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Prion diseases are fatal neurodegenerative disorders. Pathology is closely linked to the misfolding of native
cellular PrPC into the disease-associated form PrPSc that accumulates in the brain as disease progresses. Although
treatments have yet to be developed, strategies aimed at stimulating the degradation of PrPSc have shown effica-
cy in experimental models of prion disease. Here, we describe the cellular pathways that mediate PrPSc degrada-
tion and review possible targets for therapeutic intervention. This article is part of a Special Issue entitled
‘Neuronal Protein’.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Prion diseases are thought to be caused by the misfolding of native
cellular prion protein (PrPC) into a β-sheet rich aggregation prone
form (PrPSc). Their pathogenesis is associated with the build-up of PrPSc

in the brains of affected individuals (Prusiner, 1998). As a result, prion
diseases are included in a group of neurodegenerative disorders termed
the proteinopathies, alongside Alzheimer's disease (AD), Parkinson's
disease (PD) andHuntington's disease (HD) (Soto, 2003). The abnormal
protein aggregates which accumulate in these disorders are thought to
result in a toxic gain of function that ultimately leads to cell death and
egenerative Disease, Institute
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disease pathogenesis. Debate about the nature of these toxic effects
is ongoing (Lindquist and Kelly, 2011); however, recent evidence
has emerged implicating impaired protein homeostasis (proteostasis)
as a major cause of toxicity common to these disorders (Hetz and
Mollereau, 2014; Lindquist and Kelly, 2011). To function efficiently,
cells must maintain protein content (proteome) in an active state. This
presents a significant challenge given the inherently unstable nature
of many proteins under physiological conditions. Proteostasis is defined
as the balance between the protein degradation and synthesis needed
to remove and replace denatured proteins, respectively. Almost 1400
proteins (~14% of the proteome) regulate proteostasis in mammalian
cells, as part of a tightly co-ordinated proteostasis network (Kim et al.,
2013; Powers et al., 2009).

Protein translation is regulated by a series of initiation and elon-
gation factors. One of the key regulators is eIF2α (Walter and Ron,
2011) which is targeted by a number of signal transduction pathways
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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known to control protein synthesis (Clemens, 2004; Deng et al., 2002;
Harding et al., 1999). Phosphorylation of eIF2α inhibits its activity and
suppresses global protein synthesis (Walter and Ron, 2011). This path-
way forms a key arm of the unfolded protein response (UPR), which is
activated during conditions of cellular stress. The UPR has been shown
to be particularly significant in prion pathology (Hetz and Mollereau,
2014; Moreno et al., 2012).

Once translated, proteins are scrutinised for correct folding by
multiple quality control pathways. In the cytosol, the hsp70/hsp40
chaperone system (Kim et al., 2013) surveys proteins for exposed
hydrophobic regions found inmisfolded proteins. If attempts at refolding
fail, misfolded proteins are targeted for degradation. For secretory or
membrane proteins which are translocated directly into the endoplas-
mic reticulum (ER) during synthesis (cotranslational translocation),
specialised quality control systems operate within the ER lumen
(ERQC). Here, the situation is more complex than in the cytosol
due to the additional need to monitor signal peptide removal, N-linked
glycosylation, and disulphide bond formation (Braakman and Hebert,
2013). Since the ER lumen lacks degradation machinery, misfolded pro-
teins must be retro-translocated to the cytosol for degradation as part of
the ER-associated degradation (ERAD) pathway. Irreversibly aggregated
ER proteins are subject to ERQC and targeted for lysosomal degradation
via autophagic pathways (Araki and Nagata, 2011). In addition to ERAD
and ERQC pathways, it is likely that protein quality control systems in
other cellular compartments also contribute to the clearance of
misfolded proteins. An important example is the Golgi quality control
(Golgi QC) pathway which directs misfolded proteins from the Golgi di-
rectly to lysosomes for degradation (Anelli and Sitia, 2008; Arvan et al.,
2002).

Misfolded, damaged or aggregated mature proteins are subject to
similar quality control mechanisms as those synthesised de novo
(Hipp et al., 2014). Protein aggregates accumulate in cells when
levels of misfolded proteins overwhelm the quality control systems.
This can arise in conditions of cell stress, mutant protein expression
or prion infection. Different classes of protein inclusions have been
described depending on their cellular location, stability and protein
content. They are thought to play a protective role by sequestering
potentially harmful misfolded proteins from the cellular milieu
(Sontag et al., 2014). Various systems have evolved to deal with
these deposits. Hsp70, Hsp40 and Hsp100 chaperones act in concert
to solubilise aggregates, allowing refolding or degradation (Kim
et al., 2013). Insoluble aggregates are directly targeted for degrada-
tion by binding to adaptor proteins, such as p62 and NBR1 (Bjorkoy
et al., 2005; Kirkin et al., 2009; Pankiv et al., 2007). The eventual
fate of terminally misfolded or aggregated proteins is degradation.
There are two main degradation pathways: the ubiquitin-
proteasome system (UPS) and lysosomal proteolysis (including autoph-
agic pathways). These systems are particularly important in neurons
whose complex architecture, long lifespan and inability to divide (and
thereby dilute the load of damaged proteins), make them particularly
vulnerable to proteotoxic stress.

2. Ubiquitin–proteasome system

As the principal route of protein degradation in mammalian cells,
the UPS represents a major protection against misfolded proteins. Pro-
teins are marked for proteasomal degradation by covalent conjugation
of ubiquitin (Ub) in a sequential reaction involving three enzymes:
ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes
(E2) and ubiquitin ligases (E3) that recognise and transfer ubiquitin to
an internal lysine residue on substrate proteins. In humans, there are
two E1 molecules, a greater diversity of E2s, and several hundred E3s
(Lee et al., 2011). Thus, E3 ubiquitin ligases provide the mechanisms
of substrate specificity in proteasomal degradation. Following initial
substrate ubiquitination further Ub molecules are added sequentially
to the first via one of seven internal lysine residues. In addition to
Please cite this article as: Goold, R., et al., Prion degradation pathways: Pot
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canonical lysine 48 linkages, lysine 11 and 29 linkages have been
shown to target proteins for proteasomal degradation, with a chain of
four molecules considered the minimum efficient signal (degron) for
recognition by the 26S proteasome (Dantuma and Bott, 2014;
McKinnon and Tabrizi, 2014). This large (2.5 MDa) multi-subunit com-
plex consists of a barrel-shaped 20S catalytic core responsible for proteo-
lytic activity (Groll et al., 2000) and the 19S regulatory particle, which is
important for the recognition, unfolding, and translocation of
ubiquitinated substrates into the 20S core particle (Bedford et al.,
2010). Mutations in different components of the UPS have been identi-
fied in clinical cases of HD, AD and PD (Kitada et al., 1998; van
Leeuwen et al., 2006). Furthermore, experimental knockout of protea-
some subunits inmice has been shown to result in progressive neurode-
generation, clearly demonstrating the importance of proteasome
catalytic activity to neuronal proteostasis and survival (Bedford et al.,
2008; Tashiro et al., 2012). Ageing has also been linked with a reduction
in UPS activity, a factor that may contribute to the late onset of many
neurodegenerative diseases (Gamerdinger et al., 2009; Tydlacka et al.,
2008; Zhou et al., 2003).

Although implicated in the clearance of many disease-associated
proteins (Bhat et al., 2014; Goold et al., 2013; Li et al., 2010),
proteasomal degradationmaybe restricted to solublemisfolded proteins
or smaller oligomeric forms that can be unfolded to allow entry into the
20S catalytic chamber. For larger,more insoluble aggregates, the catalytic
chambermay remain inaccessible, preventing their effective degradation
(Qin et al., 2003; Scotter et al., 2014). Indeed, many oligomeric and ag-
gregated forms of disease-associated proteins have been shown to inhib-
it proteasome activity, both in reconstituted systems using purified
components, as well as in cultured cells and in vivo models (Andre and
Tabrizi, 2012; Deriziotis et al., 2011; Hong et al., 2014; Kristiansen
et al., 2007). In the context of UPS impairment, an upregulation of au-
tophagy has been described, which may facilitate the clearance of larger
aggregates (Korolchuk et al., 2010). This is a good example of the cross-
talk and close interplay thought to exist between the two degradatory
systems (Hao et al., 2013; Nedelsky et al., 2008).
3. Lysosomal degradation/autophagy

Lysosomes represent themajor catabolic compartment in eukaryotic
cells. A wide range of enzymatic activities are confined within the
lysosomal limitingmembrane. These includemany classes of proteolyt-
ic enzymes (Appelqvist et al., 2013). Several routes deliver cell constit-
uents to lysosomes including endolysosomal pathways mediated by
the ESCORT machinery, as well as ERQC and Golgi QC pathways and
autophagic pathways (Saftig and Klumperman, 2009). These systems
are interlinked and crosstalk between them ensures the efficient
removal of obsolete cellular components (Nixon, 2013).

Autophagy is a highly conserved system for the degradation of
cytosolic macromolecules and organelles. Several pathways have been
described with the most important for neuronal proteostasis being
macroautophagy (Jimenez-Sanchez et al., 2012; Nixon, 2013; Yao
et al., 2013). This is a process whereby cytosolic contents are engulfed
in a double membrane-bound structure, called an autophagosome,
which later fuses with lysosomes to enable degradation to take place.
The process begins with formation of a crescent shaped isolation mem-
brane (phagophore). The isolationmembrane then extends around a re-
gion of cytoplasm or selected substrate. Subsequent closure of the inner
and outer bilayers of the isolationmembrane forms the autophagosome,
which later fuses with a lysosome to yield an autolysosome (Rubinsztein
et al., 2012). The mammalian target for rapamycin complex (mTORC) is
an important negative regulator of autophagy whose activity is in-
fluenced by multiple signalling pathways (Rubinsztein et al., 2012).
However, mTORC-independent pathways have also been described
that involve Beclin 1 and the PI3K vps34 (Sarkar et al., 2005; Williams
et al., 2008).
ential for therapeutic intervention, Mol. Cell. Neurosci. (2015), http://
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The importance of autophagy to neuronal proteostasis was shown
by amouse conditional knockout of atg5, a key autophagy intermediate,
in the CNS. On atg5 deletion, mice developed behavioural deficits and
neurodegeneration (Hara et al., 2006). Interestingly, affected mice also
accumulated abnormal ubiquitinated proteins which led to the forma-
tion of aggregates in neurons (Hara et al., 2006). Induction of autophagy
has been shown to be beneficial in many models of neurodegenerative
disease through the degradation of aggregation-prone mutant proteins
includingHuntingtin (Ravikumar et al., 2004),α-Synuclein (Webb et al.,
2003), APP (Spilman et al., 2010), Tau (Ozcelik et al., 2013) and TDP-43
(Wang et al., 2012).

4. Prion disease and proteostasis

To date, many studies have identified evidence of proteostasis dys-
regulation in prion disease. Early reports demonstrated the presence
of abnormal levels of ubiquitin and ubiquitinated proteins in diseased
mouse brain tissue (Kenward et al., 1994; Lowe et al., 1992). More re-
cent studies have confirmed the presence of ubiquitin-positive staining
in the form of intracellular inclusions or prominent extracellular puncta
in the brains of diseased animals (Kristiansen et al., 2007). The abnormal
levels of ubiquitinated protein indicate a failure of protein degradation
pathways. Accumulation of proteasomal substrates at later stages of dis-
ease correlate with a decrease in proteasome catalytic activity in brain
extracts from diseased animals (Deriziotis et al., 2011; Kristiansen
et al., 2007). Transgenic mice expressing the UPS reporter UbG76V-GFP
showed strong reporter accumulation in the brain regionsworst affected
by prion disease, supporting a role for proteasomal impairment in dis-
ease pathogenesis (Kristiansen et al., 2007).

Abnormalities in the lysosomal system have also been observed in
prion diseases. Increases in the number and size of autophagic vacuoles
were reported in the brains of patients affected by prion disease, as well
as in mouse models, suggesting that autophagy may be up-regulated in
prion disease (Boellaard et al., 1991; Liberski et al., 2010; Sikorska et al.,
2004). Consistent with this hypothesis, an increase in p62 expression in
diseased brain was recently reported and may reflect attempts to in-
crease the clearance of aggregated proteins by autophagy (Homma
et al., 2014).

In addition to impairments in degradation systems, many studies
have indicated that ER stress is a feature of prion disease in both
human patients and animal models (Hetz et al., 2003), with many
UPR markers upregulated relatively early in disease pathogenesis
(Hetz and Soto, 2006; Moreno et al., 2012; Rane et al., 2008). Moreover,
mechanistic studies have shown that prion infection induces a global
down-regulation of protein translation through chronic eIF2α phosphor-
ylation (Moreno et al., 2012) and ER protein translocation impairment
(Rane et al., 2008). Thus, signs of ER stress appear pre-symptomatically
and have been suggested as important mediators of prion toxicity (Hetz
and Soto, 2006).However, the causal relationship between these observa-
tions and disease pathogenesis is currently unknown. Misfolded PrP in
the ER could induce ER stress (Hetz and Mollereau, 2014). Alternatively,
the accumulation of PrP in aggresomes may sequester cytosolic compo-
nents leading to proteostatic impairment (Chakrabarti and Hegde, 2009;
Kristiansen et al., 2007). Complicating the picture further is the close rela-
tionship that exists between the UPS, autophagy and ER function
(Dantuma and Bott, 2014; Hetz and Mollereau, 2014). For example,
there is a reciprocal relationship between ER stress and proteasome activ-
ity, such that proteasome inhibition has been shown to induce ER stress
and vice versa (Lee et al., 2003; Menendez-Benito et al., 2005). Hence,
deciphering which, if any of these factors, is causal to disease pathogene-
sis presents a significant challenge. Despite this, it is clear that disease
pathogenesis is intimately linked to ongoing PrPSc propagation (Aguzzi
and Falsig, 2012) and that lowering PrPSc load increases the lifespan of
prion-infected mice (Mallucci et al., 2003; Mallucci et al., 2007). As a
result, prion degradation pathways may represent a viable therapeutic
target for the treatment of prion diseases.
Please cite this article as: Goold, R., et al., Prion degradation pathways: Pot
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5. Prion degradation pathways

In vivo observations support a role for both the lysosomal system
and the UPS in prion degradation. Several studies have reported that
themajority of intracellular PrPSc is found in the endolysosomal system
(Jeffrey et al., 2010 and therein). In prion-infected brain tissue, in-
creased numbers and sizes of late endosomes, lysosomes and autopha-
gic vesicles have been described (Boellaard et al., 1991; Liberski et al.,
2010; Sikorska et al., 2004). Dual-labelling experiments also confirmed
the colocalisation of PrPSc with lysosomal markers (DeArmond and
Bajsarowicz, 2010). Interestingly, reports of N-terminal truncation of
PrP suggest that lysosomes play an active role in PrPSc degradation
(Jeffrey et al., 2003). In addition to the lysosomal system, we have pre-
viously reported a biochemical association between PrPSc, 20S protea-
some subunits and other cytosolic aggresome markers (Hsp70 and
vimentin) in prion-infected mouse brain (Kristiansen et al., 2005).
This is of particular interest since aggresomes are thought to sequester
misfolded proteins and target them for degradation by both the UPS
and autophagy (Dantuma and Bott, 2014; Sontag et al., 2014). Thus,
the two major protein clearance pathways appear to be involved in
prion degradation (Fig. 1).

These in vivo findings were largely confirmed by in vitro ex-
periments in various neuroblastoma and other cultured cell lines
which stably propagate prions. The potential for genetic and pharmaco-
logical manipulation of cultured cells has facilitated a more detailed
analysis of PrPSc intracellular trafficking and degradation pathways.
PrPSc is found on the plasma membrane, in the endolysosomal system,
the endosomal recycling compartment, the trans Golgi network and
Golgi (via retromer mediated retrograde transport), in the autophagic
pathway and in the cytosol (Beranger et al., 2002; Borchelt et al.,
1992; Magalhaes et al., 2005; Marijanovic et al., 2009; Rouvinski et al.,
2014; Veith et al., 2009; Yamasaki et al., 2014). Much of the work on
PrPSc intracellular distribution was directed at finding the site of prion
conversion (i.e., the templated misfolding of native PrPC into PrPSc). De-
spite useful information provided by these studies, they rarely exam-
ined prion degradation directly. This is important because the PrPSc

content of a cell at any instant reflects the fluctuating balance between
synthesis (i.e., newprion conversion) and degradation. Thewide variety
of compounds known to down-regulate PrPSc levels in cultured cells
with no apparent commonality in their mode of action gives an indica-
tion of the complexity of prionmetabolism (Trevitt and Collinge, 2006).
Hence, the overall PrPSc content of a cell is not solely a reflection of its
degradation rate and should not be interpreted as such. The situation
is further complicated by the observation that treatments which block
PrPSc degradation often lead to an increase in PrPC levels (Nunziante
et al., 2011). Higher cellular levels of PrPC are likely to promote prion
conversion and increase PrPSc levels independent of any block in its deg-
radation (Nishida et al., 2000). The converse is also likely to be true,
whereby agents which reduce levels of PrPSc also deplete PrPC (Goold
et al., 2013; Heiseke et al., 2009). It is therefore necessary to interpret
data regarding total PrPSc levels with cautionwhen considering possible
mechanisms of degradation.

Recent work looking directly at the degradation of surface-labelled
PrPSc has demonstrated an important role of the lysosome in prion deg-
radation (Goold et al., 2013). Autophagy appears to be the major route
of PrPSc delivery to lysosomes, at least in chronically-infected cells
(Heiseke et al., 2010; Yao et al., 2013). Genetic ablation of key autopha-
gic components and pharmacological blockade both increase PrPSc

levels (Goold et al., 2013;Heiseke et al., 2009; Heiseke et al., 2010). Con-
versely, stimulating autophagy has been shown to decrease PrPSc load
(Aguib et al., 2009; Heiseke et al., 2010; Homma et al., 2014). Other
non-autophagy dependent routes of lysosomal delivery have also been
proposed. Yamasaki and colleagues suggested that upon prion expo-
sure, N2a cells channel a significant proportion of newly endocytosed
PrPSc through the endolysosomal pathway for rapid degradation
(Yamasaki et al., 2014). Similar findings have previously been reported
ential for therapeutic intervention, Mol. Cell. Neurosci. (2015), http://
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Fig. 1. PrPSc formation, trafficking and degradation. Schematic illustrating PrPSc metabolism. PrPSc forms at the plasma membrane or shortly after endocytosis in endosomes, the ERC or
lysosomes. Recycling of PrPSc to the plasma membrane allows prion propagation. Newly formed PrPSc undergoes retrograde transport to the trans Golgi network (TGN) and Golgi
where it is subject to Golgi quality control and trafficked to lysosomes for degradation. More mature forms of PrPSc are trafficked to lysosomes via the endolysosomal and autophagic
pathways. PrPSc may reach the cytosol through lysosomal rupture or ERAD, and accumulates in aggresomes under conditions of proteasome impairment. Unfolding and ubiquitination
precede proteasomal degradation (UPS pathways shown in red). Aggresomal PrPSc and smaller insoluble forms are engulfed by phagophores and degraded by autophagic pathways
(shown in orange).
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in primary dorsal root ganglion neurons (Jen et al., 2010). The Golgi QC
pathway has been shown to be important for the clearance of some PrP
genetic mutants and newly synthesised PrPSc (Ashok and Hegde, 2009;
Goold et al., 2013). Taken together, the complexity of prion degradation
likely reflects differences in the cell types used and forms of misfolded
PrP being studied (e.g., mutant PrP isoforms, newly-formed PrPSc and
mature PrPSc).

In addition to lysosomal and autophagic degradation pathways, our
recent work suggests that the UPS also plays an important role in PrPSc

degradation. In chronically-infected cultured cells, we found that appli-
cation of proteasome inhibitors precipitated a rapid rise in PrPSc levels,
with detectable increases as early as three hours post-application
(Goold et al., 2013). Importantly, elevated PrPSc levels were not accom-
panied by increased PrPC expression, suggesting that PrPSc degradation
itself was the treatment target. Interestingly, proteasomal inhibition
has been shown to lead to aggresome formation in many cell types
(Kawaguchi et al., 2003). In prion-infected cells these perinuclear
inclusions contain PrPSc and other typical aggresome markers in-
cluding Hsp70, proteasome subunits and vimentin, (Kristiansen et al.,
2005). These pharmacologically-induced aggresomes suggest the pres-
ence of cytosolic PrPSc in cultured cells (Ben Gedalya et al., 2011; Dron
et al., 2009; Kristiansen et al., 2005). This is an important observation
since proteasomal activity is restricted to the cytosol and nucleus
(McKinnon and Tabrizi, 2014) and PrPSc must therefore access one of
these compartments to be considered a direct proteasomal substrate.
Please cite this article as: Goold, R., et al., Prion degradation pathways: Pot
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As an outer leaflet membrane protein, mature PrP would not nor-
mally gain access the cytosol. Since prion conversion occurs after PrP
maturation (Borchelt et al., 1990; Caughey and Raymond, 1991) at the
plasma membrane (Goold et al., 2011), and/or following endocytosis
(Beranger et al., 2002; Borchelt et al., 1992; Caughey et al., 1991;
Marijanovic et al., 2009; Yamasaki et al., 2014), PrPSc must traverse
the plasma membrane or an intracellular membrane to gain access to
the cytosol. How and where this process takes place remains unclear,
yet various mechanisms can be envisaged. The build-up of aggregated
PrPSc in lysosomes may de-stabilise the membrane, causing membrane
leakage of the lumen contents into the cytosol, an event which has pre-
viously been described for other disease related proteins (e.g. Micsenyi
et al., 2013). Alternatively, PrPSc may act as an ERAD substrate, as has
been described for certain PrP mutant forms (Jin et al., 2000; Zanusso
et al., 1999).

Once in the cytosol, PrPSc ubiquitination and unfolding are likely pre-
requisites for proteasomal degradation. Although ubiquitin-independent
pathways to proteasomal degradation have been described (Finley,
2009), most substrates require ubiquitination for efficient recognition
(Bhattacharyya et al., 2014). Evidence that PrP can be ubiquitinated has
been hard to come by. In vivo, highly sensitive methods were required
to detect ubiquitinated PrP, which was restricted to larger PrPSc ag-
gregates present at late stages of disease (Kang et al., 2004; Kovacs
et al., 2005). Although ubiquitin antibodies stain PrP-enriched ag-
gresomes that form following proteasome inhibition in prion-infected
ential for therapeutic intervention, Mol. Cell. Neurosci. (2015), http://
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cells (Kristiansen et al., 2005), only a low level of colocalisation be-
tween PrPSc and ubiquitin immunostaining in vivo have been reported
(Cammarata and Tabaton, 1992). Hence, PrPSc does not seem to be
ubiquitinated to a significant degree and its status as a genuine protea-
some substrate remains open to debate. It is possible that most PrPSc re-
mains non-ubiquitinated and becomes sequestered in Q-bodies — small,
dynamic protein quality control compartments shown to form under
basal conditions in cultured cells (Escusa-Toret et al., 2013; Sontag et al.,
2014). Q-bodies may coalesce to form aggresomes under conditions
of greater cell stress such as those prevalent during pharmacological
proteasome inhibition or in the later stages of prion disease (Grenier
et al., 2006; Kristiansen et al., 2005). Unfolding and ubiquitination
of the Q-body PrPSc population could instigate rapid degradation.
Ubiquitinated PrPSc would thus represent only a small proportion
of total PrPSc at steady state and could remain below detection
thresholds. In addition to direct degradation, the proteasome may
also regulate PrPSc levels indirectly through clearance of PrPC thereby
reducing the substrate levels for prion synthesis (Yedidia et al., 2001).
Decreasing the rate of PrPSc synthesismay allowalternative degradative
systems to reduce the levels of pre-existing PrPSc independent of, or in
conjunction with, direct UPS activity.

Recent studies have highlighted the dynamic nature of PrPSc metab-
olism. Significant increases in PrPSc levels can be induced by a blockade
of degradative activity which lasts only a few hours (Goold et al., 2013).
Similarly, stimulation of these pathways clears prions from cells rapidly
(Ertmer et al., 2004). Early metabolic labelling experiments suggested
that much of the total cellular PrPSc content is relatively stable
(Boellaard et al., 1991; Caughey and Raymond, 1991). However,
surface-labelling experiments revealed that PrPSc on the plasma
membrane is highly labile (Caughey and Raymond, 1991; Goold et al.,
2013). This suggests that there are two populations of PrPSc within the
infected cell: a plasma membrane population (including newly formed
PrPSc) which is metabolised rapidly, and a more stable, and possibly
more aggregated, internalised population which comprises the majority
of total cellular PrPSc. We found that newly formed PrPSc is a substrate
for non-autophagy dependent lysosomal degradation (i.e., the Golgi QC
pathway) (Goold et al., 2013). In contrast, PrPSc from chronically-
infected cells is also subject to UPS and autophagy-dependent lysosomal
degradation (Goold et al., 2013; Heiseke et al., 2009; Heiseke et al.,
2010; Yao et al., 2013). This difference in metabolic fates may be due to
differential trafficking of PrPSc in cells with established prion propagation
(Yamasaki et al., 2014). Alternatively, it could be explained bymaturation
of PrPSc into a more aggregated state or its de novo appearance in the cy-
tosolic compartment which, as previously discussed, is a necessary pre-
requisite for UPS-mediated degradation.

Significantly, induction of autophagy has been shown to reduce total
cellular PrPSc levels rapidly (Ertmer et al., 2004). This indicates that
stimulation of cellular degradation systems is sufficient to overcome
the apparent stability of PrPSc levels under steady state conditions
(Ertmer et al., 2004; Goold et al., 2013). It is also interesting to note
that some treatments which have been shown to reduce PrPSc load in
cultured cells were also shown to be effective in vivo, both in terms of
a reduction in PrPSc load and clinical outcome (Yao et al., 2013).

6. Therapeutics

Prion diseases are fatal neurodegenerative disorders that include
Creutzfeldt–Jakob disease (CJD), Gerstmann–Straussler–Scheinker syn-
drome, kuru and fatal familial insomnia. To date, no therapeutic or pro-
phylactic regimens exist for these disorders. A variety of therapeutic
strategies have been proposed, with most directed at preventing prion
conversion. One approach is to reduce PrPC expression or trafficking to
the plasma membrane, reducing its availability for prion conversion
(Gilch et al., 2001; Tilly et al., 2003). Alternatively, chemical chaperones
which stabilise PrPC structure (Cortez and Sim, 2013) or compounds
which prevent interaction of PrPC with PrPSc could be used to prevent
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further protein misfolding (Caughey and Race, 1992; Caughey and
Raymond, 1993; Priola et al., 2000). A novel approach targeting the
UPR has reported clinical improvements in prion-infected mice
(Moreno et al., 2013). This study used GSK2606414, a potent PERK in-
hibitor, to reduce the chronic phosphorylation of eIF2α and reverse
the depression of protein translation that contributes to prion toxicity
(Moreno et al., 2012). Interestingly, clinical improvementswere evident
despite little effect on the level of PrPSc. Despite these encouraging find-
ings, prion pathogenesis is likely to be multi-factorial, with many ele-
ments contributing to toxicity (Aguzzi and Falsig, 2012). Hence,
treatments aimed at the primary toxic insult (i.e., prion conversion
and PrPSc accumulation) should be effective in treating all aspects
of toxicity. Reducing PrPSc load by stimulating cellular degradation
pathways (Fig. 2) could therefore, represent an effective therapeutic
strategy.

Consistent with this hypothesis, several studies have reported that
upregulating PrPSc degradation can lead to significant clinical benefit.
A series of reports have shown that autophagy induction leads to both
PrPSc clearance in cell models and more importantly, increased lifespan
in prion-infected mice (reviewed in Yao et al., 2013). Treatment with
rapamycin was shown to activate autophagy in vitro and delay disease
onset in mice with prion disease (Cortes et al., 2012; Heiseke et al.,
2009). Similar effects were reported using compounds which activate
autophagy through mTORC-independent pathways. In prion-infected
mice, trehalose was shown to delay the appearance of PrPSc in the
spleen (Aguib et al., 2009) and lithium was found to increase lifespan
(Heiseke et al., 2009). The relatively modest improvements reported
may reflect the difficulty in achieving the necessary drug concentrations
in vivo due to poor blood brain barrier penetration, or simply because
the effective concentrations of these drugs are particularly high. It
should also be noted that the correlation between PrPSc clearance and
the stimulation of autophagy was based primarily on preliminary
in vitro experiments. It is therefore possible, that the above compounds
achieved beneficial effects throughmodulation of non-autophagic path-
ways (Aghdam and Barger, 2007; Maiese et al., 2013).

Several drugs originally used to target unrelated pathways have also
been found to stimulate autophagy and reduce prion disease severity in
mice. Treatment of prion-infectedmice at 20 days post-inoculationwith
FK506, a well-known immunosuppressant drug, resulted in an upregu-
lation of autophagic markers, a reduction in PrPSc levels and an exten-
sion in lifespan (Nakagaki et al., 2013). Resveratrol, a phytoalexin
enriched in grapes was shown to activate Sirt1, induce autophagy and
protect against prion-mediated toxicity, both in cell culture (Jeong
et al., 2012; Seo et al., 2012) and in an in vivo C. elegans model (Bizat
et al., 2010). The plant extract sulforaphane was originally found to
act through the Nrf2 pathway to protect against oxidative stress
(Chapple et al., 2012). Recent reports have demonstrated that sulfo-
raphane treatment prevents against prion neurotoxicity in cell culture
models (Lee et al., 2014) and induces autophagy in vivo (Liu et al.,
2014). Interestingly, this drug was also shown to activate the UPS
(Gan et al., 2010; Kwak et al., 2007; Liu et al., 2014), making it an attrac-
tive anti-prion agent.

Increased lysosomal breakdown of PrPSc through autophagy-
independent pathways could represent an alternative therapeutic
avenue. Branched polyamines are a class of compounds with well-
established anti-prion activity in cell culture models (Supattapone
et al., 1999; Supattapone et al., 2001). On administration to prion-
infected mice, they were shown to slow the accumulation of splenic
PrPSc following intraperitoneal prion inoculation (Solassol et al., 2004).
These compounds bind PrP directly and are thought to facilitate lyso-
somal degradation of PrPSc, possibly by breaking up aggregates in the
acidic lysosomal environment (Supattapone et al., 1999). The tyrosine
kinase inhibitor STI571, originally developed to treat chronic myeloid
leukaemia (Capdeville et al., 2002) has also been shown to have anti-
prion activity. This is likely to be through the inhibition of c-Abl which
in turn induces lysosomal degradation of PrPSc through an as yet poorly
ential for therapeutic intervention, Mol. Cell. Neurosci. (2015), http://
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Fig. 2.Therapeutic targets in PrPSc degradation pathways.Membrane associated PrPSc is trafficked to lysosomes for degradation through endolysosomal, Golgi quality control or autophagic
pathways. Cytosolic PrPSc degradation is mediated by autophagy (orange arrows) and the UPS (red arrows). Reagents known to enhance the activity of these pathways are shown in blue
highlights. Identified target proteins are indicated (details in the text).
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characterised pathway (Ertmer et al., 2004). Importantly, STI571 treat-
ment at an early phase of peripheral scrapie infection delayed the ap-
pearance of PrPSc in the brain stem and spinal cord and slowed the
onset of clinical disease in mice (Yun et al., 2007). Although untested
in vivo, tamoxifen is another widely available pharmaceutical that
may have therapeutic applications in prion disease. Tamoxifen and its
metabolite 4-hydroxytamoxifen were shown to induce the lysosomal
degradation of PrPSc in prion-infected cells, possibly by diverting the
trafficking of both PrP and cholesterol to lysosomes (Marzo et al.,
2013). A novel approach to upregulate protein clearance is the use of
lysosomal modulators (Bahr et al., 2012). Whilst untested in prion dis-
ease, these have been shown to increase lysosomal protease expression
and activity, andwere found to have protective effects inmousemodels
of AD (Butler et al., 2011; Viswanathan et al., 2012). Their development
has come from the surprising observation that mild lysosomal protease
inhibition induces the expression of not only the specific enzyme target,
but also other unrelated proteases (Bahr et al., 2012). This leads to a
global increase in lysosomal enzyme activity and alleviates protein ac-
cumulation and toxicity in disease models (Viswanathan et al., 2012).

Although potentially an attractive target for anti-prion therapies, the
UPS has so far proved intractable as a drug target. To date, only one bone
fide activator has become available. This drug, IU1, is a specific inhibitor
of the 19S proteasome-associated ubiquitin chain trimming enzyme,
Usp14. Inhibition of this enzyme blocks substrate deubiquitination
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and enhances its degradation. Increased degradation of disease associat-
ed forms of tau, TDP-43 and ataxin-3 in cell culture models have been
reported (Lee et al., 2010). Although untested in vivo, IU1 highlights
the potential for therapies targeting UPS activity. Manipulations aimed
at increasing the catalytic activity of the 20S proteasome through genet-
ic upregulation of various subunits or small molecule enhancers have
been reported but their significance in vivo may be limited (Dantuma
and Bott, 2014; McKinnon and Tabrizi, 2014). One exception is sulfo-
raphane, which has been shown to stimulate all three proteasome pep-
tidase activities in brain extracts from drug treated mice (Liu et al.,
2014). In addition, the levels of ubiquitinated proteins and a UPS report-
er construct were reduced in the brains of these animals. In vitro, sulfo-
raphane increasedmtHtt degradation and protected cells against mtHtt
toxicity; an effect which was abrogated by proteasome inhibition (Liu
et al., 2014). To date, the efficacy of sulforaphane against prion disease
remains untested. Its ability to stimulate both the UPS and autophagy
(Liu et al., 2014) make it an attractive anti-prion agent.

An alternative approach is to augment UPS activity by stimulating
the action or expression of chaperone proteins with small molecule
compounds (Dantuma andBott, 2014). Chaperones counteract aggrega-
tion, unfold potential UPS substrates and present them in a form readily
degraded by the proteasome. Protective effects of such molecules have
been reported in animal models of spinal-bulbar muscular atrophy
(SBMA) and amyotrophic lateral sclerosis (ALS) (Kalmar et al., 2012;
ential for therapeutic intervention, Mol. Cell. Neurosci. (2015), http://
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Malik et al., 2013). Once again, these compounds are yet to be tested in
prion disease models.

7. Perspectives

Although no effective treatment exists for prion diseases, many
pathways have been identified that could be targeted for therapeu-
tic intervention. Prion degradation pathways can be included in this
group. There is good experimental evidence from in vivo and in vitro
studies that pharmacological induction of lysosomal activity clears
PrPSc from neuronal cells and has a protective effect against prion
disease pathogenesis. In particular, the benefits of compounds that
induce autophagy are well documented. It seems likely that re-
agents stimulating the UPS could play a similar role. However,
small molecules capable of doing this in vivo have yet to be fully
characterised and their efficacy in prion disease models remains largely
untested. Although still at the experimental level, approaches targeting
PrPSc degradation, in combination with other promising methods, may
provide effective therapeutic and/or prophylactic treatments against
prion diseases.
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