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Abstract

Multifrequency Electrical Impedance Tomography (MFEIT) is an emerging imaging

modality which exploits the dependence of tissue impedance on frequency to recover

images of conductivity. Given the low cost and portability of EIT scanners, MFEIT

could provide emergency diagnosis of pathologies such as acute stroke, brain injury and

breast cancer. Whereas time-difference, or dynamic, EIT is an established technique for

monitoring lung ventilation, MFEIT has received less attention in the literature, and

the imaging methodology is at an early stage of development. MFEIT holds the unique

potential to form images from static data, but high sensitivity to noise and modelling

errors must be overcome.

The subject of this doctoral thesis is the investigation of novel techniques for including

spectral information in the image reconstruction process. The aim is to improve the ill-

posedness of the inverse problem and deliver the first imaging methodology with sufficient

robustness for clinical application. First, a simple linear model for the conductivity is

defined and a simultaneous multifrequency method is developed. Second, the method is

applied to a realistic numerical model of a human head, and the robustness to modelling

errors is investigated. Third, a combined image reconstruction and classification method

is developed, which allows for the simultaneous recovery of the conductivity and the

spectral information by introducing a Gaussian-mixture model for the conductivity.

Finally, a graph-cut image segmentation technique is integrated in the imaging method.

In conclusion, this work identifies spectral information as a key resource for producing

MFEIT images and points to a new direction for the development of MFEIT algorithms.
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i Frequency index
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Chapter 1

Overview

1.1 Introduction
Electrical Impedance Tomography (EIT) is a non-invasive technique for imaging phys-

iological and pathological body functions. The underlying principle is to exploit the

electrical properties of biological tissues to extract information about the anatomy and

physiology of organs. A small amount of current is injected into the body and voltage

measurements are acquired using peripheral electrodes. A reconstruction algorithm based

on a modified formulation of Ohm’s law for current flow in a volume is implemented to

image the impedance distribution of the subject in two or three dimensions.

If current travelled in a straight, collimated beam between source and sink, then an

image of conductivity could be reconstructed using a simple backprojection algorithm,

in the same way as for Computed Tomography. Only the conductive tissue crossed by

the current would contribute to the measurements, therefore the information contained

in the measurements could be spread back along the localized current flow path. In

reality, although the current density is higher near the electrodes, the current flows in

the whole object, and the spatial information provided by the measurements is poor.

By mapping the current density in the domain, a measure of the sensitivity of the

data to changes in conductivity in different locations is obtained. This provides an

indication for each injection pattern of where to "place" the information contained in the

measurements, which must be spread out unevenly across the domain. Most commonly

used EIT reconstruction algorithms are based on sensitivity mapping (see section 2.5).

In this sense EIT is non-local, and all voxels and measurements must be considered

at the same time in order to reconstruct an image. Despite the name, EIT is also

non-tomographic, in that slices cannot be reconstructed independently. Furthermore,

EIT is severely ill-posed because small errors in the measurements can produce large

errors in the reconstructed image (see section 2.2.2). From the mathematical point of
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view, this makes EIT an interesting and challenging imaging problem.

The problem of determining the conditions under which the internal conductivity of

an object can be uniquely determined from boundary voltage measurements was first

studied by Calderoń in 1980 [22] for the linearized problem (see section 2.4). In principle,

if the boundary shape is known exactly, the current-to-voltage map depends uniquely

on conductivity. Thus, the conductivity can be determined by full knowledge of the

current-to-voltage map on the entire boundary. In practice, knowledge of the boundary

is incomplete and uncertain, and the reconstruction depends strongly on modelling errors

such as boundary geometry, electrode placement, size and shape, and contact impedance

of the interface between the electrode and the skin.

Imaging a small and localized change in conductivity, which occurs over time, con-

stitutes a relatively simple problem (see section 2.1.3.1). Two data sets are acquired

at different time points and then subtracted. In this case, the relationship between

conductivity and voltage changes is often modelled by a linearized model, and the

conductivity change can be recovered by inverting the sensitivity map (see section 2.5.3).

Producing one-shot static images without baseline measurements, is an exponentially

more difficult problem. The first reason is that the data do not, in general, depend

linearly on conductivity. Some attempts have been made to solve the full nonlinear

problem and recover an image of the absolute conductivity values from a single data

set (see sections 2.1.3.2 and 2.5.4) [62, 113]. However, a consequence of the problem

being ill-posed is that it is much easier to image a change in conductivity, than its

absolute value: when two data sets are subtracted, constant modelling or instrumentation

errors are cancelled out, whereas if the absolute data is used, the reconstruction is more

sensitive to errors. For this reason, the overwhelming majority of clinical EIT images

have been produced using time-difference imaging.

The difficulty in imaging absolute conductivity has prompted researchers to investigate

multifrequency methods for producing static images. Multifrequency EIT (MFEIT)

involves varying the modulation frequency of the injected current, and acquiring two

or more data sets at different frequencies (see section 2.6). The conductivity spectrum

of biological tissues is dependent on histology; therefore it is possible to distinguish

between tissues on the basis of their frequency response. Following the same logic of

time-difference imaging, it seems natural to attempt to image a variation of conductivity

across frequency: i.e. use a low frequency as reference and subtract two data sets

acquired at different frequencies; then reconstruct an image by inverting the sensitivity
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map calculated at the reference frequency. Unfortunately this approach is successful

only in resolving a small, frequency dependent anomaly from a frequency independent,

homogeneous background [97, 58, 3, 83]. The method has been extended to the case

of a frequency dependent background by using a weighted difference between the data,

but the range of applications remains severely limited. This technique is unsuitable

for clinical application in that it does not accommodate for the complexity of human

anatomy.

Initially developed for geophysical studies, EIT was first applied to clinical research

in 1987 by the Sheffield University research group, led by Barber and Seagar in the

Department of Medical Physics and Clinical Engineering at Royal Hallamshire Hospital.

The Sheffield Mark 1 EIT system had a ring of 16 electrodes, and a single current source

[17]. Using a multiplexer, current was injected and voltages were measured at adjacent

pairs of electrodes. Most early clinical studies were made with the Sheffield Mark I, and

many research groups still use systems based on this first example (see section 2.1.2) [72,

82, 26, 35]. The first algorithm for imaging conductivity changes in a 2D cross-section, the

so-called "Sheffield algorithm", was based on a backprojection method [6]. The Sheffield

group is also accredited with proposing to reference measurements taken at different

frequencies against each other [16, 41]. Three-dimensional imaging methods and realistic

electrode models were initially developed at the Rensselaer Polytechnic Institute [23, 104,

74], and statistical approaches to image reconstruction and regularization were pioneered

by researchers at the Universities of Helsinki and Kuopio (now University of Eastern

Finland) [111, 113, 59, 60]. Electrical Impedance and Diffuse Optical Reconstruction

Software (EIDORS) is a freely available MATLAB toolbox for EIT imaging [86, 66]

based on software developed at the Universities of Manchester and Kuopio [114, 112].

The benefits of EIT applications in medicine lie in the possibility of obtaining

high temporal resolution, and in the portability and limited cost of the scanner. The

main limitation is the low spatial resolution, which is due to the non-locality and high

sensitivity of the reconstruction problem to modelling and experimental errors. EIT has

been applied successfully in clinical studies to monitor dynamic body functions such as

lung ventilation [74], gastric emptying [70] and the cardiac cycle [34]. Holder proposed

EIT as a method for imaging neuronal depolarization [47] and localizing epileptic foci in

the brain [48] (see section 2.1.4.2).

EIT is currently being investigated as a clinical diagnostic tool. The applications listed

previously all involve imaging of a time series, and therefore time-difference methods



1.2. Purpose 18

are used. In order to extend the application of EIT to diagnostic imaging, a method for

producing static images is necessary. For example, it has been proposed to use MFEIT

for breast cancer screening [69], lung imaging [41, 18], monitoring of brain injury in

intensive care [99] and differentiating between stroke types in the ambulance (see section

2.1.4.1) [52, 92, 83]. The latter techniques all involve the differentiation of tissues on

the basis of their characteristic impedance spectrum, therefore it is sufficient to acquire

a single multifrequency dataset. However, MFEIT has received little attention in the

literature and is at an earlier stage of development with respect to time-difference EIT.

Due to the ill-posedness of the inverse problem, MFEIT imaging is highly sensitive to

modelling errors and suffers from poor signal-to-noise ratio. The main challenge in this

field is to develop an imaging approach with sufficient robustness to noise and model

uncertainty for clinical application.

1.2 Purpose

The subject of this dissertation is the investigation of novel approaches to multifrequency

EIT for diagnostic purposes, with a focus on brain imaging. The ultimate goal of this

work is to provide a mathematical framework for static EIT imaging for a multitude of

clinical applications. The use of multifrequency data and prior spectral information is

explored as a means to improve the ill-posedness of the image reconstruction problem,

and thus improve the outcome of the solution. The purpose is to provide an algorithm

with sufficient robustness to experimental error and model uncertainty to be applied

reliably to clinical data. The main contributions to the field are summarized as follows:

• The proposal of a novel method for performing MFEIT using explicit spectral

constraints, the fraction reconstruction method.

• The analysis of the application of the newly developed method to stroke type

differentiation in the presence of model uncertainty.

• The proposal of a novel simultaneous approach to image reconstruction and

segmentation for MFEIT, the combined reconstruction-classification method.

• The proposal of a novel reconstruction-classification method for MFEIT based

on graph-cut optimization, which allows for the inclusion of a spatial prior in the

segmentation.



1.3. Structure 19

1.3 Structure

In the second chapter, a literature review of the relevant background is outlined. An

introduction to EIT imaging, image reconstruction methods, multifrequency algorithms

and image segmentation is described. In the third chapter, a novel method for per-

forming multifrequency EIT using spectral constraints is formalized and discussed. The

results of application to simulated and experimental phantom data are presented. In

the fourth chapter, the application of EIT using spectral constraints to the problem of

differentiating stroke types is discussed. Results of a numerical feasibility study using

a realistic human head model are presented. In the fifth chapter, a novel combined

reconstruction-classification method for estimating spectral constraints while simulta-

neously reconstructing conductivity is formalized, validated and tested on phantom

data. In the sixth chapter, the reconstruction-classification method is formalized in the

Bayesian framework, and graph cut optimization is applied to solving the problem of

labelling the image per tissue type. In the seventh and final chapter, the conclusions to

this work and discussed and the aims of future work are laid down.

1.4 Publications

The work presented in this thesis has been published in the following peer-reviewed

journal papers:

Chapter 3

E. Malone, G. Sato dos Santos, D. Holder, S. Arridge. ‘Multifrequency Electrical

Impedance Tomography using spectral constraints’, IEEE Transactions on Medical Imag-

ing, 33(2), 340-350, October 2013, doi:10.1109/TMI.2013.2284966.

Chapter 4

E. Malone, M. Jehl, S. Arridge, T. Betcke, D. Holder. ‘Stroke type differentiation using

EIT: evaluation of feasibility in a realistic head model’, Physiological Measurement,

35(6), 1051-66, May 2014, doi:10.1088/0967-3334/35/6/1051.

Chapter 5

E. Malone, G. Sato dos Santos, D. Holder, S. Arridge. ‘A reconstruction-classification

method for Multifrequency Electrical Impedance Tomography’, IEEE Transactions on

Medical Imaging, submitted April 2014.

The work in chapter 3 is also covered by the following U.S. patent application:
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E. Malone, D. Holder, S. Arridge, G. Sato dos Santos, ‘Method and system for tomographic

imaging’, May 2012, US Patent 20130307566.



Chapter 2

Literature review

2.1 Introduction

2.1.1 Bioimpedance

The physical parameter that describes the basic electrical properties of biological tissue

with regard to the flow of current is impedance [46]. In the absence of magnetic effects,

impedance is dependant on resistance and capacitance. Resistance measures the extent

to which tissue can oppose current flow within it, and capacitance measures the ability

to retain and store electrical charge. Impedance is often substituted with its inverse,

admittivity, to simplify notation.

The fundamental principle that allows different tissues to be distinguished using EIT

is that the electrical properties of biological tissues depend on histology. The impedance

of a cell was schematically modelled by Cole and Cole [25] as a parallel circuit containing

a resistance Re that represents the extracellular space, a resistance Ri that represent

the intracellular space, and a capacitance Cm that represents the bi-lipid cell membrane

(figure 2.1). The resulting impedance of the cell is

Z =
RiRe + Re

iωCm

Ri +Re + 1
iωCm

. (2.1)

The analogy arises from to the insulating properties of cell walls (figure 2.2). At low

frequencies the current does not cross the membrane and flows mainly in the extracellular

space, therefore the impedance is mainly resistive

lim
ω→0

Z = Re. (2.2)
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Figure 2.1: Cole-Cole model of electrical properties of a cell. Re represents the extracel-
lular space, Ri the intracellular space, and Cmthe bi-lipid cell membrane.

Figure 2.2: The movement of current through cells at low and high frequencies [46].

Similarly, at high frequencies the membrane never fully charges or discharges so

lim
ω→∞

Z = Ri‖Re, (2.3)

where ‖ indicates resistances in parallel.

The physical parameter of interest in EIT is usually the real component of impedance,

resistance. In the case of biological tissue, this is frequency dependent:

R(ω) = <(Z) =
RiRe(Ri +Re) + Re

ω2C2
m

(Ri +Re)2 + 1
ω2C2

m

. (2.4)

Resistance increases with the length of the current flow path, and decreases with the

cross-section. If measured at low frequencies, bodily fluids will have low resistance and

dense tissues such as bone or fat will have high resistance. If expressed in terms of a

volume density, resistance is known as resistivity ρ and its inverse as conductivity σ,

which is measured in S
m . Ohm’s law for a resistor-capacitor network

V = I · Z (2.5)
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Figure 2.3: The UCL Mk 2.5 EIT system [72].

(a) (b)

Figure 2.4: Diagram of the two-electrode (a) and four-electrode (b) measurement
methods.

describes the relationship between injected current I, voltage V and impedance Z in a

circuit. This suggests that the real component of tissue impedance can be estimated by

injecting current and measuring the in-phase component of the resulting voltage.

2.1.2 EIT measurements

The essential components of an EIT system for clinical use are a high-precision current

source, an array of electrodes, and a voltmeter (Figure 2.3).

The current pattern determines which electrodes are activated in driving the current,

and the measurement pattern determines the voltage measurements acquired for each

current pattern, which is determined by the spatial configuration of active electrodes.

The first EIT system, the Sheffield Mk 1 developed in 1987, injected current at a single

frequency (50 kHz) by use of a circular ring of electrodes. The current was driven through

pairs of adjacent electrodes, and voltage measurements were acquired at all adjacent
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pairs not involved in driving the current. The number of independent measurements

for this configuration is L(L− 3), where L is the number of electrodes. If the current is

driven through electrodes l − 1 and l then the set of measurements is

v(l−1,l) = (V1 − V2, . . . , Vl−3 − Vl−2, Vl+1 − Vl+2, . . . , VL−1 − VL) , (2.6)

where Vl is the voltage on the lth electrode referred to ground. This approach, commonly

referred to as adjacent current pattern, is not optimal because very little current crosses

the centre of the domain. In order to obtain better sensitivity in the centre, current can

be applied at opposite electrodes. This approach is known as the polar current pattern.

Given that the pattern is highly symmetrical, the number of independent measurements

is limited to L(L− 4)/2. If the current is driven through electrodes l and L/2 + l − 1

then the set of measurements is

v(l,L/2+l−1) =
(
V1 − V2, . . . , Vl−2 − Vl−1, Vl+1 − Vl+2, . . . , VL/2+l−1−2 − VL/2+l−1−1,

VL/2+l−1+1 − VL/2+l−1+2, . . . , VL−1 − VL
)
. (2.7)

To increase the number of independent measurements, it has been suggested to break

the symmetry and drive electrode that are "just off" opposite when using a circular ring

of electrodes [2].

The distinguishability of an anomaly is defined as the L2-norm of the difference

between the boundary voltages of an object including and not including the anomaly,

respectively V 1 and V 0 [55]: ∥∥∥V 1 − V 0
∥∥∥ . (2.8)

For rotationally symmetric geometries with a centred inclusion, the current pattern

that reveals the largest change in the data after the insertion of an anomaly can be

calculated analytically by maximizing the distinguishability. Thus, the best patterns are

the eigenfunctions corresponding the maximum eigenvalues of the operator

Λ−1
1 − Λ−1

0 , (2.9)

where Λ−1
σ is the linear map such that Λ−1

1 (j) = V 1 and Λ−1
0 (j) = V 0, where j is the

current at the boundary (for a formal definition of Λ−1
σ see section 2.4, equation (2.32)).

It is easily shown that for cylindrically symmetric objects, the optimal patterns are
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Dynamic Static
Qualitative Time-difference Frequency-difference

Quantitative (Absolute) Absolute

Table 2.1: Table of EIT imaging modalities.

the spatial harmonics [55]. The optimum pattern can be computed on the continuous

boundary, and approximated using discrete electrodes. The ACT3 system is an adaptive

system that injects sinusoidal patters, which are progressively modified using a feedback

loop to approximate the optimal current pattern for a generic 2D geometry [26].

The technical advancement necessary for adopting optimal current patterns is a

multiple-inject current source. The EIT system must allow for the simultaneous ad-

dressing of all electrodes, both for injecting current and acquiring measurements. The

disadvantage of multiple-inject current patterns is that the same electrodes used for in-

jecting the current are involved in acquiring the voltage measurements. The two-electrode

method (figure 2.4a) for injecting current and measuring voltages is more sensitive to

variations in the contact impedance of the electrodes than the traditional four-electrode

method (figure 2.4b). The reason for this is that the two-electrode method measures the

object impedance plus the impedance of the driving electrodes, whereas the four-electrode

method only measures the conductivity of the object [71]. In the two-electrode case,

the contact impedance must be estimated empirically [72], or reconstructed analytically

[116]. In the case that application of the optimal current pattern is crucial for obtaining

sufficient contrast, it may be preferable to attempt to correct for the contact impedance

in two-electrode measurements rather than to use sub-optimal four-electrode current

patterns. However, multiple-inject current patterns are more susceptible to errors in the

contact impedance and electrode shape [62]. In order to reduce the effect of the contact

impedance, the latter can be reduced below an acceptable threshold by abrading the

skin and applying conductive gel to the electrode-skin interface [71, 93, 62].

2.1.3 EIT imaging modalities

EIT imaging modalities are differentiated by the choice of data. EIT is either dynamic

or static, qualitative or quantitative (see table 2.1).



2.1. Introduction 26

2.1.3.1 Linearized time-difference EIT

In time-difference imaging, measurements acquired at time t are referred to a previous

time point t0, and the difference data is considered

∆vTD = vt − vt0 . (2.10)

Time-difference EIT allows for the imaging of small and localized variations in con-

ductivity. If an assumption of linearity between changes in conductivity and voltage

recordings is made, the image reconstruction problem can be solved by a relatively

simple method. In order to interpret the data, it is sufficient to build the map at time t0
of the sensitivity of the measurements to changes in the conductivity and to invert the

map by some method. The result is a contrast image, of the change in conductivity over

time, which provides qualitative information about the object. The advantage of time-

difference imaging is that time-independent instrumentation or modelling errors, such

as uncertainty in the geometry of the boundary and skin-electrode contact impedance,

are partially subtracted from the data [71]. Therefore the imaging is highly robust to

time-independent errors.

2.1.3.2 Absolute EIT

Absolute imaging aims to reconstruct quantitative conductivity values from an absolute

data set v, acquired at a single time-point [62, 113]. The imaging problem is nonlinear

and very difficult to solve. The result is a quantitative image of the absolute conductivity

of the object. The advantage of absolute imaging is the potential to image an event

without information regarding the condition prior to the onset, which is a requirement

for diagnostic imaging. If repeated at multiple time points, absolute imaging can also be

use to image a dynamic process. Although absolute EIT has been attempted by many

research groups, high sensitivity to uncertainty in the physical model and instrumentation

noise have so far prevented the production of satisfactory images from clinical data.

2.1.3.3 Frequency-difference EIT

In frequency-difference imaging, measurements acquired at modulation frequency ω, are

referred to a lower frequency ω0

∆vFD = vω − vω0 . (2.11)
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Frequency-difference EIT allows for the suppression of frequency-independent instru-

mentation and modelling errors. The result is a qualitative image of the state of the

object at a single time-point; therefore frequency-difference is an alternative to absolute

imaging for diagnostic purposes. The disadvantage with respect to absolute imaging is

the lack of quantization, and the loss of absolute contrast between tissues. Linearisation

around the reference frequency can only be used to resolve a small anomaly from a large

homogeneous background [58, 83]. This is insufficient for most clinical applications, and

nonlinear approaches must be pursued [51].

2.1.3.4 Multifrequency EIT

The term multifrequency, or spectroscopic, indicates any EIT modality which considers

measurements acquired at multiple frequencies. Therefore frequency-difference EIT is

inherently multifrequency. Time-difference and absolute EIT can also be multifrequency,

if measurements acquired at different frequencies are considered simultaneously in

reconstructing an image. In multifrequency mode, tissues are distinguished by their

unique conductivity spectrum, in either absolute, frequency-difference, or time-difference

terms.

2.1.4 EIT of the human head

The main focus of the EIT research group at UCL is the application of EIT to imaging

functional and pathological brain function. There are currently two primary areas of

interest: stroke type differentiation using EIT, and EIT of fast neural activity in the

brain.

2.1.4.1 EIT of stroke

Stroke is the third most common cause of death and leading cause of disability in the

UK. Haemmorhagic stroke is caused by bleeding in the brain and requires surgery for

treatment. Ischaemic stroke is an interruption of blood flow in a region of the brain

caused by a thrombosis or embolism. In 2003, a thrombolytic drug which relieves the

occlusion and restores blood flow, recombinant tissue plasminogen activator (tPA), was

licensed in the UK for treating ischaemic stroke. In order to be successful, "clot-busting"

drugs must be administered within three hours of the onset of the stroke. However, an

image of the brain must first confirm the type of stroke, as the drug may be damaging

in the case of haemorrhage. The current procedure is to take a CT image, therefore

treatment is delayed until the patient is transported to hospital and the scan is performed.

Recent statistics show that in the UK, although about 80% of all strokes are ischemic,
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Figure 2.5: Conductivity spectrum of normal brain tissue, ischaemic brain tissue and
blood, adapted from [52].

only 2.5-5% of these are identified and treated in time [87].

In the case of ischaemic stroke, cell swelling caused by energy failure results in an

impedance increase. In the case of haemorhagic stroke, increased blood volume results

in higher conductivity (Figure 2.5). Preliminary studies suggest that EIT could be

successful in differentiating between ischaeamic and haemorohagic stroke for the purpose

of informing the course of treatment [52, 83]. Although EIT cannot compete with

CT in terms of image quality, limited cost and portability could make EIT scanners

immediately available in the ambulance or casualty department. Studies are currently

being performed that investigate methods for fast application and localization of the

electrodes in emergency situations. If successful, application of EIT to stroke imaging

could result in fast administration of thrombolytic drugs and significantly improve the

outcome of treatment.

Stroke type differentiation using scalp electrodes presents a series of modelling and

technological challenges. Application of EIT to brain imaging is complicated by the

presence of the scalp, skull and CSF. The highly resistive skull limits current flow in

the centre of the head, and the highly conductive CSF surrounding the brain acts as an

electrical shunt, diverting the current from the area of interest. These effects result in a

low signal-to-noise ratio because the areas crossed by more current contribute more to

the measurements. The amplitude of the injected current is limited by medical safety

regulations, therefore the obtainable signal amplitude is also limited. Electrode positions

must be measured accurately as deviations in the physical model may cause severe
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artefacts in the reconstructed image. Furthermore, skin-to-electrode contact impedance

is highly variable and difficult to account for in modelling, and therefore constitutes an

unpredictable source of noise. This is especially a problem in the setting of acute stroke.

The imaging challenge of stroke EIT arises from the necessity to image the event

without knowledge of a baseline condition. Patients are usually admitted into care after

the onset of the stroke, therefore a baseline recording of the healthy brain is not available.

Therefore it is not possible to solve the reconstruction problem using a simple linear

method. One-shot, or absolute, imaging could potentially provide high contrast, but is

highly sensitive to errors in the boundary geometry and electrode positions. Frequency-

difference imaging would allow for the subtraction of modelling errors and, given the

spectral properties of blood and ischaemic tissue, is suitable for stroke classification.

However, a non-linear, large-scale inversion framework is therefore potentially required

[51, 53].

2.1.4.2 EIT of fast neural activity

The aim of fast neural EIT is to image functional brain activity for research purposes.

When a region of the brain is activated, energy is consumed, and an increase in oxy-

genation levels occurs that results in increased blood flow. Local impedance variations

due to physiological activity fall into two main categories. Fast changes in impedance,

which occur over milliseconds, are of the order of 0.01% and are caused by the opening

of neural ion channels during depolarization. Slow changes, which occur over tens of

seconds, are of the order of 10% and are due to blood flow and volume variations that

result from the accumulation of depolarization activity [48]. Th latter changes can be

observed using, for example, PET or functional MRI, while the former changes can not.

Inverse source modelling using Electro-Encephalography (EEG) and, more recently,

Magneto-Encephalography (MEG), have produced good results in localizing simple

sources of activity near the surface of the brain. However, in the case of complex or

deep sources, these methods are unsuccessful in producing unique solutions, and the

accuracy of reconstructed images is doubtful. EIT holds a unique potential for providing

large-scale 3D imaging of the transmission of electric signals in the brain, which may

shed light on many unanswered questions in the field of neuroscience.

Another possible application of this technique, which is currently under investigation,

is the localization of seizure sources during preoperative assessment of epileptic patients.

EIT of epilepsy could improve accuracy in localizing epileptic foci, thus reducing the

invasiveness and risks of surgery, and increasing the number of patients suitable for



2.1. Introduction 30

surgery.

2.1.4.3 Conductivity of tissues in the head

The study of the dielectric spectra of biological tissues is of prime importance to

impedance imaging. Many studies have been performed that investigate the theoretical

aspects of bioimpedance and present corroborative measurement data. The dielectric

spectra of different tissues are shown to have similar properties: resistivity decreases at

high frequencies in three main steps known as α, β and γ dispersion. The β dispersion,

in the region of hundreds of kHz, is described by the Cole-Cole model (2.1): an increase

in conductivity is caused by the polarization of cell membranes allowing current to flow

in the intracellular space. The α dispersion occurs at lower frequencies and is due to

ionic diffusion at the cell membrane. Finally, the γ dispersion is associated with the

polarization of water molecules in the tissue, and occurs at very high frequencies (̃ 10

GHz) [46].

2.1.4.4 Skin

Skin impedance measurements are highly relevant to the design of impedance tomography

systems and electrode application techniques. Variations in skin impedance are difficult

to model and may produce severe artefacts in reconstructed images. Rossel et al. [93]

measured skin impedance on 10 volunteers in 10 different locations, including the forehead.

Gel was used to apply the electrodes but, in order to simulate worst-case application

conditions, no cleaning or abrasion of the skin was performed. The results show that

skin impedance can be modelled by a 3 element equivalent circuit of a resistance in series

with a resistor-capacitor parallel. At high frequencies the resistance is similar for each

location, whereas at lower frequencies there is a wider spread. This suggests that the

in-series resistor can be fixed at approximately 120 Ω. The capacitance of the barrier

layer of the skin is modelled by a 10-40 nF capacitor, while the in-parallel resistance

varies across different locations. The latter can be significantly reduced by abrading the

skin before applying the electrodes.

2.1.4.5 Skull

Several studies have shown that the resistivity of the skull is between 15 and 80 times

higher than the resistivity of the brain. For this reason, accurate representation of skull

resistivity is crucial to impedance imaging. Tang et al. [108] measured the resistivity

of 388 skull samples obtained from patients undergoing surgery in the range 1 Hz —

4 MHz. The study revealed that the resistivity of the skull is non-homogeneous and
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inversely dependent on frequency. The samples were classified into 6 categories according

to structural variations such as sutures (fibrous joint), diploe (spongy interior tissue),

and joints. Skull resistivity is strongly influenced by structural variations, with standard

compact skull having the highest resistivity (26546± 5374 Ω ·m), and squamous suture

skull (joint between the parietal and temporal bones) the lowest (12747± 4120 Ω ·m).

The spectra of samples with different structures were shown to have a similar trend. The

resistivity is approximately constant up to 10 kHz and then decreases. In a subsequent

study [107] the authors defined the characteristic parameters for modelling the resistivity

of each skull tissue type in the range 30 Hz — 3 MHz.

2.1.4.6 Blood

Gabriel et al. [37] performed a literature review of tissue dielectric properties. The

survey revealed consistency between measured resistivity values of blood obtained from

different species. The conductivity spectrum is relatively flat up to 100 kHz, and then

increases significantly. Zhao [122] measured human blood samples at low frequencies

and considered the effect of temperature and haematocrit (cell count) levels. Further

studies are necessary to determine the conductivity of blood flowing in the body at 37◦

for reasonable haematocrit levels.

2.1.4.7 Grey and white matter

Latikka et al. [64] made in vivo measurements in patients undergoing brain surgery.

They recorded a conductivity of 0.28 S/m for grey matter and 0.25 S/m for white

matter. White matter is highly anisotropic in that it is formed of nerve fibres, and is

consequently difficult to model because the conductivity depends on the direction of flow

of the current. Nicholson [78] reported a factor of 9-10 times between the longitudinal

and transverse conductivity. Similar anisotropic properties were found in the cerebellum

of frogs and toads by Nicholson and Freeman [77]. For a recent review see [38] and

references.

2.1.4.8 Cerebral spinal fluid

Cerebral spinal fluid (CSF) occupies the ventricles and a thin layer surrounding the

whole brain. It presents a very low cell concentration, therefore its conductivity is

approximately constant across frequencies and relatively high with respect to the other

tissues of the head. Application of EIT to brain imaging is complicated by the presence

of the CSF because the high contrast in conductivity causes a shunting effect that

reduces the current injected into the brain, and therefore the sensitivity of boundary
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measurements to changes in conductivity. For this reason accurate modelling of the CSF

is necessary. Ranck and BeMent [91] recorded low frequencies measurements in cats and

found the conductivity of the CSF to be approximately 1.67 S/m. Latikka et al. [64]

reported a conductivity of 1.25 S/m at 50 kHz.

2.2 Image reconstruction principles

2.2.1 Introduction

Image reconstruction is defined as the process of mapping the distribution of a

parametrised property of an object from measured data. In Bayesian inversion, the

likelihood of obtaining measurements y given a parameter x is described by the likelihood

distribution p(y|x). Otherwise, given the measurements y, the resulting probability of

the variable x is

p(x|y) = p(y|x)p(x)
p(y) ∝ p(y|x)p(x), (2.12)

where p(x) and p(y) are the prior distributions of the variable and data, respectively.

The maximum-a-posteriori (MAP) estimate of x is obtained by maximizing

x = arg max
x

p(y|x)p(x)

= arg min
x
L(x,y) + τΨ(x), (2.13)

where L(x,y) = − log p(y|x) is the negative log-likelihood, and τΨ(x) = − log p(x) is

the negative log of the prior.

In order to determine L(x,y), knowledge of how the measured data depends on the

object parameters is necessary. This relationship is described by the forward function

A : Sx → Sy, which maps the parameter space Sx into the measurement space Sy.

The forward map is essentially a description of the physical process that causes certain

measurements y for an object with properties given by x. The forward map is dependent

on the geometry and state of the object, which are represented by a model. In practice,

experimental measurements are affected by noise, therefore the measured data is given

by

ŷ = A(x) + h, (2.14)

where h is random noise. Given that x and h are independent, the likelihood of y given

x is

p(y|x) = p(A(x)− y) (2.15)
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If the noise h is drawn from a multivariate Gaussian distribution with covariance Σh

and zero mean, then the negative log-likelihood of the data is

L(x,y) = −1
2‖A(x)− y‖2Σ−1

h
, (2.16)

where ‖·‖ indicates the L2-norm. Finally, an image of the parameter x is obtained by

minimizing

x̂ = arg min
x

1
2‖A(x)− y‖2Σ−1

h
+ τΨ(x), (2.17)

where the regularization parameter τ , balances the confidence in the data with the

confidence in the prior.

2.2.2 Ill-posedeness

It has been shown that a successful outcome to the imaging problem is possible under

the Hadamard conditions of well posedness [67]:

1. A solution exists for every set of measured data

2. The solution is unique for every set of measured data

3. The solution depends continuously on the measured data.

Under these conditions the equation A(x) = y is solvable for x. Otherwise, if any of the

three Hadamard conditions is violated, the problem is ill-posed, and the equation has

either none, or infinite, or unstable solutions.

The imaging problem of EIT, which consists in recovering conductivity from boundary

voltage measurements, is severely ill-posed. The most problematic is the third condition:

for measurements of any precision, an undetectable anomaly of arbitrary amplitude can

be produced [55]. The solution is exponentially unstable, therefore small changes in the

data can cause large changes in the reconstructed image. Furthermore, experimental

measurements are limited in number and precision, so the second condition is also violated.

In order to find an approximate solution, the ill posed problem must be converted into a

different, well-posed problem through regularization and incorporation of sufficient a

priori information. This information is encoded by the prior probability distribution of

the variable p(x), which determines the regularization term τΨ(x) = − log p(x).

In the following, the case of isotropic distributions is considered. Isotropy requires the

assumption that the physical property of interest in the imaging problem is independent

of direction. In the case of EIT, this is equivalent to assuming that the conductivity
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is independent of the direction of flow of the current. For recent results on recovering

anisotropic conductivity in the head see [1].

2.3 Mathematical problem definition of EIT

Let us consider a three-dimensional domain Ω with a smooth boundary ∂Ω, on which a

position-dependent admittivity distribution γ(x, ω) = σ(x) + iωε(x) is defined, where σ

is the conductivity and ε is the permittivity of the medium. The symbol x ∈ R3 now

indicates position in three dimensions. The injection of a current through the boundary

generates an electric field E(x) that satisfies Jc = σE, where Jc(x) is the conduction

current density.

The electric displacement D = εE and magnetic flux H = B
ν , where B(x) is the

magnetic field and ν is the magnetic permeability, are determined by the complete

Maxwell equations:

∇ ·D = ρ (2.18)

∇ ·H = 0 (2.19)

∇∧E = −∂B
∂t

(2.20)

∇∧H = J + ∂D

∂t
(2.21)

where ρ is resistivity and J = Jc + Js is the sum of the conduction and source current

densities. Taking the gradient of equation (2.21) and using (2.18) yields the charge

conservation law

∇ · J = −∂ρ
∂t

(2.22)

that relates changes in current flow through a closed surface ∂Ω to the presence of

current sources within the enclosed volume Ω. If the total internal charge Q =
∫

Ω ρ is

constant, then Js = 0 and equation (2.22) becomes

∇ · J = 0 (2.23)

that is the continuum of Kirchoff’s law in the absence of current sources.

Solving the EIT forward problem for a generic geometry requires the simplifying

assumption that the magnetic field is negligible. This choice is justified by the use of low

frequency currents in EIT imaging. An evaluation of the error committed by employing

the quasi-static model rather than the full-Maxwell model in high-frequency EIT is
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provided in [105, 19]. The approximation is good in the range 3—100 kHz, but the error

increases sharply above 100 kHz. This suggests that for very high frequencies it may be

desirable to attempt to solve the full Maxwell equations.

Under the quasi-static approximation we have that ∇∧E = 0 (equation (2.20)) and

the electric field can be expressed on a simply-connected domain as E = −∇u, where

u(x) is a scalar potential field. The current density J is thus obtained in function of the

potential u

J = σE = −σ∇u (2.24)

that is the continuum of Ohm’s law under quasi-static approximation.

Substituting equation (2.24) into equation (2.23) delivers

∇ · (σ∇u) = 0 (2.25)

that is the generalized Laplace equation. This last equation provides the basis for

producing EIT images: it states that, in the absence of current sources, the tendency of

charge to flow in or out of a spot x is zero [23]. The problem is clearly non-linear as the

two unknown functions σ(x) and u(x) are multiplied together.

The current density at the boundary δΩ is

j = −J · n = −σ∇u · n (2.26)

where n is the outward normal unit vector.

In practice, EIT systems use time-harmonic injection currents of fixed frequency

I = I0 sin (ωt). A single sinusoid is optimal for obtaining good signal to noise within

the safety constraints of medical applications, which limit the amplitude of the injected

current. It is possible to reduce the acquisition time by injecting multiple frequencies

simultaneously at the cost of added complexity in the instrumentation, and a reduction

in the signal amplitude. The electric field, current distribution and electric potential

are time dependent and vary with the same frequency ω. Furthermore, in the case of

biological tissue, the conductivity σ(ω) and permittivity ε(ω) are frequency dependent.

Expressing the electric field as

E(x, t) = < (E(x) exp (iωt)) , (2.27)

where E(x) is a complex phaser and < indicates the real component, and substituting
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in (2.20) and (2.21) yields the time harmonic Maxwell equations

∇∧E = −iωνH (2.28)

∇∧H = J + iωεE (2.29)

Given that Jc = σE, Js = 0 and E = −∇u, (2.29) can be rewritten as

∇∧H = (σ + iωε)E = γE = −γ∇u (2.30)

where γ = σ + iωε is the complex admittivity distribution. Applying the gradient

function and using ∇ · (∇∧ (−)) = 0 gives

∇ · (γ∇u) = 0 (2.31)

that is the same as (2.25) but for admittivity rather than conductivity.

2.4 Forward problem

The forward problem consists in determining the potential u(x) from knowledge of the

conductivity distribution σ(x) and the Neumann boundary conditions. The forward map

A : Sσ → Sv reveals how object parameters relate to acquired measurements. In 1980,

Calderoń [22] proposed the inverse problem of uniquely determining the conductivity

distribution σ(x) defined on a bounded domain Ω, from knowledge of the Dirichlet-to-

Neumann (DtN) boundary conditions operator, defined as

Λσ : u→ σ
∂u

∂n
for u ∈ ∂Ω, (2.32)

where ∂u
∂n = ∇u · n and n is normal to the boundary ∂Ω. Solving the forward problem

is equivalent to determining the DtN map for an assumed physical model because all

the information necessary for recovering σ by applying a voltage and measuring current

must be included in Λσ. In practice, EIT uses the Neumann-to-Dirichlet (NtD) map

Λ−1
σ because it is easier to apply current and measure voltage, and also the NtD map

is an integrating function, therefore it is more stable than the derivating DtN map.

Accurate representation of the object and of the experimental setup in the forward model

are crucial: modelling errors such as incorrect boundary geometry, electrode contact

impedance, or electrode positions and shape can severely reduce image quality.
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2.4.1 Weak formulation

The mathematical formulation of the generalized Laplace equation (2.25) requires for u(x)

to be twice differentiable with respect to the spatial variable x (u ∈ C2). Furthermore,

for a solution to exist and be unique, the boundary ∂Ω must be Lipschitz continuous

[76, 84]. These conditions are too strong for realistic physiological models as they are only

verified by simple geometries. Extension of the forward solution to piecewise analytic

conductivities requires a weak formulation of the problem [61]. This is obtained by

assuming that, given a test function v,

∫
Ω
v∇ · (σ∇u) = 0, (2.33)

therefore ∫
Ω
∇v · (σ∇u) =

∫
∂Ω
v σ

∂u

∂n
, (2.34)

which is the weak formulation of the generalized Laplace equation. If v = u is considered,

then the weak formulation implies that

∫
Ω
σ |∇u|2 <∞, (2.35)

which is a reasonable physical assumption as it implies that power dissipation is finite.

The integral is null for ∇u = 0, which means that the Dirichlet-to-Neumann map has

a non-trivial kernel containing all constant potential distributions. Provided that the

conductivity is bounded, the weak formulation requires that the square integrals of u

and ∇u are finite. Therefore the solution u belongs to the H1(Ω) Hilbert space. As a

consequence, the Dirichlet conditions belong to H1/2(∂Ω) and the Neumann conditions

to H−1/2(∂Ω). The weak formulation of the generalized Laplace equation with Dirichlet

boundary conditions has a unique solution. In the case of known Neumann boundary

conditions, as in EIT, the solution is unique up to a constant, which is determined by

choosing a ground point. For a review of uniqueness and stability results see [8].

2.4.2 Numerical methods

An analytical solution to the forward problem is obtained only in the case of simple or

highly symmetric geometries, otherwise it is necessary to pursue numerical methods.

The finite element method (FEM) is employed to solve the forward problem for a generic

geometry with arbitrary conductivity. Under the FEM, the domain is discretized into

a finite number of irregular polyhedra, and the solution is approximated within each
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element by a polynomial of fixed order. The FE forward model consists in an opportune

segmentation of the whole domain, or mesh, and conductivity values for each element.

The value of the potential function u on each node is calculated by solving a system of

M equations, where M is the number of nodes. The final solution u(x) is searched in a

M -dimensional discrete sub-space of the H1 Sobolev space by interpolating the values

calculated on each node according to the polynomial basis of the elements. For this

reason, the solution is piecewise polynomial. Other numerical solutions such as Finite

Differences [85], which employs a regular rectangular mesh, and Boundary Element

Method [31], which involves segmenting only the boundary, have been used in the case

of simple geometries and homogeneous media, respectively.

2.4.3 Mesh generation

Mesh generation is a complex problem that constitutes a self standing field of research.

The three factors involved in the creation of a mesh are the type of partition, the degree

of the polynomial approximation of the solution on each element, and the mesh density.

The approximated solution converges to the real (weak) solution as the number of

elements or the degree of the polynomial increases. The elements must cover the whole

boundary and not intersect, so that the vertices of neighbouring elements coincide.

The tetrahedron is the most common shape employed in 3D EIT meshing as it allows

for a linear approximation of the solution. Element size and density can be varied within

the mesh in order to optimize the trade-off between accuracy and computational time.

In EIT, elements that are crossed by the most current have higher sensitivity, therefore it

is convenient that elements nearer the electrodes be smaller than elements in the centre

of the domain.

The first mesh used in head EIT imaging was a homogeneous sphere [109], followed

by a multi-layer sphere [68]. Patient specific meshes have been created by segmenting

MRI or CT images [7, 110, 117] of the area of interest. Several such studies suggested

that the use of more accurate anatomical meshes would improve the imaging results

[5, 62, 119]. In the case of stroke type-differentiation, patient specific meshes would be

unavailable in emergency situations. One alternative option may be to select a head

model from a library and warp the boundary according to accurately measured electrode

positions to approximate the real shape.
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2.4.4 Electrode model

An accurate model of the current distribution at the boundary, which determines the

Neumann boundary conditions, is crucial in obtaining sufficient reconstruction quality.

The positions of the electrodes are carefully measured in the experimental setup and

are included in the forward model. It remains to choose a model for the current at the

electrodes and elsewhere.

The most simple electrode model is the gap model, which assumes that the current

density is constant on the driving electrodes and null elsewhere. The gap shunt model

was developed to account for the fact that, although the total current injected at each

electrode Il is constant, the current density may vary in such a way that

∫
El

σ
∂u

∂n
dn = Il, (2.36)

where El is the lth electrode for l = 1, ...,L.

Under the complete electrode model (CEM) [104], a contact impedance zl is introduced

to account for the voltage drop between the skin and the electrode. The boundary

voltage on the measurement electrode Vl is constant, and

(
u+ zlσ

∂u
∂n

)∣∣∣
El

= Vl on ∂Ω,

∑
Il = 0 absence of current sources,

∑
Vl = 0 ground selection.

(2.37)

The CEM has been shown to have a unique solution and to fit experimental data with an

error of less that 0.1%, which is less than the previous models. Although not physically

accurate, contact impedance is generally assumed to be constant on each electrode, so

that integrating the CEM (2.37) with the weak problem formulation (2.34) yields

∫
Ω
∇v · (σ∇u) =

L∑
l=1

1
zl

∫
El

v(Vl − u), (2.38)

where 1
zl

has been taken out of the integral. Choosing v = u gives

∫
Ω
σ |∇u|2 +

L∑
l=1

∫
EL

zl

(
σ
∂u

∂n

)2
=

L∑
l=1

VlIl, (2.39)

which implies that power is either dissipated within the domain or the electrode contacts.
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2.4.5 Galerkin FEM formulation

In the FEM formulation, the solution for u is approximated by a discrete interpolation

of the values calculated for each node in the mesh. If the nodes are ordered and labelled

using an index j = 1, . . . ,M then u can be expressed as

u =
M∑
j=1

ujφj . (2.40)

Choosing linear basis functions, φj is 1 on the jth node, linear on the neighbouring

elements, and 0 elsewhere

φj =


1 on the node j;

0 on all other nodes.
(2.41)

In the Galerkin formulation, the system of M equations that determines the value of

u at each node is obtained by substituting each of the basis functions into the weak

problem formulation. Using φi, where i = 1, . . . ,M , as test function and replacing u

with the expression (2.40) in the weak equation yields the ith condition:

M∑
j=1

uj

∫
Ω
∇φi · (σ∇φj) =

L∑
l=1

1
zl

∫
El

φi(Vl −
M∑
j=1

ujφj). (2.42)

Rearranging the common terms delivers

M∑
j=1

uj


∫

Ω
∇φi · (σ∇φj)︸ ︷︷ ︸

AU
ij

+
L∑
l=1

1
zl

∫
El

φiφj︸ ︷︷ ︸
AZ
ij

+
L∑
l=1

Vl

−
1
zl

∫
El

φi︸ ︷︷ ︸
AW
il

 = 0, (2.43)

where AU is a symmetric M ×M system matrix for the generalized Laplace equation,

AZ is a M ×M matrix that sets the Neumann boundary conditions, and AW is a M ×L

matrix that constrains the electrode voltages to Vl ∀l = 1, . . . , L.

If the conductivity is chosen to be piecewise constant, then it can be expressed as

σ(x) =
N∑
n=1

σnϕn (2.44)
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where ϕn is the constant basis function of the nth element, defined as

ϕn =


1 on the nth element;

0 elsewhere.
(2.45)

Substitution of (2.44) into the definition of AU delivers

AU
ij =

N∑
n=1

σn

∫
Ωn
∇φi · ∇(φj), (2.46)

where the integral is constant for a given mesh and can be calculated off-line.

Using the CEM (2.37) and substituting expression (2.40) in the definition of the total

current Il applied to the lth electrode (2.36), yields

Il = 1
zl

∫
El

Vl − u = Vl
|El|
zl︸︷︷︸

AD
ll

+
M∑
j=1

uj

(
− 1
zl

∫
El

φj

)
︸ ︷︷ ︸

AW
lj

, (2.47)

where AD is a L× L matrix and |El| is the area of the lth electrode. Combining the

definition of Il (2.36) with the equation for u (2.40) delivers a compact formulation of

the forward problem in terms of the matrices defined above


AU +AZ AW

AT
W AD

 ·
 u

V

 =

 0

I

 , (2.48)

where u = (u1, . . . , uM ) is the vector of values of u on the nodes, V = (V1, . . . , VL) and

I = (I1, . . . , IL). Equation (2.48) can be further reduced by defining Ã so that

Ãũ = Ĩ, (2.49)

where ũ = (u V ) and Ĩ = (0 I).

The final result is obtained by solving simultaneously for all P injection patterns in

the measurements protocol I1, . . . , IP

Ã(ũ1, . . . , ũP ) = (Ĩ1, . . . , ĨP ). (2.50)

Equation (2.50) is known as the forward problem. A solution is found using a linear



2.4. Forward problem 42

solver such as LU-factorization [40], generalized minimal residuals (GMRes) [95], or

conjugate gradients (CG) [98]. For each current injection pattern the difference in

boundary voltages between C combinations of electrode pairs (l1c, l2c) ∀c = 1, . . . , C is

considered. The result of the forward map is

v = (Vl11 − Vl21 , . . . , Vl1c − Vl2c , . . . , Vl1C − Vl2C ), (2.51)

where v has dimensions 1× PC. Note that v is independent of the choice of ground. In

practice, the ground is set by adding a further electrode, which is connected to ground.

2.4.6 Sensitivity matrix

The sensitivity matrix, or Jacobian, defines the relationship between a change in the kth

measurement vk and a change in the conductivity of the nth element σn. The Jacobian

coincides with the matrix of first derivatives of the forward map A : Sσ → Sv

Jkn = ∂vk
∂σn

. (2.52)

The Jacobian can be calculated up to a first order approximation by considering the

perturbations σ → σ + δσ, u → u + δu, and Vl → Vl + δVl, with the currents Il held

constant [86]. Substituting in the equation for power conservation (2.39) and ignoring

the second order terms gives

∫
Ω
δσ |∇u|2 + 2

∫
Ω
σ∇u · ∇δu+ 2

L∑
l=1

∫
EL

zl

(
σ
∂u

∂n

)
δ

(
σ
∂u

∂n

)
=

L∑
l=1

IlδVl. (2.53)

Using the weak formulation (2.34) with v = δu yields

∫
Ω
σ∇u · ∇δu =

∫
∂Ω
δu σ

∂u

∂n
, (2.54)

and using the CEM (2.37) on the lth electrode delivers

δ

(
σ
∂u

∂n

)
= 1
zl

(δVl − δu). (2.55)

Therefore equation (2.53) becomes the power perturbation formula

L∑
l=1

IlδVl = −
∫

Ω
δσ |∇u|2, (2.56)

which defines the total change in power. In order to obtain the change of the qth
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electrode combination (l1q, l2q) for the injection pattern Ip,

δvk = δVl1q − δVl2q (2.57)

where k = 1, . . . ,K (K = PQ) accounts for both the injection pattern index p and

measurement pair index q, the hypothetical measurement current is defined as

Iq =


1 on El1q

−1 on El2q

0 elsewhere.

(2.58)

Equation (2.56) is solved for u(Ip) + u(Iq) and u(Ip)− u(Iq), where u(Ip) is the real

field generated by the injection pattern Ip and u(Iq) is the fictional measurement field.

Subtracting the results yields

δvk = −
∫

Ω
δσ∇u(Ip) · ∇u(Iq), (2.59)

which is the Fréchet derivative of the measured voltages. Choosing the discretization of

the conductivity distribution (2.44) gives the expression

∂vk
∂σn

= −
∫

Ωn
∇u(Ip) · ∇u(Iq), (2.60)

which defines the elements of the Jacobian (2.52). The potential fields u(Ip) and u(Iq)

are computed by solving the forward problem.

2.5 Inverse problem

2.5.1 Introduction

The problem of estimating the internal conductivity distribution of an object from the

Neumann-to-Dirichlet map is known as the inverse problem of EIT. From equation (2.17),

we have than an EIT image is obtained via minimization of a regularized functional

Φ(σ) : RN → R, where N is the number of elements, of the form

σ = arg min
σ

1
2‖A(σ)− v‖2Σ−1

h
+ τΨ(σ)

= arg min
σ

Φ(σ), (2.61)
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where A(σ) is the forward map, Σh is the covariance of the measurement noise, Ψ(σ)

is a regularizing function, and τ is the regularization parameter. There are several

optimization methods used to minimize the functional. In this section, popular techniques

for solving the EIT inverse problem are described. Image reconstruction methods are

divided into linear and nonlinear according to the order of approximation used in

describing the relationship between the conductivity distribution and the boundary data.

First, the choice of regularization term is addressed.

2.5.2 Regularization

The regularization term Ψ(σ) is chosen on the basis of prior knowledge about the

solution of σ, such as smoothness or sparseness [67]. For example, if the solution is

multivariate Gaussian with mean σ0 and covariance Σσ∝ I, taking the negative log

of the prior (as in equation (2.13)) delivers the expression for zeroth-order generalized

Tikhonov regularization,

Ψ(σ) = 1
2‖σ − σ0‖2Σσ

−1 , (2.62)

where ‖·‖ indicates the L2-norm. For Σσ = I and σ0 = 0, (2.62) is known simply

as zeroth-order Tikhonov regularization. This choice of regularization favours small

solutions by penalizing solutions with high oscillations [111]. Similarly, higher-order

Tikhonov regularization terms impose smoothness to the pth spatial derivative:

Ψ(σ) = 1
2‖∇

pσ‖2, (2.63)

where for discrete domains ∇ is the finite-differences operator and ∇2 = ∇ ·∇ for p = 2,

∇3 = ∇ · ∇ · ∇ for p = 3, and so on for p ∈ N. For example, first-order Tikhonov

regularization grants a spatial smoothing effect without biasing the solutions towards a

prescribed mean.

Other common choices include Total Variation (TV) regularization [9], which allows

for step changes while penalizing high-frequency components

Ψ(σ) = |∇σ| , (2.64)

and the simple L1-norm

Ψ(σ) = |σ| , (2.65)

which favours sparse solutions. However, using the L1-norm causes computational
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difficulties in solving the imaging problem in that the functional is non-differentiable.

The term Markov Random Field (MRF) indicates any regularization term which

defines a relationship between neighbouring elements. For example, quadratic MRF

regularization takes the form

Ψ(σ) = 1
2

N∑
n=1

∑
l

∣∣∣σn − σl(n)

∣∣∣2, (2.66)

where l(n) runs over the neighbours of the nth element [10]. Quadratic MRF is differen-

tiable, favours solutions with large smooth areas.

2.5.3 Linear algorithms

A simple approximation of the forward problem is obtained by truncating the Taylor

series at the first derivative and considering

A(σ) ≈ A(σ0) + J(σ0) · (σ − σ0), (2.67)

where σ0 is the linearisation point. The difference in expected boundary voltages can

be expressed in terms of the conductivity change ∆σ = σ − σ0 as

A(σ)−A(σ0) ≈ J(σ0) ·∆σ. (2.68)

Therefore a variation in conductivity with respect to a baseline can be reconstructed

from knowledge of the resulting variation of the data and the sensitivity matrix. Note

that in order to compute J(σ0), the linearisation point σ0 must also be known. It has

been shown empirically that the linear approximation is valid for a localized change in

conductivity with respect to a baseline of less than 20% [49]. Linearization provides a

natural formulation for resolving a low-constrast anomaly from a homogeneous baseline

and is suitable for imaging conductivity changes that occur over time, but fails in the

implementation of absolute or, with the exeption of simple problems, frequency-difference

imaging.

Let us consider an object which at time t0 has a known homogeneous conductivity σ0,

and at time t1 has an unknown non-homogeneous conductivity σ1 = σ0 +∆σ. Boundary

measurements are acquired at t0 and t1 and subtracted to obtain the change in the

data ∆v (see equation (2.10)), and the sensitivity J is computed in σ0 using (2.60). It

remains to find a solution for ∆σ by inverting the linearised forward problem. However,

the problem is under determined, i.e. there are more variables than measurements, so



2.5. Inverse problem 46

the inverse of the sensitivity matrix J−1 is not defined. Instead, the pseudoinverse of the

row space of J, or Moore-Penrose inverse for the underdetermined problem, is computed

J� =
(
JTJ

)−1
JT , (2.69)

where the definition of J� is independent of the rank of J, and JT indicates the transpose

matrix. Assuming that the measurement noise is white and Σh = I, the Moore-Penrose

inverse returns the solution to the least-squares problem

∆σ = arg min
∆σ

1
2‖J∆σ −∆v‖2, (2.70)

because differentiating equation (2.70) with respect to ∆σ and equating to zero delivers

∆σMP =
(
JTJ

)−1
JT∆v = J�∆v. (2.71)

In the case of ill-posed problems, the Moore-Penrose inverse would amplify the noise in

the data and therefore can not be applied. The methods described below were developed

to account for measurement noise.

2.5.3.1 Regularization by filtering

Singular value decomposition (SVD) allows for the inclusion of a filter in computing

the pseudo-inverse of the Jacobian, which dampens high spatial frequency components

affected by noise. For any J, we have that JTJ is Hermitian and semi-positive definite,

so there exists an orthonormal base of eigenvectors W = (w1, . . . ,wK) ∈ RN×K of JTJ,

with eigenvalues (λ1, . . . , λK) ≥ 0 ∈ R. If we define the singular values as ςk =
√
λk,

and uk = ςk
−1Jwk ∈ RK , where k = 1, . . . ,K, then the following relations are easily

obtained

JTJwk = λkwk = ς2
kwk (2.72)

JTuk = ς−1
k JTJwk = ς−1

k λkwk = ςkwk (2.73)

JJTuk = JJT ς−1
k Jwk = ςkJwk = ς2uk. (2.74)

These show that the vectors uk are eigenvectors of JJT and, given that JJT is Hermitian,

the matrix U = (u1, . . . ,uK) ∈ RK×K defines an orthonormal base of the range of J.

The matrix of singular values S is defined as the diagonal matrix of the ordered values

ς1 ≥ ς2 ≥ ... ≥ ςK padded with zeros to create a K ×K matrix. Following the definitions
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of wk and uk and S we have that

JW = US, (2.75)

hence

J = USWT . (2.76)

This relationship allows for the pseudoinverse (2.69) to be expressed as

J� = WS−1UT . (2.77)

where S−1 is a diagonal matrix holding the values 1/ςk.

SVD reveals why the Moore-Penrose inverse can not be applied to noisy data ∆v =

g + h, where g is the change predicted by the forward map and h is noise. The

Moore-Penrose solution (2.71) is

∆σMP = J�∆v = J�(g + h) =

=
K∑
k=1

wkuk
T

ςk
(g + h) =

K∑
k=1

wk 〈uk, g〉
ςk

+ wk 〈uk,h〉
ςk

, (2.78)

where the projection of the noise h onto the singular vectors uk is weighted by the

inverse of the singular values. The decay rate of the singular values provides information

about the ill-posedness of the reconstruction problem. The condition number, that is the

ratio between highest and lowest singular values, reflects the instability of the solution

with respect to small changes in the data as it indicates the accuracy with which the

problem can be solved. The steeper the decay of the singular values below bit precision,

the more the problem is ill-posed.

A simple solution is to introduce a step filter

f tSVD
k =


1 if k ≤ T

0 if k > T
, (2.79)

where T < K is an appropriate truncation level. This method is known as truncated

singular value decomposition, or tSVD. The truncation can be set to an arbitrary value,

such as the value for which the corresponding SV is less than 1/100 of the largest SV, or

selected empirically, or computed using an objective selection method.

Alternatively, the singular values can be damped gradually according to a regulariza-
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tion hyperparameter τ , so that

fTikh
k = ς2

k

ς2
k + τ

. (2.80)

In this case, the filtered pseudo-inverse becomes

J�Tikh =
K∑
k=1

fTikh
k wkuk

T

ςk
= (JTJ + τI)−1JT , (2.81)

which returns the solution to the least-squares problem with zero-order Tikhonov

regularization

σ = arg min
∆σ

1
2
[
‖J∆σ −∆v‖2 + τ‖∆σ‖2

]
. (2.82)

Similarly, the solution to the least-squares problem with a generic quadratic regularization

of the form

σ = arg min
∆σ

1
2
[
‖J∆σ −∆v‖2 + τ∆σTL∆σ

]
. (2.83)

is given by

∆σGT = J�GT∆v = (JTJ + τL)−1JT∆v, (2.84)

which for L = ∇T∇ is the first-order Tikhonov regularized solution.

2.5.3.2 Variational methods

Variational methods involve the minimization of the regularized linear least squares

functional

σ = arg min
σ
‖J∆σ −∆v‖2Σ−1

h
+ τΨ(∆σ), (2.85)

by considering a perturbation of the variable. Iterative optimization methods such as

steepest descent or conjugate gradients are available, which avoid inverting the Jacobian

directly. The non-linear variant of these methods are described in the following section.

These can easily be reduced to the linear case if the second order derivative of the

objective function is ignored, and the number of iterations is set to 1.

2.5.4 Non-linear iterative algorithms

Non linear approaches are mainly based on the iterative search for the global minimum

of the objective function Φ(σ) (equation (2.61)). At each step, a hypothesis for the

minimum is formulated and verified. The methods differ in the criteria to select the

minimization step and direction in which to update the variable.
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2.5.4.1 Steepest descent

The steepest descent method is for iteratively minimizing a multi-variant functional

Φ(σ) : RN → R by selecting a starting point σt=0, where t is an iteration counter,

and stepping towards the minimum by following the direction along which the function

decreases most rapidly. As the gradient direction ∇Φ identifies the direction of steepest

increase, the most efficient way to minimize the function must be to follow the opposite

direction. The solution is updated as follows

σt+1 = σt − αt∇Φ(σt) (2.86)

where αt is the step size. The gradient is

∇Φ(σt) = JTΣ−1
h (A(σt)− v) + τ∇Ψ(σt), (2.87)

where J = J(σt) and Σh is the correlation of the measurement noise.

The gradient reflects only local properties of the function; therefore the step size must

be carefully chosen so that the algorithm does not converge to a local, rather then global,

minimum. The value of αt can be either predefined or obtained via a 1D line-search

αt = arg min
αt>0

Φ(σt − αt∇Φ(σt)). (2.88)

Convergence of the steepest-descent method can be slow because only the first order

derivative information is used.

2.5.4.2 Newton-type methods

The Newton method was developed initially to approximate the root of a nonlinear

one-dimensional function. This technique was adapted to minimize a multi-variable

functional by searching for the root of its derivative.

The functional Φ(σ) : RN → R is approximated locally by the quadratic form

Φ(σt + dt) ≈ Φ(σt) +∇Φ(σt)Tdt + 1
2d

T
t ∇2Φ(σt)dt, (2.89)

where ∇2Φ(σt) ∈ RN×N is the Hessian and ∇Φ(σt) ∈ RN is the gradient of the objective

function calculated in σt.

In order to find the update that minimizes the function, the derivative is taken and
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equated to zero
∂

∂dt
Φ(σt + dt) = ∇Φ(σt) +∇2Φ(σt)dt = 0, (2.90)

this leads to the equation

∇Φ(σt) = −∇2Φ(σt)dt =⇒ dt = −∇2Φ(σt)
−1∇Φ(σt), (2.91)

which identifies the search direction dt, also known as Newton direction. The difficulty

of Newton methods lies in the calculation of the Hessian matrix. The Gauss-Newton

method assumes that the second order derivative of the residual error is negligible, so

that

∇2Φ(σt) = JTΣ−1
h J + τ∇2Ψ(σt). (2.92)

If the number of elements of the mesh is large, it is computationally very demanding to

store and invert the Hessian matrix. This can be avoided by using a Krylov solver, such

as generalized minimal residuals (GMRes) [95] or linear conjugate gradients (CG) [98],

to solve

∇Φ(σt) = −
[
JTΣ−1

h J + τ∇2Ψ(σt)
]
dt

= −JTΣ−1
h (Jdt)− τ∇2Ψ(σt)dt, (2.93)

where the brackets highlight the order in which to make the computation. In this case,

the Hessian is never formulated explicitly, and only the result of the application of the

Hessian to a vector is stored.

The general formulation of the update rule for Newton methods is

σt+1 = σt + αtdt = σt − αt∇2Φ(σt)
−1∇Φ(σt), (2.94)

where αt is the step size. The damped variant allows for a variable αt, which is selected

by performing a line-search along the direction dt. Otherwise αt = 1.

The effectiveness of Newton methods depend on the curvature information inherent

in the Hessian. If ∇2Φ(σt) is positive definite and continuous, then the minimum can

be found in one step for any initial guess σ0. If ∇2Φ(σt) is Lipschitz continuous the

algorithm converges to the quadratic minimum as long as the initial guess is close enough

to the solution. The algorithm may not converge for a non positive definite Hessian.
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2.5.4.3 Levenberg-Maquardt

An alternative to the line-search strategy is to define a trust region of diameter δ

around σt for which the quadratic approximation (2.89) is assumed to be valid. The

problem is replaced by another, more stable, by approximating the Hessian matrix with

H̃ = ∇2Φ(σt) + λI, so that

Φ(σt + dt) ≈ Φ(σt) +∇Φ(σt)Tdt + 1
2d

T
t H̃dt. (2.95)

where the step size and direction are determined simultaneously

dt = min
dt∈RN

Φ(σt + dt) (2.96)

and ‖dt‖ ≥ δ. If a λ≥0 exists such that


(∇2Φ(σt) + λI)dt +∇Φ(σt) = 0

λ(δ − ‖dt‖) = 0

σTt ∇2Φ(σt)σt ≥ 0 ∀σt ∈ RN

(2.97)

then dt is the trust region global minimum. Levenberg-Maquardt reduces to the Gauss-

Newton method for λt → 0, and to steepest descent for λ → ∞. Therefore it can be

interpreted as a hybrid method, where λt is a steering factor. This method combines

the robustness of steepest descent with the fast convergence of Gauss-Newton.

2.5.4.4 Non-linear Conjugate Gradient

The nonlinear variant of the Conjugate Gradient method (NLCG) avoids calculating and

inverting the Hessian, with significant computational advantages. In order to maximize

efficiency, the search direction dt is calculated by Gram-Schmidt conjugation of the

previous directions dt−1, . . . ,d0. The outline of the algorithm is as follows [98]:

initialize tol and maxit

initialize search direction d0 = r0 = −∇φ(σ0) (steepest descent)

repeat

find αt that minimizes Φ(σt + αtdt)

update variable σt+1 = σt + αtdt

calculate rt+1 = −∇φ(σt+1) and β = max
{
rTt+1(rt+1−rt)

rTt rt
, 0
}
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update search direction dt+1 = rt+1 + βt+1dt.

t ← t+ 1

until
∣∣Φ(σt+1)− Φ(σt)

∣∣ ≤ tol or t = maxit

This choice of β is known as Polak-Ribiére scheme, and it guarantees convergence

by restarting CG when β < 0 [81]. This is equivalent to ignoring all precedent search

directions and repeating the minimum search along the direction of steepest descent.

Convergence of CG is slow because only the first order information is used, and is not

guaranteed if the initial guess is too far away from the solution.

2.5.4.5 Line search

Local convergence of non-linear reconstruction methods is guaranteed either by finding

a trust-region (as in Levemberg-Marquardt), or by performing a 1D line-search along

the update direction. The objective of the latter method is to determine the step size

αt, given the search direction dt, by minimizing

αt = arg min
αt>0

Φ(σt + αtdt). (2.98)

For small problems there are several options for solving equation (2.98). Using the

quadratic approximation, as in Newton-type methods, the local objective function can

be approximated by a parabola. However this requires knowledge of the second-order

derivative, which may be computationally expensive. Alternatively, the secant method

requires knowledge of the gradient at two points near the minimum.

For large scale problems, the Brent method is optimal in that for each iteration it

only requires storage of the value of the functional at 6 points along the update direction

[15]. First a bounding interval [a, b] is found, for which there exist a step size c such

that a ≤ c ≤ b and

Φ(σt + cdt) ≤ Φ(σt + adt) ∧ Φ(σt + cdt) ≤ Φ(σt + bdt). (2.99)

Then a parabolic fit is performed between Φ(σt + cdt), Φ(σt + adt), and Φ(σt + bdt). If

the step size m corresponding to minimum of the parabola is in the bounding interval

[a, b], then the point is accepted. Otherwise, a golden section step is performed between

a, b and d = mean(a, b): the intervals [a, d] and [d, b] are divided by the golden ratio

(
√

5 − 1)/2 ≈ 0.618 to find e and f , the function is evaluated for step sizes e and f ,
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the minimum is re-evaluated, and the brackets are updated accordingly. The process is

restarted by fitting a parabola between the the new minimum and brackets. Ideally, the

method would switch between parabolic and golden-section steps, so that the minimum

is updated according to the former and the brackets converge towards the minimum due

to the latter [123].

2.5.5 Nonlinear direct methods

Direct methods attempt to solve the nonlinear inverse problem analytically. These

methods could potentially provide a non-iterative nonlinear algorithm, but application is

limited to simple problems and the sensitivity to experimental and boundary geometry

errors is very high. In most cases, proofs are provided for the continuous electrode model

∫
δΩ
I(x, ω)dS = 0, (2.100)

which assumes that there is no contact impedance, and that current can be applied and

voltages measured anywhere on the boundary. The continuous model does not predict

experimental measurements with satisfactory precision, and extension of direct methods

to the complete electrode model (2.37) can be problematic.

2.5.5.1 D-bar method

The d-bar method is based on Nachman’s proof of the global uniqueness of EIT for

C2 conductivity distributions in 2D [75, 100]. A simply connected C∞ domain Ω is

considered, on which a conductivity distribution σ(x), such that σ ≡ 1 in a neighbourhood

of δΩ, is defined. The transformation ũ =
√
σu is applied to the Laplace equation to

obtain the Scrödinger equation

−∇2ũ+ qũ = 0, in Ω (2.101)

where q(x) = ∇2√σ/
√
σ. If the conductivity is smoothly extended so that σ = 1 and

q = 0 on R2\Ω, then for any k = (k1, k2) ∈ C such that k · k = 0, there is a solution

Ψ(x,k) such that

−∇2Ψ(x,k) + qΨ(x,k) = 0, in R2, (2.102)

where the 2D spatial variables are expressed by complex numbers

x = (x1, x2) = x1 + ix2,
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and the product is complex multiplication.

The scattering transform is defined as

t(k) =
∫
R2

eik̄x̄Ψ(x,k)q(x) dx

=
∫
R2
ek(x)µ(x,k)q(x) dx, (2.103)

where ek(x) = exp i(k̄x̄+ kx) and µ(x, k) = exp−ikxΨ(x,k). It has been shown that

µ(x,k) tends to 1 for |x| → ∞, therefore t(k) approximates the Fourier transform of

q(x) in (−2k1, 2k2). The scattering transform satisfies the d-bar equation

∂

∂k̄
µ(x,k) = 1

4πk̄
t(k)e−k(x)µ(x,k), (2.104)

which allows for recovering µ(x,k) from t(k). Using q = 0 on R2\Ω, k · k = 0, and the

Schödinger equation, the following equivalence is obtained

t(k) =
∫
δΩ

eik̄x̄(Λσ − Λ1)Ψ(x,k) ds, (2.105)

which expresses the scattering transform in terms of the Dirichlet-to-Neumann map,

where Λ1 is defined for the homogeneous domain σ = 1. Finally the conductivity is

recovered using
√
σ = lim

k→0
µ(x,k). (2.106)

The d-bar method has been applied successfully to imaging cardiac activity [56] and has

been extended to three-dimensional problems in the low frequency limit [28], and more

recently to non-smooth 2D conductivities [4].

2.5.5.2 Factorization method

The factorization method [21] allows for the localization of inclusions in a known

homogeneous background, without reconstructing the conductivity. A domain Ω ⊂ RN

is considered, where N ≥ 2 and δΩ is C2. A conductivity distribution σ(x) is defined

on Ω such that

σ(x) =


κ(x) in Ωc =

⋃
i Ωc

i

1 in Ω\Ωc,
(2.107)

where 0 ≤ κ(x) ≤ 1 ∈ C2 on Ωc, and Ω\Ωc is simply connected. It follows the properties

of σ(x) that the operator Λσ−Λ1 is self-adjoint, compact, and semipositive definite on Ω.

Therefore, Λσ − Λ1 has a well defined square root, and admits a basis of eigenfunctions
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vk, with eigenvalues λk. The Picard criterion applies, which states that a test function

ϕ belongs to the range of {Λσ − Λ1}
1
2 if and only if

∞∑
k=1

〈ϕ, vk〉2

λk
<∞. (2.108)

The dipole point source located in position y with unit direction d is considered for each

y ∈ Ω. The dipole potential Gy,d(x) satisfies the equations

∇2Gy,d(x) = d · ∇xδ(x− y) in Ω, (2.109)
∂Gy,d(x)

∂n
= 0 on δΩ, (2.110)∫

δΩ
Gy,d(x)ds = 0. (2.111)

It has been shown that a point y belongs to the inclusion Ωc if and only if gy,d(x) =

Gy,d(x)|δΩ belongs to the range of {Λσ − Λ1}
1
2 . This condition can be tested for each

point in the domain using the Picard criterion (2.108) with ϕ = gy,d(x). For proofs

and implementation details see [20, 54]. The factorization method has been recently

extended to the complete electrode model, but application to numerical phantoms is

highly sensitive to noise [65].

2.5.6 Other methods

Layer stripping is a method for recovering conductivity by proceeding layer by layer,

from the outside in [103, 8]. In three dimensions, the implementation is highly unstable

and cannot be applied in practice, even to noiseless data. A stable algorithm exists only

for one-dimensional or radially symmetric 2D conductivities [106].

Level set methods are suitable for reconstructing conductivities with jump discon-

tinuities at the interface between a homogeneous background Ωe and inclusions Ωi. A

level set function Γ(x) is defined so that

σ(x) =


σi if Γ(x) < 0,

σe if Γ(x) > 0,
(2.112)

where the conductivity of the background σe and inclusions σi are known, and Γ(x) = 0

on the interface δΩi. If the mapping Γ → σ defined above is named χ(Γ), then the

forward map A(σ) can be redefined in terms of Γ as

Σ(Γ) = A(χ(Γ)). (2.113)
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Using the chain rule, the derivative of Σ is obtained

∂Σ(Γ)
∂Γ δΓ = ∂A

∂χ

∂χ

∂ΓδΓ. (2.114)

Linearising χ(Γ) delivers [96]

∂χ

∂ΓδΓ = −(σi − σe)
δΓ
|∇Γ|δδΩi , (2.115)

where in practice the delta function on the interface δδΩi can be substituted with a

narrow-band indicator function [102, 101]. The Gauss-Newton update rule for the level

set function Γ is thus derived from equations (2.114) and (2.115). The first clinical

images of lung ventilation using the level set method and time-difference data have been

produced recently [90].

2.5.7 Regularization parameter selection

The role of the regularization parameter is to balance the trade-off between fitting

the measurement data and adhering to the prior distribution of the variable. If the

regularization parameter is too low, the solution will be contaminated by noise, and if

the regularization is too high, the information provided by the data will be lost.

An unknown object σtrue is considered, that gives rise to measurements

v = A(σtrue) + h,

where the noise h is white Gaussian with covariance Σh = µ2I

h ˜ Nh(0, µ2I).

If στ is the solution of the reconstruction problem (2.61) obtained for a certain regular-

ization parameter τ , then the residual error is defined as

r(στ ,v) = A(στ )− v. (2.116)

If the distribution the measurement noise is known, then it is desirable to equate the

norm of the residual and the expected norm of the noise

‖r(στ ,v)‖2 = Nµ2 ⇒ 1
N
‖r(στ ,v)‖2 − µ2 = 0, (2.117)
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this is the discrepancy principle.

The discrepancy principle does not account for the statistics of the solution, which,

as per the Bayesian formulation (2.13), has a prior distribution

σ ˜ exp [−Ψ(σ)]. (2.118)

The choice of τ should balance the contribution of the two terms of the objective function,

so that
‖r(στ ,v)‖2

µ2 − τΨ(στ ) = 0 ⇒ τ = ‖r(σ
τ ,v)‖2

µ2Ψ(στ ) , (2.119)

this is the Miller criterion [73, 43].

In most cases the noise variance µ is not known, but a graphical interpretation of the

Miller criterion allows for an approximate estimation of τ . The plot
{
‖r(στ ,v)‖2 ,Ψ(στ )

}
for different values of τ presents a typical L-shaped curve for ill-posed problems. If τ is

too small, the solution is under-regularized, and the norm of the residual error tends to

zero. If τ is too large, the solution is over-regularized, and the norm of the prior tends

to zero. The transition for over to under-regularization is usually quite fast, and the

L-curve presents a sharp corner in the log-log scale. The derived τ corresponds to the

corner, which is found by maximizing the curvature of the graph. This is known as the

L-curve method [42].

2.6 Multifrequency EIT

2.6.1 Introduction

Multifrequency EIT (MFEIT) involves varying the modulation frequency of the injected

current, and acquiring multiple data sets at two or more frequencies. These are then

considered simultaneously to recover a quantitative or qualitative image of the object.

The purpose of multifrequency methods is to include more data, and therefore more

information, in the imaging process. Often, the goal is to provide an imaging modality

that can provide satisfactory images from data acquired at a single time-point. Thus,

the main motivation in pursuing multifrequency EIT is diagnostic imaging.

In this section, MFEIT methods available before the publication of the work presented

in this thesis are reviewed. The following techniques are frequency-difference methods,

which aim to recover the contrast between two frequencies (see section 2.1.3). Particularly

important are the assumptions implicit in these methods, which limit their application

to simple problems.
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2.6.2 Simple frequency-difference

The simple frequency-difference method can be used to resolve one or more small objects

or inclusions from a background. Implementation of the algorithm requires the following

assumptions:

1. if ∂σ∂ω = 0 then ∂v
∂ω = 0;

2. if ε0(ω) is the conductivity of the background, then ∂ε0
∂ω = 0.

The first assumption is valid if variations across frequency of the stray capacitance and

electrode contact impedance are negligible, and the second if ε0(ω) = ε0 is constant

over frequency. If the object were homogeneous with conductivity ε0, the resulting

voltages would be constant v0(ω) = v0. Therefore any variation across frequencies in the

voltage measurements v(ω) is due to the frequency-dependence of the conductivity of

the inclusions. Let us consider two measurement frequencies ω1 and ω2. The frequency-

difference data is

∆vFD = v(ω2)− v(ω1). (2.120)

The Jacobian for the homogeneous case is computed J(σ0), where σ0 = ε0 · 1. Note

that the Jacobian is independent of frequency. Using the linear approximation for the

forward map (2.67) delivers

∆FDv = v(ω2)− v(ω1)

= v(ω2)− v0 − (v(ω1)− v0)

≈ J(σ0) ·
[
σ(ω2)− σ0

]
− J(σ0) ·

[
σ(ω1)− σ0

]
≈ J(σ0) · [σ(ω2)− σ(ω1)] , (2.121)

where v0 are the hypothetical boundary voltages for the homogeneous case.

The simple-frequency difference algorithm has been applied successfully in tank

experiments to resolve a frequency dependant anomaly from a saline background using

a linear reconstruction scheme. It has been shown that the method breaks down in the

case that the conductivity of the background medium changes across frequencies [83].

2.6.3 Weighted frequency difference

The weighted-frequency-difference algorithm [97] extends the simple frequency difference

method to the case of a frequency-dependent background. A small perturbation can

be resolved from a large background by taking a weighted difference between boundary
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voltage data acquired at two frequencies. The weighting constant is chosen in order to

suppress the background signal, whist preserving the contrast of the perturbation. The

algorithm is effective if the impedance change of the perturbation over the chosen mea-

surement frequencies is much larger than that of the background, and the perturbation

is small and distant from the boundary.

Let us consider an object with conductivity σ, composed of a background and a small

anomaly. Boundary voltage measurements are acquired at two frequencies ω1 and ω2.

The weighted conductivity difference

∆σ(ω1, ω2) = δ · σ(ω2)− σ(ω1) (2.122)

is considered, where δ ∈ < is a constant that satisfies the following conditions

1. ∆σ(ω1, ω2) ≈ 0 near the boundary δΩ

2. ∆σ(ω1, ω2) >> 0 on the perturbation.

In order to determine δ, the relationship between the measurements v(ω1) and v(ω2)

must be investigated. If σ0(ω) = ε0(ω) · 1 is a frequency-dependent homogeneous con-

ductivity distribution, then under the linear approximation the corresponding boundary

voltage data vectors v0(ω1) and v0(ω2) are parallel and related by the equation

v0(ω2) = ε0(ω1)
ε0(ω2)v0(ω1). (2.123)

In the case of a non-homogeneous conductivity σ(ω), decomposing v(ω2) according

to the projection on v(ω1) yields

v(ω2) = δ · v(ω1) + h(ω2) (2.124)

where δ is defined as

δ = 〈v(ω2),v(ω1)〉
〈v(ω1),v(ω1)〉 . (2.125)

It is evident from (2.123) that in the absence of an anomaly h(ω2) = 0. Therefore the

residual vector h(ω2) must contain the information regarding the perturbation, while

the projection on v(ω1) carries mostly the background influence. For this reason, the

weighted frequency-difference algorithm attempts to reconstruct the weighted change in

conductivity ∆σ(ω1, ω2) from the weighted change in boundary voltages v(ω2)−δ ·v(ω1)

using a linear method. For full implementation details see [97, 58].
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The weighted frequency-difference algorithm has been shown to be superior to the

simple frequency-difference method in numerical simulation [97], in 2D tank experiments

[58], and more recently in a semi-spherical 3D tank [3].

2.7 Image segmentation

2.7.1 Introduction

Image segmentation is the process of labelling the voxels in an image, so that voxels

with the same labels share certain characteristics. Segmentation allows for the easy

interpretation of an image, and the extraction of clinically relevant information.

2.7.2 Labelling problem with MRF prior

We consider the problem of assigning a set of binary labels xn ∈ T = {0, 1} to a set

of image voxels V = {1, . . . , n, . . . , N}. A common approach is to treat the labelling

problem as an optimization problem; an objective function is defined in the space of all

possible labellings X = {X1, . . . ,Xn, . . . ,XN}, where Xn takes values in T , the minimum

of which is the solution. This energy-minimization approach can be justified in the

Bayesian formulation:

x = arg max
x

[
N∏
n=1

p(yn|xn)
]

p(x)

= arg min
x

N∑
n=1
L(xn, yn) + Ψ(x) (2.126)

where yn is the observed value in the nth site, L(xn, yn) = − log(p(yn|xn)) is the

likelihood of the image value yn given the label xn, and Ψ(x) = − log(p(x)) is the

regularization term. The likelihood is determined by the choice of an appearance model

for the image. For example, a greyscale image assuming values between 0 and 255 can

be segmented into black (label yn = 1) and white (label yn = 2) regions by taking the

likelihood function:

L(xn, 1) = xn/255

L(xn, 2) = 1− xn/255 (2.127)

where 0 ≤ xn ≤ 255 is the value of the image (figure 2.6).
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(a) (b) (c)

Figure 2.6: Binary image segmentation example: (a) original greyscale image (b)
segmentation obtained using likelihood function (2.127) without a spatial prior (c)
segmentation obtained via graph cut optimization after the addition of an MRF spatial
smoothing term on neighbouring pixels.

The prior p(x) defines a Markov Random Field if

p(x) ≥ 0 ∀x ∈ X (2.128)

p(xn|xV\{n}) = p(xn|xNn) (2.129)

where Nn defines a neighbourhood of the site {n}. For a pairwise MRF prior, the

objective function can be written as

x = arg min
x

N∑
n=1

l(xn, yn) +
N∑
n=1

∑
l∈Nn

Ψ(xn, xl). (2.130)

2.7.3 Graph cut optimization

Graph cut optimization is a standard technique used to solve binary labelling problems

in the field of Computer Vision [63, 11]. The optimum solution is found by minimizing

an energy function defined on the labels, such as equation (2.130). Given that the labels

are discrete, the minimum is found by combinatorial optimization. The multiway graph

cut method is an extension of graph cuts to a multivariate labelling problem, where

T = {1, 2, . . . , j, ..., J}.

A graphical representation is used to describe the neighbourhood system of the image,

and the cost assigned to each labelling. A weighted graph G = 〈S, E〉 is constructed,

where S are the nodes and E are the connecting edges. The image voxels V ⊂ S

are represented by a subset of the nodes. The remaining nodes, known as terminals,

correspond to the set of possible label assignments T for a single voxel. There are

two types of edges: N-links connect pairs of neighbouring voxels, as dictated by the

neighbourhood system Nn; and T-links connect the voxels to the terminals (labels).
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Figure 2.7: Schematic representation of the multiway graph cut optimization method for
a 3x3 example: the voxels S are shown as white squares, and the labels T as black circles.
In the left figure, the graph G = 〈S, E〉 is shown: each voxel is connected to its neighbours
by N-links, and to the labels by T-links (some have been omitted for legibility). In the
right figure, the induced graph G = 〈S, E\C〉 is shown: the cut corresponds to a labelling
where the 1st label is assigned to 4 voxels, the 2nd label to 1 voxel, the 3rd label to 3
voxels and the jth label to 1 voxel. Adapted from [12].

N-links are weighted by the penalty for assigning different labels to the elements, given

by the MRF model wN
nl = Ψ(xn, xl), where l(n) ∈ Nn. T-links are weighted by the cost

of assigning the relevant label to the pixel, given by the likelihood term wT
jn = L(xj , yn),

where xj ∈ T .

The key point of the graph cut algorithm is the transformation of the labelling

problem into a minimum cut problem. A cut C is a set of edges such that all the

terminals are completely separated in the induced graph G(C) = 〈V, E\C〉, and no subset

of C separates the terminals. The cost of the cut equals the sum of its edge weights:

|C| =
∑
{n,l}∈C

wN
nl +

∑
{j,n}∈C

wT
jn, (2.131)

where {n, l} indicates an N-link, and {j, n} a T-link. The minimum cut problem is

finding the cheapest amongst all cuts separating the terminals. It is fairly intuitive

that each cut represents a potential labelling, by which the voxel is assigned the label

corresponding to the terminal to which the voxel is connected (figure 2.7). Furthermore,

the value of the energy function (2.130) is equal to the cost of the cut, and the minimum

cut uniquely identifies the solution to the labelling problem.

The minimum cut is found by iteratively updating the position of the cut, and

calculating the value of the energy function until an approximation of the minimum
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is found. Given a label α and subset of voxels P ⊂ V, an α-expansion move xP←α

is the process by which all voxels in the subset P acquire the label α. Similarly, an

αβ-swap xPβ←α is any move by which all voxels with label γ 6= α, β are left unaltered.

The algorithms cycles through the labels and searches for the minimum energy cut

within one α-expansion or αβ-swap move of the current guess. When the minimum is

found, it is accepted and the process is repeated for labellings within one move of the

new update. The algorithm terminates when the current labelling is a local minimum

with respect to α-expansion or αβ-swap moves: there is no one move that decreases

the energy. The efficiency of the algorithm is dependent on the choice of move. The

α-expansion algorithm terminates in an order of N iterations (one search per label),

whereas the αβ-swap algorithm terminates in an order of N2 (one search per pair of

labels), therefore the former is more efficient. However, the α-expansion algorithm will

find the minimum only if a condition of triangularity (or linearity) is satisfied:

Ψ(α, β) ≤ Ψ(α, γ) + Ψ(γ, β) ∀α, β, γ ∈ L. (2.132)

The MRF model, for example, satisfies the linearity condition, and it is more efficient to

use the α-expansion algorithm in this case. Details of the implementation, including

efficient search of the local minimum and convergence guarantees, are set out in [12].



Chapter 3

Multifrequency EIT using spectral

constraints

3.1 Introduction

3.1.1 Overview

In the previous chapter, an introduction to EIT imaging was outlined. Particularly

important is the concept of ill-posedness, which explains the difficulty in solving the

inverse problem. In order to successfully reconstruct an EIT image, ill-posedness must

be overcome via the inclusion of prior information about the solution. Typically, this

is achieved by choosing a regularization term defined on the conductivity. Another

potential source of information is knowledge of the tissues in the domain and their

conductivity. The latter can be obtained, for example, by measuring the conductivity

spectrum of tissue samples. In this chapter, a method is developed for including this

information in the imaging problem in the form of explicit spectral constraints. The aim

is to produce a robust method for static EIT imaging.

3.1.2 Related work

The similarities between imaging modalities allow for the translation to EIT of techniques

developed in other fields. Whereas multifrequency EIT is at an early stage of development,

an extensive literature has been produced on the related subject of multispectral diffuse

optical tomography (DOT). In particular, DOT research has produced methods for

directly reconstructing chromophore (light-absorbing substances) concentrations using

the wavelength dependence of tissue properties [27]. A similar approach has also been

adopted in the field of microwave breast imaging [36].
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3.1.3 Purpose

In this chapter, a novel method for using spectral constraints in the inverse problem of

MFEIT is formalized, validated and discussed. A fraction model for the conductivity

is defined, and a nonlinear algorithm for solving the image reconstruction problem is

devised. Numerical and experimental results are presented for the case of a cylinder

with two tissues. The robustness of the method to errors in the spectral constraints is

tested. The performance of the proposed direct multifrequency method is compared

to an indirect approach and to weighted frequency-difference imaging. The case of a

four-tissue numerical phantom is considered. Finally, the approximation introduced by

the fraction model is investigated and discussed.

3.1.4 Experimental design

3.1.4.1 Fraction reconstruction

A model that relates the conductivity of an object to the conductivity of its component

tissues and their relative concentration was defined. The concentration, or fraction,

values are frequency independent and describe the physical distribution of the tissues.

By expressing the inverse problem in terms of the fractions, these can be reconstructed

directly. This brings two advantages: 1) all multifrequency data can be used simultane-

ously, and 2) frequency-difference data can be used. This allows for a more efficient use

of the data and the suppression of modelling errors. Images of the fraction values for

each tissue were reconstructed using a bounded nonlinear method. Two-tissue numerical

and experimental phantoms were constructed and used to validate the method.

3.1.4.2 Robustness to spectral errors

The devised fraction reconstructed is susceptible to uncertainty in the assumed spectral

constraints. A numerical study was performed to investigate the robustness of the

method to varying degrees of error. The results were compared by an objective image

quality evaluation measure. The same comparison method was used throughout.

3.1.4.3 Comparison with existing static EIT methods

A phantom experiment was designed to compare the proposed fraction-based approach

to absolute and weighted frequency-difference (WFD) imaging. The purpose of the

comparison with absolute imaging was to highlight the advantage in terms of robustness

to modelling errors brought by the use of frequency-difference data. The purpose of

the comparison with WFD was to highlight the advantage brought by the simultaneous

use of all multifrequency data, and to justify the choice of a nonlinear reconstruction
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scheme. Success of the WFD algorithm is dependant on the possibility of isolating the

contribution on an anomaly from a homogeneous background. A numerical experiment

was designed specifically to compare the performance of WFD and fraction imaging in the

nonlinear domain, and demonstrate that the application of the fraction reconstruction

algorithm is not limited to simple phantoms in the same way as WFD.

3.1.4.4 Comparison with an indirect method

The proposed method involves imaging the fractions directly from all the multifrequency

data, without reconstructing the conductivity. An alternative course of action is to

reconstruct the absolute conductivity images for each frequency, and then estimate

the fractions by fitting the conductivity images to the fraction model. In this case, an

optimization problem must be solved for each frequency to reconstruct the conductivity

images, and then again to estimate the fractions. Furthermore, the regularization

parameter must be estimated separately for each conductivity image, and then again

for the fraction image. The proposed fraction reconstruction method was compared

to this alternative indirect method. A phantom study was designed to investigate the

robustness of the respective methods to noise and modelling errors.

3.1.4.5 Multiple tissues case

In order to test the performance of the method in the case of multiple tissues, a four-tissue

numerical example was considered.

3.1.4.6 Evaluation of the approximation error

The fraction model, which describes the conductivity in terms of fractions and spectral

constraints, introduces an error for all voxels which are occupied by multiple tissues. A

numerical experiment was designed to investigate the approximation involved in the

fraction model, and determine how the error depends on the number of mixed elements

in the mesh.

3.2 Methods
3.2.1 Fraction model

The fraction model is a representation of the conductivity of an object. The model

is employed in conjunction with the finite element method (FEM) to approximate a

discrete conductivity distribution. It is assumed that the object is composed of a limited

number of tissues, and that a volume fraction, or concentration value, can be determined

for each component and element of the mesh. The spatial distribution of the tissues

is then described by the corresponding fraction distributions. The assumption that
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the tissues are homogeneous and have characteristic spectral properties allows for the

expression of the conductivity of the object in terms of the conductivity of individual

components. For the purpose of generality, the 3D case is examined in the following.

Let us consider a 3D domain on which a frequency dependent conductivity distribu-

tion σ(x, ω) is defined, where x denotes the spatial coordinates, and ω the frequency.

The conductivity is assumed to be static: this is equivalent to assuming that the physical

distribution and spectral properties of the object and its components are constant

throughout the recording of measurements. A discretization of the domain is performed,

and the conductivity is approximated using the FEM to represent an element based,

piecewise constant distribution. As a result, the conductivity can be represented by a

mesh and a frequency dependent N × 1 vector that determines the value of each element

and frequency

σ(ω) = [σn(ω); n = 1, . . . , N ],

where N is the number of elements. Time-harmonic currents are injected at the boundary

at M frequencies

ω1, ..., ωi, ..., ωM

and K real boundary voltage measurements

v(ω) = [vk(ω); k = 1, . . . ,K]

are acquired for each frequency.

The following assumptions are made:

1. the domain is composed of a known number J of tissues t1, ..., tj , ..., tJ with distinct

conductivity,

2. the conductivity of each tissue is known for all measurement frequencies

εij = σtj (ωi),

3. the conductivity of the nth element is given by the linear combination of the

conductivities of the component tissues

σn(ωi) =
J∑
j=1

fnj · εij , (3.1)



3.2. Methods 68

where 0 ≤ fnj ≤ 1 and
∑J
j=1 fnj = 1.

Each weighting value fnj of the linear combination is the volume fraction, or con-

centration, of the jth tissue in the nth voxel. If the nth voxel is occupied only by

the jth tissue, then the conductivity is that of the tissue σ(ωi) = εij . In this case,

fnj = 1 and fnl = 0 ∀l 6= j. In the case that the voxel lies along a tissue boundary, or

is otherwise occupied by a mixture of tissues, the conductivity is approximated by the

linear combination of the conductivities of the components, weighted by their fraction

values.

Under these assumptions the relationship between conductivity and boundary voltages

can be expressed in terms of the matrix F =
{
f1, . . . ,f j , . . . ,fJ

}
, of dimensions N × J :

A (σ(ωi)) = A

 J∑
j=1
f jεij

 = A(F). (3.2)

The fraction values are independent of frequency and constant across all measurements.

Using the chain rule we obtain, for j = 1, . . . , J ,

∂A(σi)
∂f j

= ∂A

∂σi

∂σi
∂fj

= ∂A

∂σi
εij = J(σi) · εij (3.3)

where σi = σ(ωi) and J(σi) is the Jacobian of the forward map at the frequency ωi.

3.2.2 Fraction image reconstruction

In analogy with conductivity imaging (2.61), the fraction distributions are reconstructed

by minimizing a regularized objective function of the form:

1
2


∥∥∥∥∥∥A(

∑
j

f jεij)− v(ωi)

∥∥∥∥∥∥
2

+ τΨ(F)

 . (3.4)

Using difference data, referred to a chosen frequency ω0, the norm of the residual error

becomes
1
2

∥∥∥∥∥∥A(
∑
j

f jεij)−A(
∑
j

f jε0j)− (v(ωi)− v(ω0))

∥∥∥∥∥∥
2

. (3.5)

If the data is normalized by the reference frequency, which can be advantageous in the

case of proportional data noise, then

1
2

∥∥∥∥∥A(
∑
j f jεij)−A(

∑
j f jε0j)

A(
∑
j f jε0j)

− v(ωi)− v(ω0)
v(ω0)

∥∥∥∥∥
2

. (3.6)
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A Markov random field (MRF) regularization term (2.66) of the form

Ψ(F) = 1
2

J∑
j=1

N∑
n=1

∑
l(n)
|fnj − fl(n)j |2, (3.7)

was chosen, where l(n) runs over all neighbours of the nth voxel. A convenient expression

for Ψ(F) is obtained by defining the matrix L as

[L]nl =


N(n) if n = l,

−1 if the nth and lth elements are neighbours,

0 otherwise,

(3.8)

where N(n) is the number of neighbours of the nth element. Therefore the regularization

term becomes

Ψ(F) = 1
2

J∑
j=1
fJj Lf j . (3.9)

Finally, considering all multifrequency measurements simultaneously yields

Φ(F) = 1
2

 M∑
i=1

∥∥∥∥∥∥A(
∑
j

f jεij)−A(
∑
j

f jε0j)− (v(ωi)− v(ω0))

∥∥∥∥∥∥
2

+ τ
J∑
j=1
fJj Lf j

 ,
(3.10)

or for normalized data

Φ(F) = 1
2

 M∑
i=1

∥∥∥∥∥A(
∑
j f jεij)−A(

∑
j f jε0j)

A(
∑
j f jε0j)

− v(ωi)− v(ω0)
v(ω0)

∥∥∥∥∥
2

+ τ
J∑
j=1
fJj Lf j

 . (3.11)

The fraction distributions F are recovered using

F = arg min
F

Φ(F). (3.12)

The objective function Φ(F) is differentiable and the gradient is obtained via the chain

rule (3.3).

The constraint
∑J
j=1 fnj = 1 ∀n is enforced by substituting f1 = 1−

∑J
j=2 f j in the

objective function. The J − 1 fraction images, are reconstructed using

[f2, . . . ,fJ ] = arg min
f2,...,fJ

Φ(1−
J∑
j=2
f j ,f2, . . . ,fJ), (3.13)

where 0 ≤ fnj ≤ 1, and remaining fraction is simply f1 = 1−
∑J
j=2 f j .
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The reconstruction of [f2, . . . ,fJ ] was constrained to the closed interval [0, 1] and

performed using a two-step algorithm. The initial guess is set to f1 = 1 and f j =

0 ∀j = 2, . . . , J .

3.2.2.1 Step 1: Gradient projection

Gradient projection [81] is a method for optimizing an objective function with bounded

variables. Initially the minimization is set to follow the negative gradient direction

q = −∇Φ(f t2, . . . ,f tJ), but the search path is projected onto the boundary whenever

an upper or lower constraint is encountered. At iteration t, the corners are found by

computing the step size values for which each variable reaches a constraint for j ≥ 2:

ᾱnj =



1−fnjt
qnj

qnj > 0,
fnj

t

qnj
qnj < 0,

∞ qnj = 0,

(3.14)

where Ft =
{
f tnj

}
is the previous solution. The step sizes are considered in ascending

order. If α = {αm;m = 1, . . . , N · (J − 1)} is the sorted vector of positive values of ᾱ,

then the intervals (0, α1) . . . (αm−1, αm) . . . (αN ·(J−1)−1, αN ·(J−1)) identify the straight

sections of the search path. The corners F̃(αm) (points where the search path changes

direction) are given by

f̃ j(αm) = f̃ j(αm−1) + (αm − αm−1)pm−1
j 2 ≤ j ≤ J, (3.15)

where

pm−1
nj =


qnj if αm < ᾱnj ,

0 otherwise,
(3.16)

defines the piecewise-linear descent direction. The objective function is approximated

along the straight section [F̃(αm−1), F̃(αm)] by the quadratic form

Φ(F̃2(α)) = ∇Φ(Ft)J · (F̃2(αm−1) + ∆αpm−1)+

+1
2(F̃2(αm−1) + ∆αpm−1)J · ∇2Φ(Ft) · (F̃2(αm−1) + ∆αpm−1),

(3.17)

where F̃2 =
{
f̃2, . . . , f̃J

}
, 0 < ∆α < αm − αm−1, and the Hessian matrix ∇2Φ(Ft) is

approximated using the Gauss-Newton form by disregarding the second order derivative
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of the residual error (section 2.5.4.2). The minimum point is found by differentiating

(3.17) with respect to ∆α along each straight interval of the search path in sequence,

and equating to zero. If the result ∆α∗ is included in the interval [αm−1, αm ) then the

minimum,

F̃2 = F̃2(αm−1) + ∆α∗ pm−1, (3.18)

is accepted. Otherwise the the next interval is considered, and the process is repeated

until the minimum is found. The result of the gradient projection step is the Cauchy

point F̃ =
[
f̃1, f̃2, . . . , f̃J

]
.

3.2.2.2 Step 2: Damped Gauss-Newton using a Krylov solver

The components of the Cauchy point that coincide with the constraints define the

inactive sets for the second step. These are fixed to the boundary value (0 or 1) and the

subproblem of solving for all other components is considered. Initially the constraints

are ignored, one step of a damped Gauss-Newton method is performed, then the solution

is projected back onto the boundary.

The search direction dt at iteration t is calculated by solving

∇2Φ(f̃2, . . . , f̃J) · dt = −∇Φ(f̃2, . . . , f̃J) (3.19)

for the components with non-active sets. Given the size of the problem, the approximated

Hessian is never formulated explicitly and equation (3.19) is solved using generalized

minimal residuals (GMRes) [95] (section 2.5.4.2). The minimization step size βt is

computed using the Brent line-search method [15], and the Brent abscissae are found

via a gold-section bracketing loop [123] (section 2.5.4.5). The result of the damped

Gauss-Newton step is

F+ =


1−

∑J
j=2 (f̃ j + βt · dtj) j = 1

f̃ j + βt · dtj 2 ≤ j ≤ J
(3.20)

and the proposed solution is given by

f t+1
nj =


0 if f̃nj = 0 or f+

nj ≤ 0,

1 if f̃nj = 1 or f+
nj ≥ 1,

f+
nj otherwise.

(3.21)
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The solution is accepted if Φ(Ft+1) ≤ Φ(F̃) ≤ Φ(Ft). If only Φ(F̃) ≤ Φ(Ft) then the

Cauchy point is accepted.

3.2.2.3 Fraction reconstruction algorithm outline

Initialize t = 0, f1 = 1, f j = 0 ∀j = 2, . . . , J

set tol and maxit

repeat

find Cauchy point F̃ using gradient projection (3.18)

solve (3.19) to find dt

find βt that minimizes Φ(f̃ j + βtdtj ; j = 2, . . . , J)

compute F+ using (3.20)

set Ft+1 using (3.21)

t = t+ 1

until
∣∣Φ(Ft+1)− Φ(Ft)

∣∣ ≤ tol or t = maxit

return F

3.2.3 Fraction image reconstruction: indirect method

An alternative method for estimating the tissue fractions indirectly is by fitting the

absolute conductivity images (Figure 3.1). First, the conductivity images at each

frequency {σi; i = 1, . . . ,M} are obtained by minimizing,

σi = arg min
σi

1
2

‖A(σi)− vi‖2 + τi

N∑
n=1

∑
l(n)
|σni − σl(n)i|2

 , (3.22)

using a non-linear Gauss-Newton-Krylov algorithm [53] (section 2.5.4.2). The regular-

ization parameters τi are optimized for each frequency.

An indirect fraction image F̂ =
[
1−

∑J
j=2 f̂ j , f̂2, . . . , f̂J

]
is computed by minimizing

1
2

 M∑
i=1

∥∥∥∥∥∥σi −
1 · εi1 +

J∑
j=2
f̂ j · (εij − εi1)

∥∥∥∥∥∥
2

+ ξ
J∑
j=1

N∑
n=1

∑
l(n)
|f̂nj − f̂l(n)j |2

 , (3.23)

where ξ is the regularization parameter. The minimization is performed, as for the

proposed direct method, by alternating steps of gradient projection and damped Gauss-

Newton.
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Figure 3.1: Schematic comparison between direct and indirect fraction reconstruction
methods.

3.2.4 Image quantification

In evaluating experimental results, image quality was assessed on the basis of an objective

quantification method. The case is considered of resolving a perturbation tissue t2 from

a homogeneous background tissue t1, by reconstructing an image of the fraction f2. The

reconstructed perturbation was identified as the largest connected cluster of voxels with

values larger than 50% of the maximum displacement from the mean value of the image

[35, 83]. Three measures of image quality were devised.

1. Image noise: inverse of the contrast-to-noise ratio (CNR) between the real

perturbation Σ and the background

√
1

NB−1
∑
n/∈Σ

(
fn2 − f̄B2

)2

∣∣∣f̄P2 − f̄B2 ∣∣∣ , (3.24)

where f̄P2 and f̄B2 are the mean intensities of the real perturbation and background,

and NB is number of elements of the background.

2. Localization error: ratio between the norm of the x-y displacement of the centre

of mass of the reconstructed perturbation Σ′ from the real position (x, y), and the

diameter of the mesh d

‖
∑
n∈Σ′ fn2 · (xn, yn)− (x, y)‖

d
, (3.25)

where (xn, yn) is the x-y position of the centre of the nth tetrahedron.

3. Shape error: mean ratio of the difference between the dimensions of the real and

reconstructed perturbations, respectively (lx, ly, lz) and (l′x, l′y, l′z), and the diameter

of the mesh
1
3

 |lx − l′x|+
∣∣∣ly − l′y∣∣∣

d
+ |lz − l

′
z|

h

 , (3.26)

where h is the height of the mesh. The size of the simulated and reconstructed

perturbation was estimated by taking the maximum coordinate difference be-
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tween voxels coinciding with the perturbation. In the experimental case, the real

dimensions of the perturbation were measured using a calliper.

3.3 Results
3.3.1 Tissue impedance spectra

The conductivity spectra of the test tissues were obtained empirically from tissue

samples. Resistance measurements were acquired with a Hewlett-Packard 42847A

(Hewlett-Packard, CA, USA) impedance analyser for 48 frequencies in the range 20 Hz –

1 MHz using Ag-AgCl electrodes.

Biological test objects with frequency dependent conductivities were used to mimic

the properties of live tissues [83, 3, 58]. The background medium was a mixture of 0.1%

concentration NaCl solution and carrot cubes of approximately 4 mm per side. Two

samples were measured using Perspex tubes of fixed diameter (1.6 cm) and variable

length (4.6 and 7.5 cm). A perturbation was obtained from a potato segment of diameter

approximately 4.6 cm. The resistivities of the full length (10.6 cm) and partial length

(5.4 cm) were measured. The test object was immersed in saline for 45 minutes before

starting the recordings in order to reduce drift. The electrode resistance was estimated

and subtracted by plotting resistance against length for each tissue and evaluating the

offset of the line passing through the measurement points. The conductivities of the

carrot-saline background and potato perturbation rose monotonically from 0.1 S/m and

0.02 S/m at 20 Hz to 0.3 S/m and 0.4 S/m at 1 MHz.

These results were used to simulate realistic data and to reconstruct fraction images

from experimental EIT recordings made with the UCLH Mk. 2.5 EIT system. The

conductivity values for 16 amongst the output frequencies of the UCLH system in the

range 640 Hz – 1.29 M Hz were estimated from the spline of the sample measurements

(figure 3.2).

3.3.2 Numerical Validation

Numerical validation of the fraction reconstruction method was performed on synthetic

data. Boundary voltages were simulated using a cylindrical mesh of diameter 19 cm and

height 10 cm, with 62 784 elements and a ring of 32 electrodes around the centre. A

current of peak amplitude 133 µA, injected through polar electrodes, was simulated. For

each injection pair, the difference between voltages on all adjacent pairs of electrodes

not involved in delivering the current was considered, for a total of 448 measurements

per frequency. The ground point was fixed at the centre of the bottom of the mesh. The
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Figure 3.2: Conductivity values of test tissues obtained from sample measurements at
16 output frequencies of the UCLH Mk 2.5 multifrequency EIT system in the range 640
Hz – 1.29 M Hz.

electrode impedance was set to 1 kΩ and the complete electrode model was employed

[104] (section 2.4.4).

A cylindrical perturbation of diameter 4.6 cm and height 10 cm was placed in (-4

cm 0 cm 0 cm) (position 1) and (0 cm +4 cm 0 cm) (position 2), where the origin is

the centre of the tank (figure 3.3). The background and perturbation conductivities

were set to the values for saline-carrot and potato obtained empirically for 16 output

frequencies of the UCLH Mk 2.5 system. Frequency-difference data normalized to the

lowest frequency (640 Hz) was used. Proportional 0.1% white Gaussian noise was added

to the absolute boundary voltages. The noise level was chosen under consideration

that the expected change across frequencies in boundary voltages is in the order of 1%,

therefore a high level of precision must be acheived in measuring the absolute values

with an EIT system. The regularization parameter was set using the L-curve method

[42] (section 2.5.7). Fraction images were reconstructed using all multifrequency data

by performing four iterations of the proposed nonlinear fraction reconstruction method

(figure 3.4).

3.3.3 Robustness to spectral errors

A simulation study was performed to determine the robustness of the fraction recon-

struction method to errors in the assumed tissue spectra εj = {εij ; i = 1, . . . ,M}. The

same mesh, electrodes, measurement protocol and perturbation were chosen as in the

previous section. A random error was added to the tissue spectra of carrot (ε1) and
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(a) (b)

Figure 3.3: Numerical validation model: (a) position 1 (-4 cm 0 cm 0 cm), (b) position
2 (0 cm +4 cm 0 cm).
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Figure 3.4: Numerical validation results: perturbation fraction images of positions 1 and
2. In all images the raster of the central slice (z = 0, thickness 2 cm) is displayed and,
where relevant, profile plots at y = 0 cm for position 1 and y = +4 cm for position 2
were plotted. The scale is the volume fraction value (between 0 and 1).

potato (ε2), before producing a conductivity model:

σ∗ni =


εi1 + hi1 on the background,

εi2 + hi2 on the perturbation,
(3.27)

where hij ˜ N (εij , εij · Σ) is a random number drawn from the normal distribution N

with mean εij and variance εij · Σ. The values εij + hij represent the real, unknown

conductivities of the tissues, and the mean conductivities εij the inexact measurements
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Figure 3.5: Robustness to spectral errors: (a) mean and (b) standard deviation of the
reconstructed fraction images for each choice of the spectral variance Σ. The scale is the
volume fraction value (between 0 and 1).

obtained from the samples.

Boundary voltage data was simulated using the model σ∗, and fraction images were

reconstructed using the original measured spectra. The process was repeated 20 times for

each choice of Σ = 1%, 3%, 5%, 10%. The regularization parameter was set to τ = 10−3,

and the number of iterations was 4 in all cases.

The results were evaluated by computing the ratio of the L2-norm of the distance

between the reconstructed image and the true solution, and the L2-norm of the true

solution. To make the error measure independent of the number of tissues, the mean

was taken:

ErrL2 = 1
T

T∑
j=1

∥∥∥f reconj − f truej

∥∥∥∥∥∥f truej

∥∥∥ , (3.28)

where

f true2 =


0 on the background,

1 on the perturbation,
(3.29)

and f true1 = 1− f true2 .

The mean and the standard deviation of the reconstructed images (Figures 3.5a and

3.5b), and the mean image quantification measures (Figure 3.6) were computed.
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Figure 3.6: Robustness to spectral errors: mean image quantification results over 20
repetitions for each choice of Σ.

Σ 1% 3% 5% 10%

mean(ErrL2) 1.17% 1.88% 2.87% 3.09%

var(ErrL2) 4.4 · 10−6 7.2 · 10−5 2.6 · 10−4 2.3 · 10−4

Table 3.1: Robustness to spectral errors: mean and standard deviation over 20 repetitions
of image error ErrL2 for several choices of spectral variance Σ.

(a) (b)

Figure 3.7: Phantom experiment setup: (a) position 1 (−4 cm 0 cm 0 cm), (b) position
2 (0 cm +4 cm 0 cm).

3.3.4 Phantom study

A phantom study was designed to reproduce the experimental setup rendered previously

in simulation. The phantom was built using the test tissues measured with the impedance

analyser, and a perspex cylindrical tank of diameter 19 cm and height 10 cm. The
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Figure 3.8: Phantom experiment fraction images: perturbation fraction images of
positions 1 and 2. The scale is the volume fraction value (between 0 and 1).

tank was filled with a mixture of 0.1% concentration saline solution and carrot cubes

of approximately 4 mm side. A potato with a diameter of approximately 4.6 cm and

length 10 cm was placed first in position (−4 cm 0 cm 0 cm) (figure 3.7a), and then

in (0 cm +4 cm 0 cm) (figure 3.7b). A ring of thirty-two silver electrodes with 1 cm

diameter was placed around the tank and a 33rd electrode was used to fix the ground at

the centre of the base. Measurements were recorded using the UCLH Mark 2.5 MFEIT

system at 16 frequencies in the range 640 Hz – 1.29 MHz. A current of amplitude 133

µA was injected at polar electrode pairs and voltages were acquired at all adjacent

channels not involved in the current injection. The data was averaged over 10 frames

and referred to the lowest frequency (640 Hz). Images were reconstructed using the same

mesh employed in validating the method. In the following, unless otherwise specified,

the regularization parameter was selected using the L-curve method, and the number

of iterations for nonlinear methods was set to 4. The electrode contact impedance was

assumed to be 1 kΩ, which is the upper limit of the real value, and constant across all

electrodes and frequencies.

Fraction images were reconstructed using the proposed method from all multifrequency

data (figure 3.8).

3.3.5 Comparison with indirect multifrequency imaging

Fraction images were obtained from the multifrequency phantom data using the indirect

method described previously (section 3.2.3). Absolute conductivity values were recovered

for each measurement frequency (figures 3.9a and 3.9b) and fraction images were



3.3. Results 80

640 Hz

 

 

10 kHz 16 kHz 20 kHz 32 k Hz 40 kHz 256 kHz 80 kHz

128 kHz 161 kHz 256 kHz 320 k Hz 512 kHz 654 kHz 1.024 MHz 1.3 MHz

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(a)

640 Hz

 

 

10 kHz 16 kHz 20 kHz 32 k Hz 40 kHz 256 kHz 80 kHz

128 kHz 161 kHz 256 kHz 320 k Hz 512 kHz 654 kHz 1.024 MHz 1.3 MHz

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(b)

Figure 3.9: Absolute conductivity images of the experimental phantom for each mea-
surement frequency: (a) position 1 and (b) position 2. The scale is conductivity (S/m).
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Figure 3.10: Indirect multifrequency imaging results: indirect fraction images of the
experimental phantom for positions 1 and 2. The scale is the volume fraction value
(between 0 and 1).

obtained from these (figure 3.10). The fraction images obtained with the direct and

indirect method and the conductivity images were compared using an objective image

quantification method (Figures 3.11a and 3.11b).
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(a) (b)

Figure 3.11: Comparison of image quantification results for absolute conductivity images
at 640 Hz (Cond-LF) and 1.2 MHz (Cond-HF), indirect (Frac-I) and direct (Frac) fraction
images: (a) position 1, (b) position 2.

3.3.6 Comparison with weighted frequency-difference conductivity

imaging

The weighted frequency-difference (WFD) algorithm uses a weighted difference in bound-

ary voltages between two frequencies vi − δiv0 and a linear method to reconstruct a

weighted conductivity difference σ0− δiσi, where δi = 〈v(ωi),v(ω0)〉
〈v(ω0),v(ω0)〉 (section 2.6.3). WFD

conductivity images were reconstructed from the tank data for each frequency and

compared to fraction images (figures 3.12a and 3.12b). The lowest frequency (ω0 = 640

Hz) was used as a reference and the reconstruction was performed using generalized

tSVD and MRF regularization (section 2.5.3.1), and the image quantification measures

were computed (figures 3.13a and 3.13b).

3.3.7 Spectral constraints method for nonlinear case

In order to investigate further applications of WFD and the fraction method, two

conductivity distributions that violate the assumptions of WFD were simulated (figure

3.14a and 3.14b). As before, the measured spectral values of the saline-carrot and

potato samples were used to simulate boundary voltage measurements, and 0.1% white

Gaussian noise was added to the data. The lowest frequency (640 Hz) was used as

a reference. Fraction and WFD conductivity images were reconstructed (figures 3.15,

3.16a and 3.16b).
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Figure 3.12: WFD conductivity images of the experimental phantom for each measure-
ment frequency: (a) position 1 and (b) position 2. The scale is weighted conductivity
difference (S/m).
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Figure 3.13: Comparison of image quantification results for WFD conductivity images
at 640 Hz (Cond-LF), 128 kHz (Cond-MF) and 1.2 MHz (Cond-HF), and fraction image
(Frac): (a) position 1 and (b) position 2.

3.3.8 Multiple tissue case

A numerical phantom with 4 tissues was constructed. The inclusions were positioned in

(0.87 cm 4.92 cm), (−4.7 cm -1.71 cm), and (3.83 cm -3.21 cm). The background tissue
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(a) (b)

Figure 3.14: WFD comparison simulation model: (a) position A, (b) position B.
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Figure 3.15: WFD comparison simulation fraction images: perturbation fraction images
of position A and B. The scale is the volume fraction value (between 0 and 1).

was a mixture of 0.1% concentration saline and carrot pieces, and the inclusions were

composed of, respectively, potato, banana and cucumber (figure 3.18). The tissue spectra

were obtained using the method and instrumentation described in section 3.3.1 (figure

3.17). Data was simulated using the same mesh, electrode positions, measurement

protocol and frequencies as in 3.3.2. Fraction images were reconstructed for each tissue

(figure 3.19) using the proposed method. The regularization parameter was chosen by

visual inspection, and the number of iterations was set to 10.
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Figure 3.16: WFD comparison simulation conductivity images: (a) WFD conductivity
image of position A, (b) WFD conductivity image of position B. The scale is weighted
conductivity difference (S/m).

3.3.9 Approximation error evaluation

A simulation study was performed to investigate the approximation introduced by the

fraction model in representing the conductivity of an object. A sphere was simulated

using a fine tetrahedral mesh of diameter 10 cm with 130 144 tetrahedral elements

(figure 3.20b). A conductivity distribution σf was drawn from the binomial distribution

p(σf ) ˜ B(ε1, ε2), where ε1 = 0.11 and ε2 = 0.05 are approximately the conductivities of

saline-carrot mixture and potato at 10 kHz.

A conformal mesh with 16 268 (=130 144/8) elements (figure 3.20a) was used to

define a second conductivity distribution σc. The two meshes were chosen so that each

tetrahedra of the coarse mesh would contain 8 tetrahedra of the fine mesh, and each

surface triangle of the coarse mesh would contain 4 triangles of the fine mesh. The

conductivity of each element of the coarse mesh was obtained via linear combination of
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Figure 3.17: Four-tissue case model: conductivity values of carrot-saline, potato, banana
and cucumber obtained from sample measurements.

Figure 3.18: Four-tissue case model: numerical phantom model, scale is cm.

the values of the corresponding elements of the fine mesh using the fraction model:

[σc]n =
∑8
l=1 σ

f
nl
· Γnl

Γn
, (3.30)

where Γ indicates the volume of the element. The volume fraction of each tissue is

consequently

fj =
∑

Φ(j)
nl
/Φn (3.31)
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Figure 3.19: Four-tissue case fraction images: reconstructed fraction images and profile
plots at y = +4.92 cm (1), y = −1.71 cm (2) and y = −3.21 cm (3). The scale is the
volume fraction value (between 0 and 1).
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Figure 3.20: Approximation error evaluation model: (a) coarse mesh, 16, 268 elements,
(b) fine mesh, 130, 144 elements. Units mm, diameter 10 cm.
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Figure 3.21: Mean approximation error introduced by the fraction model (Errfrac), the
FEM (Errdiscr) and both methods (Errtotal) in estimating boundary voltages for 10 %,
50 % and 100 % mixed elements in a coarse mesh.

where the sum is over the elements in the fine mesh assigned to the tissue j and for which

σnl = εj . The indexes n1, ..., n8 of the elements of the fine mesh that make up each element

of the coarse mesh were found using the Matlab function inhull(testpnts, xyz), which

determines if the points testpnts are inside the convex hull of vertices xyz.

Finally, the values of σc were distributed on the fine mesh to generate a third

conductivity distribution

σf
∗ = {σnl : σnl = [σc]n , l = 1, ...8} . (3.32)

The boundary conditions were set by simulating two electrodes in polar position.

The electrode shape was chosen in order to maintain the same electrode area in the

coarse and fine mesh. The radius of the circle circumscribing each electrode was 1 cm.

A current of peak amplitude +133µA was simulated on one electrode, and the other was

used as ground. The electrode contact impedance was set at 1 kΩ and the complete

electrode model was employed.

The boundary voltages vc, vf were generated, and vf∗ was obtained from the conduc-

tivity distributions defined above. The total modelling error Errtotal =
∣∣∣vf − vc∣∣∣ between

the representations of σf and σc, and the discretization error Errdiscr =
∣∣∣vf∗ − vc∣∣∣

between the representations of σf∗ and σc were considered. In order to evaluate the

error introduced by the fraction model in estimating vc, the percentile difference between
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the total and discretization error was considered

Errfrac = Errtotal − Errdiscr
vc

· 100. (3.33)

The random distribution σf was drawn and the fraction error was calculated 100

times. The procedure was repeated after reducing the proportion of mixed elements in

the coarse mesh from 100% to 50% and 10% (Figure 3.21). In order to achieve this, the

values of the correct proportion of elements of the fine mesh were assigned at random

and the remaining were considered in homogeneous groups of 8, each corresponding to

an element of the coarse mesh.

3.4 Discussion
3.4.1 Robustness to spectral errors

The fraction model assumes exact knowledge of the impedance spectra of all tissues

in the domain. For the purposes of this study, these were evaluated by measuring the

conductivity of tissue samples with an impedance analyser, as described in section 3.3.1.

It is unavoidable that these measurements are affected by noise and experimental error,

and the tissue spectra employed in the reconstruction scheme are to a certain degree,

incorrect.

It was observed that for an error of variance Σ = 1% added to the tissue spectra, the

images were similar to the result obtained using the exact spectra (Figure 3.4). In the

latter case, in which the same spectra are used to generate the data and reconstruct

the image, ErrL2 = 1.06% (see Table 3.1). For Σ = 3% and Σ = 5% the shape and

position of the perturbation were generally reconstructed with sufficient accuracy, but a

reduction in contrast was observed in most images. For Σ = 10% the image quality was

affected, and in some cases the perturbation could not be identified. The mean relative

contrast between the tissues was

C% = 1
M

M∑
i=1

(εi2 − εi1)
εi1

≈ 34%, (3.34)

therefore it is reasonable to expect that a 10% error added to the spectra would affect

the ability of the method to distinguish between the tissues.

3.4.2 Comparison with indirect multifrequency imaging

The results suggest that the proposed fraction reconstruction method is more robust

than absolute conductivity imaging and the indirect method. The conductivity images
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present an area of high conductivity area around the edge of the tank, which is caused

by inaccurate modelling of the boundary geometry, electrode placement, shape and size,

and contact impedance. In the fraction images this artefact is reduced because frequency

invariant errors are subtracted from the data. The conductivity images obtained in the

frequency range 30 – 80 kHz present very low contrast. This is in agreement with the

tissue sample conductivity measurements in that the spectra of potato and carrot-saline

are very similar in the same frequency range. It is evident by visual comparison that

the use of spectral constraints can result in a significant improvement in image quality,

when compared to absolute conductivity imaging. If the boundary voltage data is

employed directly, then a single optimization problem is solved. To image the fractions

indirectly, first an optimization problem is solved for each frequency to reconstruct the

conductivity images, then the fitting parameters are computed. The direct reconstruction

algorithm uses all multifrequency data to estimate the regularization prior, whereas the

indirect method requires that the regularization is first optimized independently for each

frequency and then again for computing the fractions.

3.4.3 Comparison with WFD conductivity imaging

Application of the weighted frequency-difference algorithm is limited by the following

assumptions (section 2.6.3):

1. σ0 − δiσi ≈ 0 on a large background area and on the boundary,

2. σ0 − δiσi 6= 0 on a small anomaly.

Furthermore, use of a linear reconstruction scheme requires the additional assumption

that linear changes in conductivity result in linear changes in boundary voltages. In

the case of the phantom experiment these assumptions are reasonable because the

object consists in a small, low-contrast perturbation immersed in a large homogeneous

background. The image quantification results (figures 3.13a and 3.13b) are comparable

to fraction imaging in this case. However, the results obtained for the nonlinear case

(figures 3.15, 3.16a and 3.16b) show that the fraction method can produce significantly

better images than WFD in the case that the assumptions of WFD are violated.

3.4.4 Multiple tissue case

The algorithm was successful in distinguishing between multiple tissues, and returning

high contrast. The L2-norm error of the solution, defined by equation (3.29), was

ErrL2 = 2.16%, which was approximately double the error found in the 2 tissue case

(figure 3.4).



3.5. Conclusion 90

3.4.5 Approximation error evaluation

In the example considered, the approximation error given by the fraction model was

significantly smaller than the error introduced by the coarsening of the mesh. Fur-

thermore, the error is present only in the representation of mixed elements and thus

depends on the proportion of mixed-to-homogeneous elements. If tissues occupy distinct

areas of the image and mixed elements are limited to those lying across the boundaries,

the approximation error is small. If a large area is occupied by a mixture of tissues,

the approximation error could be reduced by modelling the mixture rather than the

individual tissues.

3.5 Conclusion

A nonlinear fraction reconstruction method for performing multifrequency EIT using

spectral constraints has been formalized, validated and applied. The robustness of

the method to errors in the assumed spectra has been investigated and, in the case

examined, the method is resistant to a small amount of uncertainty. It has been shown

using experimental phantom data that the proposed method can result in improved

image quality when compared to absolute and weighted frequency-difference conductivity

imaging. The direct use of multifrequency data has proved more robust than fitting

multifrequency conductivity images. The proposed method is demonstrably superior to

weighted frequency-difference imaging when the assumptions of the latter are violated.

The method was applied to a numerical phantom with 4 tissues. It was possible to

distinguish between multiple tissues and accurately reconstruct the fraction image of

each one. These results suggest that fraction imaging may be suitable for producing

one-off clinical diagnostic images using EIT.

The advantages of using spectral constraints in multifrequency EIT are twofold. First,

the choice to reconstruct the fraction values, which are frequency independent, allows

for the direct and simultaneous use of all multifrequency data. The dimensionality of

the problem depends on the number of elements and tissues, and not on the number of

frequencies. Therefore it is preferable to use data acquired at all measurement frequencies.

As long as the number of frequencies is larger than the number of tissues, implementation

of the fraction method increases the number of constraints to the reconstruction and

results in a reduction in the degrees of freedom of the problem. Secondly, knowledge of the

tissue spectra allows for the use of difference data in the objective function, thus resulting

in the subtraction of modelling and frequency independent instrumentation errors in a
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nonlinear reconstruction scheme. In conductivity imaging this would require simultaneous

estimation of the measurement and reference conductivities, thus increasing the degrees

of freedom of the problem. The fraction images could be improved by modelling the

change in contact impedance over frequencies. This would result in a further reduction

of the edge artefact.

The fraction reconstruction method requires prior knowledge of the impedance spectra

of tissues. These can be obtained from the literature, or estimated empirically. Accurate

modelling of biological tissues is crucial for clinical applications. The number J of tissue

types could be inferred by iteratively applying the algorithm with increasing values of J

until a certain criterion is met (e.g., no sharp increase in model likelihood). Alternatively,

all possible or expected distinct tissues could be modelled, so that if t is the actual

number of tissues, J ≥ t. The reconstructed fraction values of the tissues that are not

present would then be zero. However, a reduction in image quality is to be expected if

J >> t. Further studies are necessary to determine how image quality varies with the

number of tissues and frequencies.



Chapter 4

Stroke type differentiation using

spectrally constrained MFEIT

4.1 Introduction

4.1.1 Overview

The advances in the imaging methodology presented in the previous chapter suggest

that the use of spectral constraints could allow for the reconstruction of one-shot images.

In particular, MFEIT could enable early diagnosis and thrombolysis of ischaemic stroke,

and therefore improve the outcome of treatment. In this chapter, MFEIT using spectral

constraints is investigated as a method for imaging the brain in stroke patients. The

first application of the fraction reconstruction algorithm to an anatomically realistic

three-dimensional model of the human head with skull and scalp is demonstrated. The

influence of imprecise modelling is evaluated in three cases: uncertain electrode positions,

electrode contact impedance and tissue conductivity spectra. The aim of this study is

to demonstrate that the new imaging method might be used to differentiate between

stroke types in clinical experiments.

4.1.2 Related work

The application of MFEIT to stroke type differentiation has been investigated at UCL

for a number of years [52, 92]. The most recent published study was performed by

Packham et. al in 2012 [83]. Packham compared the application of linear frequency-

difference reconstruction techniques to experimental data obtained from a homogeneous

head-shaped tank. In this case, the assumptions of the WFD algorithm are valid, and

imaging with WFD was successful. However, if a skull is included in the experimental

model, then the assumptions of WFD are violated and, as shown in section 3.3.7, linear

imaging fails. The nonlinear fraction reconstruction method is designed to overcome
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these limitations, and allow, for the first time, for the imaging of a head model which

includes the skull.

The effect of modelling errors has recently been investigated in the case of 2D time-

difference EIT imaging [13]. The results indicate that errors in the shape of the electrodes

and boundary and in the contact impedance can produce artefacts in the reconstructed

images. These effects are likely to be more severe in 3D multifrequency imaging.

4.1.3 Purpose

The purpose of this study is to evaluate the robustness of the fraction imaging method

to various sources of error. In order to assess if the method is suitable for application to

human subjects, the conditions of a real experiment are reproduced. Specifically, the

following questions are addressed:

• What is the effect of the discretization error?

• What is the effect of adding errors to the position of the electrodes (thereby also

changing the area and shape)?

• What is the effect of adding errors to the assumed spectral information?

• What is the effect of adding errors to the contact impedance of the electrodes?

4.1.4 Experimental design

A numerical head phantom with homogeneous layers for the brain, skull and scalp was

constructed. The meshes and surfaces were obtained from a CT scan of a human head.

The CT image was obtained from a patient undergoing treatment for epilepsy at Queen

Square Hospital in London. The size of the scan was 512× 512× 196, and the resolution

was approximately 1 mm in the z direction (bottom-top of the head) and 0.4 mm in the

xy plane. The skull and head surface were segmented and post-processed with Seg3D

and meshed with the CGAL [24, 118]. The model did not include the cerebro-spinal

fluid, a common simplification in head EIT research. The electrodes were placed in the

same configuration used to acquire EEG measurements on the scalp. The advantage of

this setup is that electrode caps and other equipment intended for EEG applications

can be used in experiments. Realistic conductivities for all tissues were taken from

the literature for a range of frequencies [92, 52]. In order to avoid the inverse crime

[66], two tetrahedral finite element meshes with different resolution were generated, one

coarse and one very fine. The fine mesh was used to simulate the boundary voltage

data, and the coarse mesh to reconstruct the images (including solution of the forward
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problem). The current pattern was chosen to maximize the distance between injecting

pairs of electrodes: this was achieved by finding the maximum spanning tree of the

electrodes, weighted by the distance between the electrodes. The measurement pattern

was optimized to acquire the maximum number of independent measurements. Errors

that simulate the most common sources of artefact in an experimental setup were added

to the model [71]. For each case, an EIT image was reconstructed using the fraction

reconstruction method. The images were evaluated and compared using an objective

image quality quantification method.

• The instrumentation noise level was chosen to match that of measurements acquired

using the KHU Mark 2.5 EIT system [82] in a saline filled tank, averaged over 64

frames. This noise level is achievable with most EIT measurement systems and

can be reduced by use of better instrumentation. The standard deviation of the

proportional noise was ςp = 0.02% and the standard deviation of the additive noise

was ςa = 5µV (the additive noise is dominant).

• Electrode positions can be measured to around 1 mm precision using photogram-

metry [89]. Other technologies, such as the commercial MicroScribe, laser 3D

scanners, or electrode helmets, can achieve an even higher precision in electrode

localisation. To demonstrate the importance of using accurate localisation tech-

nologies, electrode position errors of around 1 mm and 2 mm were simulated. These

relatively small errors resulted in a remarkable degree of image degradation. Given

that the electrodes were represented on a discrete mesh, the shape and size of the

electrodes changed when an error was added to the position of the centre. This

could have been accounted for by refining the mesh, however a coarse representation

of the electrodes constituted an unpredictable source of errors, and thus provided a

greater similarity between simulation and experiment [62, 13]. Errors were added

to the (x, y, z) positions of all electrodes before simulating the data. Deviations

of up to 3 times the standard deviation ς of the error are expected in the majority

of cases. Therefore the overall shift of the centre of each electrode will normally

be less than or equal to

‖(x̃, ỹ, z̃)− (x, y, z)‖ =
√

(3ς)2 + (3ς)2 + (3ς)2 = 3
√

3ς, (4.1)

where (x̃, ỹ, z̃) is the position of the shifted electrode. For the errors chosen, the

corresponding shift is
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–
√

3(3 · 0.25) ≈ 1.3mm for a standard deviation of 0.25mm;

–
√

3(3 · 0.5) ≈ 2.6mm for a standard deviation of 0.5mm.

• Knowledge of prior spectral information is affected by tissue anisotropy, inhomo-

geneity and temperature. Because the combined effect of these factors is difficult

to predict, errors based on the literature were simulated that roughly represented

frequency-dependent contribution of the errors [33, 50]. To test the limitations

of the reconstruction method, a reasonable and a worst-case level of error were

considered: respectively 1% and 5%. The errors were added independently to

each frequency and each tissue type. It is important to note that the multifre-

quency reconstruction algorithm used in this study is insensitive to conductivity

changes with a flat frequency-spectrum. Therefore only frequency-dependent errors,

which constitute a small fraction of the above mentioned error sources, must be

considered.

• The contact impedance errors were chosen on the basis of typical experimental

levels. It was assumed that all electrodes had sufficiently low contact impedance.

In an experimental setup, this is equivalent to discarding any electrodes with

near-infinite impedance that may have detached from the head, or any broken

measurement channels. Typically, if the variance of the contact impedance across

electrodes is approximately 20%, the setup is considered suboptimal. If the

variance of the contact impedance is larger than 50%, then the electrodes have to

be re-applied. Therefore these two levels of error were chosen.

4.2 Methods
4.2.1 Model and tissue impedance spectra

A three-dimensional model of a human head was used to simulate the EIT data. The

model comprised of three layers, corresponding to the scalp, skull, and brain. A fine

mesh with ˜5 million elements was used to simulate the boundary voltages, and a coarse

mesh with ˜180 thousand elements was used to reconstruct the images. A spherical

perturbation of diameter 3 cm was placed in two different positions inside the brain:

lateral and posterior (figure 4.2a and 4.2b). In order to simulate an ischaemic stroke,

the conductivity of the perturbation was set to the conductivity of ischaemic brain

approximately one hour after onset. In order to simulate a haemorrhagic stroke, the

conductivity of the perturbation was set to the conductivity of blood. The conductivity
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Figure 4.1: Model: conductivity spectra of tissues in the head for the measurement
frequencies.

(a) (b)

Figure 4.2: Model: top view of the 3D head model, (a) lateral stroke position and (b)
posterior stroke position (back of the head is up).

spectra of the tissues (scalp, skull, brain, ischaemic brain, blood) were obtained from the

literature [92, 52] (figure 4.1). Twelve frequencies were chosen in the range 5Hz—5kHz

because the slopes of the tissue spectra are most different in this region (figure 4.1).

Boundary voltages were simulated for each frequency.

4.2.2 Data simulation

32 electrodes of diameter 10mm were placed on the surface of the model. The electrodes

were modelled using the CEM, and the contact impedance was set to 1 kΩ for all

electrodes. The peak-to-peak amplitude of the current was set to 140µA. Voltage

measurements were made on all adjacent pairs not involved in delivering the current.

The total number of measurements acquired for each frequency was 869.

The boundary voltages were computed using a parallel EIT solver recently developed
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at UCL. The Peits solver [57] is written in C++ and uses the Dune-Fem package

[32]. Peits is a finite element solver specifically written for EIT using the CEM. It

was designed to perform well on multi-core machines and clusters using MPI, and thus

reduce the computation time for solving the forward problem. Using Peits, the mesh

was partitioned into largely independent parts on which the weak formulation of the

CEM was assembled. The system was then solved iteratively using a conjugate gradient

solver, preconditioned by the algebraic multigrid implementation ML [39]. Using Peits

on all 16 cores of a workstation with two 2.4GHz Intel Xeon CPUs with eight cores and

20MB cache each, returned a computation time of less than 2 minutes for 31 forward

solutions on the fine (5 million element) mesh.

4.2.3 Image reconstruction

The fractions were recovered simultaneously for all tissues and elements by minimizing

the objective function

Φ(F)= 1
2

 M∑
i=1

∥∥∥∥∥∥A(
∑
j

f jεij)−A(
∑
j

f jε0j)− (v(ωi)− v(ω0))

∥∥∥∥∥∥
2

+ τΨ(F)

 . (4.2)

A Markov random field (MRF) regularization term of the form

Ψ(F) = 1
2

T∑
j=1

N∑
n=1

∑
l(n)
|fnj − fl(n)j |2 (4.3)

was chosen, where l(n) runs over all neighbours of the nth voxel. Details of the

implementation are included in section 3.2.2.

4.2.4 Numerical validation

In order to validate the method, images were reconstructed from simulated data without

the addition of modelling errors (except those due to mesh discretisation and measurement

noise). The data were simulated using the fine mesh and the images were reconstructed

using the coarse mesh. In order to simulate instrumentation error, both proportional

and additive noise were added to the data:

proportional noise vwith noise = vno noise (1 + hp
)

(4.4)

additive noise vwith noise = vno noise + ha, (4.5)
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where h ˜ N (0, ς) indicates a random number drawn from a Gaussian distribution with

zero mean and standard deviation ς. The standard deviation of the proportional noise

was ςp = 0.02% and the standard deviation of the additive noise was ςa = 5µV. The

skull and scalp were known and fixed in place in the reconstruction, and it was assumed

that the area inside the skull was occupied by either the brain, or the stroke. The initial

guess was the healthy brain.

The optimal regularization parameter was approximated by computing the L-curve

for one step of Gauss-Newton descent. The corner of the L-curve was selected for the

first step of the reconstruction, and the value was divided at each step by a factor of 2

for the ischaemic stroke and, given that the contrast was lower, of 3 for the haemorrhagic

stroke [115]. The automatic selection of the regularization parameter was repeated in

all the following cases, and the maximum number of steps was fixed to ten.

4.2.5 Error simulation

Modelling errors were simulated by altering the model used to simulate the voltages.

The position errors were added to the (x, y, z) coordinates of the electrodes separately.

The conductivity errors were added to each tissue at frequency individually. The contact

impedance errors were added to each electrode separately.

The study was repeated for normally distributed errors with two different levels of

variance. The following cases were considered,

• electrode positions: standard deviation 0.25mm and 0.5mm, mean the original

(x, y, z) positions;

• tissue conductivities: standard deviation 1% and 5%, mean εij (literature values);

• contact impedance: standard deviation 20% and 50%, mean 1 kΩ.

In addition, proportional and additive noise was added to each data set.

4.2.6 Image quantification

The image quantification method presented in section 3.2.4 was adapted to a head

shaped mesh. Three measures of quality were considered: image noise, localization

error, and shape error. In order to quantify the ability of the method to distinguish an

anomaly (the stroke) from a background (the brain), the fraction f s corresponding to

the tissue making up the anomaly was assessed.
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Figure 4.3: Numerical validation images reconstructed from data simulated on the coarse
and fine meshes: (a) lateral ischaemic stroke, (b) posterior ischaemic stroke, (c) lateral
haemorrhagic stroke, (d) posterior haemorrhagic stroke. Slice through the centre of the
head. The scale is the volume fraction value (between 0 and 1).
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Figure 4.4: Numerical validation results image quality quantification for images recon-
structed from data simulated on the coarse and fine meshes: (a) ischaemic stroke, (b)
haemorrhagic stroke.

4.3 Results

4.3.1 Numerical validation

The data were simulated on the fine mesh, noise was added to the data, and the images

were reconstructed on the coarse mesh. For comparison, the process was repeated using

data simulated on the coarse mesh (figure 4.3). The discretization errors introduced

differences in the area of each electrode between the fine (5 million elements) and coarse

(180 thousand elements) meshes. The average difference in the area of the electrodes
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Figure 4.5: Electrode area for the fine (5 million elements) and coarse (180 thousand
elements) meshes. The data were simulated on the fine mesh, and the images were
reconstructed on the coarse mesh.

between the fine and coarse mesh was 5.6 10−7 m2 over an average electrode area of

7.7 10−5 m2, i.e. about 1.4% (figure 4.5). Image quantification measures were computed

for each of the reconstructed images (figure 4.4). The images obtained from data

simulated and reconstructed on the same mesh were superior in terms of the previously

defined measure of image quality (section 4.2.6) to those obtained from data simulated

on the fine mesh. The contrast recovered in the images of ischaemic strokes was greater

than in the images of haemorrhagic strokes. The image quality obtained for the posterior

position was in most cases superior than for the lateral position.

4.3.2 Erroneous electrode positions

Images were reconstructed assuming that the electrodes were fixed in the original position

(figure 4.6), and image quality measures were computed for each image (figure 4.7). The

perturbation was recovered only in the case of 0.25 mm standard deviation error added

to ischaemic stroke data. In all other cases the images quality is deteriorated to the

point that the imaging must be considered unsuccessful.

4.3.3 Erroneous tissue spectra

Images were reconstructed using the original values for the conductivities of the brain

and stroke (figure 4.8), and image quality measures were computed for each image (figure

4.9). The perturbation was recovered successfully in all cases for 1% error, but in the

case of 5% error only the lateral ischaemic stroke was identified correctly. Figures 4.10a

and 4.10b display the frequency-difference spectra for brain, ischaemic brain and blood,

with the associated error bars. The variance of the error on the relative spectra is given

by the sum of the variance of the errors added to the absolute values, and the error bars
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Figure 4.6: Erroneous electrode positions results images reconstructed with errors of
0.25 mm and 0.5mm standard deviation added to the electrode position: (a) lateral
ischaemic stroke, (b) posterior ischaemic stroke, (c) lateral haemorrhagic stroke, (d)
posterior haemorrhagic stroke. The scale is the volume fraction value (between 0 and 1).
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Figure 4.7: Image quantification results for images reconstructed with errors of 0.25 mm
and 0.5mm standard deviation added to the electrode position: (a) ischaemic stroke, (b)
haemorrhagic stroke.

indicate the minimum and maximum limit within the majority of the errors are drawn,

given by ± 3 times the standard deviation.

4.3.4 Erroneous electrode impedances

Images were reconstructed assuming a value of 1 kΩ for the contact impedance of all

electrodes (figure 4.11), and image quality measures were computed for each image

(figure 4.12). The images are nearly unchanged by the introduction of 20% errors on the
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Figure 4.8: Erroneous tissue spectra results, images reconstructed with errors of 1%
mm and 5% standard deviation added to the tissue conductivities: (a) lateral ischaemic
stroke, (b) posterior ischaemic stroke, (c) lateral haemorrhagic stroke, (d) posterior
haemorrhagic stroke. The scale is the volume fraction value (between 0 and 1).
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Figure 4.9: Image quantification results for images reconstructed with errors of 1% mm
and 5% standard deviation added to the tissue conductivities: (a) ischaemic stroke, (b)
haemorrhagic stroke.

contact impedance, and image quality is slightly diminished for 50% errors.
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Figure 4.10: Conductivity difference with respect to the lowest frequency for each tissue
and associated error bars for (a) 1% and (b) 5% errors added to the absolute spectra.
The error bars represent the minimum and maximum limits within which the errors
on the relative spectra are drawn. The errors were added to the absolute values of
the conductivity, therefore the tissues with highest absolute conductivity have higher
variance.
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Figure 4.11: Erroneous contact impedance results, images reconstructed with errors of
20% and 50% standard deviation added to the electrode contact impedances: (a) lateral
ischaemic stroke, (b) posterior ischaemic stroke, (c) lateral haemorrhagic stroke, (d)
posterior haemorrhagic stroke. The scale is the volume fraction value (between 0 and 1).
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Figure 4.12: Image quantification results for images reconstructed with errors of 20%
and 50% standard deviation added to the electrode contact impedances: (a) ischaemic
stroke, (b) haemorrhagic stroke.
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4.4 Discussion

4.4.1 Numerical validation

The contrast obtained in the images of ischaemic stroke was higher than in the images

of haemorrhagic stroke. This can be attributed to variations in the impedance spectra

of ischaemic brain and blood. The difference between the slope of the conductivity

spectrum of ischaemic brain and healthy brain (figure 4.1) is greater than the difference

between blood and healthy brain. Therefore, given that the method uses data referred

to the lowest frequency, the signal given by an ischaemic stroke is greater than that of a

haemorrhagic stroke of the same size and in the same location.

The reduction in image quality between the case of data simulated on the fine and

coarse meshes was primarily caused by the discretization error on the modelling of

the electrodes and skull. Given the different resolutions, the shape and size of the

electrodes and the skull differ between the two meshes. The purpose of using a fine

mesh to simulate the data, and a coarse mesh to reconstruct the image, is to make

the simulation study more realistic (figure 4.4). In the case of imaging a real human

head, the size and thickness of the skull will not be known exactly. Furthermore, the

discrete representation of the electrodes and skull on the mesh will not represent the

real position precisely. If the same mesh is used to simulate and reconstruct the data,

the problem is over-simplified with respect to the real-case scenario, and conclusions

drawn from simulation results may not be applicable in practice (figure 4.3). Therefore

it was necessary to consider these discrepancies in order to obtain a realistic simulation.

4.4.2 Erroneous electrode positions

Errors added to the electrode positions severely affected image quality. This highlights

the importance of registering the position of the electrodes accurately. These results

suggest that the error on the electrode positions must be ≤ 1mm. Photogrammetry

allows for the recovery of electrode positions to a precision of approximately 1 mm [89].

Higher precision could be achieved using the commercial instrument MicroScribe, a laser

3D scanner, or a rigid electrode helmet. Furthermore, in order to preserve the shape and

size of the electrodes, the mesh must be sufficiently refined at the boundary (figure 4.5).

4.4.3 Erroneous tissue spectra

The fraction reconstruction method requires knowledge of the conductivity spectra

of all tissues, and these are assumed to be fixed and exact. The performance of the

algorithm is therefore diminished if the assumed spectral constraints are incorrect (figure
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4.9). Furthermore, the confidence with which the reconstruction algorithm distinguishes

between different tissues depends on the difference between the conductivity spectra of

the tissues. Specifically, given that frequency difference data was used, the tissues were

distinguished on the basis of their respective change in conductivity between the lowest

and the other frequencies. If a random error is added to the absolute spectrum, then

the error on the difference in the spectrum with respect to the lowest frequency is given

by the sum of the absolute errors. For 1% error, all the spectra are distinct, but for

5% error, the spectra overlap for some or all frequencies (figures 4.10a and 4.10b ). For

this reason it was not possible to locate the haemorrhagic stroke in the case of 5% error

added to the conductivities (figure 4.8c), and the ischaemic stroke was only identified in

the lateral position (figure 4.8a). In the case of haemorrhagic stroke the addition of a

proportional 5% error caused a large degree of uncertainty because the absolute value of

the conductivity of blood is large. In the case of ischaemic stroke, the uncertainty was

caused by the similarity in the spectra of healthy and ischaemic brain.

4.4.4 Erroneous electrode impedances

The effect of the errors added to the contact impedance is very limited. A change

in the contact impedance will cause a change in the current distribution around the

electrode. However, given that the conductivity of the electrode is very high relative to

the conductivity of the object, changes in the electrode impedance have a small effect

on the current flow inside the object. For this reason the images obtained after adding

errors to the contact impedance are similar to the original images without modelling

errors.

4.4.5 Technical remarks

Ideally, several images would have been created for each noise level in order to characterise

the effect of modelling errors over a very large number of samples. The computational

expense of multiple repetitions was prohibitive, in that reconstruction of a single image

took 5-6 hours. The run time could be reduced by parallelizing the solution of the

forward problem in the image reconstruction, or applying a memory-efficient (matrix

free) inversion scheme. Given that the electrode specific errors (contact impedance and

position) were sampled on the 32 electrodes individually, this provides a sufficiently

large number of samples to give a reasonable characterization of the influence of the

noise. Likewise, in the case of errors added to the tissue spectra, the noise was added

independently to each tissue and at each frequency, and this allows us to describe the
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effect of the spectral error reasonably well. Thus, the conclusions derived from this

relatively small number of images appear to be valid in principle. Examination of

more permutations in simulation and tank studies may allow for the identification of

quantitative limits to the acceptable variation of each parameter.

4.5 Conclusion
The fraction reconstruction method using spectral constraints was applied to a numerical

head phantom with realistic conductivity. The first images of a human head model

including a skull have been produced by use of spectral constraints. Noise and modelling

errors were added to investigate the robustness of the imaging method. The results

demonstrate a varying degree of sensitivity to different sources of error:

• the method is highly sensitive to errors in the position and shape of the electrodes,

and these must be modelled with the highest achievable level of accuracy;

• the fraction reconstruction method allows tissues to be distinguished if the respec-

tive spectra are sufficiently distinct;

• the method is highly robust to errors in the assumed contact impedance.

Further work is needed to improve image quality in the presence of modelling errors.

The artefact caused by errors in the geometric model of the skull in the case that different

models are used to simulate and reconstruct the data may be reduced by simultaneously

reconstructing the brain and the skull. This may allow to distinguish between the stroke

and the skull artefact. Further investigation into the level of accuracy necessary to

model the electrodes is required. This would determine an upper limit for the level of

precision required in measuring the position of the electrodes, and a lower limit for the

resolution of the mesh at the boundary.

This work is part of a wider project on stroke imaging using EIT. This feasibility

study is a first step towards demonstrating that the use spectral constraints can provide

the first images of ischaemic and haemmorhagic stroke in the human head using MFEIT.

The methods developed in this thesis are currently being applied to tank phantom and

animal model data. There are plans to proceed to clinical trials in 2015.



Chapter 5

A reconstruction-classification method

for MFEIT

5.1 Introduction

5.1.1 Overview

The multifrequency EIT method presented in chapter 3 exploits prior knowledge of

the conductive properties of tissues by allowing for the inclusion of explicit spectral

constraints in the image reconstruction problem. The disadvantage of the fraction

reconstruction method is that exact prior knowledge of the tissue spectra is required.

This limits the application of the method to cases in which the conductivity of the

tissues involved are known with a high level of accuracy. Approximate values for the

tissue spectra can be obtained from the literature or in vivo empirical measurements,

however these values are subject to variability. For example, unpredictable variations

may be caused by changes in temperature, cell count, or flow-rate of bodily fluids. The

fraction method treats the conductivity of a tissue at a certain frequency as a point-value,

which is assumed to be known exactly and is fixed throughout the reconstruction. In

this chapter, a more realistic representation of the prior is obtained by associating a

probability distribution to the tissue spectra. Further, a method is developed to use

the multifrequency boundary voltage data to inform the spectral model, in addition to

reconstructing the conductivity.

5.1.2 Related work

A similar problem in the field of diffuse optical tomography (DOT) was studied by

Hiltunen et al. [45]. In DOT imaging, two physical quantities are recovered: light

absorption and scattering. The authors proposed to exploit the covariance between

the absorption and scattering parameters to produce an algorithm which alternated
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reconstruction and classification steps. If the result of the reconstruction step is visualized

in a 2D scatter plot where the axes are the absorption and the scattering parameters,

then the values form a number of clusters that is equal to the number of tissues in the

domain. The voxels can therefore be classified by the clustering, and the mean and

standard deviation of the tissue properties can be updated on the basis of the image.

This idea can not be applied directly to EIT because there is only one reconstructed

parameter, the conductivity. However, the covariance between the conductivity recovered

at different frequencies can be treated in a similar way to distinguish between the tissues.

The voxels can therefore be classified on the basis of the clustering of the spectra in a

scatter plot of dimensions the number of frequencies.

5.1.3 Purpose

In this chapter, a method is presented for estimating the real spectra of the tissues

in the domain, whilst simultaneously reconstructing an image of conductivity for each

frequency. It is assumed that the domain is occupied by a finite number of tissues with

distinct spectral properties, and the conductivity spectrum of each tissue is modelled by

a Gaussian distribution. The proposed reconstruction-classification method is validated

on simulated data, and the robustness of the method to errors in the initial guess of the

tissue conductivities is tested for increasing levels of variance. Results obtained with

and without introducing spatially smoothing regularization are compared. The use of

frequency-difference data in the reconstruction-classification method is investigated and

the method is validated using simulated data. The images obtained in simulation are

evaluated and compared by an objective measure of quality. Finally, the proposed method

is applied to experimental phantom data and the use of absolute and frequency-difference

data are compared.

5.1.4 Experimental design

5.1.4.1 Reconstruction-classification method

A combined imaging method was devised which attempts to simultaneously solve the

problems of reconstructing an image using spectral information and classifying the

image per tissue type. The number of tissues, or classes, will be equal to the number of

tissues that have distinct spectra, and can therefore be differentiated by MFEIT. The

classification problem can be interpreted as a binary labelling problem, where the aim

is to assign to each voxel a set of labels that identifies a single tissue. These labels

constitute a hidden variable that determines the conductivity. The probability that a
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voxel is occupied by a certain tissue is obtained by "fuzzy labelling" the reconstructed

conductivity image [88]. The result of the labelling step is used to update the initial

guess of the mean and covariance of the spectra at each iteration of the reconstruction

algorithm.

Two variants of the reconstruction-classification method were formalized, one using

absolute and one using frequency-difference data. These were validated on simulated

data.

5.1.4.2 Robustness to spectral errors

The purpose of the classification step is to update the properties of the tissue classes on

the basis of information provided by the data. The aim is to account for uncertainty in

the initial guess of the mean and variance of the tissue spectra. If, for example, the real

tissue conductivities differ from the literature values used in the first reconstruction step,

then the classification process will compensate for the mismatch by shifting the mean of

the classes. The updated parameters are then used in the successive reconstruction step.

In order to test the efficacy of this technique, a simulation study was performed. Errors

were added to the initial guess of the tissue spectra, and images was reconstructed using

the original values as the initial guess. Multiple repetitions were performed for increasing

levels of error.

5.1.4.3 Reconstruction-classification with spatial smoothing

The use of spatial smoothing in addition to the spectral prior in the reconstruction

step was investigated. Spatial smoothness information provides an additional mean for

improving the ill-posedness of the problem, however blurring across tissue boundaries

deteriorates the clustering of the tissue classes. Results obtained using homogeneous

MRF regularization were compared to results obtained with no spatial smoothing and

with a label-dependent MRF.

5.1.4.4 Comparison with other methods

Images were reconstructed using absolute and a weighted frequency-difference EIT

imaging, and compared with results obtained with the reconstruction-classification

method.

5.1.4.5 Phantom experiment

A phantom experiment was performed to compare the use of absolute and frequency-

difference data in the reconstruction-classification method. The disadvantage of using

absolute data is that the algorithm is highly sensitive to modelling errors. This may
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affect the performance of the method when applied to experimental data. For this

reason, a method which uses data referred to a low frequency, or frequency-difference

data, may bring advantages in terms of the reduction of boundary artefacts. On the

other hand, the number of data points is decreased from the absolute case, whereas

the number of unknowns is unchanged. Furthermore, the reconstruction problem is no

longer unique. It is expected, however, that the tissues can still be identified uniquely

from the difference images, of the conductivity difference with respect to the reference

frequency.

5.2 Method

5.2.1 Multinomial model

The Finite Element Model of a conductive object is considered. It is assumed that the

object is composed of a finite number of tissues, and that each element of the mesh is

assigned to a single tissue. A set of binary variables ζn = {ζn1, ..., ζnj , ..., ζnJ} is defined

for each element, where J is the number of tissues,

ζnj =


1 if the jth tissue is assigned to the nth element;

0 otherwise;
(5.1)

The values

ζn = {ζn1, ..., ζnj , ..., ζnJ}

are drawn from a multinomial distribution p(ζn)˜Multin(1, λj), where λj is the overall

probability that an element is occupied by the tissue tj . The values of λj are drawn

from a Dirichlet distribution λj ˜Dir(αj), where αj is the expected number of elements

in the jth class. The probability that the set ζn = {ζn1, ..., ζnj , ..., ζnJ} is assigned to

the nth element, given λ = {λj ; j = 1, ..., J}, is

p(ζn|λ) =
∏
j

λ
ζnj
j . (5.2)

If the tissue tj is assigned to the nth voxel, then it is assumed that the conductivity

of the voxel at all frequencies σn = {σn(ωi); i = 1, . . .M}, where M is the number of
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frequencies, is given by a multivariate normal distribution

p(σn|θj) = 1√
(2π)J |Σj |

exp
(
−1

2(σn −mj)TΣ−1
j (σn −mj)

)
= Nσ(mj ,Σj), (5.3)

where θj = {(mj ,Σj)} specifies the mean mj = {mij ; i = 1, . . .M} and covariance

matrix Σj ∈ RM×M of the spectrum of the jth tissue. Therefore, if the indicator

variables ζnj are known, the probability distribution of the conductivities of the nth

voxel is

p(σn|ζn,θ) =
∏
j

(p(σn|θj))ζnj . (5.4)

The joint probability of recovering (σn, ζn) is

p(σn, ζn|θ,λ) = p(σn|ζn,θ)p(ζn|λ) =
∏
j

[λjp(σn|θj)]ζnj . (5.5)

By marginalizing over all possible values of the indicator variables ζnj the mixture of

Gaussians model for the conductivity is obtained

p(σn|θ,λ) =
∫
ζn

p(σn, ζn|θ,λ)dζn =
∑
j

λjp(σn|θj). (5.6)

Using a non-informative prior for the means p(mj) ∝ 1, the conjugate prior distribu-

tion for the covariances is given by the normal inverse Wishart distribution

NIW (νj ,Γj) = |Σj |−(ν+d+1)/2 exp
[
−1

2Tr(ΓjΣ−1
j )
]
, (5.7)

where d is the dimension of the domain, νj indicates the number of degrees of freedom,

and Γj is a scaling matrix. If the prior is non-informative, νj = 0 and Γj = 0, so that

p(Σj) = |Σj |−(d+1)/2 , (5.8)

which is known as Jeffreys prior [45].

5.2.2 Combined reconstruction-classification outline

A set of boundary voltage measurements vi = {vki; k = 1, . . . ,K} is acquired at each

frequency {ωi; i = 1, . . . ,M}. The conductivity distribution can be recovered iteratively

by alternating a reconstruction and a classification step
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1. Reconstruction:

σt+1 = arg min
σ

1
2‖Lv(A(σ)− v)‖2 − 1

2 log p(σ|ζt,θt), (5.9)

where σ ∈ RN ·M accounts for N voxels and M frequencies, ‖ · ‖ indicates the

Frobenious norm, and Lv is a weighting matrix.

2. Classification:

E-step: ζt+1 = arg max
ζ

p(ζ|σt,θt,λt) (5.10)

M-step: (θt+1,λt+1) = arg max
(θ,λ)

p(σt|θ,λ)p(θ,λ). (5.11)

5.2.3 Reconstruction

Substituting equation (5.4) into equation (5.9) and assuming that the elements are

independent, the objective function becomes

σ = arg min
σ

1
2‖Lv(A(σ)− v)‖2 − 1

2
∑
n,j

ζnj log p(σn|θj), (5.12)

where

v = {v1; . . . ,vi; . . . ;vM} ∈ RK·M

A(σ) = {A(σ1); . . . ;A(σi); . . . ;A(σM )} ∈ RK·M .

The weighting matrix Lv, of dimensions RK·M×K·M , holds the values

1/(
√

2M‖A(σ0
i )− vi‖)

on the diagonal, where σ0 is the initial guess for the conductivity, and serves the

purpose of equilibrating the contribution of each frequency to the reconstruction. The

measurement noise is assumed to be uncorrelated across frequencies, therefore the

off-diagonal values are all zero.

The regularization term is found by fixing the value of the indicator parameters ζ to

the maximum-a-posteriori estimate recovered by the previous classification step

MAP(ζ) = arg max
ζ

p(ζ|σt−1,θt−1,λt−1). (5.13)
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The result of the MAP estimate is a binary image with only 0 or 1 values, where for each

voxel the label corresponding to the tissue that has highest probability of occupying the

voxel is set to one, and all other labels are set to 0. The expected spectrum of the nth

element becomes

σ̄n =
∑
j

ζnj ·mij

∣∣∣∣∣∣
MAP(ζ)

= mij′ i = 1, . . . ,M (5.14)

if the j′th tissue has maximum probability of being assigned to the nth element. Therefore

(5.4) becomes

p(σ|ζ,θ) =
∏
n

∏
j

p(σn|θj)ζnj = Nσ(σ̄,Σσ̄), (5.15)

where σ̄ ∈ RN ·M and Σσ̄ ∈ RN ·M×N ·M is a sparse matrix of which the nth M ×M

block along the diagonal is Σj′ if the nth elements belongs to the j′th class.

The conductivity at all frequencies is thus obtained from equation (5.9) by minimizing,

σ = arg min
σ

1
2‖Lv(A(σ)− v)‖2 + τ

2 ‖Lσ̄(σ − σ̄)‖2︸ ︷︷ ︸
Ψσ̄(σ)

, (5.16)

where τ is a regularization parameter and Lσ̄ ∈ RN ·M×N ·M is the Cholesky decomposition

of Σ−1
σ̄ .

Positivity is enforced by introducing an auxiliary variable ρ such that ρni =

log(σni) ∀n, i. The objective function is expressed in terms of the variable ρ, and

the derivatives are computed using the chain rule. At the reconstruction step t, the

problem is initialized to the result of the previous classification step σ̄t, the corresponding

auxiliary variable is computed, and one step of damped Gauss-Newton descent [53] is

performed to obtain ρt+1. Finally, the result of the reconstruction step is

σt+1
ni = exp (ρt+1

ni ) > 0 ∀n, i.

5.2.4 Classification

The classification step computes the expected values for the labels (E-step), and updates

the tissue-class spectral parameters (θ,λ) (M-step), given the conductivity image σt.
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5.2.4.1 E-step

The responsibility rtnj is a measure of the probability that the nth voxel is occupied by

the jth tissue

p(ζnj = 1|σn,θt,λt) = p(σn|ζnj = 1,θt)p(ζnj = 1)
p(σn|θt,λt)

=

=
λtjp(σtn|θtj)∑
j λ

t
jp(σtn|θtj)

=

= rtnj (5.17)

The expectation for the indicator values is

E(ζnj |σn,θt,λt) =
∫
ζnjp(ζnj |σn,θt,λt) dζnj =

= 0 ∗ p(ζnj = 0|σn,θt,λt) + 1 ∗ p(ζnj = 1|σn,θt,λt) =

= rtnj (5.18)

Therefore the MAP estimate for the labels, and the solution to equation (5.13), is

ζt+1
nj =


1 if rtnj is maximum ∀j,

0 otherwise.
(5.19)

5.2.4.2 M-step

The parameters (θ,λ) are chosen in order to maximize the log posterior (5.11)

(θt+1,λt+1) = arg max
(θ,λ)

log p(σt|θ,λ) + log p(θ,λ) (5.20)

Averaging over all possible values of ζ gives

log p(σt|θ,λ) + log p(θ,λ) =
∫
ζ

log p(σt, ζ|θ,λ)dζ + log p(θ,λ) (5.21)
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Using Jensen’s inequality [88] and ignoring terms which do not depend on (θ,λ), a lower

bound for the log-prior is obtained

B(θ,λ) =
∑
n

∑
j

rtnj log (λjp(σn|θj)) + log p(λ) + log p(θ) =

=
∑
n

∑
j

rtnj

[
log(λj)− log(|Σj |)−

1
2(σn −mj)′Σ−1

j (σn −mj)
]

+
∑
j

[
(αj − 1) log(λj)−

νj + d+ 1
2 log |Σj |

]
(5.22)

Maximizing B(θ,λ) for
∑
j λj = 1 and using the mode of the Dirichlet distribution

for λj , returns the update rules for the parameters,

λt+1
j =

∑
n r

t
nj + (αj − 1)

N +
∑
j αj − J

(5.23)

In the case of a non-informative priors αj = 1 and p(mj) ∝ 1

λt+1
j =

∑
n r

t
nj

N
, (5.24)

mt+1
j =

∑
n r

t
njσn∑

n r
t
nj

, (5.25)

Σt+1
j =

∑
n r

t
nj(σn −mj)(σn −mj)T + Γj∑

n r
t
nj + νj + d+ 1 . (5.26)

5.2.5 Frequency-difference reconstruction-classification outline

The class parameters θfd
j =

{
(mfd

j ,Σfd
j )
}
specify the mean and covariance matrix of the

relative spectrum of the jth tissue:

mfd
j ≡ {m2j −m1j ; . . . ,mij −m1j ; . . . ;mMj −m1j} ∀j,

where the lowest frequency ω1 is chosen as reference.

The conductivity distribution is recovered by performing a reconstruction step using

frequency-difference data, calculating the frequency-difference conductivity images, and

following with a classification step

1. Frequency-difference reconstruction:

σt+1 = arg min
σ

1
2

∥∥∥Lfd
v (Afd(σ)− vfd)

∥∥∥2
− 1

2 log p(σfd|ζt,θfd,t), (5.27)
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where vfd is the set of frequency-difference data. The frequency-difference conduc-

tivity images are given by:

σfd = {σi − σ1 ∀i = 2, . . . ,M} (5.28)

2. Frequency-difference classification:

E-step: ζt+1 = arg max
ζ

p(ζ|σfd,t,θfd,t,λt) (5.29)

M-step: (θfd,t+1,λt+1) = arg max
(θfd,λ)

p(σfd,t|θfd,λ)p(θfd,λ). (5.30)

5.2.6 Frequency-difference reconstruction

The reconstruction problem is modified from the absolute case to use data referred to a

baseline frequency. If data is normalized by the reference the norm of the residual error

becomes

M∑
i=2

1
2

∥∥∥∥Liv(A(σi)−A(σ1)
A(σ1) − vi − v1

v1
)
∥∥∥∥2

= 1
2

∥∥∥Lfd
v (Afd(σ)− vfd)

∥∥∥2
, (5.31)

where Lfd
v hold the values

Liv = 1/
(√

2(M − 1)
∥∥∥∥∥A(σ0

i )−A(σ0
1)

A(σ0
1)

− vi − v1
v1

∥∥∥∥∥
)

∀i = 2, . . . ,M

on the diagonal,

vfd =
{
v2 − v1
v1

; . . . , vi − v1
v1

; . . . ; vM − v1
v1

}
∈ RK·(M−1),

and

Afd(σ) =
{
A(σ2)−A(σ1)

A(σ1) ; . . . ; A(σi)−A(σ1)
A(σ1) ; . . . ; A(σM )−A(σ1)

A(σ1)

}
∈ RK·(M−1).

The result of the previous classification step provides an approximated prior for the
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difference of the conductivity with respect to the reference frequency:

Ψσ̄(σ) = τ‖Lfd
σ̄ (σfd − σ̄fd)‖2. (5.32)

where

σfd = {σ2 − σ1; . . . ;σi − σ1; . . . ;σM − σ1}

∈ RN ·(M−1), (5.33)

and

σ̄fd =
∑
j

ζnj ·mfd
ij

∣∣∣∣∣∣
MAP(ζ)

= mfd
ij′ i = 2, . . . ,M. (5.34)

5.2.7 Frequency-difference classification

The reconstruction problem using difference data is no longer unique, however tissue-

based clustering is observed in difference images given by σi − σ1 ∀i = 2, . . . ,M .

Therefore the classification algorithm is performed on the set of images σfd (5.33) and

the parameters of the relative spectra are updated. The implementation is otherwise

the same as for the case of using absolute data.

5.2.8 Spatial smoothing

Spatial smoothing is introduced by adding a regularization term to the objective function

(5.16),

σ = arg min
σ

1
2‖Lv(A(σ)− v)‖2+ + τ1

2 Ψs(σ) + τ2
2 ‖Lσ̄(σ − σ̄)‖2, (5.35)

where Ψs(σ) assumes the general form of a Markov Random field

Ψs(σ) =
∑
i,n,m

wnl(n)R(|σni − σl(n)i|), (5.36)

where l(n) runs over the neighbours of the nth voxel, wnl(n) is a weighting factor, and R

indicates a function of |σni − σl(n)i|. In this chapter R = |σni − σl(n)i|2 is chosen, and

either wnl(n) = 1 (homogeneous MRF) or wnl(n) = ζTn · ζl(n) (label-dependent MRF).

5.2.9 Image quality evaluation

Three measures of error were considered in order to evaluate the quality of images

recovered from simulated data. The first is the L2-norm of the difference between the

recovered conductivity σrecon and the numerical phantom σtrue, expressed as a ratio of
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the norm of the model and divided by the number of frequencies:

ErrL2 = 1
M

M∑
i=1

∥∥σrecon
i − σtrue

i

∥∥
‖σtrue

i ‖
. (5.37)

The second is the classification error Errclass, given by the percentage of misclassified

elements in the mesh. The third is the mean error committed in approximating the

spectra of the tissue classes:

Errspctr = 1
M

1
J

∑
i,j

|mij − εij |
εij

, (5.38)

where ε indicates the simulated conductivities of the tissues and m the means of the

tissue conductivities recovered by the last classification step.

To evaluate images recovered from experimental data or obtained with other methods,

the mean across frequencies of the contrast-to-noise ratio (CNR) was considered. Given

a tissue tj , CNR(j) is defined as

CNR(j) = 1
M

M∑
i=1

[
σ
p(j)
i − σbi

]2
std(σbi )2 , (5.39)

where std indicates the standard deviation, and σp(j)i and σbi are the mean values of

the image across the areas corresponding to, respectively, the perturbation made of

the tissue tj and the background. In the case of simulated data, the positions of the

background and the perturbations were known exactly, and in the case of experimental

data, the positions were estimated by measuring the location of the perturbations.

5.3 Results

5.3.1 Numerical phantom and data simulation

The numerical phantom described in section 3.3.8 was considered. The measured tissue

spectra (figure 3.17) were assigned to the phantom (figure 3.18) to obtain the conductivity

model (figure 5.1).

5.3.2 Reconstruction-classification method with homogeneous MRF

regularization: numerical validation

Images were reconstructed by performing 6 iteration of the reconstruction-classification

method (figures 5.2). Homogeneous Markov Random Field (hMRF) smoothing was
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Figure 5.1: Numerical phantom: model of conductivity for all frequencies. Colorbar
units are S/m.

applied (see equation (5.36))

Ψs(σ) = τ1
∑

i,n,l(n)
|σni − σl(n)i|2. (5.40)

The initial mean values of the spectra were set to the real simulated spectra ε (figure

3.17), and the covariance was set to Σj = 10−3I for all four tissues. The parameters

of the inverse Wishart distribution were set to ν1 = 20000 and Γj = 10−2I for the

background, and νj = 5000 and Γj = 10−1I for the other tissues. The regularization

parameters were set to τ1 = 10−4 and τ2 = 10−8. In all cases, conductivity images are

displayed alongside scatter plots and responsibility images. The axis of the scatter plots

are the projections onto the primary and secondary basis vectors of the conductivity

images, which are obtained by taking the SVD decomposition of the matrix σ ∈ RN ·M

(see section 2.5.3.1). Each point on the scatter plots corresponds to the projections a1

and a2 of the vector of conductivity values assumed for all frequencies by each voxel

σni = {σni; i = 1, . . .M}. The responsibility images display the probability that each

voxel is assigned to a certain tissue, as defined by equation (5.17).

5.3.3 Robustness to spectral errors

Errors were added to the conductivity value of each tissue before simulating the boundary

voltage data at each frequency. Gaussian distributed errors were chosen with mean the

value of the actual spectra used in the reconstruction ε (figure 3.17), and the study was

repeated for increasing variance values: 1%, 5%, 10% and 20%. For each variance, the

errors were sampled and the reconstruction was repeated 20 times. The parameters

of the reconstruction-classification algorithm were set to those used in the numerical

validation. Results for the voxel-wise variance of the MAP estimate of the labels are
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presented (figure 5.3).

5.3.4 Reconstruction-classification with independent elements

Images were reconstructed without spatial smoothing. The initial covariance was set to

Σj = 10−3I for all tissues. The parameters of the inverse Wishart distribution were set

to the same values as in section 5.3.1. The regularization parameter was τ2 = 10−8 (and,

obviously, τ1 = 0, Ψs = 0), and 6 iterations were performed (figure 5.4).

5.3.5 Reconstruction-classification with label-dependant MRF regu-

larization

Images were reconstructed using the result of the classification step to qualify the regular-

ization in the successive reconstruction step. The Markov Random Field regularization

term is modified so that only neighbours with the same expected tissue labels, as given

by (5.13), are considered. The MRF term becomes (equation (5.36))

Ψs(σ) = τ1
∑

i,n,l(n)

(
ζtn

T · ζtl(n)

)
|σni − σl(n)i|2,

where ζtn indicates the labels assigned at the previous iteration, and

ζtn
T · ζtl(n) =


1 if ζtnj = ζtl(n)j ∀j,

0 otherwise.
(5.41)

The parameters of the reconstruction-classification algorithm were set to the same

values used in 5.3.1. Images of the numerical phantom were reconstructed by performing

6 iterations of reconstruction-classification (figure 5.5).

5.3.6 Frequency-difference reconstruction-classification: numerical

validation

The first classification step was set up using the result of the first reconstruction step:

the initial guess for the mean and variance of the classes was set to that of the region

of the image corresponding to each tissue. The parameters of the inverse Wishart

distribution were set to ν1 = 20 000 and Γj = 10−2I for the background, and νj = 5000

and Γj = 10−1I for perturbation. Label-dependent MRF regularization was applied,

and the regularization parameters were set to τ1 = 10−4 and τ2 = 10−8, and 6 iterations

were performed (figure 5.7).
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5.3.7 Image quality evaluation

The results obtained using the reconstruction classification method with homogeneous

MRF regularization (section 5.3.2, figure 5.2), independent elements (section 5.3.4, figure

5.4), label-dependent MRF regularization (section 5.3.5, figure 5.5), and frequency-

difference data with label-dependent MRF regularization (section 5.7, figure 5.7) were

evaluated by our image quantification method (section 5.2.9) and compared (figure 5.8).

5.3.8 Comparison with other methods

The reconstruction-classification images were compared to pre-existing static EIT imaging

methods. Absolute conductivity images were obtained using the damped Gauss-Newton

algorithm [53]. An image of the conductivity was obtained independently for each

frequency by minimizing

σi = arg min
σi

1
2‖A(σi)− vi‖2 + τ

2
∑
n,l(n)

|σni − σl(n)i|2, (5.42)

where MRF regularization was chosen and the regularization parameter was set to the

same value used for the reconstruction-classification algorithm τ = 10−8. Six iterations

were performed (figure 5.9a).

Images were obtained using the linear weighted frequency-difference method [97, 58,

3, 83]. An image of weighted frequency-difference conductivity

∆σ(ω1, ωi) = δ · σ(ωi)− σ(ω1) (5.43)

was reconstructed ∀i = 2, . . . ,M , where δ = 〈v(ω2),v(ω1)〉
〈v(ω1),v(ω1)〉 and the following conditions

must be satisfied:

1. ∆σ(ω1, ωi) ≈ 0 near the boundary δΩ

2. ∆σ(ω1, ωi) >> 0 on the perturbation.

MRF regularization was applied, and the pseudo-inverse of the Jacobian was found using

modified tSVD [44]. The optimum number of singular values was selected via the L-curve

method [42] (figure 5.9b). The absolute (DGN) and weighted frequency-difference (WFD)

images were evaluated and compared to the label-dependent MRF (ldMRF) case by

calculating the mean contrast-to-noise ratio (5.39) for each tissue (Table 5.1).
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ldMRF DGN WFD
Potato 22.63 12.88 9.11
Banana 23.03 19.82 5.78

Cucumber 20.28 13.95 7.05

Table 5.1: Table of contrast values obtained using label-dependent MRF (ldMRF) with
reconstruction-classification, absolute (DGN), and weighted frequency-difference (WFD)
imaging.

5.3.9 Phantom experiment

The tank phantom and experimental setup are described in section 3.3.4. The initial

mean of the spectra was set to values measured with the impedance analyser (section

3.3.1), and the covariance was set to Σj = 10−2I for the background, and Σj = 10−3I for

the perturbation. The parameters of the inverse Wishart distribution were set to ν1 = 106

and Γj = 10−1I for the background, and νj = 20000 and Γj = 10−3I for perturbation.

Images were reconstructed using absolute (figure 5.10) and frequency-difference (figure

5.11) data using label-dependent MRF regularization. The regularization parameters

were set to τ1 = 10−4, τ2 = 10−8 for absolute data and τ1 = 10−3, τ2 = 10−8 for

frequency-difference data. Six iterations of both reconstruction and classification steps

were performed in all cases. The images were evaluated objectively by calculating

the average over frequencies of the contrast-to-noise ratio of the perturbation in the

conductivity images. Using absolute data the mean CNR was 9.3 and 9.61 respectively

for positions (−4 cm 0 cm 0 cm) and (0 cm +4 cm 0 cm), and using frequency-difference

data the CNR was significantly lower at 3.22 and 5.
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Figure 5.2: Reconstruction-classification with homogeneous MRF: conductivity at (a)
iteration 1 and (b) iteration 6 (final) (scale is S/m); scatter plots of the projection
onto the primary a1 and secondary a2 eigenvectors of the conductivity images at (c)
iteration 1 and (d) iteration 6 (the cross indicates the mean, the ellipse the variance,
and the colour map is: blue-carrot, red-potato, yellow-banana, green-cucumber); (e)
mean conductivity spectra m and (f) responsibility (5.17) recovered at final iteration.
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Figure 5.3: Robustness to errors in the initial guess of the tissue spectra: images of
variance over 20 trials of the labels obtained after adding errors to the tissue spectra
with variance 1% (a), 5% (b), 10% (c) and 20%(d).
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Figure 5.4: Reconstruction-classification in the case of independent elements: (a) con-
ductivity (scale is S/m), (b) and scatter plot at final iteration and (c) responsability.
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Figure 5.5: Reconstruction-classification with label-dependent MRF: (a) conductivity
(scale is S/m), (b) and scatter plot at final iteration and (c) responsability.
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Figure 5.6: Frequency-difference reconstruction-classification model: (a) frequency-
difference conductivity model for all frequencies (scale is S/m); (b) relative frequency-
difference conductivity spectra of the tissues εfd in S/m.
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Figure 5.7: Frequency-difference reconstruction-classification results: frequency-difference
conductivity images obtained at (a) iteration 1 and (b) iteration 6 (final) (scale is S/m);
(c) responsibility at final iteration; scatter plots at (d) iteration 1 and (e) iteration 6;
(f) mean frequency-difference conductivity spectra mfd recovered by the reconstruction-
classification method in S/m.



5.3. Results 130

hMRF ie ldMRF fdMRF
0

10

20

30

40

50

Im
a

g
e

 E
rr

o
r

 

 

Err
L

2

Err
class

Err
spctr

Figure 5.8: Image quality of numerical results: reconstruction classification method with
homogeneous MRF (hMRF), independent elements (ie), label-dependent MRF (ldMRF),
and frequency-difference with label-dependent MRF (fdMRF)
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Figure 5.9: Comparison with other methods: (a) absolute conductivity images obtained
using damped Gauss-Newton (scale is conductivty S/m), and (b) weighted frequency-
difference images of the numerical phantom (scale is weighted conductivity difference
S/m).
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Figure 5.10: Phantom experiment setup and reconstruction-classification results for
absolute data: conductivity image (scale is S/m), scatter plot and responsibility image
for (a)–(c) position (−4 cm 0 cm 0 cm) and (d)–(f) position (0 cm +4 cm 0 cm).
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Figure 5.11: Phantom experiment reconstruction-classification results for frequency-
difference data: (a) conductivity image (scale is S/m) and (b) scatter plot and (c)
responsibility image for position (−4 cm 0 cm 0 cm) ; (d) conductivity image (scale is
S/m), (e) scatter plot and (f) responsibility image for position (0 cm +4 cm 0 cm).
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5.4 Discussion

5.4.1 Numerical results obtained with homogeneous MRF, indepen-

dent elements and label-dependent MRF

The choice of introducing homogeneous Markov Random field regularization had the

effect of increasing the error in the estimation of the tissue spectra. This was visible in the

"streaking" between the clusters in the scatter plots (see figure 5.2). The reason for this

is that the hMRF regularization favours spatially smooth solutions. Therefore, instead

of a jump-change in the conductivity of areas assigned to different tissues, elements

along the boundary between tissues assumed intermediate conductivity values. These

elements caused an increase in the covariance associated to the tissue classes. In the final

image, the largest eigenvalue of the covariance of each perturbation class corresponded

to the direction of the line joining the mean conductivity of the perturbation to that of

the background. However, from the comparison with the case of independent elements

(no spatial smoothing, figure 5.4) it was evident that the use of hMRF regularization

had the effect of significantly improving the overall image quality, as reflected by the

reduction in the L2-norm and the classification errors (figure 5.8).

The choice to use the result of the classification step to qualify the successive

reconstruction step by using label-dependant MRF allowed for sharp edges between

tissues whilst favouring large homogeneous areas. Neighbouring voxels that were assigned

to different tissues in the previous classification step were not considered in the calculation

of the regularization term; therefore elements lying along the edge between tissues

assumed a conductivity closer to the mean of one or the other tissue. This modification

returned an improvement in the spectral errors with respect to hMRF.

5.4.2 Robustness to spectral errors

The variance of the labels obtained after adding errors to the initial guess of the tissue

spectra was found to be very low. This result indicated that the classification step

corrected the estimate of the tissue properties. For an error of 10% or less, misclassified

elemets are limited to the boundary between tissues, and only in the case of 20% error

the banana and cucumber perturbations are sometimes confused.

5.4.3 Frequency-difference combined reconstruction-classification

The advantage of using frequency-difference data in the image reconstructions was that

the result was more robust to modelling errors. The sensitivity of the method to errors in

the geometry of the boundary, the localization and shape of the electrodes, and contact
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impedance is higher if absolute data is used. In an experimental setup, this may result in

severe edge artefacts, which can significantly affect image quality. The effect of referring

the data to a low frequency is the suppression of frequency-independent modelling and

instrumentation errors, in the same way that the use of time-difference data allows for

the suppression of time-independent errors.

The disadvantage to using frequency difference data is that the number of data points

is reduced from K ·M to K · (M − 1), whereas the number of unknown remains constant

N . Also, the reconstruction problem is no longer unique. The reconstructed absolute

values are therefore not expected to agree with the simulated model. Therefore, tissues

are distinguished only by the difference in the relative slope of the spectrum, rather that

the absolute conductivity values, and this can result in a loss in contrast.

In conducting the simulation study (section 5.3.6, figures 5.7 and 5.8), it proved

difficult to perform the correct classification of the tissues when the class means were

initialized to the expected values ε, and the class variances were set to a multiple of the

identity matrix. The reason for this is that the conductivity values recovered by the first

reconstruction step were too distant from the real values. Instead, following the method

used in [45], the parameters were initialized using the result of the first reconstruction

step. This requires knowledge of the approximate location of the perturbation tissues,

which may either be held a priori, or may also be gained from the first reconstruction

result. In this case the data was simulated, and the region of interest corresponding to

the location of each tissues was already known. However in an experimental setup it

would have been necessary to view the first reconstructed image and select the areas

corresponding to significant perturbations. This could be achieved either manually, by

visualizing the result, or by choosing an automatic criterion. For example, the image

could be thresholded to consider voxels with significant variations from the background

value as "other than the background tissue". Then the perturbation tissues could be

distinguished by finding neighbouring clusters of voxels, and considering each cluster as

a distinct tissue.

5.4.4 Comparison with other methods

The same numerical problem was considered, and equivalent images were reconstructed

using alternative methods. The contrast-to-noise ratio obtained with the reconstruction-

classification method was superior to that obtained using absolute and weighted frequency-

difference imaging for all tissues. The reconstruction-classification method holds a further

advantage over the weighted frequency-difference method in that the application of the
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latter is limited by restrictive assumptions (see 5.3.8). However, if absolute data is used,

the reconstruction-classification method is equally sensitive to modelling errors as the

absolute conductivity method.

5.4.5 Phantom experiment

The phantom experiment was designed to highlight the effect of using frequency-difference

data in the reconstruction. The images recovered from absolute data (figure 5.10)

presented a ring-shaped artefact around the edge of the tank. This was caused by

the mismatch between the model and the real shape of the boundary and electrodes,

electrode localization, contact impedance, and instrumentation errors [13, 62]. The

errors were most evident near the electrodes because the sensitivity to noise is highest

in the areas where the current density is highest.

The use of frequency-difference data allowed for the subtraction of frequency-invariant

errors in the data, and thus resulted in the suppression of the boundary artefact (figure

5.11). However, information about the absolute values of the conductivity of the tissues

was lost, and the recovered contrast was lower with respect to the case of absolute data

(section 5.3.9). As the observer is likely to be most sensitive to the appearance of the

artefacts, the use of frequency-difference data has the effect of improving the overall

visual quality of the image. However, the images obtained from absolute data contain

relatively more information about the conductivity of the object, and perform better in

terms of an objective evaluation measure.

5.5 Conclusion
A combined reconstruction-classification method for MFEIT was proposed. The novelty

of the method lies in the simultaneous estimation of the conductivity and the spectra

of the tissues in the domain. This allows for the use of the spectral information in the

reconstruction step, while the constraints are updated in the classification step to correct

possible errors in the initial assumptions.

The robustness of the method to errors in the initial guess of the tissue spectra was

demonstrated. Alternative choices of regularization were compared, and it was found

that it is preferable to introduce spatial smoothing, and that edges can be enhanced by

using the classification result to inform the regularization in the reconstruction step. A

frequency-difference variant of the method was formalized and validated. Absolute and

frequency-difference reconstruction-classification was applied to phantom data collected

in a tank, and it was found that the use of frequency-difference data results in the
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suppression of edge artefacts, but also in a reduction in contrast.

Further work is necessary to compare the performance of the reconstruction classifi-

cation method using absolute and frequency-difference data. The results are likely to be

dependant on the spectra of the tissues involved, and on the distance of the anomalies

from the electrodes. Further analysis is required to investigate the robustness of the

method to modelling errors such as erroneous electrode location and contact impedance.

The method could also be improved by modifying the prior distribution of the spectral

properties of the tissues to include information about cross-frequency correlation.



Chapter 6

Reconstruction-classification using

graph cut optimization

6.1 Introduction

6.1.1 Overview

The reconstruction-classification algorithm discussed in the previous chapter allows for

the inclusion of spectral information in the reconstruction step, while the spectral model

is improved by the classification step. The addition of a spatial prior on the conductivity

was investigated as a means to improve image quality. In this chapter, a more rigorous

approach to spatial smoothing in the reconstruction-classification method is pursued. A

method is devised to allow for the inclusion of a spatial prior on the labels, rather than

the conductivity. This approach is formalized and justified in the Bayesian framework.

As in the previous chapter, the method is tested on the simulated and phantom data,

and the results are compared.

6.1.2 Related work

The graph cut optimization algorithm described in section 2.7.3 is suitable for classifying

piecewise constant images with known level sets. A method known as Grabcuts extends

graph cuts to allow for a statistical appearance model for the image, such as a mixture

of Gaussians model [94, 120]. In the Grabcut method, the result of the graph cut step

is used to define a hard classification of the image voxels, and the parameters of the

Gaussian model are updated simply by taking the mean and variance of each class. A

different approach is needed in order to allow for a soft classification of the image because

computing the conditional probability in the E-step is mathematically intractable in

the MRF framework. The hidden MRF model [121] was developed to overcome this

problem: the result of the labelling step is used to calculate the mixed probability term
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in the E-step and update the class parameters.

6.1.3 Purpose

In this chapter, a method is presented for including a spatial prior on the tissue labels in

a reconstruction-classification scheme. A hidden Markov random field model is defined

on the labels, and graph cut optimization is applied to solving the labelling problem. The

method is validated on simulated data, the robustness to spectral errors is investigated,

and the method is applied to experimental phantom data.

6.1.4 Experimental design

6.1.4.1 Numerical validation

The reconstruction-classification method using graph cut optimization was validated on

the same numerical example considered in the previous chapter (section 5.3.2). The aim

was to compare results obtained with the spatial prior placed on the conductivity and

on the labels. Images were evaluated by an objective measure of image quality.

6.1.4.2 Robustness to spectral errors

A robustness test was performed to evaluate the ability of the algorithm to correct for

errors in the initial spectral model. The reconstruction was repeated after adding errors

to the initial guess of the spectral parameters, and the variance of the reconstructed

images was assessed. Results were compared to those obtained in the previous chapter

(section 5.3.3).

6.1.4.3 Phantom experiment

The method was applied to experimental phantom data measured previously (section

3.3.4) and evaluated in terms of the recovered contrast-to-noise ratio.

6.2 Method

In this section, a formulation of the reconstruction-classification method in the Bayesian

sense is provided. First, the expression for recovering conductivity from voltage measure-

ments is derived explicitly, then the solution to the labelling problem and the update

rules for the spectral model parameters are obtained.
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6.2.1 Bayesian formulation of the inverse problem of EIT

In Bayesian inversion, given the boundary voltage measurements v, the maximum-a-

posteriori (MAP) estimate of the conductivity σ is obtained by minimizing

σ = arg max
σ

p(v|σ)p(σ)

= arg min
σ
L(σ,v) + τΨ(σ), (6.1)

where L(σ,v) = − log p(v|σ) is the negative log-likelihood of measuring v given the

conductivity σ, Ψ = −τ log p(σ) is the negative log of the prior, and τ is the regular-

ization parameter. Assuming that the measurement noise is Gaussian distributed, and

highlighting the dependence of the variables on the modulation frequency of the current

ω, the objective function becomes

σ(ω) = arg min
σ(ω)

1
2‖A(σ(ω))− v(ω)‖2Σ−1

v
+ τΨ(σ(ω)), (6.2)

where A(σ(ω)) : σ(ω) → v(ω) is the forward map and Σv is the covariance of the

measurement noise.

6.2.2 Labelling in MFEIT

The segmentation problem can be interpreted as a multinomial labelling problem, where

the aim is to assign to each voxel a vector that identifies a single tissue. As in the

previous chapter, the number of tissues, or classes, is equal to the number of tissues that

have distinct spectra.

Supposing that a multifrequency set of EIT images was recovered by some imaging

method, we define

σn = σni; ∀i = 1, . . .M. (6.3)

as the array of conductivity values taken by the nth voxel for each frequency i = 1, . . .M ,

where M is the number of frequencies. Whereas in the imaging problem the conductivity

is the unknown recovered by the optimization process, in the segmentation problem the

image provides the observed data and the unknowns are the labels. The task is to assign

each voxel a vector ζn that identifies a single tissue

ζnj =


1 if the jth tissue is assigned to the nth voxel;

0 otherwise.
(6.4)
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From equation (2.126) we have that the labelling problem is solved by maximizing the

MAP

ζ = arg max
ζ

N∏
n=1

p(σn|ζn)p(ζ), (6.5)

which gives us an energy minimization problem.

6.2.3 Hidden Markov Random field model

A hidden Markov Random field model (HMRF) describes a random variable generated

by an MRF field which can only be observed through measurement of another dependent

variable. We assume that

• the labels constitute a hidden Markov random field ζ = {ζn;n = 1, . . . , N} with

known probability distribution p(ζ);

• the conductivity is an observable variable σ = {σn;n = 1, . . . , N} with known

conditional probability p(σn|ζn);

• we have conditional independence whereby

p(σ|ζ) =
N∏
n=1

p(σn|ζn), (6.6)

which means that the conductivity of the nth voxel is dependent only on the

corresponding label ζn (figure 6.1).

6.2.4 Gaussian HMRF model

A Gaussian model is chosen for the emission probability of the conductivity, that is the

conditional dependence of the conductivity of the nth voxel given the corresponding

label assignment,

p(σn|θj) = p(σn|ζnj = 1, θj)

= 1√
(2π)J |Σj |

exp
(
−1

2(σn −mj)TΣ−1
j (σn −mj)

)
= Nσ(mj ,Σj), (6.7)

where mj = {mij ; i = 1, . . .M} is the mean and Σj ∈ RM×M is the covariance matrix

of the spectrum of the jth tissue.
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Figure 6.1: Schematic representation of the prior models used in the reconstruction-
classification algorithms for a 3x3 voxel example: the conductivity values are shown as
squares, the labels as circles, and the links indicate statistical dependence. In the left
figure, the model used in chapter 5 is shown: the conductivity of each voxel depends on
both the assigned label and the conductivity of the neighbouring voxels. This corresponds
to an MRF prior on the conductivity (in this example the prior is homogeneous as each
voxel is linked to all of its neighbours). In the right figure, the model used in this chapter
is shown: the conductivity of each voxel depends only on the assigned label, and the
values of the labels depend on the neighbouring voxels. This corresponds to a hidden
MRF prior on the labels.

6.2.5 Gaussian HMRF model-based labelling in MFEIT

An appearance model is included in the labelling problem to describe the statistical

distribution of the conductivity image for a given set of labels

p(σn|ζn) → p(σn|ζn,θ) =
J∏
j=1

[p(σn|θj)]ζnj , (6.8)

where θ indicates the parameters of the appearance model. Substituting into (6.5) the

problem becomes

ζ = arg max
ζ

N∏
n=1

J∏
j=1

[p(σn|θj)]ζnj · p(ζ). (6.9)

For a Gaussian emission model for the conductivity (6.7) we have, up to a constant,

ζ = arg min
ζ

N∑
n=1

J∑
j=1

ζnj
1
2(σn −mj)TΣ−1

j (σn −mj) + Ψ(ζ). (6.10)
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For a pair-wise HMRF prior on the labels we have

p(ζ) =
N∏
n=1

p(ζn|ζl∈Nn)

=
N∏
n=1

J∏
j=1

p(ζnj = 1|ζl∈Nn)

=
J∏
j=1

λj

N∏
n=1

∏
l∈Nn

exp
(
−ξnl(n)R(ζn, ζl)

)
(6.11)

where λj is the overall probability of a tissue being assigned to the jth class, ξnl(n) is a

weighting factor, and

R(ζn, ζl) = ζn
T · ζl =


1 if voxels n and l are assigned the same tissue;

0 otherwise.
(6.12)

Therefore the regularization term in the labelling problem is given by

Ψ(ζ) = − log p(ζ) = −
J∑
j=1

N∑
n=1

log λj +
N∑
n=1

∑
l∈Nn

ξnl(n)R(ζn, ζl). (6.13)

Ignoring terms which do not depend on ζ, which do not affect the solution, and assuming

ξnl(n) = ξ ∀n, the regularization term is simply

Ψ(ζ) = ξ
N∑
n=1

∑
l∈Nn

R(ζn, ζl). (6.14)

6.2.6 Reconstruction-classification with HMRF: outline

The reconstruction, labelling and classification problems are solved sequentially.

1. Reconstruction:

σt+1 = arg max
σ

p(v|σ)p(σ|ζt,θt), (6.15)

2. Labelling:

ζt+1 = arg max
ζ

N∏
n=1

J∏
j=1

[
p(σt+1

n |θtj)
]ζnj p(ζnj = 1|ζl∈Nn). (6.16)
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3. Classification:

E-step: compute E(ζnj |σn, θj , ζl∈Nn) (6.17)

M-step: (θt+1,λt+1) = arg max
(θ,λ)

p(σt|θ,λ)p(θ)p(λ). (6.18)

In the following, the update rules for the solutions of σ, ζ, θ and λ are derived. After

each update cycle of steps 1-2-3, the process is repeated for a set number of iterations.

6.2.7 Reconstruction

We substitute the Gaussian model for the conductivity (6.7) into the imaging problem

(6.15)

σt+1 = arg min
σ

1
2‖(A(σ)− v)‖2Σ−1

v
+ 1

2τ‖σ − σ̄
t‖2Σσ̄−1 , (6.19)

where σ ∈ RN ·M accounts for N voxels and M frequencies, ‖ · ‖ indicates the Frobenious

norm, and Σv is a weighting matrix. The mean σ̄t and covariance Σσ̄ of the prior are

given by the result of the previous labelling and classification steps: for each element,

the mean and covariance of the tissue class corresponding the assigned label ζtn are taken

for all frequencies. The reconstruction problem is solved via damped Gauss-Newton

optimization [53], and at each cycle a single update step is performed.

6.2.8 Labelling with graph-cut optimization

Substituting the expression for the regularization (6.14) into the objective function

(6.10), the labelling problem becomes

ζt+1 = arg min
ζ

N∑
n=1

J∑
j=1

ζnj
1
2(σn −mt

j)TΣt −1
j (σn −mt

j) + ξ
N∑
n=1

∑
l∈Nn

R(ζn, ζl). (6.20)

A solution ζ is sought such that ζnj ∈ {0, 1}, and
∑T
j=1 ζnj = 1. The objective function

(6.20) cannot be minimized via standard optimization techniques because the variable ζ

is discrete, and therefore the function is non-differentiable. Instead, the solution is found

using the graph cut method described in section 2.7.3. Open source Matlab and C++

scripts are available that implement the standard graph cut optimization algorithms

[63, 12, 11]. The results presented in this chapter were produced using the α-expansion

algorithm.
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6.2.9 Classification: fitting the HMRF model with EM

It follows the assumptions in section 6.2.3 that the joint probability of (σ, ζ) is

p(σ, ζ) = p(σ|ζ)p(ζ) =
N∏
n=1

p(σn|ζn)p(ζ), (6.21)

and given the neighbourhood system Nn

p(σn, ζn|ζl∈Nn) = p(σn|ζn)p(ζn|ζl∈Nn). (6.22)

Thus we have the marginal probability

p(σn|ζl∈Nn) =
∫ 1

0
p(σn, ζn|ζl∈Nn) dζ

=
J∑
j=1

p(σn, ζnj = 1|ζl∈Nn)

=
J∑
j=1

p(σn|ζnj = 1)p(ζnj = 1|ζl∈Nn). (6.23)

Substituting (6.7) into (6.23) we obtain the probability of the conductivity given the

Gaussian HMRF model when the labels are unknown

p(σn|θ, ζl∈Nn) =
J∑
j=1

p(σn|θj)p(ζnj = 1|ζl∈Nn). (6.24)

6.2.9.1 E-step

Using Bayes’ theorem, the probability that the nth voxel is assigned to the jth tissue is

given by

p(ζnj = 1|σn, θj , ζl∈Nn) =
p(σn|ζnj = 1, θj)p(ζnj = 1|ζl∈Nn)

p(σn|θ, ζl∈Nn) . (6.25)

Substituting (6.24) then

p(ζnj = 1|σn, θj , ζl∈Nn) =
p(σn|θj)p(ζnj = 1|ζl∈Nn)∑J
j=1 p(σn|θj)p(ζnj = 1|ζl∈Nn)

, (6.26)

where p(σn|θj) is given by the Gaussian model (6.7), and p(ζnj = 1|ζl∈Nn) by the HMRF

model (6.11):

p(ζnj = 1|ζl∈Nn) = λtj
∏
l∈Nn

exp
(
−ξ ·R(ζt+1

n , ζt+1
l )

)
, (6.27)
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where ζt+1 is the result of the previous labelling step. Finally, the expectation for the

labels is

E(ζnj |σn, θj , ζl∈Nn) =
∫ 1

0
ζ p(ζnj |σn, θj , ζl∈Nn) dζ

= 1 · p(ζnj = 1|σn, θj , ζl∈Nn) + 0 · p(ζnj = 0|σn, θj , ζl∈Nn)

= p(ζnj = 1|σn, θj , ζl∈Nn) (6.28)

(6.29)

In the following, the notation E(ζnj) = E(ζnj |σn, θj , ζl∈Nn) is introduced for simplicity.

6.2.9.2 M-step

The update steps for the parameters are found by maximizing the log posterior

(
θt+1,λt+1

)
= arg max

(θ,λ)
log p(σt|θ) + log p(θ,λ) + log p(λ)

= arg max
(θ,λ)

∫
ζ

log p(σt, ζ|θ) dζ + log p(θ) + log p(λ)

= arg max
(θ,λ)

N∑
n=1

J∑
j=1

E(ζnj) log p(σn|θ) + log p(θ) + log p(λ), (6.30)

where we have used

∫
ζ

log p(σt, ζ|θ) dζ =
N∑
n=1

J∑
j=1

∫
ζ

log
[
E(ζnj)

p(σtn, ζnj |θ)
E(ζnj)

]
dζ

≥
N∑
n=1

J∑
j=1

∫
ζ
E(ζnj) log p(σtn, ζnj |θ)

E(ζnj)
dζ. (6.31)

For non-informative priors on (θ,λ) the update rules for the model parameters are

obtained:

λt+1
j =

∑
nE(ζnj)t

N
, (6.32)

mt+1
j =

∑
nE(ζnj)tσn∑
nE(ζnj)t

, (6.33)

Σt+1
j =

∑
nE(ζnj)t(σn −mj)(σn −mj)T + Γj∑

nE(ζnj)t + νj + d+ 1 . (6.34)
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6.3 Results
6.3.1 Numerical validation

The 4-tissue numerical phantom was described in section 3.3.8. The mean of the tissue

classes was initialized to the simulated values, and the covariance was set to Σj = 10−3I

for all four tissues. The parameters of the inverse Wishart distribution were fixed at

ν1 = 20000 and Γj = 10−2I for the background, and νj = 5000 and Γj = 10−1I for the

other tissues. These are the same parameters used previously for the reconstruction-

classification method, see section 5.3.2. The regularization parameters were τ = 10−8

(conductivity) and ξ = 5 (labels). Results obtained after 1 and 6 iterations are displayed

(figure 6.2). The images were evaluated by the quantification method set out in section

5.2.9 (figure 6.3).

6.3.2 Robustness to spectral errors

A Gaussian distributed error was added to the tissue conductivity before simulating

the boundary voltage data, and the reconstruction was performed using the mean value

as the initial guess for the spectral parameters. The reconstruction was repeated 20

times for increasing levels of error: 1%, 2%, 5% and 10%. The parameters of the

spectral model and regularization terms were set to the values use in section 6.3.1. The

voxel-wise standard deviation of the recovered labels was computed (figure 6.4). The

mean percentage of misclassified voxels (Errclass) was 6.16%, 7.13%, 7.65% and 8.23%

for increasing levels of error.

6.3.3 Phantom experiment

The phantom and measurement acquisition protocol were described in section 3.3.4. As in

the previous chapter, the mean of the spectra was initialized to the sample measurements,

and the covariance was set to Σj = 10−2I for the background, and Σj = 10−3I for the

perturbation. The parameters of the inverse Wishart distribution were set to ν1 = 106

and Γj = 10−1I for the background, and νj = 20000 and Γj = 10−3I for perturbation.

The regularization parameters were τ = 10−8 and ξ = 1 for both positions of the

perturbation. The CNR (equation (5.39)) was 9.75 and 8.62 for the positions (−4 cm 0

cm 0 cm) (figure 3.7a) and (0 cm +4 cm 0 cm) (figure 3.7b) respectively. Images were

recovered by performing 6 iterations of the proposed method (figure 6.5).
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Figure 6.2: Reconstruction-classification with graph cuts, numerical validation: conduc-
tivity at (a) iteration 1 and (b) iteration 6 (final) (scale is S/m); scatter plots of the
projection onto the primary a1 and secondary a2 eigenvectors of the conductivity images
at (c) iteration 1 and (d) iteration 6 (the cross indicates the mean, the ellipse the variance,
and the colour map is: blue-carrot, red-potato, yellow-banana, green-cucumber); (e)
labelling recovered by graph cuts in final iteration.
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Figure 6.3: Reconstruction-classification with graph cuts, numerical validation: (a)
comparison between image quantification results obtained using graph cuts and label-
dependent MRF (section 5.3.5 and figure 5.8) (b) mean conductivity spectra m recovered
by the final classification step (solid lines), and real spectra (dashed lines).
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Figure 6.4: Robustness to errors in the initial guess of the tissue spectra: images of
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Figure 6.5: Phantom experiment images obtained by reconstruction-classification with
graph cuts: conductivity image (scale is S/m), scatter plot and labels image for (a)–(c)
position (−4 cm 0 cm 0 cm) and (d)–(f) position (0 cm +4 cm 0 cm).
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6.4 Discussion

6.4.1 Methodology

The main difference between the reconstruction-classification methods presented in

this and previous chapters is the approach to spatial smoothing. It has already been

shown that without the introduction of a spatial prior, and the sole consideration of a

spectral prior in the conductivity reconstruction, poor image quality is achieved (section

5.3.4). In the previous chapter, imaging errors were reduced by applying Markov random

field regularization in the reconstruction step (section 5.3.1), and further improvements

were achieved by using the labelling result to qualify the spatial prior (section 5.3.5).

The method set out in this chapter enables the placement of a spatial prior on the

labels, rather than the conductivity. This allows for a more intuitive interpretation of

the spatial prior, and a closer correspondence between the model and the real object.

Our expectation, which is the prior information encoded by the spatial model, is that

neighbouring voxels are more likely to be occupied by the same tissue. Given that

a statistical model for tissue spectra is assumed, it does not immediately follow that

neighbouring voxels are more likely to take the same conductivity value. Therefore

it is more appropriate to consider a spatial prior on the labels, rather than on the

conductivity image. Furthermore, whereas justification of the labelling prior in the

Bayesian framework is easily achieved, justification of the conductivity prior would

require a proof of independence of the spatial and spectral priors (so that the two terms

are additive in the objective function), which is non trivial.

6.4.2 Numerical validation

The imaging results achieved with graph cuts are similar to those obtained previously,

however the image quantification measures reflect some important differences (figure

6.3a). From the comparison with label-dependant MRF (the best example amongst

the results obtained by applying the spatial prior to the conductivity) it is evident

that recovery of the conductivity and labels, reflected by the errors ErrL2 and Errclass

respectively, is poorer in the graph cuts case. This is expected, as it is more likely

that direct application of the spatial prior will yield smoother conductivity images.

However, estimation of the conductivity spectra of the tissues is greatly improved, as

evident from the lower value of Errspectr and the accordance between the simulated and

recovered spectral curves in figure 6.3b. This is due to the inclusion of spatial smoothness

information is the classification step, specifically in the calculation of the E-step from of
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the labelling result. The spectral curves are well matched for the low frequencies and

for the potato and carrot tissues, but the agreement drops off at the higher frequencies

for the potato and cucumber. It is likely that the error caused in the estimation of the

spectra by misclassified elements is highest in these cases because the spread of the

conductivity is larger, and the values are further from those of the background.

6.4.3 Robustness to spectral errors

The purpose of the robustness study was to evaluate the capability of the method to

correct for errors in the initial spectral model. From comparison with the results obtained

in the previous chapter (section 5.3.3), the images show that reconstruction-classification

with graph cut optimization is less successful in recovering the labels (figure 6.4). For an

error with variance 5% or lower, the misclassified electrodes are limited to the boundary

between tissues, but for 10% or higher the perturbations may not be identified correctly.

6.4.4 Phantom experiment

The technique developed in this chapter was successful in recovering the position of

a perturbation placed in an experimental phantom. As in the case of reconstruction-

classification using absolute data (section 5.3.9, figure 5.10) the images present artefacts

around the edge of the tank caused by incongruities in the boundary geometry of the

model (figure 6.5). As discussed in chapter 5, these artefacts could be reduced by

modifying the method to allow for the use of frequency-difference data, at the cost of

losing image contrast and the capability to recover the absolute conductivity spectra

(section 5.4.5).

6.5 Conclusion
In this chapter, a method for performing combined reconstruction-classification using

graph cut optimization was formalized in the Bayesian framework. Whereas the recon-

struction step was relatively unchanged with respect to the algorithm presented in chapter

5, substantial modifications to the classification step were required to model a neigh-

bourhood system on the labels. Previously, the E-step of the expectation-maximization

algorithm involved the calculation of the responsibility, i.e. the probability that the

jth tissue had contributed to the conductivity of the nth voxel (equation (5.17)). Then

the labels were simply taken to be the MAP of the responsibility. With the inclusion

of a spatial prior on the labels (equation (6.11)), calculation of the responsibility is

mathematically intractable if the labels are unknown (equation (6.26)). For this reason,

it becomes necessary to estimate the labels before performing the classification step. This
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was achieved by introducing a Hidden Markov Random Field model for the dependence

of the conductivity on the labels, and solving the resulting labelling problem via graph

cut optimization.

The method was validated by application to a numerical example, and it was demon-

strated that this approach results in better recovery of the tissue spectra. The method

was also shown to be robust to small errors in the initial guess of the spectral model,

and images were successfully recovered from phantom data.

Future work should focus on increasing the automation of the method. Given

the added complication of the labelling and classification process, the reconstruction-

classification method required the selection of numerous model and regularization

parameters. In this chapter, the parameters of the spectral model were left unchanged

with respect to the previous chapter in order to adequately compare the results. Further

consideration is needed to find the optimal balance between the choice of parameters

for the HMRF model and the inverse Wishardt distribution. Furthermore, the method

could be modified to allow for the deduction of the algorithm parameters from the

result of the first reconstruction step, without external intervention by the user. In this

chapter, a homogenous spatial prior was used in the segmentation process. Anatomical

information derived from a supplementary imaging modality or statistical atlas of the

region-of-interested could be employed to produce a patient-specific spatial prior. This

could significantly improve the quality of the resulting images.



Chapter 7

Conclusion

The focus of this dissertation is on novel image reconstruction techniques for perform-

ing EIT using multifrequency data. The use of prior spectral information has been

investigated as a means to overcome the limitations inherent in the standard frequency-

difference and absolute imaging approaches to static EIT imaging. The overall purpose

was to propose image reconstruction algorithms with sufficient flexibility and robustness

to be applied to experimental problems in a clinical setting, and place within reach

the ultimate goal of diagnostic EIT imaging. In particular, the application of EIT to

early stroke type differentiation was of primary interest. In this chapter, the findings

presented in this dissertation are summarized, the conclusions and limitations to this

work are discussed, and future research directions are set out.

7.1 Summary of findings

In chapter 3, a method was proposed for introducing explicit spectral constraints in a

nonlinear multifrequency reconstruction technique for EIT. A fraction model was defined,

whereby the conductivity is expressed as a linear combination of the conductivities of

individual tissues present in the domain. This approach allowed for the simultaneous

use of all data in a direct multifrequency method, which resulted in a reduction of the

degrees of freedom of the imaging problem, and was shown to be superior to an indirect

method. The devised fraction reconstruction technique was validated on two-tissue and

four-tissue numerical examples, and robustness to small errors in the assumed tissue

spectra was demonstrated. The performance of the algorithm was shown to be superior to

pre-existing static methods, absolute and weighted frequency-difference (WFD) imaging,

in the case of resolving an anomaly in a tank phantom and a numerical example violating

the assumptions of WFD. Finally, it was shown empirically that the approximation error

introduced by the fraction model is small.
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In chapter 4, the results of application of the fraction reconstruction method to a

realistic numerical head phantom were presented. Images of ischaemic and haemmorhagic

stroke in a human head model including a resistive skull were produced for the first time.

The robustness of the method to typical sources of modelling errors was investigated, and

it was found that the method is robust to errors in the contact impedance, moderately

sensitive to errors in the tissue spectra, and highly sensitive to errors in the electrode

positions. Whereas the sensitivity to spectral errors was addressed in chapters 5 and

6, this work highlights the importance of obtaining accurate estimates of the electrode

positions in 3D. This can be achieved either by inserting the electrodes in a rigid helmet

with known geometry, or by acquiring the location of the electrodes for each experimental

setup. Alternatively, it may be possible to consider the electrode positions as unknowns

in the image reconstruction process, and recover these simultaneously to the conductivity.

In chapter 5, a method was proposed for simultaneously reconstructing conductiv-

ity images using spectral information, and estimating the parameters of a statistical

spectral model. A Gaussian mixture model was introduced for the conductivity, and an

expectation-maximization (EM) algorithm was devised to update the mean and variance

of the tissue spectra after each reconstruction step. It was shown that this combined

reconstruction-classification technique is highly robust to errors in the initial guess of the

tissue conductivities. Different approaches to spatial smoothing in the reconstruction

step were investigated; the best results were obtained by penalizing differences in conduc-

tivity across voxels assigned to the same tissue in the previous classification step. Two

variants of the reconstruction-classification method were formulated, using absolute and

frequency-difference data, and the performance was compared on phantom data; it was

found that while using difference data reduced the edge artefacts caused by modelling

errors, the contrast between the perturbation and the background was affected.

In chapter 6, an alternative approach to solving the reconstruction-classification

problem was proposed, which allowed for the inclusion of a spatial prior on the labels.

The problems of reconstructing multifrequency conductivity images, segmenting the

images per tissue type, and updating the spectral model, were tackled simultaneously

in an iterative scheme. The labelling step was performed by a graph cut optimization

method, which allowed for the use of a hidden Markov random field model. The result

of the labelling step was used to update the parameters of the tissue classes by an EM

algorithm. It was shown empirically that this approach results in improved recovery

of the tissue spectra, but is less robust to spectral modelling errors than the method
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proposed in the previous chapter.

7.2 Limitations and future work

7.2.1 Conductivity modelling

The main idea developed in this thesis is the exploitation of prior knowledge about the

spectral properties of tissues to improve the ill-posedness of the inverse problem of EIT.

Methods for including both exact and statistical models of the conductivity have been

proposed.

The fraction reconstruction method discussed in chapter 3 assumes perfect knowledge

of the spectra of tissues in the domain (section 3.2.1). Although robustness to a

small amount of uncertainty was demonstrated (section 3.3.3), significant errors in the

estimation of the spectral model can severely deteriorate image quality. Knowledge

of the tissue conductivities is bound to be uncertain: the gold standard is sample

measurements acquired with an impedance spectroscoper, which are unavoidably affected

by instrumentation noise. This approach proved successful in the phantom study

presented in chapter 3 (section 3.3.4), where it was possible to take tissue samples out of

the tank and acquire spectral measurements. However, a different approach is needed for

clinical applications, for example the use of conductivity values found in the literature,

or the collection of a library of tissue spectra by a preclinical study. Furthermore,

variations in composition, temperature, flow rate and cell count of biological tissues will

cause variations in the conductivity which are difficult to model and account for. With

regard to stroke imaging, the dynamic nature of ischaemia and haemorrhage will cause

the conductive properties of tissues in the head to vary in time. Therefore accurate

modelling of the tissue spectra may require knowledge of the length of time passed since

the onset of the stroke.

The combined reconstruction-classification method presented in chapter 5 was de-

signed to overcome the limitations of the fraction reconstruction method in terms of

robustness to spectral errors. The introduction of a Gaussian mixture model allowed for

the tissue conductivities to assume a non-zero variance, and also provided a framework

for updating the model (section 5.2.1); after each reconstruction step, the conductivity

image is subject to a soft-classification procedure, and the spectral properties are derived.

It was shown that this approach resulted in a highly robust method with regards to

errors in the initial guess of the tissue spectra (section 5.3.3). Although the classification

step is very fast and the cost in terms of computation time is minimum, a disadvantage
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to the inclusion of a statistical model is the increase in the number of parameters which

require "tuning" by the user. A process whereby the spectral parameters are initialized

automatically after the first reconstruction step by some pattern recognition technique

would provide a valuable addition to the method. In this study the algorithm was applied

exclusively to problems involving a known number of tissues; further development could

allow for the estimation of the number of classes, or the addition of a class with large

initial variance to include anything "other" than a small number of tissues of interest.

A technical issue introduced by the use of a spectral model is the need to combine

the model with a spatial prior. The label-dependent MRF idea tested in chapter 5

provided an empirical solution, in that application to a numerical example returned high

quality images (section 5.3.5). However, the issue remains of justifying the method in

the Bayesian sense and providing an elegant mathematical formulation.

In chapter 6, an attempt was made to include a spatial prior on the labels rather

than the conductivity, thus removing the problem of treating the spectral and spatial

models simultaneously. The conductivity model is given only by the statistical spectral

prior, which in the Bayesian framework delivers a single regularization term in the

reconstruction problem. In order to avoid calculating the mixed probability term in

the E-step of the classification problem, the labels were first estimated by graph cut

optimization. Although this method provided a more accurate recovery of the tissue

spectra, the other measures of image quality and the robustness to spectral errors were

compromised. Further analysis is required to determine the optimal choice of parameters

for the spectral and spatial priors.

7.2.2 Boundary modelling errors

Sensitivity to modelling errors in static EIT imaging is one of the greatest challenges

faced by the research community, and is currently an unresolved issue. In chapter 3, the

effect of modelling errors on fraction imaging of ischaeamic and haemmorhagic stroke

in a realistic 3D human head model was investigated. It was found that errors in the

modelling of the electrode positions constitute a major, if not the primary, obstacle

to clinical application of the method. Even small errors have the effect of severely

deteriorating image quality, and the position of the electrodes must be measured to

sub-millimetric precision. In order to accurately represent the shape and size of the

electrodes, high resolution meshes and refinement at the boundary are also necessary.

This can significantly affect the run time and memory use of the imaging algorithm.

It has recently been proposed in the literature to include the position and shape of
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the electrodes as unknowns in the imaging problem, so that the electrode locations can

be estimated simultaneously to the conductivity. The idea is that the boundary voltage

data contains information both about the internal conductivity distribution and the

boundary shape of the object, and that image artefacts can be avoided by recovering

these together. A method for reconstructing the boundary following a deformation was

developed in [14] for a 2D model with point electrodes, and using a linear time-difference

approach. The approximation error method [60], which allows for the correction of errors

with known statistics, was adapted to account for inaccuracies in the geometry in [80].

An analytical approach to the absolute imaging problem was recently formalized and

applied to 2D problems using the complete electrode model by Dardé et al. [29, 30].

Extension of this method to fully three-dimensional problems is relatively straightforward

and would constitute a significant breakthrough.

7.2.3 Algorithm speed

Application of EIT imaging to complex geometries, such as a human head, requires the

use of very high resolution meshes to ensure convergence of the forward problem. The

size of the elements must be small enough to represent detailed features and minimize

discretization errors. In particular, mesh refinement at the electrodes is crucial to

reducing artefacts caused by mismatched electrode sizes and locations. For large scale

meshes, the speed and memory efficiency of the image reconstruction algorithm are

critical. With regards to solving the forward problem, significant advances were recently

made by Jehl et al. [57] in developing a parallel solver. However, an iterative nonlinear

inversion scheme involves solving the forward problem, calculating the Jacobian, and

computing the update step several times, which is computationally very labour intensive.

There is scope for optimizing the imaging methods presented in this thesis to minimize

run time and memory usage. For example, by introducing a suitable preconditioner to

improve the solve time of the Gauss-Newton search direction, or applying a memory

efficient inversion method such as limited-memory BFGS [81]. Integration with the

approximation error method could also allow for the use of lower-resolution meshes

without loss of image quality [60, 79].
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