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Abstract  
Prawn fisheries around the world comprise fuel intensive enterprises currently stressed financially by rising 

diesel costs. An avenue for relieving the situation is to improve the energy efficiency of trawling by raising the 

productivity of fishing per litre of fuel consumed. This paper presents work to develop a new prawn trawl design 

that leads to reduced trawl system drag. The trawl has a ‘double-tongue’ format, which refers to extensions 

forward of the upper and lower panels to form two additional towing points for the trawl. For this design 

concept, named ‘W’ trawl, drag generated in the trawl is largely directed to the centreline tongues and 

transferred forward to the trawler through a connected sled and towing wire. The associated reduction of drag-

transfer to the wings makes the trawl substantially easier to spread and results in smaller otter boards being 

required and subsequently reduced overall drag of the trawl system. The study determined the effect on frame-

line tensions of implementing T0 (diamond) and T45 (square) mesh in the main body and side sections of trawl 

models of conventional and ‘W’ configuration, with the aim to establish an optimal combination of mesh 

orientation for the principle parts of the ‘W’ trawl. The objective was to achieve minimum netting drag and 

beneficial strain transfer within the trawl such that maximum trawling performance (catch per unit of fuel) 

might be obtained in the field. T45 mesh in the side sections of the trawl was found to exhibit a progressively 

lower drag compared to T0 mesh as the flow speed increased, but the extent of drag reduction was not of 

practical significance.  The ‘W’ trawl showed a capacity of redirecting 59% of the total netting drag to the 

centre line tongues when T45 netting was implemented in the body section, and only 40% when T0 orientation 

was used.  However, the introduction of bracing ropes (at E = 0.71) along the upper and lower centrelines of the 

T0 version of the “W” trawl improved the drag transfer to the tongues from 40% to 50% of the total drag.  

Overall, the most practical and economic configuration of the model ‘W’ designs tested produced an estimated 

drag reduction of 8.3% ± 0.6%, compared to the conventional trawl. It is expected that drag saving benefits in 

practice will be more substantial as the tested trawl models were not completely representative of practical 

commercial gear in that they had minimum twine area to make the experiment most sensitive to the drag-effect 

of mesh orientation.  
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Introduction   
Rising fuel cost, impending crude-oil deficit, and concern for greenhouse gas emissions are creating intense 

pressure to improve the fuel efficiency of commercial fishing operations. Even though the problem of fleet-

overcapacity in Australian prawn fisheries created by widespread expansion during 1970-80 have been solved, 

prawn trawler operators struggle to maintain economic viability, particularly over the last half decade.  

In Australia, a fundamental part of the historical progression of prawn-trawl gear included the wide-spread 

implementation of multi-net systems in the 1980’s. The driving principle was to reduce the twine area of large 

single trawl systems by replacing each with a number of smaller sized trawls that had a combined catching span 

equal or greater than the original. Broadhurst et al. (2013) experimentally estimated that by increasing the 

number of nets towed simultaneously in a prawn trawling system, the fuel consumption of the system for a 

given swept area can be reduced  by up to 23% due to a reduction of both otter board and twine area.  
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A more recent innovation to significantly reduce drag has been the use of Ultra High Molecular Weight 

Polyethylene (UHMW PE) netting materials that allows the use of thinner twine compared to traditional 

materials. Small diameter UHMW PE twine are of similar or greater breaking strength to traditional material, 

but the thinner twine (by ~ 40%) results in decreased drag (by ~ 22%) for the correctly matched high strength 

netting and otter boards (Balash and Sterling 2014). 

Another possibility for improving the engineering performance of prawn trawls is through design modification 

that makes the trawl easier to spread and consequently requires smaller otter boards. The Danish Fisheries 

Technology Institute [DFTI] (1989), proposed a Y-design fish-trawl that allowed a higher headline height as an 

inadvertent side effect of installing an innovative seam down the centreline of the trawl such that the wings 

consist of T45 (square) mesh. The developers of the Y-design trawl identified benefits from catching and 

selectivity perspectives: a wider mesh opening down the wings and sides allows small fish to escape, and overall 

larger vertical and horizontal trawl openings produce a greater cross-section area. Following the Y-design 

concept, Ripon (1991) considered the engineering performance of a so-called pleated-panel prawn-trawl with 

T45 netting along the wings and sides achieved by installing tapered-seams down the centrelines of the top and 

bottom panels. The pleated-panel trawl required less force to spread as the netting drag was transferred more 

directly to the otter boards by high tension along the T45 bars in the sides as opposed to a conventional T0 trawl 

where the netting tension runs towards the bosom of the trawl and then to the otter boards along the frame lines 

and along bars that are at a steeper angle to the direction of tow. Despite the pleated-panel trawl generating less 

in-pull force and having less twine area, overall drag was found to be higher compared to a conventional trawl. 

The increased drag of the pleated trawl was not conclusively explained but was thought to possibly be a result of 

the greater number of netting bars oriented perpendicular to the flow. 

Since the performance benefits of the pleated-panel trawl were negated by the concomitant drag disadvantages, 

the pleated-panel trawl was not developed any further. However, Sterling & Eayrs (2010) suggested the double-

tongue trawl might be a design that similarly has low in-pull forces, and it would not be subject to high-drag 

side sections with exposed bars perpendicular to the water flow. The proposed double-tongue design had T45 

mesh orientation in the upper and lower panels which would enhance drag transfer to the tongues as the bars are 

aligned to the direction of the transfer and will not allow the trawl to stretch in this direction. In the side sections 

of this double-tongue trawl the netting would be T0 orientation relative to the length-direction of the side, as the 

square-mesh (T45) in the top and bottom panels fold around the sides of the elliptical, 45° cone-shaped, body of 

the trawl. 

Fig. 1 shows an unpublished photo of the double-tongue trawl suggested by Sterling & Eayrs (2010), in the form 

of a model being tested in the Australian Maritime College flume tank. The model double-tongue trawl streamed 

in the flume in Fig. 1 was asymmetric because this T45 trawl was constructed from knotted netting. The 

arrangement in this case produced netting of T90 orientation down the starboard side and T0 orientation down 

the port side. Since knotted netting has a shorter stretched mesh-length in the T90 compared to T0 direction, it 

caused the port side of the trawl to have loose netting and the cod-end to be pulled to the starboard side of the 

centre line. One way to remove this distortion is to use knotless netting which is of the equal stretch-mesh length 

in the transverse and longitudinal directions. 

 

Fig. 1. A model double-tongue trawl with netting hung square (T45) to the framelines, and built from 

knotted polyethylene  – the model is asymmetric about the centre-line due to different mesh lengths down 

the port (T0) and starboard (T90) sides caused by differences in knot lengths in those two directions. 
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The relation between mesh orientation (T0 vs. T45) and drag has not been comprehensively studied. Zhan et al. 

(2006) analytically derived formulae for the drag force acting on T45 and T0 netting sheets (called by the 

authors square mesh and square-diamond mesh respectively) as a function of the angle of incidence. The 

analytical formula were calibrated by adjusting the pressure and friction force coefficients used in the formula 

such that drag predictions agreed with minimum error with experimental data for ‘square-diamond’ (T0) netting 

over a range of netting solidities and angles of incidence to the flow. The experimental work did not include 

cases of square mesh (T45) netting and did not investigate the difference in drag for panels with square (T45) 

and square-diamond (T0) mesh orientations. Calculations by the authors here using the published empirical 

formula for pressure and friction coefficients in both the proposed analytical formulae for square-diamond (T0) 

and square mesh (T45) panels suggest that there is a significant drag difference between the two mesh types. 

Fig. 2 shows the result of drag ratio estimations for angles of incidence between 0° and 90° to the flow and a 

flow velocity of 1.6 m s-1. As can be expected mesh orientation has no effect on drag when the panel is normal 

to the flow. However, as the panel progressively tilts towards becoming parallel to the flow, the predicted drag 

for the T0 (diamond) panel reduces more rapidly compared to T45 (square) mesh. For incidence angles typically 

found in prawn trawls, 0° – 45°, T45 mesh is predicted to have 40 to 50% more drag for the same twine area. 

Stewart & Ferro (1987) investigated the drag of square (T45) and diamond (T0) mesh cod-ends and found that 

the drag was significantly higher for a square (T45) mesh cod-end. The authors believed that friction drag was 

greater for the square (T45) mesh cod-end where the netting was parallel to the flow compared to  the diamond 

mesh (T0) cod-end, which was of a ‘trumpet’ shape, because the square (T45) cod-end had substantially more 

open meshes. The authors reached the conclusion that cod-end drag was related to the surface area of the cod-

end. In this respect the study did not investigate the difference in drag that might occur between T45 (square) 

mesh and T0 (diamond) mesh in a situation where the surface area or mesh opening of the cod-ends were 

similar. 

 

Fig. 2. Drag prediction for a trawl panel (T45 and T0) at various flow-incidence angles based on the 

formulae developed by Zhan et al. (2006). 

A number of other authors studied the drag for net panels that were of various mesh patterns. Even though the 

effect of mesh pattern was out of their work scope, some conclusions were reached on the potential effect of 

mesh pattern on drag.  Tsukrov et al. (2011) compared the drag of copper and nylon nets positioned normal to 

steady flow, and detected significant  differences in drag coefficient for a given solidity. The authors noted that 

while the copper and nylon samples were of diamond (T0) and rectangular (T45) mesh orientation respectively, 

the most likely cause for the drag differences for netting normal to the flow were the higher roughness of the 

nylon netting giving rise to a higher effective twine diameter. Gansel et al. (2012) studied the effects that flow 

speed and angle of attack (between 15° and 90°) had on netting of high and low bending stiffness. While the 

studied netting were of various mesh shapes (diamond, square and hexagonal), the paper did not explore their 
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effect on drag or draw conclusions in that respect. The major theme of the paper was to compare measurements 

with prediction formulas that quantified the effect of angle of attack and solidity on drag.  

In the present paper, the authors investigated the drag variation of conventional and double-tongue, named ‘W’, 

prawn trawls due to T0 (diamond) and T45 (square) mesh alteration in the main body and side sections of the 

trawls, with the aim to propose a minimum drag solution for a ‘W’ prawn trawl. The performance indicators of 

interest were both the drag and in-pull of trawl models so that consideration of design features could be based on 

comparing the total drag of the trawl system (including predictions of otter board drag).   

 

Methods 

Models  

The experimental program in the flume tank comprised frame-line tension measurements for two groups of 

prawn trawl models over a range of flow speeds.  The first set of models was based on ¼ scale 8 fathom Florida 

Flyer prawn trawls that are commonly used by Australian prawn trawler operators (similar to the flat and 

balloon shrimp trawls used in the USA and described by Watson et al. (1984)). Within this group: Model A [T0 

mesh body with T45 sides] was a conventional two seam trawl, meshes hung at the bosom at E=0.71, with T45 

mesh side-sections achieved inherently by applying an all-bar side taper cut; Model B [T0 body with T0 sides] 

was a four seam trawl, meshes hung at the bosom at E=0.71, with T0 side panels sown to the all-bar side tapers 

at a hanging ratio of E=0.75; and Model C [T45 body with T0 sides] was a two seam trawl, bars hung tight at 

the bosom, with T0 side-sections achieved by applying an all-mesh side taper cut. The net plans for models A, B 

and C are shown in Fig. 3. The hanging lengths for all tapers connected to the upper and lower frame lines were 

calculated such that the netting was fully open to squares irrespective of mesh orientation. The models were 

simplified (short) versions of commercial trawls: 45° side tapers were selected (i.e. either B or N/T) instead of 

the more gradual body reduction achieved by typically using a 1N3B side taper in a commercial trawl. For the 

models, the amount of twine in the upper and lower (body) sections were minimised to sensitise the results to 

the drag-effects of mesh-orientation in the side sections. The second set of models contained adaptations of 

models A and C to form ‘W’ trawls, namely TA and TC (Fig. 4). 

All models had equal frame-line length and each set had similar number of meshes (Table 1) so the effect of 

mesh orientation on drag could be quantified with minimal standardisation for twine area. All models were built 

from 50 mm 4 ply (1 mm twine diameter) Ultracross UHMW PE, material that is used for full-scale prawn trawl 

construction and can be advantageously used in our model experimentation for the following reasons: (1) 

Ultracross construction produces netting  with the same mesh size in longitudinal and lateral directions and no 

corresponding shape-distortion produced for trawls with T45 body sections (upper and lower panels); (2) use of 

full-scale material ensures a representative Reynolds number (ratio of inertia and viscous forces) occurs if tests 

are conducted at full-scale speed; and (3) hydrodynamic forces continue to dominate netting mechanical forces 

at model-scale due to the very low twine stiffness of the multifilament material. 

Table 1. Number of meshes and twine area for each model trawl. 

Model Number of meshes Twine area [m2] 

A 2219.5 0.22195 

B 2211.5 0.22115 

C 2268 0.22680 

TA 3419 0.34190 

TC 3642 0.36420 

 

Twine area Atwine was calculated as shown in eq. (1): 

𝐴𝑡𝑤𝑖𝑛𝑒 = 2𝑙𝑑𝑛  (1) 

where d is twine thickness (1 mm), l is full mesh size (equal to two bars – 50 mm), n is number of meshes in the 

trawl. The resulting twine areas for the model trawls are presented in Table 1. 
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Fig. 3. Net plans for Standard trawls: Model A [T0 body with T45 sides], Model B [T0 body with T0 

sides], and Model C [T45 body with T0 sides]. N – normal, T – transversal, B – bar. Hanging ratio: 

E=0.71 for meshes on framelines and E=0.75 for side panel meshes to AB body taper of trawl B. 
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Fig. 4. Net plans for ‘W’ trawls models - TA [T0] and TC [T45]; hanging ratio E=0.71 for frameline. 

 

Experimental set-up and data collection/analysis 

The experiments were conducted in the flume tank at the Australian Maritime College, Beauty Point, Tasmania, 

Australia. The test section of the flume tank is 17.2 m long, 5 m wide and 2.5 m deep, and as a whole contains 

approximately 700,000 litres of fresh water. The flow is circulated with four impellers, each driven by a variable 

speed drive.  

During prawn-trawl fishing, the horizontal opening of the trawl is maintained by otter boards and is therefore 

not precisely fixed (Fig. 5). For controlled netting drag measurements in the flume tank, the model trawls were 

attached by the four end points of the upper and lower frame lines to a Trawl Evaluation Rig (TER)  instead of 

otter boards, as shown in Fig. 6. For the ‘W’ trawl cases, each trawl was connected to the TER via 6 points. 

Each trawl-connection point contained a load cell so that the frame-line tensions at all connection points were 

measured for each case.  

The TER was an aluminium rectangular frame where the two vertical sides slide along upper and lower low-

profile foil-sections, and can be firmly fixed at any desired location (trawl spread). The horizontal spread was 

set to the design spread ratio for the trawls of 82.5%, given the combination of tapers selected for the framelines 

and the hanging ratio used (E=0.71). 
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Fig. 5. Prawn trawl set up for a twin rig. 

 

 

Fig. 6. Two model trawls (A on top and B on bottom) attached to the Trawl Evaluation Rig in the middle 

section of the flume tank – T45 and T0 mesh in the wings can be noted in the upper and lower model 

respectively. 
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Fig. 7. Bracing rope implementation along the longitudinal centre line of model MTA (hanging ratio 

E=0.71). 

 

Fig. 8. Force vector breakdown for a prawn trawl. 

 

As can be seen from the net plans in Fig. 3 and Fig. 4, the top and bottom panels were identical for each model 

and produced a symmetric trawl about the central horizontal plane. This situation of no lead-ahead allowed the 

vertical opening along the frame-lines to be fixed by attaching four equally spaced fibre-glass struts of 3 mm in 

diameter. This methodology standardised the vertical opening of the mouths of the trawls against the effect of 

varying vertical netting-forces between the models. The distance between the lower and upper connection points 

on the TER (vertical mouth opening), and the length of the struts, were equal to 225 mm. 

The tensions at the tow points of each model were measured with four/six load cells of 20 kgf capacity each, as 

required. The load cells were calibrated at the beginning of the test program and zeroed before each test run (at 

zero water speed). Data was sampled at 1Hz for 30 sec. 

The TER causes minimal flow disturbance due to its very streamlined construction and the flow upstream of the 

models is un-obstructed by any of the TER structure. The TER has the capacity to hold two models at the same 

time (one above the other) and this was utilised so that all drag tests were paired comparisons of two models, 

and replicate drag measurements were taken with swapped model locations to standardise the results for location 

affects caused by fixed non-uniformity of the flume tank flow.  Each model was therefore tested at the top and 

bottom of the TER as shown in Fig. 6, and in a sequence as specified in Table 2. The last test-combination 

shown in Table 2 involved a modified version of model TA, namely MTA, which had bracing-ropes sown from 

the tongues down the centre lines at the hanging ratio E=0.71 for 29 meshes (as shown in Fig. 7) to investigate 

the potential to increase the stain transfer within the trawl to the tongues.  
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Table 2. Testing sequence of the model trawls on the Trawl Evaluation Rig. For each combination, every 

model was tested in the top and bottom locations of the Trawl Evaluation Rig. 

Test run Top net Bottom net 

1a A B 

1b B A 

2a B C 

2b C B 

3a A C 

3b C A 

4a TA TC 

4b TC TA 

5a A TA 

5b TA A 

6a C TC 

6b TC C 

7a MTA TC 

7b TC MTA 

 

For each trawl-net scenario the flume tank impellers were set sequentially to four operating conditions as shown 

in Table 3. The flow speed was measured with an electro-magnetic probe located upstream of the model, 1.25 m 

below the free surface on the centre line of the test section. 

 

Table 3. Tested flow speed conditions. 

Impellers rotation 

[rmp] 

Approximate flow 

speed [m s-1] 

125 1.0 

150 1.2 

175 1.4 

200 1.6 

 

Generalised Linear Models (GLM) of the log-transformed data were statistically analysed using SPSS 

(predictive analysis software from IBM) to estimate the effects of trawl position (top vs. bottom), speed setting 

in the tank, and trawl type on drag-loading and in-pull of the trawls.  

The sum of the two measured tensions for each wing-end give T1 (starboard wing tension) and T2 (port wing 

tension), and are composed of vector contributions from the in-pull force of the trawl Fin (this force must be 

overcome by the otter boards to maintain the open trawl) and drag force. The sum of the drag components from 

the combined tensions in each wing (plus the two tensions measured at the tongues in the case of the ‘W’ trawls) 

is the total drag of the trawl, Fd. As shown for the conventional trawls in Fig. 8, the relationship between the 

force contributions and the sum of tensions is determined by an angle θ between the frame line and flow 

direction at the wing end. The drag force Fd and the in-pull force Fin were derived as shown in eqs. (2) and (3) 

respectively for the conventional trawl. The angle of the frame-lines (at the connection points) relative to the 

flow direction was measured with a bevel gauge referenced to an unsubmerged beam on the TER that was 

transverse to the flow direction.  

𝐹𝑑 = (𝑇1 + 𝑇2)𝑐𝑜𝑠𝜃   (2) 

𝐹𝑖𝑛 =
(𝑇1+𝑇2)

2
𝑠𝑖𝑛𝜃   (3) 

From these performance indicators of the trawl models the total drag of the trawl system (including predictions 

of otter board drag) can be estimated from eq. (4).   

𝑇𝑜𝑡𝑎𝑙 𝐷𝑟𝑎𝑔 =  𝐹𝑑 + 2
𝐹𝑖𝑛

𝐿/𝐷
   (4) 

where, Fd is netting drag, Fin is in-pull of the net, L/D is a  lift-to-drag ratio of the otter board (assumed to be 1).  

All reported data is at model scale and where appropriate the results are expressed in relative, non-dimensional, 

terms. 
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Results 
Fig. 9 shows the estimated effect of mesh orientation, as set in models A, B and C, on trawl drag along with 

95% confidence intervals from the GLM analysis of paired-comparisons (test runs 1 through 3 in Table 2). For 

each speed case the drag of model C is set as the reference (with a value of 1). The percentage drag difference 

between model B and model C is consistently 0.5% less, although it is shown not to be statistically significant. 

There was no statistical difference in drag between models A, B and C at the slowest speeds while model A 

exhibited 3.5% less drag than model B and C at the highest speed.  

 

Fig. 9. Relative drag for model trawls with 95% confidence intervals and model C being the benchmark 

[Model A: T0 body and T45 sides; Model B: T0 body and T0 side panels; Model C: T45 body and T0 

sides]. 

 

Fig. 10. Relative drag standardised by twine area, with 95% confidence intervals and model C being the 

benchmark [Model A: T0 body and T45 sides; Model B: T0 body and T0 side panels; Model C: T45 body 

and T0 sides]. 
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Fig.11. Estimated marginal mean drag from GLM and proportion of total drag transferred to tongues for 

each trawl, with 95% confidence intervals. 

 

Fig. 12. Expected in-pull (otter board loading) for all models, with 95% confidence intervals. 

 

Fig 9 shows the effects of twine orientation on the drag for models A, B, and C as it could be practically 

implemented in trawls. However, as shown in Table 1, the twine area for the models slightly varied, and in order 

to evaluate the effects of mesh orientation on the netting drag from a general perspective, the drag values were 

also standardised by twine area (Fig. 10). The drag standardised by twine area (drag twine-area-1) for model B 

was consistently estimated to be significantly higher than for model C by about 2.0%. There was no statistical 

difference in standardised drag between models A and B at the slowest speeds while model A produced less 

standardised drag than model B at the higher speeds; by about 3.5%. It appears that model A produced 

A B C TA TC MTA
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progressively less standardised drag compared to models B and C. Model A had 1.5% higher drag twine-area-1 

than model C at the lowest speed and 1.5% lower drag twine-area-1 at the highest speed. 

The results for the ’W’ trawl implementation of models A and C, namely TA and TC, are shown in Fig. 11. 

Model TA showed a 8.4% lower drag compared to TC, which is mainly due to twine area difference. However, 

TA produced significantly less drag transfer through the tongues, which implies higher strain on the otter boards 

– TA and TC exhibited 40% and 59% drag transfer to the tongues respectively. The introduction of the bracing-

ropes to model TA, shown as MTA, lead to a significant increase in drag-loading of the tongues, from 40% to 

50%, though the model’s drag slightly increased due to the additional drag of the ropes. Model MTA had 6% 

less drag than TC. 

Fig. 12 contains predicted in-pull force for all trawl models, and it shows that models MTA and TC would 

require similar size otter boards that would be approximately half the size of those required by models A and C. 

Discussion 
Models B and C comprise main body sections (nearly parallel to the flow) that have T0 and T45 netting 

orientation respectively, while the side sections for both models are of T0 orientation. Given that Model B 

exhibited 2% higher drag twine-area-1 than model C, it suggests that T0 in the upper and lower sections had 

slightly more drag than T45 mesh.  Alternatively, the explanation could be that model B produced a higher drag 

due to the four side-seams that connected the main body sections to side panels of the trawl; and additionally, 

the seams for model B are bar-to-mesh joins and bulky compared to the two mesh-to-mesh joins for model C. 

Model A is fundamentally different to models B and C in respect to the orientation of meshes in the side 

sections of the trawl (T45 vs. T0), and identical to model B in respect to the configuration of the upper and 

lower body panels, so it appears that T45 mesh in side sections at 45° to the flow produces progressively lower 

drag compared to T0 with speed. The reduction in T45 drag relative to T0 as flow speed (and corresponding 

Reynolds number) increased is consistent with the general understanding that higher Reynolds number can 

ameliorate the separation of flow around an object and lower its drag coefficient. This effect might be more 

significant for T45 netting, which contains twine elements that are normal to the flow, compared to T0 where all 

twine elements are oblique to the flow and therefore more streamlined in cross-section. It could be that the drag 

for both orientations is similar at certain speeds; however, it is evident that the drag coefficient for T45 at 45° 

reduces as water speed increases relative to the drag coefficient for T0 netting at 45°.  

Analytical predictions of netting drag based on equations and methodology taken from Zhan et al (2006) and 

illustrated in Fig. 2, suggest a substantial increase in drag for T45 panels at 0° – 45° compared to T0 (~20% 

increase). In contrast to this, the observed drag difference for the two types of mesh in the present experiments 

was very subtle and consequently there seems to be no strong advantage of using any particular type of mesh in 

a prawn trawl from a netting-drag perspective. 

Table 4 presents the estimated total drag loadings from the trawl and otter boards combined for all models as per 

eq. 4.  

 

Table 4. Estimated total drag (trawl and otter boards) for all trawl model cases including 95% confidence 

intervals. 

Trawl  A B C TA TC MTA 

Predicted total drag 

[kgf] 
15.8 ± 0.05 16.2 ± 0.06 16.3 ± 0.05 15.9 ±  0.06 15.3 ± 0.05 14.5 ± 0.09 

 

Model A exhibited 3.0% (± 0.4%, p=0.05) less drag than the other standard trawls on average, and had similar 

drag to its ‘W’ counterpart, model TA. For the model TA implementation of the ‘W’ trawl concept, the drag 

penalty of the extra twine area in the tongues cancelled the rather moderate drag benefits associated with the 

transference of netting drag through the tongues and away from the wings and otter boards. 

For the ‘W’ trawl, model TC, there was 4% less total drag than for the TA trawl system. This improvement was 

caused by the way that model TC had much higher transfer of netting drag to the tongues than model TA. 

However,  the introduction of the bracing ropes along the centre lines of the T0 body panels of model TA 

(presented as MTA) led to (1) an increase of the strain transfer to the tongues: from 40% to 50%, and (2) a 

decrease of the trawl’s wing-end angle, and made model MTA the best performer of all trawls tested.  

Model TC, which has bars hung on the bosum, requires the use of more expensive knotless netting (Ultracross) 

to avoid distortion of the trawl that occurs with conventional knotted netting, due to its difference in stretched 
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length in the lateral and longitudinal directions. Ultracross knotless netting also provides the advantage that it 

will sustain much higher loads along the line of the bars without local distortion of the mesh shape (Sterling & 

Eayrs, 2010). Models TA and MTA have T0 mesh orientation in the main body of the trawl and as a result 

conventional knotted netting can be used without causing distortion of the trawl, but it has been demonstrated 

that the T0 ‘W’ trawl (model TA) requires bracing ropes attached down the centrelines of the top and bottom 

sections to improve strain transfer within the trawl to the tongues and to achieve any overall drag-benefit. The 

implementation of bracing ropes adds cost to the construction of the trawl, but results in a trawl with superior 

performance to model TC.   

The comparison of drag performance between the conventional trawls (models A and C) and ‘W’ trawls 

(models TA and TC) (Fig. 11) shows that the total netting drag is not proportional to twine area. This is because 

the additional twine area in models TA and TC is exposed to the flow at a low angle. The double tongue and 

conventional trawls comprise equal side-panels (for A and TA, and C and TC), while the overall trawl twine 

area is greater for the ‘W’ trawls due to the addition of the two tongues to the main body (54.0% greater for TA 

compared to A; and 60.6% greater for TC compared to C). Despite the significant addition of twine area in the 

‘W’ models, the overall drag only increased by 14.1% and 20.6% for TA and TC respectively. The low effect on 

total drag of a relatively large increase in netting at a low angle of attack is consistent with the hypothesis of the 

twine ‘shadow’ effect suggested by Goudey (1992) and illustrated by Enerhaug et al. (2012). 

In the present work, the conventional trawl models were designed to have a low amount of twine in the main 

body compared to industry practice in order to accentuate the effect of mesh orientation in the side sections on 

drag, if any existed. In practice, substantially longer trawls than the tested models would be required. Models of 

such trawls would have significantly more twine area generally and the difference in twine area, and associated 

drag, between the conventional trawls and the ‘W’ trawls would be much less significant in percentage terms.  

Overall, 7.6 – 8.9% (p=0.05) less drag is estimated for a trawl system based on ‘W’ trawl, model MTA, 

compared to conventional trawl, model A. This represents the demonstrated benefits of the ‘W’ trawl concept as 

tested in the present study. In the field, higher relative drag benefits can be expected for commercial trawl gear 

because the detrimental drag effect of adding tongues will be subdued by the generally higher twine area of the 

commercial trawls.  

Conclusions and recommendations 
The study investigated a novel design concept for prawn trawls called the ‘W’ trawl. The innovation is 

characterised by the redirection of drag loading from the wings to the centreline connection points of the ‘W’ 

trawl in order to reduce the amount of in-pull force applied to the otter boards and give an overall drag reduction 

of the system, because smaller otter boards can be used. The work also investigated the drag implications of 

using T45 vs. T0 netting orientation in various sections of a prawn trawl to identify low-drag cases. Below are 

the main conclusions: 

(i) At a very low angle of attack (where netting is near parallel to the flow), T0 mesh may produce a 

slightly higher drag compared to T45. At higher angle of attack (where the netting was subjected to the flow at 

an angle of about 45°), T45 mesh exhibited a progressively reducing drag compared to T0 as flow speed 

increased.  

(ii) In the ‘W’ trawl design, drag was better redirected through the centreline to the tongues for T45 mesh 

body sections compared to T0: 59% and 40% of the total drag was transferred respectively. 

(iii) The introduction of bracing ropes along the upper and lower centrelines of the T0 mesh body sections 

at the hanging coefficient E=0.71 improved the strain transfer to the tongues from 40% to 50% of the total drag, 

and reduced the trawls dynamic wing-end angle. Potential exists to enhance strain transfer to the tongues and 

achieve further performance improvement of the ‘W’ trawl through optimising of the hanging ratio used to 

attach the bracing ropes. 

(iv) The best ‘W’ trawl design tested to date indicated a 8.3% (± 0.6%, p=0.05) drag benefit for industry 

compared to a conventional trawl. In the field, higher drag benefits for commercial trawl gear can be expected 

because the measured detrimental drag effect of adding tongues to the model trawls will be subdued by the 

general increase in twine area of the commercial trawls.  

(v) Further work is required to investigate the application of ‘W’ trawl technology to specific commercial 

prawn-trawling contexts and its associated drag saving potential.  
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