
lable at ScienceDirect

Neuropharmacology 92 (2015) 16e24
Contents lists avai
Neuropharmacology

journal homepage: www.elsevier .com/locate/neuropharm
Neuronal activity patterns in the mediodorsal thalamus and related
cognitive circuits are modulated by metabotropic glutamate receptors

C.S. Copeland a, *, S.A. Neale b, T.E. Salt a

a Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
b Neurexpert Ltd, Kemp House, City Road, London, EC1V 2NX, UK
a r t i c l e i n f o

Article history:
Received 28 October 2014
Received in revised form
2 December 2014
Accepted 26 December 2014
Available online 7 January 2015

Chemical compounds studied in this article:
N-Methylaspartate (PubChem CID 22880)
Egluetad (PubChem CID 156665)
N-(4-(2-methoxyphenoxy)phenyl)-N-
(2,2,2-trifluoroethylsulfonyl)pyrid-3-
ylmethylamine (PubChem CID 9825084)

Keywords:
Mediodorsal thalamus
Metabotropic glutamate receptor
Synaptic inhibition
Burst firing
Schizophrenia
Abbreviations: DMSO, dimethyl sulfoxide; GABA,
i.p., intraperitoneal; LY354740, (1S,2S,5R,6S)-2-Am
dicarboxylic acid; LY487379, 2,2,2-Trifluoro-N-[4-(2-
(3-pyridinylmethyl)ethanesulfonamide hydrochloride
mGlu, metabotropic glutamate; mGlu2, metabotropic
metabotropic glutamate subtype 3; NaCl, sodium c
aspartate; PAM, positive allosteric modulator; PFC, p
stimulus time histogram; TRN, thalamic reticula
thalamus.
* Corresponding author. Tel.: þ44 7725 890 880.

E-mail addresses: carolinecopeland@gmail.com (
neurexpert.com (S.A. Neale), t.salt@ucl.ac.uk (T.E. Salt

http://dx.doi.org/10.1016/j.neuropharm.2014.12.031
0028-3908/© 2015 The Authors. Published by Elsevie
a b s t r a c t

The mediodorsal thalamus (MD) likely plays an important role in cognition as it receives abundant
afferent connections from the amygdala and prefrontal cortex (PFC). Indeed, disturbed activity within the
MD is thought to precipitate cognitive deficits associated with schizophrenia. As compounds acting at the
Group II metabotropic glutamate (mGlu) receptors (subtypes mGlu2/mGlu3) have efficacy in animal
models of schizophrenia, we investigated whether a Group II agonist and an mGlu2 positive allosteric
modulator (PAM) could modulate MD activity. Extracellular single-unit recordings were made in vivo
fromMD neurones in anaesthetised rats. Responses were elicited by electrical stimulation of the PFC and/
or amygdala, with Group II compounds locally applied as required. The Group II agonist reduced inhi-
bition evoked in the MD: an effect manifested as an increase in short-latency responses, and a decrease
in long-latency burst-firing. This disinhibitory action of the Group II receptors in the MD represents a
mechanism of potential therapeutic importance as increased inhibition in the MD has been associated
with cognitive deficit-onset. Furthermore, as co-application of the mGlu2 PAM did not potentiate the
Group II agonist effects in the MD, we suggest that the Group II disinhibitory effect is majority-mediated
via mGlu3. This heterogeneity in Group II receptor thalamic physiology bears consequence, as com-
pounds active exclusively at the mGlu2 subtype are unlikely to perturb maladapted MD firing patterns
associated with cognitive deficits, with activity at mGlu3 receptors possibly more appropriate. Indeed,
polymorphisms in the mGlu3, but not the mGlu2, gene have been detected in patients with
schizophrenia.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Schizophrenia is a devastating psychiatric disorder with a
population prevalence of 1%. Whilst the core clinical symptoms of
psychosis present as ‘positive’ symptoms, those in addition to
normal behaviuor, (hallucinations, paranoia, delusions) or
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‘negative’ symptoms, the absence of it, (depression, social with-
drawal, anhedonia), schizophrenia is also closely associated with
deficits in a wide range of cognitive processes, including working
memory, executive function and attention (Kay et al., 1987; Lewis
and Lieberman, 2000). It has been postulated that abnormal ac-
tivity in specific brain regions, such as the cortex, hippocampus and
thalamus (Review: Barch and Ceaser (2012)), and/or neurotrans-
mitter systems, including glutamatergic and serotinergic signalling
pathways (Moghaddam and Adams, 1998; Aghajanian and Marek,
1999), are associated with these distinct symptoms and signs.
Current therapies fail to alleviate cognitive impairments, even
though they constitute the major determinants for the psychosocial
functioning of patients with the disorder (Zipursky, 2014). Identi-
fying the aetiology underlying cognitive dysfunction is therefore a
prerequisite for the development of future treatments for patients
with schizophrenia.

Thalamocortical synchronization is thought to play a crucial role
in the gating and processing of sensory, motor and cognitive
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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information (Saalmann et al., 2012). Anatomical connections made
between the thalamus and cortex are thought to be key in the
regulation of this thalamocortical synchronization: all thalamic
nuclei project thalamocortical afferents to layer IV of the cortex,
and also receive reciprocal corticothalamic inputs from layer VI,
which modulate how information is transmitted by the thalamus
(Guillery, 1995; Sherman and Guillery, 2001). In addition, both
thalamocortical and corticothalamic afferents innervate the asso-
ciated thalamic reticular nucleus (TRN), which projects to and
provides a GABAergic inhibition in the relevant thalamic nucleus
(Guillery, 1995; Sherman and Guillery, 2001). The mediodorsal
thalamus (MD) is considered crucial in the regulation of key aspects
of cognition due to the afferents it receives from the amygdala and
abundant modulatory connections it receives from the prefrontal
cortex (PFC) (Kuroda et al., 1998; Jones, 2007). As both anatomical
and functional abnormalities have been consistently detected in
the thalamus of patients with schizophrenia (Cronenwett and
Csernansky, 2010), disturbed activity within the MD has been
identified as a key circuitry component postulated to underlie
neuropathological alterations that precipitate the characteristic
cognitive abnormalities of the disease (Andrews et al., 2006;
Mitelman et al., 2006; Minzenberg et al., 2009; Marenco, 2012;
Woodward et al., 2012; Parnaudeau et al., 2013).

The metabotropic glutamate (mGlu) receptors enable the major
excitatory neurotransmitter, glutamate, to play a regulatory role in
neural communication. Specifically, the Group II mGlu receptors
(mGlu2 and mGlu3) have been identified as novel targets in the
treatment of schizophrenia upon the inaugural discovery that
administration of the Group II selective orthosteric agonist
LY354740 ameliorates psychotic behaviours (Moghaddam and
Adams, 1998; Aghajanian and Marek, 1999). Since then, several
preclinical studies using selective Group II compounds (see Review:
Herman et al., 2012), have established the Group II mGlu receptors
as a novel potential target for a new class of antipsychotic drug.
Furthermore, Group II mGlu receptors are moderately/highly
expressed in limbic brain regions in healthy controls, including the
MD (Petralia et al., 1996; Wright et al., 2001; Gu et al., 2008).

In the present study, where we performed a series of in vivo
recording experiments, we sought to investigate how activation of
the Group II mGlu receptors affects thalamic activity in the MD
upon stimulation of the amygdala and/or PFC. In addition, as the
Group II mGlu receptors have been previously demonstrated to
modulate thalamic responses to somatosensory input (Salt and
Turner, 1998; Copeland et al., 2012), we also conducted comple-
mentary comparative experiments in the somatosensory ven-
trobasal thalamus (VB). The findings of this study were two-fold:
firstly, the data suggest that the Group II mGlu receptors function
within the MD to disinhibit thalamic neurones: a mechanism of
potential therapeutic importance as increased inhibition in the MD
has been associated with cognitive deficit-onset (Parnaudeau et al.,
2013); and secondly, that Group II mGlu receptor distribution
across thalamic nuclei is not uniform. Taken together these data can
lead us to suggest that compounds active exclusively at the mGlu2
receptor are unlikely to perturb any maladapted MD firing patterns
associated with cognitive deficits, with activity at mGlu3 receptors
likely more appropriate.

2. Materials and methods

2.1. Animals & experimental procedures

All experiments were conducted using adult male Wistar rats (290e450 g,
n ¼ 13). Animals (Harlan, UK) were housed on a 12 h light/dark cycle with food and
water ad libitum. All experimental conditions and procedures were approved by the
Home Office (UK) and were in accordance with the UK Animals (Scientific Pro-
cedures) Act 1986 and associated guidelines. All studies complied with the ARRIVE
guidelines. All efforts were made to minimize animal suffering and to reduce the
number of animals used.
2.2. Surgery

Animals were anaesthetised with urethane (1.2 g/kg intraperitoneal [i.p.] in-
jection) and were prepared for recording as previously described (Salt, 1989).
Throughout the experiments, electroencephalogram and electrocardiogram were
monitored. Additional urethane anaesthetic was administered i.p. as required, and
the experiment was terminated with an overdose of the same anaesthetic.

2.3. Recording and iontophoresis

Seven-barrel recording and iontophoretic glass pipettes were advanced into the
MD or VB. Extracellular recordings were made from single MD or VB neurones
through the central barrel (filled with 4 M sodium chloride [NaCl]). Iontophoretic
drug applications were performed using the outer barrels (Salt, 1989). On each
occasion, one of the outer barrels was filled with 1 MNaCl for current balancing. The
remaining outer barrels each contained one of the following substances: NMDA
(50 mM, pH 8.0 in 150 mM NaCl); (1S,2S,5R,6S)-2-Aminobicyclo[3.1.0]hexane-2,6-
dicarboxylic acid (LY354740; 5 mM, pH 8.0 in 75 mM NaCl) and pontamine sky
blue dye (2% in 1 M NaCl) as Naþ salts ejected as anions, with 2,2,2-Trifluoro-N-[4-
(2-methoxyphenoxy)phenyl]-N-(3-pyridinylmethyl)ethanesulfonamide hydrochlo-
ride (LY487379; 1 mM, pH 6.0, in 1% dimethyl sulfoxide [DMSO], 75 mM NaCl)
ejected as cations. All compounds were prevented from diffusing out of the pipette
by using a retaining current (10e20 nA) of opposite polarity to that of the ejection
current. Compounds were ejected within a current range ensured to produce a sub-
maximal effect on thalamic inhibition (LY354740 6e50 nA; LY487379 50e100 nA).
Pontamine sky blue was ejected at the end of each MD experiment to enable
identification of the recording site location. All compounds were obtained from
Tocris (Bristol, UK).

2.4. Stimulation protocols

2.4.1. Electrical stimulation
Neurones were identified as MD neurones for experimental purposes on the

basis of stereotaxic location (AP þ4.0 mm from lambda; ML 0.5 mm) (Paxinos and
Watson, 1998) and responses to electrical stimulation of the PFC and/or amygdala.
All electrode sites were confirmed histologically, with stimulation sites identified by
electrode tracks, and recording sites identified by pontamine sky blue dye spots.
Data collected from incorrect electrode placements were discarded. Electrical
stimulation of the PFC was performed using insulated tungsten wires located
0.8e1 mm apart (0.2 ms, 1e10 V, square pulses), whilst electrical stimulation of the
amygdalawas performed using bipolar concentric electrodes (0.2 ms,1e10 V, square
pulses). Both types of electrode were advanced into their appropriate stereotaxic
location using micromanipulators (PFC: AP þ9.5 mm from lambda; ML 0.8 mm;
amygdala AP þ1.7 mm from lambda; ML 3.7 mm at a 21� angle) (Paxinos and
Watson, 1998). Using such an approach it is possible to use electrical stimulation
of the PFC and amygdala to evoke either excitatory or inhibitory responses, as
described previously (Fernandez deMolina and Ispizua, 1972; Sidorov and Podachin,
1982). Recordings were made from both quiescent and spontaneously firing neu-
rones, with the experimental protocol performed adjusted accordingly.

Cycles of electrical stimulation (10 s long) were established and repeated
continuously whilst recording from MD neurones. Cycles consisted of alternating
electrical stimulation of the PFC and amygdala with a 4e5 s interstimulus interval.
After several control cycles displaying consistent neurone responses had been
recorded, LY354740 and LY487379 were iontophoretically ejected either alone or in
conjunctionwith each other for 2e14min using parameters that we have previously
found to be effective (Copeland et al., 2012). After cessation of LY354740 and/or
LY487379 ejection, electrical stimulation cycles were continued until neurone re-
sponses had returned to control levels. An inter-stimulus interval of 4e5 s was
sufficient to ensure that any post-stimulus effects from either stimulus type were no
longer apparent upon subsequent stimulation (Salt, 1989; Turner and Salt, 2003).

2.4.2. Vibrissa deflection
Neurones were identified as VB neurones on the basis of stereotaxic location

(Paxinos and Watson, 1998) and responses to vibrissa deflection. Vibrissa deflection
was performed using fine air jets directed through 23 gauge needles mounted on
micromanipulators positioned and orientated close to the vibrissa to ensure
deflection of a single vibrissa was achieved. Air jets were electronically gated with
solenoid valves that produced a rising air pulse at the vibrissa 8 ms after switching.
Response latencies were calculated from the start of the gating pulse. Using such an
approach it is possible to use air jets on adjacent vibrissae and only evoke an
excitatory response from one of the vibrissa stimuli, indicating the specificity of the
stimulation procedure, as described previously (Salt, 1989). Prior to the beginning of
each experimental protocol, the ‘principal’ vibrissa (i.e. the vibrissa at the centre of
the receptive field) for each neurone was identified, and responses to additional
vibrissae were noted. All VB neurones recorded from were quiescent.

Cycles of sensory stimulation (10 s long) were established and repeated
continuously whilst recording from neurones. Cycles consisted of electronically
gated short (10e30 ms) duration air jets directed at the principal vibrissa, with a
4e5 s interstimulus interval. After several control cycles displaying consistent
neurone responses had been recorded, LY354740 and LY487379 were
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iontophoretically ejected either alone or in conjunction with each other for
2e12 min as required. After cessation of LY354740 and/or LY487379 ejection, sen-
sory stimulation cycles were continued until neurone responses had returned to
control levels. An inter-stimulus interval of 4e5 s was sufficient to ensure that any
post-stimulus effects from either stimulus type were no longer apparent upon
subsequent stimulation (Salt, 1989; Turner and Salt, 2003).

2.5. Data collection and statistical analysis

Throughout the study, extracellular single neurone action potentials were gated,
timed and counted using a window discriminator, a CED1401 interface and Spike2
software (Cambridge Electronic Design, Cambridge, UK), which recorded the output
from the iontophoresis unit and also triggered the iontophoretic, electrical and
vibrissa deflection stimulation sequences. Data were analysed by plotting post-
stimulus histograms (PSTHs) from these recordings by counting the spikes evoked
upon either electrical stimulation or vibrissa deflection. We used conventional
criteria to divide neuronal responses into burst and tonic activity (Lu et al., 1992;
Wang et al., 2006). These required that before the first action potential in a burst,
there was a preceding silent period of at least 100 ms, which was then followed by a
second spike with an interspike interval �4 ms. Any subsequent action potentials
with preceding interspike intervals�4 ms were also considered to be part of a burst.
All other spikes were regarded as tonic. We computed a burst-tonic firing ratio (the
proportion of burst spikes normalized with respect to the total number of recorded
spikes). Data are expressed as a percentage of control responses prior to compound
application (±SEM). Comparisons were made using Wilcoxon matched-pairs test
(p < 0.01).

3. Results

3.1. Neuronal population

Data were collected from 19 neurones located in the MD that
were responsive to electrical stimulation of the PFC and/or amyg-
dala, and 5 neurones in the VB that were responsive to vibrissa
defection in urethane-anaesthetised rats. It has previously
demonstrated that urethane has little effect on observed neuronal
responses when compared to recordings taken from neurons in
unanaesthetised rats (Holmes and Houchin, 1966; Simon et al.,
2006). Due to the absence of interneurones in the rodent MD
(Kuroda et al., 1998) and VB (Ralston, 1983; Barbaresi et al., 1986;
Harris and Hendrickson, 1987; Ohara and Lieberman, 1993), all
recordings can be presumed to be from thalamocortical neurones.
Both quiescent (68%) and spontaneously active (32%) MD neurones
were recorded from, which is consistent with MD neurone popu-
lation activity previously reported (Fernandez de Molina and
Ispizua, 1972; Sidorov and Podachin, 1982). The magnitude of
evoked responses (in terms of evoked action potentials) in the MD
upon stimulation of the PFC was, on average, much greater than
that evoked upon stimulation of the amygdala. This may arise from
the abundant projections from the PFC innervating the MD to a
larger degree than the sparser projections from the amygdala
(Kuroda et al., 1998; Jones, 2007). Single short-latency (6e50 ms)
spikes were evoked in theMD upon stimulation of both the PFC and
amygdala, with long latency (300e200 ms) bursts also evoked in
the MD upon stimulation of the PFC only: response parameters
consistent with those previously observed. The distribution of the
evoked response latencies into these two broad ranges is similar to
the previously reported MD population activity (Fernandez de
Molina and Ispizua, 1972; Sidorov and Podachin, 1982). In the VB,
recordings were made from quiescent neurones in which long-
latency (300e400 ms) bursts comprising 2e6 spikes were evoked
upon vibrissal deflection. Responses evoked in quiescent VB neu-
rones upon short-duration vibrissa deflection, which have been
previously reported (Copeland et al., 2012), are also referred to.

3.2. Group II mGlu receptors can reduce inhibition evoked in the
MD

We first assessed whether the Group II mGlu receptors could
broadly disinhibit neuronal firing in the MD. Conveniently,
spontaneously-firing MD neurones provided us with a background
of excitation upon which inhibition could be visualised. Stimulation
of either the PFC or amygdala was found to reduce the spontaneous
firing of MD neurones, with local application of the Group II mGlu
receptor orthosteric agonist LY354740 able to significantly reduce
the extent of the evoked inhibition (PFCe 24%± 10% of control; n¼ 6
from 5 rats; p < 0.05; amygdalae 45% ± 12% of control; n¼ 5 from 5
rats; p < 0.05; Fig. 1). The ability of the Group II mGlu receptors to
reduce evoked inhibition in a thalamic nucleus is similar to that
observed previously in the VB (Salt and Turner, 1998; Copeland et al.,
2012). Therefore, we next sought to examine how Group II mGlu
receptor activation may modulate characteristic thalamic activity
patterns, short-latency and long-latency burst firing, in the MD.

3.3. Group II mGlu receptor modulation of evoked short-latency and
long-latency burst firing patterns of MD neurones

It is well known that the firing pattern of thalamic neurones ex-
hibits two distinct response patterns: short-latency and long-latency
burst firing (although both firing patterns can be seen together in
varying proportions (Ramcharan et al., 2000; Rivadulla et al., 2003).
Short-latency responses are associated with a linear transmission of
information, and occurs when thalamic neurones have been depo-
larised from resting potential, and follows the inactivation of a
voltage- and time-dependent calcium current (IT), whilst long-
latency burst-mode firing occurs when there has been a sustained
hyperpolarisation of thalamic neurones for 100 ms or more and IT is
de-inactivated (Llinas and Jahnsen, 1982; Jahnsen and Llinas, 1984).
The effect of Group II mGlu receptor activation on both short-latency
and long-latency burst firing patterns was therefore assessed.

In quiescent MD neurones inwhich short-latency firing could be
evoked, local application of the Group II agonist was able to signif-
icantly increase short-latency neuronal responses upon electrical
stimulation of either the PFC or amygdala (PFC e 152% ± 8% of
control; n¼5 from4 rats;p<0.05; amygdalae124%±6%of control;
n ¼ 5 from 3 rats; p < 0.05; Fig. 2). This increase in excitatory
response is likely due to Group II mGlu receptors localized on TRN
terminals reducing GABAergic transmission and subsequent
thalamic inhibition (Ohara and Lieberman,1993; Varga et al., 2002).
However, in the same population of neurones, co-application of the
mGlu2 PAM did not potentiate the Group II agonist effect on the
evoked response to either stimulation (PFCe 171% ± 24% of control;
n ¼ 5 from 4 rats; p > 0.05; amygdala e 135% ± 8% of control; n ¼ 5
from 3 rats; p > 0.05; Fig. 2), indicating that there is no mGlu2
component to the overall Group II mGlu receptor effect in the MD.
This is in contrast to the Group II mGlu receptor modulation of
physiologically-evoked short-latency activity in the VB, which has
been demonstrated to comprise an mGlu2 receptor component
(Copeland et al., 2012).

In quiescent MD neurones in which long-latency burst-firing
could be evoked, local application of the Group II agonist was also
able to significantly reduce the proportion of burst activity evoked
upon electrical stimulation of the PFC without affecting the overall
magnitude of the response (Control e total number of spikes:
100% ± 0%; proportion of spikes in bursts: 76% ± 5%; Group II
agonist e total number of spikes: 93% ± 5%; proportion of spikes in
bursts: 57% ± 2%; n¼ 5 from 4 rats, p < 0.05; Fig. 3). This decrease in
the proportion of burst firing is likely due to Group II mGlu re-
ceptors localized on TRN terminals reducing GABAergic trans-
mission and the subsequent hyperpolarization of MD neurones
(Llinas and Jahnsen, 1982; Jahnsen and Llinas, 1984; Ohara and
Lieberman, 1993; Varga et al., 2002). However, in the same popu-
lation of neurones, co-application of the mGlu2 PAM did not
potentiate the Group II agonist effect on evoked burst activity
(Group II agonist plus mGlu2 PAM e total number of spikes:



Fig. 1. Group II mGlu receptor activation reduces inhibition evoked in the MD. Ai Stimulation and recording sites for the PFC and MD electrodes, respectively. Aii Peristimulus
time histograms (PSTHs) of responses of a spontaneously firing MD neurone (CMD31a) to electrical stimulation of the PFC under normal conditions, upon Group II agonist
application, and recovery. 50 ms bins over 30 trials. Aiii Bars represent the mean % response (±SEM) under the same conditions (n ¼ 5). *p < 0.05 when compared to control. Bi
Stimulation and recording sites for the amygdala and MD electrodes, respectively. Bii PSTHs of responses of a spontaneously firing MD neurone (CMD02b) to electrical stimulation of
the amygdala under normal conditions, upon Group II agonist application, and recovery. 50 ms bins over 30 trials. Biii Bars represent the mean % response (±SEM) under the same
conditions (n ¼ 6). *p < 0.05.
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92% ± 11% of control; proportion of spikes in bursts: 60% ± 5%; n¼ 5
from 4 rats; p > 0.05; Fig. 3). In contrast, in quiescent VB neurones
in which burst-firing could be evoked, local application of the
Group II agonist was able to significantly reduce burst activity
evoked upon principal vibrissa deflection without affecting the
magnitude of the overall neuronal response (Control e total
number of spikes: 100% ± 0%; proportion of spikes in bursts
66% ± 7%; Group II agonist e total number of spikes: 88% ± 28%;
proportion of spikes in bursts 51% ± 9%; n ¼ 5 from 5 rats, p < 0.05;
Fig. 4); an effect that was potentiated upon co-application of the
mGlu2 PAM (Group II agonist plus mGlu2 PAM e total number of
spikes: 114% ± 23% of control; proportion of spikes in bursts
38% ± 9%, n ¼ 5 from 5 rats, p < 0.05; Fig. 4). These data provide
further evidence that whilst there is an mGlu2 component to the
Group II mGlu receptor effect in the VB, there is no such component
in the MD.

4. Discussion

Group II mGlu receptor function in the somatosensory rodent
thalamus has been investigated extensively (Salt and Eaton, 1995a;
b; Salt et al., 1996; Salt and Turner, 1998; Turner and Salt, 2003;
Copeland et al., 2012). However, whether this function represents
an over-arching principle of thalamic physiology is not known. The
data obtained in this study using in vivo electrophysiology and
iontophoresis clearly demonstrate that Group II mGlu receptor
activity disinhibits neuronal responses in the rat MD, and that there
is heterogeneity in Group II mGlu receptor physiology across
thalamic nuclei. As increased inhibition in the MD has been asso-
ciated with cognitive deficit-onset (Parnaudeau et al., 2013), these
results may influence the design of future Group II mGlu receptor
therapies as compounds active exclusively at the mGlu2 subtype
are unlikely to perturb maladapted MD firing patterns associated
with cognitive deficits, with activity at mGlu3 receptors likely more
appropriate.

LY354740 is the best-studied selective Group II mGlu receptor
orthosteric agonist (Schoepp et al., 2003), and has been extensively
used to probe Group II mGlu receptor function in behavioural
(Schoepp et al., 2003; Nordquist et al., 2008) and physiological (Flor
et al., 2002; Moldrich et al., 2003) studies in both the human and
rodent CNS in vivo and in vitro. LY487379, a highly selective mGlu2
PAM, which possesses no intrinsic agonist activity but does



Fig. 2. Group II mGlu receptor activation increases evoked tonic firing in the MD. Ai Stimulation and recording sites for the PFC and MD electrodes, respectively. Aii PSTHs of
responses of a tonically firing MD neurone (CMD22a) to electrical stimulation of the PFC under normal conditions, upon Group II agonist application alone, upon Group II agonist
and mGlu2 PAM co-application, and recovery. 2 ms bins over 18 trials. Aiii Bars represent the mean % response (±SEM) under the same conditions (n ¼ 5). *p < 0.05 when compared
to control. Bi Stimulation and recording sites for the amygdala and MD electrodes, respectively. Bii PSTHs of responses of a tonically firing MD neurone (CMD34a) to electrical
stimulation of the amygdala under normal conditions, upon Group II agonist application alone, upon Group II agonist and mGlu2 PAM co-application, and recovery. 2 ms bins over
18 trials. Biii Bars represent the mean % response (±SEM) under the same conditions (n ¼ 5). *p < 0.05.

C.S. Copeland et al. / Neuropharmacology 92 (2015) 16e2420
enhance responses to submaximal glutamate without activity at
other receptors or ion channels (Johnson et al. 2003), has been used
in behavioural and in vitro electrophysiological studies in the ro-
dent CNS (Schaffhauser et al., 2003; Galici et al., 2005; Poisik et al.,
2005; Harich et al., 2007; Hermes and Renaud, 2010; Nikiforuk
et al., 2010). LY487379 possesses higher selectivity for the mGlu2
receptor than the orthosteric Group II mGlu receptor antagonist
LY341495 (Kingston et al., 1998; Schoepp et al., 1999), making
LY487379 the most appropriate selective mGlu2 receptor com-
pound to be used in conjunction with LY354740 in this study.
Furthermore, given our previous findings with LY487379 in the
somatosensory thalamus (Copeland et al., 2012), it was appropriate
to carry out similar studies in the MD with this agent. The phar-
macological specificity of our drug applications is clearly crucial to
the interpretation of the results of the present study. The ionto-
phoretic parameters used for LY354740 and LY487379 in this study
have been demonstrated by ourselves to apply pharmacologically
appropriate quantities (Copeland et al., 2012). Furthermore,
application of either LY354740 or LY487379 has been demonstrated
to have no effect on responses evoked by NMDA or AMPA in
thalamic neurones, indicating that non-specific effects are not be-
ing produced by our drug application protocols (Copeland et al.,
2012).

4.1. Group II mGlu receptor function across thalamic nuclei is not
uniform

It is well established that the Group II mGlu receptors can
modulate somatosensory transmission in the rat VB by reducing
inhibitory drive from the associated TRN (Salt and Eaton, 1995a, b;
Salt et al., 1996; Salt and Turner, 1998; Turner and Salt, 2003;
Copeland et al., 2012); a mechanism that comprises an mGlu2 re-
ceptor component (Copeland et al., 2012). It has been postulated
that these mGlu2 receptors function in a highly specific manner to
enable relevant sensory information to be discerned from back-
ground activity (Copeland et al., 2012): a mechanism whose



Fig. 3. Group II mGlu receptor activation decreases evoked burst firing in the MD. i Stimulation and recording sites for the PFC and MD electrodes, respectively. ii Illustrative
raster display and PSTH of an MD neuron (CMD16a) burst firing in response to PFC stimulation. 20 ms bins over 30 trials. iii PSTHs of burst firing responses of the same MD neurone
to electrical stimulation of the PFC under normal conditions, upon Group II agonist application alone, upon Group II agonist and mGlu2 PAM co-application, and recovery. Burst
spikes, orange; non-burst spikes, black; 50 ms bins over 30 trials. iv Bars represent the mean % response (±SEM) under the same conditions (n ¼ 5). *p < 0.05 when compared to
control; n/s, not significant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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malfunctioning could result in maladaption of sensory perception,
such as that which can occur in psychiatric disease, such as
schizophrenia (Javitt, 2009; Saalmann and Kastner, 2011). This
novel mechanism could therefore also be of potential importance in
attentional and cognitive processes in other thalamic nuclei.
However, the data presented in this study suggest that whilst there
is a disinhibition of MD neurone responses to PFC and amygdala
afferent stimulation upon Group II mGlu receptor activation, this
modulation does not comprise an mGlu2 component. This het-
erogeneity in Group II mGlu receptor physiology may represent a
key component in the facilitation of the multimodal functions
possessed by different thalamic nuclei. The primary method used
by rodents to explore their surroundings is via feedback from
vibrissal deflections (see Review: Diamond et al., 2008). It is
therefore of paramount importance that sensory discrimination
between vibrissal deflections is enhanced to enable optimal object
localization: a mechanism that is likely facilitated by mGlu2 re-
ceptor activation. In comparison to the VB, which only receives
afferent inputs from the vibrissal system, the MD receives pro-
jections originating from a large number of cortical and subcortical
structures including the PFC, the amygdala, the nucleus of the di-
agonal band of Broca, the ventral pallidum, the dorsolateral
tegmental nucleus and the pars reticulata of the substantia nigra
(see Review: (Kuroda et al., 1998)). As theMD is thought to function
as an integrator of these afferent inputs before transmitting them as
coherent information to the PFC (Watanabe and Funahashi, 2012;
Uhlhaas et al., 2013), a scenario in which mGlu2 receptor activa-
tion would enhance inputs from one brain area whilst reducing
those from another is unlikely to optimise the integrative function
of the MD.

4.2. mGlu3 receptor activation can modulate MD neuronal firing
patterns

The two different firing patterns of thalamic neurones e short-
latency (tonic) responses and long-latency burst firing e are



Fig. 4. Group II mGlu receptor activation decreases evoked burst firing in the VB. i Vibrissal deflection schematic and recording site location for the VB electrode. ii Illustrative
raster display and PSTH of a VB neuron (CVB78c) displaying both tonic and burst firing in response to vibrissal deflection. 20 ms bins over 30 trials. iii PSTHs of burst firing responses
of the same VB neurone to vibrissal deflection under normal conditions, upon Group II agonist application alone, upon Group II agonist and mGlu2 PAM co-application, and re-
covery. Burst spikes, orange; tonic short-latency (8e50 ms) spikes, grey; total long-latency (300e1000 ms) spikes, black; 50 ms bins over 30 trials. iv Bars represent the mean %
response (±SEM) under the same conditions (n ¼ 5). *p < 0.05 when compared to control, unless otherwise indicated. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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associated with distinct patterns of information transfer from
thalamus to cortex (Fernandez de Molina and Ispizua, 1972; Llinas
and Jahnsen, 1982; Jahnsen and Llinas, 1984; Ramcharan et al.,
2000; Rivadulla et al., 2003). Short-latency responses predomi-
nate when thalamic neurons have been depolarized from resting
potential, with impulses occurring at high and regular rates, and
where synaptic transmission through the thalamus is faithfully
relayed. In contrast, transmission through the thalamus is less
reliable upon long-latency burst firing, which predominates when
thalamic neurones have been hyperpolarized for 100 ms or more,
with impulses occurring at low and irregular rates punctuated by
high-frequency bursts. It has been recently demonstrated that a
subtle hyperpolarisation of MD neurones is sufficient to trigger
selective impairments in prefrontal-dependent cognitive behav-
iours in rodents (Parnaudeau et al., 2013). In the present study,
Group II mGlu receptor activation in both the MD and VB was able
to significantly reduce burst firing upon either vibrissa deflection or
PFC and/or amygdala stimulation, respectively. In both nuclei, this
is likely due to Group II mGlu receptors localized on TRN terminals
reducing GABAergic transmission and subsequent thalamic inhi-
bition (Ohara and Lieberman, 1993; Varga et al., 2002). Indeed, we
were able to demonstrate that the amount of inhibition evoked in
the MD upon PFC and/or amygdala stimulation was significantly
reduced by Group II agonist application; an effect which has also
been observed in the VB (Copeland et al., 2012). As burst firing is
associated with a sustained hyperpolarisation of thalamic neuro-
nes, a reduction in inhibitory drive would be expected to decrease
burst-firing activity. Several preclinical studies (see Review:
Herman et al., 2012), have indicated that selective targeting of the
Group II mGlu receptors may represent a novel target to treat some
of the symptoms associated with schizophrenia. Therefore, it is
appropriate to postulate that their mechanism of action may be to
reduce burst firing within thalamic nuclei via a reduction in
inhibitory drive from the TRN to ensure synchronous activity be-
tween the cortex and thalamus. Indeed, functional magnetic reso-
nance imaging studies have consistently detected altered
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correlation between activity in the MD and PFC at rest and during
cognitive tasks (Mitelman et al., 2005; Minzenberg et al., 2009;
Woodward et al., 2012). These studies suggest that altered MD
activity and/or impaired communication between the MD and PFC
could play a role in the cognitive deficits seen in patients with
schizophrenia. However, whilst the Group II mGlu receptors are
moderately/highly expressed in limbic brain regions in healthy
controls, (Petralia et al., 1996; Wright et al., 2001; Gu et al., 2008),
the data presented here indicate that targeting the mGlu3 receptor
would be advantageous, as no mGlu2 activity was detected in the
MD. Indeed, the mGlu3 receptor has been implicated in the aetio-
logical, pathophysiological and pharmacotherapeutic aspects of the
disorder (Harrison et al., 2008), with polymorphisms in the mGlu3
receptor gene and protein, but not the mGlu2 receptor, detected in
patients with schizophrenia (Ghose et al., 2009; Cherlyn et al.,
2010; Mounce et al., 2014). Several clinical trials have been con-
ducted to assess the efficacy of agonists targeting both mGlu2 and
mGlu3 receptor subtypes to treat schizophrenia symptoms (Patil
et al., 2007; Kinon et al., 2011; Adams et al., 2013; Stauffer et al.,
2013), with varying success. Taking into account the results pre-
sented here, the design of future novel therapies targeted to treat
deficits in cognitive function may therefore achieve greater success
if selectivity and higher efficacy for mGlu3 receptors were achieved.

4.3. Conclusions

The significance of the results obtained in this study is two-fold:
firstly, the data suggests that the Group II mGlu receptors function
within the MD to disinhibit thalamic neurones: a mechanism of
potential therapeutic importance as increased inhibition in the MD
has been associated with cognitive deficit-onset; and secondly, that
Group II mGlu receptor distribution across thalamic nuclei is not
uniform. Taken together these data can lead us to suggest that
compounds active exclusively at the mGlu2 receptor are unlikely to
perturb any maladapted MD firing patterns associated with
cognitive deficits, with activity at mGlu3 receptors likely more
appropriate.
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