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ABSTRACT
Overdispersion is common in models of count data in ecology and evolutionary
biology, and can occur due to missing covariates, non-independent (aggregated)
data, or an excess frequency of zeroes (zero-inflation). Accounting for overdispersion
in such models is vital, as failing to do so can lead to biased parameter estimates,
and false conclusions regarding hypotheses of interest. Observation-level random
effects (OLRE), where each data point receives a unique level of a random effect that
models the extra-Poisson variation present in the data, are commonly employed
to cope with overdispersion in count data. However studies investigating the
efficacy of observation-level random effects as a means to deal with overdispersion
are scarce. Here I use simulations to show that in cases where overdispersion
is caused by random extra-Poisson noise, or aggregation in the count data,
observation-level random effects yield more accurate parameter estimates compared
to when overdispersion is simply ignored. Conversely, OLRE fail to reduce bias in
zero-inflated data, and in some cases increase bias at high levels of overdispersion.
There was a positive relationship between the magnitude of overdispersion and the
degree of bias in parameter estimates. Critically, the simulations reveal that failing
to account for overdispersion in mixed models can erroneously inflate measures of
explained variance (r2), which may lead to researchers overestimating the predictive
power of variables of interest. This work suggests use of observation-level random
effects provides a simple and robust means to account for overdispersion in count
data, but also that their ability to minimise bias is not uniform across all types of
overdispersion and must be applied judiciously.

Subjects Ecology, Evolutionary Studies, Statistics
Keywords Observation-level random effect, Explained variance, r-squared,
Poisson-lognormal models, Quasi-Poisson, Generalized linear mixed models

“Overdispersion is the polite statistician’s version of Murphy’s Law: if something can go

wrong, it will”

Crawley (2007, p. 522)

INTRODUCTION
Count data are extremely common in the fields of evolutionary biology and ecology;

researchers are often interested in quantifying the factors affecting variables such as

how many offspring an individual produces, counts of parasite load, abundance of
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species within and between habitats, or the frequency with which individuals perform

certain behaviours. Perhaps the most common method employed to model count data

is to assume the data approximate a Poisson distribution, and specify statistical models

accordingly (e.g., Bolker et al., 2009). However, a persistent problem with Poisson models

is that they often exhibit overdispersion, where the variance of the response variable is

greater than the mean (Hilbe, 2011), resulting in a poor fit to the data. Accounting for

overdispersion when it is present is critical; failing to do so can lead to biased parameter

estimates (Crawley, 2007; Hilbe, 2011), and cause researchers to erroneously conclude that

variables have a meaningful effect when in fact they do not (Crawley, 2007; Richards, 2008;

Zuur et al., 2009). The necessity for accurate biological inference therefore demands that

we employ tools to both identify and adequately deal with overdispersion to minimize

the risk of Type I error (Hilbe, 2011). One manner in which overdispersion is dealt

with involves the use of observation-level random effects (OLRE), which model the

extra-Poisson variation in the response variable using a random effect with a unique level

for every data point. However, data on the efficacy of OLRE as a tool to accurately model

overdispersion and recover correct parameter estimates are relatively scarce (but see Bolker

et al., 2009; Kery, 2010). This paper uses a simulation approach to address the shortfall

in our understanding of the ability of OLRE to cope with the types of overdispersion

commonly encountered in mixed models of count data in ecology and evolution.

Overdispersion occurs primarily for two reasons; ‘apparent overdispersion’ (Hilbe,

2011) arises when models have been poorly specified, for example by failing to include

important predictors, interactions between predictors that have already been measured,

or by specifying the incorrect link function (Hilbe, 2011). Conversely, ‘real overdispersion’

can arise when there is clustering in the count data, meaning observations are not truly

independent of one another (Hilbe, 2011), when there is an excess number of zeroes in

the data (zero-inflation) (Zuur et al., 2009), or when the variance of the response truly is

greater than the mean (i.e., is not accurately described by a Poisson process). In cases of

both real and apparent overdispersion, the fit of the model to the data will be poor, even if

the model uncovers significant results. It is worth noting that these causes are not mutually

exclusive, and in fact models of interest may suffer from several of these issues simulta-

neously. This paper will deal specifically with three cases of real overdispersion: data that

contain extra-Poisson noise, data where the counts are non-independent (aggregated), and

zero-inflated data. There are several modeling tools available for dealing with overdisper-

sion, including negative binomial models, also known as Poisson-gamma mixture models,

to deal with aggregation in count values (e.g., Hilbe, 2011) and zero-inflated Poisson (ZIP)

models for an excess of zeroes in the data (Zuur et al., 2009; Zuur, Saveliev & Ieno, 2012).

This paper will deal exclusively with Poisson models containing OLRE (also known as

Poisson-lognormal models; Elston et al., 2001) as a tool for modeling overdispersion.

Quantifying overdispersion in mixed models
In order to satisfy the assumption of Poisson errors, the residual deviance of a candidate

model should be roughly equal to the residual degrees of freedom (e.g., Crawley, 2007,
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p. 540). The ratio of these two values is referred to as the dispersion parameter, and values

>1 indicate overdispersion. Calculating this value is straightforward in a Generalized

Linear Model (GLM) context (i.e., models without random effects), and many software

packages such as R (R Core Team, 2014) will calculate this value automatically for GLMs.

For Generalized Linear Mixed Models (GLMMs), the situation becomes more complex

due to uncertainty in how to calculate the residual degrees of freedom (d.f.) for a model

that contains random effects. A single random effect is estimated to use between 1 (by

estimating the standard deviation of the distribution) and N − 1 d.f., where N is the

number of levels of the random effect (i.e., by estimating the mean value for each level).

More sophisticated approximations of the residual d.f. are also available (see Bolker et al.,

2009, Box 3), but not discussed here.

For mixed models, the dispersion parameter can be calculated as the ratio of the sum

of the squared Pearson residuals to the residual degrees of freedom (e.g., Zuur et al., 2009

p. 224). Moreover, the sum of squared Pearson residuals should approximate a Chi-squared

distribution with n-p degrees of freedom (Bolker et al., 2009), and so we can also test for the

‘significance’ of overdispersion in models. Bolker et al. (2009) provide a useful R function

for calculating the dispersion parameter using the squared Pearson residuals (assuming

1 d.f. lost for every random effect), and providing a p value for the test. However, there

are two caveats for this test: (1) the uncertainty over how to calculate residual degrees of

freedom (the denominator in the ratio); and (2) the fact that models with small sample

sizes will yield sum of squares (SS) that may not approximate a Chi-squared distribution.

Both of these issues can be avoided if one calculates the overdispersion parameter by

parametric bootstrapping. Each replicate of a parametric bootstrap generates a new dataset

(response variable) based on the parameter estimates and distributional assumptions

(i.e., Poisson) in the model of interest. If the model is unbiased, the new response data

generated under parametric bootstraps should be comparable to the ‘real’ data collected

by a researcher. If the model was a poor fit, the magnitude of the residuals of the original

model should be much larger than the residuals generated from parametric bootstrapping.

The ratio of the residual SS of the original model to the mean of the bootstrapped residual

SS is equivalent to the dispersion parameter. The advantage of the parametric bootstrap

approach, aside from not relying on calculating residual d.f., is that it can be used to

generate confidence intervals for the magnitude of the dispersion parameter. R code

demonstrating the use of parametric bootstrapping to calculate overdispersion is supplied

as Supplemental Information 1.

Aims
Overdispersion is a serious problem because it can bias both the means and standard errors

of parameter estimates (Hilbe, 2011). Unfortunately, few studies reporting significant

predictors assess the degree of overdispersion in their models (Richards, 2008), despite

explicit guidance on how to calculate dispersion parameters for GLMs (see Crawley, 2007;

Zuur et al., 2009) and GLMMs (see Bolker et al., 2009). Moreover, recently Nakagawa &

Schielzeth (2013) developed a method to calculate a measure of explained variance (r2)
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for GLMMs, but it is not clear how overdispersion in models affects estimates of r2 when

overdispersion is known to bias parameter estimates away from their true values (Hilbe,

2011; Kery, 2010). Theoretically, biased parameter estimates caused by overdispersion

could also yield biased estimates of proportion of explained variance, and this is a

possibility that warrants further investigation.

This paper will test the robustness of the use of OLRE to model real overdispersion in

biological data. The primary aims of this paper are to:

(i) Test the ability of OLRE to recover precise parameter estimates from data generated

under scenarios where overdispersion is caused by: (a) the variance of the response

being greater than the mean due to extra-Poisson ‘noise’, (b) an excess of zeroes in the

response (zero-inflation), or (c) aggregation (non-independence) of counts among

samples.

(ii) Assess the influence of overdispersion on estimates of explained variance (r2) in

models where overdispersion is either ignored, or explicitly dealt with using OLRE.

MATERIALS AND METHODS
All simulations in this paper were conducted in R v3.1.0 (R Core Team, 2014) using

the lme4 package (v1.1-6; Bates et al., 2014) to both simulate data, and fit GLMMs to

those data. R code for all simulations, models and graphs are provided in Supplemental

Information 1, including some convenience functions to handle the output of the

simulations. I also point the reader to the supplementary online material for Bolker et

al. (2009) which contains several convenience functions for mixed models, including one

to calculate the point estimate of overdispersion in GLMMs with corresponding p values.

This paper deals with overdispersion arising from three principle sources: extra-Poisson

‘noise’ in the data (‘Noise’ Simulations’), zero-inflation (‘Zero Inflation’ Simulations) and

aggregation in the counts (‘Negative Binomial’ Simulations). For all sources, I consider a

hypothetical species where a researcher has counted the number of parasites on 50 individ-

uals from each of 10 populations. General details of the simulation methodology are below,

whilst values employed for each of the parameters in the simulations are listed separately.

Extra-Poisson noise simulations
Following Zuur et al. (2009), the Poisson distribution function is given by

f

y;µ


=

µy
× e−µ

y!
. (1)

This formula specifies the probability of observing a single value y given a mean of

µ, where y ≥ 0 and y is an integer. For a set of observations Y arising from a Poisson

distribution, the mean and variance are identical:

E(Y) = µ and var(Y) = µ. (2)

Overdispersion can arise because extra variation in the data destabilizes the mean–variance

relationship i.e., E(Y) = var(Y) = µ in Eq. (2). In a standard Poisson model, we can place a
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model on the mean µ as follows:

µi = eα+βxi (3)

where α is the intercept, β is the slope term, and xi is the covariate value for observation

i for a hypothetical predictor (e.g., body size). However, often the value of µ can be a

function of additional, unmodelled sources of variation as follows:

µi = eα+βxi+εi (4)

εi ∼ N(0,σε) (5)

where εi represents additional variation in the linear predictor specific to each observation,

drawn from a normal distribution with mean 0 and SD = σε. Because researchers often

do not consider the additional sources of variation in the data such as εi, i.e., they model

the mean using Eq. (3), not Eq. (4), the variance of the data will be much larger than

predicted by the model. To explore the effect of overdispersion caused by extra-Poisson

noise (Eq. (4)), I simulated data where the number of parasites on an individual host

increases as a function of body size, but added random noise to the linear predictor so that

the resulting data were not well approximated by a Poisson distribution. The following

example is slightly more complex than Eq. (4), as I assume that mean parasite load

varies among populations (i.e., introduce a random effect of population). I assumed a

homogenous slope of the effect of body size across the populations.

Cij ∼ Pois(µij) (6)

µij = eαij+βxi+εi (7)

αj ∼ N(µα,σα) (8)

where Cij is the count value for individual i in population j, µij is the mean count for

individual i in population j,β is the slope parameter for the effect of body size, xi is the

body size measurement of individual i. Population-specific intercepts (αj) are drawn from

a normal distribution with mean µα and standard deviation σα . Values for εi follow Eq. (5)

above. Values were set at µα = −0.5, σα = 0.5 and β = 0.1 for all models. σε, in this

example is the ‘noise parameter’: the larger the value for this parameter, the greater the

noise:signal ratio in the count data, and the greater the degree of overdispersion that will be

present. I simulated 10 scenarios where σε ranged from 0.1 to 1 in increments of 0.1, and

thus the variance ratio of the noise parameter SD: random intercept SD varied from 0.2 to 2

(0.1/0.5 to 1/0.5).

Zero-inflated Poisson simulations
For the Zero Inflation simulations, I simulated count data as above, assuming an effect

of body size on number of parasites. However I also introduced stochastic variation in

parasite load, where some individuals in the study have a parasite count of 0 irrespective of

their body size. An excess of zeroes in the dataset can arise for two reasons: (i) individuals

may be resistant to a particular parasite because of immunogenetic variability that protects
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them (e.g., Owen, Nelson & Clayton, 2010); or (ii) some individuals may indeed be

parasitised, but the researcher may fail to see any parasites on the hosts (i.e., they are

false zeroes). I do not distinguish between these two cases here, but see Martin et al. (2005);

Zuur et al. (2009) and Zuur, Saveliev & Ieno (2012) for an in depth discussion on the

various methods of modelling both true and false zeroes. Following Zuur et al. (2009), the

zero-inflated Poisson (ZIP) probability function is given by:

f

yi = 0


= πi + (1 − πi) × e−µi (9)

f

yi|yi > 0


= πi + (1 − πi) ×

µyi × e−µi

yi!
. (10)

Here, the probability of measuring additional zeroes than would be predicted by an

ordinary Poisson distribution is controlled by πi, where higher values of πi yield a greater

frequency of zeroes. Note that parasite resistance (zero counts) can still arise when π = 1,

from the Poisson portion of the model. As for above, all models used µα = −0.5, σα = 0.5

and β = 0.1. I simulated 10 scenarios where π ranged from 0 to 0.5 in increments of

0.05. A value of π = 0 was used as a control to check that the model collapsed to an

ordinary Poisson model (i.e., no excess zeroes) and recovered correct parameter estimates.

Values for π higher than 0.5 (>50% chance of measuring a zero) caused problems with

model convergence and so were not investigated. In this model, the zero-inflation occurs

at random across the whole dataset with a fixed probability (π). For more complex and

elegant examples of zero-inflated data, I recommend Kery (2010), which provides cases

where the zero-inflation occurs systematically across the data and can be thus be modelled

with covariates.

Negative binomial simulations
The negative binomial distribution is derived from what is referred to as a Poisson-gamma

mixture distribution (Hilbe, 2011) where one assumes that the data Y are Poisson

distributed, but that the mean µ comes from a Gamma distribution (Zuur et al., 2009).

The Poisson distribution assumes that the counts Y are independent from one another

(Hilbe, 2011), but when this assumption is violated and there is, for example, aggregation

in the counts, the Poisson-gamma mixture model can account for this non-independence

(Hilbe, 2011). Following Zuur et al. (2009), the negative binomial distribution can be

parameterized as:

f

y;k,µ


=

Γ(y + k)

Γ(k) × Γ(y + 1)
×


k

µ + k

k

×


1 −

k

µ + k

y

(11)

where the mean and variance of Y are:

E(Y) = µ and var(Y) = µ +
µ2

k
. (12)

Thus, k controls the level of overdispersion in the dataset. As k becomes large relative to µ,

overdispersion is minimized and the model collapses to an ordinary Poisson distribution
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(Zuur et al., 2009). Conversely smaller values of k yield increasingly greater levels of

overdispersion. For the Negative Binomial simulations, I simulated count data from a

negative binomial distribution using the function ‘rnegbin’ in the MASS package (Venables

& Ripley, 2002) in R, using values of k from 5 to 0.25 in steps of roughly 0.5.

For all three scenarios (noise, zero-inflation and negative binomial), the body size

variable was drawn randomly from a normal distribution with mean 30 and SD 4 for every

iteration of the simulations.

Quantifying overdispersion in mixed models
To verify that the simulations employed resulted in overdispersed count data. For each of

the 10 Noise and Zero-Inflation datasets, I fitted a GLMM to the data, specifying a random

intercept for population, body size as a predictor, Poisson errors and a log link. I then

performed 100 parametric bootstraps of the model using the ‘bootMer’ function in lme4,

specifying a function to calculate the sum of squared Pearson residuals for each of the

100 bootstrapped models. I then calculated the ratio of the original model’s SS residuals

to each of the 100 bootstrapped SS residuals, and calculated a mean and 95% confidence

interval for these values. This ratio is equivalent to the dispersion parameter, but does

not require calculation of the residual d.f. of the model. All parametric bootstrapped

dispersion parameter estimates were in broad agreement with the point estimate calculated

using the sum of the squared Pearson residuals. These data are shown in Supplemental

Information 1.

Overdispersion and biased parameter estimates
For each value of π in the Zero-Inflated data, each value of k in the Negative Binomial

Simulations, and each value of σε in the Noise data, I simulated 100 replicated datasets.

For each iteration, I fitted both a ‘naive’ GLMM containing only a random intercept for

population and body size as a predictor, in addition to a second GLMM identical to the first

but also including an observation-level random effect. Using R code notation, these are of

the general form:

Count ∼ BodySize +

1|Population


‘Naı̈ve’ Model

Count ∼ BodySize +

1|Population


+ (1|OLRE) ‘OLRE Model’

where OLRE refers to the presence of an observation-level random effect in addition to

the Population random effect. Hereafter these two models will be referred to as ‘Naive’ and

‘OLRE’ models, respectively. Both models had Poisson errors and a log link. The OLRE

variable was a sequence of numbers from 1 to 500, acting as ‘observation ID’ for each row

in the dataset. For both models at each iteration I stored the estimates of µα , σα , and β,

in addition to σε for the Noise simulations, π for the zero-inflated simulations, and k for

the Negative Binomial simulations. These 100 estimates of each parameter were used to

plot means and 95% confidence intervals. For the Zero-Inflation and Negative Binomial

models, I verified recovery of the correct parameter estimates with mixed models fitted

using the glmmADMB package (v0.8.0; Skaug et al., 2014; Fournier et al., 2012) in R using

zero-inflated Poisson and negative binomial error distributions, respectively.
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Overdispersion and r2 calculations
In addition to storing the parameter estimates as above, for each iteration I also calculated

the r2 values for the Naive and the OLRE models using the methods detailed in Nakagawa

& Schielzeth (2013). Following Nakagawa & Schielzeth (2013), I calculated the marginal r2

(variance explained only by fixed effects) as:

σ 2
fixed

σ 2
fixed + σ 2

random + σ 2
residual

(13)

and the conditional r2 (variance explained by both fixed and random effects) as:

σ 2
fixed + σ 2

random

σ 2
fixed + σ 2

random + σ 2
residual

(14)

where σ 2
fixed is the fixed effects variance of the model, σ 2

random is the random effects

variance of the model (or sum of random effects variances for a model with multiple

random intercept terms), and σ 2
residual is the residual variance. Specific details are found in

Nakagawa & Schielzeth (2013, equations 29 and 30) and the accompanying R code for the

paper. In the simulations I calculated and stored σ 2
fixed,σ

2
random, and σ 2

residual separately to

investigate the effects of overdispersion on each of these components of the r2.

RESULTS
Noise simulations
At low levels of overdispersion (small vales of σε), both the Naive model and the OLRE

model recovered near identical estimates for all parameters. However, as overdispersion

increased, the degree of bias in µα , the mean of the random intercept for population

ID, increased substantially in the Naive models (Fig. 1A). Accurate estimates of the slope

parameter were recovered from both the Naive and OLRE models, irrespective of the

magnitude of σε (Fig. 1B), but the standard errors for all estimates were smaller by up to a

factor of 5 in the Naive models (Table 1A). Similarly, both models estimated sensible values

of the SD of the random intercept at all values of σε (σα ∼ 0.45), although the true value

was slightly higher (0.5). There was some indication in the data that as the magnitude of σε

increased, the estimates of σα started to diverge, with values from the Naive model being

upwardly inflated (Fig. 1C).

Zero-inflation simulations
At low levels of overdispersion (π = 0–0.2), both the Naive model and the OLRE model

produced identical parameter estimates for µα,β and σα (Fig. 2). However, further

increases in π lead to downward bias in the values for all three parameters. The degree

of this bias was greater for the OLRE models than for the Naive models, especially for σα

(Fig. 3C; σα = 0.05 at π = 0.5, true value of σα = 0.5). The large reductions observed

for σα were mirrored by large increases in the magnitude of σε. With respect to σα and

β, the Naive model recovered the correct parameter estimates irrespective of the degree
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Figure 1 Model parameters for the intercept mean (A), slope of the effect of body size (B) and in-
tercept standard deviation (C) generated under various levels of overdispersion for the noise simula-
tions. Light circles represent the mean values of the Naive models, where overdispersion was ignored. Blue
circles represent the models containing observation-level random effects. Error bars are 95% confidence
intervals of the mean as estimated by bootstrapping. Dashed horizontal lines denote the true (simulated)
parameter values.
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Table 1 Estimates of the standard errors of the slope and intercept parameters estimated under three
scenarios of overdispersion (zero inflation, extra-poisson noise, and negative binomial). Vales of π , σε

and k for the three scenarios, respectively, correspond to increasing levels of overdispersion moving down
the table. The ‘Ratio’ column indicates the ratio of the parameter estimate where overdispersion was
modelled with observation-level random effects (OD) to the estimate where overdispersion was ignored
(Naive).

Naı̈ve slope OD slope Ratio Naı̈ve intercept OD intercept Ratio

(A) Zero inflation

π

0 0.003 0.003 1.02 0.180 0.181 1.00

0.05 0.003 0.005 1.60 0.179 0.213 1.19

0.11 0.003 0.007 2.32 0.179 0.267 1.49

0.17 0.003 0.010 3.03 0.179 0.334 1.86

0.22 0.003 0.013 3.89 0.183 0.424 2.31

0.27 0.004 0.014 4.10 0.187 0.450 2.41

0.33 0.004 0.017 4.75 0.188 0.532 2.82

0.38 0.004 0.022 5.90 0.197 0.686 3.48

0.4 0.004 0.028 7.07 0.193 0.869 4.50

0.5 0.004 0.031 7.42 0.204 0.946 4.63

(B) Extra-Poisson noise

σε

0.1 0.003 0.003 1.10 0.178 0.183 1.03

0.2 0.003 0.004 1.34 0.175 0.192 1.09

0.3 0.003 0.005 1.62 0.174 0.208 1.19

0.4 0.003 0.006 1.99 0.174 0.228 1.31

0.5 0.003 0.007 2.37 0.175 0.252 1.44

0.6 0.003 0.008 2.79 0.172 0.276 1.60

0.7 0.003 0.009 3.32 0.177 0.305 1.72

0.8 0.003 0.010 3.83 0.165 0.330 2.00

0.9 0.002 0.011 4.46 0.177 0.366 2.07

1 0.002 0.012 5.12 0.171 0.391 2.28

(C) Negative binomial

k

5 0.003 0.006 2.02 0.176 0.243 1.38

4.47 0.003 0.007 2.13 0.176 0.251 1.42

3.94 0.003 0.007 2.21 0.176 0.258 1.46

3.41 0.003 0.007 2.36 0.177 0.269 1.52

2.89 0.003 0.008 2.57 0.180 0.287 1.59

2.36 0.003 0.009 2.79 0.184 0.308 1.67

1.83 0.003 0.010 3.13 0.180 0.334 1.85

1.3 0.003 0.012 3.74 0.183 0.384 2.11

0.77 0.003 0.015 4.82 0.186 0.481 2.58

0.25 0.003 0.030 9.26 0.200 0.899 4.49

of overdispersion. However, the standard errors of these estimates were greatly reduced

relative to the OLRE model (Table 1B). Modeling the most extreme case of zero inflation
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Figure 2 Parameters for the intercept mean (A), slope of the effect of body size (B) and intercept
standard deviation (C) generated under various levels of overdispersion for the Zero-Inflation simula-
tions. Light circles represent the mean values of the Naive models, where overdispersion was ignored. Blue
circles represent the models containing observation-level random effects. Error bars are 95% confidence
intervals of the mean as estimated by bootstrapping. Dashed horizontal lines denote the true (simulated)
parameter values.

in the current dataset (π = 0.5) explicitly with zero-inflated Poisson (ZIP) models instead

of using OLRE resulted in the recovery of both accurate parameter estimates (β = 0.1,

SE = 0.005) and a correct estimate of the degree of zero inflation (π = 0.49, SE = 0.02).

Negative binomial simulations
At moderate to high levels of overdispersion (dispersion parameter 5–20), the Naive and

OLRE models produced similar parameter estimates (Fig. 3). It was only at extreme levels

of overdispersion (>20) that estimates began to diverge, especially for µα , which became

strongly negatively biased in the OLRE models (Fig. 3A), and σα which decreased rapidly
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Figure 3 Parameters for the intercept mean (A), slope of the effect of body size (B) and intercept
standard deviation (C) generated under various levels of overdispersion for the negative binomial
simulations. Light circles represent the mean values of the Naive models, where overdispersion was
ignored. Blue circles represent the models containing observation-level random effects. Error bars are
95% confidence intervals of the mean as estimated by bootstrapping. Dashed horizontal lines denote the
true (simulated) parameter values.
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towards zero (Fig. 3C). The Naive models recovered the correct parameter estimates at all

but the most extreme case of overdispersion, but the standard errors of the estimates of all

three parameters were greatly reduced in the Naive models by up to a factor of 9 (Table 1C).

Overdispersion and r2

There were stark differences between the Naive and OLRE models in the estimates

of marginal r2 (proportion of variance explained by the fixed effects). For all three

sets of simulations, low levels of overdispersion yielded comparable estimates of r2.

As overdispersion increased however, the marginal r2 of the Naive models remained

essentially constant (∼0.35), but decreases rapidly to zero in the OLRE models under

all three scenarios (Figs. 4A–4C). Conversely models containing an OLRE had much higher

values of conditional r2 (proportion of variance explained by the fixed and random effects)

than the Naive models containing no OLRE in all three simulations (data not shown).

Plotting the different components of the r2 calculation separately revealed the reasons

behind the divergent behaviour of the r2 measures between the Naive and OLRE models.

Figure 5 shows the behaviour of the estimates of fixed effect, random effect and residual

variance at different levels of overdispersion for the Noise simulations. Data for the

Zero-inflation and Negative Binomial simulations are similar and not shown here.

For Naive and OLRE models, the fixed effects variance remained stable at all levels of

overdispersion (Fig. 5A). Conversely, the random effects variance increased rapidly in

tandem with overdispersion for OLRE models, but remained constant in the Naive models

(Fig. 5B). There was a slight tendency for the residual variance to decrease in tandem

with overdispersion in Naive models, but remained relatively constant for OLRE models

(Fig. 5C).

DISCUSSION
This paper used a simulation approach to test the ability of observation-level random

effects (OLRE) to minimise overdispersion and thus recover unbiased parameter estimates

in Poisson mixed effects models. Simulations revealed that the appropriateness of

employing OLRE in mixed models depends on the process generating the overdispersion in

the data: whilst OLRE perform well in minimising bias in cases where the data contain

random extra-Poisson noise, they increased the degree of bias in zero-inflated data

compared to models where the overdispersion was simply ignored. In addition, OLRE

appeared to perform well when modelling aggregated count data at all but the highest

levels of overdispersion. For all scenarios, ignoring overdispersion lead to greatly reduced

standard errors of parameter estimates. Finally, a critical outcome of the simulations

was to reveal the effect of overdispersion on measures of r2. Irrespective of the cause of

overdispersion, failing to account for overdispersion in the models resulted in greatly

inflated estimates of the proportion of variance explained by the fixed effects, relative to

cases where an OLRE was added to the models. Collectively, these results suggest a clear

need for researchers to ascertain both the magnitude and source of overdispersion in

biological datasets in order to derive accurate estimates of effect size and r2.
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Figure 4 Marginal r2 values of models generated under 3 scenarios of overdispersion: (A) extra-
Poisson noise; (B) zero-inflated data; and (C) data generated from a negative binomial distribu-
tion. Moving from left to right on the x axes corresponds to increasing levels of overdispersion in
the models. Light circles represent the mean values of the Naive models, where overdispersion was
ignored. Blue circles represent the models containing observation-level random effects. Error bars are
95% confidence intervals of the mean as estimated by bootstrapping. Ignoring overdispersion under all
three scenarios resulted in greatly inflated estimates of the proportion of explained variance relative to
where overdispersion was taken into account.
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Figure 5 The three components of variance used to calculate the r2 metrics proposed by Nakagawa
& Schielzeth (2013) for the noise simulation datasets at various levels of overdispersion. Light circles
represent the mean values of the Naive models, where overdispersion was ignored. Blue circles represent
the models containing observation-level random effects. Error bars are 95% confidence intervals of the
mean as estimated by bootstrapping.

Overdispersion and biased parameter estimates
Simulation results suggested that the ability of OLRE to minimise bias in parameter

estimates in overdispersed count data depends on the process that generated the overdis-

persion. In cases where data contain extra-Poisson noise, adding OLRE to models results

in the recovery of more accurate parameter estimates compared to when overdispersion is
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simply ignored, a finding that is broadly congruent with similar investigations by others

(Kery, 2010; Zuur, Saveliev & Ieno, 2012). It is perhaps reassuring, and not surprising, that

modeling the data with the same structure that was used to generate the data recovers

correct, unbiased estimates (see also O’Hara & Kotze, 2010). Similarly, employing OLRE to

model aggregated data in the Negative Binomial simulations appeared to robustly estimate

the correct parameters at all but the highest levels of overdispersion.

When the data are zero-inflated, OLRE fail to accurately estimate the model parameters

at even moderate levels of overdispersion, and in some cases increased the bias relative

to when overdispersion was ignored. Inspection of the model parameters indicated

that as overdispersion increased, the magnitude of the SD of the OLRE random effect

(σε) increased rapidly, whilst the SD of the population random intercept term (σα)

decreased to zero. Therefore, it appears that even at moderate levels of overdispersion

caused by zero-inflation, the model is unable to correctly partition variance between the

σε and σα , leading to inflated variance ratios (σε/σα) and biased parameter estimates.

Conversely, when a model designed specifically to estimate the degree of zero-inflation

was employed, the true parameter estimates were recovered even at the most extreme

level of zero-inflation employed in the simulations (π = 0.5). Collectively these results

suggest that OLRE are not an appropriate tool for modelling overdispersion when it is due

to zero-inflation, and that researchers should instead employ modelling tools designed

specifically to simultaneously model the effects of covariates of interest and quantify the

degree of zero-inflation in the data e.g., zero-inflated Poisson (ZIP) and zero-inflated

negative binomial (ZINB) models (see Kery, 2010; Zuur et al., 2009; Zuur, Saveliev & Ieno,

2012). Extra caution must be employed when adopting these approaches however, as one

must be careful to distinguish between ‘true’ and ‘false’ zeroes in datasets, and adjust the

modelling framework accordingly. Martin et al. (2005) demonstrated how the appropriate

choice of model (ZIP, ZINB or Poisson) depends on the source of the excess zeros in the

dataset, with poorly chosen models leading to impaired predictive performance of models,

and inaccurate estimates of effect sizes.

In these simulations, applying the same model to data generated by either a Poisson

or Negative Binomial process recovered similar parameter estimates. However, it is worth

noting that Poisson and Negative binomial distributions make fundamentally different

assumptions about the relationship between the mean (µ) and variance (ν): whilst ν = µ

in Poisson models, ν = µ+µ2/k for Negative Binomial models (Eq. (12)), i.e., the variance

increases non-linearly with the mean in the latter case (see Ver Hoef & Boveng, 2007;

O’Hara & Kotze, 2010). Distinguishing between these two mean–variance relationships can

be critical, as model mis-specification can lead to different parameter estimates in either

case (Ver Hoef & Boveng, 2007), although this is not always true (O’Hara & Kotze, 2010, this

study). O’Hara & Kotze (2010) point out that curvature in a plot of (yi − µi)
2 against µi

from a Poisson model would potentially suggest a negative binomial model to be a better

fit. If employing OLRE in a model and the suggested plot demonstrates curvature, it may

be prudent to compare estimates of the OLRE Poisson model with a model using a negative

binomial error structure to check that they do not differ considerably.

Harrison (2014), PeerJ, DOI 10.7717/peerj.616 16/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.616


Overdispersion and r2

The most striking result from the modelling simulations is the effect of overdispersion on

measures of explained variance. Simulations revealed that ignoring overdispersion leads

to greatly inflated measures of the proportion of explained variance, as determined using a

recent metric of r2 proposed for mixed models (Nakagawa & Schielzeth, 2013). Conversely,

when accounting for overdispersion using OLRE, marginal r2 measures declined rapidly

in tandem with overdispersion. This result is intuitive—as overdispersion increases, so too

does the amount of unexplained variation in the data, and one would thus expect the r2

to decrease assuming the model structure remains unchanged (i.e., not adding additional

predictors). That marginal r2 remains constant at all levels of overdispersion in the Naive

models arises because the estimate of residual (unexplained) variance does not increase

in line with overdispersion as perhaps it should. Conversely, the random effects variance

component greatly increases in the OLRE models due to the increasing magnitude of σε.

Thus, when one calculates marginal r2 as fixed effect variance/(fixed effect + random effect

+ residual variance), the denominator increases greatly in the OLRE models, whilst the nu-

merator remains fairly stable, leading to a reduction in r2 with increasing overdispersion.

With respect to conditional r2, however, the OLRE models provide a cautionary

note; because the random effects variance increases so much when adding an OLRE (as

described above), calculating the variance explained by both the fixed and random effects

[(fixed effect + random effect variance)/(fixed effect + random effect + residual variance)]

leads to conditional r2 values of near 0.9. This value is misleading, because the OLRE

is basically a nuisance parameter that has little biological meaning (although variance

ratios using OLRE are informative e.g., in calculating aggregation parameters, Elston et al.,

2001), and yield little insight into the predictive power of the model. Collectively, these

simulations suggest one should never report marginal r2 values for Poisson mixed effects

models without first having quantified and controlled for overdispersion, but also that one

should avoid reporting conditional r2 in models containing OLRE.

Summary
This study adds to the body of literature demonstrating that ignoring overdispersion in

mixed models can impair our ability to identify the true biological drivers underlying

observed data. The principal novelty of this study is to demonstrate that ignoring overdis-

persion leads to inflated r2 values, which may cause researchers to identify predictors

as having a biologically meaningful effect when in fact they do not. Indeed, ignoring

overdispersion during model selection can result in the retention of overly complex models

and thus erroneous conclusions regarding which predictors significantly influence the

outcome variable of interest (Richards, 2008). The utility of OLRE is their ability to account

for overdispersion without making implicit, potentially erroneous, assumptions about

the process that generated that overdispersion in the first instance (e.g., that the data arise

from a negative-binomial distribution). However, these results suggest that OLRE cannot

cope with overdispersion generated by zero-inflation, and that researchers should employ

alternative modeling tactics for zero-inflated data (e.g., Martin et al., 2005). Moreover, all
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three sets of simulations suggested OLRE should be used with caution when high levels of

overdispersion are present (dispersion parameter >20). Collectively, these data highlight

the necessity of quantifying and accounting for overdispersion in statistical models of

count data in order to recover correct and unbiased estimates of model parameters and

r2 values. Ideally, model results and r2 values reported in research papers should be

accompanied by statistics regarding the degree of overdispersion present in candidate

models in order to ensure that those results are both robust and interpretable.
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