simulations 

(Figure S2). As also shown in a previous work,21 absence of Ca2+ ions at the EC boundary causes 

the system to lose its linearity, which is needed by the cadherin in order to carry out its function. 

As a consequence, the systems for the subsequent biased simulations were set up as follows: (1) 

EC1 domain with no Ca2+ ions and (2) EC1-EC2 domain containing three Ca2+ ions at the inter-

domain boundary. By analyzing the free energy profiles of the two systems, we extrapolated the 

impact of the calcium ions in favoring the E-cadherin conformational change. 

EXPERIMENTAL SECTION 

In a recent comparative study22 CHARMM22*23 and Amber99SB*-ILDN23,24 were ranked 

among the best protein force fields, both reproducing a wide range of experimental data. More 

recently, we compared the performance of these two force-fields together with PT-metaD in 

reproducing the conformational energy landscape of proline isomerase.25 Both were able to 
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reproduce the experimental free energy difference between the major and minor conformers, but 

the simulations performed with CHARMM22* showed an enhanced flexibility, in agreement 

with previous observations that it might be better at predicting the folding kinetics of small 

proteins. Thus, here we performed our simulations using the CHARMM22* force field together 

with GROMACS 4.5.526 and PLUMED 1.3.27 We obtained the initial coordinates from the X-ray 

structure (PDB id: 1FF528) of an E-cadherin X-dimer, which is the only available experimental 

structure in a closed conformation. Then, we constructed two independent monomeric systems in 

the closed form, EC1 containing residues 1-99 and no calcium ions, and EC1-EC2 containing 

residues 1–215, three Ca2+ ions at the extracellular boundary and a fourth calcium ion at the end 

of EC2. The first system was solvated in a rhombic dodecahedron box adding 9253 TIP3P water 

molecules and the second was solvated in a triclinic box adding 15136 TIP3P water molecules. 

Calcium ions were modeled following Bjelkmar and co-workers.29 We started our simulations by 

first minimizing the systems using a steepest descent algorithm. We then performed an 

equilibration in two steps: first, we simulated the systems for 1 ns at 300 K in an NVT ensemble, 

using the velocity-rescale thermostat31 and positional restraint on the proteins, then, a 10 ns NPT 

simulation using a Parrinello-Rahman barostat32 with no restraint concluded the equilibration. 

Particle Mesh Ewald method was used for treating long range electrostatics, using a cutoff of 10 

Å. A time step of 2 fs was used for all simulations.  

To run in the WTE ensemble, we first performed a preliminary PT-MetaD15,16 run with four 

replicas of each system using the potential energy as the only CV, according to the original WTE 

article.20 Temperatures for each replica were 300 K, 330 K, 362 K and 398 K. Gaussians having 

height of 4.0 kJ/mol were added every 500 MD steps. Exchanges among replicas were attempted 

every 250 MD steps. The average exchange probability was around 30% for both systems. The 
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obtained bias on the potential energy was kept fixed during the following PT-MetaD run, thus 

running in the WTE ensemble. 

The production run for each system was performed using the following three Collective 

Variables: the distance between His79 Cα and the centroid of the indole moiety in Trp2 (CV1), 

needed to discriminate between closed and open conformations, the improper dihedral defined 

by two heavy atoms in the Trp indole ring and the centroids of two sets of Cα atoms in the β-

strand regions 73-80 and 92-97 (CV2), which well describes the orientation of Trp2 indole 

moiety inside the cavity, and a Contact Map counting the number of selected contacts between 

the adhesion arm and its pocket (CV3). The Contact Map was selected on the basis of the cluster 

analysis of snapshots of closed, intermediate and open forms of E-cadherin taken from short 

MetaD simulations. Analysis of the different atom distances between the hydrophobic pocket 

and the opening arm, in the three forms, allowed us to define a CV describing the path along 

which the conformational change occurs (see Figure S3 and Table S1 for a depiction of the 

CVs). Gaussians of height 1.3 kJ/mol were added every 500 MD steps, using a bias factor of 12 

for both systems. Simulations ran in NVT conditions with a time step of 2 fs until all the 

interesting regions in the CV space were fully explored. To assess the convergence of the 

simulations, we applied a recently developed reweighting algorithm by Tiwary and Parrinello33 

and obtained a time-independent estimate of the free energy (Figure S4 for the projection of the 

free energy onto CV1), by which we calculated the error on the free energy differences. In 

addition, we independently rerun the EC1 system and verified that the reconstructed free 

energies converge to the same profile (Figure S5). 
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Conformations belonging to each minimum were extracted and clustered using the g_cluster 

GROMACS tool with a single linkage method and a cut-off of 1 Å over the RMS distance 

computed on EC1 Cα atoms. 

RESULTS 

The conformational free energies surfaces projected onto two relevant coordinates, namely the 

His79-Trp2 distance (CV1) and the orientation of the Trp2 indole moiety with respect to the 

protein backbone (CV2), are shown in 

Figure 2. 

 

Figure 2. Free energy surfaces (at 300K) 

associated with the closed-to-open 

conformational transition of EC1 (top) and 

EC1-EC2 (bottom) E-cadherin, projected 

on the CV1 (Trp2-His79 distance) and 

CV2 (Trp2 orientation) space. The most 

representative structures of each local 

minimum, obtained from cluster analysis, 

are reported. Contour lines are drawn with 

a stride of 2 kJ/mol. 

In both systems, the global minimum corresponds to a closed conformation (minimum A in 

both maps) with the Trp2 side chain being firmly docked into its hydrophobic pocket and 

forming an hydrogen bond with the Asp90 backbone, as observed in the X-ray structure. 
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However, while the EC1-EC2 complex is characterized by a salt bridge between the Asp1 N-

terminus and the Glu89 side chain (99% of the structures), the EC1 alone formed this interaction 

only in the 47% of the structures (in the remaining 53% the Asp1 N-terminus is exposed to the 

solvent). Only at higher energies (by at least 8 kJ/mol) we could observe closed conformations in 

which the indole moiety plane is differently oriented inside the pocket and either points towards 

Glu89 (90 degrees rotation of the indole plane with respect to the structures representing the 

global minimum) or Lys25 (180 degrees rotation). These conformations, characterized by a loose 

Asp1-Glu89 salt bridge are likely to represent metastable closed-like forms, with weaker 

interactions between the adhesion arm and the hydrophobic pocket. These findings regarding the 

closed form of both systems are in agreement with the hypothesis of an open/closed state 

equilibrium in which the Trp2 indole exits the cavity and re-enters it with a different orientation. 

The other energy minima found on the maps represent different open states of EC1 (Figure 2, 

up) and EC1-EC2 (Figure 2, down). Indeed, the Trp2 side chain is relatively free to move in 

solution and so it can adopt different conformations. The presence of calcium ions at the EC 

boundary seems to enhance this entropy-driven process, since in EC1-EC2 we observe a broader 

selection of open conformations. In both cases the open forms adopt different positions of the 

indole Trp2 ring with respect to the protein principal axis at the same value of the Trp2 distance 

from binding pocket. In fact, considering only the CV1 values (see also Figure S6), both systems 

showed two major open states, one located at CV1 values around 10 Å, in which the adhesion 

arm tends to adhere to the rest of the protein in order to minimize solvent exposure (as in minima 

B of Figure 2) and another, energetically more favored, located at CV1 values around 16 Å, with 

the adhesion arm completely exposed to the solvent (minima C, D and E of Figure 2). It is worth 

noting that the most representative structures of EC1-EC2 belonging to the minimum C1 
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superimpose well to the open conformation of the X-ray swap dimer structure (PDB id: 3Q2V,8 

Cα RMSD = 0.76 Å, Figure S7). In EC1, the energy difference between the main open and 

closed minima is 5.4 ± 1.5 kJ/mol, while in EC1-EC2 the minimum located at 16 Å is 

isoenergetic (with an estimated sampling error of 0.6 kJ/mol) to the closed form. The energetic 

barrier for the closed/open transition for the EC1-EC2 and the EC1 systems, 14 +/- 4 kJ/mol, and 

16+/- 4 kJ/mol, respectively, are within the sampling error. The larger sampling error on the 

energy barriers is due to the nature of the PT-metaD approach.15 The above-mentioned energy 

values for the closed/open barrier can be used to estimate the crossing rate between the two 

states. Due to the diffusive nature of the dynamics, we followed the approach of Juraszek and co-

workers34 and estimated a transmission coefficient k of ~ 10-3 that corrects for the correlated re-

crossings at the transition state. This gives us an estimate for the rates of 56 – 1400 ns (for EC1) 

and 25 - 622 ns (for EC1-EC2). At both ends of the predicted range the kinetics are very fast. 

The fast inter-conversion rate between open and closed forms in agreement with a selected fit 

mechanism. It is worth noting that in cadherin 8, a type II cadherin, by using NMR dispersion 

relaxation techniques, Miloushev and co-workers13 have detected the existence in solution of the 

open form.  

Projection of the free energy on a 2D map using CV1 and CV3 allowed a characterization of 

the arm opening mechanism. The third collective variable (CV3) maps the atomic contacts 

between the adhesion arm and the hydrophobic pocket (Table S1): CV3 values around 3 

represent the starting closed conformation, while for values around 1, the adhesion arm is 

completely exposed to the solvent, representing a fully open state.  
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Figure 3. Reconstructed free energies projected on a 2D surface using CV1 and CV3 for EC1 

(left) and EC1-EC2 (right) E-cadherin monomer. Isolines are drawn every 2.0 kJ/mol. The salt 

bridge refers to the electrostatic interaction between Asp1-NH3
+ and Glu89 side chain. In EC1, 

breaking of the salt bridge (I to II) precedes the exit of Trp2 from the pocket (II to III) while in 

EC1-EC2 the indole moiety first leaves the hydrophobic pocket (I to II) and only in a second step 

the electrostatic interaction gets broken (II to III). We also used a reweighting algorithm to 

directly project the free energy on the Asp1-NH3
+ − Glu89 salt bridge distance (on the Y-axis) 

and on the Trp2 – His79 distance (shown as insets in the top right of each map). 

In Figure 3 we reported the free energy surface as a function of CV1 and CV3. From the 

analysis of the structures belonging to each minimum we found that the two systems followed 

distinct opening pathways. In EC1 (Figure 3, left), the first step is characterized by the disruption 

of the salt bridge (I to II, CV3 from 3 to 2) with the Trp2 side chain docked onto its pocket, and 

only in the second step Trp2 leaves the hydrophobic pocket and exposes the indole moiety to the 

solvent (II to III, CV3 from 2 to 1). A conformational equilibrium was in fact observed for the 

closed form of EC1 (minimum A of Figure 2, up) where the two most representative 

conformations differ only by the presence of the salt bridge. For this system, it seems that the 

lacking of calcium ions facilitates the breaking of the salt bridge but not the opening of the arm. 
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In EC1-EC2 (Figure 3, right, from I to II), first the Trp2 indole moiety moves towards the 

solvent, while maintaining the salt bridge between the Glu89 side chain and Asp1 (CV3 from 3 

to 1.5). At this point, the adhesion arm is still relatively close to the rest of the protein, and only 

in the second step, when the salt bridge is broken, it is able to fully open (II to III, CV3 from 1.5 

to 1). This pathway is in agreement with what we observed during the simulations. In fact, in the 

first part of the simulation the Trp2 side chain exited and re-entered the hydrophobic pocket 

several times without breaking the salt bridge. Only when the salt bridge is broken, these events 

become less probable. Moreover, this analysis shows that the major contribution to the 

interaction energy of the adhesive arm with the pocket seems to derive from the salt bridge 

between the Asp1 and the Glu89, two highly conserved residues in all classical cadherins. The 

same conclusions regarding the two different pathways can be drawn if one observes the free 

energies projected directly on the salt bridge distance (Figure 3, insets). To extract the unbiased 

distribution for the Asp1-NH3
+ − Glu89 distance, we used the reweighting algorithm developed 

by Bonomi and co-workers.35 Only in EC1 there is a well-defined minimum at CV values (6 Å – 

12 Å), corresponding to a closed conformation with a broken salt bridge. Vendome and co-

workers postulated that calcium ions could introduce some strain in the adhesive arm and the 

release of such strain could be the driving force behind the opening of the arm.36 Our findings are 

in agreement with such an hypothesis — when calcium ions are present, strain is first released by 

exposing Trp2 to the solvent, followed by the full opening of the arm — but also introduce the 

N-terminus–Glu89 salt bridge as a key interaction in the opening path. 
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CONCLUSIONS 

Our simulations predict that the EC1-EC2 E-cadherin monomer, in the presence of calcium ions, 

significantly populates both open and closed forms, which are almost iso-energetic. This 

observation is in agreement with the proposed selected fit mechanism. Although recent studies 

have suggested for E-cadherin an induced fit mechanism11, when we attempted protein-protein 

docking37 using both the major and minor states of the EC1-EC2 E-cadherin system we could not 

reproduce a viable X-dimer conformation (Table S2). On the contrary, the low free energy 

penalty and fast kinetics that we predict for the system is strongly suggestive of a conformational 

selection mechanism. What is more, we are able for the first time to provide a detailed 

characterization of the conformational transition of the E-cadherin monomer that was postulated 

to exist based on the proposed selected fit mechanism. By using a state-of-the-art enhanced 

sampling algorithm, we obtained a fully converged multidimensional conformational free energy 

landscape describing the arm opening transition and intermediate metastable states. These states 

might provide a starting point for the design of new inhibitors and perhaps lead to anti-cancer 

agents, as well as help identify the encounter complex structure, a necessary step in order to 

attempt an atomic resolution description of the alternate induced fit mechanism of cadherins 

dimerization. Finally, our simulations confirm that calcium ions favor the opening of the arm by 

stabilizing the open form.  
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The free energy profile of E-cadherin conformational transition has been reconstructed using 

atomistic simulations. Both the inactive and active conformations coexist in solution, suggesting 

the possibility of a selected fit pathway for this class of domain swapping proteins. Calculations 

also show that calcium ions located far from the exchanging arm may act as allosteric activators.   

 


