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Abstract

There has been a strong public interest recently in the interrogation of canine ancestries using direct-to-

consumer (DTC) genetic ancestry inference tools. Our goal is to improve the accuracy of the associated

computational tools, by developing superior algorithms for identifying the breed composition of mixed-

breed dogs. Genetic test data has been provided by Mars Veterinary, using SNP markers.

We approach this ancestry inference problem from two main directions. The first approach is

optimized for datasets composed of a small number of ancestry informative markers (AIM).

Firstly, we compute haplotype frequencies from purebred ancestral panels which characterize ge-

netic variation within breeds and are utilized to predict breed compositions. Due to a large number

of possible breed combinations in admixed dogs we approximately sample this search space with a

Metropolis-Hastings algorithm. As proposal density we either uniformly sample new breeds for the

lineage, or we bias the Markov Chain so that breeds in the lineage are more likely to be replaced by

similar breeds.

The second direction we explore is dominated by HMM approaches which view genotypes as

realizations of latent variable sequences corresponding to breeds. In this approach an admixed canine

sample is viewed as a linear combination of segments from dogs in the ancestral panel.

Results were evaluated using two different performance measures. Firstly, we looked at a general-

ization of binary ROC-curves to multi-class classification problems. Secondly, to more accurately judge

breed contribution approximations we computed the difference between expected and predicted breed

contributions.

Experimental results on a synthetic, admixed test dataset using AIMs showed that the MCMC

approach successfully predicts breed proportions for a variety of lineage complexities. Furthermore, due

to exploration in the MCMC algorithm true breed contributions are underestimated. The HMM approach

performed less well which is presumably due to using less information of the dataset.



Acknowledgements

I would like to thank my supervisor David Balding for being an excellent and dedicated supervisor. I

have been fortunate to have had the opportunity to work with David for the last four years. Thank you

for taking me on as a PhD student. David has been a great inspiration and I have benefited greatly from

his ideas, time and feedback. Thereby, I also would like to acknowledge his support and patience in

challenging times.

I am grateful to the staff of Mars Veterinary: Research director and secondary supervisor Neale

Fretwell helped a lot to setup this project, provided crucial discussions and comments at project meet-

ings. Stephen Davison, Bioinformatics technical leader at Mars Veterinary, was very helpful to supply

me with background information on the project in general, Mars’ proprietary code and improvements

about my own Java implementation. Furthermore, I would like to thank Alan Martin, data analyst and

research developer, for offering answers to some technical questions about their original implementa-

tion. Furthermore, I also appreciate the generous studentship of Mars Veterinary to support this exciting

research resolving the ancestries of our beloved dogs. Many thanks also to my tertiary supervisor Mark

Thomas from UCL who examined my transfer with Neale. Finally, I am also grateful to my PhD exam-

iners, Ian Wilson and Maria De Iorio, to agree to read and provide feedback on my thesis.

I will greatly miss the great atmosphere, seminars and interesting discussions at the UCL Genetics

Institute. In particular, Garrett Hellenthal provided helpful answers to questions about the ChromoPainter

software. Furthermore, I acknowledge support of Adam Powell, Marco Scutari and Doug Speed who

gave me advice on many programming and statistical problems. There are many other members I inter-

acted with, including Andres Ruiz-Linares, Claudia Giambartolomei, Chris Steele, Cian Murphy, Dace

Ruklisa, Delilah Zabaneh, Jon White, Julie Bertrand, Kaustubh Adhikari, Sofia Morfopoulou, Sonia

Shah, Valentina Cipriani, Vincent Plagnol and Warren Emmett. I am also grateful to our administrative

staff members Shush Datta, Claire Glen, Elvira Mambetisaeva, Simona Wade who run things smoothly

so we can focus on our daily research activities.

There are several researchers who kindly offered answers to my questions: Claire Churchhouse,

Lucie Gattepaille, Colin de La Higuera, Mattias Jakobsson, Brian Keith Maples, Kerstin Lindblad-Toh,

Jonathan Marchini, Jesse Rodriguez, Sam Oman, Massimiliano Pontil, Paul Scheet, Inge Svein Helland,



Acknowledgements 5

Elaine Ostrander, Matthew Stephens, Rolf Sundberg, Yiming Yang, Robert Wayne and Amy Williams.

I also thank the ’Centre for Computational Statistics and Machine Learning’ to offer seminars

which connect members from many different departments who are interested in statistics which initiated

ample exchange with Bryan Feeney, Samuel Livingstone and Stephen Pasteris.

I acknowledge the use of the UCL Legion High Performance Computing Facility (Legion@UCL),

and associated support services, in the completion of this work. I also would like to thank Vincent

Plagnol to setup the UGI cluster environments as well as Tristan Clark for support using the Computer

Science Cluster.

Finally, and most importantly, I would like to thank my family and my parents.



Contents

1 Background ancestry testing and canine research 19
1.1 Chapter outline and project motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Introduction to DTC kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Data sources, applications and limitations of genetic testing . . . . . . . . . . . . . . . . 22

1.3.1 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.2 Local and global ancestry estimation . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Review canine research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.1 Canine history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.2 SNP marker data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.3 Linkage disequilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.4 Breed clustering and diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5 Datasets and marker profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5.1 Marker profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5.3 Purebred reference dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.5.4 Test Sample of synthetic dogs . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.5.5 Recombination test sample of synthetic dogs . . . . . . . . . . . . . . . . . . . 39

1.6 Thesis contributions and further chapters’ outline . . . . . . . . . . . . . . . . . . . . . 41

1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 Breed similarity in dogs 45
2.1 Motivation to infer interbreed relationships . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Introduction to similarity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Measures of proximity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.1 Proximity measures for continuous data . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Graphical methods for proximity matrices . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Breed similarity results using genotypes and haplotypes . . . . . . . . . . . . . . . . . . 51

2.5.1 Selection of subset of breeds for literature comparison . . . . . . . . . . . . . . 51

2.5.2 Discarding correlation structure in genotypes . . . . . . . . . . . . . . . . . . . 52

2.5.3 Haplotype analysis discarding LD . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5.4 Haplotype analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.5 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



Contents 7

3 Methodology for pure breed identification 65
3.1 Haplotype frequency model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 Inference in purebred haplotype frequency model . . . . . . . . . . . . . . . . . 67

3.2 Computation of chromosomal likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.1 Mars approach: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2 DBAncestry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Performance measures for pure breed identification . . . . . . . . . . . . . . . . . . . . 75

3.4 Results for DBAncestry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 SmallPure case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.2 BigPure case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 MCMC methodology for mixed breed identification 79
4.1 Ancestry inference for crossbred dogs using MCMC . . . . . . . . . . . . . . . . . . . 80

4.2 Inference in crossbred haplotype frequency model . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Mars approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.2 DBAncestry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Breed proportion estimates using MCMC . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Performance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 MCMC run length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7.1 Short Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7.2 Long Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Alternative ancestry inference models 95
5.1 Review ancestry inference techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.2 Global model-based clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.3 Local window-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.4 Local HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.5 Non-Parametric Bayesian approaches . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.6 PCA-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1.7 Machine Learning based approaches . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 ChromoPainter data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Algorithm selection for a comparison with DBAncestry . . . . . . . . . . . . . . 112

5.2.2 Computation of haplotype representation . . . . . . . . . . . . . . . . . . . . . 115

5.2.3 Recombination and mutation rate . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.4 Computation of breed fraction estimates . . . . . . . . . . . . . . . . . . . . . . 117

5.2.5 ChromoPainter results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Summary of ancestry inference techniques and conclusions . . . . . . . . . . . . . . . . 120

6 Conclusions and future work 123
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



8 Contents

A Appendix 128
A.1 Overview of breeds and analysis pure breed dogs . . . . . . . . . . . . . . . . . . . . . 128
A.2 Enumerating haplotype pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.3 Results for pure breed identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.4 HMM Forward Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.4.1 Toy example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.5 Mars algorithm as pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.6 Multiclass ROC Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.7 DBAncestry Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.7.1 Breed estimation view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.7.2 Breed classification view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
A.7.3 Inferring ancestral boundaries: quantile view . . . . . . . . . . . . . . . . . . . 154

A.8 ChromoPainter Results: classification view . . . . . . . . . . . . . . . . . . . . . . . . 154

Bibliography 157



List of Figures

1.1 This figure shows the median distance and standard deviation in base pairs between
consecutive SNP markers. Each of the points represents one chromosome. The data
suggests that a few SNP have strong linkage while other can be considered unlinked
given their distance of more than a million base pairs. . . . . . . . . . . . . . . . . . . . 36

1.2 This figure shows the way Mars arranged lineage trees Φ by complexity. Each ggp leaf is
encoded by colour according to the breed it represents. The most complex case is shown
in tree 11 which assumes eight distinct pure breed ggps. Although these ggps may not
pure breed ancestors I make this assumption because it is unlikely to detect ancestry on
a finer scale than this. All other trees form special cases, e.g. tree 1 represents purebred
dogs assuming that all eight ggps are from the same breed while tree 2 shows designer
dogs which are a cross of two purebred dogs. The trees are roughly sorted in order of
complexity although tree 6 (1 parent, 4 ggps) is more complex than tree 7 (3 gp, 1 ggp).
These figures represent a classification perspective where time flows upwards (current
individual at top) which is contrary to coalescent genealogical trees (Felsenstein, 2013)
where the most recent individual is placed at the bottom of the figure. . . . . . . . . . . 37

1.3 The two sequences correspond to two examples for haplotypes on chromosome c where
either the maternal or paternal part of the parental haplotype is copied first, respectively.
Each haplotype is a combination of maternal (M) breed and paternal (P) breed haplotype
subsequence sampled according to haplotype frequency estimates, such that with 50 per-
cent chance either parent forms the first part of the sequence. Without loss of generality,
I assume that the first sequence is related to the maternal haplotype: then, the first r
alleles are copied from the maternal haplotype Hc

M , i.e. Hc
M [1 : r] while the remaining

alleles from r + 1 to nc (chromosome length) are copied from the paternal haplotype
Hc
P , i.e. Hc

P [(r + 1) : nc]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1 This figure shows a heatmap visualization of the Manhattan breed distance matrix using
genotype data of 125 breeds. The columns are re-ordered according to the dendrogram
of the hierarchical clustering of the distance matrix with complete linkage. Breed pairs
which tend towards red have small distance (high similarity) while breed pairs going to
the yellow-white spectrum are more distant breeds. Breeds have considerable distance
among each other which can be seen from mostly yellow-colored matrix entries and
mostly long dendrogram leaf branches. Furthermore, the dendrogram shows a flat cluster
structure which implies limit subpopulation structure. . . . . . . . . . . . . . . . . . . . 53

2.2 This figure shows the MDS plot for the ChromoPainter coancestry similarity matrix
which has been converted to a distance matrix. This measure visually discriminates
Retrievers and Scent hounds while Small Terriers are partially separated out. . . . . . . . 54



10 List of Figures

2.3 In Figures (a,c,e,g) each line corresponds to a breed. For each of these breeds I show the
decreasingly ordered breed genotype similarities which have been exponentially trans-
formed. In Figures (b,d,f,h) I show the corresponding breed transition probabilities from
closest (most similar, left) to furthest breed (right). Figure (i) shows the distribution of
distance values according to heatmap in Figure 2.1. Finally, Figure (j) shows the pro-
posed transition probability based on rank in distance sorted breeds. . . . . . . . . . . . 55

2.4 These Figures show a heatmap either based on the distance (left column) or similarity
matrix (right column). In the left column red denotes low distance (high similarity) and
white refers to high distance (small similarity) while in the right column it is the reverse
case: red denotes little similarity and white high similarity. The first row shows the
heatmap based on the original distance matrix while in the second row the genotype
distances have been transformed by function f from Figure 2.3 (j), such that most breeds
are very far away from a given breed (whitish colour) and only few breeds very close (red). 57

2.5 These figures show the hierarchical clustering results using complete linkage for Man-
hattan distance and Pearson correlation based on the SmallHap haplotype data. Breeds
from the same group have their branches shown in the same colour. Although breeds
from the same breed group tend to be adjacent I notice that breeds from a given group
are not distributed homogeneously, i.e. not all breeds from the same group are in the
same cluster. As before there is a flat cluster structure confirming limited population
substructure. Furthermore, most breeds are associated with long leaf branches suggest-
ing strong differences in breed. Compared with the genotype data dendrogram there are
fewer short branches which suggests less strong breed discrimination. . . . . . . . . . . 58

2.6 These figures shows the MDS plot for two distance, Manhattan distance (ManSmallHap)
and Hellinger (HellSmallHap), and two correlation measures, Pearson (PearSmallHap)
and Bhattacharyya (BhattSmallHap) based on the SmallHap haplotype data. Breeds
from the same group are highlighted by transparent polygons. I see that all four prox-
imity measures separate out the Retriever group and BhattSmallHap also separates out
Mastiff-like breeds. Furthermore, some breeds are partially visually discriminated, such
as (Herding dogs, Toy breeds) for ManSmallHap, (Herding dogs, Mastiff-like breeds,
Toy breeds) for HellSmallHap, (Herding dogs, Toy breeds, Working dogs) for PearS-
mallHap and (Small terriers, Spaniels, Toy breeds) for BhattSmallHap. . . . . . . . . . . 60

2.7 This figure shows MDS plots where breeds from the same group are highlighted by trans-
parent polygons. The first row shows the original Manhattan distance (MDG) and the
rank Manhattan distance based on genotype data while the second row illustrates the
Manhattan distance (ManBigHap) and Pearson correlation (PearBigHap) based on the
BigHap haplotype data. The MDG measure separates out Ancient/Spitz dog, Mastiff-
like breeds, Retrievers, Toy breeds and partially discriminates Small terriers. Both, Man-
BigHap and PearBigHap visually discriminate Retrievers and partially out either Herding
dogs, Toy breeds or Herding dogs, Scent hounds, Toy breeds, respectively. . . . . . . . . 61

2.8 This figure shows that the number of haplotypes with frequency > 0.01 for any of the
breeds grows exponentially with the number of SNPs on the chromosome. Each of the
points represents one chromosome. Note the y-axis is shown in log10−scale. . . . . . . 62

3.1 Breed data structure Φ : The left column shows the maternal lineage painting and the
right column the paternal lineage painting while the centre block refers to the genome
painting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



List of Figures 11

3.2 This table shows the enumerated haplotype pairs for genotype Xj
k = [0, ?, 0, 1, 2, ?].

The first columns list the haplotype pair ID i followed by a dot and either a 1, first part
of haplotype pair, or 2, second part of haplotype pair. In particular, in this example
there are mjk = 32 haplotype pairs. Details for the recursive enumeration are listed in
Appendix A.2: the other columns shows for t ∈ {1, . . . , 6} which pattern has been used
for haplotye pair [Hi

1(j)[t], Hi
2(j)[t]]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 CCBC breed proportion estimates for the ULP update proposals within the long
MCMC run: these figures show true ancestral proportion as bold red line while the
boxplots offers information on the breed proportion estimates, i.e. the median, lower
and upper quartiles, whiskers which extend to the most extreme data point less than 1.5
IQR from the box, and outliers which are drawn as small circles. These plots represent a
subset of the 11 lineage trees: in particular the top two rows correspond to the simplest
trees while the bottom two columns match the most complex lineage trees. . . . . . . . . 89

4.2 This figure shows breed proportion estimates averaged across lineage trees. More in de-
tail, CCBC breed proportion estimates for the ULP update proposal within long MCMC
run are visualized as boxplot showing median, lower and upper quartiles of all ancestral
levels. Numerical values for the median and quartiles are also given in Table 4.2. . . . . 90

4.3 This figure shows a density plot (gaussian kernel smoother with bandwidths 0.01-0.02)
for global estimated breed contributions (CCBC, ULP, Long). Each colored transparent
polygon corresponds to one of the ancestral levels, i.e. purebred, parent, gp, ggp and
non-ancestry. Furthermore, vertical lines colored according to the TAP level illustrate the
true breed contributions. Vertical grey dashed lines show the inferred breed contribution
cut-offs between consecutive TAP levels, i.e. the cut-off between parental and purebred
level is about 0.5258. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Breed proportion proportion estimates of lineage tree ABCDEFGH for ULP update pro-
posal within long MCMC run based on own simulation data discussed in Section 1.5.5.
The red vertical line represents the true non-ancestry and great-grandparent levels while
the bold black line corresponds to the median estimate in the boxplot. Numerical values
for the median estimates and quartiles are also given in Table 4.4. . . . . . . . . . . . . . 93

5.1 This Figure is due to Li and Stephens (2003) and shows the fourth haplotypes are
coloured according to an imperfect mosaic of the previous ones, with a probability I
denote as π̂(h4{A,B}|h1, h2, h3). This example captures the copying process for two ex-
amples of the 4th haplotype where h4A has a lower switch rate than h4B . The shading
for those next haplotypes illustrates which previous haplotypes I copy from. And jumps
in the shading indicates switches in the ancestral copying. Given that shadings are un-
available in actual datasets I need to sum over all possible ones. Each circle represents a
biallelic SNP marker along the chromosome with white/black color coding according to
allelic variation. The third SNP marker illustrates the effect of mutations in the imperfect
copying process where both h4{A,B} have the black allele but still copy from the second
haplotype which has the white allele. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 These figures show the distribution of the ChromoPainter estimates for recombination
scaling and mutation rate either separately for each pure breed individual or aggregated
by breed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



12 List of Figures

5.3 CCBC breed proportion estimates for the ChromoPainter standard and NNLS
variant: These figures show true ancestral proportion as bold red line while the box-
plots offers information on the breed proportion estimates, i.e. the median, lower and
upper quartiles, whiskers which extend to the most extreme data point less than 1.5 IQR
from the box, and outliers which are drawn as small circles. These plots represent a
subset of the 11 lineage trees: In particular the top two rows correspond to the simplest
trees while the bottom two rows match the most complex lineage trees. Furthermore, the
left column shows the standard variant wile the right column corresponds to the NNLS
variant. These figures show that NNLS has a much larger IQR than the standard variant. 118

5.4 This figure shows breed proportion proportion estimates averaged across lineage trees.
More in detail, CCBC breed proportion estimates for the NNLS variant are visualized
as boxplot showing median, lower and upper quartiles of all ancestral levels. Numerical
values for the median and quartiles are also given in Table 5.2. . . . . . . . . . . . . . . 119

5.5 This figure shows breed proportion proportion estimates averaged across lineage trees.
More in detail, CCBC breed proportion estimates for the standard variant are visualized
as boxplot showing median, lower and upper quartiles of all ancestral levels. Numerical
values for the median and quartiles are also given in Table 5.2. . . . . . . . . . . . . . . 119

A.1 HMM with two hidden markov chains unfolds in time as a lattice . . . . . . . . . . . . . 142

A.2 HMM hidden path illustration for genotype [1,2,0] for three time steps . . . . . . . . . . 142

A.3 This figure shows CCBC-based results for the area under the curve and the F1 criterion
using the long MCMC run with ULP update proposal for all 11 lineage trees from Figure
1.2. A visualization of the actual performance plots are shown in Figure A.4. Firstly, it
can be seen that both criteria are very correlated, i.e. have a correlation of 0.97. For
the simplest tree both performance criteria show almost perfect performance. After that,
both criteria decrease quickly until intermediate tree complexity, i.e. around 0.86 for
AUC and 0.8 for F1 score, and then continue to be reduced moderately at a level of 0.81
(AUC) and 0.78 (F1) for the most complex tree, respectively. . . . . . . . . . . . . . . . 150

A.4 DBAncestry classification performance: For all 11 lineage trees these two plots show
PPV vs. sensitivity and F1 score as a function of breed proportion, respectively. These
results are based on CCBC-based breed proportion estimates from the long MCMC run
with a ULP update proposal. According to the AUC-plot it can be seen that the AUC
score is near perfect for trees AAAAAAAA (tree 1) and AAAABBBB (tree 2) and very
high for AAAABBCC (tree 3) and AABBCCDD (tree 4). Furthermore, tree 5-11 have
similar AUC scores at a high level. The F1 plot suggests that almost independently of
the chosen breed proportion cut-off there is a very high F1 score for tree 1. Even for tree
2 the F1 score only starts to decrease sharply at around 0.4. All other trees typically have
optimal cut-off values of less than 0.2. While the simplest three trees achieve almost
perfect F1 score, with increasing amount of complexity the best F1 score goes down to
0.78 for the most complex tree ABCDEFGH. . . . . . . . . . . . . . . . . . . . . . . . 151

A.5 Estimated global breed contributions (CCBC, ULP, Long) percentiles are shown for each
TAP. Each coloured curve corresponds to one of the ancestral levels, i.e. purebred, par-
ent, gp, ggp and non-ancestry. Furthermore, horizontal yellow lines illustrate the true
breed contributions for the different TAP levels. Vertical grey dashed lines correspond to
the inferred breed contribution cut-offs between consecutive TAP levels. Related to that
horizontal grey dashed lines show quantiles associated to those breed cut-offs. . . . . . . 154



List of Figures 13

A.6 ChromoPainter NNLS classification performance: This figure shows the AUC score
and F1 criterion for all 11 lineage trees. Prediction quality for pure breed tree
AAAAAAAA is reasonably good at 0.83 (AUC) and 0.74 (F1). Then, for more com-
plex lineage trees classification performance drops sharply to [0.37,0,51] (AUC) and
[0.44,0.55] (F1) which suggests ChromoPainter does not deal well with lineages involv-
ing multiple breeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.7 ChromoPainter NNLS classification performance: For all 11 lineage trees these two
plots show PPV vs. sensitivity and F1 score as a function of breed proportion, respec-
tively. These results are based on CCBC-based breed proportion estimates using Chro-
moPainter with the NNLS variant. According to the AUC-plot it can be seen that the
AUC score is high for tree AAAAAAAA (tree 1) with a value of 0.81, i.e. the algorithm
performs reasonably well for pure breed synthetic test dogs. For more complex trees
there sharp decline in performance to an AUC: while tree AAAABBBB (tree 2) has an
AUC value of 0.51 all other lineage trees have an AUC score between 0.37 and 0.43. The
same behaviour can be observed for the F1 score plots: in particular this figure shows
that tree AAAAAAAA has a much higher F1 score value of 0.75 compared to the next
best value of 0.45 for AAAABBBB (tree 2). . . . . . . . . . . . . . . . . . . . . . . . . 156



List of Tables

1.1 Observed allele distributions under LD. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2 This table shows values for the fixation index for a variety of marker types and dog datasets. 34

1.3 The distribution of the 320 SNPs across 25 of the 38 chromosomes of the dog genome. . 35

1.4 For each true ancestral proportion level I list which of the lineage trees have correspond-
ing levels. Lineage tree IDs correspond to those defined in Figure 1.2. . . . . . . . . . . 37

1.5 For each lineage tree shown in Figure 1.2 I list the counts for the different true ancestry
proportion levels. For example, lineage tree 3 is composed of one parent and two grand-
parents while tree 10 has 1 grandparent and 6 ggps. This table also implies that all trees
have a unique combination of purebred, parents, gps and ggps except for lineage trees 8
and 9 which both have 2 gps and 4 ggps. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.6 For OrgSyntheticRed I list number of test samples in each of 11 lineage trees. . . . . . . 38

2.1 The number of unique haplotypes in 1000s on a chromosome with non-zero population
sample frequency each for at least one of the breeds. . . . . . . . . . . . . . . . . . . . 62

3.1 For a subset of the chromosomes chromosome painting with associated breeds is shown. 66

3.2 Breed-specific SNP transition probabilities on chromosome 1 for breed Siberian Husky.
There are 14 SNPs sequenced for this first chromosome. In each row those transition
probabilities sharing the same old state sum to 1, i.e. p(0 → 0) + p(0 → 1) = 1, and
p(1→ 0) + p(1→ 1) = 1. Table courtesy of Davison and Fretwell (2012). . . . . . . . 67

3.3 Results for pure breed identification on SmallPure using performance criterion r̄1:B

defined in Equation 3.10. I selected the extreme values for r̄1:B with its correspond-
ing position d from Table A.6 according to different combinations of haplotype fre-
quency estimation and evaluation of p (Xc|θ) . Detailed results for combination (PSEP-

ARATE,DFPB) are in Table A.8, for (PPOOLED,DFPB) are in Table A.9, for (PSEP-

ARATE,OneHap) are in Table A.10, for (PPOOLED,OneHap) are in Table A.11, for
(PSEPARATE,PSEUDO) are in Table A.12 and for (PPOOLED,PSEUDO) are in Table
A.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Results for pure breed identification on dataset BigPure. The minima and maxima of
performance criterion r̄1:B according to Equation 3.10 for separate phasing with ei-
ther DFPB or OneHap are shown in Table A.7. Detailed results 1 − qb for each breed
b are given in Table A.14 for (PSEPARATE,DFPB) and in Table A.15 for (PSEPA-

RATE,OneHap). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



List of Tables 15

4.1 Inference for short MCMC run: a list of the median and lower/upper quartiles for
the breed proportion estimates for all true underlying ancestral levels. The results show
that the ULP proposal mechanism leads to less underestimation than for BSLP updates.
Furthermore, re-scaling estimates from UCBC to CCBC shows there is a considerable
exploration bias for the ancestral breeds, i.e. [3,15] percent for ULP and up to [2,17]
percent for BSLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Inference for short/long MCMC run: a list of the median and lower/upper quartiles for
the breed proportion estimates for all true underlying ancestral levels. The results show
that a longer MCMC run further reduces underestimation by about to 1 to 3 percent.
Furthermore, for the long MCMC run the BSLP update proposal yields almost identical
estimates to the ULP update which suggests that the breed-biased update mechanism
directed proposals over larger parts of the breed space in the additional iterations. How-
ever, due to limited hierarchical population structure the uniform updates are sufficient to
explore the breed space. Full results for all combinations of MCMC run length, update
proposals and breed proportion computations are shown in Table A.19. . . . . . . . . . . 89

4.3 The breed intervals for each TAP level for the quantile and density view are shown. For
the quantile view I also provide the cumulative density threshold. For example, if a dog
has a predicted breed contribution in the interval [0.17,0.29] I assign it to the TAP class
grandparent. Furthermore, the upper bound 0.29 for the grandparent level is associated
with the 86-th quantile and 0.14-th quantile for the cumulative density of grandparent
and parent, respectively. Note the results for the quantile and density views are slightly
different because for the quantile I chose a 200-quantile as approximation while for the
density view I selected the default option of machine precision. . . . . . . . . . . . . . . 91

4.4 Inference for ULP update proposal within long MCMC run: simulation dataset
OrgSynRecC1 yields similar median ggp estimates when compared to Mars’ dataset
OrgSyntheticRed. Furthermore, DBAncestry is robust towards recombination with
roughly equal medians but slightly smaller lower quartile estimates. . . . . . . . . . . . 92

5.1 A summary of the reviewed ancestry inference techniques is shown. In particular, listed
types are based on regression in Section 5.1.1, global model-based clustering in Section
5.1.2, local window-based approaches in Section 5.1.3, hidden markov models in Section
5.1.4, non-Parametric Bayesian approaches in Section 5.1.5, PCA-based approaches in
Section 5.1.6 and Machine Learning (ML) based approaches in Section 5.1.7. For each
of these methods I show whether this technique is applicable for more than two popula-
tions. I also list whether a technique deals with correlation. In particular, for regression
techniques I list whether correlation in predictor, response space or both is modelled. . . 96

5.2 CCBC breed proportion estimates for the ChromoPainter standard and NNLS
variant: The median, lower and upper quartile estimates of the re-scaled (CCBC) breed
proportion for all possible true ancestral levels are shown. Breed fraction estimates are
computed taking predictions from all lineage trees into account. Further visualization
and discussion of these estimates is given in Figure 5.3. . . . . . . . . . . . . . . . . . . 120



16 List of Tables

A.1 Breed overview: for the small and big pure breed dataset I show the used breeds. The
big dataset covers all breeds while the small dataset covers those 34 breeds ranging from
Afghan Hound to Bullmastiff. The breed identifier is shown in the first column. The
fourth column has the total number of dogs nb per breed. The second column ’Small’
shows the number of training dogs for the small dataset, and column ’Big’ the number
of training dogs for the big dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2 Breed Merging Part I: in the first two columns I show the IDs and names for the merged
breed. Then, similarly in columns 5 and 6 I show the IDs and names of the pure breeds.
In the centre columns 3 and 4 I show which pure breeds correspond to the merged breeds
in the respective table row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.3 Breed Merging Part II: continued, see Table A.2 for a discussion. . . . . . . . . . . . . . 131

A.4 Breed Merging Part III: continued, see Table A.2 for a discussion. . . . . . . . . . . . . 132

A.5 Values of repeats ρ, cycles π different pattern structures based on the ambiguous marker
type based on Xj

k = [0, ?, 0, 1, 2, ?]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.6 Each cell in the table refers to 1 − q̄1:B , i.e. one minus the breed-averaged mean
posterior probability assigned to the correct breed for the small dataset based on separate
and pooled phasing. I use DFPB, PSEUDO and OneHap to define p (Xc|θ) . I use
B′ = 34 breeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.7 Summary of 1− q̄1:B , i.e. one minus the breed-averaged mean posterior probability
assigned to the correct breed, and the number of misclassifications for the big dataset
based on separate phasing. Prediction misclassification is out of the total number of
test dogs which is 1302. I use DFPB and OneHap to define p (Xc|θ) . use B = 149

breeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.8 These are the results for the small pure breed dataset based on separate phasing. I
use DFPB to define p (Xc|θ) . Rows correspond to breeds while columns correspond to
values of tuning parameter d. Each cell in the table refers to 1 − qb, i.e. one minus the
mean posterior breed probability. A blank field refers to 1−qb = 0. I only show a subset
of breeds, i.e. those rows with at least one element 1 − qb > 0. The last row shows the
column mean 1− q̄1:B across all B′ = 34 breeds (including those ones not shown) for a
fixed value of d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.9 These are the results for the small pure breed dataset based on pooled phasing. I
use DFPB to define p (Xc|θ) . Rows correspond to breeds while columns correspond to
values of tuning parameter d. Each cell in the table refers to 1 − qb, i.e. one minus the
mean posterior breed probability. A blank field refers to 1−qb = 0. I only show a subset
of breeds, i.e. those rows with at least one element 1 − qb > 0. The last row shows the
column mean 1− q̄1:B across all B′ = 34 breeds (including those ones not shown) for a
fixed value of d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.10 These are the results for the small pure breed dataset based on separate phasing. I
use OneHap to define p (Xc|θ) . Rows correspond to breeds while columns correspond
to values of tuning parameter d. Each cell in the table refers to 1 − qb, i.e. one minus
the mean posterior breed probability. A blank field refers to 1 − qb = 0. We only show
a subset of breeds, i.e. those rows with at least one element 1 − qb > 0. The last row
shows the column mean 1 − q̄1:B across all B′ = 34 breeds (including those ones not
shown) for a fixed value of d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



List of Tables 17

A.11 These are the results for the small pure breed dataset based on pooled phasing. I use
OneHap to define p (Xc|θ) . Rows correspond to breeds while columns correspond to
values of tuning parameter d. Each cell in the table refers to 1 − qb, i.e. one minus the
mean posterior breed probability. A blank field refers to 1−qb = 0. I only show a subset
of breeds, i.e. those rows with at least one element 1 − qb > 0. The last row shows the
column mean 1− q̄1:B across all B′ = 34 breeds (including those ones not shown) for a
fixed value of d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.12 These are the results for the small pure breed dataset based on separate phasing. I use PSEUDO

to define p (Xc|θ) . Rows correspond to breeds while columns correspond to values of tuning

parameter d. Each cell in the table refers to 1 − qb, i.e. one minus the mean posterior breed

probability. A blank field refers to 1− qb = 0. I only show a subset of breeds, i.e. those rows with

at least one element 1− qb > 0. The last row shows the column mean 1− q̄1:B across allB′ = 34

breeds (including those ones not shown) for a fixed value of d. . . . . . . . . . . . . . . . . . 138

A.13 These are the results for the small pure breed dataset based on pooled phasing. I use PSEUDO

to define p (Xc|θ) . Rows correspond to breeds while columns correspond to values of tuning

parameter d. Each cell in the table refers to 1 − qb, i.e. one minus the mean posterior breed

probability. A blank field refers to 1− qb = 0. I only show a subset of breeds, i.e. those rows with

at least one element 1− qb > 0. The last row shows the column mean 1− q̄1:B across allB′ = 34

breeds (including those ones not shown) for a fixed value of d. . . . . . . . . . . . . . . . . . 139

A.14 These are the results for the big pure breed dataset based on separate phasing. I use DFPB

to define p (Xc|θ) . Rows correspond to breeds while columns correspond to values of tuning

parameter d. Each cell in the table refers to 1 − qb, i.e. one minus the mean posterior breed

probability. A blank field refers to 1 − qb = 0. I only show a subset of breeds, i.e. those rows

with at least one element 1 − qb > 0. The last row shows the column mean 1 − q̄1:B across all

B = 149 breeds (including those ones not shown) for a fixed value of d. . . . . . . . . . . . . 140

A.15 These are the results for the big pure breed dataset based on separate phasing. I use
OneHap to define p (Xc|θ) . Rows correspond to breeds while columns correspond to
values of tuning parameter d. Each cell in the table refers to 1 − qb, i.e. one minus the
mean posterior breed probability. A blank field refers to 1−qb = 0. I only show a subset
of breeds, i.e. those rows with at least one element 1 − qb > 0. The last row shows the
column mean 1 − q̄1:B across all B = 149 breeds (including those ones not shown) for
a fixed value of d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.16 Breed proportions of all three quartiles for all 11 family trees are shown. The first 5 columns correspond to

uncorrected while the last columns represent CCBC breed proportions. . . . . . . . . . . . . . . . . . 141

A.17 HMM example forward probability for genotype [1,2,0] . . . . . . . . . . . . . . . . . . 144

A.18 Confusion matrix is given as contingency table and shows the relationship between true
and predicted class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.19 Breed proportion estimates: Median, lower and upper quartile estimates of the raw
(UCBC) and re-scaled (CCBC) breed proportion for all possible true ancestral levels
are shown. In this experiment I look at combinations of short/long MCMC run-length
and uniform (ULP) vs. breed proposal biased breed (BSLP) proposals. Breed fraction
estimates are computed taking predictions from all lineage trees into account. . . . . . . 149



18 List of Tables

A.20 Classification view criterion area under the curve (AUC): TAUC values which were
obtained from numerical integration are shown. AUC values evaluated for each lineage
tree using UCBC and CCBC breed proportion estimates. Although according to Table
4.2 the long run only yields modest improvements in breed proportion estimates there
is a considerable performance enhancement to correctly classify breeds. In particular,
for complex lineage trees 5 to 11 there is an improvement from 0.05 to 0.1 for the AUC
criterion. Furthermore, the finding from Table 4.2 are confirmed that for the long run
performance of the ULP and BSLP updates are almost identical. Full AUC results listing
the first four leading digits are shown in Table A.21 for all combinations of MCMC run
length, update proposals and breed proportion computations. . . . . . . . . . . . . . . . 152

A.21 Area under the curve (AUC): AUC values which were obtained from numerical inte-
gration are shown. AUC values evaluated for each lineage tree using raw (UCBC) and
re-scaled (CCBC) breed proportion estimates. In this experiment I look at combinations
of short/long MCMC run-length and uniform (ULP) vs. breed proposal biased breed
(BSLP) proposals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.22 Maximum value for F1 score (maxF1): Values for maxF1 values are shown which were
obtained from numerical integration. The maxF1 values evaluated for each lineage tree
using raw (UCBC) and re-scaled (CCBC) breed proportion estimates. In this experiment
I look at combinations of short/long MCMC run-length and uniform (ULP) vs. breed
proposal biased breed (BSLP) proposals. . . . . . . . . . . . . . . . . . . . . . . . . . . 153



Chapter 1

Background ancestry testing and canine
research

This chapter forms the foundation for the next chapters by providing background about canine research
and ancestry testing. With respect to ancestry testing we do not entirely limit the focus on dogs but
also provide some information as it relates to human testing, mainly due to the following reasons: most
of the initial work on genetic ancestry testing was developed with humans in mind, and a survey of
the literature reveals that at present still most of the research is centered around human genetic testing.
Furthermore, inspection of human genetic testing illuminates potential development opportunities for
canine testing but also puts a spotlight on their similarities as well as differences.

1.1 Chapter outline and project motivation
PhD project sponsor Mars Veterinary chose UCL as host for this dog breed inference project due to its
high-performance computing resources and statistical genetics expertise, e.g. Prof. David Balding is a
leading driver in this field. In particular, Mars Veterinary sought the development of improved statistical
genetics algorithms which infer the ancestry of crossbred dogs. These novel inference techniques should
yield better approaches to estimate breed contributions based on genetic data than currently used by
Mars Veterinary.

The main contributions of this thesis are outlined in Section 1.6: Firstly, extending work from
Section 1.4.4 in Chapter 2 I perform an explanatory analysis of breed proximity using 2D visualizations
to understand how different dogs breeds are genetically. Furthermore, I investigate which proximity
measure should be incorporated into the novel ancestry inference algorithm which is developed in sub-
sequent chapters. Secondly, in Chapter 3 it will be shown how my novel simulation-based algorithm
for ancestry inference utilizes the correlation structure in the genetic data which Mars did not account
for. Moreover, in Chapter 4 I will experiment with either uniform or breed proximity directed proposal
mechanisms in my simulation-based algorithm while the original Mars algorithm only uses uniform
update proposals. Finally, in Chapter 5 I will compare prediction results using my novel algorithm with
an state-of-the-art human ancestry inference algorithm selected after a comprehensive literature review.

Currently, Mars commercially distributes canine direct-to-consumer (DTC) genetics inference tools
for purebred and crossbred dogs. These DTC kits which are sold by Mars using the label Mars Wisdom
Panel are described in more detail in Section 1.2. Mars was motivated to incorporate ideas and code
from this research project into their DTC kit to obtain better canine ancestry predictions which then may
lead to further customer satisfaction, fewer client complaints and better reputation in the DTC market.
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Customer of Mars Wisdom Panel are typically private users who are either curious about the com-
position of their crossbred dog, would like to verify that their dog is indeed purebred or commercial
customers involved in dog breeding (see Section 1.2 for further details). In Section 1.3.3 I will describe
further application areas relevant to to Mars Wisdom Panel, such as population genetics, health and
disease analysis, forensic applications and public safety concerns due to canine attacks on human which
are relevant to local councils and insurance companies.

The next question reviewed in this chapter in Section 1.3.1 relates to the data sources which may be
used for ancestry prediction. Data sources I will discuss include phenotype, language, isotope data and
genetic data, such as uniparental inherited lineage-based haploid markers, autosomal DNA markers and
short tandem repeats. After that in Section 1.3.2 I will outline why autosomal DNA from Mars Wisdom
Panel was used in this project. In Section 1.3.4 I argue that it should not be expected that DTC kits yield
a definite answer to ancestry inference because data sources only provide partial information from an
individual’s whole ancestry. Furthermore, quality of prediction also depends on the quality of the data
(e.g. number of DNA markers and their informativeness for breed separation), the way samples were
selected and how ancestry is defined. Briefly, I also will review how ancestry testing is related to the
definition of identity and legal implications.

In Section 1.4.1 I briefly describe canine history starting from their original domestication, breed
creation during the Victorian era up to the dog genome project. After that, in Section 1.4.2 I define
haplotype and SNP marker data. Then, in Section 1.4.3 I discuss linkage disequilibrium (LD) which de-
fines the correlation structure in the marker space. In my novel algorithm I incorporated LD information
while the current Mars Wisdom algorithm does not directly account for LD in the SNP data. LD is a
differentiator for ancestry inference algorithm given that high correlation in genome extends 10-100 fold
longer in modern dogs than in humans. Although LD information could not be fully exploited in this
study due to sparseness of the markers in the genetic dataset. Due to these comparably high LD values
and consequently fairly inbred nature of dogs fewer SNPs are required in dogs to achieve similar levels
of predictions as in humans.

In the final Section 1.4.4 of this review I look at breed separation to judge how well breeds are
expected to be discriminated among each other. For this purpose, I look at the within- and between
breed variability for lineage-based and autosomal markers. Furthermore, I discuss marker differentiation
between specific breeds and whole population for a range of marker types and selection of breed groups.

The next section deals with the data from this ancestry inference project. Firstly, in Section 1.5.1
I discuss how markers were selected in this project and how they are distributed across chromosomes.
Secondly, in Section 1.5.2 I discuss the datasets analyzed in this project. As first step in Section 1.5.3 I
look at the purebred data collected by Mars. After that in Section 1.5.4 I show how Mars’ synthetic test
dogs were designed to measure prediction quality of the ancestry inference algorithms. In particular, test
dogs are chosen from different ancestry complexities ranging from purebred parents to dogs which have
eight different great-grandparents. However, these Mars’ synthetic test dogs only model recombination
up to the chromosome level. Therefore, in Section 1.5.5 I show how I simulated a more complex syn-
thetic test dataset which incorporates recombination with rates matching real canine genomes.

Finally, as last part in this chapter in Section 1.6 I will explain the main novel contributions in this
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thesis, provide outlines to the further chapters of this thesis and offer the chapter conclusions.

1.2 Introduction to DTC kits

In the last 15 years interest in human ancestry and genealogical research increased rapidly covering tech-
niques to infer population histories, exploring genealogy and estimating individual ancestry proportions
(Shriver and Kittles, 2004). More specifically, DTC genetics inference tools have been used to predict
individual ancestral proportions, i.e. population groups, such as Sub-Saharan African, Scandinavian,
Finnish or East Asian. Furthermore, DTC genetic tests are utilized to offer interpretation in the area of
oncology, rare or undiagnosed disease and pharmacological drug response (The American Society of
Human Genetics, 2008; Duster, 2009; Allison, 2012; Wagner and Weiss, 2012; Wagner et al., 2012).
Recently, the DTC market matured due to two main factors (Lee et al., 2009; Bloss et al., 2011; Allison,
2012): firstly, DTC products were put under US governmental regulation by the Food Drug Authority
(FDA) which led some of the test providers to cooperate with physicians to administer those tests. Sec-
ondly, due to dramatic price drop-off in whole-genome sequencing DTC testing is much more affordable
and accessible to the average person.

In the last few years, DTC technology was adapted for the interrogation of canine ancestries to
detect recent ancestry of a mixed-breed dog, i.e. to infer purebred contributions within a crossbred dog
going back to the great-grandparent level (Mars Veterinary Wisdom Panel, 2013). In the US a large part
of the canine population is formed by mixed breed dogs, also known as mongrel (American Veterinary
Medical Association, 2002; Parker, 2012). For example, a crossbred dog could have a breed composi-
tion based on a three-way admixture of one parent and two grandparents with German Shepherd 50%,
Bernese Mountain Dog 25% and Siberian Husky 25%. Some of the reasons for canine DTC testing
are very similar to those in humans (Mars Veterinary Wisdom Panel, 2013; DNA MY DOG, 2013; Dog
DNA, 2013): firstly, there are a large number of crossbred dogs with complex ancestries which are
hard to trace back to purebred ancestors. Often, these crossbred dogs lack official recording of the sire,
dam or grandparents. Therefore, those dog owners are interested in DTC tools which either infers the
breed composition of their mixed bred dog, or validates that they have a purebred dog or designer dog
which is formed by a 50/50 hybrid of two purebred parents. Secondly, the inferred individual ancestry
proportions are a pointer to specific genetic health risks associated with these specific breeds (Sutter and
Ostrander, 2004; Boyko, 2011).

DTC kits are utilized for the selection by breeders who are interested in optimizing certain parame-
ters, such as puppy health, nutrition and canine veterinary drugs (Mars Veterinary Wisdom Panel, 2013).
Even when your dog is still a puppy these DNA services offer prediction service to estimate adult values
for weight, height and dietary nutrition volumes.

Patterson (2000); Calboli et al. (2008); Leroy and Baumung (2011); Leroy (2011); Shariflou et al.
(2011); Bateson and Sargan (2012) showed that many breeds are dominated by popular sires because
these dogs often have traits assumed to be desirable for the given breed which makes them a popular
choice for frequent use in breeding. Therefore, some of these offspring may be paired with each other
which increases inbreeding leading to less diversity. Inbreeding and small population sizes are relevant
factors because they increases the chance of birth defects and other inherited health problems.
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1.3 Data sources, applications and limitations of genetic testing
In this section I discuss data types which are predictive of ancestry, applications and limitations of
ancestry inference tools.

1.3.1 Data sources
This section outlines data types which may be utilized to estimate human and canine ancestry propor-
tions.

• Phenotype: absent other further information morphological characteristics have been used for
immediate evaluation of dog breed composition or human origins. The following account shows
that phenotypic self-assessment has limited accuracy.

1. Dogs: previously, ancestor breeds of a given dog have been predicted based on phenotype.
Dogs are of a wide range of physical appearance such size, weight, coat type (colour, length),
skull type, leg length and tail shape. This morphological diversity may have been developed
through multiple breeding options. Dogs who exhibit similar appearance might not be very
similar for other traits, such as behaviour or certain chromosome regions. On the other hand,
dogs with similar breed compositions may look quite different depending on which of the
dominant and recessive genes got passed by its ancestors. Furthermore, some breeds show
strong intra-breed variability for certain characteristics. Sacks et al. (2000) state that even
among experts there is no agreement on the breed for a particular dog.

Research by Voith et al. (2009) shows that phenotypic breed classification of purebred dogs
carried out by shelter staff is unreliable when compared to the Mars product, Mars Wisdom
MX, to infer breeds constituting the ancestry of a mixed breed dog. Poor human breed
prediction may be due to limited feedback on the correct breed composition shelter staff
obtain. Furthermore, mixed breeds are harder to predict because they exhibit more genetic
variation than pure breed dogs, e.g. those mixed breed dogs show characteristics which may
be common to a variety of pure breed dogs.

2. Humans: description of ancestry in terms of race, ethnicity or parental origin countries
can be either self-reported or be identified by an observer (Via et al., 2009). Burnett et al.
(2006) performed a study on Caucasian sibling subjects which were independently asked
to specify mother’s and father’s countries of origin. The study showed that self-reported
ancestry has limited reliability due to major disagreement, especially when one of the parents
had more than one country of origin (up to four answers). For example, only 68% of siblings
provided an exact match for both parental countries of origin. Similar biased results hold
for self-reportin in African populations (Yaeger et al., 2008) and native American ancestry
in Hispanics (Klimentidis et al., 2009).

• Language: language analysis has been used by the UK border agency to distinguish members of
different countries, such as the discrimination between likely asylum seekers from Somalia (who
speak Somali and Arabic) and opportunistic economic advantage seeking migrants from Kenya
(who speak Kiswahili and English) (Balding et al., 2010). However, based on the foreign language
capabilities of an individual is not always straight forward to infer origin.

• Genealogical records: genealogical records form the foundation for the study of family history.
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1. Dogs: genealogical analysis has been applied through pedigree analysis and some complete
genealogies can be traced back to 1960s and 1970s (Baumung and Solkner, 2003; Leroy,
2011). But these records tend to be limited because dog lovers actually need to register
their dogs, such as the Kennel clubs, to be added to the database. In this case I know its
breed because breed records require parental breed registration certificates (Crowley and
Adelman, 1998). At other times written records are limited because have not been transferred
to computers while other breeds were just founded recently.

2. Humans: research into human family history and tracing of one’s own lineage is becom-
ing increasingly popular (Shriver and Kittles, 2004; Duster, 2006). Common genealogical
records include family trees, trusts, estates, wills, church records, immigration records, crim-
inal records, military records, census records and community records about birth, marriage
and death. In the case of slavery sales record may be of relevance (Duster, 2006). Shriver
and Kittles (2004); Larmuseau et al. (2013) also discusses the case of surname matching to
introduce previously unconnected relatives.

• Stable isotopes: according to Balding et al. (2010) stable isotope analysis has been championed
in archeology to distinguish locals from non locals. The method is based on specifying a signature
which is defined as the ratio of two isotopes of an element. Animal and human consume food
and drinks which leads to a record of signatures in tissue types, such as bone, teeth, hair and
nail. Isotopes can be used for different purposes, e.g. element Strontium can be used to date
geologies of different ages while other elements, such as oxygen and hydrogen, are derived from
water and are utilized as proxy for environmental and climatic effects. According to Cannon et al.
(1999) dog bones have been used to extract signatures for carbon and nitrogen which hints at food
patterns, i.e. consumption of certain fish types or uptake level and reliance on marine sources of
proteins.

However, there are some limiting factors to this approach. Firstly, there is incomplete sampling
of isotope signatures across the world which leads to a lack of comparative values to spot loca-
tions which have matching signature values. Related to the last point, lack of fine granularity in
sampling global signatures leads to inaccuracy of pointing to a specific location. Furthermore,
certain isotope signature exhibit limited variability over large areas while other signatures vary
over smaller distances but may show similar values in very remote regions of the world. These
signatures have been used by the UK border agency which sampled tissue types, such as hair and
nails, of asylum seekers but those tissue types have signatures which only record the immediate
past of the last few months. Finally, isotope analysis has been developed for the recognition of
outlier detection in the form of non-locals but not for the inference of origin of non-locals.

• Lineage-based analysis: lineage-based analysis studies a single maternal or paternal lineage
by looking at uniparental inherited haploid markers, i.e. the maternally, mitochondrial DNA
(mtDNA), and paternally, Y-chromosome (NRY), inherited DNA (Shriver and Kittles, 2004;
Sarata, 2008; Via et al., 2009; Balding et al., 2010; Royal et al., 2010). In other words, due to this
focus on a single maternal or paternal lineage, the contributions of a large set of an individual’s
ancestors to their genome are not accounted for. The mtDNA is passed from the mother to all
children but male children do not transmit to their own offspring, whereas the Y-Chromosome is
only passed from father to son. However, lineage-based testing only composes a small amount
of an individual’s total DNA, i.e. less than 1% of the entire human genome, which provides a
limited view of one’s ancestry (Shriver and Kittles, 2004; Bolnick et al., 2007). In particular, by
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examining only the maternal and paternal lineage and assuming g past generations I focus on only
2/2g parts of our biological contribution (assuming distinct ancestors), e.g. 1/2 for grandparents
and 1/4 for great-grandparents. Lineage-based data is characterized by a lack of recombination
and a slow mutation rate (Shriver and Kittles, 2004; Budowle and Van Daal, 2008).

Lineage-based analysis is used to infer population demographic events, such as migrations (Shriver
and Kittles, 2004; Balding et al., 2010). At an individual level, a match of lineage-based data with
reference samples in the database shows the existence of a recent common ancestor (Royal et al.,
2010). But it is hard to argue which individual migration events gave rise to this match and how
many generations ago the shared common ancestor lived. For example, van Oven et al. (2011)
used mtDNA to infer the maternal ancestral origin at a continental level. Furthermore, this data
type cannot determine kinship or ancestral origin precisely, but only identify a place where people
with similar DNA types currently live (Via et al., 2009).

• Autosomal DNA markers: multiple autosomal DNA markers yield an average estimate of the
ancestry fractions for each of the lineages contributing to the genetic makeup of an individual
(Bolnick et al., 2007; Via et al., 2009). In particular, autosomal markers offer much more compre-
hensive insight into ancestry because cumulatively they act as proxy of a much larger part of the
genome history, i.e. many biparentally inherited loci versus a single uniparental marker, such as
mtDNA or Y-chromosome (Royal et al., 2010).

However, information obtained from autosomal markers is also limited because of its finite size.
Due to recombination and mutation events the inherited ancestral segment length from any partic-
ular individual halves every generation and renders its impact rapidly negligible. In other words,
an ancestor does not pass on all of his or her genomic segments which leads to a limited contribu-
tion of ancestors to the particular genome of a descendant.

Autosomal variation can be either measured by short genomic sequences formed by ancestry
informative marker (AIM) panels of up to 1,5000 to 5,000 SNPs, or by large marker sets obtained
from whole-genome genotyping (Seldin, 2007; Seldin et al., 2011; Churchhouse, 2012). However,
whole-genome sequencing still has a considerable cost associated with it which makes genotyping
of subsets of markers found in AIM panels appealing.

Ancestry inference of personalized genetic histories using AIM panels is referred to as bio-
geographical ancestry (Shriver and Kittles, 2004). For each marker, its binary state on each
chromosome is called an allele. The number of markers is a an important factor for ancestry
inference (Tsai et al., 2005; Aldrich et al., 2008; Via et al., 2009). AIM panels are composed of
population-specific alleles which were selected to yield maximum informativeness with respect to
robust, discriminatory power between two chosen populations (Shriver and Kittles, 2004). Rosen-
berg et al. (2003) reviews different criteria to select ancestry informative markers, such as absolute
difference in allele frequency δ (Campbell et al., 2003) or the fixation index Fst related to the
variance of allele frequencies (Weir and Cockerham, 1984; Excoffier, 2001). Other approaches
for marker selection include sparse regression or variable selection techniques (Zhang, 2010; Lee
et al., 2012).

Typically, DNA can be obtained either from cheek or blood samples, but due to technology ad-
vances cheek cells are the preferred method for human and canine applications. In particular,
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humans donate saliva samples while for canine applications cheek cells are extracted from the
mouth using a cheek swab.

• Microsatellite: short tandem repeat (STR) or microsatellite loci are abundant molecular markers
in the human genome (Budowle and Van Daal, 2008). STRs are formed by tandemly repeated
sequences where each sequence is composed of about four DNA bases. An allele corresponds to
the number of times a sequence is repeated. For example, in forensics common allele counts are 5
to 20 and STRs are used for kinship detection among other applications.

1.3.2 Local and global ancestry estimation
In this thesis I perform ancestry inference using autosomal markers, which is mainly due to the following
two reasons:

• Ancestry informative: autosomal markers are inherited from both parents, i.e. the maternal and
paternal lineages are equally represented in the genomic sequence while lineage-based haploid
groups only represent one particular maternal or paternal lineage.

• Mars Veterinary: a very practical reason why I use autosomal markers is that Mars Veterinary
provided us with dog genetic sequences from a wide range of breeds.

The focus of ancestry inference can be either local or global level (Alexander et al., 2009; Church-
house, 2012). In the local mode I imagine that the genome is split into chunks of one or more SNPs of
a definite ancestral population. Then, the aim at the local level is to infer the chunk boundaries of these
segments and to assign the supposedly ancestral population. At the global level I estimate the overall
ancestry contribution of each population as an average of an individual’s genome. My emphasis in this
study is at the global level because my aim is to infer breed contributions from mixed-breed dogs. For
the purpose of identifying distinct clusters and assigning individuals to them, Alexander et al. (2009)
further dichotomized the global approach into model-based and algorithmic ancestry estimation. In the
model-based approach it is assumed that I jointly estimate parameters, such as population of origin and
admixture proportion, and infer cluster membership for each individual (Pritchard et al., 2000). In the
algorithmic view multivariate techniques, such as cluster analysis and principal component analysis, are
utilized to visualize data in a non-parametric way.

In general, admixture modeling deals with the local level to answers questions related to admixture
proportions, ancestry for each marker and number of generations since admixture whereas my focus is
on global estimation of population proportions (McKeigue, 2007).

1.3.3 Applications
In Section 1.2 I reviewed motivations for the purchase of DTC kits by actual and potential private users.
However, inference of ancestry and genetic tests also form a crucial constituent in academic research,
clinical decision-making in a medical context, forensic practice and public management with regard to
dog safety.

• Population genetics: ancestry estimation is a relevant topic in population genetics which interro-
gates genetic data to reveal insights about the demographic history, between-population relation-
ships, population structure and migration patterns (Falush et al., 2003; Hellenthal et al., 2008; Von-
holdt et al., 2010; Henn et al., 2012). For example, this type of approach enables inference about
the contribution of admixed population contributions as well as how far back in time admixture
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events took place. Furthermore, ancestry estimation approaches help to compute recombination
maps to study the loci of rapid evolutionary change (Price et al., 2009).

• Health implications: human health practitioners investigate how racial/ethnic identity contributes
to differential health results, i.e. how ancestry is related to environmental and genetic risk factors
(The American Society of Human Genetics, 2008). In other words, health-related traits are corre-
lated with specific genetic variations which are more prevalent in a particular ancestral group than
another one. While differential health outcomes are explained by a modest impact by genetics
those outcomes also tend to be heavily determined by environmental covariates, such as diet,
education, access to health care and social economic class.

Case-control genetic association studies and admixture mapping are two main approaches how
ancestry information is utilized to detect genetic risk factors for disease (The American Society of
Human Genetics, 2008; Via et al., 2009). Recently, Chang et al. (2009) also looked at how canine
case-control GWAS studies can be confounded by population structure giving rise to spurious
correlation of phenotype and genotype. However, the focus of admixture mapping is not infer
breed contributions as in my project but local estimation to unravel genomic regions containing
population-specific risk alleles for disease.

• Forensic applications: there are a variety of forensic applications, such as detecting identity in
criminal cases, mass disasters or from human remains, prediction of general phenotypic appear-
ance of certain very heritable traits (e.g. coloring, height and facial feature), paternity testing,
kinship analysis and inheritance related questions (Budowle and Van Daal, 2008).

• Public safety concerns about dog attacks on humans: given the event of safety concerns due
to dog attacks, ranging from dog bites (Harris et al., 1974) to fatalities, on humans government
bodies, housing associations and insurance agencies in certain countries, such as Canada (Dog
Owners’ Liability Act, 2005) and UK (Dangerous Dogs Act, 1991), enacted breed specific legis-
lation (BSL) which place restrictions, such as public muzzling, registration with local authorities,
or even banning (Ledger et al., 2005). Owners who do not comply with this legislation are penal-
ized with fines and jail sentences. Affected breeds often include those which are aggressive and
suitable for dog fighting, e.g. American pit bull terrier and Argentinian Dogo Mastiff.

Secondly, there are no clear standards, as to which breeds are considered to be dangerous. Legis-
lator use metrics, such as bite incidence, to measure breed danger. Thirdly, the ability of victims,
shelter employees and representatives of other organizations to accurately identify canine ances-
try composition is of utmost importance. Wrong prediction of breeds may lead to inappropriate
dealings for certain breeds which are mistaken for restricted breeds. On the other hand, banned
breed dogs may not be recognized and seized by local authorities because phenotypic variation
within breeds is not well understood, and some breed owners circumvent breed banning by cre-
ating mixed breed dogs with a high proportion of the actually desired breed. For optimal BSL
enforcement an objective method for determining the breed of a dog is required, such as DNA
testing, because breeds have to be identified with high certainty.

1.3.4 Limitations
Although human and canine DTC-based test kits are offered by a variety of commercial providers these
tests have a range of limitations which will be discussed in this section. DTC test user should not expect
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a definite answers because the genome only carries partial information on an individual’s whole ances-
try. Furthermore, estimation of these ancestral proportions is often performed using statistical methods
which are uncertain in nature and may lead to wrong inference (Bolnick et al., 2007).

• Definition of ancestry:

1. Dogs: Kennel Clubs specify breed membership based on parental breed registration certifi-
cates. This recursive definition goes back to its founders leading to closed breed populations
(Crowley and Adelman, 1998).

2. Humans: concept of ancestry is much harder to define for humans and can be accomplished
using different criteria assessing ancestry at various levels (The American Society of Human
Genetics, 2008; Via et al., 2009; Lee et al., 2009).

Firstly, with respect to time, I could either refer to immediate ancestors, such as parents or
grandparents, or going back to earliest hominids or first homo sapiens. However, going back
in time each individual has hundreds of ancestors for just a few centuries and due to the
fixed genome size only a fraction of those ancestral contributions are recorded. Although
going back many generations may have limited interest for private DTC kit users, it is very
important to study past migrations and genetic variation from a population genetics perspec-
tive. Secondly, ancestry may be interpreted as matches against the reference populations in
the database by DTC companies but a private user may equate ancestry with place of birth.
Some private user may even interpret ancestry as location where their last name, identity,
family narrative, language, religion or culture originated although reference populations are
only a proxy of current but not ancestral locations. Finally, ancestry is also relative to size of
area, such as specific to villages, countries, continents.

• Data quality: as discussed in Section 1.3.1 the quality of the ancestral proportion estimates is
strongly influenced by the number of markers and their informativeness.

• Data source: most ancestral test either used lineage-based or autosomal markers (Bolnick et al.,
2007). In Section 1.3.1 I explained that autosomal markers yield an average view on an individual’s
genome for ancestral inference while lineage-based markers only represent a minor part of an
individual’s genome contributing only one maternal and paternal ancestor per generation. Wagner
et al. (2012) showed that for human DTC test kit providers that each mtDNA, NRY and autosomal
test have similar median price while a combination of mtDNA and NRY is slightly more expensive
while combining all three information sources is most expensive.

• Incomplete sampling: to represent a population well I need a large number of samples to repre-
sent its genetic diversity (The American Society of Human Genetics, 2008; Sarata, 2008). How-
ever, I encounter sampling bias where many of these samples are not random samples from the
population of interest but convenience samples which were derived from published research or
sampled only in certain geographical regions (Sarata, 2008; Balding et al., 2010). For example, if
a population is not well represented by its constituting samples, a statistical methods may wrongly
increase proportions from the wrong population to the admixture estimate (Royal et al., 2010). A
related factor is the amount of within- and between variability among the reference populations
which puts a limit on how well those populations can be possibly discriminated. Furthermore,
the number of populations is also of marked relevance because it may represent a purebred dog
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as admixture of its genetically closest populations. Finally, the investigator needs to judge how
to deal with samples which are recent migrants to the target population or are admixed individ-
uals themselves, i.e. whether to exclude those samples from the analysis (Balding et al., 2010).
Within the context of forensic applications, Balding and Nichols (1994) showed that an innocent
suspect may appear more likely to be the criminal due to difference in the suspect and reference
populations in the database, i.e. the innocent suspect’s alleles may overlap with the criminal due
to kinship, resemblance of physical appearance and genetic composition of people living in his or
her area.

• Proprietary confidentiality in DTC testing: DTC test providers are very interested to protect
their corporate intellectual property and operations, such as statistical techniques used with their
assumptions, population sampling technique and size and composition of their reference popu-
lations although ’The American Society of Human Genetics’ asked for more transparency (The
American Society of Human Genetics, 2008; Duster, 2009). Therefore, way of communication of
test result to customers is of paramount relevance because due to lack of details test details results
may not be fully understood or open to independent replication. Furthermore, due to different
implementation of those details by companies I do not always expect consistent results across
corporate DTC providers for the same individual (Sarata, 2008; Duster, 2009). With respect to
samples, there is little shared use of genotype individuals across different DTC providers. How-
ever, some special databases for specific populations, such as West Africans and Native Americans
exist (Shriver and Kittles, 2004), are available.

With respect to canine testing, typically no further details on the computation on breed propor-
tions are provided except that a statistical algorithm is used to compare test dogs with a reference
database composed of purebred ones. If information on SNPs is given their number is typically in
the hundreds (Mars Veterinary Wisdom Panel, 2013; DNA MY DOG, 2013; Dog DNA, 2013).

• Identity conflict: unexpected or undesired results of ancestry testing could lead to psychological
responses corresponding to emotional distress (Nordgren and Juengst, 2009). Furthermore, canine
testing result may change how owners view their dog. With respect to human testing, customers
may question their ancestral history and change how they report ethnicity in the future (Bolnick
et al., 2007; The American Society of Human Genetics, 2008; Wagner and Weiss, 2012). Further-
more, identity is often connected with race which as political sensitive term may invoke particular
positive or negative associations.

• Legal implications: group membership has a variety of legal implications: preferential admission
to universities, acceptance of job applications, access to social welfare and health-care, and utility
for immigration purposes, such as seeking dual citizenship (Bolnick et al., 2007; The American
Society of Human Genetics, 2008). For example, Native American tribal affiliation leads to bene-
fits, such as financial help, housing support and health-care. In the context of canines samples dog
owners may dispute whether a dog is purebred, or appeal to the claim that a designer dog is com-
posed of equal breed proportions of the purebred parents. Finally, with respect to breed specific
legislation owner may either prove or disprove that their dog is part of the list enumerating either
banned or restricted breeds.
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1.4 Review canine research
In this section I give some background about work related to canine data in statistical genetics. Firstly, I
start with a historical account of the development of dogs. Then, I summarize a few more details about
autosomal SNP markers and how they are related to a haplotype representation. After that I look at
between-population variability which is related to the theoretical limits of how well an algorithm possibly
could discriminate the reference populations. This same section also looks at a measure of correlation
between autosomal markers which indicates high canine within breed genetic similarity. Finally, I show
how breeds cluster using genetic distance.

1.4.1 Canine history
The dog family, Canidae, has about 34 species, such as different types of foxes and jackals, which
diverged about 10 million years ago (Wayne et al., 1997).

Domestic dogs can be traced back to the original domestication from the grey wolves in East Asia
around 15K to 100K years ago (Vilà et al., 1997; Savolainen et al., 2002; Ardalan et al., 2011; Ding
et al., 2011; Wayne and vonHoldt, 2012). Fossil discoveries show that humans and dogs share a long
history, such as sharing home and food sources, going back to caves in Belgium 31K years before
present (Germonpré et al., 2009). Pang et al. (2009) use mtDNA to date domestication in Southern
China between 5.4K to 16.3K years ago from at least 51 female wolf founders. The transformation from
wolf to domestic dog were likely to be accompanied by changes in the dog’s environment, food source
and human adapted behavioural patterns. Until recently, given the high phenotypic breed diversity,
dogs were assumed to be an admixture of several canid species, such as jackals, coyotes and wolves.
However, recent analysis using mtDNA data provided evidence that gray wolves are the sole ancestor of
modern dogs (Wayne, 1993; Vilà et al., 1997).

More recently, many of the domestic dog breeds acknowledged by national fancier clubs, such as
Kennel clubs, are based on human breeding efforts in the Victorian era (1837-1901). In this Victorian
period many new modern breeds were defined through backcrossing and inbreeding to yield specific
phenotypic and behavioral traits which leads to a loss of genetic variability (Parker et al., 2004; Hedrick
and Andersson, 2010). This genetic variability reduction was reduced by dog fanciers’ restricted breed-
ing preferences and rules which specified to register a dog as a member of a breed it is required that
its parents also have been registered as members of the same breed (Parker, 2012). Although these
breeds still show some within-breed variability there are some chromosomal regions related to certain
traits which are fixed or near to fixation (Lindblad-Toh et al., 2005; Akey et al., 2010; Vaysse et al., 2011).

On the other hand, some breeds, such as greyhound and pharaoh hound, may be very old breeds
or re-creations thereof. According to the Kennel Clubs breeds form a closed population (Crowley and
Adelman, 1998). Consequently, those purebred dogs have lower levels of genetic heterogeneity than
mixed bred dogs. Furthermore, this selective breeding of purebred leads to huge differences in morphol-
ogy, e.g. a Great Dane is 40 times the size of a Chihuahua.

In the 1990s, the genetic study of disease, morphology and behavior were the central motivation
to establish the ’dog genome project’ and to detect genes which may be leading to disease. Geneticists
aimed to sequence a dog’s 38 autosomal pairs as well as the sex chromosome. Genomes are commonly
genotyped in many long overlapping segments, and to increase the probability that the whole genome
is genotyped at least once, estimations suggest that there should be about 7 to 8 genome reads across
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the entire genome. In 2003, a standard poodle was genotyped to yield a genome coverage of about 80
percent for its about 2.8 billion base pairs (Kirkness et al., 2003). Subsequently, the first fully genotyped
dog was a member of the boxer breed whose genome has been genotyped to cover about 99 percent of
the genome (Lindblad-Toh et al., 2005). The number of genes is estimated at about 19,000 genes, and
for 75% of these genes the similarity due to shared ancestry between dog, human and mouse is very high
(Ostrander, 2007). Furthermore, genome wide association studies suggest that breed standards caused a
stronger differentiation at loci which are due to morphology than other breed-specific measures which
are more difficult to quantify, such as susceptibility to disease, longevity and certain behaviors (Boyko,
2011).

1.4.2 SNP marker data
In this document I model variation in the canine genome using autosomal single nucleotide polymor-
phisms (SNPs) markers along a chromosome which represents the most commonly studied class of
sequence variation data (Suh and Vijg, 2005).

With respect to humans, large amount of data has recently been made available in the HapMap
and 1000 Genomes projects (Gibbs et al., 2003; Altshuler et al., 2010). SNP data has been adopted by
evolutionary biologists who are interested in inference of population history (Brumfield et al., 2003).
Furthermore, SNPs proved to be a powerful data source to reveal markers and genetic processes related
to trait inheritance and study of the genetic bases of disease (Gray et al., 2000; Marchini et al., 2004;
Altshuler et al., 2008).

A SNP describes genetic variability at an individual marker position (locus) where a mutation has
occurred in the evolutionary past of a species. In particular, constant loci which only assume one value
do not provide information on modeling variability. A locus can attain four different values which are
known as alleles taken from the quaternary vector (G, A, T, C). Markers which take three or more values
are rare. Most SNPs are biallelic, i.e. only take two different different values, and form the focus in our
work. Then, these two possible nucleotide base values are encoded binary as {0, 1} and each variant
is referred to as an allele. Typically, allele 0 refers to the major allele wile 1 corresponds to the minor
allele. In other words, allele 0 has a higher frequency of occurrence than allele 1. Based on this encoding
a haplotype is formed by a contiguous sequence of s biallelic SNP markers on each chromosome. The
number of common canine SNPs has been estimated at around 2 million in total across chromosomes,
of which current chips are capable of measuring 127K SNPs (Ostrander, 2007).

In diploid species, such as humans and dogs, and individuals have two copies of each chromosome,
one for each parent. In this case, maternal and paternal haplotypes HM , HP ∈ {0, 1}s are combined
to form a sequence of unordered allele pairs at each locus which is known as genotype (Hodge et al.,
1999). In other words, I am uncertain about the loci phases, i.e. based on the genotype I do not
know which allele at each locus is derived from which parent. In particular, the sequence of s SNPs
X = [Xj

1 , . . . , X
j
C ] ∈ {0, 1, 2, ?}s is referred to as genotype where Xj

k ∈ {0, 1, 2, ?}sk , k ∈ {1, . . . , C}
is the genotype on chromosome k of length sk such that

∑C
k=1 sk = s, C is the number of chromosomes

and ? represents a SNP marker which is missing. Due to recombination events these genotypes tend to be
composed as a ’mosaic’ of longer sub-sequences of the genotype of other individuals in the population
(Daly et al., 2001). Furthermore, the genotype is defined based on the parental haplotypes which have
to sum up to the respective allele value at each locus t of the genotype, i.e formally it is expressed as
HM [t] +HP [t] = X[t] ∀t ∈ {1, . . . , s}. Genotype alleles 0, 2 are known as homozygous because it im-
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Locus 1/Locus 2 Locus 2 with allele B Locus 2 with allele b Marginal counts Locus 1
Locus 1 with allele A n11 = N (pApB +D) n12 = N (pApb −D) n1·
Locus 1 with allele a n21 = N (papB −D) n22 = N (papb +D) n2·

Marginal counts Locus 2 n·1 n·2 N = 2n

Table 1.1: Observed allele distributions under LD.

plies either both 0s or 1s for the respective haplotype values. SNP allele 1 is referred to as heterozygous
where one parent assumes value 0 and the other one a 1. The heterozygous case deals with an ambiguous
phase because it is unknown which parent attains value 0 and which parent takes value 1. In statistical
genetics, phasing (also known as haplotype inference) deals with the detection of the phase at each locus
from the genotype. Typically, biological methods to obtain genotypes do not offer phase information
and I need to resolve the phase at several heterozygous loci algorithmically. Phase reconstruction can
also be achieved using molecular haplotyping (Patil et al., 2001) but it is more expensive than genotyping.

1.4.3 Linkage disequilibrium
The creation of breeds had an impact on the genome structure of the dog affecting linkage disequilibrium
(LD). LD is a measures of allelic association between two sites on the genome for n dog individuals.
To illustrate this concept, let us assume that allele at locus 1 may take values {A, a} and allele at locus
2 may assume values {B, b}, which have population frequencies pa, pA, pb, pB (Foulkes, 2009). Given
that each dog carries two homologous chromosomes there are a total of N = 2n homologs where n is
the number of individuals. The expected distribution of allele pairs for the 2 loci is shown in Table 1.1,
and under the assumption of linkage equilibrium I expected the counts shown in this table with constant
D assumed to be zero.

This contingency table assumes independence, e.g. joint probability pAB is decomposed as pA ·
pB . The degree of independence in this table can be assessed by a Pearson’s χ2 test which compares
expected counts with actually observed counts. However, having D 6= 0 in this table, I no longer
assume independence. I can view D as covariance, or normalized as correlation, given its definition
as D = pAB − pA · pB . Small values of D indicate observed counts close to expected counts and
small deviations from linkage equilibrium. Large values for D leads to n11, n22 counts greater than
expected under independence while n12, n21 will take smaller values, indicating larger departure from
LD. A commonly used measure for LD is quantity r2 which is a function of D. This quantity is based
on Pearson’s χ2 test for no association of rows and columns and can be expressed as

r2 =
χ2
1

N
=

D2

pApBpapb
.

Absent of equilibrium in gene linkage, I have LD which means markers are correlated leading to seg-
ments of the chromosome which are similar and I denote those ones as haplotype blocks.

According to Falush et al. (2003); Kaeuffer et al. (2007) there are three types of LD types:

• Mixture LD: individuals from the same population have correlated markers across the genome
due to higher prevalence of certain alleles.

• Admixture LD: contiguous segments of markers on the chromosome are correlated where each
segment corresponds to a particular ancestral population.
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• Background LD: correlation among physically close markers due to genetic drift, i.e. random
sampling of individuals used for reproduction.

Lindblad-Toh et al. (2005) found that LD within any breeds mostly depends on two bottlenecks.
The first bottleneck is an ancient one at the time of domestication (7K-50K generations ago) shared by all
breeds while the second one occurred during breed formation in the Victorian era (50-100 generations
ago). These bottlenecks had influence on LD and haplotype patterns. The domestication bottleneck
can also be seen from the SNP rate: current dog breeds have 1 SNP in about 0.8-0.9 kbp while grey
wolves have 1 SNP in 0.58 kbp and coyotes 1 SNP in 0.42 kbp which shows the latter ones exhibit more
variability. These two bottlenecks lead to high LD and limited haplotype diversity. Comparably short-
range LD extends in humans (4k generations ago) to ancestral haplotype blocks of 20s kbp while LD
extends 10-100 fold longer within modern dog breeds; albeit shorter between breeds. On the other hand,
ancestral breed founded around 9K generations ago have shorter haplotype blocks of size 10 kbp than
humans. This decline in genome variability during the bottlenecks events is due to a selection of subset
of dogs for mating leading to certain long-range patterns becoming more common for a given breed and
also creating long-range LD. And these long-range patterns, especially since the second bottleneck, have
not been shortened much yet due to recombination events.

Lindblad-Toh et al. (2005) measured long-range correlations of SNP markers by evaluating quantity
r2. The authors found that average LD in humans and the overall dog population quickly declines to
background level at about 200 kbp. The common decline in LD across breeds shows the still under-
lying short-range haplotypes of the ancestral dogs. However, LD for individual breeds also decreases
although less quickly and remains at a moderately high level for several megabases, i.e. a sharp decline
at around 90 kbp and saturates at background level after 5-15 mbp for most breeds which corresponds
to long-range breed specific haplotypes.

However, dogs do not just have longer regions of LD than humans but also fewer allelic variants per
locus (Sutter et al., 2004; Ostrander and Wayne, 2005). Given this genomic redundancy, genome-wide
studies in dogs require less SNPs than in humans. The authors also found there is a high negative
correlation between LD and population size of a particular breed. The actual level of the LD curves
appears to be related to breed history (Sutter and Ostrander, 2004), e.g. LD extends less than 1 million
bp in the popular US breed Labrador Retriever (mixed origin and large population size) which received
little genetic pressure from those historical bottlenecks while Pekingese has LD regions of about 3.2
mbp which is representative of tight population bottlenecks in the last 100 years.

Intra-breed diversity has also been measured by studying haplotype structure, i.e. the combination
of alleles on a given chromosome. Sutter et al. (2004); Lindblad-Toh et al. (2005) found that in 10 regions
across the genome covering each a length of about 100 kbp there are often less or equal to 3 different
haplotypes on a chromosome. According to Sutter and Ostrander (2004), on average, 4.5 haplotypes
explain 80% of the total chromosome variability at at locus across five dog breeds. Within a breed, 80%
of the time, each locus has 2.1-3.4 haplotypes. This shows a low level of diversity and given that any two
of these breeds share more than half of their haplotypes these observations reflect common joint history.
Typically, 5 haplotypes are observed across each 10 to 500 kilo base pair window where 1 to 2 of them
are frequent and the others are rare. Sampling the same haplotype on a chromosome increases by a factor
two if the same breeds were selected compared to different ones.
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1.4.4 Breed clustering and diversity
Given that many breeds represent closed gene pools, it is reasonable to study between-breed simi-
larity and differentiation of dog breeds. Evolutionary history suggests that related breeds may group
into clusters of joint common ancestry (Ostrander and Wayne, 2005). Parker et al. (2004) applied the
STRUCTURE clustering algorithm (Pritchard et al., 2000) with a pre-specified number of K clusters.
STRUCTURE aims to detect genetically distinct breeds based on patterns of the allele frequencies of
the individuals. Investigating the role of K, Parker et al. (2004) found that only K = 4 led to consistent
clustering. Setting K less than 4 led to partial and inconsistent clustering of some breeds while setting
K > 4 did not infer further consistent subpopulations.

Before I investigate breed diversity in dogs I take a brief look at the modest genetic differentiation
in human populations (Romualdi et al., 2002; Conrad et al., 2006; Li et al., 2008; Jakobsson et al., 2008;
Via et al., 2009). Most of the total human genetic variation is focused within members of the same
population, i.e. 85% within variability using autosomal SNP markers (Romualdi et al., 2002; Via et al.,
2009). Furthermore, there is around 5-10% variability between populations of the same continent, and
only about 10% of the total genetic variability is due to continental differences. Finally, less than 2% of
the total variability is available in only one continent.

Diversity in dog breeds has been studied using different genetic data sources (Wade, 2011). Dogs
have evolved an enormous level of between-breed variation combined with rather small intra breed vari-
ability (Ostrander, 2007). The following account discusses breed similarity in terms of data source:

• mtDNA (maternal lineage): Pang et al. (2009); Webb and Allard (2010) looked at mtDNA and
found 217 haplotypes which were clustered into ten haplogroups based on a set of 1543 dogs
from Asian and Europe, 33 dogs from Artic America and 40 Eurasian wolves. The results showed
more variability in Central China (7 haplogroups) compared to Europe (4 haplogroups). Wade
(2011) noted that dogs which all carry some common mtDNA haplotype may have very different
phenotypes. Furthermore, Sutter and Ostrander (2004); Sundqvist et al. (2006); Parra et al. (2008)
showed the mtDNA is not sufficient to reliably discriminate among modern dog breeds due to its
slow evolution.

• Y-Chromosome (paternal lineage): to study paternal inheritance Bannasch et al. (2005);
Sundqvist et al. (2006) studied Y-chromosome microsatellite data based on 824 male dogs from
50 domestic dog breeds and discovered a total of 67 haplotypes. Among those breeds there are 26
breeds with unique haplotypes while 15 breeds only had a single haplotype present. Furthermore,
a large number of haplotypes was shared across breeds indicating a common origin. The authors
also found that the total canine variability can be decomposed in 36% within-breed variability an
67% between-breed variability. On the other, based on 20 human populations Kayser et al. (2001)
found 77% within-population variability and 23% within-population variance. In summary, there
are fewer paternal than maternal haplotypes due to the focus on popular sires for mating, and a
large number of breeds either has limited or no Y-chromosome variability (Wade, 2011).

• Autosomal microsatellite: early studies of canine genomic patterns for a small number of breeds
were based on microsatellite markers and showed the existence of allele frequency difference
between breeds which is essential for their discrimination (Parker, 2012). Later, Parker et al.
(2004) utilized 96 microsatellite loci from 414 purebreed dogs taken from 85 breeds to compute
a between-breed variability of 27% while the corresponding value shown above is 5-10% for hu-
mans. Parker et al. (2004) concludes that dog between-breed variability is estimated at five times
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Reference Fst (Marker Type) Dataset description
Kim et al. (2001) 0.154 (8 STRs) 213 dogs from 11 Asian

native dog populations
Parker et al. (2004) 0.27 (96 STRs), 0.33 (75 SNPs) 414 purebred dogs from 85 breeds
Parra et al. (2008) 0.11 (236 STR), 0.14 (4 NRY STR) 173 dogs from five pointing breeds

0.13 (18 mtDNA STR)
Boyko et al. (2010) 0.25-0.3 (61K SNPs) 915 dogs from 80 domestic breeds,

83 wild canids, 10 outbred
African shelter dogs

Mellanby et al. (2012) 0.11 - 0.26 (15 STR) 285 dogs from 13 popular UK breeds

Table 1.2: This table shows values for the fixation index for a variety of marker types and dog datasets.

the between-ethnic group variability in humans. However, since the first canine whole-genome
sequence (Lindblad-Toh et al., 2005) many investigators preferred SNPs over microsatellite mark-
ers due to mainly two reasons, easy of genotyping and a large number of markers can be retrieved
within one reaction (Parker, 2012).

• Autosomal SNP markers: Lindblad-Toh et al. (2005); Karlsson et al. (2007); Vonholdt et al.
(2010) measure genetic breed variability using heterozygosity along chromosomes. Between-
breed variability estimates ranges from 0.29-0.32 and within-breed variability at around 0.26, e.g.
Akita (0.21) varies less than Labrador Retriever (0.30) (Wade, 2011). Therefore, breed formation
led to a loss of around 13% (proportion 0.26 from 0.3) of the genomic variability. With other
words, dog breeds retained 87% of their original diversity level. Lindblad-Toh et al. (2005) looked
at 7.8x boxer sequence and found that long stretches of homozygous regions (62% of genome)
are combined with heterozygous regions (38% of genome) across all chromosomes. Homozygous
regions were on average 6 times longer than heterozygous regions. In total, there were 770K
SNPs, with homozygous regions having 1 SNP in 20kb and with heterozygous regions having 1
SNP in 1kbp.

Furthermore, limited intra-breed genetic diversity is due to strong inbreeding of a small number
of purebred founder dogs. However, there may exist stratification, systematic allele differences among
geographically disparate members of a given breed, such that some of them appear to be divergent as
distinct breeds, while others exist as single breed across continents (Quignon et al., 2007). A particular
loss of diversity is associated with breed splits, e.g. the existence of different Poodle sizes (Björnerfeldt
et al., 2008; Wade, 2011). Given limited intra-breed genetic diversity and the close link of domestic
dogs with humans, it is not very surprising that some of these diseases also affect humans (Patterson
et al., 1988). Due to very dedicated and intense inbreeding efforts to yield certain morphologies many
diseases are restricted to particular breeds (Patterson, 2000; Calboli et al., 2008).

Another important measure of breed differentiation is given by the fixation index Fst which mea-
sures how randomly selected alleles differ within a given breed compared to the entire dog population,
and in Table 1.2 I show how those values depend on breed selection and data types.

These fixation indices can be compared to human datasets, such as the Perlegen SNP dataset (Hinds
et al., 2005) which is based on about 1 million SNPs and the HapMap Project (Gibbs et al., 2003) which
uses about 0.6 million SNPs. Weir et al. (2005) studied the fixation index for these two datasets: the
HapMap populations have an average Fst = 0.13 whose four individual populations have Fst = 0.1

for (CEU) Caucasians of European descent, Fst = 0.12 for (YRI) Yoruba from Ibadan, Fst = 0.15 for
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Chr ID #SNPs Chr ID #SNPs Chr ID #SNPs
1 14 11 13 27 13
2 13 12 13 29 14
4 15 13 15 31 7
5 17 14 16 32 12
6 12 15 9 34 8
7 12 17 13 35 17
8 12 20 16 38 13
9 13 21 10

10 10 25 13

Table 1.3: The distribution of the 320 SNPs across 25 of the 38 chromosomes of the dog genome.

(HCB) Han Chinese from Beijing and Fst = 0.15 for (JPT) Japanese from Tokyo. On the other hand,
the Perlegen has a mean fixation index of 0.1 whose composing populations have Fst = 0.08 for (EA)
European American, Fst = 0.12 for (HC) Han Chinese and Fst = 0.1 for (AA) African American.

1.5 Datasets and marker profile
In this section I discuss the marker profile and the different synthetic variants of the Mars dataset I utilize
for data analysis in this thesis.

1.5.1 Marker profile
According to Mars Veterinary Wisdom Panel (2013) Mars tested over 4600 autosomal SNP markers
from loci spread across the whole dog genome based on an analysis of 3200 dogs. Then, within an
intermediate step 1536 SNPs were selected using another set of 4400 dogs from different breeds. This
intermediate marker profiles was reduced in a final selection step to 320 markers on C = 25 of the dogs’
38 autosomal chromosomes according to the following quality criteria (Martin et al., 2010)

• Easy of sequencing: does the retrieval of a SNP often lead to missing of low quality calls? If the
allele has not been reliably identified then preference is given to marker who have repeat SNPs
nearby which have the same value due to linkage.

• Variability across breeds With breed composition prediction in mind a given marker need to vary
at least for a subset of the breeds.

In table 1.3 I see that for each of the chromosomes I have about 10-20 SNP markers on each of theC
chromosomes. In Figure 1.1 I illustrate SNP marker density where each point corresponds to a chromo-
some and is represented by the median and standard deviation of the distance between consecutive SNP
marker positions as measured in base pairs. Given that I have only 320 SNP marker it is to be expected
that I have a high median SNP marker distance of 968K taken over all chromosomes. However, the high
standard deviation of 880K suggests that the SNP markers are not very equally spaced. An inspection
of individual SNP marker distances shows a range from a few 100s to several million base pairs. But
this unequal spacing of markers is expected because Mars selected markers by an initial investigation of
discriminatory power as described above Martin et al. (2010). Given this high median SNP distance, I
expect that correlation information can only be utilized to a limited extent in the Mars dataset.

1.5.2 Datasets
In this section I discuss which datasets are used for estimation of model parameters (training dataset)
and which datasets are utilized for prediction (test dataset).
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Figure 1.1: This figure shows the median distance and standard deviation in base pairs between consec-
utive SNP markers. Each of the points represents one chromosome. The data suggests that a few SNP
have strong linkage while other can be considered unlinked given their distance of more than a million
base pairs.

1.5.3 Purebred reference dataset
Mars provides a purebred dataset based on a total 8552 dog samples (BigPure) selected from 149
Kennel Club recognized breeds which are listed in Table A.1. Some of these breeds have subpopula-
tions, i.e. with respect to country (UK vs. USA) or utility (show, working, field) and in the pure breed
identification algorithm I tend to count confusion of these subpopulations as wrong prediction while for
mixed breed identification I joined many breeds with sufficient similarity. Collaboratively with Mars’
staff I decided with sub-breeds to join based on visual proximity inspection of two dimensional breed
reconstructions using multidimensional scaling (see Section 2.4). In Tables A.2, A.3, A.4 the reader sees
which sub-breeds where merged.

Mars segments these 149 breeds into three classes of non-overlapping meta dog groups: ancient
(mostly Asian breeds), Guard (mostly mastiff type dogs) and European Hedge (most of those breeds
were created in Victorian era). Most of the breeds (about 125 out of 149) were assigned to Hedge.
For computational reasons, initially I also looked at a small dataset denoted as SmallPure which is
composed of the first 34 alphabetical breeds from BigPure, i.e. breeds with initial starting with either
character A or B ranging from Afghan Hound to Bullmastiff.

Within the pure breed identification I split the pure breed dataset of nb = trainb + testb dogs for
breed b in two datasets where the training data has trainb training dogs and testb test dogs for each
breed. Then, for SmallPure and BigPure I performed the following data splits:

• For the SmallPure I used nb − 3 dogs for training and the remaining 3 dogs for testing. In Table
A.1, I list trainb under the column labelled Small. I see in this table that I have

∑B′

b nb = 1646

dogs where 1544 dogs are used for training and the remainder 3 ·B′ = 102 dogs for testing.

• For BigPure I have a total of
∑B
b nb = 8552 dogs with a total of 7250 training dogs and 1302 test

dogs. If a breed has less than nb = 20 dogs I use nb − 3 for the training set and three dogs for
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Possible TAP Lineage trees covering TAP
100% 1
50% 2-3,5-6
25% 3-5,7-10
12.5 5-11
0% 1-11

Table 1.4: For each true ancestral proportion level I list which of the lineage trees have corresponding
levels. Lineage tree IDs correspond to those defined in Figure 1.2.

the testing set. However, if nb > 20, I put nb − b0.15 · nb + 0.5c dogs in the training set and the
remaining b0.15 · nb + 0.5c in the testing set. The training set trainB , I obtain for each breed is
shown in Table A.1 under column labelled Big.

For BigPure, breeds Schipperke (UKX), Miniature Pinscher (UKX), Weimaraner (US2X), Saint
Bernard (UKX) and Soft Coated Wheaten Terrier (UKX) have the five least number of training
dogs with a count of nb = 4, 5, 5, 7 and and nb = 10, respectively. On the other hand, I also
note that Shih Tzu, Labrador Retriever (US Field), Labrador Retriever (US Show), Yorkshire
Terrier (US) and Poodle (Miniature) have the five highest numbers of training dogs with a count
of nb = 332, 276, 236, 235 and nb = 183, respectively.

1.5.4 Test Sample of synthetic dogs

(a) Tree 1: AAAAAAAA (b) Tree 2: AAAABBBB (c) Tree 3: AAAABBCC

(d) Tree 4: AABBCCDD (e) Tree 5: AAAABBCD (f) Tree 6: AAAABCDE

(g) Tree 7: AABBCCDE (h) Tree 8: AABBCDEF (i) Tree 9: AABCDDEF

(j) Tree 10: AABCDEFG (k) Tree 11: ABCDEFGH

Figure 1.2: This figure shows the way Mars arranged lineage trees Φ by complexity. Each ggp leaf
is encoded by colour according to the breed it represents. The most complex case is shown in tree 11
which assumes eight distinct pure breed ggps. Although these ggps may not pure breed ancestors I make
this assumption because it is unlikely to detect ancestry on a finer scale than this. All other trees form
special cases, e.g. tree 1 represents purebred dogs assuming that all eight ggps are from the same breed
while tree 2 shows designer dogs which are a cross of two purebred dogs. The trees are roughly sorted
in order of complexity although tree 6 (1 parent, 4 ggps) is more complex than tree 7 (3 gp, 1 ggp).
These figures represent a classification perspective where time flows upwards (current individual at top)
which is contrary to coalescent genealogical trees (Felsenstein, 2013) where the most recent individual
is placed at the bottom of the figure.

To quantify breed contributions in mixed bred dogs I used dataset BigPure for training and a
synthetic dataset for testing. To evaluate algorithmic approaches for breed proportion estimation Mars
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Lineage Tree Purebred Parent Grandparent Great-grandparent
1 1 0 0 0
2 0 2 0 0
3 0 1 2 0
4 0 0 4 0
5 0 1 1 2
6 0 1 0 4
7 0 0 3 1
8 0 0 2 4
9 0 0 2 4

10 0 0 1 6
11 0 0 0 8

Table 1.5: For each lineage tree shown in Figure 1.2 I list the counts for the different true ancestry
proportion levels. For example, lineage tree 3 is composed of one parent and two grandparents while
tree 10 has 1 grandparent and 6 ggps. This table also implies that all trees have a unique combination of
purebred, parents, gps and ggps except for lineage trees 8 and 9 which both have 2 gps and 4 ggps.

ID Tree Count ID Tree Count ID Tree Count
1 AAAAAAAA 953 5 AAAABBCD 798 9 AABCDDEF 641
2 AAAABBBB 906 6 AAAABCDE 748 10 AABCDEFG 615
3 AAAABBCC 846 7 AABBCCDE 735 11 ABCDEFGH 529
4 AABBCCDD 791 8 AABBCDEF 662

Table 1.6: For OrgSyntheticRed I list number of test samples in each of 11 lineage trees.

decided to specify different scenarios of different complexity ranging from a lineage tree with eight
different great-grandparent breeds to the special case where all great-grandparents are from the same
breed to form a purebred synthetic dog. Figure 1.2 shows all lineage trees composed of different quanti-
ties for the true ancestry proportion (TAP): purebreds (100%), parents (p,50%), grandparents (gp,25%),
great-grandparents (ggps,12.5%) or breeds not part of the ancestry (0%). In Table 1.4 I outlined which
TAP levels are present in which lineage trees. Furthermore, in Table 1.5 I show in more detail how many
leaves for each TAP level are present in each of the 11 lineage trees.

Based on this lineage structure shown in Figure 1.2 Mars generated 1,000 synthetic test dogs for
each of the 11 lineage trees to yield a total of 11,000 synthetic test dog genotypes (OrgSynthetic). Syn-
thetic genotypes were created by independently combining the information on different chromosomes
according to their respective haplotype frequencies derived from PHASE (Stephens et al., 2001; Li and
Stephens, 2003). The 175 breeds in the lineage tree were selected according to the breed distribution of
records stored in Banfield The Pet Hospital’s central database which approximately maps breed propor-
tions in the dog population (Martin et al., 2010).

However, there are two constraints why I do not use OrgSynthetic as test dataset for mixed breed.
The first constraint is due to data inconsistency. OrgSynthetic (175 breeds) and BigPure (149 breeds)
neither have a subset nor a superset relationship with respect to the breeds. Therefore, I only consider
breeds which are in the union of OrgSynthetic and BigPure breed set, reducing the number of consistent
breeds to BM = 125 breeds. In Tables A.2, A.3, A.4 I show how I arrived at a consistent breed set.
In particular, I first deleted all breeds in OrgSynthetic but not in BigPure, and vice versa. Finally, a
few breeds were aggregated which contain subpopulation structure. Secondly, I restrict my attention
to singleton breed assignments in the lineage tree, i.e. each breed can be assigned only to those ggp
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slots which have the same colour encoding. This second constraint is used to simplify possible breed
proportions which in this case are in the set {0, 0.125, 0.25, 0.5, 1}. So, in summary I have 8448 samples
in a reduced purebred training dataset BigPureRed with a median number of 55 dogs per breed, and
another 8224 synthetic test samples in OrgSyntheticRed distributed in lineage trees according Table 1.6.

Based on the way test dataset OrgSyntheticRed was simulated I will comment on the inherited
breed proportions. Firstly, there is sampling error due to incomplete sampling described in Section 1.3.4
although according to Table A.1 the number of purebred dogs per breed varies widely in my study. Sec-
ondly, there is biological variation within the selected parents from a given breed and some parents have
genomes closer to the mean dog of a given breed than others. Thirdly, according to Section 1.3.1 the
number of markers and their informativeness for ancestry inferences technically limits how well breed
proportions can be estimated. Furthermore, there is measurement error when sequencing the genetic
data of training or test dogs (Visscher et al., 2006, 2008).

There is also variation in genome sharing because the choice of which parental genome chromo-
some segment is inherited is probabilistic, i.e. the child inherits a segment from the maternal or paternal
breed with equal probability. Let us illustrate this point with an example where I assume lineage tree
AAAABBBB in Table 1.2 based on four parents from breed A and B each and each of the eight great-
grandparents is observed on C = 25 chromosomes. In diploid species there are 2 · C Bernoulli trials
to select either parents’ chromosomal segment with probability p = 0.5, i.e. a Binomial distribution
with N = 2 · C, p = 0.5. To construct a 100 · (1 − α) = 95% confidence interval for α = 5, I use the
Wilson interval (Wilson, 1927) in expression 1.1 based on critical value zα/2 (i.e. (1 − α

2 )−percentile
of standard normal distribution) to yield interval [0.37, 0.63]. According to Brown et al. (2001) due to
the central limit theorem a Binomial confidence interval can be approximated with a normal distribution
for np > 5 and n · (1− p) > 5 which is valid in my case. Therefore, an approximate normal confidence
interval in expression 1.2 yields a similar interval [0.36,0.64]. Therefore, in 95% of the time simulated
test samples from lineage tree AAAABBBB will have breed proportion which deviate by ±13% from
the truth of 50%.

N

N + z2α/2

p+
z2α/2

2 ·N
± zα/2

√
p · (1− p)

N
+
z2α/2

4N2

 (1.1)

p± zα/2

√
p · (1− p)

N
(1.2)

Furthermore, the novel simulation-based algorithm which will be presented in Chapter 4 underes-
timates breed proportions due its exploration of the breed space. Therefore, in some cases my novel
algorithm yields a lower breed proportion estimate than the true ancestral proportion, e.g. an estimate
may suggest ggp but it is actually a grandparent breed or a breed may be judged not part of the ancestry
but it is actually a ggp breed.

1.5.5 Recombination test sample of synthetic dogs
Mars’ synthetic test dataset OrgSyntheticRed only models recombination up to the chromosome level,
i.e. in the simulated data there is exactly one breed assigned to the maternal (M) and exactly one breed



40 Chapter 1. Background ancestry testing and canine research

Figure 1.3: The two sequences correspond to two examples for haplotypes on chromosome c where
either the maternal or paternal part of the parental haplotype is copied first, respectively. Each haplotype
is a combination of maternal (M) breed and paternal (P) breed haplotype subsequence sampled according
to haplotype frequency estimates, such that with 50 percent chance either parent forms the first part of
the sequence. Without loss of generality, I assume that the first sequence is related to the maternal
haplotype: then, the first r alleles are copied from the maternal haplotype Hc

M , i.e. Hc
M [1 : r] while the

remaining alleles from r+ 1 to nc (chromosome length) are copied from the paternal haplotype Hc
P , i.e.

Hc
P [(r + 1) : nc].

to the paternal (P) haplotype. To investigate the effect of more complicated ancestries I derive 100
synthetic canine test samples for the case of recombination. For both cases I create a common lineage
painting of singletons according to lineage tree ABCDEFGH for each of the test samples uniformly
sampling breeds from the set BM = 125 consistent breeds.

1. OrgSynRecC1: this case resembles data generation for lineage tree ABCDEFGH in test dataset
OrgSyntheticRed. Firstly, for each test sample I created a genome painting by uniformly assigning
breeds to the 2 · C chromosomes. Then, the genotype X for each test sample is created, such
that for each maternal and paternal breed each on chromosome c I sample a haplotype from the
maternal and paternal breed according to their PHASE haplotype frequency estimates. Then, I add
maternal (haplotype 1) Hc

M and paternal (haplotype 2) Hc
P haplotypes to yield the genotype on

chromosome c. I repeat this procedure for all chromosomes and combine results to yield the full
genotype X.

2. OrgSynRecC2: in this case I create a dataset which helps to study the impact of recombination.
According to Wong et al. (2010) the canine sex-averaged, chromosome-averaged recombination
rate is 0.92 cM/Mb where 1 cM/Mb refers to about 1% probability of crossover between two
markers a mega base apart (Hellenthal, 2006). Furthermore, the purebred dataset described in
Section 1.5.3 has chromosome length ranging from 9-15Mb. Therefore, the chromosome recom-
bination probability α is between 8.3% and 13.8% and for simplicity I assumed α = 10% in this
simulation study.

For each test sample I assume lineage tree ABCDEFGH shown in Figure 1.2 and sample 1 haplo-
type for each of the eight great-grandparents according to the haplotype frequencies in the purebred
dataset BigPure in Section 1.5.3. In this setup for each chromosome c recombination could occur
at the following six ancestral positions:
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• Four pairs of great-grandparents (PARENTS) form the four grandparent breeds (CHILD).

• Two pairs of grandparent breeds (PARENTS) form the parents (CHILD).

At each of these ancestral positions recombinations occur with probability α, or with probability
1−α one of the two PARENTS haplotypes HM , HP is chosen with equal probability. In the case
of recombination PARENTS haplotypes Hc

M , H
c
P are combined to form CHILD haplotype HC as

follows

Hc
C = [Hc

M [1 : r], Hc
P [(r + 1) : nc]] or

Hc
C = [Hc

P [1 : r], Hc
M [(r + 1) : nc]]

where the recombination position r ∼ U [1, nc − 1] is chosen uniformly over all markers (except
for the chromosome boundaries) where nc is the number of loci on chromosome c. This process
is repeated for all chromosomes of a test dog. Once the two parental haplotypes from the sire and
dam have been selected I combine them to form the genotype for the test dog.

1.6 Thesis contributions and further chapters’ outline
According to the previous sections, there are a wide range of reasons and motivations to provide com-
mercially available DTC canine ancestry testing kits. Having this in mind, the objective of this thesis
is the development of a novel computational approach which estimates the proportions of breed contri-
butions in mixed breed dogs using SNPs and compare its results with those obtained from a technique
which represents the current state of the art for human ancestry inference in the literature. In particular,
I am interested in the investigation of complex ancestries composed of multiple breeds, such that breeds
contribute only 1/8th of the ancestry of a dog. This prediction is performed based on a comparison with
the specific genetic sequence patterns of the purebred dogs in the ancestral dataset composed of purebred
training data.

The main novel contributions in this thesis are as follows:

1. A detailed study of breed similarity in dogs to further exploratory investigations of how well breeds
can be visually discriminated as well as a mechanism to bias breed update proposals according to
a breed proximity matrix within a Markov Chain Monte Carlo (MCMC) algorithm.

2. Research, implementation and testing of novel MCMC-based inference technique DBAncestry
which is based on maximization of haplotype frequencies. DBAncestry is used to infer complex
ancestry compositions of up to eight great-grandparents and is targeted at datasets composed of
short genetic sequences.

3. A comprehensive review of techniques applicable for human and canine ancestry inference due to a
lack thereof in the published literature but also to select an advanced technique used as competitor
for DBAncestry.

4. As comparison to my novel ancestry inference approach I also applied ChromoPainter to the same
test set. ChromoPainter is a recent advanced techniques based on a hidden markov model.

The following part outlines an overview of the following chapters:
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• Chapter 2: this chapter can be viewed as a continuation of Section 1.4.4 which discussed breed
similarity as it applies to clustering of breeds from the existing literature. However, this chapter
focuses on an investigation of breed proximity based on dataset BigPure introduced in Section
1.5.3.

This chapter is motivated by two main factors: firstly, I will explore a variety of breed similarity
measures visually to assess their potential for breed discrimination. Then, secondly, given the dif-
ferent explored proximity measures I seek to select an appropriate one which is promoted to form
the basis of a breed-biased update proposal mechanism within a MCMC algorithm in Chapter 4.

I will look at a range of distance and correlation measures to calculate breed proximity based
on different purebreed data representations which are either based on the original genotype
data, or utilizes haplotype frequencies in two different ways. Furthermore, I visually assess the
proximity measures using different visual representations, such as heatmaps, dendrograms and
low-dimensional breed similarity reconstructions, to determine breeds which either form clusters
or are spread out. These plots show that some breeds are very separated out while other breeds
even show some overlap.

Results will be compared with published work by Vonholdt et al. (2010). For example, I also found
that leaf branches in the dendrogram tend to be long suggesting that breeds are distinct, and the
clustering structure is flat which is related to little population substructure. I also discovered by
visual inspection that a genotype representation is more suitable to separate out clusters of breeds
which makes it a suitable choice for the MCMC algorithm.

• Chapter 3: this chapter develops the novel methodology DBAncestry for the special case of
pure breed identification which will be extended to the crossbred case in subsequent chapters.
Furthermore, I review existing work by Mars which does not account for LD in a principled way.
In the case of DBAncestry I obtain a characteristic breed representation using genetic information.
While the Mars approach will look at SNPs individually the DBAncestry will look at the SNPs
jointly through haplotype frequency estimates. Haplotype frequency estimates are computed
separately for each breed to avoid confounding of population structure or jointly across breeds to
exploit sample size.

Firstly, the DBAncestry algorithm works by enumerating consistent haplotype pairs. Then, to
compute the breed pair assignment on a chromosome DBAncestry averages over the product of
maternal and paternal frequency estimates according to the set of consistent haplotypes. How-
ever, in some cases not all pairs of consistent haplotype pairs have non-zero frequency estimates.
Therefore, I will develop three options to deal with the case where one or more of the haplotype
frequencies are zero. Finally, within the experiments on the training/test split discussed in Section
1.5.3 I will look at those options and will report which haplotype frequency imputation strategy
works best.

• Chapter 4: this chapter extends DBAncestry from the special case for pure breed identifica-
tion presented in Chapter 3 to inference for mixed breed dogs composed of up to eight great-
grandparents.
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However, the search space defined by all possible breed compositions is very large. Therefore,
to yield estimates for the different breed proportions I sample the space of possible breed com-
positions using a Metropolis-Hastings algorithm. I will experiment with two different updates
rule in the MCMC algorithm: either I uniformly propose a new breed, i.e. all breeds have the
same chance to be drawn within the proposal mechanism. Alternatively, I bias the Markov Chain
according to the Manhattan rank breed distance defined in chapter 2, such that new breeds are
likely to be similar to the current breed assignment. Furthermore, I experiment with different
run-length of the MCMC algorithm which differs by a factor of 10, i.e. I either use 700K (short
run) or 7 million (long run) main phase iterations.

I found that breeds proportions are well estimated across all ancestral levels from pure breeds
down to great-grandparents. Furthermore, possibly due to lack of deep hierarchical structure of
the breed space a uniform breed update proposal in the MCMC algorithm is sufficient to explore
the breed space.

I also investigated whether knowledge of the lineage tree for the synthetic test has to be assumed
or whether it can be derived from breed contribution estimates. Indeed, I find that via the proxy
of the ancestral level (purebred, great-grandparent, etc.) the lineage tree can be inferred from the
estimated breed contributions. Finally, I found that DBAncestry models recombination well and
predicted breed contribution estimates only decrease by a very small amount.

• Chapter 5: the final chapter has two parts

– Review ancestry inference techniques: there is a a lack of a comprehensive review of
currently available techniques for estimation of local and global ancestry proportions. Due
to this shortcoming I extensively reviewed existing approaches at the conceptual level starting
from the earlier techniques until the most recent state of the art techniques. These ancestry
inference approaches span a wide range of statistical techniques, such as multivariate linear
regression with multiple responses and machine learning based techniques, which led us to
classify them according to the modelling framework. Furthermore, if possible, I describe the
historical development of these techniques based on their identified limitations.

– ChromoPainter data analysis: after this initial review of ancestry inference techniques
I defined a list of criteria to select an algorithm as competing technique for DBAncestry.
Considered criteria are whether the algorithm is suitable for sparse/dense marker sets, how it
scales with the number of breeds, whether there is a publically available implementation and
if so whether access to expert users of the software exists. The ChromoPainter techniques
satisfied this list of criteria best and I compared it in more detail with DBAncestry.

After that I discussed how I computed a haplotype representation of the test dogs dataset
OrgSyntheticRed (Section 1.5.4) and inferred the recombination and mutation rate from
the BigPure dataset (Section 1.5.3) which are used as input to the ChromoPainter software.
ChromoPainter reasonably well predicts pure breed estimates. However, for more complex
lineages performance sharply drops, such that breed contributions are much more underesti-
mated compared to DBAncestry.
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1.7 Conclusions
This chapter provided an introduction to DTC genetic ancestry testing kits along with the motivation
of private, public and academic users. While private reasons are mainly due to curiosity about human
or canine ancestry while academics use it in the context of population genetics and GWAS studies.
Furthermore, public users of human DTC test kits are concerned with forensic applications while canine
ancestry prediction is relevant to deal with public safety concerns in human communities with respect to
dog attacks.

In this chapter I also discussed the value of five data sources which can be used to assess methods
that are predictive of ancestry. In particular, I analyzed the merits and limitations of phenotypic data,
language input, genealogical records, stable isotopes as well as genetic data to infer ancestry. With
respect to genetic data I reviewed lineage-based markers and autosomal SNP markers whereas the latter
one will be used for breed composition estimation in the subsequent chapters. After that I explained the
concept of local and global ancestry inference: local ancestry inference is concerned with the ancestry
inference at the individual SNP marker while for global ancestry estimation used in this thesis I would
like to estimate ancestry proportions averaged over all SNP markers, i.e. ancestry across the whole
chromosome.

As next topic I reviewed some background on the historical development of dogs, followed by a
discussion of marker correlation leading to similar haplotype segments along the chromosome. After
that compared population variability in humans and dogs. Finally I show a few figures which illustrates
how breeds cluster according to genetic distance.

The final section in this chapter dealt with the thesis motivation, surveyed its novel contributions
along with a more detailed description of the subsequent further chapters.



Chapter 2

Breed similarity in dogs

Many problems in science, such as geometry, probability, statistics, pattern recognition, information re-
trieval and molecular biology are concerned with classifying objects according to perceived similarities.
For examples, ecologists collect quantitative measurements to judge the resemblance of species. In bi-
ology the process of classifying species is known as taxonomy (taxa = groups). Taxonomy goes back to
Aristotle who classified animal species into vertebrates and invertebrates. Among others, Theophrastus
and Linnaeus accounted for the structure and classification of plants. In 1737 Linnaeus wrote in his
book ’Genera Plantarum’ (Linnaeus, 1737) that ’All the real knowledge which we possess, depends on
methods by which we distinguish the similar from the dissimilar. The greater the number of natural
distinctions this method comprehends the clearer becomes our idea of things.’

Similarity is also a basic mode of human thinking where I judge how close two physical objects are
with respect to length, time period, coolness, etc. Furthermore, distinguishing patters into groups, such
as which items are edible or poisonous, and to recognize and classify words in a language, appears to a
primitive human characteristic.

In this chapter breed proximity is motivated by two main factors: firstly, I study breed proximity
to visually inspect how well groups of breeds are separated out in low-dimensional space. Secondly,
I am interested in computing a breed similarity measure which is utilized as information geometry for
the discrete breed space in the breed proposal step of a Markov Chain Monte Carlo algorithm. As first
step I review different proximity measures and explain how I use techniques, such as multidimensional
scaling (MDS), dendrograms and heatmaps, to visualize these measures. After that I discuss how I
either employ a data representation based on genotypes or haplotype data to compute these proximity
measures. Finally, I present results in form of visualizations and offer a comparison with previous canine
hierarchical clustering results evaluated by Vonholdt et al. (2010).

2.1 Motivation to infer interbreed relationships
Most species do not reproduce according to the assumptions of a panmictic population which leads to
genetically stratified subpopulations which may be due to different reasons, such as geographic barriers
(Rosenberg et al., 2005). The study of breed similarity is motivated by two main reasons. Firstly, I
perform an exploratory data analysis to get insights into between-breed variability and to see how well
groups of breeds can be visually discriminated. And, secondly, I use breed similarity to investigate
whether it may yield improvements in predictive modeling, i.e. to more accurately estimate breed ances-
try composition. Although I derive the similarity measure for the second case in this chapter its impact
on prediction results will be discussed in chapter 4.

1. Study of breed variability for visual breed discrimination: starting with Charles Darwin bi-
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ologists targeted the reconstruction of evolutionary history (Nei and Kumar, 2000; Wiley and
Lieberman, 2011). Classical evolutionists compared the morphology and physiology of species
to arrive at conclusions about the shared evolutionary history of species. Due to the subjective
nature of this taxonomic categorization many conclusions have been controversial. Advances
in molecular biology provided DNA data of the species genetics. Firstly, DNA data allows for
an objective comparison of different types of organisms, such as bacteria, plants and animals.
Secondly, evolutionary change of DNA pattern is much more regular than morphological changes,
such that change and comparison of DNA between distantly related organisms can be modeled
mathematically.

Then, in our study of genetic canine data I get insight into breed structure via an exploratory data
analysis where I either cluster breeds or plot breeds as point in two-dimensional space according
to an optimal reconstruction of high-dimensional proximities.

2. Impact of update proposal in MCMC algorithm on prediction quality: the second objective
to study breed similarity is derived from the interest to improve breed ancestry prediction. There-
fore, I intend to alter the uniform lineage painting proposal, such that new breed proposals in the
lineage painting are more likely to be replaced by similar breeds. Breed similarity may yield a
better exploration of the lineage painting search space. However, I may be stuck in local maxima
of the search space. In particular, I look at two sub-objectives: firstly, I intend to either increase
performance metrics, such as the deviation between true and predicted breed contribution. Sec-
ondly, improved exploration of the search may improve convergence speed of the Markov Chain,
such that fewer iterations are required in the Metropolis-Hastings algorithm to yield a sufficiently
good breed ancestry prediction.

2.2 Introduction to similarity measures
I am given n objects measured each with d features forming a n× d data matrix X ∈ Rn×d. In the case
of the dog dataset I observe n purebred dogs on d features which are given by the SNP markers.

Cluster analysis is the explanatory study which analyzes algorithms for finding natural grouping
and classifying of objects through unsupervised learning (Jain and Dubes, 1988; Hair et al., 2009; Deza
and Deza, 2009; Everitt and Hothorn, 2011; Legendre and Legendre, 2012; Härdle and Simar, 2012). In
other words, I intend to find a valid organization, reduce the data, understand the structure of the data
to generate hypotheses given that objects are not tagged with a class label as response. A cluster groups
a number of objects together. This cluster can be visualized as a collection of objects which are close
together according to the proximity measure.

A proximity measure establishes the alikeness and affinity between pairs of objects. In particular,
in population genetics I summarize the relationships between individuals based on patterns in molecular
data. The proximity matrix can be derived from the data matrix. The element in the ith row and jth
column of the similarity matrix describes the proximity between the ith and jth object. Furthermore, I
can ignore the diagonal element of the proximity matrix because I assume objects have the same measure
of proximity to themselves. A proximity measures is either a numerical similarity S or dissimilarity
(distance) matrix D. According to Cattell (1952) a proximity matrix can be discussed from two main
viewpoints. One may either view this matrix to study the variability of objects (Q analysis) given all
features or the variance of features (R analysis) given all objects. The proximity matrix has dimension



2.3. Measures of proximity 47

n×n for Q analysis and d×d for R analysis. For nonmetric data, similarities are referred to as association
measures.

• Correlation: a measure of correlation does not look at the magnitude difference between two
objects but instead looks at pattern of the features between any two objects.

• Distance: a proximity measure based on magnitude between pairs of objects. Distance measures
appear to be preferred over correlation measures. Many distance measures are metrics which
satisfy the four following conditions: non-negativity (Dij ≥ 0), identity of indiscernibles (Dij =

0 iff objects are identical, i.e i = j), symmetry (Dij = Dji) and triangle inequality (Dik ≤
Dij +Djk).

• Association: similarity measures for nonmetric features, such as nominal or ordinal valued fea-
tures. For example, in the case of binary responses to a survey an association measure judges the
amount of agreement or matching between any two pairs of responses.

For example, the Euclidean distance is a dissimilarity measure while a correlation coefficient cor-
responds to a similarity measure. If required, similarities and distances can be transformed into each
other. If Sij ∈ [0, 1], then I may compute the corresponding distance as D = 1− S. On the other hand,
in the case of similarity defined by correlation Sij ∈ [−1, 1] and I convert to a distance measure by
taking D = (1 − S)/2. Distances may not have pre-specified lower and upper values so let us define
Dnorm = (D − Dmin)/(Dmax − Dmin) where Dmin = min(D) and Dmax = max(D), Then, I convert
normalized distances into similarities by S = 1−Dnorm.

Deriving a suitable proximity measure between objects for a scientific problem has turned into a
common task. Given the limited information exchange between specialized scientific disciplines the
same proximity measures were introduced with different names in various scientific areas (Crochemore
et al., 2007; Deza and Deza, 2009; Hadjieleftheriou and Srivastava, 2011). For example, a distance
measure which counts the number of different symbols of two objects of same lengths is known as edit
distance in natural language processing, Levenshtein distance in coding theory, Hamming distance in
information theory and evolutionary distance in computational biology.

2.3 Measures of proximity
Choice of proximity measure is of central importance to judge the closeness of objects. Firstly, I need
to examine the data type which is used within the proximity measure. For example, I may consider
dichotomizing a continuous variables. In the case of rivers I may be interested on whether a fish is
edible based on a threshold of toxicity (Everitt and Hothorn, 2011). Secondly, the analyst has to decide
whether shape and pattern of features between objects is more relevant than differences in magnitude.
Thirdly, some proximity measures are monotonically related. In this case I might want to consider
clustering algorithms which does not consider absolute values but ranks. For example, in a clustering
algorithm referred to as hierarchical clustering the distance between two groups of objects might be
computed based on single linkage (minimum distance of one object taken from each of the two clusters)
or complete linkage (maximum distance of one object taken from each of the two clusters).

A large number of similarity coefficients were first derived for the case where all variables are binary
(Gower and Legendre, 1986; Everitt and Hothorn, 2011). In this report I focus on proximity measures
for continuous data and will offer more in-depths information for this case.
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2.3.1 Proximity measures for continuous data
Proximity measures will be separated in general similarity and dissimilarity measures for ratio scale data,
distances in probability theory and ChromoPainter measure.

2.3.1.1 Distance and correlation measures in statistics
At first I define allele sharing and Minkowski distance:

• Allele sharing is also known as evolutionary distance and is defined as one minus the proportion
of alleles shared, i.e. dij = 1−Hp where Hp is the Hamming distance which is defined as Hp =
1
p

∑p
k=1 1 [xik 6= xjk] where xi, xj are the genotype vectors for individuals i and j, respectively.

The Hamming distance is a popular measure in information theory which describes the number of
loci at which alleles are different, i.e. the minimum number of substitutions required to change
genotype xi into xj .

• Minkowski distance which is defined as

dij =

(
p∑
k=1

|xik − xjk|r
)1/r

. (2.1)

Popular special cases are given by the Euclidean distance (r = 2) dij =
√∑p

k=1 |xik − xjk|2

and the Manhattan distance (r = 1) dij =
∑p
k=1 |xik − xjk|. Given that SNP data is defined over

a ternary alphabet Manhattan distance captures more information than the evolutionary distance.
Furthermore, given that SNPs with intermediate frequencies change more than rare alleles, some
distance measures are normalized by the allele frequency to adjust for better discrimination of
individuals (Patterson et al., 2006).

Then, I look at different forms of correlations coefficients φij ∈ [−1, 1] between objects i, j which
can be converted into distance measures using dij =

1−φij

2 . Let us define the mean value on object i as
xi· = 1

p

∑p
k=1 xik be the mean for object i. Then, the Pearson correlation, cosine angular similarity and

Kendall τ correlation coefficient are defined as follows:

• Pearson correlation is defined as

φij =

∑p
k=1(xik − xi·)(xik − xj·)√∑p

k=1(xik − xi·)2
∑p
k=1(xik − xj·)2

(2.2)

• Cosine angular similarity between objects i, j is defined as

φij =

∑p
k=1 xikxik√∑p

k=1 x
2
ik

∑p
k=1 x

2
ik

. (2.3)

• Kendall τ correlation coefficient measures similarity of ordered data by their ranks and are com-
puted as

φij =
2

n · (n− 1)

∑
1≤k<l≤p

sign(xik − xjl)sign(xjk − xil). (2.4)
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2.3.1.2 Distances in probability theory
I am interested to measure how much information is shared between two probability densities µ and
π (Ali and Silvey, 1966; Csiszar, 1967; Csiszár and Shields, 2004; Reid and Williamson, 2011). In
other words, I judge how close both probability densities are to each other. Csiszar (1967) introduced
the class of f-divergences which includes many probabilistic distance measures, such as the Kullback-
Leibler divergence. Let f(u) be a continuous, convex function defined for u > 0 and f(1) = 0. Then,
the f-divergence is defined as

Df (µ||π) = Eµ
[
f

(
µ(x)

π(x)

)]
=
∑
x∈X

π(x) · f
(
µ(x)

π(x)

)
(2.5)

Then, I can specify f in different ways to generate a large number of probabilistic distance mea-
sures.

• Variational distance (L1 norm): function f(u) = |u− 1| leads to

Df (µ||π) =
∑
x∈X
|µ(x)− π(x)|

• Hellinger distance squared: function f(u) = 0.5 · (
√
u− 1)2 leads to

Df (µ||π) = 0.5
∑
x∈X

(
√
µ(x)−

√
π(x))2 = H2(µ, π)

which can be viewed half the L2 norm squared for the square root of the variables µ, π where the
Hellinger distance is defined as

H(µ, π) =
1√
2
||
√
µ(x)−

√
π(x)||2

• Bhattacharyya distance: function f(u) = −
√
u leads to

Df (µ||π) = −
∑
x∈X

√
µ(x) · π(x)

• Harmonic mean: function f(u) = −2u
u+1 leads to

Df (µ||π) = −2
∑
x∈X

µ(x) · π(x)

µ(x) + π(x)

• Kullback-Leibler divergence KL(µ||π): function f(u) = u · log(u) leads to

Df (µ||π) = KL(µ||π) =
∑
x∈X

µ(x) · log

(
µ(x)

π(x)

)
.

2.3.1.3 ChromoPainter similarity measure
General continuous and probability proximity measures treat the SNP markers as independent. However,
due to strong LD (see Section 1.4.3) I would like to apply the proximity measure ChromoPainter (Law-
son et al., 2012; Lawson and Falush, 2012) which accounts for the correlation structure in the genetic
data. The recombination map has been inferred from PHASE (Stephens et al., 2001). However, due to



50 Chapter 2. Breed similarity in dogs

limited SNP density in the Mars dataset correlation information can only be exploited to a modest extent.

The ChromoPainter proximity measure takes as input the best haplotype pair for each training dog.
This input data is utilized to compute the square coancestry matrix which estimate the proportion an
individual coalesces (copies DNA) from another individual, i.e. how much two genetic marker profiles
overlap. This coancestry matrix is aggregated by breed to form a bm × bm matrix where bm is the
number of breeds which indicates how much each breeds copies from all other breeds.

To compute this coancestry matrix I use the expected total genetic length of DNA that a given
training individual copies from all other training individuals. In the extreme event of an infinite recom-
bination rate the unlinked case of PCA with genetic drift correction is recovered where the analysis
is performed at the SNP level (Price et al., 2006; Patterson et al., 2006; Lawson et al., 2012). In this
limiting case all training individuals which carry the same allele are equally likely to be copied from
while we do not inherit from any other of the individuals. Further technical details of this ChromoPainter
proximity measure will be discussed in Chapter 5.

2.4 Graphical methods for proximity matrices
I use three main visualization approaches to illustrate the different proximity matrices:

• Heatmap: heatmaps visualize the breed proximity matrix by encoding each matrix entry by a
colour chosen directly proportional to its magnitude. In this document proximity matrix entries
are encoded by a colour continuum which runs from red (corresponding to the lowest matrix
values), orange, yellow to white (highest values). Looking at a corresponding matrix entry, it is
easy to judge how related a breed pair is.

• Dendrogram: I apply hierarchical clustering to the breed proximity matrix (Izenman, 2008;
Everitt and Hothorn, 2011). Initially each individual forms its own cluster and then the algorithm
continues iteratively to join the most similar clusters at each stage until there is only a single clus-
ter. For cluster joining, I use complete linkage which defines the cluster distance as the maximum
distance between any two individuals, one from each cluster. Then, the clusters can be drawn
as a hierarchical tree diagram, referred to as dendrogram. The height at which two clusters are
combined to form a new, larger cluster provides information about the similarity of those two
clusters, i.e. similar clusters are joined at low heights (highly correlated clusters; close clusters)
while more distant clusters are connected higher up in the dendrogram (large branch lengths be-
fore clusters are joined). Therefore, larger differences in height where clusters are merged, implies
more substantial structure in the data.

Similarly to heatmaps, I will also encode each breed branch of the dendrogram according to a
pre-specified breed group membership. However, color-encoded dendrogram branches can only
be easily distinguished for a small number of groups.

• MDS: for the purpose of direct inspection it is desirable to visualize data sets into 2 or 3 di-
mensions. Ordination (from the Latin ordinatio and German Ordnung) is the arrangement and
positioning of experimental objects as points along one or several axes of references in a space that
contains less dimensions than the original space (Krzanowski, 2000; Quinn and Keough, 2002;
Legendre and Legendre, 2012). Ordination is a term which was coined in the ecology community
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and is better known as scaling to statisticians.

I focus on the methods multidimensional scaling (MDS) and principal component analysis (PCA)
which are the most popular multivariate data analysis tools to perform dimension reduction for
ordination (Gower, 1966; Mardia et al., 1980; Legendre and Legendre, 2012). Both techniques use
as input a n×d data matrix. Then, in MDS I compute the distance between the n objects to obtain
a d× d distance matrix. This distance matrix is used to compute a low-dimensional representation
which best retains the distances therein ((Q technique)). PCA can also be viewed as Q-technique if
we were to compute it as special case for MDS applying Euclidean distance as proximity measure.
In particular, PCA has least-square optimality, such that V =

∑n
i=1

∑n
j=1

(
d2ij − d̂2ij

)
is at a

minimum where d is the Euclidean norm between objects i, j and d̂ in the reduced space of princi-
pal component scores (Krzanowski, 2000; Izenman, 2008). However, typically PCA is presented
as variance maximization technique which directly uses the input data matrix (R-technique).

McVean (2009) show that PCA can be used to uncover biological knowledge: firstly, location of
individuals in the projected space formed by the principal component scores can be related to the
coalescent time of two samples. Furthermore, closeness on the principal component axes of an
individual to other populations is utilized to judge its admixture contributions. In this document I
will proceed using MDS to study proximities in two dimensional coordinates. because of the wide
range of distance and similarity measures beyond Euclidean distance I will consider.

2.5 Breed similarity results using genotypes and haplotypes
In this section I will study experimental results in a two-stage process by first evaluating pairwise prox-
imities between dog breeds and then using this information to visualize relationships between breeds.
Then, by visual inspection I will judge how well a given approach discriminates among groups of breeds.

Furthermore, I use four different canine data representations whereas one representation is based
on the original genotype data while the others use different forms of a haplotype representation.

• Genotypes: original genotype data is used.

• SmallHap: feature vectors are defined by haplotypes which have non-zero frequencies in at least
one of the two breeds whose proximity I evaluated.

• BigHap: feature vectors are defined by haplotypes which have non-zero frequencies in any of the
breeds.

2.5.1 Selection of subset of breeds for literature comparison
The last topic I discuss relates to how visualize breeds in a 2D MDS plot. There are bM = 125 breeds
in our datasets which can be projected and visualized as bM points in a 2D Cartesian coordinate system.
However, this approach makes it challenging to judge the separation between breeds. Therefore, I follow
Wilcox and Walkowicz (2010); Rimbault and Ostrander (2012) who suggest a rough categorization of
breeds into groups according to their appearance and behavior. This categorization enables the data
analyst to use visual displays to judge whether groups of breeds rather than individual breeds are well
separated. For example, Vonholdt et al. (2010) performs a hierarchical clustering analysis of a dataset
of at least five (and less than 12) dogs across 79 breeds using 48K SNPs. On the other hand, the Mars
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dataset has only 0.32K markers but a median of 55 purebred dogs per breed. To compare results with
Vonholdt et al. (2010), I first reduce the number of breeds to bH = 64 which is the intersection of breeds
present in both datasets. The reduction of breeds leads to those 11 groups of functional/phenotypic with
their bH member breeds (breed IDs are listed in brackets):

• Ancient, Spitz dog: Afghan Hound (1), Akita (3), Alaskan Malamute (4), American Eskimo Dog
(5), Basenji (9), Chow (40), Saluki (104), Samoyed (105)

• Toy breeds: Brussels Griffon (29), Chihuahua (37), Papillon (90), Pekingese (92), Pug (100),
Shih Tzu (112)

• Spaniels: Cavalier King Charles Spaniel (35), English Cocker Spaniel (51), English Springer
Spaniel (53), German Shorthaired Pointer (60)

• Scent hounds: Basset Griffon Vendeen Petit (10), Basset Hound UK (11), Basset Hound US
(12), Beagle UK (13), Beagle US (14), Beagle US2 (15), Bloodhound (21) Dachshund LH (44),
Dachshund MLH (45), Dachshund MWH (46), Dachshund (47)

• Working dogs: Dobermann Pinscher (50), German Shepherd Dog (59), Poodle (96), Portuguese
Water Dog (99), Schnauzer Giant (107)

• Mastiff-like breeds: Boston Terrier (25), Boxer (27), Bulldog (31), Bullmastiff (32), French
Bulldog (58), Mastiff (83), Staffordshire Bull Terrier (115)

• Small terriers: Briard (28), Norwich Terrier (88), Scottish Terrier (109), West Highland White
Terrier (122), Yorkshire Terrier UKKC (124), Yorkshire Terrier US (125)

• Mastiff-like breeds: Great Dane (65), Rottweiler (102), Saint Bernard (103)

• Retrievers: Golden Retriever UK (62), Golden Retriever US (63), Labrador Retriever UK (78),
Labrador Retriever US (79), Labrador Retriever (80)

• Herding dogs: Australian Shepherd (8), Border Collie (22), Collie (42), Pembroke Welsh Corgi
(93), Shetland Sheepdog UK (110), Shetland Sheepdog US (111)

• Sight hound: Borzoi (24), Greyhound (68), Whippet (123)

2.5.2 Discarding correlation structure in genotypes
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Figure 2.2: This figure shows the MDS plot for the ChromoPainter coancestry similarity matrix which
has been converted to a distance matrix. This measure visually discriminates Retrievers and Scent hounds
while Small Terriers are partially separated out.

This section discusses the use of genotype data, i.e. sequences over the ternary alphabet {0, 1, 2}, in
similarity computations which do not account for LD. Typically, studies utilizing SNP data are based on
allele sharing, i.e. Hamming distance (Vonholdt et al., 2010). However, the Hamming distance equally
weighs mismatches although allele distance 0-2 is evolutionary more different than mismatches 0-1 and
1-2. Therefore, I focus on Minkowski distances as proximity measure. Furthermore, I would equally
weigh all three difference computations which leads to the Manhattan distance.

In this analysis I am not interested in the pairwise computation of the proximity measure between
any two dogs in the training dataset but rather between any two breeds. However, the naive computation
of the Manhattan breed distance matrix is very computationally expensive. There are a median of 55
training dogs per breed. So, to compute the pairwise distance between two breeds on average I need
552

2 ≈ 1500 symmetry-adjusted computations composed of evaluating the Manhattan distance between
the SNP markers of two given training dogs. This previous step needs to be computed pairwise for all
breeds (symmetry-adjusted) for 1

2

(
125
2

)
= 3875 times. Therefore, in total there are 552

2 ·
1
2

(
125
2

)
≈ 5.8

million evaluations of the Manhattan distance. A more efficient way to compute this Manhattan breed
distance matrix is by computing the allele frequencies for all SNPs breedwise. And then I can compare
these breed frequencies (symmetry-adjusted) for 1

2

(
125
2

)
= 3875 between any two breeds. The breed

frequency comparison between two breeds takes 6 addition and 18 multiplication operations.

I visualize the bm × bm Manhattan breed distance matrix using a heatmap. In Figure 2.1 I see
the heatmap for the Manhattan distance matrix based on genotype data and in Figure 2.3 (i) I show
the colour continuum with an integrated density plot showing the distribution of the different distance
values. I see the same heatmap again in Figure 2.4 (a) while in Figure 2.4 (b) I see that heatmap for the
same data but the distances have been converted to similarities. Therefore, more closely related breeds
have smaller values using distances and higher values when applied to similarities. In this heatmap in
Figure 2.1 I also see the result of a hierarchical clustering algorithm applied to the columns of the breed
distance matrix.
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(a) Breed similarity for f = exp(0) (b) Transition probability for f = exp(0)

(c) Breed similarity for f = exp(3) (d) Transition probability for f = exp(3)

(e) Breed similarity for f = exp(4) (f) Transition probability for f = exp(4)

(g) Breed similarity for f = exp(5) (h) Transition probability for f = exp(5)

(i) Distribution of genotype distances (j) Rank exponential decay function g for s = 0.05

Figure 2.3: In Figures (a,c,e,g) each line corresponds to a breed. For each of these breeds I show
the decreasingly ordered breed genotype similarities which have been exponentially transformed. In
Figures (b,d,f,h) I show the corresponding breed transition probabilities from closest (most similar, left)
to furthest breed (right). Figure (i) shows the distribution of distance values according to heatmap in
Figure 2.1. Finally, Figure (j) shows the proposed transition probability based on rank in distance sorted
breeds.
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A visual inspection of the integrated density plot in Figure 2.3 (i) and the heatmap in Figure 2.1
itself suggests that the distances are almost normally distributed with a positive skew towards higher
distance values. Furthermore, the dendrogram shows that the tree wide and not very deep. These plots
show a global picture of the distance distribution. However, first I need to examine how steep the decay
of the ordered breed distances is. Given that the decay of the original ordered distances (rank) for
each breed is very flat I apply an exponential transformation which contains a scalar scaling factor f
which tunes the steepness of the decay. For that purpose for each breed b I define the list of ordered
distances to the i−th next breed o′ =

[
dσ(1) = 0, dσ(2), . . . , dσ(bM )

]
∈ RbM where σ(1) = b corre-

sponds the breed itself, σ(2) refers to the closest non-zero distance breed and in general σ(i) denotes
the i−th closest breed in distance. Then, I remove the first element from the list dσ(1) and centre
by dσ(2) to obtain list o =

[
0, dσ(3) − dσ(2), dσ(4) − dσ(2), . . . , dσ(125) − dσ(2)

]
∈ RbM−1. Then the

centered distances in list o are converted to exponentially decaying breed similarities which are given
by s = exp(−f · o) ∈ RbM−1. In Figure 2.3 I see the ordered exponential decay transformed functions
for the four scaling factors f = exp(0) = 1 (a), f = exp(3) ≈ 20.1 (c), f = exp(4) ≈ 54.6 (e) and
f = exp(5) ≈ 148.4 (g), one line for each of the bM breeds. These plots show that the breed decay is
not very homogeneous across breeds, and for smaller values of f the decay is still very flat. Finally, these
exponential decay transformed breed functions can be converted into breedwise transition probabilities
using t = s∑

s ∈ RbM−1 which are shown in Figures 2.3 (b,d,f,h) for the same four scaling factors.
These figures show that there is very quick decay for the closest about first five breeds to breed b, then a
very flat decay for most breeds except for the last 10 breeds which show another higher negative slope.

We would like to use the transition probabilities to propose breeds within a simulation-based
framework discussed in Chapter 4. To ensure the same amount of exploration across breeds I will form a
breed-independent decay function for the transition probabilities. However, note that for a fixed amount
of exploration the breed proposed depends on the current breed. Furthermore, the transition probabilities
should be decaying quickly until about half of the breeds and then saturates at a low level. The exponen-
tial decay transition probability function I have in mind with these two characteristics is shown in Figure
2.3 (j) and is defined as function g′(r) = exp(−f · r) ∈ R where the scaling factor is set to f = 0.05

and rank is defined for r = 1, . . . , bM . Then, the closest breed has transition probability of 5 percent,
the first six breeds have a cumulative transition probability of 25 percent, the first 14 closest breeds have
a cumulative transition probability of 50 percent and the first 62 breeds cover cumulatively 96 percent
of the transition probability. Then, to apply function g to our original Manhattan distance matrix I form
the ordered list of distances for each breed and replace these values by function g. In other words, for
each breed I replace lists

[
dσ(1) = 0, dσ(2), . . . , dσ(bM )

]
∈ RbM by [0, g(1), . . . , g(bM − 1)] ∈ RbM .

The heatmap for the rank genotype matrix using function g can be seen in Figure 2.4 (c) while the
corresponding rank similarity matrix is shown in Figure 2.4 (d). From these figures it can be easily seen
that across breeds the majority of breeds have high distance, i.e. small similarity.

In Figure 2.7 (a) the MDS plot for the original genotype distance is shown. Four breed groups,
such as Ancient, Spitz dog, Toy breeds, Mastiff-like and Retrievers are well separated while other breed
groups show more overlap. In Figure 2.7 (b) we see the MDS plot for the rank adjusted genotype
distance shown in Figure 2.4 (c) which pulls the previously well separated four groups further to the
centre of gravity which leads to a lower signal-to-noise ratio.
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(a) Manhattan distance

(b) Pearson correlation

Figure 2.5: These figures show the hierarchical clustering results using complete linkage for Manhattan
distance and Pearson correlation based on the SmallHap haplotype data. Breeds from the same group
have their branches shown in the same colour. Although breeds from the same breed group tend to be
adjacent I notice that breeds from a given group are not distributed homogeneously, i.e. not all breeds
from the same group are in the same cluster. As before there is a flat cluster structure confirming limited
population substructure. Furthermore, most breeds are associated with long leaf branches suggesting
strong differences in breed. Compared with the genotype data dendrogram there are fewer short branches
which suggests less strong breed discrimination.
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2.5.3 Haplotype analysis discarding LD
In this section I use breed-wise haplotype frequencies to perform the similarity computations. In Section
3.2.2.1 I discuss details on how I derive haplotype frequencies from the purebred training dataset. These
haplotype-based proximity measure computations will be distinguished in two cases which I refer to as
SmallHap and BigHap.

SmallHap: in the SmallHap case proximity between two breeds b1, b2 on a given chromosome c is
defined by comparing haplotype frequency vector from each breed based on the set of haplotypes that
have a non-zero frequency in at least one of the breeds. To illustrate the breed frequency vectors vb1 for
breed b1 and vb2 for breed b2, I give an example over three markers. For each of the two breeds PHASE
returns non-zero frequencies f for four haplotypes each:

fb1


001

010

100

111

 =


0.1

0.4

0.45

0.05

 , fb2


001

010

110

111

 =


0.2

0.3

0.4

0.1

 (2.6)

I see in equation 2.6 that both breeds share 3 haplotypes and the union contains 5 haplotypes with
the following frequencies:

fb1


001

010

100

110

111

 =


0.1

0.5

0.35

0

0.05

 = vb1 , fb2


001

010

100

110

111

 =


0.2

0.3

0

0.4

0.1

 = vb2 (2.7)

Then, to compute the breed proximity dcb1,b2 between breeds b1, b2 on chromosome c I use vec-
tors vb1 and vb2 according to equation 2.7 as haplotype frequency representation. To obtain the final
proximity db1,b2 for breeds b1, b2 I average dcb1,b2 over all chromosomes. I will study two distance
measures, Manhattan distance and Hellinger distance, and two correlation measures, Pearson correlation
and Bhattarchyya correlation, depending on whether the focus is the distance in haplotype frequencies
or similarity in shape thereof. None of these proximity measures separates four breed groups as well
as the original genotype distance shown in Figure 2.4. All four measures show the retriever group as
distinctive cluster, and the Bhattarchyya correlation additionally spreads out the Mastiff-like group. It
appears none of these measures distinctly separates the breed better than others. However, depending on
the measure certain groups are more spread out, such as (Toy breed) for the Manhattan distance, (Toy
breed, Spaniels, Mastiff-like, Herding) for the Hellinger distance, (Toy breeds, Herding) for the Pearson
correlation and (Toy breeds, Spaniels, Mastiff-like) for the Bhattarchyya distance.

In Figure 2.6 I see the dendrogram corresponding to hierarchical clustering with complete linkage
using each of the four proximity measures. I label branches in the dendrogram by breed ID and colour
by breed group. However, I find that this illustration technique is more challenging to interpret by visual
inspection because the colors cannot be chosen very distinctly due to the large number of breed groups.
The dengrogram seems to confirm the results I discussed for the MDS plots.
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#Chr ID #SNPs haps #Chr ID #SNPs haps #Chr ID #SNPs haps
1 14 9.5 11 13 7.2 27 13 7.6
2 13 5.2 12 13 7.7 29 14 14.5
4 15 21.1 13 15 19.6 31 7 0.1
5 17 51.7 14 16 10.1 32 12 4
6 12 4 15 9 0.4 34 8 0.3
7 12 3.9 17 13 5.7 35 17 40.4
8 12 4 20 16 33.8 38 13 7.8
9 13 6.3 21 10 1

10 10 0.9 25 13 3.8

Table 2.1: The number of unique haplotypes in 1000s on a chromosome with non-zero population sample
frequency each for at least one of the breeds.

BigHap: this approach also uses haplotype frequencies as SmallHap. However, in this approach in
vector vb I include frequencies for all haplotypes which have non-zero frequencies in at least one of the
breeds. The number of these unique haplotypes is shown for each chromosome in Figure 2.8. Then, for
breed b I center vector vb elementwise by the average frequency of the haplotype corresponding to this
position. This implies that vector vb has small entries in most positions. The motivation for these big
haplotype vectors is to investigate whether absence of a haplotype for a given breed contains informa-
tion useful for breed separation. Given this motivation correlation is more suitable because it takes all
vectorial entries into account, such as same number or zero entries, while a distance measure discards
these entries because they cancel out to zero. In Figure 2.7 (c,d) I show the Manhattan distance and
Pearson correlation for the BigHap measure respectively. Note that due to this cancellation behaviour
for distances Figures 2.7 (c) and 2.6 (a) look the same. Again both measures separate out the retriever
group well. Figure 2.7 (d) suggests that the Pearson correlation also reasonably well distinguishes the
groups of Toy breeds and herding dogs.

Figure 2.8: This figure shows that the number of haplotypes with frequency > 0.01 for any of the breeds
grows exponentially with the number of SNPs on the chromosome. Each of the points represents one
chromosome. Note the y-axis is shown in log10−scale.
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2.5.4 Haplotype analysis
This section discusses the effect of LD, i.e. correlation of SNPs, on the computation of proximity mea-
sures. Not accounting for LD leads to an overestimation bias of the information available in the data.
Furthermore, a lack of LD consideration leads to an elevated emphasis and weighting on low SNP den-
sity region. However, even if most SNPs are widely spaced out I cannot view them as unlinked with an
infinite recombination rate because of the long range LD spanning a large fraction of each chromosome
argued in Section 1.4.3. Lawson and Falush (2012) show that LD-enhanced proximity measures improve
the signal-to-noise ratio of population separation which is computed as ratio of between-population dis-
tance to within-population distance. The authors also give experimental evidence that with more genetic
data it is easier to separate populations.

2.5.5 Summary of results
In this section I look how different combinations of proximimity measures and data representations
impact visual discrimination of breeds.

Firstly, I note that the genotype data representation provides a slightly better visual MDS separation
of breeds groups than either the SmallHap, BigHap or ChromoPainter variant shown in Figures 2.7,
2.6 and 2.2. The genotype representation separates the breed groups Ancient / Spitz dog, Mastiff-like
breeds, Retrievers and Toy breeds and partially separates Small terries. The haplotype representations
only separate out the Retriever groups and enables partial visual discrimination of the Toy breeds and
Herding dogs. Finally, the ChromoPainter measure does not visually separate out more breed groups
than other proximity measures, i.e. Retrievers and Scent hounds visually separated out while the Small
Terriers group is partially discriminated.

In general, the dendrogram clusterings shown in Figure 2.1 for genotype data and in Figure 2.5
for SmallHap are flat with few strong clusterings which suggests limited population substructure, i.e.
there is not much nesting and overlap among breeds. However, there is more cluster structure in the
haplotype-based dendrograms than in the the genotypes representations ones which again reflects the
fact that the genotype representation offers a stronger separation of breed groups.

Furthermore, most leaf branches in the dengrograms are long and breeds are joined at large height
differences. This insight suggests there are large breed dissimilarities showing sizable structure through
substantial distance among breed clusters. Figure 2.1 which shows a heatmap of the Manhattan distance
using genotype data confirms that most breeds are considerably different because most pairwise breed
proximities in the breed distance matrix are encoded as yellow to yellow-orange. However, based on
haplotype-based dendrograms in Figure 2.5 some breeds from groups, such as Mastiff-like breeds (Bull-

dog (31), Bullmastiff (32), Great Dane (65), Staffordshire Bull Terrier (115)) and Herding dogs (Border

Collie (22), Pembroke Welsh Corgi(93), Shetland Sheepdog US (111)), have shorter leaf branch length
which suggests these breeds are more similar to each other.

Compared to the clustering by Vonholdt et al. (2010) the dendrograms in Figures 2.1, 2.5 show that
breeds are less homogeneously clustered in groups. In other words, in our analysis breed groups are less
well recovered by the cluster analysis where fewer breeds from the same breed group are members of the
same cluster. This may be due to the smaller number of SNPs in our study, i.e. I use 0.32K SNPs com-
pared to 48K SNPs by Vonholdt et al. (2010). Although their paper only has about five dogs per breed
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Vonholdt et al. (2010) deal with this limitations by boostrapping 2K replications. Furthermore, similar
to our findings Vonholdt et al. (2010) also discovered long branch lengths and flat cluster structure in
their dendrograms. Moreover, I did not replicate their finding that the Ancient / Spitz dog form a set of
highly divergent breed, such that the top of the dendrogram those breeds are all in one subtree while all
other breed groups are in the other subtree. Although this ancient group cannot be separated out in the
haplotype-based MDS plots I can see the ancient group as separate polygon in the genotype-based view.

2.6 Conclusions
This work on breed proximity measures was motivated from two directions. Firstly, I explored how
breeds are genetically related and cluster in breed space to unravel their similarity relationships. And,
secondly, I developed a similarity matrix which can be utilized within a breed-directed update proposal
mechanism with a Markov Chain Monte Carlo (MCMC) approach.

As proximity measure I reviewed different distance and similarity measures. Then, based on these
measures I used three different ways to visualize breed proximity: heatmaps, dendrograms and MDS
plots. Furthermore, I use four different canine data representations whereas one representation is based
on the original genotype data while the others use different forms of a haplotype representation.

I also segmented the set of breeds into 11 groups according to Vonholdt et al. (2010). To some
extent I replicated some of their findings. For example, I found that the leaf branches in the dendrogram
tend to be long suggesting that breeds are distinct, and the clustering structure is flat which is related to
little population substructure. However, the detected clusters match the pre-specified breed groups less
well than in the work by Vonholdt et al. (2010).

Furthermore, I found that the genotype representation can visually separate out more breed groups
in the MDS plots than a haplotype representation, which makes it an attractive choice to be used within
the update proposal for the MCMC algorithm.



Chapter 3

Methodology for pure breed identification

In Section 3.1 I will discuss an ancestry inference framework based on maximization of haplotype
frequencies which are the foundation for the Mars approach and my novel methodology DBAncestry.
This chapter deals with the special case of purebred dog prediction while in Chapter 4 I show how I
adapt the inference approach to crossbred dogs within the Mars and DBAncestry model.

At first in Section 3.1 I will specify the DBAncestry haplotype frequency model and define the
known and unknown parameter for this model followed by a discussion in Section 3.1.1 on how inference
is done for the DBAncestry model. Then, in Section 3.2 I will show how chromosomal likelihood
p (Xc|θ) in the haplotype frequency model is computed in the Mars (Section 3.2.1) and DBAncestry
model (Section 3.2.2). Finally, I will discuss the performance measure for the data analysis in Section
3.3 and the results for purebred prediction in Section 3.4.

3.1 Haplotype frequency model

Figure 3.1: Breed data structure Φ : The left column shows the maternal lineage painting and the right
column the paternal lineage painting while the centre block refers to the genome painting.

Variables representing the genetic data and the lineage tree type are known in the haplotype fre-
quency model:

• Genotype: in the haplotype frequency model the genotype data X of a test dog is given where Xc
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Chromosome uc breed uc vc breed vc
1 φM [3] German Shepherd Dog φP [2] Pekingese
2 φM [1] Australian Shepherd φP [2] Pekingese
4 φM [3] German Shepherd Dog φP [1] German Shepherd Dog
...

...
...

...
...

34 φM [2] Australian Shepherd φP [2] Pekingese
35 φM [3] German Shepherd Dog φP [1] German Shepherd Dog
38 φM [4] Rottweiler φP [3] Weimaraner

Table 3.1: For a subset of the chromosomes chromosome painting with associated breeds is shown.

refers to the genetic data on chromosome c ∈ {1, . . . , C}.

• Lineage tree:

– Mars approach: Φ refers to one of the 11 lineage trees shown in Figure 1.2.

– DBAncestry: I assume only one lineage tree similar to lineage tree ABCDEFGH in the
Mars approach. In particular, I assume Φ = (φM , φP ) is composed of two ordered breed
lists of length four (with repeats allowed) for the maternal ggps φM and the paternal ggps
φP , respectively.

The unknown variables related to the lineage and genome painting in the haplotype frequency model
are estimated:

• Lineage painting (specific assignment of breeds to the ggp leaves):

– Mars approach: in this approach variable Φ is reserved for the tree type: therefore, I use an
extra variable L which denotes the lineage painting composed of up to eight different ggps,
depending on the lineage Φ.

– DBAncestry: the lineage painting is given by the 8-dimensional vector Φ = (φM , φP ).

Figure 3.1 illustrates Φ where φM = [Australian Shepherd, Australian Shepherd, German
Shepherd Dog, Rottweiler] and φP = [German Shepherd Dog, Pekingese, Weimaraner,
Weimaraner]. Furthermore, in table 3.1 I show a partial G as textual information. In the
special case of pure breed identification in this chapter all eight breeds of Φ are the same, i.e.
Φ = [b, b, b, b︸ ︷︷ ︸

φM

, b, b, b, b︸ ︷︷ ︸
φP

] where b denotes the purebred breed.

• Genome painting G : Given Φ (and L) I generate a painting of each chromosome by choosing
one leaf from the maternal leaves and one leaf from the paternal leaves. Let U be a vector length C
which lists for each entry uc, c ∈ {1, . . . , C}which ggp leaf from the maternal breeds the genotype
on chromosome c is inherited from. Vector V is defined for U, but, applied to the paternal breeds.
Then, a chromosome painting for chromosome c is defined as a mapping c 7→ (uc, vc). I would
like to emphasize that a chromosome painting is defined by a mapping of a leaf pair to a particular
chromosome. As the breed assignments to the leaves change, then the breed assignment to the
chromosomes changes accordingly. Therefore, any given chromosome painting update cannot
assign any breed but only those ones which currently form part of L. The chromosome painting
for all chromosomes is referred to as a genome paintingG = (U, V ).An illustration of the genome
painting G for a subset of chromosomes is shown in Figure 3.1.

I integrate these parameters as θ = (Φ, L,G) and define the haplotype frequency model in Equation
3.1
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Breed Chromosome SNP name 0-0 0-1 1-0 1-1
Siberian Husky 1 SNP 1 0.43 0.57 - -
Siberian Husky 1 SNP 2 0.52 0.48 0.28 0.72
Siberian Husky 1 SNP 3 0.69 0.31 0.46 0.54
Siberian Husky 1 SNP 4 0.06 0.94 0.08 0.92
Siberian Husky 1 SNP 5 0.47 0.53 0.51 0.49
Siberian Husky 1 SNP 6 0.85 0.15 0.66 0.34
Siberian Husky 1 SNP 7 0.93 0.07 0.76 0.24
Siberian Husky 1 SNP 8 0.37 0.63 0.65 0.35
Siberian Husky 1 SNP 9 0.84 0.16 0.95 0.05
Siberian Husky 1 SNP 10 0.03 0.97 0.25 0.75
Siberian Husky 1 SNP 11 0.56 0.44 0.39 0.61
Siberian Husky 1 SNP 12 0.94 0.06 0.90 0.10
Siberian Husky 1 SNP 13 0.76 0.24 0.29 0.71
Siberian Husky 1 SNP 14 0.08 0.92 0.08 0.92

Table 3.2: Breed-specific SNP transition probabilities on chromosome 1 for breed Siberian Husky. There
are 14 SNPs sequenced for this first chromosome. In each row those transition probabilities sharing the
same old state sum to 1, i.e. p(0→ 0) + p(0→ 1) = 1, and p(1→ 0) + p(1→ 1) = 1. Table courtesy
of Davison and Fretwell (2012).

p(θ|X) ∝ p(X|θ)p(θ) ∝ p(X|θ) =

C∏
c=1

p (Xc|θ) . (3.1)

where I want to maximize posterior probability p(θ|X) for parameter θ given dataX. In Section 3.2
I will show how to compute quantity p (Xc|θ) . Equation 3.1 is based on the following three assumptions:

• MAP: maximum a posteriori estimation,

• Prior: uniform prior over parameter vector θ and

• Independence: independence of genetic data across chromosomes Xc.

3.1.1 Inference in purebred haplotype frequency model
Let B be the number of breeds in the dataset. Inference of the optimal θ which maximizes p(θ|X) is
found by evaluating p(θ|X) ∀b ∈ {1, . . . , B}. Then, because Φ is given as Φ = [b, b, b, b︸ ︷︷ ︸

φM

, b, b, b, b︸ ︷︷ ︸
φP

] I infer

breed b as ancestry which corresponds to the maximum of those B evaluations of posterior probability
p(θ|X). Although, in practise I work with the log-likelihood log[p(θ|X)] =

∑C
c=1 log[p (Xc|θ)].

3.2 Computation of chromosomal likelihood
In Section 3.1 I described the haplotype frequency model along with a description on how to perform
purebred dog inference in this model. However, I have not outlined yet how to compute chromosomal
likelihood p (Xc|θ) which is discussed for the Mars approach in Section 3.2.1 and the novel DBAncestry
algorithm in Section 3.2.2.

3.2.1 Mars approach:
In Section 3.2.1, I describe the Mars approach which looks at SNP-wise transition frequencies and uses
the hidden markov model forward algorithm to combine all SNPs forming Xc to compute p (Xc|θ) .
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3.2.1.1 SNP-wise frequencies
As first step in the breed composition inference I need to characterize each breed given the pure breed
genetic data BigPure. The Mars approach is based on the computation of SNP-wise transition frequen-
cies for each pair of breed and chromosome. For example, in Table 3.2 I see the transition probabilities
for breed Siberian Husky on chromosome 1. Initial allele states are listed in the row for SNP 1.

3.2.1.2 Evaluating chromosomal likelihood using HMM forward algorithm
I model probability pcuv = p(Xc|uc, vc) where pair (uc, vc) is the realization of breeds, i.e. a chromo-
some painting with maternal leaf uc and paternal leaf vc. Probability pcuv is computed from a HMM
forward algorithm using SNP transition probabilities which are evaluated as a product along the haplo-
type together with a marginal probability - obtained from a simple frequency estimate - for the initial
allele. Therefore, moving along the haplotype there are transitions from 0 to 0, 0 to 1, 1 to 0 and 1 to
1. Commonly, transition probabilities are inferred by the Baum-Welch algorithm for Hidden Markov
Models (HMM). However, the Mars approach seems to use a MCMC implementation to infer SNP-wise
transition probabilities which I did not analyze.

The HMM used is non-standard because there are two hidden states (the alleles on each chromo-
some, coded as 0 or 1) underlying each emitted value. Moreover, given the two hidden states the emitted
state is determined as their sum, and is therefore not stochastic. Once the transition probabilities are
derived in this non-standard HMM, they are subsequently run through an ’LD capping’ algorithm to
account for linkage disequilibrium. However, I have not investigated how this works.

In the appendix A.4 I discuss the HMM forward algorithm in more detail. At first, I will introduce
notation for the HMM. The probability of a chromosome painting for the observed genotype could
be naively computed by summing the probabilities of all possible haplotype pairs, given the observed
genotype data. However, this is not computationally attractive since there 2S−1 possible states for the
hidden haplotype pair, where S denotes the number of heterozygous SNP markers on the chromosome.
It is more efficient to introduce a HMM forward algorithm to compute this probability. It is based on the
idea of separating the observed genotype into two parts and proceeds by recursively accumulating partial
results for the hidden allele state sequence. Therefore, I utilize a forward variable to efficiently evaluate
this probability. Finally, I provide a toy example for the HMM forward algorithm. For computational
reasons, initially, breed probabilities pcuv for all chromosomes and breed pair combinations are pre-
computed and held in memory.

3.2.2 DBAncestry
In Section 3.2.2 I show the DBAncestry technique which improves upon the Mars approach because it
accounts for LD among markers on Xc. As first step as described in Section 3.2.2.1 I phase all purebred
training dogs, either separately by breed or jointly across breeds, to obtain estimates p(H|b, c) of hap-
lotype H conditional on a given breed and chromosome. After that in Section 3.2.2.2 I enumerate all
haplotype pairs which are consistent with chromosomal segment Xc. A haplotype pair is consistent with
a given genotype if at each SNP locus its allele is the sum of the alleles at the same haplotype locus.
Then, as final step of DBAncestry in Section 3.2.2.3 I describe three ways to compute p (Xc|θ) based on
the frequencies of the enumerated haplotype pairs.

3.2.2.1 PHASING
This section discusses how I derive estimates for haplotype frequencies which can be either interpreted
estimates of actual sample haplotype which are unknown or estimates of the population from which the
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sample was drawn. I look at the whole haplotype rather than at SNP-wise transition frequencies in the
Mars approach because I account for the strong canine correlation structure as discussed in Section 1.4.3.
Therefore, I performed a literature review which identified four algorithms for phasing genotype data:
PHASE (Stephens et al., 2001), fastPHASE (Scheet and Stephens, 2006), BEAGLE (Browning, 2006;
Browning and Weir, 2010) and long-range phasing (LRP) (Hickey et al., 2011; Kong et al., 2008). Then,
the selected phasing algorithm should at least partially satisfies the following four criteria:

• R1: a phasing algorithm which can compute haplotype frequencies.

• R2: a phasing algorithm which does not only yield best haplotype pair but also provides as list of
high-probability haplotype pairs. I will use this requirement later when I am interested in breed-
specific frequencies although I supplied the phasing algorithm with a pooled version of all breeds
rather than all breeds separately: breed-specific haplotype frequencies can be inferred in the pooled
case by summing probabilities from this list over all dogs in the breed because I know the breed
membership in the training data.

• R3: phasing algorithm should be applicable for small marker panels of about 10-20 SNPs per
chromosome. The criterion is relevant because some of the phasing algorithms are tailored for
10-100K SNPs per chromosome, which is typical for human GWAS.

• R4: finally, I would like to choose a phasing algorithm that can take advantage of breed labels in
the training data because I may obtain better estimates by accounting for all dogs across breeds in
the training but also utilize breed-specific population structure.

An investigation which phasing algorithm requires which of the criteria led to the following list:

3 R1: BEAGLE, PHASE

3 R2: PHASE

3 R3: BEAGLE, fastPHASE, PHASE

7 R4: no algorithm

I decided to use PHASE because it fulfills all the criteria except R4, and this motivates a simulation
study to investigate whether different ways of segregating dog breeds has an impact on dog classifica-
tion. Furtermore, with respect to its computational complexity: PHASE scales linearly in the number
of markers and quadratically in the number of samples in reference database (Li and Stephens, 2003;
Scheet, 2013).

Due to lack of algorithms accounting for R4 I decided to investigate the effect of computing haplo-
type frequencies for each breed separately or jointly for all training dogs across breeds.

Most phasing algorithms seek haplotypes consistent with genotypes under a panmictic population
in Hardy-Weinberg equilibrium (HWE, the independence of an individual’s two homologous alleles
at a single locus). Phasing separately within each breed allows these assumptions to be satisfied, but
accuracy is limited by low numbers of genotyped dogs in many breeds. An alternative is pooled phasing
where numbers are increased by jointly phasing the training-set dogs from different breeds. Compared
to separate PHASING in pooled phasing (total of 8k training samples in BigPure) I have a factor of
25 or more training samples which is an important computational constraint because of PHASE’s com-
putational complexity. The population structure generated by the distinct breeds means that HWE and
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long-range linkage equilibrium (LE) are not valid, but there is some evidence from the literature that de-
viations from these assumptions are not very important in practice: phasing algorithms seek to minimize
deviations from these equilibria and this remains a valid strategy even for structured populations which
remain far from these equilibria.

Consequently, I conducted simulation experiments to compare the breed classification accuracy,
each based on the SNP genotype data from the training dogs as introduced in section 2, for the following
two settings:

• PSEPARATE: all dogs from the same breed are phased together.,

• PPOOLED: dogs across all breeds are phased together.

Intuitively, I expect many haplotypes to be shared across breeds, and pooling dogs over similar
breeds will help identify a haplotype in breeds in which that haplotype is rare. Conversely, similar but
different haplotypes that segregate in different breeds may be confused by pooling. For PSEPARATE,
phasing results may be too strongly biased towards individual breed estimates, which may exaggerate
breed differences.

In this part I describe how I compute haplotype frequencies using PHASE for PSEPARATE and
PPOOLED and I show which input files PHASE requires and some of the output files it generates. For
PSEPARATE I will use Siberian Husky as example based on 66 purebred training dogs where the first
chromosome has 14 SNPs (cp. Tables 1.3, A.1). For PPOOLED I use a short artificial example to
demonstrate the relevant calculations.

An input file for Siberian Husky on chromosome 1 is specified as follows in PHASE: first I supply
the number of individuals followed by information about the number of loci and their physical positions.
After that, as input file for PHASE I write the genotypeX1 on chromosome 1 resolving ambiguous phase
of the haplotypes arbitrarily. For example, the first purebred Siberian Husky training on chromosome 1
is given by genotypeX1 = [11022000020002] and is written as haplotype pairH1 = [11011000010001]

and H2 = [00011000010001] where the ambiguous phases correspond to the first two marker positions.

66

14

P 1 437564 1681156 2333423 ... 11331464 13204654

SSSSSSSSSSSSSS

#1

11011000010001

00011000010001

#2

11111001011001

01110001011001

...

#65

11?111?1011??1

00?100?1010??1

#66

1111?101011001

1101?001011001
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• PSEPARATE:

For PSEPARATE, I obtain a ’freqs’ file with all those haplotypes which have non-zero frequency
estimates for each breed b on chromosome c from PHASE. In both cases of PSEPARATE and
PPOOLED I refer to this list of n haplotypes as

{H1, H2, . . . ,Hn} (3.2)

which have the following non-zero haplotype frequency estimates

{p̂ (H1|b, c) , p̂ (H2|b, c) , . . . , p̂ (Hn|b, c)}. (3.3)

In the following example variable b corresponds to breed Siberian Husky and I use the first chro-
mosome c = 1. Each row corresponds to one of the indices 1, . . . , n. In this case I obtained
n = 444 haplotype frequency estimates shown in the third column along with its haplotype repre-
sentation in column 2. Finally, the last column corresponds to the standard errors of the frequency
estimates.

index haplotype E(freq) S.E

1 11011000010001 0.036574 0.017191

2 11011000010000 0.000136 0.001032

3 11011000010011 0.004509 0.005507

4 11011000011001 0.000734 0.002307

5 11011000011011 0.000997 0.002797

...

442 00101001011001 0.002220 0.004519

443 00100000010001 0.001525 0.004122

444 00100001011001 0.001008 0.003250

• PPOOLED:

I do not directly obtain useful haplotype frequencies for PPOOLED from PHASE because they are
confounded by the joint breed structure. However, PHASE does not only return pooled population
frequencies as output but also a ’pairs’ file with the most likely pairs of haplotypes for each of
the individuals’ genotypes with its posterior probability. The pairs file has the following format
on each chromosome: in each row the first two binary strings represent the haplotype pair and the
third column represents the posterior probability for this pair. I denote the ith haplotype pair of
individual j as [Hi

1(j), Hi
2(j)] on some chromosome c and breed b which are omitted from the

notation for brevity. Furthermore, each haplotype has an associated posterior probability pi(j). A
new individual is denoted by ’IND’ and its integer ID j.

IND: #1

10011100000011 , 10110100010101 , 0.034

10011100010111 , 10110100000001 , 0.062

10011100000011 , 10110100000011 , 0.161

10010100000011 , 10111100010101 , 0.186
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10010100000001 , 10111100010111 , 0.017

10010100010101 , 10111100000011 , 0.533

IND: #2

00011100010101 , 10111100010100 , 0.183

00011100010100 , 10111100010101 , 0.792

00111100010101 , 10011100010100 , 0.013

00111100010100 , 10011100010101 , 0.012

IND: #3

10011100000011 , 10011100010101 , 0.835

00011100010101 , 10011100000001 , 0.165

IND: #4

00011100010100 , 00011100010100 , 1.000

IND: #5

00011100000000 , 00011100010100 , 0.990

Given these pairs files, in PPOOLED, I list all haplotypes which are part of at least one haplotype
pair across all individuals for a fixed breed. Then, these pair files are used to infer breed-specific
haplotype frequencies by summing probabilities over all dogs in the breed. To better illustrate
the way I deduce breed-specific haplotype frequencies, let us give an example using the verbatim
quoted information above. Firstly, suppose that the first four dog individuals all belong to breed
br. The first individual from this breed has 6 likely haplotype pairs, the second one has 4, the
third one has 2 and the last individual only has one possible haplotype pair. Now, assume I would
like to infer the estimated population frequency for haplotype a=’10011100000011’. The first
computation step consists of calculating a normalization constant fSUM =

∑
i∈br

∑Ji
j=1 2 ·

pi(j) where Ji denotes the number of likely haplotype pairs for individual i. Then, to infer the
breed-wise frequency for f(a) I sum over all pairs which contain haplotype ’a’, and normalize by
fSUM. In this example haplotype ’a’ occurs 3 times: as first and third pair of the first individual,
and as first pair of the third individual. So for f(a) I get

f(a) =
0.034 + 0.161 + 0.835

2 · (0.034 + 0.062 + 0.161 + 0.186 + 0.017 + 0.533 + 0.183 + 0.792 + 0.013 + 0.012 + 0.835 + 0.165 + 1)

=
1.03

7.986
≈ 0.129

3.2.2.2 Enumeration of consistent haplotype pairs
In this section I exhaustively enumerate consistent haplotype pairs for Xj

k, k ∈ {1, . . . , C} on k-th
chromosome on j-th test dog which is described in Section 3.2.2.2. For each Xj

k I enumerate all its mjk

consistent haplotype pairs [Hi
1(j), Hi

2(j)] where i ∈ {1, . . . ,mjk}. Now that I introduced the notation
above consistency can be expressed more formally as Hi

1(j)[t] + Hi
2(j)[t] = Xj

k[t] ∀t ∈ {1, . . . , sk}.
The list of haplotypes consistent with Xj

k is of length 2 ·mjk and referred to as

HAPS =
{[
H1

1 (j), H1
2 (j)

]
, . . . ,

[
H
mjk

1 (j), H
mjk

2 (j)
]}
. (3.4)

Then, I would like to investigate the number of haplotype pairs mjk consistent with Xj
k, which I

compute as product of the ambiguous markers 1 and ?. For SNP 1 I could have had two haplotype pairs
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Figure 3.2: This table shows the enumerated haplotype pairs for genotypeXj
k = [0, ?, 0, 1, 2, ?]. The first

columns list the haplotype pair ID i followed by a dot and either a 1, first part of haplotype pair, or 2,
second part of haplotype pair. In particular, in this example there are mjk = 32 haplotype pairs. Details
for the recursive enumeration are listed in Appendix A.2: the other columns shows for t ∈ {1, . . . , 6}
which pattern has been used for haplotye pair [Hi

1(j)[t], Hi
2(j)[t]].
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{(0, 1), (1, 0)} while missing SNP ? may represent SNPs {(0, 1, 2)} leading to four consistent haplotype
pairs at this locus {(0, 0), (0, 1), (1, 0), (1, 1)}. Therefore, I have

mjk = 4number of markers ’?’ · 2number of markers ’1’. (3.5)

I enumerate the mjk haplotype pairs recursively, i.e. similar to the way one would enumerate all
binary number of fixed length. Further details are presented in Appendix A.2. In Figure 3.2 I illustrate
this concept for a short genotype shown in Equation 3.6 leading to mjk = 32 haplotype pairs.

Xj
k = [0, ?, 0, 1, 2, ?]. (3.6)

3.2.2.3 Evaluating chromosomal likelihood using enumerated haplotype pairs

To evaluate p(Xc|θ) I discuss three different ways

• Default probability (DFPB): when I encounter zero haplotype frequency estimate replace its

value by a small pre-specified constant.

The probability p (Xc|θ) is defined as

p (Xc|θ) =
1

mjc

∑
H1, H2 consistent withXc

p̂(H1|b, c) · p̂(H2|b, c) (3.7)

but can also be approximated using maximization rule in Equation 3.8

p (Xc|θ) = max
H1, H2 consistent withXc

p̂(H1|b, c) · p̂(H2|b, c) (3.8)

However, in some cases, there are no consistent haplotype pairs because either p̂(H1|b, c) = 0

and/or p̂(H2|b, c) = 0. In these cases I assign a small default probability d to adjust for the zero
haplotype frequency estimate, i.e. p̂(H|b, c) = d. This default probability is a trade-off: it should
be non-zero because a matching haplotype pair may exist but is not covered by the training set,
but it should also be chosen slightly less than the smallest observed value for p (Xc|θ) .

• Rare default probability (OneHap): if all the products of haplotype frequency estimate in the

definition of p(Xc|θ) in Equation 3.7 evaluate to zero, only take the haplotype with the highest

frequency estimate in account based on all haplotypes in the list of consistent haplotypes.

If there is at least one consistent haplotype pair both non-zero haplotype frequency estimates
use 3.7 to evaluate p (Xc|θ) . Otherwise, I look for an approach which minimizes the impact of
default variable d by using it only in one term where it is multiplied with the hMaxFreq =

max HAPS where HAPS is defined in Equation 3.4 to include only one haplotype frequency
estimate in the definition of p (Xc|θ) . This definition also balances out small d values with larger
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values of hMaxFreq. Therefore, I evaluate

p (Xc|θ) =
1

mjc
· d · hMaxFreq.

• Pseudo counts (PSEUDO): due to underestimation of some small haplotype frequency estimates

are not retrieved. Therefore, I allow for a further unobserved haplotypes which leads to a re-

scaling, such that all frequency estimates for all haplotypes are non-zero.

The rationale for pseudo counts d is that I observe R non-zero haplotype frequency estimates
x returned from PHASE and allow for a further d unobserved haplotypes. To derive the pseudo
counts idea I assumeR non-zero frequency haplotypes plus d further unobserved haplotypes which
are normalized by scalar k. Furthermore, these two terms are assumed to sum to one. Therefore, I
write

∑
R

observed haps
k

+
d unobserved haps

k
=
∑
R

x+ d

k
+
d

k
=

1 +Rd

k
+
d

k
= 1.

Therefore, normalization constant k evaluates to k = 1 + [R + 1]d. Then, I can compute the
adjusted haplotype frequencies x′ from the original PHASE haplotype frequencies x as

x′ 7→ x+ d

1 + [R+ 1]d

which simplifies to d/(1 + [R+ 1]d) for haplotypes not originally observed by PHASE, i.e. those
ones assigned zero frequencies by PHASE. Given these adjusted haplotype frequencies x′ > 0 I
can evaluate p (Xc|θ) using Equation 3.7.

3.3 Performance measures for pure breed identification
As performance criterion to judge prediction quality for correct breed b the mean posterior probability
in Equation 3.9 taken over the test set query dogs testb is computed as defined in Section 1.5.3.

qb =
1

|testb|
∑

j∈testb

p(θ|Xj) (3.9)

Then, I aggregate these results by averaging qb across B breeds as shown in Equation 3.10.

q̄1:B =
1

|B|
∑
b∈B

qb, r̄1:B = 1− q̄1:B . (3.10)

To see which tuning parameter d according to Section 3.2.2.3 maximizes q̄1:B I experimented with
15 values of d shown in Equation 3.11.

d = {1, 3, 5, 7, 9} · 10{−3,−4,−5} (3.11)
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SmallPure DFPB OneHap PSEUDO
PSEPARATE Max r̄1:B 0.011 0.090 0.463

dmax d = 9 · 10−3 d = 9 · 10−3 d = 3 · 10−4

PSEPARATE Min r̄1:B 0 0.028 0.029
dmin d ∈ {10−5, . . . , 5 · 10−5} d = 3 · 10−3 d = 9 · 10−3

PPOOLED Max r̄1:B 0.050 0.047 0.516
dmax d = 9 · 10−3 d = 9 · 10−3 d = 9 · 10−3

PPOOLED Min r̄1:B 0.030 0.029 0.029
dmin d = 3 · 10−5 d ∈ {7 · 10−4, . . . , 10−3} d = {5 · 10−4, 7 · 10−4}

Table 3.3: Results for pure breed identification on SmallPure using performance criterion r̄1:B defined
in Equation 3.10. I selected the extreme values for r̄1:B with its corresponding position d from Table
A.6 according to different combinations of haplotype frequency estimation and evaluation of p (Xc|θ) .
Detailed results for combination (PSEPARATE,DFPB) are in Table A.8, for (PPOOLED,DFPB) are in
Table A.9, for (PSEPARATE,OneHap) are in Table A.10, for (PPOOLED,OneHap) are in Table A.11,
for (PSEPARATE,PSEUDO) are in Table A.12 and for (PPOOLED,PSEUDO) are in Table A.13.

However, I prefer to provide small values, i.e. minimize 1− qb and r̄1:B . Therefore, I obtain result
tables of (B + 1) × 15 where rows correspond to breeds and columns correspond to values of d. Then,
each cell, contains value 1 − qb as a function of d. In the final B + 1-th row of this matrix I give the
columns means (averaged across breeds) 1 − q̄1:B . However, given that for some breeds r̄1:B = 0 ∀d,
I mostly omit those breeds in the tables in the Appendix. Furthermore, for simplified visual inspections
I leave cells with 1 − qb = 0 blank and give a precision of 2 decimal places for 1 − qb and 4 digits for
r̄1:B .

3.4 Results for DBAncestry
In this section I offer results for pure breed identification for the novel methodology DBAncestry. Firstly,
I present results for dataset SmallPure which is split in training and test dataset according to the descrip-
tion in Section 1.5.3. I compare options (PSEPARATE, PPOOLED) for the estimation of haplotype fre-
quencies and conclude which of the options (DFPB, OneHap, PSEUDO) to evaluate p (Xc|θ) performs
best. After that I perform tests and offer results for BigPure and conclude which haplotype frequency
estimation options is chosen.

3.4.1 SmallPure case
In this section I discuss performance criterion r̄1:B for dataset SmallPure. A summary of results is
shown in Table 3.3. To evaluate p (Xc|θ) I used averaging in Equation 3.7 which outperformed the
maximization rule in Equation 3.8 for SmallPure and BigPure.

The minimum for r̄1:B is attained for values of ess or equal than d = 3 · 10−3 for all approaches.
This suggests that too large values of d are in conflict with actual haplotypes returned by PHASE
which have low population frequencies. Therefore, I remove the following larger values of d-values
7 · 10−3, 9 · 10−3 for the BigPure analysis in subsequent Section 3.4.2.

The minimum for r̄1:B is similar for most approaches at around 0.03 with a absolute minimum of
r̄1:B = 0 for DFPB PSEPARATE. Furthermore, for BigPure I will not look at the PSEUDO approach
because the minimum of r̄1:B is similar to OneHap but the results are much more sensitive to d. In
particular, the PSEUDO approach may lead to not very good results in the worst case of up to r̄1:B ≈ 0.5

while the other combinations have a worst case of less than 0.1. Finally, PSEPARATE and PPOOLED
show similar minimum values for r̄1:B . Therefore, due to the higher computational costs of PPOOLED
I only will investigate PSEPARATE in the Section 3.4.2.
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BigPure DFPB OneHap
PSEPARATE Max r̄1:B 0.009 0.011

dmax d = {5 · 10−3} d = 10−5

PSEPARATE Min r̄1:B 10−4 0.0
dmin d = {3 · 10−5, 5 · 10−5} d = {3 · 10−4, . . . , 10−3}

Table 3.4: Results for pure breed identification on dataset BigPure. The minima and maxima of per-
formance criterion r̄1:B according to Equation 3.10 for separate phasing with either DFPB or OneHap
are shown in Table A.7. Detailed results 1 − qb for each breed b are given in Table A.14 for (PSEPA-
RATE,DFPB) and in Table A.15 for (PSEPARATE,OneHap).

3.4.2 BigPure case
In this section I discuss pure breed identification results in Table 3.4 for BigPure as defined in Section
1.5.3 for PSEPARATE phasing and I used options DFPB and OneHap to compute p (Xc|θ )

With respect to the misclassifications for DFPB the DBAncestry algorithm wrongly predicted be-
tween 1 and 28 test dogs according to the choice of tuning parameter d. In the case where r̄1:B is at its
minimum, DBAncestry confuses two instances forming different subpopulations of Labrador Retriever,
i.e. 1 Labrador Retriever (US Field) was confused as Labrador Retriever (US Show). For the best d, I
predict all test dogs correctly using OneHap.

Furthermore, a close look at the wrongly predicted dogs shows that most of those dogs were con-
fused with the same breed but from a different region. For example, in those cases where at most 3 query
dogs are wrongly predicted, they come from the following 3 breeds: 1 Australian Shepherd (UKX), 1
Labrador Retriever and 1 Weimaraner (US2X). According to breed Table A.1 it is known that there is a a
total of 18 test query dogs from Australian Shepherd (UKX+USX) and 91 test query dogs for Labrador
Retriever (US Field + US Show). Although there are many test dogs the same ones are misclassified
using either DFPB or OneHap which suggests these test instances were on the regional boundary of
these breeds, or mislabelled in the database.

Results in Table 3.4 are all very good with OneHap slightly better than DFPB. Also note that the
best values of d, such that r̄1:B is smallest, it can be seen that DFPB takes smaller values of d than
OneHap. This observation suggests that when I frequently impute a missing haplotype frequency, such
as in DFPB, the algorithm preferrably picks smaller values of d to avoid that d too strongly dominates
other haplotype frequency estimates. However, in case of OneHap if value d is rarely used DBAncestry
assigns it a larger number to have sufficient influence. From Tables A.14, A.15 I also notice that for
less optimal choices of d the number of misclassifications is much bigger for less suitable values of d in
DFPB than OneHap.

Finally, due to smaller sensitivity to the values of tuning parameter d and the small number of
misclassifications for the best choice of d I will proceed to use OneHap for estimation of mixed breed
composition.

3.5 Conclusions
In this chapter I dealt with pure breed identification based on the previous Mars approach and the novel
DBAncestry methodology. At first I described the data structure where I assume up to eight pure breed
different great-grandparents which in turn are assigned to chromosomes to form a genome painting.
Then, I describe how I encode a breed representation using genetic information: Mars uses SNP-wise
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transition frequencies which I extend to haplotype frequency estimates to account for the correlation
structure among SNPs. Furthermore, I discussed whether it is beneficial to derive all frequency estimates
separately for each breed or jointly across breeds. After that I describe how I use the breed representation
to evaluate p (Xc|θ) , i.e. the likelihood of a genotype on chromosome c using a breed pair θ. Within
the Mars approach I use the HMM forward algorithm to calculate p (Xc|θ) while for DBAncestry for
average over the product of maternal and paternal haplotype frequency estimates with haplotype pairs
chosen which are consistent with XC . However, some of the estimates for the haplotype frequencies
are zero which led me to design three imputation options to deal with this case: DFPB, OneHap and
PSEUDO. After that I discussed a haplotype-based approach to maximizing likelihoods to infer pure
breeds in test dogs along with performance measures based on the mean posterior breed probabilities
for the correct breed. Finally, I presented results for DBAncestry for datasets SmallPure and BigPure:
I concluded that phasing breeds jointly does not yield any performance improvements over separate
phasing but incurs a higher computational cost. Furthermore, I found that imputing of missing haplotype
frequency estimates works best for OneHap, i.e. where imputation is only applied in case none of the
terms in the product p (Xc|θ) are non-zero.



Chapter 4

MCMC methodology for mixed breed
identification

This chapter deals with the question on how to infer ancestry for crossbred dogs: an intuitive approach
to find the optimal variable assignments in a discrete space, such as inference of the most likely lineage
painting, is based on a group of techniques known as combinatorial optimization algorithms, such as
genetic algorithms (Mitchell, 1998). However, typically these models yield a point estimate, i.e. the
algorithm returns a binary prediction of which breeds are present/absent in the estimated ancestry, and do
not address uncertainty. In particular, due to the probabilistic behavior of genetic inheritance a single run
of the optimization technique may not be very useful and the optimum may not represent the true lineage.

Recently, Cussens et al. (2013) developed a combinatorial optimization approach which retrieves
the top k most likely pedigree reconstructions which can be averaged to yield proportion estimates.
Specifically, the authors added constraints to prevent previously found maxima from being selected
again. However, at the moment their approach assumes independent SNPs and their proposed extension
to account for LD is likely to be only computationally feasible for a small number of populations.

Therefore, in this chapter I focus on how the Mars algorithm and DBAncestry deals with crossbred
dogs based on the haplotype frequency model described in Section 3.1. However, the purebred inference
technique provided in Section 3.1.1 which searches over all possible θ is no longer computionally fea-
sible to infer canine breed composition with complex ancestries involving multiple breeds. The search
space for Φ is huge and an enumeration of all paintings for the lineage tree and genome is prohibitive.
Therefore, I extend DBAncestry to sample this space using a Metropolis-Hastings (MH) algorithm on a
discrete space over Φ.

In Section 4.1 I give a brief introduction to Markov Chain Monte Carlo (MCMC) including the MH
algorithm. Furthermore, I will outline how the random walk idea for continuous random variables is
adapted to deal with nominal breed random variables. After that in Section 4.2 I will specify the details
for inference of θ in the crossbred haplotype frequency model. In particular, I will describe the update
proposals of the Mars approach in Section 4.2.1 and DBAncestry in Section 4.2. Then, I will continue
to describe how I derive breed proptions from the haplotype frequency model in Section 4.3 and I will
suggest a few further MCMC extensions for mixed breed inference in Section 4.4. As next step I will
explain how I measure breed prediction performance in Section 4.5 and in Section 4.6 I will specify
the number of MCMC iterations used to obtain the breed proportion estimates. Finally, in Section 4.7
experimental results for the simulated dataset will be
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4.1 Ancestry inference for crossbred dogs using MCMC
I compute the posterior breed probability p(θ|X) =

∏C
c=1 p (Xc|θ) as outlined in Section 3.1. Based

on the results on dataset BigPure shown in Section 3.4.2 I decided to apply the OneHap approach for
p (Xc|θ) using d = 5.0 · 10−4 as parameter value. To infer the ancestry of a mixed breed test datum
observed as X I study the posterior probability p(θ|X).

I use Markov Chain Monte Carlo (MCMC) to approximate the posterior distribution p(θ|X) (Robert
and Casella, 2004, 2010) as target distribution. MCMC is a class of methods which draws a sequence of
M + N dependent samples θ(1), . . . , θ(M), θ(M+1) . . . , θ(M+N), such that the probability distribution
of θ(t) only depends on θ(t−1). This conditional probability distribution is referred to as Markov or
transition kernel K, i.e.

θ(t+1)|θ(1), . . . , θ(t) ∼ K
(
θ(t), θ(t+1)

)
.

After a sufficiently large burn-in time of M iterations corresponding to samples θ(1), . . . , θ(M) the
markov chain will converge to the stationary distribution, i.e. the nextN samples drawn after the burn-in
phase are θ(M+1), . . . , θ(M+N) will approximately correspond to a random sample of p(θ|X). Those
later iterations N are referred to as the main phase of the MCMC approach. In other words, a sta-
tionary distribution exists p(θ|X) exists, such that if θ(t) ∼ p(θ|X), then θ(t+1) ∼ p(θ|X). Assuming
K(θ(t), ·) > 0, existence of a stationary distribution implies a kernel K which allows for free moves
across the state space with positive probability of reaching any region in the state-space. These ideas can
be traced back to Metropolis et al. (1953) who present the Metropolis-Hastings algorithm which con-
structs a Markov chain with stationary distribution p(θ|X). At each iteration t, I perform the following
two steps in this algorithm:

Step 1: Sample θ
′ ∼ q

(
θ
′ |θ(t)

)
where q is the proposal density and is used as transition kernel K.

Step 2: Draw r ∼ U [0, 1]. Let a = a1 · a2 where a1 = p(θ
′
|X)

p(θ(t)|X)
and a2 =

q
(
θ(t)|θ

′)
q(θ′ |θ(t))

Then, if r < a, then

accept new proposal θ(t+1) = θ
′

otherwise reject θ(t+1) = θ(t). Note that the special case of a
symmetric propsal density in step 1, such that q

(
θ|θ′

)
= q

(
θ
′ |θ
)

leads to a2 = 1 in this step 2.

Given sufficient dispersion of proposal density q, every q can be used in the Metropolis-Hastings
(MH) algorithm to construct a kernel, such that p(θ|X) is a stationary distribution.

A popular choice for a symmetric proposal density is q
(
θ
′ |θ
)
∝ exp[−(θ

′ − θ)2σ−2], such that

new proposals are chosen as θ
′ ∼ N(θ, σ2) which is a random walk algorithm of the form θ

′
= θ+σ ·Z

with Z ∼ N(0, 1). Large values of variance σ2 encourage quick exploration of the state space of θ but
proposals will frequently be rejected while small variances lead to small proposal update steps with slow
mixing, long burn-in times and poor state space exploration.

However, this popular symmetric proposal density is only applicable for continuous random vari-
ables while θ = (Φ, L,G) is composed of categorical (nominal) variables. Therefore, to define the
proposal densities, in our study I use qL propose new breeds to create lineage painting L and then use
qG select slots from Φ to generate genome painting G.
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4.2 Inference in crossbred haplotype frequency model
In Section 4.2.1 I show how the Mars algorithm updates qL and qG in each MCMC iteration and which
ideas are utilized to improve mixing. Then, in Section 4.2.2 I will discuss how I use a uniform qL and a
breed similarity lineage painting (BSPL) proposal density. With regard to the BSPL option I will explain
which breed proximity measures is selected and how it is used to define an update mechanism.

4.2.1 Mars approach
This section is a summary of the Mars algorithm comprehensively described in Section A.5: firstly, the
Mars approach does not only look at the most complex lineage tree ABCDEFGH but at several different
representations of the state space given by the 11 lineage trees shown in Figure 1.2. Therefore, the in-
ference of θ is performed for each of the trees and the best tree is chosen using the deviance information
criterion (DIC) (Spiegelhalter et al., 2002). DIC is a hierarchical Bayesian model comparison measure
which are computed from quantities in an MCMC run and is defined as model fit which is penalized by
the model complexity through the effective number of parameters in the model.

For a given lineage tree at each MCMC iteration the algorithm:

• Update lineage painting L: all slots in the lineage painting are updated uniformly and then this
new state is used as proposal qL in the MH algorithm. The update of all lineage tree slots in a
single MCMC iterations leads to more exploration and less acceptance than in DBAncestry.

• Genome painting G: in 10% of the iterations a new genome painting qG is proposed which
updates all C chromosome paintings.

In the Mars approach any breed from the lineage painting can be assigned to either the maternal or
paternal side of the chromosome painting which is an invalid biological assumption. The Mars approach
utilizes a few ideas to improve mixing during the MCMC algorithm:

• Jumbling: in each MCMC iteration breeds are jumbled in the lineage painting, i.e. breeds cur-
rently forming the lineage painting are randomly swapped with each other. However, I recommend
to only swap breeds within the maternal and paternal lineage painting. Furthermore, regarding the
number of previous generations, I am more certain with respect to more recent ancestors which
should be swapped less often.

• Averaging Model: an average model ignores the actual realization of the chromosome painting on
chromosome c but instead it is defined as an average likelihood over all possible lineage paintings
where each maternal breed is joined with each paternal breed: A = 1

16

∑4
d=1

∑4
e=1 p(XC |uc =

φM [d], vc = φP [e]). At first in the burn-in phase of the algorithm the averaging model is exclu-
sively used and phased out at a linear rate and replaced by the actual chromosome painting model
M which is exclusively used at the start of the MCMC main phase, i.e. a linear combination
p′cuv = p(Xc|uc, vc)′ = r · A + s ·M is computed with r = 1, s = 0 at burn-in phase iteration
1, and r = 0, s = 1 at main phase iteration 1. An average model has similarities with simulated
annealing (Robert and Casella, 2004, 2010) where the temperature is decreased with the number
of iterations: a high temperature corresponds to more randomization while a lower temperature
corresponds to a focus on optimizing the fitness function.

4.2.2 DBAncestry
At each MCMC iteration t I either update the lineage painting θ

′
= (Φ, L′, G) via qL with probability

ρ = 0.01 or I update the genome painting θ
′

= (Φ, L,G′) using qG with probability 1 − ρ = 0.99.
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Therefore, typically for each fixed lineage painting I try about 100 genome painting configurations out
of the possible 82×25 assignment possibilities.

Compared to the Mars approach in Section 4.2.1 which proposes the whole genome painting as
update while DBAncestry proposes only painting updates of a single chromosome. Firstly, on average
for each lineage the DBAncestry algorithm considers a factor of 1000 more updates of G than the Mars
approach. Therefore, the DBAncestry enables a much better exploratory granularity and insight how
good the current lineage painting is. Furthermore, more incremental changes of a single chromosome
rather than updates of the whole genome painting is much more likely to be accepted due to its smaller
proposed step size from the currentG, i.e. in the Mars approach new genome update proposals are rarely
accepted relative to the DBAncestry algorithm. However, given that Mars runs the MCMC algorithm
for each of the lineage trees it is reasonable to focus on finding an optimal lineage painting although the
genome painting is less likely to be well explored.

As proposal density I either uniformly sample new breeds for the lineage or I bias the Markov
Chain, such that breeds in the lineage are more likely to be replaced by similar breeds. Therefore, the
proposal step to yield θ′ can be distinguished into the following two cases: a uniform update proposal
(see the Mars approach in Section 4.2.1) and a breed-biased update proposal to improve mixing and to
offer a better exploration of the lineage painting search space.

Update L: With regard to the lineage painting update I uniformly either update a paternal slot φs = φp or a
maternal slot φs = φm. Then, I uniformly select t ∈ {1, 2, 3, 4} to select a great-grandparent slot.
Then, I propose A new breed

q
(
θ
′
|θ
)

= qL(φs[t]
′ = b′|φs[t] = b). (4.1)

I look at two different ways to define qL :

1. uniform lineage painting (ULP) Each of the breed proposals b′ for slot φs[t] is distributed
according to a discrete uniform density U [1, bM ] where bM is the number of breeds in the
dataset, such that the probability mass function for breed b′ is given as

qL(φs[t]
′ = b′|φs[t] = b) =

1

bM
(4.2)

Furthermore, in this case the transition kernel qL is symmetric. Given r ∼ U [0, 1], I accept

breed proposal b′ if r < p(θ
′
|X)

p(θ(t)|X)
.

The ULP update proposal corresponds to a random walk with a large σ and a proposal which
is independent of the previous state θ. In other words, each update proposal is possibly asso-
ciated with a large transition step which explores wide areas of the search space. However,
most update proposals will not be accepted.

2. breed similarity lineage painting (BSLP)

According to Section 2.1 there are two main objectives to investigate an alternative proposal
mechanism based on breed similarity:

– Mixing: improve mixing time, such that the stationary distribution is reached more
quickly which leads to less iterations, shorter run-time and lower investment of compu-
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tational resources. In other words, I suggest to propose large transition steps with are
accepted with high probability.

– Exploration granularity: assumed that I am in the correct search space close to the
true breed composition I would like to further explore this region of the space instead
of proposing breeds possibly entirely different to the current breed configuration. Al-
though the mechanism may cover the whole breed composition space less densely I may
achieve higher granularity of the assumed correct subspace, such that I can successfully
discriminate among very similar breeds or those breeds which have subpopulations.

The random walk algorithm is not necessarily the best option to explore the search space
because it requires many iterations to move between low-probability regions between modal
regions of the target distribution, and its symmetric nature implies that half the time previous
regions are explored again (Robert and Casella, 2010). Recently, geometric concepts have
been incorporated in the proposal density to exploit the structure in the data. Roberts and
Rosenthal (1998) suggest the Langevin algorithm which includes the gradient of the target
distribution in the proposal density and Roberts and Stramer (2002) propose the Metropo-
lis Adjusted Langevin Algorithm (MALA). Girolami and Calderhead (2011) look at more
advanced sampling schemes incorporating information geometry which applies geometric
concepts on manifolds which follow a direct path on the surface, such as geodesics (shortest
paths between two points on manifold). Looking at more sophisticated sampling schemes
is not sufficient because I deal with Markov Chains over a discrete domain instead of the
standard continuous assumption.

This insight poses the question on whether I can think of a mechanism which allows us to
control the size of the transition step. The idea I will implement for dogs will be based on
a distance measure between breeds. In particular, I will bias the proposal mechanism, such
that the breed currently assigned to φs[t] is more likely to be replaced by a breed similar to
it.

To implement this idea of breed similarity proposals I need a measure of breed similarity and
based on that how I propose a new breed given the current breed assignment.

– Breed similarity measure: I compute the breed distance using Manhattan distance on
genotypes as shown in Figure 2.4 (a). Then, this Manhattan distance metric is converted
into a measure for breed similarity given in Figure 2.4 (b). To account for the varying
levels of interbreed similarity shown in Figures 2.3 (a,c,e,g) I replace raw breed similar-
ities by their ranks of how close a new breed is given the current one. Then, I use this
rank breed similarity measure as transition kernel qL whose heatmap is given in Figure
2.4 (d). Furthermore, given that the breed rank similarity matrix is not symmetric the

proposal density ratio a2 =
q
(
θ(t)|θ

′)
q(θ′ |θ(t))

does not cancel out.

– Proposal mechanism based on breed similarity: this topic is concerned with the
question on how much exploration is possible at each MCMC iteration. As informa-
tion geometry I use rank breed similarity. However, given the lack of a well-developed
theory for information geometry defined on discrete spaces I use an ad-hoc approach
to propose new breeds given the current breed assignment. In particular, as proposed
transition probability I use an exponential decay function which gives most weight to
similar breeds and very little weight to breeds in the lower half of breed similarity. This
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exponential decay transition kernel is shown in Figure 2.3 (j).

Update G: With regard to the genome painting update at first I select a chromosome c. Then, uniformly I
either propose a breed vc for a single slot within the paternal chromosome painting φs = vc or a
breed uc within the maternal chromosome painting φs = uc to be updated. Finally, I propose the
new chromosome painting Gc with probability

q
(
θ
′
|θ
)

= qG (Gc ∈ φs[t])

where t ∈ {1, 2, 3, 4} and s ∈ {p,m}. The chromosome painting update qG(Gc) is performed in
such a way that I uniformly select among the 4 options from t.

4.3 Breed proportion estimates using MCMC
Typically, MCMC is applied in Bayesian inference to compute expectations of the form E (f [θ]|x) , e.g.
in the case of ratio scale data f may correspond to the posterior mean f [θ] = θ, or the posterior variance
Var[θ] using the expansion Var[θ|x] = E

(
θ2|x

)
−E (θ|x)

2 (Gilks et al., 1996). I compute the expectation

E (f [θ]|x) =

∫
f [θ]p(θ|X)dθ =

∫
f [θ]p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

.

However, these integrals are often high-dimensional and complex which lack a closed form solu-
tion. For M large enough, I can use samples θ(M+1), θ(M+2), . . . , θ(M+N) ∼ p(θ|x) to approximate
E (f [θ]|x) using Monte Carlo integration as standard average over the main phase MCMC iterations
1
N

∑N
t=1 f

[
θ(t)
]
. For (M + N) → ∞ this standard average converges to E (f [θ]|x) based on the Law

of Large Numbers.

However, as before these type of expectations are more targeted at ratio scale data. Breeds represent
a categorical level of measurement. One way to compute an expectations on the breeds, referred to as
breed proportion. The proportion of breed b is computed over the main phase MCMC iterations as

1

N
· 1

8

N∑
t=1

1 [number of occurrences for breed b in L at iteration t] . (4.3)

Then, I fix a breed cut-off, and each breed which has a predicted breed proportion exceeding this
specified breed cut-off will form part of the ancestry composition. There are two main reasons for this
bias in breed proportion estimation:

1. New breeds are sequentially explored in the proposal step of the MCMC algorithm and therefore
breeds are swapped in and out of the lineage painting. Therefore, breeds which form part of
the ancestry are underestimated while true negatives are overestimated. In other words, I face an
exploration bias where many breeds not part of the ancestry are proposed during the MCMC which
consequently will capture some minor breed fractions which again leads to an underestimations of
breeds forming the true ancestry.

2. Breeds have limited training sample size and may not have certain haplotypes represented in the
training data which leads to low estimated haplotype frequencies and, therefore, to underestimated
breed proportions.
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In other words, there are true underlying breed proportions assumed to have at most 8 non-zero
values. DBAncestry starts off with a uniform prior where each entry equal to one over the number of
breeds. Data moves the algorithm from this maximum entropy prior distribution towards the low-entropy
true distribution, but because the data is not perfectly informative the results will have higher entropy
than the truth which implies under-estimating the large fractions and over-estimating the zero values.

I either look at raw breed fraction estimates UCBC or an amended version thereof referred to as
CCBC. These two breed proportion estimates are defined as follows:

• uncorrected computed breed proportion (UCBC): this estimate is defined in Equation 4.3.

• corrected computed breed proportion (CCBC): define setCCBCbreeds as the union of those breeds
with the top 8 highest breed proportion and all breeds forming the true breed ancestry. Then, set all
breed proportion estimates to zero of breeds 6∈ CCBCbreeds. Finally, rescale all breed proportions
of those breeds ∈ CCBCbreeds to unit measure, such that breed proportions sum to one.

Based on these UCBC and CCBC values I compute the divergence between the true breed ancestry
proportion and the predicted breed proportions. True ancestry proportions for each lineage tree were
defined in Table 1.4 depending on whether they form a parental, grandparental, great-grandparental
relationship in the lineage trees shown in Figure 1.2 or are absent from the breed composition. Therefore,
within each lineage tree I estimate the breed divergence by taking the median for all TAP values over all
samples from a specific lineage tree. In the second step these median TAP values are aggregated across
all lineage trees which have an ancestor at the specified TAP value according to Table 1.4.

4.4 Extensions
There are a few MCMC alternatives and extensions to the DBAncestry and Mars approach presented
above. There are two mechanisms that utilize information on genetic interbreed distance to bias the
direction of the Markov Chain to improve mixing:

• Discrete geometric surface information (Brooks et al., 2011): I use breed similarity to direct
the proposals of the Markov Chain. I can do that either in the ad-hoc way described in Section
4.2, or in a principled way by extending previous Hamiltonian MCMC approaches (Girolami and
Calderhead, 2011) to discrete surfaces.

• Adaptive Independent Metropolis-Hastings Algorithms (AIMHA) (Holden et al., 2009;
Robert and Casella, 2010; Liang et al., 2011; Givens and Hoeting, 2012): this type of al-
gorithm would propose updates which are independent of the current state of the Markov Chain,
such as in the ULP proposal. Over time, AIMHA keeps a history vector of update proposals to
adapt its update rule. However, to ensure AIMHA is Markovian and the Markov Chain will con-
verge to its stationary distribution I need to demand that adaptation either stops at some point or
is decreased, i.e. changing update rule by smaller increments or changing the update rule not at
every iteration. Otherwise the algorithm depends too strongly on previous iterations and does not
fully explore the breed space. Therefore, in our case I could learn the proportion for the breed
acceptance rate for each breed in the burn-in phase. Then, in the main phase I propose new breeds
according to these learnt proportions.

Another way to tune the amount of exploration is to introduce a temperature parameter into the tran-
sition kernel. A stochastic optimization technique known as simulated annealing (Robert and Casella,
2004, 2010) decreases the temperature logarithmically over time to limit the step size in the proposal.
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This setup leads to more state space exploration and avoids the trapping of local maxima in the beginning
when the temperature is higher and when it decreases to 0, accepted proposals will concentrate in the
neighbourhood of the maximum of θ. However, Robert and Casella (2010) state that the logarithmic
temperature decrease leads to very slow convergence.

As a final technique I describe population-based MCMC (popMCMC) methods which are reviewed
in Liang et al. (2011). In popMCMC I run several Markov Chains in parallel (Rosenthal, 2000) which
exchange information to learn from past samples. An example of popMCMC is given by evolution-
ary Monte Carlo (EMC) (Liang and Wong, 2001) which encodes a population of individuals as binary
strings, or in our case as multinomial strings {1, . . . , bm}8. Then, to improve mixing EMC employs three
genetic operators:

• Mutation: select uniformly a character in one of the individuals in the population and change it
ULP to a new one.

• Cross-over: select to individuals in the population to form parents which are replaced by their two
children if state proposal is accepted. Each children is formed by random draws at each position
which indicates from which parent the child inherits.

• Exchange: assume indexed individuals in the population. Then, swap neighboring indices, i.e. I
swap individual j with either individual {j − 1, j + 1}.

4.5 Performance measures
Performance of the ancestry algorithm will be measured in two ways: at first I will describe the currently
implemented commercial approach by Mars which views the breed prediction problem as a multi-class
classification problem (ROC curves). After that I will argue why I prefer to frame this setup as estimation
problem in DBAncestry where predicted breed proportions are visualized using boxplots.

• Classification view (ROC curves): Mars framed the problem of measuring performance as a
multiclass extension of binary ROC curves (Hand and Till, 2001; Fawcett, 2004; Krzanowski and
Hand, 2009) which represent a yes (positive class)/no (negative class) criterion of success. A
positive breed is defined to be part of the true ancestry while a negative breed is absent from the
true ancestry. Standard ROC curves plot sensitivity (true positive rate is defined as proportion
of predicted true positives to all positives) of recognizing breeds versus false positive rate (i.e
incorrectly predicting that a breed is part of the ancestry although it is not).

Firstly, there is a large class imbalance, i.e. there are only up to eight different positive breeds r in
the true ancestry while there are 125− r negative breeds. Therefore, independently of the quality
of estimating breed composition there is only a small false positive rate is expected. A more
suitable measure than false negative is the positive predictive value (PPV) which is the proportion
of true positives among breeds predicted as positives. Therefore, in the standard ROC curve I
replace the false positive rate by PPV. To study these performance measures I either plot true
positive rate (TPR) versus PPV or the F1 score (harmonic mean of TPR and PPV) as a function
of breed proportion. A more detailed description about definition and computations for multiclass
ROC curves is given in Section A.6.

A limitation of the ROC curves approach is that it is binary measure for success, i.e. a breed
is predicted to form part of the ancestry if it exceeds a minimum pre-specified breed cut-off for
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the predicted breed proportion. However, this ROC measure does not account for bias in the
estimation, such that although I may correctly recognize a breed forming part of the genuine
ancestry this estimate may not form a close approximation of the true ancestral breed fraction
level.

• Accuracy of breed fractions using boxplots: this type of measurements views breed compo-
sition as estimation problem of ancestral proportions at the parental, grandparental (gp), and
great-grandparental (ggp) level. In other words, it is not sufficient to merely recognize a breed
as part of the ancestry but I also would like to infer its proportional contribution to the ancestry.
In particular, for each possible ancestral level within each lineage tree I draw a boxplot to study
accuracy of breed estimation by looking at the difference between true breed proportion and
median predicted breed proportion over all test samples from a given lineage tree. Additionally,
I also study divergences between true and estimated breed proportions for each ancestral levels
taken over all lineage trees containing the corresponding levels according to Table 1.4.

If a true breed fraction of 0.5 is estimated to be 0.2, this may be regarded as a true positive (for
example if a positive is defined as a fraction > 0.05). However there is a substantial error in the
estimate (difference of 0.3) A further limiting factor of ROC curves is that all correct predictions
are weighted equally by their ancestral contribution. Therefore, although breeds at the ggp level
(50%) are harder to predict I weigh them equally with predictions at other levels, such as the
parental level (50%). A possible extension is to weight each breed by the reciprocal of their true
ancestry proportion in the loss function of the ROC curves, similarly to AdaBoost (Freund and
Schapire, 1997) where training cases which are harder to predict are given a higher weight in the
loss function.

4.6 MCMC run length
I consider two different setups for the number of iterations of the Metropolis-Hastings algorithm. Under
the assumption of the uniform lineage painting I discuss how well breed composition search space is
explored.

1. Short MCMC Run for DBAncestry (Short): I assume M = 1.25 × 105 burn-in iterations and
N = 7 · 105 main phase iterations. Assuming ULP, on average each breed is proposed 7 · 105 ·
0.01/125 = 56 times in the lineage painting update of the MCMC main phase run.

2. Long MCMC Run for DBAncestry (Long): in the long MCMC run I assume 4 times more burn-
in phase iterations and 10 times more main phase iterations. In particular, I have M = 5 · 105

burn-in iterations and N = 7 ·106 main phase iterations. Assuming ULP, on average each breed is
proposed 7 · 106 · 0.01/125 = 560 times in the lineage painting update of the MCMC main phase
run. A Java implementation which is run on the UCL cluster infrastructure LEGION requires
about 30 minutes for each synthetic test dog until completion.

Finally, during a fixed lineage painting I attempt 1/ρ = 1/0.01 = 100 chromosome painting
updates qG and propose each of the 8 φs[t] slots to a given chromosome Gc as a new assignment for
100/8 = 12.5 times.

4.7 Experimental results
In this section I will discuss experimental results for the synthetic test dataset OrgSyntheticRed outlined
in Section 1.5.4. I will apply the DBAncestry algorithm using either the uniform (ULP) or the breed-
similarity biased (BSLP) update proposal according to Section 4.2.2 while varying the run length (short
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True breed ancestry UCBC UCBC CCBC CCBC
Median [1st,3rd] Quartiles ULP BSLP ULP BSLP

100% 0.70 [0.58,0.79] 0.64 [0.52,0.74] 0.85 [0.74,0.92] 0.81 [0.70,0.88]
50% 0.30 [0.24,0.36] 0.27 [0.21,0.33] 0.38 [0.32,0.44] 0.36 [0.29,0.42]
25% 0.14 [0.12,0.19] 0.13 [0.11,0.17] 0.19 [0.15,0.24] 0.18 [0.14,0.23]

12.5% 0.08 [0.01,0.13] 0.07 [0.01,0.13] 0.11 [0.02,0.16] 0.09 [0.013,0.16]
0% 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]

Table 4.1: Inference for short MCMC run: a list of the median and lower/upper quartiles for the breed
proportion estimates for all true underlying ancestral levels. The results show that the ULP proposal
mechanism leads to less underestimation than for BSLP updates. Furthermore, re-scaling estimates from
UCBC to CCBC shows there is a considerable exploration bias for the ancestral breeds, i.e. [3,15]
percent for ULP and up to [2,17] percent for BSLP.

run, long run) discussed in Section 4.6. I will also discuss the effect of re-scaling breed proportions
from UCBC to CCBC introduced in Section 4.3. Breed proportion estimates were averaged over all 11
lineage trees. Based on the results on dataset BigPure shown in Section 3.4.2 I decided to apply the
OneHap approach for p (Xc|θ) using d = 5.0 ·10−4 as parameter value. To infer the ancestry of a mixed
breed test datum observed as X I study the posterior probability p(θ|X).

4.7.1 Short Run
In Table 4.1 I list results of the median and lower, upper quartiles for the short MCMC run. This table
shows that ULP performs slightly better than BSLP, i.e. by about 1 to 6 percent better depending on
the underlying true ancestral level. This may be due to BSLP’s in-depth exploration of some part of the
breed space while other parts have been only not been densely investigated. A comparison of UCBC
and CCBC breed fractions suggests that breeds below the top eight most likely have very small breed
proportion estimates. However, their sum is not negligible and the deviation between UCBC and CCBC
from purebred down to ggp level ranges from 3 to 15 percent for ULP and from 2 to 17 percent for BSLP.

Furthermore, there is more underestimation for the most recent TAPs, e.g. for a TAP of 50 percent
there is a higher impact of exploration because four out of eight leaves have to be updated in the lineage
painting while a ggp corresponds to randomization of only one leaf. For example for re-scaled uniform
update proposal results (CCBC, ULP), there is an underestimation of 15 percent for pure breed test dogs,
12 percent for parents, 6 percent for gps and 1.5 percent for ggps. Finally, I notice that breeds not
forming the ancestry have median predicted breed fractions of 0 looking at the first two leading digits.

4.7.2 Long Run
I provided the results for the long run as boxplots in Figure 4.1. In these figures I show how far the
median (bold black line) deviates from the true underlying ancestral level (bold red line) for the two
least complex lineages (i.e. AAAAAAAA and AAAABBBB) and for the two most complex lineages
(i.e. AABCDEFG, and ABCDEFGH). These results indicate that more main-phase iterations indeed
improve estimation results although by a small margin. It can be seen from Table 4.2 that for the differ-
ent TAP level the underestimation is reduced by 1 percent for the gp and ggp level while at the parent
and purebreed level there is a further improvement in estimation accuracy by 2-3 percent. For the long
run the BSLP also catches up with ULP proposal mechanism to yield exactly the same performance,
even the lower and upper quartile estimates are almost identical. This insight suggests that even the
uniform proposals allows for a thorough exploration of the breed space and no further benefit towards
fine granularity are obtained using BSLP. Although initially I expected an improvement in estimation
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(a) Tree AAAAAAAA, Long, ULP (b) Tree AAAABBBB, Long, ULP

(c) Tree AABCDEFG, Long, ULP (d) Tree ABCDEFGH, Long, ULP

Figure 4.1: CCBC breed proportion estimates for the ULP update proposals within the long
MCMC run: these figures show true ancestral proportion as bold red line while the boxplots offers
information on the breed proportion estimates, i.e. the median, lower and upper quartiles, whiskers
which extend to the most extreme data point less than 1.5 IQR from the box, and outliers which are
drawn as small circles. These plots represent a subset of the 11 lineage trees: in particular the top two
rows correspond to the simplest trees while the bottom two columns match the most complex lineage
trees.

True breed ancestry CCBC CCBC CCBC
Median [1st,3rd] Quartiles Long,ULP Long,BSLP Short,ULP

100% 0.87 [0.77,0.93] 0.87 [0.77,0.94] 0.85 [0.74,0.92]
50% 0.41 [0.35,0.46] 0.41 [0.35,0.46] 0.38 [0.32,0.44]
25% 0.20 [0.17,0.25] 0.20 [0.17,0.25] 0.19 [0.15,0.24]

12.5% 0.12 [0.03,0.16] 0.12 [0.03,0.16] 0.11 [0.02,0.16]
0% 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]

Table 4.2: Inference for short/long MCMC run: a list of the median and lower/upper quartiles for the
breed proportion estimates for all true underlying ancestral levels. The results show that a longer MCMC
run further reduces underestimation by about to 1 to 3 percent. Furthermore, for the long MCMC run
the BSLP update proposal yields almost identical estimates to the ULP update which suggests that the
breed-biased update mechanism directed proposals over larger parts of the breed space in the additional
iterations. However, due to limited hierarchical population structure the uniform updates are sufficient
to explore the breed space. Full results for all combinations of MCMC run length, update proposals and
breed proportion computations are shown in Table A.19.
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Figure 4.2: This figure shows breed proportion estimates averaged across lineage trees. More in detail,
CCBC breed proportion estimates for the ULP update proposal within long MCMC run are visualized
as boxplot showing median, lower and upper quartiles of all ancestral levels. Numerical values for the
median and quartiles are also given in Table 4.2.

accuracy of BSLP over ULP due to better exploration of subpopulations. However, I did not expect huge
improvements because according to the breed similarity results explored in Section 2.5.5 there are only
a few strong clusterings in the breed space and limited deep population substructure. A comparison with
Mars’ classification view in Section A.7.2 confirms the estimation view findings from above.

So far I focussed on predicting breed contributions separately for each lineage as shown in Figure
4.1. However, I would like to investigate how much lineage specific TAP median levels deviate from
averaged median breed contributions across all trees as given in Figure 4.2. Indeed, the deviation between
lineage-specific and global, i.e. averaged median, breed contribution is less or equal than 0.01 except for
three cases: for the parental level in lineage tree AAAABCDE (lineage tree 5) the deviation is 0.016 and
at the ggp-level for tree ABCDEFGH (lineage tree 11) the deviation is 0.014. This behavior suggests for
both exceptions that when all other TAP levels in the lineage tree are at the ggp level there will be more
deviation for the specific lineage tree. But in general it has to be concluded that difference between the
global and lineage specific medians are minor.

4.7.2.1 Lineage tree inference

Although in simulations I know which lineage tree a sample comes from in setups with real dogs this
information is not available and I need to rely on predicted breed contributions only. Therefore, I would
like to explore the possibility whether the original lineage tree can be inferred from the TAP counts
only, i.e. the number of breeds predicted for each ancestral level ranging from ggp to purebred. Indeed,
looking at Table 1.5 this is possible for all trees except lineage trees for AABBCDEF (lineage tree 8)
and AABCDDEF (lineage tree 9) which have the same combination of ancestral TAP levels (2 gps and 4
ggps each). For example, one predicted parent and two grandparents implies AAAABBCC (lineage tree
3) while one estimated parent, 1 grandparent and 2 great-grandparents suggests AAAABBCD (lineage
tree 5).
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Figure 4.3: This figure shows a density plot (gaussian kernel smoother with bandwidths 0.01-0.02) for
global estimated breed contributions (CCBC, ULP, Long). Each colored transparent polygon corre-
sponds to one of the ancestral levels, i.e. purebred, parent, gp, ggp and non-ancestry. Furthermore,
vertical lines colored according to the TAP level illustrate the true breed contributions. Vertical grey
dashed lines show the inferred breed contribution cut-offs between consecutive TAP levels, i.e. the
cut-off between parental and purebred level is about 0.5258.

- Max Max
View Density Quantiles

Non-Ancestry 0.02 0.00
Quantiles - NonAncα=0.96,GGP1−α=0.04

Great-Grandparent 0.17 0.17
Quantiles - GGPα=0.76,GP1−α=0.24

Grandparent 0.29 0.29
Quantiles - GPα=0.86,P1−α=0.14

Parent 0.53 0.53
Quantiles - Pα=0.98,Purebred1−α=0.02

Purebred 1 1
Quantiles - -

Table 4.3: The breed intervals for each TAP level for the quantile and density view are shown. For the
quantile view I also provide the cumulative density threshold. For example, if a dog has a predicted breed
contribution in the interval [0.17,0.29] I assign it to the TAP class grandparent. Furthermore, the upper
bound 0.29 for the grandparent level is associated with the 86-th quantile and 0.14-th quantile for the
cumulative density of grandparent and parent, respectively. Note the results for the quantile and density
views are slightly different because for the quantile I chose a 200-quantile as approximation while for
the density view I selected the default option of machine precision.
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True breed ancestry OrgSynRecC1 OrgSynRecC2
12.5% 0.13 [0.08,0.16] 0.14 [0.06,0.16]

0% 0 [0,0] 0 [0,0]

Table 4.4: Inference for ULP update proposal within long MCMC run: simulation dataset OrgSyn-
RecC1 yields similar median ggp estimates when compared to Mars’ dataset OrgSyntheticRed. Fur-
thermore, DBAncestry is robust towards recombination with roughly equal medians but slightly smaller
lower quartile estimates.

However, TAP levels are not directly available either. Therefore, estimated breed contributions need
to be utilized to infer the mapping from predicted breed contribution intervals to TAP level. In particular,
breed contribution cut-offs need to be found which distinguish between consecutive TAP levels, i.e.
between purebred-parent, parent-gp, gp-ggp and between ggp versus non-ancestry. I present two views
based on cumulative distribution of the predicted breed contributions:

1. Density view: in Figure 4.3 I show a density plot p(TAP, x) of the cumulative distribution function
for the estimated breed contributions jointly for each TAP class and estimated breed proportion x.
Then, to find the optimal breed contribution cut-off t between the BC densities f, g of consecutive
TAP levels I minimize the difference |

∫ t
0
f(t)dt−

∫ 1

t
g(t)dt|. The integral difference is minimized

numerically using golden section search for unimodal functions (Brent, 1973). Alternatively, one
could define the decision boundary where the densities of consecutive ancestral levels intersect.
Results for BC cut-offs are again summarized in in Table 4.3. According to Webb (2003) in
elementary decision theory the Bayes’ decision rule minimizes error of TAP assignment where the
ancestral level TAP is selected which has the highest a posteriori probability p(TAP|x) due to the
conditional probability relationship p(TAP, x) = p(TAP|x)× p(x).

2. Quantile view: alternatively, inference of the optimal separation boundary between consecutive
ancestral levels can be based on the estimated breed contributions across all ancestral levels which
is described in Section A.7.3.

Finally, based on the results for the BC cut-offs shown in Table 4.3 I would like to explore the
question which proportion of TAPs is recovered:

• Purebred: 85% TAP predictions are correctly recognized.

• Parental: 64% TAP predictions are correctly recognized.

• Grandparent: 37% TAP predictions are correctly recognized.

• Great-Grandparent: 74% TAP predictions are correctly recognized.

• Non-Ancestry: 97% TAP predictions are correctly recognized.

Most TAP levels have reasonable recovery levels given the overlapping nature of the TAP classes.
As expected from Figure 4.3 the gp level shows a strong overlap with the ggp and parental which suggest
more uncertain assignments. In particular, it suggests that breeds at the gp level are often confused as
ggps.

4.7.2.2 Impact of recombination
In this section I investigate how much recombination influences the breed contribution estimates at the
great-grandparent level within the ABCDEFGH lineage tree. In particular, I apply the MCMC algo-
rithm using the uniform breed update proposals for the long MCMC run. Firstly, to confirm the results
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(a) OrgSynRecC1: without recombination (b) OrgSynRecC2: with recombination.

Figure 4.4: Breed proportion proportion estimates of lineage tree ABCDEFGH for ULP update proposal
within long MCMC run based on own simulation data discussed in Section 1.5.5. The red vertical line
represents the true non-ancestry and great-grandparent levels while the bold black line corresponds to
the median estimate in the boxplot. Numerical values for the median estimates and quartiles are also
given in Table 4.4.

for ABCDEFGH lineage tree in Mars’s dataset OrgSyntheticRed I replicate these results using dataset
OrgSynRecC1: from tables 4.2, 4.4 it can be seen that the median breed contribution estimates are
very similar with 0.12 and 0.13 for datasets OrgSyntheticRed (CCBC, Long, ULP) and OrgSynRecC1,
respectively.

In the next setup I simulate data test data OrgSynRecC2 with recombination according to Section
1.5.5. The median ggp breed contribution estimates for OrgSynRecC1 are very similar to OrgSynRecC2
with 0.133 and 0.137, respectively. The upper quartiles are almost identical (i.e. 0.16) while the recom-
bination dataset has a slightly smaller lower quartile value (0.08 vs. 0.06). On the hand, I did not expect
very different results because the impact of recombination rate is limited due to a low recombination
probability of α = 10%. However, the two following factors should be taken into account

1. Number of loci across chromosomes is very small, i.e. in the range [7,17] (cp. Table 1.3),

2. DBAncestry does not explicitly account for recombination

to appreciate the high prediction quality in the case of recombination events.

4.8 Conclusions
In this chapter I reviewed Mars’ MCMC algorithm and developed the ideas leading to my novel MCMC
approach DBAncestry which either updates breeds uniformly across breeds or biases the proposal mech-
anism, such that similar breeds are more likely to be explored. I found that breed proportions are well
estimated, and even are improved by up to three percent if I increase the number of main phase MCMC
iterations by a factor of 10 from 700K for the short run to 7 million for the long MCMC run. Although
the breed proportion estimates are only improved by a small margin for the long run there is a large
improvement to classify breeds correctly, i.e. the area under the ROC curve is increased by up to ten
percent for the most complex lineage tree.

I also found that that global median breed contributions for the different TAP levels only have
minor differences with lineage-specific results. After that I presented an approach which shows how the
lineage tree can be inferred from the counts for the different TAP levels (i.e. number of breeds at each
ancestral level) which again can be derived from the predicted breed contributions.
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Furthermore, I also found that a uniform breed update proposal in the MCMC algorithm is sufficient
to explore the breed space. Furthermore, due to a lack of a deep clustering structure in the breed space,
a breed-biased update proposal does not lead to further improvements in breed proportion estimates but
approximately yield equal breed proportion estimates to the uniform update proposal.

Moreover, I showed how the type of lineage tree can be inferred from the true ancestral proportions,
such as purebred and parents, which are again based on the predicted breed contributions. I also showed
using simulation data that DBAncestry is robust against recombination events typical for canine data.



Chapter 5

Alternative ancestry inference models

This chapter deals with alternative ancestry estimation techniques and contains two parts:

1. Review alternative ancestry techniques: there is a lack of a comprehensive review of alternative
approaches applicable for local and global ancestry estimation. Therefore, I look at a variety of
approaches, group them by topic and describe how certain model limitations led to more involved
approaches. An overview of the techniques discussed is shown in Table 5.1.

2. ChromoPainter data analysis: furthermore, a detailed literature review is required to select a very
competitive algorithm in Section 5.2.1 which I utilize as comparison technique for the DBAncestry
technique from Chapter 4. In particular, I will argue why I choose the ChromoPainter model
as comparison technique and how I prepare the data and set tuning parameters for the analysis.
After that I will offer results for the data analysis using the same performance measures as for the
DBAncestry technique. Finally, I will discuss why the MCMC approach from Chapter 4 is tailored
towards small marker panels while ChromoPainter is more specific to dense datasets covering a
larger number of SNPs.

5.1 Review ancestry inference techniques
This Section reviews different approaches to estimate local or global genetic ancestry composition in
humans and animals. The current literature lacks an integrated, comprehensive review of the different
approaches at a conceptual level. There are partial reviews (Churchhouse, 2012; Churchhouse and Mar-
chini, 2013; Liu et al., 2013) for a subset of ancestry inference techniques I cover in this chapter which
includes global model-based clustering in Section 5.1.2, local window-based approaches in Section 5.1.3,
local hidden Markov models in Sections 5.1.4, 5.1.4.8, PCA-based approaches in Section 5.1.6. But none
of these reviews discussed how these approaches are grouped into different categories and motivated their
development. A further limitation of these reviews is that they do not include techniques based on either
multivariate, multiple regression in Section 5.1.1, machine learning-based approaches in Section 5.1.7
and recent nonparametric Bayesian methods in Section 5.1.5.

5.1.1 Regression
Global ancestry inference can be framed as multivariate linear regression with multiple responses
(MMLR) (Izenman, 2008) which is visualized in Equation 5.1. For the ancestral training dataset I am
given multivariate covariate design matrix X ∈ {0, 1, 2}m×p where each row corresponds to the p SNP
markers of a purebred dog. Furthermore, I have a multiple response matrix Y ∈ [0, 1]m×b where each
row corresponds to the breed contributions of a given training dog, such that breed proportions normalize
to 1 for each dog · and I have

∑b
j=1 Y·j = 1. Then, response matrix Y is regressed on predictor matrix

X to estimate regression coefficient matrix β̂ ∈ Rp×b. Finally, for a test dataset of n admixed dogs I
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Method > 2 pops Correlation Type

MMLR (Izenman, 2008) yes no Regression
PCR (Massy, 1965) yes predictors Regression

Ridge Regression (Hoerl and Kennard, 1970) yes no Regression
LASSO (Tibshirani, 1996) yes no Regression

MTRL (Argyriou et al., 2008) yes predictors Regression
Curds & Whey (Breiman and Friedman, 1997) yes responses Regression

RRR (Izenman, 1975) yes predictors Regression
PLS2 (Wold, 1975) yes predictors, responses Regression

MRCE (Rothman et al., 2010) yes responses Regression
MMLRC (Sohn and Kim, 2012) yes predictors, responses Regression

Structure (Pritchard et al., 2000) yes no Clustering
Frappe (Tang et al., 2005) yes no Clustering

Admixture (Alexander et al., 2009) yes no Clustering

Lamp (Sankararaman et al., 2008b) yes no Window
WinPop (Paşaniuc et al., 2009b) yes no Window

AncestryMap (Patterson et al., 2004) no no HMM
ADMIXMAP (Hoggart et al., 2004) no no HMM

Structure 2 (Falush et al., 2003) yes no HMM
Saber (Tang et al., 2006) yes yes HMM

Switch (Sankararaman et al., 2008a) yes yes HMM
Hapmix (Price et al., 2009) no yes HMM

Hapaa (Sundquist et al., 2008) yes yes HMM
GEDI-ADMX (Paşaniuc et al., 2009a) yes yes HMM

LAMP-LD (Baran et al., 2012) yes yes HMM
Alloy (Rodriguez et al., 2013) yes yes HMM

Multimix (Churchhouse and Marchini, 2013) yes yes HMM
ChromoPainter (Lawson et al., 2012) yes yes HMM

iHMM (Sohn et al., 2012) yes yes Non-parametric
FragCoag (Teh et al., 2011) yes yes Non-parametric

SmartPCA (Patterson et al., 2006) yes yes PCA
ipPCA (Intarapanich et al., 2009) yes yes PCA
PCAdmix 2 (Brisbin et al., 2012) yes yes PCA, HMM

GEM (Lee et al., 2010a) yes yes PCA

ETHNOPRED (Hajiloo et al., 2013) yes no ML
SVM with RBF (Haasl et al., 2012) yes yes ML, PCA
SVM with strings (Do et al., 2012) yes yes ML

Table 5.1: A summary of the reviewed ancestry inference techniques is shown. In particular, listed types
are based on regression in Section 5.1.1, global model-based clustering in Section 5.1.2, local window-
based approaches in Section 5.1.3, hidden markov models in Section 5.1.4, non-Parametric Bayesian
approaches in Section 5.1.5, PCA-based approaches in Section 5.1.6 and Machine Learning (ML) based
approaches in Section 5.1.7. For each of these methods I show whether this technique is applicable
for more than two populations. I also list whether a technique deals with correlation. In particular, for
regression techniques I list whether correlation in predictor, response space or both is modelled.
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predict breed proportions Y ′ ∈ [0, 1]n×b using the test dog genotype data X ′ ∈ {0, 1, 2}n×p and the
inferred regression coefficient estimate β̂ ∈ Rp×b from the ancestral data.


x11 x12 . . . x1p

x21 x22 . . . x2p

. . .

xm1 xm2 . . . xmp

 ·

β11 β12 . . . β1b

β21 β22 . . . β2b

. . .

βp1 βp2 . . . βpb

 =


y11 y12 . . . y1b

y21 y22 . . . y2b

. . .

ym1 ym2 . . . ymb

 (5.1)

Standard multivariate regression, i.e. a special case of MMLR with a single response, has been used
to predict crossbred bull breed proportions based on 17 bull breeds. Kuehn et al. (2011) specify a design
matrix X which is formed by estimated frequencies of a given allele for all loci in the ancestral bull
population as previously applied to human populations in Chiang et al. (2010). Then, the alleles of the
crossbred bull is regressed on this design matrix and the estimated regression coefficient corresponds to
the breed contributions. The measured squared correlation R2 between estimated regression coefficients
and the truth of pedigree based analysis was at 89 percent based on 52K SNP markers while a chip with
3K markers led to an average R2 = 0.83 which indicates strong LD in the 52K chip.

Returning to the general MMLR setup I would like to adjust for the case that the response depends
on the covariates nonlinearly, and to account for correlation in the data. There are two types of correlation
I would like to account for:

• Correlated covariates: this setup where two or more independent predictors are highly correlated
is also known as multicollinearity (Freund and Wilson, 1998; Yan and Su, 2009). Firstly, corre-
lated markers leads to a loss of information due to redundancy, such that a given predictor can be
represented as a linear combination of the others. Secondly, predictor correlation affects compu-
tation of a stable least square estimate which contains the term XTX which in this case is nearly
singular with very small eigenvalues and its inverse

(
XTX

)−1
may have very large eigenvalues.

In particular, XTX is ill-conditioned because this term may undergo a large change for a small
change in the covariate matrix X. One way to check collinearity is by computing the variance
inflation factor V IFi = 1/(1 − R2

i ) where R2
i is the coefficient estimate by regressing the i−th

predictor against all others. VIF attains its minimum at 1 for R2
i = 0 where the i−th predictor

is independent from the other covariates. Then, as rule of thumb, a VIF value exceeding 10 may
indicate potential collinearity problems (Yan and Su, 2009).

• Correlated responses: with respect to the response space I model correlation among the different
breeds in the training data. In general, each response could be modeled using separate linear
regressions although I may lose information on breed relationships.

Firstly, I investigate remedial techniques which can be utilized to deal with multicollinearity:

• Redefine variables: if I knew a subset of predictors which are highly correlated I may remove
all those variables and replace it a by a single variable which is a linear transformation of those
predictors, such as their sum or difference.

• Create new variables: I perform principal component regression (PCR) (Massy, 1965) because
it decorrelates the data in projected space: I compute principal component scores for data matrix
X using the leading eigenvectors capturing most variability in the data. Then, each response is
regressed on these principal component scores which form the new set of predictors.



98 Chapter 5. Alternative ancestry inference models

• Penalized regression: in penalized regression problems estimation of coefficients is bounded to
improve stability and select relevant variables.

– In ridge regression (Hoerl and Kennard, 1970) I penalize the least square fit by using the
L2 norm, i.e. I adjust the least square estimator by adding a small multiple of the identity
matrix to the covariance matrix, i.e.

(
XTX + k · Ip×p

)−1
, to improve numerical stability

of the matrix inversion. Ridge regression is different to PCR by keeping all variables and not
discarding principal component directions which explain little variability. However, weights
of these low-variability directions are shrunk more.

– LASSO (Tibshirani, 1996) is another example of penalized regression where we penalize the
least square fit by using the L1 norm. LASSO selects a subset of variables which contribute
most in predicting the response. HYPERLASSO (Hoggart et al., 2008) is a Bayesian version
for penalized regression.

– Multi-task relationship learning (MTRL) (Argyriou et al., 2008; Zhang and Yeung, 2010):
in multitask learning predicting each response is a task, and the correlation structure of the
predictors is explicitly modeled. In particular, this MTRL is a least square problems which
is penalized by coupling the univariate response regression coefficient estimate β with the
inverse covariance matrix Σ of the predictors, i.e tr(βΣ−1βT ).

Secondly, I deal with correlated responses. In general, for independent outputs I could run a separate
ridge regression for each response variable. However, if the responses are correlated I can do better
by accounting for this joint relationship. I, continue with reviewing four approaches related to either
covariance or correlation information between predictors and responses.

• Curds & Whey (CW) procedure (Breiman and Friedman, 1997) and reduced rank regression
(RRR) (Izenman, 1975, 2008) are two examples of least square regression approaches built on
the foundation of canonical correlation analysis (CCA). In particular, the responses are projected
onto the canonical coordinate systems using the eigenvectors of the CCA decomposition. Then, a
separate OLS regression fit is computed for each response in this new response space. After that,
this estimated regression coefficient is used to predict each of the responses in canonical coordinate
system. As next step, these predicted responses are shrunk by a diagonal matrix based on the
eigenvalues of the CCA decomposition. Finally, the shrunk predicted responses are transformed
back from the canonical coordinate system to the original space using the inverse of the CCA
decomposition eigenvector matrix.

– CW is motivated by performing a separate least square regression for each response. Then, to
compute the j−th response, I form a linear combination of the b separate response estimates.
Then, the coefficients of this linear combination are found through performing a CCA onto
the covariates and responses.

– RRR is formed by a MMLR which is weighted by the inverse of the covariate covariance
matrix Σ−1 and features a rank constraint on the matrix of estimated regression coefficients.
Breiman and Friedman (1997) showed RRR is also related to performing least square re-
gression in the canonical coordinate system with a slightly different shrinkage matrix than
CW.

• Partial Least Squares (PLS) is a class of methods for modeling relations between sets of ob-
served predictors by using orthogonal latent score vectors (factors) (Wold, 1975; Rosipal and
Krämer, 2006; Boulesteix and Strimmer, 2007; Postma et al., 2011). PLS is also well-known
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to model strongly collinear data due to its projection on a smaller number of latent factors (Yeniay
and Goktas, 2002). Two-block PLS (PLS2) models multivariate responses and the latent factors
are found by maximising the covariance between the two blocks which are formed by predictors
and responses whereas PLS1 only models univariate responses. In other words, I look for linear
combinations of covariates and responses, such that their covariance is maximized. Then, in PLS2,
a separate regression can be performed for each response which is regressed on the canonical pre-
dictor covariance linear combination, i.e. on the transformed original covariates.

• Multivariate regression with covariance estimation (MRCE) (Rothman et al., 2010):
MRCE is a least square regression problems which treats the predictor space as IID but
weights the least square problem with the inverse of the response covariance matrix Ω, i.e.
Tr
[
(Y −Xβ)Ω−1(Y −Xβ)

]
is minimized.

Frkonja et al. (2011, 2012) applied PLS1 and LASSO to model a univariate response which is
used to predict breed composition in an crossbred Swiss Fleckvieh (SF) cattle population (305 admixed
bulls) which has Simmental (SI, 90 pure bulls) and Red Holstein Friesian (RHF, 100 pure bulls) as
founder populations. The goal in this study is to estimate two-way SF admixture proportions where 0
corresponds to zero percent RHF (100 percent SI) and 1 corresponds to 100 percent RHF (0 percent SI)
using 40.4K SNPs. Performance has been measured using Pearson correlation between pedigree based
analysis and either PLS1 or LASSO prediction. Performance for PLS1 has been 0.976 and LASSO
0.934. This excellent performance is expected because the average fixation index Fst = 0.11 is quite
high and corresponds to a human population distance of Caucasian vs. Chinese/Japanese. The authors
also studied the impact of reducing the number of markers to smaller panels based on either fixation
index or evenly spaced subsets. Selecting 594 SNPs by Fst > 0.5 reduces PLS1 performance to 0.957
and keeps LASSO performance at 0.934. Finally, choosing 48 SNPs with the highest Fst further re-
duces PLS1 and LASSO performance to 0.903. Furthermore, PLS1’s performance is less sensitive than
LASSO to the way SNPs are selected, i.e. either selecting SNPs at even spacings or by the highest
Fst. In particular, choosing 1 percent of the SNPs (404 SNPs) evenly spaced slightly reduced PLS1
performance to 0.955 but led to a strong decrease to 0.847 for LASSO. This shortcoming of LASSO
may be due to its limitations to deal with correlated predictors (Zou and Hastie, 2005). In general,
the performance of PLS1 and LASSO is even very strong for small panels which suggests strong LD
patterns in the chip.

Returning to modelling correlation in response space, all of these approaches are restrictive to some
extent. MRCE only models the output covariance but does not account for collinearity in the predictor
space. CW, RR and PLS project the original data onto a different space which may discard relevant
information if there are more responses than covariates (Rai et al., 2012). Although, in my context this is
less relevant because there are more SNPs than breeds. Therefore, the current state of the art techniques
aim to model covariate and response structures jointly using the inverse covariance information of pre-
dictors and responses (Lee and Liu, 2012; Sohn and Kim, 2012; Rai et al., 2012). I refer to these models
as ’multivariate linear regression with multiple responses correlated’ (MMLRC). For example, Rai et al.
(2012) choose a framework which combines MTRL with MRCE, i.e. the following expression

Tr
[
(Y −Xβ)Ω−1(Y −Xβ)

]
+ Tr(βΣ−1βT ) + Tr(ββT ) +m log |Ω|+ p log |Σ|

is minimized alternating between the inverse of the response covariance matrix Ω−1, inverse of the
predictor covariance matrix Σ−1 and regression coefficient β.
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Finally, once I simultaneously modeled the covariate and response space, there may still be some
structure left which has not been considered. In particular, the chosen hypothesis class of responses
which depend linearly on the covariates may have limited expressive power given that the data may
exhibit nonlinear behavior. There are two main ways to handle nonlinearity in the data according to
Rosipal and Krämer (2006):

• Basis function expansion (Ruppert et al., 2003): the original data is fit to various basis functions
expansions, such as polynomials, splines for non-period data and a Fourier basis expansion for
periodic data. Then, the fitted coefficients are used as new predictors to account for the nonlinear-
ity. Alternatively, a nonlinear function, such as sigmoid, is applied to composite linear functions,
such as artificial neural networks (ANN). Then, to perform nonlinear regression or classification,
this model is fit by a technique using gradient descent and the chain rule for the multiple layers
of linear functions which is known as backpropagation. The ANN with multiple outputs could be
applied to our problem. However, the basis function approach is known to only work well with a
small number of covariates which is not satisfied in our case.

• Kernel approach (Shawe-Taylor and Cristianini, 2004): another approach is based on kernel-
izing the PLS2 approach, i.e. by replacing inner products of the covariates in the optimization
algorithm by a kernel function which maps the original data to a new space of higher dimen-
sionality. The kernel approach will be described more in detail in Section 5.1.7 where I discuss
this topic with respect to the support vector machine (SVM) approach. Bennett and Embrechts
(2003) showed that for their datasets kernel PLS achieves the least average misclassification rate
compared to different SVM versions and a kernelized version of ridge regression.

• Generalized linear model (GLM) (MacCullagh and Nelder, 1989): GLM is a generalization of
OLS where the response variable is linearly related to the covariates using a link function.

5.1.2 Global model-based clustering
5.1.2.1 Structure
Global model-based clustering approaches attempt to infer the ancestry proportions of individuals from
K ancestral populations based on genotype data. In one of the earliest global model-based ancestry
inference approaches, Pritchard et al. (2000) introduce the Bayesian clustering approach STRUCTURE
that assigns admixed individuals to one or more populations. Given genotype data X the algorithm
jointly estimates the following vectorial parameters: allele frequencies S for each population which
follow a Dirichlet distribution (i.e. markers are considered unlinked), the Dirichlet-distributed admixture
proportion Q of each individual that it was derived from a particular population, and the population of
origin Z of each locus for each individual. STRUCTURE relies on Gibbs sampling to sample from the
posterior distributions of all those parameters (Gilks et al., 1996). In other words, given genotype data,
allele frequencies and admixture proportions, I predict the population of origin for each locus. And given
the genotypes with the population of origin, I update allele frequencies and individual ancestry propor-
tions. STRUCTURE has been successfully used in clustering of two-way cattle admixtures (Frkonja
et al., 2011, 2012) and the prediction of different types of dairy cattle in Kenya (Gorbach et al., 2010).

Later, Tang et al. (2005) developed a frequentist approach of STRUCTURE, known as FRAPPE,
using maximum likelihood estimation. Firstly, Tang et al. (2005) are concerned about a reliable assess-
ment of convergence of MCMC approaches and their sensitivity to priors. Secondly, their frequentist
approach is less computationally intensive although the root mean squared error between true and esti-
mated admixture proportion is marginally bigger than that of STRUCTURE. Finally, FRAPPE shows
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less bias of admixture proportion estimates in information-poor setups which have less than 100 markers
and individuals per ancestral population. Frappe has also been implemented in two software packages:
in the ethnic admixture option of Mendel (Lange et al., 2013) and in PSMIX (Wu et al., 2006). FRAPPE
has successfully been applied for prediction of ancestry proportions of cross bull breeds (Kuehn et al.,
2011) as well as human admixture (Wu et al., 2006).

5.1.2.2 Structure 2
Falush et al. (2003) developed an extension of the original STRUCTURE model which is referred to
as STRUCTURE 2 and accounts for correlations between linked markers in admixed populations. Al-
though STRUCTURE 2 belongs to the local HMM category in Section 5.1.4 it is described here because
it is designed based on the limitations of STRUCTURE. The STRUCTURE model assumes that the
allele population origin Z within each individual are independent although inter-marker correlations are
expected along the chromosome. Therefore, STRUCTURE can only model one type of linkage disequi-
librium known as mixture LD which looks at within-breed variation according to breed-specific allele
frequency patterns (Alexander et al., 2009). The STRUCTURE 2 model also accounts for admixture LD
which takes correlation in ancestry along the chromosome into account. In particular, each chromosome
is viewed as mosaic of chunks (contiguous SNP sequences) which are inherited as unbroken units from
the ancestral population (Daly et al., 2001; Li and Stephens, 2003; Scheet and Stephens, 2006; Lawson
et al., 2012). In Falush et al. (2003), chunks of chromosomes are inherited as units from one or more
of the K populations and all markers composing a particular chunk derive from the same population.
In the STRUCTURE 2 model breakpoints, i.e recombination events which change ancestry, between
consecutive chunks are distributed according to a Poisson process with rate r per unit of genetic distance.
Random variable r is estimated as part of the MCMC algorithm and the limiting case of an infinite re-
combination rate corresponds to the admixture case of STRUCTURE with independent loci. Therefore,
STRUCTURE 2 is a hidden markov model where the hidden state Z corresponds to the unobservable
ancestral population proportions Z which generate the observed genotypes X.

5.1.2.3 Admixture
Alexander et al. (2009) noted that prior model-based clustering approaches focused on the use of AIM
markers which were known to have different frequency patterns in different populations. As noted by
Tang et al. (2005) this is due to the slow convergence of STRUCTURE in the case of many markers.
Therefore, Alexander et al. (2009) developed ADMIXTURE, which is a faster frequentist version of
FRAPPE, which uses an extension of Newton’s method for constrained optimization and maximizes a
second-order Taylor expansion of the log-likelihood by alternating between maximizing allele frequen-
cies and ancestry proportions. The speed of ADMIXTURE is similar to singular value decompositions
approaches, such as PCA, which makes it possible to use large number of SNPs for analysis, or select
AIMs for different analyzes based on inferred allele frequencies.

5.1.3 Local window-based approaches
5.1.3.1 Lamp
In window-based approaches locus ancestry inferences are carried out separately for each window, such
that in each window there is either none or at most one recombination event. These window-based
approaches are motivated by the fact that other models, such as HMMs, estimate a large number of
parameters including the exact position of recombinations which requires a search over a prohibitively
large search space. Sankararaman et al. (2008b) developed an approach called LAMP which looks at
recently admixed populations where the number of generations g since the start of mixing is small. An
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extension of their model known as LAMP-ANC uses knowledge of ancestral genotype information. Re-
sulting chromosomes are viewed as mosaic of K populations. LAMP-ANC assumes certain parameters
to be known in the admixed population, such as the Poisson-distributed recombination rate r, individual
admixture proportions α and generations g. Furthermore, allele frequencies f for each population are
estimated from the ancestral populations. LAMP moves a sliding window of length l over the geno-
type. For each window, LAMP-ANC infers the most likely population pair assignment given f and the
genotype of the current individual. Locus-specific ancestry prediction errors are minimized by taking a
majority vote of all windows which include a given marker. The window size l is computed using g, α, r
and is chosen to be short enough to have mostly zero recombination events but also long enough to yield
sufficient information for population discrimination. Sankararaman et al. (2008b) compare LAMP-ANC
based on 40K SNPs with STRUCTURE and SABER (Tang et al., 2006) (to be introduced later) using
4K SNPs due to computational complexity. They perform experiments on two-way admixtures (Nigeria
vs. European descent, Japanese vs. European descent, Japanese vs. Chinese). They find that based on
allele frequency distance of considered ancestral populations LAMP-ANC outperforms STRUCTURE
by 11 to 46 percent and SABER by 4 to 11 percent in accuracy of prediction the loci ancestries for each
population.

5.1.3.2 WinPop

LAMP-ANC performs very well for admixtures from distant populations, such as Nigerian vs. European
descent, but works less well for closely related populations, such as Japanese vs. Chinese, because
the algorithm does not consider population differentiation as modeled by allele frequency differences.
This leads to a setup where the window size is chosen without respect to the genetic population affinity.
Furthermore, the assumption of no recombination events in a given window leads to shorter window with
higher rate of errors. Therefore, Paşaniuc et al. (2009b) proposed an extension of LAMP with adaptive
window size known as WinPop, such that each locus the local genetic distance between two ancestral
populations is taken into account. WinPop estimates locus ancestries by using dynamic programming
which iterates over all markers in the window, and for each position computes the probability of having
one ancestry upstream while the other is located downstream. For distant populations the accuracy gain
of Win Pop is 4 percent over LAMP and HAPAA (Sundquist et al., 2008) (introduced below) and 8
percent over SABER. Furthermore, for closely related populations WinPops yields an improvement in
accuracy of 17 percent over LAMP, 10 percent over HAPAA and 14 percent over SABER.

5.1.4 Local HMMs

5.1.4.1 Early HMM approaches

Due to very high sequencing cost the earliest local ancestry inference algorithms using hidden markov
models relied on small marker panels which were composed of 1,500 to 5,000 markers (Smith and
O’Brien, 2005; Seldin et al., 2011). In these early HMM implementations the ancestry states consitute
the hidden chain and must be inferred from the observed genotypes. Furthermore, transition probabilities
model recombination events while emission probabilities follow ancestral marker-wise and population-
specific allele frequencies. These HMMs combine information on genotypes at adjacent loci which
leads to higher utility of models focussing on separate analysis of each marker. Two of the most well-
known approaches are known as ADMIXMAP and AncestryMap, respectively (Hoggart et al., 2004;
Patterson et al., 2004). In these two approaches certain parameters, such as recombination rate and allele
frequencies, are assumed to be known.
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5.1.4.2 Saber and Switch
Tang et al. (2006) developed a second-order HMM model known as SABER for genome wide data
which explicitly accounts for LD, i.e. correlation of markers in dense genetic data. Motivated by
computational tractability early HMMs assumed that observed SNPs are independent from each other
conditional on the hidden ancestry state. However, SABER uses a Markov-HMM (MHMM) where
the genotype evolves in a non-Markovian along the chromosome, such that the current allele at time
t depends on the hidden state at time t according to the HMM emission probabilities but also on the
SNP at time t− 1. The transition probabilities in SABER closely follow STRUCTURE 2 where hidden
state transitions are Poison distributed based on marker distance and time since admixing. The MHMM
is estimated via an extension from the standard forward and backward algorithm but due to the larger
parameter space compared to HMMs requires more marker information. SABER as first approach to
model admixture LD in local ancestry inference motivated further investigation of linkage patterns and
development of more sophisticated LD models.

Sankararaman et al. (2008a) developed the Switch model which is closely related to SABER due to
its implementation as a MHMM model for two-way admixture. The Switch model augments SABER by
including explicit indicators for recombination events, such that in the case of no recombination events
ancestries remain unchanged while for a recombination event the authors select SNP ancestry indepen-
dently. In other words, SABER conditions on ancestry states and does not account for recombination
events which do not change ancestries. On the other hand, in Switch emission probabilities are addition-
ally conditioned on recombination events directly which is beneficial if the algorithm encounters new
haplotypes unseen in the ancestral reference populations that were formed due to recombination events
without ancestral change. Imagine that the first ancestral population has two haplotypes 00 and 11 and
the admixed population has haplotype 01 created by a recombination event of the two haplotypes from
the first population: in this case SABER would assign a negligible probability that this haplotype comes
from the first population only. On the other hand, Switch assigns a probability equal to the product of
the allele frequencies for these two markers.

5.1.4.3 Hapmix and HAPAA
The next step in the development of HMM models leads to an even more accurate modeling of LD
although their model complexity and run-time, which scales quadratically with the size of the ances-
tral population, are limiting factors (Seldin et al., 2011). Early HMM ancestry inference models and
second-order HMM approaches, such as SABER and Switch, model genome-wide data which do not
fully account for long-range dependencies. This limitation could be partly overcome by switching to
higher order models at the expense of exponential model growth and decreased estimation tractability.
However, these higher fixed-order models still do not fully examine information contained in the full
haplotypes. This incomplete modeling of LD between non-adjacent markers leads to systematic biases
causing an increased number of false positives in ancestry inference (Price et al., 2008). Furthermore,
an accurate modeling of long-range LD improves the capture of the ancestry signal of recombination
events further back in time which are characterized by shorter and more remotely inherited blocks.
Therefore, the ancestry inference community developed the models ’HMM-based analysis of polymor-
phisms in admixed ancestries’ (HAPAA) and HAPMIX which model entire haplotypes using nested
HMMs (Sundquist et al., 2008; Price et al., 2009). HAPAA and HAPMIX both rely on a hierarchical
hidden layers in the HMM which models transitions at different levels. HAPAA is a model which
has transitions at the level of population, individual and haplotype, such that a compound hidden state
is formed by one of the two haplotypes of a particular individual in one of the ancestral populations.
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HAPMIX also implements a nested HMM which involves transitions at two layers, i.e. small-scale
transitions between haplotypes of ancestral panel and a large-scale transition switching between popu-
lations. Both, HAPAA and HAPMIX, assume that test genotypes are formed as mosaic of the ancestral
haplotypes (Li and Stephens, 2003; Falush et al., 2003) while allowing for phase switch errors, and
miscopying from the ’wrong’ population in the case of HAPMIX or providing a small allowance for
unseen haplotypes in the ancestral population, mutations and genotype errors for HAPAA. Due to finite
sample size certain haplotypes may not be seen in the ancestral population. Therefore, to smooth out
short inferred ancestry chunks HAPAA applies a post-processing filtering step which discards inferred
ancestry chunks below a threshold of particular genetic length. On the other, HAPMIX explicitly
specifies a miscopying probability within the model because a test individual may coalesce first with
an ancestor from the ’wrong population’ while further back in time admixed with the true population.
As final limitation I note that the model size grows linearly and time complexity scales quadratically
with the number of parental individuals which makes inference for prohibitively costly for large datasets.

5.1.4.4 GEDI-ADMX

The GEDI-ADMX as developed by Paşaniuc et al. (2009a); Kennedy (2009) implements a factorial
hidden markov model (FHMM) (Ghahramani and Jordan, 1997) which assumes a distributed state rep-
resentation, such that there are several hidden chains interacting which jointly emit a symbol at each
position of the observed time series. The hidden chains of this first order HMM are formed by the ma-
ternal and paternal ancestral populations, respectively, which emit haplotype values at the corresponding
loci. Then, these two HMMs are combined by emitting the sum of both haplotypes values at a particular
locus with probability 1 if the sum adds up to the corresponding allele, and 0 otherwise. GEDI-ADMX
runs along the genotype assuming each marker as missing (given all other SNPs) and imputes alleles
under all possible local ancestries. Finally, the ancestry with the highest imputation accuracy is chosen
using a weighted-voting scheme of window lengths’ between 100 and 1500 loci. For distant two-way
admixtures GEDI-ADMIX performs better than HMM-based models (Saber, Switch, HAPAA) and is
competitive with window-based models (LAMP, WinPop). Furthermore, for closely related populations,
such as Japanese vs. Chinese, GEDI-ADMIX significantly improves these HMM- and window-based
models by 11 to 26 percent. Given that haplotype value imputation scales cubic with the number of
ancestral population, GEDI-ADMIX is rendered impractical for large number of populations.

5.1.4.5 LAMP-LD

Baran et al. (2012) invented the LAMP-LD model as accelerated extension of HAPMIX by implement-
ing a variant of the standard model by Li and Stephens (2003) and incorporating ideas from LAMP.
LAMP-LD was motivated by three key limitations: high time complexity and number of populations
limited to two-way admixtures, and a bias in the Li and Stephens model which overpredicts ancestry
changes because recombination events constitute supersets thereof. Firstly, the authors noted that ac-
cording to Price et al. (2009) the Li and Stephens model introduces too many ancestry switches although
some recombination events, i.e. between the same ancestral population, leaves the ancestry switched.
Therefore, LAMP-LD borrows the windowing idea from LAMP, such that the fully haplotypes are
segmented into haplotype blocks formed by non-overlapping windows of length L will have constant
ancestry, to avoid false, short ancestral segments. Furthermore, to be able to deal with large ancestral
reference panels in a computationally efficient way the number of hidden states in each windows needs
to be limited. In particular, HAPMIX scales linearly in model complexity and quadratically in time
complexity as a function of the number of ancestral individuals n. Therefore, LAMP-LD restricts the
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number hidden window states to S << n. Experiments showed that S in the range of 10-15 is sufficient
to capture genetic variation and yield low ancestry estimation error. Similarly, window sizes of 50-100
were found reasonable to capture enough LD information. As last limitation, Seldin et al. (2011); Baran
et al. (2012) noted that many approaches, such as SABER, HAPAA, HAPMIX, LAMP and WinPop,
are targeted at two-way admixtures, such as African-American admixtures, but are either not applicable
or insufficiently accurate for admixtures of three populations, such as Latinos formed by European,
African and Native American influence, or, generally, for local ancestry inference of multi-way admixed
populations. Although LAMP-LD scales linearly in the number of windows its run time is proportional
to
(
K
2

)2
which is prohibitively large for high numbers of ancestral populations K. Based on these short-

comings LAMP-LD applies a hierarchical HMM where the top level HMM transitions between windows
representing different ancestral populations while the nested window HMM models the probability of
a haplotype segment formed by L markers over S hidden states. Given the constant ancestry within
the nested window HMMs any ancestry switches are only allowed at the boundary between consecutive
windows. Finally, as a post-processing step their algorithm searches for ancestry breakpoints close to
the endpoints of windows where an ancestry change has been inferred because the actual algorithm only
allows ancestry switches at the boundary of the nested HMM windows.

5.1.4.6 Alloy

With the prospect to further improve background LD modeling in ancestral populations Rodriguez et al.
(2013) developed ALLOY which implements an inhomogeneous variable-length Markov chain model
(VLMC) which can be represented as FHMM for efficient computations (Ron et al., 1995; Browning
and Browning, 2007). Previous simpler models AncestryMap and SABER implemented first order
and second order Markov models, respectively, which only capture limited marker correlation and
over-simplified background LD in admixture cases. Later, HAPAA and HAPMIX, developed the other
extreme case of over-specification where full ancestral haplotypes are explicitly used. Furthermore,
Halperin and Eskin (2004); Rodriguez et al. (2013) notice that fixed haplotype blocks do not adequately
model inter-marker correlation structure because LD may either extend beyond short ranges or exhibit
block patterns. Therefore, ALLOY uses haplotype clusters as hidden layer states for all loci. The num-
ber of hidden states are adapted according to the amount of locally encountered LD separately for each
hidden chain corresponding to an ancestral population in the FHMM. These localized haplotype clusters
at each locus are formed by a group of locally similar haplotypes which share an edge transitioning
between consecutive SNP markers with the current locus as parent node, such that adjacent loci are also
likely to be in the same cluster. Then, each of the haplotype clusters emits one and only one haplotype
value with certainty. Rodriguez et al. (2013) found that ALLOY which represents a flexible LD model
of intermediate complexity improves ancestry estimation accuracy over either fixed-order HMMs or
explicit use of haplotypes.

5.1.4.7 Multimix

Motivated by HAPMIX, Churchhouse and Marchini (2013) developed MULTIMIX which is an ex-
tension of two-way to multiway admixtures using multiple ancestral source populations. MULTIMIX
segments chromosomes into windows of equal length of constant ancestry. For each pair of window
and ancestral population the algorithm estimates SNP-wise mean allele frequencies and the covariance
matrix over SNPs in this particular window to model pairwise LD. Then, the probability of an admixed
haplotype segment for a given pair of window and ancestral population is evaluated assuming a mul-
tivariate normal density with parameters corresponding to the estimated mean and covariance of the
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allele frequencies of the given source population. Furthermore, similarly to the miscopying process
in HAPMIX, the authors assume a misfitting property where an ancestral population is copied for a
window which is different to the estimated ancestral population from the normal density. This misfitting
property is assumed to decrease spurious ancestry switches at window boundaries. Finally, a first-order
markov process is assumed over the ancestries in consecutive windows which is formulated as a function
of the genetic distance between the center marker of consecutive windows. As before first-order models
may be limited when LD between SNPs extends over several windows. Inference for the most likely
hidden ancestry state sequence is computed using an EM algorithm and MCMC approach. Although
Churchhouse and Marchini (2013) did not apply MULTIMIX to more than five source populations, the
number of populations K does not seem to be a limitation given that MULTIMIX linearly scales in the
number of windows and ancestral populations.

5.1.4.8 ChromoPainter
The final HMM approach which is suitable for multiway admixture is ChromoPainter (Lawson et al.,
2012; Hellenthal, 2012; Hellenthal et al., 2014). ChromoPainter models shared ancestry through haplo-
type similarity patterns in genome-wide studies. In particular, the algorithm paints individuals (’recip-
ients’) as linear combination of segments (’chunks’) taken from individuals (’donors’) in the ancestral
panel. In other words, this painting process at each locus can be interpreted as finding the closest related
haplotypes of lengthL SNPs for in the recipient individual. The similarity of the ancestral dataset formed
of two haplotypes for each individual is given by a coancestry matrix X. Element xij in this copying
matrix shows the predicted number of chunks recipient individual i copies from donor individual j and
takes larger values if individuals i and j are sampled from genetically close populations.

ChromoPainter is based on a haploid copying model which was developed to relate genetic variation
to two underlying scaling parameter, i.e. crossover recombination rate ρ per unit physical distance and
per locus mutation rate θ (Li and Stephens, 2003; Hellenthal et al., 2008). The Li and Stephens (2003)
approach features a computationally tractable likelihood based model which covers key properties of a
genealogical process. Their model is based on the conditional likelihood decomposition p of the joint
distribution over all n haplotypes h1, . . . , hn where the conditional densities are approximated using π̂
which is referred to as ’product of approximate conditionals’ (PAC)

p(h1, . . . , hn, ρ) ≈ π̂(h1|ρ) · π̂(h2|h1, ρ) · . . . · π̂(hn|h1, . . . , hn−1, ρ) = LPAC(ρ). (5.2)

However, ChromoPainter does not order the haplotypes in the same order as the Li and Stephens
(2003) PAC model but each next haplotype is constructed using haplotypes from all other individuals as
potential donors, i.e. the n−th haplotype is modeled using other training haplotypes 1, . . . , n − 1. This
process is repeated for all haplotypes, such that all haplotypes are painted in terms of all other haplotypes.

The approximations for those conditionals π̂(hn+1|h1, . . . , hn) should capture certain properties of
an evolving population: the next haplotype is more likely to be similar to haplotypes observed frequently
and often only deviates by a small number of mutations from a previous one. Clearly, I would also expect
that the probability of a novel haplotype is a function as a Markov process of n previously encountered
haplotypes and mutation rate θ where k decreases the chances and θ makes new haplotypes more likely.
Finally, due to recombination, I expect the next haplotypes to be slightly similar over contiguous SNP
markers from several previous haplotypes where the length of those shared segments depends on the
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Figure 5.1: This Figure is due to Li and Stephens (2003) and shows the fourth haplotypes are
coloured according to an imperfect mosaic of the previous ones, with a probability I denote as
π̂(h4{A,B}|h1, h2, h3). This example captures the copying process for two examples of the 4th hap-
lotype where h4A has a lower switch rate than h4B . The shading for those next haplotypes illustrates
which previous haplotypes I copy from. And jumps in the shading indicates switches in the ancestral
copying. Given that shadings are unavailable in actual datasets I need to sum over all possible ones. Each
circle represents a biallelic SNP marker along the chromosome with white/black color coding according
to allelic variation. The third SNP marker illustrates the effect of mutations in the imperfect copying
process where both h4{A,B} have the black allele but still copy from the second haplotype which has the
white allele.

local recombination rate in those genomic regions, i.e. a low recombination rate leads to longer segments
shared. In Figure 5.1 I show how the next haplotype is painted as linear combination of the previous ones.

I assume the copying process evolves Markovian along the chromosome which leads to a hidden
markov model, see Section 5.1.4 for further HMM approaches. This HMM is parametrized by a vector
of genetic distances ρ = {ρ1, . . . , ρL−1} where ρl refers to genetic distance between sites l and l + 1,

by a per site ’imperfect copying’ mutation parameter θ and by parameter vector f = {1, . . . , k} where
fk is a vector of copying probabilities which indicates the probability of copying from haplotype hj at
any locus. Then, ChromoPainter structures the conditional probability π̂ (hn+1|h1, . . . , hn, ρ) as hidden
markov model. The hidden state sequence in the HMM is given by Y = {Y1, . . . , YL}where Yl indicates
which of the k ancestral haplotypes I copy from at each locus. The switches are distributed according to
a Poisson process with rate ρl and the default for the prior haplotype copying probabilities is uniform,
i.e. fk = 1

n . Then, the transition probabilities for the hidden chain are given in Equation 5.3.

p(Yl+1 = yl+1|Yl = yl) =

exp(−ρl) + (1− exp(−ρl)) fyl+1
if yl+1 = yl;

(1− exp(−ρl)) fyl+1
otherwise.

(5.3)

Therefore, the observed sequence in the HMM most of the time, i.e. with probability 1 − θ, emits
the allele according to the copied haplotype. However, to account for the effects of mutation the mosaic
of copied donor individuals may be imperfect, and with probability θ, the allele not found in the donor
haplotype is copied. Therefore, the emission probabilities are defined as in Equation 5.4 where hk,l
refers to the allelic type of the k−th ancestral haploid k at SNP l.

γn+1,l(yl) = p(hn+1,l = a|Yl = yl, h1, . . . , hn) =

1− θ if hyl,l = a;

θ hyl,l 6= a.
(5.4)
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where p(hn+1,l) refers to the allelic type of next haploid n+ 1 at locus l. Based on these transition
and emission probabilities ChromoPainter computes the expected number of chunks copied from each
donor individual. ChromoPainter scales linearly, i.e. its computational complexity has order o(LDR)

where L is the number of SNPs, D the number of donor individuals and R the number of recipient
individuals.

5.1.5 Non-Parametric Bayesian approaches
Nonparametric methods have long been popular in classical statistics (Wasserman, 2006) and attracted
increased interest in the machine learning community recently (Teh and Jordan, 2010; Orbanz and Teh,
2010; Ghahramani, 2013). There are two main benefits of nonparametric modelling over a parametric
approach which has driven its development: firstly, non-parametric models show flexibility by growing
adaptively with the amount of data. Secondly, non-parametric do not depend on model selection, e.g.
there is no need to specify the number of hidden states in a HMM.

In Bayesian noparametric modelling an infinite-dimensional parameter space is utilized; but on a
given dataset D only a finite number of parameters is used which grows with the dataset. The infinite
hidden markov model (Beal et al., 2002) is an example for a methodology which has been extended
nonparametrically. This infinite HMM can deal with an infinite number of latent states to circumvent
the model selection issue of choosing among varying number of hidden states.

In this Section I describe two nonparametric Bayesian approach for modelling of genetic data: the
first approach performs local genetic ancestry inference using iHMM in an admixed population (Sohn,
2011; Sohn et al., 2012) while the second approach FragCoag clusters past genetic data as mosaic using
fragmentation-coagulation processes (Teh et al., 2011; Elliott and Teh, 2012; Teh et al., 2013).

5.1.5.1 iHMM and FragCoag
The iHMM is motivated by two main factors: extension of HAPMIX to multiway admixture and by
modeling of genetic relatedness among ancestral populations. In particular, most ancestry inference
approaches did not account for genetic relatedness in ancestral populations but assumed them to be
independent which led to high sensitivity with respect to size and choice of individuals in the ancestral
populations. To incorporate this sharing of genetic information across populations iHMM models an-
cestry inference as a composite process where at the top level admixed individuals inherit from ancestral
populations which on a finer level depend on a mosaic of founder haplotypes. In other words, based on
these jumps between these two genetic resolutions the founders create the ancestral populations and the
admixed individuals. In this iHMM each ancestral population is modeled using a separate infinite HMM
where the hidden states correspond to a joint space of hypothetical founder haplotypes and ancestral
populations, and the observed sequence refers to the observed haplotypes of the admixed individuals.
Genetic relatedness is modeled by sharing a set of founders across multiple populations, such that each
infinite HMM selects its own unique subset of the shared founder haplotypes with their own recom-
bination and mutation patterns. Then, an admixed individual is formed by a mosaic of founders with
transitions according to the recombination process, and emissions are based on mutations of founder
individuals, i.e. segments in the admixed individual are due to haplotypes in the ancestral populations
which are based on the founder haplotypes.

FragCoag is another approach which clusters a set of genetic sequences to form a mosaic structure,
such that at each locus sequences are unlabeled partitioned into groups of variable size according to
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similarity. The group membership of this partition evolves along the chromosome by splitting (’frag-
menting’) and merging (’coagulating’), such that two clusters are merged or one cluster is split into
two.

5.1.6 PCA-based approaches
Principal component analysis (PCA) is an established multivariate technique which belongs to the
algorithmic view (see Section 1.3.2) (Krzanowski, 2000; Izenman, 2008). PCA is utilized for dimen-
sionality reduction and can be derived by two main ways: either as a projection of the data in the
direction of maximum variance (Hotelling, 1933), or, by using the least-square optimality criterion to
construct a low-rank matrix approximation of the original data (Izenman, 1975, 2008). More, than three
decades ago, Menozzi et al. (1978) was the first to apply PCA to genetic data. Menozzi et al. (1978);
Cavalli-Sforza et al. (1993) collected allele counts for a few loci from population samples at several
European, Asian and African locations. Then, these allele counts were converted into frequencies and
interpolated between sample locations. As low-dimensional summary statistic, for each of the first few
principal components a heatmap (’synthetic map’) according to the corresponding PC score is plotted
which is overlaid with the matching spatial location. Novembre and Stephens (2008) noticed that an
application of PCA to spatially varying allele frequencies results in sinusoidal PC score patterns due the
decay of allele frequencies similarities with geographic distance.

5.1.6.1 SmartPCA
In general, allele frequencies differences are due to evolutionary factors, such as migration, selection
and drift, and lead to population structure. Then, PCA can be used as a fast non-parametric approach to
recover this population structure. However, PCA is an unsupervised technique which projects individu-
als along principal component axes of major variation. But PCA does not classify individuals according
to pre-specified population labels although a test individual of unknown mixture can be assigned to
its closest population by clustering ancestral panel individuals. A popular implementation of PCA is
SmartPCA (Patterson et al., 2006) from the EIGENSOFT softare package which also contains formal
tests for the existence of population structure. In particular, a dataset exhibits population substructure if
the eigenvector corresponding to the largest eigenvalue is significantly greater than the remaining eigen-
values. For this purpose, Patterson et al. (2006) developed a test statistic based on Tracey-Widom (TW)
distribution while Limpiti et al. (2011) consider the EigenDev heuristics. Both of these test statistics
describe the distribution of the largest eigenvalue whereas the EigenDev test statistic is more advanced
by also taking into account the remaining eigenvalues.

5.1.6.2 ipPCA
Intarapanich et al. (2009) developed ipPCA which aims to detect population substructure, find the op-
timal number of populations and to assign individuals accordingly. Previous approaches which used
clustering of individuals in multi-dimensional PC score space were found to be insufficient for closely
related subpopulations. Firstly, this is because it is not clear how many leading PC directions should be
utilized, and secondly, clusters may or may not be merged depending on the axis considered. Therefore,
ipPCA, which is a top-down algorithm, iteratively builds a population tree by splitting individuals into
two clusters if population substructure was found according to the TW test statistic. Then, the optimal
number of sub-populations can be found by counting terminal nodes in the final population tree. Limpiti
et al. (2011) extended the ipPCA model by employing the EigenDev test statistic which decreased the
number of type I errors in large datasets over the TW test statistic, i.e. fewer spurious patterns are
promoted as predicted population substructure.
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5.1.6.3 PCAdmix 1 and 2
So far all these methods have been focussed on population structure inference. However, I am more
concerned with admixture estimation. To this end, Bryc et al. (2010) implemented PCAdmix 1 which
combines PCA with a first-order HMM to estimate two-way admixture proportions. Firstly, the authors
compute the first principal component score for all individual genotypes of the two ancestral popula-
tions. Then, for a test datum I compute its principal component score by projecting its genotype on the
leading principal component of the ancestral populations. Then, I define as a and b the chord distances
between the centroids of population 1 and 2, respectively, and I compute ratio P = a/(a+ b). This PC 1
distance analysis is performed for all consecutive non-overlapping 15 SNP windows. Then, the observed
sequence for the HMM is formed by the window ratios P while the hidden states represent the ancestry
states and are formed over the tenary alphabet {0, 1, 2, } to express how many alleles are copied from
population 2.

Brisbin et al. (2012); Henn et al. (2012) developed PCAdmix 2 which extends PCAdmix 1 to
multiway admixtures using a haploid version of the HMM presented in Bryc et al. (2010) for haplotype
data. Furthermore, in multiway-admixture of K populations the algorithm projects an admixed individ-
ual onto the first K − 1 principal components of the K ancestral populations. Then, similarly to the
P ratio in PCAdmix 1, I define a ratio Qi,j = Di,j/

∑K
k=1Di,k in PCAdmix 2 which describes the

average ancestry of admixed haplotype i in population j ∈ {1, . . . ,K}. In particular, Di,j is defined as
the Euclidean distance of the admixed individual in PC space to the hyperplane consisting of the mean
scores of all ancestral populations not including population j.

I discussed in chapter 2 on breed similarity that PCA and MDS compute different projections unless
I use Euclidean distance as distance measure in MDS. Therefore, to take advantage of a wide range of
distance and correlation measures it is beneficial to explore MDS-based approaches. Furthermore, PCA
is very sensitive to outliers and may lead to more significant dimensions which are spurious and do not
represent population structure, i.e. dimensions which are only required to separate outliers (Luca et al.,
2008). In other words, clusters of projected individuals are biased towards small and tight arrangements.
Therefore, Lee et al. (2010a) developed spectral GEnetic Matching (GEM) using a spectral decompo-
sition based on spectral clustering (Von Luxburg, 2007) where individuals are represented as nodes in a
graph connected by edges which have weights corresponding to the strength of their connections. The
weights in this spectral clustering approach are chosen corresponding to the entries of the covariance
matrix. Then, this spectral clustering approach finds a partition of the graph such that edges between
different clusters have low weights and within cluster weights are high.

5.1.7 Machine Learning based approaches
Recently, machine learning based approaches emerged to tackle the problem of ancestry inference.

5.1.7.1 Ethnopred
Hajiloo et al. (2013) developed the ETHNOPRED software which predicts either continental or sub-
continental populations, such as European subpopulations (North-Western vs. Southern) and East Asian
subpopulations (Chinese vs. Japanese), using data from the HapMap projects. The authors method of
choice are an ensemble of disjoint decision trees (Breiman, 1993). Decision trees are an established
statistical technique which attempt to classify an individual by making consecutive binary choices based
on the value of SNP markers. The marker chosen at each step is based on the expected value of the
information gain, i.e. how certain I am to classify an individual once I observe the current marker.
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Furthermore, (Hajiloo et al., 2013) chose an ensemble of about 30 decision trees, such that with high
likelihood at least 9 decision trees are available which do not have missing markers. The authors show
that 150 SNPs are sufficient for successful continental classification and less than 500 markers are re-
quired for strong sub-continental discrimination.

5.1.7.2 SVM-based approaches
The following approaches I discuss are based on support vector machines (SVMs) (Burges, 1998;
Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004). In their most basic form, SVMs
estimate a separating hyperplane between two classes of individuals so as to maximize the margin, i.e.
distance between closest points of either class to hyperplane. An important property of SVMs which
I use is that its discriminatory power does not depend on the dimensionality of the space where the
hyperplane is learnt, and I can learn in very high dimensions without overfitting. In particular, SVMs use
a kernel which implicitly maps the original genotype data into high dimensional feature space, such that
the linear separation in feature space may correspond to a non-linear separation in the original space.
The mapping from the input to the feature space is accomplished using a kernel function K. Most of
the kernels were developed for individuals with continuous feature spaces although they are used for
discrete biological sequences (Wessel and Schork, 2006; Kwee et al., 2008; Wu et al., 2010; Lin et al.,
2011; Schifano et al., 2012).

A common kernel function for the genotype of two individuals x, y ∈ Rp of fixed length p include
the inner product kernel K(x, y) = xT y which measures cosine angle similarity. This linear kernel can
also be augmented by a weight vector w to define K(x, y) =

∑p
i=1(wi · xi · yi)/

∑p
i=1 wi where a

wi is often defined as wi = (qi)
−0.5 where qi is the minor allele frequency for the i − th locus. This

weighting scheme increases the weights for rare variants and downweighs common alleles, i.e. rare
alleles carry more information than similarity in rare alleles. Further common choices are polynomial
kernels of degree d K(x, y) =

(
xT y + c

)d
, c ∈ R, K(x, y) = (I(x = y) + c)

d
, c ∈ R and K(x, y) =

(|x− y|+ c)
d
, c ∈ R based on inner products, Hamming distance and L1 norm, respectively. Another

popular choice is given by the radial basis function (RBF) kernel K(x, y) = exp
(
− 1

2σ2 ||x− y||2
)
. In

statistical genetics, the identical by state (IBS) kernel is a popular kernel function because it incorpo-
rates SNP-SNP interactions. This IBS kernel measures the number of alleles shared at each haplotype
locus which can be either 0,1 or 2 and is defined as K(x, y) = 1

2p

∑p
i=1 IBS(xi, yi). Similarly to the

weighted linear kernel the IBS kernel can be integrated with weights, such that rare alleles are more
emphasized.

Haasl et al. (2012) use a SVM using a RBF kernel for prediction of eight unadmixed European
regional classes, such as British isles (Ireland, Great Britain, Scotland) and Central (Austria, Germany,
Netherlands). Firstly, they apply SmartPCA using five iterations of outlier removal and then PCA to
the genotype data matrix G of the eight ancestral population classes. In particular, they compute matrix
V spanned by the first two leading eigenvectors of the covariance eigendecomposition of G. Then,
to compute 2D feature representations of the test individuals, their genotype is projected onto matrix
V to compute the principal component scores. Given that projected test individuals are often biased
towards zero compared to the ancestral individuals used to compute V, I reduce this projection bias
by post-multiplying test individual principal component scores by the reciprocal of a shrinkage factor
computed in Lee et al. (2010b). Although I could compute higher order PCs beyond the second principal
component score but Haasl et al. (2012) noted that this leads to little increase in prediction accuracy. But
this is expected given that the first two PCs reflect geographical distribution of European populations
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(Heath et al., 2008; Novembre et al., 2008).

5.1.7.3 String kernel
In the last decade there has been an increasing interest in the design of kernels for discrete symbol
sequences over an alphabet, such as ternary SNP strings {0, 1, 2} (Shawe-Taylor and Cristianini, 2004).
Do et al. (2012) developed a window-based SVM approach using string kernels for multi-class
classification for admixed canine ancestry. Firstly, they segment the genotype in windows of size 100
and learn a SVM classifier with multiple classes for each window where a class corresponds to one
of the ancestral populations. Then, for prediction of admixed individuals the algorithm runs along the
chromosome and records the most likely ancestry for each window. Finally, the ancestry contributions
are given by the proportion of windows each ancestral population was observed.

However, Do et al. (2012) do not specify which string kernel is used. There are a wide variety of
options:

• Pairwise comparison kernel (Liao and Noble, 2003): compute a pairwise similarity score be-
tween query sequence and reference sequence using similarity metrics, such as edit distance, L1

norm, BLAST local alignment via dynamic programming using the Smith-Waterman algorithm
(Smith and Waterman, 1981; Vert et al., 2004).

• Composition kernel (Ding and Dubchak, 2001): count of properties, such as numbers of 0s, 1s in
sequence, structural and physio-chemical properties, etc.

• Spectrum kernel (Leslie et al., 2002): count common subsequences of length k in both sequences
known as k−mers

• Mismatch kernel (Leslie et al., 2004): same as spectrum kernel but allows for l mismatches in
k−mers which may be due to mutations

• Marginalized kernels (Tsuda et al., 2002): all previous kernels do not account for contextual
information, e.g. symbols in DNA sequences have different meanings depending on whether they
are part of the coding or non-coding region. Therefore, a HMM kernel is constructed where the
observed symbol sequence is associated with a latent variable related to its context. Tsuda et al.
(2002) also present an extension using a second-order HMM where the number of two adjacent
symbols is counted to give limited correlation information.

5.2 ChromoPainter data analysis
In this section I will discuss which algorithm I select to compare DBAncestry, i.e. ChromoPainter,
based on a set of criteria outlined below. After that I will discuss the ChromoPainter data preparation
and analysis results. In particular, I will discuss how I compute the haplotype representation from the
genotypes. After that I explain how I obtain our estimates for the recombination and mutation rate, as
well as for the copying matrix. Finally, I will discuss how I use either use a HMM and regress on a
breed-aggregated version of the copying matrix to compute breed fraction estimates.

5.2.1 Algorithm selection for a comparison with DBAncestry
Beyond presenting an integrated overview of ancestry inference techniques in Section 5.1 I aim to select
an approach which represents the current state-of-art for a comparison with the DBAncestry technique.
In particular, the comparison technique is sought to satisfy the following characteristics:
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5.2.1.1 Criteria to select algorithm
(I) Number of markers: the algorithm can deal with small marker panels outlined in Section 1.5.1

representative for my data. Furthermore, the algorithm should scale well for a larger set of markers
which may be available for future work.

(II) Number of populations: many of the ancestry inference techniques have been developed for
the admixture of two source populations. However, due to the large number of breeds according
to Section 1.5.3 a technique is required which performs inference for datasets composed of K
populations.

(III) Scalability for number of populations: although some of the inference techniques can be used
for large number of populations a few of them exhibit inapplicable scaling behaviour, i.e. the
algorithm may scale exponentially in the number of populations.

(IV) Correlation structure: canine markers show strong LD according to Section 1.4.3 which favours
model that either captures correlation between two markers or preferably for whole haplotype
segments.

(V) Experienced research collaborator: to optimally use an ancestry inference implementation a
collaboration with either its developer or an experienced user thereof is beneficial.

5.2.1.2 Comparing ancestry groups against criteria
Now, I check these criteria against the most sophisticated approaches from the different ancestry infer-
ence groups outlined in Section 5.1 to select a suitable algorithm:

• Regression: one of the most involved regression techniques is MMLR with inverse covariance
information which satisfies criteria I, II, III and partially IV. However, modeling of correlation
information (IV) is limited to pairwise SNPs.

• Global model-based clustering: Admixture is a fast version of Structure which satisfies I, II and
III. However, it does not account for LD.

• Local window-based approaches: Lamp/WinPop satisfies I, II and III. However, LD is not for-
mally modelled. Furthermore, admixture proportions have to be supplied to the algorithm and are
not inferred. However, assuming these global admixture proportions the algorithm finds the best
population pair assignment for the current individual.

• Local HMM-based models approaches: Multimix satisfies I, II, III and IV. However, for criterion
IV the algorithm only models covariance information between two SNPs but does not consider
long-range LD. ChromoPainter satisfies I, II, III, IV and V (Garrett Hellenthal). In particular with
respect to IV, ChromoPainter looks at haplotype segments instead of correlation between pairwise
SNPs and represents test dogs as linear combination of haplotype segments in the training data.
Furthermore, both MultiMix and ChromoPainter have implementations available which are free
for academic use.

• Non-Parametric Bayesian approaches: the iHMM satisfies I, II and III and IV. In particular,
LD is accounted for modeling ancestry as a composite process of two layers: within the first
layer individuals inherit from ancestral populations which again depend on a subset of founder
haplotypes. However, at the moment there is no publically released code available for the iHMM
technique.
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• PCA-based approaches: the iPCA technique satisfied I, II and III. However, the technique is
less aimed at ancestry inference but rather targeted at unsupervised learning, i.e. if the interest is
in finding the optimal number of populations or to detect population substructure. Furthermore,
PCA decorrelates SNPs in eigenspace to maximize retained variance rather than to account for
correlation structure. On the other hand, the hybrid technique PCAdmix also satisfies criteria I, II
and III but also does not account for correlation in the genotype data.

• Machine Learning based approaches: SVMs with string kernels satisfies I and II. Criterion III
is computationally expensive and can be either implemented as each class ’1-against-1’ or ’1-
against-the rest’. Furthermore criterion IV is not explicitly accounted but rather two haplotype
segments are compared using a similarity measure, such as an alignment score.

Based on this comparison the strongest competitors are MultiMix, ChromoPainter and iHMM.
However, Multimix does not model long-range dependencies while iHMM does not offer a publically
available implementation. I selected ChromoPainter because it models LD by considering haplotype
segments and is freely available available for academic use. Furthermore, researcher Garrett Hellenthal
collaborated with me to smoothly obtain results. Finally, I will conclude this part by comparing the
DBAncestry algorithm with ChromoPainter.

5.2.1.3 ChromoPainter vs. DBAncestry assumptions
• Time complexity for markers and training individuals: both approaches, ChromoPainter

(prediction run-time) and the computation of population frequency estimates of PHASE for
DBAncestry scale linearly in the number of SNP markers (Hellenthal, 2012; Scheet, 2013). How-
ever, ChromoPainter is also linear in the number of purebred training individuals while PHASE
is quadratic in the number of samples in the reference database (Li and Stephens, 2003; Scheet,
2013).

• Constant ancestry on chromosome: DBAncestry assumes constant ancestry within a chromo-
some of two breeds assigned on the maternal and paternal side accordingly. Recombination can
only occur between adjacent chromosomes. In the case of a small number of markers on each
chromosome this assumption may be appropriate. However, for denser sets of markers I would
like to unravel the different breeds which contribute to a given chromosome. In particular, Chro-
moPainter chooses the length of haplotype segments which form constant ancestry adaptively, i.e.
according to the recombination rate and whether a test dog still copies from the same training
individual.

• Marker correlation: in the age of GWAS data, 320 SNP markers is very sparse and far from
a typical dense GWAS dataset. Furthermore, SNPs are not evenly spaced and distance among
adjacent SNP may range from a few hundred to million of base pairs as indicated in Figure 1.1.
Therefore, it is hard to exploit correlation pattern of markers close in distance. According to
Section 1.4.3 LD information given by a recombination map can be utilized to some extent.

• Amount of information extracted from training data: to discriminate breeds at the ggp level on
average the algorithm uses 320

8 = 40 SNPs to make this prediction. DBAncestry uses more infor-
mation from the genotype because for each chromosome I compute a large number of haplotype
frequencies typical for a given breed while for ChromoPainter I only use the most likely phasing,
i.e. haplotype pair, for each training individual.
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• Disk storage and working memory requirements: the storage requirements do not change much
for ChromoPainter because each additional marker only adds another column in the file of the most
likely haplotype pair phasings of the training data. With respect to DBAncestry, more markers
lead to a combinatorial increase of possible haplotypes which all need to be enumerated, stored
and queried with their haplotype frequencies from file and loaded to memory. Although due to
strong LD in many dense SNP datasets the number of likely haplotypes is much smaller than all
possible enumerations 2S where S is the number of markers (Gattepaille and Jakobsson, 2012). As
outlined in Section 1.4.3 in windows of 10-500 kbp there around 5 haplotypes covering 80% of the
observed haplotypes (Lindblad-Toh et al., 2005; Parker, 2012). However, to yield a good coverage
of rare haplotypes I expect to retrieve a substantial number of haplotype frequencies leading to
very heavy use of disk read operations and large amount of working memory. Alternatively, I
could store fewer haplotype frequencies but haplotypes may be more often missed in the test dog
which would lead to the demand of a measure of deviation to account for imperfect copying due
to mutations.

5.2.2 Computation of haplotype representation
Phasing of the training data BigPure was discussed in Section 3.2.2.1. For the synthetic test dataset I
looked at three options:

• Utilizing PHASE: (Stephens et al., 2001),

• Utilizing BEAGLE: (Browning, 2006; Browning and Weir, 2010),

• Enumeration: according to Section 3.2.2.2 I enumerate all possible haplotypes for each chromo-
some for a given test dog. Then, we run ChromoPainter separately on each chromosome. Then, on
the first chromosome ChromoPainter returns the expected log-likelihoods for the haplotypes from
each enumerated haplotype pair. Then, on the first chromosome I find that enumerated haplotype
pair which has the highest value for the sum of the two expected log-likelihood estimates, and set
this haplotype pair as the best enumerated haplotype pair. I repeat this same process for all chro-
mosomes. Finally, to find the best phasing of the whole genotype for the test dog I concatenate the
best haplotype presentations across all chromosomes.

On a small subset of the test dataset I compared all three options and noticed there is little impact on
the predicted breed fractions and classification results. For some chromosomes PHASE can be very slow
to compute the phasing and takes several hours for 10-20 SNPs. Similarly, for the enumeration approach
on some chromosomes there are thousands of enumerated consistent haplotype pairs which makes the
approach very computationally intensive when ChromoPainter is run for so many times. BEAGLE, on
the other hand, computes the phasing typically in a few seconds. Given that neither of the methods
appears to be more accurate, I decided to use BEAGLE to phase test dog genotypes.

5.2.3 Recombination and mutation rate
I used PHASE to estimate a recombination map (Li and Stephens, 2003; Crawford et al., 2004) as input
for ChromoPainter to obtain more accurate breed fraction estimates. For each pair of training breed
and chromosome I obtain a file which has as many columns as there are SNPs on the chromosome.
The first column corresponds to the background recombination rate while subsequent columns match
the recombination rate between adjacent SNPs. The rows in this file are given by samples from the
posterior distribution for the recombination parameters. To yield point estimates of these estimates
incorporating the background rate, I take the median of each column, and then I define the new SNP-
wise recombination rates ρ with units in base pairs as the median background recombination rate ρ̄
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multiplied the SNP-wise median recombination rate. Based on this recombination map from PHASE I
use ChromoPainter to estimate the recombination scaling constant Ne = 0.0011 for the recombination
map as well as a global mutation rate θ estimated at 0.0018 for the emission probabilities.

(a) Mutation rate against recombination scaling constant. Each dot represents one of the dogs in the training set. Dots are colour-coded
by breed although due to the large number of breeds some breeds share the same colour encoding.

(b) As a function of the breed I plot time series for mutation rate, recombination rate and the proportion of training samples with
respect to the maximum number in any of the breeds.

Figure 5.2: These figures show the distribution of the ChromoPainter estimates for recombination scaling
and mutation rate either separately for each pure breed individual or aggregated by breed.

In Figure 5.2 (a) I plot the recombination scaling constant against the mutation rate for all purebred
training dogs. There are five training dogs (3 American Eskimo dogs with rates (0.008, 0.008, 0.009), 1
Beagle US with rate 0.008, 1 Pomeranian with rate 0.008) which have recombination rate greater than
0.008. The median value for the rescaling constant is 0.0011. With respect to the mutation rate there are
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two dogs with a rate higher than 0.08 (1 American Eskimo dog with rate 0.08, 1 Weimaraner with rate
0.12). The median mutation rate for this training dataset is 0.0018. Finally, after having examined the
recombination and mutation rate I compute the copying matrix and final values for the rescaling constant
and mutation rate.

I also aggegrated the estimates for the median recombination and mutation rates by breed. To
visualize the impact of the number of purebred samples per training breed I also plot a scaled version
of the ratio of number of samples per breed divided by the maximum number of samples in any breed
(i.e. 391 samples is maximum in our dataset according to Table A.1). These three sequences for the
recombination scaling constant, mutation rate and scaled sample size ratio are shown with respect to
their breed ID on the abscissa Figure 5.2 (b). I notice that recombination and mutation rate are very
correlated at 0.83 while each recombination rate or mutation rate are slightly negatively correlated at
-0.38 and -0.33 with the scaled sample number ratio, respectively.

5.2.4 Computation of breed fraction estimates
Finally, I look at two different ways to compute the copying matrix outlined in Section 5.1.4.8.

• Standard: the standard breed fraction estimates are obtained from ChromoPainter upon supply-
ing and running it with the set of enumerated training haplotype pairs, test dog haplotype pairs,
a recombination map, estimates for the recombination scaling constant and mutation rate, as well
as information on which training samples form a population. Then, ChromoPainter computes a
chunk length row vector which has as values the expected total genetic length of DNA the test
dog copies from each training dog population across all SNPs under the ChromoPainter model
(Hellenthal, 2012). Then, to yield breed fraction estimates this row vector is normalized to total
sum of length 1.

• NNLS: breed fraction estimates in the standard approach will be biased towards those breeds
which have more training samples because a priori I assume each test dog has the same chance
to copy from each training dog. To deal with this bias I review a regression approach referred
to as NNLS. Firstly, I aggregate the square copying of size number total training samples by
breed, i.e. I sum column-wise and then average it row-wise. Then, this aggregated matrix is
standardized by length 1, i.e. each row sums to 1. Then, I take the ChromoPainter output from
a test dog given by the standard chunk length row vector and standardize it. This standardized
recipient vector is regressed on the standardized aggregated matrix. However, standard regression
might be insufficient because it leads to negative breed fraction estimates which lack interpretation
(Kuehn et al., 2011). Therefore, I perform the regression using non-negative least squares (NNLS)
(Lawson and Hanson, 1974) which seems to be sparse in our dataset leading to few non-zero breed
fraction estimates.

5.2.5 ChromoPainter results
As alternative to the DBAncestry results presented in Section 4.7.2 I also will apply ChromoPainter to
dataset OrgSyntheticRed discussed in Section 1.5.4 using either the standard or NNLS variant according
to Section 5.2.4.

Results for 4 specific lineage trees, i.e. the two simplest and most complex two lineage trees are
shown in Figure 5.3 while global breed contribution estimates which were averaged across all lineage
trees are shown for all TAP levels in Figures 5.4 (NNLS) and 5.5 (Standard). A comparison between
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(a) Tree AAAAAAAA, Standard (b) Tree AAAAAAAA, NNLS

(c) Tree AAAABBBB, Standard (d) Tree AAAABBBB, NNLS

(e) Tree AABCDEFG, Standard (f) Tree AABCDEFG, NNLS

(g) Tree ABCDEFGH, Standard (h) Tree ABCDEFGH, NNLS

Figure 5.3: CCBC breed proportion estimates for the ChromoPainter standard and NNLS variant:
These figures show true ancestral proportion as bold red line while the boxplots offers information on
the breed proportion estimates, i.e. the median, lower and upper quartiles, whiskers which extend to the
most extreme data point less than 1.5 IQR from the box, and outliers which are drawn as small circles.
These plots represent a subset of the 11 lineage trees: In particular the top two rows correspond to the
simplest trees while the bottom two rows match the most complex lineage trees. Furthermore, the left
column shows the standard variant wile the right column corresponds to the NNLS variant. These figures
show that NNLS has a much larger IQR than the standard variant.
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Figure 5.4: This figure shows breed proportion proportion estimates averaged across lineage trees. More
in detail, CCBC breed proportion estimates for the NNLS variant are visualized as boxplot showing
median, lower and upper quartiles of all ancestral levels. Numerical values for the median and quartiles
are also given in Table 5.2.

Figure 5.5: This figure shows breed proportion proportion estimates averaged across lineage trees. More
in detail, CCBC breed proportion estimates for the standard variant are visualized as boxplot showing
median, lower and upper quartiles of all ancestral levels. Numerical values for the median and quartiles
are also given in Table 5.2.
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True breed ancestry CCBC CCBC
Median [1st,3rd] Quartiles Standard NNLS

100% 0.33 [0.19,0.43] 0.57 [0.27,0.93]
50% 0.14 [0.08,0.21] 0.16 [0.04,0.35]
25% 0.08 [0.04,0.13] 0.05 [0.00,0.16]

12.5% 0.05 [0.02,0.09] 0.00 [0.00,0.07]
0% 0.00 [0.00,0.00] 0.00 [0.00,0.00]

Table 5.2: CCBC breed proportion estimates for the ChromoPainter standard and NNLS variant:
The median, lower and upper quartile estimates of the re-scaled (CCBC) breed proportion for all possible
true ancestral levels are shown. Breed fraction estimates are computed taking predictions from all lineage
trees into account. Further visualization and discussion of these estimates is given in Figure 5.3.

global and lineage specific estimates their deviation is very minor, i.e. less than 0.01 for any tree. A
tabular description of the median, lower and upper quartiles for the global estimates is shown in Table 5.2.

Firstly, it can be seen that the NNLS approach has a much larger interquartile range for the pre-
dicted breed proportions. In particular, at TAP level 100 percent the IQR is 0.66 for NNLS vs. 0.24 for
the standard variant, at the parental level there is an IQR of 0.31 for NNLS vs. 0.13 for the standard
variant, at the gp level the IQR for NNLS is 0.16 versus 0.09 for the standard variant while both variants
have an identical IQR of 0.07 at the ggp level. According to Table 4.2 the reader sees that DBAncestry
CCBC ULP has very similar IQR ranges to the ChromoPainter standard variant although at the ggp level
ChromoPainter has an even half as large IQR of 0.07 vs. 0.14 for DBAncestry.

Furthermore, NNLS estimates have much less underestimation at the purebred level with a median
breed proportion of 0.57 vs. 0.33 for the standard variant. According to Table 4.2 DBAncestry yields
a much higher median breed proportion estimate of 0.87. At the parental level ChromoPainter yields
similar median proportion estimates of 0.16 and 0.14 for NNLS and the standard variant, respectively.
Therefore, these parental proportion estimates are substantially underestimated and are just about one
third of the median estimate 0.41 for DBAncestry. At the TAP level of 25 percent Chromopainter
estimates median breed proportions of 0.05 and 0.08 for NNLS and the standard variant, respectively,
which is only a quarter to two fifth of the DBAncestry median estimate of 0.2. Furthermore, the NNLS
approach does not detect breeds at the ggp level which is reflected by its median breed proportion
estimate 0 while the standard approach strongly underestimates these proportions with a median of 0.05.

For DBAncestry ggp breed proportions are very accurately predicted with a median breed pro-
portion of 0.12. To sum up, ChromoPainter works reasonably well to detect pure breed proportions.
Furthermore, the NNLS approach has a minor advantage over the standard variant at the parental level
but has worse performance at the grandparental and ggp level. Finally, for all TAP levels DBAncestry
performs much better than either ChromoPainter variant. Similar conclusion are obtained examining
the classification view outlined in Section A.8 which also shows that ChromoPainter only achieves a
reasonable classification performance for pure breed synthetic test dogs.

5.3 Summary of ancestry inference techniques and conclusions
In the first part of this chapter I provided a comprehensive review of different techniques for estimation
of local and global ancestry proportions. This overview extends previous partial reviews due to Church-
house (2012); Churchhouse and Marchini (2013); Liu et al. (2013). In this review I looked at different
techniques, such as regression, clustering and window-based, non-Parametric Bayesian approaches,
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PCA-based approaches and machine learning approaches with a focus on kernel-based methods.

I also discussed the evolution of local HMM-based model approaches: initially researchers applied
first order HMMs before they moved to second order HMMs to account for LD between adjacent SNP
markers. Due to the insight that none of the fixed order HMM can model long range dependencies
researchers focused on modelling entire haplotypes within a hierarchical HMM with layers either corre-
sponding to populations or haplotypes. Then, due to computational constraints HMMs were developed
whose number of hidden states is much less than the number of ancestral individuals. Alternatively, to
avoid oversimplification by using fixed order HMMs and overspecification by modelling whole haplo-
types, researchers studied haplotype clusters as hidden states which are adaptive according the amount
of locally observed LD in each ancestral population. All of these HMM variants described before are
either not applicable for many populations or have time complexity which makes inference in multiple
population setup infeasible. This limitation of multiple populations was successfully implemented by
models, such as MULTIMIX and ChromoPainter. MULTIMIX segments chromosomes into windows
of constant ancestry and estimates SNP frequencies and covariance over those SNPs in the window
assuming normality. Then, for an unknown admixed individual the most likely hidden ancestry states
are inferred using a first order HMM. On the other hand, ChromoPainter represents test dog individuals
as linear combination of haplotype segments in the training data.

After this review of ancestry inference techniques in Section 5.2.1 I defined a set of characteristics
to select one of these approaches as comparison technique with DBAncestry. In particular, the required
characteristics include whether the algorithm is suitable for sparse/dense marker sets, how many popu-
lations it can process, how it scales with the number of populations, whether it accounts for correlation
among SNPs, whether there is a publicly available implementation and feedback opportunities of expert
users.

Based on these characteristics I chose the ChromoPainter technique which I compared with
DBAncestry in Section 5.2.1 based on factors, such as time complexity as a function of the num-
ber of SNPs and training samples, whether ancestry changes are considered within the chromosome,
whether it deals with LD, how much information is extracted from the training samples as well as disk
storage and working memory requirements.

After that in Section 5.2.2 I discussed how I obtain the haplotye representation for the test dogs, how
I estimate recombination and mutation rates in Section 5.2.3 which are used as input to ChromoPainter,
how I compute breed proportion estimates using either the standard or NNLS variant according to Sec-
tion 5.2.4. Finally, I described the results in Section 5.2.5 and compared them with those ones obtained
from DBAncestry.

Results showed that ChromoPainter predicts pure breed proportions reasonably well with median
estimates of 0.33 and 0.57 for the standard and NNLs variant, respectively. However, performance
sharply declines for more complex lineages involving multiple breeds. In particular, parental breeds
only have median breed proportions estimates of 0.14 to 0.16 which is around 0.35 less than the truth.
Similary, at the gp level median estimates are 0.05 to 0.08 which is much less than the truth of 25
percent. Finally, at the ggp level the NNLs variant almost does not detect breeds at this ancestral level
while the standard variant underestimates these breed proportions at 0.05.
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A comparison with the DBAncestry technique showed DBAncestry still yields a high AUC score
for highly complex lineage trees (i.e. lineages with several gps and ggps) which is only achieved for
pure breed trees using ChromoPainter. This difference in performance is most likely due to the fact that
ChromoPainter extracts less information from the training dataset than the MCMC approach.



Chapter 6

Conclusions and future work

This chapter briefly summarizes the thesis contributions along with pointers to future work.

6.1 Conclusions
This research on canine ancestry inference was initiated by Mars Veterinary and Prof. David Balding.
The underlying motivation for this work was to improve upon currently available ancestry inference
technique for the interesting case where canine samples are represented by short genetic sequences
from a large number of breeds. In particular, we were interested in the estimation of breed composition
of synthetic test dogs at the level of recent ancestry going up to three generations back which reflects
great-grandparent kinship.

As first step in this thesis we provided some background about commercial ancestry testing and
dog research. In particular, we discussed direct-to-consumer (DTC) tools for ancestry inference and
why private users, academic researchers, medical professionals and employees of government bodies,
housing associations and insurance agencies are interested in accurate global canine breed composition
estimation. There are a variety of data sources which are predictive of ancestry and we review some
of them including data based on phenotypes, language, stable isotopes and genetic data. Genetic data
can be further subdivided into SNP and microsatellite markers which both contain autosomal compo-
nents as well as lineage-based parts for the maternal and paternal lineage. However, these ancestry
inference tools also have certain limitations, i.e. their results depend on a definition of ancestry which
is interpreted differently depending on audience and purpose, the number of markers and their breed
discriminating characteristics, the utilized data sources and how complete ancestral populations where
sampled with respect to their database use. Furthermore, there are limitations of those DTC tools based
on the accuracy and interpretation of genetic testing of disease and other disorders. Ancestry inference
can also lead to emotional distress of dog owners who expected a different breed composition or may
lead to legal disputes with respect supposedly purebred dogs. Finally, many of these DTC providers
enforce proprietary confidentiality rules to protect their business which may lead to the unexpected fact
that different, even contradictory, inference results are obtained from different DTC companies for the
same test sample. In the next section we explained how dog breeds diverged from wolves based on
two bottlenecks related to domestication and Victorian breed formation, respectively. Analysis different
types of genetic data shows that these breed creations led to more between-breed variability and a decline
of genetic diversity within breeds which can be utilized for ancestry predictions but has consequences
on whether certain disorders are inherited.

Firstly, I explored the genetic proximity among breeds for the datasets used in this thesis. Therefore,
we look at several multivariate distance and similarity measures which can be computed using either the
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original genotype data or the frequencies of the phased haplotypes. We also discussed one similarity
measure based on the ChromoPainter software which take the marker correlation into account although
we could not exploit this strength much due to limited LD in our sparse SNP marker profile composed
of short genetic sequences. Then, we visualized these derived proximity matrices using heatmaps,
dendrograms as well as 2D reconstructions using multi-dimensional scaling which retain original, high-
dimensional distances approximately optimal. We noticed that some breeds can be identified as very
distinct while some breeds have individuals which overlap with members of other breeds.

After that I continued with a review of Mars Wisdom’ proprietary canine ancestry inference imple-
mentation which I used as foundation for the development of our own algorithm DBAncestry for breed
composition inference. At first our work was concerned with the development of an inference algorithm
for the special case of purebreed synthetic dogs. To characterize different breeds in our algorithm we
enumerated typical haplotypes with their frequencies for each pair of breed and chromosome. These
frequencies were computed using the statistical genetics software PHASE. More specifically, we either
phased the purebred training dataset by breed which is adversely affected by small samples sizes in
some of the breeds, or we phased all training samples together across breed which confounds population
structure. Then, based on the test dog genotype for a chromosome we enumerated consistent haplotype
pairs and their corresponding frequencies to compute the most likely assignment of a breed pair to this
very chromosome. However, there are cases where the frequencies of those consistent haplotypes are
zero, and we experimented with three inference options to deal with this case. Although a few breeds,
especially subpopulations were confused, results were very encouraging.

In the next chapter of this thesis we extended our novel algorithm DBAncestry from the special case
of purebred dogs to mixed breed dogs of varying lineage complexities. In this crossbred case each of 25
chromosomes has breed pairs assigned from a database composed of 125 breeds. Therefore, assigning
breed pairs across the genome leads to a prohibitively large number of possible breed compositions.
Therefore, we sample the space of possible breed configurations using a Metropolis-Hastings algorithm.
As proposal update in this MCMC algorithm we either uniformly sample new breeds or we bias the
Metropolis-Hastings algorithm, such that breed proposals is likely to be similar to the current breed
assignment. As breed-biased update proposal we use information based on a breed rank Manhattan
distance matrix using the original genotype data. We also experimented with the run-time of the MCMC
algorithm using either a short run of 700K or a long run of 7 million iterations in the main phase. As
performance measures we used an adaptation of classical classification literature, i.e. an extension of
binary ROC curves to multiple class, and we calculated how predicted breed proportion estimates deviate
from the genuine ones. The results we obtained are very good although the breed contribution of genuine
breeds in the ancestry are underestimated due to exploration in the MCMC. More complex ancestries
as well as the short MCMC run lead to a slight drop in performance. Furthermore, we expected that
breed-biased update rules either improves mixing time or prediction accuracy over a uniform update rule
but results do not show any evidence for this hypothesis. Then, I continued to show how lineage tree
is derived from the estimated breed contributions via the proxy of true ancestral proportions. Finally, I
showed that the DBAncestry algorithm is robust against recombination events typical for canine datasets
and only shows a very small decrease in prediction quality.

In the final chapter of this thesis we were seeking for a sophisticated algorithm for the inference of
complex ancestries which should be utilized as comparison technique for DBAncestry to predict predict
complex canine breed compositions. However, there is a lack of a comprehensive review of ancestry
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inference techniques in the literature and how they are related to each other. Therefore, we reviewed
a large number of techniques in the literature at a conceptual level and grouped them into different
statistical modelling approaches, such as regression, hidden markov models and principal component
analysis. Furthermore, if possible, we outlined the evolutionary development of those techniques within
a particular group, i.e. we discussed limitations of earlier approaches which led to subsequent work.
Finally, we selected a recent a advanced technique, ChromoPainter, for our data analysis comparison.
ChromoPainter is based on a hidden markov model which represents the test dog genotype as linear
combination of haplotype segments from training dogs in the purebred, ancestral reference dataset.
We noticed that the breed estimates of the genuine ancestry are more underestimated than those ones
from DBAncestry which is most likely due to lesser use of information from the purebred training data.
Especially, DBAncestry uses hundreds of haplotype frequencies for each combination of breed and
chromosome while ChromoPainter only uses the most likely phased haplotype pair for each purebred
training dog. Furthermore, ChromoPainter was not developed for short genetic sequences but for dense
whole-genome datasets which show strong marker correlation.

6.2 Future work
In future research we would like to explore a few different directions.

• More samples: as we see in Table A.1 there are a few breeds which have fewer than 40-50
purebred ancestral training samples. However, to minimize biases related to incomplete sampling
described in Section 1.3.4 we propose to obtain more samples for those breeds, especially breeds
which have subpopulations. For example, the Beagle UK, Beagle US Field and Beagle US Show
only have 21, 18 and 18 purebred samples, respectively.

• More markers: firstly, we would to incorporate more markers to possible improve performance.
Based on previous results for human datasets using dense marker sets (Lawson et al., 2012) Chro-
moPainter is expected to show a steep performance improvement because it can exploit marker
correlation patterns. Furthermore, more markers are required to model complex ancestries which
show evidence of recombinations within a chromosome. In particular, in the within-chromosome
recombination case the DBAncestry algorithm does not perform well as discussed in Section
4.7.2.2.

A large number of markers may pose new challenges for DBAncestry. Absent from the small num-
ber of common haplotypes (Sutter and Ostrander, 2004; Sutter et al., 2004; Lindblad-Toh et al.,
2005) I first need to investigate the number of rare haplotypes. If there is a large number of rare
haplotypes I either need to store large PHASE output files with their corresponding haplotype fre-
quencies, or I may have to investigate some form of approximate matching between enumerated
haplotypes and those haplotypes listed in the PHASE output files to avoid many zero frequencies.
Furthermore, long genotypes on a chromosome requires us to rethink the DBAncestry assump-
tions of only two breeds on each chromosome and no modelling of recombination, e.g. I could
investigate chunking the genotype in windows whose length is adaptive towards the amount of
locally encountered LD.

• Other animals: I would like to apply DBAncestry to other animal species. Recently, genetic test-
ing already has been extended to cats (Leroy et al., 2013; Lyons’ Veterinary Genetics Laboratory,
University of California, Davis, 2013).



126 Chapter 6. Conclusions and future work

• Common genetic proximity measures: In the chapter on proximity measures I was mostly moti-
vated by methods from the multivariate and information theory literature. However, in the genetics
literature people prefer to use slightly different measures or terminology, such as absolute differ-
ence in allele frequency δ or the fixation index Fst (Rosenberg et al., 2003). According to Section
2.5.2, the δ measure corresponds to the Manhattan distance which either naively can be evaluated
by averaging the pairwise computations between any two individuals, one individual from each
population, or more efficiently by taking the difference of allele-wise frequencies in both popula-
tions. The fixation index also measures population differentiation, and a simple estimator is based
on the ratio of between-population and within-population variability. The fixation index has three
main differences compared to the approach in Section 2.5.2: firstly, a popular difference measure
is based on nucleotide diversity which is related to Hamming distance. Secondly, it accounts for
within-population diversity whose idea is related to the Mahalanobis distance (Deza and Deza,
2009), i.e. in case there is only modest differentiation among populations they still can be discrim-
inated if there is little variability within those populations. Thirdly, between-population variability
is either defined as pairwise differences between any two individuals, one individual from each
population, or as pairwise differences between members of one population versus members of the
remaining populations pooled.

Assumed I obtain a dense marker profile I propose a ChromoPainter fixation index, i.e. I use the
fixation index where I use as proximity measure how much each ancestral populations copies from
each other. Therefore, this ChromoPainter fixation index also accounts for marker correlation.

• Alternative sampling schemes: according to the DBAncestry results in Section 4.7 I noticed that
there is no evidence that a breed-biased proposal leads to better breed composition estimation per-
formance. This behavior might be due to the fact that I run the sampling scheme long enough,
such that even a uniform breed proposal mechanism leads to satisfactory exploration of the breed
space. An alternative explanation might be that due to the sparse SNP marker profile breed sim-
ilarity may not yield a detailed enough representation. Finally, within DBAncestry I utilize the
breed similarity in an ad-hoc way: therefore, I might investigate approaches which uses the breed
structure in a sound way, or even learn breed similarity in an adaptive way within the burn-in phase
of the MCMC algorithm (cp. Section 4.4).

• Shared haplotypes across populations in phasing: when I started this research I was not aware
of any approach which accounts for shared haplotypes across multiple populations. Therefore, in
Section 3.2.2.1 I developed the PPOOLED option which phases all training dogs across breeds to-
gether and computes breed-wise frequencies from the joint haplotype frequencies using the list of
most likely haplotype pair phasings from each jointly phased training individual. Due to compara-
ble performance and less computational cost I continued to use the naive approach PSEPARATE
which segments the training data by breed and infers estimates haplotype frequencies separately
for all breeds. However, certain haplotypes might be rare in most breeds but more common across
populations which may lead to biased estimates thereof. For example, Pritchard (2001) suggests
that population bottlenecks leads to population-specific genetic diversity, such that certain haplo-
types are shared but are present at different frequencies in the different subpopulations.

To approach this problem Sohn and Xing (2009); Sohn (2011) developed a non-parametric
Bayesian clustering algorithm which incorporates several layers. Firstly, at the first level the differ-
ent populations draw a subset of founders from a common pool of founder haplotypes. Therefore,
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the same haplotype from the common pool can be present in multiple populations although at
different frequencies in each population. Then, at the second level the individual haplotype pairs
are drawn from different populations in a process which allows for mutations of the population-
specific haplotypes.



Appendix A

Appendix

A.1 Overview of breeds and analysis pure breed dogs
In table A.1 I show the used breeds for the small and big dataset along with total numbers of dogs per
breeds and the number training dogs.
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Breed # Train # Train # Total Breed # Train # Train # Total
Small Big nb Small Big nb

Afghan Hound 28 26 31 Greater Swiss Mountain Dog 28 33
Airedale Terrier 51 46 54 Greyhound 18 21

Akita 37 34 40 Havanese 19 22
Alaskan Malamute 30 28 33 Irish Setter::UK 32 38

American Eskimo Dog 19 19 22 Irish Setter::US 41 48
American Staffordshire Terrier 32 30 35 Irish Wolfhound 48 57

Australian Cattle Dog 29 27 32 Italian Greyhound 20 24
Australian Shepherd::UKX 29 27 32 Italian Spinone 37 44
Australian Shepherd::USX 81 71 84 Japanese Chin 39 46

Basenji 28 26 31 Japanese Shiba Inu 74 87
Basset Griffon Vendeen (Petit) 34 31 37 Keeshond::UKX 13 16

Basset Hound::UK 21 20 24 Keeshond::USX 21 25
Basset Hound::US 24 23 27 Labrador Retriever::UK 57 67

Beagle::UK 18 18 21 Labrador Retriever::US Field 276 325
Beagle::US Field 15 15 18 Labrador Retriever::US Show 236 278
Beagle::US Show 15 15 18 Lhasa Apso::UKX 32 38

Bearded Collie 70 62 73 Lhasa Apso::USX 43 51
Belgian Sheepdog 91 80 94 Maltese::UKX 19 22
Belgian Tervuren 41 37 44 Maltese::USX 20 23

Bernese Mountain Dog 72 64 75 Mastiff 31 37
Bichon Frise 56 50 59 Miniature Pinscher::UKX 5 8
Bloodhound 37 34 40 Miniature Pinscher::USX 36 42

Border Collie 72 64 75 Newfoundland 49 58
Border Terrier 98 86 101 Norfolk Terrier 40 47

Borzoi 75 66 78 Norwegian Elkhound 40 47
Boston Terrier 32 30 35 Norwich Terrier 72 85

Bouvier Des Flanders 67 59 70 Old English Sheepdog 48 56
Boxer 57 51 60 Papillon 34 40
Briard 37 34 40 Parson Russell Terrier 43 51

Brussels Griffon 35 32 38 Pekingese 44 52
Bull Terrier 64 57 67 Pembroke Welsh Corgi::UKX 25 30

Bull Terrier (Miniature) 28 26 31 Pembroke Welsh Corgi::USX 35 41
Bulldog 61 54 64 Pointer 98 115

Bullmastiff 60 54 63 Pomeranian::UKX 25 30
Cairn Terrier 51 60 Pomeranian::USX 25 30

Cardigan Welsh Corgi 29 34 Poodle 68 80
Cavalier King Charles Spaniel 94 111 Poodle (Miniature) 48 57

Chesapeake Bay Retriever 21 25 Poodle (Miniature)::miscwithtoy 183 215
Chihuahua::UKX 60 71 Poodle (Toy) 38 45
Chihuahua::USX 32 38 Portuguese Water Dog 39 46
Chinese Crested 47 55 Pug 59 69
Chinese Shar-Pei 22 26 Rhodesian Ridgeback 89 105

Chow Chow 43 51 Rottweiler 68 80
Cocker Spaniel 89 105 Saint Bernard::UKX 7 10
Collie::UKX 49 58 Saint Bernard::USX 30 35
Collie::USX 51 60 Saluki 60 71

Curly Coated Retriever 31 36 Samoyed::UKX 36 42
Dachshund (Longhaired) 23 27 Samoyed::USX 25 29

Dachshund (Miniature Longhaired) 50 59 Schipperke::UKX 4 7
Dachshund (Miniature Shorthaired) 88 104 Schipperke::USX 21 25
Dachshund (Miniature Wirehaired) 47 55 Schnauzer (Giant) 30 35

Dachshund (Shorthaired) 31 37 Schnauzer (Miniature) 57 67
Dachshund (Wirehaired) 43 51 Scottish Terrier 48 56

Dalmatian::UK 28 33 Shetland Sheepdog::UK 22 26
Dalmatian::US 21 25 Shetland Sheepdog::US 55 65

Dobermann Pinscher 120 141 Shih Tzu 332 391
English Cocker Spaniel 86 101 Siberian Husky 56 66

English Cocker Spaniel::Field 20 23 Soft Coated Wheaten Terrier::UKX 10 13
English Setter 33 39 Soft Coated Wheaten Terrier::USX 17 20

English Springer Spaniel::UKX 47 55 Staffordshire Bull Terrier 65 77
English Springer Spaniel::USX 20 24 Tibetan Spaniel 49 58

Flat Coated Retriever 59 69 Tibetan Terrier 74 87
Fox Terrier (Smooth) 35 41 Vizsla::UK 34 40

Fox Terrier (Toy) 25 29 Vizsla::US 31 36
Fox Terrier (Wire) 32 38 Weimaraner::UKX 45 53

French Bulldog 48 56 Weimaraner::US2X 5 8
German Shepherd Dog 84 99 Weimaraner::USX 22 26

German Shorthaired Pointer::UKX 37 43 Welsh Terrier::UKX 24 28
German Shorthaired Pointer::USX 23 27 Welsh Terrier::USX 13 16

German Wirehaired Pointer 26 31 West Highland White Terrier 70 82
Golden Retriever::UK 32 38 Whippet::UKX 44 52
Golden Retriever::US 161 190 Whippet::USX 31 36

Gordon Setter 38 45 Yorkshire Terrier::UK 31 36
Great Dane 49 58 Yorkshire Terrier::US 235 277

Great Pyrenees 31 37

Table A.1: Breed overview: for the small and big pure breed dataset I show the used breeds. The big
dataset covers all breeds while the small dataset covers those 34 breeds ranging from Afghan Hound to
Bullmastiff. The breed identifier is shown in the first column. The fourth column has the total number of
dogs nb per breed. The second column ’Small’ shows the number of training dogs for the small dataset,
and column ’Big’ the number of training dogs for the big dataset.



130 Appendix A. Appendix

br
ee

dM
ID

br
ee

dM
N

am
e

br
ee

dM
ID

fr
om

br
ee

dP
br

ee
dM

N
am

e
fr

om
br

ee
dP

br
ee

dP
ID

br
ee

dP
N

am
e

1
A

fg
ha

n
H

ou
nd

1
A

fg
ha

n
H

ou
nd

1
A

fg
ha

n
H

ou
nd

2
A

ir
ed

al
e

Te
rr

ie
r

2
A

ir
ed

al
e

Te
rr

ie
r

2
A

ir
ed

al
e

Te
rr

ie
r

3
A

ki
ta

3
A

ki
ta

3
A

ki
ta

4
A

la
sk

an
M

al
am

ut
e

4
A

la
sk

an
M

al
am

ut
e

4
A

la
sk

an
M

al
am

ut
e

5
A

m
er

ic
an

E
sk

im
o

D
og

5
A

m
er

ic
an

E
sk

im
o

D
og

5
A

m
er

ic
an

E
sk

im
o

D
og

6
A

m
er

ic
an

St
af

fo
rd

sh
ir

e
Te

rr
ie

r
6

A
m

er
ic

an
St

af
fo

rd
sh

ir
e

Te
rr

ie
r

6
A

m
er

ic
an

St
af

fo
rd

sh
ir

e
Te

rr
ie

r
7

A
us

tr
al

ia
n

C
at

tle
D

og
7

A
us

tr
al

ia
n

C
at

tle
D

og
7

A
us

tr
al

ia
n

C
at

tle
D

og
8

A
us

tr
al

ia
n

Sh
ep

he
rd

8—
9

A
us

tr
al

ia
n

Sh
ep

he
rd

::U
K

X
—

A
us

tr
al

ia
n

Sh
ep

he
rd

::U
SX

8
A

us
tr

al
ia

n
Sh

ep
he

rd
::U

K
X

9
B

as
en

ji
10

B
as

en
ji

9
A

us
tr

al
ia

n
Sh

ep
he

rd
::U

SX
10

B
as

se
tG

ri
ff

on
V

en
de

en
Pe

tit
11

B
as

se
tG

ri
ff

on
V

en
de

en
(P

et
it)

10
B

as
en

ji
11

B
as

se
tH

ou
nd

::U
K

12
B

as
se

tH
ou

nd
::U

K
11

B
as

se
tG

ri
ff

on
V

en
de

en
(P

et
it)

12
B

as
se

tH
ou

nd
::U

S
13

B
as

se
tH

ou
nd

::U
S

12
B

as
se

tH
ou

nd
::U

K
13

B
ea

gl
e:

:U
K

14
B

ea
gl

e:
:U

K
13

B
as

se
tH

ou
nd

::U
S

14
B

ea
gl

e:
:U

S
15

B
ea

gl
e:

:U
S

Fi
el

d
14

B
ea

gl
e:

:U
K

15
B

ea
gl

e:
:U

S:
:2

16
B

ea
gl

e:
:U

S
Sh

ow
15

B
ea

gl
e:

:U
S

Fi
el

d
16

B
ea

rd
ed

C
ol

lie
17

B
ea

rd
ed

C
ol

lie
16

B
ea

gl
e:

:U
S

Sh
ow

17
B

el
gi

an
Sh

ee
pd

og
18

B
el

gi
an

Sh
ee

pd
og

17
B

ea
rd

ed
C

ol
lie

18
B

el
gi

an
Te

rv
ur

en
19

B
el

gi
an

Te
rv

ur
en

18
B

el
gi

an
Sh

ee
pd

og
19

B
er

ne
se

M
ou

nt
ai

n
D

og
20

B
er

ne
se

M
ou

nt
ai

n
D

og
19

B
el

gi
an

Te
rv

ur
en

20
B

ic
ho

n
Fr

is
e

21
B

ic
ho

n
Fr

is
e

20
B

er
ne

se
M

ou
nt

ai
n

D
og

21
B

lo
od

ho
un

d
22

B
lo

od
ho

un
d

21
B

ic
ho

n
Fr

is
e

22
B

or
de

rC
ol

lie
23

B
or

de
rC

ol
lie

22
B

lo
od

ho
un

d
23

B
or

de
rT

er
ri

er
24

B
or

de
rT

er
ri

er
23

B
or

de
rC

ol
lie

24
B

or
zo

i
25

B
or

zo
i

24
B

or
de

rT
er

ri
er

25
B

os
to

n
Te

rr
ie

r
26

B
os

to
n

Te
rr

ie
r

25
B

or
zo

i
26

B
ou

vi
er

D
es

Fl
an

de
rs

27
B

ou
vi

er
D

es
Fl

an
de

rs
26

B
os

to
n

Te
rr

ie
r

27
B

ox
er

28
B

ox
er

27
B

ou
vi

er
D

es
Fl

an
de

rs
28

B
ri

ar
d

29
B

ri
ar

d
28

B
ox

er
29

B
ru

ss
el

s
G

ri
ff

on
30

B
ru

ss
el

s
G

ri
ff

on
29

B
ri

ar
d

30
B

ul
lT

er
ri

er
31

—
32

B
ul

lT
er

ri
er

—
B

ul
lT

er
ri

er
(M

in
ia

tu
re

)
30

B
ru

ss
el

s
G

ri
ff

on
31

B
ul

ld
og

33
B

ul
ld

og
31

B
ul

lT
er

ri
er

32
B

ul
lm

as
tif

f
34

B
ul

lm
as

tif
f

32
B

ul
lT

er
ri

er
(M

in
ia

tu
re

)
33

C
ai

rn
Te

rr
ie

r
35

C
ai

rn
Te

rr
ie

r
33

B
ul

ld
og

34
C

ar
di

ga
n

W
el

sh
C

or
gi

36
C

ar
di

ga
n

W
el

sh
C

or
gi

34
B

ul
lm

as
tif

f
35

C
av

al
ie

rK
in

g
C

ha
rl

es
Sp

an
ie

l
37

C
av

al
ie

rK
in

g
C

ha
rl

es
Sp

an
ie

l
35

C
ai

rn
Te

rr
ie

r
36

C
he

sa
pe

ak
e

B
ay

R
et

ri
ev

er
38

C
he

sa
pe

ak
e

B
ay

R
et

ri
ev

er
36

C
ar

di
ga

n
W

el
sh

C
or

gi
37

C
hi

hu
ah

ua
39

—
40

C
hi

hu
ah

ua
::U

K
X

/C
hi

hu
ah

ua
::U

SX
37

C
av

al
ie

rK
in

g
C

ha
rl

es
Sp

an
ie

l
38

C
hi

ne
se

C
re

st
ed

41
C

hi
ne

se
C

re
st

ed
38

C
he

sa
pe

ak
e

B
ay

R
et

ri
ev

er
39

C
hi

ne
se

Sh
ar

-P
ei

42
C

hi
ne

se
Sh

ar
-P

ei
39

C
hi

hu
ah

ua
::U

K
X

40
C

ho
w

C
ho

w
43

C
ho

w
C

ho
w

40
C

hi
hu

ah
ua

::U
SX

41
C

oc
ke

rS
pa

ni
el

44
C

oc
ke

rS
pa

ni
el

41
C

hi
ne

se
C

re
st

ed
42

C
ol

lie
45

—
46

C
ol

lie
::U

K
X

—
C

ol
lie

::U
SX

42
C

hi
ne

se
Sh

ar
-P

ei
43

C
ur

ly
C

oa
te

d
R

et
ri

ev
er

47
C

ur
ly

C
oa

te
d

R
et

ri
ev

er
43

C
ho

w
C

ho
w

44
D

ac
hs

hu
nd

::L
H

48
D

ac
hs

hu
nd

(L
on

gh
ai

re
d)

44
C

oc
ke

rS
pa

ni
el

45
D

ac
hs

hu
nd

::M
L

H
49

D
ac

hs
hu

nd
(M

in
ia

tu
re

L
on

gh
ai

re
d)

45
C

ol
lie

::U
K

X
46

D
ac

hs
hu

nd
::M

W
H

51
D

ac
hs

hu
nd

(M
in

ia
tu

re
W

ir
eh

ai
re

d)
46

C
ol

lie
::U

SX
47

D
ac

hs
hu

nd
52

—
53

D
ac

hs
hu

nd
(S

ho
rt

ha
ir

ed
)—

D
ac

hs
hu

nd
(W

ir
eh

ai
re

d)
47

C
ur

ly
C

oa
te

d
R

et
ri

ev
er

48
D

al
m

at
ia

n:
:U

K
54

D
al

m
at

ia
n:

:U
K

48
D

ac
hs

hu
nd

(L
on

gh
ai

re
d)

49
D

al
m

at
ia

n:
:U

S
55

D
al

m
at

ia
n:

:U
S

49
D

ac
hs

hu
nd

(M
in

ia
tu

re
L

on
gh

ai
re

d)
50

D
ob

er
m

an
n

Pi
ns

ch
er

56
D

ob
er

m
an

n
Pi

ns
ch

er
50

D
ac

hs
hu

nd
(M

in
ia

tu
re

Sh
or

th
ai

re
d)

Ta
bl

e
A

.2
:

B
re

ed
M

er
gi

ng
Pa

rt
I:

in
th

e
fir

st
tw

o
co

lu
m

ns
I

sh
ow

th
e

ID
s

an
d

na
m

es
fo

r
th

e
m

er
ge

d
br

ee
d.

T
he

n,
si

m
ila

rl
y

in
co

lu
m

ns
5

an
d

6
I

sh
ow

th
e

ID
s

an
d

na
m

es
of

th
e

pu
re

br
ee

ds
.I

n
th

e
ce

nt
re

co
lu

m
ns

3
an

d
4

Is
ho

w
w

hi
ch

pu
re

br
ee

ds
co

rr
es

po
nd

to
th

e
m

er
ge

d
br

ee
ds

in
th

e
re

sp
ec

tiv
e

ta
bl

e
ro

w
.



A.1. Overview of breeds and analysis pure breed dogs 131

br
ee

dM
ID

br
ee

dM
N

am
e

br
ee

dM
ID

fr
om

br
ee

dP
br

ee
dM

N
am

e
fr

om
br

ee
dP

br
ee

dP
ID

br
ee

dP
N

am
e

51
E

ng
lis

h
C

oc
ke

rS
pa

ni
el

57
—

58
E

ng
lis

h
C

oc
ke

rS
pa

ni
el

—
E

ng
lis

h
C

oc
ke

rS
pa

ni
el

::F
ie

ld
51

D
ac

hs
hu

nd
(M

in
ia

tu
re

W
ir

eh
ai

re
d)

52
E

ng
lis

h
Se

tte
r

59
E

ng
lis

h
Se

tte
r

52
D

ac
hs

hu
nd

(S
ho

rt
ha

ir
ed

)
53

E
ng

lis
h

Sp
ri

ng
er

Sp
an

ie
l

60
—

61
E

ng
lis

h
Sp

ri
ng

er
Sp

an
ie

l::
U

K
X

—
E

ng
lis

h
Sp

ri
ng

er
Sp

an
ie

l::
U

SX
53

D
ac

hs
hu

nd
(W

ir
eh

ai
re

d)
54

Fl
at

C
oa

te
d

R
et

ri
ev

er
62

Fl
at

C
oa

te
d

R
et

ri
ev

er
54

D
al

m
at

ia
n:

:U
K

55
Fo

x
Te

rr
ie

rS
m

oo
th

63
Fo

x
Te

rr
ie

r(
Sm

oo
th

)
55

D
al

m
at

ia
n:

:U
S

56
Fo

x
Te

rr
ie

rT
oy

64
Fo

x
Te

rr
ie

r(
To

y)
56

D
ob

er
m

an
n

Pi
ns

ch
er

57
Fo

x
Te

rr
ie

rW
ir

e
65

Fo
x

Te
rr

ie
r(

W
ir

e)
57

E
ng

lis
h

C
oc

ke
rS

pa
ni

el
58

Fr
en

ch
B

ul
ld

og
66

Fr
en

ch
B

ul
ld

og
58

E
ng

lis
h

C
oc

ke
rS

pa
ni

el
::F

ie
ld

59
G

er
m

an
Sh

ep
he

rd
D

og
67

G
er

m
an

Sh
ep

he
rd

D
og

59
E

ng
lis

h
Se

tte
r

60
G

er
m

an
Sh

or
th

ai
re

d
Po

in
te

r
68

—
69

G
er

m
an

Sh
or

th
ai

re
d

Po
in

te
r:

:U
K

X
—

G
er

m
an

Sh
or

th
ai

re
d

Po
in

te
r:

:U
SX

60
E

ng
lis

h
Sp

ri
ng

er
Sp

an
ie

l::
U

K
X

61
G

er
m

an
W

ir
eh

ai
re

d
Po

in
te

r
70

G
er

m
an

W
ir

eh
ai

re
d

Po
in

te
r

61
E

ng
lis

h
Sp

ri
ng

er
Sp

an
ie

l::
U

SX
62

G
ol

de
n

R
et

ri
ev

er
::U

K
71

G
ol

de
n

R
et

ri
ev

er
::U

K
62

Fl
at

C
oa

te
d

R
et

ri
ev

er
63

G
ol

de
n

R
et

ri
ev

er
::U

S
72

G
ol

de
n

R
et

ri
ev

er
::U

S
63

Fo
x

Te
rr

ie
r(

Sm
oo

th
)

64
G

or
do

n
Se

tte
r

73
G

or
do

n
Se

tte
r

64
Fo

x
Te

rr
ie

r(
To

y)
65

G
re

at
D

an
e

74
G

re
at

D
an

e
65

Fo
x

Te
rr

ie
r(

W
ir

e)
66

G
re

at
Py

re
ne

es
75

G
re

at
Py

re
ne

es
66

Fr
en

ch
B

ul
ld

og
67

G
re

at
er

Sw
is

s
M

ou
nt

ai
n

D
og

76
G

re
at

er
Sw

is
s

M
ou

nt
ai

n
D

og
67

G
er

m
an

Sh
ep

he
rd

D
og

68
G

re
yh

ou
nd

77
G

re
yh

ou
nd

68
G

er
m

an
Sh

or
th

ai
re

d
Po

in
te

r:
:U

K
X

69
H

av
an

es
e

78
H

av
an

es
e

69
G

er
m

an
Sh

or
th

ai
re

d
Po

in
te

r:
:U

SX
70

Ir
is

h
Se

tte
r:

:U
K

79
Ir

is
h

Se
tte

r:
:U

K
70

G
er

m
an

W
ir

eh
ai

re
d

Po
in

te
r

71
Ir

is
h

Se
tte

r:
:U

S
80

Ir
is

h
Se

tte
r:

:U
S

71
G

ol
de

n
R

et
ri

ev
er

::U
K

72
Ir

is
h

W
ol

fh
ou

nd
81

Ir
is

h
W

ol
fh

ou
nd

72
G

ol
de

n
R

et
ri

ev
er

::U
S

73
It

al
ia

n
G

re
yh

ou
nd

82
It

al
ia

n
G

re
yh

ou
nd

73
G

or
do

n
Se

tte
r

74
It

al
ia

n
Sp

in
on

e
83

It
al

ia
n

Sp
in

on
e

74
G

re
at

D
an

e
75

Ja
pa

ne
se

C
hi

n
84

Ja
pa

ne
se

C
hi

n
75

G
re

at
Py

re
ne

es
76

Ja
pa

ne
se

Sh
ib

a
In

u
85

Ja
pa

ne
se

Sh
ib

a
In

u
76

G
re

at
er

Sw
is

s
M

ou
nt

ai
n

D
og

77
K

ee
sh

on
d

86
—

87
K

ee
sh

on
d:

:U
K

X
—

K
ee

sh
on

d:
:U

SX
77

G
re

yh
ou

nd
78

L
ab

ra
do

rR
et

ri
ev

er
::U

K
88

L
ab

ra
do

rR
et

ri
ev

er
::U

K
78

H
av

an
es

e
79

L
ab

ra
do

rR
et

ri
ev

er
::2

89
L

ab
ra

do
rR

et
ri

ev
er

::U
S

Fi
el

d
79

Ir
is

h
Se

tte
r:

:U
K

80
L

ab
ra

do
rR

et
ri

ev
er

::3
90

L
ab

ra
do

rR
et

ri
ev

er
::U

S
Sh

ow
80

Ir
is

h
Se

tte
r:

:U
S

81
L

ha
sa

A
ps

o
91

—
92

L
ha

sa
A

ps
o:

:U
K

X
—

L
ha

sa
A

ps
o:

:U
SX

81
Ir

is
h

W
ol

fh
ou

nd
82

M
al

te
se

93
—

94
M

al
te

se
::U

K
X

—
M

al
te

se
::U

SX
82

It
al

ia
n

G
re

yh
ou

nd
83

M
as

tif
f

95
M

as
tif

f
83

It
al

ia
n

Sp
in

on
e

84
M

in
ia

tu
re

Pi
ns

ch
er

96
—

97
M

in
ia

tu
re

Pi
ns

ch
er

::U
K

X
—

M
in

ia
tu

re
Pi

ns
ch

er
::U

SX
84

Ja
pa

ne
se

C
hi

n
85

N
ew

fo
un

dl
an

d
98

N
ew

fo
un

dl
an

d
85

Ja
pa

ne
se

Sh
ib

a
In

u
86

N
or

fo
lk

Te
rr

ie
r

99
N

or
fo

lk
Te

rr
ie

r
86

K
ee

sh
on

d:
:U

K
X

87
N

or
w

eg
ia

n
E

lk
ho

un
d

10
0

N
or

w
eg

ia
n

E
lk

ho
un

d
87

K
ee

sh
on

d:
:U

SX
88

N
or

w
ic

h
Te

rr
ie

r
10

1
N

or
w

ic
h

Te
rr

ie
r

88
L

ab
ra

do
rR

et
ri

ev
er

::U
K

89
O

ld
E

ng
lis

h
Sh

ee
pd

og
10

2
O

ld
E

ng
lis

h
Sh

ee
pd

og
89

L
ab

ra
do

rR
et

ri
ev

er
::U

S
Fi

el
d

90
Pa

pi
llo

n
10

3
Pa

pi
llo

n
90

L
ab

ra
do

rR
et

ri
ev

er
::U

S
Sh

ow
91

Pa
rs

on
R

us
se

ll
Te

rr
ie

r
10

4
Pa

rs
on

R
us

se
ll

Te
rr

ie
r

91
L

ha
sa

A
ps

o:
:U

K
X

92
Pe

ki
ng

es
e

10
5

Pe
ki

ng
es

e
92

L
ha

sa
A

ps
o:

:U
SX

93
Pe

m
br

ok
e

W
el

sh
C

or
gi

10
6—

10
7

Pe
m

br
ok

e
W

el
sh

C
or

gi
::U

K
X

—
Pe

m
br

ok
e

W
el

sh
C

or
gi

::U
SX

93
M

al
te

se
::U

K
X

94
Po

in
te

r
10

8
Po

in
te

r
94

M
al

te
se

::U
SX

95
Po

m
er

an
ia

n
10

9—
11

0
Po

m
er

an
ia

n:
:U

K
X

—
Po

m
er

an
ia

n:
:U

SX
95

M
as

tif
f

96
Po

od
le

11
1—

11
4

Po
od

le
—

Po
od

le
(T

oy
)

96
M

in
ia

tu
re

Pi
ns

ch
er

::U
K

X
97

Po
od

le
M

in
ia

tu
re

::j
us

tto
y

11
3

Po
od

le
(M

in
ia

tu
re

):
:m

is
cw

ith
to

y
97

M
in

ia
tu

re
Pi

ns
ch

er
::U

SX
98

Po
od

le
M

in
ia

tu
re

::m
in

ia
tu

re
11

2
Po

od
le

(M
in

ia
tu

re
)

98
N

ew
fo

un
dl

an
d

99
Po

rt
ug

ue
se

W
at

er
D

og
11

5
Po

rt
ug

ue
se

W
at

er
D

og
99

N
or

fo
lk

Te
rr

ie
r

10
0

Pu
g

11
6

Pu
g

10
0

N
or

w
eg

ia
n

E
lk

ho
un

d

Ta
bl

e
A

.3
:B

re
ed

M
er

gi
ng

Pa
rt

II
:c

on
tin

ue
d,

se
e

Ta
bl

e
A

.2
fo

ra
di

sc
us

si
on

.



132 Appendix A. Appendix

br
ee

dM
ID

br
ee

dM
N

am
e

br
ee

dM
ID

fr
om

br
ee

dP
br

ee
dM

N
am

e
fr

om
br

ee
dP

br
ee

dP
ID

br
ee

dP
N

am
e

10
1

R
ho

de
si

an
R

id
ge

ba
ck

11
7

R
ho

de
si

an
R

id
ge

ba
ck

10
1

N
or

w
ic

h
Te

rr
ie

r
10

2
R

ot
tw

ei
le

r
11

8
R

ot
tw

ei
le

r
10

2
O

ld
E

ng
lis

h
Sh

ee
pd

og
10

3
Sa

in
tB

er
na

rd
11

9—
12

0
Sa

in
tB

er
na

rd
::U

K
X

—
Sa

in
tB

er
na

rd
::U

SX
10

3
Pa

pi
llo

n
10

4
Sa

lu
ki

12
1

Sa
lu

ki
10

4
Pa

rs
on

R
us

se
ll

Te
rr

ie
r

10
5

Sa
m

oy
ed

12
2—

12
3

Sa
m

oy
ed

::U
K

X
—

Sa
m

oy
ed

::U
SX

10
5

Pe
ki

ng
es

e
10

6
Sc

hi
pp

er
ke

12
4—

12
5

Sc
hi

pp
er

ke
::U

K
X

—
Sc

hi
pp

er
ke

::U
SX

10
6

Pe
m

br
ok

e
W

el
sh

C
or

gi
::U

K
X

10
7

Sc
hn

au
ze

rG
ia

nt
12

6
Sc

hn
au

ze
r(

G
ia

nt
)

10
7

Pe
m

br
ok

e
W

el
sh

C
or

gi
::U

SX
10

8
Sc

hn
au

ze
rM

in
ia

tu
re

12
7

Sc
hn

au
ze

r(
M

in
ia

tu
re

)
10

8
Po

in
te

r
10

9
Sc

ot
tis

h
Te

rr
ie

r
12

8
Sc

ot
tis

h
Te

rr
ie

r
10

9
Po

m
er

an
ia

n:
:U

K
X

11
0

Sh
et

la
nd

Sh
ee

pd
og

::U
K

12
9

Sh
et

la
nd

Sh
ee

pd
og

::U
K

11
0

Po
m

er
an

ia
n:

:U
SX

11
1

Sh
et

la
nd

Sh
ee

pd
og

::U
S

13
0

Sh
et

la
nd

Sh
ee

pd
og

::U
S

11
1

Po
od

le
11

2
Sh

ih
T

zu
13

1
Sh

ih
T

zu
11

2
Po

od
le

(M
in

ia
tu

re
)

11
3

Si
be

ri
an

H
us

ky
13

2
Si

be
ri

an
H

us
ky

11
3

Po
od

le
(M

in
ia

tu
re

):
:m

is
cw

ith
to

y
11

4
So

ft
C

oa
te

d
W

he
at

en
Te

rr
ie

r
13

3—
13

4
So

ft
C

oa
te

d
W

he
at

en
Te

rr
ie

r:
:U

K
X

—
So

ft
C

oa
te

d
W

he
at

en
Te

rr
ie

r:
:U

SX
11

4
Po

od
le

(T
oy

)
11

5
St

af
fo

rd
sh

ir
e

B
ul

lT
er

ri
er

13
5

St
af

fo
rd

sh
ir

e
B

ul
lT

er
ri

er
11

5
Po

rt
ug

ue
se

W
at

er
D

og
11

6
Ti

be
ta

n
Sp

an
ie

l
13

6
Ti

be
ta

n
Sp

an
ie

l
11

6
Pu

g
11

7
Ti

be
ta

n
Te

rr
ie

r
13

7
Ti

be
ta

n
Te

rr
ie

r
11

7
R

ho
de

si
an

R
id

ge
ba

ck
11

8
V

iz
sl

a:
:U

K
13

8
V

iz
sl

a:
:U

K
11

8
R

ot
tw

ei
le

r
11

9
V

iz
sl

a:
:U

S
13

9
V

iz
sl

a:
:U

S
11

9
Sa

in
tB

er
na

rd
::U

K
X

12
0

W
ei

m
ar

an
er

14
0—

14
1—

14
2

W
ei

m
ar

an
er

::U
K

X
—

W
ei

m
ar

an
er

::U
S2

X
—

W
ei

m
ar

an
er

::U
SX

12
0

Sa
in

tB
er

na
rd

::U
SX

12
1

W
el

sh
Te

rr
ie

r
14

3—
14

4
W

el
sh

Te
rr

ie
r:

:U
K

X
—

W
el

sh
Te

rr
ie

r:
:U

SX
12

1
Sa

lu
ki

12
2

W
es

tH
ig

hl
an

d
W

hi
te

Te
rr

ie
r

14
5

W
es

tH
ig

hl
an

d
W

hi
te

Te
rr

ie
r

12
2

Sa
m

oy
ed

::U
K

X
12

3
W

hi
pp

et
14

6—
14

7
W

hi
pp

et
::U

K
X

—
W

hi
pp

et
::U

SX
12

3
Sa

m
oy

ed
::U

SX
12

4
Y

or
ks

hi
re

Te
rr

ie
r:

:U
K

K
C

14
8

Y
or

ks
hi

re
Te

rr
ie

r:
:U

K
12

4
Sc

hi
pp

er
ke

::U
K

X
12

5
Y

or
ks

hi
re

Te
rr

ie
r:

:U
S

14
9

Y
or

ks
hi

re
Te

rr
ie

r:
:U

S
12

5
Sc

hi
pp

er
ke

::U
SX

12
6

Sc
hn

au
ze

r(
G

ia
nt

)
12

7
Sc

hn
au

ze
r(

M
in

ia
tu

re
)

12
8

Sc
ot

tis
h

Te
rr

ie
r

12
9

Sh
et

la
nd

Sh
ee

pd
og

::U
K

13
0

Sh
et

la
nd

Sh
ee

pd
og

::U
S

13
1

Sh
ih

T
zu

13
2

Si
be

ri
an

H
us

ky
13

3
So

ft
C

oa
te

d
W

he
at

en
Te

rr
ie

r:
:U

K
X

13
4

So
ft

C
oa

te
d

W
he

at
en

Te
rr

ie
r:

:U
SX

13
5

St
af

fo
rd

sh
ir

e
B

ul
lT

er
ri

er
13

6
Ti

be
ta

n
Sp

an
ie

l
13

7
Ti

be
ta

n
Te

rr
ie

r
13

8
V

iz
sl

a:
:U

K
13

9
V

iz
sl

a:
:U

S
14

0
W

ei
m

ar
an

er
::U

K
X

14
1

W
ei

m
ar

an
er

::U
S2

X
14

2
W

ei
m

ar
an

er
::U

SX
14

3
W

el
sh

Te
rr

ie
r:

:U
K

X
14

4
W

el
sh

Te
rr

ie
r:

:U
SX

14
5

W
es

tH
ig

hl
an

d
W

hi
te

Te
rr

ie
r

14
6

W
hi

pp
et

::U
K

X
14

7
W

hi
pp

et
::U

SX
14

8
Y

or
ks

hi
re

Te
rr

ie
r:

:U
K

14
9

Y
or

ks
hi

re
Te

rr
ie

r:
:U

S

Ta
bl

e
A

.4
:B

re
ed

M
er

gi
ng

Pa
rt

II
I:

co
nt

in
ue

d,
se

e
Ta

bl
e

A
.2

fo
ra

di
sc

us
si

on
.



A.2. Enumerating haplotype pairs 133

Indicators/Position Ψ(1) = 2 Ψ(2) = 4 Ψ(3) = 6

SNP allele Xj
k [Ψ(1] = −1 Xj

k [Ψ(1] = 1 Xj
k [Ψ(1] = −1

Repeats ρ 1 4 8
Cycles π 8 4 1

Type 4 2 4

Table A.5: Values of repeats ρ, cycles π different pattern structures based on the ambiguous marker type
based on Xj

k = [0, ?, 0, 1, 2, ?].

A.2 Enumerating haplotype pairs
This section continues from Section 3.2.2.2 and offers more details on how we recursively enumerate
haplotype pairs with a given genotype. At first I define four patterns:

• a =

[
0

1

]
corresponds to Hi

1(j)[t] = 0, Hi
2(j)[t] = 1,

• b =

[
1

0

]
corresponds to Hi

1(j)[t] = 1, Hi
2(j)[t] = 0,

• c =

[
1

1

]
corresponds to Hi

1(j)[t] = 1, Hi
2(j)[t] = 1,

• d =

[
0

0

]
corresponds to Hi

1(j)[t] = 0, Hi
2(j)[t] = 0.

If the SNP at locus t assumes the values Xj
k[t] ∈ {0, 2} there is no ambiguity and lead to pattern d

or c, respectively. For Xj
k[t] = 1 I apply pattern a and b. Finally for Xj

k[t] =?, I apply all four patterns.
I express these three cases formally as types

type =


1, if marker Xj

k[t] ∈ {0, 2},

2, if marker Xj
k [Ψ(γ)] = 1, γ ∈ {1, . . . ,Γ},

4, if marker Xj
k [Ψ(γ)] =?, γ ∈ {1, . . . ,Γ}.

where number of ambiguous markers in a genotype is denoted as Γ ≤ s. Returning to the example
Xj
k = [0, ?, 0, 1, 2, ?] there are Γ = 3 ambiguous SNPs at loci 2,4 and 6.

Then, define the map Ψ : ambiguous marker 7→ t which assigns r-th ambiguous marker ID to its
corresponding SNP locus. Furthermore, I define repeats ρ and cycles π at each locus t within four cases:

1. CASE ? (Type = 4): this pattern structure is referred to as type = 4 because it includes the four
patterns a, b, c and d. If Xj

k[t] =?, I define the pattern structure

[a{ρ}b{ρ}c{ρ}d{ρ}]{π}

At position t pattern a is repeated ρ times for haplotype pairs i = 1 to i = ρ. From haplotype pair
i = ρ+ 1 to i = 2 · ρ I repeat pattern b, then from haplotype pair i = 2 · ρ+ 1 to i = 3 · ρ I repeat
pattern c, and finally from haplotype pair i = 3 · ρ + 1 to i = 4 · ρ I repeat pattern d. Then, from
haplotype pair i = 4 · ρ+ 1, I start with pattern a again, followed by pattern b, c and d. In total, I
repeat this process of repeating patterns a, b, c, d for π times.
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2. CASE 1 (Type = 2): this pattern structure is referred to as type = 4 because it includes the two
patterns a and b. If Xj

k[t] = 1, I define pattern structure

[a{ρ}b{ρ}]{π}

and this pattern is defined as of type = 2. Then, similarly to case ?, for π times I repeat pattern a
for ρ, followed by ρ times of pattern b.

3. CASE 0 (Type = 1): Xj
k[t] = 0, I define pattern structure [d{mjk}]{1}, i.e. at position t ∀i, I have

pattern d.

4. CASE 2 (Type = 1): Xj
k[t] = 2, I define pattern structure [c{mjk}]{1}, i.e. at position t ∀i, I have

pattern c.

Returning to Figure 3.2, for example at the second ambigious marker Xj
k[Ψ(2)] = Xj

k[4] = 1 I
have [a{4}b{4}]{4}. This pattern structure implies that in the first cycle the first four haplotype pairs
follow pattern a, haplotype pairs 5 to 8 follow pattern b. In the second cycle, haplotype pairs 9 to 13
take pattern a while haplotype pairs 14 to 17 assume pattern b. Similarly, I proceed with cycle 3 and 4.
Values for ρ and π for the other ambiguous markers are shown in table A.5.

In general, I obtain the following recursive formulae for ρ. At first, I define ρ recursively with base
case ρ [Ψ(1)] = 1 :

ρ [Ψ(γ)] =

2 · ρ [Ψ((γ − 1)] , if marker Xj
k [Ψ((γ − 1)] = 1, γ ∈ {1, . . . ,Γ},

4 · ρ [Ψ((γ − 1)] , if marker Xj
k [Ψ((γ − 1)] =?, γ ∈ {1, . . . ,Γ}.

Similarly, I compute π recursively with base case

π [Ψ(1)] =

mjk/2, if marker Xj
k [Ψ((1)] = 1

mjk/4, if marker Xj
k [Ψ((1)] =?

and general case

π [Ψ((γ)] =

mjk/ρ [Ψ((γ)] /2, if marker Xj
k [Ψ((γ)] = 1, γ ∈ {1, . . . ,Γ},

mjk/ρ [Ψ((γ)] /4, if marker Xj
k [Ψ((γ)] =?, γ ∈ {1, . . . ,Γ}.

A.3 Results for pure breed identification
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A.4 HMM Forward Algorithm

Figure A.1: HMM with two hidden markov chains unfolds in time as a lattice

Figure A.2: HMM hidden path illustration for genotype [1,2,0] for three time steps

I frame the computation pcuv as a forward algorithm in a hidden markov model (HMM) (Rabiner
and Juang, 1986) whose topology is shown in figure A.1. I observe the genotype Xc on chromosome
c which I view as a sequence of T emitted observations in a HMM, bottom row figure A.1, and I write
Xc = [O1, . . . , OT ] and Ot ∈ {v1 = 0, v2 = 1, v3 = 2, v4 = −1}, t ∈ {1, . . . , T}. There are two
hidden markov chains q11:T ∈ {S1 = 0, S2 = 1}T and q21:T ∈ {S1 = 0, S2 = 1}T , one for each of the
haplotypes. In figure A.1 the first two rows correspond to the hidden markov chain for the first haplotype
through time, similarly rows 3 and 4 represent the hidden markov chain for the second haplotype. This
figure illustrates how each of the hidden markov chain’s state trajectory may oscillate between 0 and 1.
It is assumed that one of the haplotypes is related to dog breed uc while the other corresponds to dog
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breed vc. The emitted observation Ot at each time step in the genotype is computed as Ot = q1t + q2t

as shown in figure A.1. The probability pcuv in HMM terminology refers to probability p(Xc|λ) of
the observed genotype sequence Xc given the HMM model λ = (π1, A1, π2, A2, B) which includes
the initial state probabilities π1

i = p
(
q11 = Si

)
, π2

j = p
(
q21 = Sj

)
, the state transition probabilities

a1ij = p
(
q1t+1 = Sj |q1t = Si

)
, a2kl = p

(
q2t+1 = Sl|q2t = Sk

)
, S• ∈ {0, 1} for the two haplotypes and

observation emission probabilities bj,k(m) = p
(
Ot = vm|q1t = Sj , q

1
t = Sk

)
,m ∈ {1, 2, 3}.Note, that

first in contrast to a standard HMM (Rabiner and Juang, 1986) I have two and not just one hidden markov
chains associated with the observed markov chain. This can be viewed as a compound hidden state
qt = (q1t , q

2
t ) which attains the following 4 = |{0, 1}2| values {(0, 0), (0, 1), (1, 0), (1, 1)}. Secondly,

I do not have ’actual’ emission probabilities because when the first hidden markov chain at time t has
value Sj and the second hidden markov chain attains value Sk I emit with probability 1 the observed
state Ot at time t is vm = Sj + Sk. Then, to evaluate pcuv I compute p(Xc|λ) which can be computed
by marginalizing over all the possible hidden state sequences in p (Xc, q1:T |λ) which can be written as

p (Xc, q1:T |λ) = p(q11)p(q21)

T∏
t=2

p(q1t |q1t−1)

T∏
t=2

p(q2t |q2t−1)

T∏
t=1

p(Ot|q1t , q2t )

p (Xc, q1:T |λ) = π1
q1
1
π2
q2
1
bq1

1 ,q
2
1
(q11 + q21)a1q1

1q
1
2
a2q2

1q
2
2
bq1

2 ,q
2
2
(q12 + q22) · · · a1q1

T−1q
1
T
a2q2

T−1q
2
T
bq1

T ,q
2
T

(q1T + q2T )

As I mentioned above once I know the hidden states at some time step t there is only one possibility
for the emitted observation and this symbol is emitted with certainty. Therefore, I can simplify as

p (Xc, q1:T |λ) = p(q11)p(q21)

T∏
t=2

p(q1t |q1t−1)

T∏
t=2

p(q2t |q2t−1)

p (Xc, q1:T |λ) = π1
q1
1
π2
q2
1
a1q1

1q
1
2
a2q2

1q
2
2
· · · a1q1

T−1q
1
T
a2q2

T−1q
2
T

There are 4T possible hidden state paths q1:T under the assumption that all probabilities are non-
zero. In practise this marginalizing over all the possible hidden states is often computationally expensive
and a forward variable is recursively evaluated based on the idea that the observation sequence can be
divided into two partial observation sequences: the first starting from time 1 until t and the second one
from time t+ 1 until T. The forward variable αt(i, j) is defined as

αt(i, j) = p
(
O1, . . . , Ot, q

1
t = Si, q

2
t = Sj |λ

)
and can be calculated recursively. According to Rabiner and Juang (1986) I initialize the forward

variable as

α1(i, j) = p
(
O1, q

1
1 = Si, q

2
1 = Sj |λ

)
α1(i, j) = π1

i π
2
j bSi,Sj (Si + Sj)

α1(i, j) = π1
i π

2
j

Then, I can write down the recursive equation for the forward variable whose derivation can be
found in (Rabiner and Juang, 1986)
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Hidden state SNP 1 SNP 2 SNP 3
(0,0) 0 0 0.17 * 0.46 * 0.46 = 0.04
(0,1) 0.43 * 0.58 = 0.25 0 0
(1,0) 0.58 * 0.43 = 0.25 0 9
(1,1) 0 0.25 * 0.48 * 0.72 + 0.25 * 0.72 * 0.48 = 0.17 0

Table A.17: HMM example forward probability for genotype [1,2,0]

αt+1(i, j) = p
(
O1, . . . , Ot+1q

1
t+1 = Si, q

2
t+1 = Sj |λ

)
αt+1(i, j) =

[
2∑
k=1

2∑
l=1

αt(k, l)a
1
kia

2
lj

]
bij(Si + Sj)

αt+1(i, j) =

[
2∑
k=1

2∑
l=1

αt(k, l)a
1
kia

2
lj

]

The forward variable αt(k, l) explains the first t observations and ends in state i for the first hidden
markov chain and in state j for the second one. I multiply this by transition probabilities a1ki and a2lj
such that the first hidden markov chain moves to state i and the second markov chain to state j because
there are two possible previous states for both hidden markov chains, and I need to sum over all possible
such possible previous states. The emission probability bij(Si + Sj) is known with certainty again and
as such evaluates to one. Finally, when I calculated the forward probabilities up to time T it is easy to
evaluate the probability p (Xc|λ) of the observation sequence, i.e. the genotype on chromosome c, given
the model λ :

p(Xc|λ) =

2∑
k=1

2∑
l=1

p(Xc, q
1
T = Sk, q

2
T = Sl|λ)

p(Xc|λ) =

2∑
k=1

2∑
l=1

αT (k, l)

where αt(k, l) is the probability of generating the complete genotype on chromosome c and end in
states Sk for the first hidden markov chain and Sl for the second hidden markov chain.

A.4.1 Toy example
I would like to illustrate this forward algorithm with an example on the first chromosome. Assume
that both dog breeds uc and vc are Siberian Husky as shown in table 3.2 with its transition probabili-
ties. Note that for simplicity I only consider the first three SNP marker and I use only two digits after
the comma for transition probabilitis in table 3.2. Let the observed genotype be X1 = [1, 2, 0]. This
example can be found in figure A.2 which shows the possible hidden state sequences for this geno-
type. In this figure the first number represents the first haplotype and the second number corresponds
to the second haplotype. Then, I know at time 1 the allele can be either 0, 1 or vice versa, at time
2 both alleles must be 1 and at time T = 3 both alleles must attain value 0. In table A.17 I show
the forward probabilities: in column ’SNP 1’ I show the values for forward probabilities α1(·, ·), and
finally in column ’SNP 3’ I have the values α3(·, ·) for time T = 3. Then, summing over all hid-
den states of the forward variable at time T = 3 the probability p (Xc|λ) of the observed genotype



A.5. Mars algorithm as pseudo code 145

X1 = [1, 2, 0] given model λ evaluates to about 0.04. In some family tree Z this probability corresponds
to probability pcuv = p (X1|Z, uc = Siberian Husky, vc = Siberian Husky) . These probabilities pcuv
are pre-computed for each chromosome c given any two breeds uc, vc at the start of the dog classifica-
tion algorithm.

A.5 Mars algorithm as pseudo code
Now, let us formalize this pipeline for the first run: ∀ query test dog t I compute

1. Enable 3 meta breeds AvgDogs = (Ancient,Guard,EuropeanHedge).

2. Load SNP-wise transition probabilities forB+3 breeds. Meta breeds have transition probabilities
computed by averaging over their composing breed collection.

3. Load genotype Xc ∀ chromosomes c ∈ {1, . . . , C} for query dog t.

4. ∀ chromosomes, ∀ breeds bi, bj with i, j ∈ {1, . . . , B} of test dog t pre-compute probabili-
ties p(Xc|Bi, Bj) which describes the probability of SNP data Xc given chromosome painting
p(Xc|uc = Bi, vc = Bj).

5. For all lineage trees Z run the Metropolis-Hastings algorithm and do:

(a) Initialization 1: create a new object for lineage tree Z.

(b) Initialization 2: select a lineage tree painting L uniformly for Z such that for each leaf all B
breeds have equal choice of selection.

(c) Initialization 3: select a genome painting G uniformly that for each chromosome painting a
leaf uc is chosen randomly (each leaf has equal probability) from the maternal leaves, and
one leaf from the paternal leaves is assigned to vc.

(d) Start the MCMC run: burn in phase (BIP) with 10,000 iterations. One BIP iteration works
as follows:

i. Note that in the burn phase I do not use haplotype frequencies p(Xc|uc, vc) but
p(Xc|uc, vc)′ which I define subsequently. HoIIver, at first, I introduce an averaging
model A which averages over possible genome paintings G given the current lineage
tree painting L and I define A =

∑Y
d=1

∑Y
e=1

p(Xc|ud
c ,v

e
c)

Y 2 where Y runs over the max-
imum of paternal, maternal leaves. If lineage tree Z is unbalanced (Y different for
maternal and paternal side), then that side of tree side with less leaves has some leaves
considered twice in the formula for A to match the corresponding leaves on the other
side of the tree. And let us denote M = p(Xc|uc, vc) as chromosome painting model.
At BIP iteration 1 I only use the averaging model A which I linearly phase out to ex-
clusively utilize the chromosome painting model M at the end of BIP. Model M is
not utilized all at BIP iteration 1 but the algorithm linearly increase its impact and
fully use it at BIP iteration 10,000. In other words I compute a linear combination
p′cuv = p(Xc|uc, vc)′ = r · A + s · M with r = 1, s = 0 at BIP iteration 1, and
r = 0, s = 1 at BIP iteration 10,000.

ii. Compute likelihood p = p(X|θ) given current θ = (Z,L,G).

iii. Jumble lineage tree painting L to obtain new proposal L′ with likelihood p′, and com-
pute acc = p′ − p, and uniform random number g ∼ U [0, 1].

iv. If (acc >= 0) OR (g < 10acc) accept proposal L′, otherwise keep old lineage tree
painting L.
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v. ∀ leaves step in lineage tree Z do

A. Compute likelihood p = p(X|θ) given current θ = (Z,L,G).

B. Update lineage tree painting L to obtain L′ such that current leaf step is uniformly
assigned a new breed. Compute uniform random numbers g, h ∼ U [0, 1].

C. Set scalar qFactor := 0.

D. If h < 0.1, then update genome painting G. Compute likelihood q =

p(X|Z,L′, G). And, then, compute likelihood q′ = p(X|Z,L′, G′) after genome
update G′. Set qFactor = q′ − q.

E. If h < 0.1, then p′ = p(X|Z,L′, G′) else p′ = p(X|Z,L′, G).

F. Set acc = p′ − p− qFactor. Then, if (acc >= 0) OR (g < 10acc) accept proposal
with new breed assignment to leaf (and potential new genome painting G′). Note,
that a Metropolis-Hastings algorithm with uniform proposal density is used such
that the proposal density cancels out and I only consider log likelihood ratio acc =

p(θ′) − p(θ) of the new proposed sample θ′ compared to the previous sample θ.
Definition of acc suggests, the acceptance probability in the Metropolis-Hasting
algorithms only depends on the lineage tree painting L likelihoods but not on the
genome painting G.

(e) Continue MCMC run: main phase (MP) with 500,000 iterations. One MP iteration works as
follows. I proceed the same way as in BIP. However,

i. I only use the chromosome painting model M = p(Xc|uc, vc).

ii. I record the likelihood p = p(X|θ) and the associated lineage tree painting L every 5th
MCMC iteration.

(f) Compute DIC score asDIC = pD+D̄ where pD = D̄−D(θ̄) andD(θ) = −2·log[p(X|θ)].
I evaluate the expected value Eθ[D] = D̄ as average over all samples. And D(θ̄) should
be evaluated at the average argument θ̄. However, in the Mars code pd is computed as
maxθ log[p(X|θ)]. Furthermore, in the Mars code there is a further factor 2, and I have
DIC = 2 ·

(
1
T

∑
θD(θ) + maxθ log[p(X|θ)]

)
where T is the number of MCMC iterations

considered.

(g) Compute breed proportion for each of the B breeds. Breed proportion of a particular breed
is defined as the frequency of occurrence as one of the leaves in a lineage tree painting L in
the MCMC run.

6. Select lineage tree Z with lowest DIC score.

In the second run, the Metropolis-Hastings algorithm is run only on lineage trees Z which are as
or more complex than the best lineage tree in the first run, and the meta breeds are no longer included
as possible breed assignments. Moreover, in the second run certain breeds will be locked as leaves in
the lineage tree and are not substituted during the MCMC run. The locked-in breeds are those breeds
which exceed a certain minimum probability estimated as its relative frequency during the first MCMC
run. Finally, once the second run has completed the DIC-optimal lineage tree is chosen. Then, the
algorithm scans through the MCMC iteration recordings of the second run which contains the lineage
tree painting for every 5th MCMC iteration to compute breed proportions for all breeds. Those breeds
which are recognized as high- or medium-proportion according to a breed-specific cut-off table are the
final assignments of breeds to the leaves of the optimal lineage tree.
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- True class p True class n Row sums
Predicted class p′ True Positives (TP) False Positives (FP) P’ = TP + FP
Predicted class n′ False Negatives (FN) True Negatives (TN) N’ = FN + TN

Column sums P=TP+FN N=FP+TN -

Table A.18: Confusion matrix is given as contingency table and shows the relationship between true and
predicted class.

A.6 Multiclass ROC Curves
Performance measures in binary classification are widely used (Fawcett, 2004). In these setups each test
sample Xi comes from one of two classes. Each Xi either has a positive p or negative n class label as
true class. A classifier will take Xi as input and produces class labels {p′, n′} where Y refers to the
positive class and N to the negative class. The Cartesian product of true and predicted class yields a
confusion matrix with four options as shown in table A.18:

• True Positive (TP): test sample has positive true class p and is predicted as p′.

• True Negative (TN): test sample has positive true class n and is predicted as n′.

• False Positive (FP): test sample has positive true class n and is predicted as p′.

• False Negative (FN): test sample has positive true class p and is predicted as n′.

In the ancestry prediction problem breeds which are part of the true ancestry are mapped to class p
while breeds not part of the ancestry are mapped to n. Similarly, the classifier predicts class p′ for breeds
to be hypothesized to be part of the ancestry and class n′ for breeds which are not prediced to be part of
the ancestry.

However, the ancestry prediction problem represents a more advanced setting because for each test
sample Xi I can have multiples TPs, FPs, TNs and FNs. Therefore, each performance measures will be
defined on a sample-by-sample basis based on TPi, FPi, TNi, FNi.

Let k corresponds to the number of slots in the family tree, e.g. family tree ABC has slots for up
to 3 breeds. Then, I know TPi ∈ {0, . . . , k}, FNi ∈ {0, . . . , k} and TPi + FNi = k. Furthermore, I
know that TNi ∈ {0, . . . , bM − k}, FPi ∈ {0, . . . , bM − k} and TNi + FPi = bM − k.

Then, given the confusion matrix I can define performance measures. In particular, I are interested
in breeds that are part of the breed ancestry, and thus, focus on performance measure related to the
positive class. Furthermore, accuracy, which counts the number of correct predictions across {p, n} is
not a useful measure here because each test sample is expected to have many more breeds in the negative
class, i.e. not to be part of the ancestry, than breeds in the positive class. I will look at two performance
measures. The first measure is sensitivity, which is also known as true positive rate (TPR), hit rate,
recall, and the second measure is positive predictive value (PPV), also referred to as precision. The first
measure is sensitivity defines how many of positives of all positives samples I detected and is defined as

TPRi =
TPi
Pi

=
TPi

TPi + FNi
.

And PPV determines what fraction of positive predicted samples are actually true positives. PPV is
computed as

PPVi =
TPi
P ′i

=
TPi

TPi + FPi
.
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However, I would like to weigh PPVi and TPRi. One way to do that is suggested in information
retrieval by establishing the F-measure Fβ

F βi =

(
1 + β2

)
· PPVi · TPRi

(β2 · PPVi) + TPRi

assuming I decide β times as much relevance to TPRi (recall) then PPVi (precision). In other
words, it is β times as important to obtain more true positives (breeds which are part of ancestry) than it
is to avoid introducing false positives (breeds which are not part of the ancestry). I equally weigh both
measures setting β = 1 to yield the F1-score

F 1
i =

2 · PPVi · TPRi
PPVi + TPRi

which is the harmonic means of recall and precision. Finally, I compute overall TPR as
TPR = 1

NZ

∑NZ

i=1 TPRi, overall PPV as PPV = 1
NZ

∑NZ

i=1 PPVi and overall F1-score as
F 1 = 1

NZ

∑NZ

i=1 F
1
i .

ROC curves using sensitivity and positive positive predictive values as axes provide a two-
dimensional representation of classifier performance. Based on these ROC curves I compute the fol-
lowing two scalar summary statistics: area under this curve (AUC) (Hanely and McNeil, 1982; Bradley,
1997) provides a measure of quality of prediction. As alternative measure I determine the maximum
F1 value, maxF1, taken over the breed fraction cut-off interval [0,1]. These two measures tend to have
correlation of 0.95 or higher.

A.7 DBAncestry Results
A.7.1 Breed estimation view
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A.7.2 Breed classification view
Results for the classification view are given in Table A.20 and a visual representation for the long run
using the ULP update proposal is shown in Figure A.3. It can be seen that the areas under the curves
(AUC) are almost identical for the uniform and breed-biased update proposals in the long MCMC run.
Although if I were to account for more than the leading two digits AUC according to Table A.21 the
reader sees that even for the long run the ULP variant still has a very minor AUC performance advantage.
Similar arguments apply for the F1 score criterion which can be seen in Table A.22. Furthermore,
according to Table A.20 there is a much more substantial benefit of the longer run over the shorter one
in the classification view, e.g. for the most complex lineage tree ABCDEFGH there is a 10 percent
increase in the area under the curve. In other words, although the long MCMC run only offers up to 3
percent improvement in the estimation of breed proportions there is a large improvement in classifying
breeds correctly. In general, AUC scores are much better than random guessing as shown in Figure
A.4. In particular, I obtain perfect classification for pure breed dogs, and even for the complex lineage
ABCDEFGH I get an AUC score of 0.81.

Figure A.3: This figure shows CCBC-based results for the area under the curve and the F1 criterion using
the long MCMC run with ULP update proposal for all 11 lineage trees from Figure 1.2. A visualization
of the actual performance plots are shown in Figure A.4. Firstly, it can be seen that both criteria are very
correlated, i.e. have a correlation of 0.97. For the simplest tree both performance criteria show almost
perfect performance. After that, both criteria decrease quickly until intermediate tree complexity, i.e.
around 0.86 for AUC and 0.8 for F1 score, and then continue to be reduced moderately at a level of 0.81
(AUC) and 0.78 (F1) for the most complex tree, respectively.
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(a) F1-Score, Long, ULP

(b) PPV/SENS-Score, Long, ULP

Figure A.4: DBAncestry classification performance: For all 11 lineage trees these two plots show
PPV vs. sensitivity and F1 score as a function of breed proportion, respectively. These results are based
on CCBC-based breed proportion estimates from the long MCMC run with a ULP update proposal.
According to the AUC-plot it can be seen that the AUC score is near perfect for trees AAAAAAAA
(tree 1) and AAAABBBB (tree 2) and very high for AAAABBCC (tree 3) and AABBCCDD (tree
4). Furthermore, tree 5-11 have similar AUC scores at a high level. The F1 plot suggests that almost
independently of the chosen breed proportion cut-off there is a very high F1 score for tree 1. Even for tree
2 the F1 score only starts to decrease sharply at around 0.4. All other trees typically have optimal cut-off
values of less than 0.2. While the simplest three trees achieve almost perfect F1 score, with increasing
amount of complexity the best F1 score goes down to 0.78 for the most complex tree ABCDEFGH.
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Tree ID Tree Label CCBC CCBC CCBC
- - Long,ULP Long,BSLP Short,ULP
1 AAAAAAAA 1.00 1.00 0.99
2 AAAABBBB 1.00 1.00 1.00
3 AAAABBCC 0.98 0.98 0.96
4 AABBCCDD 0.97 0.97 0.94
5 AAAABBCD 0.91 0.91 0.86
6 AAAABCDE 0.87 0.87 0.81
7 AABBCCDE 0.91 0.91 0.86
8 AABBCDEF 0.87 0.87 0.80
9 AABCDDEF 0.87 0.87 0.79

10 AABCDEFG 0.84 0.82 0.74
11 ABCDEFGH 0.81 0.81 0.71

Table A.20: Classification view criterion area under the curve (AUC): TAUC values which were ob-
tained from numerical integration are shown. AUC values evaluated for each lineage tree using UCBC
and CCBC breed proportion estimates. Although according to Table 4.2 the long run only yields modest
improvements in breed proportion estimates there is a considerable performance enhancement to cor-
rectly classify breeds. In particular, for complex lineage trees 5 to 11 there is an improvement from 0.05
to 0.1 for the AUC criterion. Furthermore, the finding from Table 4.2 are confirmed that for the long run
performance of the ULP and BSLP updates are almost identical. Full AUC results listing the first four
leading digits are shown in Table A.21 for all combinations of MCMC run length, update proposals and
breed proportion computations.
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A.7.3 Inferring ancestral boundaries: quantile view

Figure A.5: Estimated global breed contributions (CCBC, ULP, Long) percentiles are shown for each
TAP. Each coloured curve corresponds to one of the ancestral levels, i.e. purebred, parent, gp, ggp
and non-ancestry. Furthermore, horizontal yellow lines illustrate the true breed contributions for the
different TAP levels. Vertical grey dashed lines correspond to the inferred breed contribution cut-offs
between consecutive TAP levels. Related to that horizontal grey dashed lines show quantiles associated
to those breed cut-offs.

In Figure A.5 I plot the estimated breed contributions as a function of the quantiles (200-quantiles).
To find the optimal breed contribution (BC) cut-offs between consecutive TAP levels I minimized the
α quantile of the more recent TAP element and the least recent TAP level, i.e. for the purebred and
parental level I am required to find that α which minimizes the difference [BC(Pureα) − BC(P1−α)].

For example, according to Table 4.3 the cut-off between purebred-parent is BC(Pureα=0.02) =

BC(P1−α=0.98) = 0.52, i.e. at a breed contribution value of 0.52 which corresponds to 0.02-th quantile
for the purebred and the 0.98-th quantile for the parent. Finally, there is a vertical grey dashed line at 0.5
to indicate the median breed contribution for each TAP level.

A.8 ChromoPainter Results: classification view
In Figures A.6, A.7 it can A.3 that the AUC score for tree AAAAAAAA assumes a high value of 0.81
suggesting that the ChromoPainter NNLS variant works reliably at recognizing synthetic purebreed
dogs. However, even for tree AAAABBBB the AUC score drops sharply by 0.32 to a low value 0.51.
For more complex lineage trees the performance drops to even lower AUC scores of 0.37 to 0.43.
Furthermore, recall that according to Table A.20 for the four simplest lineage trees (i.e. AAAAAAAA,
AAAABBBB, AAAABBCC, AABBCCDD) DBAncestry achieves a ROC score of above 0.94 and even
for the most complex tree ABCDEFGH AUC score takes a value of 0.71. Finally, the AUC score for
pure breed tree AAAAAAAA of 0.81 using ChromoPainter NNLS is still achieved for DBAncestry at
a high lineage tree complexity, i.e. lineages AABBCDEF (tree 6 with 1 parent, 4 ggps), AABBCDEF
(tree 8 with 2 gp, 4 ggps) and AABCDDEF (tree 9 with 2 gp, 4 ggps) have AUC scores of 0.81, 0.8 and
0.79, respectively, which implies that DBAncestry works much better at inferring less recent ancestry
contributions.
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Figure A.6: ChromoPainter NNLS classification performance: This figure shows the AUC score and
F1 criterion for all 11 lineage trees. Prediction quality for pure breed tree AAAAAAAA is reasonably
good at 0.83 (AUC) and 0.74 (F1). Then, for more complex lineage trees classification performance
drops sharply to [0.37,0,51] (AUC) and [0.44,0.55] (F1) which suggests ChromoPainter does not deal
well with lineages involving multiple breeds.
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(a) F1-Score

(b) PPV/SENS-Score

Figure A.7: ChromoPainter NNLS classification performance: For all 11 lineage trees these two plots
show PPV vs. sensitivity and F1 score as a function of breed proportion, respectively. These results
are based on CCBC-based breed proportion estimates using ChromoPainter with the NNLS variant.
According to the AUC-plot it can be seen that the AUC score is high for tree AAAAAAAA (tree 1) with
a value of 0.81, i.e. the algorithm performs reasonably well for pure breed synthetic test dogs. For more
complex trees there sharp decline in performance to an AUC: while tree AAAABBBB (tree 2) has an
AUC value of 0.51 all other lineage trees have an AUC score between 0.37 and 0.43. The same behaviour
can be observed for the F1 score plots: in particular this figure shows that tree AAAAAAAA has a much
higher F1 score value of 0.75 compared to the next best value of 0.45 for AAAABBBB (tree 2).
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PAŞANIUC, B., SANKARARAMAN, S., KIMMEL, G. and HALPERIN, E. (2009b). Inference of locus-specific ancestry in closely
related populations. Bioinformatics, 25 i213–i221. WinPop.

PATIL, N., BERNO, A. J., HINDS, D. A., BARRETT, W. A., DOSHI, J. M., HACKER, C. R., KAUTZER, C. R., LEE, D. H.,
MARJORIBANKS, C., MCDONOUGH, D. P. ET AL. (2001). Blocks of limited haplotype diversity revealed by high-resolution
scanning of human chromosome 21. Science, 294 1719–1723.

PATTERSON, D., HASKINS, M., JEZYK, P., GIGER, U., MEYERS-WALLEN, V., AGUIRRE, G., FYFE, J., WOLFE, J. ET AL.
(1988). Research on genetic diseases: reciprocal benefits to animals and man. Journal of the American Veterinary Medical
Association, 193 1131.

PATTERSON, D. F. (2000). Companion animal medicine in the age of medical genetics. Journal of Veterinary Internal Medicine,
14 1–9.

PATTERSON, N., HATTANGADI, N., LANE, B., LOHMUELLER, K. E., HAFLER, D. A., OKSENBERG, J. R., HAUSER, S. L.,
SMITH, M. W., OBRIEN, S. J., ALTSHULER, D. ET AL. (2004). Methods for high-density admixture mapping of disease
genes. American journal of human genetics, 74 979. MALDsoft.

PATTERSON, N., PRICE, A. and REICH, D. (2006). Population structure and eigenanalysis. PLoS genetics, 2 e190.

POSTMA, G., KROOSHOF, P. and BUYDENS, L. (2011). Opening the kernel of kernel partial least squares and support vector
machines. Analytica chimica acta, 705 123–134.

PRICE, A. L., PATTERSON, N. J., PLENGE, R. M., WEINBLATT, M. E., SHADICK, N. A. and REICH, D. (2006). Principal
components analysis corrects for stratification in genome-wide association studies. Nature genetics, 38 904–909.

PRICE, A. L., TANDON, A., PATTERSON, N., BARNES, K. C., RAFAELS, N., RUCZINSKI, I., BEATY, T. H., MATHIAS, R.,
REICH, D. and MYERS, S. (2009). Sensitive detection of chromosomal segments of distinct ancestry in admixed populations.
PLoS genetics, 5 e1000519. Hapmix.

PRICE, A. L., WEALE, M. E., PATTERSON, N., MYERS, S. R., NEED, A. C., SHIANNA, K. V., GE, D., ROTTER, J. I.,
TORRES, E., TAYLOR, K. D. ET AL. (2008). Long-range LD can confound genome scans in admixed populations. American
journal of human genetics, 83 132.

PRITCHARD, J., STEPHENS, M. and DONNELLY, P. (2000). Inference of population structure using multilocus genotype data.
Genetics, 155 945. Structure.

PRITCHARD, J. K. (2001). Are rare variants responsible for susceptibility to complex diseases? The American Journal of Human
Genetics, 69 124–137.
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