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Summary

1. Wildlife monitoring technology is advancing rapidly and the use of remote sensors such as camera traps and

acoustic detectors is becoming common in both the terrestrial and marine environments. Current methods to

estimate abundance or density require individual recognition of animals or knowing the distance of the animal

from the sensor, which is often difficult. A method without these requirements, the random encounter model

(REM), has been successfully applied to estimate animal densities from count data generated from camera traps.

However, count data from acoustic detectors do not fit the assumptions of the REM due to the directionality of

animal signals.

2. We developed a generalised REM (gREM), to estimate absolute animal density from count data from both

camera traps and acoustic detectors.We derived the gREM for different combinations of sensor detectionwidths

and animal signal widths (a measure of directionality). We tested the accuracy and precision of this model using

simulations of different combinations of sensor detection widths and animal signal widths, number of captures

andmodels of animalmovement.

3. Wefind that the gREMproduces accurate estimates of absolute animal density for all combinations of sensor

detection widths and animal signal widths. However, larger sensor detection and animal signal widths were

found to be more precise. While the model is accurate for all capture efforts tested, the precision of the estimate

increases with the number of captures. We found no effect of different animal movement models on the accuracy

and precision of the gREM.

4. We conclude that the gREM provides an effective method to estimate absolute animal densities from remote

sensor count data over a range of sensor and animal signal widths. The gREM is applicable for count data

obtained in bothmarine and terrestrial environments, visually or acoustically (e.g. big cats, sharks, birds, echolo-

cating bats and cetaceans). As sensors such as camera traps and acoustic detectors become more ubiquitous, the

gREM will be increasingly useful for monitoring unmarked animal populations across broad spatial, temporal

and taxonomic scales.

Key-words: acoustic detection, camera traps, marine, population monitoring, simulations, terres-

trial

Introduction

The density of animal populations is one of the fundamental

measures in ecology and conservation and has important

implications for a range of issues, such as sensitivity to stochas-

tic fluctuations (Wright & Hubbell 1983) and extinction risk

(Purvis et al. 2000). Monitoring animal population changes in

response to anthropogenic pressure is becoming increasingly

important as humans rapidly modify habitats and change

climates (Everatt, Andresen & Somers 2014). Sensor technol-

ogy, such as camera traps (Karanth 1995; Rowcliffe &

Carbone 2008) and acoustic detectors (Acevedo & Villanueva-

Rivera 2006; Walters et al. 2012), is widely used to monitor

changes in animal populations as these sensors are efficient, rel-

ativity cheap and non-invasive, allowing for surveys over large

areas and long periods (Rowcliffe & Carbone 2008; Walters

et al. 2013; Kessel et al. 2014). However, converting sampled

count data into estimates of density is problematic as detect-

ability of animals needs to be accounted for (Anderson 2001).

Existingmethods for estimating animal density often require

additional information that is often unavailable. For example,

capture-mark-recapture methods (Karanth 1995; Borchers
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et al. 2014) require recognition of individuals, and distance

methods (Harris et al. 2013) require estimates of how far away

individuals are from the sensor (Barlow & Taylor 2005;

Marques et al. 2011). When individuals cannot be told apart,

an extension of occupancy modelling can be used to estimate

absolute abundance (Royle & Nichols 2003). However, as the

model is originally formulated to estimate occupancy, count

information is simplified to presence–absence data. Assump-

tions about the distribution of individuals (e.g. a poisson distri-

bution) must also be made (Royle & Nichols 2003) which may

be a poor assumption for non-randomly distributed species.

Furthermore repeat, independent surveys must be performed

and the definition of a site can be difficult, especially for wide-

ranging species (MacKenzie &Royle 2005).

More recently, the development of the random encounter

model (REM), a modification of an ideal gas model (Yapp

1956; Hutchinson&Waser 2007), has enabled animal densities

to be estimated from unmarked individuals with a known

speed, and sensor detection parameters (Rowcliffe et al. 2008).

The REM method has been successfully applied to estimate

animal densities from camera trap surveys (Zero et al. 2013).

However, extending the REM method to other types of sen-

sors (e.g. acoustic detectors) is more problematic, because the

original derivation assumes a relatively narrow sensor width

(up to p/2 radians) and that the animal is equally detectable

irrespective of its heading (Rowcliffe et al. 2008).

Whilst these restrictions are not problematic for most cam-

era trap makes (e.g. Reconyx, Cuddeback), the REM cannot

be used to estimate densities from camera traps with a wider

sensor width [e.g. canopy monitoring with fish eye lenses,

Brusa &Bunker (2014)]. Additionally, the REMmethod is not

useful in estimating densities from acoustic survey data as

acoustic detector angles are often wider than p/2 radians.

Acoustic detectors are designed for a range of diverse tasks

and environments (Kessel et al. 2014), which naturally leads to

a wide range of sensor detection widths and detection

distances. In addition to this, calls emitted by many animals

are directional (Blumstein et al. 2011), breaking the assump-

tion of theREMmethod.

There has been a sharp rise in interest around passive acous-

tic detectors in recent years, with a 10-fold increase in publica-

tions in the decade between 2000 and 2010 (Kessel et al. 2014).

Acoustic monitoring is being developed to study many aspects

of ecology, including the interactions of animals and their

environments (Blumstein et al. 2011; Rogers et al. 2013), the

presence and relative abundances of species (Marcoux et al.

2011), biodiversity of an area (Depraetere et al. 2012) and

monitoring population trends (Walters et al. 2013).

Acoustic data suffer from many of the problems associated

with data from camera trap surveys in that individuals are

often unmarked, making capture-mark-recapture methods

more difficult to use (Marques et al. 2013). In some cases, the

distance between the animal and the sensor is known, for

example when an array of sensors is deployed and the position

of the animal is estimated by triangulation (Lewis et al. 2007).

In these situations, distance-sampling methods can be applied

(Buckland, Marsden & Green 2008). However, in many cases,

distance estimation is not possible, for example when single

sensors are deployed, a situation typical in the majority of ter-

restrial acoustic surveys (Buckland, Marsden & Green 2008).

In these cases, only relative measures of local abundance can

be calculated and not absolute densities. This means that com-

parison of populations between species and sites is problematic

without assuming equal detectability (Schmidt 2003; Walters

et al. 2013). Equal detectability is unlikely because of differ-

ences in environmental conditions, sensor type, habitat and

species biology.

In this study, we create a generalised REM (gREM) as an

extension to the camera trap model of Rowcliffe et al. (2008),

to estimate absolute density from count data from acoustic

detectors, or camera traps, where the sensor width can vary

from 0 to 2p radians, and the signal given from the animal can

be directional. We assessed the accuracy and precision of the

gREM within a simulated environment, by varying the sensor

detection widths, animal signal widths, number of captures

andmodels of animalmovement.We use the simulation results

to recommend best survey practice for estimating animal

densities from remote sensors.

Materials andmethods

ANALYTICAL MODEL

The REM presented by Rowcliffe et al. (2008) adapts the gas model to

count data collected from camera trap surveys. The REM is derived

assuming a stationary sensor with a detection width < p/2 radians.

However, in order to apply this approachmore generally, and in partic-

ular to stationary acoustic detectors, we need both to relax the con-

straint on sensor detection width and allow for animals with directional

signals. Consequently, we derive the gREM for any detection width, h,
between 0 and 2p with a detection distance r giving a circular sector

within which animals can be captured (the detection zone) (Fig. 1).

Additionally, wemodel the animal as having an associated signal width

a between 0 and 2p (Fig. 1, see Appendix S1 for a list of symbols). We

start deriving the gREM with the simplest situation, the gas model

where h = 2p and a = 2p.

Gasmodel

Following Yapp (1956), we derive the gas model where sensors can

capture animals in any direction and animal signals are detectable from

any direction (h = 2p and a = 2p). We assume that animals are in a

homogeneous environment andmove in straight lines of random direc-

tion with velocity v. We allow that our stationary sensor can capture

animals at a detection distance r and that if an animalmoves within this

detection zone they are captured with a probability of one; while

outside this zone, animals are never captured.

In order to derive animal density, we need to consider relative

velocity from the reference frame of the animals. Conceptually, this

requires us to imagine that all animals are stationary and randomly

distributed in space, while the sensor moves with velocity v. If we

calculate the area covered by the sensor during the survey period, we

can estimate the number of animals the sensor should capture. As a

circle moving across a plane, the area covered by the sensor per unit

time is 2rv. The expected number of captures, z, for a survey period

of t, with an animal density of D is z = 2rvtD. To estimate the
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density, we rearrange to get D = z/2rvt. Note that as z is the number

of encounters, not individuals, the possibility of repeated detections

of the same individual is accounted for (Hutchinson & Waser 2007).

gREMderivations for different detection and signal widths

Different combinations of h and a would be expected to occur (e.g.

sensors have different detection widths and animals have different

signal widths). For different combinations h and a, the area covered

per unit time is no longer given by 2rv. Instead of the size of the

sensor detection zone having a diameter of 2r, the size changes with

the approach angle between the sensor and the animal. The width

of the area within which an animal can be detected is called the

profile, p. The size of p depends on the signal width, detector width

and the angle that the animal approaches the sensor. The size of

the profile (averaged across all approach angles) is defined as the

average profile �p. However, different combinations of h and a need

different equations to calculate �p.

We have identified the parameter space for the combinations of h
and a for which the derivation of the equations is the same (defined as

submodels in the gREM) (Fig. 2). For example, the gas model becomes

the simplest gREM submodel (upper right in Fig. 2), and the REM

fromRowcliffe et al. (2008) is another gREM submodel where h < p/2
and a = 2p.We derive one gREM submodel SE2 as an example below,

where 2p�a/2 < h < 2p, 0 < a < p (see Appendix S2 for derivations

of all gREM submodels). Any estimate of density would require prior

knowledge of animal velocity, v and animal signal width, a taken from

other sources, for example existing literature (Carbone et al. 2005;

Brinklov et al. 2011). Sensor width, h, and detection distance, r would

also need to bemeasured or obtained frommanufacturer specifications

(Holderied&VonHelversen 2003; Adams et al. 2012).

Example derivation of SE2

In order to calculate �p, we have to integrate over the focal angle, x1

(Fig. 3a). This is the angle taken from the centre line of the sensor.

Other focal angles are possible (x2, x3, x4) and are used in other gREM

submodels (see Appendix S2). As the size of the profile depends on the

approach angle, we present the derivation across all approach angles.

When the sensor is directly approaching the animal x1 ¼ p=2.

Starting from x1 ¼ p=2 until h/2+p/2�a/2, the size of the profile is
2r sin a/2 (Fig. 3b). During this first interval, the size of a limits the

width of the profile. When the animal reaches x1 = h/2+p/2�a/2 (Fig.

3c), the size of the profile is r sinða=2Þ þ r cosðx1 � h=2Þ, and the size

of h and a both limit the width of the profile (Fig. 3c). Finally, at

x1 ¼ 5p=2� h=2� a=2 until x1 ¼ 3p=2, the width of the profile is

again 2r sin a/2 (Fig. 3d) and the size of a again limits the width of the

profile.

The profile width p for p radians of rotation (from directly towards

the sensor to directly behind the sensor) is completely characterised by

the three intervals (Fig. 3b–d). Average profile width �p is calculated by

integrating these profiles over their appropriate intervals of x1 and

dividing by pwhich gives
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We then use this expression to calculate density

D ¼ z=vt�p: eqn 3

Rather than having one equation that describes �p globally, the

gREM must be split into submodels due to discontinuous changes

in p as a and b change. These discontinuities can occur for a num-

ber of reasons such as a profile switching between being limited by

a and h, the difference between very small profiles and profiles of

size zero, and the fact that the width of a sector stops increasing

once the central angle reaches p radians (i.e. a semi-circle is just as

wide as a full circle). As an example, if a is small, there is an inter-

val between Fig. 3c,d where the ‘blind spot’ would prevent animals

being detected giving p = 0. This would require an extra integral in

our equation, as simply putting our small value of a into 1 would

not give us this integral of p = 0.

gREM submodel specifications were done by hand, and the integra-

tion was done using SymPy (SymPy Development Team 2014) in

Python (Appendix S3). The gREM submodels were checked by con-

firming that: (i) submodels adjacent in parameter space were equal at

the boundary between them; (ii) submodels that border a = 0 had p = 0

when a = 0; (iii) average profile widths �p were between 0 and 2r and;

(iv) each integral, divided by the range of angles that it was integrated

over, was between 0 and 2r. The scripts for these tests are included in

Appendix S3, and the R (R Core Team 2014) implementation of the

gREM is given inAppendix S4.

Fig. 1. Representation of sensor detection width and animal signal

width. The filled square and circle represent a sensor and an animal,

respectively; h, sensor detection width (radians); r, sensor detection dis-

tance; dark grey shaded area, sensor detection zone; a, animal signal

width (radians). Dashed lines around the filled square, and circle repre-

sents themaximum extent of h and a, respectively.
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SIMULATION MODEL

We tested the accuracy and precision of the gREM by developing a

spatially explicit simulation of the interaction of sensors and animals

using different combinations of sensor detection widths, animal signal

widths, number of captures and models of animal movement. One

hundred simulations were run where each consisted of a 7�5 km by

7�5 km square with periodic boundaries. A stationary sensor of radius

r, 10m, was set up in the exact centre of each simulated study area, cov-

ering seven sensor detection widths h, between 0 and 2p (2/9p, 4/9p, 6/
9p, 8/9p, 10/9p, 14/9p, and 2p). Each sensor was set to record continu-

ously and to capture animal signals instantaneously from emission.

Each simulationwas populatedwith a density of 70 animals km�2, cal-

culated from the equation in Damuth (1981) as the expected density of

mammals weighing 1 g. This density therefore represents a reasonable

upper estimate of density of individuals, given that the smallest mam-

mal is around 2 g (Jones et al. 2009). A total of 3937 individuals per

simulation were created which were placed randomly at the start of the

simulation. A total of 11 signal widths a between 0 and p were used (1/

11p, 2/11p, 3/11p, 4/11p, 5/11p, 6/11p, 7/11p, 8/11p, 9/11p, 10/11p, p).

Each simulation lasted for N steps (14 400) of duration T (15 min)

giving a total duration of 150 days. The individuals moved within each

step with a distance d, with an average speed, v. The distance, d, was

sampled from a normal distribution with mean distance, ld ¼ vT, and

standard deviation, rd ¼ vT=10, where the standard deviation was

chosen to scale with the average distance travelled. An average speed,

v = 40 km day�1, was chosen based on the largest day range of terres-

trial animals (Carbone et al. 2005) and represents the upper limit of

realistic speeds. At the end of each step, individuals were allowed to

either remain stationary for a time step (with a given probability, S) or

change direction where the change in direction has a uniform distribu-

tion in the interval [�A, A]. This resulted in seven different movement

models where: (1) simple movement, where S and A = 0; (2) stop-start

movement, where (i) S = 0�25, A = 0, (ii) S = 0�5, A = 0, (iii) S = 0�75,
A = 0; (3) correlated random walk movement, where (i) S = 0, A = p/3,
(ii) S = 0, A = 2p/3, (iii) S = 0, A = p. Encounters per simulation were

counted as theymoved into the detection zone of the sensor.

We calculated the estimated animal density from the gREMby sum-

ming the number of captures per simulation and inputting these values

into the correct gREM submodel. The accuracy of the gREM was

determined by comparing the true simulation density with the esti-

mated density. Precision of the gREMwas determined by the standard

deviation of estimated densities. We used this method to compare

the accuracy and precision of all the gREM submodels. As these

(a) (b)

(c) (d)

Fig. 3. An overview of the derivation of the

average profile �p for the gREM submodel

SE2, where (a) shows the location of the pro-

file p (the line an animal must pass through in

order to be captured) in red and the focal

angle, x1, for an animal (filled circle), its signal

(unfilled sector), and direction of movement

(shown as an arrow). The detection zone of

the sensor is shown as a filled grey sector with

a detection distance of r. The vertical black

line within the circle shows the direction the

sensor is facing. The derivation of p changes as

the animal approaches the sensor from differ-

ent directions (shown in b–d), where (b) is the
derivation of p when x1 is in the interval [p/2,
p/2+h/2�a/2], (c) p when x1 is in the interval

[p/2+h/2�a/2,5p/2�h/2�a/2] and (d) p when

x1 is in the interval [5p/2�h/2�a/2,3p/2],
where h, sensor detection width; a, animal sig-

nal width. The resultant equation for p is

shown beneath b–d. The average profile �p is

the size of the profile averaged across all

approach angles.
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named after their compass point, except forGas andREMwhich high-

light the position of these previously derived models within the gREM.

Symbols on the edge of the plot are for submodels where a, h = 2p.
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submodels are derived for different combinations of a and h, the accu-
racy and precision of the submodels were used to determine the impact

of different values of a and h.

The influence of the number of captures and animalmovementmod-

els on accuracy and precision was investigated using four different

gREM submodels representative of the range a and h values (submod-

els NW1, SW1, NE1, and SE3, Fig. 2). From a random starting point,

we ran the simulation until a range of different capture numbers were

recorded (from 10 to 100 captures), recorded the length of time this

took and estimated the animal density for each of the four submodels.

These estimated densities were compared to the true density to assess

the impact on the accuracy and precision of the gREM.We calculated

the coefficient of variation in order to compare the precision of the den-

sity estimates from simulations with different expected numbers of cap-

tures. The gREM also assumes that individuals move continuously

with straight-line movement (simple movement model) and we there-

fore assessed the impact of breaking the gREM assumptions. We used

the four submodels to compare the accuracy and precision of a simple

movement model, stop–start movement models (using different aver-

age amounts of time spent stationary) and random walk movement

models. Finally, as the parameters (a, b, r and v) are likely to be mea-

sured with error, we compared true simulation densities to densities

estimated with parameters with errors of 0%,�5% and�10%, for all

gREMsubmodels.

Results

ANALYTICAL MODEL

The equation for �p has been newly derived for each submodel

in the gREM, except for the gas model and REM which have

been calculated previously. However, many models, although

derived separately, have the same expression for �p. Figure 4

shows the expression for �p in each case. The general equation

for density, eqn 3, is used with the correct value of �p substi-

tuted. Although more thorough checks are performed in

Appendix S3, it can be seen that all adjacent expressions in Fig.

4 are equal when expressions for the boundaries between them

are substituted in.

SIMULATION MODEL

gREMsubmodels

All gREM submodels showed a high accuracy, that is the

median difference between the estimated and true values

was < 2% across all models (Fig. 5). However, the preci-

sions of the submodels do vary, where the gas model is

the most precise and the SW7 submodel the least precise,

having the smallest and the largest interquartile range,

respectively (Fig. 5). The standard deviation of the error

between the estimated and true densities is strongly

related to both the sensor and signal widths (Appendix

S5), such that larger widths have lower standard devia-

tions (greater precision) due to the increased capture rate

of these models.

Number of captures

Within the four gREM submodels tested (NW1, SW1, SE3,

NE1), the accuracy was not strongly affected by the number of

captures. The median difference between the estimated and

true values was < 15% across all capture rates (Fig. 6). How-

ever, the precision was dependent on the number of captures

Fig. 4. Expressions for the average profile width, �p given a range of

sensor and signal widths. Despite independent derivation within each

block, many models result in the same expression. These are collected

together and presented as one block of colour. Expressions on the edge

of the plot are for submodels with a, h = 2p.
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across all four of the gREM submodels, where precision

increases as number of captures increases, as would be

expected for any statistical estimate (Fig. 6). For all gREM

submodels, the coefficient of variation falls to 10% at 100

captures.

Movementmodels

Within the four gREM submodels tested (NW1, SW1, SE3,

NE1), neither the accuracy nor precision was affected by the

average amount of time spent stationary. The median differ-

ence between the estimated and true values was < 2% for each

category of stationary time (0, 0�25, 0�5 and 0�75) (Fig. 7a).
Altering the maximum change in direction in each step (0, p/3,
2p/3, and p) did not affect the accuracy or precision of the four

gREM submodels (Fig. 7b).

Impact of parameter error

The percentage error in the density estimates across all param-

eters, and gREM submodels shows a similar response for

under and over estimated parameters, suggesting the accuracy

is reasonable with respect to parameter error (Appendix S6).

The impact of parameter error on the precision of the density

estimate varies across gREM submodels and parameters,

where a shows the largest variation including the largest val-

ues. However, in all cases, the percentage error in the density

estimate is not more than 5% greater than the error in the

parameter estimate (Appendix S6).

Discussion

ANALYTICAL MODEL

We have developed the gREM such that it can be used to

estimate density from acoustic sensors and camera traps.

This has entailed a generalisation of the gas model and the

REM in Rowcliffe et al. (2008) to be applicable to any

combination of sensor width h and signal directionality a.
We emphasise that the approach is robust to multiple detec-

tions of the same individual. We have used simulations to

show, as a proof of principle, that these models are accu-

rate and precise.

There are a number of possible extensions to the gREM that

could be developed in the future. The original gas model was

formulated for the case where both animals and sensors are

moving (Hutchinson & Waser 2007). Indeed, any of the mod-

els which have animals that are equally detectable in all direc-

tions (a = 2p) can be trivially expanded by replacing animal

speed v with vþ vs where vs is the speed of the sensor. How-

ever, when the animal has a directional call the extension

becomes less simple. The approach would be to calculate again

the mean profile width. However, for each angle of approach,

one would have to average the profile width for an animal fac-

ing in any direction (i.e. not necessarily moving towards the

sensor) weighted by the relative velocity of that direction.

There are a number of situations where a moving detector and

animal could occur, for example an acoustic detector towed

from a boat when studying porpoises (Kimura et al. 2014) or
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Fig. 6. Simulation model results of the accu-

racy and precision of four gREM submodels

(NW1, SW1, SE3 and NE1) given different

numbers of captures. The percentage error

between estimated and true density within

each gREM submodel for capture rate is

shown within each box plot, where the black

line represents the median percentage error

across all simulations, boxes represent the

middle 50% of the data, whiskers represent

variability outside the upper and lower quar-

tiles with outliers plotted as individual points.

Sensor and signal widths vary between sub-

models. The numbers beneath each plot repre-

sent the coefficient of variation. The colour of

each box plot corresponds to the expressions

for average profile width �p given in Figure 4.
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surveying echolocating bats from a moving car (Jones et al.

2013).

Interesting but unstudied problems impacting the gREM

are firstly, edge effects caused by sensor trigger delays (the

delay between sensing an animal and attempting to record the

encounter) (Rovero et al. 2013), and secondly, sensors which

repeatedly turn on an off during sampling (Jones et al. 2013).

The second problem is particularly relevant to acoustic detec-

tors which record ultrasound by time expansion. Here, ultra-

sound is recorded for a set time period and then slowed down

and played back, rendering the sensor ‘deaf’ periodically dur-

ing sampling. Both of these problems may cause biases in the

gREM, as animals can move through the detection zone with-

out being detected. As the gREM assumes constant surveil-

lance, the error created by switching the sensor on and off

quickly will becomemore important if the sensor is only on for

short periods of time. We recommend that the gREM is

applied to constantly sampled data, and the impacts of break-

ing these assumptions on the gREM should be further

explored.

ACCURACY, PRECIS ION AND RECOMMENDATIONS FOR

BEST PRACTICE

Based on our simulations, we believe that the gREM has the

potential to produce accurate estimates for many different spe-

cies, using either camera traps or acoustic detectors. However,

the precision of the gREM differed between submodels. For

example, when the sensor and signal width were small, the pre-

cision of the model was reduced. Therefore, when choosing a

sensor for use in a gREM study, the sensor detection width

should be maximised. If the study species has a narrow signal

directionality, other aspects of the study protocol, such as

length of the survey, should be used to compensate.

The precision of the gREM is greatly affected by the num-

ber of captures. The coefficient of variation falls dramatically

between 10 and 60 captures and then after this continues to

slowly reduce. At 100 captures, the submodels reach 10%

coefficient of variation, considered to be a very good level of

precision and better than many previous studies (O’Brien,

Kinnaird &Wibisono 2003; Foster & Harmsen 2012; Thomas

& Marques 2012). The length of surveys in the field will need

to be adjusted so that enough data can be collected to reach

this precision level. Populations of fast moving animals or

populations with high densities will require less survey effort

than those species that are slow moving or have populations

with low densities.

We found that the sensitivity of the gREM to inaccurate

parameter estimates was both predictable and reasonable

(Appendix S6), although this varies between different

parameters and gREM submodels. Whilst care should be

taken in parameter estimation when analysing both acoustic

and camera trap data, acoustic data pose particular prob-

lems. For acoustic surveys, estimates of r (detection dis-

tance) can be measured directly or calculated using sound

attenuation models (Holderied & Von Helversen 2003),

while the sensor angle is often easily measured (Adams

et al. 2012) or found in the manufacturer’s specifications.

When estimating animal movement speed v, only the speed

of movement during the survey period should be used. The

signal width is the most sensitive parameter to inaccurate

estimates (Appendix S6) and is also the most difficult to

measure. While this parameter will typically be assumed to

be 2p for camera trap surveys, fewer estimates exist for

acoustic signal widths. Although signal width has been mea-

sured for echolocating bats using arrays of microphones

(Brinklov et al. 2011), more work should be done on

obtaining estimates for a range of acoustically surveyed

species.

L IMITATIONS

Although the REM has been found to be effective in field

tests (Rowcliffe et al. 2008; Zero et al. 2013), the gREM

requires further validation by both field tests and simula-

tions. For example, capture-mark-recapture methods could

be used alongside the gREM to test the accuracy under

field conditions (Rowcliffe et al. 2008). While we found no

effect of the movement model on the accuracy or precision

of the gREM, the models we have used in our simulations

to validate the gREM are still simple representations of true

animal movement. Animal movement may be highly nonlin-

ear and often dependent on multiple factors such as

behavioural state and existence of home ranges (Smouse

et al. 2010). Therefore, testing the gREM against real

animal data, or further simulations with more complex

movement models, would be beneficial.

The assumptions of our simulations may require further

consideration, for example we have assumed an equal

density across the study area. However, in a field environ-

ment, the situation may be more complex, with additional

variation coming from local changes in density between

sensor sites. Although unequal densities should theoreti-

cally not affect accuracy (Hutchinson & Waser 2007), it

will affect precision and further simulations should be

used to quantify this effect. Additionally, we allowed the

sensor to be stationary and continuously detecting, negat-

ing the triggering, and non-continuous recording issues

Fig. 7. Simulation model results of the accuracy and precision of four gREM submodels (NW1, SW1, SE3 and NE1) given different move-

ment models where (a) average amount of time spent stationary (stop-start movement) and (b) maximum change in direction at each step

(correlated random walk model). The percentage error between estimated and true density within each gREM submodel for the different

movement models is shown within each box plot, where the black line represents the median percentage error across all simulations, boxes

represent the middle 50% of the data, whiskers represent variability outside the upper and lower quartiles with outliers plotted as individual

points. The simple model is represented where time and maximum change in direction equals 0. The colour of each box plot corresponds to

the expressions for average profile width �p given in Figure 4.
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that could exist with some sensors and reduce precision

or accuracy. Finally, in the simulation animals moved at

the equivalent of the largest day range of terrestrial ani-

mals (Carbone et al. 2005). Slower speed values should

not alter the accuracy of the gREM, but precision would

be affected since slower speeds produce fewer records.

A feature of the gREM is that it does not fit a statistical

model to estimate detection probability as occupancy models

and distance sampling do (Royle & Nichols 2003; Barlow &

Taylor 2005;Marques et al. 2011). Instead, it explicitly models

the process, with animals only being detected if they approach

the sensor from a suitable direction. Other processes that affect

detection probability could be included in the model to

improve realism.

IMPL ICATIONS FOR ECOLOGY AND CONSERVATION

The gREM is applicable for count data obtained either

visually or acoustically in both marine and terrestrial envi-

ronments and is suitable for taxa including echolocating

bats (Walters et al. 2012), songbirds (Buckland & Handel

2006), whales (Marques et al. 2011) and forest primates

(Hassel-Finnegan et al. 2008). Many of these taxa contain

critically endangered species, and monitoring their popula-

tions is of conservation interest. For example, current

methods of density estimation for the threatened Francis-

cana dolphin (Pontoporia blainvillei) may result in underes-

timation of their numbers (Crespo et al. 2010). In

addition, using gREM may be easier than other methods

for measuring the density of animals which may be useful

in quantifying ecosystem services, such as songbirds with a

known positive influence on pest control (Jirinec, Campos

& Johnson 2011).

The gREM will aid researchers to study species with non-

invasive methods such as remote sensors, which allows for

large, continuous monitoring projects with limited human

resources (Kelly et al. 2012). The gREM is also suitable for

species that are sensitive to human contact or are difficult or

dangerous to catch (Thomas & Marques 2012). As sensors

such as camera traps and acoustic detectors become more

ubiquitous, the gREM will be increasingly useful for monitor-

ing unmarked animal populations across broad spatial, tempo-

ral and taxonomic scales.
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