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Abstract

Lack of awareness of building performance is often highlighted as a key barrier to improving

the operational energy efficiency of non-domestic buildings. In 2008, the Display Energy

Certificate (DEC) scheme was implemented in the UK to raise awareness and encourage

higher levels of energy efficiency in public sector buildings. The thesis reports a review of the

energy benchmarks that underpin the DEC scheme, which reveals that they are no longer

appropriate for providing useful or relevant feedback. The research therefore aims to improve

understanding of the energy performance of non-domestic buildings, and to explore ways in

which their operational energy efficiency can be benchmarked with greater robustness.

The research comprises four phases of analysis within which data of varying granularity are

analysed to acquire a holistic understanding of the patterns of energy use in English schools

and the factors that influence their energy demand. First, the latest DEC records are analysed

to assess the robustness of the scheme. Second, the patterns of energy use in primary and

secondary schools are analysed in greater detail. Third, multiple regression analyses of energy

use in relation to intrinsic building and occupant characteristics are carried out. Last, detailed

information about the end-use energy consumption of a small number of modern secondary

schools is analysed.

The main findings reveal shortcomings of the DEC scheme. The results highlight two key

issues associated with the classification system: inappropriate levels of aggregation and

misclassification of buildings. Energy benchmarks are found to be inappropriate and out-of-

date for the majority of benchmark categories. Correlations between intrinsic features and

empirical data on the energy performance of schools were found. The research concludes that

the DEC scheme lacks robustness, and that its robustness could be improved by refining the

classification system based on empirical data, introducing a framework for keeping up-to-date

with the latest trends in energy performance, and producing benchmarks that are relevant to

the circumstances of individual buildings.
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Glossary of Terms

Adjusted energy benchmarks are benchmarks that have been adjusted to take into account

the influence of regional and seasonal weather on heating energy use, and the influence of

extended hours of occupancy on the total energy consumption

Assessment end date is the date at which the one-year long monitoring period for energy

consumption ended

Asset rating indicates how energy-efficient buildings are, based on the carbon emissions of

buildings in question estimated through simulation models under ‘standard’ operational

conditions

Benchmark category is the main classification system of the DEC scheme. Each category

has a representative energy benchmark for calculating the operational rating of all buildings

that belong to the category

Building type refers to a supplementary classification system of the DEC scheme, which

helps the assessors to identify the correct benchmark category for a building

End-use energy consumption is the energy used by major sub-systems of a building such

as lighting or heating

Operational rating (or DEC rating) indicates how efficiently an existing building is being used

in energy terms once it is occupied based on the actual measured energy consumption

Operational energy efficiency refers to the level of efficiency of the management and

operation practices of an existing building which is in use

Robustness refers to ways in which a benchmarking system provides sufficient means to

provide feedback to building operators about their operational energy efficiency that is relevant

and accurate

Separable energy uses are end uses that are uncommon in a particular activity type and are

therefore allowed to be discounted from calculating the operational rating
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Total useful floor area is a floor area metric which is used for calculating the operational

rating. The term is synonymous with Gross Internal Floor Area (GIFA) which includes all

enclosed spaces measured to the internal face of the external wall

Unique Property Reference Number (UPRN) is a 12-digit numbering system used within the

Display Energy Certificate scheme for identifying a building or a site and the relevant

certificates
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Chapter 1 Introduction

This chapter provides an overview of this research. The chapter begins by explaining the

context and rationale for carrying out the research. This is followed by descriptions of the

research questions, aims, and objectives. Lastly, the structure of the research and the outline

of each chapter are described.

1.1 Context and Rationale for the Research

Finite resources, energy security and climate change are some of the most prominent drivers

for improving energy efficiency and reducing anthropogenic carbon emissions. In response to

these critical issues, the UK government has set a legally binding target to reduce net CO2

emissions in 2050 by more than 80% from the 1990 baseline (HM Government, 2008). Among

various sectors, CO2 emissions from non-domestic buildings account for approximately 18%

of national total emissions. Hence there is an imperative to reduce the emissions from these

buildings to achieve the 2050 target (Carbon Trust 2009).

In the built environment, benchmarking is a technique that is often used by building operators

to evaluate their energy performance. In its simplest form, an indicator of the energy

performance of a building would be compared to a reference performance, whether it be

historical data or a publicly available standard, to acquire a sense of how efficiently the energy

is being used (CIBSE 2012). The technique generally aims to raise awareness of energy

consumption but also provides motivation to improving the efficiency of operation. It is

therefore an essential way to tackle one of the key barriers for improving the energy efficiency

of existing non-domestic buildings, which is the lack of awareness of building performance

(Carbon Trust 2009).

In 2008, the Display Energy Certificate (DEC) scheme was implemented in the UK under the

European Energy Performance of Buildings Directive (EPBD) (CIBSE 2009; Department for

Communities and Local Government (DCLG) 2008). Under the mandatory energy certification

scheme, public buildings are required to display energy certificates that illustrate how
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efficiently they were being operated, hence raising awareness of the public and building

operators. Consequently, it was anticipated that DECs would encourage investments in energy

efficiency measures.

In the UK where benchmarks are historically used only on a voluntary basis, implementation

of the DEC scheme has greatly improved the potential to promote energy efficient operation

of existing buildings. The review of relevant literature revealed however, the following gaps in

knowledge that could improve the robustness of benchmarking the operational energy

efficiency of UK non-domestic buildings:

 There is a lack of understanding of the robustness of the current approach to

benchmarking of buildings across the UK non-domestic stock, especially the methods

used to derive energy benchmarks and the underpinning classification system.

 The extent to which incorporating intrinsic building and operational features, such as

the built form or efficiency of building services, into a benchmarking process could

improve the precision of evaluating the operational energy efficiency of UK non-

domestic buildings remains unknown.

1.2 Research Aims, Questions and Objectives

This research aims to discover ways for robustly benchmarking the operational energy

efficiency of existing buildings across the UK non-domestic sector.

The following research questions were formulated to guide the research:

 What are the benefits and limitations of using a top-down approach for deriving energy

benchmarks for evaluating the operational energy efficiency of non-domestic buildings,

and what are the factors that determine their robustness?

 How appropriate are classifications of buildings for benchmarking the operational

energy efficiency of buildings across the stock?
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 Are types of activity sufficient to categorise buildings for evaluating the operational

energy efficiency, or should there be other factors, such as built form or number of

computers, which could be incorporated into the benchmarking process to acquire a

more precise evaluation of how efficiently energy is used in these buildings?

To address these research questions, the following objectives were established:

 Assess the data to improve the understanding of patterns of energy use in UK non-

domestic buildings and provide insights into the appropriateness of the classification

of benchmark categories and building types

 Explore and compare the benefits and limitations of top-down and bottom-up

approaches for assessing and evaluating the operational energy efficiency of non-

domestic buildings

 Examine whether there are cases for introducing additional features into the

benchmarking process by assessing correlations between intrinsic building and

operational characteristics, and the energy performance

 Collect and develop datasets on the latest and historical energy performance of non-

domestic buildings and their characteristics to underpin the analyses

1.3 Research Outline

For clarity, the following terms have been used for naming the analysis chapters to portray the

gradually increasing level of granularity of the underlying data and methods:

 Top-down: Analyses of stock-level whole building energy data

 Hybrid: Whole building energy data with complementary information on building and

operational characteristics analysed using a multivariable method

 Bottom-up: End-use energy use data disaggregated using a bottom-up approach
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 Chapter 2 - The Context: Drivers of Change

This chapter aims to cover the context within which the research is situated. Issues of

global and local significance, and international and domestic policies that raise the

importance of improving the energy efficiency of buildings are described.

 Chapter 3 - Benchmarking the Energy Performance of Non-Domestic Buildings

This chapter aims to establish the basic concept of benchmarking and its role in

improving the operational energy efficiency of non-domestic buildings. Through a

review of relevant literature, the latest developments in research and literature that

aim to improve the robustness of benchmarking the energy performance of non-

domestic buildings are discussed in detail.

 Chapter 4 - Methodology

This chapter aims to provide an overview of the research methodology prior to

describing details of the methods in individual chapters. Details of the rationale behind

the research design are described, with a particular focus on the arrangement of

methods that were designed in a sequential order to triangulate the factors that

influence the pattern of energy use of non-domestic buildings.

 Chapter 5 - Top-down Analysis of Public Sector Buildings

This chapter aims to improve understanding of the energy performance of public

buildings using the latest DEC records through cross-sectional and longitudinal

analyses. The methods that were used to process and analyse the DEC data are

described in detail. The latest patterns of energy use of public buildings and how these

have changed over the years are described. The data is also used to examine the

robustness of the energy benchmarks that underpin the DEC scheme.

 Chapter 6 - Top-down Analysis of English Schools

This chapter aims to examine the adequacy of the DEC scheme, with regards to the

benchmarks and methods, in benchmarking the energy performance of primary and
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secondary schools in England. The methods that were used to develop a dataset of

the energy performance of schools and combine it with other datasets, and to analyse

the data, are described in detail. The results from the analyses are presented.

 Chapter 7 - Hybrid Approach to Analysing English Schools

This chapter aims to improve the understanding of the influence of the intrinsic building

features and the occupant characteristics on the pattern of energy use in schools. The

methods that were developed to collect the information on the built form and its

services are described, and how they were combined with the dataset from the

previous chapter. The details and the results from the multiple linear regression

analyses are described in detail.

 Chapter 8 - Bottom-up Analysis of English Schools

This chapter aims to further improve the understanding of the pattern of energy use

of secondary schools and their relationship with the characteristics that were analysed

in the previous chapter. The sources of data and the methods that were used to derive

and analyse the end-use energy consumption are described in detail. The results from

the analyses are presented.

 Chapter 9 - Discussion

In this chapter, results from chapters 5 to 8 are discussed collectively with the aim of

addressing the key research questions. Potential implications of findings from the

research for developing a robust and sustainable benchmarking system are

discussed. Based on the outcome of the discussion, recommendations are made to

CIBSE.

 Chapter 10 - Conclusions

This chapter summarises the research and highlights key findings. Contributions to

knowledge, proposals for future work, and research limitations are described.
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Chapter 2 The Context: Drivers of Change

This chapter describes the context that acts as a driver to improve the energy efficiency of

non-domestic buildings. First, global and national issues such as climate change and energy

security are described. Policy frameworks that were developed to reduce the anthropogenic

carbon emissions from non-domestic buildings are described in detail.

2.1 Finite reserves of natural resources and energy security

Ever since the industrialisation of modern society the demand for energy by mankind has

never been greater. The most recent International Energy Outlook published by the EIA1

illustrates how the World’s energy consumption has increased steadily over the past decades

since the 1990’s (EIA 2011). Moreover, projections of World consumption shows that this will

rise steadily despite the impact of the economic recession, due to developing economies in

non-OECD nations such as China and India, as well as expanding populations throughout the

World (BP 2012; EIA 2011). However, by contrast with the ever-growing demand for energy,

the reserves of natural resources such as oil, gas and coal that are essential to sustain

economic activities and quality of life have been observed to decline over the past decades

(Longwell 2002).

In recent years, a decrease in production of oil and gas from the North Sea has led the UK to

become increasingly reliant on imported energy. What is worse is that this dependence is

expected to increase further in the coming decades, therefore the UK is likely to be exposed

to the risk of volatile and higher fuel prices. Hence, improving energy security to ensure reliable

supplies of energy at stable prices has become one of the most important challenges to the

UK (DECC 2009). Amongst a diverse range of measures to achieve greater energy security,

improving energy efficiency is considered to be the most important as it not only reduces the

demand for imported fuel such as gas and oil, creating less dependence on imported energy,

but also contributes to tackling climate change.

1 US Energy Information Administration: http://www.eia.gov/
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2.2 Climate change

The phenomenon commonly referred to as ‘climate change’ or ‘global warming’ refers to the

warming trend of the Earth’s climate which has become increasingly evident in past decades.

The observed changes in climate shows that the linear trend in observed global surface

temperature over the 50 year period from 1956 to 2005 (0.13 [0.10 to 0.16]°C per decade) is

nearly twice that for the 100 years from 1906 to 2005 and that eleven of the twelve years

between 1995 and 2006 are among the warmest years in the instrumental record of global

surface temperature (IPCC 2007).

The natural concentration of gases in the atmosphere such as water vapour, carbon dioxide

(CO2), methane and the greenhouse effect from these gases, collectively termed greenhouse

gases (GHG), has long been identified to be what maintains atmospheric temperatures at a

level suitable to support life. The rapid increase in observed global temperature in the past

century, however, has suggested that there are other factors that are driving climate change

and it is increasingly becoming evident that most of the observed increase in global average

temperatures since the mid-20th century is due to the increase in anthropogenic GHG

emissions (IPCC 2007). Among the anthropogenic GHGs, CO2 has been identified to be the

most important contributor to change where annual emissions from various sectors of the

economy such as buildings, energy supply, transport and industry have increased between

the years 1970 and 2004 by approximately 80%. In addition, global atmospheric CO2

concentration has increased from its pre-industrial value of about 280ppm, to 379ppm in 2005

which exceeds the natural range of variability over the last 650,000 years; and the rate at

which the concentration is increasing has accelerated towards the present.

The projection of the warming trend into the future highlights that a continued increase in

concentration level of GHGs in the atmosphere will further increase temperatures and that the

impacts from the change we are experiencing currently such as prolonged droughts, more

intense heat waves, flooding, and stronger hurricanes and typhoons will become more severe

with possibilities of the effects extending to extinction of species, shortage in food production

and health issues (Climate Action 2011). It is therefore of the utmost importance to control and
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improve the way we use energy, specifically the use of fossil fuels that emit CO2, and thus

reduce the subsequent anthropogenic GHG emissions into the atmosphere in order to prolong

the way we live today.

2.3 International and domestic frameworks to curb anthropogenic CO2 emissions

In recognition of the impacts of global warming, the United Nations Framework Convention on

Climate Change (UNFCCC) was adopted at the United Nations Conference on Environment

and Development (UNCED) in 1992. The convention provided an initiative to act on the issue

by setting an objective for the ratifying countries to stabilise greenhouse gas concentrations in

the atmosphere at a level that will prevent dangerous human interference with the climate

system (UNFCCC 2011a).

Following the convention, the Kyoto Protocol, an international agreement that complements

the UNFCCC, was adopted in Kyoto, Japan in 1997 and came into force in 2005. The

significance of the protocol is that sets legally binding targets, unlike the convention, for the

37 industrialized countries and the European community to reduce GHG emissions by an

average of 5% against emission levels in 1990 over the five-year period from 2008 to 2012

(UNFCCC 2011b). Moreover, the protocol also provides market-based mechanisms

(Emissions Trading, the Clean Development Mechanism and Joint Implementation) for extra

flexibility, in addition to requiring the ratifying countries to achieve the targets mainly through

national measures. In addition, the requirement has led to the monitoring of GHG emissions,

which is a vital step to identify the current status and to reduce levels further.

As a signatory to the Kyoto Protocol, the EU as a group of member states has an obligation to

achieve an overall reduction of 8% against the 1990 level, where targets vary between the

member countries according to their economic conditions. As a response to the protocol, the

European Climate Change Programme (ECCP) was introduced by the European Commission

(EC) in 2000 (European Commision 2006). Through a consultation process, the programme

has led to the identification and development of various policies that are aimed at reducing

GHG emissions across a broad range of areas to implement the Kyoto Protocol. In 2008, a
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‘20-20-20’ plan was set into motion with the aim of reducing EU greenhouse gas emissions by

at least 20% below 1990 levels; to make 20% of EU energy consumption come from renewable

resources; and to make a 20% reduction in primary energy use compared with projected levels,

to be achieved by improving efficiency (European Commision 2010).

2.4 Carbon emissions from non-domestic buildings

In many countries, buildings account for approximately 40% of the national carbon emission

and energy use and are deemed to be the most cost-effective sector to reduce energy

consumption (International Energy Agency (IEA) 2010). Similarly, carbon emissions from

buildings in the UK account for nearly half the total national emissions and approximately 18%

of the total is attributable to non-domestic buildings. As a result, reducing energy demand in

non-domestic buildings has been identified as one of the key strategies to achieve the national

reduction target by 2050 (HM Government 2010a).

A report by Carbon Trust (2009) has shown that absolute carbon emissions from non-domestic

buildings have barely declined since the 1990s. Over the past two decades, carbon emissions

from the stock have remained relatively stable with a historic reduction rate of 0.5% per annum

as shown in Figure 2.1.

Figure 2.1 Historical annual emissions from 1990-2006 from commercial and public
sector non-domestic buildings in the UK (Source: Carbon Trust 2009)
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The projection based on this trend suggested that the cumulative reduction by 2050 would be

less than 25% compared with the required reduction of 80% (Carbon Trust 2009). Various

analyses however suggested that there is significant scope for reducing emissions from the

non-domestic stock by improving energy efficiency measures. A report by CCC (2008)

highlights that there is a significant scope for reducing carbon emissions in the stock with a

technical potential to reduce emissions by 11 MtCO2 in 2020 with energy efficiency

improvements that have no, or even negative costs. Moreover, a report from the Carbon Trust

(2009), based on an analysis of cumulative net cost and net carbon savings for non-domestic

buildings, highlights that, based on a ‘Success Scenario’ reducing carbon emissions by 35%,

from 106MtCO2 in 2005 to 69MtCO2 in 2020, will lead to a net financial benefit of £4.5 billion.

The report highlights that there is a need to deliver more energy efficient buildings that are

operated more efficiently if the national target is to be achieved by 2050. Consequently, it

illustrates that almost all available carbon reduction technologies will need to be implemented

to both new and existing buildings, starting from cost-effective energy efficiency measures

such as adopting more efficient management, and gradually moving towards more expensive

options such as on-site low-carbon energy generation and non-cost-effective measures. The

report also gives a list of issues which were identified as barriers to improving energy efficiency

of the stock. Among these barriers, lack of awareness by owners, operators and occupants

raises the importance of assessing and evaluating energy performance of buildings so that

various stakeholders are motivated to take action to improve energy efficiency.

2.5 Energy certification of non-domestic buildings

There are numerous policy instruments that aim to reduce carbon emissions from buildings by

tackling the problem from various angles. In the UK, for example, the requirement for energy

efficiency in buildings set by the Buildings Regulations has become increasingly stringent year-

on-year, forcing new and existing non-domestic buildings to become more energy-efficient

(HM Government 2010b; HM Government 2010c). There is also Green Deal, which is a new

initiative implemented with an aim to improve the energy efficiency of both domestic and non-

domestic buildings by allowing an upfront payment for installation of energy efficiency
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measures (DECC 2011). There are also policies that target large organisations to reduce their

carbon emissions such as the Climate Change Levy (CCL) or Carbon Reduction Commitment

(CRC) scheme (DECC n.d.; Carbon Trust 2006).

Energy certification is a policy instrument that aims to improve the energy efficiency of the

building stock by tackling one of the key barriers, the lack of awareness of how energy is used

in buildings (Carbon Trust 2009). In general, these certificates provide indications of how

energy efficient a new or existing building is, which in turn raises the awareness of various

stakeholders in the building sector (International Energy Agency (IEA) 2010). The Energy

Smart Labelling Scheme and the BCA Green Mark scheme of Singapore, the Energy Star

scheme of the US, and Australia’s National Australian Built Environment Rating System

(NABERS) are some of the examples of how energy certification is adopted in different

countries (National Environment Agency (NEA) 2008; Building Construction Authority (BCA)

2014; Environmental Protection Agency 2011; Office of Environment and Heritage (OoEH)

n.d.).

In Europe, energy certification was rolled out across the member countries of the EU as part

of the requirements of the Energy Performance of Buildings Directive (EPBD). The directive

came into force with an aim to improve the energy efficiency in the building sector through

various measures, including energy performance certificates (CIBSE 2003; European

Parliament 2003). In 2010, a recast of the directive was adopted by the European Parliament

with the aims of strengthening the provisions and extending the scope of the 2002 directive

(European Parliament 2010).

2.6 Operational energy efficiency

Over the past decade it has been frequently observed that many buildings that are built to

higher standards are performing poorly in comparison to their predicted performance (Bordass

2001; Bordass, Cohen, et al. 2001; Bordass et al. 2004). A similar trend has also been found

in other parts of the world such as Canada and Australia where high levels of energy

consumption in supposedly energy-efficient buildings were attributed to a similar set of issues
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(Bannister 2009; Birt & Newshame 2009). A list of commonly found issues which were

identified in these studies as the reason for the discrepancy showed that an improvement is

required across the whole process of delivery of a building from its design and construction

through to operation. What these findings suggest is that designing and constructing an

energy-efficient building does not necessarily lead to delivering the required reduction in

carbon emissions unless the building is managed and operated by the operators and

occupants in an energy-efficient manner.

There are various factors that affect the operational performance of buildings which can lead

to a building consuming more energy than was estimated during the design stage. These

range from control settings of various building services to the types of equipment used to

support the activity that takes place in a building and how these are used by the occupants. In

order to improve the operational energy efficiency of existing buildings, an energy

management practice such as an energy audit or post-occupancy survey is carried out to

assess and evaluate the performance of the building and to highlight areas that require

improvement. While there are various methods used to assess and evaluate the performance

of existing buildings, benchmarking is considered to be an effective method to improve the

operational energy efficiency due to the motivating nature of comparing the performance of

the building in question to that of similar buildings (CIBSE 2012).

2.7 Display Energy Certificate Scheme

In 2008, the Energy Performance Certificate (EPC) and Display Energy Certificate (DEC)

schemes were implemented in the UK through the Energy Performance of Buildings

Regulations as a means to fulfil the requirements of EPBD (HM Government 2007). Although

both schemes aim to improve the energy efficiency of non-domestic buildings by raising

awareness of energy efficiency of buildings, they are clearly distinguished from one another

by differences in underlying methods.

EPCs indicate how energy-efficient buildings are, based on their asset ratings. These ratings

are based on the carbon emissions of buildings in question estimated through building
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simulation models under ‘standard’ uses, which means that EPCs are focussed on evaluating

the levels of energy efficiency of a building with regards to its fabric and fixed building services

(DCLG 2012b).

DECs on the other hand are certificates that indicate how efficiently an existing building is

being used in energy terms once it is occupied. The main difference is that operational ratings

which underpin the scheme are based on the actual energy consumption of buildings. This

means that DECs reflect how energy is actually used by occupants in buildings, including the

inefficient uses (DCLG 2008). These certificates therefore provide opportunities to encourage

existing buildings to be used in a more energy-efficient manner.

The operational ratings are an evaluation of the operational energy efficiency of buildings, and

are produced by comparing the actual annual carbon emissions of a building to a benchmark

that is representative of the typical performance of similar buildings (equation 1).

Operational Rating (OR) =
Annual carbon emission of a building (kgCO2/m2∙yr)

Adjusted energy benchmarks (kgCO2/m2∙yr)
× 100 (1)

The operational energy efficiency of buildings are presented in the form of seven letter grades,

from A (the best, i.e. lowest) to G (the worst, i.e. highest) where each band is set apart by 25

operational ratings. As shown by the equation, a building that has energy consumption

comparable to the typical performance of similar buildings in that category would receive an

operational rating of 100 which lies between the grades D and E. The benefit of using these

ratings rather than the raw actual energy consumption (kWh/m2) is that they are derived in

relation to benchmarks which are adjusted to account for the circumstances of individual

buildings, such as regional and seasonal variations in weather, as well as extended occupancy

hours. The adjustment process also allows buildings in certain categories to deduct separable

energy uses, which further reduce the discrepancy in characteristics between a building and

the benchmark.
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The scheme originally required non-domestic buildings that are occupied by public authorities

or frequently visited by public and greater than 1000m2 in floor area to produce and display a

DEC in a prominent location in the building (DCLG 2007). The recast of the directive and the

amendment to the energy performance of buildings regulations saw a lowering of the threshold

for DECs to 500 m2 in 2013 and this is expected to be reduced further to 250m2 by 2015

(DCLG 2012; HM Government 2012b; CIBSE 2011). The DECs for buildings above and below

1,000m2 are currently valid for 12 months and 10 years respectively. Over the years, there

have been various calls from the building industry to extend the DECs to commercial buildings.

The possibility of extending DECs to the commercial sector was first proposed by the

Department for Business, Innovation and Skills (BIS), and has since gathered momentum with

a commitment by HM Government in The Carbon Plan to ‘extend Display Energy Certificates

to commercial buildings.’ This commitment was however later reversed and the coverage of

the scheme remains limited to public sector buildings (BIS, 2010; Gardiner & Lane, 2013; HM

Government, 2011).
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Chapter 3 Benchmarking the Energy Performance of Non-

Domestic Buildings

This chapter gives an overview of benchmarking energy performance in the built environment.

The basic concept of benchmarking and its role in the built environment is discussed. The

literature focussing on various aspects of energy benchmarking is also reviewed in the

following sections.

3.1 The role of benchmarking

The definitions of the words ‘benchmark’ and ‘benchmarking’ are given in the Oxford

Dictionaries (n.d.) as “a standard or point of reference against which things may be compared”

and an action taken to “evaluate (something) by comparison with a standard”, respectively.

Benchmarking is a technique frequently used in businesses, that is employed to improve the

operational performance of an organisation by assessing its internal performance against a

benchmark (Camp 1989).

In the built environment, benchmarking is often employed as part of an energy management

practice in existing buildings to assess and improve their energy efficiency (CIBSE 2012). This

involves evaluation of the operational energy efficiency of buildings through comparison with

standards such as historical energy use or established energy benchmarks. As a result,

establishing and understanding the operational energy efficiency of a building assists and

encourages building operators to make improvements. Benchmarking, therefore, is a

technique that provides vast potential to influence and reduce the anthropogenic carbon

emissions from non-domestic buildings.

In the UK, building energy-use benchmarks have existed from the late 1980’s. Historically,

benchmarks have been used to give a feel for how buildings are performing against their peers,

thus encouraging their owners and users to make them perform better (Bordass & Field 2007).

However, without a supporting legal framework, the use of benchmarking was limited to those
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interested in improving energy efficiency on a voluntary basis, thus the potential for reducing

consumption through benchmarking was limited.

In recent years, benchmarking has gained prominence due to the implementation of the

Energy Performance of Buildings Directive in the UK (CIBSE 2003). The mandatory nature of

the Display Energy Certificate (DEC) scheme means that opportunities to raise awareness

and encourage more energy-efficient operation of existing non-domestic buildings have

improved dramatically. Moreover, the requirement to display the certificate in a public place

means that the operational energy efficiency has the potential to influence the reputation of an

organisation, which could be a considerable motive. Hence, it has become crucial for the

benchmarking process to be robust so that non-domestic buildings acquire an accurate

evaluation of their operational performance.

3.2 Indicators of energy performance

In the built environment, an energy performance indicator (EPI) or Energy Use Index (EUI) is

widely used to express the overall energy performance of a building, enabling its performance

to be compared against another, as in benchmarking processes. In general, the indicators are

commonly expressed in kWh/m2/year or MJ/m2/year (kWh/sqft/year or Btu/sqft/year,

respectively, in countries which use imperial units (Sharp 1996)) or kgCO2/m2/year which

expresses an overall CO2 emission per unit floor area. The index is created generally by

normalising the delivered energy consumption of a building relative to a determinant of energy

use, which is usually the floor area of a building for the majority of building types in the UK and

other countries. By normalising various determinants of energy use, the index can be used to

compare energy performance between buildings to highlight the inefficiency of a building or its

services.

Floor area is the most widely used denominator; however a study by Bordass (2006) shows

that there is a large variation in conventions for measuring floor areas such as the Treated

Floor Area (TFA) used by building services engineers; Net Internal Area (NIA) or Net lettable

Area (NLA) widely used in commercial properties; and Gross Internal Area (GIA) commonly
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used by design and building teams. He emphasises that the most inaccurate aspect of the

indicator is the denominator as people are often sloppy about both the units and the numerical

values. In addition, there are other types of denominator used in certain types of buildings in

which other characteristics of buildings or businesses are considered to represent energy use

better than the floor area. For example, these might be the number of prisoners in prisons

(kWh/prisoner), number of meals served in catering buildings of the Ministry of Defence

(kWh/meal), the number of covers (place settings) in a restaurant (kWh/cover), the number of

pupils in a school, or the numbers of bedrooms in a hotel.

Recently a study by Dooley (2011) suggested that floor area-based indicators are extremely

useful during the design stage, when the building is being compared to an alternative version

of itself to evaluate the influences of design elements such as solar shading or insulation levels.

These indicators were however deemed insufficient as performance indicators for motivating

energy efficiency of buildings through comparison of energy performance, due to a lack of

understanding of how effectively a building will be used once it is occupied. The author

therefore proposes a new form of metric Wh/m2h which takes the annual energy consumption

metric, kWh/m2, divided by total person hours which are the total number of hours that all

building users spend in the building during the year.

An analysis by Bruhns et al. (2011) however revealed that the correlation between occupancy

levels and energy consumption in commercial offices in the UK was poor and that there is a

lack of robust and low-cost methods for collecting accurate occupant density information,

without which there would be considerable potential for abuse of benchmarks on this basis.

Moreover, this analysis concludes by illustrating that benchmarking per square metre is more

reliable, and that occupancy-related benchmarks should be regarded as complementary

indicators and reported voluntarily, at least until robust methods of measuring and recording

occupation density have been developed. The limitation of the analysis by Bruhns et al. (2011),

however, is that it was only based on the Full Time Equivalent hours of occupancy which

suggests that it does not fully reflect the transient population in the building, and that the scope
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was limited to data from large offices covered by the Better Buildings Partnership2, which is

an organisation of high-end commercial property owners. The inadequacy of using occupancy

to evaluate energy consumption is also highlighted in a report from the Probe studies3 where

the reasons for not using occupancy were indicated as: floor areas are generally measured

more often than occupancy; many aspects of building energy consumption are related more

to area than occupancy; and hours of use by nominal occupants can vary widely (Bordass et

al. 2001).

Regardless of the type of an EPI, CIBSE Guide F says that the performance indicators give

only a broad indication of building efficiency and, therefore, must be treated with caution.

Moreover, the Guide illustrates that overall performance indicators can mask underlying

problems with individual end uses of energy, and that it should not be assumed that a building

with a ‘good’ performance indicator is in fact being operated as efficiently as is possible, or

offers no scope for cost-effective savings (CIBSE 2012).

The review has shown that there are varying approaches and perspectives to improving the

comparability of benchmarking by examining the energy performance indicator. It was also

shown that much of the work to assess the impact of occupancy levels and their relationship

to energy use was implicitly focussed on offices. The extent to which a similar approach would

apply to other building types therefore remains to be explored.

3.3 Approaches to deriving energy benchmarks

There are two fundamentally different approaches that are used to analyse or design systems

in engineering disciplines: top-down and bottom-up. A top-down approach refers to the way in

which a system is designed by first formulating an overview without details of the sub-systems.

The system would then be refined further, subject to the availability of more detailed

information. A bottom-up approach on the other hand would involve specification of lower-level

system information that would then be used to build up a more precise overview. In much the

2 For Better Buildings Partnership, see http://www.betterbuildingspartnership.co.uk/
3 For Usable Buildings Trust, see http://www.usablebuildings.co.uk/
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same way, the methods that are used to derive energy benchmarks for buildings can be

grouped into these approaches based on the granularity of the information involved.

In the field of benchmarking, the top-down approach can be referred to ways in which energy

benchmarks are derived based on building-level energy performance figures. These

benchmarks are usually expressed as energy use intensities (EUI) and indicate how other

buildings with similar demand use energy. A review has shown that there is a range of methods

with varying levels of complexity that are top-down in their nature.

A top-down method which is widely used in the UK is to derive energy benchmarks based on

descriptive statistics such as 50th and 25th percentiles from a distribution of the energy

performance of sample buildings (Action Energy 2003; CIBSE 2012; Hernandez et al. 2008;

Jones et al. 2000). Similar methods were also used to assess the energy performance of

schools in Argentina and Greece (Filippin 2000; Santamouris et al. 2007). In recent years, the

method was improved through the introduction of procedures to normalise the benchmarks, to

tailor them to the individual circumstances of buildings in different regions with varying

occupancy levels (CIBSE 2008).

There are top-down methods that are more complex in order to evaluate operational energy

efficiency more precisely. The earliest attempts were made using multiple linear regression

models to identify significant determinants of the energy use of buildings in the US (Sharp

1996; Sharp 1998; Monts & Blissett 1982). The approach now forms the basis of the US

Environment Protection Agency’s (EPA) Energy Star scheme (Environmental Protection

Agency 2011). In addition, the same approach was used to benchmark the energy efficiency

of commercial buildings in Hong Kong (Chung et al. 2006).

In recent years, the possibility of using an Artificial Neural Networks (ANN) method to

benchmark the energy performance of buildings was explored in the US (Yalcintas 2006;

Yalcintas & Ozturk 2007). An ANN is an information-processing system that is used to
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recognise a pattern in given data by mimicking the mechanisms of a human brain (Fausett

1994). Although it may be innovative, the robustness of the new method remains to be verified.

There were also studies that used Data Envelopment Analysis (DEA) techniques to identify

frontiers, or buildings that are the most efficient users of given resources, and use them as a

reference point to identify inefficient buildings (Zhou et al. 2008; Lee & Lee 2009; Lee & Kung

2011; Lee 2008). Rather than using descriptive statistics or regression models to establish the

typical energy performance from a given data, the DEA method identifies the least energy-

intensive building for a given characteristic. These efficient buildings then becomes the

benchmarks for assessing levels of energy efficiency of other buildings.

While top-down approaches are the most commonly used, Federspiel et al. (2002) argue that

there are two fundamental limitations. First, it is argued that benchmarks cannot be derived

unless there is sufficient data for similar buildings. This is certainly a critical aspect of the top-

down approach, which depends on the availability of sufficient data to represent the stock.

Considering the diversity of buildings and activities that exist across the non-domestic building

sector, it is currently unlikely that there will be sufficient data to derive top-down benchmarks

for these building types. Second, the evaluation is based on an assumption that benchmarks

are representative of the wide spectrum of energy efficiency levels in the stock. Taking into

consideration that most top-down benchmarks are representative of the energy performance

of buildings found at 50th or 25th percentiles without any basis in detail of the quality of fabric

or efficiency of building services, it is correct that the benchmarks do not necessarily represent

absolute levels of energy efficiency.

The bottom-up approach on the other hand refers to ways in which whole-building energy

benchmarks are built up by aggregating system-level information. For example, benchmarks

for schools would be derived by first estimating the energy performance of individual systems,

such as the ventilation or lighting systems. These system-level consumption figures would

then be aggregated together into a single EUI representing the hypothetical performance of a

whole building.
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There are a few examples of bottom-up approaches being used for benchmarking the energy

performance of existing buildings. Federspiel et al. (2002) proposed using a simulation model

to derive the whole building benchmarks for laboratories in the US. The author argues that the

bottom-up approach allows benchmarks that depict the theoretical minimum performance of

buildings, hence representing energy consumption achieved at the maximum level of

operational energy efficiency. A series of assumptions were made however in the study in

order to simplify the calculation process of the model. It was for example assumed that there

are no conductive heat transfers or transmissions of solar energy through the building fabric,

which are crucial parts of building physics that determine the demand for space heating and

lighting. Similarly, default values were specified for a range of variables including those that

describe the occupant density and schedule. The study by Federspiel et al. (2002) proposes

a fresh perspective on producing benchmarks and what they portray, and ways in which the

comparability of benchmarking could be improved considerably compared to the top-down

approaches. The plethora of uncertainties associated with the assumptions that are made for

estimating the optimum performance however is unlikely to reflect how buildings are actually

used (Bordass et al. 2004).

The simulation-based approach to benchmarking was also explored by Mathew et al. (2004,

2010). These studies emphasise the limitations of empirical benchmarking methods in

benchmarking the operational energy efficiency of complex buildings such as laboratories.

Nevertheless, both studies do not provide details of and limitations of the assumptions that

were made during the simulations. The studies therefore do not allow assessment of whether

uncertainties associated with approximating occupant behaviour or building physics were

resolved or addressed adequately.

Bottom-up approaches such as Simplified Building Energy Modelling (SBEM) or dynamic

thermal modelling software are also used in the UK to estimate the energy performance of

new buildings for producing EPCs or for demonstrating compliance with the Building

Regulations (DCLG 2012a; HM Government 2010c). As described previously however, these

estimations do not currently reflect the actual patterns of energy use and take into account the
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plug loads such as computers, printers or kettles. These methods therefore, have yet to be

explored for benchmarking the operational energy efficiency of existing buildings.

Other bottom-up methods include the CIBSE TM22 method which can be used to benchmark

the energy consumption of major building systems or end uses (CIBSE 2012). Unlike the

simulation-based approach, benchmarks for individual end uses are derived by using a tree

diagram approach.

Figure 3.1 Tree diagram method in CIBSE TM22 (source: CIBSE 2012)

As shown in Figure 3.1, the energy consumption of each end use is derived based on

parameters that describe specifications of equipment and the usage. Taking the end use

lighting for example, the end-use energy consumption is derived based on the designed

lighting level, efficiency of lighting, and parameters that describe the occupancy and

maintenance. Similar to the simulation-based approaches, these benchmarks have the

potential to portray absolute levels of efficiency in finer detail. The limitation of the method is

however, that the implications of variations in building design on the energy uses are not taken

into consideration. The variations in glazing area or shading design, and climate conditions

such as cloud coverage for example, would all have different implications on the demand for

artificial lighting in different buildings. Similarly, the method currently does not provide any

means to estimate energy consumption for space heating or cooling, as these end uses are

dependent on the thermal performance of buildings as well as features of building fabric such

as thermal mass that are not accounted for by this method.
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3.4 The robustness of top-down energy benchmarks

Deriving energy benchmarks that are representative of the stock is essential to developing

and maintaining a robust benchmarking system. Benchmarks that are representative of the

stock can provide an opportunity to gauge one building’s performance in relation to peers.

Inaccurate benchmarks on the other hand may mislead building operators into taking

ineffective actions or at worst no actions at all to improve operational energy efficiency.

As described earlier, top-down benchmarks in the UK have been predominantly derived from

statistical distributions. Due to difficulties in acquiring data for the entire population however,

top-down benchmarks are generally derived by making inferences about the wider population

from a smaller sample. This means that the robustness of the benchmarks is heavily

dependent on various characteristics of the underlying sample.

Firstly, there is the sample size. Making inferences about a parameter of a population from a

sample, which in this case would be the typical energy performance, means that the estimate

is bound to have an associated degree of uncertainty. As Liddiard (2008) points out, it is often

difficult to determine the reliability of energy benchmarks due to the general lack of

transparency of the underlying data. A number of historical works however, provide references

to standards which have been used to ensure that the benchmarks reliably represent the

patterns of energy use in the stock. The sample size that is most frequently quoted as a

threshold for determining the reliability of benchmarks is 50, although 100 samples has also

been quoted occasionally (CIBSE 2012; Jones et al. 2000; Jones 2014; Bruhns et al. 2011).

Despite the uses of such samples, no empirical evidence has been put forward to support the

idea that the uncertainties associated with the resulting benchmarks are small enough for them

to be deemed reliable.

The composition of buildings in the sample and their characteristics can also influence the

robustness of the benchmarks. As Federspiel et al. (2002) highlight, the typical levels of

performance portrayed by energy benchmarks are dependent on the energy efficiency levels

of buildings in the underlying sample, which may not be representative of the stock. A sample
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that is biased towards inefficient buildings for example would lead to benchmarks that portray

poor energy performance as being typical of the stock.

The sample should also be up-to-date with the latest patterns of energy use of the stock.

Recently, a review of the CIBSE TM46 benchmarks that underpin the DEC scheme was

carried out by Bruhns et al. (2011). The study was based on actual energy consumption data

of unprecedented scale, hence producing findings with a high level of statistical quality. The

review showed positive results where 94% of buildings in the database were within one grade

of their benchmark. Based on the overall statistic, the authors suggested that the benchmarks

are indeed representative of the stock and are appropriate to support the DEC system. Hidden

away from the main conclusions were however results that showed that benchmarks for

electricity and fossil-thermal EUI were not at all relevant to the actual consumption of buildings

(Figure 3.2).

Figure 3.2 EUIs and operational ratings by building category (Bruhns et al. 2011)

As shown above, there is a general trend towards higher electrical EUI and lower fossil-thermal

EUI compared to the benchmarks (Rating = 100) across numerous categories. It can also be

seen that the resulting DEC ratings are similar to the benchmarks due to the cancelling effect

of the opposing trends. Technically, this means that the benchmarks are not likely to be

representative of the latest patterns of energy use in the stock.
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3.5 Classification of buildings

The way non-domestic buildings are grouped into different categories plays an important role

in benchmarking their energy performance. Buildings should be grouped in such a way that

only those that have similar patterns of use and demands for energy are benchmarked

together. A poor grouping of buildings can lead to feedback that does not provide true evidence

of either a good or poor performance but rather a categorical error (Bordass & Field 2007). An

example of such an error would be to compare performance of a large supermarket, which

generally uses more energy-intensive equipment such as freezers and fridges, against a

benchmark that represents general stores which are likely to be considerably less intensive in

energy as much of that energy is used for lighting and providing a comfortable indoor

environment.

The difficulty in classifying buildings correctly with their peers with similar patterns of energy

use comes from the complexity and heterogeneous nature of buildings in the non-domestic

stock. Unlike the domestic stock, there is a large variation in the way buildings are used, hence

in the varying patterns of energy use, as shown in Figure 3.3. The types of activities engaged

in by occupants, including their use of machinery, vary widely between buildings where, for

example, in the retail sector there are general stores, lighting and electrical goods shops and

food stores, each with distinctive sets of requirement for use, environment and equipment. In

addition to the diversity of activities there is a diverse range of characteristics and qualities of

buildings within the building stock such as built form, size, services and age, which can have

varying influences on energy consumption. For example, there are at one extreme small

buildings such as information kiosks with less than 30m2 in floor area with a minimum level of

building services, and at the other extreme heavily-serviced high-rise buildings which are tall

and slender with floor areas greater than 5,000m2 such as hospitals or commercial offices, or

low-rise buildings with deep plans such as supermarkets or warehouses. The complexity of

the stock due to variation in activities and physical properties of buildings is further

exacerbated by a very loose relationship of built form to function (Bruhns 2000b). Taking the

function ‘office’ as an example, office businesses can operate in various types of building from

converted Victorian houses or purpose-built low-rise buildings with courtyards in office parks
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to temporary huts on construction sites. Consequently, the aspects of classification that have

influence on or relevance to the benchmarking process depend largely on how buildings are

grouped as well as the level of detail that the classification provides.

Figure 3.3 Frequency distribution of energy consumption of various non-domestic
building types (Mortimer et al. 2000)

3.5.1 Basis of grouping

In the UK there are various classifications used to categorise non-domestic buildings into

different groups for various purposes.
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A common basis for this grouping is to categorise buildings by the economic activity, in the

sense of the economic sector served. A classification which is widely used for classifying

various activities in the non-domestic sector for purposes other than analysing energy

consumption is the Standard Industrial Classification (SIC) (CSO 1980). The SIC is a well-

established and widely used system that comprises a detailed and comprehensive system of

categories that distinguish the manufacture of different types of commodity and the supply of

different commercial, public and charitable services. Adaptation of the classification to

analysing energy consumption in non-domestic buildings can be observed in the Energy

Efficiency Office study that took place in the late 1980’s (Herring et al. 1988). The study shows

that there was an effort to relate the study to the SIC of 1980 as much as possible. It transpired

however that the SIC does not allow an easy division of sectors. Some data on categories was

therefore assembled according to the 1968 version of the SIC.

The adequacy of the SIC for use in a database for analysing energy consumption and for

benchmarking purposes was evaluated in later years by Bruhns et al. (2000) and Bordass

(2007), respectively, due to questions about the appropriateness of the classification. In both

studies, the SIC was deemed inadequate on the grounds that it classifies the economic sector

served by a business or institution that is occupying the building, but does not necessarily

relate to the physical characteristics of the building and its energy consumption. A large food

retail company such as Sainsbury’s, for example, would be classified under the ‘Food

Retailing’ category in the SIC. The problem that arises due to such classification is however

the fact that the company comprises a diverse range of activities including offices, shops or

warehouses that have considerable differences in the pattern of energy use. Benchmarking

based on the economic activity classification to evaluate the energy performance of the

company would therefore not yield any useful information.

By contrast, there are classifications that group buildings based on the type of activity that

takes place in a building. The set of classifications used by the Valuation Office Agency (VOA)

is a system that has been extensively used for analysing the energy consumption of non-

domestic buildings as part of the National Energy Efficiency Data (NEED) framework of the
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Department for Energy and Climate Change (DECC 2013). The classification system has also

played a significant role in developing one of the key classifications in the Non-Domestic

Building Stock (NDBS) database project. The strengths of the composite activity classification

called the ‘primary’ classification comes from the detailed coding system (Bruhns et al. 2000).

The coding system comprises letters and numbers which represent a category at each

hierarchical level. At the top are the four principal divisions which form the first letter of the

coding followed by a next letter through which 13 bulk classes are created from the

combination. Further disaggregation into more detailed categories is made at the next level

where a numeric code is added to the first two characters to form 57 ‘primary types’. Through

the combination of codes at different levels, the primary classification allows buildings to be

classified accurately according to what they are used for instead of relating to the economic

sector which they serve.

There are however difficulties in using such classification for benchmarking purposes due to

the differences between a hereditament and a building. The key difference between

hereditaments and buildings is the boundary by which one entity is identified from another. A

hereditament refers to an area of floor space with one owner or occupant who pays the rates

but the boundary of a hereditament does not necessarily equate to the physical boundary of a

building (Bruhns 2000). A hereditament can vary from being part of a building, a whole building,

or a group of buildings on a site as long as the space is occupied by one entity. A positive

aspect of such classification in the context of benchmarking is that the pattern of activity in

each category can be expected to be reasonably homogeneous, hence the pattern of energy

use (Bruhns 2000b). The challenge is however the fact that energy is often used, metered and

benchmarked at a building level. Some of the intrinsic features that determine the demand for

energy are also associated with buildings. Bruhns et al. (2000) suggest that there are

possibilities for using the VOA classification in conjunction with the SIC coding for the analysis

of the energy performance of non-domestic buildings. However, this remains unexplored.

A similar approach in categorising the non-domestic stock by the type of occupant activity can

be seen in the benchmarks in CIBSE TM46, which aim to evaluate the operational
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performance of non-domestic buildings (CIBSE 2008). The classification system comprises

two levels: benchmark categories and building type classifications. At the top level, the

benchmark category is used for benchmarking the energy performance of buildings that

accommodate similar activities. The building type classification on the other hand, is a further

refined list of activities that provide guidance in selecting a correct benchmark category. In a

report, Bruhns et al. (2011) explains that the classification was developed under the philosophy

that activities in the same category are expected to have similar requirements for use,

environmental conditioning and installed appliance loads, hence the pattern of energy use.

Moreover, it was highlighted that there were issues associated with the activity classification

of buildings and that a full review was necessary. The issues were mainly related to

uncertainties associated with building type classifications that were temporarily allocated to

benchmark categories due to a lack of evidence. The study concluded that there was a need

to assess the building type classifications for issues such as misallocation or introduction of

new benchmark categories.

There are also classifications which base the grouping on the physical properties of buildings.

Adopting physical parameters of buildings as a basis for grouping to improve the relevance of

benchmarking can be seen in a number of categories in CIBSE Guide F, which is a compilation

of existing benchmarks into a harmonised format (CIBSE 2012). An example of this can be

seen in the categories ‘Education (higher and further)’, ‘Industrial buildings’ and ‘Offices’ in

which buildings are further grouped into sub-categories based on different physical and

technical parameters. In the ‘Education’ category for example, a distinction is made between

buildings which are naturally ventilated and those that are air-conditioned. Using the ventilation

system as a basis for grouping can also be seen in the ‘Offices’ category where a distinction

is made between offices of different sizes with different ventilation systems (Action Energy

2003). Due to the similarities between intrinsic features of the buildings, such a grouping would

allow the comparison to show more accurate evidence of the efficiency of the building. With

the potential of air-conditioned buildings to perform similarly to naturally ventilated buildings

however, setting higher benchmarks for air-conditioned buildings by grouping them separately

from naturally ventilated offices was considered inappropriate (Bruhns et al. 2011). This was
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due to concerns that this could encourage the addition of air-conditioning systems even when

they are not necessary.

In addition to some of the classifications in CIBSE Guide F, a set of classifications that is

comprehensive and detailed in categorising various physical parameters of buildings was

developed in the NDBS database project. The parameters that were used as a basis for

grouping are the built form and building services (Rickaby & Gorgolewski, 2000; Steadman,

Bruhns, Holtier, et al., 2000) as well as wall and roof materials, glazing types and systems,

and types of structural system (Gakovic, 2000; Steadman, Bruhns, & Gakovic, 2000).

3.5.2 Levels of classification

The level of detail that the classification in a benchmarking scheme provides also has influence

over the relevance of the comparison. In general, the level of detail can be observed from the

variation in the number of categories. A review of various existing classifications showed that

there is a wide range of systems with varying levels of complexity.

The classification with the smallest number of categories was the classification in the EPBD

which provides seven categories covering the entire non-domestic stock. While its simplicity

may be useful for national level analysis, the loss of detail due to aggregation was deemed to

be insufficient for use in benchmarking (Bordass & Field 2007).

There are also more refined classifications that were developed for the Simplified Building

Energy Model (SBEM) tool and the CIBSE TM46 (Building Research Establishment (BRE)

2014; CIBSE 2008). Both classifications provide a similar range of categories where SBEM

provides 27 and TM46 provides 29 categories. Despite the refinement however, the level of

detail remains excessively coarse to address the diverse characteristics that exist in the non-

domestic stock. In SBEM classification for example there is only one category to group all the

buildings that accommodate retail activities. What is important to note here is that retail

activities can vary greatly with regard to patterns of energy use. A hardware store for example

may only use a small amount of electricity for lighting and perhaps gas for heating the space.
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A large supermarket on the other hand would also belong to the retail category but use energy

much more intensively due to equipment such as refrigerators or bakery ovens. A similar

limitation can be observed in the TM46 classification where there is one category for offices

and one for schools. This means that the energy performance of a diverse range of buildings

is compared to a shared benchmark value. While such aggregation considerably reduces the

comparability, the authors of the review of DEC records argue that benchmarks do not

necessarily need to be ‘fair’ for every building, but only as fair as can reasonably be managed

(Bruhns et al. 2011).

At the other end of the spectrum, there are more detailed classifications such as the primary

classification of the Non-Domestic Building Stock (NDBS) project and the classification found

in CIBSE Guide F. These classifications provide in excess of 100 categories, acknowledging

differences in activities and their implications on the pattern of energy use in much more detail.

In general, these refined classifications would be beneficial in benchmarking the energy

performance of buildings with greater relevance. The challenge may however lie in the fact

that there will be fewer buildings under each category as the classification becomes

increasingly more detailed.

The revision of various classifications and their complexity has shown that the number of

categories vary immensely between different systems and that it is beneficial to disaggregate

the categories in finer detail to improve the comparability of benchmarking. In addition, the

review also suggested that the level of aggregation of the categories of the TM46 classification

system may require revision.

3.6 Comparability of benchmarking

There are various factors that determine the energy demand of non-domestic buildings. There

are factors that are intrinsic to buildings such as the type of activity, the shape of buildings or

occupancy hours that influence the basic demand for energy in providing a healthy and

comfortable indoor environment to occupants (CIBSE 2012). There are on the other hand

factors such as how equipment is used by occupants and how building services are operated
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that can lead to inefficient use of energy (Bordass, Cohen, et al. 2001). The extent to which

the intrinsic features of a building that determine the demand for energy is comparable to other

buildings that form the basis of energy benchmarks is therefore important in acquiring an

accurate indication of how well a building is being operated.

A review of various benchmarking schemes has shown that adjustments are frequently made

to account for the variation in the intrinsic features that are either specific to a geographical

location or a building type. In the adjustment procedures, also known as normalisation, either

the benchmarks or actual energy used in a building are adjusted to take into account the

variation in individual circumstances that are appropriate to the category of activity, which in

turn allows fairer comparison.

Adjustments for the seasonal and regional variation in weather conditions were found to be

the most widely-used procedure in various countries to improve the accuracy of comparison.

This procedure takes into account the weather-dependent characteristics of the space heating

of a building in relation to external temperatures so that the performance of buildings in regions

with different weather conditions can be compared to the relevant benchmarks.

In the UK (excluding Scotland), the benchmarks in CIBSE TM46 are based on buildings

located in the average UK climate with 2,021 heating degree days (HDD) with 15.5C° as the

base temperature (CIBSE 2009). For more accurate comparison, the benchmark value for

heating consumption of an individual building is corrected for heating degree days over the

assessment period in the region where the building is located, to take into account the weather-

dependent aspect of the performance. The adjustment is made using equation (2) below.

Ndd = [N (1 – P/100)] + [(N P / 100) (L / S)] (2)

Where
Ndd is the fossil-thermal energy use of a school adjusted for degree-days (kWh/m2/year)
N is the unadjusted fossil-thermal energy use (kWh/m2/year)
P is the percentage of the fossil-thermal energy use pro-rated to degree-days (%)
L is the number of degree-days in the assessment period for the specific location
S is the standard heating degree-days for the category
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A study of the benchmarking system in Germany by Cohen, Therburg, Bordass, & Field (2008)

illustrates a similar procedure for adjusting energy consumption figures to account for variation

in climate by period and regions. In addition to the current weather adjustment system, the

study also highlights that a new model for weather adjustment is under development which

will allow corrections to be made to account for variation in number of degree-days according

to the differences in altitude in the same region.

A more general difference of the German system from the UK system is that the weather

adjustment is made to the actual energy consumption of a building, which has the benefit of

having a fixed benchmark for each category. However, this approach suffers the vagaries of

using a model to correct the metered energy for the effects of weather, whereas the UK

approach which has the benefit of reporting actual results is more rigorous because the

proportion of the benchmark which is weather-dependent can be specified (Cohen et al. 2008).

In Australia which has a much warmer climate than the UK, the adjustment for climate in the

National Australian Built Environment Rating System (NABERS) involves additions or

subtractions not only for the heating degree days (HDD) but also cooling degree days (CDD)

which take account of the weather-dependence of air-conditioning systems (Bordass & Field

2007). A weather adjustment procedure can also be seen in the US Energy Star rating system

where HDD and CDD are used to account for the relationship between weather and the energy

intensity of buildings in different regions (Environmental Protection Agency 2011).

There were also adjustments for occupancy hours or intensity of use which were intended to

acknowledge the differences in energy demand of buildings due to variations in how long

buildings are occupied. Taking supermarkets, for example, one store may be occupied

throughout the day and close in the evening while another store could be open for 24 hours.

The differences in hours of occupancy means that the 24-hour store would intrinsically require

more energy to operate the equipment and building services. It would therefore be sensible to

take into account the impact of different occupied hours on energy use when comparing the

energy performance of these stores.
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In the UK, benchmarks represent the energy performance of buildings that are occupied for

standard number of hours (e.g. 2,040 hours per year for general offices) (Bruhns et al., 2011).

For buildings with varying hours of occupancy, adjustments are made to the relevant energy

benchmarks to account for effects of the extended hours of occupancy, to improve the

comparability. However, adjustment for buildings with shorter operating hours than the stated

reference occupancy hours is currently not allowed.

The allowance for separable energy uses is a unique method that is used in the UK’s TM46.

Separable energy uses are end uses in a building such as server rooms and catering facilities

that generally consume considerable amounts of energy but which are uncommon amongst

the majority of buildings in the category (CIBSE 2009). In the UK, there is an optional

adjustment which allows separable energy uses to be excluded from the comparison so that,

for example, an office with a large regional server room that consumes a large amount of

energy is not penalised in the comparison with benchmark value for offices based on buildings

with no separable energy uses. A review of the TM46 benchmarks has argued that additional

separable energy uses should be introduced for hospitals and universities since these may

improve the relevance of benchmarking (Bruhns et al. 2011).

Beyond these parameters the review of relevant literature also showed studies that have

integrated additional factors that determine the energy use of non-domestic buildings.

In the United States, Sharp (1996, 1998) assessed the impacts of various building and

operational characteristics on the energy use of offices and schools as part of a benchmarking

process. Through analyses of schools for example, Sharp (1998) found that year of

construction and presence of walk-in-coolers were the most common characteristics in schools

that were correlated with the electricity consumption. These factors were then used as a basis

for normalising the energy performance of buildings to improve the comparability. The

approach now forms the basis of the US Environment Protection Agency’s (EPA) Energy Star

scheme (EPA 2011). Similar approaches were used by Chung, Hui, & Lam (2006), Lee (2008),
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and Lee & Lee (2009) for benchmarking the energy performance of supermarkets and

government office buildings respectively.

In Australia, the National Australian Built Environment Rating System (NABERS) takes a

similar approach in normalising for a particular set of factors that affect the energy demand of

each activity type (OoEH n.d.). Taking offices for example, the scheme allows for divisions in

energy use between the landlords and tenants ( OoEH 2011a). Moreover, the methodology

allows adjustments for variation in the number of computers and occupancy hours. The rating

of hotels on the other hand considers a completely different set of parameters that are specific

to the activity type, such as number of guest rooms, hotel AAA rating, and climate (OoEH

2011b).

These studies have shown ways to improve the comparability of benchmarking by assessing

and introducing additional factors into the methods. The variables examined in these studies

were however limited to descriptions of buildings in the form of floor area, its occupants and

equipment. The implications of the intrinsic building design such as the shape or the glazed

proportions of the building fabric on the pattern of energy use, and the possibility of

incorporating these factors into benchmarking therefore remains to be explored.
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Chapter 4 Methodology

This chapter describes the research problem that was defined through the review of

background and relevant literature. The rationale behind the chosen research design and

methods is explained in detail, and the scope and limitations of the research are described.

Note that this chapter is intended to provide an overview of the research only to the extent of

how it was designed and structured. The details of data and methods that are specific to each

analysis will be described in each chapter to provide continuity throughout the study.

4.1 Research problem

The review of the background to the study in Chapter 2 showed that there is an imperative

and opportunities to reduce the anthropogenic CO2 emissions from UK non-domestic buildings

in order to mitigate their effects and adapt to foreseeable changes in the environment and

society. In Chapter 3, it was found that benchmarking the energy performance of non-domestic

buildings plays an important role in raising awareness of how efficiently buildings are being

operated and provides motives for building operators to aspire to achieve higher levels of

energy efficiency. The review of relevant literature focussed on various aspects of

benchmarking also showed however that there were gaps in knowledge about the benefits

and limitations of current benchmarking practice as well as the prospect of adopting more

advanced methods in order to provide feedback that accurately portrays the levels of

operational energy efficiency of buildings across the UK non-domestic sector.

Below are summaries of the key gaps in knowledge:

 Uncertainties were raised as to how appropriate the current Display Energy Certificate

(DEC) scheme is for benchmarking the operational energy efficiency not only of public

sector non-domestic buildings but all buildings across the stock. The issues identified

were:
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o Energy benchmarks for public buildings were found to be inaccurate

representations of the latest patterns of energy use.

o The activity classification that forms the basis of the scheme is made at an

aggregated level of complexity compared to established classification

systems for the entire non-domestic stock.

 A wide range of methods have been explored and used for benchmarking in other

parts of the world. In the UK however, benefits and limitations, and the feasibility of

adopting other methods remains to be explored. The issues identified were:

o There was some use of multiple regression analyses to assess, identify, and

normalise for various building and operational characteristics.

o The implications of features intrinsic to buildings, such as the built form and

architectural design for energy demand remain unexplored.

o Simulation-based benchmarking methods have been used, although these

involve numerous uncertainties.

These gaps were used as a basis for developing the research questions and the objectives

described in Section 1.2.

4.2 Research design

4.2.1 Selection of approaches

There are three types of research design that are commonly employed to address research

problems: qualitative, quantitative and mixed-methods approaches. As suggested by Creswell

(2008), each approach is appropriate for addressing different types of inquiry.

As illustrated by the list of objectives (Section 1.2), understanding the latest trends of energy

use in UK non-domestic buildings and the influences of intrinsic building and operational

features on their energy performance were at the heart of the research. As may be expected,
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the insights that are required to address the research questions are difficult to acquire without

employing empirical data. There are examples of using theoretical methods such as simulation

models in parallel with sensitivity analysis techniques to acquire insights into the influences of

various building and operational characteristics (Demanuele et al. 2010). As discussed

previously however, these methods heavily rely on assumptions on how a building may be

used by occupants which is often inaccurate, hence different from how buildings are used in

reality (Bordass et al. 2004). Consequently, it was deemed essential to employ empirical data

throughout the research in order to effectively address the proposed questions.

The decision to make extensive use of empirical data meant that quantitative methods of

analyses would be vital for interpreting the energy consumption data in the context of

benchmarking. Uses of descriptive and inferential statistics would allow the latest and historical

patterns of energy use in various non-domestic buildings to be analysed in order to assess the

factors that determine the robustness of the top-down benchmarks as well as the classification

system. Correlation analyses would also provide useful insights in assessing and identifying

the key intrinsic characteristics that influence the energy demand of non-domestic buildings,

which would be essential for assessing the feasibility of adopting more advanced methods.

Accordingly, a quantitative approach was deemed the most appropriate to address the key

research problems.

4.2.2 Scope

Prior to the consideration of research methods, a set of boundaries was established to ensure

that the research questions could be addressed with sufficient breadth and depth within the

timeframe of the research programme. The selection of the type of research and the building

type that would be investigated in depth were taken into consideration.

The primary consideration lies with the time and resources that would be required to develop

a deeper understanding of the energy performance of all UK non-domestic buildings. This is

largely due to the sheer volume and diversity of buildings in the non-domestic building stock

as described in Section 3.5. A case-study approach was therefore deemed appropriate for the
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research, in the sense that a study of a specific building type could be used to illustrate how

the robustness of benchmarking could be improved across various building types that are

required to lodge DECs.

Among various building types, primary and secondary schools were selected as being the

most appropriate candidates for addressing the research problems due to their characteristics

and the feasibility of obtaining sufficient data.

Schools are generally more homogeneous than other building types with regards to the factors

that determine energy performance such as the range of equipment, and the level and type of

occupancy. Taking university buildings for example, it would not be difficult to find a broad

range of activities such as laboratories and administration offices within these buildings. While

belonging to the higher education sector, the elements that determine the demand for energy

can vary significantly. In addition, it is also likely that these considerably different types of

activities will exist together, occupying different parts of one building. Again, there are

differences in the tenancy status of offices, ranging from a sole occupier of a building to tenant

within a building occupied by multiple tenants. Schools on the other hand are generally similar

in their activities and it is highly likely that they are the sole occupiers of their buildings,

although there may be some cases where a school co-exists with a nursery or a community

centre. The homogenous nature of schools would therefore allow energy performance to be

analysed in relation to the intrinsic features of buildings with greater precision.

There is also considerably more data available on schools than any other non-domestic

building type. There are various sources of data on the energy performance of non-domestic

buildings: the DEC scheme and the online platform Carbon Buzz. In 2010, a large dataset

from the DEC scheme of approximately 45,000 records was obtained for an analysis by a

research team at University College London (UCL) via the Chartered Institution of Building

Services Engineers (CIBSE). As shown by the review of DECs by Bruhns et al. (2011), the

largest group of records in the DEC dataset was under the ‘Schools and seasonal public

buildings’ category. An agreement to analyse the latest DEC data between UCL and CIBSE
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meant that the most recent dataset of approximately 120,000 records accumulated in the

central database until June 2012 would become available for the research. This latest data

will be the biggest set of consistently formatted data on energy use of public buildings in the

UK. Taking into account the large proportion of school records that were in the previous

dataset, a large fraction of the new dataset was also likely to relate to schools and would

provide an unprecedented opportunity to analyse the pattern of energy use of schools with

high levels of statistical significance. There is also the data from Carbon Buzz database, an

online platform that collects data through from the design to operational stages of various non-

domestic building types. The strength of the database comes from the fact that detailed energy

consumption of end uses are collected via the CIBSE TM22 methodology. This would

therefore provide deeper insights into how energy is used and explain the underlying factors.

The weakness on the other hand is that the dataset is small and that these are mainly buildings

that were completed in recent years.

Overall it was decided that the research would be carried out using primary and secondary

schools as a case study to illustrate how the robustness of benchmarking could be improved

and what this could mean for other types of non-domestic building.

4.2.3 Research methods

The study of possible methodologies has clearly shown that the research should be designed

in such a way that both general and specific questions could be addressed, in order to acquire

a holistic view of how energy is used in schools and the factors that affect it.

Figure 4.1 shows a schematic diagram which illustrates the research design. The diagram

describes the changes in characteristics of data, and the flow of information and data

throughout the research.
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Figure 4.1 Schematic of the proposed research

The proposed design comprise four phases of analysis to take full advantage of the insights

that could be acquired from data of varying characteristics. The underlying idea was that

analyses of data ranging from those that are many in number but lacking in detail to those that

are few in number but rich in detail would lead to different but complementary insights.

The strengths of the data with large sample size but coarse in granularity is that it is valuable

for acquiring an insight into the general trends across a population not just limited to schools.

Insufficient information on details such as built form or the specification of equipment however

means that such analysis is not suitable for identifying the factors that contribute to long term

trends. The strength of analysing detailed information on end-use consumption and

information on the building services on the other hand, is that this gives a much deeper

understanding of what makes up overall consumption in schools and why some schools are

more intensive in energy consumption than others. The limitation in these instances however

is that it is difficult to generalise the findings to a larger population due to the specific nature of

the sample.
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A detailed description of the overall structure of the research is shown in Figure 4.2. The

diagram describes details of each analysis, the methods employed and the data types.

Figure 4.2 Description of the methods and the structure of the research

The hierarchical structure of the research means that each of the analyses will become

progressively focussed on more specific elements. Below are descriptions of the aims of each

analysis:

 The first analysis focusses on improving the understanding of the latest trends in the

energy performance of public buildings that have lodged DECs. It also involves

assessments of the energy benchmarks that underpin the mandatory DEC scheme
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based on empirical data. At this phase, the scope covers all non-domestic buildings

for which data is available.

 The next phase marks the beginning of the case study where the focus of the research

is narrowed down to the primary and secondary school stock. Having a narrower focus

means that the analysis can delve deeper into the data. This phase involves not only

descriptive statistics but also testing of various hypothesis to examine the implications

of classifications and building characteristics. It also allows additional data to be joined

to the existing data such as the number of pupils to enrich the picture.

 In the third analysis, the focus shifts towards assessing the correlations between the

intrinsic features of buildings that determine the demand for energy and the energy

performance of schools. There are however currently no existing data that describe

the built forms of schools. This phase therefore involves a large data collection

exercise to gather descriptions of buildings including the built form and glazing areas

to further enhance the granularity of the dataset that was developed in the previous

analysis.

 The last analysis focusses on detailed information obtained from site visits and sub-

metering of modern secondary schools. At this phase, the data from Carbon Buzz with

much finer detail such as specifications of building services and equipment is

introduced into the research. This extremely detailed information is anticipated to

provide insights on the breakdown of overall energy use into end uses in schools and

why some schools are more intensive users than others. The addition of missing

information on the built form, which is comparable to that developed in the previous

analysis, also allows correlations between building characteristics and various end

uses to be examined.

Once all analyses are complete, the findings from each chapter are gathered to form a basis

for discussing the implications in improving the robustness of benchmarking the energy

performance not only of schools but other non-domestic building types.
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It should be noted that each chapter is structured in a self-contained way. Each chapter

therefore comprises sections that describe how the data was collected and prepared, the

methods that were used to analyse the data, and the results. This structure was deemed more

appropriate in elaborating the process and the results than having a single methodology

chapter, due to the scope and complexity of work, and the varying types of methods and data

used in each phase.

4.2.4 Limitations

The decision to make extensive use of empirical data and the subsequent restriction of the

scope of the research means that there are foreseeable limitations. Below are factors that are

likely to influence the outcome of the research:

 The analysis of the latest energy performance will be limited to public sector non-

domestic buildings due to the limited scope of the DEC scheme. Taking offices for

example, the analysis only includes offices in the public sector including local and

central government buildings. Without analysing the energy performance of private

sector offices, the extent to which these public sector office figures would be

comparable with the private sector will remain unknown.

 DEC records are collected from buildings that are greater than 1,000m2 in floor area.

This means that the energy performance of smaller buildings of various activity types

is not accounted for in this research. There is therefore no immediate means to assess

how representative the figures from the research will be of the entire population of a

building type that comprises various sizes.

 Despite the cessation of site-DECs, there were limitations in identifying DECs that

were lodged for a site rather than on a building basis due to uncertainties associated

with flags that were used to identify these records. A limitation therefore exists in

distinguishing DECs for buildings from those that represent the energy performance

of groups of buildings on the same site.
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4.3 Chapter summary

This chapter aimed to develop the research design based on the review of relevant literature

and an exploration of various methodologies and methods.

Below is a summary of the chapter:

 Research problems were defined based on the review of literature and the context.

 A quantitative approach was selected as the framework for the research based on the

importance of insights that can only be acquired by using empirical data.

 The research will involve a case study to address the research problems with sufficient

breadth and depth within the timeframe of the research programme. Schools were

deemed the most suitable due to their homogeneity and the availability of data.

 Four analysis chapters were designed in order to address research questions at

varying levels of resolution. Each analysis involves data with varying sample sizes and

granularity to gain different insights.

 A discussion chapter is used as a point at which the findings from the analysis

chapters are triangulated to discuss the implications of the findings.
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Chapter 5 Top-down Analysis of Public Sector Buildings

This chapter aims to understand the latest patterns of energy use of non-domestic buildings

in the public sector and assess whether the benchmarks that underpin the Display Energy

Certificate (DEC) scheme are robust. The following sections describe the methods and

assumptions that were made to process and analyse the latest DEC records. The results from

the analyses and the summary are presented at the end of the chapter.

5.1 Display Energy Certificate records

DEC records that were lodged since the implementation of the scheme in 2008 are collected

and held by the Landmark Information Group in a central register4 on behalf of the Department

for Communities and Local Governments (DCLG). In September 2012, Landmark provided

the Chartered Institution of Building Services Engineers (CIBSE) with a dataset of all DECs

lodged until June 2012. The file contained 120,253 records that relate to 46,441 different

buildings (or sites), many of which have multiple records. The file included numerous variables

that describe the various aspects of public buildings which were used by the Energy

Assessors5 to produce a DEC (Hong & Steadman 2013). The raw dataset was later transferred

to University College London (UCL) in the form of comma-separated values (CSV) and

Microsoft Excel files.

5.2 Cleaning and processing the raw data

Prior to analysing the data, it was deemed essential to first examine the raw dataset for any

signs of errors or invalid records. This decision was largely based on the previous analyses of

DEC records by Bruhns, Jones, & Cohen (2011), which highlighted that extensive preparation

work was required to identify and eliminate any invalid or uncertain records from the raw data.

Each of the key variables in the raw dataset was therefore inspected and examined to assess

whether the latest dataset would require cleaning and filtering to ensure the robustness of the

results. This inspection revealed that issues associated with DEC records of uncertain nature

4 Non-domestic energy performance register, see: https://www.ndepcregister.com/home.html
5 An Energy Assessor is a person who has been accredited by an approved accreditation
scheme to produce DECs and the accompanying advisory reports.
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and erroneous classification inputs, which were observed in the previous study, persist in the

new dataset (Bruhns, Jones & Cohen 2011). There was a need therefore to develop a set of

rules and methods to clean and filter the data.

As the DEC records became publicly available only in 2010, there were only a few studies that

had previously processed and analysed the records. The methods described in the study by

Godoy-Shimizu et al. (2011) were considered but deemed inappropriate for this research, for

the following reasons:

 The data that underpinned the study was an incomplete version of the DEC records.

The authors of the study highlighted that there was no building type classification in

the dataset, which is a key variable for identifying the specific activity type of buildings

 The study showed a lack of understanding of the DEC records whereby key

characteristics such as electrically heated buildings, pro-rated DECs, or early

renewals were not considered during the cleaning process

 Removal of the top and bottom 1% of the records based on floor areas and energy

consumption discarded extreme records that may well be valid

The methods described in the study by Bruhns et al. (2011) on the other hand were deemed

to be suitable as a basis for processing the latest DEC records, as they were developed and

reviewed by experts who were involved in developing CIBSE TM46, which underpins the DEC

scheme. The criteria were however developed and refined further in this research with

assistance from members of the CIBSE Energy Benchmarks Steering Group6. Table 5.1

shows the summary of the procedures that were undertaken to prepare the data. The table

also shows the numbers of records and buildings remaining after a series of omissions, which

are explained in detail in the following section.

6 CIBSE Energy Benchmarks Group was set up by CIBSE to oversee the development of the
energy benchmarks in CIBSE TM46 that underpin the DEC scheme.
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Table 5.1 Summary of the data processing steps

# Description
No. of Records
after each step

No. of Buildings
after each step

1 Import of raw data 120,253 46,441

2
Reclassification of benchmark categories and
building types

“ “

3 Removal of uncertain records 86,549 36,652

4
Removal of DEC records that were renewed
early

86,068 36,632

5 Removal of duplicate records 84,364 36,538

6 Removal of pro-rated DECs 73,160 31,802

The following sections describe the rationale behind each of the data processing steps as well

as the criteria used to remove uncertain records.

5.2.1.1 Reclassification of benchmark categories and building types

Benchmark category and building type descriptions are variables that were included in the

DEC dataset that describe the functions of buildings. Inspection of the inputs in the raw dataset

showed numerous examples of typing errors as well as instances of benchmark categories

being put into the wrong building type description and vice versa. The first step in preparing

the raw data for analysis was therefore to amend the input errors associated with the

benchmark categories and building types of individual records. The steps that were taken to

correct the classification mistakes are described in detail in Table 5.2.

Table 5.2 Steps in the corrections of benchmark categories and building types

# Description No. Records

1 Unique combinations of all benchmark category and building type

inputs using SAS7

142,397

2 Correct benchmark category and building types by manual assignment

to the list of unique combinations in Microsoft Excel

753

3 Assign the reclassified benchmark categories to all records in SAS 120,253

4 Repeat step 3 to assign the corrected building types 120,253

7 For Statistical Analysis Software (SAS), see
http://support.sas.com/documentation/93/index.html
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In step 2 (Table 5.2), the benchmark categories and buildings types were simply replaced

when they were misplaced. For those records that had incorrect inputs either in benchmark

categories or building types, or where there was than one building type description, corrections

were made based on other variables that described the function of a building such as the

address lines, which often contained names indicative of the activity type.

5.2.1.2 Removal of uncertain data

Each DEC record comprises variables that describe the characteristics of a building and its

energy performance. In the previous analysis, Bruhns et al. (2011) identified and removed

uncertain or erroneous records using a set of criteria relating to key variables. There were

however various aspects of these criteria that were considered either out-of-date or

inadequate for the present analysis. The criteria were therefore revised and a refined set of

criteria was developed for the research, as follows:

 Default Operational Rating (OR): Records where the Operational Rating was given as

200 or 9999 were excluded, since these are default8 values given to DECs lodged with

insufficient information on energy consumption.

 Practically implausible OR: Records where the OR was less than 5 and greater than

1000 were flagged and excluded. The lower boundary was defined based on the anecdotal

experience of an expert from the CIBSE benchmarking steering group that an OR less

than 5 is very unlikely to be achieved in an occupied building, and probably means that

the building is vacant. It was also suggested that the highest OR values observed in valid

DECs were of the order of 700 or 800, which therefore led to the conclusion that OR values

greater than 1000 are likely to be errors.

 Cancelled DECs: On occasion DEC assessors may lodge a certificate and then realise

that it contains mistakes. In these instances, the assessor may cancel the DEC and

replace it with an amended certificate. The ‘Report Status’ variable in the dataset, which

8 An operational rating of 200 is a default rating given to a building if valid meter readings for
its energy consumption are not available. The default rating was later changed to 9999 in
March 2010 and no longer allowed from 14 April 2011.
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flags cancelled records suggested however that some cancelled DECs remained in the

database from Landmark. These were therefore removed.

 Very small buildings: Records of buildings with total useful floor area recorded as less

than 50 m2 were removed, since such figures are likely to be errors. (Many DECs were

however registered with floor areas between 50 m2 and 1000 m2 despite the fact that 1000

m2 was the specified lower threshold of size throughout the period covered by the analysis:

these are retained.)

 Extreme CO2 emissions: Records showing total CO2 emissions greater than 100,000

tonneCO2/yr were removed as they were considered to be extreme outliers.

 No electricity consumption: Records where the Electrical Energy Use Index (EUI) was

0 were removed, since it is extremely improbable that an occupied building would use no

electricity. These were deemed to be almost certainly errors.

 Electrically heated buildings: Buildings where electricity was the main heating fuel were

flagged and treated separately in the analysis, since these are likely to have

characteristically different patterns of energy use from buildings heated by fossil fuels.

 No fossil-thermal energy consumption: Once the electrically-heated building records

were set aside, then any remaining records where the fossil thermal EUI was 0 were

removed, since this would imply no heating at all, and such cases were thought likely to

be errors. (Although there do exist some occupied non-domestic buildings that use no

energy for heating as such, including certain types of shop.)

 Composite DECs: The DEC methodology allows buildings with mixed uses falling under

different benchmark categories to assess their energy performance by means of a

‘composite benchmark’. This involves dividing the useable floor area of the building

between the different uses, and applying the appropriate benchmarks in proportion to

those areas. This meant that such buildings could not be assigned as a whole to a unique

benchmarks for the purposes of analysis.
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5.2.1.3 Corrections and early renewals

There are occasions when a new DEC is lodged a matter of months after another – they are

only required annually - in order for example to report reduced energy consumption or to make

other corrections. It is clearly desirable for the analysis to have no more than one DEC per

building per year, if possible. Analysis of the number of days elapsing between the lodging of

one DEC and its successor indicated that 0.6% of certificates in the data (754 out of 120,253)

were lodged with assessment end dates less than six months from the previous lodgement. It

was decided therefore to eliminate all records where the assessment period of the later record

overlapped with the earlier record by up to 182 days.

5.2.1.4 Duplicate records

In principle, all duplicate records should have been removed from the database supplied by

Landmark. A ‘report status’ variable should in theory have been used to indicate where records

had been cancelled. Examination of this variable however showed that the relevant flag was

not being rigorously applied and that approximately 0.6% of records showed the same

consumption for the same building during the same assessment period. It was therefore

necessary to devise a way of removing these unflagged duplicates. In order to avoid any

uncertainties it was decided to discount all cases where more than one DEC had been lodged

with the same energy consumption figures for the same period.

5.2.1.5 Pro-rated and site DECs

At the start of the DEC scheme a special arrangement was made for any institution with

multiple buildings on one site, for example a hospital or a large school, to lodge a single DEC

for the entire site (a ‘site DEC’). This was obviously unsatisfactory, since separate buildings

might be of very different sizes, construction, using different fuels and so on. The arrangement

was phased out in November 2009 and replaced with a provision that DECs could be lodged

for buildings on shared sites, but without separate sub-metering, on a pro rata basis. It should,

however, be noted that the ‘site DEC’ was still allowed on a voluntary basis after this date. To

calculate the pro rata DECs the consumption for the entire site was divided between the

separate buildings in proportion to floor area. However the problem remains, that pro-rated
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DECs make no allowance for the different characteristics of the various buildings. For these

reasons, pro-rated DECs were removed from the dataset. Pro-rated DECs were identified by

the fact that they have the same site reference number, assessment end date and EUI values

for electricity and fossil thermal energy.

5.3 Preparing data for cross-sectional and longitudinal analyses

The dataset that was prepared for the analysis comprised all DECs lodged up until June 2012.

This meant that there were numerous cases where DECs were lodged for the same building

over several years. Having access to such data therefore provided opportunities to examine

the energy performance of buildings within specified time periods in cross-sectional analyses,

as well as to follow trends over several years through longitudinal analyses.

The distinctively different nature of the two forms of analysis meant that it was necessary to

adopt different methods for selecting the relevant DECs in each case. The following sections

describe that process in detail.

5.3.1.1 Data selection for the cross-sectional analysis

The cross-sectional analysis was carried out to examine the pattern of energy use of non-

domestic buildings based on their most recently deposited DECs. Due to the differences in the

level of compliance however there was a variation in the dates when the latest DECs were

lodged for each building. For example, some buildings were found to have lodged a certificate

in 2012 whereas some buildings had lodged a DEC in 2009 but had not deposited another

certificate since. A dataset for the cross-sectional study was therefore created, based on just

the latest DEC from each building (Figure 5.1), to provide a sample representing current or

recent performance, as was done previously by Bruhns et al. (2011).
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Building

Assessment end dates

Oct 2008 2009
Before Feb

2010
After

Mar 2010
2011 Jun 2012

A ● ● ● ●

B ● ●

C ●

D ● ● ●

E ● ●

F ● ● ●

G ● ●

H ●

Figure 5.1 Illustration of how the latest DECs were selected for the present cross-
sectional analyses (blue cells indicate the latest DECs for each building)

It should however be noted that this dataset did not include any of the DECs analysed

previously by Bruhns et al. (2011), who analysed DECs that were lodged up until February

2010. This meant that it was necessary to create a subset of DECs lodged between March

2010 and June 2012, to ensure that the present analysis was based solely on the new records.

Since there were no variables in the dataset that indicated when each certificate was lodged,

the assessment end dates were assumed as being the dates when the DECs were lodged.

Table 5.3 below shows the number of DECs under each benchmark category in the dataset

for the cross-sectional analyses, and the percentages of total records that these represent. In

all, there were 22,151 buildings used for the analyses. This represented approximately 70%

of all buildings (31,802) that have lodged DECs since the scheme was implemented in October

2008.
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Table 5.3 Number of buildings in the cross-sectional dataset by benchmark category

Benchmark category N % of all

1 General office 2,911 13%

2 High street agency 30 0%

3 General retail 33 0%

4 Large non-food shop 1 0%

5 Small food store 0 0%

6 Large food store 0 0%

7 Restaurant 21 0%

8 Bar, pub or licensed club 7 0%

9 Hotel 16 0%

10 Cultural activities 544 2%

11 Entertainment halls 203 1%

12 Swimming pool centre 261 1%

13 Fitness and health centre 42 0%

14 Dry sports and leisure facility 606 3%

15 Covered car park 0 0%

16 Public buildings with light usage 4 0%

17 Schools and seasonal public buildings 12,563 57%

18 University campus 1,442 7%

19 Clinic 728 3%

20 Hospital - clinical and research 573 3%

21 Long term residential 990 4%

22 General accommodation 196 1%

23 Emergency services 746 3%

24 Laboratory or operating theatre 74 0%

25 Public waiting or circulation 5 0%

26 Terminal 2 0%

27 Workshop 128 1%

28 Storage facility 25 0%

29 Cold storage 0 0%

All 22,151 100%

5.3.1.2 Data selection for the longitudinal analysis

The accumulation of DECs over the past four years means that it was possible to examine

how the patterns of energy use in different building types have changed over the period. An

important feature of the database created for the longitudinal analyses was that it tracked the

energy performance of the same buildings over these years. This was to ensure that

continuous trends could be followed for specified activities, year by year, and that any changes

would be based on the same sample.
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A preliminary examination of the changes in energy performance suggested that 2008 - the

first year of the scheme’s operation - was anomalous, and that the data revealed some

uncertainties. The anomaly was considered to be associated with initial teething problems and

therefore all records for this year were removed. In addition, DECs with assessment end dates

in 2012 up to June were also discounted because of the year being incomplete. In the end it

was decided to leave buildings that had DECs with assessment end dates in each of the three

consecutive years 2009, 2010 and 2011 as the basis for the analysis.

Building

Assessment end dates

Oct 2008 2009 2010 2011 Jun 2012

A ● ● ●

B ● ● ● ● ●

C ●

D ●

E ● ●

F ● ● ●

G ● ● ●

H ● ●

Figure 5.2 Illustration of how the DECs were selected for the longitudinal analyses
(blue cells indicate the selected records)

Table 5.4 below shows the number of buildings in each category that have lodged DECs for

each of the three years between 2009 and 2011. Notice that there were several benchmark

categories in which there were no such continuous runs of records. In total, 8,535 buildings

have lodged DECs over the three consecutive years. This indicates that approximately 27%

of all buildings in the complete DEC dataset (31,802) have lodged DECs consistently year on

year.
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Table 5.4 Number of buildings in the longitudinal dataset in each year by benchmark
category

Benchmark category Number of buildings in each year

1 General office 1,071

2 High street agency 0

3 General retail 15

4 Large non-food shop 1

5 Small food store 0

6 Large food store 0

7 Restaurant 6

8 Bar, pub or licensed club 4

9 Hotel 4

10 Cultural activities 230

11 Entertainment halls 96

12 Swimming pool centre 98

13 Fitness and health centre 8

14 Dry sports and leisure facility 218

15 Covered car park 0

16 Public buildings with light usage 1

17 Schools and seasonal public buildings 5,137

18 University campus 415

19 Clinic 236

20 Hospital - clinical and research 182

21 Long term residential 383

22 General accommodation 55

23 Emergency services 326

24 Laboratory or operating theatre 14

25 Public waiting or circulation 4

26 Terminal 0

27 Workshop 21

28 Storage facility 10

29 Cold storage 0

All 8,535
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5.4 Methods of analysis

This section describes in detail the quantitative methods that were used to analyse the cleaned

DEC data. Descriptions of methods and the underlying assumptions are given separately for

cross-sectional and longitudinal analyses.

5.4.1 Cross-sectional analysis

The dataset that was described in section 5.3.1.1 was analysed first to gain an up-to-date view

of trends in the energy performance of non-domestic buildings in the public sector. The large

volume of numeric data and the nature of the objectives led to extensive use of statistical

techniques.

As discussed previously, the patterns of energy use in public sector buildings were analysed

based on the 29 activity classifications of TM46 that the DEC assessors had selected. This

was based on the underlying philosophy of the activity-based classification, which assumed

that buildings with similar activities would have similar requirements for occupancy,

environmental conditioning and installed appliance loads (Bruhns, Jones & Cohen 2011). This

however meant that the patterns of energy use identified in the study were independent of the

type of business sector that each building belongs to, but rather related to the energy

benchmarks that correspond to each of the activity types. Taking the energy performance of

the buildings under the ‘Schools and seasonal public buildings’ for example, the trends would

include schools, but also other non-education building types such as club houses and village

halls, which are nevertheless included in the same grouping.

The patterns of energy use of buildings of different activity types were initially assessed based

on their Energy Use Intensities (EUI). The distribution of the annual electrical and fossil-

thermal EUI of buildings under each activity category was assessed using descriptive statistics

and box-and-whisker plots. Due to the variation in sizes of the sample in each category

however only those categories with more than 100 buildings were analysed to acquire

reasonably robust results. In addition, the energy performance statistics were derived based

only on buildings that were occupied for the standard number of hours to reduce the variation
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in EUI. The fossil-thermal EUI statistics presented were however not normalised to standard

weather conditions.

Throughout the analyses, the energy performance of buildings was examined in relation to the

benchmarks set out in CIBSE TM46 based on operational ratings. In addition to the use of

operational ratings that are derived based on the total annual carbon emissions, fuel specific

performance ratings were calculated for electricity and fossil-thermal energy using the same

method (equation 3).

Performance rating =
Actual electrical or fossil-thermal EUI (kWh/m2)

Adjusted electrical or fossil-thermal benchmarks (kWh/m2)
× 100 (3)

This means that buildings with electrical or fossil-thermal ratings of 100 would have energy

consumption comparable to the typical performance of buildings in that category.

Descriptive statistics were extensively used throughout the analysis to describe the central

tendency and the variations in the pattern of energy use. The distribution of the operational

ratings of buildings in each category was assessed using quartiles rather than the means. This

was due to the presence of small numbers of energy-intensive buildings that frequently skew

the distribution of the energy performance of non-domestic buildings. The median and other

quartiles were therefore considered to be more appropriate to describe these skewed

distributions.

Box-and-whiskers diagrams were used to visually assess and compare the distribution of the

energy performance of buildings in different benchmark categories. The description and

definition of various properties of the diagram is explained in detail in Figure 5.3.
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Figure 5.3 Diagram of box-and-whiskers plot (SAS Institute Inc., 2014)

A ‘traffic-light’ analysis was carried out to illustrate the severity of the deviation of the most

recent performance of buildings from the benchmarks in each benchmark category. The

median performance ratings for electrical and fossil-thermal energy use in each category were

taken as a basis to determine the deviation.

Varying shades of red were used to show the different degrees to which ratings deviate from

the benchmarks (Figure 5.4). The shades were designed so that they become gradually darker

every 10% away from actual performance, with deviations greater than 30% marked by the

darkest colour. The ratings that are within 10% deviation from the benchmarks were assumed

to be an indication that the benchmarks are reasonably representative of the stock

performance.

Less than 10% deviation from benchmarks

10 - 20% deviation

20 - 30% deviation

More than 30% deviation

Number of records < 50

Figure 5.4 Description of the colour scheme used in the ‘traffic-light’ analysis



78

Buildings that use electricity as the main source of heating were separated from the main

dataset and analysed separately (Section 5.2.1.2). The ‘Main Heating Fuel’ variable in the

DEC database was used as a basis for identifying and filtering out those electrically-heated

buildings. In all, 1,543 (3.3%) of buildings were separated from the main dataset. Prior to the

analyses, the methods that were described in Section 5.2.1.2 were used to remove records of

uncertain nature. 390 records (~25%) were found to be dubious and therefore removed from

the analysis.

5.4.2 Longitudinal analysis

The dataset described in 5.3.1.2 was analysed to observe changes in the patterns of energy

use of buildings in the public sector in the UK over the period from 2009 to 2011. The analysis

was carried based on those cases where there are more than 100 buildings in any given

benchmark category. This was to ensure that the results that were derived from the analyses

are representative of the stock.

The year-on-year changes in the energy performance of buildings in different categories were

assessed using a line graph. The median operational ratings were taken as the typical pattern

of energy use of the sample buildings in each year. The different factors that contribute to the

uses of electricity and fossil-thermal energy meant that two graphs, one for each fuel type,

were plotted.

In addition to the analysis based on the typical performance, the changes in the distribution of

the operational ratings were also analysed. The distribution was assessed by observing

changes in the number of buildings that fall under each DEC grade band occurring over the

three-year period. As discussed in Section 2.6, there are currently 7 letter grades, from letters

‘A’ to ‘G’. Each band is currently set apart by 25 operational ratings and starts from zero, which

therefore means that all DEC records that have received ORs greater than 150 are given the

grade ‘G’. To observe the changes in the number of buildings that are intensive users of energy

but small in numbers, six additional grade bands were added for the purposes of analysis

beyond grade ‘G’, starting from an OR of 175 (Table 5.5).
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Table 5.5 The existing and additional grades and the OR ranges

Grade Operational rating range Note

A 0 < 25 Existing

B 25 < 50 “

C 51 to 75 “

D 76 to 100 “

E 101 to 125 “

F 126 to 150 “

G < 150 - 175 “

OR > 175 < 175 – 200 Additional band

OR > 200 < 200 – 225 “

OR > 225 < 225 – 250 “

OR > 250 < 250 – 275 “

OR > 275 < 275 – “
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5.5 Results

This section presents results from the cross-sectional analysis of the DEC records. The initial

part of the section presents the characterisation of buildings in the dataset. This is followed by

results that show the patterns of energy use of non-domestic buildings in different categories.

Lastly, results are presented from the assessment of the adequacy of the energy benchmarks

for evaluating the energy performance of the public sector.

Figure 5.5 shows the total floor area of all buildings in each benchmark category.

Figure 5.5 Total floor area of buildings in each category

It can be seen that buildings under the ‘Schools and seasonal public buildings’ account for the

largest proportion of floor area, which reflects the number of records in this category that vastly

outnumber all other categories. Buildings under the ‘General office’, ’University campus’ and
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‘Hospitals’ account for significant proportions of the total floor area in the dataset, despite much

smaller sample sizes, which indicates greater floor area per building than schools.

There are a number of sources that provide the total floor area of various building types in the

public sector that provide opportunities to determine the extent to which the DEC records

represent the stock. These are for example studies such as those by Bruhns, Steadman,

Herring, et al. (2000) or the data on public sector buildings from e-PIMS (HM Government

2012a). Difficulties in accurately comparing the statistics from different databases arise

however, due to differences in the way buildings are classified. The ‘General office’ category

for example comprises not only central and local government offices but also other office types

such as law courts and warehouse offices. There is also a difference in the definition of entities

whereby DEC records describe a building while the statistics provided from the Valuation

Office Agency data are for premises, which can be part of a building, a whole building or

several buildings. The issues associated with the classification system highlight difficulties in

utilising the DEC data in conjunction with other data sources.

Figure 5.6 shows the distribution of sizes of buildings in each category ranging from buildings

with floor areas between 30 and 100m2 to buildings with floor areas greater than 30,000m2.

The numbers in brackets next to each category name show the sample sizes.

Overall, more than 60% of the buildings (15,236 of 22,151) were found to have floor areas

between 1,000 and 3,000m2. This is most likely due to the fact that DECs were required from

buildings that are more than 1,000m2 in total floor area, at least for the time period the analysis

covered. The changes in the floor area of different buildings should become clearer in the

future as the threshold for DECs reduces down to 500m2 and then 250m2.

Higher proportions of buildings with floor areas greater than 10,000m2 were found under the

categories that include large public and private buildings such as hotels, auditoriums,

university buildings, hospitals and public transport stations. The very largest buildings, which

exceed 30,000m2 in floor area, were mainly hospitals and prisons as well as a few large public



82

museums. At the other end of the spectrum, 1,012 buildings were smaller than 1,000m2 in

floor area. Inspection of a sample indicated that these are mostly nurseries or individual

buildings within primary schools.

Figure 5.6 Distribution of buildings in size categories (m2, percentages of all
buildings)

Table 5.6 below shows statistics for floor area of the buildings that were presented in Figure

5.6. It can be seen that the median floor areas in all categories range between 1,294m2 and

8,782m2. Comparing the statistics with the mean floor area of various premises produced by

Bruhns et al. (2000) showed that DEC records depict larger buildings within the non-domestic

building stock, which would be expected. Taking buildings under the ‘Swimming pool centre’

category for example, the median of 2,187m2 was considerably larger than the mean floor area

0% 20% 40% 60% 80% 100%

General office (2,911)

High street agency (30)

General retail (33)

Large non-food shop (1)

Restaurant (21)

Bar, pub or licensed club (7)

Hotel (16)

Cultural activities (544)

Entertainment halls (203)

Swimming pool centre (261)

Fitness and health centre (42)

Dry sports and leisure facility (606)

Public buildings with light usage (4)

Schools and seasonal public buildings…

University campus (1,442)

Clinic (728)

Hospital - clinical and research (573)

Long term residential (990)

General accommodation (196)

Emergency services (746)

Laboratory or operating theatre (74)

Public waiting or circulation (5)

Terminal (2)

Workshop (128)

Storage facility (25)

Distribution of Building Sizes (%)

30 - 100 m² 100 - 300 m² 300 - 1000 m² 1000 - 3000 m²

3000 - 10000 m² 10000 - 30000 m² 30000 + m²



83

of swimming pool premises according to Bruhns et al. (2000) of 1,000m2. For most building

types however, such comparison is likely to contain an element of uncertainty owing to the

differences between buildings and premises.

Table 5.6 Descriptive statistics of the floor area of public sector non-domestic
buildings

Benchmark category N
Floor area (m2)

Min 25th % Median 75th % Max

General office 2,911 88 1,470 2,486 4,510 58,392

High street agency 30 238 1,475 2,305 3,414 6,200

General retail 33 975 1,819 2,607 4,663 11,711

Large non-food shop 1 3,666 3,666 3,666 3,666 3,666

Restaurant 21 207 1,177 1,320 2,267 10,283

Bar, pub or licensed club 7 1,600 1,706 2,506 5,112 6,205

Hotel 16 238 1,558 4,928 10,158 17,017

Cultural activities 544 149 1,278 1,979 3,471 87,898

Entertainment halls 203 334 1,384 2,279 4,728 280,080

Swimming pool centre 261 346 1,450 2,187 3,535 17,816

Fitness and health centre 42 823 1,543 2,434 3,110 19,020

Dry sports and leisure facility 606 231 1,414 2,084 3,668 20,795

Public buildings with light usage 4 675 850 1,294 2,504 3,445

Schools and seasonal public buildings 12,563 57 1,264 1,644 2,472 21,900

University campus 1,442 123 2,002 3,603 7,267 71,843

Clinic 728 104 1,131 1,455 2,205 24,946

Hospital - clinical and research 573 670 2,199 4,672 10,718 280,912

Long term residential 990 347 1,360 1,750 3,345 68,528

General accommodation 196 123 1,438 2,364 4,749 22,398

Emergency services 746 178 1,187 1,783 3,075 33,178

Laboratory or operating theatre 74 615 1,444 3,050 5,900 23,834

Public waiting or circulation 5 1,580 1,880 2,276 5,383 10,135

Terminal 2 4,452 4,452 8,782 13,112 13,112

Workshop 128 300 1,193 1,778 2,585 27,422

Storage facility 25 991 1,671 2,091 3,054 14,617
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Figure 5.7 below shows a box-and-whisker diagram of the electrical EUI of public sector non-

domestic buildings.

Figure 5.7 Box-and-whisker plot of electrical EUI of public sector non-domestic
buildings (n > 100, standard occupancy hours)

The long tail of outliers found in many categories (Figure 5.7), which are presented as circles

on the right hand side of the upper fences, suggest that electricity consumption is heavily

skewed by a few highly energy-intensive buildings, some three times more intensive than a

typical building (Table 5.7).

Among all categories, buildings under ‘Swimming pool centre’ were found to be most intensive

in the use of electricity. This is likely due to the requirement to control the levels of relative

humidity of the air owing to the constant evaporation of water in the pool (BRECSU, 1994).

The treatment of air requires the use of a heating, ventilation and air-conditioning (HVAC)

system, which is generally intensive in electricity, especially when the air needs to be

dehumidified. The variability of the EUI was also the greatest in these buildings, with an inter-

quartile range (IQR) of 112 kWh/m2 (Table 5.7), which suggests that there is a large variation

in the way centres were designed and are operated.
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Table 5.7 Descriptive statistics for the electrical EUI of non-domestic buildings in the
public sector (n > 100, standard occupancy hours)

Benchmark Category N
Electrical EUI (kWh/m2)

Min 25th % Median 75th % Max IQR*

General office 1,862 3 60 81 114 691 54

Cultural activities 315 1 44 59 89 748 45

Entertainment halls 155 5 57 83 109 324 52

Swimming pool centre 115 26 142 191 254 723 112

Dry sports and leisure facility 304 3 50 71 107 526 57

Schools and seasonal public buildings 9,588 1 36 44 55 468 19

University campus 1,000 1 62 83 111 772 49

Clinic 422 6 57 72 92 418 35

Hospital - clinical and research 573 4 87 122 172 511 85

Long term residential 990 7 69 85 105 400 36

General accommodation 104 3 43 57 77 147 34

Emergency services 746 11 71 108 151 604 80

All 16,174

* Interquartile range (IQR)

Buildings under the ‘Hospitals - clinical and research’ and ‘Emergency services’ categories

were also found to be highly energy-intensive, with median electrical EUIs of 122 and 108

kWh/m2. The intensive uses of electricity in hospital buildings is likely due to the requirement

for high ventilation rates to control infections and also uses of specialist laboratory equipment

and X-ray machines that are intensive in energy (Carbon Trust 2010). Many hospital buildings

also operate 24 hours, hence the higher intensity. Emergency service buildings such as police

stations, fire stations and ambulance stations also operate 24 hours.

Figure 5.8 shows a box-and-whisker diagram of fossil-thermal EUIs of public sector non-

domestic buildings. Note that the distribution is based on the raw fossil-thermal energy uses,

which have not been corrected for variation in weather conditions likely to influence demand.
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Figure 5.8 Box-and-whisker plot of the fossil-thermal EUI of public sector non-
domestic buildings (n > 100, standard occupancy hours)

The distribution of fossil-thermal EUIs shows that there is a large variation in the pattern of

energy use between various benchmark categories. Similar to the pattern of electricity use,

the energy used for heating was also found to be skewed positively in many categories.

Buildings that house swimming pools are found to be the most intensive users of fossil fuels

with an extremely high median value of 702 kWh/m2 (Table 5.8). A guide published by the

Building Research Energy Conservation Support Unit (BRECSU, 1994) suggested that in

these buildings most of the fossil-thermal energy is used for keeping the water and the air of

the pool warm. The guide also shows that demand for energy in providing hot water is

considerably lower, with cost implications of approximately 2% of the total energy cost. The

BRESCU guide is old however, and the way energy is used in swimming pool centres may

have changed in recent years.
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Table 5.8 Descriptive statistics for the fossil-thermal EUI of non-domestic buildings in
the public sector (n > 100, standard occupancy hours)

Benchmark Category N
Fossil-thermal EUI (kWh/m2)

Min 25th % Median 75th % Max IQR*

General office 1,862 1 79 112 157 1,081 78

Cultural activities 315 1 86 122 173 727 87

Entertainment halls 156 5 102 147 199 587 97

Swimming pool centre 115 21 478 702 931 1,676 453

Dry sports and leisure facility 305 4 97 146 227 1,327 130

Schools and seasonal public buildings 9,588 3 100 128 161 927 61

University campus 1,000 1 88 124 171 678 83

Clinic 422 4 120 164 228 1,680 108

Hospital - clinical and research 573 14 226 301 388 1,648 162

Long term residential 990 7 237 301 380 770 143

General accommodation 104 9 139 192 251 608 112

Emergency services 746 15 160 209 263 748 103

All 16,176

* Interquartile range (IQR)

Buildings that were categorised under ‘Hospital - clinical and research’ and ‘Long term

residential’ were also found to be noticeably more intensive in fossil-thermal energy use than

other buildings. The breakdown of the overall energy use of a typical hospital showed that the

space heating is the most intensive end use and that the energy used for supplying hot water

was also noticeably intensive (Carbon Trust 2010). This is mostly due to the requirements for

hospitals to maintain adequate levels of space heating throughout 24 hours for the whole year.

Hot water usage would also be greater than the other buildings due to the long hours of

occupancy of both the patients and the staff. The ‘Long term residential’ category comprises

buildings that in theory accommodate similar levels of occupancy such as mental health

hospitals, nursing homes and prisons that are occupied for 24 hours. The high levels of fossil-

thermal energy use in these buildings is therefore likely to be due to the increased demand for

space heating and hot water supply.

As discussed earlier, there are various factors that may contribute to such a large variation in

fossil-thermal EUIs. A closer observation of the buildings under the benchmark category ‘Dry
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sports and leisure facility’ showed that one such factor is the misclassification of buildings.

Despite the use of the word ‘dry’, it was found that building type ‘Sports centre with pool’ was

allocated under the category, hence the high maximum value for fossil-thermal EUI. When

compared to sports facilities that do not have highly energy-intensive pools, these buildings

are highly likely to receive a poor rating despite having considerably different demands for

energy. This therefore highlights that the energy performance of some buildings is being

unfairly evaluated due to a classification error.

Electrically heated buildings

The following sections show results from analyses of the energy performance of buildings that

are not ‘typical’ due to their being electrically heated or because they operate for longer hours

than normal.

In the UK, most non-domestic buildings are heated using gas or other forms of fossil fuel.

There are however buildings that use electricity for space heating and domestic hot water

supplies. While the requirement for heating in these buildings may be similar to the other

buildings, the use of electricity to deliver the heat means that the pattern of energy use would

be considerably different from a typical building using gas. This section describes the

characteristics and energy performance of buildings that use electricity as the main heating

fuel (MHF).

Figure 5.9 below shows that in most categories the majority of buildings use fossil fuels as the

main source of heat. There are however a number of benchmark categories under which the

proportion of electrically heated buildings is noticeably higher than others. More than 75% of

the buildings under the ‘Large non-food shop’ were found to be electrically heated, which is

likely due to the large variation in types of business and the way the buildings are conditioned.

All ‘Covered car park’ buildings are identified as being heated using electricity. This is however

likely due to the fact that these buildings are not heated at all and the most likely purposes of

electrical energy use is the lighting.



89

Figure 5.9 Numbers of electrically heated (MHF) buildings and non-electrically heated
buildings in the dataset

Buildings under ‘High street agencies’ and ‘General retail’ categories were found to comprise

a mix of fossil fuel-heated and electrically heated buildings. These categories are similar to

‘Covered car park’ in that there is no benchmark for fossil-thermal energy use. It therefore

means that the benchmarks were developed based on the assumption that many of the

buildings that belong to these categories would not be heated using fossil fuels. The high

proportion of non-electrically heated buildings under these categories however suggest that a

better understanding is needed of the pattern of heating energy use of buildings in these

categories.
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Among the categories with relatively large sample sizes, ‘General accommodation’ (38%) had

the highest proportion of electrically heated buildings. A closer inspection of the buildings

under the category revealed that these were mostly student housing.

Table 5.9 Comparisons of the median EUI of electrically and non-electrically heated
buildings

Benchmark category

MHF = Other MHF = electricity

N

Electricity
EUI

(kWh/m2)

Fossil-thermal
EUI

(kWh/m2) N

Electricity
EUI

(kWh/m2)

Fossil-thermal
EUI

(kWh/m2)

Median Median Median Median

General office 2911 86 116 423 146 0

High street agency 30 82 100 19 138 0

General retail 33 90 97 17 105 0

Large non-food shop 1 66 16 4 93 9

Small food store 0 - - 1 567 0

Large food store 0 - - 0 - -

Restaurant 21 127 246 2 244 52

Bar, pub or licensed club 7 157 107 0 - -

Hotel 16 85 170 8 147 77

Cultural activities 544 70 124 75 104 0

Entertainment halls 203 87 149 3 197 12

Swimming pool centre 261 192 696 0 - -

Fitness and health centre 42 102 178 1 186 0

Dry sports and leisure facility 606 79 167 26 82 2

Covered car park 0 - - 11 34 0

Public buildings with light usage 4 69 146 2 33 0

Schools and seasonal public buildings 12563 45 130 155 91 3

University campus 1442 86 128 112 108 14

Clinic 728 75 158 55 122 0

Hospital - clinical and research 573 122 301 17 202 41

Long term residential 990 85 301 60 109 43

General accommodation 196 58 202 118 119 14

Emergency services 746 108 209 30 217 0

Laboratory or operating theatre 74 242 238 0 - -

Public waiting or circulation 5 118 43 3 54 0

Terminal 2 193 227 1 392 0

Workshop 128 62 120 7 80 45

Storage facility 25 37 77 3 29 0

Cold storage 0 - - 0 - -

As would be expected, many categories show that electrically heated buildings tend to be

more intensive in electricity use than buildings that are heated using fossil fuels. In many
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categories, the difference in the pattern of energy use between electrically and non-electrically

heated buildings is very noticeable. The distinct differences in categories with considerable

sample sizes suggest that there is a potential for providing separate benchmarks for those

buildings that use electricity as the main heating fuel, to make a more accurate evaluation of

their performance. It could on the other hand be argued that separate benchmarks are not

necessary, as the operational ratings are produced based on total carbon emissions.

Table 5.10 Comparison of typical total carbon emissions between MHF electricity and
other buildings

Benchmark category

Annual total CO2 emissions (tonneCO2/yr)

MHF Other MHF Electricity

N Median N Median

General office 2911 185 423 160

High street agency 30 126 19 102

General retail 33 219 17 125

Large non-food shop 1 145 4 136

Small food store 0 0 1 19

Restaurant 21 210 2 137

Bar, pub or licensed club 7 275 0 0

Hotel 16 419 8 334

Cultural activities 544 128 75 90

Entertainment halls 203 209 3 237

Swimming pool centre 261 532 0 0

Fitness and health centre 42 209 1 49

Dry sports and leisure facility 606 178 26 80

Covered car park 0 0 11 136

Public buildings with light usage 4 122 2 12

Schools and seasonal public buildings 12563 86 155 86

University campus 1442 283 112 156

Clinic 728 109 55 88

Hospital - clinical and research 573 574 17 236

Long term residential 990 204 60 194

General accommodation 196 170 118 167

Emergency services 746 181 30 196

Laboratory or operating theatre 74 531 0 0

Public waiting or circulation 5 301 3 91

Terminal 2 1131 1 428

Workshop 128 106 7 104

Storage facility 25 82 3 44
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The small differences in the median of total CO2 emissions (Table 5.10) indicate that this could

be true for some categories. There are however categories such as ‘Cultural activities’ or

‘General office’ where differences in the median CO2 emissions between electrically heated

and fossil fuel heated are greater than 10%. The result therefore suggests that it would be

reasonable to separately benchmark the energy performance of electrically heated buildings

that show clear evidence of different pattern of energy use as was explored by Jones (2014).

Extended occupancy hours

The following section analyses distributions of the energy performance of buildings that have

claimed extended hours of occupancy. In theory, buildings that are occupied for longer hours

than what is considered to be the standard for a specific activity type should be more energy-

intensive. The analyses therefore focussed on understanding the distribution of buildings that

were claimed to be operating for extended hours, and examining whether there are

correlations between the occupancy hours and the empirical energy performance data.

Figure 5.10 Percentages of buildings in each benchmark category which have
reported standard or extended occupancy hours
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Figure 5.10 shows the percentages of buildings in each benchmark category that have claimed

standard hours or extended occupancy hours respectively9. Note that these are categories

that include more than 50 buildings from the dataset described in Section 5.4.1. The total

number of buildings in each category is shown in brackets.

It can be seen that between 23 and 56% of buildings in 11 out of 14 categories have indicated

that they are occupied for extended numbers of hours (Figure 5.10). Among the categories,

buildings under the ‘Swimming pool centres’ and ‘Dry sports and leisure facilities’ categories

were found to operate the longest with 56% and 50% of the buildings claiming the extended

hours adjustment. Such a high proportion of buildings claiming extended hours suggests that

what is considered to be the ‘typical’ hours of occupancy in these buildings may have changed

over the years. Similar proportions of buildings occupied for extended hours can be found in

other categories. These include 47% of the buildings under ‘General accommodation’, many

of them halls of residences at universities and boarding houses, and buildings under

‘Laboratory or operating theatre’ which include laboratories run by the NHS or universities.

The three categories - ‘Hospital – clinical and research’, ‘Long term residential’ and

‘Emergency services’ - do not claim any extended hours of occupancy due to that fact that the

norm here is a 24 hour service, hence the standard hours of occupancy are equal to the total

number of hours per year.

The relationship between extended operating hours and energy use was examined in more

detail in public sector office buildings. Figure 5.11 and Figure 5.12 are scatter plots of extended

occupancy hours against electrical and fossil-thermal EUIs for offices, with the respective

regression lines. These results are just for the building types ‘Central government office’ and

‘Local government office’ under the ‘General office’ benchmark category. Note that only those

9 Each benchmark category has a designated reference hours of occupancy, which is
considered to be the ‘standard’ hours of occupancy. For buildings with ‘extended’ hours of
occupancy, energy benchmarks are adjusted to account for the increased use of the
building.
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buildings that were identified as being occupied for extended hours were used for the analysis.

In total, this included 272 Central government offices and 225 Local government offices.

Figure 5.11 Scatter plot of occupancy hours and electrical EUI for Central and Local
government office buildings (kWh/m2)

The plot of Figure 5.11 shows considerable variation in electrical EUIs in relation to extended

occupancy hours. The line of best fit shows that there is generally a positive relationship

between extended hours and electricity consumption in both Central and Local government

offices. This indicates that public sector offices are indeed likely to use more electricity, as

their hours of use are extended. Pearson correlation coefficients of 0.23 and 0.37 for Central

and Local government buildings respectively however, suggested that the relationships are

relatively weak. The broadly scattered patterns of energy use also suggests that there are

considerable variations in EUIs even when occupancy hours are similar. There are numerous

factors such as controls and operation that could contribute to such a phenomenon. The

intensive uses of electricity despite small number of occupied hours may be for example due

to parasitic loads from equipment or fixed building services being left on during unoccupied

hours (e.g. lighting).
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The figure also shows a clustering of records around 3,000 hours occupancy where 50% of

the records were found to lie between 2,860 and 3,350. A closer examination showed that 116

of 143 (81%) records that claimed precisely 3,000 hours of occupancy belonged to the same

organisation. There were, on the other hand, 26 central and local government offices (5% of

the total) claiming the maximum allowed hours of occupancy. These suspicious cases of

extended occupancy hours raise questions about the reliability of claims of extended hours.

Figure 5.12 Scatter plot of occupancy hours and fossil-thermal EUI for Central and
Local government buildings (kWh/m2)

As with electrical consumption, Figure 5.12 shows a considerable variation in heating energy

consumption in relation to occupancy hours. The line of best fit indicates however that there

is hardly any systematic relationship between the two variables. (Pearson correlation

coefficients are -0.02 and 0.08 for Central and Local government buildings respectively.) This

suggests that the operation of the building services providing space heating and domestic hot

water is independent of the hours of occupation. There may be different reasons for such a

weak correlation. One cause could be that extended occupancy hours are being claimed

inappropriately. Another reason could be that the control systems in these buildings have not
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been commissioned correctly, and are heating the space and hot water regardless of the

pattern of occupancy of the building.

The week correlations between electrical and fossil-thermal EUIs and extended hours claimed

by office buildings shows just how much the patterns of energy use varies even when buildings

are occupied for a similar period. This therefore suggests that there are other factors that

determine the pattern of energy use and that consideration of occupancy hours, at least for

public sector offices, does not contribute towards the relevance of benchmarking.

Longitudinal analysis

The following sections show changes over time in the patterns of energy use of buildings in

the six benchmark categories that have the largest sample sizes. Note that the results are

based on the analyses of the longitudinal dataset described in Section 5.4.2.

Figure 5.13 shows the changes in median ratings for electricity uses from 2009 to 2011 from

a sample made up of the same buildings in each year.

Figure 5.13 Changes in median electricity ratings between 2009 and 2011 (numbers of
buildings in all three years are shown in brackets)
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The line graphs show that there is no clear trend that could be observed by buildings in the six

categories taken together. A reduction in the median operational rating was however observed

in five out of six categories. Over the three years, the median operational rating for the

electricity consumption of buildings under the ‘General office’ and ‘Emergency services’

categories reduced the most, by 10 and 11% respectively. Similarly, the electrical OR of the

buildings under the ‘University campus’, ‘Hospital – clinical and research’ and ‘Long term

residential’ categories reduced by between 1% and 6%. There are numerous factors that may

have led to such reductions in the pattern of electricity use during the period. One common

property of all these buildings is that they have continued to lodge DECs over the three-year

period that was analysed and possibly for more years. In a context where there is considerable

variation in the extent of compliance of non-domestic buildings with the DEC scheme, these

particular buildings are perhaps likely to be operated by personnel or organisations that are

more interested in improving their energy efficiency (Hong & Steadman 2013).

Figure 5.14 shows the changes in median ratings for fossil-thermal energy use from 2009 to

2011 from a sample made up of the same buildings in each year.

Figure 5.14 Changes in median fossil-thermal ratings over three years (numbers of
buildings in all three years are shown in brackets)
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buildings under the ‘Hospital – clinical and research’ and ‘General office’ categories with

reductions of 11 and 9% respectively. The fossil-thermal performance changed the least in

buildings under ‘University campus’ with a 2% reduction in the median. As with the electrical

EUI, there are numerous factors such as the warming climate, improved efficiency and better

management, and rising fuel prices that may have led to such trends.

The changes in the pattern of electricity and fossil-thermal energy use are distinctively different,

although both show trends towards lower median values for ratings in most of the benchmark

groups. Although limited to specific public sector buildings, these changes highlight the fact

that the pattern of energy use continues to change and at different rates for different building

types, which is likely due to differences in factors that influence the operation of different

buildings.

Adequacy of TM46 energy benchmarks

The following sections show results from an assessment of the energy benchmarks in TM46

that underpin the Display Energy Certificate scheme. The latest DEC records were used as a

basis to examine whether the energy benchmarks are robust for the purposes of providing an

accurate picture of how efficiently buildings were being operated. Note that the results in this

section are based on the dataset that was prepared for cross-sectional analysis, which was

described in detail in Section 5.3.1.2.

Figure 5.15 shows the distributions of the operational ratings of the building under the

benchmark categories that have more than 50 records. Note that an OR of 100 would mean

that the operational performance of a building (or buildings) would be equal to the benchmarks.
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Figure 5.15 Box-and-whisker plot of operational ratings by benchmark category

Out of 14 categories analysed, the median operational rating of buildings under 12 categories

were found to be less than 100. In categories ‘Entertainment halls’ and ‘Swimming pool centre’,

more than 90% of the buildings were receiving operational ratings below 100. Moreover, more

than 65% and up to 80% of the buildings in seven other categories were also found to be

below 100. The large proportion of buildings that have received lower ratings indicate that the

assessed buildings are generally performing better, or are less intensive in overall energy use,

than what is considered to be typical performance for each activity group. This suggests that

the energy benchmarks that were established in 2008 are too generous and therefore do not

provide adequate feedback, which is likely due to the changes observed earlier in the

longitudinal analysis.
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Table 5.11 Statistics on operational ratings of buildings by benchmark category

Benchmark category N
Operational Rating

Min 25th % Median 75th % Max IQR*

General office 2911 11 71 91 118 575 47

Cultural activities 544 8 62 79 100 699 38

Entertainment halls 203 12 37 46 59 640 22

Swimming pool centre 261 22 46 63 78 515 32

Dry sports and leisure facility 606 8 46 65 91 900 45

Schools and seasonal public buildings 12563 9 81 95 112 620 31

University campus 1442 18 60 77 98 484 38

Clinic 728 6 71 89 109 468 38

Hospital - clinical and research 573 27 76 98 122 290 46

Long term residential 990 24 75 90 106 247 31

General accommodation 196 6 64 76 95 227 31

Emergency services 746 22 69 88 107 370 38

Laboratory or operating theatre 74 40 87 115 185 898 98

Workshop 128 17 77 104 133 863 56

*Interquartile range (IQR)

It can be seen that many of the operational ratings in every category are heavily positively

skewed by extreme outliers that, in some categories, are more than ten times more intensive

in energy use than the median. The highest ratings were found in the ‘Dry sports and leisure

facility’, ‘Laboratory or operating theatre’ and the ‘Workshop’ categories with operational

ratings close to or equal to 900 (Table 5.11). A closer examination of the buildings under ‘Dry

sports and leisure facility’ showed one sports centre in a university that was consuming more

than 20 times the electricity of the benchmark, whilst the fossil-thermal energy use was less

than half of the benchmark. The record indicated that the building was operating for standard

hours of occupancy and that it was mainly heated by gas, which therefore suggested that there

were other factors such as equipment or facilities that are very intensive in electricity use in

the building. Further investigations showed that two buildings under the ‘Laboratory or

operating theatre’ were a physics research facility and a chemistry building and that they were

located within the same university as the sports centre. Although the presence of these

potentially energy-intensive activities may help explain part of the unusually high levels of

electricity use, more detailed investigation with site visits would be needed to fully understand

the factors that are behind the high operational ratings.
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The reason behind the operational rating of 863 of one building under the ‘Workshop’ category

was on the other hand less difficult to understand. The building was a crematorium, which was

found to use 2404 kWh/m2 of fossil-thermal energy per year. Considering the constant and

extensive demand for heat in such buildings and the fact that the benchmarks for the category

were intended for general workshops or facilities such as vehicle repair shops this will have

led the building to receive such a high rating.

These cases with extremely high operational ratings highlight that there are numbers of factors

that hinder the robustness of the benchmarking scheme. As found earlier, the main cause of

concern lies with the classification system, which does not adequately group buildings with

similar patterns of energy use. There are plethora of examples of misclassifications such as

‘Day centres’ under ‘Schools and seasonal public buildings’ or hospitals of different kinds

allocated to different benchmark categories in relatively arbitrary ways that do not reflect

differences in typical energy use (Hong & Steadman 2013). There is also the possibility that

these poor ratings are produced due to, for example, greater occupancy levels or operating

hours, or use of the separables that are not sub-metered or not allowed, or due to other factors

that are not accounted for by the current method (Better Buildings Partnership (BBP) 2012;

Bruhns, Jones & Cohen 2011).

The variation in operational rating in each category was investigated further by examining the

differences between the operational rating for each fuel type and the respective benchmarks.

Figure 5.16 shows deviations of median ratings for electricity and fossil-thermal fuel use from

100, the value that represents typical performance in TM46 benchmarks. The figure also

shows median operational ratings for each benchmark category, which are based on

consumption of both fuel types together. The bars extending to the left of zero indicate that

the median ratings are below the benchmarks. The bars extending to the right indicate that

the ratings are greater than the benchmarks. Note that benchmark categories that do not have

records are also displayed on the chart.
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Figure 5.16 Energy ratings by fuel type by benchmark category

Many categories show a trend towards higher electricity consumption and lower fossil-thermal

energy use compared with the benchmarks. This is consistent with the findings of the previous

review by Bruhns et al. (2011) and the fact that the two analyses were based on records from

different periods further emphasises the presence of such trends.

The figure also shows that the differences in ratings for the two fuel types, in the two directions,

are cancelled out in some of the combined operational ratings. The ‘Hospital – clinical and

research’ category, for example, shows that the resultant operational rating is very close to
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the benchmark (98) despite the highly deviating median ratings for electricity (136) and fossil-

thermal energy uses (68). This therefore shows that the energy benchmarks for electricity and

fossil-thermal energy are not an accurate representation of the respective patterns of fuel use

of the public building in question.

Table 5.12 Traffic light analysis of operational ratings by benchmark category

Benchmark Category N

Electrical

Rating

Fossil-thermal

Rating

Operational

Rating

Median Median Median

General office 2,911 86 91 91

High street agency 30 57 . 79

General retail 33 54 . 80

Large non-food shop 1 94 8 52

Restaurant 21 131 67 100

Bar, pub or licensed club 7 121 27 73

Hotel 16 81 52 69

Cultural activities 544 93 59 79

Entertainment halls 203 55 33 46

Swimming pool centre 261 69 55 63

Fitness and health centre 42 61 38 53

Dry sports and leisure facility 606 75 46 65

Public buildings with light usage 4 339 127 203

Schools and seasonal public buildings 12,563 108 82 95

University campus 1,442 102 50 77

Clinic 728 97 74 89

Hospital - clinical and research 573 136 68 98

Long term residential 990 131 69 90

General accommodation 196 89 64 76

Emergency services 746 154 51 88

Laboratory or operating theatre 74 108 135 115

Public waiting or circulation 5 393 34 174

Terminal 2 257 100 176

Workshop 128 169 64 104

Storage facility 25 94 42 75

All 22,151

The severity of the deviation of the statistics of operational ratings of each fuel type and the

combined figures was assessed further through a traffic light analysis (Table 5.12). The
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median ratings for electricity and fossil-thermal energy, and the operational ratings, were

coded with different colours based on the sample size and the rating. Varying shades of red

and green were used to indicate the different degrees to which ratings deviated from the

benchmarks. The colour scheme and the underlying criteria are described in detail in Figure

5.4.

The median operational ratings of five out of 14 benchmark categories are within 10% of the

corresponding benchmarks (Table 5.12). These include two categories ‘General office’ and

‘Schools and seasonal public buildings’ which have the largest sample sizes. The benchmarks

for these categories however are not accurately representative of the pattern of energy use of

the stock. When the deviation of electrical and fossil-thermal ratings from the benchmarks is

observed more closely, it can be seen that the low level of deviation in these categories are

results of the cancellation effect, which was found earlier in Figure 5.16.

If the benchmarks are assessed based on the median ratings by fuel type, the median

electrical ratings of nine out of 14 categories were more than 10% away from the benchmarks.

The median ratings in five of these categories were found to be below the benchmarks, and

the medians for ‘Entertainment hall’ and ‘Swimming pool centre’ were both more than 30%

away from the respective benchmarks. At the other end of the spectrum, four categories were

found with median electrical ratings more than 30% greater than the benchmarks. The

deviation was more severe in fossil-thermal ratings where 13 out of 14 categories were found

to deviate more than 10% from the benchmarks. 12 of these categories were found to be below

the benchmarks and nine were found to deviate more than 30% from the benchmarks.
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5.6 Chapter summary

This chapter aimed to assess the latest Display Energy Certificate (DEC) records to improve

the understanding of the pattern of energy uses of various building types. The analyses were

also intended to examine whether the benchmarks that underpin the DEC scheme are robust.

The summary of findings are listed below:

 Prior to any analysis, extensive work was required to develop a set of criteria to identify

uncertain records and inspect, clean and prepare the raw DEC dataset from

Landmark. This showed that the process through which DECs are accumulated and

managed in the central register is currently not suitable for sustaining a benchmarking

scheme.

 There were difficulties in using DEC data to analyse the energy performance of non-

domestic buildings by economic sectors or organisations as there are no other ways

to categorise buildings other than by the type of activity. The differences between the

definition of buildings and premises as the boundary of entities also add difficulties in

utilising the data with other datasets.

 More than 60% of the buildings in the dataset were between 1,000 and 3,000m2 in

floor area. Comparison with mean floor areas of various premises in the non-domestic

stock established in previous studies showed that the study is likely to depict the

energy performance of relatively larger buildings.

 Patterns of energy use were found to vary considerably and to be highly positively

skewed in all benchmark categories owing to small numbers of extremely energy-

intensive buildings. Investigation of the extreme cases showed that these buildings

were often placed in the wrong categories. The large variation in energy use intensities

(EUI) also hinted that the current benchmarking method may not be robust enough to

adequately address the variation in characteristics of buildings in the stock and their

operation.

 Electrically-heated buildings were found to have very different patterns of energy use

from their non-electrically heated counter parts. The differences were evident in
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various benchmark categories even when the total CO2 emissions were compared.

These findings suggested that these buildings should be benchmarked separately to

acquire a fair evaluation of their operational energy efficiency.

 A large proportion of buildings (between 23 and 56% of buildings in 11 out of 14

categories) were found to claim extended hours of occupancy in numerous benchmark

categories. This suggested that occupancy hours have changed over the years from

what CIBSE TM46 considers to be typical values.

 Analyses of the relationships between extended occupancy hours and patterns of

energy use of local and central government offices showed that there were

considerable variations in EUI despite similar hours of occupancy. The weak

correlation between electricity and fossil-thermal energy uses and extended

occupancy hours in these buildings suggested that there must be other factors that

determine the energy performance of the buildings.

 Longitudinal analysis of EUIs of buildings that had lodged DECs over three

consecutive years between 2009 and 2011 showed that fossil-thermal EUIs gradually

declined over the period. The electrical EUI was also found to decline over the same

period with the exception of buildings under the ‘Schools and seasonal public

buildings’ category, which increased by 6%.

 Median operational ratings in 12 out of 14 categories were below 100, which showed

that the TM46 benchmarks are too generous. Further examinations of the ratings by

fuel type showed that electrical EUIs and fossil-thermal EUIs were generally higher

and lower than the corresponding benchmarks respectively. The median ratings were

also found to frequently deviate by more than 30% from the benchmarks. These

results showed that many benchmarks no longer accurately represent recent patterns

of energy use.

In summary, issues associated with various aspects of the DEC scheme raised by the study

showed that it lacks robustness for benchmarking the operational energy efficiency of public

sector buildings. As it currently stands, issues associated with classification and energy
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benchmarks are key areas of concern that have the potential to hinder the effectiveness of the

scheme and its credibility. It was also clear that various aspects of the scheme (e.g. extended

occupancy hours) would need to be reassessed in order to accommodate the changes that

have taken place since its implementation six years ago.

The issues that were raised but for which there was insufficient data to acquire a holistic

understanding on the other hand would require evidence from the more specific analyses

carried out in the following chapters.
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Chapter 6 Top-down Analysis of English Schools

This is the first of a series of analyses that are presented in the next three chapters, which

provides a general overview of the pattern of energy use in the school stock. The present

chapter aims to gain a deeper understanding of the energy performance of primary and

secondary schools in England and examine whether the current framework provides adequate

means for evaluating their operational energy efficiency. Moreover, ways to improve the

comparability of benchmarking are explored by examining the influences that various building

and operational characteristics have on the demand for energy use.

The study was carried out in three parts. The initial section describes the process through

which the Display Energy Certificate (DEC) records for schools and information from other

sources were collected, processed and combined together into a manageable format. This is

followed by descriptions of the methods that were used to analyse the energy performance of

school buildings and the underlying assumptions. Lastly, the results from the analyses are

presented.

6.1 Development of a school information dataset

The first step of the study was to collect and prepare relevant data so that the pattern of energy

use of schools could be analysed at a higher resolution than in the previous chapter. The initial

framework for the dataset was based on the DEC records for schools, which were used in the

previous chapter. This is largely due to the fact that such a large volume of actual energy

consumption figures of schools was not previously available, but also the fact that there are

variables in the dataset that describe other characteristics of the buildings such as floor area

and types of ventilation strategy. Although these records had already been cleaned and filtered

as described in Section 5.2, it was necessary to manipulate the data further to ensure that the

energy performance of primary and secondary schools could be analysed separately. The

main reason behind this was the way various building types are grouped into broader

benchmark categories in TM46. As described in Section 3.5, there are two classification

systems that underpin the DEC scheme. The main classification that affects the evaluation is
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the activity-based benchmark categories, of which there are 29. The secondary classification

comprises 237 building types, but this classification is currently used only to provide guidance

to the assessors for allocating their buildings to the correct benchmark categories. In its current

state, DEC records for both primary and secondary schools are found under the ‘Schools and

seasonal public buildings’ category, which also contains various other building types (Table

6.1).

Table 6.1 List of building types and the number of records under the schools and
seasonal public buildings category

Category name Building type N

Schools and seasonal public

buildings

Clubhouse 0

Community centre 168

Community facilities 74

Community meeting place 5

Creche 1

Creche/childcare facility 20

Day centre 170

Dog racecourse 0

Hunting and fishing 0

Marina or sailing club 0

Nursery or kindergarten 85

Pre-school facility 25

Primary and secondary teaching establishments 111

Primary school 6,631

Private school 22

Reserves centre 5

School 462

Secondary school 1,300

Social clubs 1

Special school 419

Speedway 3

State primary school 2,496

State school 160

State secondary school 403

Unlicensed club 0

Village hall 2
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As shown in Table 6.1, there are a number of building types that raise suspicions with regards

to the robustness of the classification system. First, there are building types such as ‘Day

centres’ which are not schools or seasonal public buildings. There is also the building type

‘Speedway’ that does not belong in the public sector. Second, there are different levels of

specificity of building types that cause confusion and difficulties in identifying primary and

secondary schools from other types of school. Building types ‘Private school’ and ‘State

school’ group for example differentiate schools by their governance. The problem arises when

these classifications exist in conjunction with building types ‘Primary school’ and ‘Secondary

school’, which can either be private or state schools. There is also the portmanteau building

type ‘School’, which is perhaps the most ambiguous classification under the benchmark

category and does not provide much useful information about the type of activity that takes

place in these buildings. These examples highlight issues that add to the list of classification

errors that were raised in the previous chapter and which emphasises the need to refine the

building type classifications if the DEC data are to be used more extensively for the

development of future benchmarks.

For the reasons stated above, it was necessary to extract only the records that related

unambiguously to either primary or secondary schools to make sure that the analyses is based

purely on records for primary and secondary school buildings. For this study, records with

building types ‘Primary school’, ‘Secondary school’, ‘State primary school’ and ‘State

secondary school’ were therefore extracted from the dataset of refined DEC records described

in section 5.2.

Once the dataset of DEC records for just primary and secondary schools was created, it was

linked with additional information from EduBase10, which is the public portal maintained by the

Department for Education (DfE). That website provides a vast range of information on

educational establishments including primary and secondary schools in England. The

information that was considered to be relevant to the study was the details of addresses and

numbers of pupils. There were also descriptions of other characteristics such as boarding

10 For EduBase, see: http://www.education.gov.uk/edubase/home.xhtml
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schools and the main specialisms of schools. Inspection of these variables however indicated

that they were either often not rigorously entered or there were very few schools that had

inputs (e.g. boarding schools). It was therefore decided that these incomplete variables would

not be used for the study. The relevant information was extracted from the public portal in

January 2013. The dataset comprised information on 39,604 primary and secondary schools

across England. The full list of variables in the dataset can be found in Appendix A.

The data from DfE was joined to the DEC records by means of several processes to ensure

that the records were matched correctly. An initial step in joining the two datasets was to

identify the variables that were unique to each school and shared between the two datasets

so that they could act as links when the datasets were joined. The common variables between

the DEC records and the DfE dataset were the names of the schools and the postcodes. An

inspection of the street addresses in the DEC dataset however revealed that these were often

different from DfE records due to the ways in which the assessors put in the addresses when

producing DECs. It was therefore decided that postcode would be a more reliable identifier of

each school.

The next step was to identify the buildings that had lodged DECs at the same postcode and

others that had not. An inspection showed that 81% of the records were unique to the given

postcodes and that the majority of these were primary schools (Table 6.2).

Table 6.2 The number of unique DECs by postcode by phase of education

Phase of education
1 DEC per postcode 2 or more DECs per postcode All

N % N % N

Primary schools 7,705 70% 1,482 13% 9,187

Secondary schools 1,224 11% 662 6% 1,886

All 8,929 81% 2,144 19% 11,073

Subsets of postcodes and names of schools were then created from each of the datasets and

the merging was carried out using a combination of Statistical Analysis Software (SAS) and

manual inspection. Initially, the DfE dataset was joined using SAS to a subset of DEC records

which had lodged only one record per postcode. Once the two datasets were joined together,
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each DEC record and the corresponding DfE record were manually inspected using Microsoft

Excel to ensure that a correct match had been made, based on the names of schools and their

postcodes.

As a final step, schools that indicated that they were occupied for extended hours were

discounted from the analyses. This was to ensure that the patterns of energy use of schools

analysed in the study were representative of typical operation. This exclusion is however

limited to the cross-sectional analyses outlined below.

As shown in Table 6.3, the final dataset comprised 7,731 schools. In the academic year

2012/13, there were 16,784 and 3,281 state-funded primary and secondary schools in England

respectively (DfE, 2013). The sample in the dataset therefore represented approximately 40%

of the primary schools and 32% of the secondary schools.

Table 6.3 Summary of changes in the number of DEC records in the dataset

# Data processing steps
No. DEC records after each step

Primary Secondary Total

1 Cleaned and filtered DEC dataset - - 73,160

2 Sub-set school records 30,625 5,610 36,235

3 Latest DEC record from each building 12,488 3,051 15,539

4 Joined with pupil information 8,625 1,519 10,144

5 Extended hours of occupancy removed 6,686 1,045 7,731

Prior to the analyses of the patterns of energy use of schools, the fossil-thermal energy use

was partially adjusted so that the trend in energy consumption could be assessed more

accurately. This is due to the strong correlation between the climate and the demand for space

heating energy in buildings. Seasonal and regional variations in weather means that buildings

in different geographical locations or where the energy use was measured during different

periods will be influenced by varying external conditions. The adjustment was made using

equation (4) below, which is an adapted version of the equation (2) that is used to assess the

DEC operational ratings (CIBSE 2006b).
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Ndd = [N (1 – P/100)] + [(N × P / 100) × (S / L)] (4)

Where:
Ndd the fossil-thermal energy use of a school adjusted for degree-days (kWh/m2 per year)
N the unadjusted fossil-thermal energy use (kWh/m2 per year)
P Percentage of the fossil-thermal energy use pro-rated to degree-days (%)
L the number of degree-days in the assessment period for the specific location
S the standard heating degree-days for the category

The original equation was reorganised to normalise the fossil-thermal energy use of schools

to a standard number of heating degree-days rather than adjusting standardised energy use

to the heating degree-days of a specific location.

The three variables in the equation, P, L and S were determined based on previous work by

Bruhns et al. (2011), other publications, and insights from building services engineers. The

main source of figures that was readily available for variable P was Table 1 in CIBSE TM46

(CIBSE 2008). To improve the relevance of benchmarking, the methodology currently adjusts

between 30 and 70% of the fossil-thermal energy benchmarks, depending on the type of

activity. For schools, the existing method allows 55% of the fossil-thermal energy consumption

to be adjusted to account for regional and seasonal variations in weather. A review of relevant

publications and discussions with building services engineers however suggested that this is

likely to be a conservative figure. A publication by the Building Research Energy Conservation

Support Unit (BRECSU, 1996) suggested that space heating could account for up to 80% of

the total fossil-thermal energy use of a typical school. In this study, 80% rather than 55% of

the fossil-thermal energy use of schools in the dataset was assumed to be used for space

heating.

Heating degree days are frequently used in studies of the built environment as a measure of

the variation in external temperatures over time. The degree-day values are acquired by

calculating the differences between the external temperatures and a reference temperature,

which is a temperature at which heating is no longer considered to be required in buildings

(CIBSE 2006b). Degree days are used to adjust the energy benchmarks to account for

variation in weather under the DEC scheme. The up-to-date monthly degree days for different

weather regions in the UK are recorded and provided to assessors through the Central
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Information Point (CIP), which is part of the national register website11 (CIBSE 2009). In

addition to the degree days for specific locations, the standard number of heating degree days

was defined. In their study, Bruhns et al. (2011) explain that the ‘raw’ energy benchmarks in

TM46 are based on 2,021 heating degree-days, which is considered to represent the average

UK climate. The relevant table in TM46 indicates that the figure is based on the average of the

heating degree days measured from 1998 to 2007 relative to the base temperature of 15.5°C

(CIBSE 2008). It was therefore decided that 2,021 would be suitable for use as the variable

‘S’ in equation 4.

The adjustment of the space heating proportion of the total fossil-thermal EUI to the standard

degree-day region of the UK and the removal of schools that were operating for extended

hours meant that the statistics were directly comparable with the TM46 benchmarks.

6.2 Methods of analysis

This section describes the methods that were used to analyse the pattern of energy use of

schools, the process through which the data was analysed, and the underlying assumptions

and uncertainties.

The analyses in this section were carried out in several steps. Initially, the latest patterns of

energy use of primary and secondary schools were described using cumulative frequency

distribution curves. The positively skewed distributions of the energy performance of buildings

under the ‘Schools and seasonal public buildings’ category observed in the previous chapter

led to a decision to describe these distributions using median, upper and lower quartiles. This

was to avoid small numbers of extreme outliers from distorting the central tendency and the

variations in distribution when the mean and the standard deviation are used.

Changes in the patterns of electricity and fossil-thermal energy use were also assessed in

order to complement the cross-sectional view of the energy performance of the schools. The

11 For national register website, see: http://www.ndepcregister.com
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samples of schools in each year were extracted from the dataset of DEC records, which was

cleaned and filtered as described in Section 5.2. Changes in the electrical and fossil-thermal

EUI of the sample schools between 2008 and 2011 were assessed based on the ratio between

the actual EUI and the adjusted benchmarks, to ensure that the effects on energy use of

weather and variation in occupancy hours were excluded from the trends (see Section 5.4.1

for a detailed explanation). The median of the ratio was assumed to be representative of the

typical performance of the buildings in each year.

An objective of whole-building energy benchmarks is to provide estimates that are

representative of the typical performance of the stock. An aspect of the energy benchmarks

that is seldom discussed is the uncertainty associated with the figures that are used for

benchmarking. This is largely due to the general lack of transparency of the data that underpin

the benchmarks (Liddiard 2008). Insufficient information on the data, such as the sample size

or the date when they were collected, means that it is often difficult to assess how

representative they are of the typical performance of the stock. Exploring the influences that

varying sample sizes have on the statistical accuracy of the median, or the typical energy

performance, was therefore deemed important for improving the robustness of the

benchmarks.

Figure 6.1 Schematic of a bootstrap analysis for assessing the statistical accuracy of
a statistic s(x) of a dataset (adapted from: Efron, 1993)
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Bootstrapping is a method that is used to assess the statistical accuracy of population

estimates such as means or medians (Efron 1993). The method involves making statistical

inferences of the sampling distribution and the confidence intervals of a population estimate

by repeatedly resampling from a given sample and describing its properties (Figure 6.1).

As shown in Figure 6.1, B bootstrap samples (e.g. x*1) of size n are created from the dataset

by random sampling. Bootstrap replicates (e.g. s(x*1)) are then obtained by calculating a

statistic of interest, such as mean or median, for each bootstrap sample. Lastly, statistical

properties such as the standard deviation of the distribution of the bootstrap replicates are

calculated and used as measures of the accuracy of the statistic s(x).

In the study, 1,000 bootstrap samples (B = 1,000) of varying sizes were created by randomly

selecting energy consumption figures from the dataset. The samples were selected using the

unrestricted random sampling method in SAS where records are randomly selected with an

equal probability and with replacements which meant that a record that was selected once

could be selected again for the same sample (SAS Institute Inc. 2014b). The sample sizes

explored in the study started from five and were increased by doubling the previous sample

(e.g. 5, 10, 20, 40, 80, 160, 320 and 640) until there were negligible changes in the confidence

intervals of the sampling distribution of medians. To examine the accuracy of deriving an

energy benchmark from 10 records, for example, medians from 1,000 samples of 10 randomly

selected records were used. The statistic calculated for each bootstrap was the median as this

is the commonly used statistic for producing energy benchmarks. The use of medians rather

means means that percentile intervals are more suitable for assessing the statistical accuracy

of the statistic rather than standard errors, which are typically used for normally distributed

samples. From the bootstrap distribution of medians, the 2.5th and 97.5th percentiles were used

as lower and upper limits on the 95% confidence intervals.

In addition to the analyses of the patterns of energy use and their accuracy, the study also

involved exploration of the relationships between various characteristics and their impact on

the pattern of energy use. These analyses were intended to identify factors that are either
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strongly correlated with or have statistically significant influence on the pattern of energy use,

as a means to explore ways to improve the robustness of benchmarking. Several methods

were employed to assess the correlations or the significance of the differences between the

patterns of energy use of groups of schools with different characteristics. Prior to the

assessments, however, the normality of the electrical and fossil-thermal EUIs distributions was

tested to determine statistical techniques that would be appropriate for the data. This was due

to the differences in the statistical assumptions that are made when using the parametric tests

as opposed to non-parametric methods. A main statistical assumption that underpins the

parametric tests among other assumptions is that the data is normally distributed (Field &

Miles 2010). The normality of the distribution of the electrical and fossil-thermal EUIs was

therefore tested using the Kolmogorov-Smirnov (K-S) test in SAS. This test involves

comparison of the distribution of the sample with that of a normal distribution of comparable

mean and standard deviation. If the test result is significant at 95% confidence level (p < .05)

then the distribution is considered to be non-normally distributed. The tests on the electrical

and fossil-thermal EUIs of primary and secondary schools were all found to be significant (p <

.01), which meant that the distributions of the samples were non-normal. Non-parametric tests,

which do not assume that the sampling distribution is normally distributed, were therefore

considered to be more appropriate for the study.

Correlations between the building and occupant characteristics and the patterns of energy use

were assessed based on correlation coefficients, scatter plots and the coefficient of

determination, R2, which is the value of the line of best fit.

For binary variables - those have only two categories - Wilcoxon rank-sum, or Mann-Whitney,

tests, rather than Student’s t-tests, were used to assess the statistical significance of

differences in trends of energy use. For nominal variables - those that have more than two

categories - Kruskal–Wallis tests were used, rather than the analysis of variance (ANOVA), to

assess the statistical significance of the differences in EUIs of buildings in different categories.

These tests were followed by Wilcoxon rank-sum tests to identify the precise location of where

the significant difference occurred. A Bonferroni correction was used to reduce the level of
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significance at which results are reported to prevent the Type 1 error rate from increasing due

to multiple Wilcoxon two-sample tests (Field & Miles, 2010). In both cases, the 95%

significance level was used as a basis for identifying statistical significance (p value less than

0.05).

6.3 Results

This section presents the patterns of energy use in primary and secondary schools in England.

Figure 6.2 shows the distribution of electricity use of primary and secondary schools in

England. Note that a number of extreme outliers were not plotted in the chart in order to

improve the legibility of the distribution.

Figure 6.2 Cumulative frequency distribution curves of the electrical EUI of primary
and secondary schools in England

As observed in the previous chapter, the long tail of the distribution to the right indicates that

the electrical EUIs of both types of school are positively skewed. The differences in the

intensity of electricity use is also evident from the distance between the curves shown in Figure

6.2. The median electrical EUI of primary schools was noticeably lower than that of the

secondary schools with values of 44 kWh/m2 and 51 kWh/m2 respectively (Table 6.4). The

difference in the EUI of primary and secondary schools was found to be statistically significant
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(Wilcoxon-Mann-Whitney, p < .0001). This significant difference therefore suggested that the

ways that electricity is used in primary and secondary schools are distinctively different, which

may be due to various factors. One likely reason is the greater uses of electrically-intensive

equipment in secondary schools such as computers, laptops, and also the presence of

teaching facilities that require greater use of electrical equipment such as laboratories (Global

Action Plan 2006; Carbon Trust 2012). As can be seen from the distribution curves, the

variations in the data for the two types of school were reasonably similar with interquartile

ranges of 17 and 19 kWh/m2 respectively.

Table 6.4 Statistics of the electrical EUI of primary and secondary schools in England

Phase of education N
Electricity EUI (kWh/m2)

Min 25th % Median 75th % Max IQR*

Primary 6,686 1 36 44 53 191 17

Secondary 1,045 1 42 51 61 174 19

All 7,731 1 36 45 55 191 19

Existing benchmarks

CIBSE TM46 - 40

CIBSE Guide F

- Primary 22 32

- Secondary 25 33

ECG 73**

- Primary 20 28

- Secondary 24 30

* Inter-quartile range (IQR)

** Energy consumption guide (ECG) (BRECSU, 1996)

In addition to the descriptive statistics, Table 6.4 shows electricity benchmarks for schools

published over the past two decades. The comparison of the sample median to the existing

benchmarks shows that what was perceived as typical performance of schools has gradually

changed over the years. The benchmarks in the energy consumption guide (ECG) for example

were derived from a survey conducted in the late 1990’s. The differences in the sample median

and the ECG figures show that schools were considerably less intensive then in electricity use.

The fact that separate energy benchmarks for primary and secondary schools are not provided

in CIBSE TM46 was also a noticeable change in the way the energy performance of schools

has been benchmarked. Unlike the previous benchmarks, both primary and secondary schools

are currently benchmarked against the shared value of 40 kWh/m2. The statistically significant
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differences between the electrical EUI of primary and secondary schools that was found above

however suggest that this aggregated grouping of the two types of schools is not likely to

provide an accurate evaluation of their respective energy performance. For primary schools

the intrinsically less intensive use of electricity means that these buildings are more likely to

receive better grades than the secondary schools.

Figure 6.3 shows recent changes in the operational ratings of electricity consumption of

primary and secondary schools.

Figure 6.3 Changes in the electricity use of primary and secondary schools between
2008 and 2011

It can be seen that electricity consumption has gradually increased between 2008 and 2011,

where the median ratios of primary and secondary schools have changed by approximately 9

and 12%, respectively. These trends reflect the increasing prevalence of the virtual learning

environments that involve the use of electrical technologies such as ICT equipment. The

increases in the intensity of electricity use suggest that schools are likely to have continued

their uptake of ICT and electrical equipment and that the trend has continued up to the present

(Global Action Plan 2006; Ofsted 2011). Moreover, it can be seen that secondary schools are

notably more intensive in electricity use than primary schools which is likely due to the greater

use of electrical equipment in ICT (Carbon Trust 2012).
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Figure 6.4 shows the distributions of the weather-corrected fossil-thermal EUIs of primary and

secondary schools in England. Note that a number of extreme outliers were not plotted in the

chart in order to improve legibility.

Figure 6.4 Cumulative frequency distribution curves of the weather-corrected fossil-
thermal EUIs of primary and secondary schools in England

The distributions of the weather-corrected fossil-thermal EUIs shows that the pattern of energy

use, mainly for providing space heating and domestic hot water, are very similar between

primary and secondary schools. The medians of the heating consumption of primary and

secondary schools are 122kWh/m2 and 121kWh/m2 respectively and the variations in the data

were also found to be very similar (Table 6.5). A hypothesis test showed that the difference in

fossil-thermal energy uses between primary and secondary schools was not statistically

significant (Wilcoxon-Mann-Whitney, p > 0.05). This therefore suggested that the way schools

are heated and hot water is supplied to pupils are alike regardless of the type of school. This

is likely due to the fact that the demand for space heating is associated with prevailing weather

conditions and the building characteristics such as the quality of the fabric, rather than how

the occupants behave in the buildings, which was the likely explanation behind the variations

in electricity use.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 80 160 240 320 400 480

C
u

m
u

la
ti

v
e

fr
e
q

u
e
n

c
y

(%
)

Weather-corrected fossil-thermal EUI (kWh/m2)

Primary School Secondary school



122

Figure 6.5 shows year-on-year changes in the fossil-thermal EUIs of primary and secondary

schools from 2008 to 2011. Note that the figure displays the median of the ratio between the

actual consumption and the adjusted benchmarks.

Figure 6.5 Changes in the fossil-thermal EUIs of primary and secondary schools
between 2008 and 2011

It can be seen that heating consumption in both primary and secondary schools has gradually

decreased over the past four years (Figure 6.3). Over the four-year period, the ratio was found

to decrease from 94 and 89 to 82 and 73, which are approximately 13% and 18% decreases

respectively. There are many factors that may have caused the reduction in heating energy

use of schools such as climate change, rising fuel prices, implementation of energy efficiency

measures or more efficient management. The lack of detailed information on the sample

schools with regards to their operation means that further study would be needed to explain

precisely why such a trend is occurring across a large proportion of the stock. These

contrasting trends in electricity and fossil-thermal use in schools were also found in the study

by Godoy-Shimizu et al. (2011) in which a similar phenomenon was traced back to 1999. This

indicates that the way schools use energy continues to change over time and therefore it is

necessity to identify the factors that cause such changes, particularly in fossil-thermal energy

use, to fully understand the trends.
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It should be noted that the performance figures from DECs lodged in 2012 were not included

in Figure 6.3 and Figure 6.5 since records for the complete year were not available. The trends

were derived from a sample of schools that have lodged DECs with data collection ending in

a specific year, therefore, to include 2012 would not be a like-for-like comparison.

Table 6.5 below presents statistics for the weather-corrected fossil-thermal EUIs of primary

and secondary schools. Current and past energy benchmarks for schools in the UK are also

presented for comparison purposes.

Table 6.5 Statistics for the weather-corrected EUI of primary and secondary schools in
England

Phase of education N
Adjusted fossil-thermal EUI (kWh/m2)

Min 25th % Median 75th % Max IQR*

Primary 6,686 2 97 122 153 597 56

Secondary 1,045 5 94 121 154 802 60

All 7,731 2 97 122 153 802 56

Existing benchmarks

CIBSE TM46 - 150

CIBSE Guide F

- Primary 113 164

- Secondary 108 144

ECG 73**

- Primary 126 173

- Secondary 136 174

* Inter-quartile range (IQR)

** Energy consumption guide (ECG) (BRECSU, 1996)

As with the electricity consumption, the comparison of the latest fossil-thermal EUI figures for

primary and secondary schools with the current and past energy benchmarks shows that what

was regarded as a typical performance has changed considerably over the past decades. It

can be seen that what was seen as the average (or median) fossil-thermal EUIs of primary

and secondary schools has decreased considerably over the decade from 173 and 174

kWh/m2 in the late 1990’s to 150 kWh/m2 in 2008. Moreover, the noticeable difference between

the actual fossil-thermal EUI of the sample and the energy benchmark in TM46 suggests that

this latest benchmark is no longer representative of the typical performance of primary and

secondary schools. The insignificant differences in the fossil-thermal EUI between primary and
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secondary schools does however suggests that providing a shared value is likely to be

sufficient for benchmarking heating consumption.

Figure 6.6 to Figure 6.9 show changes in medians and the confidence intervals of the sampling

distributions of electrical and fossil-thermal EUIs of primary and secondary schools from the

bootstrap analyses. Note that the vertical bars at each point indicate the 95% confidence

intervals of each statistic based on the 2.5th and 97.5th percentiles of the sampling distribution.

Figure 6.6 Changes in median electrical EUI of primary schools and the corresponding
confidence intervals derived from varying sample sizes

Figure 6.7 Changes in median electrical EUI of secondary schools and the
corresponding confidence intervals derived from varying sample sizes
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Figure 6.8 Changes in median fossil-thermal EUI of primary schools and the
corresponding confidence intervals derived from varying sample sizes

Figure 6.9 Changes in median fossil-thermal EUI of secondary schools and the
corresponding confidence intervals derived from varying sample sizes

The four figures show a similar trend in the way the population estimate changes, which in this

case is the median, and in the associated confidence intervals. In general, there is not much

fluctuation in the median derived from samples of varying sizes. What is noticeable however

is the dramatic decrease in the upper and lower confidence intervals as the sample size

increases. Taking the median electrical EUI of primary schools for example, the upper

confidence interval of the statistics was found to reduce the most from 59 kWh/m2 to 53.8

kWh/m2 when the sample size changed from 5 to 10 (Figure 6.10). When the sample sizes
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became greater however the rate at which the intervals changed reduced to less than two

when medians were derived from sample sizes of 80 and 160. This suggested that the

influence of the change in sample sizes on the accuracy of the typical energy performance of

the school stock is considerable and that larger sample sizes are likely to yield more accurate

measures.

Figure 6.10 Differences between the upper confidence limit of the electrical EUI of
primary schools from median with varying sample sizes

The significant reduction of the rate at which the confidence intervals decrease with increase

in sample size however suggests that it is not necessary to have a very large sample size (e.g.

n = 1,000) to estimate the typical energy performance of the school stock with reasonable

accuracy. It can also be seen that the rate at which the confidence limit reduces to a

reasonable range when the sample sizes were around 200. It does on the other hand show

that energy benchmarks that are derived from small sample sizes should be treated with

caution as they may not be accurate representations of the typical energy performance of the

stock. The results thus indicate that, given the sufficiently large sample sizes, the statistics for

the electrical and fossil-thermal EUIs in Table 6.4 and Table 6.5 are likely to be highly accurate

estimations of the typical performance of the primary and secondary schools in England.
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Figure 6.11 below shows the cumulative frequency distribution of annual electricity and fossil-

thermal energy use normalised by number of pupils rather than by floor area.

Figure 6.11 Cumulative frequency distribution of energy use per pupil by school type

The distribution curves in Figure 6.11 show distinctively different levels of energy use per pupil

in primary and secondary schools. Primary schools were found to use significantly less

electricity per pupil than secondary schools with medians at 270 kWh/pupil and 430 kWh/pupil,

respectively (Wilcoxon-Mann-Whitney, p < .0001). Conversely, a comparison of the trends in

fossil-thermal energy use per pupil showed that the energy used for heating per pupil is

significantly lower in primary schools than in secondary schools with medians at 744 kWh/pupil

and 965 kWh/pupil, respectively (Wilcoxon-Mann-Whitney, p < .0001). The difference is likely

to have been produced however by differences in the density of pupils rather than other

factors. A comparison of the levels of energy use per floor area (kWh/m2) and energy

consumption per pupil (kWh/pupil) showed that approximately 6m2 and 8m2 is allocated per

pupil in primary and secondary schools respectively.
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Figure 6.12 and Figure 6.13 are scatterplots of the annual electricity consumption (kWh/yr) of

primary and secondary schools compared with floor area and number of pupils. The lines of

best fits are displayed for determination of the relationships.

Figure 6.12 Scatter plot of annual electricity use and floor area by school type

Figure 6.13 Scatter plot of annual electricity use and number of pupils by school type

The scatter plots in Figure 6.12 and Figure 6.13 show that there are positive relationships

between annual electricity consumption and both floor area and number of pupils in primary
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and secondary schools. It can also be seen that there is a cluster of primary schools near the

lower end of the spectrum, around 3,000m2, where secondary schools are found across a

much wider spectrum of sizes – ranging above 15,000m2.

The plots also show that the data points are more clustered around the line of best fit between

floor area and annual electricity consumption by comparison with the fit to number of pupils.

The variation in scatter of the data points and in the correlation coefficients between electricity

consumption of primary and secondary schools with floor area and number of pupils indicate

that there is a stronger correlation between electricity consumption and floor area (Table 6.6).

Table 6.6 Comparison of Spearman’s correlation coefficient between the annual
electricity consumption of primary and secondary schools and the floor area and the
number of pupils

Phase of education
Spearman Correlation Coefficients, N = 6,686

Prob > |r| under H0: Rho=0

Annual electricity consumption (kWh/yr) Floor area (m2) Number of pupils

Primary school 0.69 0.58

<.0001 <.0001

Secondary school 0.85 0.51

<.0001 <.0001

Figure 6.14 and Figure 6.15 below are scatterplots of weather-corrected annual fossil-thermal

energy consumption (kWh/yr) of primary and secondary schools with floor area and number

of pupils. The line of best fit and the corresponding R2 value are given for comparison

purposes.
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Figure 6.14 Scatter plot of weather-corrected annual fossil-thermal energy use and
floor area by school type

Figure 6.15 Scatter plot of weather-corrected annual fossil-thermal energy use and
number of pupils by school type

The scatter plots show that there is a positive relationship between heating energy use and

both floor area and number of pupils. The data points for secondary schools are however much

more widely spread in Figure 6.14 than Figure 6.12, which suggests that the relationship is

less clear for floor area. Figure 6.15 also shows that there is one secondary school whose

pattern of fossil-thermal energy use is substantially different from the rest of the sample. A
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closer examination of the data showed that the school was using 802 kWh/m2 for heating

(weather corrected), which was the most intensive school in the dataset (Table 6.5).

The assessment of the strength of the correlations between fossil-thermal energy use and

both floor area and number of pupils showed that, like electricity consumption, there was a

stronger correlation between annual fossil-thermal energy use and floor area in both primary

and secondary schools (Table 6.7).

Table 6.7 Comparison of Spearman’s correlation coefficients between the weather-
corrected annual fossil-thermal energy consumption of primary and secondary
schools, floor area, and number of pupils

Phase of education
Spearman Correlation Coefficients, N = 1045

Prob > |r| under H0: Rho=0

Annual fossil-thermal energy use (kWh/yr) Floor area (m2) Number of pupils

Primary school 0.70 0.50

<.0001 <.0001

Secondary school 0.79 0.33

<.0001 <.0001

The differences in the correlation coefficients shown in the analyses of electricity and fossil-

thermal energy use of primary and secondary schools clearly indicate that floor area accounts

for a greater proportion of the variation in annual electricity and fossil-thermal energy use than

does the number of pupils. These findings agree with the conclusions of a study of energy use

by schools in New Zealand by Isaacs, Baird, & Donn (1990) showing that energy use is better

related to floor area than to number of pupils. This therefore suggests that using floor area as

a denominator of the EUI metric expressed as kWh/m2 is more appropriate for benchmarking

the energy performance of primary and secondary schools than numbers of pupils.

The ‘internal environment’ variable in the DEC data provides a useful insight into how schools

are ventilated to provide fresh air and to maintain a thermally comfortable environment. The

categorical variable groups different operational strategies into seven categories, of which

schools were found under six categories (Table 6.8).
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Table 6.8 Number of schools by the type of ventilation strategy

Internal environment
Phase of education

Primary school Secondary school

Air Conditioning 11 7

Heating and Mechanical Ventilation 140 48

Mixed-mode with Mechanical Ventilation 21 9

Mixed-mode with Natural Ventilation 114 67

Heating and Natural Ventilation 6,396 914

Natural Ventilation Only 4 .

All 6,686 1,045

The buildings that use mechanical ventilation systems or air-conditioning systems are in theory

likely to consume more electricity, due to components such as fans, and heating and cooling

coils, than the naturally ventilated buildings which are the dominant form of ventilation in the

UK. The following analyses therefore focus on assessing whether actual differences in

demand for energy use that might be expected between schools with different ventilation

strategies can be observed in the sample.

Table 6.9 shows statistics for electricity and fossil-thermal EUIs of primary and secondary

schools by type of ventilation strategy.

Table 6.9 EUI statistics and the distribution of schools by the internal environment

Internal environment

Primary Secondary

N

Electricity

EUI

Fossil-thermal

EUI N

Electricity

EUI

Fossil-thermal

EUI

Median (kWh/m2) Median (kWh/m2)

Natural Ventilation Only 4 49 147 . . .

Heating and Natural

Ventilation
6,396 43 122 914 51 122

Mixed-mode with Natural

Ventilation
114 48 119 67 53 122

Mixed-mode with Mechanical

Ventilation
21 50 106 9 66 95

Heating and Mechanical

Ventilation
140 50 118 48 57 112

Air Conditioning 11 47 99 7 49 97
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The statistics show that electricity consumption is noticeably higher in mechanically ventilated

schools and heating consumption is lower. This is likely due to the increased electrical load

from components of the HVAC system such as fans and pumps in mechanically ventilated

buildings, which generally use more electricity than their naturally ventilated counterparts

(Bordass, Cohen, et al. 2001). By contrast, the differences in fossil-thermal energy use of

schools with different systems are negligible.

Initial hypothesis tests indicated that there are statistically significant differences between the

different school types with different ventilation strategies for electricity use (Kruskal-Wallis, p

<.0001). The difference was not found to be significant however for fossil-thermal energy use

(Kruskal-Wallis, p >.05).

Table 6.10 shows the results from a series of Wilcoxon-Mann-Whitney tests, which were

carried out to identify any significant differences.

Table 6.10 Summary of the results from Wilcoxon-Mann-Whitney tests on the
electrical EUIs of schools with different internal environment types

Internal environment type

Phase of education

Primary Secondary

p-value

Heating and Natural Ventilation versus < .0001 < .0125

Heating and Mechanical Ventilation

Heating and Mechanical Ventilation versus > .0125 > .0125

Mixed-mode with Mechanical Ventilation

Mixed-mode with Natural Ventilation versus > .0125 > .0125

Mixed-mode with Mechanical Ventilation

Mixed-mode with Mechanical Ventilation versus > .0125 > .0125

Air Conditioning

A significant difference in electricity use of schools with natural ventilation and mechanical

ventilation was found in both primary and secondary schools (Wilcoxon-Mann-Whitney tests,

p < .0001). There were however no significant differences between schools with ventilation

strategies that involve mechanical systems (Wilcoxon-Mann-Whitney test, p >0.0125). This
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suggests that the subtle differences in the classification of ventilation strategies, illustrated in

CIBSE TM46, do not reflect actual differences in energy use – at least in the case of schools.

This therefore raises the possibility of revising the classification system so that categories with

no significant differences in energy use can be grouped together, particularly ‘Mixed-mode

with Natural Ventilation’ and ‘Mixed-mode with Mechanical Ventilation’. It should be noted

however that the majority of the schools in the dataset were naturally ventilated and therefore

the sample sizes of schools with air conditioning and mechanical ventilation were small.

Further studies with a well-distributed sample and a greater number of schools with air-

conditioning and mechanical ventilation would be necessary to confirm the results.

6.4 Chapter summary

In this chapter, the patterns of energy use in primary and secondary schools in England were

analysed to understand these patterns but also to explore opportunities for improving the

robustness of benchmarking.

The findings from the analyses are listed below:

 Various building types that were deemed to have different patterns of use and energy

consumption were found under the ‘Schools and seasonal public building’ category.

There were also different levels of specificity of building types (e.g. School) that cause

confusion and difficulties in identifying records and utilising the valuable data for

benchmarking purposes. These findings highlighted the challenges raised by the

drawbacks of the current classification system in assessing the energy performance

of schools as well as developing future benchmarks.

 The analyses have shown that there are significant differences in electricity use

between different school types, where secondary schools were significantly more

intensive than primary schools. The difference in fossil- thermal energy use was

however insignificant. Nevertheless, the difference in the patterns of energy use

highlighted that the current classification of schools is not appropriate for accurately

assessing their operational energy efficiency.
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 Analysis of the changes in patterns of energy use of schools from DEC records with

assessment end dates between 2008 and June 2012 has shown a gradual increase

in intensity of electricity consumption and a decrease in fossil-thermal energy use. The

contrasting trends observed over the past decade have indicated that the pattern of

use of energy by schools continues to change in response to developments in

technology and other factors.

 The accuracy of the median energy performance values that are derived from varying

sample sizes were found to improve dramatically with increases in size. The rate at

which the accuracy improved however was found to reduce considerably once the

sample reached a certain size (typically > 200).

 Floor area was found to be more strongly related to annual electricity and fossil-

thermal energy use for both primary and secondary schools than number of pupils.

This confirmed that the current use of floor area as a denominator for the performance

indices of EUI (kWh/m2) for normalising and comparing the energy performance of

schools is appropriate.

 Comparisons of electricity consumption between primary and secondary schools with

different ventilation strategies showed statistically significance differences. Schools

that are predominantly naturally ventilated were found to use significantly less

electricity than schools using varying levels of mechanical ventilation to supply fresh

air and maintain a comfortable indoor environment. The implications of the finding for

benchmarking could not be addressed properly however due to the predominance of

naturally ventilated buildings in the dataset.

In summary, the analysis of the stock-level data specific to primary and secondary schools

have provided deeper insights on the various aspects of the current DEC framework as well

as the general patterns of energy use and the factors influencing these patterns.

Adding to the issues of misclassification found in the previous chapter, building types with

different levels of specificity that cause confusion further emphasised the lack of robustness

of the current classification system. The distinctively different patterns of energy use between
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primary and secondary schools also indicated possibilities of finding comparable differences

between other building types.

The historical changes in the patterns of energy use in schools suggested that these trends

are likely to continue in the future. This means that the energy benchmarks are bound to

become disassociated with the patterns of energy use of the school stock as time passes.

Moreover, the findings from bootstrapping analyses suggested possibilities for establishing

sample sizes that would improve the confidence of the representativeness of energy

benchmarks.

The small number of variables that were analysed in this chapter, although providing useful

insights, only broadly describe the intrinsic features of buildings. The following chapters

therefore aim to improve the understanding of the relationships between a wider range of

intrinsic features and empirical data on the energy performance of schools.
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Chapter 7 Hybrid Approach to Analysing English Schools

This chapter aims to assess and identify factors that are correlated with patterns of energy use

of schools that were not explored in the previous chapter. As the second part of the three-part

case study, the dataset developed in this chapter is aimed at exploring more detail on the

intrinsic features such as the local environment, the age and the built form that, in theory,

would influence the demand for energy uses in non-domestic buildings. The main objectives

of the study are therefore to develop a dataset with additional variables that describe the

features that are intrinsic to school buildings in greater detail, and to explore the data in order

to complement the findings from the previous chapter.

The study was carried out in two parts. The initial part of the study involved preparing a dataset

that could be analysed to achieve the objectives. This not only involved developing and

merging different datasets but also required a substantial data collection exercise, due to the

lack of any existing database providing finer detail on the intrinsic features of buildings such

as their shape and how the fabric was designed. The data from the collection exercise was

then merged with the dataset that was used for analysing the pattern of energy use of schools

in England in the previous chapter (Section 6.1). Lastly, the dataset prepared at finer

granularity was analysed using a multivariable analysis method to assess the impact that the

intrinsic features of school buildings had on their energy performance. The results and the

summary of the findings are presented at the end of the chapter.

7.1 Building characteristics survey

Unlike the Commercial Buildings Energy Consumption Survey (CBECS)12 database in the US,

there were no pre-existing databases in the UK describing the intrinsic features of buildings

such as their shape, exposure or glazing areas that in theory would influence the demand for

energy. As described in more detail in previous chapters, the data from Display Energy

Certificates (DEC) and the Department for Education (DfE) provide reasonable information on

12 For CBECS, see: http://www.eia.gov/consumption/commercial/index.cfm
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such characteristics of buildings as sizes, ventilation strategies and numbers of pupils. These

datasets did not, however, describe the intrinsic features of the buildings themselves and

therefore the initial step of the study was to collect the information which was otherwise not

available.

The following sections describe in detail the sampling of schools for the analyses and how

data on the intrinsic building features was collected using online resources.

7.1.1 Sampling of schools

Prior to the collection of additional data, a step was taken to consider and design the way the

sample would be selected for the multivariable analyses. The main objective of the initial step

was to estimate an adequate sample size so that the influences of different characteristics on

the pattern of energy use found in the study can be used to make inferences about the

population of the school stock.

There are numerous ways in which sample sizes can be estimated for multiple regression

analyses. These range from rules of thumb to more complex methods that require

considerations of key characteristics of the analysis at hand. Green (1991) for example

proposes two methods for estimating the minimum sample size acceptable to test the overall

fit and to test the individual independent variables in the model using the following equations:

Noverall fit = 50 + 8k (5)

Nindependent variables = 104 + k (6)

where k is the number of independent variables in a model.

These methods however oversimplify the factors that affect the significance of a statistical

procedure (Field & Miles 2010). The rule of thumb proposed by Green (1991) was therefore

not used in this study.
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Cohen (1992) on the other hand suggests using power analysis to determine the appropriate

sample size, and that three variables need to be defined to do so. These variables are:

 Size of the effect that the research intends to detect

 The level of probability at which the results will be accepted as being statistically

significant

 The statistical power that is desired to prevent the Type 2 error from occurring

Field & Miles (2010, p.198 Fig. 7.9) provides a diagram that can be used to estimate the

required sample size for multiple regression analyses. The diagram provides sample sizes

required for analyses which aim for different effect sizes and comprise different numbers of

independent variables at the significance level of 0.05 and statistical power of 0.8, which are

recommended by Cohen (1992). This was used as a basis for estimating the sample size.

Moreover, the number of independent variables that are to be used in the final model was

estimated based on previous studies by Sharp (1996; 1998) both of which concluded that six

variables were the most significant. Due to the difficulties in estimating the number of variables,

a more conservative number of ten was used for the estimation. For analyses that aim to find

the medium-sized effect (r = 0.3) with 10 independent variables, the diagram suggested a

sample size of 150. While this number was taken as the target for secondary schools, the

target sample size for primary schools was adjusted upwards. This was in response to a pilot

study that was carried out on primary schools in London in order to assess the feasibility of

the proposed method (Hong, Pang, et al. 2013). The size of the sample that was collected for

the pilot study was 110, which meant that a much larger sample size would be needed for

analyses of primary schools to reduce the bias for schools in London. According to the data

extracted from the Edubase (Section 6.1), schools in London were found to account for

approximately 11% of the school stock in England. This meant that approximately 900 schools

would needed to reduce the bias. Experience from the pilot study suggested however that

such a collection exercise would require tremendous time and resources, which meant that it

was not likely to be feasible within the timeframe of the study. The target sample size for

primary schools was therefore increased to 500 (inclusive of the London sample) to reduce

the bias as much as possible.
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Once the sample size was estimated, an exploration was made of the process through which

the sample was to be selected. The main constraint in selecting the sample was that

information on the energy performance and the other characteristics previously described was

limited to schools that had lodged DECs. Moreover, the number of schools for which

information on the number of pupils was available was small still. In an ideal situation schools

would be randomly selected from the entire school stock. The requirement for detailed

information on schools and their pupils and the limited availability of such data however meant

that there was little control over where the sample was to be selected from. The dataset that

was developed in Chapter 6 (Section 6.1) was therefore assumed to be the effective

population and the sample was selected from that dataset to ensure that the variables that

describe the building and occupant characteristics of schools were retained.

The sample was selected with the aim of properly representing the geographical distribution

of the school stock whilst being useful for identifying and comparing the influences that each

characteristic has on energy performance. Initially, lists of all primary and secondary schools

in the dataset were produced as a preparation for the sample selection. The schools on the

lists were then shuffled into a randomised order with the aid of the random number generator

function of Microsoft Excel 2013. This was to ensure that there was no particular order in which

the sample was selected from the datasets so as to minimise bias.

There were several methods that were considered for the collection of additional information

on the buildings. In the built environment, detailed information on buildings can often be

collected via on-site surveys. Being able to visit the buildings means that a surveyor is able to

collect detailed information on not just the building but also its occupants, which can be very

useful for identifying causes of inefficiency (Cohen et al. 2001). The main limitation in adopting

this approach was however the fact that site visits are highly intensive in time and resources,

not to mention the time consumed in the bureaucratic process of acquiring access to schools.

The fact that one of the objectives was to collect information on a sufficient number of schools

so that the findings could be used to make inferences to other schools within the time frame

of a PhD programme meant that adopting such an approach was not practically feasible. The
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other method that was available was the approach developed by Hawkins et al. (2012). In that

study, a method was developed whereby information that describes the built form and other

parameters of university buildings was collected via online tools and databases. The ability to

capture much of the information that describe the intrinsic features of buildings without visiting

the buildings meant that a large number of buildings could be surveyed at the expense of much

less resource and time. It was therefore decided that the online method would be adopted as

a basis and refined for collecting the data in the study.

Another aspect of the data collection process that was defined was the set of criteria on which

a school would be selected from the dataset. This was largely to reduce the factors that create

uncertainties in the analyses of influence of building characteristics on energy consumption,

but also to ensure that the desk-top based survey method could be used to collect sufficient

information. Factors that were deemed to have the potential for introducing uncertainties to

the analyses were schools with multiple buildings, extensions or part refurbishments.

As discussed earlier, the influences of building characteristics were deemed difficult to assess

in schools with multiple buildings since the way the buildings interact with the surrounding

environment would be different from those that only have a single main building. Taking

shading for example, schools with multiple buildings are likely to have limited access to the

sun due to the overshadowing effect between those buildings whereas a single building school

might not. Schools that were partly refurbished or where an extension was added would also

introduce uncertainties. Typically a building will last for approximately 50 years, although there

are numerous schools that are more than 100 years old. During its lifetime, many changes can

be made to a building that can influence its energy use. There are for example possibilities for

buildings to be refurbished, either partly or as a whole, or an extension could be added to an

existing building to satisfy changing demands. The changes in the requirement to improve

energy efficiency when an existing building undergoes refurbishments or an extension erected

under the Building Regulations Part L2B means that some buildings will have parts with

different levels of thermal performance (HM Government 2010c).
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Below is a set of criteria that was produced to select buildings that would enable analysis of

determinants of energy use on a building basis while facilitating the desk-based collection

approach:

 Schools with one main building

 Uniform building characteristics (age, construction material, etc.)

 Can be seen using Google street view or the Bing Bird’s eye view function

At the end of the data collection exercise, detailed information was collected from 550 schools

which comprised 497 primary schools and 53 secondary schools.

7.1.2 Selection of the intrinsic features

Prior to selecting and developing methods for collecting intrinsic features of buildings, an

option to categorise schools based on archetypes was investigated. Archetypes of buildings

are typically established based on key features such as architectural style or age, which

represent the built form, composition of spaces, and construction. Such an approach can be

beneficial in various ways, especially when there are limited resources to study the effects of

changes on a wider building stock (Bull et al. 2014; Mavrogianni et al. 2012). With regards to

assessing the impact of intrinsic features of buildings on the energy performance schools

however, such an approach was deemed inappropriate for several reasons. First, existing

archetypes of schools were developed by other researchers based on the built form and layout

but not taking into account the features that influence the energy performance of schools.

Second, there is a diverse range of ways in which archetypes are constructed, which are often

associated with uncertainties on how representative they are of a sector or the stock due to

insufficient information. Third, these archetypes only cover the periods up to 1970’s until which

point schools were built with distinct period features that allowed buildings to be categorised

into archetypes (Steadman 2014; Harwood 2010). This means that archetypes of schools that

were built during the past 30 to 40 years do not exist. Unlike the past school buildings, these

contemporary buildings vary widely in their form, materiality and efficiency. This is likely to be

due to the developments in construction materials and techniques, and mechanical systems,

which allowed school buildings to be designed with greater freedom. Such diversity of building
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characteristics within the past decade means that it is extremely difficult to develop a generic

archetype to represent the characteristics of contemporary buildings. It was therefore deemed

inappropriate to adopt an archetype approach for categorising and analysing the patterns of

energy use of schools.

There is plethora of factors that are intrinsic to buildings that, according to principles of building

physics, have the potential to influence the way energy is used in buildings, including schools

(Mumovic & Santamouris 2009). CIBSE Guide F distinguishes various factors that influence

the energy consumption of buildings into two main themes, the site considerations and the

built form (CIBSE 2012). Site considerations include external factors such as the weather

conditions, both at local and micro scale, the orientation of a building and influences from

surrounding buildings. The built form on the other hand concerns the building-specific factors

such as the form, levels of insulation and design of windows or glazing. The primary focus of

the next phase was therefore to collect sufficient information on the site and building-related

factors to complement the information that was carried through from DECs and EduBase

datasets. The constraints on resources, however, meant that it was important to identify and

collect a set of variables that express the key characteristics of buildings that, in theory, have

significant impacts on energy consumption.

Initially, relevant literature was reviewed to identify variables that had previously been used for

similar purposes. The list of variables used by other authors to describe the features that are

intrinsic to the site and buildings is shown in Table 7.1.
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Table 7.1 List of variables that describe the intrinsic site and building features

Study Variables Related building physics

Ratti, Baker, &

Steemers (2005)

Surface-to-volume ratio Heat loss

Orientation of a façade Passive solar gain

Urban horizontal angle (UHA) Overshadowing due to surrounding

buildings

Obstruction sky view (OSV) Insolation on a façade

Yang, Lam, &

Tsang (2008)

U-value Heat loss

Shading coefficient Passive solar gain

Window-to-wall ratio (%) Heat transfer and daylight

Skylight-to-roof ratio (%) Heat transfer and daylight

Hawkins et al.

(2012)

Age Variation in the thermal performance

and efficiency of building services

Primary external wall material Provision of thermal mass

Fraction exposed Heat loss, ventilation and daylight

Aspect ratio Depth of floor plan: daylight and

ventilation

Shading factor Overshadowing due to surrounding

buildings

Sheltering factor Obstruction from prevailing wind

Glazing type Heat transfer

Glazing ratio Heat transfer and daylight

Weather data External conditions

The adequacy of variables for use in the study was assessed based on the following criteria:

 That the variable adequately expresses the intrinsic features of the site or building

 That the information can be acquired with reasonable input of resources

 That the method that underpins the variable is robust

During the process, variables such as U-value or shading coefficient were deemed

inaccessible to the study due to the difficulties of acquiring such detail from existing buildings.

There were other instances where a variable was deemed useful but required modifications.

Variables such as the aspect ratio that express how deep the floor plan of buildings are for

example was deemed useful and feasible for collection. The underlying method was however

deemed not robust owing to the complexity of the shape of buildings. Such variables were

therefore modified or replaced with other variables that were deemed more appropriate for the
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study. Variables such as the urban horizontal angle (UHA) and obstruction sky view (OSV)

were on the other hand deemed effective and robust. The underlying method used by Ratti,

Baker, & Steemers (2005) however involved a tool that was developed specifically for the

study, which was not readily available. The demanding requirement for additional resources

meant that these variables were replaced with another form of variable, which is described in

Section 7.1.3.2.

In addition to the variables that were identified from previous studies, additional variables were

also developed and introduced to the study based on the principles of building physics (Table

7.2).

Table 7.2 List of key variables and their descriptions

Characteristic Description Information required

Building age Year of construction -

Site exposure Exposed, semi-exposed, or sheltered

from wind

-

Orientation Angle at which a ‘vertically’ oriented

external wall is set relative to North

-

Façade adjacency Presence of obstructions in all

directions

-

Depth ratio Depth of the floor plan Floor area, height and façade

lengths

Compactness ratio Compactness of the footprint of a

building compared to a circle

Façade lengths

Surface-to-volume

ratio

Degree of exposure to the external

environment

Floor area, height and façade

lengths and footprint

Glazing ratio Amount of glazing on the external

walls

% glazing on each façade,

façade length and height

Glazing type Single or double glazing -

Roof shape Pitched, sloped or flat -

External shading Evidence of purpose-designed

shades on façades

-

Wind catchers -

Glazing on roof Evidence of purpose-designed roof

lights

-
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Once the desired variables were identified, a list was made of information that would be

required to derive the geometrical variables such as the surface-to-volume ratio or the glazing

ratio.

7.1.3 Gathering information

The following sections describe in detail how information on the variables was collected and

basic measurements were made. The underlying assumptions are also discussed.

Note that there have been attempts to collect this information through various approaches

ranging from contacting central government including the Department for Education (DfE) and

the Education Funding Agency (EFA) to making direct contact with the head teachers of the

schools. It was however found that access to such data would take much longer than expected

and the data therefore could not be acquired in these ways for the study.

It should also be noted that data used here was collected in collaboration with Greig Paterson,

an Engineering Doctorate student at the UCL Engineering Doctorate Centre in Virtual

Environments, Imaging and Visualisation (VEIV)13. This was due to the close similarity of the

requirements for information on building characteristics in the two PhD projects despite the

differences in research aims. Paterson’s research focuses on ‘Advanced Modelling

Techniques Utilising Performance Data and Environmental Simulation as Early Architectural

Design Drivers’.

7.1.3.1 Building age

The year in which a building was built is a variable that was deemed useful for capturing the

state of the building in terms of the quality of the fabric and the efficiency of building services.

The difficulties in acquiring the date at which the building was constructed from local or central

government meant that an alternative method had to be used to estimate a building’s age.

13 For VEIV, see: http://engdveiv.ucl.ac.uk/
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The ages of buildings were acquired using several methods, all of which involved uses of

online resources and research. An initial approach was to search the internet for information

about the school through websites such as the school’s homepage or a Wikipedia14 page that

provided details such as the history of school, key dates such as the establishment of the

school, details of refurbishment or relocation. In cases where the information was not available

via the internet, the method developed by Hawkins et al. (2012) was used. This method

involved searching through a database of historical maps for different regions to deduce the

year or period during which the school was likely to have been constructed. The online tool

that was used during this process was Ancient Roam, which is part of the Digimap15 service.

The tool provides access to historical Ordnance Survey (OS)16 maps dating from the 1840s to

the 1990s for any place in the UK by decade.

For each school, the maps that are representative of each decade were searched from the

earliest date until the school appeared on the map (Figure 7.1). The specific year in which the

building was constructed was refined further by referring to the date at which the map was

created.

Figure 7.1 Historical maps showing a map (a) without a school and a map (b) with a
school

14 For Wikipedia, see: http://www.wikipedia.org/
15 For Digimap, see: http://digimap.edina.ac.uk/digimap/home
16 For Ordnance Survey, See: http://www.ordnancesurvey.co.uk/
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The period between the dates when the maps were created was then used to infer the date at

which the school would have been constructed. Once the period was identified, the average

of the two dates was calculated and assumed as the year the school was built. For modern

schools that were built after the 1990’s, for which the historical OS maps are not available via

Digimap, the ‘historical imagery’ function of the Google Earth was used to search the past

satellite images and estimate the construction date.

Once the year in which buildings were likely to have been constructed was identified,

consideration was given to the type of variable that would be most appropriate for assessing

the impact of building age in relation to the patterns of energy use of schools. This is due to

the changes in the UK Building Regulations that have gradually imposed more stringent

standards on the thermal performance and the energy efficiency of new buildings. The

regulations with implications on energy use in buildings were introduced as early as in 1962,

which was extended to energy-conservation measures in the following years (Davies 2013).

In 1985, Building Regulations Part L ‘Conservation of fuel and power’ that aimed to improve

the thermal performance of new buildings was introduced for the first time. Over the following

years, the Regulation was reviewed and updated gradually in 1995, 2002, 2006, 2010, and

2013, requiring higher levels of efficiency from new and existing buildings. These step changes

in the standards meant that schools in the sample could be organised into categories that

represent the years when the Building Regulations were updated. Consequently, such an

approach would reflect the incrementally improving standards of the building fabric. Whilst this

approach would have been appropriate for studying only those schools that were built after

the introduction of Part L however, it was deemed unsuitable for this analysis. This was due

to the fact that a large number of schools in the stock were constructed prior to the introduction

of the Building Regulation, some stretching back to the 19th century. To categorise the schools

based on the changes in Building Regulations would mean that all schools that were built

between the 19th century and 1984, which covers more than one hundred years, would be

grouped in a single category whilst contemporary schools would be categorised into groups

that represent as little as 4 years. Due to the disproportionate size of the bins, it was deemed

more appropriate to consider building age as a continuous variable rather than a categorical
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variable. The age of a building was therefore calculated by subtracting the estimated

construction year from the year when this study was conducted, which was 2013.

There were several limitations of the method that are likely to have introduced a degree of

uncertainty to the age estimate. The use of averages meant that there was uncertainty in the

accuracy of any building’s age. This was however deemed sufficient for the study as this was

the only way to acquire such information until more accurate data becomes available in the

future. Another area of uncertainty came from the limitations in information with regards to the

details of refurbishments that may have taken place during a building’s life. Such changes are

likely to have happened to schools that were built a long time ago. This therefore implies that

the results should to be interpreted with caution.

7.1.3.2 Site conditions

Buildings in different locations are exposed to site-specific conditions that can have

considerable effect on the patterns of energy use (CIBSE 2012). Some of the effects of the

site are micro climate factors such as exposure to wind and overshadowing, and the

orientation of buildings. The following sections describe in detail how these site features were

captured.

Exposure to winds

The wind environment of a site can provide benefits to and constraints on the way energy is

used in buildings. Sites that are exposed to winds can be beneficial for buildings that were

designed to harness natural forces to passively provide and maintain adequate indoor air

quality to the occupants. During the winter however exposure to cold winds is likely to lead to

greater infiltration of cold air that can in turn increase the demand for space heating (Mumovic

& Santamouris 2009). The degree to which a building is exposed to wind was therefore

recorded using ordinal categories - ‘exposed’, ‘semi-exposed’ and ‘sheltered’ - rather than the

numeric values used by Hawkins et al. (2012) and Ratti et al. (2005) for the reasons discussed

earlier.
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The environments around sites were observed and assessed using online tools such as the

Bird’s eye function of Bing Maps17 and Google Maps18 services, which provide up-to-date

satellite images of the UK. To describe and categorise the surrounding buildings, a boundary

was established that was approximately four times the height of a building (4H) away in each

direction (Figure 7.2).

Figure 7.2 Boundary condition for exposure to wind and solar gains

The degree of exposure was then assessed based on the density and height of the objects

such as buildings or vegetation that were on or close to the boundary:

 A building was deemed to be exposed to the wind for example if there were no objects

near the boundary, which was frequently observed in schools with large playing fields

or car parks.

 A building was deemed to be semi-exposed if there were objects surrounding the

building but which are similar or lower in height than the building. In some cases where

the surrounding buildings were taller but sparse in density as shown in Figure 7.3a,

the site exposure was considered to be semi-exposed rather than sheltered.

 A building was deemed to be sheltered from the wind if the surrounding objects were

taller than the building (Figure 7.3b).

17 For Bing Maps, see: www.bing.com
18 For Google Maps, see: https://www.google.co.uk/maps
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Figure 7.3 Examples of a (a) semi-exposed building and a (b) sheltered building

Orientations of walls and buildings

In the built environment, the orientation of buildings is often used to describe the direction in

which the main façade faces. A terraced house for example would have a clear set of facades

that give it the sense of orientation. The orientation of buildings was deemed important as it

can significantly affect how well a building utilises the heat and daylight from the sun, hence

the energy efficiency (Mumovic & Santamouris 2009). Buildings in the northern hemisphere

for example are often designed to face south to benefit from the solar gain whilst being able

to control it to avoid overheating.

There were however challenges in recording the orientation of school buildings based on the

existing approach used by Hawkins et al. (2012). This is due to the diversity of designs with

large variations in built form and arrangement of classrooms. Unlike the domestic stock, which

is more homogeneous and where it is therefore easier to identify the orientation of a building,

the large variation in school designs means that it is extremely difficult to determine the main

façade of a building. If we imagine a hypothetical building with a square footprint and with an

equal amount of glazing on all façades for example, it would not be possible to decide which

was the main façade, hence it would not be possible to determine the orientation. A rule was

therefore established to describe the orientation of a building and its façades based on the

angle between due north and a given building element such as the external wall highlighted in

Figure 7.4.
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Figure 7.4 Diagram of determination of orientations of façades and buildings

As shown in Figure 7.4, four quadrants were established based on the angles of lines taking

north as zero degrees. The circle at the centre indicates the four cardinal directions. The outer

circle was divided in to 90 degree quarters and used as a basis for determining the orientation

of a façade or a building. Taking the orange coloured line in Figure 7.4, for example, the angle

between the line and north fits into the blue shaded quadrant on the right hand side. The wall

was therefore deemed to be closer to the East-West axis than the North-South axis and treated

as a north façade. Similar rules were applied to all perimeter walls to establish the orientation

of each element.

The orientation of a building was on the other hand measured based on a different rule. Due

to the difficulties in establishing the orientation of schools, it was decided that the orientation

in this study would refer to how much a building is rotated in relation to due north. On the basis

that most buildings have external walls that are orthogonal to each other, such approach would

account for variations in the amount of direct solar gains through glazed areas during different

times of the day and seasons. To avoid confusion, the angle between walls that are set within

the top quartile in Figure 7.4 (between 315 and 45 degrees) and due north was taken as the
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orientation of a building. The angle was measured by using the Google Earth19 software. The

software provides a function that allows the angle between North and a line that is drawn over

a satellite image of a building by a user to be measured (Figure 7.5). Taking the school shown

in Figure 7.5, for example, the wall that is highlighted was found to be set at 32.28 degrees

relative to North, which was therefore deemed to be its orientation.

Figure 7.5 An illustration of measuring orientation of a building using Google Earth

Façade adjacency

A site condition that can also affect the pattern of energy use is the extent of surrounding

objects such as buildings and vegetation. The density and the proximity of the surrounding

objects to the glazed elements of a building could reduce access to the sun, which in turn

could increase the demand for space heating as well as artificial lighting. It was therefore

deemed important to describe and assess the influence of the surroundings in the vicinity of

each façade that could affect access to solar radiation on each façade of a building, hence its

energy use.

For the reasons explained previously under the ‘Exposure to winds’ section, it was deemed

more appropriate to describe the surroundings using a categorical variable rather than a

numeric variable. The variables that were developed in the study for this purpose were façade

19 For Google Earth, see: http://www.google.co.uk/intl/en_uk/earth/
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adjacencies, which were used to indicate whether there were obstructions near each façade.

The adjacency conditions on each façade were assessed based on the surroundings that are

approximately one times the height of the building (1H) away from each façade (Figure 7.6).

Figure 7.6 Boundary condition for overshadowing from surroundings

Taking the building shown in Figure 7.7, for example, it is clearly visible that the Western and

Southern façades are shaded by the vegetation on the South-West side of the building due to

their proximity. In this instance the façade adjacency condition was recorded as having

obstructions on the South and West.

Figure 7.7 A school surrounded by vegetation
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7.1.3.3 Built form

This section explains the process of measurement through which dimensions of building

elements were derived in order to calculate parameter values such as the surface-to-volume

ratio that describe the form of buildings at an abstract level.

Perimeter and façade lengths

The total and exposed perimeters of buildings were recorded in order to derive the volume

and the areas of exposed surfaces. The perimeters were measured separately to differentiate

the area of surfaces that are exposed to the weather from party walls with neighbouring

buildings that are likely to be occupied, therefore likely to be heated. The lengths of the

perimeter of buildings were measured using the Digimap service, which allowed the lengths

and areas of buildings to be measured from their footprints (Figure 7.8).

Figure 7.8 Measurement of perimeters of buildings via Digimap

Using the measurement tool embedded in the online platform, a polygon was drawn over the

perimeter of a building, which is shown as the dotted pink line in Figure 7.8. The total perimeter

length was measured around the entire perimeter regardless of whether any portion of a wall

was attached to the adjacent building. The exposed perimeter length on the other hand

measured only the walls that were exposed to the external environment.
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Lengths of façades with different orientations were measured simultaneously using the same

method and used as a basis for deriving the glazing areas on each façade and the overall

glazing ratio (described in detail in the ‘Glazing percentage’ section). Figure 7.9 illustrates how

the length of the north wall of a school was measured. In cases where there were walls that

were not orthogonal to other façades (e.g. curved walls), such surfaces were either divided

into smaller and more distinguishable sections or treated as a single flat angled surface,

depending on their curvature.

Figure 7.9 Illustration of how façade lengths were measured

Building footprint

A geometrical property that was required to derive the volume and the exposed surface area

of a building, in addition to the external wall area, was the roof area. Challenges in measuring

the surface area of the roof come from the diverse designs that add complexity. Observations

of school buildings using satellite images showed a wide range of roof shapes from the pitched

roofs of buildings that were built during the Victorian period to the flat roofs of modern buildings.

The constraints in available tools and their abilities however meant that it was difficult to

measure the exact surface areas of the pitched or sloping roofs. It was therefore decided that

the footprint area would be assumed to represent the surface area of the roof. This was also

based on an assumption that walls of buildings were orthogonal to the ground, hence the area

of roof would be equal to the footprint of a building.
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Figure 7.10 illustrates how Digimap was used to measure the footprint areas of buildings.

Figure 7.10 An illustration of how footprint area was measured via Digimap

Building height

The height of buildings is a parameter that was measured as part of the survey to describe the

geometric shape of buildings. Several methods were explored for acquiring accurate

measurements of the height of buildings.

The method that was explored initially was the Geographic Information System (GIS) database

from Landmap20, which provided heights of buildings in major and minor cities across the UK.

The database comprises measurements of the height of the terrain and the tops of objects,

which in this case were buildings, which were measured using LiDAR21 technology. Uses of

the sophisticated technology led to a belief that the measurements were highly accurate. The

data was downloaded from the Landmap website and accessed using ArcGIS22 software,

which allows a user to explore the map and measure the height of buildings that are usually

represented as blocks without any context (Figure 7.11b). The measurements from the GIS

20 For Landmap, see: http://www.landmap.ac.uk/
21 For LiDAR, see:
http://landmap.mimas.ac.uk/index.php/Datasets/Building_Heights/Building-Heights-
Download
22 For ArcGIS, see: http://www.esri.com/software/arcgis/
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files were however often found to be questionable. The height of a Victorian school building,

for example, was found to be 26.4 metres based on the GIS data (Figure 7.11b). Based on

the large windows positioned on the right-hand side of the image shown in Figure 7.11a, the

school appeared to be three storeys high. This therefore suggested that the floor-to-floor

height of each of these floors was approximately 8 metres, which was deemed extremely high

even for the Victorian buildings. Similar uncertainties were also found in modern schools where

the height of halls that were clearly greater than the rest of the building from the satellite

images were often found to be lower when measured using the GIS data. The uncertainty was

therefore deemed to be considerable and an alternative method was explored.

Figure 7.11 Images of (a) a school from a bird’s eye point of view and (b) the height of
the building acquired from the Landmap GIS dataset
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The heights of buildings were derived by multiplying the number of storeys by a figure for the

average storey heights of schools in England and Wales of 3.62 m. This approach was

deemed the next most feasible method due to the credibility of the statistics and the constraints

in time and resources of the research. The measurements came from the Non-Domestic

Building Stock project carried out by Steadman, Bruhns, & Rickaby (2000). The project took

measurements of external envelopes, in addition to many other parameters, of a large number

of non-domestic buildings in four towns in England. The statistic was derived from on-site

measurements of floor-to-ceiling heights of schools and was therefore deemed to be the next

most accurate measure of the parameter reflecting the characteristics of various school

buildings. It should however be noted that the uses of the average height meant that there

were limitations in accurately describing the characteristics of buildings. Variations in heights

of different spaces in the same school (e.g. classrooms, offices, the halls) and differences in

storey heights of Victorian schools compared to modern schools for example, were therefore

not well accounted for.

The number of floors was counted based on visual inspection of buildings using the Bing Map’s

Bird’s eye function23, which provides a 45 degree view of buildings from all directions (Figure

7.11a). Buildings with varying number of floors in different parts were addressed by taking the

average of the maximum and the minimum number of floors. These measurements were

however only made if a considerable proportion of a building had a different number of floors.

This therefore meant that small spaces such as conservatories were not accounted for.

Glazing percentage

The glazed portions of the external walls such as windows and curtain walls are important

features that affect the energy efficiency of buildings. While glazed elements are beneficial as

they introduce daylight to internal spaces, improve the internal atmosphere and reducing the

load on artificial lighting, the high U-values of these units, compared to insulated opaque wall

construction, can significantly contribute towards heat gain or heat loss during different

23 For Bing Maps Bird’s eye view function, see: http://www.bing.com/maps/
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seasons (CIBSE 2012). The percentages of glazing on each façade relative to the opaque

construction were therefore measured to assess their influence on energy consumption.

Data on this characteristic was collected in two steps. Initially, images of all sides of buildings

were captured using the Bing map’s Bird’s eye view function and Google Street View24. There

were however a number of instances where the view of some façades could not be acquired

due to the proximity of neighbouring buildings, other obstructions, or a lack of satellite images.

In these cases, the percentages of glazing on the hidden walls were estimated based on the

information from the observable façades of buildings such as age, design and orientation.

The images were then imported into a bespoke program that was developed in the

programming language Processing25 by David Hawkins, an Engineering Doctorate student at

the UCL Industrial Doctorate Centre in Virtual Environments, Imaging & Visualisation (VEIV)26.

The tool calculates the percentages of glazing on each wall by drawing polygons on the

previously captured images of each façade (Figure 7.12). In the figure, the red polygons

indicate the glazed areas in a wall and the blue polygon marks the boundary of the wall.

Figure 7.12 An illustration of how the glazing percentage on facades of buildings were
measured using a bespoke tool

24 For Google Street View, see: http://www.google.com/maps/about/behind-the-
scenes/streetview/
25 For Processing, see: http://processing.org/
26 For VEIV, see: http://engdveiv.ucl.ac.uk/
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Deriving the variables

The various measurements that were taken were then used as a basis for deriving the

variables that numerically describe the built form of school buildings (Table 7.3).

Table 7.3 Derived variables and their descriptions

Variable Description

Surface-to-volume ratio Exposed surface area divided by volume

Depth ratio Volume divided by external wall area

Compactness ratio Perimeter of the building footprint divided by perimeter of a circle

with the same area

Glazing ratio Total glazed area divided by the total external wall area

Types of glazing

In addition to their area, the types of windows or glazed components on external walls play an

important role in controlling the heat losses and gains in buildings. The energy efficiency of a

glazing component is mainly determined by its construction, which includes the number of

layers, and the type of coating as well as the type of window frame (CIBSE 2012). Due to

limitations on information with regard to the specification of windows in the study however, the

type of glazing was considered only in terms of the number of layers. The commonly used

types are single, double and triple glazing. The rate of heat loss through a single glazed

window is generally considerably greater than a double glazed window due to the additional

insulation provided by the pocket of air between the glass panes. Glazing types were therefore

surveyed to assess their impact on the heating consumption of buildings.

As discussed previously, there was no central database that records the type of glazing and

the specification of windows in schools. This therefore meant that the type of glazing had to

be determined based on educated guesses with the aid of visual inspection of windows and

additional factors (Figure 7.13). Initially, close-up images of different facades of buildings were

captured using Google Street View. The type of glazing was determined based mainly on the

appearance of the frames and the glazing. Taking the images of the window shown in Figure

7.13, for example, the zoomed-in image shows a white window frame with seamless joints,

with a particular focus on the grey diagonal lines on the frames (Figure 7.13b), which indicated
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that the frames were likely to be made of aluminium or a modern material such as PVC that is

commonly used with double glazing. Based on the visual inspection, the glazing was therefore

assumed to be double.

Figure 7.13 Images of (a) windows and a (b) close-up from the street

In instances where it was difficult to determine the type of glazing due to limitations in acquiring

close-up images or insufficient resolution of available images of windows, the construction

year of a building was used as a basis for inferring the type of glazing. If a building was

constructed in the 1940’s and the window appeared to match its age, for example, it was

assumed that the windows were highly likely to be single glazed. This decision was based on

the historical development of glazing in the UK where double-glazed windows became popular

in the 1970’s (Double Glazing Team 2012).

Glazing on roof

In modern schools, windows or glazed components are sometimes set in the roof to introduce

daylight to spaces such as toilets or corridors that do not otherwise have direct access to

natural light. Provision of daylight to deep spaces could reduce the demand for artificial

lighting. As with the glazing area on external walls, however, such designs can lead to excess

heat gain or heat loss during the cooling and heating seasons, respectively. The characteristic
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was therefore deemed to be likely to influence the energy consumption and the buildings with

these features were recorded.

The presence of roof lights in schools was determined based on satellite images using the

Bird’s eye function of Bing Maps (Figure 7.14).

Figure 7.14 Satellite image of a school with roof lights

Roof shape

The shape of the roof is a characteristic that was deemed important and effective in

distinguishing buildings that were designed and constructed during different periods. An

inspection of the roofs from the previous exercise showed that there were three distinct roof

shapes: flat roofs, and ‘steep’ and ‘shallow’ pitched roofs. Flat roofs were usually found in

modern buildings that were constructed in concrete. ‘Steep’ pitch roofs on the other hand were

typically the timber-framed roofs that were generally found in older buildings such as those

constructed during the Victorian period, which are commonly found in the stock. The ‘shallow’

pitch roof type refers to the roofs that are used in steel-framed buildings that are typically

sloped at low angles and covered in metal.
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External shading

Controlling overheating from excess solar gain during summer through shading is an important

feature of buildings that can affect the energy used for mechanical services to provide cooling

(CIBSE 2006c). In naturally ventilated buildings, adequate shading plays an important role in

providing a thermally comfortable environment during the summer. The shading if not

designed adequately can however lead to increased demand for artificial lighting due to the

decreased access to daylight. There are various elements of buildings that were built during

different periods that provide shading from the sun. These can be the shading provided by

recessed windows in Victorian schools, or overhangs or external shading devices such as

brise soleils that were purposely designed to provide shading in modern buildings. These

design features were therefore recorded to assess their implications for electricity

consumption.

The provision of external shading was determined based on visual inspections of aerial images

from Bing’s Bird’s Eye View (Figure 7.15). For those schools for which the provision of shading

was difficult to assess, a rule was imposed that any form of element that extended over a

glazed element on an external wall for more than half the floor-to-floor height was assumed to

provide sufficient shading. The presence of shading was recorded on all sides of the building.

Figure 7.15 A school with external shading on the West façade
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7.2 Development of a dataset of building and occupant characteristics

The dataset that was used for the study in this chapter was developed by manipulating and

collating the previously used datasets with the newly collected data. The development of the

dataset involved amalgamating the building characteristics dataset described in Section 7.1.1

with the dataset containing information from Display Energy Certificates (DEC) and the

Department for Education (DfE) as described in Section 6.1. The two datasets were merged

together using the variable Unique Property Reference Number (UPRN), which is a unique

identifier of schools included in the DEC database. A subset of the 554 schools was produced

by removing all the records that did not have a matching building characteristics record.

During this phase, the quality of the newly collected data was assessed for its accuracy. Each

variable in the merged dataset was inspected for any anomalies that may have occurred from

human error during the collection process. Numerical variables were assessed using

histograms to identify the variation as well as the outliers that were located far from the median.

Categorical variables were inspected also for any typological errors or input values that were

in wrong cells.

7.3 Methods of analysis

Various forms of multivariable analyses have been used in assessing the impact of multiple

parameters on the energy performance of non-domestic buildings. Multiple regression models

are a form of multivariable analysis that has been used and proven to be robust over the past

decade. In the US, Sharp (1996, 1998) has used multiple linear regression models to assess

the impacts of various building and operational characteristics on energy use in offices and

schools. Similar methods were also used in Hong Kong (Chung et al. 2006), Taiwan (Lee

2008; Lee & Lee 2009) and the UK (Hong, Pang, et al. 2013; Spyrou et al. 2014) to assess

and identify significant characteristics that influence the pattern of energy use.

The other form of multivariable method is the neural network method that has been explored

in recent years. A comparison of the accuracy of predicting the EUI of commercial buildings

by multiple linear regression models compared with Artificial Neural Networks (ANNs) by
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Yalcintas and Ozturk (2007) found the ANN method to make more accurate predictions. ANNs

were also found to be suitable for assessing determinants of energy use in university and

school buildings (Hawkins et al. 2012; Hong, Paterson, et al. 2013).

The ANN models have shown considerable potential in assessing the impact of multiple

characteristics of buildings on their energy use. This is largely due to the fact that an ANN

model, although it is close to being a black-box, learns and modifies itself in relation to the

data, even when the relationships between the independent and dependent variables are

unknown. Despite the potential however, the experience in dealing with ANNs via collaborative

studies showed a number of uncertainties (Hong et al., 2013). The key uncertainty came from

the fact that the accuracy of the results from ANN models was found to be highly sensitive to

the quality of the input data and the method that was used to train them. The problems in

determining the most effective way to train the models have led in the present study to a

decision, instead of ANNs, to adopt multiple regression analysis, which has also been widely

used in the field.

This section describes the process by which the multiple regression analysis was carried out

to assess the influences of the building and operational characteristics on the energy

performance of primary and secondary schools. The section is presented in two parts. The

first section describes the process through which the building and occupant characteristics of

schools were assessed and filtered. This is followed by a description of the methods that were

used to develop and refine the regression models and the underlying assumptions.

7.3.1 Assessment and selection of adequate independent variables

Prior to carrying out multiple regression analyses, a set of statistical analyses were carried out

to identify and remove extreme outliers, and to establish and examine the relationships

between the dependent variables (the electrical and fossil-thermal Energy Use Index (EUI) of

schools) and the independent variables (the building and occupant characteristics that were

described in Section 7.1). The process was undertaken to remove those characteristics that

were not significantly related to energy consumption from the multiple regression analyses.
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The list of all possible independent variables and their types are listed in Table 7.4. Initially,

the characteristics in the dataset were divided into categorical and continuous variables to

ensure that their significance was assessed using adequate statistical methods.

Table 7.4 List of all variables and their values and types

# Characteristic Variable type

1 Total useful floor area (m2) Continuous

2 Building age Continuous

3 Site exposure Categorical

4 Orientation (degrees) Continuous

5 Façade adjacency Categorical

6 Glazing type Categorical

7 Roof shape Categorical

8 External shading Categorical

9 Presence of an atrium Categorical

10 Presence of windcatchers Categorical

11 Surface-to-volume ratio Continuous

12 Depth ratio Continuous

13 Compactness ratio Continuous

14 Glazing ratio Continuous

15 Servicing strategy Categorical

16 Main heating fuel Categorical

17 Pupil density Continuous

18 Occupancy level Categorical

19 Annual cooling degree-days (CDD) Categorical

20 Annual heating degree-days (HDD) Categorical

7.3.1.1 Continuous variables

The relationships between these variables and the electrical and fossil-thermal EUIs were

examined using a number of statistical methods.

Initially, lists of variables that were deemed to be related to each type of fuel were established.

This was due to the distinct ways in the way electricity and fossil-thermal energy are used in

buildings. For example, the exposure ratio is a variable that expresses the proportion of the

surface area of a building that is exposed to the prevailing weather conditions. The mild climate
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in the UK means that the more exposed a building is, the more fossil-thermal energy it is likely

to require for heating the spaces to provide an adequate environment for the occupants. The

exposure ratio would therefore be expected to be correlated to the fossil-thermal energy use

but not to electricity due to the prevalence of the uses of natural gas and oil as the sources of

heating in school buildings (Hong & Steadman 2013). On the other hand, there were variables

that were related to both electricity and fossil-thermal energy uses. The influence of varying

density of pupils was for example assessed for both electrical and fossil-thermal EUI. On one

hand, schools with a higher density of pupils would be expected to use more electricity due to

more intense uses of ICT equipment. The internal heat gain from an increased density of pupils

in the classrooms, on the other hand, would be expected to reduce the demand for space

heating.

The analyses were carried out in two steps. Initially, scatter plots were used to visually inspect

the relationships and identify any trends or outliers. This was then followed by correlation

analyses to quantify the strengths and the significance of the relationships.

Scatterplots between each independent variable and the dependent variables (EUIs) were

drawn to determine the type of relationship and identify the presence of any outliers that could

affect the analyses.

Correlation analyses were carried out to quantify and evaluate the relationships between the

independent and the dependent variables. The correlation was quantified by using the

Spearman’s correlation coefficient rather than the parametric counterpart, Pearson’s

correlation coefficient. This was due to the non-normal distribution of the dependent variables,

which was assessed previously. The Spearman’s test is a non-parametric statistic that is used

to assess the correlation when the sample has a non-normal distribution (Field & Miles 2010).

Under the Spearman’s test, the observations were first ranked in order of magnitude of a

variable (e.g EUI). The correlation coefficients between the independent and the dependent

variables and the associated statistical significances were then calculated using SAS 9.3.
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Correlations between the combined energy use and building and occupant characteristics

were initially explored due to the close relationship between the end uses that consume

electricity and the demand for space heating (Table 7.5). In theory much of the electricity used

by end uses such as lighting or computers is converted into useful heat. This internal heat gain

would in turn influence the amount of heat the heating system would need to supply in order

to maintain comfortable indoor temperature for occupants. This is particularly true for new

buildings that have been designed to higher thermal standards in which the useful heat gain

from electrical equipment may reduce the demand for heating considerably.

Table 7.5 Spearman’s correlation coefficients between the combined EUI and the
continuous variables for primary and secondary schools

School
type

N

Spearman Correlation Coefficients
Prob > |r| under H0: Rho=0

Floor
area
(m2)

Building
age

Orientation
Surface-

to-volume
ratio

Depth
ratio

Compact-
ness ratio

Glazing-
to-wall

ratio

Pupil
density

Annual
CDD

Annual
HDD

Primary
school
Combined
EUI
(kWh/m2)

497 -0.1123 0.0062 -0.0276 0.2121 -0.1870 0.1339 0.0104 0.1457 0.0385 0.0463

0.0122 0.8908 0.5396 <.0001 <.0001 0.0028 0.8164 0.0011 0.3917 0.3031

Secondary
school
Combined
EUI
(kWh/m2)

53 -0.2777 0.1530 -0.1076 0.2911 -0.3564 0.0958 0.1268 0.4788 0.0851 0.1882

0.0441 0.2740 0.4432 0.0345 0.0088 0.4949 0.3656 0.0003 0.5444 0.1772

The analysis showed that there were significant correlations between the consumptions of

primary and secondary schools and the intrinsic features of buildings. In order to acquire a

deeper understanding of relationships between these building characteristics and energy

consumption, additional analyses were carried out by fuel type (Table 7.6 and Table 7.7).

Table 7.6 Spearman’s correlation coefficients between the electrical and fossil-thermal
EUIs and the continuous variables for primary schools

Spearman
Correlation
Coefficients,
N = 497

Prob > |r| under H0: Rho=0

Floor
area
(m2)

Building
age

Orientation
Surface-

to-volume
ratio

Depth
ratio

Compact-
ness ratio

Glazing-to-
wall ratio

Pupil
density

Annual
CDD

Annual
HDD

Electrical EUI
(kWh/m2) -0.3412 -0.3288 0.0031 0.7928 0.0556 -0.1866 -0.1716 0.3814 -0.0278 -

<.0001 <.0001 0.9447 0.0777 0.2163 <.0001 0.0001 <.0001 0.5361 -
Fossil-thermal
EUI (kWh/m2) -0.0070 0.1249 -0.0364 0.2048 -0.2300 0.2091 0.0741 0.0164 - 0.0453

0.8763 0.0053 0.4182 <.0001 <.0001 <.0001 0.0992 0.7159 - 0.3130
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Table 7.7 Spearman’s correlation coefficients between the electrical and fossil-thermal
EUIs and the continuous variables for secondary schools

Spearman
Correlation
Coefficients,
N = 53

Prob > |r| under H0: Rho=0

Floor
area
(m2)

Building
age

Orientation
Surface-

to-volume
ratio

Depth
ratio

Compact-
ness ratio

Glazing-to-
wall ratio

Pupil
density

Annual
CDD

Annual
HDD

Electrical EUI
(kWh/m2)

0.3323 -0.4085 -0.0278 -0.1403 0.1803 -0.1633 -0.1183 0.0239 -0.1220 -

0.0151 0.0024 0.8433 0.3162 0.1964 0.2428 0.3988 0.8650 0.3844 -
Fossil-thermal
EUI (kWh/myy)

-0.4900 0.4360 -0.1390 0.4154 -0.4462 0.2249 0.1717 0.4996 - 0.1832

0.0002 0.0011 0.3208 0.0020 0.0008 0.1054 0.2188 0.0001 - 0.1892

The coefficient from the analyses expresses the covariance of the variables of interest as a

standard unit. The resulting coefficient, which is a value lying between -1 and 1, was used as

a basis for evaluating the strength of the correlation between the independent and dependent

variables. The predictor variables that were found to have a statistically significant relationship

with the response variables at a significance level of 5% (p < 0.05) were deemed suitable for

the multiple regression analyses.

7.3.1.2 Categorical variables

Following the assessment of the continuous variables, the categorical variables were also

examined as part of the initial filtering process. Hypothesis tests were carried out to assess

whether there were significant differences in the pattern of energy uses of buildings that

belonged to different sub-categories under each categorical variable. The statistical

significance of the differences in EUIs of buildings between the sub-categories in each

category was used as a basis for identifying and filtering variables that were not valuable for

further consideration.

The non-normal distribution of the dependent variables (consumption of electricity and fossil

fuels), as shown in Section 6.3, meant that non-parametric tests were more suitable for the

analyses. Initially, categorical variables were split into two groups according to the differences

in the levels of measurement. The variables that have two categories were separated from

those that have more than two categories, so that appropriate hypothesis tests could be

carried out (Table 7.8).
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Table 7.8 List of all categorical variables and the respective levels of measurement

# Characteristic Range Number of

Categories

Level of

measurement

1 Site exposure Exposed, semi-

exposed and sheltered

3 Nominal

2 Façade adjacency

(North, South, East and

West)

Obstruction or no

obstruction

2 Binary

3 Glazing type Single or double 2 Binary

4 Roof shape Flat, ‘steep’ or

‘shallow’ pitch

3 Nominal

5 External shading

(South, East and West)

Yes or no 2 Binary

6 Presence of an atrium 2 Binary

7 Presence of

Windcatchers

2 Binary

8 Glazing on roof Yes or no 2 Binary

9 Servicing strategy Natural ventilation or

mechanically assisted

ventilation

2 Binary

10 Occupancy level Standard or extended 2 Binary

The significance of the differences between buildings under the sub-categories of binary and

nominal variables were tested using two different types of test. The significance of the

differences in binary variables was tested using the Wilcoxon rank-sum test under a null

hypothesis that there are no significant differences in the pattern of energy use of buildings

with varying characteristics (e.g. the pattern of energy uses between schools with standard

and extended occupancy hours). Nominal variables that have more than two sub-categories

were analysed in two steps. Similar to the binary variables, Kruskal-Wallis tests were first used

to identify whether there were any significant differences between any of the sub-categories.

This test was followed by post hoc analyses using Wilcoxon rank-sum tests to identify which

sub-categories were significantly different from each other. Where Wilcoxon two-sample tests

were required more than once, Bonferroni corrections were made by reducing the level of

significance at which results were considered to be statistically significant, to prevent the Type

1 error rate from increasing (Field & Miles, 2010). The level of significance (p <.05) was divided
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by the numbers of Wilcoxon rank-sum tests that were carried out for each variable. The

differences in the pattern of energy use for a variable that required three tests for example

would be reported to be statistically significant only when the p value was less than 0.017.

In cases where a statistically significant correlation was found only between two sub-

categories in variables with three or more categories, the categories with the insignificant

differences were revised and modified into one category. The tests of the differences in the

EUI between schools with different servicing strategies as shown in Section 6.3, for example,

showed that there was a significant difference between naturally ventilated buildings and

mechanically ventilated buildings. There were however no significant differences in electrical

EUIs of buildings that were designed with different levels of mechanical ventilation system.

The findings therefore led to the variable ‘Internal environment’ being refined to a binary

variable with a distinction only between the buildings with natural ventilation and mechanically

assisted ventilation strategies. It should be noted that the hypothesis tests were not carried

out on those variables that were tested and analysed previously in Section 6.3, such as the

servicing types and the phase of education of buildings. This was due to the fact that the

previous analyses of these variables were based on a significantly larger sample size and

therefore were considered to give a better representation of the school stock.

Once the statistically significant categorical variables were identified and refined, the binary

variables were converted into numeric codes, 0 and 1. Indicator or dummy variables were

created to model those categorical variables with three or more categories. The variables

comprised a set of binary inputs each taking on values of 0 or 1 as shown in Table 7.9.

Table 7.9 An indicator coding example for the site exposure variable

Category Dummy variable 1 Dummy variable 2

Exposed 0 0

Semi-exposed 1 0

Sheltered 0 1
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Table 7.10 shows the list of variables that were identified as having a statistically significant

relationship with the electrical (Elec) and fossil-thermal (Heat) EUI of primary and secondary

schools.

Table 7.10 The list of statistically significant variables for electrical and fossil-thermal
EUIs of primary and secondary schools

Variables Data range
Primary Secondary

Elec Heat Elec Heat

Continuous

Floor area 861 - 15396 m2 ●  ● ● 

Building age 3 to 185 years ● ● ● ● 

Surface-to-volume ratio 0.17 - 0.85  ●  ● 

Depth ratio 2.11 - 14.02 ●  ● 

Compactness ratio 1.01 - 4.44 ● ● 

Glazing percentage 5.66 - 50.24 ●  

Pupil density 0.04 - 0.43 pupils / m2 ●  ● 

Categorical

Glazing type 0 = Single, 1 = Double ● ● ● ● 

Façade adjacency North 0 = Open, 1 = Obstruction ● 

Façade adjacency South 0 = Open, 1 = Obstruction ● 

External shading South 0 = No shading, 1 = Shading ●  ●  

External shading East 0 = No shading, 1 = Shading ●  

External shading West 0 = No shading, 1 = Shading ●  ●  

Glazing on roof 0 = No glazing, 1 = Some glazing ●  

Servicing strategy
0 = Natural ventilation,

1 = Mechanically assisted ventilation
● ● 



174

7.3.2 Development of the multiple regression models

The second part of the analyses involved the development of multiple regression models. This

involved exploring ways of selecting the independent variables and diagnosing the

appropriateness of the models.

A typical equation for a multiple regression model is written as

=ݕ ߚ ଵݔଵߚ�+ ଶݔଶߚ�+ + . . . ݔߚ�+ + ߝ� (7)

where y denotes the dependent variables (electrical and fossil-thermal EUIs), x1 and x2 denote

the values of independent variables, ߚ denotes the intercept of the regression plane, ,ߚ j =

1, 2, ….., k, denote the regression coefficients of each independent variable, and Ɛ denotes

the difference between the predicted and actual values of a dependent variable.

The models were developed separately for primary and secondary schools due to the

significant differences in the patterns of energy use shown in Section 6.3. For each school

type, two separate models were developed (electrical and fossil-thermal EUI) due to the

inherent differences in the way the fuels are used in buildings. Electrical and fossil-thermal

EUIs (kWh/m2) were used as dependent variables instead of the total annual energy

consumption (kWh/yr) due to the significance of the correlation of energy performance with

floor area as shown in Section 6.3.

The parameter estimates ߚ and ߚ were calculated using the ordinary least squares (OLS)

method. The principle of the method is that it finds the parameter estimates that minimise the

squared distance between the actual EUI and the EUI predicted by the models (SAS Institute

Inc. n.d.).

A key focus of this study was to find a subset of variables or a model that best estimates the

electrical and fossil-thermal EUIs of schools. The model of ‘best-fit’ was defined as the model

that is most accurate and simplest (Bozdogan 1987). The selection of the best fitting model
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was therefore based on three aspects: how well the model predicts the energy performance,

how many independent variables are included in the model, and the significance of the model.

The two statistics that informed the selection were the coefficient of determination, denoted as

R2, and the Akaike’s information criterion (AIC). The R2 is a statistic that is often used to

determine how well a model predicts the dependent variable. It measures how much of the

variation in the dependent variable is explained by the independent variables in the model,

hence larger R2 values indicate better fit. Relying only on this statistic for selecting the best

fitting model however can lead to the issue of overfitting, as increasing numbers of variables

are bound to improve the R2. Overfitting is an issue that occurs when a multiple regression

model comprises independent variables that are not necessary. The issue can lead to

increased possibilities for undetected errors, and worsen the prediction (Hawkins 2004). To

avoid this issue, the Akaike’s information criterion (AIC) statistic was assessed for all potential

models. The AIC is a statistic that measures the inaccuracy and complexity of a model, which

is used to find models with the least number of variables which at the same time fit the data

well (Bozdogan 1987). The model of best-fit was therefore deemed to be a model that

comprise a subset of independent variables with the minimum AIC.

The significance of the models was assessed based on the F-ratio and its statistical

significance. The model was deemed to be statistically significant if the F-ratio was found to

be greater than that of the critical values for the corresponding F-distribution. The null

hypothesis that the model does not significantly improve the predictions was rejected if the

significance of the model was below 0.05. Models were also assessed for the presence of

multicollinearity and generalizability, to ensure that the results are reliable and that results can

be used to draw conclusions about the wider school stock outside of the sample.

Multicollinearity is a problem that stems from independent variables that have strong linear

relationships between each other in a multiple regression model. The presence of such a

problem in the model is said to have potentially serious effects on the precision with which the

regression coefficients are estimated through the least-squares method (Montgomery et al.
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2012; Field & Miles 2010). It was therefore necessary to examine the relationships between

the independent variables in models of best-fit to detect the presence of multicollinearity and

to resolve these problems if there were any. The presence of the multicollinearity was

examined by using a collinearity diagnostic variance inflation factor (VIF). The VIF is a useful

diagnostic tool, as it quantifies the degree to which the variance of an estimated regression

coefficient increases due to collinearity. Throughout the study, VIF values of independent

variables that are less than 10 were deemed to be a sign that there was no multicollinearity

with other independent variables (Montgomery et al. 2012; Field & Miles 2010).

The generalizability was assessed by checking whether two key assumptions are met: the

normality of residuals and the homoscedasticity of variance (Field & Miles 2010). The

distribution of the residuals was assessed for normality based on a quantile-quantile or normal

probability plot and a histogram with a superimposed normal distribution curve. Diagrams that

showed signs of deviation from normal distribution were deemed to violet the assumption. The

homoscedasticity of variance was on the other hand assessed by using a scatter plot of the

residuals and the predicted values. A diagram that shows random and evenly distributed

pattern of residuals were deemed to be an indication that the model meets the assumption of

homoscedasticity (Field & Miles 2010).

The regression analyses was carried out in four steps. Initially, regression models for primary

and secondary schools and for electrical and fossil-thermal EUIs were created. These models

comprised all variables that were found to have a significant correlation with electrical and

fossil-thermal EUIs (Table 7.10), and were used as baselines. In the following step, models

with the minimum AIC were found from a group of models that were produced by using the R2

selection method of SAS. Through the R2 method, regression analyses was performed on all

possible combinations of up to 10 independent variables, which resulted in a vast number of

models that could be evaluated. Although computationally costly, this method provided

opportunities to find models with the minimum AICs under the consideration of all possible

options, which would not have been possible with forward, backward, or stepwise selection

methods.
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In the cases where the model of ‘best-fit’ does not meet the assumptions for generalisation,

additional steps were taken in order to resolve the issue. The initial approach was to remove

the outliers from the dependent variable. Outliers were identified and removed from the data

by using the interquartile ranges, rather than standard deviations, to take into account the

skewed nature of the energy consumption. For each school and fuel type, 1.5 times the

interquartile range below the lower quartile and above the upper quartile were used as a

boundary for identifying outliers (see Figure 5.3 for details). If removing outliers did not resolve

the issue, transformation of the data was taken into consideration. Transformation of data is a

method that can be used to reduce the skewness of data. Commonly used methods of

transformation are to take the logarithm or square root of the dependent variable, or to divide

one by each score so that large values reduce to a greater extent than small values, hence

reducing skewness.

Once the model of ‘best-fit’ was found and its accuracy was deemed adequate, the importance

of independent variables was evaluated based on the partial regression coefficients, denoted

as β. This means that the coefficient of each variable represents an expected change in the

dependent variable y per unit change in the independent variable, when all of the remaining

variables are held constant. The coefficients of independent variables are however often not

directly comparable, due to differences in the units of measurement of variables. The

standardised version of the coefficients, which are independent of the units, was therefore

deemed adequate for comparing the magnitude that each independent variable had over the

dependent variable. The standardised correlation coefficient presented in the study would

indicate the number of standard deviations of the dependent variable (e.g. electrical EUI)

subject to one standard deviation change in the input variable (e.g. age).
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7.4 Results

This section presents the results from the multiple regression analyses. A summary is given

of the statistics that describe the overall fit of the four regression models. This is followed by

detailed information on each of the models and descriptions of the variables that were included

in the models and the parameter estimates.

Table 7.11 Overall fit of the regression models for electrical and fossil-thermal EUIs of
primary and secondary schools

Dependent variable N R2 R2
Adj

Root MSE
F Pr > F

(kWh/m2)

Primary school

Electrical EUI (kWh/m2) 478 0.24 0.23 12.22 24.90 <.0001

Fossil-thermal EUI (kWh/m2) " 0.09 0.09 38.71 12.27 <.0001

Secondary school

Electrical EUI (kWh/m2) 48 0.38 0.36 16.24 14.06 <.0001

Fossil-thermal EUI (kWh/m2) 53 0.44 0.41 31.83 13.01 <.0001

The R2 values presented in Table 7.11 represent the proportions of the variation in outputs

that were explained by each of the models. The models for primary schools were able to

explain 24% and 9% of the variation in electrical and fossil-thermal EUI respectively. The

models for secondary schools were found to explain a considerably larger variation in electrical

and fossil-thermal EUIs of 38% and 44% for each fuel type respectively. The differences in the

performance between the models for primary and secondary schools suggest that there may

be a greater variability in building and operational characteristics of primary schools compared

to the secondary schools. There is also the considerable differences in sample sizes, which

may have introduced less variability for secondary schools. This remains to be explored further

in the future.

Overall, it can be seen that the R2 of the models from this study ranges between 0.09 and 0.44,

which is relatively low compared to previous work by Sharp (1998), which applied multiple

regression analysis to the relationships between the electrical EUI of schools in the US and

building characteristics. That study found the R2 of multiple linear regression models to range

between 0.35 and 0.89, depending on the census division. Although the values were not

directly comparable for fossil-thermal EUIs, the differences in R2 values indicated that the
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electrical EUI models produced from this study were not as accurate as the study by Sharp

(1998), which may be due to a more homogenous nature of the American school stock.

There are a number of factors that are likely to have caused such differences. There is firstly

the uncertainty associated with the way buildings are used and operated by the occupants.

Based on the principles of building physics and engineering, one would expect to see a

reasonable correlation between the building characteristics tested in the study and the energy

use, since building fabric plays an important role in mitigating or utilising the prevailing weather

conditions. The low levels of R2 value, particularly with regards to the fossil-thermal EUI of

primary schools (R2 = 0.09), may therefore indicate that buildings are being used in

unexpected ways. Lighting for example may be used in class rooms regardless of the

availability of daylight. In addition, there is the list of independent variables that were used for

the regression analyses. Although great efforts were put in to describing the building

characteristics, the focus of the study was mostly on the external characteristics such as built

form and other design features. There is however a plethora of parameters, which could not

be collected for the study, such as the efficiency and size of building services including boilers,

or the installed lighting capacity, that may help explain the variation in EUI better. Lastly there

is the uncertainty associated with the parameters that were collected using the desk-top

approach. The use of an average storey height to derive numerous parameters that describe

the built form, for example, may have reduced the variation in the built form that actually exists

in the sample, hence the correlation.

Despite the relatively low R2 values however, the F-values of the four models were found to

be statistically significant (p < .0001), indicating that the predictions that were made using the

models were significantly better than using the mean to predict the energy performance. This

therefore suggested that the findings from these models could be used as a basis for

identifying the variables that have significant partial relationships with the EUI of primary

schools, and their magnitude.
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The root mean squared error (RMSE) indicate the accuracy of the models in the units of the

dependent variables EUI. The comparison of the RMSE shown in Table 7.11 to that of the

artificial neural networks (ANN) that were trained on the same dataset by Hong et al. (2013),

which presented RMSEs of 11.6 kWh/m2 and 32.0 kWh/m2 for electrical and fossil-thermal EUI

respectively, suggested that ANN methods were more accurate in predicting the EUIs of

schools, except for the fossil-thermal EUI of secondary schools.

Figure 7.16 below shows the standardised regression coefficients of the independent variables

that were in the final model for electrical EUI of primary schools. Note that the variables are

arranged in descending order of magnitude of the coefficients from the left hand side of the

graph.

Figure 7.16 Standardised regression coefficients from the final multiple linear
regression model for electrical EUI of primary schools

The final model developed using the stepwise method showed that there were six independent

variables that were found to contribute significantly towards improving the accuracy of the

regression model in predicting the electrical EUI of primary schools. The density of pupils was

found to be the most influential independent variable. The positive relationship indicated that

schools with a higher density of pupils tended to be more intensive in electricity consumption.
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are used for teaching purposes. The floor area of schools was also found to be noticeably

important, which indicated that schools with greater floor areas tended to be less intensive in

electricity consumption. Larger schools are likely to have greater proportions of the floor area

dedicated to ancillary facilities such as sports halls, circulation spaces or storage that are likely

to require less energy due to requirements for environment and occupancy compared to the

core facilities. The glazing type of schools were also found to be an influential characteristic

that was positively correlated to the electrical EUI. This indicated that schools with double

glazed windows were more intensive in electricity use. The reduced transmittance of daylight

through the windows may have led to increased uses of artificial lighting, hence the electricity

consumption. The negative correlation between the building age and electrical EUI indicated

that schools that were built a longer time ago tended to be less intensive in electricity use. This

is perhaps due to increasing specifications of building services and equipment in modern

buildings, which would have increased the demand. Lastly, the two variables with the negative

relationship indicated that schools with less compact footprint or schools that have greater

percentages of glazing on external walls were less intensive in electricity use. Schools with

less compact shape are likely to have more opportunities for introducing daylight to deeper

spaces as buildings become more exposed to the external environment. Greater glazing area

means that there is increased access to daylight. It is therefore reasonable to assume that

these schools would have less demand for artificial lighting.

Table 7.12 Parameter estimates and collinearity statistics of the multiple regression
model for the electrical EUIs of primary schools

Variable
Parameter estimates Collinearity statistics

β 
Standard
error β 

Standardised
estimate Tolerance VIF

Intercept 52.329 4.407

Pupil density 66.953 13.529 0.226 0.770 1.298

Floor area -0.003 0.001 -0.155 0.749 1.335

Glazing type 3.635 1.261 0.130 0.793 1.261

Building age -0.055 0.020 -0.124 0.786 1.273

Compactness -2.767 1.269 -0.095 0.848 1.179

Glazing percentage -0.171 0.081 -0.087 0.970 1.031

Table 7.12 shows the details of the parameter estimates as well as the collinearity statistics

for the independent variables in the final model. It can be seen that the tolerance values are
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well above 0.2, which is the threshold considered to be of concern, and the variance inflation

factors (VIF) are well below 10. There were therefore no signs of multicollinearity in the model.

Figure 7.17 shows the standardised regression coefficients for the independent variables in

the final multiple regression model for fossil-thermal EUIs of primary schools.

Figure 7.17 Standardised regression coefficients from the final multiple linear
regression model for fossil-thermal EUI of primary schools

The final model for predicting the fossil-thermal EUI of primary schools comprised four

independent variables. The independent variable that was found to have the most impact on

heating consumption of primary schools was the surface-to-volume ratio. The positive

relationship means that schools with greater exposed surface area are likely to have a higher

demand for heating. In the UK where the weather is mild, the greater exposure to the prevailing

weather conditions is likely to lead to an increased heat loss through the fabric, hence the

higher demand. The age of buildings was also found to be positively correlated to the uses of

fossil-thermal energy. This is likely due to the improvements in thermal performance of

buildings over the past decades that would have reduced the requirement for heating

compared to the older buildings that were compliant with less stringent standards or built prior

to the implementation of Building Regulations. The presence of obstructions on the north side

of buildings was also found to have some impact on the heating energy use of primary schools.
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Based on principles of building physics, such a correlation is difficult to explain, as glazing on

northern façades generally introduces diffused light, which does not contribute towards

reducing space heating loads. The results represent correlations, which perhaps means that

there may be characteristics common between the buildings with an obstruction on the north

façade that influence the heating energy use. Lastly, the schools that are ventilated via

mechanical systems were found to have less requirement for fossil-thermal EUI. Naturally

ventilated buildings are highly dependent on operable windows for providing fresh air to the

occupants. Frequent uses of windows or other means of natural ventilation means that there

are greater chances of losing heat via ventilation (Chatzidiakou et al. 2014).

Table 7.13 Parameter estimates and collinearity statistics of the multiple regression
model for the fossil-thermal EUIs of primary schools

Variable
Parameter estimates Collinearity statistics

β 
Standard
error β 

Standardised
estimate Tolerance VIF

Intercept 75.95 10.40

Surface-to-volume ratio 117.85 20.31 0.27 0.89 1.13

Building age 0.22 0.06 0.17 0.90 1.12

Façade adjacency (North) 12.29 5.52 0.10 1.00 1.00

Internal environment -9.92 6.08 -0.07 0.97 1.03

The tolerance and the VIF of the independent variables in the model indicates that there were

no signs of multicollinearity in the model.

The equations of the multiple regression models for primary schools are thus written as

Electrical EUI (kWh/m2) = 52.33 + 66.95(PD) – 0.003 (FA) + 3.63 (GT) - 0.05 (BA) – 2.77 (CR)

– 0.17 (GP) (8)

Fossil-thermal EUI (kWh/m2) = 75.95 + 117.85(SVR) + 0.22(BA) + 12.29(FaN) – 9.92(IE)

(9)
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Table 7.14 List of abbreviations used in equations 8 and 9 above and the descriptions

Abbreviation Descriptions

BA Building age

CR Compactness ratio

FA Floor area (m2)

FaN Façade adjacency North

GP Glazing percentage

GT Glazing type

IE Internal environment

PD Pupil density

SVR Surface-to-volume ratio

Secondary Schools

The following section presents the results from multiple regression analyses of the electrical

and fossil-thermal EUIs of secondary schools.

Figure 7.18 shows the independent variables in the final model for the electrical EUI ranked

by the magnitude of the standardised estimates in descending order from the left hand side of

the graph.

Figure 7.18 Standardised regression coefficients from the final multiple linear
regression model for electrical EUI of secondary schools
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The regression analyses showed that two independent variables were found to be significantly

correlated to the electrical EUI of secondary schools. The results indicated that schools with

purposely designed external shadings on the Western façade tended to be more intensive in

electricity use. Schools with double glazed windows were also found to have considerable

correlation with the electrical EUI. There are two potential explanations for such correlations.

First, the most obvious end-use that is likely to be influenced by these characteristics is

lighting. These schools for example, may have classrooms that are oriented towards the West,

which means that shading on that façade would increase the requirement for artificial lighting

due to reduced access to daylight because of the decreased angle of the visible sky. As with

the primary schools, more intensive electricity use in schools with double glazed windows

could be due to the reduced transmittance of daylight through the windows, which would also

increase the requirement for artificial lighting. Whether such implications could lead to such

strong influences is however, questionable. There could possibly be other factors, which were

not collected in this study, that were correlated with these features. For example, these are

characteristics that can be found in modern schools and the presence of external shading

suggests that these are likely have been designed to reduce carbon emissions. It is therefore

possible that there is a common feature that exists in these modern schools.

Table 7.15 Parameter estimates and collinearity statistics of the multiple regression
model for the electrical EUI of secondary schools

Variable
Parameter estimates Collinearity statistics

β 
Standard
error β 

Standardised
estimate Tolerance VIF

Intercept 55.11 4.22 - - -

External shading (West) 29.30 7.14 0.48 0.48 1.01

Glazing type 14.51 5.09 0.34 0.34 1.01

Table 7.15 shows the detailed summary of the parameter estimates and the collinearity

statistics of the final model for electrical EUIs of secondary schools. It can be seen that the

tolerance values and the VIF are both within the predefined thresholds for identifying

multicollinearity.
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The following section presents the results from the regression analysis of the fossil-thermal

EUIs of secondary schools. The standardised parameter estimates of the final model are

shown in Figure 7.19.

Figure 7.19 Standardised regression coefficients from the final multiple linear
regression model for fossil-thermal EUIs of secondary schools

Three independent variables were found to be significantly correlated to the fossil-thermal

EUIs of secondary schools. The density of pupils was the most important characteristic that

was correlated with the way schools use energy for heating. The positive nature of the
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use more energy for heating purposes. The correlation is likely to be related to the energy

used for domestic hot water that is typically designed according to the number of occupants.

An increased density of pupils would therefore mean that the demand for hot water was also

likely to be higher, hence the higher fossil-thermal EUI. The next most important variable was

the building age. The positive relationship means that building that are older tended to require

more energy for heating. As with the primary schools, this is likely due to the reduced heat
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heating. This is likely due to larger schools having ancillary facilities such as sports halls that

are not heated as extensively as classrooms due to intermittent occupancy.

Table 7.16 Parameter estimates and collinearity statistics of the multiple regression
model for the fossil-thermal EUIs of secondary schools

Variable
Parameter estimates Collinearity statistics

β 
Standard
error β 

Standardised
estimate Tolerance VIF

Intercept 109.273 24.147

Pupil density 221.917 77.475 0.366 0.696 1.436

Building age 0.424 0.218 0.240 0.746 1.340

Floor area -0.003 0.002 -0.220 0.640 1.563

The collinearity statistics tolerance and VIF shown in Table 7.16 indicated that there was no

multicollinearity between the independent variables in the final model.

The equation of the multiple regression models for predicting the electrical and fossil-thermal

EUI of secondary schools are thus written as

Electrical EUI (kWh/m2) = 55.11 + 29.3 (ESW) + 14.51 (GT) (10)

Fossil-thermal EUI (kWh/m2) = 109.27 + 221.92 (PD) + 0.42 (BA) – 0.003 (FA) (11)

Table 7.17 List of abbreviations used in multiple regression models for secondary
schools

Abbreviation Descriptions

BA Building age

ESW External shading West

FA Floor area

GT Glazing type

PD Pupil density
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7.5 Chapter summary

This chapter described how multiple regression analyses were carried out to assess and

identify building and operational characteristics that have significant correlations with patterns

of energy use of primary and secondary schools in England.

Below are key findings from the analyses:

 Empirical data on electrical and fossil-thermal EUIs were found to be correlated with

building and operational characteristics. Correlations were found between electrical

EUIs and characteristics such as the density of pupils, floor area, and presence of

external shading. The heating energy use of primary and secondary schools on the

other hand was found to be related to surface-to-volume ratio, building age and density

of pupils. These results indicated that the demand for energy in schools are influenced

by these intrinsic features.

 The regression models for primary and secondary schools were found to comprise

different set of characteristics. This suggested that the patterns of energy use of

buildings with different types of activities are likely to be influenced by different intrinsic

features.

 The experience in developing the building characteristics dataset highlighted that

there is a lack of centralised database in the UK that stores detailed information on

schools. The data collection exercise was also found to be extremely resource

intensive.

 The relatively low R2 values of the models indicated that the pattern of energy use is

not always directly dependent on the principles of building physics. Occupant

behaviour and the restricted range of variables that were used in the analyses were

presumed to be the main factors that led to low R2 values. There is therefore scope to

explore the correlations further with additions of details on other factors such as

building services, controls and the management of schools.
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 Despite the increased level of granularity, the data were found to be insufficient to fully

explain the relationships and their magnitude. This is largely due to the lack of detailed

information about various other aspects of buildings.

In summary, the study in this chapter has shown that the demand for energy in schools is

influenced by features such as the shape of buildings and the density of pupils, which are

independent of how efficiently buildings are being operated. This means that the current

approach to benchmarking, which does not provide any means to take into account the

influence of these intrinsic features, is likely to result in feedback that is less relevant. A school

that is designed such that it is considerably more exposed to the prevailing weather conditions,

for example, is likely to require more energy to provide an adequate indoor environment. This

means that buildings that are less exposed would appear to be operated more efficiently

despite the differences in factors that determine the demand for heating energy. It is therefore

highlighted that there is a case for using these parameters for benchmarking purposes in order

to assess the operational energy efficiency with greater comparability.

The analysis provided insights that complement the findings from the previous chapter in that

greater understanding was acquired of the relationships between a broader range of

characteristics and the energy performance of schools. The limitations of the study with

regards to the data and the subsequent difficulties in understanding the reasons behind these

correlations however suggested that further analyses based on more refined information are

needed to fully understand the factors that influence energy consumption in schools.
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Chapter 8 Bottom-up Analysis of English Schools

This chapter aims to acquire yet deeper insights into the patterns of energy use in schools and

the determinants of energy use by analysing data of much finer granularity. This final phase

of the research incorporates empirical data from post-occupancy evaluations of a small

number of modern secondary schools in England. End-use energy consumption and detailed

information on various types of equipment are analysed in relation to the intrinsic or extrinsic

factors.

8.1 CarbonBuzz database

The descriptions of schools and data on their detailed energy consumption were acquired from

the online platform CarbonBuzz27. The platform was developed by a collaboration of various

organisations headed by the Chartered Institution of Building Services Engineers (CIBSE) and

the Royal Institute of British Architects (RIBA) and launched in 2013. The platform aims to

support the industry in managing the energy consumption of non-domestic buildings in the UK

and to help reduce the gap between their design stage estimation and their operational energy

performance. The main function of the platform is to allow various stakeholders in the industry

such as architects and engineers to upload information during the design and in-use stages of

the projects. The data accumulated from various projects will then enable stakeholders to

improve understanding of the energy performance of their buildings by comparing the design

stage performance to the in-use performance as well as to other buildings with a similar type

of activity.

In 2013, a dataset of 300 records that relate to 163 primary and secondary schools, which

were uploaded onto the CarbonBuzz database, was acquired from the Building Research

Establishment (BRE). An initial inspection showed that there were numerous records that did

not provide useful information about the operational performance of schools, in particular they

lacked breakdowns of end-use consumption. As mentioned previously, CarbonBuzz is used

27 For CarbonBuzz, See: http://www.carbonbuzz.org/
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by various organisations to upload not only operational energy consumption data but also

design and benchmarking information. This therefore means that there were records of energy

performance certificates (EPC) and design stage estimations that were made via dynamic

thermal simulation tools. In addition, the database comprised records that were uploaded

during the development phase for testing various aspects of the platform. Moreover, the level

of completeness of the records in the dataset was also found to vary considerably. This

therefore meant that it was necessary to identify and remove records that did not report the

operational energy use with a breakdown of end uses.

The following steps were taken to clean and filter the data:

 Initially, records that did not appear to be valid were removed from the dataset based

on an assumption that valid records should at least provide metered annual electricity

and non-electric energy consumption figures.

 Secondly, the variable ‘RecordName’ that describes the nature of each record was

inspected to eliminate records that were either uncertain in their nature or not related

to operational energy performance. This involved removal of records that did not have

any input value, which therefore meant that it was extremely difficult to verify the

nature of the records. Records with names that were difficult to judge (e.g. xxx) or that

were not likely to provide operational performance data on buildings (e.g. test, EPC)

were also removed during this process.

 Thirdly, records that provided sufficient information on the end-use consumption of

schools were identified and a subset extracted from the dataset. This involved

searching for records that had inputs in the end-use categories corresponding to the

main building subsystems such as lighting and space heating but also unregulated

consumption such as small power, which it would not be possible to measure

separately without a sub-meter.

 Lastly, the validity of the remaining records was assessed based on the reliability of

the data source.
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The changes in the number of records and the schools in the dataset after each of these

processes are shown in Table 8.1 below.

Table 8.1 Changes in the number of records and schools in the CarbonBuzz dataset

# Description No. of records No. of Schools

1 Raw dataset 300 163

2 Removal of records without annual energy

consumption figures

205 82

3 Dataset free of blank, uncertain and unsuitable

records

40 24

4 Sub-metering information available (based on

small power consumption)

15 11

5 Validation of data sources 9 9

The validation process applied to the energy consumption data showed that the selected nine

records have been uploaded with sufficient levels of completeness and were entered by two

reliable sources.

The data on four out of the nine secondary schools were obtained from the Building

Performance Evaluation (BPE) project 28 , which was developed and sponsored by the

Technology Strategy Board (TSB) in 2012. The programme aimed to help the industry to

deliver more efficient buildings that performed as intended. The main objective of the project

was to collect data and document information throughout the design, construction and

operation phases of various non-domestic buildings and to disseminate the findings from the

studies to industry. Funding was provided by TSB to individual companies or organisations in

the industry, which are working on a new or recently completed buildings, to carry out BPE to

capture detailed information such as design strategies, ventilation and air tightness, and

occupancy patterns (TSB, n.d.).

The remaining five records were all secondary schools that were case studies presented in a

PhD thesis by Pegg (2007). The records uploaded on to CarbonBuzz provided detailed

28 For BPE, see: https://connect.innovateuk.org/web/building-performance-evaluation
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information on energy performance as well as some building characteristics. The thesis itself

was consulted to acquire further information on the buildings such as layouts and descriptions

of building services that were not collected by the online platform.

Table 8.2 below shows the list of schools that were selected for the present study and their

descriptions. It should be noted that the schools were kept anonymous for confidentiality

reasons.

Table 8.2 General description of the case study schools

School Phase of education Location GIA (m2) No. of pupils Completion

1 Secondary Illford 14,610 1,850 01-Apr-10

2 Secondary London 12,886 1,200 01-Jul-07

3 Secondary Stockport 10,419 1,150 01-Jan-09

4 Sixth form college Nantwich 2,843 1,357 19-Jul-10

5 Secondary London 10,529 1,350 01-Sep-02

6 Secondary London 10,627 1,200 01-Sep-03

7 Secondary Bristol 12,957 1,265 01-Sep-04

8 Secondary Liverpool 7,900 900 01-Sep-05

9 Secondary Nottingham 7,715 900 01-Sep-04

It can be seen that the schools used for the study were all secondary schools except for school

6, which was a sixth form college.

8.2 The end-use energy consumption of the case study schools

Data on the energy performance of the nine schools was acquired from the CarbonBuzz

database, recorded according to the Chartered Institution of Building Services Engineers’

(CIBSE) TM22 method (CIBSE 2006a). TM22 is a method that was developed by CIBSE to

aid building professionals in assessing the energy performance of buildings during the design

and in-use stages. The method was originally developed in 1999 based on earlier work such

as the PROBE studies and Energy Consumption Guide 19 (Cohen et al. 2001; Action Energy

2003). The energy performance data which were obtained for the study were collected using

a new version of TM22 that was developed for the TSB’s BPE project for the purposes of

gathering energy and systems data (TSB, 2012).
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Figure 8.1 shows a tree diagram, which provides an overview of the structure of data collected

according to the TM22 method. The diagram shows how the energy consumption of buildings

could be collected and analysed at varying levels of granularity.

Figure 8.1 A tree diagram example (CIBSE 2006a)

As shown in the diagram, the TM22 files obtained from CarbonBuzz database included energy

consumption at building, end-use and, for some schools, system level. At the building level,

annual energy consumption was recorded separately for electricity and non-electrical energy

uses. These were reported in the form of energy use intensities (EUIs). The files also contained

information from sub-meters, which were installed to measure the energy used by major

building sub-systems such as lighting, space heating, and any other equipment that consumes

energy such as small power or ICT. The system-level information refers to the specifications

of equipment such as power ratings and hours of use as illustrated in Figure 8.1. This

information was reported as part of the TM22 assessment where component level energy use

was analysed in order to understand how energy is used by various components of building

subsystems. The levels of energy use of various components and equipment reported in TM22

files were however not meter readings, due to the limitations in sub-metering, but consumption

calculated based on information recorded by the assessors during their site visits. In addition

to the types of equipment and numbers of pieces, their power rating, the load and usage

factors, and hours of use were used as a basis to estimate the energy use by each type of

equipment, which was then reconciled with the sub-meter level measurement for validation.

Taking the end-use category ‘small power’ for example, the numbers of computers and laptops
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were reported along with more details such as their power ratings, hours of use and load

factors.

The list of end-use categories and examples of equipment which were found under each of

the categories is shown in Table 8.3.

Table 8.3 List of building systems included in the TM22 files and the fuel types

Building system Description

Space heating

Hot water supply

Refrigeration

Fans, pumps and controls

Internal lighting Teaching spaces, corridors etc.

External lighting Security lights, sports lights etc.

Small power Projectors, CCTV, cleaning equipment etc.

ICT equipment Computers, laptops, server rooms etc.

Vertical transport Lifts

Catering – central Ovens, freezers, food display etc.

Catering – distributed Kettles, small fridges, microwaves etc.

Laboratory equipment

8.3 Detailed building and occupancy information

In addition to the detailed energy consumption data from the TM22 files, information on various

aspects of the buildings, the occupants and operational characteristics was obtained via the

‘contributing factors’ section of CarbonBuzz and the pre-visit questionnaire (PVQ) files.

The ‘contributing factors’ section of the platform allows users to record information on various

factors that can potentially influence the patterns of energy use of buildings. The information

recorded in the section covers building design, management, special energy uses, occupancy

levels and operating hours, IT infrastructure, and appliances. The design section describes

the details of the building such as construction type, air tightness, and details of facades

(including the surface area and the U-value). The management section provided a general

description of the management strategy, presence of a BMS, types of controls etc. There is



196

also a section that provides details on the end uses that are uncommon in typical buildings

such as server rooms or bakery ovens. The occupancy and operating hours section provides

information on the varying number of occupants and their schedule throughout the year. Any

additional details on server rooms or appliances are described under the IT infrastructure and

Appliances sections.

The PVQ files were questionnaires that were distributed to the project teams that were part of

the BPE project with the aim of collecting information on various aspects of the buildings in

question. The questionnaire was divided into several themes, each designed to describe the

schools in considerable detail including descriptions of the fabric, building services, catering

services, and equipment. These files were however only available for four schools that were

part of the BPE project. In addition, inspection of the inputs in these files showed that the level

of completion of the questionnaires tended to vary considerably. It was therefore deemed

appropriate only to use the variables that were generally filled out in the four schools unless

there was a way of acquiring the missing information through another source.

Another set of information that was collected for the analyses covered variables that describe

the built form of schools, which did not exist in either TM22, PVQ or the PhD thesis by Pegg

(2007). Abstract variables such as the compactness and plan depth ratios were calculated

using the desktop approach that was described in Section 7.1.1. The variables that were

derived are described in Table 8.4 below.

Table 8.4 Descriptions of the building characteristics of the case study schools that
were derived for analyses

Building character Description

Compactness ratio Perimeter of exposed facades compared to the

circumference of a circle with the same area as the building

footprint.

Glazing to solid wall ratio Glazing area divided by area of the area of solid wall on all

facades
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The compactness ratio was derived by measuring the perimeter of each school and comparing

it to the perimeter of a circle with the same area as the building. Using the technique described

in Section 7.1, the perimeter length of the building footprint was measured using the online

mapping portal Digimap29.

The ratio between the glazed and solid components of the fabric of buildings was derived as

a means to utilise what was available from the Pegg PhD thesis. Unlike the data obtained from

CarbonBuzz, there was limited level of information on schools reported in the thesis. Due to

the small sample size from CarbonBuzz, it was therefore necessary to utilise the ratios that

were reported in the thesis for the present study. Consequently, the areas of the fabric, which

were obtained from the PVQ files, were used to derive the glazing ratios for the four schools.

8.4 Methods of analysis

This section describes the process through which the high resolution data was analysed. The

methods that were used to analyse the data and the underlying assumptions are described in

detail.

The patterns of energy use of the case study schools were analysed in the following steps.

First, the energy performance of each of the case study schools was analysed at the building

level using descriptive statistics. This involved comparing the proportions of electricity and

fossil-thermal energy use in schools and also how well these schools perform against their

peers. Secondly, the energy consumption of each fuel type was disaggregated into different

end uses and analysed separately. Descriptive statistics were used to analyse the variance of

end-use consumption for each fuel type. Attributions of the equipment to each of the end-uses

were then made.

As discussed in the previous sections, the case study schools that were used for this study

were designed and built in the past 5 to 6 years. This therefore means that they were built to

29 For Digimap, see: http://digimap.edina.ac.uk
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comply with the recent Building Regulations requirements that focus on improving energy

efficiency through improvements in thermal performance as well as the efficiency of services.

To understand how these schools perform within the wider context, the annual electricity and

fossil-thermal energy use of the schools was compared to the cumulative frequency

distribution of the performance of secondary schools in England (Figure 6.2 and Figure 6.4).

To compare the energy performance of these schools to the stock accurately however, as

discussed in Section 6.1, it was necessary to normalise energy performance to a standard

weather condition in the UK so that the influence of seasonal and regional variations in weather

was taken into account.

The heating degree-days (HDD) that were used for the adjustment were acquired using two

methods. The records from CarbonBuzz for HDD were acquired through the information

acquired from the central information point (CIP) based on the locations of buildings and the

dates when the measurements were taken. The dates of measurement of the energy

consumption of the schools, which were acquired from the PhD thesis, were not on the other

hand available. Moreover, the HDD records from the CIP began when the Display Energy

Certificate (DEC) scheme was implemented in 2008, which would not have been useful even

when the dates were available. The document did however indicate the typical HDD (base

15.5°C) of the regions in which the schools were located. These HDD figures were therefore

assumed to be representative of the weather conditions of those regions at the time the

schools were monitored.

Once the HDD values were obtained, the fossil-thermal energy use of the case study schools

used was adjusted using equation (4) shown in Section 6.1. Unlike the previous section

however the adjustments were made to the actual energy used for space heating, rather than

adjusting the fossil-thermal EUI of the case study schools based on an assumption that 80%

of fossil-thermal energy was used for space heating purposes.

Once normalised, the energy performance of the case study schools was compared to the

adjusted TM46 benchmarks appropriate to each school. The adjusted benchmarks were
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obtained from the CarbonBuzz database. The energy performance of the case study schools

was also compared against the energy performance statistics of secondary schools which

were presented in Section 6.3.

Following the analyses of whole-building energy performance of the case study schools, the

breakdowns of electrical and fossil-thermal energy consumption were analysed to understand

the trend in energy consumption in schools in greater detail. Descriptive statistics such as

mean and standard deviations were used to assess the distribution of various end-uses

amongst the schools. The analyses of end uses for each fuel type was also intended to

improve understanding of the contribution of each end use towards the overall energy

performance of schools. This was further intended to examine whether the claims that had

been made with regards to the percentage of fossil-thermal energy use that is for space

heating purposes in the previous sections were accurate (Section 6.1). In addition, the

variation of the pattern of energy use was expressed in the form of median absolute deviation

(MAD) rather than the standard deviation which is frequently used and is based on the mean

when the data is normally distributed. MAD is the median of the absolute deviations from the

median (equation 12) which therefore is less sensitive to outliers (Malinowski 2009; Falk 1997).

MAD = Med { |Xi – medn| : 1 ≤ I ≤ n }      (12) 

Note that the recording of the distribution of end-use consumption may have been affected by

the way the sub-meters were installed. Taking the energy consumption of phones for example,

it could have been metered from a sub-meter for ICT equipment, since phones are

communications devices. There is however the possibility of the equipment being included

under a small power sub-meter, as it is not part of the building services system.

Various end-use categories were analysed in further detail for those schools for which detailed

information on equipment was available. This analysis aimed to develop a broader

understanding of how end-use consumption is further disaggregated into various types of

equipment. The component level information was acquired from TM22 files, which provided a
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list of pieces of equipment and their energy consumption. The assessment involved simplifying

the list of equipment under each of the end-use categories. This is due to the varying levels of

labelling of various equipment by different assessors. Taking ICT equipment for example,

some records would report the numbers and energy consumption of different types of printers

separately, whereas others would report it as a single item ‘Printer’. It was therefore necessary

to aggregate similar types of equipment into smaller number of categories for analysis.

For each end-use category, analyses were carried out to examine the relationship between

detailed building and occupant characteristics and the end uses. This was intended to identify

the features that significantly affect the energy consumption of the case study schools. Using

SAS 9.330, scatter plots and correlation coefficients were used initially to assess the strength

of the relationships and filter out insignificant variables. The small size of the sample used in

this study meant that it was difficult to assess the normality of the sampling distribution. It was

therefore decided that non-parametric methods rather than parametric methods would be used

wherever necessary to analyse the data. With regards to the correlation coefficient the

Spearman’s coefficient was used rather than the Pearson’s coefficient, due to the difficulty of

establishing the normality of the data owing to the small sample size.

The relationship between building features that can be expressed numerically such as the

normalised U-value of the building fabric and the end-use consumption, which in this case

would be space heating, was analysed using scatter plots to assess the shape of the

relationship.

For those variables that were found to have significant correlations with specific end-uses,

regression analyses and hypothesis tests were carried out, similar to those described in

Section 6.2, to quantify the significance.

Regression analyses involved uses of simple and multiple linear regression models to quantify

how much the end-use consumption varied in relation to variation in the regressor variables.

30 For SAS, see: http://support.sas.com/documentation/93/index.html
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The coefficient of determination of the models, expressed as R2, and its significance was used

as a basis to assess the strength of the significance.

For categorical variables such as the type of controls for lighting, hypothesis tests were carried

out to examine whether there was a statistically significant difference in the pattern of energy

use between schools with different features.

Of all end uses, ICT and small power were analysed jointly due to the differences in classifying

various electronic equipment into end-use categories. The difference stems from the definition

of what constitutes Information Communication Technology (ICT) equipment. In the TM22

data, equipment such as desktops, monitors or laptops were reported under the ICT

equipment category in addition to the equipment that forms the IT infrastructure such as that

in server and hub rooms.

It should be noted that end-use consumption was analysed only where empirical data was

available. The figures that were estimated, due to sub-meters not being available, were

excluded. Taking the domestic hot water (DHW) consumption for example, a sub-meter for

hot water supply was found to be unavailable during the site observation.

The analyses were carried out in several steps. Firstly, the overall energy consumption of the

case study schools was assessed against other schools to put it in context. This was then

followed by analyses of each of the end uses in relation to various characteristics of the

schools such as built form and number of pupils. Lastly, energy use by each type of equipment,

which had been approximated using the bottom-up approach as illustrated in TM22, was

assessed to further improve the understanding of how energy is used in these schools.
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8.5 Results

Figure 8.2 shows the annual energy performance of the case study schools. Note that fossil-

thermal energy consumption was corrected to account for the impact of seasonal and regional

variation in weather.

Figure 8.2 Stacked bar chart of the annual energy performance of the case study
schools

The figure shows that there is considerable variation in the patterns of energy use in the case

study schools, despite the similarity of the activity. The chart shows that there are two groups

of schools that have similar levels of electrical EUI. Schools B, C, F and I were all found to be

considerably more intensive in electricity use with consumption between 124 and 125 kWh/m2,

compared with schools A, D, G and H that were found to use between 66 and 69 kWh/m2 of

electricity. It is however not clear why there is such a sharp division in the pattern of energy

use between these groups as they are all secondary schools, which should mean similar levels

of demand for energy use. There was also a large variation in fossil-thermal energy use despite

the corrections made to account for the effects of weather conditions. These variations

therefore suggest that there are factors other than the activity that determine the pattern of

energy use in schools, which will be explored further in the following sections.
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A school that requires careful attention is school D, which only houses sixth form students who

are in years 12 and 13. The difference in the range of students and their classes in school D

means that the pattern of energy use may differ from those schools that comprise the whole

range of secondary school students from year 7 to year 13.

Table 8.5 shows descriptive statistics for the energy performance of the case study schools

by fuel type. Note that both the raw fossil-thermal EUI and the weather-corrected figures are

illustrated for comparison purposes. The 95% level confidence intervals of the median and the

median absolute deviation (MAD) are shown to illustrate the variability of the sample.

Table 8.5 Descriptive statistics for the electrical and fossil-thermal EUIs of the case
study schools

Fuel type and benchmarks Energy consumption (kWh/m2)

Min. Median (95% CL)a Max. MADb

Modern secondary schools

Electricity 66.2 96.3 (67.4, 124.3) 125.0 27.8

Raw fossil-thermal energy 54.3 96.7 (55.2, 109.0) 111.2 9.5

Weather-corrected fossil-thermal energy 53.6 88.4 (60.0, 121.1) 143.4 17.1

CIBSE TM46

- Typical electricity consumption 40

- Typical fossil-thermal energy use 150

Analyses from Section 6.3

- Median electricity consumption 50

- Median fossil-thermal energy use 111
a Distribution-free confidence limits of medians
b Median absolute deviations

The statistics for electricity use in the case study schools (Table 8.5) showed that electricity

consumption is considerably higher than the energy benchmarks in CIBSE TM46 and the

statistics on recent trends in energy consumption of schools from Section 6.3. What is more,

the maximum consumption was found to be more than twice the median of the large sample,

and even the least intensive of the case study schools was found to be more intensive than a

typical older school. Taking into consideration that these schools were building in 2002 or later,

and that 6 in 7 existing stock comprise schools that were built more than 25 years ago, the

difference indicates how electrically intensive the modern schools are becoming despite the

efforts to design low energy schools (Global Action Plan 2006).
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A considerable variation was also observed in the weather-corrected fossil-thermal energy use

of the case study schools, with a median absolute deviation of 17.1 kWh/m2. In general

however the median heating consumption of these schools suggested that they were

significantly less intensive than the TM46 benchmark of 150 kWh/m2 and somewhat less than

the statistics from Section 6.3. This is more clearly shown in Figure 8.3 where the electrical

and weather-corrected fossil-thermal EUIs of the case study schools were plotted on a

cumulative frequency distribution curve generated based on the secondary schools that were

analysed in Chapter 6.

Figure 8.3 Annual electrical and fossil-thermal EUIs of the case study schools
compared to the cumulative frequency distribution of the school stock

High levels of electricity consumption can be clearly be seen in Figure 8.3 where all case study

schools are positioned above the 80th percentile with some reaching up to the 99th percentile.

This comparison suggests that schools that were built in recent years are likely to be

considerably more intensive in electricity use than older secondary schools. The energy used

for heating on the other hand were generally less intensive than the stock but found to vary

considerably. The school with the least heating energy use was placed at the 4th percentile

while the school with the highest consumption was positioned at the 67th percentile. The large

variation in heating energy use is rather surprising as these schools would have been designed

to higher thermal performance standards, hence a reduced demand for heating. This suggests
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that the improved building standards in these modern buildings do not necessarily dictate how

the schools are heated. Nevertheless, the intrinsically higher thermal performance of these

buildings means that benchmarking their energy performance of the stock would not yield an

accurate measure of how efficiently the buildings are being operated. If the fossil-thermal

performance of these schools was compared to the Victorian schools for example, Victorian

schools would have a greater demand for heating due to the leaky building envelope. It is

therefore highly probable that the operational energy efficiency of Victorian school would

appear to be inefficient even when it is being operated efficiently when the modern school is

not.

Analyses of individual end uses

The following sections present results from the analyses of the electricity and fossil-thermal

energy uses by various end-use categories.

Figure 8.4 shows the breakdown of electricity consumption in the case study schools into

major end-use categories including the unregulated energy uses.

Figure 8.4 Breakdown of electricity consumption of the case study schools by end-
use categories

The disaggregation of total electricity consumption shows that there is a considerable variation

in how electricity is used by end-use categories in schools that have similar total consumption
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(Figure 8.4). The variation in electrical EUI, despite all case study schools being modern

secondary schools with academy status, shows just how complex and diverse the patterns of

energy use can be even within the same activity group. It also highlights the importance of

understanding the factors that introduce these variations and whether the variation is due to

intrinsic features or the inefficient operation of buildings.

Table 8.6 shows statistics for the electrical energy used in each end-use category. The table

also presents the confidence intervals, which are reported at the 95% level of confidence. It

should however be noted that the upper and lower confidence limits were not reported for

electric space heating, domestic hot water supply or vertical transport due to the majority of

schools having no energy use in those categories.

Table 8.6 Electricity consumption statistics for the case study schools by major end-
use categories

End-use category
Electricity consumption (kWh/m2)

Min. Median (95% CL)a Max MADb

Space heating 0.0 0.0 (-, -) 4.4 -

Hot water 0.0 0.0 (-, -) 0.6 -

Refrigeration 1.0 6.4 (3.0, 20.0) 23.2 3.4

Fans, pumps and controls 9.0 24.0 (12.0, 47.5) 50.9 9.0

Lighting 16.0 26.9 (17.0, 52.0) 72.0 9.9

ICT & Small Power 16.9 18.0 (17.0, 21.0) 28.0 1.1

Vertical transport 0.0 0.0 (-, -) 0.4 -

Catering 4.3 8.0 (5.0, 10.0) 12.3 2
a Distribution-free confidence limits of medians
b Median absolute deviations

As shown in Table 8.6, the energy used to light internal spaces such as classrooms and

corridors and external spaces such as car parks and sports grounds was the most intensive

end use with a median of 26.9 kWh/m2. The next most intensive end use was the fans, pumps

and controls, which cover the energy used by equipment in the plant rooms that form the core

of the HVAC system. The energy used by equipment to maintain adequate levels of indoor air

quality and thermally comfortable environment to the occupants was found to be 24.0 kWh/m2.

There was however a large variation in the pattern of these end-uses where the most intensive

was an order of a magnitude greater than the least intensive.
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The end-use category with the third most intensive energy use was the ICT and small power

equipment including desktops and monitors as well as equipment found in server and hub

rooms. In contrast to the energy used for lighting and fans, pumps and controls, the level of

energy use by these types of equipment was much more constant between schools with a

median of 18.0 kWh/m2 and a median absolute deviation of 1.1 kWh/m2. At the other end of

the spectrum, the energy used to provide hot water for toilets and showers, and to operate

vertical transport or lifts was found to account for less than 1% of total electricity consumption

on average. In schools A, B, C and D, portable electric heaters were used to provide heating

locally to the staff or students, which accounted for up to 4% of total electricity consumption.

Table 8.6 also shows that there are five end-uses – lighting, fans, pumps and controls, ICT &

small power, catering, and refrigeration – that together account for more than 95% of total

electricity consumption of these schools. This suggests possibilities of improving the

comparability of benchmarking in an efficient manner by identifying the key factors that are

correlated to these end-uses.

The following sections present results from a more detailed analysis of each of the electrical

end uses. Each of the end-use categories was explored further using the equipment-level

energy uses derived using the bottom-up method, wherever information was available. The

results from correlation analyses of the end uses and the building and occupant characteristics

are also presented.

8.5.1 Internal and external lighting

Figure 8.5 shows the energy used for lighting in the case study schools. Schools A, B, C and

D show a further breakdown of the end use into energy used for internal and external lighting.

It should be noted that these figures were based on a combination of sub-metered data and

the data derived using the bottom-up approach whereby energy uses for internal and external

lightings were estimated based on observations from the site visits including the power rating,
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number of fittings and usage factors, which were then calibrated against the total meter

reading for validation.

Figure 8.5 Electricity consumption for lighting in the case study schools

A comparison of the lighting end uses between the schools shows that there is considerable

variation in the intensity of energy used for lighting both internal and external facilities (Figure

8.5). The disaggregated lighting consumption in schools A, B, C and D shows that

approximately 90% of the energy was used for lighting the internal spaces of schools such as

classrooms and corridors, and the rest was used to light external spaces such as car parks,

sports grounds and roofs.

Schools F and I were the most intensive of all with consumption of 72 and 52 kWh/m2, which

accounted for 58% and 42% of the total electricity consumption of these schools respectively.

The consumption of school F in particular was found to be more than four median absolute

deviations away from the median of 26.9 kWh/m2, an unusually high figure. Among various

features of these buildings, schools E, F and I were the only schools that had manual switches

for lights in all areas, which meant that the energy use was highly dependent on the way the

lights in the classrooms and corridors were controlled by the staff and pupils. In his thesis

Pegg (2007) highlighted that the high levels of consumption in these schools were due to the

constant use of lights in classrooms and circulation spaces during unoccupied hours and even
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when ample daylight was available. He also noted that the lights in schools that had automated

controls via presence and daylight sensors were being operated more efficiently than the

lighting in schools with manual controls.

The combined dataset of the five schools from the thesis and the four recently built schools

from Carbon Buzz provided an opportunity to assess whether the findings from the previous

study by Pegg (2007) applies to the larger sample. A hypothesis test was therefore carried out

to assess the potential relationship between the lighting control types and the electricity used

for lighting. Prior to the assessment, schools with different control types were categorised into

two groups. Schools with manual switches were grouped separately from those with one or

more automated control mechanisms using presence, absence and photocell sensors. A null

hypothesis was formulated where insignificance of the test result would mean that there was

no significant difference in the pattern of lighting energy use between schools with and without

manual controls. The result of the hypothesis test is shown in Figure 8.6.

Figure 8.6 Wilcoxon rank-sum test results of lighting consumption of schools with
different control strategies

The result showed that the difference in energy consumption for lighting between these

schools was statistically significant (p < 0.05). This suggested that schools with more



210

sophisticated control strategies that involve automated controls on internal lighting in

classrooms and other occupied spaces have the ability to be more energy efficient. This

suggests that lighting may not be controlled as efficiently as it should be in schools that are

equipped with manual controls. It is therefore likely that the lights are left on, even when the

spaces are not occupied or when enough daylight is available. Considering however that the

result was based on a small sample, and that the total lighting consumption was inclusive of

both internal and external lighting, further investigation would be needed to validate this

finding.

In addition to the hypothesis test, correlation analyses were carried out to assess the

relationships between lighting consumption and building characteristics. Based on the

previous findings however, it was decided that schools with manual controls would be

excluded from the analysis due to the independence of manual lighting control from the

external conditions. The results are shown in Table 8.7.

Table 8.7 Correlation analysis of total lighting consumption and geometrical building
characteristics

Variables

Spearman Correlation Coefficients, N = 6

Prob > |r| under H0: Rho=0

Coefficient p-value

Surface-to-volume ratio -0.83 0.04

Glazing to solid wall ratio 0.03 0.96

Depth ratio 0.31 0.54

The analysis showed that there was a strong negative relationship (-0.83) between the lighting

EUI and the surface-to-volume ratio of the case study schools, which was statistically

significant (p, < 0.05). This suggested that the schools with greater exposed surface area were

using less energy for lighting than those that were less exposed to the external environment

(Figure 8.7). It is conceivable that schools with greater surface area relative to their volume

would have greater opportunities to use day lighting, provided that the buildings were designed

with adequate glazed areas.
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Figure 8.7 Scatter plot of the surface to volume ratio and the total lighting EUI of
schools with daylight sensors

The analysis also showed that there was hardly any correlation (0.03) between the lighting

EUI and the area of glazing relative to the solid proportion of the external walls. This suggests

that the lighting controls were not necessarily responding to the availability of daylight. There

was also no significant relationship between the depth of the floor plan of buildings and the

lighting EUI (p, > 0.05). The lack of correlation is likely due to the way light fittings are designed

and controlled in schools. Taking the classrooms in school G for example, Pegg (2007)

observed that the light fittings were installed and controlled in rows perpendicular to the

windows. This therefore meant that the lights near the windows were being controlled based

on the illuminance levels of areas deep in the classrooms, which therefore led to the lights not

being dimmed at all.

Figure 8.8 shows the lighting energy use in schools A, B, C and D broken down into different

types of floor space. It should be noted that the figure was based on the estimated energy use

of lights in different parts of schools. These were derived based on the specifications of

equipment such as wattage and luminaire type, and assumptions about management and

usage factors that were acquired during the site visits. There is therefore an element of

uncertainty here and the results are only intended to provide a picture of where the lighting

energy is likely to be used in schools.
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Figure 8.8 Estimated internal lighting consumption divided into different spaces in
schools

The disaggregation of the lighting EUI into different space types shows a considerable

variation between the schools. This is likely due to the differences in the way schools are

designed and operated where the allocation of spaces and the occupancy would vary

considerably from school to school. In general, the estimated lighting energy use for

classrooms, office spaces and circulation spaces accounted for more than 80% of the total

lighting energy use in all schools.

What was interesting was the amount of energy used for lighting the circulation spaces.

Although these are estimated figures, the energy used for lighting stairs and corridors

accounted for 38 to 65% in schools A, C and D except for school B in which the estimation

was very low at 8%. A closer examination of the assumptions made during the bottom-up

calculation of the lighting energy uses showed that lighting in stairs and entrances accounted

for a considerable proportion of the lighting use in circulation spaces. This is likely due to the

24-hour operations of these lights, which are kept on for security reasons.
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8.5.2 Fans, pumps and controls

In schools, fans, pumps and controls form the core of HVAC systems. The following section

presents results from the analysis of the energy used in plant rooms.

The energy consumption by the equipment is shown in Figure 8.9. Note that this end use in

schools A, B, C and D was broken down further, based on the estimated consumption figures

which were calibrated to the metered energy use.

Figure 8.9 EUI of fans, pumps and controls of the case study schools and their
breakdown

The bar chart shows that there is a large variation in the combined energy use of fans, pumps

and controls (Figure 8.9). The end-use consumption was found to be the most intensive in

schools B and C with consumption of 51 and 48 kWh/m2, which accounted for 41% and 38%

of the total electricity consumption. This is likely due to the significantly high proportion of areas

that were mechanically ventilated compared to the other schools. In schools B and C,

approximately 90% of the occupied spaces were understood to be mechanically ventilated,

which is considerably greater than the other schools where the estimated percentage of the

areas being mechanically ventilated ranged between 20 to 60%. This would have resulted in

the increased load on fans, pumps and controls, hence the noticeably higher energy use. The

implications of having high levels of mechanical ventilation can be observed further by the
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differences in the energy used by fans. It can be seen that fans in the mechanically ventilated

schools (B and C) accounted for 71 and 75% of the end-use in comparison with school A in

which up to 80% of the spaces were being naturally ventilated. School D was also a

mechanically ventilated building but the low consumption figures for both fans and pumps

suggested that sixth form colleges may have different patterns of use, hence the different

demand. An examination of the core operating hours showed that school D was operating for

noticeably fewer hours at 1,564 per year compared with schools B and C that operate for 2,503

and 2,816 hours per year. It was also found that the energy used by fans, pumps and controls

was closely related to the core operating hours of the schools (Figure 8.10).

Figure 8.10 Scatter plot of core operating hours of schools and the fans, pumps and
controls EUI, and line of best fit

The energy used to operate fans, pumps and controls was also found to have a statistically

significant relationship with the depth ratio (Spearman, p < .05). The relationship was positive

with a correlation coefficient of 0.78, which suggested that buildings with deeper floor plans

were using more energy to operate the HVAC system. This makes sense as buildings with

deep floor plans are likely to have greater needs for mechanical ventilation and perhaps
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cooling due to difficulties in adopting natural ventilation strategies. It is also likely that buildings

with greater plan depth would have increased energy demand for supplying air due to

increased lengths of ductwork.

8.5.3 ICT and small power equipment

The following section presents results from the analysis of the energy used by information and

communications technology (ICT) and small power equipment.

Figure 8.11 shows the plug loads from various ICT and small power equipment in the case

study schools. The electrical plug loads, which were shown in Table 8.6, were separated into

the energy consumption by equipment in server and hub rooms, and general ICT and small

power equipment. The plug loads in server and hub rooms include the energy used by

equipment that provides networking, stores electronic data and integrates the curriculum and

management functions of schools. The general ICT and small power equipment includes

computing devices such as desktops and laptops, and also office and teaching equipment

such as printers, photocopiers, projectors and speakers.

Figure 8.11 Breakdown of electricity use for ICT equipment in nine case study schools
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The plug loads for operating the ICT and small power equipment show a relatively similar

pattern across all schools. The energy used by computing devices and office equipment was

found to account for approximately 60% of the total plug load and 13% of total electricity use

on average. The electricity consumption by the general ICT and small power equipment was

found to be reasonably similar in all schools, except for school ‘I’, which showed an unusually

high level of energy use of 19 kWh/m2 (Table 8.8).

Table 8.8 Statistics of the plug load from various ICT and small power equipment

Equipment
Electricity consumption (kWh/m2)

Min. Median (95% CL) Max. MAD

All ICT and small power equipment 16.9 18.0 (17.0, 21.0) 28.0 1.1

- Server and hub rooms 5.8 8.0 (5.9, 9.0) 9.0 1.0

- ICT and small power equipment 8.7 11.0 (10.0, 15.2) 19.0 1.0

A closer examination of the general ICT and small power consumption of school ‘I’ showed

that the energy use was more than 7 MAD away from the median, indicating the significance

of its deviation from the other schools. The lower granularity of information on school ‘I’ meant

that it was difficult to identify what might be causing such a high level of consumption. The

description of the facilities and equipment in the school however indicated that it was due to

the specialism of the school, which was in ICT. In his thesis, Pegg (2007) described that most

students in school ‘I’ were provided with laptops and that these were actively used for teaching

purposes. The higher levels of equipment and the active use of the technology was therefore

likely to have contributed to such a high intensity. This also highlights the importance of taking

into account the changes in demand for electricity according to variations in curriculums or

specialisms of schools. These are intrinsic features of schools necessary for education of

pupils, and therefore assessing the operational efficiency without considerations for the

difference would provide misleading feedback.
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Figure 8.12 Estimated energy use by ICT and small power equipment of schools A, B,
C and D

The estimated energy uses of equipment suggested that computers were likely to be the most

intensive users of electricity (Figure 8.12). The consumption of the desktops was however

estimated to be significantly greater than the laptops. This is due to the differences in the

assumed power ratings between the two types of device where the rating of desktops was

much greater than that of laptops at 61W and 6W respectively. There were also differences in

the provision of ICT equipment whereby there were many more desktops present in schools

A, B, C and D than laptops (Figure 8.13).

Figure 8.13 Distribution of the numbers of computers in schools A, B, C and D (floor
area)
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The provision of computers in schools A, B, C and D, although limited in numbers, was

compared to the historical changes shown in Figure 8.14 (Hall 2004). The comparison showed

that the mean number of pupils per computer in schools has decreased continuously over

recent years and that the figures for A, B, C and D were considerably lower than shown by the

latest survey which was carried out in 2004. This suggested that the pupils in the case study

schools were provided with much better access to ICT, and that the integration of ICT

equipment into teaching and learning in schools has increased gradually over the past decade.

Considering however that the four schools were all academies, further investigation is needed

to identify whether the provision of computers is similar in other types of schools.

Figure 8.14 Comparison of the mean number of pupils per computer in schools A, B,
C and D against historical changes in other secondary schools

As shown in Figure 8.12, there were also noticeable plug loads from office equipment and

CCTV. CCTVs were found to account for up to 10% of the ICT and small power equipment

energy use and between 1 and 3 % of total electricity consumption. A closer examination

showed that the number of security cameras was directly correlated to the size of schools.

The energy consumption of office equipment also accounted for considerable energy use. The

pattern of energy use of the equipment however could not be analysed in a meaningful way

due to the diversity of equipment and provision.

8.7 8.4
7.9

7.1
6.5

5.4
4.9

2.1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

M
e
a
n

n
u

m
b

e
r

o
f

p
u

p
il
s

p
e
r

c
o

m
p

u
te

r

Ofsted survey Schools A, B, C and D



219

In addition to general ICT and small power equipment, the server and hub room equipment

was also found to account for a noticeable proportion of the overall end use (Figure 8.11). The

energy used by equipment in server and hub rooms showed a median of 8.0 kWh/m2 with a

small MAD of 1.0 kWh/m2, which suggested that the modern schools have been designed with

similar levels of server and hub room equipment. These accounted for approximately 39% of

the ICT and small power equipment and 9% of total electricity consumption (Table 8.8). A

closer examination of the operational data from TM22 showed that the equipment in the server

rooms of these schools was noticeably more energy-intensive, where the combined power

rating of the equipment would frequently exceed 20kW. The equipment was also found to

operate for 24 hours, hence the significant energy use. The existence of server and hub rooms

in all schools also highlighted the prevalence of such facilities in modern secondary schools,

as result of recent developments in technology and its integration into teaching. Considering

that the study by Hall (2004) found that approximately 70% of the staff of secondary schools

were using ICT regularly for teaching and learning in 2004 it is likely that most schools would

have such facilities. The density of equipment and its variation however remains to be

investigated further as more information becomes available in the future, especially for primary

schools.

8.5.4 Refrigeration

The following section presents results from the analysis of the energy used by the HVAC

systems providing cooling to different parts of the schools.

Figure 8.15 below shows the distribution of the cooling EUI in the case study schools. Note

that the energy used for refrigeration in schools A, B, C and D was disaggregated based on

the figures derived using the bottom-up approach.
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Figure 8.15 Comparison of refrigeration energy use in all case study schools

The comparison of cooling energy consumption of all nine schools show a large variation.

Schools B and I were found to be significantly more intensive than the other schools, with the

energy consumption going as high as 23.2 kWh/m2. In schools B, D and I, these energy uses

accounted for between 16% and 19% of total electricity consumption.

A disaggregation of the refrigeration end use of schools A, B, C and D showed that a significant

proportion of all of the cooling consumption was being used for air-conditioning the server and

hub rooms, which accounted for 77% to 100% of the cooling load. This was largely due to the

significantly longer hours of operation of the equipment in these rooms, which were constantly

running 24 hours a day for the whole year. The equipment, which is sensitive to temperature

and humidity, would therefore have required the environment to be maintained at adequate

conditions. A close examination of the specification of cooling equipment showed that its

capacity was very high. The information acquired from the TM22 data showed that the capacity

of the chillers providing cooling to the server rooms could be as high as 65.5 kW. Uses of such

equipment throughout the year would therefore result in considerable energy consumption.

The following sections present results from the analyses of end-uses of fossil-thermal energy.

The overview of total fossil-thermal energy use is followed by analysis results for each of the

main end uses.
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Figure 8.16 shows the metered consumption of four end uses that constitute the total fossil-

thermal EUI of the case study schools.

Figure 8.16 Fossil-thermal energy use of the case study schools broken down into
different end uses

The figure above shows that fossil-thermal energy consumption mostly comprises energy used

for heating the indoor spaces in all schools. On average, space heating was found to account

for 82% of the total fossil-thermal energy use of the case study schools. Unlike the overall

intensity of energy use, which was found to vary considerably, the percentages that space

heating accounted for were relatively consistent. This suggested that the assumption made in

Section 6.2, where the fossil-thermal energy use of the stock was corrected based on an

assumption that 80% of it would be used for space heating, was likely to be reasonable. The

extent to which this percentage may be similar to other schools such as primary schools and

also secondary schools that were built decades ago remains however, to be validated in the

future when more data becomes available.
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Table 8.9 Descriptive statistics for the fossil-thermal energy consumption of the case
study schools by major end-use categories

End-use category
Fossil-thermal EUI (kWh/m2)

Min Median (95% CL)* Max MAD

Raw space heating 41.1 81.9 (44.6, 93.6) 94.4 11.7

Weather-corrected space heating 39.5 77.9 (50.4, 95.5) 124.5 16.7

DHW 8.2 10.9 (8.5, 14.6) 20.0 2.4

Catering 0.0 2.3 (1.1, 5.6) 7.9 1.2

Laboratory 0.0 0.0 (0.0, 0.0) 1.0 -

* Distribution-free confidence limits

Both Figure 8.16 and Table 8.9 shows that the large variation in the total fossil-thermal EUIs

(Table 8.5) was largely due to the variation in the intensity of energy used for heating indoor

spaces. Considering that these schools were all secondary schools and that they were built to

modern building regulations standards suggests that there are likely to be other factors that

are influencing the demand for space heating.

8.5.5 Space heating

Table 8.10 below shows the area-weighted U-value and glazing to solid wall ratios of façades

in the case study schools. It should be noted that the U-value of schools E, F, G, H and I were

calculated based on the figures from the study by Pegg (2007).

Table 8.10 Area weighted U-values and glazing to solid wall ratios on facades of all
case study schools

Schools
Area weighted U-value

of facades (W/m2∙K)

Glazing to solid

wall ratio

A 0.73 0.32

B 0.85 0.44

C 0.62 0.29

D 0.54 0.16

E 1.21 0.60

F 1.14 0.45

G 0.75 0.35

H 0.68 0.43

I 1.12 0.43
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A correlation analysis of the above building characteristics with the space heating energy use

of the case study schools showed that there were statistically significant correlations (Table

8.11). It should be noted that uncorrected space heating EUI was used, rather than weather-

corrected consumption, to prevent any uncertainties associated with the heating-degree

corrections.

A strong positive relationship (0.93) was found between the ratio between glazed and solid

wall on the facades of the case study schools and the energy used for heating indoor spaces.

This is due to the increased rate of heat loss through the glazed components of the external

fabric that have much higher conductivity than solid walls. This finding is supported by the

strong positive relationship between the area weighted U-value and the space heating EUI,

which confirms that greater glazed areas lead to increased heat loss and therefore increased

heating load.

Table 8.11 Spearman’s correlation coefficient between the space heating EUI and the
area weighted U-values and glazing to solid wall ratios

Variables

Spearman Correlation Coefficients, N = 9

Prob > |r| under H0: Rho=0

Coefficient p-value

Glazing to solid wall ratio 0.93 0.0003

Area weighted U-value 0.77 0.02

Figure 8.17 shows the relationship between the two variables and the line of best fit. The R2

value of 0.684 of the line indicates that approximately 68% of variance in the space heating

EUI of the case study schools is explained.
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Figure 8.17 Scatter plot of glazing to solid wall ratio and uncorrected space heating
EUI

8.5.6 Domestic hot water supply

The energy used for providing hot water for facilities such as kitchens, showers and toilets was

found to be the next most intensive fossil-thermal end use. The median consumption for the

hot water supply of the case study schools was 10.9 kWh/m2, which accounted on average for

14%, and up to 26% of total fossil-thermal energy use.

Table 8.12 below shows the results from the correlation analyses between domestic hot water

energy consumption, floor area, and number of pupils. Note that the correlations were

assessed in relation to annual energy consumption (kWh/yr), rather than the EUI.

Table 8.12 Spearman’s correlation coefficients between the annual domestic hot water
supply consumption (kWh/yr) and building size and the number of pupils

Variable

Spearman Correlation Coefficients, N = 9

Prob > |r| under H0: Rho=0

Coefficient p-value

Floor area (m2) 0.85 0.004

Number of pupils 0.93 0.000
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Statistically significant correlations (Spearman, p < 0.05) were found between the amount of

gas used for heating water and both the size of schools and the number of pupils. The strong

correlation is likely due to the similar pupil densities in the case study schools, where floor

area per pupil ranged between 8 and 10 m2. The stronger correlation between annual energy

consumption and number of pupils is likely due to the fact that the design of hot water systems

is usually based on an estimated number of occupants (CIBSE 2004). The high levels of

correlation therefore suggests that the hot water supply is probably being used as intended

during the design stage and that it remains generally constant in schools. This also explains

why the relationship between the intensity of energy use for hot water supply, expressed in

kWh/m2, and the number of pupils was not statistically significant.

The regression model in Figure 8.18 shows that number of pupils can explain more than 80%

of the variation in annual energy consumption for hot water supply.

Figure 8.18 Regression model of the number of pupils with the annual fossil-thermal
energy use for the domestic hot water supply
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8.5.7 Catering

The EUI for catering was analysed separately from other end uses as it usually involves using

both electricity and fossil-thermal energy. This is due to the mixture of equipment used in

kitchens and canteens for preparing, cooking and storing food. Figure 8.19 shows the

distribution of different types of energy used to cater for pupils and staff in the case study

schools.

Figure 8.19 Stacked bar chart of catering EUI by fuel type

It can be seen that electricity is used widely in all schools by contrast with the use of gas that

varies considerably. The intensity of electricity use was generally higher than fossil-thermal

energy use where the median consumption was 8.0 kWh/m2 and 2.3 kWh/m2 respectively,

which represented on average 8% and 2% of total electricity and fossil-thermal energy

consumption, respectively. The information available on the catering equipment in schools A,

B, C and D indicated that meals were generally cooked using a mixture of gas and electricity

in ovens and microwaves. There were however many more items of electrical equipment such

as refrigerators, dish washers and mixers used for food storage and the general operation of

kitchens.
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The relationship between the characteristics of occupants and the energy used for catering

was first explored by assessing the correlations between total catering energy use and number

of pupils as well as number of meals served.

Table 8.13 Spearman’s correlation coefficients between the combined catering EUI,
number of pupils, and number of meals served

Variable N Coefficient p-value

Number of pupils 9 0.10 0.797

Number of meals served 3 1.00 < .0001

The correlation analyses showed that there was a weak relationship between catering energy

use and the number of pupils (Spearman, p > 0.05). This is likely due to the fact that there is

a variety of practices in the schools, which serve meals at different times of the day. In addition,

it is unlikely that all students in schools will have meals provided by the school throughout the

day. This therefore suggests that the volume of food cooked in the kitchens in the form of the

number of meals may be better correlated with how much energy is used for catering. Out of

nine schools, the approximate number of meals served during the week was available only for

schools A, C and D. Despite the very small sample size however (Table 8.13), a statistically

significant relationship was found between the number of meals served in canteens throughout

the day and total electricity and fossil-thermal energy used in the kitchens (Spearman, p <

.0001). A scatter plot of the two variables is shown in Figure 8.20. The R2 values of the line of

best fit of 0.9885 indicated that the regression model could explain up to almost 99% of the

variation in catering energy use. The test result was however based on an extremely small

sample size and therefore needs to be evaluated with a larger set of data to confirm the

relationship.
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Figure 8.20 Scatter plot of the number of meals served and the total catering EUI

8.6 Chapter summary

In this chapter, the end-use consumption of nine modern secondary schools was assessed in

finer detail. The main objectives of the chapter were to assess the disaggregated energy

consumption of schools and to observe the relationships between intrinsic features of school

buildings and the end-use energy consumptions.

Summary of the findings are below:

 Out of 300 records in the Carbon Buzz database, only nine were found to provide

reasonably accurate information on the end-use energy consumption of secondary

schools. This highlighted yet again the difficulties in obtaining a large quantity of

empirical data, especially with fine granularity.

 TM22 data and PVQ files were found to provide ample details on energy consumption,

built form, specifications of building systems and various types of equipment, and

occupancy patterns, which were very useful in improving the understanding of how

energy is used in these schools.

 The case study schools were found to be considerably more intensive in electrical EUI

compared to the school stock, which suggested that modern schools with an academy
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status tended to be highly intensive in electricity. The fossil-thermal EUI on the other

hand was found to be generally less intensive than the stock, likely owing to improved

thermal performance. These findings suggested that the operational energy efficiency

of modern schools would be assessed with greater accuracy if their energy

performance were compared to those with similar thermal performance.

 A large variation in the breakdown of end-use energy consumption was found between

the schools in question, even between those with similar total consumption. This

demonstrated the intricacy of the patterns of energy use in schools, which could not

be assessed using the top-down approach used in previous chapters. The variation in

end-use energy consumptions also emphasised that there are various factors that

influence each of these end uses.

 Analyses of each of the end uses, particularly the energy uses associated with fixed

building services such as the HVAC system, lighting, and space heating, showed that

the pattern of energy use was usually related to intrinsic features of buildings such as

the depth of floor plan, exposed surface area, and the thermal performance of the

fabric. These relationships clearly demonstrated that the energy performance of the

case study schools was influenced by the intrinsic features of buildings.

 The school with the specialism in ICT was found to be considerably more intensive in

the ICT end-use consumption, which was attributed to extensive uses of laptops for

teaching purposes. This finding suggested the demand for energy can also be affected

by curriculum of schools that have not previously been considered.

 Findings from exploratory and inconclusive results suggested a number of factors that

could potentially improve the comparability of benchmarking. The number of meals

served for example, was found to be related to the catering EUI.

 Server rooms were found in all case-study schools with similar levels of EUI. This

suggested that these equipment are likely to be a common feature of modern teaching

and that there is no justification to introduce a separable item.

 Space heating was found to account for approximately 80% of total fossil-thermal

energy uses on average. This figure raised the possibility that the proportion of space
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heating adjusted for the variation in weather conditions under the DEC scheme may

be disproportionate.

In summary, this study showed that assessment of the energy consumption of sub-systems is

effective in explaining and identifying the factors that are likely to have caused the variation in

the patterns of energy use of the case study schools. This is in clear contrast to the feedback

from top-down approaches to benchmarking that provide indications of whether buildings are

intensive users of energy or not, but not why. A building that appears to be highly energy-

intensive to a whole building benchmark for example, would not show which of the sub-

systems is likely to be causing the inefficiency. Uses of the bottom-level data for benchmarking

could however resolve this issue where energy benchmarks for each end use would provide

opportunities to isolate an area of problem and provide a sense of direction.

The availability of greater detail on schools also showed that there are many more intrinsic

factors that are correlated with individual end uses. The correlations between the variables

that express the intrinsic characteristics of buildings such as the U-values and the plan depth

clearly emphasised the need to improve the comparability of benchmarking if the operational

energy efficiency of buildings is to be evaluated accurately. The high electrical EUI of the ICT

specialist school demonstrated that the demand for energy can be influenced by ‘soft’ factors

such as the specialism of schools. Under the current scheme, it is likely that schools with more

equipment would receive worse grades due to increased energy consumption. Such feedback

would however ignore the fact that these equipment were intended to increase the

effectiveness of teaching. It is therefore evident that the implications on the demand for energy

from primary functions of schools should be taken into account when benchmarking their

operational energy efficiency.
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Chapter 9 Discussion

This chapter reflects on the findings from the previous four chapters and discusses the

robustness of current UK benchmarking practices and their implications for the development

of a robust benchmarking system for evaluating the operational energy efficiency of buildings

across the non-domestic stock. Based on the outcome of the discussion, recommendations

for work by CIBSE and others are made at the end of the chapter.

9.1 Approaches for benchmarking operational energy efficiency

In recent decades, energy benchmarks in the UK have been derived predominantly using the

top-down approach based on descriptive statistics as representations of the energy

performances of similar buildings in the stock. Assessments of the energy performance of

schools using top-down (Chapter 5 and Chapter 6) and bottom-up (Chapter 8) approaches

have revealed the benefits and limitations of using the top-down approach for benchmarking

the operational energy efficiency of UK non-domestic buildings.

As shown in Chapter 6, statistics derived using a top-down approach such as those in CIBSE

Guide F or TM46 show that this is an effective way to describe the actual energy performance

of the existing school population. Such a characterisation of the stock presents opportunities

for building operators or managers to put their buildings’ performance into a broader context.

Comparing the performance of modern secondary schools to whole-building energy

benchmarks that represent the distribution of the school population in Chapter 8 for example,

showed that this is effective in identifying how efficient a given group of buildings is in relation

to similar buildings in the stock. With regards to schools, such feedback would be beneficial

for local authorities or county councils who have energy efficiency as part of their agenda.

Moreover, such feedback would provide motives for improving the energy efficiency of

buildings based on peer pressure rather than absolute levels of energy efficiency. For other

building types such as commercial offices, where reputation is of crucial value, such peer-

driven feedback may generate stronger motives to improve energy efficiency.
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The simplicity of the method that is used to derive the current energy benchmarks is also

beneficial in that there is a minimal requirement for information both to derive the benchmarks

and to evaluate the performance of buildings. As demonstrated from the DEC scheme, the

information that is required is annual metered energy consumption, floor areas, occupancy

levels, location of a building to take into account the regional and seasonal variation in weather,

and knowledge of any separable energy uses if they exist. Such low granularity data is more

likely to be obtainable through utility bills or regular meter readings, although this may not

apply for floor areas or the separables. It is therefore relatively less intensive in resources than

the bottom-up approaches, which often require activities such as post-occupancy evaluation

(Hong et al. 2014).

A key challenge in using the top-down approach however, lies with the fact that it is often

difficult to obtain even the low granularity data in sufficient quantity to represent the stock in

reasonable detail. In historical work 50 or 100 samples have often been quoted as sample

sizes that can derive benchmarks which are reliable representations of the stock (CIBSE 2012;

Jones et al. 2000; Jones 2014; Bruhns et al. 2011). As highlighted in Section 3.4 however,

there were no evidences to support these claims. The boot strapping analyses of sampling

distributions in Section 6.3 on the other hand showed that these sample sizes may not be

sufficient for estimating a reliable statistic. The analyses showed that 95% confidence intervals

ranged between 20 and 25% of the estimated parameter when medians were derived from 50

samples (Figure 6.6 to Figure 6.9). Although the study was limited to primary and secondary

schools, these results clearly showed that benchmarks based on sample sizes of 50 or 100

were not likely to be reliable as previously believed. Conversely, the study found that the

confidence interval was found to reduce to approximately 10% of the estimated parameter

when the sample size increased to approximately 200 (Figure 6.10). While the analysis provide

evidence upon which the reliability of future benchmarks can be assessed, it also highlights

that a considerably larger sample than previously believed to be adequate is required to derive

benchmarks that are representative of the stock. Difficulties in acquiring such sample sizes

was shown by the analysis in Chapter 5 where just 10 out of 29 benchmark categories had

sample sizes greater than 200. Similarly, examples of energy benchmarks that were derived
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from small sample sizes can be found in CIBSE’s Guide F (2012). In tables 20.4, 20.5 and

20.6 the sizes of samples that were used to derive the benchmarks can be seen to vary

considerably, where some benchmarks were based on sample sizes as small as nine.

The other drawback of the approach is that feedback from using these simple top-down

benchmarks is not likely to indicate clearly whether a building is being operated efficiently or

not. First, whole-building energy benchmarks, although separated for main fuel types, do not

provide fine detail for identifying why a building is assessed as inefficient. Difficulties found in

interpreting the patterns of energy use and the underlying factors with certainty in Chapter 5

and Chapter 6 are examples of such drawbacks in using top-down approaches. The analyses

of the bottom-up end-use energy consumptions in Chapter 8 on the other hand, provided

valuable insights in interpreting and identifying areas of concern in modern secondary schools,

which can potentially complement the top-down approach. Second, the empirical nature of the

top-down approaches means that building operators acquire relative levels of energy efficiency

that are defined by the buildings in a sample. Although peer pressure can be a strong motive,

such a reference point may not be aspirational for those building operators who aim to achieve

absolute levels of energy efficiency. In these instances, benchmarks or baseline performances

estimated by using bottom-up approaches may be more appropriate (Federspiel et al. 2002).

Recently, Bordass et al. (2014) explored the possibility of estimating whole-building

benchmarks that are inspirational by aggregating end-use consumption using the CIBSE

TM22 method and prescribing specifications of building services and their use. While the

underlying concept of using the bottom-up approach provided a new perspective, the

underlying method was incomplete and lacked robustness, particularly in estimating the

demand for space heating and cooling. Similarly, Hong et al. (2014) found that dynamic

thermal models that are refined for the actual operational characteristics of an existing building

have the potential to produce baseline figures that closely resemble the intrinsic features of

individual buildings. Although the study demonstrated the concept of baseline benchmarks, its

application to the wider building stock remains to be explored.
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Overall, the most beneficial aspect of the top-down approach to benchmarking is that it is

empirical in the sense that these benchmarks are inclusive of the complex interaction between

surrounding environments, buildings, occupants, which can relate to a wider group of

buildings. The different perspectives that can be acquired through the bottom-up approach

also suggest possibilities of utilising both approaches in a complementary manner (Mathew et

al. 2010; Hong et al. 2014). Until the limitations and uncertainties associated with bottom-up

approaches are explored further however, top-down approaches are likely to be more

appropriate for benchmarking the operational energy efficiency of the non-domestic stock.

9.2 Improved benchmarking comparability

In the UK, benchmarking practices have seldom considered taking into consideration the

influences of intrinsic building and operational features on the energy demand of buildings. It

is only in recent years that, under the current DEC scheme, top-down energy benchmarks are

normalised for a set of parameters to account for variations in a number of contextual features

of individual buildings such as weather and occupancy hours. Compared to historical

benchmarks where actual energy consumption was directly compared to energy benchmarks,

these adjustments contribute towards improving the comparability of the features that

determine the intrinsic demand for energy. The analyses of the patterns of energy use in

buildings based on these characteristics showed however that there were uncertainties

associated with methods that underpin these procedures.

The analyses of buildings claiming extended occupancy hours showed that a considerable

proportion of buildings had claimed to be occupied for extended hours, which suggested that

the definition of ‘standard’ occupancy hours may have become outdated (Figure 5.10).

Moreover, the analyses of the energy performance of local and central government offices that

had claimed extended hours showed that there were almost no correlations with the

consumption (Figure 5.11 and Figure 5.12). Similarly, correlations between occupancy hours

and electrical and fossil-thermal EUI of primary and secondary schools were found to be

insignificant (Section 7.3.1.2). Although the correlation analysis was carried out just for two

types of public sector offices and schools, the lack of correlation suggested that there must be
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issues associated with how the extended hours of occupancy are currently counted and

validated.

In Chapter 7, correlations between fossil-thermal energy use and annual heating degree-days

were found to be statistically insignificant, which is likely due to poor operation of the heating

system. Moreover, the analysis of the end-use consumption that composes the fossil-thermal

energy use found that space heating generally accounts for 80% rather than 55%, which is

the current assumption for adjusting the benchmarks to account for variation in influence of

weather conditions. The percentage was originally derived from a small sample of schools that

are neither representative of the stock nor primary schools. The noticeable difference between

the two figures however, suggested that the current assumption of 55% may be an inaccurate

representation of the proportion of fossil-thermal energy used for space heating in schools,

which would make it more difficult for buildings in colder regions to achieve better grades.

While these procedures are currently central to providing more relevant feedback to building

operators on their operational energy efficiency, such uncertainties highlighted a need to

provide empirical evidences to validate these processes. The hybrid approach adopted in

Chapter 7 on the other hand showed that there is a plethora of intrinsic features that influence

the energy demand of schools, which are currently not accounted for by the current approach.

The multiple regression analyses showed that characteristics such as floor area, glazing

percentage, presence of external shading and the type of glazing were significantly related to

how electricity was used in schools (Figure 7.16 and Figure 7.18). The surface-to-volume ratio

and age of buildings on the other hand were found to be related to how schools are heated

(Figure 7.17 and Figure 7.19). The exploration of the bottom-up data in Chapter 8 also found

significant correlations between the building features and end-use energy consumption.

Characteristics such as surface-to-volume ratio, the depth ratio, and the glazing to solid wall

ratio were found to have significant correlations with end-use energy uses such as lighting,

mechanical ventilation, and space heating. These correlations clearly show that the intrinsic

demand for energy is influenced by the intrinsic building characteristics. Consequently, this
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suggests that there is a need to change the benchmarking culture which currently does not

take into account the implications of these characteristics.

There were also significant relationships between the operational or ‘soft’ characteristics and

the pattern of energy use. In Section 6.3, the number of pupils was found to account for

considerable variation in electricity and fossil-thermal energy use in schools (Table 6.6 and

Table 6.7). Similarly, pupil density was found to be the most influential characteristic correlated

to the electrical and fossil-thermal EUIs of primary and secondary schools respectively (Figure

7.16 and Figure 7.19). The exploratory analyses of the relationships between the end-uses

and various characteristics that were only available for small numbers of schools also revealed

significant relationships (Chapter 8). There was a strong relationship between the number of

meals served and the catering consumption. There was also a strong correlation between the

domestic hot water supply and the number of pupils (Figure 8.18). Another feature of schools

that has developed in recent years but has not yet been explored in depth is the variation in

energy demands of schools with different specialisms that come with academy status. Among

the case study schools, the school specialising in ICT was found unsurprisingly to have an

unusually high level of consumption associated with ICT and small power equipment (Figure

8.11). These are relationships that were to be expected but not analysed in other research.

Although based on a small sample, the findings from the detailed end-use consumption

suggest possibilities for further exploring various factors for which information was not

available that may intrinsically influence the demand for energy in schools.

These findings clearly show that the demand for energy in schools is influenced by a broad

range of intrinsic building and operational characteristics, which show possibilities for

improving the comparability of benchmarking the operational energy efficiency. Moreover,

differences in the determinants of energy demand between primary and secondary schools

suggest that there is likely to be a particular set of parameters which influence the demand

that are specific to each building type. A study focussing on identifying the drivers of electricity

and gas demand in large food retail buildings in the UK for example, found key drivers of

energy demand that are completely different from schools (Spyrou et al. 2014). The Better
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Buildings Partnership on the other hand carried out an initiative to develop a benchmarking

method based on commercial buildings where the division of energy used by landlords and

tenants is of critical importance (BBP 2012). It is therefore evident that a more bespoke and

context-driven approach to benchmarking is needed in order to provide a fairer and more

precise evaluations of the operational energy efficiency for buildings in the stock with a diverse

range of activities and characteristics.

9.3 Implications of adopting hybrid approaches

As highlighted in the previous section, the current top-down approach does not provide

sufficient means to assess, identify and normalise energy benchmarks for multiple intrinsic

characteristics. The multiple regression analyses used in Chapter 7 demonstrated on the other

hand that hybrid approaches can be adopted for assessing and identifying the key parameters

for obtaining a more precise indication of operational energy efficiency. The empirical nature

of the approach, combined with opportunities to improve the comparability, therefore show

potential for improving the robustness of benchmarking without fully committing to the bottom-

up approach. This method has also been used in practice to support the US ENERGY STAR

scheme over a decade, which adds confidence to the method. There are also hybrid

approaches that use more advanced methods such as Artificial Neural Networks (ANN) that

have been explored for similar purposes (Hong et al. 2014; Hawkins et al. 2012; Yalcintas &

Ozturk 2007; Yalcintas 2006). In addition to the improved comparability, adopting these

advanced methods would also allow the parameters that are currently used to adjust the

benchmarks under the DEC scheme to be assessed and incorporated into the benchmarking

process if they are found to have significant correlations with patterns of energy use. Despite

their benefits however, experience from the present study suggests that employing a hybrid

approach is likely to come at a cost.

The most obvious challenge is the increased burden of acquiring data with sufficient

granularity to support these complex methods. Difficulties in acquiring data of finer granularity

on a large scale were highlighted throughout the case study of schools. In chapter 6, searching

for publicly available databases that provide additional information on the school stock other
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than the number of pupils proved to be challenging and ineffective. In chapter 7, using the

desk-top approach to gather information on the built form proved to be extremely time and

resource intensive. Similarly, the process of gathering data for the analyses in Chapter 8

revealed how difficult it is to collect detailed end-use energy consumption data due to technical

problems such as faulty sub-meters, despite the project being overseen by the Technology

Strategy Board (TSB). What is more, post-occupancy surveys are highly demanding and

therefore unlikely to be carried out on a large scale unless initiatives such as the Building

Performance Evaluation (BPE) project by TSB continue in the future. Based on this

experience, it is possible to anticipate that collecting sufficient data for all UK non-domestic

buildings would be extremely challenging and costly in the current state of knowledge.

The introduction of hybrid approaches would also increase the complexity of the process

through which the operational energy efficiency of buildings is benchmarked. Unlike the simple

top-down approach which requires inferences to be made from a sample distribution as

demonstrated in Chapter 6, these complex methods will require time and resources in order

to develop and validate the underlying models before they are implemented for benchmarking

purposes. To carry out such procedures on a regular basis for all building types however would

require considerable time and resources that would result in increased operation costs.

To summarise, it is clear that adopting hybrid approaches for benchmarking the UK non-

domestic stock in the short-term is likely to be difficult and costly. Without adopting a hybrid

approach however, it is also likely that the benchmarking practice in the UK will continue to

lack robustness in assessing operational energy efficiency. As demonstrated by the US

ENERGY STAR scheme, these advanced approaches are likely to become feasible once a

robust framework is established. It is therefore clear that there is a need to develop long-term

plans to establish a policy framework that would allow hybrid approaches to be adopted, if

benchmarking practices in the UK are to become more robust in the future.
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9.4 Changes in the pattern of energy use over time

Analyses of the empirical energy performance data from the DEC scheme and the case

studies provided unprecedented opportunities to assess the latest patterns of energy use in

public sector non-domestic buildings. The analyses of the latest DEC data (Chapter 5) showed

that the levels of energy use in various public buildings were considerably different from the

energy benchmarks in CIBSE TM46. Buildings under a majority of the benchmark categories

tended to be more intensive in electrical EUI and less intensive in fossil-thermal EUI relative

to the TM46 benchmarks, which suggested that findings from the previous review of DECs by

Bruhns et al. (2011) remain true. It was also found that the deviations were generally greater

than 10% from the benchmarks in the majority of benchmark categories, indicating that the

benchmarks were no longer representative of the latest patterns of energy use in the stock.

The longitudinal study of the energy performance of buildings from 2009 to 2011 suggested

that these deviations were likely to have occurred due to continuing changes in patterns of

energy use (Figure 5.13 and Figure 5.14). Similar patterns were found when the energy

performance of schools was analysed separately in more detail in Chapter 6. Both primary

and secondary schools were found to have higher electrical and lower fossil-thermal EUIs in

relation to the TM46 benchmarks, and such tendencies were becoming more extreme.

Comparisons of the latest performance figures of schools with historical benchmarks also

showed that similar trends are likely to have existed for over a decade (Table 6.4 and Table

6.5). A detailed analysis of the electrical EUI of modern secondary schools showed that

provision of ICT equipment had gradually increased over the years, which suggested that

increased uptake of ICT equipment is likely to have contributed to increases in electrical EUI

(Figure 8.14). Similar findings from studies by Godoy-Shimizu et al. (2011) and Jones (2014)

not only raised confidence about the reality of the trends observed in the current study but also

the possibility of finding similar trends in other sectors and countries. These findings indicated

that the patterns of energy use in schools continue to change in relation to developments in

technology (e.g. fixed building services and end-user equipment such as ICT), and other

unknown factors, and that the representativeness of energy benchmarks is influenced by these

changes.
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This brings the focus to the static nature of the current benchmarks in CIBSE TM46. Since the

implementation of the DEC scheme in 2008, these benchmarks have remained untouched

despite initial plans to review and update them in the light of the first years’ DECs (Bruhns et

al. 2011). What is worse is that these benchmarks were based mostly data that were collected

around the 1990s and were already old (CIBSE 2008). Consequently, these uncertainties have

led private organisations to launch initiatives that are aimed at developing benchmarks that

are up-to-date. Julie’s Bicycle31 for example is a private organisation that has been formed to

support the development of benchmarks for entertainment buildings in the creative industry.

Although such initiatives are positive movements for the general improvement of energy

efficiency of non-domestic buildings, particularly those in the private sector which are currently

not required to lodge DECs, it is clear that the TM46 benchmarks are losing credibility.

The findings therefore clearly show that there is a need to explore ways to keep the

benchmarks up-to-date, if the DEC scheme is to play a key role in improving the energy

performance of the UK non-domestic stock. One such way would be to create a framework to

update the benchmarks at regular intervals. An example of a well-maintained framework is the

US ENERGY STAR scheme. The benchmarks that underpin the scheme are derived from the

Commercial Building Energy Consumption Survey (CBECS). The survey, which was initiated

in the 1970’s, has been carried out every 3 to 4 years with the latest round starting in 2013

(Energy Information Administration (EIA) n.d.). Consequently, the benchmarks are refreshed

after each cycle to reflect the latest trends in the energy performance of the stock.

Applying a similar approach to the DEC scheme may be beneficial but may also introduce

complications. The positive aspect of regularly updating energy benchmarks is they will be

more relevant to how energy is used in the stock, which can also maintain credibility with the

building operators. Complications arise however, due to the ways in which energy

performance is assessed under the current scheme. As described in Chapter 2, a key feature

of the certificate is a bar chart illustrating historical changes in the DEC rating over the previous

three years. As with energy certification systems for home appliances such as fridges, this

31 For Julie’s Bicycle, See: http://www.juliesbicycle.com/
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means that incentives to improve operational energy efficiency comes not only from achieving

high grades that demonstrate efficient operation but also from improving upon previous years,

which can have a positive effect on the reputations of organisations. Making such

improvements visible would however require the underlying benchmarks to remain fixed over

a period of time, as frequent updating of energy benchmarks would ‘move the goal posts’. This

would make it more difficult for building operators to achieve better grades and, as a

consequence, would be likely to reduce their motivation. As proposed by Bruhns et al. (2011)

in their consideration of the mechanism of the DEC scheme, three to five years is likely to be

a reasonable frequency for carrying out such revisions. Considering however that there would

be greater changes in trends over longer periods, three years would be preferable.

More generally however, the current study has shown that a more dynamic approach is

required to provide top-down benchmarks that represent the latest trends in the energy

performance of the stock. This is because considerable change in the patterns of energy use,

and the factors that contribute towards demand, can take place within a three-year period.

These changes could result from phenomena as small as increased adoption of ICT

equipment uses in schools (Figure 8.14) or from those as large as the recent economic

recession that could have implications on the energy demand of an entire sector in a very

short period of time. It is therefore possible to anticipate a framework that is more flexible than

the current best practice so that benchmarks depict the latest patterns of energy use at any

given time. The possibilities and benefits of flexible benchmarks can be seen in existing

frameworks such as Carbon Buzz, which was launched in 2013. The strength of the platform

comes from the web-based configuration which can be navigated by users to acquire various

types of information from the underlying database. The link between the web platform and the

underlying database means that benchmarks which reflect the latest patterns of energy use in

buildings in the database can be promptly derived. Moreover, developments in automated

meter-reading technologies, recent changes in Building Regulations for mandatory installation

of sub-meters, and the integration of public and private databases such as shown by the NEED

project all point towards possibilities for developing a more flexible and dynamic benchmarking

system (DECC 2013b).
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9.5 Appropriate grouping of buildings

Grouping buildings into appropriate classifications plays an important role in ensuring that the

energy performance of various types of non-domestic buildings is compared against

benchmarks that are representative of buildings with similar demands for energy. The

processes of preparing and analysing data in the present study showed that there were

shortcomings associated with the activity classification system of TM46.

Assessment of the latest DEC records in Chapter 5 revealed large variations in operational

ratings, which were in most cases heavily positively skewed by small numbers of energy-

intensive buildings (Section 5.5). A closer analyses of these buildings revealed that their

activity type, hence the demand for energy, differed considerably from other buildings under

the same benchmark category. A building that was extremely energy-intensive under the

‘Workshop’ category for example was identified as a crematorium. The range of building types

that is allocated to the benchmark category however raised uncertainties as to whether or not

this comparison was relevant. This was due to the fact that the benchmark category comprises

a variety of building types such as garages or communications facilities that are highly likely

to have greatly differing demands for energy from a crematorium. These cases highlighted

that there are numerous cases where building types are inappropriately allocated to

benchmark categories which do not reflect their intrinsic energy demand.

The process of extracting DEC records of primary and secondary schools also found

evidences of misclassification of buildings. Under the ‘Schools and seasonal public buildings’

category numerous building types were found such as ‘speedways’ or ‘day centres’ that were

neither ‘schools’, ‘public’ nor ‘seasonal’. These are very different types of activities which

should not belong under the same benchmark category. Benchmarking the operational energy

efficiency of these building types would therefore result in feedback that is irrelevant.

There were also problems associated with building types classified at different levels of

specificity. As discussed in Section 6.1, there were several building types relating to schools

such as ‘School’ or ‘State school’ that are ambiguous and can cause confusion. Similar
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problems can be found in other benchmark categories. The ‘General office’ category for

example not only comprises simple building types such as ‘Offices’ but also building type

descriptions that refer to building services such as ‘Offices, cellular, naturally ventilated’. This

categorisation was found by Hong & Steadman (2013) not to correspond in many cases to the

actual servicing strategy that is separately reported as part of the DEC.

On a broader scale, a review of the TM46 classification by Hong & Steadman (2013) found

that similar issues associated with classifications could be found in other benchmark

categories. Currently these issues may not be important, as building types are only intended

to guide the DEC assessors in allocating their buildings to the correct energy benchmarks.

These classification issues are critical however when the data collected according to these

classifications is to be used for assessing and developing future energy benchmarks. As it was

shown in Table 6.1 for example, there were 755 records that were discarded from the analyses

of schools due to the ambiguity caused by the inappropriate levels of specificity of building

types. As shown from the boot strapping analysis (Figure 6.10), this is a large sample size that

could otherwise improve the reliability of energy benchmarks.

In the previous review of DEC records on the other hand, Bruhns et al. (2011) explained that

it was anticipated that some building types might come to justify the use of separate

benchmarks. Due to limitations in data and time, the review was not however able to validate

and justify introducing new benchmarks. Under the current classification, primary and

secondary schools are allocated to the ‘Schools and seasonal public buildings’ category, which

means that the energy performance of these types of school are compared to the same

benchmark. The comparison of the latest energy performance of primary and secondary

schools however, showed that secondary schools were significantly more intensive in

electricity use than primary schools (Figure 6.2). This meant that secondary schools are more

likely to appear less energy-efficient, irrespective of their levels of operational efficiency, due

to their intrinsically higher demands for electricity. What is interesting is the fact that historical

benchmarks such as those presented in Energy Consumption Guide 73 and CIBSE Guide F

previously separated primary and secondary schools (BRECSU 1996b; CIBSE 2012). It is
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therefore evident in the cases of schools that the aggregation of the two building types into the

single activity type ‘schools’ was not specific enough, and that the existing classification should

be revised into two categories to improve the robustness of the scheme.

As with schools, CIBSE Guide F provides energy benchmarks for numerous building types at

finer levels of aggregation than TM46, which suggests that similar approaches could be

applied for wider range of building types. Taking fire stations and police stations for example,

these building types currently belong to the ‘Emergency service’ TM46 benchmark category.

Under the public buildings category in Table 20.1 of Guide F however, energy benchmarks for

fire stations and police stations show ‘typical’ fossil-thermal EUIs of 385 kWh/m2 and 295

kWh/m2 respectively, which are significantly different. Similar differences can also be found in

Northern Ireland (Table 20.4 CIBSE Guide F). Although they remain to be tested, these

noticeable differences suggest possibilities for finding significant differences that could lead to

separate benchmarks being established for these building types.

The analyses of the patterns of energy use in electrically-heated buildings also suggested that

there are cases for providing separate benchmarks for these buildings. Comparisons of the

energy performance between buildings that use electricity as the main heating fuel and more

conventional buildings that use fossil-thermal energy for heating in Chapter 5 showed that

there were distinct differences in the patterns of energy use across numerous benchmark

categories (Table 5.9). Although the combined carbon emissions may not differ in many

categories, the fact that their demand for energy could differ due to uses of electrical heaters

rather than conventional gas boilers suggest that these buildings deserve benchmarks on their

own merit. Similar distinctions have been made in the work by Jones et al. (2000) and Jones

(2014) where separate benchmarks are proposed for public buildings in Northern Ireland.

Overall, it is clear that there are issues associated with the current classification system of

TM46 that make it inappropriate not only for buildings that currently require DECs but also for

rest of the non-domestic buildings. The issues of misclassification and confusing levels of

specificity, and the need to assess and refine the benchmark categories for schools and
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electrically-heated buildings from this study, suggest that there is a need to re-examine the

adequacy of the whole classification system of benchmark categories and the associated

building type classifications.

9.6 Provision of adequate data

In the UK, it is only in recent years that the energy performance of such large numbers of

schools has become available for benchmarking purposes. This is due to the implementation

of the DEC scheme, which enforced the monitoring of the actual energy performance of non-

domestic buildings and established a centralised database to collect the data in a systematic

manner. The accumulation of the metered energy consumption data from various public sector

buildings on an annual basis means that the opportunities to derive energy benchmarks that

are representative of the stock have been greatly improved. Despite the improvements

however, this research found that there are limitations in policies and frameworks to provide

sufficient data to implement top-down or hybrid approaches and to robustly benchmark the

operational energy efficiency for the UK non-domestic stock.

The analyses of DECs in Chapter 5 showed there were small sample sizes in numerous

benchmark categories, highlighting the difficulties in using DECs to derive reliable benchmarks

even for public sector buildings. The difficulty is exacerbated when considering buildings in

the private sector whose carbon emissions account for approximately 60% of total emissions

of the non-domestic stock (Carbon Trust 2009). The fact that these buildings are currently not

mandated to lodge DECs means that acquiring sufficient data for benchmarking private sector

buildings will be even more challenging. In addition to the limited coverage, the floor area

threshold for DECs also poses difficulties. As described in Chapters 5 and 7, most of the DEC

records that were assessed in the study were greater than 1,000m2 due to the current

threshold. This means that data accumulated through the DEC scheme currently does not

represent buildings smaller than the threshold. The recent introduction of a lower threshold of

500m2 through the recast of the EPBD in 2014 is a positive change that would certainly

improve the coverage of the scheme (Department for Communities and Local Government

(DCLG) 2012a). A substantial flaw of the new threshold however is the fact that DECs for
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buildings smaller than 1,000m2 would be valid for 10 years rather than 12 months. This means

that data for smaller buildings will be updated only at 10-year intervals, during which patterns

of energy use would have changed considerably.

An obvious way to tackle this challenge would be to make amendments to the current DEC

framework so that the coverage is extend to the private sector and the validation period of

DECs for smaller buildings is aligned to 12 months. The benefits of extending the scheme

across the non-domestic buildings are immense. First, the extended scheme would provide

the necessary framework to acquire data from a wider range of building types. The

comprehensive coverage of such framework would allow the reliability of existing benchmarks

to be assessed and, reliable and representative benchmarks derived when required. Moreover,

the mandatory nature of the scheme would also ensure that sufficient data is collected annually

from across the non-domestic stock as long as compliance with the scheme is enforced

rigorously. This comprehensive data on energy performance could also aid policy makers in

assessing and developing strategies for the future. The challenge however lies with the fact

that there is currently insufficient evidence to claim confidence for benchmarks for activities

that are likely to be found in the private sector (e.g retail, hotels).

An alternative solution to the lack of data would be to utilise data from numerous initiatives

that have the potential to complement the DEC scheme without having to extend its coverage.

The Carbon Reduction Commitment (CRC) energy efficiency scheme, which requires

organisations in both the public and private sectors to report their annual carbon emissions

might be considered for acquiring data on private sector buildings. The CRC is however

currently targeted at large organisations that use more than 6,000MWh of electricity per year,

which means it is unlikely to be helpful for deriving benchmarks that represent the wide range

of buildings in the stock (Carbon Trust 2014). The Building Energy Efficiency Survey (BEES),

the National Energy Efficiency Data framework (NEED), and the non-domestic component of

NEED (ND-NEED), which are all being developed by the Department for Energy and Climate

Change (DECC 2013a; DECC 2013b; DECC 2014) on the other hand, are examples of

government initiated projects that aim to acquire reliable and comprehensive data on the
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energy performance of building across the entire non-domestic stock. It would be possible to

integrate the data from databases that are developed under initiatives such as Julie’s Bicycle

or CarbonBuzz. There are also databases managed by organisations such as the Better

Buildings Partnership that collect and analyse the energy performance data from properties

managed by companies such as British Land. A key challenge in utilising data from these

diverse range of sources however is the compatibility of classifications and measurements

with other databases.

Historically, most classification systems used for benchmarking purposes have been based

on the types of activities that take place in buildings. These classifications also use the building

envelope as a boundary for evaluating the energy performance of buildings. Such a method

of classification is ideal for benchmarking operational energy efficiency, as the demands for

energy are determined on a building level based on complex interactions between the

surrounding environment, the building fabric, and the occupants (Chapters 7 and 8).

In Chapter 5 however, difficulties in comparing the floor area statistics from DECs with those

from the non-domestic building stock database (NDBS) were raised due to differences in

classification systems. Benchmark categories such as ‘General office’ for example comprise

a wide range of office types from law courts to central government offices. It was therefore

difficult to directly compare the floor area statistics from DECs based on benchmark

categories. It could be argued that the building type classification can be used instead to

improve compatibility. As discussed earlier however, issues associated with levels of

specificity and aggregation of building type classifications make this difficult. Moreover, the list

of building types under the DEC scheme currently does not provide a sufficient range of

building types to cover buildings in a number of economic sectors such as manufacturing and

warehouses (Hong & Steadman 2013). Difficulties were also raised from the differences in the

basic spatial units in each case (Section 3.5.1). The boundary of an entity in the NDBS is

defined as a premise or hereditament rather than a building (Section 3.5.1). Comparing

statistics for buildings to those for premises, which could be located over a floor, a building, or

in multiple buildings, was therefore not only difficult to reconcile but also irrelevant.
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Consequently, it is evident that although the current activity classification provides an

adequate basis for benchmarking purposes, it may not be fit for acquiring and deriving

benchmarks for the entire UK non-domestic building stock. It is also clear that there is a need

to explore ways in which compatibility with other databases could be improved, particularly

those that have the potential to provide data at the national level in the future. The project that

sheds most light on linking building level data with premises is work on the 3D stock model by

the UCL Energy Institute (2014). The project is currently being carried out with an aim to

automate the process of bringing together building level data with premise data, which would

result in a database of a 3D model of floor space that contains information on both energy use

and building form and its attributes. A pilot study currently focusing on non-domestic buildings

in Camden, London, United Kingdom was found to be a success, and there are plans to test

the methodology on other regions (Evans et al. 2014).

Overall, it is clear that the current mandatory data-collection framework of the DEC scheme

provides an invaluable basis for developing reliable benchmarks for UK non-domestic

buildings. As it stands however, the scheme was found to provide insufficient coverage for

assessing and deriving reliable energy benchmarks for buildings in the public sector let alone

across the non-domestic stock as a whole. It is also clear that there is a need to explore the

possibilities for harnessing the data from a diverse range of databases.

9.7 Recommendations for future work by CIBSE

Discussion of the findings from the current study has shown that the current DEC scheme

lacks robustness for benchmarking the operational energy performance of buildings across

the non-domestic stock. Moreover, it was evident that there is a need to revise the underlying

framework to improve and sustain the effectiveness of the benchmarking in the future. Based

on the outcome of the discussion, recommendations are made to CIBSE for achieving a

benchmarking system that is robust and sustainable for the entire UK non-domestic stock.
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9.7.1 Context-driven benchmarking

Positive aspects of using the current top-down approach for deriving benchmarks were

identified during the discussion. The strength which was in its simplicity was however also

found to be its weakness due to insufficient means for taking into account the variation of

intrinsic features that influence the demand for energy in buildings.

In the light of these findings, CIBSE should consider adopting hybrid benchmarking

approaches that would allow evaluation of operational energy efficiencies that are bespoke to

the circumstances of individual buildings. As discussed, there are challenges for adopting a

more complex approach. There is also a gap in knowledge about the feasibility of adopting

such methods in practice within the existing context. A sensible step would therefore be to

carry out further research to improve the understanding of the cost implications.

The project should aim to develop a working platform that can be used for benchmarking the

operational energy efficiency of a building type. As part of the process, a scoping study would

be carried out on the methods, policies and sources of data. Analysing the process of

developing such a platform would allow CIBSE to develop a better understanding of the

benefits and barriers. Findings from the project would also assist in determining the feasibility

of adopting such an approach in the future, and in planning future strategies.

9.7.2 A dynamic and sustainable framework

One of the key findings from the current study was that the patterns of energy use in buildings

continue to change over time and that statistical benchmarks are bound to become outdated

sooner or later. This means that there is a need to establish a framework to allow benchmarks

to be kept up-to-date, and to continue to carry out such a process.

The short-term objective should be to update current energy benchmarks to reflect the latest

patterns of energy use as soon as possible. Considering that there is sufficient data

accumulated in the central register over the past five years, revising the benchmarks at least

for public sector buildings would be a reasonably simple task. For benchmark categories that
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do not have sufficient sample sizes (< 200) to derive reliable benchmarks, other databases

should be explored and consulted to ensure that the revised benchmarks are reliable. In the

instances where such option is not feasible, building type categories with similar demand for

energy could be amalgamated to achieve larger sample sizes. Moreover, information about

the underlying sample and methods should be made transparent for improved clarity and

credibility of the DEC scheme.

In parallel, it is also recommended that the interval at which the benchmarks are updated is

established as soon as possible. As the study showed, patterns of energy use in buildings

continue to change over time. At present this means that the extensive consulting work that is

occasionally carried out merely to ‘patch’ the outdated benchmarks not only incurs

considerable cost but also becomes obsolete rather quickly in the following years.

A substantial proportion of these problems could be resolved by utilising the existing Carbon

Buzz platform for maintaining the DEC data and updating the TM46 benchmarks. The platform

is embedded with algorithms that allow DEC data from underlying databases to be extracted

and analysed instantly without requiring much human involvement. This means that the

financial burden associated with involving consultants for updating the benchmarks would be

considerably reduced or even avoided. Moreover, benchmarks that relate to the latest patterns

of energy use could be produced based on the latest set of DEC records when requested

without waiting for the TM46 benchmarks to be updated.

To utilise the platform however would require CIBSE to explore the possibility of establishing

a link between the central register and the Carbon Buzz platform. Establishing a secure and

private structure and protocols to manage the DEC data and the benchmarks separately from

the current public platform would also need to be explored.

9.7.3 Refinement of the classification system

The activity classification system is perhaps the aspect of the DEC scheme that requires the

most attention. This study has identified numerous issues associated with classification of
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buildings in the current scheme and shown that there is a need for the classification to become

more flexible for it to remain effective in the future.

CIBSE should determine whether the current level of specificity of benchmark categories is

sufficient for the building types. Taking the benchmark category ‘Schools and seasonal public

buildings’ for example, separate benchmarks should be provided for primary and secondary

school building types. The method of hypothesis tests could be used to identify further building

types that deserve their own benchmarks. A sample size of 200 could be used as a basis to

ensure that these separate benchmarks are reliable representations of the stock.

Corrections should also be made to relocate the building types that currently belong to the

wrong benchmark category. The relocation of building types should be based on empirical

evidence to ensure that the buildings with similar demand for energy are grouped together.

There is also a need to revise building types that are included for no apparent reason and only

cause confusion. Numerous building types allowed presently for primary and secondary

schools for instance, should be condensed into four categories: ‘State primary school’, ‘Private

primary school’, ‘State secondary school’, and ‘Private secondary school’. Hong & Steadman

(2013) discuss how other similar issues may be tackled in more detail.

Apart from the short-term objectives, CIBSE should carry out studies on implications that future

changes in policies or legislation may have for the current benchmarking system, and develop

strategies in preparation. This could be done by carrying out a scoping study with the aim of

taking an overview of existing classifications for the private sector in comparison with the

current activity classification system. Such a study would also be useful in highlighting and

preparing the data that would be needed to prepare energy benchmarks for these building

types. In addition, CIBSE should also explore possibilities for linking the activity classification

with other more comprehensive classifications that underpin national databases such as

NEED. Making the classifications compatible with one another would not only allow initial

energy benchmarks for the private sector to be developed based on ND-NEED but also allow

DECC to utilise the data from DECs in return for creating an evidence base for their policies.
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9.7.4 Reassessment of the current adjustment procedures

CIBSE should revise the definitions and specifications of the current set of adjustment

procedures as part of the broader revision of the DEC framework.

The current definition of ‘standard’ occupancy hours should be examined to assess whether

what was previously deemed to be typical remains applicable. The mechanism underpinning

how extended hours of occupancy are counted should also be assessed and validated. Under

the current method, a building is deemed occupied if there is more than 25% of the nominal

maximum occupancy. The implications for energy consumption between a building that is

occupied by 25% of the staff and 50% or even 80% could be very different due to differences

in use of equipment or fixed building services such as computers or hot water use that depend

more on occupants than floor area. It would therefore be sensible to seek ways to adjust the

benchmarks proportionally to the occupant density.

The proportion of the fossil-thermal energy use pro-rated to account for regional and seasonal

variation in weather conditions should be revised. Although the figure remains to be validated

on a larger and representative sample, the figure of 55% was found to be very low compared

to what was found to be on average 80% in modern secondary schools. Such revision would

require surveys of existing data on the end-use consumption of both primary and secondary

schools. Currently however there may be difficulties in acquiring data to provide sufficient

evidence for the stock.

9.7.5 Amendments to the DEC framework

The study has shown that one of the most effective ways to improve the robustness of the

DEC scheme would be to amend the current framework, which is currently limited to the public

sector and for an unreasonably long renewal period for smaller buildings. CIBSE should

therefore continue to make calls for extending the DEC scheme to the private sector, and

aspire to revise the validation period of DECs for buildings that are smaller than 1,000m2 from

the current 10 years down to 12 months.
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9.7.6 Strategic framework for the future

In this research, it was found that multivariable methods for benchmarking provide ways to

assess and identify key parameters that can improve the comparability of benchmarking for

each building type. In addition, individual end-use consumption levels were found to be

correlated with different intrinsic features that were more relevant in the context of building

physics. Based on these findings, it is possible to anticipate an approach where a hybrid

approach is adopted for deriving end-use energy benchmarks. Such an approach would allow

benchmarking to provide deeper insight into how efficient each system is being used, which

would benefit the building operators in identifying the causes of inefficiency and setting

directions to improve their operational energy efficiency. The correlations between intrinsic

features and individual end uses would also allow end-use energy benchmarks to be

normalised based on a more robust set of parameters.

In the current state of affairs, acquiring sufficient data at such high levels of granularity is likely

to be extremely challenging as discussed earlier. The introduction of requirements for energy

metering of end-use consumption in the 2010 version of approved documents L2A and L2B of

the Building Regulations for new and existing non-domestic buildings however offers a future

where such data may become widely available (HM Government 2010b; HM Government

2010c).
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Chapter 10 Conclusion

This chapter provides a summary of the research by describing its aims, methodology and the

key findings which were discussed in the previous chapter. The contribution to existing

knowledge, suggestions for further work, and research limitations are described.

10.1 Conclusions of the research

This research aimed to explore ways in which the operational energy efficiency of UK non-

domestic buildings could be benchmarked in a robust manner. The main objectives were to

improve the understanding of the latest patterns of energy use in non-domestic buildings and

acquire a deeper insight into factors that influence the demand for energy. The research was

designed in several stages to acquire a holistic view of patterns of energy use and

determinants of energy demand. Initially, the latest DEC data were analysed to assess the

latest trends in energy use of public sector buildings and the robustness of the TM46 energy

benchmarks. The following sections involved a case study of English schools, which was

carried out in three stages involving analyses of data of varying granularity.

Key findings from the study are summarised below:

 The energy benchmarks that underpin the DEC scheme are no longer representative

of the stock, hence inadequate for benchmarking the operational energy efficiency of

UK non-domestic buildings. Continued changes in patterns of energy use in buildings

owing to technological changes and the uncertainties associated with varying sample

sizes were found to be key factors that influence the robustness of top-down energy

benchmarks.

 The current top-down approach for deriving benchmarks was found to be beneficial in

providing an opportunity for building operators to put their performances in a broader

context. The method was relatively simple, hence did not require substantial

resources. Differences in the intrinsic features that are correlated to the patterns of

energy use between primary and secondary schools however suggested that hybrid
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approaches to benchmarking would need to be adopted to improve the comparability

of benchmarking in the future.

 Numerous issues that reduce the effectiveness and have the potential to lead to

misleading feedback were found in the activity classification system. Misclassifications

of buildings that were allocated to benchmark categories that have building types with

similar demand for energy were identified. The building type classifications were

riddled with confusing categories that were deemed to hinder the potential for utilising

the DEC data for developing future energy benchmarks.

 Statistically significant relationships were found between various intrinsic building and

operational characteristics of English schools and their energy performance. Multiple

regression analyses showed that pupil density and surface-to-volume ratio were the

most influential characteristics for the electrical and fossil-thermal EUI of primary

schools respectively. For secondary schools, the presence of external shading on the

western façade and pupil density were found have the strongest correlations with

electrical and fossil-thermal EUI. Exploratory analyses also revealed previously

unexplored correlations such as between number of meals served and catering

energy consumption.

 There was a general lack of data to maintain and develop reliable energy benchmarks

for buildings across the non-domestic stock. The data accumulated under the current

DEC framework was found to be inadequate for deriving benchmarks for the entire

UK non-domestic stock. In addition, the current 10 year validity of DECs for buildings

under 1,000m2 meant that benchmarks derived from DECs would not be

representative of the patterns of energy use of buildings of smaller sizes.

This research clearly showed that there were shortcomings in the current approach to

benchmarking the operational energy efficiency of the non-domestic stock in the UK. The

research therefore concludes that the current DEC scheme does not provide sufficient means

to acquire a precise evaluation of the operational energy efficiency for public sector buildings

in the UK. Moreover, it concludes that a holistic revision on how benchmarks are derived and



256

maintained and buildings are classified are central to achieving a benchmarking system that

is robust and sustainable for the future. In addition, the move towards context-driven and

dynamic benchmarking and the development of a national database, that provides an

evidence base for UK non-domestic buildings not just for benchmarking but also for policy

development, were identified as key elements in achieving these goals.

10.2 Contribution to existing knowledge

Below are contributions to knowledge in the field stemming from this research:

1) A comprehensive analysis of the patterns of energy use of primary and secondary

schools in England in this study has identified and provided empirical evidence in

relation to the parameters that are required to achieve a robust and sustainable

benchmarking system.

2) The benefits and limitations of current benchmarking practice and the policy

framework in the UK were identified, and proposals were made for directions that

CIBSE should take in order to achieve a more effective benchmarking system in the

future.

3) The research has explored and provided details of a framework through which the

influences of previously unexplored intrinsic features of buildings such as building

shape or activity specialism on the patterns of energy use can be collected and

explored.

10.3 Research limitations

As described in Section 4.2.4, this research was carried out under a set of constraints in order

to address the proposed research questions within the duration of the research programme.

Consequently, there were limitations in effectively addressing the research questions within

the context of the entire non-domestic stock.
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Below are the key limitations:

 Using empirical data of varying granularity to assess the latest patterns of energy use

and the correlations between intrinsic features and the energy performance were

found to be highly effective in acquiring a holistic view of how energy is used in

buildings. Limitations in availability of data of finer granularity and the coverage which

was limited to schools however, allowed correlations to be explored but the findings

could not be generalised across the non-domestic stock.

 There were assumptions that were made in measuring the built forms of schools in

Chapter 7, particularly the heights of buildings, which may have introduced elements

of uncertainty to the analyses.

 Due to the empirical nature of this research, methods that are used elsewhere for

deriving benchmarks, particularly bottom-up approaches, were not explored to gain

insights into their benefits and limitations on benchmarking the operational energy

efficiency of buildings. Similarly, methods of benchmarking that are used in other fields

of studies such as health sciences or economics were not explored in this research.

 Closer interpretation of the trends in energy use in public sector buildings was not

possible due to insufficient information on finer details of their operations.

10.4 Suggestions for further work

Although the original research questions were addressed and answered, further research

topics that could deepen the knowledge of benchmarking the energy performance of buildings

were discovered.

Below are summaries of these topics:

 Development of a dynamic and context driven benchmarking system: the next

logical step stemming from this research would be acquiring insights into the benefits

and limitations of a working system to provide energy benchmarks that depict the
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latest trends of energy performance of the stock at any given time, and are able to

take into consideration the context of individual buildings.

 Validation of the measurements of built form using empirical data: assessment

and validation of the accuracy of the measurements of built form that were taken in

this study would allow the method to be developed and adopted for wider use in

research and industry for surveying building characteristics.

 Assessing correlations between a comprehensive range of intrinsic features

and patterns of energy use: The significance of the correlations found in this study

remains to be assessed in conjunction with other parameters such as those

demonstrated in Chapter 8. The significance of the intrinsic features that were

identified in this study remains to be assessed in relation to those that have not been

tested.

 Exploration of methods used in other fields of study: The methods that are used

in other fields of study such as health sciences or business studies, and their feasibility

for use in the built environment remains unknown. Insights acquired from such studies

may provide ideas for revolutionising the way operational energy efficiency of non-

domestic buildings is benchmarked.

 Scoping study to explore the possibilities of reconciling TM46 classifications

with VOA classifications: establishing the link between the two classifications is vital

for acquiring sufficient data on the patterns of energy use for private sector buildings.

Compatibility with ND-NEED would be critical for deriving benchmarks that are

representative of the stock for private sector buildings, until sufficient records are

accumulated through the DEC scheme once it is extended to the private sector.
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Appendix A List of variables in the Department for Education data

Table A-A.10.1 Description of variables in the EduBase32 data

Variable Description

URN Unique Reference Number of a school

UKPRN
A reference number issued by the UK Register of Learning
Providers (UKRLP)

Description of a school Details about the head teacher, address, postcodes etc.

Type of establishment Academy, community school, further education etc.

Establishment status Open or closed

Open and close date Dates when a school opened or closed

Phase of education Primary, secondary etc.

Number of pupils Number of boys and girls by age group

School capacity
Number of pupils for which the school is organised to make
provision

Specialism Description of the main and secondary specialisms of a school

Free school meal
percentage

Number of pupils known to be eligible for and claiming free
school meals

Boarders Boarding school, children's home etc.

Sixth form Whether or not a school has a sixth form

PFI Part of a private funding initiative or not

SEN
e.g. ASD - Autistic Spectrum Disorder, SpLD - Specific Learning
Difficulty

GOR Government Office Region

LLSC The Local Learning and Skills Council

Super output areas Middle layer SOA (MSOA) and Lower layer SOA (LSOA)

32 For EduBase, see: http://www.education.gov.uk/edubase/home.xhtml


