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Current evidence suggests that many of the major events in hominin evolution

occurred in East Africa. Hence, over the past two decades, there has been inten-

sive work undertaken to understand African palaeoclimate and tectonics in order

to put together a coherent picture of how the environment of Africa has varied

over the past 10 Myr. A new consensus is emerging that suggests the unusual

geology and climate of East Africa created a complex, environmentally very vari-

able setting. This new understanding of East African climate has led to the pulsed
climate variability hypothesis that suggests the long-term drying trend in East Africa

was punctuated by episodes of short alternating periods of extreme humidityand

aridity which may have driven hominin speciation, encephalization and disper-

sals out of Africa. This hypothesis is unique as it provides a conceptual

framework within which other evolutionary theories can be examined: first, at

macro-scale comparing phylogenetic gradualism and punctuated equilibrium;

second, at a more focused level of human evolution comparing allopatric speci-
ation, aridity hypothesis, turnover pulse hypothesis, variability selection hypothesis,
Red Queen hypothesis and sympatric speciation based on sexual selection. It is pro-

posed that each one of these mechanisms may have been acting on hominins

during these short periods of climate variability, which then produce a range

of different traits that led to the emergence of new species. In the case of Homo
erectus (sensu lato), it is not just brain size that changes but life history (shortened

inter-birth intervals, delayed development), bodysize and dimorphism, shoulder

morphology to allow thrown projectiles, adaptation to long-distance running,

ecological flexibility and social behaviour. The future of evolutionary research

should be to create evidence-based meta-narratives, which encompass multiple

mechanisms that select for different traits leading ultimately to speciation.

provided by UCL 
1. Introduction
Human evolution is characterized by speciation, extinction and dispersal events

that have been linked to both global and/or regional palaeoclimate records [1–7].

Many theories have been proposed to link environmental changes to these

human evolution events [8–11]. This synthesis paper presents each of these the-

ories in the context of the pulsed climate variability conceptual framework [11,12],

which has been developed from the latest tectonic and palaeoclimate data from

East Africa. This greater understanding of the past climate of East Africa suggests

that different hominin species or, at the very least, different emerging traits

within a species could have evolved through various different mechanisms

that are described by the turnover pulse hypothesis, aridity hypothesis, variability
selection hypothesis, Red Queen hypothesis, allopatric or sympatric speciation.
2. Overview of human evolution
The recent expansion of the hominin fossil record has been dramatic, with 11 new

species and four new genera named since 1987. This richer fossil record has
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provided two major improvements. First, this has led to a

much greater understanding of the range of variation in the

hominin phenotype, including in ‘real’ biological popula-

tions with evidence from Atapuerca, Dmanisi and Hadar.

Second, extensive use of new dating techniques has provi-

ded chronological precision to link those phenotypes to the

environments in which they evolved. However, the fossil

record is still very limited with many gaps (figure 1); the

most significant for this study is the lack of cranial capacity

data between 2 and 2.5 Ma [7]. There is also considerable discus-

sion about defining the new species and genera [13,14], which

has an influence on understanding changes in overall hominin

diversity. However, conflating or expanding the defined species

has little overall influence on the diversity pattern, the pattern of

species first appearance dates suggests contemporary speciation

events [11]. First appearance dates are dependent on taphon-

omy and sampling biases; however, the consistency of

hominin first appearance dates (FAD) in East Africa supports

this region as the primary location of speciation events. The

other key debate is where all the new hominin species evolved.

The fossil record at the moment suggests that the majority

of the new species evolved in East Africa and then dispersed

outwards. This is supported by the current brain capacity

evidence, which suggests brain expansion occurs first in East

Africa and only appears elsewhere once there has been a disper-

sal event [15]. However, it should be noted that other authors

suggest the possibility of South Africa, European and Asian

origins for hominin speciation (e.g. [16,17]).

The fossil record suggests four main stages in hominin evo-

lution: (i) the appearance of the earliest (proto) hominins

attributed to the genera Sahelanthropus, Orrorin and Ardipithecus
between 4 and 7 Ma, (ii) the appearance of the Australopithecus
genus around 4 Ma and the appearance of the robust Paranthro-
pus genus around 2.7 Ma, (iii) the appearance of the genus Homo
around the Plio-Pleistocene boundary between 1.8 and 2.5 Ma,

and (iv) the appearance of H. heidelbergensis at 800 ka and anato-

mically modern humans around 200 ka. The taxonomic

classification of many specimens, as well as their role in the evol-

ution of modern humans, is continually discussed (e.g. [13,14]).

What is not disputed is that, apart from Sahelanthropus remains

from Chad, all the earliest specimens for each of the main

genera were found in the East African Rift System [18].

The earliest disputed hominin is Sahelanthropus tchadensis,
dated to approximately 7 Ma [19]. The remains are limited to

cranial fragments that suggest a mosaic of hominin and non-

hominin features and a brain size equivalent to modern

chimpanzees [20]. The lack of post-cranial remains makes it

extremely difficult to reconstruct its lifestyle and whether it

was bipedal or whether it was truly a hominin. The next puta-

tive hominin is Orrorin tungenesis from Western Kenyan

deposits aged around 6 Ma [21], but its taxonomic position, life-

style and locomotion are all disputed owing to the fragmentary

nature of the specimens. Both Sahelanthropus and Orrorin
have been suggested to be members of a clade that includes

Ardipithecus [20]. The oldest member of the Ardipithecus genus

is A. kadabba, whose fossil evidence consists only of fragmentary

teeth and skeletal remains dated to approximately 5.5 Ma [22].

A much more extensive fossil record exists for the second

member of the genus, A. ramidus. Ardipithecus had brain and

body sizes roughly equivalent to modern chimpanzees, their

teeth indicate a highly omnivorous diet and their post-crania

suggest a lifestyle of arboreality coupled with primitive bipedal-

ity [23]. The fauna and vegetation associated with the A. ramidus
specimens in the Awash Valley, Ethiopia, dating to around

4.4 Ma suggest woodland–forest matrix habitats, associated

with significant rainfall and water availability [23–25]. This

appearance of bipedality in closed woodland environments

undermines theories of bipedality evolving exclusively as an

adaptation to open habitats.

The first members of the Australopithecus genus, attributed to

A. anamensis, appeared around 4 Ma [26]. These individuals

show strong evidence of bipedality combined with primitive

cranial features. They are followed by A. afarensis, which is

very well known from the fossil record and includes the remark-

ably complete ‘Lucy’ specimen. Afarensis still retains a small

brain size, yet the post-cranial morphology is more similar to

modern humans than to apes and suggests a lifestyle strongly

adapted to long-distance walking [27]. Australopithecus africanus,
the first hominin found in South Africa, is similar to A. afarensis
but with more ape-like limb proportions yet less primitive teeth

[28]. The longer femur in A. afarensis as compared with A. africa-
nus suggests longer strides and a more efficient walking

style [28]. The final gracile australopith is A. garhi, associated

with 2.5 Ma old deposits in the Awash Valley [29]. In a separate

development, a group of hominins with robust dentition and

jaw muscles appeared around 2.5 Ma. These hominins,

generally attributed to the Paranthropus genus, include the East

African P. aethiopicus (2.5 Ma) and P. boisei (2.3–1.2 Ma), and

the Southern African P. robustus (1.8–1.2 Ma). These species

have been attributed to more open habitats [25], though the

evidence to support this inference has been questioned [30].

The earliest fossil evidence of Homo comes from 1.8 to

1.9 Myr old deposits in the East African Rift Valley. H. habilis
had a gracile morphology similar to the australopithecines [18],

and a brain size only slightly larger, leading to some arguing it

should not be classified as Homo [31]. H. habilis was then followed

by the appearance of H. erectus sensu lato, which is associated

with sweeping changes in brain size, life history, and body size

and shape. Post-cranially, H. erectus is very similar to anatomi-

cally modern humans. Inferences from fossil demography are

that development slowed down, coupled with decreased inter-

birth intervals. The final stages in the evolution of modern

humans were the appearance of H. heidelbergensis around

800 ka and anatomically modern humans around 200 ka.

Arguably, the most important episode in hominin evo-

lution occurred in East Africa around 1.8–1.9 Ma when

hominin diversity reached its highest level with the appear-

ance of the robust Paranthropus species, as well as the first

specimens attributed to genus Homo (sensu stricto). In addition

to speciation, a second major process that began during this

period was the episodic migration of hominins out of the

Rift Valley and into Eurasia. This period also witnessed the

most dramatic increases in hominin brain size; early represen-

tatives of the H. erectus sensu lato (H. erectus and H. ergaster) in

Africa had a brain that was more than 80% larger than the gra-

cile australopithecine A. afarensis and approximately 40%

larger than Homo (Australopithecus) habilis (figure 1). By con-

trast, from the appearance of the early australopithecines

until the appearance of the first member of the genus Homo,
there was remarkably little change in hominin brain size.

The emergence of the H. erectus sensu lato in East Africa

represents a fundamental turning point in hominin evolution.

The dramatic increase in brain size was also accompanied by

changes in life history (shortened inter-birth intervals,

delayed development), pelvic morphology (see [32,33] in

this issue), body size and dimorphism, shoulder morphology

http://rstb.royalsocietypublishing.org/
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Figure 1. (a) The East African Rift Valley lake variability shown as the number of basins containing deep or shallow lakes. Lake basin occupation was calculated by
collating the published geological evidence for the appearance of either deep ephemeral or shallow alkaline lakes in seven major basins (see §2). (b) East African
hominin species diversity over time, which was calculated every 100 kyr interval using first (FAD) and last appearance dates (LAD) from the literature [7].
(c) Hominin brain capacity estimates for Africa and for Africa and Eurasia combined. Hominin specimen dates and brain size estimates were taken from Shultz
et al. [7]. Homo erectus and H. ergaster were treated as a ‘super-species’ referred to in the figure key as Homo erectus (sensu lato). (d ) The age range for
key hominin species from Shultz et al. [7]. Hominin dispersal dates were estimated by FAD of hominin specimens outside the East African Rift System and
are shown by the pink bars labelled ‘D’ (arrows show out of Africa, dotted within Africa only); however, it is stressed that these are liable to large dating
errors and can change significantly with new discoveries. (Online version in colour.)
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allowing throwing of projectiles [34], adaptation to long-

distance running [35], ecological flexibility [36] and social

behaviour [37]. Some of these changes are consistent with a
change in strategy towards flexibility and the ability

to colonize novel environments. By contrast, the robust

Australopithecus sp. adopted specialized habitat and dietary

http://rstb.royalsocietypublishing.org/


Table 1. Early human evolutionary theories placed in the context of overall evolutionary theory and modes of climatic change.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140064

4

 on August 21, 2015http://rstb.royalsocietypublishing.org/Downloaded from 
strategies [38,39]. Thus, two strategies arose during this

period, one of increased flexibility and one of increased

specialization. With the appearance of H. erectus, brain size

increased significantly and continued to increase over the

following 500 kyr, followed by additional step increases

between 0.8 and 1 Ma, at 200 ka, and finally again at 100 ka

([7], figure 5). These final stages of increased brain capacity

were due to the appearance of H. heidelbergensis around

800 ka, H. denisovan around 600 ka, H. neanderthal around

300 ka and anatomically modern humans around 200 ka.
3. Theories of early human evolution
Environmental pressures have long been assumed to play a

key role in hominin speciation and adaptation [40] and a

number of iconic theories have been developed to frame

and develop the discussion of hominin evolution. Table 1

tries to put these key theories into the context of overarching

evolutionary theory. Although the split between phylogenetic
gradualism and punctuated equilibrium is artificial, it does pro-

vide a starting point with which to discuss theories of early

human evolution. In table 1, gradualism has been split into

constant and variable evolution rates to reflect the full

range of current opinions.

The first key environmental theory to explain bipedalism

was the savannah hypothesis, which suggested that hominins

were forced to descend from the trees and adapted to life

on the savannah facilitated by walking erect on two feet.

This theory was refined as the aridity hypothesis, which

suggested that the long-term trend towards increased aridity

and the expansion of the savannah was a major driver of

hominin evolution [1,38,45]. A key addition to this theory

was the suggestion that during periods when aridification

accelerated, owing to thresholds in the global climate

system, then thresholds in evolution were reached and

major hominin speciation events occurred [1].

The turnover pulse hypothesis [42,46–48] was originally

developed to explain discrete patterns in ungulate speciation,

and suggests that acute climate shifts drove adaptation and

speciation. Vrba [46] recognized that environmentally induced

extinctions hurt specialist species more than generalist species.
Hence, when there is an environmental disruption, the

generalists will tend to thrive by using new environmental

opportunities and by moving elsewhere to take advantage of

other areas that have lost specialist species. The specialists

will experience more extinctions, and therefore an increased

speciation rate within their group. This would lead to more

rapid evolution in isolated areas, i.e. allopatric speciation,

whereas the generalists will become more spread out.

The variability selection hypothesis advocates the role of

environmental unpredictability in selecting for behavioural or

ecological flexibility [10,43,49–51]. This theory develops the

original turnover pulse hypothesis but instead splits species into

their varying ability to adapt and evolve to a more variable

and unpredictable environment. The variability selection hypoth-
esis emphasizes the long-term trends toward a drier and more

variable climate. It, however, struggles to explain the current

palaeoanthropological evidence that suggests a pulsed/

threshold nature of hominin speciation and migration events.

More recently, it has been suggested that periods of climate

stability may be equally important in driving human evolution,

dispersal and technological innovation (e.g. [15,52,53]). Rela-

tively long periods of climate stability could invoke the Red
Queen hypothesis or sympatric evolution owing to sexual selection.

The Red Queen hypothesis suggests that continued adaptation is

needed in order for a species to maintain its relative fitness

among co-evolving systems [54] and that biotic interactions,

rather than climate, are driving evolutionary forces. It is based

on the Red Queen’s race in Lewis Carroll’s Through the Look-
ing-Glass, when the Queen says; ‘It takes all the running you

can do, to keep in the same place’ [44]. However, for this to

occur, it is reasonable to assume that a relatively highly pro-

ductive environment has to exist so that competition rather

than resources is the dominant control. At Koobi Fora (Northern

Kenya) there is evidence for multiple hominin species, including

P. boisei, H. erectus spp., H. habilis and H. rudolfensis attributed to

the period of maximal lake coverage (approx. 1.8–1.9 Ma), and

hence the highest availability of resources; it might be postulated

that these hominins evolved as a result of competition with each

other and other animals.

It may also be possible that certain traits, such as a large

brain, became a key characteristic in sexual selection that

hence drove sympatric evolution. The social brain hypothesis

http://rstb.royalsocietypublishing.org/
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[55,56] suggests that enhanced cognitive ability would provide

the ability to strongly influence groups or tribes of hominins

and hence control the distribution of resources. It would also

help social cohesion and thus the ability of individuals to

ensure allomaternal care, reducing the effects of the obstetric

dilemma (see [57] in this issue). The social brain hypothesis
could apply equal well to periods of high or low resources

as it can be seen as an internal arms race to develop great cog-

nitive skills to enable greater social control. In additional to

this is the expensive brain framework [56,58] which tries to under-

stand the advantages of having enhanced cognitive ability in

terms of food production and sharing, predation reduction

and allomaternal care compared with the negative impacts

such as increase food requirement and increased infant and

mother mortality (figure 2). Both of these theories provide

an essential link between the mechanisms driving evolution

and the biological response.

Finally, a direct development of the variability selection
hypothesis, which incorporates the latest palaeoenvironmental

reconstructions and the role of both stability and instability

is the pulsed climate variability framework, which highlights the

role of short periods of extreme climate variability specific to

East Africa in driving hominin evolution [12]. This framework

is discussed in §4 along with how the other evolutionary

theories may be applied given the new environmental context.
4. Pulsed climate variability conceptual
framework

Over the past two decades, intense work on African palaeo-

climate and tectonics has allowed us to begin to put

together a coherent picture of how the environments of east-

ern and southern Africa have changed over the past 10 Myr.

Tectonics has altered the landscape of East Africa dramati-

cally over this period of time. It changed from a relatively

flat, homogenous region covered with tropical mixed forest,
to a heterogeneous region, with mountains over 4 km high

and vegetation ranging from desert to cloud forest. Tectonic

events such as these are associated with a variety of biotic

changes. Over the Oligocene and Miocene progressive

uplift of East Africa split the pan-Africa rainforest which

joined the Congo with East Africa resulting in endemic

species in East Africa emerging at 33, 16 and 8 Ma [59].

During the Plio-Pleistocene, there is evidence from soil car-

bonates [60–63], marine sediment n-alkane carbon isotopes

[64–66] and fossilized mammal teeth [67,68] that there was

a progressive vegetation shift from C3 plants to C4 plants

during the Pliocene and Pleistocene. This vegetation shift

has been ascribed to increased aridity owing to the progress-

ive rifting and tectonic uplift of East Africa [45]. The aridity

trend is also supported by a number of climate model simu-

lations [69–71]. These studies demonstrate that as uplift

increases, wind patterns become less zonal resulting in a

decrease in regional rainfall. Hence as elevation increases, a

rain shadow effect occurs that reduces moisture availability

on the Rift Valley mountain side, producing the strong aridi-

fication trend evident in palaeoenvironmental records [69,70].

In addition to contributing towards the aridification of

East Africa, the tectonic activity also produced numerous

basins suitable for lake formation [72]. The southward propa-

gation of rifting, including the formation of faults and

magmatic activity, is also reflected in the earliest formation

of lake basins in the northern parts of the rift. For example,

the Middle and Upper Miocene saw the beginning of lakes

in the Afar, Omo-Turkana and Baringo-Bogoria Basins, but

the oldest lacustrine sequences in the central and southern

segments of the rift in Kenya and Tanzania are of Early Plio-

cene age [73,74]. Palaeo-lakes in the northern part of the East

African Rift Valley thus formed earlier than in the south.

However, if tectonics were the sole control over the appear-

ance and disappearance of lakes, then either a north–south

or north-west–south-east temporal pattern would be

expected. By contrast, what is observed is the synchronous

http://rstb.royalsocietypublishing.org/
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appearance of large deep lakes across a large geographical

area at specific times [2], suggesting a regional climatic con-

trol. Moreover, there is growing evidence for significant late

Cenozoic lake periods between 4.6–4.4 Ma, 4.0–3.9 Ma,

3.6–3.3 Ma, 3.1–2.9 Ma, 2.7–2.5 Ma, 2.0–1.7 Ma, 1.1–0.9 Ma

and 0.2–0 Ma before present in East Africa [2,11,74]. These

occurrences correlate with the 400- and 800-kyr components

of the eccentricity cycle, suggesting a major role in lake for-

mation for extreme amplitude fluctuations in precession

(figure 4). During each of the lake phases there is evidence

that the lakes appear and disappear rapidly in time with pre-

cessional forcing [1,45,75–86]. Deino et al. [77] and Kingston

et al. [78] have found that the major lacustrine episode of the

Baringo Basin in the Central Kenyan Rift between 2.7 and

2.55 Ma actually consisted of five palaeo-lake phases separ-

ated by a precessional cyclicity of approximately 23 kyr,

while Magill et al. [84] have found biomarker stable carbon

isotope evidence in Olduvai lake sediment of precessional

forced variations between open C4 grasslands and C3 forest

between 1.8 and 1.9 Ma. There is also evidence for preces-

sional forcing of the 1.9–1.7 Ma lake phase indentified in

the KBS Member of the Koobi Fora Formation in the north-

east Turkana Basin in Kenya [80,87]. During the same period,

an oxygen isotope record from the Buffalo Cave flowstone

(Makapansgat Valley, Limpopo Province, South Africa)

shows clear evidence of precessionally forced changes in rain-

fall [79]. The occurrences of these environmental changes are in

phase with increased freshwater discharge and thus sapropel

formation in the Mediterranean Sea [88–90] and coincide with

dust transport minima recorded in sediments from the Arabian

Sea [1,45,91]. Hence, the lake records from East Africa and the

Arabian Sea dust records document extreme climate variability

with precessionally forced wet and dry phases.

In summary, the pulsed climate variability framework suggests

there are periods of extreme climate variability every 400 or

800 kyr driven by the eccentricity maxima when lakes rapid-

ly grow and fill much of the Rift Valley and then rapidly

disappear. Wilson et al. [86], using evidence from Pliocene di-

atomite deposits in the Baringo Basin, suggest that the lakes

appear rapidly, remain part of the landscape for thousands

of years, then disappear in a highly variable and erratic way

[77,82]. In fact, the absence of shallow-water (littoral) diatom
species at key Plio-Pleistocene lake deposits [78,82,86] suggests

that the lakes appeared in only a few hundred years. Figure 3

shows a compilation of what a generic extreme wet–dry cycle

may have looked like with a threshold at the beginning of the

wet phase and a prolong highly variable period at the end of

the wet phase. There would be four or five of these cycles

during each of the periods of extreme climate variability. The

different appearance and disappearance of the lakes is also con-

sistent with the idea of a bifurcated relationship between

climate and lake presence [92]. Figure 4 shows that precipi-

tation needs to increase significantly before lake growth can

initiate, but once it has there are some key feedbacks which

accelerate the expansion of the lakes. The most important is

the change in the local lapse rate owing to increased moisture

in the atmosphere. Hence the increased local relative humidity

reduces the evaporation–precipitation balance, increasing the

moisture in the atmosphere. When lake become more estab-

lished the increased moisture changes the vegetation and

more bushes and trees appear which subsequently increase

the evapo-transpiration, further increasing the moisture in the

atmosphere. These same feedbacks also resist the drying out

of the lake when precessionally driven rainfall starts to

reduce. This leads to a period of up to 2 kyr when the lake

expands and contracts finally before there is not enough moist-

ure in the region to sustain any sort of lake. Recent evidence of

this lake behaviour has been found using radiocarbon dating of

the palaeo-Lake Suguta in Northern Kenya [93,94].

http://rstb.royalsocietypublishing.org/
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It should be stressed, however, that the pulsed climate
variability framework only applies up to about 800 ka. After

this time, the Early–Middle Pleistocene transition (which

was previously known as the Mid-Pleistocene Transition or

Revolution [95]) occurs which marks a prolongation and

intensification of glacial–interglacial climate cycles, which

have an increasing influence on tropical climates. Hence

post 800 ka, the climate of the tropics becomes more compli-

cated and fragmented as it is influenced both by localized

influences of orbital forcing as well as the evermore global

influence of the glacial–interglacial cycles [11].
5. Human evolution theories within the new
framework

Figures 5–9 illustrate how the pulsed climate variability framework
helps to conceptualize the different theories of early human

evolution. Figure 5 shows how the turnover pulse hypothesis
would operate through one of these extreme climate cycles.

Vrba [46] suggested that environmental changes would affect

specialist and generalist species differently. During dry periods,

the extinction rates of generalist species would reduce as they

would be better able to find resources, while specialist species

would struggle having lost their environmental niche and

their competitive advantage (figure 5). Speciation would be

much higher in the specialist species during dry periods as

they try to adapt to the new habitats. By contrast, during the

wet periods and to a lesser extent the high variable periods
generalist species would suffer as specialists would have a lot

more niches to fill and thus would outcompete the generalists.

Figure 6 illustrates possible changes that could have occurred

owing to the aridity hypothesis [1,45], which suggest that speci-

ation mainly occurs during periods of dryness with low

resources. Figure 7 illustrates the variability selection hypothesis
[10,43,50,51] that develops the original turnover pulse hypothesis
but instead splits species into their varying ability to adapt

and evolve to a more variable and unpredictable environment.

Hence, generalists undergo more extinction and specialists

more speciation during the highly variable climate period in

between the long wet and arid phases. Figure 8 illustrates the

Red Queen hypothesis that suggests continued adaptation is

needed in order to keep up with other species which are also

evolving. Figure 8 assumes that a relatively high-energy

environment would provide more resources and therefore

more energy in the system to enable inter-species competition.

The structure of figure 8 could also apply to sympatric evolution
owing to sexual selection. Finally, figure 9 illustrates allopatric
evolution that suggest geographically isolated populations can

evolve independently. In the Rift Valley during the extreme

dry periods north–south and east–west migration was very

difficult so it would have created isolated populations. The

same is true of extreme wet periods because when the lakes com-

pletely fill the rift basins north–south and east–west migration

would be again difficult, creating isolated populations. Only

during the highly variable period and the threshold change

would it be possible easily to move up and down and

across the Rift Valley. Recent evidence from Wilson et al. [86]
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suggests there were millennial-scale fluctuations in lake level

during the extreme wet periods; hence movement between

populations may have been possible during the wet phases,

limiting the isolation.
Figures 5–9 are just our interpretations of how these

major theories of human evolution could be placed within

the pulsed climate variability framework. We would encourage

colleagues to use this more visual approach to provide their
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own interpretation of how changing environments would

interact with different theories of early human evolution.
6. Conclusion
The pulsed climate variability framework therefore takes the latest

palaeoclimate understanding of East Africa and provides a

framework within which to understand the causes of early

human evolution. Different species or, at the very least,
different emerging traits within a species could have evolved

through various mechanisms including the turnover pulse
hypothesis, aridity hypothesis, variability selection hypothesis or

allopatric speciation. This is exemplified by the case of

H. erectus (sensu lato) which exhibits changes in life history

(shortened inter-birth intervals, delayed development),

pelvic morphology, body size and dimorphism, a shoulder

morphology that enables projectile use, adaptation to long-

distance running, ecological flexibility, social behaviour

which may have included cooking. Each one of these traits
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could have been forced by a different evolutionary mechanism

operating at a different part of the environmental cycle.
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