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ABSTRACT 

 
Though haemodynamic changes underpin the pathophysiology of chronic liver disease, 

there are currently no robust non-invasive methods available for their assessment. 

I propose ‘caval subtraction’ phase contrast MRI (PCMRI) a novel method to 

measure total liver blood flow (TLBF) and hepatic arterial (HA) flow using PCMRI 

measurements of caval and portal venous (PV) flow.  I validate this method at 9.4T and 

3.0T to demonstrate: agreement between preclinical PCMRI and invasive transit-time 

ultrasound (TTUS) and fluorescent microsphere measurements of flow parameters; good 

consistency between clinical caval subtraction PCMRI and independent direct PCMRI 

measurements; encouraging correlations between PCMRI and invasive ICG clearance in 

patients; and good seven-day reproducibility of PCMRI derived haemodynamic 

parameters in normal volunteers. 

Using dynamic contrast enhanced (DCE) MRI on a 3.0T system, I demonstrate 

improved seven-day reproducibility using dual input single compartment 

pharmacokinetic modelling with a novel method for obtaining physiological vascular input 

function delays, correction of arterial input functions using PCMRI aortic flow and use of 

PCMRI estimations of TLBF to correct DCE MRI quantification.  I also implement arterial 

spin labelling (ASL) at 9.4T and demonstrate a tendency for ASL to underestimate PCMRI 

hepatic parenchymal perfusion. 

Using bile-duct ligated (BDL) rats to study cirrhosis, I demonstrate that these have 

reduced TLBF and HA fraction at baseline, impaired HA regulation and buffer response, 

cirrhotic cardiomyopathy, and a failure to match hepatic circulatory demands with 

increased liver:body mass ratio.  Acute-on-chronic liver failure (simulated using 

endotoxaemia) demonstrates reductions in TLBF, HA flow, absence of normal sepsis-

induced hepatic hyperaemia and blunted cardiac systolic response.  Studies in cirrhotic 

patients demonstrate increased TLBF and HA flow in higher risk portal hypertensive 

patients; that HA flow, HA fraction and cardiac output are important correlative 

parameters with hepatic venous pressure gradient and that caval subtraction PCMRI has 

potential in evaluating treatments for portal hypertension. 
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PREFACE/STRUCTURAL OVERVIEW 

 
This thesis demonstrates the development, validation and translation of MRI techniques 

for haemodynamic assessment of chronic liver disease.  The concept of ‘haemodynamics’ is 

broad, including the assessment of flow, pressure and resistance.  Because of peculiarities 

of the liver organ, comprehensive measurement of any of these parameters cannot be 

undertaken directly.  The notion of ‘modelling’ therefore refers to methods that utilise 

direct measurements to derive meaningful preclinical and clinical hepatic haemodynamic 

parameters.  This thesis addresses the evaluation of flow and perfusion, framing these 

measurements in the context of pressure and resistance during clinical translation, 

presented at the end of the thesis. 

 The arguments that form this thesis have been structured around eight chapters, 

but are essentially separated into two main sections:  Section I, covering Chapters 2 to 6, 

includes all the preclinical and clinical developmental work.  Section II, covering Chapters 

7 and 8, applies previously developed MR methods to study haemodynamic phenomena in 

chronic liver disease. 

 

In Chapter 1, we outline the clinical challenge in the context of the known vascular 

pathophysiology of chronic liver disease, review the strengths and weakness of existing 

imaging methods and use these to frame the overall hypothesis of the thesis.  In the second 

chapter, we present early preclinical work, demonstrating the development, validation 

and application of DCE MRI.  The challenges identified from this work form the basis for 

Chapter 3, in which several approaches are used to troubleshoot and address these issues. 

 Faced with difficulties surrounding the preclinical use of DCE MRI in Chapter 3, we 

develop an alternative strategy in Chapter 4, using preclinical PCMRI.  In this chapter, we 

demonstrate sequence and protocol development, alongside preliminary repeatability and 

invasive validation.  We introduce preclinical models of chronic liver disease and address 

the need for cardiac gating. 

 In Chapter 5, we present a novel method for estimating total liver blood flow and 

hepatic arterial flow.  We then apply this method preclinically in healthy and diseased 

animals, demonstrating feasibility and invasive validation before studying differences in 

the haemodynamic response after pharmacological stress.  We then translate the method 

using normal volunteers and assess feasibility, consistency and reproducibility of 

measurements, before using PCMRI to evaluate post-prandial changes in hepatic 

haemodynamics. 
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 Building on translational work, we develop DCE MRI on a clinical MRI scanner in 

Chapter 6 and study the effects of progressive post-processing refinements on 

quantification using normal volunteers.  This chapter culminates in the use of PCMRI 

measurements derived from our novel method to improve accuracy and correct DCE MRI 

perfusion estimates. 

 In Chapter 7, we introduce preclinical ASL for the measurement of tissue 

perfusion.  We investigate haemodynamic differences in chronic liver disease and study 

haemodynamic changes in sepsis.  Full clinical translation is presented in Chapter 8.  

Using PCMRI in portal hypertensive patients, we assess consistency and preliminary 

invasive validation before investigating differences in MR haemodynamic parameters in 

patients with varying severity of portal hypertension.  In the final part of Chapter 8, we 

demonstrate the potential of novel PCMRI methods in the investigation of treatments for 

portal hypertension. 

 

In writing this thesis, I have chosen to report findings entirely in the third person, using 

‘we’, rather than ‘I’.  Although this deliberately recognises the collective effort of the team 

involved in this project, it in no way implies that the research presented in this thesis was 

designed, executed, analysed and reported by anyone else other than myself.  By way of 

clarification, at the start of each Chapter, specific author contributions are listed alongside 

those of any other members of the research team. 

 Given the length of the thesis and in order to facilitate perusal, each Chapter has 

been written in such a way as to enable standalone review.  To this effect, although cross-

chapter references are included, methods, figure and tables are occasionally repeated, to 

avoid the need to consult Chapter 2 for example, while reading Chapter 7.  Where figures 

and tables are repeated, the legend is used to indicate that this is the case.  In line with the 

concept of ‘reduction’ as part of the 3Rs of animals research, developmental preclinical 

data from the same animal is occasionally used toward the investigation of different 

developmental hypotheses (Chapters 2-4).  Where data has been re-used, note is made in 

the methods that this is the case.  Preclinical experimental reports have been formulated 

to broadly match criteria specified in the NC3Rs Animal Research: Reporting of In Vivo 

Experiments (ARRIVE) guidelines [1]. 

A considerable amount of developmental and validation work throughout this 

thesis is reliant on analysis of agreement, whether in the context of repeatability, 

reproducibility or validation.  This has always been undertaken using Bland-Altman 

analysis accompanied with the correlative analysis.  The latter has been included to 

visualise the relationship between measurements under investigation, with correlations 

coefficients used to demonstrate the strength of relationship rather than agreement 
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between methods.  All numerical data are quoted to an accuracy of four significant figures, 

as appropriate and where cohort averages are quoted, these are given ± the sample 

standard error.  Lastly, most chapters are subdivided into sections, each with their own 

aims and objectives, results, discussion and conclusions.  Criticisms and potential future 

work are also explored towards the end of each section.  For added clarity, a final 

‘Summary of findings’ is given at the end of the thesis.  

 

In conclusion, this thesis is the culmination of a fully translational project, 

presenting developmental challenges, the strategies used to successfully overcome these 

difficulties, implementation, validation, repeatability and reproducibility studies in the 

preclinical and clinical setting and full translation into patients with early investigation of 

the potential clinical value of the methods proposed. 
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CHAPTER 1 
 

VASCULAR ASSESSMENT OF LIVER DISEASE 

– TOWARDS A NOVEL PARADIGM 
IN LIVER IMAGING 

 

 

“…there, inside, 
you filter 

and apportion, 
you separate 

and divide, 
you multiply 

and lubricate, 
you raise 

and gather 
the threads and the grams 

of life, the final 
distillate: 

the intimate essences.” 
 

- Ode to the liver [2]. 
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1.1 INTRODUCTION 

 
Chronic liver disease encompasses a range of pathological processes, with clinical 

manifestations including portal hypertension that occur in association with profound 

changes in hepatic vascular parameters.  The pathophysiology of chronic liver disease is 

complex, and further complicated by the dual portal venous and hepatic arterial blood 

supply received by the liver.  The clinical course and progression of chronic liver disease is 

heterogeneous and can be unpredictable.  Routine clinical assessment of liver disease is 

based on the assimilation of the results of serological, non-invasive and invasive tests [3, 

4]. 

It is well recognised amongst hepatologists that histological assessment of invasive 

liver biopsy specimens is of limited prognostic value [5-7], however to date, it is non-

invasive imaging based assessment of liver fibrosis that has attracted the most attention 

from the academic imaging community [8-12].  The most robust and well-documented 

index of chronic liver disease prognosis is however, the hepatic venous pressure gradient 

(HVPG).  The relationship between this invasive surrogate of portal pressure and clinical 

outcomes is an urgent reminder of the importance of the vascular pathophysiology of liver 

disease [13-16].  It would therefore seem that non-invasive imaging based assessment of 

hepatic vascular parameters would be a well-grounded approach to develop meaningful 

biomarkers for chronic liver disease.  In this chapter, we aim to (a) provide a brief 

overview of vascular sequelae of chronic liver disease amenable to imaging and (b) 

describe existing imaging methods, including their applications and challenges, in the 

assessment of hepatic vascular parameters.  Against this back drop, we will in the final 

part of the chapter define the overall hypothesis for this thesis. 
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1.2 LIVER IMAGING – UNMET NEEDS 

 
Liver disease is the fifth most common cause of death in the UK [17] and there are an 

estimated 8000 new diagnoses of cirrhosis in the UK each year [18].  The American 

Association for the Study of Liver Disease/European Association for the Study of the Liver 

consensus stratifies chronic liver disease into two phases: compensated disease, followed 

by decompensated cirrhosis.  The presence of ascites, variceal haemorrhage, 

encephalopathy and/or jaundice characterise the latter phase, with both ascites and 

variceal haemorrhage as recognised direct sequelae of vascular derangements and portal 

hypertension [19].  Crucially, the median survival of compensated cirrhotics is over 12 

years, however for the 5-7% of patients that become decompensated each year, median 

survival shrinks to a mere 2 years [20, 21].  The difference in clinical outcome and 

mortality of these two phases is impressive, and serves to underline the importance of 

vascular phenomena and the measurement of hepatic vascular parameters in defining 

prognostic outcomes. 

 Estimation of portal pressure with the HVPG has become the mainstay of vascular 

assessment of liver disease and is traditionally within the remit of interventional 

radiologists around the UK.  Although we review the methodology and challenges facing 

this method later, it is the use of HVPG to inform prognosis and management of chronic 

liver disease that is of particular interest.  So-called ‘clinically significant portal 

hypertension’ is defined as an HVPG of 10 mmHg or more [19].  In compensated patients, 

the HVPG has been shown to be the strongest predictor for the development of varices and 

subsequent decompensation [22].  The HVPG is also used to monitor efficacy of medical 

treatments for portal hypertension and is used at some centres as a definitive indication 

for a transjugular intrahepatic portosystemic shunt (TIPSS) procedure [23, 24].  Perhaps 

most notably, in patients with a known diagnosis of cirrhosis, a HVPG rise of 1 mmHg 

leads to a 3% increase in mortality risk [25]. 

1.2.1 MULTIPLE INPUTS, MULTIPLE COMPARTMENTS - THE CHALLENGE OF VASCULAR 

IMAGING IN THE LIVER 

The healthy liver receives 75-80% of its total blood supply from the portal vein, with the 

remainder arriving via the hepatic artery.  The hepatic artery is a vessel of resistance:  it is 

a smaller vessel delivering a smaller volume of blood, but at higher pressure, while the 

portal vein is a lower pressure, higher volume vessel of capacitance.  The liver 

parenchyma is organised into functional units or ‘acini’ (figure 1.1), where afferent portal 

venous and hepatic arterial blood mix at the capillary level, within the hepatic sinusoid.  

The sinusoid is a tubular space, lined with fenestrated endothelium draining distally into 
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an efferent hepatic venule.  The sinusoids are flanked almost entirely by hepatocytes, but 

these are physically separated from the endothelial cells by the ‘space of Disse’, a separate 

anatomical compartment into which plasma and low molecular weight compounds 

(including common extra-cellular contrast agents) can circulate freely.  On the opposite 

surface of the hepatocytes but parallel to the sinusoids, lie bile canaliculi.  The canaliculi 

drain bile and products of hepatocyte bile transporters (including hepatocyte-specific 

contrast agents) proximally into biliary ductules (figure 1.1).  The healthy liver preserves 

low pressure within the sinusoids, but is tasked with the challenge of being interposed 

between a mixed high and low pressure input and a low pressure venous output [26, 27]. 

 

 
Figure 1.1: Functional anatomy of the liver 
Schematic illustration of the functional organisation of the liver acinus (left).  Magnified diagram 
illustrating the arrangement of sinusoid and space of Disse is shown in the right lower corner.   
(obtained from reference [28]) 

1.2.2 PRESSURE, FLOW AND RESISTANCE – THE DISEASED LIVER 

Chronic liver injury triggers progressive substitution of healthy parenchyma with scar 

tissue and while fibrosis is a recognised pathological end point, it is recognised that 

vascular stimuli including angiogenic changes underpin this process [29].  Collagen 

deposition in the space of Disse and distortion of the sinusoidal architecture as a result of 

contractile factors, including changes in vascular smooth muscle cells, contraction of 

activated hepatic stellate cells and sinusoidal endothelial dysfunction act in conjunction to 

increase intrahepatic parenchymal resistance [30]. 
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 As a result of these changes, portal venous blood flow is reduced and the high 

resistance imposed by the diseased liver is bypassed by shunting of splanchnic blood via 

the porto-systemic anastomoses, known as ‘extra-hepatic shunting’ [26].  Reductions of 

portal venous flow of as much as 60% can be compensated for by rises in hepatic arterial 

blood flow in the healthy liver – the so-called ‘hepatic arterial buffer response’ (HABR), but 

this response is impaired in liver disease, so that reductions in portal venous flow are met 

with an inadequate response from the hepatic artery and an overall reduction in total liver 

blood flow [27, 31]. 

 With the evolution of fibrosis into cirrhosis, there is progressive deposition of 

collagen, leading to reductions in the volume of the extra-cellular, extra-vascular 

compartment.  Microvascular thrombi are commonly seen and the mean transit time 

(average time for a compound to traverse the parenchyma) for low molecular weight 

compounds is increased.  Neovascularisation of perisinusoidal fibrotic tissue and 

progressive occlusion of the space of Disse combine to reduce effective hepatocyte 

perfusion and result in so-called ‘intra-hepatic shunting’ [32, 33]. 

 Although measurements of these vascular changes are of clear value, the difficult 

and invasive nature of the methods employed to study them has limited our 

understanding of their role in the pathophysiology of liver disease and inhibited their 

development as biomarkers for liver disease. 

 1.2.3 “NOT-SO-GOLDEN” GOLD STANDARDS 

So-called ‘gold standards’ are essential to the development of well validated imaging-

based quantitative methods, however these are rarely used in the clinical setting.  The 

main methods of assessment of vascular parameters of liver disease are the HVPG and 

indocyanine green (ICG) clearance. 

Described originally over sixty years ago, the HVPG is measured routinely by 

passing a pressure transducer under fluoroscopic guidance into a hepatic vein until it 

cannot be advanced further.  Once the transducer is ‘wedged’ in the liver parenchyma, a 

balloon is inflated at the catheter tip so that a continuous column of venous blood is 

formed between the transducer tip and the sinusoid.  The pressure readings from the 

transducer can then be used to measure the HVPG (figure 1.2) [34].  There is substantial 

evidence to suggest that the HVPG correlates well with portal pressure in cirrhosis of any 

aetiology [15, 35, 36], however appropriate and well calibrated equipment is needed in 

addition to technical expertise to obtain the measurement [15, 34].  Differences in HVPG 

values have been demonstrated when the catheter is wedged in different hepatic veins and 

intra-individual variability of HVPG measurement in specialist centres has been estimated 

to be as much as 8% [37, 38]. 
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Figure 1.2: Measurement of the hepatic venous pressure gradient 
(a) A pressure transducer is advanced via the jugular vein, into the hepatic vein.  (b)  The pressure 
recorded from the transducer (WHVP, wedge hepatic venous pressure) will equate to sinusoidal 
pressure (recognised to be slightly lower than, but directly related to portal venous pressure).  The 
balloon is then deflated, the transducer slightly withdrawn and a reading is obtained of ‘free’ 
hepatic venous pressure (FHVP).  Although both of these measurements are subject to variations in 
intra-abdominal pressure, the difference of the two – the HVPG – eliminates this source of error. 
(Adapted from reference [23]) 
 
ICG dye is selectively taken up by hepatocytes and is cleared via bile transporters 

exclusively into bile.  Formal ICG clearance studies utilise the Fick principle, and require 

peripheral access for an ICG infusion, peripheral arterial access for peripheral ‘blood pool’ 

sampling and transjugular hepatic venous catheterisation for hepatic venous sampling.  

The infusion is run for a fixed time period in which the patient is likely to reach a steady-

state concentration in the blood, after which hepatic venous and peripheral arterial 

samples are obtained.  By comparing the concentrations of ICG in these two samples, ICG 

clearance can be measured, which when combined with blood haematocrit can be used to 

estimate effective liver blood flow [39, 40].  While well within the remit of research 

applications, the requisite of hepatic venous sampling (normally performed by 

interventional radiologists) has restricted routine clinical use.  The exclusive hepatic 

extraction of ICG combined with its spectrophotometric properties has however been used 

(a) 

(b) 
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to derive simpler, less invasive surrogates of formal ICG clearance and these have found 

favour in routine clinical assessment, particularly in the intensive care setting.  These 

single bolus methods of ICG clearance, such as ICG plasma disappearance rate (ICG-PDR) 

and ICG 15 minute retention rate (ICG-R15)[41] provide measurements linked to liver 

blood flow but in alternative units, dependent on other additional factors and subject to 

error[42]. 

Measurement of hepatic clearance can also be achieved using other substrates 

taken up by the liver, including sorbitol[43], lignocaine[44] and galactose[45].  Of note, 

cholate clearances have been reported to be of particular value in the assessment of liver 

disease.  By measuring clearance of oral and serum cholate, Everson et al have proposed a 

method of estimating portal hepatic filtration rate (comparable to blood flow), porto-

systemic shunting and a composite metric known as ‘disease severity index’[46].  The 

group have demonstrated relationships with fibrosis, complications of portal hypertension 

and clinical outcomes in hepatitis C virus (HCV) patients [47, 48]. 

 A final and important challenge to both gold standards and the non-invasive 

methods developed to emulate these methods is the intrinsic physiological variability of 

haemodynamic parameters.  Blood flow, tissue perfusion, pressure and tissue resistance 

have the physiological potential to vary significantly within an individual in a short time 

frame.  Coupled to this, differences in methods and the units of parameters measured from 

each method make reliable comparisons between measurements cumbersome, 

complicated and error prone. 
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1.3 APPROACHES TO HAEMODYNAMIC IMAGING IN THE LIVER 

1.3.1 SCINTIGRAPHY 

The earliest accounts of perfusion imaging were by scintigraphic methods, described in 

1970s [49].  Tracers such as sulphur colloid, albumin or tin, usually conjugated with 

99mTechnetium were administered, with progressive accumulation of counts monitored 

using a gamma camera positioned over the liver.  Later techniques were able to separate 

hepatic arterial and portal venous contributions by dynamic imaging and assuming 

predominantly portal venous perfusion once peak renal tracer accumulation was noted.  

Rises in activity during arterial and portal venous phases of tracer accumulation could 

then be used to infer the hepatic arterial perfusion index (HPI - a measure of relative 

hepatic arterial perfusion), which attracted considerable interest for the characterisation 

of arterialised liver lesions [50-52]. 

 With the advent of single photon emission computerised tomography (SPECT/CT) 

the development of more complex quantification methods paved the way for tracers with 

the potential for both functional and volumetric assessment.  Although 99mTc-Iminodiacetic 

acid (IDA) compounds have been in use since the 1970s for evaluation of the biliary 

system, analogues such as 99mTc-mebrofenin have attracted renewed interest in the 

development of functional parameters based on quantification of hepatic uptake [53-55].  

These tracers, much like ICG and their gadolinium based hepatocyte-specific counterparts 

for MRI imaging (discussed later), are endocytosed by hepatocyte bile transporters [56, 

57].  Importantly, quantification of uptake of IDA analogues has been shown to be highly 

correlated with ICG clearance [58].  Commercially available in Japan, 99mTc-Galactosyl 

Serum Albumin (GSA), binds to the asialoglycoprotein receptors distributed in high 

concentrations on functional hepatocytes [59, 60].  Accumulation of the tracer is 

proportional to blood flow and correlations with ICG clearance [61-63] and post-

hepatectomy clinical outcomes have been demonstrated [64-66].  The tracer has also been 

shown to be of value in assessing functional liver volumes [67]. 

Experimental hepatic scintigraphic tracers have also produced several interesting 

studies that underline the value of cell-specific agents in quantitative imaging.  Of note 

Iwasa et al. demonstrated that 99mTc-(Sn)-N-pyridoxyl-5-methyltryptophan – a 

hepatocyte-specific tracer – could be used to estimate intrahepatic and extrahepatic 

shunted blood flow and that these parameters could demonstrate changes in cirrhotic 

patients which were more significant with more advanced Child-Pugh class [68, 69].  

Similarly, extrahepatic shunting was evaluated using intrasplenic injection of 99mTc-
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phytatein to demonstrate increased levels of extrahepatic shunting in patients with more 

advanced Child-Pugh class [70]. 

More recent development of positron emission tomography (PET) methods, have 

demonstrated the potential for use of 2-18-fluorodeoxy-galactose as a measure hepatic 

metabolic function with PET/CT [71, 72], and in demonstrating changes in function post-

PV ligation in rats using PET/MR [73].  

Although scintigraphic quantification is amenable to a more simplified analysis, 

the biggest disadvantage of radionuclide imaging is the lack of anatomical resolution.  

Combined methods such as SPECT/CT do address this challenge, but bring the added 

hazard of significantly higher doses of ionising radiation.  Although quantitative 

scintigraphy has a defined place in current clinical practice, the appetite for higher quality 

anatomical over functional imaging is reflected in imaging practices at liver centres in the 

UK and elsewhere. 

1.3.2 ULTRASOUND 

Doppler ultrasound (US) studies can be used to study the haemodynamic status of the 

liver: colour Doppler US can be used to demonstrate flow and flow directionality, while 

spectral Doppler waveforms can be used to investigate the pattern and flow velocity 

within a vessel [74].  Rough estimations of bulk vessel flow can be calculated by 

multiplying the mean flow velocity within a vessel and its cross-sectional area [75].  

Numerous studies in patients with chronic liver disease are present in the literature, 

although findings are variable and data quality heterogeneous. 

 Colour Doppler US can be used to reliably study flow directionality and the 

identification of hepatofugal portal venous flow is a recognised discrete biomarker for 

portal hypertension and chronic liver disease.  Flow quantification with US is however 

much less conclusive.  Composite measurements based on velocities recorded from 

Doppler spectral traces include the resistive index (RI), pulsatility index (PI), congestion 

index (CI) and damping index (DI), to name but a few of  those reported in the literature 

(figure 1.3, table 1.1) [76].  These parameters have been studied in the hepatic artery, 

portal vein and hepatic veins with varying success [77]. 
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Figure 1.3: 
Normal spectral 
traces for liver 
vessels 
(a) Hepatic artery – 
note the pulsatile 
waveform with sharp 
systolic peak, (b) 
portal vein – 
continuous 
hepatopetal flow, with 
subtle sinusoidal 
variation through the 
cardiac cycle and (c) 
hepatic vein – note the 
physiological triphasic 
wave form, with 
antegrade flow in 
systole (solid arrow) 
and diastole (dashed 
arrow) and retrograde 
flow due to valvular 
closure (triangle, wide 
arrow). (Adapted from 
reference [78]) 
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Table 1.1: Quantitative indices for Doppler US of hepatic vessels 

   Resistive Index (RI) = 
peak systolic velocity (cm/s) - end diastolic velocity (cm/s)

peak systolic velocity (cm/s)
 

 Pulsatility Index (PI) =
trough velocity (cm/s)

peak velocity (cm/s)
 

  Congestion Index (CI) =
portal venous cross sectional area (𝑐𝑚2)

portal venous velocity (cm/s)
 

Damping Index (DI) = 
peak hepatic venous outflow during ventricular systole (cm/s)

trough hepatic venous outflow during ventricular systole (cm/s)
 

 
The hepatic artery is a normally pulsatile, low resistance vessel such that the normal range 

for the hepatic arterial RI is approximately 0.55-0.81.  When studied in the context of 

chronic liver disease, the picture is ambiguous – cirrhosis itself has the potential to drive 

up the RI, while the presence of distal shunting will have the opposite effect.  Overall 

hepatic arterial RI has consequently been shown to be unhelpful in predicting cirrhosis or 

severity of liver disease [74]. 

The portal venous PI has also been well-investigated with lower PIs corresponding 

to higher pulsatility.  Higher pulsatility is seen in cirrhosis where there is arterioportal 

shunting.  The CI has also been shown to be raised in portal hypertension, but correlation 

with invasive portal pressure measurements are weak [79].  Reduced portal venous 

velocity (with eventual flow reversal), increased vessel size and presence of 

abnormal/recanalised extrahepatic shunts are also sonographic features of portal 

hypertension, but quantitation of these features is less well correlated with severity of 

disease [75, 80-82]. 

The normal hepatic venous spectral trace occurs because of transmitted cardiac 

flow changes.  In cirrhosis, there is flattening of the flow profile as result of non-

compliance from surrounding fibrotic tissue, such that is decreased phasicity of the 

spectral trace and spectral broadening.   These changes in theory could be reflected in the 

DI, however diagnostic performance and correlations between the DI and HVPG though 

present, are however weak [82-86]. 

 Although transcutaneous approaches to using US for quantitative evaluation of 

liver blood flow are attractive because of their simplicity and non-invasive nature, invasive 

approaches have also been reported.  Transit-time US probes placed directly on the 

vessels intra-operatively not only provide more robust quantification, but have enabled 

studies in which  direct physical manipulation of portal flow can be used to study the 

HABR [87-89].  Presence of the HABR in patients without liver cirrhosis has been 

demonstrated and impairment of the HABR in cirrhosis has also been shown [31].  

Similarly, intra-vascular Doppler US probes have been used to study hepatic arterial flow 
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[90].  Studies of the HABR, have demonstrated differences in hepatic arterial flow and flow 

reserve (as assessed by intra-hepatic arterial adenosine infusion) across varying severities 

of liver disease [91, 92].  Although the findings of these studies are promising, the invasive 

nature of these studies has limited their translation into regular clinical practice. 

 

Contrast-enhanced US (CEUS) using microbubble contrast media has shown potential for 

quantitative assessment of liver disease.  Like most contrast-based imaging methods, it 

has been rapidly translated into the clinical setting for qualitative use in characterisation 

of liver lesions.  Microbubble contrast media enhance the Doppler signal by approximately 

20dB, with quantitative imaging based on deriving Doppler signal time-intensity curves 

after administration of the contrast agent intravenously followed by a flush.  The Doppler 

signal over a vessel (typically hepatic vein) is then monitored for several minutes and 

time-series signal data is then recorded.  The Doppler signal correlates well with 

microbubble concentration, and this can then be used to derive quantitative parameters 

[93, 94]. 

 The time taken for peripherally administered contrast agent to be detected in the 

hepatic vein (hepatic venous arrival time or HVAT) has been demonstrated by several 

groups to be reduced in the context of chronic liver disease.  This is thought to be due to 

intrahepatic shunting and arterialisation of hepatic capillary beds [93, 95, 96].  Others 

have measured the time difference between contrast agent arrival time in the hepatic vein 

and hepatic artery/portal vein – so-called ‘intra-hepatic circulating time’ or ‘hepatic 

arterial-venous transit time’ and reported encouraging correlations of these parameters 

with fibrosis scores [97-99].  A small-scale multi-centre trial (n = 99) has also reported 

correlation with fibrosis score and a cut-off value of 13 seconds for the HVAT diagnosis of 

severe fibrosis (specificity of 78.5%, sensitivity of 78.95%; positive predictive value of 

78.33%, negative predictive value of 83.33%)[100].  Of note, a single-centre study has 

reported statistically significant correlations between the HVPG and HVAT (r = 0.7470, p < 

0.001, n = 71) quoting a cut-off value of 14 seconds for the HVAT diagnosis of clinically 

significant portal hypertension (specificity of 86.7%, sensitivity of 92.7%, positive 

predictive value of 90.5%, negative predictive value of 89.7%) [101].  The relationship 

between HVPG and HVAT has however not been confirmed at other centres (r = 0.276; p = 

0.041, n = 44) [102].  While these findings are encouraging, concerns over the 

reproducibility and repeatability of US derived quantitative parameters remain.  Studies 

have reported high inter-equipment variance and poor inter-scan agreement [103, 104].  

Additionally, while availability of the contrast agents and hardware is good, the specific 

software requirements have presented a barrier to widespread clinical use [94]. 
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1.3.3 COMPUTERISED TOMOGRAPHY 

By recording serial measurements of mean attenuation of a region-of-interest (ROI) after 

the administration of contrast agent, Axel was the first to propose in 1980 a novel CT 

method of quantifying perfusion using so-called ‘dynamic contrast enhanced’ (DCE) CT 

[105].  It was not however until the early nineties when this method was first 

demonstrated by Miles et al in the liver [106-108].  Much like in CEUS, post-contrast 

attenuation on CT is linearly related to contrast agent concentration.  Using the ‘direct 

slope method’, perfusion can be estimated from the ratio of the maximum rate of change of 

parenchymal enhancement post-contrast to the peak attenuation from an ROI over the 

aorta [107].  Relative hepatic arterial and portal venous contributions can then be 

separated using peak splenic enhancement as a marker for the start of predominantly 

portal venous perfusion [108].  This method was subsequently refined as the ‘subtraction 

slope method’, which aims to provide a more robust assessment of portal venous 

perfusion by subtracting the splenic (arterial) enhancement from the hepatic parenchymal 

enhancement curve and assessing the ratio of the maximum rate of change of 

enhancement of the ‘corrected’ enhancement curve to the peak attenuation from an ROI 

over the portal vein.  Using this method, Blomley et al estimated hepatic arterial and portal 

venous hepatic parenchymal flow to be 19±11 ml/min/100g and 93±26 ml/min/100g in 

control subjects and demonstrated a statistically significant alteration in these parameters 

to 25±12 ml/min/100g and 43±26 ml/min/100g in cirrhotic patients [109].  Employing 

this same method, Tsushima et al correlated wedge hepatic venous pressure (but not 

HVPG) with splenic perfusion in a small cohort of patients (figure 1.4) and went on to 

demonstrate that splenic perfusion as calculated by this technique was decreased in 

patients with known chronic liver disease [110]. 
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Figure 1.4: DCE CT studies of splenic perfusion 
and wedge hepatic venous pressure (WHVP) 
Scatterplot demonstrating correlation between WHVP and 
DCE CT splenic perfusion (r = 0.724, p < 0.0024;  = 
chronic liver disease, + = normal liver). (Obtained from 
reference [110]). 

 
Although original validation of the slope technique was based upon assessment of the 

hepatic arterial fraction using colloid scintigraphy in seven patients, a 2012 study aiming 

to validate these CT perfusion methods in pigs using TTUS demonstrated disappointing 

estimation of absolute and relative hepatic arterial and portal perfusion values.  More 

worryingly, the authors also described alterations in bulk vessel flow as measured by 

TTUS as a result of contrast agent administration [108, 111].  Encouragingly, a more 

recent study looking at non-modelled parameters such as ‘time-to-peak’ parenchymal 

enhancement demonstrated good correlations with ICG-R15 (r = 0.789, p < 0.0001) and 

ICG-PDR (r = -0.790, p < 0.0001) in patients with hepatobiliary malignancy [112]. 

 An alternative model initially developed for PET imaging has also been developed 

for DCE CT [113].  The ‘dual-input single compartment’ (Chapter 2, figure 1.3), models the 

hepatic parenchymal enhancement with enhancement curves from ROIs placed over the 

aorta and portal vein.  Initial validation with radio-labelled microspheres demonstrated 

encouraging correlations but weak agreement between methods (Figure 1.5) [114].  Van 

Beers et al correlated DCE CT perfusion parameters with disease severity in cirrhotic 

patients and demonstrated a fall in overall perfusion in cirrhotic patients, with a 

statistically significant rise in arterial fraction and mean transit time (41±27% and 51±79 

seconds in cirrhotic patients compared with 17±16% and 16±5 seconds in healthy 

controls) [115]. 
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Figure 1.5: Validation of (a) portal venous and (b) hepatic arterial 
perfusion estimated using DCE CT and the dual input single compartment 
model with radio-labelled microspheres 
Encouraging correlations for (a) portal venous perfusion (r = 0.85) and (b) hepatic arterial 
perfusion (r = 0.81) were demonstrated between the two methods. (Obtained from reference 
[114]). 

 
Building on this work, Materne et al went on to use DCE CT with both low and high 

molecular weight contrast agents to study differences in modelled perfusion parameters 

in the normal rabbits and rabbits with histologically verified fibrosis.  While standard 

commercial (lower molecular weight) extracellular contrast agents would easily distribute 

through the extra-vascular interstitial space, the deposition of fibrotic tissue in the space 

of Disse (figure 1.1(b)), as seen in liver fibrosis, was thought to restrict the distribution of 

the higher molecular weight contrast agent, thereby accounting for observed reductions in 

DCE CT distribution volume (32.0±6.7 to 22.2±4.8%) and mean transit time (12.0±1.2 to 

10.0±1.8 seconds), both of which were not significantly different in control animals [116].  

A more recent study, evaluating DCE CT in rats with thioacetamide-induced acute liver 

injury, demonstrated increases in HA perfusion (26.9±4.3 to 44.3 ml/min/100g), 

reductions in PV perfusion (251.9±6.4 to 107.6±12.4 ml/min/100g) and increases in mean 

transit time (0.085±0.005 to 0.228±0.035 minutes) and distribution volume (23.6±0.5 to 

31.2±2.0%) between control and acutely-injured subjects [117]. 

While the absolute quantification of flow using DCE CT with either modelling 

method remains contentious, the real strength of cross-sectional imaging is in the 

development of regional high resolution parametric maps to study regional differences in 

perfusion [118].  Consistent alterations in regional contrast enhancement have been 

reported with DCE CT both in normal patients and those with established portal 

hypertension [119, 120].  In the context of lesion characterisation, the ability of ‘slope 

methods’ to separate arterial and portal venous contributions has been used to aid in the 

detection of arterialised lesions [121, 122].  The ability of DCE CT to detect gross 

alterations in perfusion parameters in livers with occult micro-metastases has also 

(a) (b) 
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heralded the potential for flow quantification as means to detect evolving metastatic 

disease before macroscopic lesions are even seen on imaging [123, 124]. 

While scanner availability is high and overall costs are low, concerns over the 

ionising radiation dose from DCE CT, particularly in protocols requiring repeated 

acquisitions of a single axial slice remain the biggest barrier to widespread use in the 

clinic.  Protocols have been suggested where once a standard simple structural CT is 

performed, further characterisation of identified lesions could be undertaken using single-

slice DCE CT at the site of concern [118].  It is however, difficult to envisage such a 

protocol in the clinical setting especially if there are multiple lesions that require slices at 

different levels.  Additionally DCE CT requires the use of iodinated contrast media which 

carry the risk of contrast-induced nephropathy.  In patients with chronic liver disease and 

superadded renal complications, a purely diagnostic study therefore has the potential to 

adversely affect clinical outcomes [125]. 

1.3.4 DYNAMIC CONTRAST ENHANCED MRI 

The principles of DCE MRI are identical to those underpinning DCE CT.  DCE MRI is 

typically undertaken using gadolinium chelated with diethylene triamine pentaacetic acid 

(Gd-DTPA) as a contrast agent.  The paramagnetic properties of gadolinium ensure 

striking shortening of T1 times and chelation to DTPA ensures rapid distribution within 

the extracellular space, with exclusive renal clearance [126].  Unlike DCE CT and CEUS 

however, contrast agent concentration is not linearly related to MRI signal intensity (SI) 

change, but linearly related to the reciprocal of a given concentration’s T1 relaxation time 

[126, 127].  Formal quantitation therefore requires three sets of data:  (i) dynamic T1-

weighted images yielding serial mean ROI signal intensities, (ii) measurement of the 

intrinsic T1 of the tissue within the ROI and (iii) measurement of the contrast agent T1 

relaxivity (so-called ‘𝑟1’ measurement)[128-131].  As with CT, these methods were 

originally developed for applications in the brain and it was not until the late nineties 

when the first attempts at translating these methods into the liver were made [132, 133]. 

 Early single slice studies were performed in pigs by Scharf et al. with 

quantification based on a linear one-compartment open model (figure 1.6).  This model is 

not designed to yield absolute estimates of tissue perfusion but rather ‘Kp’, a 

pharmacokinetic parameter related to perfusion, based upon blood flow and intravascular 

volume.  The model is also used to estimate ‘A’ (amplitude), a term reflecting the degree of 

relative contrast enhancement.  Correlations between Kp and invasive thermal diffusion 

probe measurements of perfusion in pigs were encouraging (r = 0.91, p < 0.01), but were 

much poorer once translated into patients (r = 0.39, p = 0.17)[134, 135].  Unlike later 

models, this model does not require the measurement of vascular input functions, nor is 
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there any attempt to quantify signal intensity change with intrinsic tissue T1 or contrast 

agent T1 relaxivity. 

 

 

 

Figure 1.6: DCE MRI flow 
quantification using the Scharf et 
al. model 
(a) Axial image with overlaying perfusion 
map of parameters ‘A’ and ‘Kp’ in a patient, 
demonstrating predominantly right liver. 
(b) Encouraging correlation between ‘Kp’ 
and thermal diffusion probe perfusion 
measurements in pigs. (Obtained from 
references [135] and [134]). 

 
The first more comprehensive attempts at contrast agent pharmacokinetic modelling in 

the liver were in the context of developing high resolution parametric maps with a view to 

lesion characterisation.  Jackson et al demonstrated utility in hepatocellular carcinoma 

characterisation and reproducibility of these parameters in small cohort of patients [136].  

An alternative approach was also developed by White et al from adapting early CT based 

methods [108, 109] to measure ‘hepatic perfusion index’ (a measure of hepatic arterial 

fraction within a region of interest) for lesion characterisation [137-139]. 

The dual input single compartment model was also successfully adapted and 

applied to DCE MRI.  Validation with invasive microsphere measurements in rabbits 

demonstrated strong correlation and ostensibly better agreement than that seen with CT 

(figure 1.7, compared with figure 1.5)[140]. 

  

(a) 

(b) 
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Figure 1.7: Validation of (a) portal venous and (b) hepatic arterial perfusion 
estimated using DCE MRI and the dual input single compartment model with 
radio-labelled microspheres 
Encouraging correlations for (a) portal venous perfusion (r = 0.91) and (b) hepatic arterial 
perfusion (r = 0.79) were demonstrated between the two methods. (Obtained from reference 
[140]). 
 
The same group proceeded to do a larger study in cirrhotic patients (n = 46), 

demonstrating significant differences in bulk and relative portal flow in normal 

(56.39±27.82 ml/min/100g and 82.58±14.88%) and cirrhotic patients (16.23±15.22 

ml/min/100g and 43.81±31.97%).  In the same study DCE MRI parameters were matched 

with HVPG measurements, and encouraging correlations were demonstrated with portal 

fraction (r = -0.769, p < 0.001).  Interestingly, this study also collected Doppler US derived 

flow parameters in the same cohort of patients, which demonstrated much poorer (and 

non-significant) correlations with both HVPG and Child-Pugh class [82].  The dual input 

single compartment model parameters were also correlated with invasive fibrosis scores 

using a three dimensional volumetric (rather than single slice) acquisition, to demonstrate 

that distribution volume, arterial fraction and mean transit time were the best model 

derived parameters to predict Batts-Ludwig fibrosis score 3 and above (area under 

receiver operating characteristic curves of 0.824, 0.791 and 0.775, respectively) [141].  A 

large animal cohort study in cirrhotic rats (n=52) also demonstrated significant but 

modest correlations between duration of treatment with carbon tetrachloride (a liver 

fibrotic agent) and distribution volume, mean transit time and portal fraction (r = -0.483, r 

= -0.664 and r = 0.414, p < 0.01) [142].  Additionally, a recent study in seventeen patients 

with hepatocellular carcinoma undergoing radiotherapy demonstrated significant 

correlations between dual input single compartment PV perfusion and ICG T1/2 (minutes) 

(r = 0.7, p < 0.0001) [143]. 

 There have also been a number of clinical studies since the original work by Annet 

et al. [82], proposing methodological refinements for hepatic DCE MRI.  These include 

correction of arterial input functions (AIFs) [144], evaluation of quantification effects of 

(a) (b) 



~ 33 ~ 
 

changes in temporal resolution [145], evaluation of alternative approaches to conversion 

of signal intensity into contrast agent concentration [146] and the use of alternative 

breath holding strategies [147]. 

As with CT the concept of using contrast agents of higher molecular weight to 

measure alterations in contrast agent distribution volume in fibrotic subjects was also 

tested.  Using a different contrast agent to their previous CT study, Van Beers et al used a 

52 kDa gadolinium based contrast agent in rabbits to demonstrate significant reductions 

in distribution volume (6.2±2.1 vs 9.7±1.6%), but also correlated this with ICG clearance (r 

= 0.857, p = 0.007) and collagen content on biopsy (r = -0.833, p = 0.010) [148].  Based on 

this work an argument can be made for refining the dual input single compartment model 

into a dual input dual compartment model, in which the Space of Disse can be accounted 

for as separate compartment in the model.  This more complex model has had limited 

evaluation in small cohort of mice, with no validation [149].  Further studies have applied 

the model in the context of evaluation of hepatic metastatic lesions, where a second 

compartment would be appropriate in the context of anomalous lesional vascularity [150, 

151].  Although the extension of the model in microcirculatory terms is interesting, the 

dual input dual compartment model estimates more parameters from the same data, 

thereby subjecting the model to a higher risk of error. 
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1.3.5 DYNAMIC HEPATOCYTE-SPECIFIC CONTRAST ENHANCED MRI 

The use of gadolinium based contrast agents chelated with hepatocyte-specific receptor 

ligands has been rapidly translated into clinical practice for lesion characterisation, but 

has also generated novel opportunities for flow quantification.  Much like their 

extracellular counterparts, these agents cause T1 shortening but also produce a 

progressive rise in hepatocyte T1-weighted signal intensity as these agents are taken up 

by basolateral cell membrane transporters and excreted at the apical surface into the 

biliary system.  Dynamic hepatocyte-specific contrast enhanced (DHCE) MRI studies can 

also therefore in theory be used to generate other quantitative parameters that may relate 

to hepatocyte function [152, 153]. 

 

 
Time (minutes) 

Figure 1.8: Baseline normalised signal intensities for ROI enhancement with 
hepatocyte-specific contrast agents in healthy volunteers 
Hepatic ROI (solid) and splenic ROI (dashed) enhancement with gadobenate dimeglumine (red) 
and gadoxetic acid (blue).  Note how after an initial vascular-phase peak, hepatic gadobenate 
dimeglumine enhancement slowly rises, with peak enhancement (not shown on this chart) after 45 
minutes.  Conversely peak enhancement with gadoxetate acid is achieved after 20 minutes.  Overall 
enhancement is much higher with gadoxetic acid. (Obtained from reference [154]). 
 
Two agents have been licensed for clinical use – gadobenate dimeglumine (Multihance, 

Bracco) and gadoxetic acid (Primovist, Bayer).  Following injection, both these agents 

distribute in the extracellular space before entering into hepatocytes.  Five percent of 

gadobenate dimeglumine undergoes hepatobiliary excretion, compared with 50% of 

gadoxetic acid.  The remainder is excreted renally.  Peak hepatobiliary uptake is seen at 

45-120 minutes for gadobenate dimeglumine compared with 20 minutes for gadoxetic 

acid (figure 1.8) [155-157].  Quantitative studies with gadobenate dimeglumine have been 

limited and only undertaken in the preclinical setting.  In an isolated perfused rat liver 

model, alterations in gadobenate dimeglumine uptake have been demonstrated in 

cirrhotic bile-duct ligated rats [158].  Complex pharmacokinetic modelling has been 

developed to quantify differences in hepatocellular uptake in the isolated perfused model, 

with validation using scintigraphic methods.  Unfortunately this is yet to be translated into 

the in vivo or clinical setting[159, 160]. 
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Quantitative studies with gadoxetic acid have been more extensive.  Early studies 

in rabbits before and after induction of cirrhosis using carbon tetrachloride showed 

alterations in relative ‘hepatic extraction fraction’ - a modelled parameter from 

deconvolution analysis.  These changes also demonstrated encouraging correlations with 

rises in ICG-R15 measurements before and after induction of cirrhosis [161].  Building on 

this work Nilsson et al translated this method into the clinical setting (figure 1.9) [162].  In 

studies involving predominantly Child-Pugh class A primary biliary cirrhosis and primary 

sclerosing cholangitis patients, significant differences in ‘hepatic extraction fraction’ and 

‘mean transit time’ (but not ‘input relative blood flow’) were observed [163, 164]. 

 

  
Figure 1.9: Quantitative studies with gadoxetic acid – deconvolution analysis 
Enhancement curves obtained from ROIs placed on the portal vein (the vascular input function) 
and hepatic parenchyma (tissue response function) are shown in (a).  Deconvolution analysis was 
used to generate the curve shown in (b), which was then used to estimate ‘hepatic extraction 
fraction’, ‘input relative blood flow’ and ‘mean transit time’. (Obtained from reference [162]). 
 
In a larger scale study (n = 79) Chen et al also demonstrated that the dual input single 

compartment model could be applied for analysis of the first 60 or 100 seconds post-

gadoxetic acid, to demonstrate significant differences between hepatic arterial and portal 

venous flow between normal and chronic hepatitic patients.  Correlations between these 

parameters and invasive biopsy fibrosis scores were disappointing [165].  A dual input 

dual compartment model was shown by Sourbron et al to be superior to the single 

compartment model for gadoxetic acid enhancement in normal liver tissue, but also in 

focal hepatic parenchymal lesions with abnormal vascular configuration (figure 

1.10)[166].  More recently, Saito et al have utilised enhancement from five phases of 

standard clinical DHCE protocols (baseline, early arterial, arterial, portal venous and 

hepatocellular phases) with a dual-input Patlak model to study differences in ‘uptake rate’ 

and ‘extracellular volume’ across a large cohort of non-cirrhotic and Child-Pugh Class A 

and B patients (n = 119).  Although this study failed to properly quantitate enhancement 

as no T1 measurements were made, significant differences in uptake rate were 

demonstrated between non-cirrhotic and between Child-Pugh A and B patients.  Attempts 

(a) (b) 
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at using this method to quantify arterial fraction did not yield physiologically reasonable 

estimates [167]. 

An alternative much coarser approach based on the ratio of liver and splenic 

enhancement 20 minutes post-gadoxetic acid administration has also been shown to 

correlate well with ICG-PDR in normal and cirrhotic patients [168].  DHCE quantification 

by measuring peak signal intensity in the biliary tree relative to adjacent muscle signal 

intensity has also been attempted, with significant reported correlations with ICG-R15 

measurements [169].  Since these studies, a multitude of authors have correlated relative 

peak hepatobiliary uptake SI (normally to muscle, spleen or baseline SI) with outcomes 

including liver function tests, MELD scores [170, 171], presence of steatosis [172], fibrosis 

scores [173, 174], occurrence of liver failure after major resection [175] and post-

resection hepatocyte damage [176]. 

 A more scientifically sound approach is based on measurement of baseline and 

peak hepatobiliary phase T1, to generate a ‘T1 relaxation time index’ or then just the raw 

peak hepatobiliary phase T1.  This is likely to be more useful, especially in the context of 

defining diagnostic thresholds that are transferable between institutions.  These studies 

have demonstrated changes in T1-based quantification in the presence of disease and 

correlations with MELD scores [177, 178]. 

  

Figure 1.10: Dual input dual compartment modelling for DHCE MRI 
(a) Enhancement curve for ROI placed over normal hepatic parenchyma, with markedly improved 
fitting using a dual input dual compartment model (shown in blue) when compared with a dual 
input single compartment model (shown in blue). (b) T1 weighted coronal image in patient with 
multiple hepatic metastatic lesions, 20 minutes after gadoxetic acid administration.  Note the 
striking uptake of contrast agent in normal parenchyma compared to lesional enhancement. 
(Obtained from reference [166]). 
 
As both hepatocyte-specific contrast agents and ICG enjoy hepatic extraction, it is 

unsurprising that DHCE-MRI model derived parameters and ICG clearance surrogates 

have been encouraging.  Although studies correlating formal ICG clearance with DHCE-

(a) 
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MRI model derived parameters have yet to be performed, the prospect of absolute 

quantification of hepatic clearance using DHCE-MRI models is exciting. 

 

Both DCE and DHCE-MRI face similar challenges.  At the heart of any contrast-based 

quantitative imaging method, the relationship between contrast enhancement and 

contrast agent concentration needs to be defined and approaches to achieve this vary 

between methods and authors.  The absence of a linear relationship between signal 

intensity and contrast agent concentration and the requirement for additional 

measurements is cumbersome.  Additionally, high concentrations of contrast agent can 

lead to signal drop out (via T2* effects), a phenomenon which is exacerbated when 

imaging at higher field strengths [179, 180].  Failure to overcome this combined with poor 

temporal resolution, particularly for sampling of vascular input functions, can lead to 

major errors in measurements. 

Even once these issues have been addressed, common to MRI, scintigraphic, US 

and CT methods, is the need to apply an appropriate model to derive useful and relevant 

haemodynamic parameters.  These parameters must also be robust, reproducible and 

amenable to validation if the method is to gain clinical acceptance. 

Despite these challenges, MRI offers unparalleled anatomical image resolution, 

without compromising patient safety through exposure to ionising radiation or to large 

volumes of contrast media and the adverse effects that these may cause.  DCE and DHCE-

MRI quantification studies to-date have been encouraging and with improved rigour and 

understanding, both approaches have the potential to yield more robust quantification in 

the future. 
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1.3.6 PHASE-CONTRAST MRI 

All spins in a magnetic field gradient are subject to shifts in their phase of rotation, 

however moving spins experience a phase shift that, in a linear gradient is proportional to 

their velocity.  By applying opposing magnetic field gradients, the phase shift observed in 

stationary tissue can be eliminated so that a velocity vector map can be constructed purely 

of the moving spins passing through the area being imaged (figure 1.11)[181].  Applying 

this concept to flowing blood in stationary tissue, an image can therefore be produced 

based upon the velocity vectors of flowing blood.  Summing these vectors over the cross-

sectional area of a vessel can then yield an estimate of bulk vessel flow.  The phase shift is 

measured in degrees and the amount of shift experienced by a spin moving at a given 

velocity is dependent on the flow sensitising gradients.  To ensure that the phase shift 

does not exceed 180˚, the user must calibrate the gradients by specifying the expected 

peak velocity (in cm/s) – the so called ‘velocity encoding’ setting.  This setting specifies the 

velocity capable of producing a phase shift of 180˚.  In two-dimensional phase-contrast 

MRI (PCMRI), the imaging plane must also be as perpendicular as possible to the direction 

of flow in the vessel of interest [182]. 

 

 

 

 
Figure 1.11: PCMRI – (a) schematic diagram of sequence and (b), (c) example 
of phase contrast acquisition images 
(a) Bipolar gradients (lower images) induce phase shift in both stationary and moving spins (upper 
images), but ultimately cancels out the phase shift seen in stationary tissue. (b) Anatomical axial 
‘magnitude’image through cardiac outflow tracts with (c) corresponding phase contrast map.  Note 
the opposing flow directionality (black versus white) in the ascending and descending aorta 
(labelled). (Obtained from reference [182]). 
 
The principles underpinning phase-contrast MRI (PC-MRI) have been recognised since the 

late 1950s, however it was only in the early nineties when the first studies involving 

measurement of portal venous blood flow were undertaken [183].  Early studies 

confirmed the ability of PC-MRI to measure directionality of flow and peak portal venous 

flow velocity, validating these with Doppler ultrasound directionality and velocity 

(a) (b) 

(c) Ascending 

aorta 

descending 

aorta 
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measurements [184-188].  Studies in normal volunteers were able to demonstrate rises in 

portal venous blood flow post-prandially[189] and it was also apparent early on that 

patients with portal hypertension had altered portal venous flow [190].  Since then, there 

have been multiple studies aiming to measure bulk portal venous, hepatic arterial, hepatic 

venous and azygous flow, and study changes that occur in the setting of chronic liver 

disease and/or portal hypertension.  These are summarised in Table 1.2.  
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Table 1.2: Summary of studies aiming to measure bulk vessel flow with PC-MRI in the context of liver disease 

AUTHORS, YEAR CONTROL SUBJECTS MEAN 

VESSEL FLOW ± SD 
TEST COHORT TEST COHORT MEAN VESSEL 

FLOW ± SD 
VALIDATION 

a) PORTAL VEIN     
  Burkart DJ. et al., 

1993 [190]. 
1206±303 ml/min (n = 5) Patients with known chronic 

liver disease and gastro-
oesophageal varices  

505±66 ml/min* (n = 6) Flow phantom PCMRI 
measurements (r = 0.995, p = 
0.0001 
Transcutaneous Doppler 
bulk vessel flow 
(n = 11, r = 0.94, p = 0.0003) 

  Burkart DJ. et al., 
1993 [191]. 

 Known portal hypertension, 
varices and referred for liver 
transplant.  Child-Pugh class A 
and class B (n = 6); class C (n = 
26). 

Child-Pugh class A and B: 
23.8±7.6 ml/min/kg 

Child-Pugh class C:  
10.4±8.4 ml/min/kg 

(measurements normalised 
to body mass) 

None 

  Kashitani N. et al., 
1995 [192]. 

720±198 ml/min (n = 20) Known liver cirrhosis but no 
ascites (n = 15); chronic 
hepatitis (n = 5); idiopathic 
portal hypertension (n = 1) 

870±289 ml/min† (n = 21)  
 

Flow phantom PCMRI 
measurements (r = 0.997) 
Transcutaneous Doppler US 
bulk vessel flow (normal 
volunteers only – no 
statistically significant 
difference)  

  Kuo PC. et al., 1995 
[193]. 

 Known end-stage liver disease 
awaiting transplant (n = 39). 

Child-Pugh class A (n = 13): 
26±4 ml/min/100g 

Child-Pugh class B (n = 10):  
46±6 ml/min/100g 

Child-Pugh class C (n = 16):  
105±14 ml/min/100g 

None 

  

~
 4

0
 ~
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AUTHORS, YEAR CONTROL SUBJECTS MEAN 

VESSEL FLOW ± SD 
TEST COHORT TEST COHORT MEAN VESSEL 

FLOW ± SD 
VALIDATION 

a) PORTAL VEIN (continued)    
  Debatin JF. et al., 

1996 [194]. 
Not recorded (n = 10) Known liver cirrhosis, for 

elective TIPSS placement.  
Child-Pugh class A (n = 4); 
class B (n = 10); class C (n = 6). 

Pre-TIPSS: (n = 20) 
996±618 ml/min† 

Post-TIPSS: 
1946±910 ml/min† 

Flow phantom PCMRI 
measurements (r = 0.997) 

  Sugano S. et al., 1999 
[195]. 

1300±200 ml/min (n = 
12) 

Chronic Hepatitis C (n = 15) 
and chronic alcoholic liver 
disease (n = 2).  Child-Pugh 
class A (n = 10); class B (n = 
5); class C (n = 2).  

1000±100 ml/min† (n = 
17) 
Child-Pugh class A: 

1100±100 ml/min 
Child-Pugh class B:  

900±100 ml/min 
Child-Pugh class C:  

700±100 ml/min 

None 

  Nanashima A. et al., 
2006 [196]. 

 Surgical cohort - 
hepatocellular carcinoma (n = 
41), biliary tumours (n = 8), 
metastatic disease (n = 9). 

Peak velocity, not flow 
recorded. (n = 58) 

Trancutaneous Doppler US 
vessel peak velocity (n = 17, 
r = 0.435, p = 0.071) 

  Jin N. et al., 2009 
[197]. 

937±195 ml/min (n = 8) Normal volunteer breath hold 
versus free breathing gated 
study. 

 None 

  Yzet T. et al., 2010a 
[198]. 

1006±210 ml/min (n = 
20) 

  None 

  Yzet T. et al., 2010b 
[199]. 

986±212 ml/min (n = 9) Reproducibility study with 
measurements on same 
subject one year later 

 Transcutaneous Doppler US 
bulk vessel flow (1374±530 
ml/min, statistically 
significantly different from 
PCMRI) 

  

~
 4

1
 ~
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AUTHORS, YEAR CONTROL SUBJECTS MEAN 

VESSEL FLOW ± SD 
TEST COHORT TEST COHORT MEAN VESSEL 

FLOW ± SD 
VALIDATION 

a) PORTAL VEIN (CONTINUED)    
  Gouya H. et al., 2011 

[200]. 
631±232 ml/min (n = 25) Known liver cirrhosis (n = 59), 

chronic liver disease without 
cirrhosis (n = 12), nodular 
regenerative hyperplasia (n = 
11) 

610±389 ml/min†  
(n = 82) 
Cirrhotics: 

581±405 ml/min 
Chronic liver disease 
without cirrhosis: 

734±370 ml/min 
Nodular regenerative 
hyperplasia: 

629±323 ml/min 

PCMRI measurements in two 
flow phantoms of varying 
size.  Statistically significant 
correlations with actual flow 
demonstrated. 

  Stankovic Z. et al., 
2012 [201, 202]. 

640±190 ml/min (n = 20) Mixed aetiology liver cirrhosis 
patients.  Child-Pugh class A (n 
= 16); class B (n = 3); class C 
(n = 1). 

790±320 ml/min†  
(n = 20) 

Transcutaneous Doppler US 
bulk vessel flow (moderate 
but statistically significant 
correlations). 

  Morisaka H. et al., 
2013 [203]. 

734±207 ml/min (n = 60) Chronic liver disease 
undergoing endoscopic 
evaluation for varices – no 
varices (n = 85), mild varices 
(n = 62), severe varices (n = 
48) 

713±298 ml/min† 

 (n = 195) 
None 

Jajamovich G. et al., 
2014 [204]. 

930±252 ml/min fasting;  
1626±612 ml/min post-
prandially (n = 11) 

Chronic Hepatitis C (n = 19) 960±366 ml/min fasting; 
1392±510 ml/min post-
prandially (n = 19) 

None 

  

~
 4

2
 ~
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AUTHORS, YEAR CONTROL SUBJECTS MEAN 

VESSEL FLOW ± SD 
TEST COHORT TEST COHORT MEAN VESSEL 

FLOW ± SD 
VALIDATION 

b) HEPATIC ARTERY    
  Jin N. et al., 2009 

[197]. 
  (common hepatic 

artery) 

272±44 ml/min (n = 8) Normal volunteer breath hold 
versus free breathing gated 
study. 

  

  Wilson DJ. et al., 2009 
[205]. 

  (proper hepatic 
artery) 

 Mixed conditions - group 1 - 
cirrhosis, colorectal 
metastases, PV occlusion (n = 
8); group 2 - Pancreatic 
disease, biliary disease or 
benign liver conditions (n = 9); 
Uncategorized (n = 5). 

323 ml/min†* (n = 22) 
Group 1: 

435 ml/min* 
Group 2: 

235 ml/min* 

None 

  Yzet T. et al., 2010a 
[198]. 

  (proper hepatic 
artery) 

250±120 ml/min (n = 20) Normal volunteer study.  None 

  Yzet T. et al., 2010b 
[199]. 

  (proper hepatic 
artery) 

285±101 ml/min (n = 9) Reproducibility study with 
measurements on same 
subject one year later 

 Validated with 
transcutaneous Doppler US 
(542±272 ml/min, 
statistically significantly 
different from PC-MRI) 

 
c) HEPATIC VEIN 

    

  Nanashima A. et al., 
2006 [196]. 

 Surgical cohort - 
hepatocellular carcinoma (n = 
41), biliary tumours (n = 8), 
metastatic disease (n = 9). 

Peak velocity, not flow 
recorded (n = 58). 

Trancutaneous Doppler US 
vessel peak velocity (n = 17, 
r = 0.433, p = 0.093) 

  

~
 4

3
 ~
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AUTHORS, YEAR CONTROL SUBJECTS MEAN 

VESSEL FLOW ± SD 
TEST COHORT TEST COHORT MEAN VESSEL 

FLOW ± SD 
VALIDATION 

d) AZYGOUS VEIN     
  Lomas DJ. et al., 1995 

[206]. 
171±65 ml/min (n = 7) Biopsy proven chronic liver 

disease, portal hypertension 
and varices. 

628±220 ml/min (n = 5) Flow phantom PCMRI 
measurements (r > 0.99) 

  Debatin JF. et al., 
1996 [194]. 

86±21 ml/min (n = 10) Known liver cirrhosis, for 
elective TIPSS placement.  
Child-Pugh class A (n = 4); 
class B (n = 10); class C (n = 6). 

Pre-TIPSS: (n = 20) 
424±238 ml/min† 

Post-TIPSS: 
238±187 ml/min† 

Flow phantom PCMRI 
measurements (r = 0.997) 

  Sugano S. et al., 1999 
[195]. 

139±43 ml/min (n = 11) Known liver cirrhosis with 
portal hypertension.  Pre and 
post-variceal ligation study (n 
= 10). 

519±249 ml/min†  
(n = 15) 
Pre-variceal ligation: 

530±301 ml/min 
Post-variceal ligation: 

368±197 ml/min 

None 

  Ng WH. et al., 2004 
[207].  

Not recorded (n = 15). Known liver cirrhosis (n = 32) 
with endoscopically proven 
varices. Child-Pugh class A (n 
= 5); class B (n = 15; class C (n 
= 12). 

Breath hold: (n = 32) 
392±90 ml/min  

Non breath-hold: 
500±65 ml/min 

None 

  Gouya H. et al., 2011 
[200]. 

40±33 ml/min (n = 25) Known liver cirrhosis (n = 59), 
chronic liver disease without 
cirrhosis (n = 12), nodular 
regenerative hyperplasia (n = 
11) 

179±182 ml/min† 
(n = 82) 
Cirrhotics: 

220±197 ml/min 
Chronic liver disease 
without cirrhosis: 

63±53 ml/min 
Nodular regenerative 
hyperplasia: 

101±83 ml/min 

PCMRI measurements in two 
flow phantoms of varying 
size.  Statistically significant 
correlations with actual flow 
demonstrated. 

* Data standard deviations not published; † Pooled average across entire cohort. 

~
 4

4
 ~
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Although the technical quality of PCMRI studies has improved significantly over time, a 

clear message has yet to emerge for the value of PCMRI derived flow measurements in 

clinical hepatological practice.  Early studies have shown that elevated portal venous flow 

is associated with previous variceal haemorrhage, however studies correlating portal 

venous flow with gastro-oesophageal variceal grade have been disappointing [191, 200, 

203].  Extra-hepatic shunting in portal hypertension commonly results in the formation of 

gastro-oesophageal varices and consequently increased azygous venous flow.  The latter 

has emerged as a more useful biomarker in several studies (table 1.2), with correlations 

demonstrated with gastro-oesophageal variceal grade, presence of cirrhosis, Child-Pugh 

class[193, 200] and reduction in azygous venous flow post-TIPSS [194]. 

 

 There are several challenges that need to be overcome for accurate flow 

quantification with 2D PCMRI, which have to date restricted implementation into routine 

clinical practice.  Misalignment of the flow encoding axis with the direction of flow in the 

vessel produces errors in bulk flow estimation which are compounded in smaller vessels 

or in the presence of turbulent flow [208].  Different researchers have applied varying 

protocols for determining imaging slice-to-vessel orthogonality and even where these are 

applied in the consistent fashion, turbulent flow even in large vessels such as the portal 

vein, often seen in chronic liver disease as a result of thrombus or shunting, will only make 

misalignment errors worse.  It is an even bigger challenge for smaller vessels with more 

variable anatomy, such as the hepatic artery and azygous vein [191, 198, 200].  These 

studies require a Radiologist or individual trained at identifying these vessels to position 

the imaging slice, which because of the inherently aberrant anatomy in chronic liver 

disease can on occasion extend scanning time. 

 Imaging smaller vessels with PCMRI also introduces the risk of partial voluming 

errors.  The lower spatial resolution of smaller vessels will imply that voxels covering the 

lumen may also include vessel wall, with errors exacerbated as the ratio of edge to luminal 

voxels increases.  A minimum resolution of 16 pixels over the vessel of interest has been 

defined as suitable for PCMRI quantification, which may well explain why 2D PCMRI 

studies of the hepatic artery have only emerged recently as a result of progressive 

technical improvements to clinical MR systems [209, 210].  

 Aliasing occurs when the velocity encoding setting has been set to below the 

maximum velocity in the vessel of interest.  Observed phase-shift can then exceed 180˚ 

(usually the central portion of the lumen in laminar flow), which without corrective 

measures will lead to erroneous estimates of flow.  Specifying a velocity encoding setting 

well above the maximum velocity however introduces noise into the measurement 

thereby also degrading the quality of the measurement [182, 211].  Some studies pre-
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specify the velocity encoding for the vessel across all the subjects, thereby subjecting some 

subjects to more noisy measurements than others [198, 199].  Other studies opt to collect 

data at multiple velocity encoding settings, discarding data where this is set too low or too 

high [200].  Not only does this increase the scanning time, but it also requires review of the 

data while the patient is in the scanner to identify if the velocity encoding setting needs to 

be modified. 

 Validation of PCMRI measurements in the liver has to date been patchy and the 

lack of robust validation is a genuine challenge to clinical translation.  Many studies (table 

1.2) have opted to use flow phantoms for validation, often presenting excellent 

correlations with impressive (and minimal) errors in PCMRI flow measurements [190, 

192, 194, 200, 206].  Unfortunately, phantoms fail to replicate many of the challenges of 

imaging in the liver, not least the motion artefact, pulsatile flow and complex orientation 

of the vessels and adjacent tissue susceptibilities.  Trans-abdominal Doppler US has been 

used by many researchers as a validation tool, but once again this will only record velocity, 

which in combination with vessel size and certain assumptions can be used to estimate 

bulk flow.  Velocity based comparisons with Doppler US have also been reported, but data 

on validation with Doppler US has been variable and unimpressive (table 1.2), and it 

remains contentious as to whether this is due to variability of the Doppler US 

measurement or the PCMRI measurement itself [190, 196, 199, 202]. 

 Blood flow when studied as a physiological parameter is classically normalised to 

organ mass, as the volume of tissue perfused will be an important determinant of bulk 

inflow.  The situation is more complex in liver disease as a result of shunting, however few 

studies make any attempt to normalise liver PCMRI measurements.  Studies that 

normalise flow parameters to whole body mass have been published, but this approach is 

flawed particularly in liver disease, where whole body mass is often distorted by the 

presence of ascites [191].  Liver volume can be determined relatively easily from 

anatomical imaging and correlates well with mass on surgical resection (r = 0.954, 

p<0.001)[193].  It is likely that normalised PCMRI flow values would yield more 

meaningful biomarkers for liver disease, as demonstrated by Kuo et al. 

 

Bulk flow derived biomarkers from 2D PCMRI are of particular interest because they 

enable reduction of a large volume of data to a single parameter.  This is particularly 

attractive clinically, where faced with large numbers of complex parameters, clinicians 

seek simple parameters to stratify patients and inform clinical decision making. 
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1.3.7 FOUR-DIMENSIONAL PHASE-CONTRAST MRI 

By acquiring 2D PCMRI in multiple flow-encoding directions, a three-dimensional image of 

blood flow can be constructed.  Acquiring this data over time can then be used to derive 

(blood) particle motion streamlines through the cardiac cycle in three-dimensions – 

thereby enabling more complex analysis of flow (figure 1.12). 

 

 

 
 

Figure 1.12: Example of 4-Dimensional PCMRI of the hepatic vasculature 
Anatomical reconstruction of the venous vasculature in a cirrhotic patient is shown on the left (a), 
with corresponding 4D PCMRI reconstruction on the right (b).  Directionality of velocity vectors is 
shown by the arrows with colour pertaining to velocity. (Obtained from reference [212]). 
 
Given the larger volume of data required, scanning times are substantially increased, and 

there have been two alternative approaches to tackle this, particularly in relation to the 

large volumes of potentially motion corrupted data required for assessing abdominal 

vasculature [213].  The first of these is a Cartesian approach to sampling k-space, which in 

its most recent form has been termed the “4 point method”.  For each single line of k-

space, one reference scan and three velocity encoded acquisitions (each along 

perpendicular dimensions) are obtained and subsequently reconstructed [214].  The 

alternative approach known as vastly undersampled isotropic projection reconstruction 

(PC-VIPR), involves radial k-space sampling, so that each acquired line of raw data passes 

through the centre of k-space.  PC-VIPR accelerates the overall acquisition time, enabling 

larger volume coverage, high spatial resolution and reduced sensitivity to motion artefact 

[215, 216].  Conversely, it also has the potential to introduce streak artefacts and an 

overall reduction in signal-to-noise ratio [213]. 

 Application of 4D PCMRI for liver blood flow quantitation was first demonstrated 

by Stankovic et al in 2010.  Although they successfully demonstrated feasibility, including 

collecting data on a small number of known cirrhotic patients, their validation with 2D 
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PCMRI and Doppler US peak velocity was in their words “significant, but modest” (r = 0.46; 

r = 0.35, respectively).  They also found that both 4D and 2D PCMRI consistently estimated 

a higher portal venous area than US [201].  A follow-up study in 2012 confirmed modest 

correlations and acknowledged that flow volumes tended to be underestimated with 4D 

PCMRI (normal volunteer mean portal venous flow was 670±540 ml/min, for 

example)[202].  Studies using PC-VIPR have also provided disappointing quantitation.  

Early studies in a cohort of cirrhotic patients (n = 22) confirmed that visualisation was 

acceptable but did not demonstrate any correlation with model for end-stage liver disease 

(MELD) scores [212].  A subsequent study claimed to ‘validate’ measurements by 

assessing consistency of the aggregate flow measurement at different points in the porto-

splanchnic system.  Consistency was demonstrated, but failed to show any significant 

difference in blood flow in patients with known portal hypertension [217]. 

 There is little doubt that 4D PCMRI is where the future lies for assessing hepatic 

vasculature bulk flow, but there remain some key challenges that must be overcome if it is 

to gain acceptance in the clinical setting.  Like all techniques, good validation data (not 

merely consistency) is essential.  Validation attempts with flawed methods such as 

transcutaneous Doppler US may have hampered attempts so far but it is unclear if the 

disappointing data has instead been the result of issues inherent with the 4D PCMRI 

methods.  Undersampling k-space using PC-VIPR might yield acceptable imaging and 

indeed particle motion streamlines, but the impact on actual flow quantification is 

uncertain.  Four dimensional PCMRI faces an even bigger challenge than 2D PCMRI when 

dealing with selection of a suitable velocity encoding settings.  This is a particular 

challenge in abdominal imaging, where the optimal velocity encoding settings vary so 

widely (e.g. for arterial vessels when compared to the portal vein).  Different strategies to 

overcome this have been proposed (e.g. five point Cartesian k-space sampling, dual 

velocity-encoding, to name a few)[214], but this remains a source of error in flow 

quantification [218].  Scanning time in all published protocols has never exceeded 20 

minutes, but this reduced time frame has been obtained through several trade-offs that 

inherently compromise the quality of the data obtained [219, 220].  Additionally, all 

accounts of 4D PCMRI highlight the very complex and time-consuming post-processing 

solutions required to extract useful data.  Computational flow dynamics has the ability to 

use this data to extract new and previously unmeasured blood flow parameters, including 

estimations of pressure gradient and wall shear stress [213, 218].  While this data is 

offering new and previously unseen insights into blood flow, the clinical significance of 

these large volumes of data awaits determination. 
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1.3.8 ARTERIAL SPIN LABELLING MRI 

Arterial spin labelling (ASL) is an exciting method that to date has had very little 

application in the liver.  The basic protocol underpinning ASL is the generation of two 

images – a control image containing static signal and a ‘labelled’ or flow-sensitised image, 

possessing signal from both static tissue and magnetised inflowing blood.  The subtraction 

of these two data sets results in a signal difference that reflects local perfusion.  By 

applying an inversion or saturation pulse to a volume containing blood supplying the 

imaged region and then imaging the area of interest after a delay (to allow time for 

labelled spins to arrive in the imaging slice), perfusion dependent signal changes can be 

recorded.  The overall ASL signal is dependent on intrinsic tissue and blood T1, which as 

with DCE MRI, must be measured for formal quantification [221, 222].  There are a variety 

of labelling techniques including pulsed ASL (PASL), continuous ASL (CASL), and pseudo-

continuous ASL (PCASL).  In PASL, the labelling slab is positioned just proximal to the 

imaging slice.  To mitigate magnetisation transfer effects, various protocols have been 

proposed including flow-sensitive alternating inversion recovery (FAIR).  With CASL, a 

gradient is applied in the direction of arterial flow at the same time as a slice selective 

inversion pulse.  This has the effect of selectively inverting moving (arterial) spins that can 

be imaged in a slice just distal to the slice where the inversion pulse is applied.  PCASL 

breaks the continuous pulse into smaller discrete gradient pulses and can result in 

improved labelling efficiency while reducing the specific absorption rate (SAR) dose [223, 

224]. 

There is a growing body of literature describing abdominal ASL, specifically in the 

kidneys [222].  Reports of hepatic ASL however, remain sparse.  The earliest reports of 

liver ASL describe early use of CASL in humans, with inversion planes positioned axially in 

the supracoeliac aorta for arterial labelling and just lateral to the IVC for portal venous 

labelling [225].  Hirschberg et al. used PASL to investigate changes in the liver perfusion at 

baseline and during hyperglycaemia in healthy volunteers and type I diabetics [226].  

Studies in mice with multi-slice FAIR ASL have demonstrated feasibility with reasonable 

quantitation of parenchymal perfusion (figure 1.13) [227].  The same group have gone on 

to use ASL to study perfusion in a model of colorectal carcinoma liver metastases and 

demonstrate changes after the administration of vascular disrupting agents [228]. 

  



~ 50 ~ 
 

 

 
Figure 1.13: Liver ASL in mice at 9.4T 
(a) Anatomical axial images of the liver, with (b) corresponding ASL perfusion maps.  Note high 
flow seen in major vessels relative to the parenchyma. (Obtained from reference [227]). 
 
Nonetheless, there is a paucity of high quality validation studies of ASL perfusion 

measurements in the liver.  A study comparing DCE CT perfusion and ASL demonstrated 

“fair” correlation (r = 0.794, p < 0.01; n = 5)[229].  Correlations with PCMRI and ASL have 

also been presented.  In a clinical study with n = 30 subjects, Hoad et al. compared bulk 

non-normalised PV flow with tissue perfusion (correlation statistics not given) and in a 

smaller scale preliminary preclinical study, we have demonstrated encouraging agreement 

between FAIR ASL perfusion measurements and liver weight normalised PCMRI bulk PV 

flow (mean difference 1.8 ml/min/g, p < 0.05)[230, 231].  Finally, a larger scale clinical 

study (n = 60) measuring liver perfusion in Child-Pugh class A compensated cirrhotics 

demonstrated significant reductions in ASL measured hepatic parenchymal perfusion (p = 

0.002)[232]. 

ASL is a complex technique, with specific challenges at each stage of the process, 

whether labelling, imaging, measuring T1 or modelling signal.  Rather than provide an 

exhaustive discussion, we review some of the broader challenges specific to 

implementation in the liver.  Firstly, unlike in the brain where ASL was first developed, 

inflowing vessels have an oblique and variable orientation in relation to the tissue they are 

supplying.  Any robust method of quantitation will therefore require a consistent labelling 

strategy, especially if ASL is to separate the arterial and portal venous contributions.  

Dealing with dual inputs may also require an alternative approach to modelling perfusion, 

although this remains to be seen.  The resulting subtracted ASL signal is small, such that 

artefact (particularly motion artefact in the case of the liver), can easily corrupt the data.  

Motion correction strategies are likely to play an important role in avoiding extended 

scanning times and high SAR doses required for multiple averages and/or multiple slices.  
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Formal studies of validation and reproducibility will also need to be undertaken if the 

method is to gain widespread acceptance.  This will also pave the way for a more uniform, 

consensus based approach to labelling and ASL imaging protocols across different centres. 

1.3.9 FUNCTIONAL MRI 

Blood oxygen level-dependent (BOLD) MRI, also known as functional MRI (fMRI) utilises 

the altered tissue susceptibility adjacent to vessels containing paramagnetic deoxygenated 

haemoglobin to derive signal intensity changes with T2*-weighted imaging.  Altered 

BOLD/fMRI signal is observed with changes in oxygen saturation, blood volume but also 

importantly with blood flow.  Although BOLD/fMRI has been applied more extensively in 

the brain, there have been several studies implementing this approach in the liver.  The 

liver is suitable for BOLD/fMRI studies because of its high vascularity [233].  Studies 

typically involve inducing hyperoxia and hypercapnia – increases in tissue oxygenation for 

example, lead to reductions in deoxyhaemoglobin and consequent prolongation of T2* 

times with resultant increases in signal intensity.  These changes in the signal can then be 

used to infer perfusional changes. 

 Early studies in chronically ethanol fed rats (a model of chronic injury secondary 

to moderate alcohol consumption) demonstrated the feasibility of measuring hepatic 

BOLD signal, and showed a significantly dampened response to hyperoxia (22±5% signal 

increase) relative to control animals (48±6% signal increase).  Increases in signal intensity 

were observed with hypercapnia (15±4% in control animals) but not found to be 

significantly altered in diseased animals (5±3%)[233].  This study was followed up by an 

elegant study of BOLD signal in healthy rat livers, in the context of hypoperfusion induced 

through hypovolaemia and portal vein ligation.  Barash et al. were able to demonstrate 

significant rises and reductions in T2* signal intensity during hyperoxia and hypercapnia 

respectively.  Both hyperoxic and hypercapnic BOLD responses were dampened in 

hypovolaemic or portal vein ligated rats underlining the contribution of perfusion to the 

signal intensity changes [234].  In a later study, the degree of hypovolaemia was shown to 

correlate relative change in BOLD signal in both hyperoxia and hypercapnia.  Studies in 

fibrotic animals also demonstrated alterations in BOLD signal in the early stages, 

corresponding to histological inflammatory change, which subsequently settled in later 

stages (figure 1.14) [235].  Contrastingly, diethylnitrosamine induced hepatic fibrosis in 

rats demonstrated progressive alterations in relative BOLD signal (r = -0.773; 

p<0.001)[236].  Of interest, segmental hypoperfusion of foetal ovine liver in response to 

hypoxia has been demonstrated, a phenomenon thought to be caused by increased ductus 

venosus shunting [237]. 
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Figure 1.15: BOLD 
studies after partial 
hepatectomy (PH) 
Axial images through rat 
liver before (pre) and at 
2, 5 and 7 days post-PH 
(upper row).  
Regeneration post-
hepatectomy can be seen 
on the anatomical 
images, with altered 
post-PH perfusion 
parameters in hyperoxia 
(middle row) and 
hypercapnia (bottom 
row).  Note how once 
regeneration starts to 
occur (after day 4). BOLD 
signal starts to recover.  
(Obtained from reference 
[235]). 

 
Human studies have been able to demonstrate altered BOLD signal in the context of gas 

cycling but also in hyperglycaemia alone, although both published studies have been of 

small size [238, 239].  There has also been a growing interest in the application of 

fMRI/BOLD for the evaluation of primary liver tumours, given the potential of BOLD signal 

to detect neoplastic vascular changes [240, 241]. 

 The extensive vascularity of the liver makes it a good candidate for fMRI/BOLD 

studies but there are many challenges awaiting resolution.  Performing gas challenges in 

the clinical context can be challenging especially in patients with liver disease [238].  

Underpinning alterations in BOLD signal are changes in perfusion, oxygenation and blood 

volume, each of which can occur as result of very separate biological phenomena, but 

remain individually indistinguishable on fMRI alone.  Quantification of BOLD signal also 

remains topical – although relative changes can be studied, absolute quantification is 

problematic and of possible but unknown value.  Furthermore, validation of BOLD signal is 

often presented as correlations of signal relative to measured oxygen saturations but 

formal validation in terms of absolute quantification in the liver has never been 

undertaken [235].  fMRI/BOLD holds much promise for generating useful biomarkers of 

liver disease, however larger cohort studies in humans are required to assess the true 

potential of the technique. 

1.3.10 BIOMECHANICAL IMAGING 

Biomechanical imaging methods measure the tissue response to an applied physical 

stress.  The tissue response is dependent on the physical properties of the tissue, such as 

viscosity, elasticity and stiffness.  Haemodynamic factors such as tissue perfusion, bulk 
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vessel flow and pressure are likely to affect these mechanical properties.  Measurements 

of mechanical properties of the tissue therefore have the potential to make non-invasive 

inferences about haemodynamic parameters. 

 

1.3.10.1 Ultrasound elastography 

Biomechanical imaging methods were first developed for US, with earliest reports dating 

back to the work of Lerner and Parker in the late 1980s [242, 243].  The principle of 

‘sonoelasticity’ was based upon applying an external vibration at low frequency to induce 

oscillatory motion in soft tissues.  These could then be detected using Doppler ultrasound.  

These methods were progressively refined, overcoming complexities of quantification.  

The major challenge of having a single probe incorporating both vibrator and transducer 

into a single practical unit was overcome by Sandrin et al [244, 245], who formed part of 

the larger group that setup EchosensTM, the organisation that produces and 

commercialises FibroScan®.  FibroScan® devices are standalone units developed purely for 

the assessment of liver stiffness.  A single transducer is used as an ultrasonic emitter, 

receiver and piston-like vibrator to generate transient low frequency (50 Hz) vibrations.  

Rather than produce an image of the tissue deformation, elasticity is measured in one 

dimension at a single instant (approximately 100 ms), thereby termed ‘transient 

elastography’.  The devices return a single measurement of Young’s modulus (a measure of 

stiffness calculated as the pressure applied divided by the ratio of the change in length of 

the stressed tissue).  The final units are given in kilopascals (kPa) [244]. 

 An alternative approach to US quantification of tissue stiffness has been through 

the use of ‘acoustic radiation force impulse’ (ARFI) imaging.  The concept of acoustic 

radiation force is based on the principle that all wave motion (including sound waves) 

exert unidirectional (radiation) force on absorbing and reflecting obstacles in their path.  

By focussing acoustic beams, the energy from absorbed acoustic waves can be converted 

from compressional waves to shear waves, thereby exerting mechanical stress on the 

tissues being interrogated.  The application to medical imaging was first postulated by 

Torr in the 1980s [246] and first implemented for diagnostic purposes by Nightingale et al 

in breast tissue [247].  The lack of a requirement for an external vibrator facilitated 

translation, but progressive refinements to the technique and quantification methods, 

resulted in only more recent availability on clinical US imaging systems.  ARFI imaging has 

the advantage being able to deliver localised biomechanical stress under standard B-mode 

US imaging guidance.  As the force is delivered directly to the region of interest, smaller 

physical stresses are used that those used by transient elastography.  The user positions a 

sampling region on the tissue of interest before a large acoustic impulse is delivered to the 
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region (figure 1.16).  Diagnostic B-mode US images are used to then track the motion of 

the tissue within the sampling region.  The tissue displacement is then quantified as shear 

wave velocity (m/s), rather than elasticity as estimated by Young’s modulus [248]. 

 

 

Figure 1.16: Positioning of sampling 
regions for splenic ARFI 
(Adapted from reference [249]). 

 

Early studies were directed mainly at the elastographic evaluation of fibrosis [250], but 

recognition of the role of haemodynamics in liver stiffness was first reported in patients 

with HCV recurrence after transplant using transient elastography.  Carrion et al reported 

a strong positive correlation between liver stiffness and HVPG (r = 0.854, p < 0.001) and 

impressive area under receive operating curve (AUROC) values for portal hypertension 

(HVPG > 6 mmHg) and clinically significant portal hypertension (HVPG > 10 mmHg) as 

0.93 and 0.94 respectively [251].  This data was confirmed in a smaller study of chronic 

(non-transplanted) HCV patients (r = 0.871, p < 0.0001; AUROC for HVPG > 10 mmHg = 

0.99; AUROC for HVPG > 12 mmHg = 0.92), which also underlined poorer correlations 

between liver stiffness and HVPG in patients with more severe portal hypertension (figure 

1.17) [252]. 
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Figure 1.17: Correlations between transient elastography liver stiffness and 
HVPG in HCV cirrhotics 
Positive correlations between transient elastography liver stiffness and HVPG were as high as r = 
0.85 (A), but poorer correlations were observed in patients with more advanced portal 
hypertension (r = 0.41), (D).  (Obtained from reference [252]). 
 

A number of subsequent studies have demonstrated encouraging data evaluating the 

relationship between HVPG and transient elastography liver stiffness [253-258], including 

a meta-analysis of 18 studies with data from 3644 cases.  Sensitivity and specificity of 

clinicially significant portal hypertension (HVPG > 10 mmHg) in this meta-analysis was 

given as 90% and 79% respectively [259]. 

 Building on the use of liver stiffness, there has also been interest in the use of 

splenic stiffness, measured with transient elastography for the assessment of portal 

hypertension and varices.  Colecchia et al proposed a model combining both liver and 

splenic stiffness, demonstrating improved correlations with HVPG in HCV cirrhotics (r = 

0.922, p < 0.0001) than when each measurement was used correlated with HVPG in 

isolation [260].  The use of transient elastography splenic stiffness has also been reported 

to offer superior correlation with HVPG than liver stiffness alone [261]. 

 Studies have also evaluated transient elastography liver and splenic stiffness in 

determining the presence and severity of oesophageal varices [252, 259, 262-266] and 

complications of portal hypertension (gastro-intestinal bleeds, decompensation, mortality, 

etc.) [257, 267, 268].  The data has been positive, albeit less conclusive.  In spite of the 

volume of encouraging data and favourable opinions in the literature [269, 270], there are 

a number of important limitations which have been highlighted by several studies. 
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 Transient elastography can yield inaccurate or invalid results in patients who are 

obese or have ascites.  Studying a cohort of Child-Pugh A patients with potentially 

resectable tumours, Llop et al suggested that in as many of half of all cases, transient 

elastography failed to provide any meaningful quantification of liver stiffness [271].  Other 

authors also cite difficulties with non-diagnostic values, and call for stratification of 

patients based on pre-test likelihood of reliable transient elastography liver stiffness 

measurement [258] and in the longer-term the development of better non-invasive tools 

for the assessment of portal hypertension [14]. 

 ARFI can be used to overcome some of the limitations of transient elastography: 

the ability to use two-dimensional B-mode US to visualise the tissue undergoing 

assessment can ensure that stiffness measurements derive from the organ of interest, 

even in the presence of ascites/substantial subcutaneous fat.  A clear message however, 

has yet to emerge from studies comparing the performance of ARFI and transient 

elastography measurements of liver and splenic stiffness for the assessment of portal 

hypertension.  Some authors have reported ARFI as superior to transient elastography 

[272, 273], others as weaker [274, 275], while others have found no significant difference 

between the methods [276]. 

 The measurement of splenic stiffness with ARFI for the assessment of HVPG and 

the presence of oesophageal varices has also been of interest.  Studies demonstrating the 

use of ARFI pre- and post-TIPSS both to evaluate response and monitor function have been 

encouraging [277, 278].  The ratio of ARFI liver to splenic stiffness has also been used to 

identify patients more likely to have idiopathic portal hypertension [279].  Much like 

transient elastography, the value of ARFI in the assessment of oesophageal varices and 

bleeding has been less conclusive, with probable value in determining the presence, but 

not necessarily severity of varices [280-283].  Technical challenges remain with ARFI, 

including standardisation of imaging protocols.  Splenic stiffness measurements have been 

shown to vary significantly for example, with respiratory manoeuvres [284]. 

 Finally, for both transient elastography and ARFI liver and splenic stiffness, there 

are a paucity of studies evaluating the relationship between stiffness and haemodynamic 

parameters beyond HVPG, such as flow.  Han et al for example, measured Doppler mean 

PV velocity and splenic indices at the same time as ARFI splenic stiffness, to demonstrate 

significant but weak correlations, attributing this to the wide variance of a Doppler flow 

parameters [282].  Such studies, with alternative quantification, perhaps using ICG or 

alternative imaging methods may yield important insight into factors affecting tissue 

elasticity and would be important in establishing the role of ultrasound elastography in 

the assessment of liver haemodynamics. 
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1.3.10.2 MR Elastography 

The first reports of MR elastography (MRE) emerged in the mid-nineties soon after US 

elastography was first proposed [285, 286].  Much like transient elastography, MRE is 

based on propagation of low frequency mechanical waves through tissues.  The shear 

waves are propagated through tissues and imaged using a modified PCMRI sequence with 

so-called ‘motion-encoding gradients’.  Data generated from these PCMRI sequences can 

then be used to generate parametric maps of mechanical properties.  In order to generate 

the mechanical stress, a 19 cm plastic disc with a drum membrane is strapped to the 

patient surface over the right upper abdominal quadrant, under the surface coil.  The disc 

serves as a passive pneumatic driver, connected with plastic tubing to an active acoustic 

driver outside the scanner room.  Vibrations are delivered at 60 Hz and data acquisition is 

synchronised with the passive driver oscillations.  Processing occurs at the time of 

acquisition, with mapping of data reliability and generation of shear stiffness maps 

(Young’s modulus, kPa) at source.   Original acquisitions were designed to acquire data 

over four axial slices, but newer 3D methods for whole liver coverage are under 

investigation.  Absolute quantification of liver stiffness can then be undertaken using ROIs 

or from liver parenchymal segmentation with reporting of mean values [287-291].  The 

sequences, drivers and post-processing technology are commercialised by Resoundant®, 

an organisation setup by the research group that originally proposed the method.  

Recently, an alternative approach, termed ‘compression-sensitive MRE’ has been 

proposed, based on the use of an alternative driver system and the derivation of 

alternative quantitative parameters [292-295]. 

Much like transient elastography, evaluation has largely been directed towards 

using MRE as a non-invasive alternative to biopsy.  Studies assessing the relationship 

between MRE parameters and portal hypertension first emerged in animal models.  In a 

serial study with two canine subjects, Nedredal et al report significant correlations (r = 

0.95 and 0.93; p < 0.01) for liver and splenic stiffness respectively.  The raw data (figure 

1.18) is an excellent example of how misleading correlative statistics can be [296]. 
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Figure 1.18: Correlations between MRE splenic (left) and hepatic (right) 
stiffness and HVPG in canine bile-duct ligated models of cirrhosis 
Impressive HVPG correlations with MRE liver stiffness (r = 0.95) and splenic stiffness (r = 0.93) 
were quoted by this study, but review of the scatterplot is less convincing. (Obtained from 
reference [296]). 
 

In another study, three pigs were subjected to colloid infusions with controlled rises in 

systemic and portal pressure.  MRE hepatic and splenic stiffness demonstrated more 

convincing correlations with invasive measurements of systemic and portal pressure (r = 

0.86 and r > 0.90) – of note the analysis was reported in an unconventional manner with 

no quoting of significance values [297]. 

 The first clinical studies correlated MRE with cirrhotic pre-transplant cirrhotic 

HVPG (n = 36) demonstrating significant but modest correlations between hepatic (r = 

0.44, p = 0.017) and splenic (r = 0.57, p = 0.002) loss modulus [298].  Using compression-

sensitive MRE, correlations were demonstrated in a small cohort (n = 13) of pre- and post-

TIPSS between hepatic ‘volumetric strain’ and HVPG (r = 0.852, p < 0.0001) but no 

correlation with shear modulus [295].  In a similar pre- and post-TIPSS compression-

sensitive MRE study, Guo et al found the change in splenic viscoelastic constant modulus 

(G*) to be correlated with relative changes in HVPG (r = 0.659, p = 0.013) [299]. 

 Much like transient elastography and ARFI, several studies have evaluated the 

relationship between MRE, the presence and severity of oesophageal varices [203, 298, 

300-302] and decompensation [303].  Just as with US methods, the data for both liver and 

splenic stiffness has been positive, but a clear message in terms of clinical value and 

application has yet to emerge from the literature. 

 Finally, unlike transient elastography and ARFI, there has been a much greater 

interest in investigating the contribution of other haemodynamic parameters such as flow 

and perfusion in MRE quantification.  The notion that liver stiffness is derived from 

inherent structural properties but also haemodynamic factors has driven the hypothesis of 

several of these studies.  Assuming inherent post-prandial rises in portal venous inflow, 

more marked post-prandial increases MRE liver stiffness have been demonstrated in 
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patients with chronic liver disease (21.24±14.98%), compared with normal volunteers 

(8.08±10.33%) [304].  A similar study with PCMRI measurements of PV flow and MRE 

demonstrated significant changes in post-prandial PV flow and MRE liver stiffness.  The 

correlation in this study between PV flow change and MRE stiffness change (Spearman’s 

rho = 0.48, p = 0.013) was however disappointing [204].  Shin et al used 3D MRE and DCE 

MRI to show that combining data from both of these methods resulted in improved 

detection and assessment of the severity of oesophageal varices [305].  The use of MRE 

combined with PCMRI PV flow has also been shown to be of value in the prediction of 

oesophageal varices [203, 300]. 

 Although MRE is clearly at early stage of the exploration of its utility in the 

evaluation of the haemodynamic factors, there are a number of important challenges that 

need to be addressed.  While both US and MR methods utilise assumptions in the 

quantification process, the number of these assumptions and complexity of the post-

processing is undoubtedly greater in MRE owing to the output of 2D maps.  There are a 

range of theoretical and physical parameters which can be estimated using MRE and all 

are related to ‘stiffness’ – Young’s modulus, loss modulus, shear modulus, viscoelastic 

constants, decomposed curl and divergence strain, volumetric strain, to name a few 

quoted in the literature, cited previously.  The nomenclature is confusing and some 

parameters are abstract, particularly in the hands of clinicians less familiar with 

biomechanical quantification.  Moreover, we have yet to understand the potential clinical 

value of many of these parameters, some of which may be of greater value in estimation of 

fibrosis, while others may be of greater value in the estimation of haemodynamic 

parameters. 

 Ultimately, the biggest challenge to MRE is competition from US elastography 

methods.  Two-dimensional parametric mapping is MRE’s main advantage, but cost, time 

required and simplicity of use will always favour sonographic approaches.  Studies that 

demonstrate superiority for clinical applications will be vital to clarifying the role of each 

biomechanical imaging modality as tools in the assessment of liver haemodynamics. 

  



~ 60 ~ 
 

1.4 CONCLUSION 

 
Chronic liver disease is a complex pathophysiological process with significant and 

consequential vascular sequelae that to date remain poorly understood.  A plethora of 

ionising and non-ionsing radiation based imaging techniques have been developed over 

the years for non-invasive assessment of liver haemodynamics, some more successful than 

others and each with their strengths and weaknesses.  MRI based assessment of liver 

haemodynamics, be this with DCE, DHCE, 2D phase contrast, 4D phase contrast, ASL or 

functional MRI each remain at varying stages of infancy.  Robust methods, validated 

systematically in large cohorts of clinical and preclinical subjects will pave the way for a 

much greater role of each of these modalities in clinical practice.  The future of MRI holds 

much more, as experience with techniques aimed at quantifying fibrosis, biomechanical 

properties and haemodynamics combine to yield multimetric imaging strategies that yield 

even more useful and meaningful noninvasive biomarkers for clinical decision making. 

1.5 THESIS HYPOTHESIS 

 
The development of methods to assess hepatic vascular parameters are likely to yield (a) 

novel insights into the pathophysiology of chronic liver disease and (b) potential 

biomarkers for chronic liver disease. 

We have chosen to develop MRI as this non-ionising radiation based modality 

possesses combined quantitative and anatomical capabilities beyond other functional 

imaging modalities. 

Quantitative methods such as DCE MRI and PCMRI in particular have already 

shown potential in the evaluation of hepatic vascular parameters.  DCE MRI is logistically 

feasible as contrast-enhanced studies are usually part of standard clinical MRI protocols.  

Development of this protocol would form a sound foundation for implementation of other 

quantitative methods. 

Preclinical studies have better potential for much needed invasive validation, and 

enable investigation of pathological phenomena in better controlled studies.  Clinical 

translation is essential to securing the clinical credibility of the method, and overcoming 

logistical factors that may represent barriers to widespread use. 

With this in mind, this overriding aim of this thesis is to study the vascular 

pathophysiology of chronic liver disease, through the development and validation of 

modelled preclinical and clinical quantitative MR methods. 
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CHAPTER 2 
 

DCE MRI – EARLY PRECLINICAL STUDIES 

OF FEASIBILITY, REPEATABILITY, 
VALIDATION AND MEASUREMENT OF THE 

HEPATIC ARTERIAL BUFFER RESPONSE 
 

 

“…Submerged 
viscus, 

measurer 
of the blood, 

you live 
full of hands 

and full of eyes, 
measuring and transferring 

in your hidden 
alchemical 
chamber.” 

 
- Ode to the Liver [2]. 
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2.1 INTRODUCTION 

 
Dynamic contrast enhanced (DCE) MRI has the advantage of being conceptually simple 

and readily translatable, as the use of contrast enhancement is typically part of clinical 

MRI protocols.  In this chapter we develop and implement preclinical DCE MRI on a 9.4T 

system in rats.  We assess feasibility, conduct repeatability studies, validate measured 

perfusion parameters and investigate the hepatic arterial buffer response. 

2.2 AUTHOR CONTRIBUTIONS 

 
In fulfilment of the aims in this chapters, I: (a) prepared and conducted all animal scanning 

experiments; (b) developed preclinical DCE MRI protocols; (c) refined Matlab code for DCE 

MRI quantification; (d) performed surgery for portal venous ligation (PVL); (e) developed 

protocols and collected invasive TTUS measurements of PV flow; (f) collected and 

analysed all the data; and (g) prepared all the material contained within this chapter. 

Alan Bainbridge developed MR sequences, helped with scanning and developed 

the original Matlab code for DCE MRI quantification.  For establishment of small animal 

intravenous access, I received help from Nathan Davies. 
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2.3 BACKGROUND 

 
In health, maintenance of total hepatic blood flow is achieved via close regulation of 

relative contributions from the hepatic artery (HA) and portal vein (PV).  Reductions in 

portal flow are matched by compensatory increases in hepatic arterial flow – the so-called 

“hepatic arterial buffer response”.  DCE MRI has been used to measure hepatic perfusion 

parameters noninvasively[82, 116, 140, 148], but there have been no studies to date 

quantifying changes in global perfusion after therapeutic or physical interventions 

affecting liver blood flow.  An animal model in which such changes could be noninvasively 

assessed could provide a model in which invasive validation could be undertaken but 

would also represent a platform for the development of therapeutic agents to improve 

liver perfusion in the context of liver disease. 

 The credibility of such a noninvasive method would rest upon three key 

features:(i) consistency as assessed by repeated measurements, (ii) the ability to detect 

expected alterations of hepatic perfusion parameters in response to a controlled insult and 

(iii) validation of obtained measurements using gold-standard invasive methods.  PVL is a 

well-established simple physical method for gross modulation of PV flow.  Previous rodent 

studies have demonstrated post-PVL haemodynamic changes and that sole arterial 

perfusion of the liver is possible without causing immediate demise[306, 307].Validation 

of PV perfusion can be assessed using transit-time US (TTUS) probes.  These probes are 

placed directly onto vessels intra-operatively and have been used previously to 

demonstrate changes in portal blood flow before and after pharmacological manipulation 

[31, 308].  Under the assumption that there is homogeneous distribution of bulk PV flow 

throughout the liver, estimations of PV perfusion can be made that can be used to validate 

DCE MRI parenchymal measurements.   

In this study we assess the potential of DCE MRI with dual input compartment 

modelling, and assess the ability of the method to measure changes in perfusion as a result 

of portal venous ligation (PVL) in healthy rodents.  The specific aims of this study are to 

(a) determine if DCE MRI is feasible in healthy rodents using high-field strength MRI, (b) 

assess if estimated hepatic perfusion parameters are repeatable, (c) determine if post-PVL 

reductions in portal venous perfusion and rises in hepatic arterial perfusion as a result of 

the hepatic arterial buffer response can be measured and (d) to validate hepatic perfusion 

parameters measured with DCE MRI using invasive TTUS. 
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2.4 MATERIALS AND METHODS 

2.4.1 EXPERIMENTAL SUBJECTS 

All experiments were conducted according to the Home Office guidelines under the UK 

Animals in Scientific Procedures Act 1986.  Animals were maintained as per guidelines and 

approval of the ethical committee for animal care of University College London.  

Experiments were performed on healthy male Sprague-Dawley rats (n = 19, Charles River 

UK, Margate, UK) with normal liver function.  Animals were housed in cages at 22-23ºC, 

~50% humidity and with 12 hours of light and ad libitum access to water and rat feed.  

Within each cohort, subjects were randomly selected at the time of removal from the cage.  

Any adverse events and subsequent protocol modifications were recorded and reported in 

the results. 

2.4.2 SAMPLE SIZE 

A pragmatic approach to sample size was used given that data collection during these 

studies was undertaken alongside protocol development.  As parameter variability with 

our protocol was unknown and studies with DCE MRI had not previously been undertaken 

in PVL subjects, data was evaluated incrementally with a view to preliminary 

characterisation of parameters for future planning of adequately powered studies. 

2.4.3 IMAGING COHORT 

After induction of anaesthesia with isoflurane, a catheter was sited in a carotid vessel.  

Laparotomy was performed and a silk ligature was placed loosely around the PV.  The 

laparotomy was closed and the animal was placed in the scanner for initial imaging.  After 

imaging with a patent PV, animals were removed from the scanner and randomised into 

two subgroups.  For animals undergoing repeatability studies the laparotomy wound was 

re-opened but the previously placed ligature was not instrumented.  For animals 

undergoing PVL, the laparotomy wound was re-opened and the previously placed ligature 

was tightened maximally around the portal vein.  The animal was then returned to the 

scanner for a second study.  A 45 minute delay was adhered to between the first and 

second DCE studies to allow for adequate washout of contrast agent and recovery of tissue 

and vascular pool T1.  Subjects were terminated after the second scan. 

 

2.4.4 VALIDATION COHORT 

TTUS measurements were performed with a 2mm probe (Transonic Systems, Ithaca, USA).  

After induction of anaesthesia with isoflurane, laparotomy was performed and the PV was 
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dissected.  A silk ligature was placed loosely around the PV and the TTUS probe was 

placed just distal to this.  Repeatability and PVL studies were performed in the same 

cohort of animals.  PV flow measurements were then recorded.  The probe was then 

removed and the animal was allowed to settle for 45 minutes.  The TTUS probe was then 

re-sited in a similar position to the first time without instrumenting the previously placed 

ligature, and a second PV flow measurement was recorded.  After this, the previously 

placed ligature was tightened maximally around the portal vein.  A final PV flow 

measurement was then recorded before terminating the animal.  For all TTUS 

measurements, the animal was allowed to stabilise for at least 3 minutes and only at a 

time when a consistent reading was demonstrated, was the portal flow recorded.  Bulk 

flow was normalised to estimated liver mass before data analysis [309]. 

 

2.4.5 DYNAMIC CONTRAST ENHANCED MRI 

DCE MRI is based upon serial imaging of an area-of-interest over time before and after 

intravenous administration of a bolus of extracellular contrast agent.  Measurement of 

hepatic perfusion parameters with DCE MRI therefore requires (i) dynamically acquired 

T1-weighted images, (ii) measurement of the baseline T1 values of hepatic parenchyma 

and blood,  (iii) measurement of the contrast agent T1 relaxivity and (iv) modelling of the 

derived contrast agent concentration curves for each region of interest (ROI). 

Imaging was performed using a 9.4T Agilent scanner (Oxford, UK).  Data was 

acquired using a respiratory-gated T1 weighted, saturation-recovery, spoiled gradient-

echo sequence with centric-ordered k-space filling.  A single axial slice was selected from 

initial anatomical images that enabled good visualisation of the portal vein, aorta and a 

large volume of hepatic parenchyma.  A slice was acquired at each respiration trigger point 

(figure 2.1).  The saturation-recovery time (TS) was set to enable each slice acquisition to 

be completed within a single respiratory cycle.  In-flow effects into the slice were 

minimised using a global saturation pulse.  Flow artefacts in vessels perpendicular to the 

acquisition slice were minimised by using velocity-compensated slice-select gradients.  

For the dynamic acquisition, the following parameters were used: TR = 6.2 ms, TE = 3.4 

ms, flip angle (α) = 15˚, 128 x 96 (frequency encoding x phase encoding) acquisition matrix 

and TS = 250 ms.  After intial baseline T1 measurements (see below), dynamic imaging 

was commenced.  Ten seconds after dynamic imaging began, a 500 μL bolus of 0.025 

mmol/L Gd-DOTA (gadoteratedimeglumine, Dotarem®, Guerbet, Roissy, France) was 

administered over 5-10 seconds by hand injection.  Sequential dynamic images were 

obtained for a total of 3 minutes. 
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2.4.6 T1 MEASUREMENTS 

T1 measurements were obtained using the saturation recovery method.  Briefly, the 

selected slice was imaged using a range of saturation times (TS) from 100 ms, with 200 ms 

increments to 10100 ms. Any motion corrupted images were discarded from the data set.  

Curves of signal intensity and TS were then plotted for each ROI.  The signal intensity was 

then modelled using equation 1: 

 

𝑀𝑥𝑦 = 𝑀0(1 − 𝑒−
𝑇𝑆
𝑇1) 

(Equation 2.1) 
 
Baseline ROI T1 was then determined by fitting the curve with the function above. 

 

2.4.7 CONTRAST AGENT CONCENTRATION MEASUREMENTS 

Contrast agent T1 relaxivity was determined using a phantom composed of tubes with 

contrast agent diluted with varying quantities of normal saline (0.9% NaCl/H20).  Nine 
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Figure 2.1: Schematic diagram of imaging protocol and gating 
The rat is depicted in blue in the lower left corner.  Respiratory motion was used to trigger the 
sequence, which would begin with a saturation pulse to minimise inflow effects, followed by 
spoiled gradient echo imaging of the imaging slice. 
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dilutions were prepared, ranging from 0.1 ml/L to 25.6 ml/L of contrast agent, in addition 

to two tubes containing pure water (figure 2.2).  T1 measurements were performed using 

the saturation recovery method (above).  Contrast agent concentration was then plotted 

against the reciprocal of the T1 value at each concentration and the relaxivity (𝑟1) was 

then determined using linear regression.  Once intrinsic tissue T1 was measured and 

𝑟1 was defined, signal intensity from dynamic images was converted into contrast agent 

concentration using the following equation: 

 
1

𝑇1𝑝𝑜𝑠𝑡
=

1

𝑇1𝑝𝑟𝑒
+ 𝑟1[contrast agent] 

(Equation 2.2) 
 
Where 𝑇1𝑝𝑟𝑒 represents the intrinsic ROI T1 and 𝑇1𝑝𝑜𝑠𝑡 represents the ROI T1 after 

administration of contrast agent. 

 

Figure 2.2: Contrast agent phantom 
MR image of axial section through tube 
phantom containing Gd-DOTA diluted with 
normal saline at concentrations of 0.1, 0.2, 0.4, 
0.8, 1.6, 3.2, 6.4, 12.8 and 25.6 ml/L.  Two 
additional tubes containing pure water were 
also included. 
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2.4.8 PERFUSION PARAMETER ESTIMATION 

Hepatic perfusion parameters can be estimated using a dual-input single compartment 

model.  This model is described schematically in figure 2.3.  The contrast agent 

concentration in the liver parenchyma is determined by the concentrations in the 

supplying vessels (PV and HA) and appropriate rate constants for the transfer of contrast 

agent from blood plasma to tissue parenchyma.  The HA is often very small and can be 

difficult to resolve on imaging, resulting in partial voluming with surrounding tissues.  

Thus, in order to determine the HA input function, it is assumed that the HA enhancement 

curve will be similar to that of the aorta. 

 

 

Figure 2.3: Schematic 
illustration of the dual-
input single compartment 
model 
The variables 𝑘1𝑎 and  𝑘1𝑝 

represent inflow constants, 𝑘2 is 
the outflow rate constant and  
𝐶𝑎(𝑡), 𝐶𝑝(𝑡) and 𝐶𝐿(𝑡) represent 

contrast agent concentration in 
ROIs placed over the aorta, portal 
vein and liver parenchyma 
respectively (obtained from 
reference [114]). 

 
The dual input, single compartment model can be described mathematically using the 

following equation: 

 
𝑑𝐶𝐿(𝑡)

𝑑𝑡
= 𝑘1𝑎𝐶𝑎(𝑡) + 𝑘1𝑝𝐶𝑝(𝑡) − 𝑘2𝐶𝐿(𝑡) 

(Equation 2.3) 
 
The model describes the rate of change in concentration in the liver parenchyma (𝐶𝐿(𝑡)), 

as being the rate of the inflow (where 𝐶𝑎(𝑡) and 𝐶𝑝(𝑡) represent concentrations in the 

aorta and portal vein respectively) minus the rate of outflow, where 𝑘1𝑎 represents the 

arterial inflow constant, 𝑘1𝑝  represents the portal venous inflow constant and 𝑘2 

represents the outflow constant.  Solving for 𝐶𝐿(𝑡) then yields: 

 

𝐶𝐿(𝑡) =  ∫ [𝑘1𝑎𝐶𝑎(𝑡) + 𝑘1𝑝𝐶𝑝(𝑡)]𝑒−𝑘2(𝑡) 𝑑𝑡′
𝑡

0

 

(Equation 2.4) 
 
The signal derived from vascular input function (VIF) ROIs is related to the blood-plasma 

contrast agent concentration.  Thus the calculation of whole-blood concentration must 

take into account the presence of red blood cells.  To account for this, 𝐶𝑎(𝑡) and 𝐶𝑝(𝑡) must 
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be divided by one minus the haematocrit, so that 𝑘1𝑎  and 𝑘1𝑝represent that transfer 

constants for the aortic and portal venous plasma contrast agent concentration to the liver 

parenchyma.  The assumption then is that the liver parenchymal ROI represents a single 

compartment containing a negligible volume of vascular tissue. 

 The rate constants are then directly related to perfusion by the following 

relationship: 

 
𝑘1𝑎 + 𝑘1𝑝 = 𝐹 ∙ 𝐸 

(Equation 2.5) 
 
Where ‘F’ represents perfusion and ‘E’ represents the fraction of contrast agent extracted 

by from the inflow.  Additionally F needs to be corrected for small vessel red blood cells so 

that finally: 

 

𝐹Arterial perfusion(ml/s/g) =
𝑘1𝑎

𝐸(1 − 𝐻𝑐𝑡𝑆𝑉)
 

and: 

𝐹PV perfusion(ml/s/g) =
𝑘1𝑝

𝐸(1 − 𝐻𝑐𝑡𝑆𝑉)
 

(Equations 2.6 and 2.7) 
 
Where 𝐻𝑐𝑡𝑆𝑉 represents small vessel haematocrit (assumed to be 0.25)[ref 31]. ‘E’ is 

assumed to be 1.0 in the normal liver, as the contrast agent can pass freely through the 

vascular endothelium to the interstitium and space of Disse.  Strictly speaking, the units of 

perfusion are ml/s per ml (volume unit) of tissue.  Assuming the specific tissue gravity of 

liver to be 1.0, we can assume the more familiar unit of ‘ml/s/g’, which can then be 

multiplied through to yield usual perfusion unit quoted in physiology manuscripts of 

‘ml/min/100g’. 

 Arterial and portal fraction can then be easily determined by assessing rate 

constant ratios, where portal fraction is 100 [𝑘1𝑝 (𝑘1𝑎 + 𝑘1𝑝)⁄ ].  The distribution volume 

(DV; %) is then calculated as 100 (𝑘1𝑎 + 𝑘1𝑝) 𝑘2⁄ , while the mean transit time (MTT; 

seconds) is calculated as 1 𝑘2⁄ . 

 

2.4.9 IMAGE ANALYSIS 

ROIs were drawn on the imaging slice over the aorta, PV and hepatic parenchyma.  Care 

was taken to select hepatic parenchymal ROIs that did not contain any overt vessels.  

Equation 2.1 was fitted to saturation recovery data with varying TS, using the solver tool 

in Microsoft Excel 2010 (Redmond, USA), to determine baseline T1 values.  Baseline (pre-

contrast agent) signal intensity data was subtracted from the post-contrast data sets to 
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determine the change in signal intensity over time after contrast agent administration.  

The 𝑟1 determined from phantom experiments was then used to determine ROI contrast 

agent concentration as a function of time.  Dual-input single compartment fitting was then 

performed, with the parameters 𝑘1𝑎 , 𝑘1𝑝  and 𝑘2  as free variables, using in-house 

developed Matlab code. 

 

2.4.10 STATISTICAL ANALYSIS 

Kolmogorov-Smirnov tests were used to confirm normality of variable distributions.  

Repeatability studies were assessed using paired t-tests or Wilcoxon matched-pairs signed 

rank tests where appropriate, Bland-Altman analysis of agreement with calculation of the 

coefficient of repeatability and assessment of correlation between repeated 

measurements using Pearson’s correlation coefficient.  Portal venous ligation studies were 

of small size (n = 4), and were paired data assessed using Wilcoxon matched-pairs signed 

rank tests while unpaired data was assessed using Mann-Whitney U tests where specified.  

As separate subject cohorts were used, validation studies were assessed using unpaired t-

tests.  The threshold of statistical significance was defined to be p < 0.05. 
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2.5 RESULTS 

2.5.1 SIGNAL INTENSITY CALIBRATION 

The contrast agent phantom was scanned using saturation times between 110 to 3910 

millseconds with 100 ms increments (figure 2.4(a)).  The signal intensity was then plotted 

against saturation time curves, which were then fitted to equation 2.1, using least squares 

regression, to derive a T1 estimate for each dilution.  Based on these results, a saturation 

time of 250 ms was selected for DCE experiments, to optimise the dynamic range for 

assessment of contrast agent concentration.  Signal drop out was observed with contrast 

agent concentrations above or equal to 12.8 ml/L of normal saline.  These were excluded 

from the 𝑟1 calculation. 

 Using concentrations up to 6.4 ml/L, an almost linear relationship between the Gd-

DOTA dilution and the reciprocal of T1 was identified.  This was then fitted using linear 

regression to determine 𝑟1= 0.0031 (figure 2.4(b)).  Having determined r1 in this way, all 

subsequent concentrations are quoted in units of ‘ml/L’ rather than ‘mmol/L’.  
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Figure 2.4: T1 
phantom 
measurements 
and 𝒓𝟏 
estimation 
(a) The phantom 
shown in figure 2.3 
was imaged at a 
variety of saturation 
times to determine 
the T1 for each 
concentration of 
contrast agent.  
Note how at 
concentrations 
above 6.4 ml/L, the 
T1 was either too 
short to measure 
(12.8 ml/L) or 
signal drop out was 
noted (25.6 ml/L). 
(b) 𝑟1was then 
determined using 
linear regression. 
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2.5.2 COHORT FEATURES 

Data for the experimental subjects is summarised in table 2.1.  Estimated liver weights are 

given for both cohorts. 

 

Table 2.1: Cohort features 
 

 IMAGING COHORT VALIDATION COHORT 

 n = 13 n = 6 

Body weight 280.30±4.37g 443.80±38.31g* 

Estimated liver weight 14.34±0.19g 20.43±1.39g* 

Repeatibility study n = 5 n = 4 

PV ligation study n = 4 n = 4 

(all weights given as mean ± standard error of the mean); *(unpaired t-test, p < 0.05) 

 
Animals in the validation cohort were significantly different in body and estimated liver 

weight.  To mitigate these effects, validation analysis was performed with flow data 

normalised to estimated liver weight. 

Although a total of n = 13 were scanned in the imaging cohort, data for one subject 

was discarded due to poor fitting of the data with the dual input single compartment 

model (see discussion). A further n = 3 underwent only an initial imaging study due to 

time constraints - this data was utilised for unpaired comparisons.  In the imaging cohort, 

repeatability (n = 5) and PV ligation studies (n = 4) were performed in separate animals.  

In the validation cohort, n = 2 animals were lost after the initial measurement as a result of 

gross intra-abdominal haemorrhage from traumatic placement of the TTUS probe.  As the 

initial baseline PV flow was still recorded, data from these subjects was utilised for 

unpaired t-tests.  Repeatability and PV ligation studies were performed in the same 

animals in this cohort.  This information is summarised below in figure 2.5. 

 
 

Imaging cohort 
n = 13 

 Validation cohort 
n = 6 

           

Poor 
fitting 
n = 1* 

 

Baseline 
imaging 

only 
n = 3 

 
Repeatability 

studies 
n = 5 

 
PVL 

studies 
n = 4 

 

Baseline 
measurement 

only 
n = 2 

 
Repeatability 

studies 
n = 4 

           

   Paired 
analysis 

 
Paired 

analysis 
  

Paired 
analysis 

       

  Unpaired analysis   Unpaired analysis  

       

Figure 2.5: Schematic diagram of planned statistical analyses 
Given the small numbers involved, incomplete data sets were used for unpaired analyses 
where possible.  *The poorly fitted subject data (n = 1) was excluded from analyses. 
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2.5.3 DCE MRI FEASIBILITY 

Regions of interest were drawn over the aorta, portal vein and hepatic parenchyma as 

shown in figure 2.6.  An example of the curve fitting procedure to determine T1 

measurements using the saturation recovery method is illustrated in figure 2.7. 

 

 

 
 

Figure 2.6: Example of ROI 
placement for DCE MRI 
quantification 
Aortic and portal venous ROIs as shown.  
Parenchymal data was averaged across the 
ROIs shown in white 

 

 

  
Figure 2.7: (a) Measurement of ROI T1 times, with (b) specific example of 
aortic ROI fitting to determine T1 
(a) The slice shown in figure 2.5 was imaged at a variety of saturation times to determine the T1 for 
each ROI.  The curve fit for the aortic ROI data is shown in (b) (T1 = 1587 milliseconds). 
 
Signal intensity-time curves from similar ROIs were then converted using the previously 

described method into Gd-DOTA concentration-time curves.  Modelling was then 

undertaken using the dual-input single compartment model.  An example of the contrast 
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agent concentration curves, their corresponding fits and modelled hepatic perfusion 

parameters are illustrated in figure 2.8. 

 

  

  

Figure 2.8: Example of contrast agent concentration curves at corresponding 
fits. 
Baseline (a) and post-PVL (b) enhancement curves.  Corresponding model fits for 𝐶𝐿(𝑡)and 
estimated hepatic perfusion parameters (upper right corners) can be found on the right; (n.b.PF = 
portal fraction). 
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2.5.4 REPEATABILITY 

Repeatability of all five hepatic perfusion parameters obtained from DCE MRI imaging and 

normalised bulk PV flow as measured by TTUS were assessed (summarised in table 2.2).  

All perfusion parameters were normally distributed with the exception of TTUS PV flow. 

 

Table 2.2: Summary of repeatability statistics 
 

 MEAN DIFFERENCE BETWEEN 

REPEATED MEASUREMENTS 

P-VALUE COEFFICIENT OF 

REPEATABILITY 

DCE MRI 

   Arterial perfusion (ml/min/100g) 

   PV perfusion (ml/min/100g) 

   Portal fraction (%) 

   DV (%) 

   MTT (s) 

 

-6.40±9.61 

-86.88±89.41 

-2.19±6.80 

0.53±0.55 

0.31±1.02 

 

0.541 

0.386 

0.764 

0.387 

0.775 

 

42.10 

391.8 

29.82 

2.403 

4.469 

TTUS 

   Normalised PV flow (ml/min/100g) 

 

0.3904* 

 

>0.999 

 

38.71 

(all parameters given as mean ± standard error of the mean) 

*(median value given as non-normally distributed) 

 
No significant differences in the repeated measurements were demonstrated in any 

parameters.  Graphical analysis of agreement is depicted in figure 2.9.  With the exception 

of arterial perfusion (r = 0.92, p <0.05; figure 2.9(b)) and distribution volume (r = 0.946, p 

<0.05; figure 2.8(h)), correlations between repeated measurements were poor and non-

significant. 
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Figure 2.9:  
Analysis of 
agreement of 
repeated 
hepatic 
perfusion 
measurement
s 
Bland-Altman and 
regression 
analysis of (a) 
arterial perfusion, 
(b) portal venous 
perfusion, (c) 
portal fraction, 
(d) distribution 
volume and (e) 
mean transit 
time. 
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2.5.5 PORTAL VENOUS LIGATION 

All five hepatic perfusion parameters obtained from DCE MRI imaging were assessed 

before and after PVL (summarised in table 2.3).  Paired analysis was performed, but 

unpaired tests using the larger cohort of baseline data are also presented to improve the 

power of the statistical interpretation. 

 

Table 2.3: Summary of DCE MRI hepatic perfusion changes post-PVL 
 

(a) Paired analysis 
 BASELINE 

(n = 4) 

POST-PVL 

(n = 4) 

MEDIAN 

DIFFERENCE 

Arterial perfusion (ml/min/100g) 108.2±8.91 37.60±11.44 75.20 

PV perfusion/normalised bulk PV 

flow (ml/min/100g) 

290.8±46.73 1.6±1.35 321.2 

Portal fraction (%) 71.54±4.70 10.35±9.53 65.71 

Distribution Volume (%) 18.91±1.48 12.21±1.84 6.845 

Mean Transit Time (seconds) 4.00±0.61 28.94±5.66 21.05 

 
(b) Unpaired analysis 

 BASELINE 

(n = 12) 

POST-PVL 

(n = 4) 

MEDIAN 

DIFFERENCE 

Arterial perfusion (ml/min/100g) 79.47±11.29 37.60±11.44 43.20 

PV perfusion/normalised bulk PV 

flow (ml/min/100g) 

321.2±43.95 1.6±1.35 302.8* 

Portal fraction (%) 77.75±3.72 10.35±9.53 77.90* 

Distribution Volume (%) 16.49±1.06 12.21±1.84 4.135 

Mean Transit Time (seconds) 3.58±0.30 28.94±5.66 21.45* 

(all parameters given as mean ± standard error of the mean) 

*(significant differences on Wilcoxon matched-pairs signed rank/Mann-Whitney testing p < 0.05) 

 
Changes post-PVL are illustrated with charts in figure 2.10.  Expected reductions in PV 

perfusion/normalised bulk PV flow, portal fraction and rises in MTT were found to be 

statistically significantly different (on unpaired analysis) after PVL when compared to 

baseline.  Paired analysis of arterial perfusion demonstrated a non-significant reduction 

(rather than the expected rise) after PVL.  Unpaired analysis of arterial perfusion (median 

difference after PVL = 43.20 ml/min/100g, p = 0.0742) approached significance.  No 

significant changes in DV were observed after PVL using both paired (median difference 

after PVL = 6.845%, p = 0.1250) and unpaired analyses (median difference after PVL = 

4.135%, p = 0.0956). 
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Figure 2.10: Baseline and post-PVL changes in hepatic perfusion 
parameters obtained with DCE MRI 
Paired analysis (n = 4) (shown on the left) and unpaired analysis (n = 12), (shown on the right) 
for (a) arterial perfusion, (b) portal venous perfusion, (c) portal fraction, (d) distribution volume 
and (e) mean transit time (continued on next page). 
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Figure 2.10: Baseline and post-PVL changes in hepatic perfusion parameters 
obtained with DCE MRI (continued). 
Paired analysis (n = 4) (shown on the left) and unpaired analysis (n = 12), (shown on the right) for 
(a) arterial perfusion, (b) portal venous perfusion, (c) portal fraction (on previous page); (d) 
distribution volume and (e) mean transit time. 
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2.5.6 VALIDATION 

Baseline DCE MRI PV perfusion (321.2±43.95 ml/min/100g, n = 12) was compared with 

TTUS normalised bulk PV flow (150.1±7.73 ml/min/100g, n = 6).  A significant difference 

was demonstrated (171.1±63.34 ml/min/100g, p < 0.05) illustrated with figure 2.11. 

 

 
Figure 2.11: Baseline DCE MRI portal venous perfusion compared with TTUS 
normalised bulk portal venous flow 
 
Reductions in DCE MRI PV perfusion (median -321.2 ml/min/100g, p < 0.05) and TTUS 

bulk PV flow (median -149.20 ml/min/100g, p < 0.05) were demonstrated after PVL 

(figure 2.12). 

 

(a) 

 

(b) 

 
Figure 2.12: Post-PVL reductions in (a) DCE MRI portal venous perfusion and 
(b) TTUS portal venous bulk flow 
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2.6 DISCUSSION 

 
Our data has shown that rat liver DCE MRI is feasible at 9.4T and can be used to estimate 

hepatic perfusion parameters.  Although numbers were small, no significant difference in 

repeat measurements was demonstrated.  The coefficient of repeatability statistics are 

high and generally poor correlations between repeat measurements were seen, with the 

exception of arterial perfusion and DV measurements. 

Post-PVL studies were encouraging.  Firstly, expected gross reductions in PV 

perfusion and portal fraction were demonstrated.  Unfortunately, no significant change in 

arterial perfusion was observed.  Although one would expect the HABR to become 

manifest in PVL, there are no published studies measuring hepatic arterial perfusion in the 

context of total PVL – the significance of this finding is therefore uncertain.  A rise in MTT 

was observed post-PVL, which would theoretically be expected given the lower perfusing 

volumes in PVL.  Significant changes were demonstrated in all parameters except DV.  

Although the p-value approaches significance in both paired and unpaired analysis, the 

non-significant difference is encouraging as one would expect the DV to remain constant 

regardless of PVL. 

DCE MRI PV perfusion measurements demonstrated gross over-estimation of 

absolute PV perfusion.  While absolute quantification of perfusion may be inaccurate, it is 

encouraging that the mean portal fraction (77.75±3.72%; n = 12) matches generally 

accepted values in physiology texts of approximately 75%.  Expected reductions in TTUS 

measured bulk PV flow were demonstrated post-PVL thereby validating the PVL 

procedure. 

 

To assess DCE MRI perfusion parameters better, we have compared our absolute 

perfusion measurements with other DCE MRI measurements in the literature. 
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Table 2.4: Absolute perfusion measurements with DCE MRI compared with 
literature reported values 
 

STUDY SPECIES ARTERIAL 

PERFUSION 
(ml/min/100

g) 

PV 

PERFUSION 
(ml/min/100

g) 

PORTAL 

FRACTION 

(%) 

DV 

(%) 

MTT 

(seconds) 

Our study 

DCE MRI 

TTUS 

Sprague-

Dawley rats 

 

79.47±11.29 

- 

 

321.2±43.95 

150.1±7.73 

 

77.75±3.72 

- 

 

16.49±1.06 

- 

 

3.58±0.30 

- 

Kim et al. [142] 

DCE MRI 
Wistar rats 

 

340.54† 

 

1021.62† 

 

75 

 

63 

 

3.7 

Materne et al. [140] 

DCE MRI 

Microspheres 

New Zealand 

White rabbits 

 

23±13 

20±10 

 

84±32 

73±35 

 

78.50 

 

13.0±3.7 

 

8.9±4.1 

Annet et al. [82] 

DCE MRI 

Doppler US 

Humans, non-

cirrhotic 

chronic liver 

disease 

 

8.78±5.38 

- 

 

56.39±27.82 

644.9±213.2 

 

82.58±14.88 

- 

 

11.43±4.48 

- 

 

12.7±8.6 

- 

Hagiwara et al. [141] 

DCE MRI 

Humans, non-

fibrotic chonic 

liver disease 

 

6.0±5.1 

 

126.3±66.7 

 

92.4±7.9 

 

17.3±3.9 

 

9.3±4.3 

†(Unpublished values.  These were calculated from published values of DV, MTT and portal fraction). 

 
Published DCE MRI data with dual input single compartment modelling in healthy rats is 

sparse.  In the Kim et al. study only portal fraction, DV and MTT are quoted, however when 

using these to infer the inflow constants (see above), unreasonable estimates of hepatic 

perfusion parameters are generated.  The validation data from the first DCE MRI study 

using the dual input single compartment model in rabbits, including microsphere 

validation is included for comparison.  Derived relative perfusion parameters (portal 

fraction, DV and MTT) are also presented, as is human data. 

Eye-balling data in figure 2.10(a) and 2.10(b), a significant issue with DCE MRI 

derived perfusion parameters is the large variance of measurements, specifically absolute 

parameters such as 𝑘1𝑎, 𝑘1𝑝 and 𝑘2.  This is striking when compared with TTUS, for 

example (figure 2.11).  DCE MRI is a complex process and small errors introduced at each 

stage in the methodology are likely to propagate into more significant overall errors in 

estimates of hepatic perfusion parameters.  Methodological considerations at each stage 

are reviewed below in turn. 

2.6.1 DYNAMIC CONTRAST ENHANCED MRI 

Accurate measurement of enhancement over the vascular ROIs to derive consistent VIFs is 

essential for precise pharmacokinetic quantitation.  This has however been shown to be 

challenging because of(i) the sensitivity of gradient echo imaging to inflow effects [310] 

and (ii) the rapid changes in contrast agent concentration that occur during the first pass 

peak of the bolus injection, both of which are particular issues for ROIs placed over high 

flow vessels such as the aorta.  The compromise between the higher temporal resolution 

required for the VIF and the high spatial resolution required for an accurate parenchymal 
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enhancement curve represents an even bigger challenge in small animals particularly 

when imaging at higher field strengths. 

 To minimise inflow effects, a global saturation pulse was applied before each 

saturation-recovery measurement and each DCE imaging acquisition.  Although inflow 

effects will have been minimised, measured signal will still have been degraded by inflow 

effects thereby affecting the quality of both baseline vascular ROI T1 measurements but 

also measured DCE VIFs.  

As previously demonstrated (figure 2.4(a)), a loss of signal intensity is observed at 

higher contrast agent concentrations when T2* effects predominate in their contribution 

to the signal intensity.  By way of illustration, in an early experiment in which an undiluted 

bolus of Gd-DOTA was given, no rise in signal intensity was seen after administration, 

furthermore circulating high concentrations of blood pool contrast agent thereafter 

ensured persistent low aortic ROI signal intensity (figure 2.13). 

 

 
Figure 2.13: Aortic ROI signal intensity after administration of undiluted 
contrast agent 
No rise in signal intensity is recorded, indeed high concentrations of circulating contrast agent after 
the bolus is given ensure that T2* effects predominate in their contribution to post-bolus ROI signal 
intensity. 

 
A more dilute bolus would mitigate these effects (figure 2.14), but a bolus that would be 

too dilute would compromise the signal-to-noise ratio, especially at lower concentrations 

as observed in ROIs over the liver parenchyma.  Additionally the rate of bolus 

administration will also affect maximal aortic contrast agent concentration.  A rapidly 

administered bolus will result in a higher peak first-pass contrast agent concentration and 

(if the temporal resolution is insufficient) result in inadequate sampling of the VIF peak.  A 

slowly administered bolus will result in a lower maximal concentration, but will 

spread/smear the VIF.  A smeared VIF is acceptable as long as (a) the VIF is not distorted 

by second and third passes of the bolus and (b) the arterial and portal venous VIFs are of 
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sufficiently different form, thereby optimising pharmacokinetic modelling (discussed later 

in the “perfusion parameter estimation” section).The “ideal bolus” would therefore be of 

small volume, high concentration and administered as rapidly as possible. 

 

(a) 

 

(b)

 
Figure 2.14: Aortic ROI signal intensity after administration of (a) 1:20 
dilution and (b) 1:40 dilution of Gd-DOTA 
Note how the peak ROI enhancement appears clipped in (a) compared to (b), presumably 
due to T2 effects from the higher aortic ROI concentrations observed in (a). 
 
To optimise the bolus protocol, several pilot data sets were collected to finalise the 

protocol before collecting the data presented in this study.   The final protocol reflects 

these challenges and compromises – a dilute bolus (1:40 dilution of Gd-DOTA) was 

administered slowly (over 5-10 seconds).  For practical reasons, a hand injection was used 

–this was suboptimal and will have introduced variation in both inter- and intra-bolus rate 

of administration. 

Additionally, although imaging acquisitions were respiratory gated, some 

corruption from motion artefact will still have occurred.  Motion artefact is best 

appreciated (and corrected for) on images obtained in the coronal or sagittal plane.  Our 

data was obtained with axial imaging and any motion correction procedures were not 

therefore possible. 

2.6.2 T1 MEASUREMENTS 

For precise absolute quantitation, especially between different subjects, signal intensity 

calibration and the process of calculating absolute ROI contrast agent concentration, must 

be robust and accurate.  R1 is fixed across all experiments, so any errors introduced at this 

stage will impact absolute quantification, but are unlikely to account for the wide inter-

subject variation.  ROI-based T1 measurements must however be accurate and it is here 

that there is the biggest potential for error.  We have used the saturation-recovery method 

to estimate T1, which relies on the accurate application of a 90º pulse to efficiently 

eliminate any longitudinal magnetisation affecting the measured signal.  When imaging a 
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volume such as the liver, any variations in 𝐵1 will alter the precision of the pulse angle 

applied thereby producing errors in T1 measurements in certain parts of the imaging slice. 

Additionally, steady-state magnetisation has to potential to be affected by 

respiratory triggering, thereby affecting both T1 quantification and T1 signal in 

respiratory gated post-contrast images.  Finally, errors in T1 measurements have the 

potential to propagate into perfusion parameters estimated from pharmacokinetic 

modelling [311]. 

2.6.3 PERFUSION PARAMETER ESTIMATION 

We elected to use the dual input single compartment model to estimate perfusion 

parameters from DCE MRI data, limitations of which were exposed by some of our data 

sets.  Dual input single compartment modelling was achieved using a non-linear least 

squares fitting algorithm, by convolving each VIF with the residue function: 

 
𝐶𝐿(𝑡) = 𝑘1𝑎 ∙ 𝐶𝑎(𝑡) ⨂ 𝑒−𝑘2𝑡 + 𝑘1𝑝 ∙ 𝐶𝑝(𝑡) ⨂ 𝑒−𝑘2𝑡 

(Equation 2.8) 
 
Good fits were obtained with both pre and post-PVL DCE data sets, although data (n = 1) 

was discarded due to unreasonable fitting (figure 2.15).  Our experience from this and 

pilot data was that this phenomenon was more likely to occur when both 𝐶𝑎(𝑡)and 𝐶𝑝(𝑡) 

were not sufficiently morphologically distinct from one-another, thereby underlining the 

importance of optimising the contrast agent bolus protocol. 

 

  

Figure 2.15: Failure of the dual-input single compartment model 
Contrast agent concentration curves on the left (a), with corresponding model fit for 𝐶𝐿(𝑡) on the 
right (b).  Note how the fitted curve on the right is visibly discrepant from the observed 
parenchymal enhancement. 

 
Of course, to accurately model the parenchymal enhancement, both vascular input 

functions (VIFs) need to be shifted in time to account for the delay between the 

enhancement in the aortic ROI and arrival of the contrast in the hepatic parenchymal ROI.  

To incorporate this delay, we modify the model so that 𝐶𝐿(0) = 0: 
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𝐶𝐿(𝑡) =  ∫ [𝑘1𝑎𝐶𝑎(𝑡′ −  𝜏𝑎) + 𝑘1𝑝𝐶𝑝(𝑡′ − 𝜏𝑝)]𝑒−𝑘2(𝑡−𝑡′) 𝑑𝑡
𝑡

0

′ 

(Equation 2.9) 
 
In this study, the parameters 𝜏𝑎 and 𝜏𝑝 were assumed to be negligible and therefore equal 

to zero, but a variety of different approaches to 𝜏𝑎 and 𝜏𝑝 have been adopted in the 

literature.  Some studies have chosen to fix 𝜏𝑎 and 𝜏𝑝 as equal constants across all subjects 

(e.g. two seconds)[140], others have chosen to model only 𝜏𝑎[141]and others have 

included both 𝜏𝑎 and 𝜏𝑝 as variables to fit in the model[142].  Several authors have 

concluded that even small changes in the delay factors (especially 𝜏𝑎), can result in major 

alterations of the estimated hepatic perfusion parameters[312, 313].  What is also clear is 

that the more parameters are estimated from the same data, the higher the risk of errors 

and unreasonable model-derived values of estimated perfusion parameters.  The decision 

to set both delay parameters to zero in this study was made to simplify the modelling 

process, however any robust attempt at dual input single compartment modelling must 

find a consistent and scientifically acceptable method of dealing with these delay 

parameters. 

 Finally, the dual input single compartment model itself was originally developed to 

demonstrate regional differences in perfusion parameters, specifically in the context of 

lesion characterisation.  This is a more sound application of the model, reliant on the 

ability to detect relative regional changes in hepatic perfusion parameters, without the 

need for accurate absolute quantification.  Several studies measuring absolute bulk 

parenchymal perfusion have been performed, but as our study demonstrates – absolute 

quantification is fraught with difficulty.  The application of the model in the context of PVL 

is also new and untested.  The model coped well measuring reductions in PV perfusion 

post-PVL.  But post-PVL, the model would have had to fit data from a theoretically similar 

aortic VIF to a smaller parenchymal enhancement curve.  This modelling peculiarity may 

well explain the observed reduction in estimated parenchymal arterial perfusion (rather 

than the expected hepatic arterial buffer response). 

2.6.4 PHYSIOLOGICAL FACTORS 

Both HA and PV blood flow are also dependent on systemic mean arterial pressure and 

cardiac output, both of which were not evaluated in this study.  Laparotomy for example, is 

associated with an unavoidable decline in mean arterial pressure (although both baseline 

and post-PVL data were recorded after laparotomy).  Anaesthesia itself is known to have 

profound systemic and liver-specific haemodynamic effects.  Inhaled anaesthesia over 

extended time periods, as administered in this study will lead to increased insensible 
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losses and almost all anaesthetic agents including injectable agents, are associated with 

reductions in mean arterial pressure.  Agents such as halothane for example, are known to 

precipitate reductions in both arterial and portal venous flow in humans, rodents and 

rodent models of cirrhosis [314-317].  Isoflurane (used in this study) has been 

demonstrated both in humans and rodent models of cirrhosis to be less disruptive to 

hepatic blood flow than other inhaled and injectable anaesthetics [315, 318, 319]. 

2.6.5 FUTURE DEVELOPMENTS 

There are a number of strategies that can be taken to overcome the issues identified 

above.  With regards to the imaging protocol, improved VIF measurements can be 

achieved by minimising inflow effects through better quality global saturation pulses and 

improvements in the bolus protocol.  Intra- and inter-bolus variation can be eliminated by 

using a syringe driver to deliver the bolus at a fixed rate.  To determine this, experiments 

optimising bolus concentration and rate need to be performed.  Secondly the compromise 

between improved VIF measurement and poor parenchymal SNR can be overcome using a 

so-called “dual-bolus” approach[179, 180, 320, 321].  An initial dilute bolus can be 

administered quickly to obtain the VIFs.  A second higher concentration bolus can then be 

administered to optimise the SNR of parenchymal enhancement data.  The dilute bolus VIF 

can then be scaled to match the expected VIF from the higher concentration parenchymal 

bolus, before modelling the data. 

There are also a number of alternative approaches to measuring the intrinsic T1 

relaxivity of the tissues and vascular ROIs.  The “inversion-recovery” method for example, 

widely accepted to be the more robust, “gold-standard” approach to measuring T1 could 

be used. 

 Alterations to the modelling process may also help yield more consistent, accurate 

absolute quantification of perfusion.  A protocol for the estimation of the delay parameters 

(𝜏𝑎and 𝜏𝑝) in a scientifically acceptable way will need to be developed.  Alternatively, 

there are several alternative models in the literature, such as the Scharf et al. model[134, 

135], the “hepatic perfusion index” model[138, 139], and not least the dual input dual 

compartment model[149, 150], all of which may yet yield more robust, useful and 

repeatable parameters in the context of global perfusion. 

Finally, future experiments could include some measurement of systemic 

haemodynamics, ideally through monitoring mean arterial pressure (via carotid 

catheterisation) or by measuring cardiac output, potentially using MR methods.  
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2.7 CONCLUSIONS 

 
This is the first study to our knowledge that has used DCE MRI with dual input single 

compartment modelling to measure hepatic perfusion parameters in rodents at 9.4T and 

the first study of in vivo repeatability and changes post-complete PVL.  Our early studies 

have shown that DCE MRI is feasible in healthy rodents at high MR field strength and that 

estimated hepatic perfusion parameters are repeatable, but show large variance.  PVL 

elicited reductions in measured PV perfusion and combined arterial and PV parenchymal 

perfusion.  The hepatic arterial buffer response however, was not observed post-PVL.  

Finally, absolute quantification of PV perfusion with current DCE MRI protocols did not 

agree with invasive TTUS validation. 
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2.8 CLOSING COMMENTS 

 
DCE MRI was an ideal method to initiate studies of haemodynamic assessment, having the 

important advantage of being based upon standard anatomical imaging sequences and 

therefore mitigating the need for development of new and more complex MRI sequences 

at this early stage.  While conceptually simple, our experience of DCE MRI has highlighted 

some of the major challenges associated with the method.  Moving forward, protocol 

refinements are required to tackle the challenges identified in this chapter.  We have 

proposed several strategies that could be used to address these challenges, which once 

implemented would be important in establishing DCE MRI as a robust preclinical method 

for the quantification of hepatic perfusion. 
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CHAPTER 3 
 

TROUBLESHOOTING FOR PRECLINICAL 

DCE MRI 

 

 

 

 

 

 

 

“…And every feeling 
or impulse 

grew in your machinery, 
received some drop 

of your tireless 
elaboration…” 

 
- Ode to the liver [2]. 
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3.1 INTRODUCTION 

 
In Chapter 2, it was demonstrated that in vivo dynamic contrast enhanced (DCE) MRI with 

dual input single compartment modelling was feasible in rodents at 9.4T.  DCE MRI 

derived perfusion parameters demonstrated a large variance and invasive validation with 

transit-time ultrasound (TTUS) found absolute quantification with DCE MRI to be 

inaccurate.  To address these challenges, a number of potential strategies were evaluated.  

These broadly fell into the following 3 categories: (a) alternative methods for T1 

measurement, (b) novel bolus protocols and (c) modifications and alternative approaches 

to the DCE MRI pharmacokinetic modelling.  In the final part of this chapter we review 

why the DCE MRI approach was ultimately abandoned in favour of other, less error prone 

approaches. 

3.2 AUTHOR CONTRIBUTIONS 

 
In fulfilment of the aims given for each section in this Chapter, I: (a) prepared and 

conducted all animal scanning experiments; (b) developed Matlab code for quantification 

of inversion recovery and multi-flip angle T1 acquisitions; (c) developed and built the 

syringe driver arrangement; (d) developed the protocols and conducted the experiments 

for alternative contrast agent bolus protocols; (e) conceptualised novel methods for 

handling VIF delays; (f) developed all the Matlab code for alternative methods of 

pharmacokinetic quantification, including alternative methods of handling VIF delays; (g) 

collected and analysed all the data; and (h) prepared all the material contained within this 

chapter. 

Alan Bainbridge developed MR sequences and helped with scanning.  He 

developed the quantification method for saturation recovery T1 quantification and the 

original Matlab code for dual input single compartment modelling using no VIF delays.  

For establishment of small animal intravenous access, I received help from either Val 

Taylor, Nathan Davies or Abe Habtieson.  Multi-flip angle T1 quantification was adapted 

from Matlab code originally written by Catherine Morgan. 
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3.3 ALTERNATIVE T1 MEASUREMENT STRATEGIES 

3.3.1 BACKGROUND 

T1 refers to the relaxation time for recovery of magnetisation along the z-axis.  The 

recovery time is dependent on the chemical composition and environment of protons in a 

given tissue, such that each tissue (arterial blood, portal venous blood, liver parenchyma, 

etc.) will have a specific T1.  These values are likely to change in pathology as a result of 

secondary alterations in the chemical composition of tissues.  Although there has been 

some interest in evaluating alterations in intrinsic tissue T1 in the context of hepatic 

fibrosis [322-324], a reliable measurement of T1 is essential in any DCE MRI experiment 

to accurately quantify the signal intensity change once a gadolinium based contrast agent 

has been administered.  This is because raw pre-contrast signal intensity reflects tissue T1 

and any calculation of subsequent contrast agent concentration would need to take this 

into account. 

There are several approaches to measuring T1, including using saturation 

recovery described in section 2.4.5, inversion recovery and gradient-echo multi-flip angle 

methodologies.  The aim of this section was to apply each of these approaches to the rat 

liver in vivo at 9.4T and to compare absolute T1 measurements from each approach with 

literature derived values, with a view to finalising a robust protocol for baseline T1 

measurements as part of a DCE MRI protocol.  
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3.3.2 MATERIALS AND METHODS 

3.3.2.1 Experimental subjects 

All experiments were conducted according to the Home Office guidelines under the UK 

Animals in Scientific Procedures Act 1986.  Animals were maintained as per guidelines and 

approval of the ethical committee for animal care of University College London.  

Experiments were performed on healthy male Sprague-Dawley rats (Charles River UK, 

Margate, UK) with normal liver function.  Animals were housed in cages at 22-23ºC, ~50% 

humidity and with 12 hours of light and ad libitum access to water and rat feed.  Within 

each cohort, subjects were randomly selected at the time of removal from the cage.  Any 

adverse events and subsequent protocol modifications were recorded and reported in the 

results. 

3.3.2.2 Sample size 

A pragmatic approach to sample size was used given that data collection during these 

studies was undertaken for the purpose of protocol development.  As T1 measurements 

were undertaken before each DCE MRI study, data for this section was accrued from other 

experiments (figure 3.1). 

3.3.2.3 Animal preparation 

After induction with isoflurane, a catheter was sited in either the carotid or jugular vessel.  

The anaesthetised animal was then sited in a 9.4T Agilent scanner (Oxford, UK) with a 

rectal probe for temperature monitoring.  Core body temperature was maintained 

between 36 and 38ºC using circulating warm water pipes and warm air. 

3.3.2.4 Saturation recovery T1 measurement 

Sixteen subjects underwent saturation recovery (SR) T1 measurements.  These 

measurements were undertaken as described in section 2.4.5.  After initial anatomical 

imaging, a single axial slice was selected that enabled good visualisation of the portal vein 

(PV), aorta and a large volume of hepatic parenchyma.  The selected slice was imaged 

repeatedly following a global saturation pulse with a 90º pulse gradient echo sequence at 

a range of different saturation times (TS), from 100 ms to 10100 ms, with 200 ms 

increments.  Centric-ordered k-space sampling was used.  Any motion corrupted images 

were discarded from the data set.  For each region-of-interest (ROI), mean signal intensity 

(𝑀𝑥𝑦) was plotted against each TS before modelling using least-squares fitting with 

equation 3.1 to estimate 𝑀0 and T1. 

𝑀𝑥𝑦 = 𝑀0(1 − 𝑒−
𝑇𝑆
𝑇1) 

(Equation 3.1) 
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Liver parenchymal T1 was recorded as the average T1 from each of the parenchymal ROIs. 

3.3.2.5 Inversion recovery T1 measurement 

Seventeen subjects underwent inversion recovery (IR) T1 measurements.  After initial 

anatomical imaging, a single axial slice was selected that enabled good visualisation of the 

portal vein, aorta and a large volume of hepatic parenchyma.  The selected slice was 

imaged repeatedly following a global saturation pulse using a 180º inversion pulse, 

followed by a 90º pulse separated by varying delays/inversion times (TI), ranging from 50 

ms to 3000 ms.  Centric-ordered k-space sampling was used.  Between each acquisition, a 

ten second delay was introduced to ensure magnetisation had fully recovered and that 

imaged spins were fully relaxed at the start of each acquisition.  A total of 17 images were 

obtained and any motion corrupted images were discarded from the data set.  For each 

ROI, mean signal intensity (𝑀𝑧) was plotted against each TI before modelling using least-

squares fitting with equation 3.2 to estimate 𝑀0 and T1. 

𝑀𝑧 = 𝑀0(1 − 2𝑒−
𝑇𝐼
𝑇1) 

(Equation 3.2) 
 
Liver parenchymal T1 was recorded as the average T1 from each of the parenchymal ROIs. 

3.3.2.6 Gradient echo multi-flip angle T1 measurement 

Five subjects underwent gradient echo multi-flip angle (MFA) T1 measurements.  

Respiratory-gated 3D spoiled gradient echo images were obtained repeatedly over the 

entire abdominal volume at flip angles of 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30 and 40º, 

with a constant repetition time (TR) of 2.796 ms.  Slices were then selected that enabled 

good visualisation of the portal vein, aorta and a large volume of hepatic parenchyma.  For 

each ROI, mean signal intensity (𝑀𝑥𝑦) was plotted against each flip angle (θ) before 

modelling using non-linear Levenberg-Marquardt fitting [325] with the Ernst function 

(equation 3.3) to estimate 𝑀0 and T1. 

𝑀𝑥𝑦 = 𝑀0 sin 𝜃 (
1 − 𝑒−

𝑇𝑅
𝑇1

1 − cos 𝜃𝑒−
𝑇𝑅
𝑇1

) 

(Equation 3.3) 
 
Liver parenchymal T1 was recorded as the average T1 from each of the parenchymal ROIs. 
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3.3.2.7 Statistical analysis 

Kolmogorov-Smirnov tests were used to confirm normality of variable distributions.  One-

way analysis of variance (ANOVA) was used to compare mean aortic, portal venous and 

liver parenchymal T1 values.  Unpaired t-tests were used to compare T1 measurement 

methods with SR derived values, as this was the original method used.  One-sample t-tests 

were then used to compare each T1 measurement method with averaged 9.4T T1 values 

obtained from published literature [326-328].  The threshold of statistical significance was 

defined to be p < 0.05. 

 
T1 measurement cohort 

n = 33 
     

Saturation recovery 
method 
n = 16 

 
Inversion recovery 

method 
n = 17 

 
Multi-flip angle method 

n = 5 

  

Figure 3.1: Schematic diagram demonstrating cohort sizes 

Data for T1 measurement, included saturation recovery datasets from previous T1 
measurements underpinning quantification presented in Chapter 2 (n = 13).  The multi-
flip angle data (n = 5) was measured in the subjects which were undergoing inversion 
recovery T1 measurement.  The large inversion recovery method sample size is justified 
by developmental work that was taking place for methods not presented in this thesis. 
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3.3.3 RESULTS 

Regions of interest were drawn over the aorta, portal vein and hepatic parenchyma as 

shown in figure 3.2 (SR and IR methods) and figure 3.5 (MFA method).  An example of the 

curve fitting procedure to determine T1 measurements using the SR, IR and MFA methods 

is illustrated in figures 3.3, 3.4 and 3.6. 

 

 

 
 

Figure 3.2: Example of ROI 
placement for T1 measurement 
using the saturation recovery and 
inversion recovery method 
Aortic and portal venous ROIs as shown.  
Parenchymal data was averaged across the 
ROIs shown in white.  This figure was 
replicated from figure 2.6. 

 

 
 

  
Figure 3.3: (a) Measurement of ROI T1 times using the saturation recovery 
method, with (b) specific example of aortic ROI fitting to determine T1 
(a) The slice shown in figure 3.2 was imaged at a variety of saturation times to determine the T1 for 
each ROI.  The curve fit for the aortic ROI data is shown in (b) (T1 = 1587 milliseconds).  These 
diagrams were replicated from figure 2.7. 
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Figure 3.4: (a) Measurement of ROI T1 times using the inversion recovery 
method, with (b) specific example of aortic ROI fitting to determine T1 
(a) A slice similar to that shown in figure 3.2 was imaged at a variety of inversion times to 
determine the T1 for each ROI.  The curve fit for the aortic ROI data is shown in (b) (T1 = 1500 
milliseconds). 
 

 

 
 

 

 

Figure 3.5: Example of ROI placement for T1 measurement using the gradient 
echo multi-flip angle method 
Separate slices were selected for placement of ROIs for the (a) hepatic parenchyma, portal vein and 
(b) aorta.  Parenchymal data was averaged across the parenchymal ROIs. 
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Figure 3.6: (a) Measurement of ROI T1 times using the gradient echo multi-
flip angle method, with (b) specific example of aortic ROI fitting to determine 
T1 
(a) The slices shown in figure 3.5 were imaged with a variety of flip angles to determine the T1 for 
each ROI.  The curve fit for the aortic ROI data is shown in (b) (T1 = 723 milliseconds). 
 

3.3.3.1 Comparative analysis 

Significant differences were demonstrated between measurements methods for all 3 ROIs 

(F = 29.99; p < 0.0001) (figure 3.7).  Mean SR aortic T1 (1622±42.88 ms) was just 

significantly different from IR aortic T1 (1444±72.80 ms; p = 0.0408) and MFA aortic T1 

(506.5±108.8 ms; p < 0.0001).  Aortic T1 values obtained with any of the three methods 

were significantly different from literature derived mean values for blood T1 (2365 ms).  

Mean SR PV T1 (1711±39.89 ms) was not significantly different from IR PV T1 

(1622±93.04 ms; p = 0.6248) but was significantly different from MFA PV T1 (898.7±135.2 

ms; p < 0.0001).  PV T1 values obtained with any of the three methods were significantly 

different from literature derived mean values for blood T1 (2365 ms).  Mean SR liver T1 

(1312±37.46 ms) was significantly different from IR liver T1 (1124±30.59 ms; p = 0.0005) 

and MFA liver T1 (395.9±136.2 ms; p < 0.0001).  Liver T1 values obtained with the IR 

method were not significantly different from literature derived mean values for hepatic 

parenchymal T1 (1075 ms; p = 0.1266), but were significantly different when using SR and 

MFA methods.  These data are summarised in table 3.1. 
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 Figure 3.7: Measured T1 values 
from ROIs placed over the (a) 
aorta, (b) portal vein and (c) liver 
parenchyma 
One-way ANOVA demonstrated significant 
differences between all three methods for 
all three ROIs.  Significant differences 
between saturation recovery and 
alternative methods were demonstrated for 
all ROIs except between inversion recovery 
and saturation recovery methods for portal 
venous ROIs. 

 
 

Table 3.1: Summary of T1 measurement statistics and literature comparison 

 
 SATURATION RECOVERY 

METHOD 
(MILLISECONDS) 

INVERSION RECOVERY 

METHOD 
(MILLISECONDS) 

GRADIENT ECHO 

MULTI-FLIP ANGLE 

METHOD 
(MILLISECONDS) 

LITERATURE DERIVED 

T1 AVERAGES 
(MILLISECONDS) 

Aorta 1622±42.88* 1444±72.80* 506.5±108.8* 2365 
PV 1711±39.89* 1662±93.04* 898.7±135.2* 2365 

Liver 1312±37.46* 1124±30.59 395.9±136.2* 1075 

(all parameters given as mean ± standard error of the mean; *p < 0.05 against literature derived 
average value) 
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3.3.4 DISCUSSION 

We have demonstrated the potential for T1 measurements with alternative approaches 

and shown variation in their T1 estimates for different tissues at 9.4T.  Different 

approaches all estimate T1 with varying degrees of accuracy and possess differing 

strengths and weaknesses.  SR methods are relatively simple, but data collection can be 

more time consuming, particularly relative to gradient echo MFA methods.  This is of 

course, less of an issue in a preclinical context.  Inhomogeneity in B1 particularly at high 

field strength, will result in flip angles other than 90º being applied in some parts of the 

imaging slice, thereby resulting in inaccuracies in SR T1 estimation.  IR methods are 

considered the “gold-standard” approach to T1 measurement and while even slower than 

SR methods, are able to overcome issues of B1 inhomogeneity by using two repeated 

pulses separated by the TI.  Finally gradient echo MFA methods have the advantage of 

being able to collect large volumes of data quickly (hence 3D volumes were obtained in 

our study), but are especially susceptible to B1 errors.  Important features of raw MFA data 

are obtained at smaller flip angles where B1 errors are likely to be more pronounced, 

which may well account for the poor data fits that were observed.  This may also explain 

why SR data obtained at higher flip angles, though subject to B1 error appeared more 

robust.  The difficulties with MFA fitting were apparent early on and it was for this reason 

that this approach was abandoned after only n = 5 data sets were obtained. 

 Interestingly, the variance of SR T1 measurements was comparable or superior to 

the so-called “gold-standard” IR T1 measurements.  Although mean values were 

significantly different for liver parenchyma and just significant for aortic blood, there was 

no statistically significant difference between the methods for estimation of PV blood T1.  

Perhaps even more surprisingly, comparison with literature derived values for blood T1, 

though significantly different are still less different than IR method derived T1 values. 

 Striking and disappointing differences between our estimates and literature 

derived blood T1 values were recorded [326, 328].  Both studies that have published 

similar blood T1 values at high field strength have done so in different species (bovine and 

human), both in and ex vivo, and at different field strengths to demonstrate a linear 

relationship between blood T1 and B0 field strength.  It is has been demonstrated that 

blood T1 is dependent on temperature and haematocrit but not oxygenation [326, 329].  

Our experience however, demonstrated consistent differences between aortic and PV 

blood T1 values, across all three methods, where both temperature and haematocrit 

would have remained constant.  An important consideration with in vivo imaging is 

presence of inflow effects [310, 330, 331].  Fresh blood flowing into the imaging slice has 

the potential to alter the signal intensity and actual flip angle experienced in the ROI.  
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Blood in the aorta and PV also have blood flowing at very differing velocities thereby 

introducing different errors into each vessel measurement.  Although a global saturation 

pulse was applied before each SR/IR acquisition to address this issue, inflow effects may 

well have contributed to the intra-subject discrepancy between vessel T1 values and the 

observed difference between these and literature based T1 values. 

 Finally, a formal assessment of repeatability and reproducibility would be an 

important part of determining which method of T1 measurement to favour.  Accuracy of 

SR and gradient echo MFA methods could be improved with B1 mapping and approaches 

to improve the efficiency of the global saturation pulse could go some way to producing 

more robust and accurate T1 measurements. 
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3.3.5 CONCLUSION 

The decision was made to use the IR method for T1 measurement.  This method was 

favoured because of its ability to avoid inaccuracies introduced by B1 errors.  Although 

potentially more time consuming, this was deemed less of an issue for preclinical 

experiments. 
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3.4 BOLUS PROTOCOLS 

3.4.1 BACKGROUND 

Accurate sampling of the vascular input functions (VIFs) is essential to successful 

pharmacokinetic modelling, but is especially challenging with high field strength imaging.  

The ideal bolus maximises VIF recorded signal/concentration, is administered quickly to 

maximise the distinction between the arterial input function (AIF) and portal venous input 

function (PVIF) and delivers parenchymal contrast agent (CA) concentrations that 

maximise parenchymal signal-to-noise ratio (SNR).  In our previous attempts, a small, very 

dilute bolus (1:40 dilution of Gd-DOTA) was administered over 5-10 seconds with a hand 

injection.  Manual injections introduce both inter- and intra-bolus variation in 

administration rate and undermine controlled experiments to determine the optimal 

bolus concentration.  To address this, a syringe driver was introduced into the protocol.  

From previous experiments described in chapter 2, the occurrence of T2* effects at higher 

concentrations (figure 2.13) called for the use of very dilute CA boluses for AIF 

measurement, while the maximisation of parenchymal SNR would call for more 

concentrated CA boluses.  A possible strategy to address these conflicting requirements is 

the use of a dual-bolus approach: an initial more dilute bolus can be administered for 

optimal VIF sampling and a second more concentrated bolus can be administered for 

optimising the SNR from parenchymal enhancement [179, 180, 320, 321, 332, 333].  The 

dilute bolus can then be scaled to match the expected VIF from the higher concentration 

parenchymal bolus before pharmacokinetic modelling. 

The aim of this section was to setup a syringe driver arrangement to deliver CA 

boluses and determine the optimum Gd-DOTA bolus protocol for DCE MRI at 9.4T, 

specifically determining the optimum bolus (i) infusion rate, (ii) concentration and (iii) the 

potential for dual-bolus methods. 
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3.4.2 MATERIALS AND METHODS 

Experimental subjects and animal preparation was as described in section 3.3.2. 

3.4.2.1 Sample size 

A pragmatic approach to sample size was used given that data collection during these 

studies was undertaken for the purpose of protocol development.  As parameter 

variability with our protocol on our scanning system was unknown, data was evaluated 

incrementally with a view to inform protocol development and provide preliminary 

characterisation of parameters for future planning of adequately powered studies. 

3.4.2.2 Dynamic Contrast Enhanced MRI 

Imaging was performed using a 9.4T Agilent scanner (Oxford, UK).  Data was acquired as 

described in section 2.4.4.  After initial baseline T1 measurements using the IR method 

(see above), a bolus of diluted Gd-DOTA (gadoteratedimeglumine, Dotarem®, Guerbet, 

Roissy, France) was primed into a 0.58 mm internal diameter fine bore polyethylene line 

(Portex, Smiths Medical, Kent, England) as shown in figure 3.7.  Ten seconds after dynamic 

imaging began, a 300 μL heparinised saline flush was administered using an MRI 

compatible syringe driver (Harvard Apparatus, Kent, England).  Sequential dynamic 

images were obtained for a total of 3 minutes.  CA concentration was measured using 

methods described in section 2.4.6. 

3.4.2.3 Bolus protocols 

Experiments were performed in n = 5 subjects.  The first four subjects underwent 

experiments with progressively increasing CA bolus concentrations (0.0001, 0.005, 0.01, 

0.02, 0.03, 0.04, 0.05, 0.06, 0.07 and 0.1 mmol/kg, based on a 250g animal).  The bolus size 

was fixed at 100 μL, and a 20-40 minute delay was used between subsequent DCE studies 

to allow adequate CA washout and recovery of tissue and vascular pool T1.  The delay was 

determined by assessment of T1 maps obtained at regular intervals after a bolus had been 

administered.  To prevent physiological disruption as a result of large volume of CA 

administration and extended periods of anaesthesia, no more than four boluses were 

administered to each subject.  Experiments were conducted with an infusion rate of 4 

ml/min (a 4.5 second injection) and 2 ml/min (a 9 second injection) for CA bolus 

concentrations above 0.04 mmol/kg. 

3.4.2.4 Dual-bolus DCE MRI 

The potential for the dual bolus approach was assessed in two ways.  The first involved 

upscaling of more diluted CA bolus VIFs [333], to compare these with recorded higher 

concentration VIFs in the same subject.  The second involved analysing data from the final 
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two subjects who received a lower concentration pre-bolus for VIF sampling and a higher 

concentration bolus for parenchymal enhancement.  VIF data obtained after the pre-bolus 

was linearly up-scaled by the ratio of pre-bolus to main bolus CA concentration.  

Pharmacokinetic modelling using the dual-input single compartment was then applied 

using the methods described in section 2.4.7. 

3.4.2.5 Statistical analysis 

Manual delays were added to VIFs to take into account varying contrast bolus arrival 

delays to allow VIF comparisons.  Given the non-parametric data, Kruskal-Wallis tests 

were used when more than two VIFs were being compared.  Direct comparisons between 

two VIFs were performed using the Mann-Whitney U-test.  The presence of T2* effects was 

determined by visual inspection.  Wilcoxon matched-pairs signed rank tests were 

performed to assess the consistency between observed higher CA bolus concentration 

VIFs and upscaled dilute CA bolus VIFs.  Upscaled dilute CA bolus VIFs were then modelled 

with parenchymal enhancement obtained after higher concentration CA bolus using the 

dual input single compartment model.  The threshold of statistical significance was 

defined to be p < 0.05. 

 
Bolus protocols cohort 

n = 5 
   

4 ml/min infusion rate, 
CA bolus concentrations 
0.0001-0.0500 mmol/kg 

n = 3 

 

2 ml/min infusion rate, 
CA bolus concentrations 
0.0400-0.2000 mmol/kg 

n = 3 
  

Figure 3.8: Schematic diagram demonstrating cohort sizes 
Single data sets were obtained at each of the CA bolus concentrations except for concentrations of 
0.01, 0.04 and 0.05 mmol/kg  where three datasets were obtained.  Data for inversion recovery T1 
measurements derived from the five subjects that participated in this experiment were used in 
section 3.3. 
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3.4.3 RESULTS 

3.4.3.1 Syringe driver arrangement 

Unlike clinical power injectors which have two syringe drivers to deliver a CA bolus and a 

flush, we were limited to a single syringe driver that did possess some ferromagnetic 

components thereby limiting proximity to the scanner.  To overcome this issue and ensure 

the CA bolus was delivered at constant rate, the final most consistent arrangement 

involved placing a single long continuous line primed with heparinised saline, interrupted 

by a 3-way tap a short distance from the scanner, depicted in figure 3.9.  An essential 

consideration was the length of the line between the 3-way tap and the animal:  the line 

had to be of sufficient length for this portion of the line to primed with the CA bolus, 

without any entering the animal.  The rate of delivery could then be controlled by the 

syringe driver which could be at any length away from the scanner, activated at the time of 

each DCE MRI experiment. 

 
Figure 3.9: Schematic diagram of syringe driver arrangement 
Line A was of fixed length, so that it could be primed with CA (syringe B) at the 3-way tap, 
without any CA entering the animal.  Syringe A and line B were primed with heparinised saline, 
so that the CA bolus could then be pushed into the animal followed by a heparinised saline flush 
at a fixed rate determined by the syringe driver settings.  Line B could be of any length, and 
enabled the syringe driver to be positioned at a safe distance from the scanner. 

 

3.4.3.2 Bolus infusion rate and concentration 

In the first subject, experiments conducted with CA bolus concentrations of 0.0001 and 

0.005 mmol/kg produced no discernable VIFs or parenchymal enhancement.  Experiments 

with bolus concentrations of 0.01 mmol/kg produced AIFs, but the concentration was too 

low for any discernable PVIF. 

Subsequent data was collected at bolus concentrations at and above 0.01 

mmol/kg, with experiments conducted at both bolus infusion rates (figure 3.10).  At 4 

ml/min (figure 3.10a), a dose-dependent increase in AIF was not observed (excluding 0.01 

mmol/kg, no statistically significant difference was demonstrated between AIFs (H = 
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1.513, p = 0.6792)).  AIFs derived from the same concentration bolus, demonstrated that 

infusion rates of 4 ml/min did not yield consistent results even at low 0.01 mmol/kg 

concentrations, but this difference was found to be non-significant (figure 3.10b; H = 

1.542; p = 0.4625). Infusion rates of 2 ml/min demonstrated a dose-dependent response 

(figure 3.10c) that was consistent within (0.04 mmol/kg data; U = 48.00, p = 0.4307) and 

across subjects (0.05 mmol/kg data; U = 51.00, p = 0.5545) for each given bolus.  At 

concentrations above 0.05 mmol/kg (figure 3.10d), T2* effects predominated resulting in 

AIF derangements. 

 

 

 

 
   

 

 

 
Figure 3.10: Aortic input functions at different bolus infusion rates and 
contrast agent bolus concentrations 
CA boluses were administered at 4 ml/min  - (a),(b); and 2 ml/min - (c),(d).  (a) At 4 ml/min 
dose-dependent increases in AIF were not observed.  (b) AIFs derived from the same 
concentration bolus, lacked consistency even at low CA bolus concentrations. (c) Infusion rates 
of 2 ml/min demonstrated a consistent and dose-dependent response. (d) T2* effects were noted 
in CA bolus concentrations above 0.05 mmol/kg. 

 
Unlike AIFs, statistically significant dose-dependent changes in PVIFs were observed with 

CA boluses infused at 4 ml/min (figure 3.11a; H = 18.54; p = 0.0003)) and at 2 ml/min 
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(figure 3.11b; H = 9.571, p = 0.0084).  Infusion rates of 2 ml/min demonstrated a 

consistent dose-dependent response within (0.04 mmol/kg data; U = 113.0, p = 0.5847) 

and across subjects (0.05 mmol/kg data; U = 100, p = 0.300) for each given bolus.  At 

concentrations above 0.06 mmol/kg (figure 3.11d), T2* effects predominated resulting in 

PVIF derangements. 

 

 

 
   

 

 

 
Figure 3.11: Portal Venous input functions at different bolus infusion rates 
and contrast agent bolus concentrations 
CA boluses were administered at 4 ml/min  - (a); and 2 ml/min – (b), (c), (d).  Dose-dependent 
changes in PVIF were observed at 4 ml/min (a) and at 2 ml/min (b).  (c) Infusion rates of 2 
ml/min demonstrated a consistent and dose-dependent response. (d) T2* effects were noted in 
CA bolus concentrations above 0.06 mmol/kg. 

 
The bolus infusion rate and concentration optimisation data is summarised in table 3.3. 
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3.4.3.3 Dual-bolus DCE MRI 

For CA boluses infused at 2 ml/min, scalable non-T2* artefacted VIFs were only available 

at concentrations of 0.04 and 0.05 mmol/kg.  AIFs and PVIFs obtained from 0.04 mmol/kg 

boluses were scaled to 0.05 mmol/kg and compared with observed 0.05 mmol/kg boluses 

(figure 3.12). 

 

 

 
Figure 3.12: Scaled and observed arterial and Portal Venous input 
functions 
VIFs derived from 0.04 mmol/kg CA boluses were upscaled to 0.05 mmol/kg and compared with 
observed 0.05 mmol/kg CA bolus data. 

 
Even on visual inspection of both AIF and PVIF up-scaled boluses, there is poor agreement 

with the observed 0.05 mmol/kg bolus.  This was confirmed with statistically significant 

differences between upscaled and observed AIFs (W = -52.00, p = 0.0186) and PVIFs (W = 

-130.0, p = 0.0009). 

 Two subjects underwent formal dual-bolus protocol studies.  Based on earlier CA 

bolus concentration and infusion rate data, a pre-bolus of 0.05 mmol/kg CA was 

administered at 2 ml/min, followed by a main bolus of 0.2 mmol/kg at 2 ml/min.  

Pharmacokinetic modelling of pre-bolus and dual bolus data (figure 3.13) revealed 

comparable estimates of k1a and k1p, but differences in k2.  Fit residuals were smaller with 

single (pre) bolus methods. 
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Figure 3.13: Parenchymal enhancement curves and corresponding fits 
using a single bolus (left) or dual bolus (right) methods for vascular input 
function measurement 
Data from subject 1 (a and b) and subject 2 (c and d).  Raw data is shown in red and fit data is 
shown by the dashed line.  Note the y-axis scale differences between each method. 

 
Pharmacokinetic data derived from both methods was then converted into hepatic 

perfusion parameters before comparison in table 3.3.  Absolute perfusion parameters and 

portal fraction show good between method concordance (reflective of k1a and k1p), with 

differences in k2 accounting for divergent distribution volume and mean transit time 

estimates. 

Table 3.2: DCE MRI hepatic perfusion parameters with the single and dual 
bolus methods 
 

 SUBJECT 1 SUBJECT 2 

 SINGLE BOLUS* DUAL BOLUS† SINGLE BOLUS* DUAL BOLUS† 

Arterial perfusion 
(ml/min/100g) 

8.8 8.8 8.0 8.0 

PV perfusion (ml/min/100g) 201.6 190.4 158.4 164.0 
Portal fraction (%) 95.82 95.58 95.19 95.35 

Distribution Volume (%) 13.68 23.06 7.98 15.80 
Mean Transit Time (seconds) 5.20 9.26 3.83 7.35 

(*0.05 mmol/kg; †0.05 mmol/kg and 0.2 mmol/kg) 
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(a) 
K1a = 0.0011 
K1p = 0.0252 
K2 = 0.1923 

PF = 95.69% 
residuals2 = 0.0019  

K1a = 0.0011 
K1p = 0.0238 
K2 = 0.1080 

PF = 95.60% 
residuals2 = 0.0274  

K1a = 0.0010 
K1p = 0.0198 
K2 = 0.2608 

PF = 95.18% 
residuals2 = 0.0050  

K1a = 0.0011 
K1p = 0.0205 
K2 = 0.1361 

PF = 95.34% 
residuals2 = 0.0286  

— parenchyma 

--- fit data 

 

(b) 

(c) (d) 
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3.4.4 DISCUSSION 

The development of a safe and simple syringe driver arrangement to allow consistent, 

robust, controlled delivery of CA boluses was an essential first step to optimising bolus 

protocols.  The results of infusion rate and CA bolus concentration experiments are 

summarised in table 3.3. 

Table 3.3: Summary of bolus infusion rate and concentration data 
 

CA BOLUS 

CONCENTRATION 
INFUSION RATE 

(ML/MIN) 
ARTERIAL INPUT FUNCTION PV INPUT FUNCTION 

0.0001 4 - - 
0.005 4 - - 
0.01 4  - 
0.02 4   
0.03 4   
0.04 4 and 2 ( - not consistent at 4 

ml/min)/ 
 

0.05 2   
0.06 2   
0.07 2   
0.1 2   
0.2 2   

( - = no discernable enhancement;  = usable VIF – normal VIF morphology, dose appropriate 
response, consistent VIF size;  = erroneous VIF) 

 
Although the ideal bolus protocols deliver CA as quickly as possible to maximise 

distinction between the AIF and PVIF, these gains are restricted by the temporal 

resolution of the DCE MRI sequence and the sensitivity to T2* effects (particularly at high 

field strength), generated by the higher AIF bolus concentrations.  Our data demonstrated 

that AIFs obtained at higher infusion rates lacked CA dose sensitivity and consistency even 

at low CA bolus concentrations.  This was not apparent with PVIFs, presumably as bolus 

dispersal would have resulted in (a) a more ‘spread-out’ input function thereby less 

susceptible to temporal resolution limitations and (b) lower peak CA concentrations 

thereby less susceptible to T2* effects.  Despite limited data, dose-responsive AIFs and 

PVIFs were observed with slow infusion rates (2 ml/min).  This combined with consistent 

VIFs both within and between subjects would favour the use of the slower infusion rate in 

a refined dose protocol.  Even when using a slower infusion rate, bolus concentrations 

above 0.05 mmol/kg for AIFs and above 0.06 mmol/kg for PVIFs resulted in measurement 

errors, likely due to secondary to T2* effects.  Non-corrupted parenchymal enhancement 

data was observed even when using a 100 μL undiluted bolus of Gd-DOTA (0.2 mmol/kg) 

and it was decided that a final dual-bolus protocol could then be attempted using a more 

dilute pre-bolus of 0.05 mmol/kg for VIF assessment, followed by a 30 minute period to 
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allow blood pool T1 recovery and a subsequent 0.2 mmol/kg bolus for evaluation of 

parenchymal enhancement. 

 Upscaling of dilute boluses demonstrated poor concordance with recorded higher 

CA concentration boluses thereby undermining the entire dual bolus method.  More dilute 

VIFs (0.04 mmol/kg CA boluses) were upscaled linearly, based on the principal that 

observed CA concentrations would remain within a range where a linear relationship 

between signal intensity and CA 𝑟1 was maintained.  Although this could plausibly explain 

why linear upscaling was unsuccessful, it would be expected that upscaling of lower 

concentration VIFs (such as the PVIF) should theoretically be more successful – a 

difference which was not demonstrated by the data (figure 3.12). 

An alternative explanation could be that lower SNR obtained from more dilute 

boluses could produce underestimated VIFs, resulting in erroneous upscaled data.  In 

support of this explanation, upscaling PVIFs obtained at lower CA bolus concentrations 

from 4 ml/min infusion rates demonstrated better concordance with their higher 

concentration counterparts (figure 3.14; W = -120.0, p = 0.0021). 

Figure 3.14: 
Upscaled and 
observed PV input 
functions obtained 
at 4 ml/min 
infusion rates 
Upscaled curves 
demonstrate better 
concordance than in 
figure 3.10b, but still 
remain statistically 
significantly different 
from observed higher 
CA bolus concentration 
data. 

 
 
Pre-bolus upscaling and pharmacokinetic modelling of dual bolus data was possible using 

our methods and capable of delivering similar estimates for some (but not all) of the 

pharmacokinetic parameters.  Divergent estimates of k2 are suggestive of modelling issues 

with the impulse residue function, particularly during the CA wash-out phase (curve tail).  

This is apparent when inspecting the wash-out phase curve fits in figure 3.131, and could 

certainly account for the larger residuals obtained from the dual bolus method.  The cause 

of this divergence is unclear: scaling difficulties with this portion of the VIFs would be 

counterintuitive as the ROI concentrations would be lower (and less affected by T2* 
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effects) and less vulnerable to sampling issues secondary to temporal resolution 

limitations. 

 Data obtained using syringe driver single and dual bolus methods is compared 

with baseline manual injection data from Chapter 2 in table 3.4 

Table 3.4: Summary of DCE MRI hepatic perfusion changes with manual 
contrast agent bolus injection, and syringe driver single and dual bolus 
methods 
 

 MANUAL INJECTION 
(n = 12) 

SINGLE BOLUS 
(n = 2) 

DUAL BOLUS 
(n = 2) 

Arterial perfusion 
(ml/min/100g) 

79.47±11.29 8.4±0.4 8.4±0.4 

PV perfusion (ml/min/100g) 321.2±43.95 180±21.6 177.2±13.2 
Portal fraction (%) 77.75±3.72 95.50±0.313 95.47±0.117 

Distribution Volume (%) 16.49±1.06 10.83±2.85 19.43±3.63 
Mean Transit Time (seconds) 3.58±0.30 4.517±0.683 8.303±0.956 

 
Although the portal fractions obtained from both syringe driver methods appear high, this 

may related to pharmacokinetic modelling issues discussed later.  Encouragingly, PV 

perfusion obtained by both syringe driver methods was closer to transit-time US 

normalised bulk PV flow (150.1±7.73 ml/min/100g, n = 6). 

Data in this section has been modelled using large area-based parenchymal ROIs.  

Although reasonable pharmacokinetic modelling with data from the more dilute pre-bolus 

(0.05 mmol/kg) alone is feasible, the real value of dual bolus high SNR parenchymal data 

is in obtaining more robust pixel-based data for modelling to derive anatomical maps of 

pharmacokinetic parameters.  Finally, samples for single and dual bolus methods are small 

(n = 2), and while too small to make global and generalisable conclusions, are justifiable on 

the basis of informing our protocol development. 

3.4.5 CONCLUSION 

Consistent Gd-DOTA bolus delivery was achieved using a syringe driver.  To overcome 

difficulties sampling VIFs, we defined a dual bolus protocol, with a 100μL 0.05 mmol/kg 

pre-bolus delivered at 2 ml/min followed by a 100 μL 0.2 mmol/kg main bolus delivered 

at the same rate.  Although scaling issues may exist, we have demonstrated that dual input 

single compartment modelling is possible with a dual bolus approach. 
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3.5 DCE MODELLING 

3.5.1 BACKGROUND 

Although methodological refinements in the acquisition process improve data quality, the 

ultimate determinant of measured perfusion parameters is the model used to fit the data.  

There are a variety of models for hepatic perfusion described the in the literature, each 

providing a mathematical description for how the contrast agent is handled by liver tissue.  

The choice of model must be based on the parameters the researcher is interested in 

measuring and the description offered by the model should match the physiological 

principles underpinning the pharmacodynamics of how the contrast agent is handled in 

the tissue. 

Herein lie three important consequences which must be considered by the 

researcher: (i) a model can be constructed that may ‘fit’ the data, but that is physiologically 

inaccurate, (ii) a model is a simplification of physiological system: to match the true 

complexity of a physiological system parameters can be added to the model but that (iii) in 

adding these variables, the quality of the ‘fit’ may improve, but that the model will 

determine these variables indiscriminately of physiological limitations, with the potential 

to derive good mathematical ‘fits’ using non-physiological, (effectively meaningless) 

estimates of the parameters themselves. 

The criteria for evaluating the true adequacy of a model must therefore include an 

assessment of model fit (residual sum of squares), but also look beyond this - specifically 

at invasive validation, with variance of model-derived parameters matching physiological 

variance in addition to  measures of repeatability and reproducibility.  To investigate the 

effects of alternative DCE models, the dual input single compartment, dual input dual 

compartment and hepatic perfusion index models were studied. 

3.5.1.1 Dual input single compartment modelling 

In section 2.4.7, we introduced the dual input single compartment model, which described 

the rate of change of CA concentration in the liver parenchyma (𝐶𝐿(𝑡)), as being equal to 

the rate of the inflow (where 𝐶𝑎(𝑡) and 𝐶𝑝(𝑡) represent concentrations in the arterial and 

portal venous supply respectively) minus the rate of outflow, so that 𝑘1𝑎 represents the 

arterial inflow constant, 𝑘1𝑝  represents the portal venous inflow constant and 𝑘2 

represents the outflow constant: 

𝑑𝐶𝐿(𝑡)

𝑑𝑡
= 𝑘1𝑎𝐶𝑎(𝑡) + 𝑘1𝑝𝐶𝑝(𝑡) − 𝑘2𝐶𝐿(𝑡) 

(Equation 2.3) 
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Solving for 𝐶𝐿(𝑡) then yields: 

𝐶𝐿(𝑡) =  ∫ [𝑘1𝑎𝐶𝑎(𝑡) + 𝑘1𝑝𝐶𝑝(𝑡)]𝑒−𝑘2(𝑡) 𝑑𝑡′
𝑡

0

 

(Equation 2.4) 
 

The model given in equation 2.4 is dependent on measuring the arterial and portal venous 

CA concentrations in the same physical location as the parenchymal ROI.  In practical 

terms, the most reliable site for measuring 𝐶𝑎(𝑡) and 𝐶𝑝(𝑡) is in the aorta and portal vein 

respectively.  The model assumes that the true parenchymal 𝐶𝑎(𝑡) and 𝐶𝑝(𝑡), adopt the 

same morphology as the aortic  𝐶𝑎(𝑡) and portal venous 𝐶𝑝(𝑡), but to account for the VIF 

ROIs receiving CA before the parenchyma, we must alter the parenchymal enhancement so 

that 𝐶𝐿(0) = 0 and delays for each VIF (𝜏𝑎 and 𝜏𝑝) are added to the model: 

𝐶𝐿(𝑡) =  ∫ [𝑘1𝑎𝐶𝑎(𝑡′ −  𝜏𝑎) + 𝑘1𝑝𝐶𝑝(𝑡′ − 𝜏𝑝)]𝑒−𝑘2(𝑡−𝑡′) 𝑑𝑡
𝑡

0

′ 

(Equation 2.9) 
 
In section 2.4.7, the parameters 𝜏𝑎 and 𝜏𝑝 were assumed to equal zero, but this assumption 

is physiologically incorrect.  A variety of approaches to 𝜏𝑎 and 𝜏𝑝 have been adopted in the 

literature, with some studies choosing to fix 𝜏𝑎 and 𝜏𝑝 as equal constants across all 

subjects (e.g. two seconds)[140], others choosing to model only 𝜏𝑎[141]and others have 

including both 𝜏𝑎 and 𝜏𝑝 as variables to fit in the model[142].  Several authors have shown 

that small changes in the delay factors (especially 𝜏𝑎), can result in major alterations of the 

estimated hepatic perfusion parameters [312, 313] and it is therefore essential that any 

robust attempt at dual input single compartment modelling must find a consistent and 

scientifically acceptable method of dealing with these delay parameters. 

3.5.1.2 Dual input dual compartment modelling 

The dual input dual compartment model is based on the principle that once in the 

parenchyma, extracellular CAs can only occupy either the vascular or interstitial space.  

This is a potentially useful model to apply to the study liver haemodynamics because of 

the unique anatomical configuration of the hepatic parenchyma (figure 1.1).  CA passing 

into the parenchyma enters into the vascular space of the sinusoid, but will also pass 

through endothelial fenestrae into the perisinusoidal Space of Disse.  The potential to 

study haemodynamic changes in each of these compartments is of significance in chronic 

liver disease, not only because of collagen deposition in the Space of Disse but also 

because of intrahepatic shunting that arises in chronic liver disease as a result of 

neovascularisation of this space.   Assuming good mixing between the compartments, the 
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dual input single compartment model can be expressed using the following system of 

equations [149, 150]: 

 

𝜈1

𝑑

𝑑𝑡
𝐶𝐿1(𝑡) = 𝐹𝜌(𝐶𝑖𝑛(𝑡) − 𝐶𝐿1(𝑡)) − 𝑃𝑆𝜌(𝐶𝐿1(𝑡) − 𝐶𝐿2(𝑡)) 

(Equation 3.4) 
 

𝜈2

𝑑

𝑑𝑡
𝐶𝐿2(𝑡) = 𝑃𝑆𝜌(𝐶𝐿1(𝑡) − 𝐶𝐿2(𝑡)) 

(Equation 3.5) 
 
where, 

 

𝜈1 Fractional vascular volume (%) 
𝜈2 Fractional interstitial volume (%) 

𝐶𝐿1(𝑡) CA concentration in the vascular compartment (mmol/L) 
𝐶𝐿2(𝑡) CA concentration in the interstitial compartment (mmol/L) 
𝐶𝑖𝑛(𝑡) CA input function (mmol/L) – this term is represented by equation 3.6 

𝐹 Total blood inflow/tissue perfusion (ml/min/100g) 
𝜌 Tissue density (assumed to be 1 g/ml)[149] 

𝑃𝑆 Permeability surface-area product (measure of endothelial 
permeability; ml/min/100g) 

 
Given the need for inclusion of both the AIF (𝐶𝑎(𝑡)) and VIF (𝐶𝑝(𝑡)) in the input term, 

𝐶𝑖𝑛(𝑡) can be expressed as: 

𝐶𝑖𝑛(𝑡) = 𝛼𝐶𝑎(𝑡) +  (1 − 𝛼)𝐶𝑝(𝑡) 

(Equation 3.6) 
 
where 𝛼 represents the hepatic arterial fraction.  Parenchymal enhancement can then be 

described as the product of tissue perfusion and equation 3.6 convolved with the impulse 

residue function: 

𝐶𝐿(𝑡) = 𝐹𝐶𝑖𝑛(𝑡) ⨂ [𝐴𝑒𝑠1𝑡 + (1 − 𝐴)𝑒𝑠2𝑡] 
(Equation 3.7) 

 
where 𝑠1 and 𝑠2 are solutions for 𝑠 in the following quadratic equation: 

𝑠2 + (
𝑃𝑆𝜌

𝜈1
+

𝑃𝑆𝜌

𝜈2
+

𝐹𝜌

𝜈1
) 𝑠 + (

𝑃𝑆𝜌

𝜈2

𝐹𝜌

𝜈1
) = 0 

(Equation 3.8) 
 

and: 

𝐴 =
(𝑠1 +

𝑃𝑆𝜌
𝜈1

+
𝑃𝑆𝜌
𝜈2

)

𝑠1 − 𝑠2
 

(Equation 3.9) 
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Alternative, more complex methods for deriving the impulse residue function with this 

model have been described [150, 151], but a full exploration of these methods has not 

been undertaken as part of this thesis. 

3.5.1.3 Hepatic perfusion index modelling 

The hepatic perfusion index is a much simpler model that aims to only measure hepatic 

arterial and portal venous perfusion and their relative ratios [107].  Once MRI signal has 

been converted into CA concentration, the parenchymal enhancement curve (𝐶𝐿(𝑡)) can be 

separated into predominantly arterial (𝐶𝐿𝑎(𝑡)) and portal venous (𝐶𝐿𝑝(𝑡)) portions using 

the timings for the peak aortic and portal venous enhancement curves respectively (figure 

3.15a). 

 

 

 
Figure 3.15: Modelling parenchymal 
enhancement using the Hepatic 
Perfusion Index 
Parenchymal enhancement is separated into 
arterial and portal venous portions using peak 
AIF and VIF data (a).  The maximum gradient 
during the arterial ((b), blue line) and portal 
venous phase ((b), red line) of parenchymal 
enhancement ((b), green line) is then used to 
calculate perfusion. 

 
The peak gradient during the arterial (Δ𝐶𝐿𝑎(𝑡)′) and portal venous phase (Δ𝐶𝐿𝑝(𝑡)′) is then 

used to estimate perfusion using the maximum AIF CA concentration (𝐶𝑎(𝑡)′)[138, 139]: 

𝐹Arterial perfusion(ml/s/g) =
Δ𝐶𝐿𝑎(𝑡)′

𝐶𝑎(𝑡)′
 

and: 

𝐹PV perfusion(ml/s/g) =
Δ𝐶𝐿𝑝(𝑡)′

𝐶𝑎(𝑡)′
 

(Equations 3.10 and 3.11) 
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Developments of this method have proposed using splenic enhancement to correct the 

liver parenchymal enhancement curve to represent portal venous enhancement alone, but 

this modification was not included as splenic enhancement data was not available [108]. 

 In this section, we use data obtained after applying the methodological 

refinements in T1 measurement and bolus protocols, to firstly explore the dual input 

single compartment model used in Chapter 2.  Different approaches are then used to 

measure AIF and PVIF delay parameters to determine the optimum approach when using 

this model.  Secondly, we study the parameters derived from application of the dual input 

dual compartment model to the same data and finally we study the parameters derived 

from the much simpler hepatic perfusion index model. 

3.5.2 MATERIALS AND METHODS 

Experimental subjects and animal preparation was as described in section 3.3.2.  

Experiments were performed in n = 7 subjects.  DCE MRI was performed as described in 

section 3.4.2.  A 100μL CA bolus of 0.05 mmol/kg (based on a 250g animal) concentration 

was infused at 2 ml/min as described previously.  ROIs over the aorta, portal vein and liver 

parenchyma were used to obtain signal-intensity-time curves which were then converted 

to CA concentration using methods described in section 2.4.6. 

3.5.2.1 Sample size 

A pragmatic approach to sample size was used given that data collection during these 

studies was undertaken for the purpose of protocol development.  DCE MRI data sets 

obtained from other experiments were therefore collated for inclusion in this section.  

3.5.2.2 Dual input single compartment modelling 

Method 1 

Dual input single compartment modelling was undertaken assuming zero-delays between 

the vascular input functions and parenchymal enhancement (as in section 2.4.7). 

Method 2 

AIF and PVIF delays (𝜏𝑎 and 𝜏𝑝) were modelled freely to optimise the fit quality by 

minimising residual sum of squares. 

Method 3 

A zero delay is assumed for the PVIF, with free modelling of the AIF delay. 

Method 4 

A zero delay is assumed for the AIF, with free modelling of the PVIF delay. 
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Method 5 

Delays were pre-estimated by measuring approximate CA arrival time for the AIF, PVIF 

and liver parenchyma.  For the AIF and PVIF, the maximum gradient during the upstroke 

of each VIF was identified and this portion of the VIF enhancement curve was then 

modelled using linear regression to derive an estimate for VIF CA arrival time (𝑡𝐶𝑎𝑎𝑟𝑟𝑖𝑣𝑎𝑙 

and 𝑡𝐶𝑝𝑎𝑟𝑟𝑖𝑣𝑎𝑙 )(figure 3.16). 

 

 

Figure 3.16: Pre-
estimation of 𝝉𝒂 and 𝝉𝒃 to 
constrain free modelling 
of delay parameters 
The maximum gradient of the 
upstroke for each VIF was 
modelled using linear regression 
to estimate 𝑡𝐶𝑎𝑎𝑟𝑟𝑖𝑣𝑎𝑙  and 

𝑡𝐶𝑝𝑎𝑟𝑟𝑖𝑣𝑎𝑙 .  Parenchymal CA 

arrival time was determined 
using the 95% upper limit 
confidence interval of baseline 
data. 

 
 
CA arrival in the parenchymal ROI (𝑡𝐶𝐿𝑎𝑟𝑟𝑖𝑣𝑎𝑙) was determined as the time of the last point 

before parenchymal CA concentration exceeded the upper limit of the 95% confidence 

interval of the baseline (pre-contrast) data (figure 3.16).  Estimates for 𝜏𝑎 and 𝜏𝑝 were 

then determined: 

𝜏𝑎′ = 𝑡𝐶𝐿𝑎𝑟𝑟𝑖𝑣𝑎𝑙 − 𝑡𝐶𝑎𝑎𝑟𝑟𝑖𝑣𝑎𝑙 

 
𝜏𝑝′ = 𝑡𝐶𝐿𝑎𝑟𝑟𝑖𝑣𝑎𝑙 − 𝑡𝐶𝑝𝑎𝑟𝑟𝑖𝑣𝑎𝑙 

(Equations 3.12 and 3.13) 
 
As 𝜏𝑎′ and 𝜏𝑝′ represented estimates of VIF delays, limited by temporal resolution and 

SNR, the pre-estimates were then used to constrain the range in which free modelling of 𝜏𝑎 

and 𝜏𝑝 could occur, to one time point before and one time point after each estimate. 
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3.5.2.3 Dual input dual compartment modelling 

Free modelling of parameters using the dual input dual compartment model was 

undertaken with limited success.  Fractional interstitial volume (𝜈2) was then constrained 

to between zero and twenty percent to determine more physiological estimates of 

perfusion parameters. 

3.5.2.4 Hepatic perfusion index 

Hepatic perfusion index parameters of absolute and relative perfusion were derived. 

3.5.2.5 Statistical analysis 

Kolmogorov-Smirnov tests were used to confirm normality of variable distributions.  

Repeated measures one-way analysis of variance (ANOVA) with corrections for non-

sphericity were used to compare perfusion parameters from dual input single 

compartment modelling using each of the five approaches to VIF delay estimation, with 

post-hoc Tukey’s test where significant differences were identified.  Where variables were 

found not to be normally distributed, the Kruskal-Wallis test was used followed by post-

hoc Dunn’s test where significant differences were identified.  As method 5 represented an 

evolved approach to enable free modelling within physiological constraints, common 

absolute and relative perfusion parameters were compared using paired t-tests with dual 

input dual compartment and hepatic perfusion index models derived data.  For validation, 

unpaired t-tests were used to compare PV perfusion derived with each method to invasive 

TTUS data obtained from experiments described in Chapter 2.  The threshold of statistical 

significance was defined to be p < 0.05.  T1 measurement data from all seven subjects was 

used in section 3.3 and data from two subjects was used in section 3.4. 
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3.5.3 RESULTS 

3.5.3.1 Dual input single compartment modelling 

A sample data set was used to demonstrate the VIFs and parenchymal enhancement 

curves obtained with corresponding curve fits in figure 3.17, using each of the five 

approaches.  In this instance, pre-estimation of delays with constrained fitting yielded the 

same estimates as free modelling.  Alternative delays resulted in effective shifts of the VIF 

as shown in the charts on the left in figure 3.17.  The effects of these shifts on estimated 

parameters resulted in profound differences in estimated perfusion parameters for each 

method, as shown by the data overlaying the charts on the right (figure 3.17). 

Data for each of the perfusion parameters is plotted for each method in figure 3.18 

and tabulated in table 3.5.  Hepatic arterial (HA) perfusion and PVIF delay parameters 

demonstrated a non-normal distribution and therefore underwent Kruskal-Wallis testing.  

Significant differences were demonstrated between the five methods for PV perfusion 

(F(2.197, 13.18) = 12.99; p = 0.0006), HA perfusion (H = 10.57; p = 0.0319), PV fraction 

(F(1.531, 9.185) = 10.04; p = 0.0068) and residual sum of squares (F(1.118, 6.708) = 

6.656; p = 0.0357).  Post-hoc tests on PV perfusion measurements, showed all methods 

differed from Method 1 except Method 4, and differences in PV fraction were 

demonstrated between Method 1 and Method 2.  No post-hoc significant differences were 

demonstrated in HA perfusion or residual sum of squares. 

Validation against TTUS derived cohort means demonstrated significant 

differences with dual input single compartment derived PV perfusion using Method 3 

(mean difference -41.91±16.90 ml/min/100g; p = 0.0306) and Method 5 (mean difference 

-39.90±16.12 ml/min/100g; p = 0.0308), with the possibility of the type II error for 

Method 2 (mean difference -39.12±17.98 ml/min/100g; p = 0.0522).  
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Figure 3.17: Dual input single compartment modelling VIFs and parenchymal 
enhancement curves with fitted parenchymal enhancement curves 
Data assuming τa and τp are zero - (a) and (b), free modelling of τa and τp - (c) and (d), free 
modelling of τa with τp set to zero – (e) and (f) and finally free modelling of τp with τa set to zero – 
(g) and (h).  Data from pre-estimated delays and constrained free modelling was the same as (c) 

and (d).  Mean estimated parameters from each of the approaches are listed in table 3.5. 
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(d) (c) 

(f) (e) 

(h) (g) 

̶̶— Aorta 

— PV 

— parenchyma 

--- fit data 

 

PV perfusion = 201.5 ml/min/100g 
HA perfusion = 9.072 

ml/min/100g 
Portal fraction = 95.69 % 

MTT = 5.201 s 
DV = 13.69 % 

residuals2 = 0.001941  

PV perfusion = 138.7 ml/min/100g 
HA perfusion = 51.56 

ml/min/100g 
Portal fraction = 72.90 % 

MTT = 4.628 s 
DV = 11.01 % 

residuals2 = 0.001685  

PV perfusion = 101.8 ml/min/100g 
HA perfusion = 93.01 

ml/min/100g 
Portal fraction = 52.27 % 

MTT = 8.009 s 
DV = 19.51 % 

residuals2 = 0.001731  

PV perfusion = 169.4 ml/min/100g 
HA perfusion = 18.83 

ml/min/100g 
Portal fraction = 90.00% 

MTT = 4.191 s 
DV = 9.861 % 

residuals2 = 0.001939  

τa = 2.697 s 
τp = 2.697 s  

τa = 4.046 s 
τp = 0.000 s  

τa = 0.000 s 
τp = 1.349 s  
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Figure 3.18: Perfusion parameters estimated using the dual input single 
compartment model, with each method of VIF delay estimation 
p-values are quoted for one-way ANOVA/Kruskal-Wallis tests where appropriate. Comparisons of 
delay parameters were only undertaken when these were freely modelled ((g) and(h)). 

(b) (a) 

(d) (c) 

(f) (e) 

(h) (g) 



~ 125 ~ 
 

 
 
 
 
 
 
 
 
Table 3.5: Perfusion parameters estimated using the dual input single compartment model, with each method of VIF delay 
estimation 

 METHOD 1 
(no delays) 

METHOD 2 
(freely modelled 

delays) 

METHOD 3 
(freely modelled AIF 

delay, PVIF delay set to 
zero) 

METHOD 4 
(freely modelled PVIF 
delay, AIF delay set to 

zero) 

METHOD 5 
(pre-estimated delays 
with constrained free 

modelling) 

TTUS 
(n = 6) 

PV perfusion (ml/min/100g) * 149.7±15.71 111.0±15.20† 108.2±14.11†‡ 136.6±12.05 110.2±13.31†‡ 150.1±7.73 
HA perfusion (ml/min/100g)*  12.37±3.842 39.77±9.781 46.47±12.65 13.83±3.958 38.29±10.68 - 

PV fraction (%)* 92.59±1.552 74.62±4.715† 72.04±5.550 91.25±1.775 76.24±5.594 - 
Mean Transit Time (seconds) 4.212±0.2818 3.991±0.4168 4.605±0.6915 3.788±0.2107 3.849±0.3179 - 

Distribution Volume (%) 8.867±1.458 8.082±1.722 9.717±2.322 7.273±0.9522 7.539±1.401 - 
Residuals2* 0.00351±0.0005944 0.002642±0.0005070 0.002654±0.0005054 0.003270±0.0005645 0.002773±0.0005486 - 

τa (seconds) - 4.879±0.7555 5.245±0.6969 - 3.871±0.4362 - 
τp (seconds) - 0.9059±0.5938 - 0.5644±0.2668 1.509±0.5013 - 

(*one-way ANOVA/Kruskal-Wallis p<0.05; † post-hoc Tukey test comparison with Method 1 p<0.05; ‡ unpaired t-test comparison with TTUS p<0.05)

~
 1

1
8

 ~
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3.5.3.2 Dual input dual compartment modelling 

Initial attempts at dual input dual compartment modelling revealed some inherent 

challenges with the model (figure 3.19 and table 3.6).  While fits appeared visually 

acceptable (figure 3.19a), mean 𝜈2 or fractional interstitial volume was non-physiological 

at 96.78%.  PV perfusion estimates though variable were physiologically feasible, but HA 

perfusion was low and therefore PV fraction was elevated. 

To investigate this further, we assessed the impulse residue functions (figure 

3.19b), which would normally be expected to assume the morphology of a negative 

logarithmic function in keeping with washout of CA in response to the bolus.  An example 

of an expected impulse residue function is demonstrated from dual input single 

compartment data (figure 3.19e).  Instead, the impulse residue function from dual input 

dual compartment data consistently showed a positive upstroke before dipping below 

zero and then stabilising.  By restricting the upper limit of 𝜈2, the aberrant impulse residue 

function could be corrected, but at the expense of restricting an unknown variable of 

potential pathophysiological significance.  The data was re-analysed restricting the upper 

limit of the fractional interstitial volume to 20%.  An example of fitting using this 

restriction and the corrected impulse residue function are shown in figure 3.19c and d.  As 

would be expected, once 𝜈2 was restricted, all but one data set fitted fractional interstitial 

volume at 20%.  With the application of the restriction, PV perfusion and HA perfusion 

dropped to non-physiological levels.  Data from both unrestricted and restricted data is 

shown in table 3.6, alongside dual input single compartment modelling and TTUS 

validation data. 

Paired comparison of PV perfusion with dual input single compartment data using 

Method 5 showed no statistically significant difference with unrestricted dual input dual 

compartment data (mean difference 13.04±24.64 ml/min/100g; p = 0.6156), but 

significant differences with restricted dual input dual compartment data (mean difference 

-54.12±19.49 ml/min/100g; p = 0.0321).  Unpaired comparisons with validation TTUS 

data demonstrated no significant difference with unrestricted dual input dual 

compartment data (mean difference -26.86±22.87 ml/min/100g; p = 0.2649), but 

significant differences with restricted dual input dual compartment data (mean difference 

-94.03±16.64 ml/min/100g; p = 0.0001). 
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Figure 3.19: Dual input dual 
compartment modelling and impulse 
residue functions 
Raw parenchymal data and model fits are 
shown in with accompanying impulse residue 
functions before ((a) and (b)) and after 
constraining interstitial volume fraction ((c) 
and (d)).  A dual input single compartment 
impulse residue function (e) is shown for 
comparison. 
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— parenchyma 

--- fit data 

 

PV perfusion = 205.0 ml/min/100g 
HA perfusion =0.060 ml/min/100g 

Portal fraction = 99.97 % 
Vascular volume = 30.94 % 

Interstitial volume = 99.99 % 
PS = 0.1244 ml/min/100g 

residuals2 = 0.003232  

PV perf. = 0.536 ml/min/100g 
HA perf. = 0.064 ml/min/100g 

Portal fraction = 89.20 % 
Vascular volume = 39.39 % 

Interstitial volume = 12.37 % 
PS = 0.2586 ml/min/100g 

residuals2 = 0.009365  
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Table 3.6: Perfusion parameters estimated using the dual input dual 
compartment model 

 DUAL INPUT DUAL 

COMPARTMENT 
(interstitial 

fraction 
unrestricted) 

DUAL INPUT DUAL 

COMPARTMENT 
(interstitial 

fraction restricted) 

DUAL INPUT SINGLE 

COMPARTMENT 
Method 5 

TTUS 
(n = 6) 

PV perfusion 
(ml/min/100g)  

123.2±20.00 56.06±13.85*† 110.2±13.31 150.1±7.73 

HA perfusion 
(ml/min/100g)  

5.266±2.142 1.706±0.8050 38.29±10.68 - 

PV fraction (%) 96.24±0.01259 96.13±0.01508 76.24±5.594 - 
Fractional vascular 

volume (%) 
20.63±4.103 13.21±4.815 - - 

Fractional interstitial 
volume (%) 

96.78±3.025 18.91±1.090 - - 

Permeability Surface Area 
product (ml/min/100g) 

0.1023±0.02431 0.09017±0.03316 - - 

Residuals2 30.02±5.302x10-4 37.54±9.833x10-4 27.73±5.486x1-4 - 

(* paired t-test comparison with dual input single compartment Method 5 p<0.05; † unpaired t-test 
comparison with TTUS p<0.05) 

 

3.5.3.3 Hepatic perfusion index modelling 

Perfusion parameters estimated using hepatic perfusion index modelling are shown in 

table 3.7 and illustrated in figure 3.20.  No significant differences were demonstrated 

between hepatic perfusion index and dual input single compartment modelling using 

Method 5 for PV perfusion (mean difference 15.47±28.87 ml/min/100g; p = 0.6113), HA 

perfusion (mean difference -1.356±13.99 ml/min/100g; p = 0.9259) and PV fraction 

(mean difference -3.220±5.981 %; p = 0.6097).  Unpaired comparison with TTUS 

validation data also revealed no significant difference in PV perfusion (mean difference -

24.43±24.46 ml/min/100g; p = 0.3393). 

Table 3.7: Perfusion parameters estimated using the hepatic perfusion index 
model 

 HEPATIC 

PERFUSION INDEX 
DUAL INPUT SINGLE 

COMPARTMENT 
Method 5 

TTUS 
(n = 6) 

PV perfusion (ml/min/100g)  125.7±21.53 110.2±13.31 150.1±7.73 
HA perfusion (ml/min/100g)  39.64±16.55 38.29±10.68 - 

PV fraction (%) 79.46±3.683 76.24±5.594 - 

(* paired t-test comparison with dual input single compartment Method 5 p<0.05; † unpaired t-test 
comparison with TTUS p<0.05) 
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Figure 3.20: Hepatic perfusion index 
modelling – raw data and comparison 
with alternative methods 
p-values are quoted for one-way ANOVA (a) and 
paired t-tests ((b) and (c)).  ‘Model 5’ data refers 
to parameters estimated using dual input single 
compartment modelling with pre-estimation of 
VIF delays with constrained free modelling. 
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3.5.4 DISCUSSION 

It has been shown previously that alterations in VIF delays can have significant effects on 

perfusion parameters estimated with dual input single compartment modelling [166, 312, 

334].  Researchers who choose to fix VIF delays can argue that this is adequate as it 

enables comparison of perfusion parameters across cohorts of subjects that are being 

studied (i.e. control versus disease), but this discards the role of VIF delays in the 

pathophysiology of perfusion.  Changes in VIF delays between subjects, healthy or 

diseased, may indeed represent underlying pathophysiological sequelae.  Failure to 

include a proper treatment of these parameters in any modelling approach is likely to be 

flawed. 

We have shown that perfusion parameters estimated using the dual input single 

compartment model are sensitive to both AIF and PVIF delays.  To investigate this further, 

varying combinations of AIF and PVIF delay were applied from zero to twelve to study 

how perfusion parameter estimates changed.  The results from a single data set are shown 

in figure 3.21, and are broadly similar across different datasets.  In this subject, free 

modelling of delays (Method 2) resulted in an AIF delay of 4.859 seconds and PVIF delay of 

3.644 seconds.  The delays were pre-estimated as 6.074 seconds for the AIF and 3.644 

seconds for the PVIF, with constrained free modelling (Method 5) on this occasion 

producing the same delays.  At small PVIF delays, increasing AIF delay produces an initial 

rise in HA perfusion, PV perfusion, MTT and DV before causing a decline in these 

parameters.  Conversely a fall in PV fraction is seen with small AIF delays, which is then 

seen to rise once AIF delays become larger.  Increasing PVIF delays generally results in fall 

in PV perfusion and PV fraction and rise in HA perfusion.  At small AIF delays, increasing 

PVIF delays produces an initial decline followed by a sharp rise in MTT and DV. 

It was encouraging to see corroboration between free modelling of delays (Method 

2) and constrained free modelling of pre-estimated delays (Method 5).  This would suggest 

that when left to its own devices, the model may have the potential to provide 

physiologically sensible parameters.  Although no statistically significant differences were 

demonstrated from comparisons of either delay, this was not always found to be the case, 

with non-physiological AIF delays (suggesting AIF arrival after parenchymal 

enhancement) being estimated from free modelling in two of the seven data sets.  The 

concern would be that fitting poorer quality, noisier pixel-wise parenchymal enhancement 

data using free modelling of delays would result in non-physiological estimates of VIF 

delay parameters much more readily.  It is for this reason that constrained free modelling 

of pre-estimated VIF delays (Method 5) is likely to be a much more physiologically sound 

approach for future attempts.  Pre-estimation ensures that estimated VIF delays are 
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always physiological, while constrained free modelling allows the fitting process to 

account for limitations in temporal resolution and SNR. 

It is also worth noting that free modelling of VIF delays places heavier processing 

requirements on the computer fitting the data, which are considerably reduced when 

using constrained free modelling of pre-estimated VIF delays. 
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Figure 3.21: Variation of dual input single compartment modelling 
parameters in a single dataset across different VIF delays 
PV perfusion (a), HA perfusion (b), PV fraction (c), Mean Transit Time (d), Distribution Volume (e) 
and residual sum of squares (f), with modelled parameter values matched to colour scale on the 
right of each chart.  Note the horizontal axes on chart (f) have been swapped for better visualisation 
of the data. 
 

The dual input dual compartment model is an interesting model because it 

purports the measurement of interstitial volume, a parameter which would be of potential 
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significance in liver disease [26].  Unfortunately, our experience failed to generate any 

meaningful data using this model.  The original proponents of the model have in 

subsequent publications have afforded a more complex mathematical description of the 

impulse residue function, presumably to address this problem [150, 151].  As the model 

has been applied specifically in the context of neuro-endocrine tumours and as 

development has been driven towards this end rather than global assessment of perfusion, 

implementation of these more complex approaches was not undertaken.  The application 

of the dual input dual compartment model has however been a useful exercise in 

demonstrating an important principal of pharmacokinetic modelling: estimation of more 

parameters from the same data (though attractive!), will only result in a higher risk of 

non-physiological parameter estimates. 

It is therefore perhaps a fitting testimony to the elegance of simplicity that the 

hepatic perfusion index model should have performed so well compared to its more 

complex dual input single and dual compartment counterparts.  Unfortunately, the data 

required to apply the more complex ‘direct’ hepatic perfusion index which corrects 

hepatic parenchymal enhancement using peak splenic enhancement was not available.  

The spleen is a smaller in relative size to the liver in rodents and therefore not consistently 

identified on axial slices of the liver, when compared with human subjects.  The 

application of hepatic perfusion index model is also dependent on accurate measurement 

of the AIF peak.  This would not have been possible without the bolus protocol 

experiments in section 3.4, but also highlights an important vulnerability of the method, 

especially at higher field strength.  Finally, while the estimation of parameters using the 

hepatic perfusion index model was impressive, an important advantage of the dual input 

single compartment is the derivation of MTT and DV parameters, both of which are of 

potential significance in liver disease.  

It can be argued that subjecting the same data to alternative modelling methods is 

of limited value because each model aims to measure different parameters by different 

methods.  In selecting a particular model, a researcher commits to the derived parameters 

and as long as these are the same across the cohorts of subjects that are being studied (i.e. 

control vs disease), any comparison is valid.  While this may be true of an individual 

exploratory study, if the work is to inform the development of clinically usable 

biomarkers, care must be taken to develop image protocols and select models that yield 

robust parameters both within and between institutions [335].  The work presented in 

this section is therefore an essential first step towards establishing a modelling protocol 

for robust parameters on our imaging platform.  
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3.5.5 CONCLUSIONS 

After applying methodological refinements in T1 measurement and bolus protocols, we 

have demonstrated pharmacokinetic modelling of CA behaviour in the parenchyma to 

measure perfusion parameters using the dual input single compartment, dual input dual 

compartment and hepatic perfusion index models. 

We have enhanced the dual input single compartment methods demonstrated in 

Chapter 2 through evaluation of VIF delays and demonstrated significant changes in 

perfusion parameters by inclusion of these delays.  We have tested different methods of 

measuring these delays and proposed a novel method to derive physiologically meaningful 

estimates of them.  Our studies have shown that our novel method – “constrained free 

modelling of pre-estimated VIF delays” – is feasible and moving forward has the potential 

to be superior to alternative strategies proposed in the literature. 

Our experience using the dual input dual compartment model highlights the 

challenges and pitfalls of using more complex mathematical descriptions.  The hepatic 

perfusion index model, though simpler can be used to quantify perfusion comparably to 

the dual input single compartment model with constrained free modelling of pre-

estimated VIF delays. 
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3.6 CLOSING COMMENTS 

 
In spite of the methodological refinements and developments with post-processing of 

data, it became apparent that significant inaccuracies were being introduced into 

experiments as a result of problems with MR signal measurement.  Inflow effects from 

fresh blood flowing into a slice, particularly in vessels coursing perpendicular to axial 

slices, such as the aorta and PV must be dealt with effectively in any DCE MRI experiment.  

To minimise inflow effects, a global saturation pulse was applied before each slice 

acquisition, but the size and duration of the pulse was limited by the respiratory rate, as 

both the saturation pulse and image acquisition had to take place within a single between-

breath interval. 

This method appeared effective with the smaller animals used in earlier 

developmental work (figure 3.22a).  Animal models of disease would be larger, as would 

be their sham counterparts and therefore much more susceptible to these errors (figure 

3.22b). 

 

 
 

 

 
 

 
 

Figure 3.22: Baseline pre-contrast images and inflow effects 
Differing vessel inflow effects in (a) 306g and (b) 525g subjects.  Baseline signal in the (i) aorta and 
(ii) PV is demonstrated with inefficient saturation of splanchnic blood in the larger animal (b). 
 

Figure 3.22b demonstrates a baseline pre-contrast image with differential signal in 

the aorta and PV suggestive of differing vessel inflow effects.  Fast flowing blood in the 

aorta appears efficiently saturated, but slower moving portal venous blood is not, hence 

the presence of signal in the portal vein.  Although signal intensity changes in a DCE MRI 

experiment are relative to the baseline pre-contrast images, the signal in each of the post-

contrast images would also have been altered by the inflow effects.  After administration 

of CA, each frame of the DCE MRI slice would have been corrupted by these effects, 

resulting in erroneously raised CA concentrations, specifically for ROIs over the PV [310].  

(i) 

(ii) 

(i) 

(ii) 

(b) (a) 
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Indeed problems with saturation pulse efficiency may well explain differences in baseline 

aortic and PV T1, as mentioned in section 3.3. 

Strategies to address this problem include the development of more efficient 

saturation pulse and post-processing corrections to account for these effects [310, 336, 

337].  Due to time constraints, neither of these approaches was adopted, and DCE MRI 

work was suspended in favour of alternative quantitative PCMRI methods. 
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CHAPTER 4 
 

PRECLINICAL PCMRI – EARLY ATTEMPTS 

 

 

 

 

 

 

 

“…Yellow 
is the matrix 

of your red hydraulic flow, 
diver 

of the most perilous 
depths of man, 

there forever hidden, 
everlasting, 

in the factory, 
noiseless…” 

 
- Ode to the liver [2]. 
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4.1 INTRODUCTION 

Our previous experience demonstrated that although measurement of tissue perfusion 

with dynamic contrast enhanced (DCE) MRI was possible, errors introduced before the 

measurement, during measurement and during post-processing of data had the potential 

to cause substantial errors in the final estimated perfusion parameters.  We attempted to 

validate our measurements using transit-time ultrasound (TTUS), which although when 

normalised to liver weight would have been related to tissue perfusion, were in absolute 

terms measurements of portal venous (PV) vessel bulk flow.  Perhaps then a better 

grounded approach would be to use a quantitative MRI technique which measured bulk 

vessel flow and did this in a way reliant on the same inflow effects that had been so 

troublesome with DCE MRI at 9.4T.  With this in mind, two-dimensional phase contrast 

MRI (PCMRI) was developed and tested on a preclinical system. 

 In this chapter, we look at early sequence development, specifically (a) sequence 

optimisation and challenges with PCMRI, (b) repeatability and invasive validation studies, 

(c) early studies in the modulation of PV flow in chronic liver disease and (d) 

implementation of cardiac gating. 

4.2 AUTHOR CONTRIBUTIONS 

In fulfilment of the aims in this chapter, I: (a) prepared and conducted all animal scanning 

experiments; (b) developed preclinical PCMRI protocols; (c) developed Matlab code for 

PCMRI quantification; (d) performed surgery and collected invasive TTUS measurements 

of PV flow; (e) conducted bench-top experiments prior to MRI scanning for the 

development of protocols for the administration of L-NG-nitro arginine methyl ester (L-

NAME) and terlipressin; (f) built the signal processing unit to allow the use of pulse 

oximetry for cardiac gating; (g) collected and analysed all the data; and (h) prepared all 

the material contained within this chapter. 

Alan Bainbridge developed MR sequences and helped with scanning.  He 

developed the original Matlab code for PCMRI quantification, which was subsequently 

redesigned and optimised.  For establishment of small animal intravenous access, I 

received help from either Val Taylor, Nathan Davies or Abe Habtieson.  Sham-operated 

and bile-duct ligated rats were prepared by Abe Habtieson.  Pharmacological modulation 

of PV flow was developed under the guidance of Nathan Davies.  The signal processing unit 

was conceptualised by Alan Bainbridge and designed by Aaron Taylor.  It was built with 

Raj Ramasawmy. 
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4.3 SEQUENCE OPTIMISATION AND CHALLENGES WITH 

PCMRI 

4.3.1. BACKGROUND 

MR signal is essentially a vector quantity, possessing both magnitude (often the signal 

used for the image) but also phase, arising from the spins of nuclei participating in the MR 

experiment.  The frequency of nuclear precession (𝜔), is given by the Larmor equation, 

where 𝛾 is the gyromagnetic ratio and 𝐵0 is the static main magnetic field: 

𝜔 = 𝛾𝐵0 
(Equation 4.1) 

 
Phase (𝜙) can then be calculated as integral of the Larmor frequency: 

𝜙 = ∫ 𝜔  𝑑𝑡 

(Equation 4.2) 
 
With the application of a linear time-dependent magnetic field gradient (𝐺(𝑡)), the 

precession of a spin at a specified location and time (𝑥(𝑡)) can be expressed in terms of 

Equation 4.1 as: 

𝜔𝑥(𝑡) = 𝛾(𝐵0 + Δ𝐵0(𝑥) + 𝐺(𝑡). 𝑥(𝑡)) 

(Equation 4.3) 
 
Where Δ𝐵0 represents errors introduced from local field inhomogeneities.  The expression 

for phase in Equation 4.2 is dependent on the duration of 𝐺(𝑡) and can then be expressed 

as: 

𝜙𝑥 = 𝜙0(𝑥) + 𝛾 ∫ 𝐺(𝑡). 𝑥(𝑡) 𝑑𝑡
𝑡

0

 

(Equation 4.4) 
 
Where the terms for initial and background phase at location 𝑥 are reduced to 𝜙0(𝑥).  

Where the spin at location 𝑥 is moving, the location of that spin can be expressed as: 

𝑥(𝑡) = 𝑥(0) + 𝑣(𝑡) 
(Equation 4.5) 

 
Where 𝑣 represents the velocity for that spin.  Substituting equation 4.5 into 4.4, we can 

construct an expression for phase that includes velocity: 

𝜙𝑥 = 𝜙0(𝑥) + 𝛾 ∫ 𝐺(𝑡). (𝑥(0) + 𝑣(𝑡))𝑑𝑡
𝑡

0
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= 𝜙0(𝑥) + 𝛾 ∫ 𝑥(0). 𝐺(𝑡) 𝑑𝑡 + 𝛾 ∫ 𝑣(𝑡). 𝐺(𝑡) 𝑑𝑡
𝑡

0

𝑡

0

 

 
Which under the assumption that the velocity during the application of the magnetic field 

gradient (𝐺(𝑡)), is constant (𝑣) and given that 𝑥(0) is fixed, can be simplified to: 

𝜙𝑥 = 𝜙0(𝑥) +  𝛾𝑥(0) ∫ 𝐺(𝑡)
𝑡

0

𝑑𝑡 +  𝛾𝑣 ∫ 𝐺(𝑡)
𝑡

0

 𝑑𝑡 

= 𝜙0(𝑥) + 𝛾𝑥(0)𝑀0 + 𝛾𝑣𝑀1 
(Equation 4.6) 

 
Where 𝑀0 and 𝑀1 refer to the gradient moments for stationary and moving tissue.  When a 

second magnetic field gradient of the same magnitude and duration is applied in the 

opposing direction immediately following the first gradient (bipolar gradients), stationary 

and moving spins respond differently (figure 4.1). 

 

 

Figure 4.1: Phase shifts 
in response to bipolar 
gradients 
Time is represented on the x-
axis, with gradient magnitude 
represented on the y-axis in 
the upper portion of the graph 
and phase in the lower portion 
of the graph.   
Phase shifts are observed in 
both stationary and moving 
spins, but bipolar gradients 
can be used to cancel out phase 
shifts in stationary spins, so 
that the remaining phase shift 
after the bipolar gradients - (a) 
- is proportional to velocity of 
the moving spins. 
(Adapted from reference 
[338]). 

 
Net phase shifts for stationary spins after bipolar gradients are equal to zero, but for 

moving spins the residual shift is proportional to their velocity.  We can express the phase 

shift at 𝑥 then as: 

𝜙𝑥 = 𝜙0(𝑥) + 𝜙𝑥, positive gradient + 𝜙𝑥, negative gradient 

(Equation 4.7) 
 
Where from equation 4.6: 

𝜙𝑥, positive gradient =  𝛾𝑥(0)𝑀0 + 𝛾𝑣𝑀1 

(Equation 4.8) 
 
  

(a

) 
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And for the negative gradient (𝐺′(𝑡)): 

𝜙𝑥, negative gradient =  𝛾𝑥(𝑡) ∫ 𝐺′(𝑡)
2𝑡

𝑡

𝑑𝑡 +  𝛾𝑣 ∫ 𝐺′(𝑡)
2𝑡

𝑡

 𝑑𝑡 

= 𝛾𝑥(𝑡)𝑀0′ + 𝛾𝑣𝑀1′ 
(Equation 4.9) 

 
By substituting 4.8 and 4.9 into 4.7 (note that the terms 𝑀0′ and 𝑀1′ are negative): 

𝜙𝑥 = 𝜙0(𝑥) + (𝛾𝑥(0)𝑀0 + 𝛾𝑣𝑀1) + (𝛾𝑥(𝑡)𝑀0′ + 𝛾𝑣𝑀1′) 
= 𝜙0(𝑥) + (𝛾𝑥(0)𝑀0 + 𝛾𝑥(𝑡)𝑀0′) + (𝛾𝑣𝑀1 + 𝛾𝑣𝑀1′) 

 
From figure 4.1, the phase shifts after each gradient are equal for stationary spins but 

discrepant only for moving spins, so that after a bipolar gradient, the phase shift of 𝑥 can 

be expressed as: 

𝜙𝑥 = 𝜙0(𝑥) + (𝛾𝑣𝑀1 + 𝛾𝑣𝑀1′) 
= 𝜙0(𝑥) + 𝛾𝑣Δ𝑀1 

(Equation 4.10) 
 
Unfortunately, we are only really truly interested in the portion of the phase shift that is 

proportional to the spin velocity and therefore we must measure background phase 

(𝜙0(𝑥)), by performing a reference scan without gradients: 

Δ𝜙𝑥 = 𝜙𝑥 − 𝜙0(𝑥) 
(Equation 4.11) 

 
The resulting phase difference (Δ𝜙𝑥) represents MR signal phase changes attributable to 

motion in the direction of the so-called ‘velocity-encoding gradient’.  This can then finally 

be used to yield the velocity of the moving spin 𝑥: 

𝑣 =  
Δ𝜙𝑥

𝛾Δ𝑀1
 

(Equation 4.12) 
 

By adding flow sensitising gradients to a gradient echo sequence, the scheme above can be 

used to generate PCMRI images of moving spins travelling through a single slice.  The 

velocities of voxels of a known size over a vessel can then be summed to derive an 

estimate of bulk flow in that vessel (figure 4.2)[338, 339]. 
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Figure 4.2: Magnitude image (a) and corresponding velocity map (b) 
from axial abdominal slice 
Coherent signal is seen from the (i) aorta, (ii) IVC, (iii) PV and (iv) hepatic artery.  Note how 
the velocity map distinguishes the opposing directionality of flow in the aorta and IVC.  
Regions of interest drawn around vessel signal on the velocity map identify velocity vectors 
that when summed can estimate bulk flow in that vessel.  This image was acquired with a 
128x128 (PExFE) matrix, 2 mm slice thickness, α = 10º and 𝑉𝑒𝑛𝑐  setting of 33 cm/s. 

 
Accurate and robust quantitative PCMRI can only be undertaken with proper attention to 

the many challenges and settings that define PCMRI protocols.  In this section we review 

the key steps that were taken to optimise early 2D PCMRI experiments at 9.4T.  Certain 

parameters, such as velocity encoding settings, required the collection of empirical data 

for optimisation.  This is reflected in the way the data is presented in this section.  Other 

considerations, such as vessel orthogonality, spatial resolution and spatial misregistration 

were addressed using experience from one or two acquisitions.  In these instances, an 

account and/or example of the issue is given followed by the strategy developed to 

overcome it. 

  

(a) (b) 

(i) 

(ii) 

(iii) 

(iv) 



~ 143 ~ 
 

4.3.2 VELOCITY ENCODING SETTINGS 

Because phase shifts represent rotational motion, Δ𝜙𝑥 can only adopt values between −𝜋 

and 𝜋 radians (negative values represent flow in the opposite direction to the velocity 

encoding gradients).  The maximum velocity from a given PCMRI experiment that can be 

recorded (𝑉𝑒𝑛𝑐) can then be calculated as: 

𝑉𝑒𝑛𝑐 =
𝜋

𝛾Δ𝑀1
 

(Equation 4.13) 
 
There are three important sequelae that arise from this calculation.  Firstly, the researcher 

must be cognizant of the flow velocities in the vessels they are interested in studying.  The 

𝑉𝑒𝑛𝑐 is essentially determined by Δ𝑀1 or the size of the velocity encoding gradients.  The 

user will need to modify the size of these gradients in accordance with vessel whose flow 

they intend to study. 

Secondly, that any spin that possesses a velocity that exceeds the 𝑉𝑒𝑛𝑐 will register 

a phase shift that exceeds 𝜋 by a quantity of 𝜃 radians and will therefore become 

indistinguishable from a spin travelling in the opposing direction, recording a phase shift 

of  𝜋 − 𝜃 radians (figure 4.3).  This phenomenon results in an artefact known as velocity 

aliasing or phase wrapping. 

 
Figure 4.3: Phase shifts, 𝑽𝒆𝒏𝒄 settings and velocity aliasing 
Using a 𝑉𝑒𝑛𝑐  setting of (a) 100 cm/s or (b) 150 cm/s restricts the maximal phase shift (±π) to that 

velocity.  A spin travelling at 75 cm/s (yellow arrow), will record a shift of 
3

4
𝜋 when 𝑉𝑒𝑛𝑐  = 100 cm/s 

(a) and a shift of 
𝜋

2
 when 𝑉𝑒𝑛𝑐  = 150 cm/s (b).  Note that a spin travelling at -125 cm/s (a) and -225 

cm/s (b) will also record the same phase shift, resulting in aliasing/phase wrapping. 
 
Finally that setting the 𝑉𝑒𝑛𝑐 to exceed the maximum spin velocity can be easily achieved, 

but occurs at the expense of velocity noise ( 𝜎 ), or random errors of velocity 
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measurements.  The relationship between 𝑉𝑒𝑛𝑐 and the SNR of magnitude image can be 

expressed as:  

𝜎 ~ 
𝑉𝑒𝑛𝑐

SNR
 

(Equation 4.14) 
 
In the interest of obtaining accurate velocity measurements, the researcher must therefore 

tune the 𝑉𝑒𝑛𝑐 setting to exceed the maximum flow velocity in that vessel, but within a 

range where not beyond a level where velocity noise compromises the quality of the 

accuracy of the flow measurement. 

 The aim of this next subsection was to determine the optimal 𝑉𝑒𝑛𝑐 setting to use for 

the PV with a view to finalising a 2D PCMRI protocol for flow measurements in these 

vessels. 

4.3.2.1 Methods 

4.3.2.1.1 Numerical simulations 

Expected values for PV flow were obtained from published values in the literature for 

Sprague-Dawley rats and previously derived TTUS data (section 2.5).  Simulations were 

performed at 0.01 cm increments using vessel diameters ranging from 0.1-0.2 cm.  

Expected velocities (𝑣expected, cm/s) were calculated assuming plug flow with the following 

expression: 

𝑣expected =
𝑄

𝐴
 

(Equation 4.15) 
 
Where flow (𝑄) was converted into ml/s and 𝐴 (vessel cross-sectional area, cm2) was 

calculated from the diameter assuming a circular vessel profile. 

4.3.2.1.2 Experimental subjects 

All experiments were conducted according to the Home Office guidelines under the UK 

Animals in Scientific Procedures Act 1986.  Animals were maintained as per guidelines and 

approval of the ethical committee for animal care of University College London.  

Experiments were performed on healthy male Sprague-Dawley rats (Charles River UK, 

Margate, UK) with normal liver function.  Animals were housed in cages at 22-23ºC, ~50% 

humidity and with 12 hours of light and ad libitum access to water and rat feed.  For each 

experiment/cohort, subjects were randomly selected at the time of removal from the cage.  

Any adverse events and subsequent protocol modifications were recorded and reported in 

the results. 
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4.3.2.1.3 Sample size 

A pragmatic approach to sample size was used given that data collection during these 

studies was undertaken for the purpose of protocol development.  As parameter 

variability with our protocol on our scanning system was unknown, data was evaluated 

incrementally with a view to inform protocol development and provide preliminary 

characterisation of parameters for future planning of adequately powered studies. 

4.3.2.1.4 Animal preparation 

After induction with isoflurane, the anaesthetised animal was then sited in a 9.4T Agilent 

scanner (Oxford, UK) with a rectal probe for temperature monitoring.  Core body 

temperature was maintained between 36 and 38ºC using circulating warm water pipes 

and warm air. 

4.3.2.1.5 Two-dimensional PCMRI 

Five healthy, naïve subjects underwent 2D PCMRI for optimisation of 𝑉𝑒𝑛𝑐 settings.  After 

initial anatomical imaging, a slice was positioned orthogonal to the PV using Agilent 

Varian’s 3 point planning tool.  Respiratory-gated 2D PCMRI was undertaken using 2 mm 

slice thickness, a 10° flip angle and a 128 x 128 (frequency encoding x phase encoding) 

acquisition matrix. Data was obtained was obtained at a range of velocity encoding 

settings informed from previous numerical simulations.  ROIs were positioned over the 

portal vein for quantitative analysis. 

Table 4.1: Sequence parameters 
 

 PCMRI 
TR/TE (milliseconds) 6.3/5.6 

Flip angle (˚) 10 
Matrix size (pixels) 128 x 128 
Field-of-view (mm) 40 x 40 

Spatial resolution (mm2) 0.3125 x 0.3125 
Slice thickness (mm) 2 

 
4.3.2.1.6 Statistical analysis 

Bulk flow and peak velocity data was analysed from 2D PCMRI experiments.  Kolmogorov-

Smirnov tests were used to confirm normality of variable distributions.  Repeated 

measures one-way analysis of variance (ANOVA) with corrections for non-sphericity were 

used to compare data obtained at different 𝑉𝑒𝑛𝑐 settings, with post-hoc Tukey’s test where 

significant differences were identified.  Where variables were found not to be normally 

distributed, the Kruskal-Wallis test was used followed by post-hoc Dunn’s test where 

significant differences were identified.  The threshold of statistical significance was 

defined to be p < 0.05.  
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4.3.2.2 Results 

4.3.2.2.1 Numerical simulations 

Limited published data for mean PV flow in healthy Sprague-Dawley rats is available from 

the literature, but this and data from previous experiments is listed in table 4.2.  Based on 

these data, simulations of estimated plug flow velocity were carried out with bulk PV flows 

of 15.0, 20.6 and 30.8 ml/min (figure 4.4).  Mean expected plug flow velocity across all 

three simulations was 24.09±0.4251 cm/s. 

Table 4.2: PV flow data from the literature and previous experiments 
 

STUDY n BULK PV FLOW (ml/min) SUBJECT WEIGHT (g) 

Previous data 6 30.83±1.35 444.8±18.77 
D’Almeida et al.[308] 10 20.6±2.5 337±16 

Richter et al.[340] 18 15.0±1.2 - 

 

Figure 4.4: 
Simulated 
expected plug flow 
velocities 
Based on invasive 
experimental and 
literature derived bulk 
flow estimates, expected 
plug flow velocity was 
estimated using a range 
of vessel diameters to 
determine a reasonable 
range of velocity 
encoding settings to test 
in vivo. 

 
 
4.3.2.2.2 Two-dimensional PCMRI 

Given that vessel diameter is likely to be above 0.15 cm, experiments were performed with 

𝑉𝑒𝑛𝑐 settings of 11, 16, 22 and 33 cm/s.  An example of repeated measurements at different 

𝑉𝑒𝑛𝑐 settings is shown in figure 4.5.  

0

10

20

30

40

50

60

70

0.1 0.12 0.14 0.16 0.18 0.2

Ex
p

e
ct

e
d

 v
e

lo
ci

ty
 (

cm
/s

)

Vessel diameter (cm)

20.6 ml/min

15.0 ml/min

30.8 ml/min



~ 147 ~ 
 

 

 
  

 

 
  

 

 
  

 

 
  

Figure 4.5: Velocity profiles at different 𝑽𝒆𝒏𝒄 settings 
PV PCMRI data from the same subject at 𝑉𝑒𝑛𝑐  settings of (a) 11 cm/s, (b) 16 cm/s, (c) 22 cm/s and 
(d) 33 cm/s.  Images on the far left demonstrate the segmented PV on the calculated velocity map.  
The three-dimensional flow profiles are shown in the middle, with a mid-vessel profile 
demonstrated on the far right at each of the 𝑉𝑒𝑛𝑐  settings. 
 
Aliasing was consistently seen with bulk flow measurements at 11 cm/s (figure 4.5a), so 

measurements at this 𝑉𝑒𝑛𝑐 setting were only performed in three subjects.  For PCMRI 

experiments performed with 𝑉𝑒𝑛𝑐 settings above the peak velocity, a dome-like laminar 

flow profile was demonstrated (middle and far right images, figure 4.5).  Data for bulk flow 

and peak velocity at each of the 𝑉𝑒𝑛𝑐 settings is shown in figure 4.6. 
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Figure 4.6: Repeated measurements of bulk flow and peak velocity at 
different 𝑽𝒆𝒏𝒄 settings 
PCMRI experiments at different 𝑉𝑒𝑛𝑐  settings were performed over the same vessel in five subjects.  
Measurements of bulk PV flow (a) and peak velocity (b) were recorded.  Note how at 𝑉𝑒𝑛𝑐  = 11 
cm/s, aliasing resulted in underestimation of bulk flow and clustering of peak velocities around the 
maximum measurable velocity of 11 cm/s. 
 
As only 3 data sets were obtained with 𝑉𝑒𝑛𝑐= 11 cm/s, this data was excluded from 

multivariate analysis.  Statistically significant differences in bulk PV flow were 

demonstrated between different 𝑉𝑒𝑛𝑐 settings (F(1.786,7.142) = 7.749; p = 0.0177), with 

post-hoc tests revealing a significant difference between 𝑉𝑒𝑛𝑐 settings of 16 and 22 cm/s 

(mean difference 1.406±0.3499 ml/min; p = 0.0159), but not between higher 𝑉𝑒𝑛𝑐 settings.  

No statistically significant difference in peak velocity was identified between different 𝑉𝑒𝑛𝑐 

settings (F(1.293,5.170) = 0.3419; p = 0.6378). 

 

  

(a) (b) 
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4.3.2.3 Discussion 

Numerical simulations have revealed a simple relationship between vessel size and peak 

velocity at various physiological levels of bulk flow.  Simulations were conducted assuming 

plug flow which would have resulted in underestimation of the peak velocity.  The 

relationship between vessel size and peak velocity is however, likely to be broadly similar 

for the more physiologically relevant laminar flow and on this basis the numerical 

simulations yield useful insight into how 𝑉𝑒𝑛𝑐  settings can be adjusted in different 

physiological contexts. 

 The range of settings that was tested demonstrated how lower 𝑉𝑒𝑛𝑐 settings could 

result in aliasing artefact but failed to demonstrate problems arising from velocity noise at 

higher 𝑉𝑒𝑛𝑐 settings.  A larger variance in the data, particularly peak velocity would be 

expected at these settings, suggesting that velocity noise is not an issue in the PV at 𝑉𝑒𝑛𝑐 = 

33 cm/s.  This phenomenon may yet be an issue at higher 𝑉𝑒𝑛𝑐 settings. 

 A statistically significant difference in bulk flow was observed at different 𝑉𝑒𝑛𝑐 

settings but looking at mean values for non-aliased data (18.49±2.007, 17.08±2.268, 

17.38±2.165 ml/min for 16, 22 and 33 cm/s respectively), these differences are unlikely to 

be of physiological significance. 

 Finally, it is worth noting that there are approaches to dealing with phase 

wrapping artefact.  Although not ideal, wrapped signal can potentially be ‘unwrapped’ to 

ensure that meaningful bulk flow estimates are made. 

4.3.2.4 Conclusion 

PCMRI for bulk PV flow measurement can be lowered to 16 cm/s, but when undertaken 

with 𝑉𝑒𝑛𝑐 settings of 22 or 33 cm/s are less likely to suffer from velocity aliasing and have 

not been shown to suffer from noise.  A 𝑉𝑒𝑛𝑐 setting of 33 cm/s is therefore appropriate for 

PCMRI PV flow measurements in Sprague-Dawley rats. 
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4.3.3 VESSEL ORTHOGONALITY AND MISALIGNMENT 

PCMRI sequences can be designed with velocity encoding gradients applied in the in-plane 

(phase encode or frequency encode directions) or through-plane (slice select direction).  

Three-dimensional and 4D PCMRI sequences apply velocity encoding gradients in all three 

directions, but 2D PCMRI sequences apply flow encoding gradients in the slice select 

direction only.  With this in mind, the slice position of any 2D PCMRI experiment must be 

carefully planned to ensure that the direction of flow is aligned with those of the flow 

encoding gradients (slice select direction), i.e. that the imaging plane is as orthogonal to 

the vessel as possible [341].  In order to achieve this, PCMRI studies were planned using a 

two-step method:  Firstly, initial axial anatomical images were used to identify the portal 

vein.  The scanner console software (VnmrJ 3.2, Agilent, Oxford, UK) enabled placement of 

three markers in the PV lumen, for automated planning of scanning slices through the PV 

in the coronal plane.  The PV was then identified on coronal slices and two markers were 

placed on either side of the vessel to position an imaging slice that would be orthogonal to 

the vessel (figure 4.7). 

 

 

 

  

Figure 4.7: PCMRI slice planning for PV flow measurements 
Anatomical images were obtained in the (a) coronal plane to identify the portal vein.  Sagittal 
images parallel to the vessel were then obtained (b).  The PCMRI slice was positioned to ensure 
orthogonality to the vessel in two planes.  Note PV orthogonality usually also resulted in a suitable 
plane for IVC quantification. 
 

R  L Posterior  Anterior 

(a) (b) 

IVC 

portal 

vein 
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Deviation from absolute orthogonality can affect data quality, but there is a margin for 

error within which quantification is still acceptable.  Although there are very few studies 

that have investigated these errors, it has been demonstrated that deviations from the 

orthogonal plane of as much as 15º can still yield acceptable results [182]. 

4.3.4 SPATIAL RESOLUTION AND MATRIX SIZE 

Spatial resolution is an important consideration and of direct relevance when imaging 

small vessels in rodents.  Partial voluming from smaller vessels can result in significant 

errors, particularly in view of the reliance on measurements of area for the calculation of 

bulk flow.  Published data suggests that measurements where pixel size exceeds one 

quarter of the vessel diameter (i.e. less than 16 pixels over a square region of interest 

(ROI) covering the vessel) are likely to be inadequate [211, 342-344].  From repeated 

measurements at different 𝑉𝑒𝑛𝑐 settings, PV vessel size ranged from 26-73 pixels (mean 

54±3 pixels; n = 5).  Increasing pixel size may increase the resolution of the images, but 

compromises the SNR.  Although this is particularly pertinent in smaller vessels where the 

velocity signal may inherently be less, this phenomenon is also known to affect larger 

vessels. 

 Initial experiments performed with a 128 x 128 matrix frequently showed areas of 

high signal spanning 2-4 pixels adjacent to the portal vein, likely to represent hepatic 

artery (HA) (figure 4.8a).  Because of partial voluming, no accurate flow measurements 

could be obtained.  When resolution was increased using a 256 x 256 matrix (n = 1), the 

HA was no longer seen indeed PV bulk flow measurements were less and the data was 

much noisier (figure 4.8b). 

 

 

 

 
Figure 4.8: Portal venous velocity maps acquired at lower and higher 
resolution 
Data in the same subject over the PV acquired at (a) 128 x 128 and (b) 256 x 256 resolution.  Note 
how signal inferior to the PV, outside the yellow ROI, presumed to be hepatic artery (a) is not seen 
at higher resolution (b).  Also note noisier signal, more prone to artefact at higher resolution (b). 
 

(a) (b) 
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The reduction in signal resulted in the adoption of a 128 x 128 matrix for imaging larger 

vessels such as the PV. 

4.3.5 PULSATION ARTEFACTS AND SPATIAL MISREGISTRATION 

High volume and pulsatile flow results in vessel motion between acquisitions of successive 

phase maps.  This results in ‘pulsation artefact’ – a well-documented phenomenon in 

vessels such as the descending aorta, apparent in the phase-encode direction.  While not 

directly a problem, 2D PCMRI slices through the portal vein include the descending aorta 

and therefore have the potential to be corrupted if artefact signal is projected over the 

vessel of interest.  This was commonly seen with the inferior vena cava (IVC) adjacent to 

the aorta (figure 4.9a).  When identified, the acquisition was repeated after swapping the 

phase and frequency encode directions, which usually ensured that the pulsation artefact 

was not extending over the PV or IVC (figure 4.9b).   

 
 

 
 

 
 

 
 

Figure 4.9: Aortic pulsation artefact with corruption of inferior vena caval 
signal and subsequent correction 
Magnitude images from an orthogonal slice through the PV, with phase encoding along the 
horizontal axis and frequency encoding along the vertical axis.  Aortic pulsation artefact is projected 
over the IVC (a), with reduced IVC signal and erroneous signal (short dashed circle) projected over 
an area of normal tissue.  This was corrected in the same subject by swapping the phase and 
frequency encode directions so that the persistent aortic pulsation artefact would not be projected 
over vessels of interest. 
 
Spatial misregistration can also occur because of respiratory, but also cardiac motion.  

Respiratory gating alone was found to be adequate in avoiding misregistration artefacts at 

the site of PV PCMRI measurements.  

IVC aorta 

PV 

aorta 

IVC 

PV 

(a) (b) 
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4.3.6 INTRAVOXEL PHASE DISPERSION AND VELOCITY COMPENSATION 

Physiological vessel flow adopts a laminar flow profile (figure 4.5, far right) which in 

vessels that experience high velocity and high bulk flow can be a cause of artefact.  This is 

because the parabolic distribution of flow velocities will result in stationary (zero velocity) 

spins at the vessel periphery with progressively faster spins towards the centre of the 

vessel.  For voxels towards the periphery of the vessel, the range of velocities is much 

larger than voxels towards the vessel centre.  The wide range of phase shifts at the vessel 

periphery is prone to measurement errors which can result in reduction or even complete 

abolition of signal at the vessel periphery.  This phenomenon, known as intravoxel phase 

dispersion can result in erroneous underestimation of vessel size and flow.  In 

combination with pulsatile flow and variations in flow velocities across the repetition time 

(TR), intravoxel phase dispersion can also cause pulsation artefacts in the phase-encoding 

direction (figure 4.9)[211, 338, 339]. 

 Intravoxel phase dispersion can be addressed using flow or velocity compensation 

techniques.  Additional bipolar gradients were inserted in the slice select and frequency-

encoding directions for velocity compensation to minimise these artefacts.  

4.3.7 PHASE OFFSET ERRORS 

Phase offset errors affect the measurement of stationary and moving phase shifts.  These 

are the result of local and static magnetic field inhomogeneities but also occur secondary 

to gradient imbalances and eddy currents [211, 345].  In the interest of increasing the 

speed of the acquisition, phase shifts are often calculated as simply the difference between 

positive and negative gradient phases.  It can be argued that as background phase data 

would be collected in both positive and negative gradient phase acquisitions, background 

phase (𝜙0(𝑥)) cancels out as a term in the calculation of phase shift.  The more 

comprehensive description given at the start of this section (equation 4.11), requires a 

separate measurement of 𝜙0(𝑥), with its inclusion in the calculation of phase shift which 

has the added benefit of addressing some of these errors. 

Post-processing correction of phase offset errors can also be addressed using a 

method known as ‘background compensation’.  An ROI on the phase shift map is placed on 

stationary tissue adjacent to the vessel of interest and based on the phase shift observed in 

this ROI, the vessel signal can then be corrected.  The latter has the potential to introduce 

errors in quantification and was not adopted in the methods used [182, 346, 347]. 
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4.3.8 TEMPORAL RESOLUTION 

Adequate temporal resolution is especially important in the context of pulsatile flow.  

Although PV flow is non-pulsatile, gentle sinusoidal variation in physiological flow has 

been noted through the cardiac cycle [76, 78].  No cardiac gating was used during these 

early attempts, but in recognition of temporal resolution errors, three repeated 

measurements were obtained in succession and averages were recorded for final 

measurements.  Averaging had the added benefit of reducing errors introduced by other 

technical PCMRI challenges. 

There are a number of methods for optimising and accelerating acquisitions to allow the 

acquisition of multiple PCMRI frames through the cardiac cycle, which are discussed later 

in this chapter. 

4.3.9 DISCUSSION AND CONCLUSIONS 

We have demonstrated that 2D PCMRI is feasible for measuring PV flow in the rat at 9.4T 

and optimised our protocols to address the challenges and settings of the method.  In the 

assessment of PV flow, we have found 𝑉𝑒𝑛𝑐 settings at 22 cm/s or above to be adequate, 

developed a robust method for ensuring slice to vessel orthogonality , determined a 

128x128 matrix size as providing adequate SNR and developed a strategy to deal with 

pulsation artefacts from the aorta.  The use of velocity compensation to deal with 

intravoxel phase dispersion and background phase subtraction to minimise phase offset 

errors was also implemented, in addition to recognising the acceptability of using non-

cardiac gated studies for the assessment of PV flow and the collection of three successive 

measurements for averaging of final results.  

Early experiments demonstrated signal over the hepatic artery at lower resolution 

and a considerable amount of development time was invested into trying to adapt the 

sequence to obtain reliable measurements of hepatic arterial flow.  Although the 

requirement for cardiac gating in the assessment of pulsatile hepatic arterial flow was an 

immediate hurdle, it was the inability to achieve adequate hepatic arterial SNR at higher 

resolution that necessitated alternative approaches to direct hepatic arterial PCMRI 

(Chapter 5). 
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4.4 REPEATABILITY, REPRODUCIBILITY AND INVASIVE 

VALIDATION STUDIES 

4.4.1 BACKGROUND 

We have previously demonstrated that PCMRI measurements of bulk PV flow are possible 

using the protocol developed in section 4.3.2.  In this section we aim to assess the (a) 

repeatability and reproducibility of PCMRI measurements of bulk PV flow and compare 

repeatability with that of the TTUS measurements and finally (c) validate PCMRI PV flow 

measurements with TTUS measurements. 

4.4.2 METHODS 

Experimental subjects and animal preparation was as described in section 4.3.2.1. 

4.4.2.1 Sample size 

A pragmatic approach to sample size was used given that data collection during these 

studies was undertaken alongside protocol development.  As parameter variability with 

our protocol was unknown and PV PCMRI studies had not previously been undertaken in 

rats, data was evaluated incrementally with a view to preliminary characterisation of 

parameters for future planning of adequately powered studies. 

4.4.2.2 Two-dimensional PCMRI 

Subjects underwent PCMRI as described in section 4.3.2.1.  Data was acquired using a 𝑉𝑒𝑛𝑐 

setting of 22 cm/s. 

4.4.2.3 Transit-time US 

Invasive TTUS measurements were performed as described previously (section 2.4.3).  

Briefly, a laparotomy was performed and a 2 mm TTUS probe (Transonic Systems, Ithaca, 

USA) was placed around the PV.  Readings were taken after 10-15 minutes, once the 

subject was stable. 

4.4.2.4 Repeatability 

Fourteen healthy, naïve subjects underwent PCMRI or TTUS repeatability studies with 

repeat data obtained 30-45 minutes after the first measurement.  For PCMRI (n = 9), the 

animal remained in the scanner after initial measurements.  For TTUS (n = 5), the US 

probe was removed after the initial measurement and the laparotomy was temporarily 

closed during the interval before the second measurement. 
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4.4.2.5 Validation and reproducibility 

Three subjects underwent invasive validation with TTUS, 4 weeks post-sham operation.  

After initial PCMRI, the animal was removed from the scanner and a TTUS measurement 

was recorded.  For PCMRI reproducibility, the laparotomy was closed and the animal was 

then returned to the scanner for a second PCMRI measurement. 

4.4.2.6 Statistical analysis 

All PV flow measurements were normalised to explanted liver weight.  Kolmogorov-

Smirnov tests were used to confirm normality of variable distributions.  Repeatability 

studies were assessed using paired t-tests, Bland-Altman analysis of agreement with 

calculation of the coefficient of repeatability and assessment of correlation between 

repeated measurements using Pearson’s correlation coefficient.  Given the small numbers 

of subjects, validation and reproducibility studies were assessed using the Wilcoxon 

matched-pairs signed ranks test.  The threshold of statistical significance was defined to be 

p < 0.05. 

 

Repeatability cohort (naïve) 
n = 14 

 
Validation and reproducibility 

(sham-operated) 
n = 3 

       

PCMRI 
n = 9 

 
TTUS 
n = 5 

 

PCMRI 
reproducibility 

studies 
n = 3 

 

Validation studies 
(PCMRI and 

TTUS) 
n = 3 

    

Figure 4.10: Schematic diagram demonstrating cohort sizes 
Data for TTUS repeatability included four datasets previously presented in Chapter 2.  
Reproducibility and validation data was obtained using the same three sham-operated subjects. 

4.4.3 RESULTS 

No significant differences were demonstrated between repeated PCMRI (mean difference -

1.305±3.973 ml/min/100g, p = 0.7510) or repeated TTUS (mean difference -8.868±9.189 

ml/min/100g, p = 0.3891) PV flow measurements.  The coefficient of repeatability was 

larger for repeated TTUS measurements (40.27 vs 23.37; TTUS vs PCMRI).  Graphical 

analysis (figure 4.11) shows correlations between repeated PCMRI measurements were 

just non-significant (r = 0.6611, p = 0.0525). 
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Figure 4.11: Repeatability of PCMRI PV flow measurements 
Bland-Altman analysis of agreement (a) and regression analysis (b) for PCMRI.  TTUS data is not 
presented because of the small sample size (n = 5). 
 
Reproducibility of PCMRI measurements showed no significant difference between PCMRI 

measurements (median -19.46 ml/min/100g, p = 0.2500).  Invasive validation in the same 

subject demonstrated no significant difference between the methods (median 1.306 

ml/min/100g, p = 0.5000).  Given the small sample size, this raw data is presented in table 

4.3. 

Table 4.3: Reproducibility and invasive validation of PV flow measured suing 
PCMRI and TTUS 

 PCMRI PV FLOW 1 

(ml/min/100g) 

TTUS PV FLOW 

(ml/min/100g) 

PCMRI PV FLOW 2 

(ml/min/100g) 

Subject 1 134.3 133.3 166.6 

Subject 2 128.3 150.8 116.2 

Subject 3 154.0 155.3 173.5 

4.4.4 DISCUSSION AND CONCLUSIONS 

Our findings have shown that PCMRI measurements of PV flow are repeatable.  When 

compared with a small cohort of TTUS measurements, PCMRI measurements may 

tentatively possess greater repeatability, as demonstrated by the smaller coefficient of 

repeatability and narrower mean difference confidence intervals for PCMRI 

measurements.  Reproducibility of a small cohort of PCMRI measurements is encouraging 

as is direct within-subject inter-technique agreement with invasive TTUS.  

(a) (b) 
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4.5 EARLY STUDIES IN THE MODULATION OF PV FLOW IN 

CHRONIC LIVER DISEASE 

4.5.1 BACKGROUND 

In previous work presented in Chapter 2, PV ligation was used as a simple method for 

gross modulation of PV flow.  While effective in achieving flow modulation, a method that 

could be used to achieve controlled graded changes in PV flow would be more 

advantageous.  This would then verify the ability of the method to detect changes which 

may exist across a spectrum of disease or subtle haemodynamic changes induced by 

therapeutic agents.  Mechanical modulation can be undertaken with vascular occlusion 

cuffs – these are placed surgically around the vessel and are inflated with air to induce 

varying degrees of flow restriction.  Such methods can be successful with larger vessels in 

larger animals but based on experience from early experiments, consistent changes in 

small animals were difficult to achieve.  Additionally, a cuff inflated with air in situ in the 

MR scanner has the potential to introduce significant artefact around the vessel itself, 

which could ultimately compromise any quantification.  Flow changes in smaller vessels 

including hepatic artery can be achieved using micro-manipulators, but these are invasive, 

bulky and not available as MR compatible devices. 

An alternative approach to flow modulation could be achieved using 

pharmaceutical agents.  These have the advantage of being MR safe and potentially 

administered to the animal while remaining in situ in the scanner (e.g. by IV route).  Dose-

dependent responses can also then potentially be used to investigate graded changes in PV 

flow.  In this section, studies of PV flow modulation were undertaken using L-NG-nitro 

arginine methyl ester (L-NAME) and terlipressin. 

Nitric oxide is an endogenous smooth muscle relaxant which causes physiological 

vasodilatation and increased blood flow.  By inhibiting nitric oxide synthetase, L-NAME is 

able to reduce nitric oxide levels, thereby triggering vasoconstriction and reduced flow.  

Even when administered systemically, L-NAME driven reductions in splanchnic blood flow 

have been observed [348].  Terlipressin is a clinically used long-acting vasopressin 

analogue acting primarily on vascular, renal and pituitary vasopressin receptors.  Action 

on V1a receptors in the splanchnic vascular bed is thought to reduce PV blood flow, 

forming the basis of clinical use of terlipressin in the management of variceal bleeds [349]. 
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In this section we aim to assess the ability of PCMRI to detect expected changes in PV flow 

after (a) L-NAME and (b) terlipressin administration and finally (c) evaluate any 

differences in the response to terlipressin between normal and diseased rats. 

4.5.2 MATERIAL AND METHODS 

4.5.2.1 Experimental subjects 

Experimental subjects were maintained as described in section 4.3.2.1. 

To study differential responses to terlipressin in models of liver disease, subjects 

weighing 250-300g were randomised to bile-duct ligation (BDL) procedure (n = 4) or 

sham laparotomy (n = 4).  BDL and sham surgery was conducted as described previously 

by researchers at our institution [350].  Briefly, a midline abdominal incision was made 

under 2% isoflurane and intraperitoneal levobupivacaine.  For animals undergoing BDL 

procedure, the common bile duct was isolated, triply ligated with 3-0 silk and sectioned 

between the ligatures.  After closure and recovery, animals were maintained for 5 weeks 

to allow the development of portal hypertension and features of chronic liver disease.  

Data from previous validation of the BDL model at our institution is presented in table 4.4, 

demonstrating deranged liver function tests, reduced plasma oncotic pressure and raised 

portal pressure in the BDL cohort in keeping with features of chronic liver disease. 

Table 4.4: Differences between sham and BDL Sprague-Dawley rats at 5 
weeks 
 

 SHAM 
(n = 6) 

BDL 
(n = 6) 

Weight 
Baseline 
6 weeks 

 
325±8g 

509±16g 

 
320±7g 

453±15g 

Liver function 
ALT 
AST 

Bilirubin 

 
108±10 IU/L 
169±16 IU/L 
3.0±0.3 IU/L 

 
161±23 IU/L* 

703±113 IU/L* 
197.3±18 IU/L* 

Plasma oncotic pressure 12.8±0.5 mmHg 9.3±1.1 mmHg* 

Portal pressure 6.3±0.4 mmHg 15.8±2.2 mmHg* 

(all parameters given as mean ± standard error of the mean; *p < 0.05) 

4.5.2.2 Animal preparation 

Animal preparation was as described in section 4.3.2.1.3, with additional siting of a 0.58 

mm internal diameter fine bore polyethylene line (Portex, Smiths Medical, Kent, England) 

in the jugular vein after initial induction with isoflurane and before transfer to the MR 

scanner. 

4.5.2.3 Two-dimensional PCMRI 

Subjects underwent PCMRI as described in section 4.4.2.1. 
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4.5.2.4 L-NAME response 

Pilot experiments using TTUS to monitor PV flow were performed on the bench to 

determine the dosage regime (Appendix A).  After baseline PCMRI measurements, four 

normal subjects received a 10 mg/kg bolus of L-NAME administered intravenously 

through the previously sited jugular venous line.  Repeat PCMRI measurements were 

performed 10-15 minutes after the drug was given. 

4.5.2.5 Terlipressin response 

Pilot experiments using TTUS to monitor PV flow were performed on the bench to 

determine the dosage regime (Appendix A).  After baseline PCMRI measurements, sham (n 

= 4) and BDL (n = 4) subjects received a 100μg/kg bolus of terlipressin acetate 

(Glypressin, Ferring Pharmaceuticals, UK) administered intravenously through the 

previously sited jugular venous line.  Sequential PCMRI measurements were obtained for 

30-40 minutes post-administration. 

4.5.2.6 Statistical analysis 

All PV flow measurements were normalised to explanted liver weight.  Given the small 

sample sizes, a normal distribution was not assumed and Mann-Whitney U tests were used 

for unpaired comparisons and Wilcoxon matched-pairs signed rank tests were used for 

paired comparisons.  For sequential flow measurements in sham and BDL animals 

receiving terlipressin, data was plotted and fitted using smoothed cubic spline 

interpolation to demonstrate the coarse trend across each cohort.  The threshold of 

statistical significance was defined to be p < 0.05. 

 
Naïve cohort 

n = 4 
 

Sham-operated cohort 
n = 4 

 
BDL cohort 

n = 4 
           

Baseline 
n = 4 

 
Post-

LNAME 
n = 4 

 
Baseline 

n = 4 
 

Post-
terlipressin 

n = 4 
 

Baseline 
n = 4 

 
Post-

terlipressin 
n = 4 

     

Figure 4.12: Schematic diagram demonstrating cohort sizes 
Paired baseline and post-treatment data was obtained for all subjects in each cohort.  Unpaired 
analyses were undertaken between sham and BDL cohorts at baseline and for nadir post-
terlipressin PV flow.  Reproducibility and invasive validation data was collected for n = 3 of the 
sham operated cohort (presented section 4.4.2). 
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4.5.3 RESULTS 

Mean baseline PV flow in normal rats was 98.95±14.80 ml/min/100g, which dropped to 

71.84±11.55 ml/min/100g 10-15 minutes after LNAME administration, but this difference 

was just above the significance threshold (W = -10.00, p = 0.0680). 

Figure 4.12: Baseline and post-
LNAME PCMRI PV flow in normal 
rats 
Reductions in mean PV flow were 
consistently observed in all subjects post-
LNAME, but this was found to be just non-
significant. 

 
 
After 5 weeks, mean sham body weight exceeded BDL body weight (531±38g vs 427±42g, 

p = 0.0286), however in keeping with development of chronic liver injury, mean sham 

liver weight was significantly less than mean BDL liver weight (19±1.4g vs 32±2.2g, p = 

0.0286).  Both cohorts responded to terlipressin differently, with sham animals starting 

with higher baseline flow, dropping PV flow but then generally showing a trend toward 

returning to baseline.  This was not consistently seen in BDL animals (figure 4.13). 

 
Figure 4.13: Scatter plot of PV flow changes in sham and BDL animals 
Sham (red, n = 4) and BDL (blue, n = 4) PV flow data plotted on a single chart, with solid lines 
representing the coarse trend fitted using smoothed cubic spline interpolation.  Terlipressin was 
administered at a relative time of zero minutes. 
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Mean sham baseline PV flow was higher than in BDL animals (143.5±7.209 vs 79.51±22.37 

ml/min/100g, p = 0.0571), but this difference was just above the significance threshold 

(figure 4.14a). 

  
Figure 4.14: Baseline (a) and nadir (b) PV flows post-terlipressin in sham and 
BDL rats 
Mean baseline PV flow was higher in sham operated animals, but this difference was just non-
significant.  A significant difference in nadir PV flow after terlipressin was demonstrated between 
sham and BDL cohorts. 
 
Both cohorts responded to terlipressin with reductions in PV flow (figure 4.15), but for 

both sham (mean difference -63.48±7.138 ml/min/100g, p = 0.0680) and BDL cohorts 

(mean difference -55.44±17.86 ml/min/100g, p = 0.0680), these differences were just 

non-significant.  Nadir sham PV flow after terlipressin however, was significantly different 

to that of BDL animals (80.05±10.09 vs 24.07±7.330 ml/min/100g, p = 0.0286) (figure 

4.14b). 

 
 

 
 

Figure 4.15: Reductions in PV flow after terlipressin in sham (a) and BDL (b) 
rats 
Expected reductions in PV flow were observed in both the sham (a) and BDL (b) cohorts although 
these differences were just non-significant in both cohorts. 
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4.5.4 DISCUSSION 

The only statistically significant haemodynamic comparison was of nadir PV flow post-

terlipressin between sham and BDL cohorts.  Reductions in PV flow after L-NAME and 

terlipressin were however consistently noted in all subjects, though these were all just 

over the significance threshold.  This suggests a potential for type II errors, secondary to 

small sample size rather than genuine non-significant differences.  It is worth noting that if 

assuming a normal distribution (which would be expected for each of these 

haemodynamic parameters), the use of Student t-tests would demonstrate significant 

differences in all of the comparisons undertaken.  In view of the likelihood of type II 

errors, trends from this small sample size early data are encouraging and suggest that 

PCMRI has potential for evaluation haemodynamic changes in response to 

pharmacological modulation.  Interestingly, our data has also demonstrated 

haemodynamic differences in between healthy and diseased animals, which though 

previously described [351-353] has never previously been described using PCMRI. 

 We have demonstrated the use of pharmacological agents to modulate PV flow.  

Both sham and BDL cohorts demonstrated reductions in PV flow post-terlipressin, which 

were more profound in the BDL cohort as shown by significantly lower nadir PV flow.  

While the use of pharmacological agents to modulate PV flow have the previously 

mentioned advantage of being non-invasive and easily studied without perturbing the 

animal in the scanner, our data also underlined some of the disadvantages of using 

systemic agents.  Firstly agents administered into the systemic blood stream will 

invariably exert effects on other organs, and particularly in the case of vasoactive 

substances (such as LNAME and terlipressin) the concern would be over confounding 

effects on the systemic vasculature.  Both of these drugs are known to affect mean arterial 

pressure, and potentially systemic vascular resistance both of which undermine the 

evaluation of the haemodynamic changes in the context of hepatic rather than systemic 

factors.  In order to make inferences regarding haemodynamic changes secondary to liver 

disease, attempts must be made to measure and control for these systemic changes.  

Secondly, pharmacological agents may exert specific and dose-dependent effects, but these 

effects are much more prone to inter-subject variation than with mechanical flow 

modulation. 
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4.5.5 CONCLUSION 

Pharmacological agents such as LNAME and terlipressin can be used to modulate PV flow 

and these changes in PV flow can be measured using PCMRI.  BDL can be used to establish 

pathological features of chronic liver disease and preliminary studies have demonstrated 

reduced baseline PV flow in disease.  Reductions in PV flow elicited by terlipressin can be 

measured with PCMRI and we have shown a differential response to terlipressin between 

sham and BDL rats. 
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4.6 IMPLEMENTATION OF CARDIAC GATING 

4.6.1 BACKGROUND 

In part (a), we underlined the need for cardiac gating in the assessment of pulsatile blood 

flow.  Findings presented in sections 4.3 and 4.4 were based on non-cardiac gated data 

which though suboptimal were important in demonstrating the potential of PCMRI for 

generating repeatable, reproducible, accurate measurements, amenable to the study of 

flow changes and chronic liver disease.  Although the assumption of non-pulsatile flow in 

the PV may be physiologically acceptable, non-cardiac gated data is likely to be more error 

prone and inadequate in the assessment of pathological scenarios where PV flow has the 

potential to become more pulsatile (e.g. portal hypertension, dehydration, sepsis, etc.).  

Additionally, any attempt to accurately measure hepatic arterial flow with PCMRI would 

be impossible without cardiac gating. 

 A cardiac gated PCMRI study would produce multiple velocity maps as part of a 

single study, each representative of a phase in the cardiac cycle.  Bulk flow measurements 

for a vessel at each stage of the cardiac cycle could then be interpolated so that the area 

under the interpolated points would then represent bulk vessel flow through the cardiac 

cycle.  For robust cardiac gating, each phase-encoding step needs to be acquired at exactly 

the same stage in the cardiac cycle and this can only be achieved if there is accurate 

synchronisation of the pulse sequence with the cardiac cycle. 

  Monitoring of the cardiac cycle is classically undertaken using an 

electrocardiogram (ECG) trace.  Typically, clinical MR systems usually apply four 

electrodes to obtain limb lead traces with the main objective being consistent detection of 

the R-wave and R-R interval (figure 4.16a).  The application of magnetic field gradients in 

the scanner have the potential to induce currents in ECG electrodes thereby corrupting the 

signal.  This effect is minimised by placing the electrodes closer together, but must be 

traded-off against the physiological improvement in ECG signal obtained by positioning 

electrodes as far apart as possible [339].  This is a particular problem in preclinical 

systems, where the small animal and scanner bore-hole size, increased gradient strength 

and less robust ECG systems can pose a significant challenge. 

Radiofrequency interference with the ECG signal poses another challenge to 

accurate monitoring.  Filtering of ECG waveform has been developed on clinical systems to 

aid with these issues but this is yet another area of difficulty on preclinical systems. 
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Figure 4.16: Clinical 
cardiac monitoring 
with ECG and pulse 
oximetry 
ECG trace (a) was 
obtained outside the 
magnet bore while ECG 
trace (b) was obtained 
inside the magnet bore.  
Note the increased 
baseline artefact.  Trace 
(c) was obtained with a 
finger pulse oximetry 
probe in the same 
patient, while in the 
magnet bore.  (Traces 
obtained from reference 
[339]). 

 

 
 
 

 
 

 
Pulse oximetry or photoplethysmography is another method for monitoring the cardiac 

cycle.  A probe is typically placed on a finger tip (clinical system) or paw (preclinical 

system).  Light absorbance fluctuates with the cardiac cycle so that signal peaks are 

comparable to R-R interval.  Because the monitoring occurs at an extremity distal to the 

heart, it can be argued that there is a delay between pulse oximetry and R-wave peaks, 

which may compromise the timing of pulse oximetry based gating.  Nonetheless, the use of 

pulse oximetry signals for cardiac gating has been tested on clinical systems and avoids 

the issues that arise in ECG monitoring from induced currents and/or RF interference 

[354]. 

There are a number of approaches to synchronising MR acquisitions with the 

cardiac cycle, broadly falling into either prospective or retrospective gating strategies.  

Prospective gating strategies involve acquisitions that only collect data at the required 

stage of the cardiac cycle.  Retrospective strategies usually involve continuous acquisitions 

with post-acquisition sorting of data into relevant stages of the cardiac cycle and possible 

discarding of useless or corrupted data [338]. 

The method applied in this study is prospective and can be described as “fixed 

delay multiphase cardiac triggering”.  The size of the R-R interval can be estimated from 

the subject’s heart rate.  The researcher can then choose to collect data for any number of 

phases in the cardiac cycle, as long as the interval between successive phases is not less 

than the repetition time.  Upon detection of an open cardiac (and respiratory) gate, the 

sequence is triggered initially with zero delay, acquiring data all with the same phase 

(a) 

(b) 

(c) 
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encoding amplitude, followed by data at progressively increasing phase encoding 

amplitude to complete the data set.  To acquire the data from the next phase in the cardiac 

cycle, a fixed delay is then applied after detection of an open cardiac gate and the process 

is repeated once again.  The delay is incremented progressively, based on predefined heart 

rate and researcher preference so that multiple phases are thus acquired through the 

cardiac cycle (figure 4.17)[355]. 

 

 
Figure 4.17: Fixed delay multiphase cardiac gating 
Acquisitions are triggered by the start of the cardiac cycle, with initial acquistions obtained with 
zero delay (far left).  After the complete acquisition of a single phase, a successive fixed delays of 
size (i) were introduced for the acquisition of each subsequent phase.  For phases later in the 
cardiac cycle, acquisition times were much longer because the smaller cardiac gate acquisition 
window (far right). 
 
From work presented in section 4.5, an assessment of systemic haemodynamics would be 

useful in the context of contextualising the significance of absolute hepatic flow 

measurements but also to control for systemic haemodynamic consequences of disease or 

pharmacological modulation.  A possible non-invasive MRI based strategy to address this 

would be to use cardiac-gated PCMRI to measure aortic root flow and thereby estimate 

cardiac output. 

With this in mind, in this section we aim to (a) implement fixed delay multiphase 

cardiac gating for PCMRI (b) evaluate portal venous, inferior vena cava and aortic root 

flow using cardiac gated PCMRI and (c) validate cardiac gated PCMRI PV flow 

measurements with TTUS measurements in the same subject. 
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4.6.2 METHODS 

4.6.2.1 Experimental subjects 

Experimental subjects were maintained as described in section 4.3.2.1.2. 

4.6.2.2 Sample size 

A pragmatic approach to sample size was used given that data collection during these 

studies was undertaken for the purpose of protocol development.  As parameter 

variability with cardiac-gated PV PCMRI measurements was unknown, data was evaluated 

with a view to inform protocol development and provide preliminary characterisation of 

parameters for future planning of adequately powered studies. 

4.6.2.3 Animal preparation 

Animal preparation was as described in section 4.3.2.1.3.  Healthy, naïve animals were 

used. 

4.6.2.4 Fixed delay multiphase cardiac gated PCMRI 

Once positioned in the scanner, anatomical images were obtained to confirm vessel 

orthogonality as described in section 4.3.3.  IVC flow measurements were obtained from 

the same slice used to measure PV flow (n = 6), with dedicated anatomical planning for the 

aortic root (n = 5).  PCMRI planning provided time for the animal to settle before 

evaluating subject heart rate.  Because of time constraints, fixed delays were calculated for 

only six phases through the cardiac cycle.  Two-dimensional PCMRI as described in section 

4.3.2.1.4 was then performed when cardiac and respiratory gates were both open, with 

addition of successive fixed delays to obtain data for successive phases in the cardiac cycle.  

Data for PV and IVC flow was acquired using 𝑉𝑒𝑛𝑐 settings of 33 cm/s (based on the 

assumption that 33 cm/s would be suitable for the larger vessel size and flow volumes 

expected in the IVC) and aortic root flow measurements were acquired using 𝑉𝑒𝑛𝑐 settings 

of 133 cm/s.  Single multiphase acquisitions were collected rather than three datasets as 

previously. 

4.6.2.6 Validation 

Four subjects under invasive validation with TTUS using methods described in section 

4.4.2.2.  To control for physiological sequelae of laparotomy and PV instrumentation, 

laparotomy was performed and the PV was dissected before abdominal closure and initial 

PCMRI.  To match the procedural sequence described previously, the animal was then 

removed from the scanner and a TTUS measurement was recorded.  
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4.6.2.7 Statistical analysis 

All PV flow measurements were normalised to explanted liver weight.  IVC and aortic root 

bulk flows were not normalised.  Given the small sample size of the validation cohort (n = 

4), a normal distribution was not assumed and a Wilcoxon matched-pairs signed rank 

tests were used for paired comparisons.  The threshold of statistical significance was 

defined to be p < 0.05. 

 
Implementation of cardiac gating cohort (naïve) 

n = 6 
       

PCMRI PV flow 
n = 6 

 
PCMRI IVC flow 

n = 6 
 

PCMRI aortic root flow 
n = 5 

 
TTUS PV flow 

n = 4 

  

Figure 4.18: Schematic diagram demonstrating cohort sizes 
A cohort of six subjects was used in which, five had aortic root flow measured and four had 
invasive TTUS flow measurements undertaken. 

4.6.3 RESULTS 

4.6.3.1 Cardiac monitoring 

Early cardiac monitoring was attempted using a dual electrode single lead system (SA 

instruments, New York, USA).  Although expected deterioration in the cardiac signal was 

observed once the animal was sited in the scanner, RF interference introduced artefacts 

that obscured QRS complexes to the extent that the R-R interval could not be consistently 

identified once RF pulsing began. 

To address this challenge, a small animal pulse oximeter (Starr Lifesciences, 

Pennsylvania , USA) was used.  The pulse oximeter was designed to output a digital trace 

via USB to a dedicated software package provided by the manufacturer, which while 

adequate for recording heart rate and oximetry data was not suitable for scanner gating.  

The signal processing module was returned to the manufacturer for addition of a female 

Bayonet Neill-Concelman (BNC) connector to enable output of analog signal.  This 

arrangement avoided the added signal processing delay introduced by the computer but 

the raw signal was still not adequate for cardiac gating and a further step of signal 

processing was required (figure 4.19). 
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Figure 4.19: Raw analog signal and the required signal form for cardiac 
gating 
Raw analog signal (a), had a sinusoidal alternating current waveform.  The required signal form 
(b) was a positive square wave, with larger amplitude than the raw signal. 

 
Three steps were required to convert the raw analog signal into the required format: 

firstly the wave had to be converted into a squared wave, secondly a direct current offset 

would need to be added to the signal to ensure it remained positive and thirdly the signal 

would need to be scaled to consistently reach the required threshold of five volts. 

 
Figure 4.20: Schematic circuit design for the pulse oximetry analog signal 
processing unit 
Input would arrive through a BNC connector in the form of an analog sine wave as shown in figure 
4.17a at the far left of the diagram (‘in’).  Signal would undergo potentiometer driven amplification 
with signal output through a BNC connector (‘out’).  An LED would be used as visual indicator of the 
gated signal (far right of the diagram). 
 
To achieve this, a signal processing unit was developed.  A schematic design was produced 

and simulated online (Circuitlab, Mountain View, USA) (figure 4.20).  This was then 

0 

+2V 

-2V 

0 

+5V 

(a) 

(b) 



~ 171 ~ 
 

constructed on a breadboard (figure 4.21a), tested and then formally set up on a printed 

circuit board (PCB) with a protective box for more robust day-to-day use (figure 4.21b). 

 

 
 

 

 
 

Figure 4.21: Construction of the pulse oximetry analog signal processing 
unit 
Designs were initially structured and tested on breadboard (a) before permanent PCB 
construction with protective box (b).  Input (right) and output (left) BNC connectors are shown 
with the potentiometer placed between the sockets. 

 
  

(a) 

(b) 
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4.6.3.2 Fixed delay multiphase cardiac gated PCMRI 

Using pulse oximetry to monitor the cardiac cycle, consistent cardiac-gating using fixed 

delay multiphase cardiac gated PCMRI was attempted.  Waveforms from a single subject 

for bulk flow through the cardiac cycle in the PV, IVC and aorta are shown in figure 4.22. 

  

 

 
 
 
 
 
Figure 4.22: Bulk flow profiles 
through the cardiac cycle using 
cardiac-gated PCMRI 
Data from the same subject demonstrating flow 
profiles for the (a) PV, overall flow = 22.88 
ml/min, (b) IVC, overall flow = 47.95 ml/min 
and (c) aortic root, overall flow = 166.0 ml/min. 

 
Bulk flow measurements in the portal vein (200.1±16.20 ml/min/100g), IVC (44.10±2.628 

ml/min) and aortic root (174.5±25.05 ml/min) were calculated from flow profiles and 

plotted in figure 4.23. 
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Figure 4.23: Average bulk flow measurements of the (a) PV, (b) IVC and (c) 
aortic root 
 
Invasive validation in the same subject demonstrated no significant difference between 

cardiac gated PCMRI and invasive TTUS PV flow measurements (median difference 10.25 

ml/min/100g, p > 0.9999). 

Figure 4.24: Normalised PV flow 
measured with cardiac-gated 
PCMRI and invasive TTUS 
Paired data form measurements in the same 
subjects demonstrated a non-significant 
difference between flow measurements. 
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4.6.4 DISCUSSION 

Any cardiac gating strategy is reliant on accurate monitoring of the cardiac cycle.  Faced 

with the challenges of small animal ECG monitoring, we have developed a system to 

modify the signal from a small animal pulse oximetry device to provide a useful signal for 

cardiac gating.  Applying this system, we have shown pulse oximetry can be used to collect 

gated PCMRI data with fixed delay multiphase cardiac triggering in vessels with highly 

pulsatile and less pulsatile flow.  We have also shown encouraging inter-technique 

agreement between cardiac gated PCMRI and invasive TTUS measurements of PV flow. 

 An important criticism of pulse oximetry based cardiac gating is the delay between 

the cardiac contractile events and pulse oximetry signal changes at the periphery.  This 

could explain the morphology of the aortic root flow curve (figure 4.22c), where the first 

(zero delay) data point is seen to lie at the peak of the flow curve.  Errors arising from this 

can be overcome if the earlier part of the flow curve is sampled later on in the cardiac 

cycle. 

 Fixed delay multiphase cardiac triggering has the advantage of being simple to 

implement, but there are number of weaknesses with this method which can affect 

quantification.  Firstly, the researcher calculates an R-R interval and determines a fixed 

delay based on the assumption that the R-R interval is constant throughout the 

experiment.  While this is unlikely to affect earlier phases in the cardiac cycle, this can be 

troublesome for later phases resulting in undersampling of phases through the cardiac 

cycle (and underestimation of flow) if the R-R interval has extended or overlap of final 

phases with the start of the next cardiac cycle (and therefore over estimation of flow) if 

the R-R interval has shortened.  A possible strategy to overcome these issues is to 

intentionally over sample phases to ensure there is overlap with the start of the next 

cardiac cycle.  The researcher can then retrospectively discard overlapped data or use the 

additional data if R-R prolongation arises [355].   

Another important disadvantage is the duration of multiphase acquisitions.  

Because of sequential cardiac cycle phase acquisitions, the introduction of delays results in 

wasted, unused time during the acquisition window when both respiratory and cardiac 

gates are open.  This extends acquisition time so that even with only six phases, a single 

set of measurements on a vessel could take as long as 40 minutes to obtain.  Because of the 

time taken to obtain a single set of cardiac-gated measurements, it was not possible to use 

multiple averages as a method of eliminating sampling errors.  It is also worth noting that 

while cardiac gated PCMRI is likely to be viable for haemodynamic studies in models of 

disease, the duration of the fixed delay multiphase acquisition will prove challenging.  
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Studies involving more delicate diseased models undergoing haemodynamic stress using 

vasoactive pharmacological agents will require faster acquisition methods as the temporal 

window for measuring these changes is likely to be short. 

Reducing the number of phases inherently reduces the accuracy of the 

measurement, especially for high velocity, high volume pulsatile vessels such as the aorta.  

It has also been demonstrated from clinical data that the use of six phases is likely to 

underestimate bulk flow, by as much as 25% of the measurements made with double the 

number of cardiac cycle phases [182].  Early validation data would however suggest that 

six phases through the cardiac cycle is adequate for PV flow measurement.  

Underestimation is however likely to be more of an issue for more pulsatile vessels such 

as the aorta and this could certainly account for the wide variance of the aortic root flow 

measurements (figure 4.22c).  The significant difference demonstrated between cardiac 

gated PCMRI PV flow measurements and previously obtained non-cardiac gated data 

(section 4.3.2) could also be explained by this phenomenon (figure 4.25). 
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Figure 4.25: PV flow measured 
using cardiac-gated and non-
cardiac gated PCMRI 
Cardiac gated PCMRI PV flow (left) (mean 
200.1±16.20 ml/min/100g), was significantly 
different to previously presented respiratory 
but not cardiac gated PCMRI PV flow data 
(right) (mean 118.9±4.663 ml/min/100g). 

 
Finally, the drive towards cardiac gated measurements was specifically aimed at attempts 

to measure hepatic arterial flow.  Unfortunately our experience demonstrated that even 

with cardiac gating, SNR over the hepatic artery was still too low to feasibly measure bulk 

flow. 

4.6.5 CONCLUSION 

Fixed delay multiphase cardiac gating can be used with pulse oximetry to evaluate bulk 

PV, IVC and aortic root flow.  We have also demonstrated encouraging preliminary inter-

technique agreement of cardiac gated PCMRI bulk PV flow with TTUS. 
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4.7 CLOSING COMMENTS 

 
We have discussed in this chapter the implementation and optimisation of two 

dimensional PCMRI to measure PV flow, demonstrating repeatability and invasive intra-

subject inter-technique agreement of these measurements.  We have shown that the 

technique can be used to evaluate bulk vessel flow in models of chronic liver disease and 

have preliminarily demonstrated haemodynamic differences in disease both at baseline 

and during pharmacological stress.  Finally, we have implemented cardiac gating for 

measurement of pulsatile vessel flow. 

 Although the PCMRI methods developed in this chapter are promising, 

measurement of hepatic arterial flow remains elusive.  Additionally, the extended 

acquisition times for fixed delay multiphase cardiac gating are not feasible for studies of 

pharmacologically induced haemodynamic stress.  Moving forward, a practical strategy to 

tackle both of these challenges will be required for accurate and robust assessment of liver 

blood flow. 
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CHAPTER 5 
 

PCMRI - NEW TECHNIQUES AND METHODS 
 

 

 

 

 

 

 

“…it is born 
of your invisible 

machinery, 
it flies 

from your tireless 
confined mill, 

delicate 
powerful 

entrail, 
ever alive and dark…” 

 
- Ode to the liver [2]. 
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5.1 INTRODUCTION 

 
Early experience with PCMRI allowed the development of strategies to overcome technical 

challenges, but failed to deliver a reliable method for measurement of hepatic arterial (HA) 

flow.  Additionally, acquisitions remained time consuming and prohibitive of reasonable 

haemodynamic studies in animal models of disease or studies of pharmacological stress. 

In this chapter we review the conceptual development for strategies to overcome 

these challenges before implementation, validation and studies of pharmacological stress 

using a novel approach on a preclinical system.  In the final section of this chapter, we 

translate these methods to a clinical system and investigate hepatic haemodynamic 

changes in normal human volunteers during physiological stress. 
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5.2 AUTHOR CONTRIBUTIONS 

 
In fulfilment of the aims in this chapters, I: (a) conceptualised, developed and 

implemented the novel method presented at the start of this chapter, (b) prepared and 

conducted all animal scanning experiments; (c) developed preclinical PCMRI protocols; 

(d) developed Matlab code for PCMRI quantification; (e) performed surgery and collected 

invasive TTUS measurements of PV flow; (f) performed US guided injections of fluorescent 

microspheres and conducted all post-processing of samples for quantification; (g) 

conducted bench-top experiments prior to MRI scanning for the development of protocols 

for the administration of terlipressin; (g) translated, developed and optimised clinical 

PCMRI protocols; (h) recruited normal volunteers into validation, reproducibility and 

post-prandial flow studies; (i) supervised the scanning of all normal volunteer scans; (j) 

collected and analysed all the data; and (k) prepared all the material contained within this 

chapter. 

Alan Bainbridge developed preclinical MR sequences.  Cine sequences originally 

developed by Tom Roberts and were adapated by Alan Bainbridge for hepatic PCMRI.  

Matlab code for preclinical PCMRI quantification was based on previous work by Raj 

Ramasawmy and was subsequently redesigned and adapted using techniques developed 

in Chapter 4.  Cardiac cine MRI sequences were originally developed by Anthony Price and 

adapted by Alan Bainbridge.  For establishment of small animal intravenous access, I 

received help from Val Taylor.  Sham-operated and bile-duct ligated rats were prepared by 

Abe Habtieson.  Pharmacological modulation of PV flow was developed under the 

guidance of Nathan Davies.  Microsphere post-processing was informed by protocols 

provided by Nathan Davies. 

With additional input from David Atkinson, proprietary clinical PCMRI sequences 

were adapted by Alan Bainbridge for hepatic applications.  Normal volunteer recruitment 

took place using ethical approval originally sought by Margaret Hall-Craggs.  All clinical 

scans were conducted by MRI radiographers.  Statistical power calculations were 

undertaken by Paul Bassett.  
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5.3 CONCEPTUAL DEVELOPMENT 

 
The assessment of HA flow with PCMRI is challenging in both preclinical and clinical 

contexts.  In rodents, the vessel itself is extremely small – less than 1 mm in diameter – 

and as a testimony to the challenges of studying small animal HA flow, all published 

invasive studies have been performed with placement of a transit-time ultrasound (TTUS) 

probe around the coeliac artery and ligation of the gastric and splenic branches so that 

coeliac and HA flow are equivalent [340, 356, 357].  Even when imaging with a 9.4T 

system, obtaining sufficient HA signal-to-noise ratio (SNR) is challenging.  At lower 

resolution, HA signal is often visualised, but this is simply insufficient for reliable 

visualisation once the matrix size is increased (figure 4.8).  The increased matrix size also 

brings the disadvantage of extended acquisition times, which can be critical during in vivo 

studies.  Increasing slice thickness can on occasion be used to improve SNR, but for fine 

vessels like the hepatic artery, this risks the introduction of further errors.  HA tortuosity, 

branching and anatomical variants all increase orthogonality errors, small region of 

interest (ROI) size can result in errors from partial voluming and intra-voxel phase 

dispersion and finally, in the absence of robust cardiac gating strategies, problems with 

spatial misregistration and errors in the estimation of pulsatile flow.  It is also worth 

noting that although the hepatic artery was visualised at lower resolution, good planning 

of 2D PCMRI studies requires a good understanding of subject-specific vessel anatomy.  

The high resolution planning studies required to collect this data were simply beyond the 

time constraints of feasible in vivo work. 

 The technology to directly measure HA flow on clinical systems with PCMRI has 

been available for many years but because of challenges associated with the method, very 

few PCMRI HA flow studies have been published [197-199, 205].  Obtaining adequate SNR 

is less of an issue given the approximate vessel diameter (4-8 mm), although problems 

with partial voluming and spatial resolution have been identified as an issue for 

measurements, particularly with 1.5T systems [205].  Anatomical variants have been cited 

as a particular problem precluding systematic planning strategies.  Incidence of variants 

have been cited as occurring in anything from 10-40% of the population (figure 5.1) [358-

360].  Two-dimensional PCMRI studies that have measured hepatic arterial flow describe 

several methods for ensuring appropriate planning and vessel orthogonality but all 

highlight the difficulties associated with anatomical variants, vessel tortuosity and the 

requirement for good anatomical images combined with radiological expertise for 

adequate planning to occur.  Finally, the measurement of hepatic arterial flow with 2D 

PCMRI is often complicated by the site of measurement – an issue exacerbated by 
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confusing nomenclature.  The so-called ‘common’ hepatic artery arises directly from the 

coeliac axis and is the origin of both the ‘proper’ hepatic artery (which provides the 

definitive arterial supply to the hepatic vascular bed) and the gastroduodenal artery.  

Authors can therefore claim to measure HA flow at either ‘common’[197] or ‘proper’[198, 

199, 205] sites. 

 Finally it remains to be said that a simple protocol with reduced scope for 

variation between scanners/sites are important requisites that current PCMRI methods 

for clinical HA flow assessment fail to meet.  Until these challenges are met, widespread 

investigation and ultimately adoption of HA flow measurements as part of standard 

clinical assessment remains unlikely. 

 
Figure 5.1: Anatomical variations of the hepatic arterial blood supply 
In a classification system proposed by Hiatt et al.[359], variations were categorised into 5 subtypes 
– type 1 (normal anatomy), type 2 variant (accessory left hepatic artery arising from the left gastric 
artery), type 3 variant (accessory right hepatic artery arising from the superior mesenteric artery), 
type 4 variant (combined type 2 and type 3 variants) and type 5 variant (common hepatic artery 
arising from the superior mesenteric artery).  Relative incidence in 1000 cases is reported on the 
diagram below each subtype.  (Obtained from reference [359]). 
 
In recognition of these challenges, we propose a novel method for the measurement of 

total liver blood flow (TLBF) and HA flow. 

We know from the application of the principle of conservation of mass to flow (𝑄) though 

a given tissue volume (𝑉𝑡𝑖𝑠𝑠𝑢𝑒) that: 
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𝑄𝑖𝑛 = 𝑄𝑜𝑢𝑡 + ∆𝑉𝑡𝑖𝑠𝑠𝑢𝑒 
(Equation 5.1) 

 
Of course in the context of steady physiological flow through an entire organ, liver volume 

is fixed so that: 

𝑄𝑖𝑛 = 𝑄𝑜𝑢𝑡 
(Equation 5.2) 

 
There have been previous attempts at measuring hepatic venous outflow [196] and while 

these vessels are of comparable size to the PV at their confluence with the inferior vena 

cava (IVC), anatomy is variable and the presence of at least three (possibly four) vessels 

would require separately planned PCMRI studies on each vessel. 

 

 
 

 
Figure 5.2: Schematic diagram of blood supply and drainage around the liver 
and anatomical configuration of the IVC 
Schematic blood supply and drainage (a) demonstrative of a simple dual input from the PV and HA 
and outflow through at least three large hepatic veins into IVC.  The anatomical configuration of the 
IVC shown in (b) with only a small contribution between the length between the (i) hepatic and (ii) 
renal veins, from (ii) the supra-renal vessels. (Adapted from reference [361]). 
 
If we consider the schematic anatomical configuration of the liver (figure 5.2a) and in 

recognition of the fact that: (a) the IVC enjoys a simpler structure than its aortic 

counterpart with an extended portion of the vessel fed entirely by hepatic venous blood 

(figure 5.2b) and (b) that we have previously demonstrated that PCMRI can be used to 

reliably measure bulk flow in large vessels (PV, IVC and aorta), we propose that a simple 

and reliable estimation of TLBF can then be made using bulk IVC flow (figure 5.3a). 

(i) 

(ii) 

(iii) 

(a) (b) 
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Figure 5.3: Scheme for PCMRI planning for estimation of TLBF and PV flow 
These diagrams demonstrate segmental anatomy but were chosen because of the clarity of the 
structure and orientation of venous vascular structures.  TLBF can be estimated by subtracting bulk 
vessel flow in the IVC measured with 2D PCMRI studies planned at (ii) from IVC flow measured at 
(i).  Finally, an estimation of HA flow can be made by further subtraction of PV flow measured at 
(iii).  (Diagrams adapted and modified from reference [362]). 

 
By measuring bulk flow in the supra-hepatic, but sub-cardiac portion of the (distal) IVC 

and then subtracting flow from the infra-hepatic, but supra-renal portion of the (proximal) 

IVC, TLBF can be estimated (Equation 5.2).  Given that we have demonstrated PV flow 

(𝑄𝑃𝑉) measurements using PCMRI are technically feasible, HA flow (𝑄𝐻𝐴) could then be 

estimated by subtracting PV flow from IVC-derived TLBF (figure 5.3b, equation 5.3). 

𝑄𝑇𝐿𝐵𝐹 = 𝑄𝑑𝑖𝑠𝑡𝑎𝑙 𝐼𝑉𝐶 − 𝑄𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 𝐼𝑉𝐶  

(Equation 5.3) 
 

𝑄𝐻𝐴 = 𝑄𝑇𝐿𝐵𝐹 − 𝑄𝑃𝑉 
(Equation 5.4) 

 
Armed with this new ‘caval subtraction’ method for measuring TLBF and HA flow, we 

sought to investigate its potential on both preclinical and clinical systems.  Studies were 

conducted to assess repeatability, reproducibility and the hepatic arterial buffer response. 

  

(a) (b) 

(i) 

(ii) 

(iii) 
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5.4 PRECLINICAL VALIDATION, REPEATABILITY AND STUDIES 

OF THE HEPATIC ARTERIAL BUFFER RESPONSE 

5.4.1 BACKGROUND 

From previous work presented in section 4.6, we successfully implemented fixed delay 

multiphase cardiac gating.  The extended acquisition times resulting from this gating 

strategy were cumbersome and likely to hinder accurate measurements in animal models 

of disease or during pharmacological stress.  A considerable amount of time is wasted 

during fixed delay multiphase cardiac gating through addition of delays for acquisition of 

successive phases of the cardiac cycle, during which both cardiac and respiratory gates are 

open, but no data is collected.  So-called ‘cine’ MR refers to an alternative group of gating 

strategies which take advantage of the entire acquisition window during the cardiac cycle 

[338, 355].  By acquiring as many lines of k-space as possible through the R-R interval and 

then retrospectively sorting the data into each phase of the cardiac cycle, the entire 

acquisition window can be exploited.  The phase-encoding amplitude can be changed at 

the start of each R-R interval, so that over a given time-period a multiphase data set can be 

constructed with potentially more phases through the cardiac cycle than with the previous 

strategy and using a shorter acquisition period (figure 5.4). 

 

 
Figure 5.4: Cine-PCMRI cardiac gating 
Cine gating strategies exploit the entire R-R window for the duration of the acquisition.  For PCMRI 
sequences, the requirement for measurement of background and successive phase-shifts extend 
repetition time (i) and imply a smaller number of phases can be sampled through the cycle. 
 
There have been many subsequent refinements to this method, including oversampling of 

the R-R window with the use of an ‘arrhythmia rejection’ window to retrospectively 

account for changes in heart rate and ‘view sharing’ for interleaved cardiac phase 

acquisitions [339, 355]. 



~ 185 ~ 
 

 The scheme in figure 5.4 demonstrates the implications of measuring multiple 

phase-shifts, but also highlights the value of using a cine-gating strategy for acquisition of 

anatomical images.  Cardiac cine MR with short-axis views have been well validated for 

measurement of stroke volume [363-365] and therefore could be used to validate PCMRI 

measurements of aortic root flow. 

 Although validation of PCMRI PV flow measurements can be undertaken with 

direct within-subject TTUS measurements as previously described, the validation of HA 

flow measurements with TTUS is problematic.  As described in section 5.3, the surgery 

required to access the coeliac artery would be very invasive (requiring considerable 

retraction and dissection of the upper abdominal viscera and tissue planes) and non-

physiological (requiring ligation of the gastric and splenic branches of the coeliac 

artery)[340, 356, 357].  An alternative method for measuring HA flow is through the use of 

microspheres.  The administration of microsphere particles that lodge in organ capillary 

beds can be used to study regional and inter-organ perfusion differences.  Classically, 

these microspheres are radiolabelled, so that once the experiment is complete, organs can 

be extracted and quantification can be performed using a scintillation counter [366].  

Working with radioactive materials provides added, cumbersome, logistical 

considerations not least area-based restrictions for experimental activity but also added 

costs for storage and disposal of biological tissues.  The use of fluorescent-labelled 

microspheres provides an alternative well-established non-ionising radiation based 

method for quantification.  Once injected, these microspheres can be recovered using 

specialist methods and quantified using spectrophotometry [367, 368].  This method can 

also be used to quantify perfusion at different stages of an experiment using injections of 

microspheres containing different fluorophores.  Differing fluorophore excitation 

wavelengths enable spectrophotometric perfusion quantification for each injection from 

the same tissue sample [27]. 

 Finally, the ability to detect expected alterations of hepatic perfusion parameters 

in response to a controlled insult is an important way of demonstrating the validity of a 

new method.  Having previously demonstrated (section 4.5) that PV flow modulation can 

be achieved non-invasively using terlipressin, caval subtraction PCMRI could be used to 

demonstrate changes in PV flow and moreover has the potential to study the hepatic 

arterial buffer response non-invasively.  

 With this in mind, in this section we aim to (a) demonstrate the feasibility of using 

caval subtraction PCMRI to measure TLBF, HA and PV flow, (b) study the repeatability of 

cine PCMRI measurements of PV flow, (c) validate aortic root, PV and relative HA flow 
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measurements using short-axis anatomical cine MRI, TTUS and microspheres respectively 

and (d) investigate haemodynamic changes in response to terlipressin using caval 

subtraction PCMRI in normal and diseased rats. 

5.4.2 METHODS 

5.4.2.1 Experimental subjects 

All experiments were conducted according to the Home Office guidelines under the UK 

Animals in Scientific Procedures Act 1986.  Animals were maintained as per guidelines and 

approval of the ethical committee for animal care of University College London.  

Experiments were performed on healthy male Sprague-Dawley rats (Charles River UK, 

Margate, UK) with normal liver function.  Animals were housed in cages at 22-23ºC, ~50% 

humidity and with 12 hours of light and ad libitum access to water and rat feed. 

 For studies in models of liver disease, subjects weighing 250-300g were 

randomised to bile-duct ligation (BDL) procedure (n = 12) or sham laparotomy (n = 13).  

BDL and sham surgery was conducted as described previously by researchers at our 

institution [350].  Briefly, a midline abdominal incision was made under 2% isoflurane and 

intraperitoneal levobupivacaine.  For animals undergoing BDL procedure, the common 

bile duct was isolated, triply ligated with 3-0 silk and sectioned between the ligatures.  

After closure and recovery, animals were maintained for 5 weeks to allow the 

development of portal hypertension and features of chronic liver disease. 

For each experiment/cohort, subjects were randomly selected at the time of 

removal from the cage.  Any adverse events and subsequent protocol modifications were 

recorded and reported in the results. 

5.4.2.2 Sample size 

Validation of PCMRI PV flow was prioritised for calculation of sample size, as variability of 

other parameters in our study remained unknown.  Experiments were planned based on 

Bland-Altman analysis of agreement, using preliminary inter-technique agreement data 

between PCMRI and TTUS PV flow acquired in section 4.6.  Power calculations were 

undertaken for a statistical power of 90% and a 5% significance level.  Assuming intra-

subject differences between the two techniques of at worst 20% (therefore implying 

standard deviation for intra-subject differences of approximately 10%), and defining the 

level of agreement within 7% precision, a sample of n = 24 subjects (half of which would 

have liver disease) would be advised.  Projecting a 15% attrition rate, the final sample size 

would be n = 28. 
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5.4.2.3 Animal preparation 

After induction with isoflurane, a 0.58 mm internal diameter fine bore polyethylene line 

(Portex, Smiths Medical, Kent, England) was sited in the jugular vein.  The anaesthetised 

animal was then transferred to a 9.4T Agilent scanner (Oxford, UK) with a rectal probe for 

temperature monitoring.  Core body temperature was maintained between 36 and 38ºC 

using circulating warm water pipes and warm air.  Cardiac monitoring was undertaken 

using a triple electrode single lead system (SA instruments, New York, USA). 

5.4.2.4 Two-dimensional cine PCMRI 

Once positioned in the scanner, axial anatomical images were used to identify the vessel of 

interest.  Three markers were placed in the vessel lumen, for automated planning of 

scanning slices through the vessel in the coronal plane (VnmrJ 3.2, Agilent, Oxford, UK).  

The vessel was then identified on angled coronal slices and studies were planned to 

ensure orthogonality to the vessel.  Cardiac gated images were used for planning of studies 

on the distal IVC (figure 5.5) and aortic root (see cardiac cine MRI methods).  Proximal IVC 

flow measurements were obtained from the same slice used to measure PV flow (figure 

4.7). 

 

 

   

Figure 5.5: PCMRI slice planning for distal IVC flow measurements 
Cardiac gated anatomical images were obtained in the (a) sagittal plane to identify the distal IVC 
(iii). Coronal images parallel to the vessel were then obtained (b).  The PCMRI slice was positioned 
to ensure orthogonality to the vessel in two planes.  Anatomical images typically included the great 
vessels (i), heart (ii), liver (iv) and kidneys (v). 
 

R  L Posterior  Anterior 

(a) (b) 

(i) 

(ii) 

(iii) 

(iv) 

(v) 
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PCMRI planning provided time for the animal to settle before evaluating subject heart rate.  

Based on the heart rate (R-R interval) and sequence repetition time (TR), the number of 

frames acquired through the cardiac cycle was set as two less than the maximum number 

of frames possible, to avoid cycle overlap should heart rate increase.  Heart rate was 

recorded so that the extended interval between the final frame and end of the cycle could 

be accounted for in flow calculations.  All datasets included at least 10 frames through the 

cardiac cycle. 

Cardiac and respiratory-gated 2D cine PCMRI was then undertaken using 2 mm 

slice thickness, a 10° flip angle and a 192 x 192 (frequency encoding x phase encoding) 

acquisition matrix.  Based on previous work, data was acquired using 𝑉𝑒𝑛𝑐 settings of 33 

cm/s for PV and proximal IVC flows, 66 cm/s for distal IVC flows and 133 cm/s for aortic 

root flows.  ROIs were manually positioned on each vessel for each frame of the cardiac 

cycle and quantitative analysis was undertaken as previously.  All PV flow, estimated TLBF 

and HA flow measurements were normalised to explanted liver weight.  Cardiac cine MR 

derived cardiac output (CO) was used to calculate estimated TLBF as a % of CO and 

estimated HA flow as a % of CO.  Data was analysed using in-house developed Matlab code 

(MathWorks, Natick, USA). 

Table 5.1: Sequence parameters 
 

 PCMRI CARDIAC CINE MRI 
TR/TE (milliseconds) 10/1.2 7.5/1.2 

Flip angle (˚) 10 15 
Matrix size (pixels) 192 x 192 128 x 64 
Field-of-view (mm) 40 x 40 40 x 40 

Spatial resolution (mm2) 0.208 x 0.208 0.313 x 0.625 
Slice thickness (mm) 2 1 

Slice gap (mm) - 0 
Cardiac cycle phases 12-15 ≥20 

 
5.4.2.5 Repeatability 

Thirteen subjects underwent cine PCMRI PV flow repeatability studies, with repeat data 

obtained 60-100 minutes after the first measurement.  All subjects remained in the 

scanner after the initial measurements. 

5.4.2.6 Cardiac cine MRI validation 

Cardiac cine MRI was performed as described previously by researchers at our institution 

[369].  Cardiac and respiratory gated coronal images through the thorax were obtained for 

planning.  Long-axis images were then acquired to ensure accurate short-axis view 

planning. 
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 Because of the proximity of the mitral valve orifice to the aortic vestibule and 

obliquity of the cardiac axis (figure 5.5) in the rat, cardiac cine MRI was usually 

undertaken before aortic root PCMRI measurements so that the short axis slice orientation 

of slices adjacent to the aortic root could be used to plan aortic root flow PCMRI studies. 

Planning provided time for the animal to settle before evaluating subject heart 

rate.  As with cine PCMRI, the heart rate and repetition time were used to determine the 

maximum number of frames possible through the cardiac cycle.  Acquisitions were for two 

frames less than this number, to avoid cycle overlap should heart rate increase.  All 

datasets included at least 20 frames through the cardiac cycle.  Spoiled gradient echo 

images were obtained with an echo time of 1.2 milliseconds, repetition time of 7.5 

milliseconds, 15˚ flip angle, slice thickness of 1 mm, no slice separation, field of view of 40 

x 40 mm2 and 128 x 64 (frequency encoding x phase encoding) acquisition matrix.  Data 

was analysed using the freely available software package Segment (Medviso, Lund, 

Sweden).  Automatic segmentation tools were used to identify the endocardial surface, 

with frame by frame manual review and segmentation correction where appropriate. 

5.4.2.7 TTUS validation 

Invasive TTUS measurements were performed as described previously in sham-operated 

animals.  Extensive adhesions around the porta hepatis and high risk of traumatic damage 

and haemorrhage precluded TTUS validation in BDL subjects.  To control for the 

haemodynamic sequelae of laparotomy, all BDL subjects underwent laparotomy and 

intestinal manipulation. 

5.4.2.8 Microsphere validation 

Polystyrene fluorescent microspheres (15 μm, FluoSpheres, Life Technologies, UK), were 

suspended in a 1:10 dilution of heparinised saline.  Immediately after vortex mixing, a 1 ml 

intra-ventricular injection was administered over approximately 10 seconds using a 26G 

13 mm needle.  To minimise invasive complications, percutaneous intra-cardiac injections 

were administered trans-thoracically using a portable bench-top US system (Terason, 

Burlington, USA) with a 1.5 cm 2.5 MHz linear probe (figure 5.6).  Validation was 

undertaken at baseline and after terlipressin using green (450/480 nm excitation 

wavelength) and carmine (580/620 nm excitation wavelength) microspheres respectively. 
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Figure 5.6: Ultrasound guided intra-cardiac microsphere injections 
A 26G needle (i) was advanced under US guidance through the myocardium (ii) into the 
endocardial cavity (iii).  Injections were administered over approximately 10 seconds. 

 
Once in vivo experimentation was complete, the animal was terminated and organs were 

explanted for microsphere processing using a protocol adapted from previously described 

methods [368].  The liver, spleen, gut, mesentery and both kidneys were explanted and 

weighed before storage in a falcon tube with saturated potassium hydroxide solution.  

Samples were stored in a 37˚C incubator and manually shaken every 3-4 days to ensure 

mixing. 

Measurement was then performed after 3 weeks.  To ensure adequate liquefaction 

of larger tissue samples (e.g. gut, liver), mechanical tissue homogenisation was undertaken 

(LabGEN, Cole-Parmer Instrument Co., London, UK).  Samples were then filtered using 100 

μm pore cell strainers to remove any large solid waste material, before centrifugation for 

10 minutes at 3000g.  After discarding the supernatant, samples were washed with 0.25% 

Tween 80 in demineralised water, re-suspended and centrifuged.  The washing step was 

repeated twice before transferring samples to glass tubes for a final washing step with 

demineralised water alone and centrifugation.  Supernatant was discarded but a 1 ml 

volume was maintained around the pellet.  Finally, 2 mls of 2-(2-ethoxyethoxy)ethyl 

acetate (Sigma-Aldrich, UK) was added to the glass tube to dissolve the polystyrene 

microspheres and release the fluorescent particles.  Samples were then vortexed and 

stored overnight before repeat vortex mixing and centrifugation.  The supernatant was 

then transferred to a 96-well glass plate for spectrophotometric quantification (FLUOstar 

Omega, BMG Labtech, Ortenberg, Germany). 

To ensure adequate mixing of the microspheres in the central circulation, sample 

sets with over 20% difference between right and left renal microsphere content were 

discounted from the final analysis.  Microspheres recovered from the gut, mesentery and 

spleen (splanchnic beds) were considered analogous to portal venous circulation [352, 

(i) 

(ii) 

(iii) 
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370], while microspheres recovered from the liver were used for hepatic arterial flow 

quantification.  Because of difficulties processing large whole organ volumes (e.g. gut, 

liver), 10 ml volumes of homogenised samples were assessed with correction of absolute 

values to whole organ sample volume for quantification.  Hepatic arterial fraction was 

calculated as follows: 

𝐻𝐴% =
𝑀liver

𝑀liver + 𝑀gut, mesentery + 𝑀spleen
 

(Equation 5.4) 
 
Where ‘𝑀organ’ refers to the absolute number of microspheres recovered from the 

respective organ tissue. 

5.4.2.9 Terlipressin response 

Pilot experiments using TTUS to monitor PV flow were performed on the bench to 

determine the dosage regime (Appendix B).  For a sustained reduction in PV flow for the 

duration of the experimental protocol, a 100 μg/kg bolus of terlipressin acetate 

(Glypressin, Ferring Pharmaceuticals, UK) was administered using the previously sited 

jugular venous line, followed by an infusion of 10 μg/kg/min for 40 minutes. 

5.4.2.10 Experimental in vivo protocol 

The entire in vivo experimental protocol was split into three phases, in broad terms: (i) 

pre-terlipressin, pre-MRI bench validation, (ii) MRI measurements pre and post-

terlipressin and (iii) post-MRI, post-terlipressin bench validation (figure 5.7). 

 
Figure 5.7: Experimental protocol 
Validation, repeatability and terlipressin response was assessed invasively and non-invasively in 
both sham and BDL animals. 
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5.4.2.11 Statistical analysis 

Kolmogorov-Smirnov tests were used to confirm normality of variable distributions.  

Comparisons between sham and BDL cohorts were undertaken using unpaired and paired 

t-tests where appropriate.  Repeatability and validation studies were assessed using 

paired t-tests, Bland-Altman analysis of agreement with calculation of the coefficient of 

repeatability and assessment of correlation between repeated/validated measurements 

using Pearson’s correlation coefficient.  Terlipressin response studies were evaluated 

using paired t-tests in sham and BDL cohorts.  The threshold of statistical significance was 

defined to be p < 0.05. 
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5.4.3 RESULTS 

5.4.3.1 Cohort features 

Experiments were performed in sham operated (n = 13) and BDL (n = 12) rats.  Four 

weeks post-surgery, mean BDL body weight (422.3±11.10g) was lower than mean sham 

body weight (484.0±5.565g; p < 0.0001).  Conversely mean BDL wet liver mass 

(32.38±1.941g) was higher than mean sham wet liver mass (16.09±0.6558g; p < 0.0001).  

Cohort sizes varied for each part of the study, primarily as a result of evolution of the 

protocol while experiments were conducted, but also because of difficulties with gating 

and artefact.  Overall numbers are summarised in table 5.2, but a detailed summary of 

subject participation in each stage of the protocol shown in figure 5.7 can be found in 

Appendix C. 

 Table 5.2: Cohort numbers for invasive, MRI and terlipressin studies 
 

 SHAM 
(n = 13) 

BDL 
(n = 12) 

Baseline cardiac cine MRI 13 12 

Baseline TTUS and PCMRI PV flow validation 11 - 

Baseline aortic root PCMRI validation 8 8 

Baseline caval subtraction PCMRI 7 9 

PCMRI PV flow repeatability 6 6 

Post-terlipressin caval subtraction PCMRI 6 6 

Post-terlipressin TTUS and PV PCMRI flow validation 6 - 

Microspheres and PCMRI HA fraction validation 6 6 
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5.4.3.2 Caval subtraction cine PCMRI 

ECG and respiratory gated cine PCMRI flow studies through the cardiac cycle 

demonstrated physiological flow profiles through the PV, proximal IVC, distal IVC and 

aortic root.  Acquisition of a full hepatic haemodynamic data set took on average 

28.42±1.422 minutes, with an additional 12.83±0.833 minutes for acquisition of aortic 

root flow data (n = 12, sham and BDL). 

  

  
Figure 5.8: Bulk flow profiles through the cardiac cycle using cine PCMRI 
Data from the same subject demonstrating flow profiles for the (a) PV (overall flow 29.88 ml/min), 
(b) proximal IVC (overall flow 59.53 ml/min), (c) distal IVC (overall flow 101.3 ml/min) and (d) 
aortic root (overall flow 122.7 ml/min). 
  
Caval subtraction methods, applied for example to the dataset above were suitable for 

estimation of TLBF (41.81 ml/min), HA flow (11.93 ml/min) and %HA flow (28.53%). 
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Figure 5.9: 
Preclinical 
anatomical 
cardiac cine MR 
and volumetric 
quantification 
Ten left ventricle 
short-axis slices (1 
mm thickness) 
extending to the apex  
(a,b, right lower 
corner image) are 
shown from a sham-
operated rat.  The 
stroke volume can be 
calculated from 
segmentation of 
endocardial areas at 
end diastole (a) and 
end systole (b).  
Segmentation of 
ventricular volumes 
through multiple 
phases of cardiac 
cycle can be used to 
generate volume-
time curves (c). 

 
 
 
 
 
 
 
 
 
 
 

 
 
Estimated TLBF can then be normalised to systemic haemodynamics using measurement 

of cardiac output assessed with cardiac cine MRI (figure 5.9).  Cardiac output measured by 

cine MRI was 156.4 ml/min in this example so that estimated TLBF as a percentage of CO 

was 26.73% and estimated HA flow as a percentage of CO was 7.628%. 
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5.4.3.3 Baseline haemodynamic studies 

Baseline hepatic haemodynamics were compared in sham (n = 7) and BDL (n = 9) rats.  

Baseline mean PV flow in sham operated animals (181.4±12.06 ml/min/100g) was higher 

than in BDL animals (68.52±10.16 ml/min/100g; p < 0.0001) (figure 5.10a).  Estimated 

TLBF measured with the novel caval subtraction method was on average higher in sham 

rats (214.3±16.68 ml/min/100g) compared with BDL rats (152.3±18.68 ml/min/100g; p 

= 0.0308) (figure 5.10b).  Conversely, estimated HA flow was on average higher in BDL 

rats (83.75±19.12 ml/min/100g) compared with sham counterparts (32.98±11.29 

ml/min/100g; p = 0.0526), but this difference was just above the stipulated significance 

level (figure 5.10c).  Estimated HA fraction (figure 5.10d) was however significantly 

different in BDL animals (51.51±6.758%) compared with sham animals (14.37±4.446%; p 

= 0.0007). 

 
 

  

Figure 5.10: Hepatic haemodynamic differences at baseline between sham 
and BDL rats 
Baseline PV flow and estimated TLBF were higher in sham rats.  Estimated HA flows and HA 
fractions were on average higher in BDL animals.  Differences were statistically significant except 
for absolute estimated HA flows, which was found to be just non-significant (p = 0.0526). 
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Cardiac output measurements were used to contextualise absolute hepatic haemodynamic 

parameters to systemic circulatory factors.  BDL subjects had significantly higher HA flow 

relative to cardiac output (13.89±2.370%) when compared to their sham counterparts 

(3.442±1.111%; p = 0.0027) (figure 5.11a), but interestingly demonstrated no significant 

difference in estimated TLBF relative to cardiac output (25.66±2.455% BDL, 

24.49±1.615% Sham, p = 0.7162) (figure 5.11b). 

 

  
Figure 5.11: Haemodynamic differences relative to cardiac output at baseline 
between sham and BDL rats 
HA flow (a) and TLBF (b) as a percentage of CO.  Significant differences between cohorts were 
shown for HA flow relative to CO, but not TLBF. 
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5.4.3.4 Repeatability studies 

Repeatability of cine PCMRI measurements was assessed using measurements of PV flow 

in sham (n = 6) and BDL (n = 6) animals.  Average time between repeat measurements 

across the entire cohort was 83.77±18.97 minutes.  No significant differences were 

demonstrated between repeated PV flows in sham (mean difference -25.46±14.26 

ml/min/100g; p = 0.1342) or BDL cohorts (mean difference 3.749±5.823 ml/min/100g; p 

= 0.5435).  The coefficient of repeatability was higher in sham (68.45 ml/min/100g) than 

BDL animals (30.20 ml/min/100g).  Graphical analysis (figure 5.12) showed correlations 

between repeated PCMRI PV flow measurements were significant (r = 0.9041; p < 0.0001). 

 
 

  
Figure 5.12: Repeatability of PV flow measurements with cine PCMRI 
Data from sham (■) and BDL () rats.  Repeat measurements were obtained on average 
83.77±18.97 minutes apart.  The overall cohort coefficient of repeatability was 57.37 ml/min/100g.  
A strong and significant correlation between repeated measurements was demonstrated. 

 
5.4.3.5 Validation studies 

Validation of cine PCMRI measurements of aortic root flow were undertaken using 

measurements of cardiac output derived from short axis cardiac cine MRI volumetric 

analysis (figure 5.9) in sham (n = 8) and BDL (n = 8) animals.  Paired t-tests demonstrated 

non-significant differences between cine PCMRI cardiac output and cardiac cine MRI 

cardiac output in sham (mean difference 8.856±7.247 ml/min; p = 0.2613) and BDL 

cohorts (mean difference 8.340±15.48 ml/min; p = 0.6067).  The coefficient of variation 

was higher for cine PCMRI cardiac output in both sham (23.73% vs 19.12%; PCMRI vs 

cardiac cine MRI) and BDL subjects (28.06% vs 24.89%; PCMRI vs cardiac cine MRI).  

Graphical analysis (figure 5.13b) showed correlations between PCMRI and cardiac cine 

MRI derived cardiac output were significant (r = 0.7554; p = 0.0007). 
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Figure 5.13: Validation of aortic root cine PCMRI using short axis cardiac cine 
MRI 
Data from sham (■) and BDL () rats.  Despite encouraging overall correlation, the coefficient of 
repeatability between measurement methods was large for sham (40.18 ml/min) and even larger 
for BDL rats (85.8 ml/min). 
 
Validation of cine PCMRI measurements of PV flow were undertaken in sham subjects as 

previously using invasive TTUS.  Measurements were obtained at baseline (n = 11) and 

post-terlipressin (n = 6).  Paired t-tests demonstrated non-significant differences between 

TTUS and PCMRI PV flow at baseline (mean difference -3.518±9.426 ml/min/100g; p = 

0.7167) and post-terlipressin (mean difference -23.01±14.91 ml/min/100g; p = 0.1834).  

The coefficient of variation was higher for TTUS measurements at baseline (21.19% vs 

17.92%; TTUS vs PCMRI) and post-terlipressin (33.02% vs 13.91%; TTUS vs PCMRI).  

Graphical analysis (figure 5.14b) showed correlations between PCMRI and TTUS PV flow 

were significant (r = 0.7737; p = 0.0003). 

 
 

 

 

 
Figure 5.14: Validation of PV flow cine PCMRI using TTUS 
Data from sham rats at baseline (■) and post-terlipressin ().  The coefficient of repeatability 
between measurement methods was comparable at baseline (61.27 ml/min/100g) and post-
terlipressin (71.58 ml/min/100g). 
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(n = 3) and BDL (n = 2) rats post-terlipressin (n = 5).  Because of inadequate mixing, nine 

microsphere datasets were discarded.  Final analysis was based on twelve caval 

subtraction cine PCMRI estimates of HA fraction from sham (n = 6) and BDL (n = 6) 

subjects using microspheres at baseline (n = 8) and post-terlipressin (n = 4).  Paired t-tests 

across the entire cohort demonstrated a significant difference between PCMRI and 

microsphere derived HA fraction (mean difference 14.40±6.372%; p = 0.0450).  The 

coefficient of variation was higher for PCMRI HA fraction (80.68% vs 75.22%; PCMRI vs 

microspheres).  Graphical analysis (figure 5.15b) showed significant correlations between 

PCMRI and microsphere derived HA fraction (r = 0.7944; p = 0.0020). 

 
 

 
 

Figure 5.15: Validation of PCMRI HA fraction using microspheres 
Data from sham rats at baseline (■), sham rats post-terlipressin (), BDL rats at baseline () and 
BDL rats post-terlipressin ().  Analysis was pooled across all four cohorts because of small intra-
cohort numbers.  The coefficient of repeatability between measurement methods was large 
(43.27%). 
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5.4.3.6 Haemodynamic response to terlipressin 

The response to terlipressin was evaluated in sham (n = 6) and BDL (n = 6) rats.  Post-

terlipressin PCMRI flow measurements were acquired on average 15.42±1.305 minutes 

after the terlipressin infusion was started.  Paired t-tests demonstrated expected 

reductions in sham (mean difference -90.25±11.13 ml/min/100g; p = 0.0005) and BDL 

(mean difference -29.75±6.853 ml/min/100g; p = 0.0049) PV flow (figure 5.16a and b).  

No significant change in estimated TLBF was observed in sham animals (mean difference -

2.538±13.97 ml/min/100g; p = 0.8630), but contrastingly a reduction in estimated TLBF 

was observed in BDL animals (mean difference -65.48 ml/min/100g; p = 0.0006) (figure 

5.16c and d).  The changes in estimated TLBF reflect a buffering of the drop in PV flow by a 

rise in HA flow in sham animals (mean difference 34.43±7.494 ml/min/100g; p = 0.0059).  

This phenomenon was not observed in BDL animals where a decline in HA flow was 

recorded (mean difference -34.43±7.494 ml/min/100g; p = 0.0059) (figure 5.16e and f).  

Comparison of pre and post-terlipressin HA fraction confirmed relative buffering of the 

decline in PV flow in sham rats (mean difference 38.78±6.520%; p = 0.0019), but stable 

HA fraction in the face of TLBF decline in BDL rats (mean difference 8.340±8.305%; p = 

0.3614) (figure 5.16g and h). 
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Figure 5.16: Haemodynamic response to terlipressin in sham and BDL rats 
Sham data is shown in the left column and BDL data on the right.  Haemodynamic response was 
assessed using PV flow (a),(b), estimated TLBF (c),(d), estimated HA flow (e),(f) and HA fraction 
(g),(h). 
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5.4.4 DISCUSSION 

We have demonstrated successful development of cardiac and respiratory gated cine 

PCMRI to measure pulsatile vessel flow in small animals at 9.4T.  The implementation of 

methods to measure pulsatile flow accurately (as discussed previously and in section 4.6), 

are dependent on robust systems for cardiac monitoring.  Unlike our experience of the 

dual electrode system available during early developmental work (section 4.6), the triple 

electrode system was much more robust to radio frequency (RF) interference, with 

consistent detection of the R-R interval.  Because of this, the decision was taken to use 

triple lead ECG monitoring rather than pulse oximetry and the signal processing unit 

developed in section 4.6.  Our implementation of cine PCMRI gating was however much 

simpler than contemporary implementations on clinical systems and resulted in under-

sampling of data towards the end of the R-R interval.  Strategies to account for over or 

under sampling of data as a result of variations of the R-R interval are especially important 

for experiments that have extended acquisition times (over ten minutes for a single 

measurement in our study) as seen with cine PCMRI or short-axis cardiac cine MRI.  

Additionally, cine PCMRI data was acquired by application and sampling of successive 

zero, positive and negative gradients through the cardiac cycle.  This restricted the 

number of phases acquired through the cardiac cycle but also incorrectly assumes that 

flow is constant while each of the three gradients are being applied.  Split acquisition 

methods can overcome this problem, whereby data from successive measurements in a 

single R-R interval are obtained and compared with data from other R-R intervals where 

the timing of the gradients has been shifted.  This enables data collection from potentially 

many more phases through the cardiac cycle (restricted only by the repetition time for 

application of single gradient), but on preclinical system is likely to result in extended 

acquisition times [371]. 

While the use of cardiac and respiratory gated cine PCMRI to measure blood flow 

on a preclinical system is in itself is not novel, we have applied this method to 

demonstrate that caval subtraction PCMRI can be used to estimate TLBF and HA flow.  We 

have also shown that hepatic flow measurements can be contextualised to systemic 

circulatory factors non-invasively using cardiac cine MRI measurements of cardiac output.  

Using these methods, we studied haemodynamic differences at baseline between sham 

and BDL animals.  Our findings confirmed earlier pilot data suggestions of reduced PV flow 

at baseline (section 4.5) but more importantly also demonstrated reduced estimated TLBF 

using our novel method in models of chronic liver disease.  Our novel proposed method for 

estimating HA flow also suggests elevated absolute HA flow at baseline in disease, with 

significantly higher HA fraction in BDL rats.  This is the first account to our knowledge of 
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demonstration of these findings non-invasively, although these findings in themselves are 

partially corroborated by previously published data from invasive studies using TTUS 

and/or microspheres.  Reduced PV flow for example has been demonstrated in BDL and 

carbon tetrachloride (CCl4) models of chronic liver disease [340, 352, 370], and elevated 

HA flow has also been shown in BDL models [352, 353].  Interestingly, overall reductions 

in TLBF have been demonstrated in CCl4 models but not in published BDL data [340, 352, 

353].  Analysis of our bulk estimated TLBF (non-normalised to liver volume) supports this 

claim (figure 5.17). 

 

 

Figure 5.17: Comparison of bulk 
estimated TLBF in sham and BDL 
rats 
Significant differences (p = 0.0125) in bulk 
estimated TLBF (non-normalised to liver 
volume) were demonstrated between 
cohorts suggesting that estimated TLBF in 
BDL rats (48.15±5.052 ml/min) is higher 
than in sham counterparts (33.88±2.088 
ml/min). 

 
While we have demonstrated that caval subtraction MRI can be used to demonstrate 

haemodynamic differences in models of chronic liver disease, our experience has also 

served to highlight several weaknesses in the methodology.  Each PCMRI bulk flow 

measurement (distal IVC, proximal IVC and PV) have associated measurement errors 

which are propagated in arithmetic calculations.  To estimate mean error in PCMRI 

measurements of PV, aortic root flow and HA fraction (assuming TTUS, cardiac cine MRI 

derived CO and microsphere derived HA fraction as the respective reference standards), 

the parameters for the probability distribution of the mean difference between paired 

measurements can be evaluated as a percentage of the observed mean PCMRI 

measurements (table 5.3). 

Table 5.3: Error estimation for PCMRI derived flow measurements 
 
 GLOBAL MEAN* MEAN DIFFERENCE TO 

REFERENCE STANDARD 
ESTIMATED 

PERCENTAGE ERROR 
PCMRI PV flow 153.0±12.01 

ml/min/100g 
10.40±8.116 

ml/min/100g† 
6.8±5.3% 

PCMRI aortic root 
flow 

165.0±12.19 ml/min 8.598±8.255 ml/min‡ 5.2±5.0% 

PCMRI HA fraction 29.66±6.909% 14.40±6.372% 49±21% 

(*pooled mean across baseline, post-terlipressin, sham and BDL measurements; †TTUS reference 

standard; ‡cardiac cine MRI derived CO reference standard) 
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Assuming for example an error of 10% in distal and proximal IVC flow measurements, an 

estimated TLBF measurement would then be associated with a propagated error of 20%.  

Estimated HA flow error would also need to include the additional error associated with 

PV flow measurement (6.797%, table 5.3), raising mean error in this example, to as much 

as 27%.  In demonstration of this, PCMRI derived HA fraction measurements were 

associated with large errors (table 5.3).  Error margins of this magnitude can lead to 

unexpected and non-physiological results such as negative estimates of HA flow – a 

phenomenon observed with one dataset.  

In spite of these limitations, the presence of such profound haemodynamic 

differences at baseline has important ramifications for our understanding of the vascular 

pathobiology of chronic liver disease.  The presence of elevated HA fraction suggests that 

chronic reductions in PV flow are buffered by rises in HA flow in chronic liver disease, but 

that this is still inadequate in view of the observed reduction in overall TLBF. 

At baseline, both sham and BDL animals were under the effects of isoflurane, 

having been subjected to laparotomy for an extended period of time as part of the 

experimental protocol.  An important method of controlling for changes in systemic 

factors would be through simultaneous monitoring of mean arterial pressure, but this was 

not possible because of the complexity of the protocol and requirement for additional 

equipment not available at the time of the experiment.  To provide some sort of 

contextualisation of hepatic haemodynamic changes, cardiac cine MRI measurements of 

cardiac output were utilised.  An appreciation of the significance of the differences in HA 

flow and TLBF as a percentage of CO therefore must be considered alongside differences 

in left-sided systolic function between sham and BDL rats (figure 5.17). 
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Figure 5.17: Cardiac systolic parameters in sham and BDL rats at baseline 
Data from sham (n = 13) and BDL (n = 12) animals.  At baseline, no significant difference in (a) 
heart rate was demonstrated between sham (325.3±6.803 bpm) and BDL rats (333.6±8.497 bpm; p 
= 0.4514).  BDL animals did however demonstrate a larger (b) stroke volume and (c) CO 
(0.5929±0.03390 mls and 197.6±12.06 ml/min) than their sham counterparts (0.4664±0.01921 
mls and 151.4±6.518 ml/min; p = 0.0030 and p = 0.0022 respectively).  Interestingly, (d) ejection 
fraction at baseline in BDL subjects (76.57±2.742%) was also greater than in sham subjects 
(67.95±2.567%; p = 0.0311).  
 
Statistically significant differences between cohorts were demonstrated in all parameters 

(stroke volume, CO and ejection fraction) except heart rate.  These changes highlight the 

value of cardiac assessment and the growing interest in changes of both systolic and 

diastolic cardiac function in chronic liver disease.  Elevated cardiac output has previously 

been reported in BDL subjects [370, 372], and it is especially with this in mind that the 

significance of differences in estimated TLBF and HA flow as percentages of CO are so 

interesting.  Bulk (absolute) estimated TLBF (non-normalised to liver volume) but relative 

to CO, is unchanged in BDL animals, underlining the importance of normalisation of bulk 

flow to liver volume in the evaluation of haemodynamic change.  Findings also 

demonstrate that at baseline, BDL livers fail to place a comparable demand on the 

systemic circulation despite differences in organ:body mass ratios. 
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Differences in bulk estimated HA flow as a percentage of CO are so profound that 

even without normalisation to liver volume, they are higher in BDL animals.  The CO 

normalisation thus reveals an inability of BDL HA flow to profit from the systemic 

hyperdynamic circulation and while this may reflect the advanced disease observed 4-

weeks post-BDL procedure, does support the normalisation of bulk HA flow to CO as a 

potential method of quantifying haemodynamic differences in liver disease. 

We have demonstrated that PCMRI measurements of PV flow are repeatable in 

both healthy and diseased animals.  Repeatability over an extended period is 

advantageous and demonstrates relative stability of haemodynamic factors through the 

experiment at baseline.  Unfortunately repeatability of estimated TLBF and HA flow was 

not measured, which in hindsight would have been important. 

 Validation of PCMRI aortic root flow with short-axis cardiac cine MR CO 

measurements was undertaken to demonstrate the feasibility of PCMRI assessment of 

large pulsatile vessel flow.  Differences in PCMRI measurements at each site caused by (i) 

scanner factors (the animal was not repositioned during the experiment, so that errors 

introduced by local inhomogeneities in B0 and B1 would have been different at each 

measurement site) and (ii) animal-specific factors (differing susceptibilities of 

surrounding tissues at measurement sites, differing quantities of motion artefact and 

differing errors introduced by 𝑉𝑒𝑛𝑐 settings) imply that reliability of PCMRI IVC flow for 

example, cannot be inferred through aortic root PCMRI.  While we acknowledge that 

validation of aortic root flow does not in any way enable the validation of hepatic 

haemodynamic flow parameters, we would argue that this experiment does provide added 

confidence in the reliability of PCMRI methods.  It is also worth noting that validation of 

PCMRI aortic root flow measurements provides added confidence in the use of these 

rather than cardiac cine MRI based measurements in the future for calculation of 

estimated TLBF and HA flow as percentages of CO.  As PCMRI data is acquired more 

quickly (10-15 minutes) than cardiac cine MRI data (20-40 minutes), measuring cardiac 

output with PCMRI can be advantageous in experimental protocols involving fast-acting 

drugs or toxins. 

 Validation of PCMRI PV flow measurements with TTUS was unfortunately only 

undertaken in sham subjects for reasons mentioned previously.  Original power 

calculations were based on measurement of TTUS PV flow in BDL subjects and we accept 

this is a major strategic criticism of experimental design.  Protocol development also 

compromised final sample sizes (Appendix C).  Validation data however, did corroborate 

earlier findings (section 4.4), suggestive of good agreement between non-cardiac gated 
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PCMRI derived PV flow and reference standard TTUS measurements.  Validation at 

baseline and post-terlipressin demonstrated an overall coefficient of repeatability of 65.59 

ml/min/100g between methods and while this may seem large (mean PCMRI PV flow 

across the entire cohort was 153.0±12.01 ml/min/100g), the coefficient of variation of 

TTUS PV flow measurements was greater than that recorded for PCMRI PV flow 

measurements both at baseline and post-terlipressin.  This would suggest that PCMRI PV 

flow measurements may indeed be more stable than their ‘reference standard’ 

counterparts. 

Validation of PCMRI derived HA fraction with microspheres inspired less 

confidence but was nonetheless encouraging.  Because individual sample sizes were small, 

pooled data from both baseline and post-terlipressin sham and BDL cohorts resulted in 

large coefficients of variation across PCMRI and microsphere datasets.  HA fraction 

measurements with caval subtraction PCMRI suffer from error propagation (earlier 

discussion and table 5.3) and this could certainly account for the large coefficient of 

repeatability (43.27%).  More reassuringly, significant correlations between 

measurements made with microspheres were demonstrated. 

 Unfortunately, quantification of absolute blood flow with microspheres was not 

undertaken because of the requirement for simultaneous peripheral arterial sampling.  

Baseline and post-terlipressin measurements were separated by an extended time period 

and the technical challenge of timing the intra-cardiac injection with simultaneous rate-

controlled (syringe driver) sampling of peripheral arterial blood, proved in pilot 

experiments error prone and unreliable.  The decision was then made to collect technically 

simpler and less error prone measurements of relative perfusion.  Even using this 

simplified method, multiple (n = 9) microsphere datasets were discarded due to 

inadequate mixing.  Although care was taken to ensure diluted preparations of 

microspheres were well vortexed before injection, published method descriptions advise 

sonication [373], which was not undertaken because of equipment restrictions. 

The measurement of haemodynamic changes in response to terlipressin was an 

important method of demonstrating the sensitivity of PCMRI methods to PV flow 

modulation but also in demonstrating the potential of caval subtraction PCMRI to infer 

changes in estimated TLBF and HA flow.  We have demonstrated expected reductions in 

PV flow and our data is the first to our knowledge to have demonstrated non-invasively in 

rats the hepatic arterial buffer response and failure of this phenomenon in chronic liver 

disease using terlipressin.  Stable HA fraction in BDL rats post-terlipressin underscores 

dysfunctional regulation of HA flow but is also suggestive of haemodynamic changes as a 
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result of systemic rather than hepatic factors.  Unfortunately post-terlipressin CO was not 

measured because of time constraints, and in the absence of these and mean arterial 

pressure measurements, systemic causes cannot be excluded.  It is however worth noting 

that clinical terlipressin dosing regimes are associated with increases (and not reductions) 

in mean arterial pressure, systemic vascular resistance and cardiac output [374]. 

 Acquisition of a full hepatic haemodynamic data set (PV, proximal and distal IVC 

flow) lasted on average 28.42±1.422 minutes (n = 12, sham and BDL).  The accuracy of 

estimated TLBF and HA flow measurements would therefore be dependent on stable 

systemic and hepatic haemodynamics during the entire acquisition.  While this would be 

likely at baseline, post-terlipressin protocols were developed during pilot experiments to 

maximise the likelihood of an extended window of stable haemodynamics for the 

measurements to take place.  The dose of terlipressin given was also substantially higher 

than those used clinically.  The British National Formulary advises an intravenous dosing 

regime in acute variceal bleeds of 2 mg over 4 hours (which as an infusion in a 70kg 

individual would equate to 0.12μg/kg/min) [375].  Doses used in this study were almost 

ten-fold higher (10μg/kg/min), but comparable to those used in rats published in the 

literature [376-379]. 

The changes in estimated TLBF and HA flow post-terlipressin in animal models of 

chronic liver disease do beg important questions about the clinical value of terlipressin.  

The use of terlipressin in acute variceal haemorrhage would be justified as hepatic 

hypoperfusion would be a small price to pay to avoid massive blood loss.  The use of 

terlipressin in hepatorenal syndrome does however merit discussion – improvements in 

renal perfusion may indeed be beneficial but the long-term sequelae of hepatic 

hypoperfusion suggested by our data may be counter-productive over an extended 

treatment period [374, 380]. 
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5.4.5 CONCLUSION 

In this section, we have implemented cardiac and respiratory gated cine PCMRI and 

demonstrated the feasibility of using our novel caval subtraction PCMRI method in the 

estimation of TLBF and HA flow.  Our data has shown significant differences at baseline 

between sham and BDL rats, with reduced estimated TLBF and HA fraction in chronic liver 

disease.  These findings suggest inadequate baseline hepatic arterial buffer response in 

BDL subjects.  Measurement of CO demonstrates significant differences in estimated HA 

flow but not TLBF as a percentage of CO.  These findings suggest a failure of BDL livers to 

place a comparable demand on systemic circulation despite increased organ:body mass 

ratio. 

 We have demonstrated repeatability of PV flow measurements in the same subject, 

and validated direct and indirect estimates of measured PCMRI flow using (a) cardiac cine 

MRI for validation of aortic root PCMRI, (b) TTUS for validation of PV PCMRI and (c) 

fluorescent microspheres for validation of caval subtraction PCMRI estimated HA fraction.  

Good agreement with reference methods was demonstrated for aortic root and PV flow 

PCMRI.  Encouraging correlations were demonstrated with microspheres however our 

data highlights the risks of error propagation in the estimation of HA flow with caval 

subtraction methods. 

 Finally, we have investigated the haemodynamic response to terlipressin in sham 

and BDL animals to demonstrate (a) expected reductions in PV flow, (b) an intact hepatic 

arterial buffer response in healthy animals and (c) failure of the hepatic arterial buffer 

response in animals with chronic liver disease. 
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5.5 CLINICAL TRANSLATION, VALIDATION, REPRODUCIBILITY 

AND STUDIES OF THE NEGATIVE HEPATIC ARTERIAL BUFFER 

RESPONSE 

5.5.1 BACKGROUND AND CLINICAL PROTOCOL DEVELOPMENT 

Cine PCMRI sequences are well established on clinical systems, with primary application 

in cardiac imaging.  A reasonable volume of studies applying PCMRI around the liver can 

be found in the literature (section 1.3.6).  Published methods were evaluated and then 

used to inform the development of our own protocols.  Adaptation of sequences and 

development of protocols to measure blood flow around the liver was undertaken with 

specific attention to each of the factors discussed in section 4.3.  Methods were developed 

to maximise (i) accuracy of absolute and caval subtraction measurements in the 

abdomen/lower thorax, (ii) practicality of the protocol in healthy subjects and importantly 

in those with disease, (iii) transferability of the protocol to other scanner systems at our 

institution and beyond.  

To determine the optimal velocity encoding settings, the literature review 

performed in section 1.3.6 was used to identify studies where PCMRI studies of PV, HA, 

hepatic venous and azygous venous flow were measured.  The 𝑉𝑒𝑛𝑐 settings used in these 

studies (figure 5.18) were then used to guide pilot measurements in normal volunteers. 

 

Figure 5.18: Box and 
whisker plots for 
published 𝑽𝒆𝒏𝒄 settings 
for PCMRI studies of 
hepatic vessels 
Data from PCMRI studies in 
the PV (n = 12), HA (n = 4), 
hepatic vein (n = 1) and 
azygous vein (n = 4) are 
shown. 

 
Final protocols were based on 𝑉𝑒𝑛𝑐 settings of 40, 60, 60, 80 and 120 cm/s for PV, HA, 

proximal IVC, distal IVC and aortic root flow measurements respectively. 

 As velocity encoding gradients were applied only in the slice select direction, 

ensuring alignment of vessel flow and flow encoding gradients was important in ensuring 
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accurate measurements.  For PV flow studies, coronal anatomical images were initially 

obtained on expiratory breath-hold.  The scanner console software (Philips MR 

WorkSpace, Philips Healthcare, Best, Netherlands) then enabled placement of three 

markers in the PV lumen and images were then obtained parallel to the PV.  Two-

dimensional PCMRI studies were then planned on these images to ensure vessel 

orthogonality (figure 5.19). 

 
 

 
 

 
 

 
 

Figure 5.19: Systematised planning for PV PCMRI studies 
The portal vein (▲) was identified on coronal images (a) and a slice was planned parallel to the 
vessel (white slice planning box).  Anatomical images obtained in that plane (b), were used to 
identify the PV (▲) and plan a PCMRI slice perpendicular to the vessel. 
 
For studies of HA, IVC and aortic root flow, expiratory breath-hold sagittal anatomical 

images were obtained through the upper abdominal and lower thoracic great vessels with 

the field-of-view adjusted to include tissues approximately 5 cm on either side the 

vertebral bodies.  These images were evaluated in conjunction with coronal images to 

identify (a) the coeliac axis and common HA, (b) the proximal IVC above the renal veins 

but below the hepatic IVC, (c) the IVC above the hepatic venous inflow but below the right-

atrial junction and (d) the aortic root.  For each of the sites, PCMRI studies were planned 

ensuring orthogonality on coronal and sagittal images (figure 5.20). 

 

  

(a) (b) 
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Figure 5.20: Systematised planning for other PCMRI studies 
The HA (▲), IVC () and aortic root () were identified on coronal images (a, c, e and g), axial 
(b) and sagittal images (d, f, and h).  Slices were planned (yellow planning box) to ensure 
orthogonality in at least two planes.  Note the positioning of the proximal (c, d) and distal (e, f) 
PCMRI studies. 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

▲ 
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Ensuring adequate spatial resolution and appropriate matrix size was especially 

important for measurements in smaller vessels such as the common HA.  An important 

advantage of PCMRI using 3T (relative to lower field strength systems) is the improved 

SNR at higher resolution [205].  All studies were performed using a 5 mm slice thickness 

and a 336x336 matrix size.  The field of view was 271 x 210 mm so that in-plane spatial 

resolution was 0.808 x 0.625 mm2.  At this resolution, a 5 mm diameter vessel would 

render signal in over 35 pixels.  It is worth noting that this resolution is higher than that 

used in previously published HA flow PCMRI studies [198, 199, 205]. 

 PCMRI data from large, high flow volume pulsatile vessels such as the aorta and 

IVC are at risk of pulsation artefacts and spatial misregistration.  To minimise these effects, 

all measurements were undertaken in expiratory breath-hold.  While this had the 

advantage of much faster acquisitions (as these were based on cardiac gating alone), the 

method was also very dependent on the subject’s quality and compliance with the breath-

hold during the acquisition. 

 Because the sequences were adapted and optimised from manufacturer PCMRI 

sequences, velocity compensation and methods to minimise intravoxel phase dispersion 

and phase offset errors during acquisition and post-processing were included as features 

of standard sequence design.  No additional modification of these settings was introduced 

in the interest of maximising transferability of the sequence to other scanners and 

institutions. 

 All PCMRI studies were cardiac gated using pulse oximetry for cardiac monitoring.  

Data was collected using a temporal resolution of seven phases through the cardiac cycle.  

The low temporal resolution was chosen to enable a single measurement to be completed 

within a single breath-hold (<15 seconds).  Pilot work in patients with liver disease 

demonstrated that sampling of more phases through the cardiac cycle would be unfeasible 

in a single breath-hold for subjects with more elevated heart rates (>80 beats per minute).  

In the interest of maximising the practicality of the protocol in patients with liver disease 

(likely to have higher heart rates and smaller breath-hold capacity), protocols were 

maintained at low temporal resolution. 

 Finally, all PCMRI measurements were performed in triplicate and recorded 

measurements were averaged across the three studies.  This had the added benefit of 

minimising errors introduced by many of the potential challenges to accurate PCMRI 

quantification, including those introduced by lower temporal resolution measurements. 
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As discussed in section 1.3.6, validation of PCMRI measurements is a significant 

challenge on clinical systems.  Many researchers have opted to use either flow phantoms 

or transcutaneous Doppler US, both of which have significant limitations.  Validation with 

transcutaneous Doppler US has been variable and unimpressive (table 1.2), and it is 

questionable as to whether this is due to variability in Doppler US or PCMRI 

measurements [190, 192, 199, 201].  Direct validation of hepatic vessel flow can be 

achieved invasively (ICG clearance methods, section 1.2.3), but as that would be unfeasible 

in healthy volunteers, we propose instead checking the consistency of hepatic caval 

subtraction PCMRI measurements.  This could be achieved non-invasively by checking the 

agreement between PCMRI afferent (PV and HA) and efferent (caval subtraction IVC) bulk 

flow measurements.  Validation of aortic root flow measurements with cardiac cine MRI 

could also be undertaken as previously as a means of verifying the reliability of absolute 

flow quantification using PCMRI. 

The ability to detect expected changes in hepatic haemodynamic parameters in 

response to a controlled insult would be important in demonstrating the clinical feasibility 

of caval subtraction MRI.  The use of dedicated pharmaceutical agents to demonstrate this 

phenomenon in patients/healthy volunteers would be difficult to justify.  There have been 

several PCMRI studies demonstrating physiological post-prandial rises in PV flow and in 

view of this data [381-384], measurements were performed in the fasted and post-

prandial state to assess the performance of our novel method. 

 With this in mind, in this section we aim to (a) demonstrate the feasibility of using 

caval subtraction PCMRI to measure TLBF, HA and PV flow on a clinical system, (b) assess 

the consistency of estimated TLBF and HA flow measurements using caval subtraction 

PCMRI by comparison with directly measured PCMRI flow and validate aortic root flow 

measurements using short-axis cardiac cine MRI, (c) study the reproducibility of caval 

subtraction PCMRI measurements performed in the same subject after 7 days, and finally 

(d) investigate post-prandial hepatic haemodynamic changes in healthy volunteers. 
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5.5.2 METHODS 

5.5.2.1 Subjects and preparation 

Local ethics committee approval was obtained and all participants provided informed 

written consent.  Participant information sheets and consent form copies can be found in 

Appendix D.  Healthy volunteers were recruited by means of advertisement.  There were 

seven male (aged 26.5±1.36 years) and six female (aged 31.2±2.62 years) participants.  

Volunteers were excluded if (a) they had any contraindication to standard MR imaging, (b) 

if they were taking any long-term medication (excluding the oral contraceptive pill) and 

(c) if they had any documented history of previous liver or gastrointestinal disease.  As 

subjects also underwent DCE MRI (findings presented in Chapter 6), those with any prior 

history of renal disease were excluded.  One subject was excluded because of 

claustrophobia.  Participants were asked to remain fasted for six hours prior to imaging 

and were advised to consume water ad libitum, but asked to refrain from the consumption 

of caffeinated fluids. 

5.5.2.2 Two-dimensional cine PCMRI 

Imaging was performed using a 3.0T scanner (Achieva, Philips Healthcare, Best, 

Netherlands) with a 16 channel body coil (SENSE XL-Torso, Philips Healthcare, Best, 

Netherlands).  The coil was positioned over the lower thorax and upper abdomen and 

subjects were monitored using digital pulse oximetry and bellows. 

 Initial scouts were performed to ensure inclusion of the entire cardiac and liver 

volume within the field-of-view.  Coronal images of the upper abdomen and lower thorax, 

and sagittal images including the abdominal great vessels were obtained with successive 

expiratory breath-holds using a gradient echo sequence (table 5.4).  Localisation of the 

vascular structures of interest was performed as described earlier, with additional 

anatomical imaging through the PV.  PCMRI studies were planned through the PV, 

common HA, proximal IVC, distal IVC and aortic root in succession.  Where HA anatomical 

variations were noted (n = 2), measurements were made as close as possible to the aortic 

origin and measurements were obtained from more than one vessel where necessary.  

Studies were performed in expiratory breath-hold and cardiac gated using peripheral 

pulse oximetry and settings listed in table 5.4.  Before each scan, subject heart rate was 

adjusted on the scanner console software to optimise the arrhythmia rejection window.  

Acquisition time for each measurement was less than 20 seconds.  Each PCMRI study was 

repeated three times in succession.  All PCMRI measurements, including planning time 

were usually completed within 20 minutes.  Quantification was performed using the freely 

available software package, Segment (Medviso, Lund, Sweden). 
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5.5.2.3 Cardiac cine MRI validation 

Long-axis anatomical images were planned using previously acquired coronal image data.  

Short-axis cardiac cine MRI studies were then planned checking correct orientation on 

both coronal and long-axis images.  Before scanning, subject heart rate was adjusted on 

the scanner console software to optimise the arrhythmia rejection window.  Contiguous 

slice datasets were obtained, each with 30 frames through the cardiac cycle.  Images were 

obtained in expiratory breath-hold, using a spoiled gradient echo sequence (table 5.4).  

Most acquisitions were complete within 7 breath-holds.  Quantification was performed 

using the freely available software package, Segment (Medviso, Lund, Sweden).  Automatic 

segmentation tools were used to identify the endocardial surface, with frame by frame 

manual review and segmentation correction where appropriate. 

Table 5.4: Sequence parameters 
 

 ANATOMICAL IMAGES PCMRI CARDIAC CINE MRI 
TR/TE (seconds) 2.47/1.23 8.70/5.22 3.40/1.70 

Flip angle (˚) 45 10 45 
Matrix size (pixels) 352 x 352 336 x 336 256 x 256 
Field-of-view (mm) 350 x 350 271 x 210 320 x 320 

Spatial resolution 
(mm2) 

0.994 x 0.994 0.808 x 0.625 1.25 x 1.25 

Bandwidth (Hz/pixel) 1640 210 1243 
Slice thickness (mm) 5 5 8 

Slice gap (mm) 5.5 - 8 
Cardiac cycle phases - 7 30 

 

5.5.2.4 Volumetric assessment and bulk flow normalisation 

All PCMRI bulk flow measurements were normalised to liver volume.  Liver volume was 

measured using 5 mm slice thickness gradient echo coronal anatomical images.  

Segmentation was performed manually using Amira (Amira Resolve RT, Visage Imaging, 

Berlin, Germany).  A tissue density of 1.0 g/ml was assumed [193]. 

5.5.2.5 Caval subtraction PCMRI consistency studies 

To measure the consistency of estimated TLBF using subtracted PCMRI IVC flows, 

comparison was made with bulk inflow PCMRI measurements at the PV and common HA.  

Comparisons between caval subtraction PCMRI estimated and directly measured HA flow 

and HA fractions were also studied. 

5.5.2.6 Reproducibility studies 

To measure reproducibility, subjects were scanned using the same MRI protocol 7 days 

later.  As with the initial study, subjects were asked to remain fasted for at least 6 hours 
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prior to the study and were advised to consume water ad libitum, but refrain from the 

consumption of caffeinated fluids.  Care was taken to ensure subjects were scanned at a 

comparable time of the day to the original study. 

5.5.2.7 Physiological stress studies 

Post-prandial changes in liver haemodynamics were studied using a meal challenge.  After 

the initial scan, subjects were removed from the scanner and given 440 mls of Ensure 

Plus® (Abbot Laboratories, Illinois, USA) for oral ingestion, compatible with 660 kcal 

(2780 kJ) of prandial stress.  During this time, subjects remained seated outside the 

scanner, to minimise any cardiovascular changes.  Approximately 45-60 minutes after 

ingestion, the MRI protocol was repeated. 

5.5.2.8 Statistical analysis 

Kolmogorov-Smirnov tests were used to confirm normality of variable distributions.  

Reproducibility, consistency and validation studies were assessed using paired t-tests, 

Bland-Altman analysis of agreement with calculation of the coefficient of repeatability and 

assessment of correlation between measurements using Pearson’s correlation coefficient.  

Post-prandial hepatic haemodynamic changes were evaluated using paired t-tests.  The 

threshold of statistical significance was defined to be p < 0.05. 
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5.5.3 RESULTS 

5.5.3.1 Cohort features 

Cohort features are shown in table 5.5. 

Table 5.5: Cohort numbers for normal volunteer studies 
 

 MALE 
(n = 7) 

FEMALE 
(n = 6) 

Age (years) 26.7±1.55 30.2±2.37 

Liver volume (mls) 1215±66.5 1207±91.3 

(all parameters given as mean ± standard error of the mean) 
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5.5.3.2 Caval subtraction PCMRI 

Pulse oximetry and respiratory gated cine PCMRI flow studies through the cardiac cycle 

demonstrated physiological flow profiles through the PV, common HA, proximal IVC, distal 

IVC and aortic root. 

  
 

 
 

 

 

 
Figure 5.21: Bulk flow profiles 
through the cardiac cycle using cine 
PCMRI 
Data from the same subject demonstrating 
flow profiles for the (a) PV (overall flow 
1349±60.35 ml/min), (b) common HA (overall 
flow 172.1±20.06 ml/min), (c) proximal IVC 
(overall flow 2591±32.21 ml/min), (d) distal 
IVC (overall flow 4064±144.8 ml/min) and (e) 
aortic root (overall flow 5585±541.2 ml/min).  
Multiple flow profiles are shown for each 
vessel as three measurements were 
performed in succession. 

 
Caval subtraction methods, applied for example to the dataset above were suitable for 

estimation of TLBF (1473 ml/min), estimated HA flow (124 ml/min) and estimated %HA 
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flow (8.418%).  Note some agreement with directly measured HA flow (172 ml/min) and 

%HA flow (11.31%). 

 

 
 

Figure 5.22: 
Clinical 
anatomical 
cardiac cine MR 
and volumetric 
quantitation 
Fifteen left ventricle 
short-axis slices (8 mm 
thickness) extending to 
the apex  (a,b, right 
lower corner image) 
are shown, from a 
normal volunteer.  The 
stroke volume can be 
calculated from 
segmentation of 
endocardial areas at 
end diastole (a) and 
end systole (b).  
Segmentation of 
ventricular volumes 
through multiple 
phases of cardiac cycle 
can be used to generate 
volume-time curves (c).  

 

 
 

 
 
Estimated TLBF can then be normalised to systemic haemodynamics using measurement 

of CO assessed with cardiac cine MRI (figure 5.22).  CO measured by cine MRI was 5891 

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1 1.2

V
o

lu
m

e
 (

m
l)

Time (seconds)

EDV 

ESV 

SV 

(a) 

(b) 

(c) 



~ 222 ~ 
 

ml/min (compared with aortic root flow of 5585 ml/min), so that estimated TLBF as a 

percentage of CO was 25.00% and estimated HA flow as a percentage of CO was 2.105%. 

5.5.3.3 Cardiac cine MRI validation 

Validation of PCMRI measurements of aortic root flow were undertaken using 

measurements of cardiac output derived from short-axis cardiac cine MRI volumetric 

analysis (figure 5.22) in normal volunteers (n = 13).  Including baseline, post-prandial and 

reproducibility studies, thirty-five PCMRI aortic root flow measurements were validated 

using cardiac cine MRI (table 5.4).  Paired t-tests demonstrated non-significant differences 

between PCMRI cardiac output and cardiac cine MRI cardiac output in fasted (mean 

difference 65.83±52.18 ml/min; p = 0.2197) and post-prandial states (mean difference 

16.99±77.49 ml/min; p = 0.8309).  The coefficient of variation was slightly lower for 

PCMRI cardiac output in both the fasted (17.55% vs 17.88%; PCMRI vs cardiac cine MRI) 

and post-prandial states (21.08% vs 24.25%; PCMRI vs cardiac cine MRI).  Graphical 

analysis (figure 5.23b) showed significant and strong correlations between PCMRI and 

cardiac cine MRI derived cardiac output measurements (r = 0.9567; p < 0.0001). 

 
 

Figure 5.23: Validation of aortic root PCMRI using short axis cardiac cine MRI 
Strong correlations and encouraging agreements between PCMRI and cardiac cine MRI derived 
cardiac output measurements were demonstrated in the fasted (■) and post-prandial (▲) state.  
The coefficient of repeatability between measurement methods for the entire dataset was 496.4 
ml/min. 
 
5.5.3.4 Caval subtraction PCMRI consistency 

Consistency of caval subtraction PCMRI was assessed by comparison of (a) estimated 

TLBF with the sum of directly measured PV and HA flow, (b) estimated HA flow with 

directly measured HA flow and (c) estimated HA fraction with directly measured HA 

fraction.  Agreement was assessed in normal volunteers (n = 13), at baseline, post-

prandially and during reproducibility studies using thirty-seven measurements.  Paired t-

tests demonstrated a non-significant difference between estimated TLBF and directly 

measured TLBF in the fasted state (mean difference 1.330±2.407 ml/min/100g; p = 

0.5859).  This difference was just non-significant in the post-prandial state (mean 
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difference 5.918±3.082 ml/min/100g; p = 0.0789).  The coefficient of variation was higher 

for caval subtraction PCMRI measurements in both fasted (23.01% vs 22.23%; estimated 

TLBF vs directly measured TLBF) and post-prandial states (14.24% vs 15.90%; estimated 

TLBF vs directly measured TLBF).  Graphical analysis (figure 5.24b) showed significant 

and strong correlations between estimated and directly measured TLBF using PCMRI (r = 

0.9061; p < 0.0001). 

 

 
 

Figure 5.24: Agreement between estimated TLBF derived from caval 
subtraction PCMRI and inflow TLBF measured directly with PCMRI 
Strong correlations and encouraging agreements between estimated TLBF and directly measured 
TLBF were demonstrated in the fasted (■) and post-prandial (▲) state.  The coefficient of 
repeatability between measurement methods for the entire dataset was 22.77 ml/min/100g. 
 
Because a fixed quantity (PCMRI PV flow) was subtracted from estimated and directly 

measured TLBF, paired t-tests for estimated and directly measured HA flow demonstrated 

the same mean differences and significance levels as previously.  The coefficient of 

variation was considerably higher for estimated HA flow measurements in both fasted 

(123.2% vs 75.56%; estimated vs directly measured HA flow) and even greater in post-

prandial states (331.6% vs 54.77%; estimated vs directly measured HA flow).  Graphical 

analysis (figure 5.25b) showed significant correlations between estimated and directly 

measured HA flow using PCMRI (r = 0.7065; p < 0.0001). 

  

0 50 100 150 200

-60

-40

-20

0

20

40

60

Average of two TLBF
measurements (ml/min/100g)

D
if

fe
re

n
c
e
 b

e
tw

e
e
n

e
a
c
h

 m
e
th

o
d

 o
f

T
L

B
F

 m
e
a
s
u

re
m

e
n

t

(m
l/
m

in
/1

0
0
g

)

(r = 0.9061, p < 0.0001)

0 50 100 150 200
0

50

100

150

200

TLBF inflow (ml/min/100g)

s
u

b
tr

a
c
ti

o
n

a
l 
T

L
B

F

(m
l/
m

in
/1

0
0
g

)

(a) (b) 



~ 224 ~ 
 

 

  

Figure 5.25: Agreement between estimated HA flow derived from caval 
subtraction PCMRI and HA flow measured directly with PCMRI 
Although strong correlations were observed between estimated and directly measured HA flow in 
both the fasted (■) and post-prandial (▲) state, the coefficient of repeatability between 
measurement methods for the entire dataset was 22.77 ml/min/100g, which was large in view of 
physiological levels of absolute HA flow. 
 
Paired t-tests demonstrated a non-significant difference between estimated and directly 

measured HA fraction in the fasted state (mean difference 3.615±3.545%; p = 0.3185).  

This difference was just non-significant in the post-prandial state (mean difference 

5.461±2.815%; p = 0.0762).  The coefficient of variation was considerably higher for caval 

subtraction PCMRI HA fraction measurements in both fasted (137.7% vs 57.71%; 

estimated vs directly measured HA fraction) and even greater in post-prandial states 

(426.42% vs 57.54%; estimated vs directly measured HA fraction).  Graphical analysis 

(figure 5.26b) showed significant correlations between estimated and directly measured 

HA fraction using PCMRI (r = 0.6849; p < 0.0001). 

 

 

 

 
 

Figure 5.26: Agreement between estimated HA fraction derived from caval 
subtraction PCMRI and HA fraction measured directly with PCMRI 
Although strong correlations were observed between estimated and directly measured HA fraction 
in both the fasted (■) and post-prandial (▲) state, the coefficient of repeatability between 
measurement methods for the entire dataset remained large (29.57%). 
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5.5.3.5 Reproducibility studies 

Reproducibility was assessed using the same protocol with the same scanner in the same 

subjects exactly seven days after the initial study.  Repeat measurements were obtained in 

normal volunteers (n = 11).  No significant differences were demonstrated between 

repeated PV flow measurements (mean difference -1.234±2.924 ml/min/100g; p = 

0.6819).  The coefficient of reproducibility was 19.01 ml/min/100g and graphical analysis 

(figure 5.27b) showed correlations between repeated PV flow measurements were 

significant (r = 0.7152; p = 0.0132). 

 
 

 
 

 

Figure 5.27: Seven day reproducibility of PCMRI PV flow measurements 
Bland-Altman (a) and scatter plot of repeated measurements (b), demonstrated strong correlations 
and encouraging agreements between repeated PCMRI PV flow measurements were demonstrated.  
The coefficient of reproducibility was 19.01 ml/min/100g. 
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Reproducibility of estimated (caval subtraction) and directly measured TLBF were 

compared.  No significant differences were demonstrated between repeated directly 

measured TLBFs (mean difference -2.345±4.547 ml/min/100g; p = 0.6172) or estimated 

TLBFs (mean difference -8.460±4.860 ml/min/100g; p = 0.1124).  The coefficient of 

reproducibility was higher for estimated TLBFs (31.60 ml/min/100g) than in directly 

measured TLBFs (29.56 ml/min/100g).  Graphical analysis (figure 5.28b, d) showed 

significant but moderate correlations between repeated direct TLBF measurements (r = 

0.6045; p = 0.0489), but not for estimated TLBFs (r = 0.4858; p = 0.1297). 

 
 

  
 

  
Figure 5.28: Seven day reproducibility of TLBF measurements 
Bland-Altman and scatter plots of repeated measurements for reproducibility of directly measured 
TLBF (a), (b) and estimated (caval subtraction) TLBF (c),(d).  Estimated TLBF demonstrated a 
slightly larger coefficient of reproducibility, and non-significant correlations between repeated 
measurements. 
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Reproducibility of estimated (caval subtraction) and directly measured HA flow were 

compared.  No significant differences were demonstrated between repeated directly 

measured HA flows (mean difference 1.111±3.005 ml/min/100g; p = 0.7193) or estimated 

HA flows (mean difference 7.226±4.425 ml/min/100g; p = 0.1335).  The coefficient of 

reproducibility was higher for estimated HA flows (28.77 ml/min/100g) than in directly 

measured HA flows (19.53 ml/min/100g).  Graphical analysis (figure 5.29b, d) showed 

significant correlations between repeated direct HA flow measurements (r = 0.6915; p = 

0.0184) and estimated HA flows (r = 0.6511; p = 0.0300). 

 
 

  
 

 

 
Figure 5.29: Seven day reproducibility of HA flow measurements 
Bland-Altman and scatter plots of repeated measurements for reproducibility of directly measured 
HA flow (a), (b) and estimated (caval subtraction) HA flow (c),(d).  Estimated HA flow 
demonstrated a larger coefficient of reproducibility, but significant correlations between repeated 
measurements. 
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Reproducibility of estimated (caval subtraction) and directly measured HA fraction were 

compared.  No significant differences were demonstrated between repeated directly 

measured HA fraction (mean difference 0.2403±3.348 %; p = 0.9442) or estimated HA 

fraction (mean difference 8.643±6.943 %; p = 0.1335).  The coefficient of reproducibility 

was considerably higher for estimated HA fraction (45.13%) than in directly measured HA 

fraction (21.76%).  Graphical analysis (figure 5.30b, d) showed significant but moderate 

correlations between repeated direct HA fraction measurements (r = 0.6397; p = 0.0341).  

No significant correlation was demonstrated between repeated measurements of 

estimated HA fraction (r = 0.5491; p = 0.0802). 

 

 

  
 

  
Figure 5.30: Seven day reproducibility of HA fraction measurements 
Bland-Altman and scatter plots of repeated measurements for reproducibility of directly measured 
HA fraction (a), (b) and estimated (caval subtraction) HA fraction (c),(d).  Estimated HA fraction 
demonstrated a much larger coefficient of reproducibility, and non-significant correlations between 
repeated measurements. 
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To assess the reproducibility of TLBF and HA fraction as a percentage of CO, 

reproducibility of PCMRI derived CO was compared initially.  No significant differences 

were demonstrated between repeated aortic root flow measurements (mean difference 

112.7±215.8 ml/min; p = 0.6119).  The coefficient of reproducibility was 1466 ml/min.  

Graphical analysis (figure 5.31b) showed no significant correlation between repeated 

aortic root flow measurements (r = 0.5126; p = 0.0884). 

 

  
 

Figure 5.31: Seven day reproducibility of PCMRI aortic root flow 
measurements 
Bland-Altman (a) and scatter plot of repeated measurements (b) demonstrated poor correlations 
and agreement between repeated PCMRI aortic root flow measurements. 

 
  

3000 3500 4000 4500 5000 5500

-2000

-1000

0

1000

2000

Average of repeated
CO measurements (ml/min)

D
if
fe

re
n

c
e
 b

e
tw

e
e
n

 e
a
c
h

C
O

 m
e
a
s
u

re
m

e
n

t 
(m

l/
m

in
) (r = 0.5126, p = 0.0884)

0 2000 4000 6000
0

2000

4000

6000

First estimated CO
measurement (ml/min)

S
e
c
o

n
d

 e
s
ti

m
a
te

d

C
O

 m
e
a
s
u

re
m

e
n

t 
(m

l/
m

in
)

(a) (b) 



~ 230 ~ 
 

Reproducibility of estimated and directly measured TLBF as a percentage of CO were 

compared.  No significant differences were demonstrated between repeated directly 

measured TLBF as a percentage of CO (mean difference 0.4318±1.380 %; p = 0.7607) or 

estimated TLBF as a percentage of CO (mean difference 1.251±1.621 %; p = 0.4582).  The 

coefficient of repeatability was higher for estimated TLBF as a percentage of CO (10.54%) 

than for directly measured TLBF as a percentage of CO (8.968%).  Graphical analysis 

(figure 5.32b, d) showed significant correlations between repeated directly measured 

TLBF as a percentage of CO (r = 0.7200; p = 0.0125), but only a modest and just non-

significant correlation was demonstrated between repeated measurements of estimated 

TLBF as a percentage of CO (r = 0.5919; p = 0.0551). 

 

  
 

  
Figure 5.32: Seven day reproducibility of TLBF as a percentage of CO 
measurements 
Bland-Altman and scatter plots of repeated measurements for reproducibility of directly measured 
TLBF fraction (a), (b) and estimated (caval subtraction) TLBF (c),(d) as a percentage of CO.  
Estimated TLBF as a percentage of CO demonstrated a larger coefficient of reproducibility, and non-
significant correlations between repeated measurements. 
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Reproducibility of estimated and directly measured HA flow as a percentage of CO were 

compared.  No significant differences were demonstrated between repeated directly 

measured HA flow as a percentage of CO (mean difference 0.09752±0.9260%; p = 0.9182) 

or estimated HA flow as a percentage of CO (mean difference 1.780 ±1.364%; p = 0.2210).  

The coefficient of repeatability was higher for estimated HA flow as a percentage of CO 

(8.866%) than for directly measured HA flow as a percentage of CO (6.020%).  Graphical 

analysis (figure 5.33b, d) showed significant correlations between repeated directly 

measured HA flow as a percentage of CO (r = 0.7045; p = 0.0155) and between repeated 

measurements of estimated HA flow as a percentage of CO (r = 0.6717; p = 0.0236). 

 

 

  
 

  
Figure 5.33: Seven day reproducibility of HA flow as a percentage of CO 
measurements 
Bland-Altman and scatter plots of repeated measurements for reproducibility of directly measured 
HA flow (a), (b) and estimated (caval subtraction) HA flow (c),(d) as a percentage of CO.  Estimated 
HA flow as a percentage of CO demonstrated a larger coefficient of reproducibility, and non-
significant correlations between repeated measurements. 
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5.5.3.4 Physiological stress studies 

The response to post-prandial stress was evaluated in normal volunteers (n = 13).  PV flow 

measured with PCMRI was 56.86±3.647 ml/min/100g at baseline and showed a 

significant rise post-prandially (mean difference 52.20±4.371 ml/min/100g; p < 0.0001) 

(figure 5.34a).  Fasted TLBF was 71.96±4.840 ml/min/100g when measured directly and 

68.95±4.737 ml/min/100g when measured indirectly (using caval subtraction methods).  

Significant post-prandial rises in TLBF were recorded for direct (mean difference 

45.47±5.131 ml/min/100g; p < 0.0001) and for indirect measurement methods (mean 

difference 42.49±4.649 ml/min/100g; p < 0.0001) (figure 5.34b and c).  Fasted HA flow 

was 15.10±2.803 ml/min/100g when measured directly and 11.99±4.827 ml/min/100g 

when measured indirectly (using caval subtraction methods).  Significant post-prandial 

reductions in HA flow were recorded for direct measurement methods (mean difference -

5.841±2.424 ml/min/100g; p = 0.0431) but the reduction was just above significance for 

indirect measurement methods (mean difference -8.221±3.945 ml/min/100g; p = 0.0592) 

(figure 5.34d and e).  Fasted HA fraction was 20.22±2.547% when measured directly and 

13.97±7.221% when measured indirectly (using caval subtraction methods).  Significant 

post-prandial reductions in HA fraction were recorded for direct measurement methods 

(mean difference -12.04±2.393%; p = 0.0003) but the reduction was just above 

significance for indirect measurement methods (mean difference -11.27±5.878%; p = 

0.0792) (figure 5.34f and g). 
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Figure 5.34: Haemodynamic post-
prandial response in normal 
volunteers 
Directly measured data is shown in the left 
column and estimated data using caval 
subtraction PCMRI on the right.  Haemodynamic 
response was assessed using PV flow (a), TLBF 
(b, c), estimated HA flow (d, e) and HA fraction 
(f, g). 
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Cardiac output measured with PCMRI was 3999±210.6 ml/min at baseline and showed a 

significant rise post-prandially (mean difference 529.9±231.9 ml/min; p = 0.0453) (figure 

5.35a).  Fasted TLBF as a percentage of CO was 21.08±1.970% when measured directly 

and 20.31±2.010% when measured indirectly (using caval subtraction methods).  

Significant post-prandial increased in TLBF as a percentage of CO recorded for direct 

(mean difference 9.870±1.803%; p = 0.0003) and indirect measurement methods (mean 

difference 9.032±1.859%; p = 0.0007) (figure 5.35b and c).  Fasted HA flow as a 

percentage of CO was 4.626±1.158% when measured directly and 3.856±1.723% when 

measured indirectly (using caval subtraction methods).  No significant post-prandial 

reductions in HA flow as a percentage of CO were recorded for direct (mean difference -

1.988±1.049%; p = 0.0875) and indirect measurement methods (mean difference -

2.825±1.396%; p = 0.0705) (figure 5.35d and e).  Findings are summarised in table 5.6. 

 
Figure 5.35: Haemodynamic post-
prandial response relative to cardiac 
output in normal volunteers 
Directly measured data (a), (b) and (d) is 
compared with caval subtraction PCMRI derived 
measures (c) and (e).  Haemodynamic response 
was assessed using cardiac output (a), TLBF as a 
percentage of CO (b, c), and HA flow as a 
percentage of CO (d, e). 
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Table 5.6: Fasted and post-prandial haemodynamic changes using direct and 
indirect PCMRI measurements 
 

 DIRECT PCMRI MEASUREMENT INDIRECT (CAVAL SUBTRACTION) 
PCMRI MEASUREMENT 

 FASTED POST-PRANDIAL 

CHANGE 
FASTED POST-PRANDIAL 

CHANGE 
PV flow 

(ml/min/100g) 
56.86±3.647 -52.20±4.371*   

TLBF 
(ml/min/100g) 

71.96±4.840 +45.45±5.131* 68.95±4.737 +42.49±4.649* 

HA flow 
(ml/min/100g) 

15.10±2.803 -5.841±2.424* 11.99±4.821 -8.221±3.945 

HA fraction 
(%) 

20.22±2.547 -12.04±2.393* 13.97±7.221 -11.27±5.878 

Cardiac output 
(ml/min) 

3999±210.6 +529.9±231.9*   

TLBF/CO 
(%) 

21.08±1.970 +9.870±1.803* 20.31±2.010 +9.032±1.859* 

HA flow/CO 
(%) 

4.626±1.158 -1.988±1.049 3.856±1.723 -2.825±1.396 

(all parameters given as mean ± standard error of the mean; *p < 0.05) 
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5.5.4 DISCUSSION 

We have successfully adapted standard clinical cine PCMRI protocols to measure bulk 

vessel flow in upper abdominal vessels in normal volunteers and translated our preclinical 

caval subtraction methods to estimate hepatic haemodynamic parameters in human 

subjects.  Preclinical and clinical PCMRI face many similar challenges (discussed 

previously) and here we consider those specific to clinical PCMRI. 

 Much like preclinical estimations made using caval subtraction PCMRI, clinical 

estimations of TLBF, HA flow and subsequent derivatives suffer from error propagation.  

Errors in the measurement of proximal and distal IVC flows summate during estimation of 

TLBF.  Estimated HA flow has additional error from the error associated with direct PV 

flow measurements.  The exact error associated with caval subtraction PCMRI estimations 

is impossible to ascertain because no non-invasive reference-standard validation method 

exists that would be suitable for normal volunteers.  It can be argued that transcutaneous 

Doppler US could have been used for validation, but as previously discussed – this is such 

a poor method of validation and not a genuine ‘gold-standard’.  Defining validation as the 

assessment of agreement between two independent measurements, one of which is a 

recognised method for measuring PV and HA flow, we would argue that measuring 

consistency between direct inflow PCMRI measurements and caval subtraction PCMRI 

measurement does represent a means of validation.  Analysis of agreement between these 

two independent methods demonstrated very good agreement in both fasted and post-

prandial states.  The coefficient of repeatability between each measurement method 

(22.77 ml/min/100g) would be acceptable for TLBF measurements and error associated 

with this measurement is very encouraging (table 5.7).  Because HA flow was inferred 

from the subtraction of a fixed quantity (directly measured PV flow) from both direct and 

indirect measurements, the same absolute error resulted in a significant increase in 

relative error (table 5.7).  The same coefficient of repeatability for measurement of much 

smaller absolute values does call into question whether estimated, caval subtraction HA 

flow can be made with sufficient accuracy.  Where true HA flows are low, the risk of non-

physiological negative flow estimates as a result of caval subtraction error propagation is 

also high, as was seen for a number of datasets.  This was manifest on Bland-Altman plots 

for HA flow and HA fraction (figures 5.25a and 5.26a) as clustering of points in a generally 

negative trend (small averages of between method measurements, were likely to have 

positive differences between each method of measurement because of increased 

likelihood of negative caval subtraction flow measurements). 

 It is also worth noting that differences in the coefficient of variation in fasted and 

prandial states were noted across all estimated parameters.  For estimated TLBF, the 



~ 237 ~ 
 

coefficient of variation was lower in the post-prandial state, however for both estimated 

HA flow and fraction the coefficient of variation increased in the post-prandial state.  Both 

the increases and decreases are likely to reflect similar absolute errors (and standard 

deviations) but higher mean TLBFs and lower mean HA flows/fractions observed in the 

post-prandial state. 

 As in section 5.4, cardiac cine MRI stroke volume measurements were used to 

validate aortic root PCMRI flow.  Unlike in preclinical experiments, clinical systems 

optimise image quality by shifting the patient table to ensure the area being scanned is as 

close as possible to the centre of B0, where field inhomogeneities are less variable.  

Although this does mitigate some of the differences between hepatic and cardiac 

measurements introduced by scanner factors, subject specific factors still imply that the 

reliability of PCMRI IVC flow for example, cannot be inferred because of the accuracy of 

aortic root PCMRI.  While we acknowledge once again that validation does not in any way 

enable validation of hepatic haemodynamic flow parameters, we would argue that this 

experiment does provide added confidence in the reliability of PCMRI quantification. 

Table 5.7: Error estimation for PCMRI derived flow measurements in normal 
volunteers 
 

 GLOBAL MEAN* MEAN DIFFERENCE TO 

REFERENCE STANDARD 
ESTIMATED 

PERCENTAGE ERROR 
Caval subtraction 
PCMRI estimated 

TLBF 

85.76±4.300 
ml/min/100g 

2.942±1.910 
ml/min/100g† 

3.431±2.227% 

Caval subtraction 
PCMRI estimated HA 

flow 

10.39±2.679 
ml/min/100g 

2.942±1.910 
ml/min/100g† 

28.32±18.38% 

Caval subtraction 
PCMRI HA fraction 

11.61±3.351% 4.264±2.482%† 36.73±21.38% 

PCMRI aortic root 
flow 

4264±137.2 ml/min 50.48±42.82 ml/min‡ 1.184±1.004% 

(*pooled mean across fasted and post-prandial measurements; †direct inflow PCMRI measurements 

reference standard; ‡cardiac cine MRI derived CO reference standard) 

 
In the absence of good, reference-standard validation data, perhaps an even more 

important parameter is reproducibility.  If PCMRI derived bulk flow measurements are to 

inform patient care, these need to be reproducible in patients with stable disease (and 

normal volunteers).  Even if validation data is poor, a stable reproducible parameter is 

arguably more clinically useful.  Good reproducibility of PV flow measurements was 

demonstrated.  The coefficient of reproducibility (19.01 ml/min/100g) is arguably high, 

but this is likely to indicate natural variation in vessel flow rates.  Because simultaneous 

direct and indirect (caval subtraction) PCMRI flow measurements were made in all 

subjects, a comparative study of reproducibility was undertaken.  For estimated TLBF, the 



~ 238 ~ 
 

coefficient of reproducibility was only marginally greater than directly measured TLBF 

(31.60 vs 29.56 ml/min/100g).  Correlations between repeat estimated TLBF 

measurements were however poor and disappointing (r = 0.4858, p = 0.1297).  It is 

perhaps surprising then that the correlations for repeat measurements of estimated HA 

flow were so encouraging (r = 0.6511, p = 0.0300).  Crucially, the coefficient of 

reproducibility of HA flow measurements was wide (28.77 ml/min/100g) and more 

worryingly, just over twice the mean value for the entire cohort (14.01±3.524 

ml/min/100g).  A similar and equally concerning poor reproducibility of HA fraction was 

demonstrated (coefficient of reproducibility of 45.13%, mean HA fraction across cohort 

16.47±4.629%).  It is however worth noting that although coefficients of reproducibility 

were smaller for both directly measured HA flow (coefficient of reproducibility 19.77 

ml/min/100g, mean direct HA flow across cohort 15.34±2.366 ml/min/100g) and fraction 

(coefficient of reproducibility 21.76%, mean direct HA fraction across cohort 

20.09±2.366%), these still remained large and questionably reproducible. 

 An important source of variation in haemodynamic parameters would be 

differences in overall haemodynamic state.  It was therefore significant that 

reproducibility of cardiac output was also poor (coefficient of reproducibility 1466 

ml/min).  Assessment of TLBF and HA flow relative to CO was a viable way of removing 

the effects of changes in systemic factors as a source of variability in repeated 

measurements.  Reproducibility of measurements of estimated TLBF as a percentage of CO 

were much more encouraging (coefficient of reproducibility 10.54%, mean cohort 

estimated TLBF as a percentage of CO 21.36±1.138%).  Reproducibility of estimated HA 

flow as a percentage of CO was poorer than estimated TLBF (coefficient of reproducibility 

8.866%, mean cohort estimated HA as a percentage of CO 4.194±1.106%), but still better 

than for estimated HA flow or HA fraction. 

 The measurement of post-prandial haemodynamic changes was an important 

method of demonstrating the sensitivity of PCMRI methods to PV flow modulation, but 

also demonstrating the potential of caval subtraction PCMRI to infer changes in estimated 

TLBF and HA flow.  We have demonstrated expected post-prandial rises in PV flow and 

TLBF.  But also reductions in directly measured HA flow and fraction.  Estimated HA flow 

and fraction also showed post-prandial reductions, which for estimated HA flow 

approached significance (p = 0.0592).  Our data is the first to our knowledge that uses 

PCMRI to demonstrate the negative hepatic arterial buffer response – reductions in HA 

flow in response to increases in PV flow.  Interestingly, although significant rises in CO and 

TLBF as a percentage of CO were demonstrated post-prandially using both direct and 

indirect methods, no significant change in HA flow as a percentage of CO was 



~ 239 ~ 
 

demonstrated with either direct or indirect (caval subtraction) methods.  Over the years, 

there have been multiple studies demonstrating post-prandial PV/splanchnic flow 

changes in cirrhotic patients, predominantly using Doppler US.  Post-prandial rises in PV 

flow have been well characterised, but changes in HA flow parameters have seldom been 

studied[381, 382, 385, 386].  Only a few studies have reported post-prandial reductions in 

HA resistive indices, a measure of differences in peak systolic and end diastolic velocity 

rather than absolute flow (section 1.3.2) [387, 388]. 

 Reproducibility and physiological stress studies raise important questions about 

the use and value of estimated HA flow, HA fraction and HA flow as a percentage of CO.  

Preclinical studies demonstrated the feasibility of measuring all of these parameters and 

highlighted the use of HA flow as a percentage of CO in discriminating haemodynamic 

differences between healthy and cirrhotic animals at baseline.  Clinical studies however, 

have demonstrated poor reproducibility of estimated HA flow, estimated HA fraction and 

estimated HA flow as a percentage of CO, with subsequent failure to demonstrate 

significant changes in any of these parameters post-prandially.  Because the change in 

estimated HA flow approaches significance, this could represent a type II error perhaps as 

a result of an under powered study.  Conversely it could be argued that because direct 

PCMRI HA flow measurements have demonstrated post-prandial changes in HA flow and 

HA fraction, one could ascribe the failure to show these changes to errors in estimated 

(caval subtraction) HA flow and HA fraction measurements. 

The clinical use of estimated HA flow and fraction must however be considered 

alongside alternatives.  Although we have demonstrated direct PCMRI HA flow 

measurements to be superior, complexities of planning preclude practical clinical 

implementation.  Unfortunately simultaneous Doppler US HA flow was not measured, but 

the reproducibility of Doppler HA flow measurements has been previously shown to be 

inferior to direct PCMRI [199, 389].  In this context, we would argue that the estimation of 

HA flow and HA fraction using caval subtraction PCMRI does merit quantification.  The 

true value of either of these parameters however, can only genuinely be considered after 

formal evaluation in patients with liver disease. 

 There are a number of methodological considerations which also require 

discussion.  Firstly although baseline heart rate is lower in humans and consequently R-R 

interval is much longer, a major criticism of the study is the choice to only collect flow data 

for only six phases through the cardiac cycle.  This was based on the desire to collect data 

within a single breath-hold using a protocol that would be suitable for patients with more 

elevated heart rates.  Previous studies have quoted single PCMRI measurements 
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(excluding planning time) as requiring acquisition times of up to 2.5 minutes [197, 199].  

In our study – with five triplicate vessel site measurements – this could take up an 

unwieldy 37.5 minutes of scanning time for PCMRI alone!  Our rapid acquisition protocol 

also enabled triplicate measurements and averaging for quantification.  This is a major 

strength as averaging would help reduce the effects of other errors inherent to PCMRI 

methods (background, Chapter 4). 

Bulk vessel flow can also be quite variable, even in physiological states [390].  The 

use of triplicate measurement averaging helps to overcome some of this variability.  In this 

study, a potential cause of vessel flow variability were inter-measurement changes in the 

length and quality of breath-hold.  The use of expiration (rather than inspiration) breath-

holds goes some way to address this issue, but there is little doubt that towards the end of 

the study (after at least 15 breath-holds for PCMRI), subjects would experience ‘breath-

hold fatigue’.  The effect of alterations in intra-thoracic (and intra-abdominal) pressure 

through the respiratory cycle is known to affect heart rate (sinus arrhythmia) but is also 

likely to affect low pressure vessels such as the IVC.  Although changes in heart rate were 

factored into bulk flow quantitation, the changes in flow induced by differences in the 

quality and depth of breath-hold between studies in the proximal and distal IVC represent 

a potential source of error. 

The importance of minimising acquisition time is of major significance in 

developing protocols that are suitable for routing clinical implementation.  Depending on 

the institution, liver MRI protocols usually include a variety of anatomical and semi-

quantitative techniques (multi-planar T2 and T1 weighted anatomical imaging, in- and 

out-of-phase imaging, T2* weighted imaging, diffusion-weighted imaging and DCE MRI 

protocols), all of which at our institution require approximately 45 minutes of scanning 

time.  Implementation of a novel quantitative imaging method would therefore need to 

either be (a) rapidly acquired, thereby not significantly extending the time required for the 

overall scan or (b) be of sufficient value to justify replacement of certain less valuable 

semi-quantitative protocols. 

Finally, the transferability of our PCMRI protocols to other scanners, at our and 

other institutions is important in the development of multi-centre clinical studies but also 

in ensuring feasible implementation into clinical protocols elsewhere.  With this in mind, 

changes to the manufacturer-derived PCMRI sequence were minimised, with most 

changes limited to subject-specific factors.  An important attraction of caval subtraction 

PCMRI in this context is the simplicity and greater reliability of bulk flow measurements in 
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large vessels such as the IVC (compared with direct HA flow measurements) using lower 

SNR on more widely clinically available lower field strength (1.5T) systems. 

5.5.5 CONCLUSION 

In this section, we have adapted and implemented standard clinical cine PCMRI protocols 

to measure bulk vessel flow in normal volunteers and translated our preclinical caval 

subtraction methods to estimate hepatic haemodynamic parameters in human subjects. 

We have demonstrated good agreement with reference methods for measurement 

of cardiac output using aortic root and PCMRI and shown good consistency of estimated 

(caval subtraction) TLBF with directly measured PCMRI TLBF in the same subject.  

Estimated HA flow and fraction have been found to be less consistent when compared to 

their directly measured counterparts, likely secondary to error propagation. 

Our results demonstrate good seven day reproducibility of PV flow and estimated 

TLBF, but were less encouraging for reproducibility of estimated HA flow, HA fraction and 

HA flow as a percentage of CO. 

Finally, we have investigated the post-prandial response in normal volunteers 

using direct and caval subtraction PCMRI and demonstrated (a) expected rises in PV flow, 

(b) expected rises in TLBF and (c) a negative hepatic arterial buffer response to increased 

PV flow (using direct PCMRI). 

These findings highlight the need for patient studies to determine the value of 

estimation of HA flow and fraction using caval subtraction PCMRI in clinical practice. 
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5.6 CLOSING COMMENTS 

 
We have proposed at the start of this chapter a novel strategy to measure TLBF and HA 

flow, thereby overcoming challenges that arise from variable anatomy and small vessel 

size.  We subsequently applied this method preclinically at high-field strength, 

demonstrating feasibility, repeatability of PV flow measurements and invasively validating 

our measurements in healthy and diseased animals.  We used our new method to 

demonstrate intrinsic differences in hepatic haemodynamic parameters at baseline in 

animal models of disease and demonstrated the hepatic arterial buffer response and its 

failure in cirrhotic animals using terlipressin. 

 Finally, we translated these methods into the clinical setting, demonstrating 

feasibility, consistency and reproducibility of caval subtraction TLBF measurements in 

normal volunteer studies.  Clinical translation highlighted difficulties in the estimation of 

HA flow and HA fraction and underlined the importance of patient studies in considering 

the application of this method to clinical practice. 

 Although the PCMRI methods developed in this chapter are exciting and have for 

the first time demonstrated hepatic haemodynamic phenomena non-invasively, the 

quantification of bulk flow with PCMRI fails to provide any anatomical information about 

regional changes in segmental and/or tissue perfusion.  The latter would be particularly 

valuable to patients and clinicians in the context of surgical or endovascular treatment 

planning.  In Chapters 2 and 3, we used DCE MRI on a preclinical system to demonstrate 

that such regional perfusion data could be measured, albeit with technical challenges that 

ultimately proved insurmountable.  Moving forward, the use of DCE MRI on a clinical 

system could prove less challenging and perhaps provide useful regional perfusion data in 

a clinical setting. 
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CHAPTER 6 
 

CLINICAL DCE MRI 
 

 

 

 

 

 

 

“…Austere portion 
or the whole 

of myself, 
grandfather 
of the heart, 

generator 
of energy: 

I sing to you 
and I fear you 

as though you were judge…” 
 

- Ode to the liver [2]. 
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6.1 INTRODUCTION 

 
Early experience with DCE MRI at 9.4T (Chapters 2 and 3) though promising was 

ultimately limited by technical difficulties.  Tissue signal changes throughout a DCE MRI 

study provide useful information related to perfusion, but accurately quantifying these 

signal intensity changes can be problematic at high field strength in particular.  In this 

chapter we translate our earlier DCE MRI experience to a lower field strength system 

(3.0T) for clinical use and study its feasibility in normal volunteers. 

 The developmental focus of this chapter has been driven towards post-processing 

and modelling, which we have previously demonstrated to have a significant effect on 

quantification.  In the first section of this chapter we demonstrate feasibility and study the 

effects of alternative approaches to dealing with differences in contrast agent (CA) bolus 

arrival times in vascular input and parenchymal regions of interest (ROIs) for dual input 

single compartment modelling.  We then consider alternative approaches to DCE 

modelling, including the dual input dual compartment model and the hepatic perfusion 

index method. 

 The third section is based upon novel approaches for the integration of DCE and 

PCMRI for more robust quantification.  The initial part involves using PCMRI 

measurements of aortic root flow to correct DCE arterial input functions and the final part 

uses subtraction PCMRI estimates of total liver blood flow to correct DCE perfusion 

estimates. 
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6.2 AUTHOR CONTRIBUTIONS 

 
In fulfilment of the aims in this chapters, I: (a) developed and optimised clinical DCE MRI 

protocols; (b) conceptualised, developed and implemented novel methods for handling 

vascular input function (VIF) delays; (c) implemented alternative models for DCE MRI 

quantification; (d) implemented methods for arterial input function (AIF) correction using 

PCMRI measured cardiac output; (e) conceptualised, developed and implemented novel 

methods for correction of DCE MRI absolute perfusion parameters using PCMRI; (f) set up 

a DCE MRI post-processing ‘pipeline’ using Matlab, including pharmacokinetic modelling 

for final DCE MRI parametric quantification and generation of DCE MRI perfusion maps; 

(g) recruited normal volunteers into validation and reproducibility studies; (h) supervised 

the scanning of all normal volunteer scans; (i) collected and analysed all the data; and (j) 

prepared all the material contained within this chapter. 

 Development of clinical DCE MRI sequences was undertaken with the help of Alan 

Bainbridge, with additional input from David Atkinson.  Gradient echo multi-flip angle T1 

measurement with B1 mapping was developed by Catherine Morgan.  Post-processing 

Matlab code for T1 measurement was developed by Jonathon Delve and adapted by myself 

for the post-processing pipeline.  Robust Data Decomposition Registration was developed 

by Valentin Hamy and adapted by myself for the post-processing pipeline.  Normal 

volunteer recruitment took place using ethical approval originally sought by Margaret 

Hall-Craggs.  All clinical scans were conducted by MRI radiographers.  
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6.3 CLINICAL DCE MRI FEASIBILITY AND APPROACHES TO 

HANDLING VASCULAR INPUT FUNCTION DELAYS 

6.3.1 BACKGROUND 

Clinical DCE MRI is well established and protocols in the literature can be implemented 

avoiding the complexities of sequence design required on preclinical systems.  As with 

preclinical DCE MRI, quantification requires: (i) dynamic T1-weighted images for serial 

ROI signal intensity measurements, (ii) measurement of the intrinsic T1 of the tissue 

within each ROI and (iii) measurement of the contrast agent T1 relaxivity (𝑟1).  The latter 

is readily available from the literature and fixed across all measurements for a given 

temperature, such that the accuracy of a clinical DCE MRI study is predominantly reliant 

on adequate DCE data (especially for vascular input functions) and measurements of blood 

and tissue T1.  The development of DCE MRI protocols was therefore directed at 

optimising the accuracy of each of these. 

6.3.1.1 Protocol justification – Dynamic imaging 

Clinical acquisition protocols for DCE MRI vary depending on the anatomical site being 

studied, but common to all quantitative approaches is the need for high temporal 

resolution acquisitions, good signal-to-noise ratio (SNR) and minimisation of artefacts. 

Temporal resolution is especially important for pharmacokinetic modelling and 

vascular input functions (VIFs) are particularly susceptible to sampling errors.  Poor 

temporal resolution, particularly in the early CA ‘bolus mixing’ phase of a DCE MRI study 

can result in inadequate sampling of key first-pass VIF features, such as peak signal 

intensity.  This can then have deleterious effects on quantification.  Liver DCE MRI 

pharmacokinetic studies in the literature quote temporal resolutions of 1-5 seconds [82, 

141, 391], which are broadly in accordance with DCE MRI studies performed elsewhere in 

the abdomen and with specific protocols to optimise VIF sampling [392-395].  Temporal 

resolution can be increased, but this is often at the expense of data quantity or quality.  

Based on existing clinical protocols, a matrix size of 256 x 256 with a spatial resolution of 

1.87 mm2, and 5 mm slice thickness was used.  A volume of 60 slices was sampled 

repeatedly with a temporal resolution of 3.35 seconds.  This spatial resolution and slice 

thickness afforded adequate SNR for VIF and parenchymal signal intensity measurements. 

The need for accurate AIFs for clinical quantification has proven so troublesome 

that some researchers have opted to use population-derived ‘average’ AIFs [394, 396-

398].  While this approach might be suited for quantification of regional perfusion changes 
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in tumours, it is likely to be flawed where absolute tissue perfusion is the parameter of 

interest.  The AIF delay and AIF itself are likely to vary in health and disease, particularly 

in liver disease where patients (and animals, as demonstrated by our own data) are 

known to have hyperdynamic circulation and altered cardiac function.  Moreover, the VIF 

tail for Gd-DTPA is ultimately determined by renal clearance of CA – a factor which is also 

likely to vary significantly in disease.  The situation is also complicated by dual VIF 

sampling for dual input pharmacokinetic models for liver perfusion.  For this reason, 

aortic and PV VIFs were sampled in each individual subject. 

A recognised problem of working at higher field strengths is the loss of signal 

intensity at higher contrast agent concentrations when T2* effects predominate [399, 

400].  This is still much less of an issue at 3.0T than at 9.4T, but nonetheless a source of 

error in measured VIFs.  As demonstrated during earlier work at 9.4T, these effects can be 

minimised using more dilute and more slowly administered CA boluses.  Our protocols 

were therefore based on a dilution of 10 mls Gd-DTPA with an equal volume of normal 

saline.  After reviewing published protocols for hepatic DCE MRI at 3.0T [145, 147], a 

decision was made to use an injection rate of 4 ml/s followed by 20 mls of normal saline.  

Data presented in this chapter demonstrates that this protocol is capable of producing 

distinct aortic and PV VIFs, without obvious degradation in the measured VIF signal. 

Finally, visceral motion through the respiratory cycle is a major challenge in any 

quantitative liver imaging, especially because of its subdiaphragmatic location.  Whole 

organ motion and also tissue deformation can result in sampling errors in fixed ROIs.  At 

best, this will result in differing areas of liver tissue sampled through a study; at worst, this 

will result in corruption of data through inclusion of signal from adjacent non-hepatic 

tissues.  Respiratory motion artefact is a major obstacle to exploiting the higher 

anatomical resolution offered by MRI to generate parametric maps of perfusion.  There are 

number of strategies that can be used to overcome these issues.  Respiratory gating using 

navigator triggering has been proposed [197], but this has the potential to reduce 

temporal resolution and undersample crucial initial portions of the VIFs and parenchymal 

enhancement curves.  More commonly, breath-holds can be used, with imaging usually in 

expiration (as expiratory phase diaphragmatic position is less variable than inspiratory 

phase position).  There are several published protocols, but common approaches include 

(i) initial breath hold followed by shallow breathing for the duration of the study or then 

(ii) successive expiratory breath holds [391, 401-403].  The latter has been previously 

demonstrated to be more effective than shallow breathing for liver DCE MRI 

pharmacokinetic modelling [391].  Subjects participating in our study received an initial 

breath hold instruction and thereafter conducted sequential expiratory breath holds 
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independently for the duration of the study.  To maximise patient compliance with the 

breath hold protocol, subjects were instructed before entering the scanner. 

Each study involved the acquisition of ninety upper abdominal volumes in just 

over 5 minutes.  Although most volumes were adequate for inclusion in quantitative post-

processing, datasets with significant motion artefact were discarded.  To account for 

excursions in liver position and tissue deformation, registration algorithms can also be 

applied.  Several registration methods have been proposed [404, 405], but we have 

previously demonstrated robust data decomposition registration (RDDR) to be superior to 

alternative methods in several different abdominal tissue types including the liver (figure 

6.1) [406].  To minimise the deleterious effects of motion artefact, each selected slice 

therefore underwent RDDR before ROI placement. 

 

 
 

 

 

 

 

Figure 6.1: Robust data decomposition registration for liver DCE MRI 
(a) Coronal image of the abdomen and lower thorax.  The dashed white line through the midline 
intersects cardiac and hepatic parenchyma but also the portal vein and hepatic artery (green 
circle).  The signal intensity of this line of data can then be tracked through a DCE experiment (b) 
and (c).  Maximal PV enhancement is demonstrated by the white arrow.  Data set (b) was 
obtained without any registration.  Note the considerable potential for ROI misregistration 
through misalignment of sequential ROI signal intensity data.  The data show in (c) was obtained 
from the same subject after RDDR.  Note how alignment between successive data sets is only 
interrupted by gross motion artefact during inspiration/expiration between breath holds 
(diagram adapted from reference [406]). 

 
  

(a) (b) (c) 
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6.3.1.2 Protocol justification – T1 measurement 

There are several approaches to measuring T1 on clinical systems, but as demonstrated in 

section 3.3, the inversion recover (IR) method is widely regarded as the ‘gold standard’ 

[407].  While this method is accurate, it is time-consuming.  For our protocol, T1 

measurements would be required for a sixty slice volume, making the IR approach 

unfeasible.  Data for T1 measurement using the gradient echo multi-flip angle method can 

be acquired much more quickly, but as demonstrated in section 3.3, this method can result 

in substantial errors because of inhomogeneities in B1.  This phenomenon results in areas 

of imaged tissue experiencing flip angles other than the exact angle specified by the 

sequence.  B1 inhomogeneities can result in errors in the final estimated T1 measurements 

(relative to IR T1 measurements in the same subject on the same scanner) of as much as 

63% at 3.0T.  B1 mapping has been proposed and demonstrated by several groups as a 

method for overcoming this issue [407-410].  By mapping B1 field inhomogeneities, multi-

flip angle data can be corrected before quantification thereby yielding more accurate T1 

measurements.  In this study, gradient echo data using five different flip angles was 

collected and then B1 mapping was used to account for non-uniformity of the B1 field.  

Pixel-wise T1 measurements were then made fitting corrected flip angle data in the same 

way as described in section 3.3. 

6.3.1.3 Protocol justification – post-processing 

Building on post-processing experience acquired from previous preclinical work (section 

3.3), we begin by optimising use of the dual input single compartment model, through 

developing a robust method for dealing with VIF delays.  Previously, we developed a novel 

approach to VIF delays, using pre-estimated delays with constrained free-modelling 

(figure 6.2). 

In this section we demonstrate the feasibility of clinical DCE MRI and compare 

modelling approaches with the assumption of zero VIF delays, free modelling and 

constrained free modelling with pre-estimation of VIF delays for perfusion parameter 

estimation.  Traditionally, the merits of a modelling method can be assessed using the 

goodness-of-fit (residual sum of squares) statistic.  As previously demonstrated, improved 

model fitting can still result in physiologically inaccurate or even non-physiological 

estimates of perfusion parameters.  We previously invasively validated preclinical PCMRI 

and demonstrated consistency of caval subtraction clinical PCMRI measurements using 

independent PCMRI measurements.  As these measurements were obtained from the same 

subjects, this provides an opportunity to “validate” DCE MRI perfusion measurements with 

matched caval subtraction PCMRI flow measurements.  In this chapter we have chosen to 
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assess differing approaches and refinements using (i) seven day reproducibility and (ii) 

validation of tissue perfusion estimates with volume normalised PCMRI flow 

measurements. 

 

 

Figure 6.2: DCE 
enhancement curves for 
pre-estimation of aortic 
and PV CA bolus arrival 
times to constrain free 
modelling of delay 
parameters 
The maximum gradient of the 
upstroke for each VIF was 
modelled using linear regression 
to estimate aortic (𝑡𝐶𝑎𝑎𝑟𝑟𝑖𝑣𝑎𝑙) and 

PV (𝑡𝐶𝑝𝑎𝑟𝑟𝑖𝑣𝑎𝑙) CA bolus arrival 

times.  Parenchymal CA arrival 
time (𝑡𝐶𝐿𝑎𝑟𝑟𝑖𝑣𝑎𝑙) was determined 

using the 95% upper limit 
confidence interval of baseline 
data.  This diagram was 
replicated from figure 3.16, 
using rat DCE data for 
illustrative purposes. 
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6.3.2 METHODS 

6.3.2.1 Subjects and preparation 

Local ethics committee approval was obtained and all participants provided informed 

written consent.    Participant information sheets and consent form copies can be found in 

Appendix D.  Healthy volunteers were recruited by means of advertisement.  There were 

seven male (aged 26.5±1.36 years) and six female (aged 31.2±2.62 years) participants.  

Volunteers were excluded if (a) they had any contraindication to standard MR imaging, (b) 

if they were taking any long-term medication (excluding the oral contraceptive pill) and 

(c) if they had any documented history of previous liver or gastrointestinal disease.  As 

subjects were to receive a dose of CA for DCE MRI, those with any prior history of renal 

disease were excluded.  One subject was excluded because of claustrophobia.  Participants 

were asked to remain fasted for six hours prior to imaging and were advised to consume 

water ad libitum, but asked to refrain from the consumption of caffeinated fluids.  A 19G 

cannula was sited in a peripheral upper limb vein in preparation for administration of 

contrast.  Subjects were then instructed on the breath hold protocol for the DCE MRI study 

before transferring to the scanner. 

6.3.2.2 Clinical DCE MRI 

Imaging was performed using a 3.0T scanner (Achieva, Philips Healthcare, Best, 

Netherlands) using a 16 channel body coil (SENSE XL-Torso, Philips Healthcare, Best, 

Netherlands).  The coil was positioned over the lower thorax and upper abdomen and 

subjects were monitored using digital pulse oximetry and bellows. 

 Initial scouts were performed to ensure inclusion of the entire cardiac and liver 

volume within the field-of-view.  Coronal images of the upper abdomen and lower thorax 

were obtained with successive expiratory breath-holds using a gradient echo sequence 

(table 6.1).  Studies were planned with upper abdominal and lower thoracic volume 

coverage, ensuring inclusion of the liver, spleen, kidneys, retroperitoneal great vessels and 

the heart.  Identical planning settings were used for T1 measurement and DCE MRI 

studies. 

Data for T1 measurement was collected in expiratory breath hold using three-

dimensional gradient echo imaging at five different flip angles (5, 7, 10, 15 and 20˚).  

Finally, phase based B1 mapping was performed during free breathing.  Acquisition of T1 

measurement data was normally completed within 5 minutes.  T1 measurements, 

including B1 non-uniformity correction were estimated using previously described 
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methods (section 3.3.2.5, [409]).  Data was processed using in-house developed Matlab 

code (MathWorks, Natick, USA). 

After T1 measurement, DCE imaging was performed using gradient echo imaging (table 

6.1).  Sixty coronal images were obtained in 3.35 seconds.  After acquiring five initial 

volumes of data, 10 ml of Gd-DOTA (gadoterate dimeglumine, Dotarem®, Guerbet, Roissy, 

France) was diluted in 10 ml of normal saline, and injected via a peripheral cannula at 4 

ml/s.  This was followed by another bolus of 20 ml of normal saline at the same rate 

(Spectris®, Medrad Inc., USA).  Sequential image volumes continued to be acquired during 

this time and until five minutes had elapsed.  A total of ninety volumes were obtained per 

subject.  For the DCE acquisition, subjects were given the first breath hold instruction and 

thereafter asked to continue self-directed breath holds in expiration for the duration of the 

study. 

Table 6.1: Sequence parameters 
 

 T1 MULTI-FLIP ANGLE B1 MAP DCE MRI 
TR/TE (seconds) 4.0/2.0 100/1.0 2.0/1. 0 

Flip angle (˚) 5, 7, 10, 15, 20 60 10 
Matrix size (pixels) 240 x 240 100 x 100 240 x 240 
Field-of-view (mm) 475 x 475 475 x 475 475 x 475 

Spatial resolution 
(mm2) 

1.98 x 1.98 4.75 x 4.75 1.98 x 1.98 

Bandwidth (Hz/pixel) 389 1447 1411 
Slice thickness (mm) 5 5 5 

Slice gap (mm) 2.5 5 2.5 
Slices per volume 60 30 60 

 
6.3.2.3 Post-processing 

 
Figure 6.3: DCE MRI post-processing pipeline 
To generate useful and accurate DCE MRI perfusion maps, a five step process was used after T1 
maps had been calculated.  Obviously motion artefacted data was discarded, slices were carefully 
selected, matched and then registered before generating CA concentration maps. 

 

5. Conversion DCE MRI maps into CA concentration maps

4. RDDR motion correction for 5 slices

3. Manual matching of DCE MRI and T1 map slices

2. Selection of 5 slices for quantitative analysis

1. Manual review for removal of motion corrupted DCE MRI volumes
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All post-processing was performed using in house developed Matlab code with a five-step 

processing pipeline (figure 6.3).  DCE data was first reviewed manually and volumes 

corrupted by motion artefact noise were discarded.  Five coronal slices, each 10 mm apart 

were selected for inclusion of large volume of liver parenchyma, PV and aorta.  Each slice 

was then visually matched to corresponding data from the previously derived T1 maps 

(figure 6.4).  DCE data was then registered using RDDR to correct for tissue displacement 

and deformation.  Conversions of sequential post-contrast signal intensity into CA 

concentration were then undertaken using a previously published two-step method [145, 

146]: (i) sequential post-contrast T1 (𝑇1(𝑡)) was determined from repetition time (TR) 

and flip angle (𝜃) data using the following expression for post-contrast gradient echo 

signal intensity (𝑆𝐼(𝑡)): 

𝑆𝐼(𝑡) = 𝑀0 sin 𝜃 (
1 − 𝑒

−
𝑇𝑅

𝑇1(𝑡)

1 − cos 𝜃𝑒
−

𝑇𝑅
𝑇1(𝑡)

) 

 
(Equation 6.1) 

 
(ii) Using literature based values for CA 𝑅1 at 3.0T at 37˚C [411], and baseline T1 

measurements (𝑇1𝑝𝑟𝑒), sequential CA concentration ([𝐶𝐴](𝑡)) was then estimated using 

the following expression: 

[𝐶𝐴](𝑡) =
1

𝑅1
(

1

𝑇1(𝑡)
−

1

𝑇1𝑝𝑟𝑒
) 

 
(Equation 6.2) 

 
Pixel wise conversion of signal intensity maps into sequential CA concentration maps was 

then performed for each of the five slices (figure 6.5). 



~ 254 ~ 
 

  
Figure 6.4: Example of selected DCE MRI slice and matching T1 map slice 
Because acquisitions were performed separately, the corresponding T1 map (b) for each selected 
DCE MRI slice (a) was chosen carefully to minimise any quantification errors in parametric 
mapping.  Note how care was taken to ensure all major hepatic vascular and parenchymal 
structures were matched. 

 
Where there was poor matching of T1 maps and DCE data (n = 2 datasets), ROI based T1 

measurements and DCE signal intensity were extracted before CA concentration was 

calculated.  Every attempt was made to ensure that T1 and DCE ROIs were extracted from 

tissue at similar locations. 
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Figure 6.5: Selected Gd-DTPA concentration maps from a single DCE MRI 
study 
Concentration agent concentration maps for a sample dataset are shown at (a) baseline, (b) 
23.45 seconds, (c) 70.35 seconds, (d) 120.6 seconds, (e) 224.5 seconds and (f) 301.5 seconds.  
Signal intensity is linearly related to contrast agent concentration, based on the scale on the far 
right.  Note the predominantly arterial phase enhancement (b), portal venous phase 
enhancement (c) and progressive parenchymal wash out through to (f).  

 
Three parenchymal ROIs were positioned on each slice (total 15 ROIs), firstly in the right 

upper region (segments VII/VIII), left liver (segments II/III) and right lower region 

(segments V/VI).  Care was taken to ensure parenchymal ROIs excluded any major inflow 

or outflow vessels (HA, PV and hepatic venous radicles).  ROIs were then also positioned 

within the left ventricle and PV to derive each VIF (figure 6.6). 

 

   
Figure 6.6: Example of ROI placement for DCE MRI quantification 
Intra-ventricular ROI placement for AIF (a), PV ROI placement of PVIF (b) and parenchymal ROI 
placement (c) for segments II/III (far left), segments V/VI (right lower) and segments VII/VIII 
(right upper).  Parenchymal ROIs were placed in each of the three locations on five slices. 

 
As this study was conducted in normal volunteers, significant regional differences in 

perfusion parameters were not expected.  For the purposes of evaluating and refining 

methodologies, perfusion parameters extracted from all fifteen ROIs (three ROIs on five 

slices) were therefore averaged for different post-processing method comparisons. 

6.3.2.4 Dual input single compartment modelling and VIF delay studies 

Dual input single compartment modelling was undertaken in the same way as described 

previously (section 3.5.1.1).  Briefly, liver parenchymal enhancement as a function of time 

(𝐶𝐿(𝑡)) can be expressed as: 

𝐶𝐿(𝑡) =  ∫ [𝑘1𝑎𝐶𝑎(𝑡′ −  𝜏𝑎) + 𝑘1𝑝𝐶𝑝(𝑡′ − 𝜏𝑝)]𝑒−𝑘2(𝑡−𝑡′) 𝑑𝑡
𝑡

0

′ 

(Equation 6.3) 
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where variables are defined as follows: 

𝐶𝑎(𝑡) arterial input CA concentration as a function of time 
𝐶𝑝(𝑡) PV input CA concentration as a function of time 

𝑘1𝑎 arterial inflow constant 
𝑘1𝑝 PV inflow constant 

𝑘2 outflow constant 
𝜏𝑎 delay between AIF and parenchymal CA arrival 
𝜏𝑝 delay between PVIF and parenchymal CA arrival 

 
In this study, three modelling approaches were evaluated: (i) Method 1 – assumption of 

zero-delays between the vascular input functions and parenchymal enhancement (𝜏𝑎 and 

𝜏𝑝 set to zero), (ii) Method 2 – free modelling of AIF and PVIF delays to optimise the fit 

quality by minimising residual sum of squares and (iii) Method 3 – pre-estimation of bolus 

arrival times with constrained free modelling as demonstrated by figure 6.2. 

Coronally sampled VIFs were subject to additional cardiac motion artefact, which 

resulted in potentially noisier data.  The slower upstroke demonstrated by PVIFs was also 

found to be more susceptible to undervaluation if the maximum slope was used to pre-

estimate the CA arrival time (figure 6.2).  To overcome this problem, pre-estimation was 

undertaken in all data sets using linear regression of the line between the first point above 

the 95% confidence interval of the baseline and the VIF maximum (figure 6.7). 

 

Figure 6.7: Corrected 
linear regression for 
pre-estimation of AIF 
and PVIF CA bolus 
arrival delays 
Enhancement data between 
the first data point above the 
95% confidence interval of 
the baseline and the VIF 
upstroke peak was modelled 
using linear regression 
(rather than the maximum 
gradient of the upstroke) to 
estimate aortic (𝑡𝐶𝑎𝑎𝑟𝑟𝑖𝑣𝑎𝑙) and 

PV (𝑡𝐶𝑝𝑎𝑟𝑟𝑖𝑣𝑎𝑙) CA bolus arrival 

times.  Parenchymal CA 
arrival time (𝑡𝐶𝐿𝑎𝑟𝑟𝑖𝑣𝑎𝑙) was 

determined using the 95% 
upper limit confidence 
interval of baseline data.  This 
diagram uses the same data as 
figure 6.2 for illustrative 
purposes. 
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Estimates of VIF CA arrival time (𝑡𝐶𝑎𝑎𝑟𝑟𝑖𝑣𝑎𝑙 and 𝑡𝐶𝑝𝑎𝑟𝑟𝑖𝑣𝑎𝑙) were thus obtained.  CA arrival 

in the parenchymal ROI (𝑡𝐶𝐿𝑎𝑟𝑟𝑖𝑣𝑎𝑙) was determined as the time of the last point before 

parenchymal CA concentration exceeded the upper limit of the 95% confidence interval of 

the baseline (pre-contrast) data (figure 6.2).  Estimates for 𝜏𝑎  and 𝜏𝑝  were then 

determined as: 

𝜏𝑎′ = 𝑡𝐶𝐿𝑎𝑟𝑟𝑖𝑣𝑎𝑙 − 𝑡𝐶𝑎𝑎𝑟𝑟𝑖𝑣𝑎𝑙 

 
𝜏𝑝′ = 𝑡𝐶𝐿𝑎𝑟𝑟𝑖𝑣𝑎𝑙 − 𝑡𝐶𝑝𝑎𝑟𝑟𝑖𝑣𝑎𝑙 

(Equations 6.4 and 6.5) 
 
As 𝜏𝑎′ and 𝜏𝑝′ represented estimates of VIF delays, limited by temporal resolution (3.35 

seconds), the pre-estimates were then used to constrain the range in which free modelling 

of 𝜏𝑎 and 𝜏𝑝 could occur, to one time point before and one time point after each estimate 

(i.e. within a 6.7 second window). 

 To enable comparison with clinical PCMRI perfusion parameters (section 5.5), PV 

perfusion was calculated from 𝑘1𝑝, total liver blood flow (TLBF) and HA fraction was 

calculated from 𝑘1, the sum of arterial (𝑘1𝑎) and PV (𝑘1𝑝) inflow constants and mean 

transit time (MTT) and distribution volume (DV) were calculated from 𝑘2 as previously . 

6.3.2.5 Reproducibility studies 

To measure reproducibility, subjects were scanned using the same MRI protocol 7 days 

later.  As with the initial study, subjects were asked to remain fasted for at least 6 hours 

prior to the study and were advised to consume water ad libitum, but refrain from the 

consumption of caffeinated fluids.  Care was taken to ensure subjects were scanned at a 

comparable time of the day to the original study. 

6.3.2.6 Validation studies 

Validation was undertaken with PCMRI studies performed just prior to DCE MRI, in the 

same scanning session.  PCMRI methodology is described in detail in section 5.5.2.2.  

PCMRI derived volume normalised PV flow (direct measurement), estimated TLBF (caval 

subtraction measurement) and estimated HA fraction (percentage estimated HA flow 

calculated from directly measured PV flow and estimated TLBF) were used to validate DCE 

MRI PV perfusion, TLBF and HA fraction measurements respectively. 

6.3.2.7 Statistical analysis 

Kolmogorov-Smirnov tests were used to confirm normality of variable distributions.  

Repeated measures one-way analysis of variance (ANOVA) with corrections for non-
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sphericity were used to compare perfusion parameters from dual input single 

compartment modelling using each of the three approaches to VIF delay estimation.  Post-

hoc Tukey’s test was then applied where significant differences were identified.  Where 

variables were found not to be normally distributed, the Kruskal-Wallis test was used 

followed by post-hoc Dunn’s test where significant differences were identified.  

Reproducibility and validation studies were assessed using paired t-tests/Wilcoxon 

matched pairs signed rank tests, Bland-Altman analysis of agreement with calculation of 

the coefficient of repeatability and assessment of correlation between repeated/validated 

measurements using Pearson’s or Spearman’s correlation coefficient for parametric/non-

parametric data as appropriate.  The threshold of statistical significance was defined to be 

p < 0.05. 
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6.3.3 RESULTS 

6.3.3.1 Cohort features 

Data was collected in twelve normal volunteers.  Male subjects (n = 6) had a mean age of 

26.7±1.55 years and female subjects (n = 6) had a mean age of 30.2±2.37 years.  Seven day 

reproducibility data was available for nine subjects (n = 4 male, n = 5 female). 

6.3.3.2 VIF delay studies 

A sample data set was used to demonstrate the VIFs and parenchymal enhancement 

curves obtained with corresponding curve fits in figure 6.8, using each of the three 

approaches.  Alternative delays resulted in effective shifts of the VIF as shown in the charts 

on the left in figure 6.8.  The effects of these shifts on estimated parameters resulted in 

profound differences in estimated perfusion parameters for each method, as shown by the 

data overlaying the charts on the right (figure 6.8). 

Data for each of the perfusion parameters is plotted for each method in figure 6.9 

and tabulated in table 6.2.  HA fraction, DV and PVIF delay parameters demonstrated non-

normal distributions and therefore underwent non-parametric statistical testing.  

Significant differences were demonstrated between the three methods for PV perfusion 

(F(1.248,24.96) = 7.293; p = 0.0085), HA fraction (H = 23.94; p < 0.0001), AIF delay (mean 

difference -3.670±1.109 seconds; p = 0.0035), PVIF delay (median difference 1.117 

seconds; p = 0.0288) and residual sum of squares (F(1.346,26.93) = 32.73; p < 0.0001).  

Post-hoc tests demonstrated significant differences between Method 1 and Method 2 for 

PV perfusion, HA fraction and residual sum of squares, but significant differences between 

Method 1 and Method 3 were only demonstrated for HA fraction.  Significant differences in 

residual sum of squares were demonstrated between Method 2 and Method 3 on post-hoc 

testing.  
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Figure 6.8: Dual input single compartment modelling VIFs and 
parenchymal enhancement curves with fitted parenchymal enhancement 
curves 
Data assuming τa and τp are zero - (a) and (b), free modelling of τa and τp - (c) and (d), and 
finally pre-estimation of VIF delays with constrained free modelling of τa with τp – (e) and (f).  
Note considerable differences in estimated perfusion parameters using the same data with all 
three methods (for spacing reasons, ‘PV perfusion’ is abbreviated to ‘PV perf.’ And ‘residual 
sum of squares’ is abbreviated to ‘RSS’). 
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--- fit data 

 

PV perf. = 2142 ml/min/100g 
TLBF = 2169 ml/min/100g 

HA fraction = 1.206 % 
MTT = 0.2913 s 

DV = 7.897 % 
RSS = 3.649x10-6  

PV perf. = 1596 ml/min/100g 
TLBF = 1742 ml/min/100g 

HA fraction = 8.353 % 
MTT = 2.052 s 
DV = 44.68 % 

RSS = 3.193x10-6  

PV perf. = 530.9 ml/min/100g 
TLBF = 740.5 ml/min/100g 

HA fraction = 28.31 % 
MTT = 8.114 s 
DV = 75.11 % 

RSS = 3.323x10-6  

τa = 20.10 s 
τp = 0.000 s  

τa = 10.05 s 
τp = 0.000 s  
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Figure 6.9: Perfusion parameters estimated using the dual input single 
compartment model, with each method of VIF delay estimation 
p-values are quoted for one-way ANOVA/Kruskal-Wallis tests and paired t-tests/Wilcoxon 
matched-pairs signed rank tests where appropriate, with significant differences on post-hoc testing 
(*), for Method 1 (no delays), Method 2 (freely modelled delays) and Method 3 (pre-estimated 
delays with constrained free modelling). Comparisons of delay parameters were only undertaken 
when these were modelled ((f) and(g). 
 

(b) (a) 

(d) (c) 

(f) (e) 

(h) (g) 
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Table 6.2: Perfusion parameters estimated using the dual input single 
compartment model, with each method of VIF delay estimation 
 

 METHOD 1 
(no delays) 

METHOD 2 
(freely modelled delays) 

METHOD 3 
(pre-estimated delays 
with constrained free 

modelling) 

PV perfusion (ml/min/100g) 
* 

469.3±73.51 350.3±49.83† 365.7±51.13 

TLBF (ml/min/100g)  489.7±72.85 428.0±54.96 436.7±55.55 
HA fraction (%)* 7.377±2.340 21.73±3.620† 20.72±3.695† 

Mean Transit Time (seconds) 18.62±2.666 20.01±2.676 19.92±2.644 
Distribution Volume (%)* 71.24±4.328 74.07±3.847 73.45±3.951 

Residuals2* 4.884x10-7±6.245x10-8 3.183x10-7±4.754x10-8† 3.831x10-7 

±5.079x10-8†‡ 
τa (seconds)* - 16.14±1.338 12.48±1.054 
τp (seconds)* - 1.906±0.7174 2.626±0.4724 

(*one-way ANOVA/Kruskal-Wallis/paired t-test/Wilcoxon p<0.05; † post-hoc Tukey test comparison with 
Method 1 p<0.05; ‡ post-hoc Tukey test comparison with Method 2 p < 0.05) 
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6.3.3.3 Reproducibility 

Reproducibility was assessed using the same protocol with the same scanner in the same 

subjects exactly seven days after the initial study.  Repeat measurements were obtained in 

normal volunteers (n = 9).  All reproducibility analysis data are summarised and 

presented alongside seven day PCMRI reproducibility for comparison in table 6.3.  No 

significant differences were demonstrated between repeated PV perfusion measurements 

using either of the three methods (figure 6.10, table 6.3).  The smallest mean difference 

was demonstrated using Method 3 (-12.4±114.8 ml/min/100g; p = 0.9166).  This method 

also demonstrated the smallest coefficient of reproducibility (674.9 ml/min/100g).  No 

correlations were identified between repeated measurements using any of the methods. 

  

  

  
Figure 6.10: Analysis of agreement of repeated PV perfusion using 
alternative approaches to VIF delays with dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, b) Method 1 – zero VIF delays, (c, d) Method 2 – free 
modelling of VIF delays, (e, f) Method 3 – constrained free modelling of pre-estimated VIF delays. 
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Figure 6.11: Analysis of agreement of repeated TLBF using alternative 
approaches to VIF delays with dual input single compartment modelling 
Bland-Altman and regression analysis of (a, b) Method 1 – zero VIF delays, (c, d) Method 2 – free 
modelling of VIF delays, (e, f) Method 3 – constrained free modelling of pre-estimated VIF delays. 

 
No significant differences were demonstrated between repeated TLBF measurements 

using either of the three methods (figure 6.11, table 6.3).  The smallest mean difference 

was demonstrated using Method 3 (-58.33±133.0 ml/min/100g; p = 0.6726).  This method 

also demonstrated the smallest coefficient of reproducibility (782.3 ml/min/100g).  No 

correlations were identified between repeated measurements using any of the methods. 
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Figure 6.12: Analysis of agreement of repeated HA fraction using 
alternative approaches to VIF delays with dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, b) Method 1 – zero VIF delays, (c, d) Method 2 – free 
modelling of VIF delays, (e, f) Method 3 – constrained free modelling of pre-estimated VIF delays. 

 
No significant differences were demonstrated between repeated HA fraction 

measurements using either of the three methods (figure 6.12, table 6.3).  Testing for 

variable normality demonstrated non-normal distributions for HA fraction using Methods 

1 and 2 but not Method 3.  The smallest mean difference was demonstrated using Method 

1 (mean -0.9782%; p = 0.5703).  This method also demonstrated the smallest coefficient of 

reproducibility (28.27%).  The strongest correlation between repeated measurements was 

demonstrated with Method 3 (r = 0.6043; p = 0.0848).  No other correlations were 

demonstrated. 
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Figure 6.13: Analysis of agreement of repeated Mean Transit Time using 
alternative approaches to VIF delays with dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, b) Method 1 – zero VIF delays, (c, d) Method 2 – free 
modelling of VIF delays, (e, f) Method 3 – constrained free modelling of pre-estimated VIF delays. 

 
No significant differences were demonstrated between repeated MTT measurements 

using either of the three methods (figure 6.13, table 6.3).  The smallest mean difference 

was demonstrated using Method 3 (-2.374±4.573 seconds; p = 0.6176).  Method 1 

however demonstrated the smallest coefficient of reproducibility (24.76 seconds).  No 

correlations were demonstrated between repeated measurements using any of the 

methods. 
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Figure 6.14: Analysis of agreement of repeated Distribution Volume using 
alternative approaches to VIF delays with dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, b) Method 1 – zero VIF delays, (c, d) Method 2 – free 
modelling of VIF delays, (e, f) Method 3 – constrained free modelling of pre-estimated VIF delays. 

 
Testing for variable normality demonstrated non-normal distributions for DV using all 

three methods.  No significant differences were demonstrated between repeated DV 

measurements using either of the three methods (figure 6.14, table 6.3).  The smallest 

median difference was demonstrated using Method 2 (median -15.74%; p = 0.1641).  

Method 3 however demonstrated the smallest coefficient of reproducibility (48.24%).  No 

correlations were demonstrated between repeated measurements using any of the 

methods. 
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Figure 6.15: Analysis of agreement of repeated VIF delays using alternative 
approaches with dual input single compartment modelling 
Bland-Altman and regression analysis of (a, b) Method 2 – free modelling of AIF delays, (c, d) 
Method 3 – constrained free modelling of pre-estimated AIF delays,(e, f) Method 2 – free 
modelling of PVIF delays and (g, h) Method 3 – constrained free modelling of pre-estimated PVIF 
delays.. 
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No significant differences were demonstrated between repeated AIF delay parameters but 

freely modelled PVIF delays using Method 2 were significantly different (median 

difference -0.877 seconds; p = 0.0313) (figure 6.15, table 6.3).  The smallest difference 

between repeated AIF delay parameters was demonstrated with Method 3 (mean 

difference 1.126±2.119 seconds; p = 0.6096).  Method 2 demonstrated a smaller 

coefficient of reproducibility (9.888 seconds) and also a significant correlation between 

repeated AIF delay parameters (r = 0.6954; p = 0.0375).  The smallest difference between 

repeated PVIF delay parameters was demonstrated with Method 3 (median -0.5583 

seconds; p = 0.2500).  A positive correlation between repeated PVIF delay parameters was 

demonstrated using Method 3, but this was non-significant (r = 0.5703; p = 0.1144). 

Table 6.3: Summary of reproducibility of perfusion parameters estimated 
using alternative approaches to VIF delays with dual input single 
compartment modelling alongside PCMRI reproducibility§ 
 

 METHOD 1 
(no delays) 

METHOD 2 
(freely modelled 

delays) 

METHOD 3 
(pre-estimated 

delays with 
constrained free 

modelling) 

PCMRI 

PV perfusion 
(ml/min/100g) 

Mean difference 
Coefficient of Reproducibility 

Correlation (r)  

 
 

-70.48±176.1 
1036 

-0.1241 

 
 

-53.43±129.4 
760.8 

-0.3612 

 
 

-12.4±114.8 
674.9 

-0.2533 

 
 

-1.234±2.924 
19.01 

0.7152 
TLBF (ml/min/100g) 

Mean difference 
Coefficient of Reproducibility 

Correlation (r)  

 
-78.17±175.5 

1032 
-0.1448 

 
-92.81±143.7 

844.8 
-0.4224 

 
-58.33±133.0 

782.3 
-0.3921 

 
-8.460±4.860 

31.60 
0.4858 

HA fraction (%) 
Mean difference 

Coefficient of Reproducibility 
Correlation (r) 

 
-0.9782 

28.27 
0.2667 

 
-5.349 
39.64 

0.2167 

 
-9.26±6.036 

35.49 
0.6043† 

 
8.643±6.943 

45.13 
0.5491 

Mean Transit Time 
(seconds) 

Mean difference 
Coefficient of Reproducibility 

Correlation (r) 

 
 

-3.975±4.21 
24.76 
0.2964 

 
 

-0.8009±4.564 
26.84 

-0.1608 

 
 

-2.374±4.573 
26.89 

-0.08422 

 
 
- 
- 
- 

Distribution Volume (%) 
Mean difference 

Coefficient of Reproducibility 
Correlation (r) 

 
-16.16 
49.85 

0.1167 

 
-15.74 
49.54 
0.000 

 
-16.98 
48.24 

-0.06667 

 
- 
- 
- 

τa (seconds) 
Mean difference 

Coefficient of Reproducibility 
Correlation (r) 

 
- 
- 
- 

 
3.473±1.682 

9.888 
0.6954** 

 
1.126±2.119 

12.47 
0.2364 

 
- 
- 
- 

τp (seconds) 
Mean difference 

Coefficient of Reproducibility 
Correlation (r) 

 
- 
- 
- 

 
-0.8774* 

4.270 
0.02656 

 
-0.5583 

3.853 
0.5703 

 
- 
- 
- 

(§Emboldened values in the table highlight the best performing Method for each statistic; 
*paired t-test/Wilcoxon p<0.05; 

**Pearson’s correlation coefficient p < 0.05; 
†Pearson’s correlation coefficient p = 0.0848) 
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6.3.3.4 Validation 

Validation of DCE MRI measurements was undertaken using PCMRI measurements of PV 

perfusion, estimated (caval subtraction) TLBF and estimated HA fraction measured at the 

same time as DCE MRI studies.  Baseline and seven day reproducibility scans were 

analysed for twelve subjects (21 datasets).  DCE MRI measurements were compared for 

the three approaches to VIF delays using dual input single compartment modelling. 

 Simply eye-balling the data (table 6.4), it was clear that DCE MRI tended to grossly 

overestimate absolute perfusion measurements.  This compromised the Bland-Altman 

analysis so that both the averages and differences of each pair of validated perfusion 

measurements were heavily weighted towards each DCE MRI measurement.  Plots 

therefore appear to show a linear trend (figures 6.16 (a, c, e) and 6.17 (a, c, e)). 

Table 6.4: DCE MRI perfusion parameters estimated using alternative 
approaches to VIF delays and PCMRI validation data 
 

 METHOD 1 
(no delays) 

METHOD 2 
(freely modelled 

delays) 

METHOD 3 
(pre-estimated 

delays with 
constrained free 

modelling) 

PCMRI 

PV perfusion 
(ml/min/100g)  

469.3±73.51 350.3±56.65 365.7±51.13 56.65±2.698 

TLBF (ml/min/100g)  489.7±72.85 428.0±54.96 436.7±55.55 71.72±3.318 
HA fraction (%) 7.377±2.34 21.73±3.62 20.72±3.695 18.91±4.084 

(data replicated from table 6.2 for review) 
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Figure 6.16: Analysis of agreement with PCMRI PV perfusion using 
alternative approaches to VIF delays with dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, b) Method 1 – zero VIF delays, (c, d) Method 2 – free 
modelling of VIF delays, (e, f) Method 3 – constrained free modelling of pre-estimated VIF delays. 

 
Expectably, significant differences were demonstrated between absolute perfusion 

parameters using all three methods and PCMRI absolute perfusion.  The smallest mean 

difference in PV perfusion (-293.6±50.07 ml/min/100g; p < 0.0001) and TLBF (-

356.3±54.58 ml/min/100g; p < 0.0001) was demonstrated by Method 2 in both cases.  The 

smallest coefficient of variation for PV perfusion (64.07%) and TLBF (58.29%) was 

demonstrated by Method 3 in both cases.  These were still considerably larger than those 

observed for PV perfusion (21.82%) and TLBF (21.20%) using PCMRI.  No significant 

correlations were demonstrated between DCE MRI and PCMRI absolute perfusion 

measurements. 
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Figure 6.17: Analysis of agreement with PCMRI estimated TLBF using 
alternative approaches to VIF delays with dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, b) Method 1 – zero VIF delays, (c, d) Method 2 – free 
modelling of VIF delays, (e, f) Method 3 – constrained free modelling of pre-estimated VIF delays. 
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Figure 6.18: Analysis of agreement with PCMRI HA fraction using 
alternative approaches to VIF delays with dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, b) Method 1 – zero VIF delays, (c, d) Method 2 – free 
modelling of VIF delays, (e, f) Method 3 – constrained free modelling of pre-estimated VIF delays. 

 
A significant difference between PCMRI and DCE MRI HA fraction measured using Method 

1 was demonstrated (median 10.86%; p = 0.0142).  No significant differences were 

demonstrated using Methods 2 and 3.  The smallest difference in HA fraction (median -

1.223%; p = 0.7335) was demonstrated using Method 2.  Once again, because of the 

smaller HA fractions estimated using Method 1 (7.377±2.34%), both average and 

differences between data pairs are more heavily weighted towards the PCMRI 

measurement thereby demonstrating an apparent linear trend on the chart (figure 6.18a).  

The Bland-Altman charts for Methods 2 and 3 also demonstrate an expected ‘funnelling’ of 

smaller values.  This phenomenon is expected for percent measurements as differences 

between methods are naturally smaller towards the lower end of the scale [412]. 

The smallest coefficient of variation for HA fraction was also demonstrated using 

Method 2 (76.34%) and was smaller than the coefficient of variation for estimated HA 
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fraction using PCMRI (98.97%).  No significant correlations were demonstrated between 

HA fraction measured using DCE MRI and PCMRI. 

Table 6.5: Summary of validation of perfusion parameters estimated using 
alternative approaches to VIF delays with dual input single compartment 
modelling using PCMRI† 
 

 METHOD 1 
(no delays) 

METHOD 2 
(freely modelled delays) 

METHOD 3 
(pre-estimated delays 
with constrained free 

modelling) 

PV perfusion 
(ml/min/100g) 

Mean difference 
Coefficient of Variation 

Correlation (r)  

 
-412.6±73.48* 

71.78% 
0.03089 

 
-293.6±50.07* 

65.19% 
-0.06183 

 
-309.1±51.60* 

64.07% 
-0.1505 

TLBF (ml/min/100g) 
Mean difference 

Coefficient of Variation 
Correlation (r)  

 
-417.9±72.48* 

68.17% 
0.1323 

 
-356.3±54.58* 

58.85% 
0.1446 

 
-365.0±55.49* 

58.29% 
0.04829 

HA fraction (%) 
Mean difference 

Coefficient of Variation 
Correlation (r) 

 
10.86* 

145.4% 
0.08171 

 
-1.223 

76.34% 
-0.07634 

 
-1.815±5.598 

81.72% 
-0.03328 

(†Emboldened values in the table highlight the best performing Method for each statistic; 
*paired t-test/Wilcoxon matched pairs p<0.05) 
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6.3.4 DISCUSSION 

We have demonstrated that clinical DCE MRI is feasible and applied several 

methodological refinements (multi-flip angle gradient echo T1 mapping with B1 

inhomogeneity correction, whole volume high temporal resolution DCE MRI acquired with 

successive expiratory breath holds and RDDR motion correction) to optimise the quality of 

DCE MRI data.  We have then applied three different approaches to VIF delays using dual 

input single compartment pharmacokinetic modelling to determine hepatic perfusion 

parameters and the optimal modelling approach. 

 Our findings have supported some of the issues highlighted with preclinical DCE 

MRI.  Absolute quantification using the dual input single compartment remains 

troublesome and prone to considerable overestimation.  The magnitude of the 

overestimation was disappointing, but not necessarily unexpected.  To assess this better, 

we have compared our perfusion parameters with published values for control cohorts in 

clinical and preclinical studies (table 6.6).  Given that previously presented PCMRI data for 

the same cohort (section 5.5) demonstrated average PV perfusion of 56.65±2.698 

ml/min/100g, TLBF of 71.72±3.318 ml/min/100g and HA fraction of 18.91±4.084%, the 

only published DCE MRI data that approaches these values is presented by Annet et al.[82] 

using dual input single compartment modelling and Koh et al. [151] using dual input dual 

compartment modelling.  While a large number of studies have published DCE MRI TLBF 

in the region of 120-150 ml/min/100g [141, 144, 413, 414], notable outliers include 

Bultman et al. [147] (TLBF 213.20±20 ml/min/100g) and Aronhime et al. [146] (TLBF 

387.33±290.43 ml/min/100g).  Data from the latter, though similar on average to our own 

(method 3 TLBF 436.7±55.55 ml/min/100g) demonstrated much greater variation.  This 

may be secondary to intrinsic heterogeneity in the chronic hepatitis C cohort of patients 

studied by Aronhime et al. [146], but study-specific methodological issues would need to 

be considered. 
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Table 6.6: DCE MRI perfusion parameters compared with literature reported values for control cohorts 
 

*(Data from dual input dual compartment modelling); 
§(data given for whole liver perfusion, upper and lower range values quoted given small sample size); 

†(Unpublished values.  These were calculated from published values of DV, MTT and portal fraction). 

  

STUDY SPECIES/COHORT PV PERFUSION 

(ml/min/100g) 

TLBF 

(ml/min/100g) 

HA FRACTION (%) MEAN TRANSIT 

TIME (seconds) 

DISTRIBUTION 

VOLUME (%) 

Our study (n = 12) 

METHOD 1 (no delays) 

METHOD 2 (freely modelled delays) 

METHOD 3 (pre-estimated delays with 

constrained free modelling) 

Human, healthy normal 

volunteers 

 
469.3±73.51 
350.3±49.83 
365.7±51.13 

 
489.7±72.85 
428.0±54.96 
436.7±55.55 

 
7.377±2.340 
21.73±3.620 
20.72±3.695 

 
18.62±2.666 
20.01±2.676 
19.92±2.644 

 
71.24±4.328 
74.07±3.847 
73.45±3.951 

Annet et al.[82] (n = 15) 
Humans, non-cirrhotic 

chronic liver disease 
56.39±27.82 65.22±24.73 17.42±14.88 12.70±8.63 11.43±4.48 

Hagiwara et al.[141] (n = 10) 
Humans, non-fibrotic 

chronic liver disease 
126.3±66.7 138.4±68.9 7.5±7.9 9.4±4.3 17.3±3.9 

Baxter et al.[413] (n = 35) 
Humans, non-cirrhotic, no 

liver disease 
129.4±45.1 147.5±49.4 18.7±4.4 7.5±1.5 14.0±4.2 

Patel et al.[414] (n = 6) 
Humans, non-cirrhotic 

chronic liver disease 
114.45±73.11 133.34±82.35 16.33±3.29 17.36±15.38 23.87±8.44 

Cao et al.[143] (n = 17) 
Humans, unresectable 

intrahepatic HCC 
104.0±11.1 - - - - 

Wang et al.[144] (n = 12) 
Humans, unresectable 

intrahepatic HCC 
120.5±30.0 142.9±38.0 - - - 

Aronhime et al.[146] (n = 17) 
Humans, untreated chronic 

HCV 
316.55±124.8 387.33±290.43 24.29±25.83 20.43±0.43 60.97±24.28 

Bultman et al.[147] (n = 12) 
Humans, healthy normal 

volunteers 
- 213.20±20 14±8 12.3±0.9 30±4 

Koh et al.[151] (n = 3)*§ Humans, liver metastases 23.6-39.3 53.2-66.1 45.9-56.1 - - 

Materne et al.[140] (n = 9) Naïve rabbits 84±32 100±35 24±11 8.9±4.1 13.0±3.7 

Kim et al.[142] (n = 12) Naïve wistar rats 1021.62† 1362.16† 25 3.7 63 

Leporq et al. [415] (n = 5) Naïve pigs 101.3±26.1 135.4±34.2 25.9±8.2 5.2±1.4 - 

Hartono et al.[149] (n = 5)* Naïve C57BL/6 mice - 496.2±83.63 - - - 

~
 2

6
8

 ~
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Faced with the magnitude of the overestimation, all protocols were scrutinised for any 

errors in data collection, post-processing and quantification.  All calculations were 

checked and compared with published methods.  Data was also reviewed at each step of 

the quantification process.  T1 measurement could represent a potential source of error, 

hence absolute measurements and reproducibility of baseline AIF, PVIF and hepatic 

parenchymal T1 were reviewed. 

Table 6.7: Summary of T1 measurement statistics and literature comparison 
 

 MEASURED 

COHORT T1 
(milliseconds) 

LITERATURE DERIVED 

AVERAGED T1* 
(milliseconds) 

AIF 1490±211.2 1645±106 

PVIF 1205±200.0 1584±5§ 

Hepatic Parenchyma 583.8±26.94† 822.3±85 

*(based on data from [328, 416-419]) 
§(based on bovine venous blood at 3.0T [418]) 

†(one-sample t-test against literature derived average value p < 0.05) 

 
Table 6.8: Summary of T1 measurement reproducibility 
 

 ARTERIAL INPUT 

FUNCTION 

PV INPUT 

FUNCTION 

HEPATIC 

PARENCHYMA 

Mean difference -241.6±320.3 -193.5±263.4 -14.97±13.83 

Coefficient of Reproducibility 1775 1460 81.32 

Correlation (r) -0.2410 0.2193 0.9113* 

*(Pearson’s correlation coefficient p < 0.05) 

 

 
 

  
Figure 6.19: Analysis of agreement of repeated hepatic parenchymal T1 
measurements 
Bland-Altman (a) and regression analysis of (b) repeated hepatic parenchymal T1 measurements 
in normal volunteers after a seven day interval 

 
Published literature was searched for data on blood and liver T1 measurements at 3.0T.  

All data was derived from in vivo human samples [328, 416, 417, 419], with the exception 

of one study which was based on bovine arterial and venous blood [418].  Our data 

demonstrated a tendency to underestimate baseline blood and parenchymal hepatic T1 

(table 6.7), although one-sample t-tests only demonstrated significant differences between 
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measured and literature derived average hepatic parenchymal T1.  Reproducibility of 

arterial and PV blood T1 was poor, with large differences demonstrated between 

subsequent measurements (though none of these were statistically significant on paired t-

tests), and coefficients of reproducibility exceeding 1000 ms for both measurements.  

Correlation between repeated blood T1 measurements was also poor (table 6.8).  

Conversely, hepatic parenchymal T1 was measured much more reproducibly, with a small 

mean difference, and impressive coefficient of reproducibility of 81.32 ms.  Significant 

correlations were detected between repeat measurements (r = 0.9113, p = 0.0006) (figure 

6.19b). 

 As demonstrated by previous data in (section 3.3), and discussed briefly at the 

start of this chapter (section 6.3.1.2), gradient echo multi-flip angle measurements can 

have a tendency to underestimate T1.  In this study we addressed issues with B1 field 

inhomogeneities using B1 mapping.  The reproducibility of hepatic parenchymal 

measurements is however encouraging.  The poor reproducibility and wide range of 

arterial and venous T1 is not necessarily surprising.  Many authors of liver DCE MRI 

studies fail to provide an accurate description of the method of T1 quantification at 

publication (often just stating that this was undertaken) or then choosing to assume a 

fixed blood T1 across a DCE MRI study without sampling this individually for each subject 

[146].  We would argue that any assumptions in relation to T1 are perilous, and while 

some may result in more stable DCE MRI quantification, can also undermine the 

physiological value of the overall results. 

Baseline T1 measurement is an essential step in the quantification of DCE MRI 

perfusion parameters.  The method for T1 measurement used in this study was developed 

based on formal validation work with phantoms, empirical comparison with alternative 

T1 measurement strategies and repeatability studies undertaken independently by other 

researchers on our team [420].  Though formal simulations to evaluate the effect of 

changes in VIF or parenchymal T1 on dual input single compartment quantification were 

not undertaken as part of this study (nor are they available in the literature), these are 

likely to have a significant effect on final quantification and may represent a potential 

source of the discrepancy between our data and published values [311]. 

Throughout the quantification process, there are several independent parameters 

which can arbitrarily have a significant impact on the size of both VIF and parenchymal CA 

concentration enhancement curves.  The generation of CA concentration data is reliant on 

𝑅1, a measure of relaxivity of the CA at 3.0T at 37ºC, assumed in this study to be 3.5 

L/mmol s-1 [411].  Published 𝑅1 values can however vary [421, 422], and the use of 
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different relaxivities for the same contrast agent, by authors of different studies will affect 

enhancement curves and subsequent DCE MRI quantification. 

 The incorporation of plasma haematocrit into the derivation of VIF curves but also 

small vessel haematocrit into the quantification of parenchymal perfusion is described in 

the original DCE MRI paper by Materne et al. [140], but seldom mentioned consistently in 

published DCE MRI studies.  In this study, both VIF curves and final parenchymal 

perfusion measurements were corrected using an assumed plasma haematocrit of 0.45 

(an approach taken by most authors), but also assuming a small vessel haematocrit of 0.25 

as stipulated by Materne et al. [140].  Some studies mention the incorporation of plasma 

haematocrit into the generation of VIFs, but there is no mention of the incorporation of 

small vessel haematocrit into any published methods other than the original Materne et al. 

paper [140].  Interestingly, some published DCE MRI studies, make no mention of 

incorporation of haematocrit at any stage of quantification.  Incorporation of plasma and 

small vessel haematocrit will have significant effects on the scaling of VIF curves and final 

absolute quantification, and may represent another potential source of discrepancy 

between our data and published values.  There may also be merit in applying a population-

derived AIF to determine if this was an important source of variation [423]. 

 In this study, we have also chosen to sample AIFs using ROIs placed directly over 

the left ventricle, which differs from published DCE MRI studies where typically aortic 

ROIs were used.  We would argue that left ventricular ROIs should theoretically generate 

identical AIFs to those seen in the aorta and be less prone to inflow effects, by the very 

nature of the motion of flow within the ventricle itself.  Early experience demonstrated a 

tendency for aortic ROIs to be noisier, more prone to artefact and of smaller size than their 

ventricular counterparts and on this basis, we adopted this approach into our protocols.  It 

is also worth noting that large anatomical coverage (60 slices) may have implications for 

SNR, thereby potentially adding to noise within both VIFs and parenchymal enhancement 

curves. 

 In summary, hepatic DCE MRI quantification is a complex multi-step process, with 

many methodological details that can vary from author to author and have significant 

effects on quantification.  This is reflected in the heterogeneity of previously published 

DCE MRI perfusion parameters.  Given the overestimation of DCE MRI perfusion 

parameters from our data, we have reviewed several aspects of our methods and offered 

potential explanations for the divergence between our values and published data.  We 

have not conducted formal simultations to evaluate the exact impact of changing these 

parameters on quantification, but this would be an important focus of future work. 



~ 280 ~ 
 

 
Although problems with absolute quantification could be driven by factors in the data 

acquisition process, we have demonstrated that post-processing pharmacokinetic 

modelling can have a substantial effect on absolute and more importantly relative 

quantification (i.e. HA fraction).  We would argue that the latter is more important, 

especially as we have previously demonstrated that PCMRI can be used to successfully 

estimate absolute perfusion. 

 The use of zero VIF delays (Method 1), was both non-physiological but also prone 

to underestimation of HA fraction (figure 6.9, table 6.2).  Although reproducibility of 

Method 1 HA fraction appears superior to methods 2 and 3, it is worth noting that HA 

perfusion was restricted in all dual input single compartment modelling to be greater than 

1 ml/min/100g, to prevent errors arising should ‘𝑘1𝑎’ be best fitted as zero.  This resulted 

in clustering of HA perfusion (and therefore HA fraction) around small values, failure to 

demonstrate a Gaussian distribution in HA fraction data, and a potentially spurious 

suggestion of a smaller coefficient of reproducibility than demonstrated by other methods. 

 Free modelling of VIF delays (Method 2) commonly resulted in non-physiological 

data (figure 6.8c).  The residual sum of squares can often be minimised by shifting the AIF 

to arrive after the PVIF or indeed the parenchymal enhancement curve.  More worryingly, 

this was not necessarily associated with non-physiological estimates of perfusion 

parameters (e.g. HA fraction greater than 50% or DV over 100%).  Interestingly, although 

the mean difference between repeated Method 2 AIF delays was larger than with Method 

3 (3.473±1.682 vs 1.126±2.119 seconds), the coefficient of reproducibility was smaller 

(9.888 vs 12.47 seconds) and a significant positive correlation was demonstrated between 

repeated Method 2 AIF delays (r = 0.6954; p = 0.0375).  The propensity for small PVIF 

delays resulted in a non-normal distribution of these parameters, with a significant 

difference between repeated measurements using Method 2.  Interestingly no instances 

were observed where the residual sum of squares was minimised by shifting the PVIF to 

arrive after the parenchymal enhancement curve. 

 Pre-estimation of VIF delays with constrained free modelling (Method 3) provided 

a viable method for estimation of physiological delays.  Method 3 demonstrated smaller 

coefficients of reproducibility than methods 1 and 2 for all parameters except HA fraction, 

MTT and AIF delays.  Given that Method 1 was non-physiological, Method 3 still 

demonstrated a smaller HA fraction coefficient of reproducibility than Method 2, and was 

the only method to deliver a positive correlation between repeated HA fraction 

measurements (r = 0.6043; p = 0.0848), albeit only approaching significance.  Comparison 

with PCMRI estimated HA fraction (table 6.3) demonstrated smaller a coefficient of 
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reproducibility (35.49 vs 45.13%) and a marginally better correlation (r = 0.6043, p = 

0.0848 vs r = 0.5491, p = 0.0802), but slightly larger mean difference (-9.260±6.036 vs 

8.643±6.943) between repeated Method 3 HA fraction measurements. 

 It is also surprising that given that no non-physiological PVIF delays were 

identified using Method 2, that repeated PVIF delays using Method 3 demonstrated 

smaller mean differences (median -0.5583 vs -0.8774 seconds), coefficients of 

reproducibility (3.853 vs 4.270 seconds) and positive but non-significant correlations (r = 

0.5703 vs r = 0.02656) compared with Method 2. 

 Even when disregarding absolute perfusion parameters, the coefficients of 

reproducibility for all three DCE MRI methods are still alarmingly large.  A coefficient of 

reproducibility of 35.49% (Method 3) for an average HA fraction of 24.58±6.336% is 

concerning.  Other perfusion parameters including MTT and DV also demonstrated large 

and poor coefficients of reproducibility regardless of the modelling method. 

Validation of DCE MRI measurements was also disappointing.  We previously 

invasively validated preclinical PCMRI and demonstrated consistency of clinical caval 

subtraction PCMRI measurements using alternative independent PCMRI measurements.  

These clinical PCMRI measurements were subsequently used to validate DCE MRI PV 

perfusion, TLBF and HA fraction measurements.  The gross overestimation of DCE MRI 

perfusion parameters complicated Bland-Altman plot analysis (figures 6.16 and 6.17) and 

underscored the value of DCE MRI in measurements of relative (HA fraction) rather than 

absolute perfusion.  Importantly, although Method 2 demonstrated a smaller average 

difference to paired PCMRI HA fraction measurements (-1.223 vs -1.815±5.598%) and 

coefficient of variation (76.34 vs 81.72%), both methods yielded no significant differences 

between DCE MRI HA fraction and PCMRI estimated HA fraction (unlike Method 1).  

Crucially, the coefficient of variation for both Methods 2 and 3 was also still less than that 

observed with PCMRI estimated HA fraction (98.97%). 

 Both MTT and DV represent interesting physiological parameters but present a 

significant challenge both to pharmacokinetic modelling and validation.  Our data 

highlighted poor reproducibility for both of these parameters and challenges in deriving 

physiologically valid data (i.e. DV values over 100% or unusually large MTT values).  

Validation of DV could for example be undertaken using histopathological quantification, 

but this would not be without controversy, if not unfeasible in normal volunteers. 

 An important criticism is the lack of data demonstrating the ability of DCE MRI to 

detect an expected alteration in hepatic perfusion parameters in response to a controlled 
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insult (as demonstrated by post-prandial stress studies with clinical PCMRI in section 5.5).  

Repeated CA dosing in a short time frame would be difficult to justify ethically in a cohort 

of healthy volunteers and was therefore not undertaken. 

 Finally, we have demonstrated that small changes in VIF delays can have a 

significant impact on absolute and relative hepatic perfusion quantification.  Both Methods 

2 and 3 are however restricted by the temporal resolution so that VIFs can only be shifted 

by units determined by the temporal resolution (i.e. 3.35 seconds).  For pre-estimation 

with constrained free modelling, this restricts the VIF shift to within ±3.35 seconds of the 

time point nearest to the pre-estimated VIF CA bolus arrival time.  While a window of 6.7 

seconds might be acceptable, because the VIF delay can only adopt one of three delays in 

this range, errors in CA bolus arrival time are inevitably introduced.  These could then 

precipitate further errors in estimated hepatic perfusion parameters. 

In summary our data is the first demonstration of pre-estimation of VIF delays 

with constrained free modelling (Method 3) and its superiority over alternative 

approaches to VIF delays in clinical dual input single compartment modelling, specifically 

the assumption of zero (Method 1) or free modelling (Method 2) of VIF delays.  All 

methods demonstrate poor reproducibility, but Method 3 remains the most 

physiologically valid and reproducible approach, with reproducibility of relative perfusion 

superior to that of PCMRI estimated HA fraction.  We have demonstrated the tendency of 

DCE MRI to overestimate absolute perfusion parameters and shown that HA fraction is a 

meaningful DCE MRI perfusion parameter, with a smaller coefficient of variation than 

PCMRI estimated HA fraction using Methods 2 and 3.  Taking into account the validation 

data, we would still argue that Method 3 is superior to Method 2 because of improved 

physiological validity. 
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6.3.5 CONCLUSION 

We have demonstrated that our clinical DCE MRI protocols are feasible and compared the 

reproducibility and PCMRI validation of dual input single compartment modelling with 

different approaches to VIF delays.  Our data supports the use of pre-estimation with 

constrained free modelling of VIF delays as the most physiological and reproducible 

method for incorporating VIF CA bolus arrival delays into dual input single compartment 

modelling.  We have also shown greater value of DCE MRI with dual input single 

compartment modelling in relative but not absolute quantification of hepatic perfusion 

parameters. 
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6.4 ALTERNATIVE APPROACHES TO DCE MODELLING 

6.4.1 BACKGROUND 

Previous preclinical work (section 3.5) has highlighted differences in hepatic perfusion 

parameters when using alternative modelling/quantification methods.  Given that 

absolute perfusion was so poor with dual input single compartment modelling, this issue 

could be addressed with alternative approaches. 

6.4.1.1 Dual input dual compartment modelling 

Dual input dual compartment modelling was undertaken in the same way as described 

previously (section 3.5.1.2).  Briefly, the dual input single compartment model can be 

expressed using the following system of equations: 

𝜈1

𝑑

𝑑𝑡
𝐶𝐿1(𝑡) = 𝐹𝜌(𝐶𝑖𝑛(𝑡) − 𝐶𝐿1(𝑡)) − 𝑃𝑆𝜌(𝐶𝐿1(𝑡) − 𝐶𝐿2(𝑡)) 

(Equation 6.6) 
 

𝜈2

𝑑

𝑑𝑡
𝐶𝐿2(𝑡) = 𝑃𝑆𝜌(𝐶𝐿1(𝑡) − 𝐶𝐿2(𝑡)) 

(Equation 6.7) 
 

𝐶𝑖𝑛(𝑡) = 𝛼𝐶𝑎(𝑡) +  (1 − 𝛼)𝐶𝑝(𝑡) 

(Equation 6.8) 
 

𝐶𝐿(𝑡) = 𝐹𝐶𝑖𝑛(𝑡) ⨂ [𝐴𝑒𝑠1𝑡 + (1 − 𝐴)𝑒𝑠2𝑡] 
(Equation 6.9) 

where, 

𝜈1 Fractional vascular volume (%) 
𝜈2 Fractional interstitial volume (%) 

𝐶𝐿1(𝑡) CA concentration in the vascular compartment (mmol/L) 
𝐶𝐿2(𝑡) CA concentration in the interstitial compartment (mmol/L) 
𝐶𝑖𝑛(𝑡) CA input function (mmol/L) – this term is represented by equation 6.8 

𝐹 Total blood inflow/tissue perfusion (ml/min/100g) 
𝜌 Tissue density (assumed to be 1 g/ml)[149] 

𝑃𝑆 Permeability surface-area product (measure of endothelial 
permeability; ml/min/100g) 

𝐶𝑎(𝑡) Arterial input function 
𝐶𝑝(𝑡) PV input function 

𝛼 HA fraction 

 
and 𝑠1 and 𝑠2 are solutions for 𝑠 in the following quadratic equation: 

𝑠2 + (
𝑃𝑆𝜌

𝜈1
+

𝑃𝑆𝜌

𝜈2
+

𝐹𝜌

𝜈1
) 𝑠 + (

𝑃𝑆𝜌

𝜈2

𝐹𝜌

𝜈1
) = 0 

(Equation 6.10) 
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and: 

𝐴 =
(𝑠1 +

𝑃𝑆𝜌
𝜈1

+
𝑃𝑆𝜌
𝜈2

)

𝑠1 − 𝑠2
 

(Equation 6.11) 
 
TLBF (𝐹), HA fraction (𝛼) derived directly from the model enabled the calculation of PV 

perfusion.  Other parameters such as fractional vascular volume (𝑣1), fractional interstitial 

volume (𝑣2) and permeability surface-area product (𝑃𝑆) were also recorded. 

6.4.1.2 Hepatic perfusion index modelling 

Much simpler than its dual input single and dual compartment counterparts, the hepatic 

perfusion index was calculated as previously using slope-based methods [107].  Briefly, 

the parenchymal enhancement curve (𝐶𝐿(𝑡)) can be separated into predominantly arterial 

(𝐶𝐿𝑎(𝑡)) and portal venous (𝐶𝐿𝑝(𝑡)) portions using the timings for the peak aortic and 

portal venous enhancement curves respectively (figure 6.20a). 

 

 
Figure 6.20: Modelling 
parenchymal enhancement using 
the Hepatic Perfusion Index 
Parenchymal enhancement is separated 
into arterial and portal venous portions 
using peak AIF and VIF data (a).  The 
maximum gradient during the arterial 
((b), blue line) and portal venous phase 
((b), red line) of parenchymal 
enhancement ((b), green line) is then used 
to calculate perfusion.  This diagram was 
replicated from figure 3.13, using rat DCE 
data for illustrative purposes. 

 
The peak gradient during the arterial (Δ𝐶𝐿𝑎(𝑡)′) and portal venous phase (Δ𝐶𝐿𝑝(𝑡)′) is then 

used to estimate perfusion using the maximum AIF CA concentration (𝐶𝑎(𝑡)′)[138, 139]: 

𝐹Arterial perfusion(ml/s/g) =
Δ𝐶𝐿𝑎(𝑡)′

𝐶𝑎(𝑡)′
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and: 

𝐹PV perfusion(ml/s/g) =
Δ𝐶𝐿𝑝(𝑡)′

𝐶𝑎(𝑡)′
 

(Equations 6.12 and 6.13) 
 
Data for PV perfusion, TLBF and HA fraction was recorded for comparison with other 

quantification methods. 

In this section we consider DCE MRI quantification using the dual input dual 

compartment model and the hepatic perfusion index method alongside the dual input 

single compartment modelling methods developed in section 6.3.  We compare each 

quantification method using (i) seven day reproducibility and (ii) validation of tissue 

perfusion estimates with volume normalised PCMRI flow measurements. 

6.4.2 METHODS 

6.4.2.1 Subjects and preparation 

As described in section 6.3.2.1. 

6.4.2.2 Clinical DCE MRI 

As described in section 6.3.2.2. 

6.4.2.3 Post-processing 

As described in section 6.3.2.  Data for AIF, PVIF and parenchymal ROI CA concentration 

was then modelled using (i) the dual input single compartment model, (ii) the dual input 

dual compartment model and (ii) the hepatic perfusion index method as described in 

section 6.4.1.2.  Based on section 6.3, pre-estimation of delays with constrained free 

modelling of VIF delays was used for dual input single and dual compartment methods. 

6.4.2.4 Reproducibility studies 

As described in section 6.3.2.5. 

6.4.2.5 Validation studies 

As described in section 6.3.2.6. 

6.4.2.6 Statistical analysis 

Kolmogorov-Smirnov tests were used to confirm normality of variable distributions.  

Repeated measures one-way analysis of variance (ANOVA) with corrections for non-

sphericity were used to compare perfusion parameters from each of the quantification 
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methods.  Post-hoc Tukey’s test was then applied where significant differences were 

identified.  Where variables were found not to be normally distributed, the Kruskal-Wallis 

test was used followed by post-hoc Dunn’s test where significant differences were 

identified.  Reproducibility and validation studies were assessed using paired t-

tests/Wilcoxon matched pairs signed rank tests, Bland-Altman analysis of agreement with 

calculation of the coefficient of repeatability and assessment of correlation between 

repeated/validated measurements using Pearson’s or Spearman’s correlation coefficient 

for parametric/non-parametric data as appropriate.  The threshold of statistical 

significance was defined to be p < 0.05. 

6.4.3 RESULTS 

6.4.3.1 Cohort features 

Data was collected in twelve normal volunteers.  Male subjects (n = 6) had a mean age of 

26.7±1.55 years and female subjects (n = 6) had a mean age of 30.2±2.37 years.  Seven day 

reproducibility data was available for nine subjects (n = 4 male, n = 5 female). 

6.4.3.2 Alternative quantification methods 

A sample data set was used to demonstrate the parenchymal enhancement curves 

obtained with corresponding curve fits in figure 6.21, using dual input single and dual 

compartment modelling methods.  Alternative quantification methods resulted in 

profound differences in estimated perfusion parameters, as shown by the data overlaying 

the charts on the right (figure 6.21).  Hepatic perfusion index data for the same data set is 

given in the legend. 

Data for each of the perfusion parameters is plotted for each method in figure 6.22 

and tabulated in table 6.9.  TLBF, HA fraction and residual sum of squares demonstrated 

non-normal distributions and therefore underwent non-parametric statistical testing.  

Significant differences were demonstrated between the three quantification methods for 

PV perfusion (F(1.553,31.05) = 190.9; p < 0.0001), TLBF (H = 54.02; p < 0.0001) and HA 

fraction (H = 33.52; p  < 0.0001).  Post-hoc tests demonstrated significant differences 

between all three quantification methods for all three common parameters, except HA 

fraction where no significant difference was identified between dual input single 

compartment and hepatic perfusion index modelling.  The residual sum of squares was 

also significantly smaller with single compartment modelling  (3.831x10-7±5.079x10-8 vs 

3.621x10-6±8.162x10-7; median difference 1.508x10-6; p < 0.0001 ). 
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Figure 6.21: Dual input single and 
dual compartment modelling with 
fitted parenchymal enhancement 
curves 
Raw VIF-delay corrected enhancement data (a) 
was fitting using the dual input single 
compartment model (b) and the dual input dual 
compartment model (c).  Estimated perfusion 
parameters are listed in the upper right corner 
of each chart.  The same data using the hepatic 
perfusion index modelling quantified PV 
perfusion as 37.36 ml/min/100g, TLBF as 48.86 
ml/min/100 and HA fraction as 23.53%.  
Considerable differences in estimated perfusion 
parameters were detected using the same data 
with all three methods. 

 
 

 
  

0 100 200 300
-0.01

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

0 100 200 300
-0.01

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

0 100 200 300
-0.01

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

0 100 200 300
-0.01

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

0 100 200 300
-0.01

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

0 100 200 300
-0.01

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

0 100 200 300
-0.01

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

0 100 200 300
-0.01

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

0 100 200 300
-0.01

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

0 100 200 300
0

0.2

0.4

0.6

0.8

1

0 100 200 300
-0.01

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Time (seconds) 

G
d

-D
O

T
A

 (
m

l/
L

) 

Time (seconds) 

G
d

-D
O

T
A

 (
m

l/
L

) 

(b) (a) 

Time (seconds) 

G
d

-D
O

T
A

 (
m

l/
L

) 

(c) 

̶̶— Aorta 

— PV 

— parenchyma 

--- fit data 

 

PV perf. = 1548 ml/min/100g 
TLBF = 1623 ml/min/100g 

HA fraction = 4.646 % 
 
 
 
 
 
 
 

PS = 0.5523 ml/min/100g 
v1 = 19.03% 
v2 = 1.233% 

RSS = 2.822x10-6  

τa = 10.05 s 
τp = 0.000 s  

PV perf. = 530.9 ml/min/100g 
TLBF = 740.5 ml/min/100g 

HA fraction = 28.31 % 
MTT = 8.114 s 
DV = 75.11 % 

RSS = 3.323x10-6  



~ 289 ~ 
 

  

 

 

 

Figure 6.22: Perfusion parameters estimated using each of the modelling 
methods 
p-values are quoted for one-way ANOVA/Kruskal-Wallis tests and paired t-tests/Wilcoxon 
matched-pairs signed rank tests where appropriate.  Significant differences were demonstrated 
on post-hoc testing between all paired comparisons for PV perfusion and TLBF and ‘*’ 
comparisons for HA fraction.  As the hepatic perfusion index method does not involve data-
fitting, residual sum of squares is only compared between the compartment methods (d). 

 

Table 6.9: Perfusion parameters estimated using each of the modelling 
methods 
 

 DUAL INPUT SINGLE 

COMPARTMENT 
DUAL INPUT DUAL 

COMPARTMENT 
HEPATIC PERFUSION 

INDEX 

PV perfusion (ml/min/100g) * 365.7±51.13‡§ 1285±82.88†§ 17.09±2.647†‡ 
TLBF (ml/min/100g)*  436.7±55.55‡ 1329±85.62†§ 21.47±3.620‡ 

HA fraction (%)* 20.72±3.695‡§ 3.375±0.7837†§ 16.90±1.899†‡ 
Mean Transit Time (seconds) 19.92±2.644 - - 

Distribution Volume (%) 73.45±3.951 - - 
Vascular volume (%) - 13.41±1.014 - 

Interstitial volume (%) - 15.01±2.556 - 
Permeability surface area 

(ml/min/100g) 
- 1.399±0.2290 - 

Residuals2* 3.831x10-7±5.079x10-8 3.621x10-6±8.162x10-7* - 

(*one-way ANOVA/Kruskal-Wallis/paired t-test p<0.05; 
†post-hoc Tukey/Dunn’s test comparison with single compartment modelling p<0.05; 
‡ post-hoc Tukey/Dunn’s test comparison with dual compartment modelling p < 0.05; 

§post-hoc Tukey/Dunn’s test comparison with hepatic perfusion index modelling p < 0.05) 
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6.4.3.3 Reproducibility 

Reproducibility was assessed using the same protocol with the same scanner in the same 

subjects exactly seven days after the initial study.  Repeat measurements were obtained in 

normal volunteers (n = 9).  All reproducibility analysis data are summarised and 

presented alongside seven day PCMRI reproducibility for comparison in table 6.10.  No 

significant differences were demonstrated between repeated PV perfusion measurements 

using either of the three quantification methods (figure 6.23, table 6.10).  The smallest 

mean difference was demonstrated using the hepatic perfusion index (-8.187±6.052 

ml/min/100g; p = 0.2131).  This method also demonstrated the smallest coefficient of 

reproducibility (35.583 ml/min/100g).  No correlations were identified between repeated 

measurements using any of the methods. 

  

  

  
Figure 6.23: Analysis of agreement of repeated PV perfusion measurements 
using alternative quantification methods 
Bland-Altman and regression analysis of (a, b) dual input single compartment modelling, (c, d) 
dual input dual compartment modelling, (e, f) hepatic perfusion index modelling. 
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No significant differences were demonstrated between repeated TLBF measurements 

using either of the three quantification methods (figure 6.24, table 6.10).  The smallest 

mean difference was demonstrated using the hepatic perfusion index (-12.31±8.110 

ml/min/100g; p = 0.1674).  This method also demonstrated the smallest coefficient of 

reproducibility (47.69 ml/min/100g).  No correlations were identified between repeated 

measurements using any of the methods. 

  

  

  
Figure 6.24: Analysis of agreement of repeated TLBF measurements using 
alternative quantification methods 
Bland-Altman and regression analysis of (a, b) dual input single compartment modelling, (c, d) 
dual input dual compartment modelling, (e, f) hepatic perfusion index modelling. 
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No significant differences were demonstrated between repeated HA fraction 

measurements using dual input single compartment and hepatic perfusion index 

modelling (figure 6.25, table 6.10).  The smallest mean difference was demonstrated using 

dual input dual compartment modelling (-3.643±1.128%; p = 0.0121), but this difference 

was statistically significant.  Dual input dual compartment modelling also demonstrated 

the smallest coefficient of reproducibility (6.637%) and a significant positive correlation 

between repeated measurements (r = 0.7537; p = 0.0190).  As demonstrated previously, a 

positive correlation between repeat HA fraction measurements was also seen with dual 

input single compartment modelling (r = 0.6043; p = 0.0848), but this correlation was just 

non-significant. 

 
 

 
 

  
Figure 6.25: Analysis of agreement of repeated HA fraction measurements 
using alternative quantification methods 
Bland-Altman and regression analysis of (a, b) dual input single compartment modelling, (c, d) 
dual input dual compartment modelling, (e, f) hepatic perfusion index modelling. 

 
  

0 2 0 4 0 6 0

- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0

A v e r a g e  o f  t w o  H A  f r a c t i o n

m e a s u r e m e n t s  ( % )

D
if

f
e

r
e

n
c

e
 b

e
t
w

e
e

n

r
e

p
e

a
t
e

d
 H

A
 f

r
a

c
t
io

n

m
e

a
s

u
r

e
m

e
n

t
s

 (
%

)

( r  =  0 . 6 0 4 3 ,  p  =  0 . 0 8 4 8 )

0 2 0 4 0 6 0 8 0 1 0 0

0

1 0

2 0

3 0

4 0

F i r s t  H A  f r a c t i o n  m e a s u r e m e n t  ( % )

S
e

c
o

n
d

 H
A

 f
r

a
c

t
io

n

m
e

a
s

u
r

e
m

e
n

t
 (

%
)

0 2 4 6 8 1 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

A v e r a g e  o f  t w o  H A  f r a c t i o n

m e a s u r e m e n t s  ( % )

D
if

f
e

r
e

n
c

e
 b

e
t
w

e
e

n

r
e

p
e

a
t
e

d
 H

A
 f

r
a

c
t
io

n

m
e

a
s

u
r

e
m

e
n

t
s

 (
%

)

( r  =  0 . 7 5 3 7 ,  p  =  0 . 0 1 9 )

0 5 1 0 1 5

0

2

4

6

F i r s t  H A  f r a c t i o n  m e a s u r e m e n t  ( % )

S
e

c
o

n
d

 H
A

 f
r

a
c

t
io

n

m
e

a
s

u
r

e
m

e
n

t
 (

%
)

0 1 0 2 0 3 0

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0

3 0

4 0

A v e r a g e  o f  t w o  H A  f r a c t i o n

m e a s u r e m e n t s  ( % )

D
if

f
e

r
e

n
c

e
 b

e
t
w

e
e

n

r
e

p
e

a
t
e

d
 H

A
 f

r
a

c
t
io

n

m
e

a
s

u
r

e
m

e
n

t
s

 (
%

)

( r  =  0 . 1 6 3 5 ,  p  =  0 . 6 7 4 2 )

0 1 0 2 0 3 0 4 0 5 0

0

5

1 0

1 5

2 0

2 5

F i r s t  H A  f r a c t i o n  m e a s u r e m e n t  ( % )

S
e

c
o

n
d

 H
A

 f
r

a
c

t
io

n

m
e

a
s

u
r

e
m

e
n

t
 (

%
)

(b) (a) 

(d) (c) 

(f) (e) 



~ 293 ~ 
 

Data for reproducibility of MTT and DV using dual input single compartment modelling 

with pre-estimation of VIF delays and constrained free modelling was presented in section 

6.3 (figures 6.13, 6.14 and table 6.3). 

No significant differences were demonstrated between repeated vascular volume 

(-0.5916±2.114%; p = 0.7867), interstitial volume (1.385±6.553%; p = 0.8379) and 

permeability surface area (median 0.04400 ml/min/100g; p = 0.8203) (figure 6.26, table 

6.10).  No correlations were demonstrated between repeated measurements for any of 

these parameters. 

 

 

 
 

  
Figure 6.26: Analysis of agreement of repeated dual input dual 
compartment additional perfusion parameter measurements 
Bland-Altman and regression analysis of (a, b) fractional vascular volume, (c, d) fractional 
interstitial volume, (e, f) permeability surface area. 
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Table 6.10: Summary of reproducibility of perfusion parameters estimated 
using alternative DCE MRI quantification methods alongside PCMRI 
reproducibility§ 
 

 DUAL INPUT 

SINGLE 

COMPARTMENT 

DUAL INPUT DUAL 

COMPARTMENT 
HEPATIC PERFUSION 

INDEX 
PCMRI 

PV perfusion 
(ml/min/100g) 

Mean difference 
Coefficient of Reproducibility 

Correlation (r)  

 
 

-12.4±114.8 
674.9 

-0.2533 

 
 

-150.2±172.0 
1011.8 

-0.00447 

 
 

-8.187±6.052 
35.583 
-0.1222 

 
 

-1.234±2.924 
19.01 

0.7152 
TLBF (ml/min/100g) 

Mean difference 
Coefficient of Reproducibility 

Correlation (r)  

 
-58.33±133.0 

782.3 
-0.3921 

 
-201.0±177.0 

1041 
-0.03551 

 
-12.31±8.110 

47.69 
-0.08660 

 
-8.460±4.860 

31.60 
0.4858 

HA fraction (%) 
Mean difference 

Coefficient of Reproducibility 
Correlation (r) 

 
-9.26±6.036 

35.49 
0.6043† 

 
-3.643±1.128* 

6.637 
0.7537** 

 
-6.269±4.005 

23.551 
0.1635 

 
8.643±6.943 

45.13 
0.5491 

Mean Transit Time 
(seconds) 

Mean difference 
Coefficient of Reproducibility 

Correlation (r) 

 
 

-2.374±4.573 
26.89 

-0.08422 

 
 
- 
- 
- 

 
 
- 
- 
- 

 
 
- 
- 
- 

Distribution Volume (%) 
Mean difference 

Coefficient of Reproducibility 
Correlation (r) 

 
-16.98 
48.24 

-0.06667 

 
- 
- 
- 

 
- 
- 
- 

 
- 
- 
- 

Vascular volume (%) 
Mean difference 

Coefficient of Reproducibility 
Correlation (r) 

 
- 
- 
- 

 
-0.5916±2.114 

12.43 
-0.1837 

 
- 
- 
- 

 
- 
- 
- 

Interstitial volume (%) 
Mean difference 

Coefficient of Reproducibility 
Correlation (r) 

 
- 
- 
- 

 
1.385±6.553 

38.54 
-0.4027 

 
- 
- 
- 

 
- 
- 
- 

Permeability surface area 
(ml/min/100g) 

Mean difference 
Coefficient of Reproducibility 

Correlation (r) 

 
 
- 
- 
- 

 
 

0.04400 

2.241 
0.1694 

 
 
- 
- 
- 

 
 
- 
- 
- 

(§Emboldened values in the table highlight the best performing Method for each statistic; 
*paired t-test/Wilcoxon p<0.05; 

**Pearson’s correlation coefficient p < 0.05; 
†Pearson’s correlation coefficient p = 0.0848) 
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6.4.3.4 Validation 

Validation of DCE MRI measurements was undertaken using PCMRI measurements of PV 

perfusion, estimated (subtraction) TLBF and estimated HA fraction measured in the same 

session as DCE MRI studies.  Baseline and seven day reproducibility scans were analysed 

for twelve subjects (21 datasets).  DCE MRI measurements were compared for the three 

quantification methods. 

 Simply eye-balling the data (table 6.11), it was clear that dual input single and dual 

compartment quantification methods both tended to grossly overestimate absolute 

perfusion measurements.  This compromised the Bland-Altman analysis so that both the 

averages and differences of each pair of validated perfusion measurements were heavily 

weighted towards each DCE MRI measurement.  Plots therefore appear to show a linear 

trend (figures 6.27 (a, c) and 6.28 (a, c)). 

Table 6.11: DCE MRI perfusion parameters estimated using alternative 
quantification methods 
 

 DUAL INPUT 

SINGLE 

COMPARTMENT 

DUAL INPUT DUAL 

COMPARTMENT 
HEPATIC 

PERFUSION 
INDEX 

PCMRI 

PV perfusion (ml/min/100g)  365.7±51.13* 1285±82.88* 17.09±2.647* 56.65±2.698 
TLBF (ml/min/100g)  436.7±55.55* 1329±85.62* 21.47±3.620* 71.72±3.318 

HA fraction (%) 20.72±3.695 3.375±0.7837* 16.90±1.899 18.91±4.084 

(*paired t-test/Wilcoxon p<0.05 relative to PCMRI measurement; data replicated from table 6.9 for review) 
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Figure 6.27: Analysis of agreement with PCMRI PV perfusion 
measurements using alternative DCE MRI quantification methods 
Bland-Altman and regression analysis of (a, b) dual input single compartment modelling, (c, d) 
dual input dual compartment modelling, (e, f) hepatic perfusion index modelling. 

 
Despite the smaller values of absolute perfusion parameters obtained using hepatic 

perfusion index modelling, significant differences were demonstrated between absolute 

perfusion parameters using all three quantification methods and PCMRI absolute 

perfusion.  The smallest mean difference in PV perfusion (39.56±3.769 ml/min/100g; p < 

0.0001) and TLBF (median 48.97 ml/min/100g; p < 0.0001) was demonstrated using the 

hepatic perfusion index method in both cases.  The smallest coefficient of variation for PV 

perfusion (29.55%) and TLBF (29.52%) was demonstrated by dual input dual 

compartment modelling in both cases.  There were still larger than those observed for PV 

perfusion (21.82%) and TLBF (21.20%) using PCMRI.  No significant correlations were 

demonstrated between any DCE MRI quantification method and PCMRI absolute perfusion 

measurements.  
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Figure 6.28: Analysis of agreement with PCMRI TLBF measurements using 
alternative DCE MRI quantification methods 
Bland-Altman and regression analysis of (a, b) dual input single compartment modelling, (c, d) 
dual input dual compartment modelling, (e, f) hepatic perfusion index modelling. 
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Figure 6.29: Analysis of agreement with PCMRI HA fraction measurements 
using alternative DCE MRI quantification methods 
Bland-Altman and regression analysis of (a, b) dual input single compartment modelling, (c, d) 
dual input dual compartment modelling, (e, f) hepatic perfusion index modelling. 

 
A significant difference between PCMRI and DCE MRI HA fraction measured using dual 

input dual compartment modelling was demonstrated (median 12.15%; p = 0.0005).  The 

small HA fractions derived from dual compartment modelling resulted in averages and 

differences between validation data pairs being more heavily weighted towards the PCMRI 

measurement, therefore demonstrating an apparent linear trend on the Bland-Altman 

chart (figure 6.29c).  No significant differences were demonstrated using single 

compartment modelling and the hepatic perfusion index method.  The smallest difference 

in HA fraction (-1.815±5.598%; p = 0.7491) was demonstrated using dual input single 

compartment modelling.  The Bland-Altman charts for dual input single compartment and 

hepatic perfusion index HA fraction validation once again demonstrate an expected 

‘funnelling’ of smaller values.  This phenomenon is expected for percent measurements as 

differences between methods are naturally smaller towards the lower end of the scale 

[412]. 
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The smallest coefficient of variation for HA fraction was demonstrated with 

hepatic perfusion index modelling (51.49%) and was smaller than the coefficient of 

variation for estimated HA fraction using PCMRI (98.97%).  Underwhelming (though 

almost significant) correlations with PCMRI HA fraction were demonstrated with HA 

fraction measured using the dual input dual compartment (r = 0.4325; p = 0.0502) and 

hepatic perfusion index methods (r = 0.4235; p = 0.0557). 

Table 6.12: Summary of validation of perfusion parameters estimated using 
alternative DCE MRI quantification methods using PCMRI† 
 

 DUAL INPUT SINGLE 

COMPARTMENT 
DUAL INPUT DUAL 

COMPARTMENT 
HEPATIC PERFUSION 

INDEX 

PV perfusion 
(ml/min/100g) 

Mean difference 
Coefficient of Variation 

Correlation (r)  

 
 

-309.1±51.60* 
64.07% 
-0.1505 

 
 

-1229±83.81* 
29.55% 
-0.1402 

 
 

39.56±3.769* 
70.98% 

0.005749 
TLBF (ml/min/100g) 

Mean difference 
Coefficient of Variation 

Correlation (r)  

 
-365.0±55.49* 

58.29% 
0.04829 

 
-1258±86.52* 

29.52% 
-0.2545 

 
48.97* 
77.27% 
0.2052 

HA fraction (%) 
Mean difference 

Coefficient of Variation 
Correlation (r) 

 
-1.815±5.598 

81.72% 
-0.03328 

 
12.15* 

106.4% 
0.4325 

 
2.003±3.703 

51.49% 
0.4235 

(†Emboldened values in the table highlight the best performing Method for each statistic; 
*paired t-test/Wilcoxon matched pairs p<0.05) 
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6.4.4 DISCUSSION 

We have demonstrated that data obtained with our clinical DCE MRI protocols is amenable 

to quantification using alternative modelling methods, specifically the dual input dual 

compartment and hepatic perfusion index models.  The rationale for using different 

quantification methods was based around identifying alternatives that may improve the 

reproducibility and accuracy (through corroboration with PCMRI measurements) of 

estimated hepatic perfusion parameters.  Our data demonstrated that this was not 

necessarily the case. 

 

6.4.4.1 Dual input dual compartment modelling 

Previous preclinical use of the dual input dual compartment model resulted in erroneous 

impulse residue functions (section 3.5.3.2), that were only corrected with restriction of 

modelling parameters.  This was not an issue with clinical data and free modelling of all 

the parameters (fractional parameters were modelled between at 0-100% range) 

consistently produced physiological impulse residue functions.  In spite of this, gross 

overestimation of absolute perfusion parameters remained an even bigger issue than with 

single compartment modelling. 

Data for HA fraction demonstrated a normal distribution, but there was a tendency 

to underestimate HA perfusion and fraction.  This is best appreciated on the validation 

Bland-Altman chart where weighting of the average and differences towards larger PCMRI 

estimates of HA fraction resulted in an apparent linear trend (figure 6.23c).  Although a 

small HA fraction coefficient of reproducibility was recorded (6.637 vs 35.49 dual input 

single compartment; vs 23.551 hepatic perfusion index) and significant positive 

correlation was identified between repeated measurements (r = 0.7537; p = 0.0095), a 

significant mean difference between repeated measurements was detected (mean 

difference -3.643±1.128%; p = 0.0121), suggestive of poor reproducibility.  Validation of 

HA fraction measurements with PCMRI demonstrated mild positive correlations that were 

just approaching significance (r = 0.4325; p = 0.0502), but once again a significant 

difference was detected between DCE MRI and PCMRI paired validation data (median 

difference 12.15%; p = 0.0005).  No significant differences were detected using alternative 

quantification methods and the coefficient of variation was still larger for this method 

(106.4%), compared to other modelling approaches. 

 The dual input dual compartment model is especially interesting because it 

purports to measure vascular volume fraction, interstitial volume fraction and 
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permeability surface area, all of which in theory are likely to vary in liver disease.  

Vascular volume and interstitial volume fraction are likely to change as a result of gross 

morphological changes in tissue architecture secondary to fibrosis and revascularisation.  

Permeability surface area, a measure broadly linked to capillary permeability should in 

theory be altered in the inflammatory states that characterise liver disease.  

Measurements of 𝑣1, 𝑣2, and 𝑃𝑆 demonstrate reasonable reproducibility, although the 

absolute values of interstitial volume fraction are lower than quoted in the literature when 

measured by other methods [424, 425].  Validation of this data, as with MTT and DV in 

single compartment modelling would be methodologically challenging if not unfeasible in 

a normal volunteer study.  In the absence of larger scale studies including patients with 

disease, it remains difficult to ascertain if the coefficients of reproducibility for these 

parameters are indeed adequate or too large. 

 Finally, the quality of the dual input dual compartment data fitting was much 

poorer than dual input single compartment modelling as demonstrated by comparison of 

the residual sum of squares (figure 6.22d).  This finding is in itself surprising as a model 

with more variables should theoretically accommodate better fits.  Additional variables 

absorb differences between modelled and observed data, thereby minimising the residual 

sum of squares.  It is possible that these poorer fits will have arisen as a result of 

restricting 𝑣1 and 𝑣2 to a positive value less than 100%.  Nonetheless, the combination of 

poor fits, poor reproducibility and poor validation of HA fraction data all favour use of 

alternative methods over dual input dual compartment modelling for quantification of HA 

fraction. 

6.4.4.2 Hepatic perfusion index modelling 

Occasionally termed ‘model-free’ quantification as this method does not involve fitting raw 

data, the hepatic perfusion index is a much simpler than its dual input single and dual 

compartment counterparts.  Our data demonstrated a tendency to underestimate absolute 

perfusion parameters, although coefficients of reproducibility of absolute perfusion 

parameters were still smaller than those measured for alternative quantification methods. 

 More importantly, the mean difference and coefficient of reproducibility for 

repeated HA fraction measurements were both smaller than when measured with PCMRI 

and dual input single compartment methods.  Additionally, no significant differences were 

demonstrated between DCE MRI HA fraction and PCMRI.  Crucially, the coefficient of 

variation for HA fraction measured with the hepatic perfusion index method (51.49%) 

was still considerably less than for PCMRI (98.97%).  This, combined with the mild, just 

non-significant correlation with PCMRI HA fraction(r = 0.4235; p = 0.0557), all tentatively 
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support the use of the hepatic perfusion index as an alternative method to dual input 

single compartment modelling for quantifying HA fraction. 

6.4.5 CONCLUSION 

We have demonstrated that clinical DCE MRI data is amenable to dual input dual 

compartment and hepatic perfusion index modelling.  Both of these quantification 

methods fail to provide accurate absolute perfusion quantification but relative perfusion 

(i.e. HA fraction) can be measured with greater confidence.  Although seven day 

reproducibility and PCMRI validation data is disappointing, HA fraction can potentially be 

measured with dual input single compartment or hepatic perfusion index methods. 
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6.5 COMBINED DCE AND PCMRI – PART I – ARTERIAL INPUT 

FUNCTION CORRECTION 

6.5.1 BACKGROUND 

Despite methodological and post-processing refinements, we have demonstrated that in a 

cohort of normal volunteers, reproducibility and accuracy of DCE MRI measurements is 

poor.  The superior reproducibility of PCMRI measurements suggests that measurement 

error, rather than inherent physiological variability are to blame.  From our earlier 

preclinical work, we have demonstrated that an important source of error in DCE MRI 

quantification is AIF sampling.  The size and shape of the AIF are determined by a number 

of subject specific factors, an important determinant being bulk flow.  AIFs sampled in the 

left ventricle would therefore be dependent on cardiac output – a variable we have 

measured using PCMRI and cardiac cine MRI in all subjects undergoing DCE MRI.  The use 

of aortic root PCMRI cardiac output measurements to correct AIFs has been proposed 

previously [426], and used to demonstrate improved repeatability of renal perfusion 

measurements using the single input dual compartment Tofts model [131]. 

6.5.1.1 AIF correction using independently quantified cardiac output 

In a simple non-recirculating system, bulk flow (𝑄) can be expressed as the mass of 

injected extracellular CA (𝐷) divided by the area under the curve of the concentration of 

CA as a function of time (𝐶𝑎(𝑡)): 

𝑄 =
𝐷

∫ 𝐶𝑎(𝑡) 𝑑𝑡
 

(Equation 6.14) 
 
This so-called indicator-dilution principle, based on the work of Stewart [427] and later 

Hamilton [428], lies at the heart of many methods for flow measurement.  Based on the 

principle of conservation of mass, it has the advantage of being independent of the site, 

rate and method of injection, but is reliant on there being no CA recirculation.  The latter 

can only be achieved if the CA becomes permanently lodged in the capillary beds on first 

pass, which is not true of Gd-DTPA or indeed many of the agents which use this principle 

for quantification (figure 6.30). 
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Figure 6.30: Measured AIF and 
first pass enhancement 
AIFs (solid line) as previously 
demonstrated by our own data 
classically have an initial sharp peak, 
followed by a smaller peak and tail as a 
result of recirculation (dashed line).  
The first pass of the CA is however 
represented by the shaded area. 
(obtained from reference [426]). 

 
A method for overcoming this issue is to correct 𝐶𝑎(𝑡) so that the enhancement curve 

represents first-pass enhancement only [429].  In order to do this, standard 𝐶𝑎(𝑡) curves 

are converted back into their raw SI curves (𝑆𝑎(𝑡)).  The main peak of the raw SI AIF can 

then be extrapolated and fitted with the gamma variate function to derive an expression 

for first pass SI (𝑆𝑓𝑝(𝑡)): 

𝑆𝑓𝑝(𝑡) =  𝑆0 + 𝐴(𝑡 − 𝜏𝑎)𝛼𝑒−(𝑡−𝜏𝑎)/𝛽 

(Equation 6.15) 
 
Where, ‘𝑆0’ represents baseline SI, ‘𝜏𝑎’ is the AIF delay and ‘𝐴’, ‘𝛼’ and ‘𝛽’ are fitted 

parameters.  The first pass SI curve (𝑆𝑓𝑝(𝑡)) can then be converted using previous 

methods into a first pass AIF CA curve (𝐶𝑓𝑝(𝑡)).  From equation 6.12: 

∫ 𝐶𝑓𝑝(𝑡) 𝑑𝑡 =
𝐷

𝑄
 

(Equation 6.16) 
 
As ‘𝐷’ is known and ‘𝑄’ was measured independently using PCMRI aortic root flow, ‘𝐶𝑓𝑝(𝑡)’ 

could be adjusted to represent the expected first pass CA concentration curve based on 

known cardiac output.  This adjusted first pass CA concentration curve could then be 

converted back into corrected raw first pass SI data.  Based on Zhang et al. [426], the 

converted SI curves could then be used to derive a new estimate for baseline signal 

intensity (𝑆0′). 

 In the final steps, the raw SI curves for the entire AIF (including the recirculated 

portion) are shifted a new baseline (𝑆0′).  The new corrected raw SI AIF is then converted 

back to a corrected AIF CA concentration curve (𝐶𝑎′(𝑡)), ready for use in pharmacokinetic 

modelling. 

Correction of AIFs using cardiac output data for improved pharmacokinetic 

modelling of hepatic DCE MRI data has not been attempted previously.  In this section we 
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demonstrate the feasibility of the method proposed by Zhang et al. [426] for correction of 

previously measured AIFs using PCMRI aortic root flow data.  We then assess the effects of 

AIF correction on (i) seven day reproducibility and (ii) validation of tissue perfusion 

estimates with volume normalised PCMRI flow measurements. 

6.5.2 METHODS 

6.5.2.1 Subjects and preparation 

As described in section 6.3.2.1. 

6.5.2.2 Clinical PCMRI 

As described in section 5.5.2.  PCMRI studies were planned orthogonal to the aortic root.  

Studies were performed in expiratory breath-hold and cardiac gated using peripheral 

pulse oximetry.  The following settings were used: TR/TE 8.70/5.22 seconds, flip angle = 

10˚, matrix size 336x336, field of view 271x210 mm, bandwidth 210 Hz/pixel, slice 

thickness 5 mm, 7 cardiac cycle phases and velocity encoding settings of 120 cm/s.  Each 

measurement was repeated three times in succession. Quantification was performed using 

the freely available software package, Segment (Medviso, Lund, Sweden). 

6.5.2.3 Clinical DCE MRI 

As described in section 6.3.2.2. 

6.5.2.4 Post-processing 

AIFs were corrected using PCMRI aortic root flow measurements, using the previously 

described method [426].  Data was then modelled using (i) the dual input single 

compartment method with pre-estimation and constrained free modelling of VIF delays 

and (ii) the hepatic perfusion index method, as described in section 6.4.1.2.  Hepatic 

perfusion parameters estimated from both methods were compared with parameters 

obtained using uncorrected AIF data in section 6.4. 

6.5.2.5 Reproducibility studies 

As described in section 6.3.2.5. 

6.5.2.6 Validation studies 

As described in section 6.3.2.6. 

6.5.2.7 Statistical analysis 
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Kolmogorov-Smirnov tests were used to confirm normality of variable distributions.  

Paired t-tests/Wilcoxon matched pairs signed rank tests were used to compare perfusion 

parameters derived from corrected and uncorrected AIF data.  Reproducibility and 

validation studies were also assessed using paired t-tests/Wilcoxon matched pairs signed 

rank tests, Bland-Altman analysis of agreement with calculation of the coefficient of 

repeatability and assessment of correlation between repeated/validated measurements 

using Pearson’s or Spearman’s correlation coefficient for parametric/non-parametric data 

as appropriate.  The threshold of statistical significance was defined to be p < 0.05. 

6.5.3 RESULTS 

6.5.3.1 Cohort features 

Data was collected in twelve normal volunteers.  Male subjects (n = 6) had a mean age of 

26.7±1.55 years and female subjects (n = 6) had a mean age of 30.2±2.37 years.  Seven day 

reproducibility data was available for nine subjects (n = 4 male, n = 5 female). 

6.5.3.2 AIF correction 

A sample data set was used to demonstrate the uncorrected AIF, uncorrected and first 

pass AIF SI curve with gamma variate fit, corrected first pass CA concentration curve and 

corrected AIF (figure 6.31). 
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Figure 6.31: Sample data demonstrating sequential steps for AIF 
correction  
The uncorrected AIF (a), is converted back into raw signal intensity (b, blue curve).  The first 
past portion of the SI curve is modelled using the gamma variate function (b, red curve).  The SI 
gamma variate function is then converted back to derive a first pass CA concentration curve (c, 
blue curve) and adjusted using cardiac output data (c, red curve).  This is then converted back 
into raw SI data (d).  The corrected first-pass curve will provide an alternate estimate for 
baseline SI.  The original AIF raw SI curve is then adjusted to the new baseline (e).  The new 
adjusted curve is used to derive a corrected AIF CA concentration curve (f, red curve). 
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The effects of AIF correction were variable.  For most data sets, the corrected AIF was 

larger, but for some, the corrected AIF was the same or smaller (figure 6.32). 

 

 
  

 

Figure 6.32: Effects of correction process on AIF size  
On both diagrams, the corrected AIF is shown in red and the uncorrected AIF is show in dashed 
green.  In some instances, correction resulted in little or no change to the AIF itself, as shown by 
the dataset in (a), in a few cases, a reduction in AIF size was noted, as shown by the dataset in (b).  
An increase in the size of the AIF was noted in most cases (figure 6.30f). 

 
Data for each of the perfusion parameters is plotted for uncorrected and corrected AIF 

modelling in figures 6.33 and 6.34, and tabulated in table 6.13.  DV, PVIF delay and 

residual sum of squares demonstrated non-normal distributions and therefore underwent 

non-parametric statistical testing.  Comparison of PV perfusion before and after AIF 

correction approached significance (mean difference 23.05±11.88 ml/min/100g; p = 

0.0666), but no significant differences were demonstrated between uncorrected and 

corrected AIF perfusion parameters.  The standard deviation increased after AIF 

correction for all parameters except HA fraction, MTT and AIF delay. 
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Figure 6.32: Effects of AIF correction on dual input single compartment 
hepatic perfusion parameters 
Box and whisker plots for each of the perfusion parameters demonstrate the distribution of 
perfusion parameter data from uncorrected AIF data on the left and corrected AIF data on the 
right. 
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PV perfusion and TLBF measured using the hepatic perfusion index method demonstrated 

non-normal distributions and therefore underwent non-parametric statistical testing.  No 

significant differences were demonstrated between corrected and uncorrected AIF 

perfusion parameters, with increased in the standard deviation for all three parameters. 

  

 

 
Figure 6.33: Effects of AIF 
correction on hepatic perfusion 
index parameters 
Box and whisker plots for each of the 
perfusion parameters demonstrate the 
distribution of perfusion parameter data from 
uncorrected AIF data on the left and corrected 
AIF data on the right.  

 

Table 6.13: Perfusion parameters for uncorrected and corrected AIFs using 
dual input single compartment and hepatic perfusion index methods 
 

 UNCORRECTED AIF 
DUAL INPUT SINGLE 

COMPARTMENT 

CORRECTED AIF 
DUAL INPUT SINGLE 

COMPARTMENT 

UNCORRECTED AIF 
HEPATIC PERFUSION 

INDEX 

CORRECTED AIF 
HEPATIC 

PERFUSION INDEX 

PV perfusion 
(ml/min/100g) 

365.7±51.13 388.8±55.23 17.09±2.647 20.00±3.761 

TLBF (ml/min/100g)  436.7±55.55 462.2±61.37 21.47±3.620 24.83±4.666 
HA fraction (%) 20.72±3.695 20.45±2.739 16.90±1.899 16.82±1.922 

Mean Transit Time (s) 19.92±2.644 19.74±2.669 - - 
Distribution Volume (%) 73.45±3.951 73.68±3.847 - - 

Residuals2 4.651x10-

7±7.815x10-8 
5.245x10-

7±1.238x10-7 
- - 

(no significant differences between uncorrected and corrected AIF parameters were demonstrated) 
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6.5.3.3 Reproducibility 

Reproducibility was assessed using the same protocol with the same scanner in the same 

subjects exactly seven days after the initial study.  Repeat measurements were obtained in 

normal volunteers (n = 9).  All reproducibility analysis data are summarised and 

presented alongside seven day PCMRI reproducibility for comparison in table 6.11.  

Figures in this section have been arranged so that uncorrected and corrected AIF Bland-

Altman diagrams are alongside each other to facilitate inspection of the limits of 

agreement. 

6.5.3.3.1 Dual input single compartment modelling 

No significant differences were demonstrated between repeated PV perfusion (figure 

6.34) and TLBF (figure 6.35) measured with uncorrected and corrected AIFs using dual 

input single compartment modelling.  AIF correction resulted in a rise in the coefficient of 

reproducibility for both absolute perfusion parameters.  There was however a reduction in 

the mean difference for both PV perfusion (-12.40±114.8 ml/min/100g uncorrected vs -

1.229±127.6 ml/min/100g corrected) and TLBF (-58.33±133.0 ml/min/100g uncorrected 

vs -17.76±150.0 ml/min/100g corrected).  No correlations were demonstrated between 

repeated absolute perfusion measurements using uncorrected and corrected AIF data. 
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Figure 6.34: Analysis of agreement of repeated PV perfusion measurements 
using uncorrected and corrected AIF dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF dual input 
single compartment modelling. 
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Figure 6.35: Analysis of agreement of repeated TLBF measurements using 
uncorrected and corrected AIF dual input single compartment modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF dual 
input single compartment modelling. 

 
No significant differences were demonstrated between repeated HA fraction 

measurements using uncorrected and corrected AIFs with dual input single compartment 

modelling (figure 6.36).  AIF correction did however result in a reduction in the coefficient 

of reproducibility (35.49% uncorrected vs 27.85% corrected) and mean difference (9.26% 

uncorrected vs 0.3204% corrected) between repeated measurements.  No correlations 

were demonstrated between repeated HA fraction measurements using uncorrected and 

corrected AIF data (table 6.14). 
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Figure 6.36: Analysis of agreement of repeated HA fraction measurements 
using uncorrected and corrected AIF dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF dual 
input single compartment modelling. 
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Figure 6.37: Analysis of agreement of repeated mean transit time 
measurements using uncorrected and corrected AIF dual input single 
compartment modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF dual 
input single compartment modelling. 
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Figure 6.38: Analysis of agreement of repeated distribution volume 
measurements using uncorrected and corrected AIF dual input single 
compartment modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF dual 
input single compartment modelling. 

 
No significant differences were demonstrated between repeated MTT (figure 6.37) and DV 

(figure 6.38) measured with uncorrected and corrected AIFs using dual input single 

compartment modelling.  AIF correction resulted in an increase in the coefficient of 

reproducibility (26.89 seconds uncorrected vs 27.79 seconds corrected) and mean 

difference of MTT (2.374 seconds uncorrected vs 3.659 seconds corrected) but also 

produced a small reduction in the coefficient of reproducibility (48.24% uncorrected vs 

46.02% corrected) and mean difference (16.98% uncorrected vs 10.26% corrected) 

between repeated DV measurements.  No correlations were demonstrated between 

repeated MTT and DV measurements using uncorrected and corrected AIF data (table 

6.14). 
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Figure 6.39: Analysis of agreement of repeated AIF delay measurements 
using uncorrected and corrected AIF dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF dual 
input single compartment modelling. 

 
No significant differences were demonstrated between repeated AIF and PVIF delay 

measurements using uncorrected and corrected AIFs with dual input single compartment 

modelling and constrained free modelling of pre-estimated delays (figures 6.39 and 6.40).  

AIF correction reduced the coefficient of reproducibility for both AIF (12.47 seconds 

uncorrected vs 8.878 seconds corrected) and PVIF (3.853 seconds uncorrected vs 3.181 

seconds corrected) delays.  AIF correction also reduced the mean difference between 

repeated AIF delays (1.126 seconds uncorrected vs 0.1296 seconds corrected) and PVIF 

delays (0.5583 seconds uncorrected vs 0.1307 seconds corrected).  No correlations were 

demonstrated between repeated AIF delays , but a rise and statistically significant positive 

correlation coefficient between repeated PVIF delays was demonstrated (r = 0.7045; p = 

0.0341) (figure 6.40, table 6.14). 
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Figure 6.40: Analysis of agreement of repeated PVIF delay measurements 
using uncorrected and corrected AIF dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF dual 
input single compartment modelling. 
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6.5.3.3.2 Hepatic perfusion index modelling 

No significant differences were demonstrated between repeated PV perfusion (figure 

6.41) and TLBF (figure 6.42) measured with uncorrected and corrected AIFs using the 

hepatic perfusion index method.  AIF corrected resulted in a rise in the coefficient of 

reproducibility for both absolute perfusion parameters.  No correlations were 

demonstrated between repeated absolute perfusion measurements using uncorrected and 

corrected AIF data (table 6.14). 

 

 

 

 

  
Figure 6.41: Analysis of agreement of repeated PV perfusion 
measurements using uncorrected and corrected AIF hepatic perfusion 
index modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF hepatic 
perfusion index modelling. 
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Figure 6.42: Analysis of agreement of repeated TLBF measurements using 
uncorrected and corrected AIF hepatic perfusion index modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF hepatic 
perfusion index modelling. 

 
No significant differences were demonstrated between repeated HA fraction 

measurements using uncorrected and corrected AIFs using the hepatic perfusion index 

method (figure 6.43).  AIF correction did however result in a minimal reduction in the 

coefficient of reproducibility (23.55% uncorrected vs 23.34% corrected), but not mean 

difference (6.269% uncorrected vs 6.594% corrected) between repeated measurements.  

No correlations were demonstrated between repeated HA fraction measurements using 

uncorrected and corrected AIF data (table 6.14). 
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Figure 6.43: Analysis of agreement of repeated HA fraction measurements 
using uncorrected and corrected AIF hepatic perfusion index modelling 
Bland-Altman and regression analysis of (c, b) uncorrected AIF and (b, d) corrected AIF hepatic 
perfusion index modelling. 
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Table 6.14: Summary of reproducibility of perfusion parameters estimated 
using uncorrected and corrected AIFs alongside PCMRI reproducibility§ 
 

 UNCORRECTED 

AIF 
DUAL INPUT 

SINGLE 

COMPARTMENT 

CORRECTED AIF 
DUAL INPUT SINGLE 

COMPARTMENT 

UNCORRECTED 

AIF 
HEPATIC 

PERFUSION 
INDEX 

CORRECTED 

AIF 
HEPATIC 

PERFUSION 

INDEX 

PCMRI 

PV perfusion 
(ml/min/100g) 

Mean difference 
Coefficient of 

Reproducibility 
Correlation (r)  

 
 

-12.4±114.8 
674.9 

 
-0.2533 

 
 

-1.229±127.6 
750.4 

 
-0.2246 

 
 

-8.187±6.052 
35.583 

 
-0.1222 

 
 

9.585 
52.471 

 
0.08333 

 
 

-1.234±2.924 
19.01 

 
0.7152 

TLBF 
(ml/min/100g) 

Mean difference 
Coefficient of 

Reproducibility 
Correlation (r)  

 
 

-58.33±133.0 
782.3 

 
-0.3921 

 
 

-17.76±150.0 
882.0 

 
-0.3366 

 
 

-12.31±8.110 
47.69 

 
-0.08660 

 
 

12.95 
66.048 

 
0.08333 

 
 

-8.460±4.860 
31.60 

 
0.4858 

HA fraction (%) 
Mean difference 

Coefficient of 
Reproducibility 
Correlation (r) 

 
-9.26±6.036 

35.49 
 

0.6043 

 
-0.3204±4.736 

27.85 
 

0.4371 

 
-6.269±4.005 

23.551 
 

0.1635 

 
-6.594±3.969 

23.336 
 

0.2000 

 
8.643±6.943 

45.13 
 

0.5491 
Mean Transit 
Time (seconds) 

Mean difference 
Coefficient of 

Reproducibility 
Correlation (r) 

 
 

-2.374±4.573 
26.89 

 
-0.08422 

 
 

-3.659±4.726 
27.791 

 
-0.1627 

 
 
- 
- 
 
- 

 
 
- 
- 
 
- 

 
 
- 
- 
 
- 

Distribution 
Volume (%) 

Mean difference 
Coefficient of 

Reproducibility 
Correlation (r) 

 
 

-16.98 
48.24 

 
-0.06667 

 
 

-10.26±7.827 
46.02 

 
0.1075 

 
 
- 
 
- 
- 

 
 
- 
 
- 
- 

 
 
- 
 
- 
- 

τa (seconds) 
Mean difference 

Coefficient of 
Reproducibility 
Correlation (r) 

 
1.126±2.119 

12.47 
 

0.2364 

 
-0.1296±1.510 

8.878 
 

0.4317 

 
- 
 
- 
- 

 
- 
 
- 
- 

 
- 
 
- 
- 

τp (seconds) 
Mean difference 

Coefficient of 
Reproducibility 
Correlation (r) 

 
-0.5583 

3.853 
 

0.5703 

 
0.1307±0.541 

3.181 
 

0.7045* 

 
- 
 
- 
- 

 
- 
 
- 
- 

 
- 
 
- 
- 

(§Emboldened values in the table highlight the best performing Method for each statistic; 
*Pearson’s correlation coefficient p < 0.05) 
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6.5.3.4 Validation 

Validation of uncorrected and corrected DCE MRI measurements was undertaken using 

PCMRI measurements of PV perfusion, estimated (subtraction) TLBF and estimated HA 

fraction measured in the same session as DCE MRI studies.  Baseline and seven day 

reproducibility scans were analysed for twelve subjects (21 datasets).  DCE MRI 

measurements were compared for uncorrected and corrected AIF data. 

Table 6.15: DCE MRI perfusion parameters estimated using uncorrected and 
corrected AIFs and PCMRI validation data 
 

 UNCORRECTED 

AIF 
DUAL INPUT 

SINGLE 

COMPARTMENT 

CORRECTED 

AIF 
DUAL INPUT 

SINGLE 

COMPARTMENT 

UNCORRECTED 

AIF 
HEPATIC 

PERFUSION 
INDEX 

CORRECTED 

AIF 
HEPATIC 

PERFUSION 

INDEX 

PCMRI 

PV perfusion 
(ml/min/100g)  

365.7±51.13 388.8±55.23 17.09±2.647 20.00±3.761 56.65±2.698 

TLBF (ml/min/100g)  436.7±55.55 462.2±61.37 21.47±3.620 24.83±4.666 71.72±3.318 
HA fraction (%) 20.72±3.695 20.45±2.739 16.90±1.899 16.82±1.922 18.91±4.084 

(data replicated from table 6.10 for review) 
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6.5.3.4.1 Dual input single compartment modelling 

As previously, dual input single compartment modelling tended to grossly overestimate 

absolute perfusion measurements (table 6.15).  This compromised Bland-Altman analysis 

so that both the averages and differences of each of validated perfusion measurements 

were heavily weighted towards each DCE MRI measurement.  Plots for absolute perfusion 

parameters therefore appear to show a linear trend (figures 6.44 (a, b) and 6.45 (a, b)).  

The smallest mean difference in between DCE MRI and PCMRI PV perfusion (-309.1±51.60 

ml/min/100g; p < 0.0001) and TLBF (-365.0±55.49 ml/min/100g; p < 0.0001) were both 

demonstrated using uncorrected AIF data.  The smallest coefficient of variation for PV 

perfusion (64.07%) and TLBF (58.29%) was demonstrated in both cases using 

uncorrected AIF data.  These were still larger than those observed for PV perfusion 

(21.82%) and TLBF (21.20%) using PCMRI.  No significant correlations were 

demonstrated between uncorrected/corrected AIF quantification and PCMRI absolute 

perfusion measurements (figures 6.44 (c, d) and 6.45 (c, d)). 

 

 

 

 

  
Figure 6.44: Analysis of agreement with PCMRI PV perfusion 
measurements using uncorrected and corrected AIF dual input single 
compartment modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF dual 
input single compartment modelling. 
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Figure 6.45: Analysis of agreement with PCMRI TLBF measurements using 
uncorrected and corrected AIF dual input single compartment modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF dual 
input single compartment modelling. 
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Figure 6.46: Analysis of agreement with PCMRI HA fraction measurements 
using uncorrected and corrected AIF dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF dual 
input single compartment modelling. 

 
The Bland-Altman charts for uncorrected/corrected AIF dual input single compartment 

HA fraction as previously demonstrate an expected ‘funnelling’ of smaller values (figure 

6.46 (a, b)) [412].  No significant differences between uncorrected/corrected AIF DCE MRI 

and PCMRI HA fraction measurements were demonstrated.  The smallest difference in HA 

fraction (-1.544±5.033%; p = 0.7621) was demonstrated using corrected AIF dual input 

single compartment modelling.  The smallest coefficient of variation (61.34%) was 

demonstrated using corrected AIF data and this was still smaller than the PCMRI HA 

fraction coefficient of variation (98.97%).  No significant correlations were demonstrated 

between uncorrected/corrected AIF DCE MRI and PCMRI HA fraction measurements 

(figure 6.46 (c, d)). 
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6.5.3.4.2 Hepatic perfusion index modelling 

Bland-Altman charts for absolute perfusion parameters are shown in figures 6.47 (a, b) 

and 6.48 (c, d).  Despite the smaller values of absolute perfusion parameters obtained 

using hepatic perfusion index modelling, significant differences were demonstrated 

between absolute perfusion parameters using corrected AIF DCE MRI modelling and 

PCMRI absolute perfusion.  The smallest mean difference in PV perfusion (39.56 

ml/min/100g; p < 0.0001) was demonstrated using uncorrected AIF hepatic perfusion 

index modelling, while the smallest average difference in TLBF (median 47.86 

ml/min/100g; p < 0.0001) was demonstrated using corrected AIF hepatic perfusion index 

modelling.   

The smallest coefficient of variation for PV perfusion (70.98%) and TLBF (77.27%) 

was demonstrated in both cases using uncorrected AIF data.  These were still larger than 

those observed for PV perfusion (21.82%) and TLBF (21.20%) using PCMRI.  No 

significant correlations were demonstrated between uncorrected/corrected AIF 

quantification and PCMRI absolute perfusion measurements (figures 6.47 (c, d) and 6.48 

(c, d)). 

 

 

 

 

  
Figure 6.47: Analysis of agreement with PCMRI PV perfusion measurements 
using uncorrected and corrected AIF hepatic perfusion index modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF hepatic 
perfusion index modelling. 
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Figure 6.48: Analysis of agreement with PCMRI TLBF measurements using 
uncorrected and corrected AIF hepatic perfusion index modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF hepatic 
perfusion index modelling.  

 
The Bland-Altman charts for uncorrected/corrected AIF hepatic perfusion index HA 

fraction once again demonstrate an expected ‘funnelling’ of smaller values (figure 6.49 (a, 

b)) [412].  No significant differences between uncorrected/corrected AIF DCE MRI and 

PCMRI HA fraction measurements were demonstrated.  The smallest difference in HA 

fraction 2.003±3.703%; p = 0.5945) and coefficient of variation (51.49%) was 

demonstrated using uncorrected AIF hepatic perfusion index modelling.   The coefficient 

of variation was also smaller than the coefficient of variation for estimated HA fraction 

using PCMRI (98.97%).  A significant but weak positive correlation (r = 0.4400; p = 

0.02300) was demonstrated between HA fraction measured using corrected AIF hepatic 

perfusion index modelling and PCMRI (figure 6.49d). 
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Figure 6.49: Analysis of agreement with PCMRI HA fraction measurements 
using uncorrected and corrected AIF hepatic perfusion index modelling 
Bland-Altman and regression analysis of (a, c) uncorrected AIF and (b, d) corrected AIF hepatic 
perfusion index modelling. 

 

Table 6.16: Summary of validation of perfusion parameters estimated using 
uncorrected and corrected AIF DCE MRI modelling using PCMRI† 
 

 UNCORRECTED AIF 
DUAL INPUT SINGLE 

COMPARTMENT 

CORRECTED AIF 
DUAL INPUT 

SINGLE 

COMPARTMENT 

UNCORRECTED AIF 
HEPATIC PERFUSION 

INDEX 

CORRECTED AIF 
HEPATIC 

PERFUSION INDEX 

PV perfusion 
(ml/min/100g) 

Mean difference 
Coefficient of Variation 

Correlation (r)  

 
 

-309.1±51.60* 
64.07% 
-0.1505 

 
 

-332.1±55.43* 
65.10% 

-0.05024 

 
 

39.56±3.769* 
70.98% 

0.005749 

 
 

44.61* 
86.17% 

-0.01169 
TLBF (ml/min/100g) 

Mean difference 
Coefficient of Variation 

Correlation (r)  

 
-365.0±55.49* 

58.29% 
0.04829 

 
-390.5±61.35* 

60.85% 
0.03288 

 
48.97* 

77.27% 
0.2052 

 
47.86* 
86.12% 

-0.08961 
HA fraction (%) 

Mean difference 
Coefficient of Variation 

Correlation (r) 

 
-1.815±5.598 

81.72% 
-0.03328 

 
-1.544±5.033 

61.34% 
-0.05159 

 
2.003±3.703 

51.49% 
0.4235 

 
2.085±3.669 

52.35% 
0.4400* 

(†Emboldened values in the table highlight the best performing Method for each statistic; 
*paired t-test/Wilcoxon matched pairs/Pearson’s/Spearman’s rank correlation coefficient p<0.05) 
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6.5.4 DISCUSSION 

We have demonstrated that AIF correction using PCMRI aortic root flow data is feasible 

and shown that corrected AIFs can be used for dual input single compartment and hepatic 

perfusion index modelling.  We have previously demonstrated encouraging validation data 

and reasonable seven day reproducibility of PCMRI aortic root flow measurements section 

5.5.3.5.  We have also previously shown that measuring AIFs directly can be troublesome 

and on this basis, the rationale for correcting AIFs using PCMRI aortic root flow 

measurements was to improve seven day reproducibility and accuracy of estimated 

perfusion parameters.  Our data demonstrated that this was not necessarily the case. 

6.5.4.1 Dual input single compartment modelling 

The effects of AIF correction on estimated hepatic perfusion parameters were subtle.  

Gross overestimation of absolute perfusion parameters remained a problem using dual 

input single compartment modelling.  More concerningly, AIF correction increased the 

spread of data, with a reduced standard deviation only detected for HA fraction, MTT and 

AIF delays.  AIF correction did however have a positive effect on reproducibility, reducing 

the mean difference after seven days of all perfusion parameters, with the exception of 

MTT.  Improvements in the coefficient of reproducibility were only demonstrated for HA 

fraction, DV and VIF delays.  Contrastingly, the modest positive correlation between 

repeated HA fraction measurements using uncorrected AIF data declined after AIF 

correction (uncorrected AIF r = 0.6043; p = 0.0848 vs corrected AIF r = 0.4371; p = 

0.2394).  Validation with volume normalised PCMRI bulk flow highlighted gross over 

estimation of absolute perfusion parameters.  HA fraction measurements with PCMRI 

however, demonstrated a reduction in mean difference and coefficient of variation after 

AIF correction. 

6.5.4.2 Hepatic perfusion index modelling 

The effects of AIF correction were largely negative using the hepatic perfusion index 

method.  AIF correction resulted in an increase in the spread of all perfusion parameters, 

although only a negligible increase in standard deviation was detected for HA fraction 

(8.702% uncorrected AIF vs 8.808% corrected AIF).  Reproducibility was unaffected by 

AIF correction, with a minor reduction demonstrated for the HA fraction coefficient of 

reproducibility (23.551% uncorrected AIF vs 23.336% corrected AIF).  Validation with 

volume normalised PCMRI bulk flow demonstrated a small reduction in the mean 

difference between TLBF measurements after AIF correction (48.97 ml/min/100g 

uncorrected AIF vs 47.86 ml/min/100g corrected AIF). 
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There are several reasons which may explain the lacklustre effects of AIF correction.  The 

method itself is reliant on several important assumptions which though theoretically 

sound may have practical flaws.  The first of these is the derivation of a first pass curve 

using a gamma variate function.  This is an established technique in nuclear medicine but 

one that has not been applied extensively to MRI AIFs.  The raw SI AIFs have variable 

positive baseline values (𝑆0) mainly dependent on the blood pool T1 and inflow effects.  It 

is the adjustment of the raw SI curve to a new estimated baseline SI (𝑆0′), which drives the 

modification of the CA concentration AIF.  Because of the way SI is converted to CA 

concentration, the effects of changing the baseline SI affect the entire AIF curve, including 

the peak AIF SI.  In doing so, it inherently corrects errors in baseline SI estimation, but 

does not address the issue of potential signal loss resulting from T2* effects at the VIF 

peak.  It is worth noting that this method was described at 1.5T, where such effects are 

less significant than at the higher field strength used in this study. 

 Finally, both modelling approaches are reliant on a PVIF as well as the AIF.  

Correction of one without correction of the other could in principle account for the limited 

impact on overall estimated perfusion parameters.  Unlike AIF curves, PVIF curves have a 

slow rise compatible with low pressure and relatively non-pulsatile splanchnic flow.  

Derivation of a first pass curve using the methods employed would therefore be 

unfeasible.  Correction of the PVIF curve by simply assuming the new estimated baseline 

SI (𝑆0′), would only be acceptable if raw baseline SI at the site of AIF and VIF sampling 

were identical – a phenomenon which is not supported by theory or the data collected in 

this study.  Of note, PVIF curves are less prone to VIF sampling errors, because of their 

slower flow and lower peak CA concentration compared to their AIF counterparts and 

therefore (in theory) less likely to benefit from correction than AIFs. 

6.5.5 CONCLUSION 

We have demonstrated that clinical DCE MRI AIFs are amenable to correction using PCMRI 

aortic flow measurements, but that these have subtle and mixed effects on estimated 

perfusion parameters using the dual input single compartment model and largely 

deleterious effects on the hepatic perfusion index model.  Importantly, AIF correction 

improves dual input single compartment HA fraction seven-day reproducibility and 

PCMRI validation data.  AIF correction is therefore potentially valuable in improving the 

reproducibility and accuracy of DCE MRI relative perfusion measurements. 
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6.6 COMBINED DCE AND PCMRI – PART II – TISSUE 

PERFUSION CORRECTION 

6.6.1 BACKGROUND 

In previous sections of this Chapter, we implemented progressive refinements to improve 

the reproducibility and accuracy of DCE MRI measurements.  DCE MRI provides a feasible 

strategy for relative quantification (HA fraction), but absolute quantification remains 

disappointing.  We have previously demonstrated in both animal models and normal 

volunteers that absolute quantification with PCMRI is both accurate and reproducible.  

Unlike DCE MRI however, PCMRI fails to deliver any information about regional perfusion.  

In this section, we propose a novel method for correcting DCE MRI absolute perfusion 

measurements using PCMRI estimated TLBF.  It would be anticipated that such a method 

would deliver (a) physiological feasible and accurate DCE MRI absolute quantification, (b) 

improved reproducibility of DCE MRI absolute quantification and (c) reliable evaluation 

and investigation of regional differences in absolute perfusion across the liver. 

6.6.1.1 Conceptual development 

For a given ROI or pixel, dual input single compartment modelling can be used to estimate 

‘𝑘1𝑎’ and ‘𝑘1𝑝’, inflow constants weighted towards arterial and portal venous perfusion 

respectively.  Traditionally, where ‘𝐹’ represents perfusion, ‘𝐸’ represents extraction 

fraction and ‘𝐻𝑐𝑡𝑆𝑉’ represents small vessel haematocrit, we can calculate perfusion using 

the following expressions: 

𝐹Arterial perfusion(ml/s/g) =
𝑘1𝑎

𝐸(1 − 𝐻𝑐𝑡𝑆𝑉)
 

and: 

𝐹PV perfusion(ml/s/g) =
𝑘1𝑝

𝐸(1 − 𝐻𝑐𝑡𝑆𝑉)
 

(Equations 6.17 and 6.18) 
 
Quantification is therefore based on the assumption that the extraction fraction (𝐸) is 

equal to 1.0, (as theoretically contrast agent can pass freely through the vascular 

endothelium to the interstitium and space of Disse) and the small vessel haematocrit 

(𝐻𝑐𝑡𝑆𝑉) is constant at 0.25. 
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The sum of the arterial and portal venous inflow constants (𝑘1) is weighted towards total 

perfusion in a given pixel/ROI, and can be expressed as: 

𝑘1 = 𝑘1𝑎 + 𝑘1𝑝 

(Equation 6.19) 
 

Previously, we analysed DCE MRI data on five 5 mm slices, each separated by 10 mm.  It 

would be reasonable to assume that average ‘𝑘1’ across 𝑛 pixels of hepatic parenchyma 

from these five slices (𝑘1
̅̅ ̅), should in theory be directly proportional to PCMRI estimated 

(caval subtraction) bulk flow (𝑄𝑇𝐿𝐵𝐹) normalised to total liver volume (𝑉liver): 

𝑘1
̅̅ ̅ =

∑(𝑘1(1) + ⋯ + 𝑘1(𝑛))

𝑛
 

(Equation 6.20) 
and: 

𝑘1
̅̅ ̅ 𝛼 

𝑄𝑇𝐿𝐵𝐹

𝑉liver
 

(Equation 6.21) 
 
The estimated ‘𝑘1’, for a given pixel can then be corrected by normalising to ‘𝑘1

̅̅ ̅’ and an 

adjusted estimate of total perfusion for that pixel (𝐹′) can be obtained by multiplying 

through by PCMRI estimated TLBF normalised to liver volume: 

𝐹′ = (
𝑘1  

𝑘1
̅̅ ̅

) (
𝑄𝑇𝐿𝐵𝐹

𝑉liver
) 

(Equation 6.22) 
 
Using HA fraction measured in the usual way from uncorrected ‘𝑘1𝑎’ and ‘𝑘1𝑝’ data, pixel 

wise PV and HA perfusion data can be obtained and physiologically feasible and accurate 

pixel wise estimates of PV and HA perfusion can be made. 

The ability to correct parametric maps is of course based on the presence of DCE 

MRI maps inclusive of purely hepatic parenchyma and no other tissue.  Such data could be 

obtained by careful manual segmentation, but this would be error prone and subject to 

inter-observer variation.  An alternative method would be to threshold parametric maps 

in such a way as to exclude vessels or corrupt data.  Enhancement curves for pixels 

overlying arterial, portal venous and hepatic venous vessels demonstrate fundamentally 

different enhancement curves which are less successfully modelled by the dual input 

single compartment model (figure 6.50). 
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Figure 6.50: Hepatic parenchymal thresholding using residual sum of 
squares 
Enhancement curves and curve fits for ROIs placed over parenchymal (a) arterial vessel, (b) 
portal venous vessel and (c) hepatic venous vessel, demonstrating elevated fit residual sum of 
squares, at least one order of magnitude over the parenchymal enhancement curve fits.  
Parametric pixel-wise mapping of the residual sum of squares for a single slice (d), using a scale 
of 0-10.0x10-6 (far right) visually highlights the poorer curve fits recorded over vascular tissues 
(vessels predominantly shown as white). 

 
Thresholding based on the residual sum of squares could then be used to automate 

exclusion of this data and create a map of purely hepatic parenchymal enhancement data. 

In this section, we apply our novel method for correction of DCE MRI absolute perfusion 

measurements to study regional differences in absolute perfusion.  We compare our 

corrected measurements with regional DCE MRI perfusion parameters using previously 

developed refinements and assess the effects of our novel method on (i) seven day 
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reproducibility and (ii) comparison of regional tissue perfusion estimates with volume 

normalised PCMRI flow measurements. 

6.6.2 METHODS 

6.6.2.1 Subjects and preparation 

As described in section 6.3.2.1. 

6.6.2.2 Clinical PCMRI 

As described in section 5.5.2.  PCMRI studies were planned orthogonal to the IVC in at a (i) 

supra-renal but infra-hepatic position (proximal IVC) and a (ii) supra-hepatic but infra-

cardiac position (distal IVC).  Studies were performed in expiratory breath-hold and 

cardiac gated using peripheral pulse oximetry.  The following settings were used: TR/TE 

8.70/5.22 seconds, flip angle = 10˚, matrix size 336x336, field of view 271x210 mm, 

bandwidth 210 Hz/pixel, slice thickness 5 mm, 7 cardiac cycle phases and velocity 

encoding settings of 60 and 80 cm/s for proximal and distal IVC studies respectively.  Each 

measurement was repeated three times in succession. Quantification was performed using 

the freely available software package, Segment (Medviso, Lund, Sweden) and TLBF was 

estimated by subtracting proximal IVC from distal IVC bulk flow. 

6.6.2.3 Volumetric assessment and bulk flow normalisation 

PCMRI bulk flow measurements were normalised to liver volume as described in section 

5.5.2.4.  Liver volume was measured using 5 mm slice thickness gradient echo coronal 

anatomical images.  Segmentation was performed manually using Amira (FEI Visualisation 

Sciences Group, Burlington, USA).  A tissue density of 1.0 g/ml was assumed based on 

[193]. 

6.6.2.4 Clinical DCE MRI 

As described in section 6.3.2.2. 

6.6.2.5 Post-processing 

To enable accurate comparison with previous data, the same ROIs were used as 

previously.  Three parenchymal ROIs were positioned on each slice (total 15 ROIs), firstly 

in the right upper region (segments VII/VIII), left liver (segments II/III) and right lower 

region (segments V/VI).  Regional analysis for each of segments II/III, V/VI and VII/VIII 

was based on averages from ROIs across five slices.  Absolute perfusion data was then 

subjected to (a) dual input single compartment modelling with pre-estimation and 

constrained free modelling of VIF delays and cardiac output AIF correction and (b) the 
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latter with additional correction using volume normalised PCMRI estimated TLBF 

measurements.  PCMRI correction was applied to absolute perfusion measurements, but 

relative perfusion measurements (HA fraction, MTT and DV) were constant for both 

corrected and uncorrected data sets. 

 

6.6.2.6 Reproducibility studies 

As described in section 6.3.2.5. 

6.6.2.7 Validation studies 

As described in section 6.3.2.6. 

6.6.2.8 Statistical analysis 

Kolmogorov-Smirnov tests were used to confirm normality of variable distributions.  

Repeated measures one-way analysis of variance (ANOVA) with corrections for non-

sphericity were used to compare perfusion parameters measured across different regions.  

Post-hoc Tukey’s test was then applied where significant regional differences were 

identified.  Regional uncorrected absolute and relative DCE MRI perfusion parameters 

were analysed in addition to regional PCMRI corrected absolute perfusion measurements.  

Paired t-tests/Wilcoxon matched pairs signed rank tests were used to compare absolute 

regional uncorrected and corrected DCE MRI perfusion parameters.  Reproducibility and 

comparative studies were also assessed using paired t-tests/Wilcoxon matched pairs 

signed rank tests, Bland-Altman analysis of agreement with calculation of the coefficient of 

repeatability and assessment of correlation between repeated/validated measurements 

using Pearson’s or Spearman’s correlation coefficient for parametric/non-parametric data 

as appropriate.  Assessment of reproducibility and comparison of uncorrected and 

corrected DCE MRI perfusion parameters was undertaken for each of the three regions.  

The threshold of statistical significance was defined to be p < 0.05. 

6.6.3 RESULTS 

6.6.3.1 Cohort features 

Data was collected in twelve normal volunteers.  Male subjects (n = 6) had a mean age of 

26.7±1.55 years and female subjects (n = 6) had a mean age of 30.2±2.37 years.  One 

subject was excluded because of significant artefact degrading data from segments II/III.  

Seven day reproducibility data was therefore available for eight subjects (n = 4 male, n = 4 

female). 
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6.6.3.2 Parametric mapping 

A sample data set was used to demonstrate dual input single compartment modelling 

residual sum of squares thresholding for parametric mapping of hepatic parenchyma.  

ROIs placed over thresholded parenchyma were subjected to uncorrected and corrected 

DCE MRI quantification (figure 6.51, table 6.17). 

 

 

 

Figure 6.51: Thresholded 
parametric maps using uncorrected 
and corrected DCE MRI 
quantification 
HA fraction (a), uncorrected HA (b) and PV (d) 
perfusion and corrected HA (c) and PV (e) 
perfusion.  Note how scales for corrected and 
uncorrected perfusion maps are the same.  The 
corrected maps are therefore much darker 
(representing lower perfusion) than their 
uncorrected counterparts. 
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6.6.3.3 Regional perfusion studies 

Data for each of the perfusion parameters for each segment is plotted for uncorrected and 

PCMRI corrected data in figure 6.52 and tabulated in table 6.17.  No significant differences 

were demonstrated between absolute and relative perfusion parameters for any of the 

three regions.  Regional differences between TLBF approached significance (F(2,52) = 

1.628; p = 0.05030), but there were no significant differences between regions 

demonstrated on post-hoc testing.  Significant differences were demonstrated between 

regional residual sum of squares (F(2,52) = 6.333; p = 0.0027), with significant differences 

demonstrated on post-hoc testing between segments II/III and the other two regions, but 

not between segments V/VI and VII/VIII. 

 Significant differences were demonstrated between uncorrected and PCMRI 

corrected absolute perfusion parameters in segments II/III PV perfusion (mean difference 

-400.5±74.54 ml/min/100g; p < 0.0001) and TLBF (mean difference -462.2±79.71 

ml/min/100g; p < 0.0001); segments V/VI PV perfusion (mean difference -337.8±50.95 

ml/min/100g; p < 0.0001) and TLBF (mean difference -410.5±62.72 ml/min/100g; p < 

0.0001); and finally segments VII/VIII PV perfusion (mean difference -400.3±62.62 

ml/min/100g; p < 0.0001) and TLBF (mean difference -453.8±67.61 ml/min/100g; p < 

0.0001). 
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Table 6.17: Regional DCE MRI perfusion parameters for uncorrected and PCMRI corrected dual input single compartment modelling 

 
 SEGMENTS II/III SEGMENTS V/VI SEGMENTS VII/VIII 
 UNCORRECTED PCMRI CORRECTED UNCORRECTED PCMRI 

CORRECTED 
UNCORRECTED PCMRI 

CORRECTED 

PV perfusion (ml/min/100g) 460.8±77.55 60.27±5.171* 395.2±52.51 57.43±4.756* 463.2±62.79 62.90±2.886* 
TLBF (ml/min/100g) 535.5±81.83 73.31±6.028* 481.5±64.24 71.00±5.600* 526.2±67.22 72.40±3.581* 

HA fraction (%) 17.85±2.847 18.51±3.136 12.39±2.608 
Mean Transit Time (s) 17.42±2.334 18.04±2.560 14.06±1.952 

Distribution Volume (%) 76.87±7.136 76.16±4.505 69.18±4.809 
Residuals2 6.525x10-7±1.305x10-7 2.829x10-7±4.335x10-8 † 2.702x10-7±3.932x10-8 † 

 (*paired t-test p < 0.0001, †post-hoc Tukey test p < 0.05 relative to segments II/III) 
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Figure 6.52: Regional uncorrected and PCMRI corrected DCE MRI hepatic 
perfusion parameters 
Box and whisker plots for each of the perfusion parameters demonstrate regional differences in 
perfusion parameters for uncorrected ((a) and (c)) and corrected ((b) and (d)) absolute 
perfusion parameters and relative perfusion parameters ((e), (f) and (g)).  p-values are quoted 
for one-way ANOVA tests, with significant differences on post-hoc testing (*). 
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6.6.3.4 Reproducibility 

Reproducibility was assessed using the same protocol with the same scanner in the same 

subjects exactly seven days after the initial study.  Repeat measurements were obtained in 

normal volunteers (n = 8).  All reproducibility analysis data are summarised and 

presented alongside seven day PCMRI reproducibility for comparison in table 6.18.  

Figures in this section have been arranged so that uncorrected and PCMRI corrected 

Bland-Altman diagrams are alongside each other to facilitate inspection of the limits of 

agreement. 

No significant differences were demonstrated between repeated PV perfusion 

(figure 6.53) and TLBF (figure 6.54) measured with uncorrected and PCMRI corrected 

dual input single compartment modelling in segments II/III.  PCMRI correction resulted in 

a substantial reduction in the coefficient of reproducibility for both absolute perfusion 

parameters.  There was a reduction in the mean difference for PV perfusion (-24.15±212.7 

ml/min/100g uncorrected vs -9.308±13.44 ml/min/100g corrected) but not TLBF (-

1.233±226.2 ml/min/100g uncorrected vs -6.041±11.66 ml/min/100g corrected) as a 

result of PCMRI correction.  The standard error for both absolute perfusion parameters 

was reduced by PCMRI correction.  No correlations were demonstrated between repeated 

absolute perfusion measurements using uncorrected and PCMRI corrected modelling 

(table 6.18). 

No significant differences were demonstrated between repeated HA fraction, MTT 

and DV measurements in segments II/III (figure 6.55).  The mean differences between 

repeated MTT (mean difference 5.843±6.354 seconds) and DV (mean difference 

26.38±15.08%) measurements were larger than for the other regions.  No correlations 

were demonstrated between repeated HA fraction, MTT or DV measurements in segments 

II/III (figure 6.54; table 6.18). 
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Figure 6.53: Analysis of agreement of segment II/III PV perfusion 
reproducibility using uncorrected and PCMRI corrected DCE MRI dual 
input single compartment modelling 
Bland-Altman and regression analysis of (a, c) uncorrected and (b, d) PCMRI corrected dual input 
single compartment modelling. 
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Figure 6.54: Analysis of agreement of segment II/III TLBF reproducibility 
using uncorrected and PCMRI corrected DCE MRI dual input single 
compartment modelling 
Bland-Altman and regression analysis of (a, c) uncorrected and (b, d) PCMRI corrected dual input 
single compartment modelling. 
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Figure 6.55: Analysis of agreement of segment II/III relative perfusion 
parameter reproducibility using DCE MRI dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, b) HA fraction, (c, d) mean transit time and (e, f) 
distribution volume. 

 
No significant differences were demonstrated between repeated PV perfusion (figure 

6.55) and TLBF (figure 6.56) measured with uncorrected and PCMRI corrected dual input 
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substantial improvement in the coefficient of reproducibility for both absolute perfusion 

parameters.  There was a reduction in the mean difference for PV perfusion (51.49±128.6 
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repeated absolute perfusion measurements using uncorrected and PCMRI corrected 

modelling (table 6.18). 

No significant differences were demonstrated between repeated HA fraction, MTT 

and DV measurements in segments V/VI (figure 6.58).  The mean differences between 

repeated HA fraction (mean difference 0.7868±4.108%) and MTT measurements (mean 

difference 0.1551±5.307 seconds) were smaller than for the other regions.  A positive 

correlation was demonstrated between repeated HA fraction measurements, but this was 

just above significance (r = 0.6688; p = 0.0697). No correlations were demonstrated 

between repeated MTT and DV measurements in segments V/VI (figure 6.58; table 6.18).  

 

 

 

 

  
Figure 6.56: Analysis of agreement of segment V/VI PV perfusion 
reproducibility using uncorrected and PCMRI corrected DCE MRI dual 
input single compartment modelling 
Bland-Altman and regression analysis of (a, c) uncorrected and (b, d) PCMRI corrected dual input 
single compartment modelling. 
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Figure 6.57: Analysis of agreement of segment V/VI TLBF reproducibility 
using uncorrected and PCMRI corrected DCE MRI dual input single 
compartment modelling 
Bland-Altman and regression analysis of (a, c) uncorrected and (b, d) PCMRI corrected dual input 
single compartment modelling. 
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Figure 6.58: Analysis of agreement of segment V/VI relative perfusion 
parameter reproducibility using DCE MRI dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, b) HA fraction, (c, d) mean transit time and (e, f) 
distribution volume. 
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repeated absolute perfusion measurements using uncorrected and PCMRI corrected 

modelling (table 6.18). 

No significant differences were demonstrated between repeated HA fraction, MTT 

and DV measurements in segments VII/VIII (figure 6.61).  The mean difference between 

repeated HA fraction (mean difference 2.905±3.322%) was larger than for the other 

regions.  Conversely, the mean difference between repeated MTT measurements (mean 

difference -0.2980±15.11 seconds) was smaller than for the other regions.  A positive 

correlation was demonstrated between repeated HA fraction measurements, but this was 

not significant (r = 0.6359; p = 0.1747). No correlations were demonstrated between 

repeated MTT and DV measurements in segments VII/VIII (figure 6.61; table 6.18). 

 
 

 

 

 

  
Figure 6.59: Analysis of agreement of segment VII/VIII PV perfusion 
reproducibility using uncorrected and PCMRI corrected DCE MRI dual 
input single compartment modelling 
Bland-Altman and regression analysis of (a, c) uncorrected and (b, d) PCMRI corrected dual input 
single compartment modelling. 
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Figure 6.60: Analysis of agreement of segment VII/VIII TLBF reproducibility 
using uncorrected and PCMRI corrected DCE MRI dual input single 
compartment modelling 
Bland-Altman and regression analysis of (a, c) uncorrected and (b, d) PCMRI corrected dual input 
single compartment modelling. 
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Figure 6.61: Analysis of agreement of segment VII/VIII relative perfusion 
parameter reproducibility using DCE MRI dual input single compartment 
modelling 
Bland-Altman and regression analysis of (a, b) HA fraction, (c, d) mean transit time and (e, f) 
distribution volume. 

 
  

0 1 0 2 0 3 0

- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0

A v e r a g e  o f  t w o  H A  f r a c t i o n

m e a s u r e m e n t s  ( % )

D
if

f
e

r
e

n
c

e
 b

e
t
w

e
e

n

r
e

p
e

a
t
e

d
 H

A
 f

r
a

c
t
io

n

m
e

a
s

u
r

e
m

e
n

t
s

 (
%

)

( r  =  0 . 6 3 5 9 ,  p  =  0 . 1 7 4 7 )

0 1 0 2 0 3 0

0

1 0

2 0

3 0

F i r s t  H A  f r a c t i o n  m e a s u r e m e n t  ( % )

S
e

c
o

n
d

 H
A

 f
r

a
c

t
io

n

m
e

a
s

u
r

e
m

e
n

t
 (

%
)

0 5 1 0 1 5 2 0 2 5

- 4 0

- 2 0

0

2 0

4 0

A v e r a g e  o f  t w o  M T T

m e a s u r e m e n t s  ( s e c o n d s )

D
if

f
e

r
e

n
c

e
 b

e
t
w

e
e

n

r
e

p
e

a
t
e

d
 M

T
T

m
e

a
s

u
r

e
m

e
n

t
s

 (
s

e
c

o
n

d
s

) ( r  =  - 0 . 2 1 5 6 ,  p  =  0 . 6 8 1 6 )

0 1 0 2 0 3 0 4 0

0

5

1 0

1 5

2 0

2 5

F i r s t  M T T  m e a s u r e m e n t  ( s e c o n d s )

S
e

c
o

n
d

 M
T

T

m
e

a
s

u
r

e
m

e
n

t
 (

s
e

c
o

n
d

s
)

4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0

A v e r a g e  o f  t w o  D V

m e a s u r e m e n t s  ( % )

D
if

f
e

r
e

n
c

e
 b

e
t
w

e
e

n
 r

e
p

e
a

t
e

d

D
V

 m
e

a
s

u
r

e
m

e
n

t
s

 (
%

)

( r  =  - 0 . 2 6 7 6 ,  p  =  0 . 6 0 8 2 )

0 5 0 1 0 0 1 5 0

0

2 0

4 0

6 0

8 0

1 0 0

F i r s t  D V  m e a s u r e m e n t  ( % )

S
e

c
o

n
d

 D
V

 m
e

a
s

u
r

e
m

e
n

t
 (

%
)

(b) (a) 

(d) (c) 

(f) (e) 



~ 351 ~ 
 

 
 
Table 6.18: Regional DCE MRI perfusion parameter reproducibility for uncorrected and PCMRI corrected dual input single 
compartment modelling§ 
 

 SEGMENTS II/III SEGMENTS V/VI SEGMENTS VII/VIII PCMRI 
 UNCORRECTED PCMRI CORRECTED UNCORRECTED PCMRI CORRECTED UNCORRECTED PCMRI CORRECTED 

PV perfusion 
(ml/min/100g) 

Mean difference 
Coefficient of Reproducibility 

Correlation (r) 

 
 

-24.15±212.7 
1179 

-0.4798 

 
 

-9.308±13.44 
74.49 

-0.1735 

 
 

51.49±128.6 
712.6 

0.2646 

 
 

-0.1307±8.435 
46.76 

0.3073 

 
 

-116.6±104.1 
499.8 

0.2646 

 
 

-13.95±6.303 
30.26 
0.1986 

 
 

-1.234±2.924 
19.01 

0.7152 
TLBF (ml/min/100g) 

Mean difference 
Coefficient of Reproducibility 

Correlation (r) 

 
-1.233±226.2 

1254 
0.2069 

 
-6.041±11.66 

64.62 
0.3528 

 
82.35±169.9 

941.65 
-0.2570 

 
-0.7303±10.84 

60.12 
0.2048 

 
-96.56±126.4 

607.1 
0.03895 

 
-15.03±7.181 

34.47 
0.2754 

 
-8.460±4.860 

31.60 
0.4858 

HA fraction (%) 
Mean difference 

Coefficient of Reproducibility 
Correlation (r) 

 
1.117±8.103 

44.92 
-0.5248 

 
0.7868±4.108 

22.77 
0.6688 

 
2.905±3.322 

15.60 
0.6359 

 
8.643±6.943 

45.13 
0.5491 

Mean Transit Time (s) 
Mean difference 

Coefficient of Reproducibility 
Correlation (r) 

 
5.843±6.354 

35.23 
-0.5187 

 
0.1551±5.307 

29.42 
0.2842 

 
4.485±5.517 

26.49 
-0.2156 

 
- 
- 
- 

Distribution Volume (%) 
Mean difference 

Coefficient of Reproducibility 
Correlation (r) 

 
26.38±15.08 

83.62 
-0.07130 

 
5.617±11.36 

62.99 
-0.1087 

 
-0.2980±15.11 

72.57 
-0.2676 

 
- 
- 
- 

 (§Emboldened values in the table highlight the best performing method/region for each statistic; 
*paired t-test p < 0.0001)
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 ~
 



~ 352 ~ 
 

6.6.3.5 Comparative studies 

Comparison of uncorrected and PCMRI corrected DCE MRI measurements was undertaken 

for each region using whole liver volume normalised PCMRI measurements of PV 

perfusion, estimated (subtraction) TLBF and estimated HA fraction measured in the same 

session as DCE MRI studies.  Baseline and seven day reproducibility scans were analysed 

for twelve subjects (21 datasets). 

Regional absolute and relative perfusion DCE MRI validation data is summarised in 

table 6.19.  For all regions, uncorrected dual input single compartment modelling tended 

to grossly overestimate absolute perfusion measurements.  As with previous validation 

analysis, this compromised Bland-Altman analysis so that both the averages and 

differences of each validated perfusion measurement were heavily weighted towards the 

uncorrected DCE MRI parameter.  Plots for uncorrected absolute perfusion parameters 

therefore appear to show a linear trend (figures 6.62(a), 6.63(a), 6.65(a), 6.66(a), 6.68(a) 

and 6.69(a)). 
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Table 6.19: Regional DCE MRI perfusion parameter validation for uncorrected and PCMRI corrected dual input single compartment 
modelling 
 

 SEGMENTS II/III SEGMENTS V/VI SEGMENTS VII/VIII PCMRI 
 UNCORRECTED PCMRI CORRECTED UNCORRECTED PCMRI CORRECTED UNCORRECTED PCMRI CORRECTED  

PV perfusion (ml/min/100g) 460.8±77.55 60.27±5.171 395.2±52.51 57.43±4.756 463.2±62.79 62.90±2.886 56.65±2.698 
TLBF (ml/min/100g) 535.5±81.83 73.31±6.028 481.5±64.24 71.00±5.600 526.2±67.22 72.40±3.581 71.72±3.318 

HA fraction (%) 17.85±2.847 18.51±3.136 12.39±2.608 18.91±4.084 

 (data replicated from table 6.17 for review) 
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Figure 6.62: Analysis of agreement of segment II/III PV perfusion using 
uncorrected/PCMRI corrected DCE MRI dual input single compartment 
modelling with PCMRI PV perfusion measurements 
Bland-Altman and regression analysis of (a, c) uncorrected and (b, d) PCMRI corrected dual input 
single compartment modelling. 

 
For segments II/III, the smallest mean difference between DCE MRI and PCMRI PV 

perfusion (3.606±5.785 ml/min/100g; p = 0.5409) and TLBF (1.672±4.386 ml/min/100g; 

p = 0.7074) were both demonstrated using PCMRI corrected data.  The smallest coefficient 

of variation for PV perfusion (37.40%) and TLBF (35.84%) was demonstrated in both 

cases using PCMRI corrected data.  These were still larger than those observed for PV 

perfusion (21.82%) and TLBF (21.20%) using PCMRI.  A significant correlation was 

demonstrated between corrected DCE MRI TLBF and PCMRI estimated TLBF (r = 0.6922; p 

= 0.0010) (figure 6.63(d)), but not for corrected PV perfusion or any uncorrected DCE MRI 

absolute perfusion parameters. 

The Bland-Altman charts for DCE MRI segments II/III HA fraction as previously 

demonstrate an expected ‘funnelling’ of smaller values (figure 6.64(a)). No significant 

differences between DCE MRI and PCMRI HA fraction measurements were demonstrated 

(mean difference -0.9229±5.334%; p = 0.8645).  The DCE MRI HA fraction coefficient of 

variation (69.53%) was smaller than the PCMRI HA fraction coefficient of variation 

(98.97%).  No significant correlations were demonstrated between segments II/III DCE 

MRI and PCMRI HA fraction measurements (figure 6.64(b)).  
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Figure 6.63: Analysis of agreement of segment II/III TLBF using 
uncorrected/PCMRI corrected DCE MRI dual input single compartment 
modelling with PCMRI estimated TLBF measurements 
Bland-Altman and regression analysis of (a, c) uncorrected and (b, d) PCMRI corrected dual input 
single compartment modelling. 

 
 

 

  

Figure 6.64: Analysis of agreement of segment II/III HA fraction using DCE 
MRI dual input single compartment modelling with PCMRI estimated HA 
fraction measurements 
DCE MRI dual input single compartment HA fraction with PCMRI validation (a) Bland-Altman 
and (b) regression analysis. 
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For segments V/VI, the smallest mean difference between DCE MRI and PCMRI PV 

perfusion (0.7711±4.995 ml/min/100g; p = 0.8790) and TLBF (-0.6410±3.108 

ml/min/100g; p = 0.8389) were both demonstrated using PCMRI corrected data.  The 

smallest coefficient of variation for PV perfusion (36.09%) and TLBF (34.83%) was 

demonstrated in both cases using PCMRI corrected data.  These were still larger than 

those observed for PV perfusion (21.82%) and TLBF (21.20%) using PCMRI.  A significant 

correlation was demonstrated between corrected DCE MRI TLBF and PCMRI estimated 

TLBF (r = 0.8586; p < 0.0001) (figure 6.66(d)), but not for corrected PV perfusion or any 

uncorrected DCE MRI absolute perfusion parameters. 

The Bland-Altman charts for DCE MRI segments V/VI HA fraction as previously 

demonstrate an expected ‘funnelling’ of smaller values (figure 6.67(a)). No significant 

differences between DCE MRI and PCMRI HA fraction measurements were demonstrated 

(mean difference -0.26660±4.878%; p = 0.9571).  The DCE MRI HA fraction coefficient of 

variation (73.86%) was smaller than the PCMRI HA fraction coefficient of variation 

(98.97%).  No significant correlations were demonstrated between segments V/VI DCE 

MRI and PCMRI HA fraction measurements (figure 6.67(b)). 

 

 

 

 

  
Figure 6.65: Analysis of agreement of segment V/VI PV perfusion using 
uncorrected/PCMRI corrected DCE MRI dual input single compartment 
modelling with PCMRI PV perfusion measurements 
Bland-Altman and regression analysis of (a, c) uncorrected and (b, d) PCMRI corrected dual input 
single compartment modelling. 
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Figure 6.66: Analysis of agreement of segment V/VI TLBF using 
uncorrected/PCMRI corrected DCE MRI dual input single compartment 
modelling with PCMRI estimated TLBF measurements 
Bland-Altman and regression analysis of (a, c) uncorrected and (b, d) PCMRI corrected dual input 
single compartment modelling. 

 
 

 

  

Figure 6.67: Analysis of agreement of segment V/VI HA fraction using DCE 
MRI dual input single compartment modelling with PCMRI estimated HA 
fraction measurements 
DCE MRI dual input single compartment HA fraction with PCMRI validation (a) Bland-Altman 
and (b) regression analysis. 
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For segments VII/VIII, the smallest mean difference between DCE MRI and PCMRI PV 

perfusion (5.370±3.659 ml/min/100g; p = 0.1615) and TLBF (-0.7991±3.410 

ml/min/100g; p = 0.8177) were both demonstrated using PCMRI corrected data.  The 

smallest coefficient of variation for PV perfusion (18.92%) and TLBF (20.39%) was 

demonstrated in both cases using PCMRI corrected data.  These were just less than those 

observed for PV perfusion (21.82%) and TLBF (21.20%) using PCMRI.  A significant 

correlation was demonstrated between corrected DCE MRI TLBF and PCMRI estimated 

TLBF (r = 0.5833; p = 0.0140) (figure 6.69(d)), but not for corrected PV perfusion or any 

uncorrected DCE MRI absolute perfusion parameters. 

The Bland-Altman charts for DCE MRI segments VII/VIII HA fraction as previously 

demonstrate an expected ‘funnelling’ of smaller values (figure 6.70(a)). No significant 

differences between DCE MRI and PCMRI HA fraction measurements were demonstrated 

(mean difference -6.829±5.112%; p = 0.2003).  The DCE MRI HA fraction coefficient of 

variation (86.81%) was smaller than the PCMRI HA fraction coefficient of variation 

(98.97%).  No significant correlations were demonstrated between segments VII/VIII DCE 

MRI and PCMRI HA fraction measurements (figure 6.70(b)). 

 

 

 

 

  
Figure 6.68: Analysis of agreement of segment VII/VIII PV perfusion using 
uncorrected/PCMRI corrected DCE MRI dual input single compartment 
modelling with PCMRI PV perfusion measurements 
Bland-Altman and regression analysis of (a, c) uncorrected and (b, d) PCMRI corrected dual input 
single compartment modelling. 
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Figure 6.69: Analysis of agreement of segment VII/VIII TLBF using 
uncorrected/PCMRI corrected DCE MRI dual input single compartment 
modelling with PCMRI estimated TLBF measurements 
Bland-Altman and regression analysis of (a, c) uncorrected and (b, d) PCMRI corrected dual input 
single compartment modelling. 

 
 

 

  

Figure 6.70: Analysis of agreement of segment VII/VIII HA fraction using 
DCE MRI dual input single compartment modelling with PCMRI estimated 
HA fraction measurements 
DCE MRI dual input single compartment HA fraction with PCMRI validation (a) Bland-Altman 
and (b) regression analysis. 
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Table 6.20: Summary of PCMRI validation of regional DCE MRI perfusion parameters for uncorrected and PCMRI corrected dual 
input single compartment modelling† 
 

 SEGMENTS II/III SEGMENTS V/VI SEGMENTS VII/VIII 
 UNCORRECTED PCMRI CORRECTED UNCORRECTED PCMRI CORRECTED UNCORRECTED PCMRI CORRECTED 

PV perfusion (ml/min/100g) 
Mean difference 

Coefficient of Variation 
Correlation (r) 

 
404.1±77.72 

73.36% 
-0.03974 

 
3.606±5.785 

37.40% 
0.06878 

 
338.6±52.54 

57.91% 
0.01714 

 
0.7711±4.995 

36.09% 
0.2303 

 
405.7±63.48 

55.89% 
-0.1905 

 
5.370±3.659 

18.92% 
0.2798 

TLBF (ml/min/100g) 
Mean difference 

Coefficient of Variation 
Correlation (r) 

 
463.9±81.81 

66.60% 
0.02807 

 
1.672±4.386 

35.84% 
0.6922* 

 
409.8±63.54 

58.16% 
0.2189 

 
-0.6410±3.108 

34.83% 
0.8586* 

 
453.0±68.11 

52.67% 
-0.2031 

 
-0.7991±3.410 

20.39% 
0.5833* 

HA fraction (%) 
Mean difference 

Coefficient of Variation 
Correlation (r) 

 
-0.9229±5.334 

69.53% 
-0.04776 

 
-0.2660±4.878 

73.86% 
0.1891 

 
-6.829±5.112 

86.81% 
0.1058 

 (†Emboldened values in the table highlight the best performing Method for each statistic; 
*Pearson’s correlation coefficient p < 0.05)

~
 3

6
0

 ~
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6.6.4 DISCUSSION 

We have demonstrated that correction of DCE MRI absolute perfusion measurements 

using PCMRI volume normalised estimated (subtraction) TLBF is (i) feasible, (ii) can be 

used to study regional differences in absolute perfusion and deliver improvements in (iii) 

seven day reproducibility and (iv) comparative agreement of DCE MRI regional tissue 

perfusion estimates.  We have previously demonstrated encouraging invasive and non-

invasive validation data and seven day reproducibility of estimated TLBF PCMRI 

measurements (sections 5.4 and 5.5).  In this section we have shown that PCMRI 

correction allows DCE MRI absolute perfusion measurements to exploit the consistency of 

PCMRI data, while simultaneously profiting from the ability of DCE MRI to discriminate 

between regional differences in absolute and relative perfusion. 

 Parametric mapping after residual sum of squares thresholding was shown to be a 

potentially feasible method for excluding large vessels from before applying PCMRI 

correction.  This method also has the advantage of also excluding poorly modelled 

parenchymal data (as a result of noise, motion corruption and other MR artefacts), which 

would otherwise compromise averaging and overall quantification.  There are of course 

many more complex methods of thresholding which are beyond the remit of this thesis, 

which could improve this process.  It is worth noting that in the context of focal liver 

lesions (particuarly neovascularised malignant lesions), the proposed method of 

thresholding would have the disadvantage of potentially excluding these pixels and 

therefore excluding the potentially useful quantification of the hypervascularity shown in 

these lesions from the analysis. 

 As the study was performed in a cohort of normal volunteers, our data 

reassuringly demonstrated no significant regional differences in absolute and relative DCE 

MRI perfusion parameters both before and after correction.  PCMRI correction delivered 

regional absolute perfusion estimates within physiological range and reduced absolute 

and relative dispersion of both PV perfusion and TLBF DCE MRI measurements in all three 

regions.  This was demonstrated by consistent reductions across all three regions in the 

absolute perfusion coefficients of variation (segments II/III uncorrected PV perfusion 

73.36% and TLBF 66.60% vs corrected PV perfusion 37.40% and TLBF 35.84%; segments 

V/VI uncorrected PV perfusion 57.91% and TLBF 58.16% vs corrected PV perfusion 

36.09% and TLBF 34.83%; segments VII/VIII uncorrected PV perfusion 55.89% and TLBF 

52.67% vs corrected PV perfusion 18.92% and TLBF 20.39%).  Comparison of regional 

residual sum of squares demonstrated poorer fits in segments II/III (mean 

6.525x10-7±1.304x10-7; compared with segments V/VI 2.829x10-7±4.335x10-8 and 
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segments VII/VIII 2.702x10-7±3.932x10-8; p = 0.0027).  Relative to the other regions, 

segments II/III are not only most affected by cardiac motion but are also potentially 

subject to artefact from the adjacent rapidly changing post-contrast intra-ventricular 

signal.  This could therefore account for the poorer fits, but also increased dispersion of 

absolute perfusion parameters. 

 Reproducibility studies demonstrate striking improvements in mean differences 

and coefficient of reproducibility as a result of PCMRI correction (table 6.15).  Regional 

differences in reproducibility also bear witness to the poorer model fits recorded in 

segments II/III.  The coefficient of reproducibility for all perfusion parameters in segments 

II/III is consistently larger for both corrected and uncorrected data.  Although no 

correlation was recorded between repeated HA fraction measurements for segments II/III, 

positive correlations emerging between measurements for segments V/VI (r = 0.6688; p = 

0.0697) and segments VII//VIII (r = 0.6359; p = 0.1747) though modest and non-

significant are encouraging. 

 PCMRI correction delivers improvements in the coefficient of variance in absolute 

perfusion parameters for all three regions (table 6.17).  TLBF validation was undertaken 

using the same data as used for PCMRI correction and therefore it is unsurprising that 

regional TLBF validation data following PCMRI correction should be strong.  This is borne 

out in significant positive correlations with PCMRI data for all three regions (segments 

II/III r = 0.6922, p = 0.0010; segments V/VI r = 0.8586, p < 0.0001; segments VII/VIII r = 

0.5833; p = 0.0140).  PCMRI PV perfusion measurements, independent of PCMRI TLBF 

demonstrate much poorer correlations across all three regions, and even after PCMRI 

correction, the coefficient of variation of both PV perfusion and TLBF is only marginally 

improved by DCE MRI in segments VII/VIII (corrected DCE MRI PV perfusion 18.92% and 

TLBF 20.39% vs PCMRI PV perfusion 21.82% and TLBF 21.20%).  Importantly, the 

coefficient of variation of HA fraction measurements across all three regions was better 

with DCE MRI (segments II/III 69.53%, segments V/VI 73.86%, segments VII/VIII 86.81% 

vs PCMRI 98.97%), highlighting the value of DCE MRI in the assessment of relative 

perfusion.  It is also worth noting that while validation in this study has been undertaken 

using simultaneous PCMRI measurements, true validation of regional perfusion 

measurements would require invasive (experimental) methods such as laser Doppler 

flowmetry or near-infrared spectroscopy, less feasible in clinical contexts. 

In this section, we have applied the correction to dual input single compartment 

modelling with progressive refinements we introduced earlier in the chapter – (i) pre-

estimated VIF delays with constrained free modelling and (ii) cardiac output AIF 
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correction.  An important and interesting feature of PCMRI correction is the applicability 

to any method of perfusion modelling in the liver.  The same DCE MRI data, processed 

using dual input dual compartment or the hepatic perfusion index model could be 

corrected using the same method.  Indeed, once volume normalised PCMRI estimated 

(caval subtraction) TLBF measurements have been obtained, these could be used to 

correct perfusion quantification across any modality.  The accuracy would of course be 

dependent on quality and quantity of hepatic parenchymal perfusion data – the more 

slices, better segmented and less artefacted the perfusion data, the more accurate the 

results. 

 In this section, we have applied PCMRI correction to ‘𝑘1’, but it is worth 

mentioning the outflow constant ‘𝑘2’.  Although MTT is reliant on ‘𝑘2’ alone, DV is based on 

both inflow and outflow constants.  It would seem that perhaps the corrected ‘𝑘1’ could 

provide an opportunity to correct MTT, or perhaps even ‘𝑘2’ and DV estimates.  The 

method of correcting DCE MRI absolute perfusion however, exploits relative inter-pixel 

enhancement rather than providing a true correction of ‘𝑘1’.  Because of these, we would 

argue that any attempt to use corrected ‘𝑘1’ to adjust DV or indeed ‘𝑘2’ would be 

theoretically flawed. 

An interesting consequence of correcting pixel wise absolute perfusion can also be 

obtained from the original derivation of the dual input single compartment model, which 

is based upon the following expression, where ‘𝐹’ represents total perfusion and ‘𝐸’ 

represents extraction fraction: 

𝑘1𝑎 + 𝑘1𝑝 = 𝐹 ∙ 𝐸(1 − 𝐻𝑐𝑡𝑆𝑉) 

(Equation 6.23) 
 
The potential is then to use uncorrected 𝑘1and the adjusted perfusion (𝐹′) for a given pixel 

to measure ‘𝐸’, or extraction fraction (where small vessel haematocrit ‘𝐻𝑐𝑡𝑆𝑉’ is constant 

at 0.25): 

𝐸 =
𝑘1

𝐹′(1 − 𝐻𝑐𝑡𝑆𝑉)
 

(Equation 6.24) 
 
The assumption that contrast agent can pass freely through the vascular endothelium to 

the interstitium and space of Disse seems reasonable in healthy individuals.  

Microarchitectural changes in the hepatic parenchyma seen in fibrosis and chronic liver 

disease however, have the theoretical potential to reduce extraction fraction thereby 

yielding another alternative potentially clinically valuable perfusion parameter in ‘𝐸’.  

While this may seem theoretically acceptable, the use of uncorrected ‘𝑘1’ would result in 
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very large non-physiological estimates of ‘𝐸’ (given prior gross overestimation of absolute 

perfusion ‘𝐹’).  The use of corrected ‘𝑘1’ would result in measurement of ‘relative 

extraction fraction’, perhaps of value in the evaluation of focal liver lesions but of no 

obvious use in comparisons between subjects with and without disease. 

 Another interesting opportunity that PCMRI correction could afford is the ability 

to simplify or forgo some of the steps in DCE MRI post-processing.  As the correction could 

apply to any method of DCE quantification, there is a potential role in the quantification of 

raw time-intensity curves for example.  The correction of DCE MRI data is however reliant 

on a linear relationship between the SI and CA concentration and specifically in the 

context of regional quantification, a linear relationship between adjacent and distant 

pixels of imaged liver.  In order to convert the raw SI data into this state, blood and tissue 

T1 quantification is essential.  The latter would be especially important in the context of 

liver disease or evaluation of focal liver lesions, where heterogeneous involvement of the 

liver parenchyma and disease-based inter-subject variation would have significant effects 

quantification.  We would therefore argue that PCMRI correction without T1 

quantification and SI correction would be erroneous. 

The clinical implications of improved regional DCE MRI quantification are wide 

ranging.  While volume-normalised PCMRI subtraction TLBF offers a single numerical 

value, which may have potential as biomarker of liver disease, the anatomical data offered 

by regional DCE MRI quantification has real value in the planning and assessment of 

surgical treatments in the liver.  Regional DCE MRI quantification has failed to find favour 

in clinical practice because of poor perfusion parameter reproducibility and validation, 

both of which can be overcome using PCMRI correction.  Accurate regional perfusion 

assessment can then be used to guide resection volumes, determine segmental viability, 

assess changes in vascularisation pre and post treatment and determine subclinical 

perfusion changes which may precede macroscopic disease.  Accurate quantification could 

also be used to simplify and improve lesion characterisation, moreover accurate perfusion 

quantification in malignant lesions may be used to inform treatment planning and 

response. 

 Finally it is worth briefly mentioning that difficulties with DCE MRI absolute 

perfusion parameter reproducibility and validation are not exclusive to the liver.  

Correction of DCE MRI regional perfusion with whole organ blood flow data (obtained 

using PCMRI or other methods) could be undertaken in a similar way elsewhere (e.g. the 

kidneys), where DCE MRI data is available for reasonable volumes of organ parenchyma. 
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6.6.5 CONCLUSION 

We have demonstrated that DCE and PCMRI data can be combined to correct regional DCE 

MRI absolute perfusion quantification.  We have shown that PCMRI subtraction TLBF can 

be used to deliver physiologically feasible DCE MRI quantification.  We have used our 

method to investigate regional differences in absolute perfusion across the liver and 

demonstrated that measurements in segments II/III are more prone to artefact than in the 

right liver, and therefore more variable and less reproducible.  PCMRI correction not only 

improves seven-day reproducibility, but also the comparative agreement of DCE MRI 

absolute perfusion parameters.  PCMRI correction is therefore an essential step in deriving 

physiologically feasible, reproducible and accurate DCE MRI quantification. 
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6.7 CLOSING COMMENTS 

 
Building on our unsuccessful experience of preclinical DCE MRI, we developed clinical 

protocols on a 3.0T system that addressed many of the challenges highlighted from 

working at higher field strengths.  We demonstrated our protocol feasibility and then went 

on to introduce progressive refinements to the post-processing and modelling to optimise 

DCE MRI quantification.  We proposed ‘pre-estimation with constrained free modelling’ as 

a novel method to deal with VIF arrival delays and demonstrated its feasibility and 

improved reproducibility relative to other methods.  We also demonstrated dual input 

single compartment modelling as a reasonable approach to DCE MRI relative perfusion 

quantification.  We then used PCMRI aortic root flow to correct AIF measurements and 

implemented this for the first time in the liver, to demonstrate improved reproducibility 

and validation.  Finally we used our novel PCMRI subtraction method for quantifying TLBF 

(proposed and validated preclinically and clinically in sections 5.4 and 5.5) to successfully 

correct DCE MRI absolute perfusion measurements.  With the introduction of PCMRI 

correction, we have demonstrated for the first time a method of obtaining regional DCE 

MRI data that can consistently deliver physiological, reproducible and accurate 

measurements of absolute perfusion. 

 The method development in this chapter was based on normal, healthy volunteers.  

Armed with the right tools for measurement of both bulk flow and tissue perfusion, we can 

now move forward and investigate haemodynamic changes in liver disease both in the 

preclinical (Chapter 7) and clinical setting (Chapter 8). 
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CHAPTER 7 
 

BLOOD FLOW STUDIES 
IN CHRONIC LIVER DISEASE 
– PRECLINICAL STUDIES 

 

 

 

 

 

 

 

“…let one tiny cell 
be in error 

or one fiber be worn 
in your labour 

and the pilot flies into the wrong sky, 
the tenor collapses in a wheeze, 

the astronomer loses a planet…” 
 

- Ode to the liver [2]. 
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7.1 INTRODUCTION 

 
In chapter 5, we introduced a novel, validated and repeatable preclinical method for 

measuring total liver blood flow (TLBF) and hepatic arterial (HA) flow using phase 

contrast MRI (PCMRI).  Our data established intrinsic differences in hepatic 

haemodynamic parameters at baseline, demonstrating the hepatic arterial buffer response 

and its failure in cirrhotic animals using terlipressin.  Because of difficulties with dynamic 

contrast enhanced (DCE) MRI at 9.4T (Chapters 2 and 3), haemodynamic assessment was 

confined to measurement of bulk flow, with tissue perfusion only estimated through 

normalisation of bulk flow with explanted liver mass. 

 In this chapter we attempt to overcome this limitation in the preclinical setting 

through the introduction of arterial spin labelling (ASL), a non-contrast agent based 

method for measurement of tissue perfusion that to date has enjoyed very limited 

application in the liver.  Although the development of this method does not form part of 

this thesis, in the first section we outline the methodology and use bulk flow PCMRI 

measurements normalised to explanted liver mass to validate ASL tissue perfusion 

measurements.  We then assess the repeatability of hepatic parenchymal T1 

measurements, measured as part of the ASL protocol and build on previous T1 

measurement work presented in section 3.3 to explore differences in hepatic parenchymal 

T1 in health and disease. 

 In the final section, using PCMRI, ASL and cardiac cine MRI, we then study hepatic 

haemodynamic phenomena in chronic liver disease during stress, evaluating differences in 

health and disease at baseline, the response to intravenous hydration and finally 

inflammatory stress (acute endotoxaemia) as a means of simulating ‘acute-on-chronic’ 

liver failure (ACLF). 
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7.2 AUTHOR CONTRIBUTIONS 

 
In fulfilment of the aims in this chapters, I: (a) implemented preclinical PCMRI protocols 

developed previously (Chapter 5); (b) implemented preclinical cardiac cine MRI and ASL 

protocols developed at our institution; (c) prepared and conducted all animal scanning 

experiments; (d) developed Matlab code for region-of-interest ASL quantification; (e) 

collected and analysed all the data; and (f) prepared all the material contained within this 

chapter. 

 Hepatic PCMRI protocols were developed by Alan Bainbridge with input from Tom 

Roberts for cine modification and Raj Ramasawmy for quantification.  Cardiac cine MRI 

sequences were originally developed by Anthony Price and adapted by Alan Bainbridge.  

Hepatic ASL protocols were developed by Raj Ramasawmy, based on original cardiac ASL 

protocols developed by Adrienne Campbell-Washburn. 

For establishment of small animal intravenous access, I received help from Val 

Taylor and Asif Machada.  Sham-operated and bile-duct ligated rats were prepared by Abe 

Habtieson.  Protocols for acute endotoxaemia were developed in consultation with Nathan 

Davies.  Statistical power calculations were undertaken by Paul Bassett. 
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7.3 ARTERIAL SPIN LABELLING – METHODOLOGY, VALIDATION 

AND T1 STUDIES 

7.3.1 BACKGROUND 

As briefly discussed in section 1.3.8, ASL is a promising non-contrast agent based method 

that to date has had limited application in the liver [225-227].  ASL uses endogenous blood 

water as a tracer: the blood is labelled by inversion and subsequent exchange of inverted 

blood with the tissue magnetisation can be used to generate perfusion-sensitised images.  

Two images are acquired – a ‘labelled’ or perfusion-weighted image, in which the signal 

reflects static tissue combined with magnetised inflowing blood and a ‘control’ image 

containing static tissue alone.  The signal difference between these two images can be used 

to generate an image of the labelled blood, which in turn reflects tissue perfusion [222, 

224]. 

 There are several approaches to labelling and in this study, a pulsed ASL scheme 

was used.  Classically, during a pulsed ASL experiment, a slab of arterial blood is labelled 

close to the imaging slice at a single instance in time, which is subsequently imaged at a 

fixed time interval to allow labelled blood to flow into the imaged slice and exchange with 

tissue [223, 224].  In this study, a flow-sensitive alternating inversion recovery (FAIR) 

preparation was used with a gradient echo Look-Locker read out [430].  The FAIR 

technique is based on generating two T1 measurements for a given slice.  The slice-

selective inversion is flow-sensitised because it contains non-inverted spins from blood 

perfusing the slice, entering from areas on either side of the selected slice.  The global 

inversion slab includes the slice of interest and tissue on either side of it to ensure that the 

slice of interest contains only inverted, static tissue (figure 7.1a).  The presence of 

additional non-inverted (perfusing) spins in the slice-selective inversion would be 

expected to cause T1 shortening.  The differences in T1 between general and slice-

selective (flow-sensitised) data would then allow estimation of perfusion based on 

measured blood T1 (figure 7.1b) [431, 432]. 
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Figure 7.1: FAIR ASL labelling scheme and T1 based perfusion quantification 
Schematic diagram (a), demonstrating arrangement and orientation of consecutive global and slice 
selective inversions.  Note slab sizes are not drawn to scale.  The T1 recovery curves of the slice 
selective (b, red curve) and global (b, blue dashed curve) are shown in (b).  The measured 
difference in T1 (*, blue arrow) is dependent on perfusion and can be quantified with knowledge of 
blood T1 and the blood-tissue partition coefficient (𝜆).  (Adapted from reference [433]). 
 
Based on this method, accurate T1 measurement is therefore an essential aspect of 

successful and reliable quantification.  From our earlier work, this could be achieved using 

IR recovery methods, but at considerable time expense.  To enable more rapid 

quantification, a segmented Look-Locker technique was used as an alternative method of 

T1 quantification.  In a classic IR experiment, a 180º inversion pulse is followed by a 90º 

pulse separated by varying delays/inversion times.  The Look-Locker sequence applies an 

inversion pulse, followed by many consecutive smaller excitation pulses with continuous 

sampling of the recovery (figure 7.2) [434].  This allows faster measurement of T1 and is 

useful in the context of small animals where ECG and respiratory gated measurements 

must be obtained in very small temporal sampling windows [430].  In this study, 

respiratory gated Look-Locker acquisitions were used with segmented k-space sampling. 

 

1. Global inversion 

2. Slice selective inversion 

(a) (b) 

Time 

MZ 

* 
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Figure 7.2: Look-Locker T1 quantification using segmented k-space sampling 
Schematic diagram of the respiratory triggered, Look-Locker T1 mapping sequence used in this 
study.  The inversion pulse is end-expiration triggered, followed by a free-breathing, a segmented 
Look-Locker sampling train. Each segmented block is separated by an inversion time (TILook-Locker) 
of 110 ms, with each block containing four sampling pulses separated by TRRF (2.3 ms).  Four lines 
of k-space are sampled per inversion. The full acquisition is performed twice in line with the FAIR 
ASL protocol. (Taken from reference [435]). 

 
Unlike DCE MRI experiments where quantification is based on post-CA bolus tracking 

through sequential images, ASL is based upon measuring the difference in signal that 

arises as a result of labelled spins exchanging with protons in the tissue of interest [221].  

Quantification based on comparison of the flow sensitised and control T1 maps of the 

same slice, was undertaken using the method proposed by Belle et al. [436, 437].  Using 

this model, pixel-wise perfusion (𝑃) can be calculated from the two T1 measurements 

using the following expression: 

𝑃 =
𝜆

𝑇1𝑏𝑙𝑜𝑜𝑑
(

𝑇1𝑔𝑙𝑜𝑏𝑎𝑙

𝑇1𝑠𝑙𝑖𝑐𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒
− 1) 

(Equation 7.1) 
 
Where ‘𝜆’ is the blood-tissue partition coefficient - the ratio of water content in the 

parenchyma to the water content in the blood perfusing the tissue.  We assumed this in 

this study ‘𝜆’ to be 0.95 ml/g, based on 85Kr gas clearance measurements in the liver [438].  

Blood T1 was also assumed to be 1900 ms, based on murine left ventricular blood pool T1 

quantification, measured as part of another study on the same imaging system [430]. 
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Figure 7.3: Myocardial FAIR ASL 
quantification and invasive 
validation 
Paired ASL perfusion measurement (y-axis, 
PT1, ml/g/min), plotted against 
microsphere perfusion measurements (PMS, 
ml/g/min) from the same rat heart.  Data at 
rest (□) and post adenosine (●) are shown, 
demonstrating encouraging positive 
correlation.  Unfortunately, Bland-Altman 
analysis of agreement was not performed.  
(Taken from reference [439]). 

 
The Belle et al. [437] method of quantification was applied to small animal cardiac 

perfusion measurements and subsequently invasively validated using microspheres 

(figure 7.3) [439, 440].  Though encouraging, this validation was undertaken in a different 

organ to the liver and on a different imaging system. 

We presented in Chapter 5 a novel method for estimation of total liver blood flow 

using subtraction of caval flows, which when normalised to liver mass also provides an 

estimate of tissue perfusion.  We have also validated PCMRI flow measurements using (a) 

TTUS for validation of PV PCMRI and (b) fluorescent microspheres for validation of caval 

subtraction PCMRI estimated HA fraction.  Good agreement with invasive methods was 

demonstrated for PV flow PCMRI and encouraging correlations were demonstrated with 

microspheres (section 5.4).  The measurement of HA fraction is reliant on caval 

subtraction PCMRI estimated TLBF and though validated indirectly, we would argue 

provides a means of assessing the accuracy of ASL perfusion when measured in the same 

subject and same scanning session. 

 Finally, there is a growing interest in the evaluation of intrinsic tissue T1 in the 

context of hepatic fibrosis [322-324].  Accurate tissue T1 measurements underpin ASL 

quantification and therefore can also be extracted to study differences between normal 

and diseased liver.  Studies pre and post haemodynamic stress provide the opportunity to 

confirm the repeatability of baseline hepatic parenchymal T1 measurements, as these 

should remain stable regardless of changes in perfusion. 

 With this in mind, in this section we aim to (a) demonstrate the feasibility of using 

segmented FAIR Look-Locker ASL to measure hepatic parenchymal perfusion, (b) assess 



~ 374 ~ 
 

the agreement between FAIR Look-Locker ASL and indirectly validated PCMRI 

measurements of estimated TLBF, (c) assess the repeatability of hepatic T1 parenchymal 

measurements and finally, (d) investigate any differences in hepatic parenchymal T1 in 

normal and diseased rats. 

7.3.2 METHODS 

7.3.2.1 Experimental subjects 

All experiments were conducted according to the Home Office guidelines under the UK 

Animals in Scientific Procedures Act 1986.  Animals were maintained as per guidelines and 

approval of the ethical committee for animal care of University College London.  

Experiments were performed on healthy male Sprague-Dawley rats (Charles River UK, 

Margate, UK) with normal liver function.  Animals were housed in cages at 22-23ºC, ~50% 

humidity and with 12 hours of light and ad libitum access to water and rat feed. 

 For studies in models of liver disease, subjects weighing 250-300g were 

randomised to bile-duct ligation (BDL) procedure (n = 10) or sham laparotomy (n = 11).  

BDL and sham surgery was conducted as described previously by researchers at our 

institution [350].  Briefly, a midline abdominal incision was made under 2% isoflurane and 

intraperitoneal levobupivacaine.  For animals undergoing BDL procedure, the common 

bile duct was isolated, triply ligated with 3-0 silk and sectioned between the ligatures.  

After closure and recovery, animals were maintained for 5 weeks to allow the 

development of portal hypertension and features of chronic liver disease. 

For each experiment/cohort, subjects were randomly selected at the time of 

removal from the cage.  Any adverse events and subsequent protocol modifications were 

recorded and reported in the results. 

7.3.2.2 Sample size 

Data presented in this section was collected simultaneously with the data presented later 

in this chapter.  Sample sizes therefore are based on more complex experiments presented 

in section 7.4. 

7.3.2.3 Animal preparation 

After induction with isoflurane, a 0.58 mm internal diameter fine bore polyethylene line 

(Portex, Smiths Medical, Kent, England) was sited in the jugular vein.  The anaesthetised 

animal was then transferred to a 9.4T Agilent scanner (Oxford, UK) with a rectal probe for 

temperature monitoring.  Core body temperature was maintained between 36 and 38ºC 
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using circulating warm water pipes and warm air.  Cardiac monitoring was undertaken 

using a triple electrode single lead system (SA instruments, New York, USA). 

7.3.2.4 ASL and T1 measurement 

Once positioned in the scanner, respiratory gated axial anatomical images were obtained 

to identify an imaging slice that enabled good visualisation of a large volume of hepatic 

parenchyma.  Perfusion measurements were obtained using a respiratory gated inversion, 

segmented FAIR Look-Locker ASL sequence with a spoiled gradient-echo readout.  Data 

was acquired using a FOV of 60 x 60 mm2, 128 x 128 matrix size, 2 mm slice thickness, 

with echo-time (TE) of 1.18 ms, TILook-Locker of 110 ms, repetition time (TRRF) of 2.3 ms, 

Look-Locker flip angle (αLL) of 8˚, and TR (inversion) of 13 seconds.  A total of 50 inversion 

recovery readouts were used for each T1 measurement.  A 6 mm slice selective and 200 

mm global inversion slab was used, centred on the 2 mm slice of interest.  Inversions were 

triggered at the end of the expiration, with four lines of k-space obtained per segmented 

acquisition.  Total acquisition time was approximately 15 minutes. 

Data was analysed using in-house developed Matlab code (MathWorks, Natick, 

USA).  Images were retrospectively gated using an algorithm that used ghosting artefacts 

to discard motion corrupted images.  Because 50 TIs, were acquired at Look-Locker 

readout, images could be discarded without affecting the accuracy of T1 fitting.  The 

selected images were then smoothed using a Gaussian window (σ = 1.6 pixels, final 

resolution = 753 μm full width at half-maximum) before pixel-wise non-linear least-

squares fitting to the Look-Locker recovery curve (equation 7.2).  Estimates were then 

made of ‘𝑀0’ – the signal intensity at equilibrium magnetisation, ‘𝛼’ – the inversion 

efficiency (ranging from zero to two, with 𝛼 = 2 representing a perfect inversion) and 

‘𝑇1∗’, the apparent T1 (as a result of Look-Locker acceleration of magnetisation recovery). 

𝑀𝑧 =  𝑀0 (1 − 𝛼 ∙ 𝑒−
𝑇𝐼

𝑇1∗) 

(Equation 7.2) 
 
Actual T1 was then estimated using from the apparent T1 (𝑇1∗), using the Look-Locker 

correction factor in the small angle approximation and assuming a perfect inversion [441]: 

𝑇1 =  𝑇1∗ ∙ (𝛼 − 1) 
(Equation 7.3) 

 
Perfusion maps were then generated from global and slice selective T1 maps using 

equation 7.1.  Final post-processing involved the placement of three identically sized 

circular ROIs on the right, middle and left hepatic parenchyma (figure 7.4).  ROIs were 

carefully positioned to avoid major vascular structures and extra-hepatic tissues using T1 
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maps.  Placement of ROIs was performed through joint consensus between a Radiologist 

with 5 years experience in abdominal imaging (Manil Chouhan) and an Imaging Scientist 

with 4 years experience in the development of preclinical hepatic ASL (Raj Ramasawmy).  

Both researchers were blinded to the presence of disease or haemodynamic stress in the 

dataset being processed.  For each subject, ROIs of identical position were used for 

baseline and post-inflammatory stress measurements.  Overall estimates of perfusion and 

parenchymal T1 were based on averages obtained from the three ROIs.  Parenchymal T1 

measurements were derived from control, non-flow sensitised acquistions. 

7.3.2.5 Two-dimensional cine PCMRI 

Two-dimensional cine PCMRI was undertaken as previously described in section 5.4.2.3.  

Axial anatomical images were used to identify the vessel of interest.  Three markers were 

placed in the vessel lumen, for automated planning of scanning slices through the vessel in 

the coronal plane (VnmrJ 3.2, Agilent, Oxford, UK).  The vessel was then identified on 

angled coronal slices and studies were planned to ensure orthogonality to the vessel.  

Cardiac gated images were used for planning of studies on the distal IVC (figure 5.5) and 

aortic root.  Proximal IVC flow measurements were obtained from the same slice used to 

measure PV flow (figure 4.7). 

PCMRI planning provided time for the animal to settle before evaluating subject 

heart rate.  Based on the heart rate (R-R interval) and sequence repetition time, the 

number of frames acquired through the cardiac cycle was set as two less than the 

maximum number of frames possible, to avoid cycle overlap should heart rate increase.  

Heart rate was recorded so that the extended interval between the final frame and end of 

the cycle could be accounted for in flow calculations.  All datasets included at least 10 

frames through the cardiac cycle. 

Cardiac and respiratory-gated 2D cine PCMRI was then undertaken using 2 mm 

slice thickness, a 10° flip angle and a 192 x 192 (frequency encoding x phase encoding) 

acquisition matrix.  Based on previous work (section 5.4.2.3), data was acquired using 𝑉𝑒𝑛𝑐 

settings of 33 cm/s for PV and proximal IVC flows, 66 cm/s for distal IVC flows and 133 

cm/s for aortic root flows.  ROIs were manually positioned on each vessel for each frame 

of the cardiac cycle and quantitative analysis was undertaken as previously.  All PV flow, 

estimated TLBF and HA flow measurements were normalised to explanted liver weight.  

Data was analysed using in-house developed Matlab code (MathWorks, Natick, USA). 
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7.3.2.6 Experimental in vivo protocol 

All animals received continuous intravenous fluid resuscitation with normal saline at a 

rate of 8 ml/kg/hour once transferred to the MRI scanner.  Baseline ASL and PCMRI 

measurements were performed before a 60 minute infusion of 0.3 mg/kg 

lipopolysaccharide (E coli LPS, Sigma Aldrich, UK), for inflammatory stress.  The normal 

saline infusion was then resumed at the same initial rate and continued for the duration of 

the scanning protocol.  Ten minutes post-LPS, repeat PCMRI and ASL measurements were 

performed.  LPS doses and baseline normal saline infusion rates were based on prior 

experience within the research group [442]. 

7.3.2.7 Statistical analysis 

Kolmogorov-Smirnov tests were used to confirm normality of variable distributions.  

Validation and repeatability studies were assessed using paired t-tests, Bland-Altman 

analysis of agreement with calculation of the coefficient of repeatability and assessment of 

correlation between validated/repeated measurements using Pearson’s correlation 

coefficient.  Comparisons between sham and BDL cohorts were undertaken using unpaired 

t-tests.  The threshold of statistical significance was defined to be p < 0.05. 

  



~ 378 ~ 
 

7.3.3 RESULTS 

7.3.3.1 Cohort features 

Experiments were performed in sham operated (n = 11) and BDL (n = 11) rats.  Four 

weeks post-surgery, mean BDL body weight (403.4±14.27g) was lower than mean sham 

body weight (463.2±6.606g; p = 0.0009).  Conversely, mean BDL wet liver mass 

(30.02±1.949g) was higher than mean sham wet liver mass (13.97±0.6417g; p < 0.0001).  

Unfortunately, two BDL subjects had problems with jugular venous cannulation such that 

it was impossible to determine if the correct doses of fluid resuscitation or LPS had been 

given.  Problems with gating resulted in artefacted ASL data for two BDL and one sham 

operated subject.  Final analysis was performed using data from ten sham operated and 

seven BDL rats.  A detailed summary of subject participation can be found in Appendix E. 
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7.3.3.2 ASL feasibility 

A sample ASL dataset is shown in figure 7.4.  Anatomical imaging was used to select a slice 

for ASL quantification.  Slice selective and global inversion T1 maps were generated and 

pixel wise perfusion maps were then created based on comparison of both slice selective 

and global inversion recovery curves.  Parenchymal ROIs were then used to extract 

perfusion data from different sites across the liver and averaged to given an overall 

estimation of hepatic perfusion. 

  

  

Figure 7.4: Example of FAIR ASL acquisition 
Anatomical images (a) were used to select a slice for quantification.  The segmented area for 
quantitative analysis is demonstrated by the dashed white line.  Global (b) and slice selective (c) 
inversion T1 maps were generated.  Note the reduction in parenchymal and vessel T1 on (c) in 
keeping with perfusion related T1 shortening.  Finally, pixel wise perfusion maps were generated 
shown in (d). 
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7.3.3.3 Assessment of agreement of ASL with PCMRI 

ASL measurements of parenchymal perfusion were compared with PCMRI measurements 

of estimated TLBF normalised to liver mass.  Successive measurements using each method 

obtained at baseline and subsequently post-LPS were compared in both sham (n = 10) and 

BDL (n = 7) animals.  Paired t-tests however demonstrated significant differences between 

ASL and PCMRI measurements of parenchymal perfusion (mean difference pooled across 

cohorts 52.36±23.31 ml/min/100g; p = 0.0320).  Significant differences between both 

measurements were demonstrated across all sub-cohorts (sham baseline mean difference 

-144.4±25.39 ml/min/100g, p = 0.0003; sham post-LPS mean difference -106.4±31.77 

ml/min/100g, p = 0.0086; BDL baseline mean difference 89.90±30.98 ml/min/100g, p = 

0.0273) except for BDL animals post-LPS (mean difference 40.65±50.51 ml/min/100g; p = 

0.4661).  The coefficient of variation was higher for PCMRI perfusion across all cohorts 

(50.71% vs 30.03%; PCMRI vs ASL) and for all sub-cohorts (25.04% vs 23.82%, sham 

baseline PCMRI vs ASL; 45.58% vs 19.49%, BDL baseline PCMRI vs ASL; 43.51% vs 

25.36%, BDL post-LPS PCMRI vs ASL), with the exception of sham animals post-LPS 

(15.60% vs 26.52%; PCMRI vs ASL).  Graphical analysis (figure 7.5b) showed correlations 

between PCMRI and ASL parenchymal perfusion were significant (r = 0.6020; p = 0.0003). 

 

 
 

 

 

 
Figure 7.5: Agreement of hepatic perfusion measured with ASL and PCMRI 
estimated TLBF 
Data from sham rats at baseline (■), sham rats post-LPS (), BDL rats at baseline () and BDL 
rats post-LPS ().  The coefficient of repeatability was 258.4 ml/min/100g across all cohorts, 
but smaller for sub cohorts (sham baseline 157.4 ml/min/100g; sham post-LPS 196.9 
ml/min/100g; BDL baseline 160.67 ml/min/100g and BDL post-LPS 221.35 ml/min/100g).  
Despite these differences, an encouraging overall correlation was demonstrated between the 
two methods. 
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7.3.3.4 T1 measurement repeatability 

Repeatability of ASL hepatic parenchymal T1 measurements was assessed in sham (n = 

10) and BDL (n = 7) animals.  Average time between repeat measurements across the 

entire cohort was 124.0±4.100 minutes.  No significant differences were demonstrated 

between repeated hepatic parenchymal T1 measurements in sham (mean difference 

4.103±3.305 ms; p = 0.2093) and BDL animals (mean difference -14.14±15.66 ms; p = 

0.4013).  The coefficient of repeatability was smaller for sham (18.813 ms) compared with 

BDL (81.22 ms) animals.  Graphical analysis (figure 7.6b) showed strong and significant 

positive correlations between repeated hepatic parenchymal T1 measurements (r = 

0.9845; p < 0.0001). 

 
 

  
Figure 7.6: Repeatability of ASL hepatic parenchymal T1 measurements 
Data from sham (■) and BDL () rats.  Repeated measurements were obtained on average 
124±4.100 minutes apart.  The overall cohort coefficient of repeatability was 54.79 ms.  A strong 
and significant correlation between repeated measurements was demonstrated. 
 

7.3.3.5 T1 measurement studies 

Baseline T1 measurements were compared in sham (n = 10) and BDL (n = 7) rats.  

Baseline mean hepatic parenchymal T1 in sham operated animals (1266±17.07 ms) was 

significantly lower than in BDL animals (1523±43.36 ms) (figure 7.7). 

Figure 7.7: Hepatic parenchymal 
T1 at baseline in sham and BDL 
rats 
Baseline hepatic parenchymal T1 was 
found to be significantly higher in BDL rats. 
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7.3.4 DISCUSSION 

We have demonstrated successful implementation of segmented FAIR Look-Locker ASL in 

rats at 9.4T.  Quantification of hepatic parenchymal perfusion using this method can be 

used to yield physiologically feasible measurements. 

We have used contemporaneous normalised PCMRI measurements of estimated 

TLBF to assess agreement between these independent quantification methods across 

healthy and diseased animals at baseline and after haemodynamic stress.  Previous 

indirect invasive validation of PCMRI estimated TLBF (using fluorescent microsphere 

measurements of HA fraction and TTUS measurements of PV flow – section 5.4), 

supported the use of PCMRI estimated TLBF, and therefore our demonstration of a 

significant positive correlation between ASL and PCMRI is encouraging.  The coefficient of 

repeatability between methods was however high (258.4 ml/min/100g), especially 

considering mean ASL perfusion across the cohort was 318.0 ml/min/100g.  Bland-Altman 

analysis revealed a bias of 52.36 ml/min/100g, which in combination with the significant 

correlation could imply systematic underestimation of hepatic perfusion using ASL.  

Significant differences between mean ASL perfusion and PCMRI estimated TLBF were 

demonstrated across almost all cohorts, which could also be a reflection of a systematic 

error.  Importantly, the coefficient of variation of ASL was lower than PCMRI across almost 

all the cohorts, which would suggest that while ASL measurements may be subject to 

error, but that these are still inherently more stable than their PCMRI counterparts. 

We have also demonstrated that parenchymal T1 measurements underpinning 

ASL demonstrate excellent repeatability.  This is an important result especially in the 

context of comparing baseline and post-LPS ASL data, as any measured changes in 

perfusion are therefore likely to reflect genuine changes in perfusion rather than any 

changes in the tissue T1 as a result of inflammatory stress.  As with previous data (section 

5.4), BDL rats demonstrated expectably greater hepatic parenchymal T1 variability and 

poorer repeatability than their sham counterparts. 

Finally, we demonstrated significant differences between sham and BDL animal 

hepatic parenchymal T1 at baseline.  BDL animals demonstrated significantly greater 

hepatic T1, corroborated by published clinical data on T1 mapping and hepatic fibrosis 

stage [416]. 

 
The introduction of ASL in this section was driven by the need to develop a tissue based 

method of directly measuring perfusion rather than estimation through measurement of 

PCMRI bulk flow.  Our experience served to highlight several difficulties, specific to this 
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study and ASL in general which though discussed in this section are pertinent to all 

subsequently presented ASL data. 

 One of the major challenges with ASL rests with obtaining sufficient SNR for 

accurate quantification.  Because the difference in magnetisation between flow sensitised 

and generalised inversion T1 maps is small, multiple averages are required for 

quantification.  Working at higher field strength helped overcome this problem, but even a 

single non-averaged measurement (as was used in this study) required an acquisition time 

of approximately 15 minutes.  In a preclinical context, acquisition times of that length may 

be acceptable, but it is worth noting that data for only a single 2 mm slice of tissue was 

acquired.  A three slice acquisition has subsequently been developed with similar 

acquisition time [227], but whole liver coverage with ASL is not yet a reality.  

 FAIR ASL quantification is also only as good as the quality of the T1 measurement 

underpinning the acquisition.  The Look-Locker method is a well-established method that 

is a variation of the “gold-standard” inversion recovery T1 measurement (section 3.3).  It 

is however, not without its weaknesses, including a reliance on smaller flip angles and 

therefore vulnerability to inhomogeneities in B1, especially at higher field strength.  A 

major advantage to comparing both T1 maps for quantification is that it can be argued that 

flip angle errors can be eliminated [443]. 

 There are several important criticisms of the quantification process used in this 

study.  Firstly the blood-tissue partition coefficient (𝜆) – the ratio of parenchymal water to 

perfusing blood water – was assumed to be constant across all sub-cohorts.  Changes in 

the partition coefficient are however likely to occur both in states of disease and during 

inflammatory stress.  In chronic liver disease for example, fibrotic collagen deposition is 

likely to reduce the volume (and therefore content) of parenchymal water.  Similarly, 

derangements in intra- and extravascular fluid volume are a well-established feature of 

acute inflammatory septic states.  The measurement of blood-tissue partition coefficient is 

however not easily undertaken, and in early studies has been shown to fluctuate by as 

much as 0.57 in the same animal as result of changes in tissue composition post-partial 

hepatectomy [444]. 

 Secondly, blood T1 was assumed to be 1900 ms across all four sub-cohorts.  Time 

constraints prevented measurement of blood pool T1 for each subject, which in reality 

would have varied both between subjects but also potentially as a result of inflammatory 

stress.  Blood T1 is reliant predominantly on temperature and haematocrit [326, 329], 

both of which had the potential to change post-LPS as a result of (a) pyrogenic effects 

(although temperature was maintained for all subjects between 36 and 38ºC) and as a 
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result of (b) interstitial and third space fluid losses (although fluid resuscitation was 

administered before and after LPS infusion). 

 Thirdly, we applied FAIR ASL in this study to obtain a singular measurement of 

tissue perfusion using the Belle model [437].  The latter was initially developed for 

myocardial perfusion measurements and incorporates assumptions that may not be valid 

in the liver.  Inadequacies of the model account for systematic underestimation of ASL 

perfusion (when compared with PCMRI estimated TLBF). 

Lastly, it is worth noting that FAIR ASL provides a measure of total tissue 

perfusion, without any separation of arterial and portal venous contributions or 

measurement of distribution volume or mean transit time.  The latter, classically obtained 

from DCE MRI acquisitions can be obtained using ASL with several strategies proposed in 

the literature.  Under the assumption that all labelled spins have perfused and exchanged 

with protons in the imaged slice, a general kinetic model can be used to estimate changes 

in magnetisation over time produced by inflowing labelled spins.  Using the same 

principles underpinning DCE MRI, this can then be used to obtain additional 

haemodynamic parameters [221].  As data was obtained from multiple TI slice selective 

Look-Locker acquisitions, this could then be used to directly measure the changes in 

magnetisation over time and construct a ‘dynamic’ ASL data set [224].  Development of 

this quantification using a generalised kinetic model remains the subject of future work. 

The ability to separately quantify arterial and portal venous contributions is an 

essential cornerstone of hepatic haemodynamic assessment which ultimately future 

hepatic ASL development should be aimed towards.  Alternative ASL methods, specifically 

pseudo-continuous (PCASL) labelling strategies may provide a new means of separating 

these two contributions [222, 224].  Finally any preclinical developments should provide a 

platform for clinical translation.  Application of ASL methods at lower clinical field 

strengths bring greater SNR challenges, concern over high specific absorption rate (SAR) 

doses to patients and logistical challenges regarding the length of the acquisition and 

strategies to overcome motion artefact. 

In summary, we have demonstrated the successful implementation of ASL for 

hepatic parenchymal perfusion.  In spite of poor agreement, the encouraging correlation 

with independent PCMRI estimated TLBF, excellent repeatability of underlying hepatic 

parenchymal T1 values and intrinsic differences in parenchymal T1 in both health and 

disease, set a precedent for the use of ASL in preclinical hepatic haemodynamic 

assessment in disease and post inflammatory stress. 
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7.3.5 CONCLUSION 

In this section, we have implemented FAIR ASL, an alternative method for quantification of 

hepatic parenchymal perfusion in rats.  We have demonstrated the feasibility of this 

technique and shown encouraging correlation with indirectly validated PCMRI estimated 

TLBF, but poor agreement.  Our data suggested a tendency of FAIR ASL to underestimate 

hepatic parenchymal perfusion and we have offered technical reasons that may account 

for this difference. 

 Finally, we have demonstrated excellent repeatability of hepatic parenchymal 

Look-Locker T1 measurements underpinning ASL measurements.  We have then applied 

these to demonstrate intrinsically higher parenchymal T1 values in BDL rats, in line with 

published clinical studies of hepatic fibrosis. 
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7.4 HAEMODYNAMIC STRESS IN CHRONIC LIVER DISEASE 

7.4.1 BACKGROUND 

In section 4.5, we studied differences in PCMRI PV flow between sham operated and BDL 

animals at baseline and using pharmacological agents (L-NAME and terlipressin) for the 

modulation of PV flow.  In section 5.4 we built on our previous experience with 

terlipressin and used it to study the hepatic arterial buffer response using novel methods 

for HA flow quantification.  In this section, we use the validated techniques presented in 

section 5.4 alongside ASL to study the effects of pathological haemodynamic stress. 

 Acute-on-chronic liver failure, is a recently described clinical entity in which 

patients with established but compensated liver cirrhosis develop an acute deterioration 

in liver function, decompensation and subsequent failure of one or more organs [445-

447].  The condition is associated with elevated mortality, and while the clinical features 

are well recognised, the pathophysiology remains poorly understood.  The rapid 

deterioration in liver function is associated with rises in portal pressure and the 

concurrent systemic inflammatory response and progression to sepsis ultimately result in 

multiorgan hypoperfusion before failure [30, 448].  While it is clear that hepatic 

haemodynamic phenomena play an essential role in the pathogenesis of ACLF, 

haemodynamic characterisation has been limited by the invasive nature of gold-standard 

measurement methods [449, 450].  We have demonstrated that PCMRI and ASL can be 

used for hepatic haemodynamic characterisation of bulk flow and parenchymal perfusion 

respectively.  We have also previously used cardiac cine MRI to assess cardiac systolic 

function non-invasively.  As inflammation and/or infection are the most common 

precipitants of ACLF, we have chosen in this study to emulate this condition using LPS in a 

BDL model of chronic liver disease [442].  Acute endotoxaemia is associated with 

profound haemodynamic instability, so unlike previous pharmacological studies, animals 

were given fluid resuscitation for the duration of the experiment, before, during and after 

LPS administration.  Effects of fluid resuscitation also afford an interesting insight into 

haemodynamic differences in chronic liver disease, especially when compared with 

previous data obtained from animals not receiving intravenous fluid. 

 With this in mind, in this section we aim to (a) evaluate differences at baseline 

between normal and diseased rats receiving fluid resuscitation, (b) study haemodynamic 

differences in non-hydrated and hydrated normal and diseased rats and finally (c) 

investigate the haemodynamic response to LPS in normal and diseased rats using PCMRI, 
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ASL and cardiac cine MRI thereby gaining insight into the vascular pathophysioiology of 

ACLF. 

7.4.2 METHODS 

Methods for experimental subjects, animal preparation, two-dimensional cine PCMRI and 

Look-Locker FAIR ASL were as described in section 7.3.2. 

7.4.2.1 Sample size 

Investigation of the haemodynamic response to LPS was prioritised for calculation of 

sample size.  Experiments were planned based on two-way ANOVA, with the two factors 

being group (sham or BDL) and treatment (saline or LPS).  Difference in TLBF after LPS in 

sham and BDL rats was used as the endpoint variable.  Power calculations were 

undertaken for a statistical power of 90% and a 5% significance level.  Assuming a post-

saline change in TLBF of 20% (standard deviation approximately 10%) and post-LPS 

change in TLBF of 35% (based on prior experience within the research team), with a view 

to detecting a difference in change in TLBF of 20% between sham and BDL rats, a sample 

of n = 24 subjects (half of which would have liver disease) was advised.  Projecting a 15% 

attrition rate, the final sample size would be n = 28. 

7.4.2.2 Cardiac cine MRI 

Cardiac cine MRI was performed as described previously in section 5.4.2.5.  Cardiac and 

respiratory gated coronal images through the thorax were obtained for planning.  Long-

axis images were then acquired to ensure accurate short-axis view planning. 

 Because of the proximity of the mitral valve orifice to the aortic vestibule and 

obliquity of the cardiac axis in the rat, cardiac cine MRI was usually undertaken before 

aortic root PCMRI measurements so that the short axis slice orientation of slices adjacent 

to the aortic root could be used to plan aortic root flow PCMRI studies. 

Planning provided time for the animal to settle before evaluating subject heart 

rate.  As with cine PCMRI, the heart rate and repetition time were used to determine the 

maximum number of frames possible through the cardiac cycle.  Acquisitions were for two 

frames less than this number, to avoid cycle overlap should heart rate increase.  All 

datasets included at least 20 frames through the cardiac cycle.  Spoiled gradient echo 

images were obtained with an echo time of 1.2 milliseconds, repetition time of 7.5 

milliseconds, 15˚ flip angle, slice thickness of 1 mm, no slice separation, field of view of 40 

x 40 mm2 and 128 x 64 (frequency encoding x phase encoding) acquisition matrix.  Data 

was analysed using the freely available software package Segment (Medviso, Lund, 
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Sweden).  Automatic segmentation tools were used to identify the endocardial surface, 

with frame by frame manual review and segmentation correction where appropriate.  For 

evaluation of cardiac systolic function, heart rate, stroke volume, cardiac output, left 

ventricular ejection fraction and cardiac index were recorded.  Cardiac index (CI, 

ml/min/kg) was calculated by dividing cardiac output by body weight (kg). 

7.4.2.3 Experimental in vivo protocol 

All animals received continuous intravenous fluid resuscitation with normal saline at a 

rate of 8 ml/kg/hour once transferred to the MRI scanner.  Baseline cardiac cine MRI, ASL 

and PCMRI measurements were performed before a 60 minute infusion of 0.3 mg/kg 

lipopolysaccharide (E coli LPS, Sigma Aldrich, UK), for inflammatory stress.  The normal 

saline infusion was then resumed at the same initial rate and continued for the duration of 

the scanning protocol.  Ten minutes post-LPS, repeat PCMRI, ASL and finally cardiac cine 

MRI measurements were performed (figure 7.8).  LPS doses and baseline normal saline 

infusion rates were based on prior experience within the research group [442].  Because 

of the expectation of high attrition rates post-LPS in BDL subjects, the LPS protocol was 

prioritised and control, post-saline data was not collected.  The response to fluid 

resuscitation was evaluated through comparison with previously acquired PCMRI and 

cardiac cine MRI data at baseline in non-hydrated sham operated and BDL rats in section 

5.4.  Planned statistical analyses were amended accordingly (section 7.4.2.4). 

 
Figure 7.8: Experimental protocol 
Continuous IV fluid resuscitation was commenced once the animal was transferred to the 
scanner.  Approximate timings of each phase of the protocol are listed below on a non-linear 
scale.  Timing ranges varied with physiological differences (heart rate, etc) and technical 
challenges that may have arisen during a given session. 

 
7.4.2.4 Statistical analysis 

Kolmogorov-Smirnov tests were used to confirm normality of variable distributions.  

Baseline differences between fluid resuscitated sham operated and BDL rats were 

assessed using unpaired t-tests.  Comparisons between dry and fluid resuscitated animals 

were also made using unpaired t-tests in sham and BDL cohorts.  The response to LPS was 

evaluated in normal and diseased animals using paired t-tests.  Where data was found to 

non-normally distributed, Mann-Whitney U tests were used for unpaired comparisons and 

Time 
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Wilcoxon matched-pairs signed rank tests were used for paired comparisons.  The 

threshold of statistical significance was defined as p < 0.05. 

7.4.3 RESULTS 

7.4.3.1 Cohort features 

Experiments were performed in sham operated (n = 11) and BDL (n = 11) rats.  Cohort 

features were as given for section 7.3.3.1.  Cohort sizes varied for some parts of the study, 

primarily as a result of premature demise of BDL subjects before post-LPS data acquisition 

was complete, but also because of artefacted data. 

Cohort features and sizes for non-hydrated “dry” animals were as given in section 

5.4.3.1, briefly, studies were performed in sham operated (n = 13) and BDL (n = 12) rats.  

Four weeks post-surgery, mean BDL body weight (422.3±11.10g) was lower than mean 

sham body weight (484.0±5.565g; p < 0.0001) and conversely mean BDL wet liver mass 

(32.38±1.941g) was higher than mean sham wet liver mass (16.09±0.6558g; p < 0.0001).  

Numbers of animals included in final analyses are summarised in table 7.1, but a 

detailed summary of subject participation in each stage of the protocol shown can be 

found in Appendix E. 

Table 7.1: Cohort numbers for haemodynamic stress studies 
 

 HYDRATED NON-HYDRATED* 
 SHAM 

(n = 11) 
BDL 

(n = 9) 
SHAM 

(n = 13) 
BDL 

(n = 12) 
Baseline PCMRI 9 9 7 9 

Baseline ASL 10 7 - - 

Baseline cardiac cine MRI 11 9 13 12 

Post-LPS PCMRI 9 6   

Post-LPS ASL 10 7   

Post-LPS cardiac cine MRI 10 5   

*(data from these subjects is presented in section 5.4). 

 

7.4.3.2 Baseline haemodynamic studies in hydrated animals 

Baseline hepatic haemodynamics were compared in sham (n = 9) and BDL (n = 9) rats.  

Baseline mean PV flow in sham operated animals (270.8±17.61 ml/min/100g) was higher 

than in BDL animals (113.6±16.96 ml/min/100g; p < 0.0001) (figure 7.9a).  Estimated 

TLBF measured using caval subtraction PCMRI was on average higher in sham rats 

(443.7±37.20 ml/min/100g) compared with BDL rats (199.3±31.56 ml/min/100g; p = 

0.0001) (figure 7.9b).  Estimated HA flow was also on average higher in sham operated 

rats (172.8±22.54 ml/min/100g) compared with their BDL counterparts (85.77±18.05 

ml/min/100g; p = 0.0082) (figure 7.9c).  Estimated HA fraction (figure 7.9d) was however 
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not significantly different in sham operated (40.16±1.894%) compared with BDL rats 

(41.03±4.813%; p = 0.8676).  Baseline hepatic perfusion was compared using ASL in sham 

(n = 10) and BDL (n = 7) rats.  Mean ASL tissue perfusion in sham operated animals 

(315.6±23.59 ml/min/100g) was higher than in BDL animals (299.3±22.05 

ml/min/100g), but this difference was not significant (p = 0.6357) (figure 7.9e).  Examples 

of perfusion maps obtained at baseline are shown in figure 7.15a and b. 

 
 

  

 

 
 
Figure 7.9: Hepatic haemodynamic 
differences at baseline between 
sham and BDL rats receiving 
intravenous fluids 
Baseline PV flow , estimated TLBF and HA flow 
were higher in sham rats.  Estimated HA flows 
were higher in sham animals, but sham and 
BDL HA fractions were not significantly 
different (p = 0.8676). 
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Cardiac output measurements were used to contextualise absolute hepatic haemodynamic 

parameters to systemic circulatory factors.  BDL subjects had slightly lower HA flow 

relative to cardiac output (13.97±2.645%) when compared to their sham counterparts 

(18.29±1.993%) (figure 7.10a), but this difference was non-significant (p = 0.2108).  Mean 

estimated TLBF relative to cardiac output was however significantly higher in sham 

(47.20±3.008%) when compared to BDL rats (32.85±4.807%; p = 0.0223) (figure 7.10b). 

  

Figure 7.10: Haemodynamic differences relative to cardiac output at baseline 
between sham and BDL rats receiving intravenous fluids 
HA flow (a) and TLBF (b) as a percentage of CO.  Significant differences between cohorts were 
shown for TLBF relative to CO, but not HA flow. 
 
Baseline cardiac systolic function was compared in sham (n = 11) and BDL (n = 9) rats.  At 

baseline, no significant difference in heart rate was demonstrated between sham operated 

(366.5±9.176 bpm) and BDL rats (346.3±11.41 bpm; p = 0.1811) (figure 7.11a).  Mean 

baseline stroke volume and CO was significantly larger in BDL animals (0.5326±0.06925 

mls and 184.6±24.82 ml/min) than their sham counterparts (0.3687±0.01084 mls and 

135.2±5.360 ml/min) (stroke volume p = 0.0462; cardiac output U = 13.00, p = 0.0381) 

(figures 7.11b and 7.11c).  Left ventricular ejection fraction was also greater in BDL 

animals (75.50±2.330%) than their sham counterparts (67.44±1.284%; p = 0.0052) 

(figure 7.11d).  Given the greater cardiac output and lower body weight of BDL rats, 

cardiac index was expectably larger in BDL (444.7±53.56 ml/min/kg) compared with 

sham operated rats (291.8±10.37 ml/min/kg; p = 0.0064) (figure 7.11e). 
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Figure 7.11: Cardiac systolic 
function differences at baseline 
between sham and BDL rats 
receiving intravenous fluids 
Significant differences in systolic function 
were recorded for all parameters except heart 
rate.  Increased mean baseline SV, CO, ejection 
fraction and cardiac index were observed in 
the BDL rats. 
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7.4.3.3 Haemodynamic response to intravenous fluid resuscitation 

Hepatic haemodynamic response to fluid resuscitation was compared in sham (non-

hydrated n = 7; hydrated n = 9) and BDL (non-hydrated n = 9; hydrated n = 9) rats.  For 

sham and BDL animals, baseline mean PV flow in non-hydrated animals (sham 

178.6±11.65 ml/min/100g, BDL 69.48±10.09 ml/min/100g) was lower than in hydrated 

animals (sham 270.8±17.61 ml/min/100g, BDL 113.6±16.96 ml/min/100g; sham p = 

0.0011, BDL p = 0.0401) (figure 7.12a and 7.12b).  Average estimated TLBF measured 

using caval subtraction PCMRI in non-hydrated sham operated rats (214.3±16.68 

ml/min/100g) was also lower than in hydrated animals (443.7±37.20 ml/min/100g; p = 

0.0002) (figure 7.12c).  This was not observed in BDL rats, where non-hydrated TLBF 

(152.3±18.68 ml/min/100g), though on average lower than in hydrated animals 

(199.3±31.56 ml/min/100g) was not significantly different (p = 0.2175) (figure 7.12d).  

Baseline mean estimated HA flow in non-hydrated sham rats (35.78±10.79 ml/min/100g) 

was also significantly higher in hydrated sham rats (172.8±22.54 ml/min/100g; p = 

0.0002) (figure 7.12e).  Contrastingly, mean estimated HA flow in non-hydrated BDL rats 

(82.80±19.28 ml/min/100g), was almost identical in hydrated BDL rats (85.77±18.05 

ml/min/100g; p = 0.9121) (figure 7.12f).  Mean estimated HA fraction in non-hydrated 

sham rats (15.69±4.222%) was also significantly higher in hydrated sham rats 

(40.16±1.894%; p < 0.0001) (figure 7.12g).  Contrastingly, mean estimated HA fraction in 

non-hydrated BDL rats (50.72±6.832%) was lower than in hydrated BDL rats 

(41.03±4.813%), but this difference was not significant (p = 0.2636) (figure 7.12h).  Non-

hydrated ASL tissue perfusion data was not available for comparison in either sham or 

BDL cohorts.  
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Figure 7.12: Hepatic haemodynamic differences in non-hydrated and 
hydrated sham and BDL rats 
Data from sham operated (left column) non-hydrated (■) and hydrated (□) and BDL (right 
column) non-hydrated () and hydrated () rats demonstrate profound differences in response 
to intravenous fluids. 
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Cardiac output measurements were used to contextualise absolute hepatic haemodynamic 

parameters to systemic circulatory factors.  Non-hydrated sham operated rats mean HA 

flow relative to cardiac output (3.796±1.070%) was lower than in hydrated sham rats 

(18.29±1.993%; p < 0.0001) (figure 7.13a).  Contrastingly non-hydrated BDL mean HA 

flow relative to cardiac output (13.74±2.410%) was almost identical in hydrated BDL rats 

(13.97±2.645%; p = 0.9495) (figure 7.13b).  Mean estimated TLBF relative to cardiac 

output in non-hydrated sham operated rats (24.49±1.615%) was also lower than in 

hydrated rats (47.20±3.008%; p < 0.0001) (figure 7.13c).  In non-hydrated BDL animals, 

mean estimated TLBF relative to cardiac output (25.66±2.455%) was also lower than in 

hydrated BDL rats (32.85±4.807%), but this difference was not significant (p = 0.2015) 

(figure 7.13d). 

 
 

 
 

 
 

 
 

Figure 7.13: Hepatic haemodynamic differences relative to cardiac output 
in non-hydrated and hydrated sham and BDL rats 
Data from sham operated (left column) non-hydrated (■) and hydrated (□) and BDL (right 
column) non-hydrated () and hydrated () rats demonstrate profound differences in response 
to intravenous fluids. 

 
Cardiac systolic function was compared in sham (non-hydrated n = 13; hydrated n = 11) 
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sham operated animals (325.3±6.803 bpm) was lower than in their hydrated counterparts 

(366.5±9.176 bpm; p = 0.0013) (figure 7.14a).  Mean heart rate in non-hydrated BDL rats 

(333.6±8.497 bpm) was also lower than in hydrated BDL rats (346.3±11.41 bpm), but this 

difference was not significant (p = 0.3708) (figure 7.14b).  Mean stroke volume in non-

hydrated sham operated rats (0.4664±0.01921 mls) was larger than in hydrated sham 

animals (0.3687±0.01084 mls; p = 0.0004), but overall cardiac output in non-hydrated 

sham rats (151.4±6.518 ml/min), though larger than in hydrated rats (135.2±5.360 

ml/min) was only just above significance (p = 0.0740) (figures 7.14c and 7.14e).  Mean 

stroke volume and cardiac output in non-hydrated BDL rats (0.5929±0.03390 mls and 

197.6±12.06 ml/min) were both greater than in hydrated BDL rats (0.5326±0.06925 mls 

and 184.6±24.82 ml/min) but these differences were both not significant (SV p = 0.4077; 

CO U = 35.00, p = 0.1892) (figures 7.14d and 7.14f).  Left ventricular ejection fraction in 

non-hydrated sham (67.95±2.567%) and non-hydrated BDL (76.57±2.742%) rats were 

not significantly different to hydrated sham (67.44±1.284%; p = 0.8695) or hydrated BDL 

(75.50±2.330%; p = 0.7791) animals (figures 7.14g and 7.14h).  Similarly, cardiac index in 

non-hydrated sham (313.0±13.94 ml/min/kg) and non-hydrated BDL (469.0±26.68 

ml/min/kg) rats were not significantly different to hydrated sham (291.8±10.37 

ml/min/kg; p = 0.2490) or hydrated BDL (444.7±53.65 ml/min/kg; p = 0.6662) rats 

(figures 7.14i and 7.14j). 
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Figure 7.14: Cardiac systolic function differences between non-hydrated 
and hydrated sham and BDL rats 
Data from sham operated (left column) non-hydrated (■) and hydrated (□) and BDL (right 
column) non-hydrated () and hydrated () rats demonstrate differences in systolic function 
only for sham operated animals.  Diagram continued on next page. 
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Figure 7.14 (continued): Cardiac systolic function differences between non-
hydrated and hydrated sham and BDL rats 
Data from sham operated (left column) non-hydrated (■) and hydrated (□) and BDL (right 
column) non-hydrated () and hydrated () rats demonstrate differences in systolic function 
only for sham operated animals. 

 

7.4.3.4 Haemodynamic response to LPS 

The hepatic haemodynamic response to LPS was evaluated in sham (n = 9) and BDL (n = 6) 

rats.  Post-LPS PCMRI flow measurements were acquired on average 88.55±2.451 minutes 

after the baseline measurement.  Paired t-tests demonstrated non-significant changes in 

baseline PV flow for sham (mean difference 15.76±25.80 ml/min/100g; p = 0.5564) and 

BDL rats (mean difference -2.489±12.60 ml/min/100g; p = 0.8483) (figures 7.15a and 

7.15b).  Estimated TLBF was greater post-LPS in sham operated animals (mean difference 

67.87±33.66 ml/min/100g) but this difference was just above significance (p = 0.0787) 

(figure 7.15c).  A decline in estimated TLBF was observed post-LPS in BDL rats (mean 

difference -58.55±19.72 ml/min/100g; p = 0.0312) (figure 7.15d).  A non-significant rise 

in estimated HA flow was observed post-LPS in sham operated rats (mean difference 

38.75±41.30 ml/min/100g; p = 0.3756) (figure 7.15e).  Contrastingly, a decline in 

estimated HA flow was observed post-LPS in BDL rats (mean difference -64.99 

ml/min/100g; p = 0.0339) (figure 7.15f).  Comparison of pre and post-LPS HA fraction 

demonstrated a non-significant rise in HA fraction in sham operated rats (mean difference 

2.858±5.640%; p = 0.6260), but a just non-significant decline in HA fraction in BDL 

( p  =  0 . 8 6 9 5 )

N
o

n
- h

y
d

r a
t e

d

H
y

d
r a

t e
d

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

E
je

c
t
io

n
 f

r
a

c
t
io

n
 (

%
)

( p  =  0 . 7 7 9 1 )

N
o

n
- h

y
d

r a
t e

d

H
y

d
r a

t e
d

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

E
je

c
t
io

n
 f

r
a

c
t
io

n
 (

%
)

( p  =  0 . 2 4 9 0 )

H
y

d
r a

t e
d

N
o

n
- h

y
d

r a
t e

d

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

C
a

r
d

ia
c

 I
n

d
e

x
 (

m
l/

m
in

/k
g

)

( p  =  0 . 6 6 6 2 )

H
y

d
r a

t e
d

N
o

n
- h

y
d

r a
t e

d

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

C
a

r
d

ia
c

 I
n

d
e

x
 (

m
l/

m
in

/k
g

)

(g) (h) 

(i) 
(j) 

Sham BDL 

Sham BDL 



~ 399 ~ 
 

animals (mean difference -20.86±8.470%; p = 0.0570) (figures 7.15g and 7.15h).  Hepatic 

perfusion was compared using ASL in sham (n = 10) and BDL (n = 7) rats.  A rise in ASL 

tissue perfusion was observed in sham operated animals (mean difference 79.79±33.27 

ml/min/100g; p = 0.0400), while a non-significant decline in ASL tissue perfusion was 

observed in BDL rats (mean difference -65.58±34.39 ml/min/100g; p = 0.1052) (figures 

7.15i and 7.15j).  Examples of perfusion maps obtained in sham and BDL rats at baseline 

and post-LPS are shown in figure 7.15. 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 7.15: Hepatic haemodynamic response to LPS in sham and BDL rats 
Data from sham operated (left column) and BDL rats (right column).  Baseline (●) and post-LPS 
() data demonstrate differences in the hepatic haemodynamic response between cohorts.  
Diagram continued on next page. 
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Figure 7.15 (continued): Hepatic haemodynamic response to LPS in sham 
and BDL rats 
Data from sham operated (left column) and BDL rats (right column).  Baseline (●) and post-LPS 
() data demonstrate differences in the hepatic haemodynamic response between cohorts.  

 
  

( p  =  0 . 6 2 6 0 )

B
a

s
e

l i
n

e

P
o

s
t -

L
P

S

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

%
H

A
 f

lo
w

( p  =  0 . 0 5 7 0 )

B
a

s
e

l i
n

e

P
o

s
t -

L
P

S

- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

%
H

A
 f

lo
w

( p  =  0 . 0 4 0 0 )

B
a

s
e

l i
n

e

P
o

s
t -

L
P

S

0

2 0 0

4 0 0

6 0 0

8 0 0

A
S

L
 t

is
s

u
e

p
e

r
f
u

s
io

n
 (

m
l/

m
in

/1
0

0
g

)

( p  =  0 . 1 0 5 2 )

B
a

s
e

l i
n

e

P
o

s
t -

L
P

S

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

A
S

L
 t

is
s

u
e

p
e

r
f
u

s
io

n
 (

m
l/

m
in

/1
0

0
g

)

(g) (h) 

(i) (j) 

Sham BDL 

Sham BDL 



~ 401 ~ 
 

  

  

Figure 7.16: Sample ASL tissue perfusion maps at baseline and in response 
to LPS in sham and BDL rats 
Data from sham operated (left column) and BDL rats (right column).  Baseline (a, b) and post-LPS 
(c, d) perfusion maps with circular ROIs used for averaged parenchymal perfusion measurement.  
Tissue perfusion is given by the scale on the right of each map (x102, ml/min/100g).  Recorded 
averages using these maps for sham baseline (296.3 ml/min/100g), sham post-LPS (442.6 
ml/min/100g), BDL baseline (146.8 ml/min/100g) and BDL post-LPS (106.1 ml/min/100g) 
were included in final analyses.  Data exemplify the post-LPS haemodynamic trend demonstrated 
between cohorts, with increased sham tissue perfusion post-LPS.  Note how axial BDL liver is of 
greater size, in keeping with disease related hepatomegaly. 

 
Cardiac output measurements were used to contextualise absolute hepatic haemodynamic 

parameters to systemic circulatory factors.  Paired t-tests in sham rats demonstrated post-

LPS rises in estimated HA flow relative to cardiac output (mean difference 6.201±5.037%) 

and estimated TLBF relative to cardiac output (mean difference 11.43±5.459%) but these 

differences were both non-significant (p = 0.2532 and p = 0.0696, respectively) (figure 

7.17a and 7.17c).  Unfortunately, post-LPS cardiac cine MRI protocols were only 

completed in three BDL rats, with premature demise of the remainder of the cohort.  

Wilcoxon matched-pairs signed rank tests demonstrated changes in post-LPS estimated 

HA flow relative to cardiac output (median difference -10.26%; W = -6.000, p = 0.2500) 

and estimated TLBF relative to cardiac output (median difference 2.645%; W = 2.000, p = 

0.7500) which were both non-significant (figure 7.17b and 7.17d). 
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Figure 7.17: Response to LPS demonstrated by hepatic haemodynamic 
parameters relative to cardiac output in sham and BDL rats 
Data from sham operated (left column) and BDL rats (right column) for baseline (●) and post-
LPS () data.  The small number of BDL post-LPS datasets (n = 3) represent premature demise 
of subjects before cardiac cine MRI acquisitions were complete. 

 
Cardiac systolic function was compared in sham (n = 10) and BDL (n = 5) rats.  Paired t-

tests demonstrated rises in post-LPS heart rate that were not significant in sham rats 

(mean difference 11.00±9.025 bpm; p = 0.2539), but significant in BDL animals (mean 

difference 71.80±24.70 bpm; p = 0.0438) (figure 7.18a and 7.18b).  Non-significant 

reductions in post-LPS stroke volume were observed in both sham operated (mean 

difference -0.01858±0.01966 mls; p = 0.3693) and BDL rats (mean difference -

0.1966±0.1110 mls; p = 0.1466) (figure 7.18c and 7.18d).  Non-significant reductions in 

post-LPS cardiac output were also observed in both sham operated (mean difference -

3.518±6.241 ml/min; p = 0.5868) and BDL rats (mean difference -45.62±37.34 ml/min; W 

= -9.000, p = 0.3125) (figure 7.18e and 7.18f).  A rise in left ventricular ejection fraction 

was observed in sham operated (mean difference 6.011±2.100%; p = 0.0187) (figure 

7.18g).  A rise in left ventricular ejection fraction was also observed in BDL rats (mean 

difference 8.138±5.017%) but this was not significant (p = 0.1801) (figure 7.18h).  Finally, 

a decline in cardiac index was observed in both sham operated (mean difference -
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7.470±13.78 ml/min/100g; p = 0.6009) and BDL rats (mean difference -107.4±86.79 

ml/min/100g; p = 0.2837) (figure 7.18i and 7.18j). 

 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 7.18: Cardiac systolic function response to LPS in sham and BDL rats 
Data from sham operated (left column) and BDL rats (right column).  Baseline (●) and post-LPS 
() data demonstrate a rise in heart rate in BDL rats but no significant differences post-LPS in 
stroke volume or cardiac output in sham and BDL rats.  Diagram continued on next page. 
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Figure 7.18 (continued): Cardiac systolic function response to LPS in sham 
and BDL rats 
Data from sham operated (left column) and BDL rats (right column).  Baseline (●) and post-LPS 
() data demonstrate a significant rise in left ventricular ejection fraction in sham operated but 
not BDL rats. 
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7.4.4 DISCUSSION 

For the first time to our knowledge, we have demonstrated fully non-invasive, 

comprehensive assessment of hepatic haemodynamics in the context of liver disease and 

in a model of ACLF.  Data presented in this chapter corroborate the earlier finding of 

profound hepatic haemodynamic differences at baseline between sham and BDL cohorts, 

and when compared with earlier data demonstrate differences in perfusion parameters as 

a result of intravenous fluid resuscitation.  Finally, changes in haemodynamic parameters 

post-LPS have provided insight into vascular phenomena underpinning ACLF. 

 At baseline, fluid resuscitated BDL rats have persistently lowered PV flow, and 

much more profound reductions in TLBF relative to their sham counterparts.  HA flow is 

also significantly reduced, but HA fraction is comparable to their sham counterparts.  This 

contrasts with baseline differences in non-hydrated animals presented in section 5.4, 

where BDL rats demonstrated higher HA flow, albeit just above the significance level 

(83.75±19.12 ml/min/100g) compared with the non-hydrated sham cohort (32.98±11.29 

ml/min/100g; p = 0.0526), but HA fraction in BDL rats (51.51±6.758%) was significantly 

higher than in their non-hydrated sham counterparts (14.37±4.446%; p = 0.0007).  

Interestingly, ASL perfusion data failed to demonstrate any difference between sham and 

BDL rats.  In the presence of a potential systematic error in quantification (section 7.3) 

affecting both cohorts, it was hoped that a difference would still be detected.  Differences 

between the true sham and BDL blood-tissue partition coefficient (𝜆), may well account 

for the failure to record any difference at baseline between these two cohorts [444]. 

Hydrated BDL rats also direct a smaller portion of their cardiac output to the liver, 

although this occurs as a result of reduced proportion of portal venous rather than hepatic 

arterial flow.  This also contrasts to non-hydrated BDL rats (figure 5.11), which direct a 

comparable portion of their cardiac output to the liver relative to their sham counterparts, 

driven contrastingly by increased proportion of HA flow. 

Comparison of cardiac systolic function in hydrated sham and BDL rats confirm 

differences observed between cohorts in non-hydrated animals (figure 5.17), with 

increased stroke volume, cardiac output, left ventricular ejection fraction and cardiac 

index in BDL rats.  These differences are supported by previously published findings in 

BDL rats, which in combination are consistent with hyperdynamic circulation and features 

of cirrhotic cardiomyopathy [353, 370, 451, 452]. 

Baseline differences between non-hydrated and hydrated hepatic haemodynamic 

parameters beg important questions about the physiological response to fluid 

resuscitation.  With this in mind the haemodynamic response to intravenous fluid 
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resuscitation was compared in two separate cohorts.  We demonstrated that PV flow in 

hydrated animals is greater in both sham and BDL rats, but HA flow and more importantly 

TLBF is only greater in hydrated sham and not BDL rats.  Reflecting this, HA fraction and 

the proportion of cardiac output directed toward HA flow and TLBF are also only greater 

in hydrated sham but not BDL animals.  These changes suggest relative passivity of PV 

flow in both cohorts as a result of increased plasma volume, but impaired regulation of HA 

flow in BDL rats perhaps either as result of intrinsic dysfunction of HA flow regulation at 

the level of the hepatic capillary bed or then as a result of abnormally prioritised shunting 

of blood to other capillary beds in BDL rats.  An alternative explanation may be relate to 

chronic peripheral vasodilatation in BDL rats [452, 453].  It could be argued that because 

of this, the maintenance fluid requirements for euvolaemia are greater than in healthy 

subjects and therefore given a suitable dose of maintenance fluid, a rise in HA flow and 

TLBF would be observed.  

Assessment of cardiac systolic function also revealed differences between non-

hydrated and hydrated animals, some of which were unexpected, particularly in the sham 

cohort.  Hydrated sham animals demonstrated increased heart rate, reduced stroke 

volume and comparable (albeit just non-significant) cardiac output in relation to their 

non-hydrated counterparts.  These findings may reflect the tendency to maintain cardiac 

output in the face of systemic volaemic increase, but generally one would expect a higher 

baseline heart rate in non-hydrated animals, with a rise in cardiac output reflecting the 

replaced, and/or increased systemic plasma volume as a result of intravenous fluid 

resuscitation.  Contrastingly, systolic function in BDL rats was unchanged in the hydrated 

cohort, supporting the presence of cardiomyopathy with an overall blunted response to 

physiological stress.  At baseline, BDL rats are known to have lower mean arterial 

pressure and reduced systemic vascular resistance, consistent with a state of peripheral 

vasodilatation [370, 452].  It is therefore possible that the added fluid resuscitation could 

be absorbed within peripherally dilated capillary beds, and therefore have little effect on 

cardiac pre- or after-load, or subsequent systolic function. 

It is worth noting that non-hydrated sham (484.0±5.565g) and BDL rats 

(422.3±11.10g) were larger than their hydrated counterparts (sham 463.2±6.606g; BDL 

403.4±14.27g) even though these differences were non-significant.  It is also important to 

bear in mind that in the absence of systemic pressure monitoring and inferred 

measurements of peripheral resistance, rats in the ‘non-hydrated’ cohort had the potential 

to be in either a state of dehydration (given prior instrumentation and laparotomy) or 

euvolaemia.  Likewise animals in the ‘hydrated’ cohort were given maintenance fluid 

doses and therefore had the potential to be in a state of either euvolaemia or 
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hypervolaemia.  While our data does demonstrate intrinsic differences between sham and 

BDL animals, a genuine weakness of interpretation of this comparison is the inability to 

discriminate between these fluid states.  In the absence of paired data (before and after 

fluid resuscitation haemodynamic parameters) in the same animal, it is therefore difficult 

to be conclusive about the physiological significance of any specific differences other than 

that BDL rats respond differently, display a blunted cardiac systolic response and 

demonstrate impaired regulation of HA flow as a result of physiological haemodynamic 

stress. 

The haemodynamic response to LPS also demonstrated profound differences 

between sham and BDL rats.  Endotoxaemia was not associated with a change in PV flow 

in either sham or BDL cohorts, but a fall in TLBF was observed in BDL rats experiencing 

ACLF.  In support of these findings, previously acquired clinical data at our institution has 

shown profound reductions in indocyanine green (ICG) determined TLBF in patients with 

ACLF relative to those with stable cirrhosis [450]. 

A rise in TLBF in septic sham rats was observed but this was above the significance 

level.  A fall in HA flow was observed in BDL rats experiencing ACLF, but not in healthy 

septic animals.  Taking the changes in TLBF and HA flow together, the post-LPS drop in HA 

fraction in BDL rats was just above the significance level (p = 0.0570).  Interestingly, post-

LPS ASL tissue perfusion demonstrated a rise in hepatic perfusion in sham animals, but no 

significant change in hepatic perfusion in BDL rats.  Once again the difference between ASL 

and PCMRI findings could be ascribed to changes in post-LPS blood-tissue partition 

coefficient rather than systematic bias [444]. 

 Findings remain inconclusive in the BDL cohort for post-LPS BDL hepatic flow 

parameters relative to cardiac output (n = 3), given the small sample size.  Data from sham 

rats however suggest that healthy animals can sustain HA flow and TLBF despite acute 

endotoxaemia.  It is worth noting that the rise in the proportion of a cardiac output 

directed towards the liver recorded in septic sham rats was just above significance (p = 

0.0696). 

 Finally, assessment of cardiac systolic function demonstrated a rise in heart rate in 

septic BDL rats, and surviving animals were able to sustain stroke volume, cardiac output, 

left ventricular ejection fraction and cardiac index.  Importantly however, sham rats 

demonstrated a positive response to the septic insult, increasing left ventricular ejection 

fraction and demonstrating the capacity to maintain heart rate.  These phenomena were 

not observed in BDL rats experiencing ACLF suggesting that the absence of reserve 
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systolic function, may be an important factor contributing to their premature sepsis-

induced demise. 

 This finding highlights an important pitfall in evaluating BDL rat post-LPS data.  It 

is well recognised that even lower doses of LPS administered using routes with lower 

bioavailability (intraperitoneal injection) will trigger progressive demise of BDL rats 

[454].  Although measurements were made after a fixed 60 minute infusion of a weight-

dependent dose of endotoxin, from a total of 9 subjects, n = 4 failed to complete the entire 

imaging protocol due to premature demise, with n = 2 expiring before the PCMRI protocol 

(the first part of the post-LPS acquisition) was complete.  This therefore implies a selection 

bias in that measurements from the surviving subjects may not be representative of BDL 

population, but rather reflective of those with the capacity to survive (possibly as a result 

of BDL heterogeneity and added haemodynamic, hepatic or cardiac reserve). 

This also highlights an important logistical challenge for the use of non-invasive 

assessment using MRI.  Post-LPS data was obtained approximately 69.48±1.806 minutes 

after starting the LPS infusion, but lasted for 40-60 minutes (figure 7.8).  There is little 

doubt that in the context of acute sepsis and particularly BDL animals entering a peri-

arrest state, hepatic and cardiac variables are likely to have experienced considerable 

fluctuation during this time.  While each individual measurement might have only taken 

minutes to acquire, it is very possible that recorded TLBF for example, could have changed 

by the time cardiac output was being measured.  An important method of monitoring the 

overall haemodynamic status of the animal through the experiment (and perhaps 

controlling for changes during sepsis and peri-arrest) would have been using continuous 

mean arterial pressure measurement.  This unfortunately, was not feasible at the time of 

scanning. 

It is also worth noting that in view of time and resource constraints, an experiment 

to control for the effects of anaesthesia, scanning and intravenous infusion, in which both 

sham and BDL rats were given a continuous saline ‘vehicle’ infusion instead of LPS, was 

not performed.  This was planned, but given the small number of BDL rats completing the 

protocol, the decision was made to prioritise post-LPS data.  Conducting these 

experiments remains the subject of future work. 

 Lastly, cardiac cine MRI was used in this study to characterise cardiac systolic 

function.  Cardiac diastolic dysfunction however, is itself a subject of growing interest in 

the context of chronic liver disease [453, 455].  Diastolic function can be quantified using 

cardiac PCMRI planned across the mitral valve [456].  Experiments to characterise 
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changes in diastolic function, both as a result of disease and as a result of inflammatory 

stress would be important in future work. 

The findings presented in this section have important implications for our clinical 

understanding of hepatic haemodynamics in chronic liver disease and in ACLF.  We have 

shown profound differences between normal and diseased rats, with reduced PV flow and 

impaired hepatic arterial buffer response at baseline in hydrated BDL rats.  We have 

shown that despite hyperdynamic circulation and fluid resuscitation, BDL livers fail to 

place a comparable demand on systemic circulation in view of their increased organ:body 

mass ratio.  These findings corroborate earlier differences between non-hydrated healthy 

and diseased animals at baseline.  Our data also confirm the presence of cirrhotic 

cardiomyopathy, with elevated systolic function at rest and poor reserve under stress. 

 We have evaluated the effects of hydration by comparison with previously 

acquired data in non-hydrated animals to show that hydrated BDL rats demonstrate a 

passive splanchnic response, with increased PV flow.  Contrastingly, hydrated BDL rats fail 

to exploit the added fluid resuscitation, demonstrating persistent global and arterial 

hypoperfusion.  We have also shown a blunted cardiac response, with no difference in 

systolic function in hydrated BDL rats. 

 Finally, we have studied the vascular pathophysiology of ACLF non-invasively to 

demonstrate an exacerbation of global hepatic and arterial hypoperfusion in diseased rats.  

The significance of this finding is underscored by the observed increase in TLBF and tissue 

perfusion observed in septic sham animals.  We have also shown an impaired cardiac 

systolic response in ACLF, with failure to respond to endotoxaemia with rises in ejection 

fraction, as seen with sham rats. 

The observation of these phenomena raises important questions about the causes 

and effects of decline in chronic liver disease and ACLF.  It is still unclear for example 

whether hepatic hypoperfusion is a cause or sequelae of ACLF.  Future work should be 

directed towards investigating the relationship between hepatic perfusion, cardiac reserve 

and survival in BDL rats post-LPS.  Taking advantage of the non-invasive nature of MR 

assessment, sequential haemodynamic characterisation studies in the same animal as 

biliary cirrhosis evolves over a 4-5 week period would also provide invaluable insight into 

the development of chronic liver disease.  This could be achieved using fewer 

experimental subjects in line with the concept of ‘reduction’ as part of the 3Rs of animal 

research [457].  Such studies could also easily be performed to study vascular phenomena 

in alternative acute and chronic models of liver injury (e.g. carbon tetrachloride, 

thioacetamide).  The non-invasive methods proposed also set a novel precedent for the 
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development and assessment of new therapies in the context of hepatic haemodynamic 

parameters.  New treatments for ACLF could be developed preclinically, aimed at 

improving TLBF as measured non-invasively using our methods. 

 

7.4.5 CONCLUSION 

In this section, we have used preclinical PCMRI, cardiac cine MRI and ASL to characterise 

hepatic haemodynamics non-invasively in a model of chronic liver disease and in ACLF.  

Our data demonstrate hepatic hypoperfusion in hydrated animal models of liver disease, 

with reduced PV flow and impaired hepatic arterial buffer response.  Despite 

hyperdynamic circulation, fluid resuscitation and increased organ:body mass ratio, 

diseased livers fail to place a comparable demand on systemic circulation.  We have 

confirmed the presence of cirrhotic cardiomyopathy, with elevated systolic function at rest 

and poor reserve under stress.  We have demonstrated relative passivity to changes in PV 

flow, with impaired HA flow response following hydration in disease.  Finally, we have 

demonstrated that ACLF is characterised by exacerbation of global hepatic and arterial 

hypoperfusion, absence of normal sepsis-induced hepatic hyperaemia and a blunted 

cardiac systolic response to sepsis. 
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7.5 CLOSING COMMENTS 

 
This chapter represents the culmination of previous preclinical work presented in 

Chapters 2, 3, 4 and 5.  Building on the methods developed in these chapters, we 

addressed an important limitation through the implementation of FAIR ASL – a novel 

method for quantification and quantitative anatomical assessment of hepatic tissue 

perfusion.  We evaluated the agreement of this method with previously invasively 

validated PCMRI techniques and demonstrated that the T1 measurements underpinning 

quantification are repeatable and capable of demonstrating differences between sham and 

BDL rats. 

 We subsequently applied PCMRI, cardiac cine MRI and ASL to study 

haemodynamic differences non-invasively in healthy and diseased animals at baseline, 

during hydration and post-inflammatory stress.  Our findings have demonstrated 

profound hepatic haemodynamic differences between healthy and diseased rats and 

provided novel insights in the vascular pathophysiology of ACLF. 

 While these changes have valuable implications for developing both our 

understanding and novel therapeutic strategies in managing chronic liver disease and 

ACLF, the preclinical imaging methods developed in this thesis are especially interesting 

because of their potential for translation onto clinical imaging systems.  We have 

previously implemented, validated and studied the reproducibility of clinical PCMRI for 

hepatic haemodynamic assessment in normal volunteers (section 5.5).  Using these tools, 

we can now finally translate this work into the clinical environment, using non-invasive 

MR haemodynamic assessment to further our understanding of vascular pathophysiology 

and investigate haemodynamic effects of treatments for portal hypertension in patients 

with chronic liver disease. 
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CHAPTER 8 
 

BLOOD FLOW STUDIES 
IN CHRONIC LIVER DISEASE 

– CLINICAL STUDIES 
 

 

 

 

 

 

“…and down below, 
the filter and the balance, 

the delicate chemistry 
of the liver, 

the storehouse 
of the subtle changes: 

no one 
sees or celebrates it, 

but, when it ages 
or its mortar wastes away, 

the eyes of the rose are gone…” 
 

- Ode to the liver [2]. 
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8.1 INTRODUCTION 

 
In section 5.5, we translated preclinical PCMRI methods onto a clinical system and 

demonstrated feasibility, consistency and reproducibility of PCMRI measurements in 

normal volunteer studies.  Clinical translation however brings practical challenges as well 

as opportunities.  Unlike normal volunteers, patients can struggle with lengthy scanning 

protocols particularly when these require multiple and extended breath holds.  

Contrastingly, patients with chronic liver disease undergoing invasive haemodynamic 

studies as part of their standard of care provide a unique opportunity for validation of 

non-invasive MRI derived measurements.  In this chapter we present pilot data for a 

planned larger scale study.  Using the same PCMRI methods from our normal volunteer 

study, we determine the feasibility of the imaging protocol in patients, evaluate the 

consistency of flow measurements and present preliminary invasive validation data.  We 

explore the relationship between invasive and non-invasive PCMRI measurements before 

characterising differences in PCMRI haemodynamic measurements in patients with 

chronic liver disease.  Finally, we demonstrate the potential of our PCMRI methods for 

evaluation of pharmacological and interventional therapies in patients with chronic liver 

disease undergoing treatment for portal hypertension. 

8.2 AUTHOR CONTRIBUTIONS 

 
In fulfilment of the aims in this chapters, I: (a) implemented clinical PCMRI protocols 

developed previously (Chapter 5); (b) performed invasive validation studies, including 

transjugular measurement of hepatic venous pressure gradient (HVPG) and drawing of 

hepatic venous samples for measurement of ICG clearance; (c) developed, procured, 

secured and maintained ethical approval for patient recruitment; (d) recruited and 

transported patients from the recruitment site to the hospital where the scanner was 

located; (e) supervised the scanning of all patients; (f) collected and analysed all the data; 

(g) prepared all the material contained within this chapter. 

 Proprietary clinical PCMRI sequences were adapted by Alan Bainbridge for hepatic 

applications, with additional input from David Atkinson.  All HVPG measurements were 

performed with the supervision of Raj Mookerjee.  Indocyanine green (ICG) clearance 

quantification was undertaken by Helen Jones.  Recruitment of TIPSS patients was 

facilitated by David Patch.  Ethical approvals for this study were sought under the 

supervision of Shonit Punwani.  All clinical scans were conducted by MRI radiographers. 

Statistical power calculations were undertaken by Paul Bassett.  
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8.3 BACKGROUND 

 
Optimisation for PCMRI scanning protocols used during normal volunteer studies was 

tailored around meeting the potential challenges when scanning patients – we review 

some of these adaptations briefly.  Firstly, velocity encoding settings of 40, 60, 60, 80 and 

120 cm/s for PV, HA, proximal IVC, distal IVC and aortic root flow measurements were 

used respectively, based on prior experience.  Two-dimensional PCMRI studies were 

planned in exactly the same way as for normal volunteers, to ensure vessel orthogonality 

(figures 5.19 and 5.20).  All anatomical imaging was obtained in expiratory breath-hold.  

Chronic liver disease is associated with macrovascular anatomical change, including 

cavernous transformation of the portal vein, the presence of large perihepatic porto-

systemic shunts, the potential for PV and hepatic venous thrombus and increased vessel 

tortuosity [458].  Anatomical images were carefully reviewed for these complications and 

planning was adjusted accordingly (figure 8.1). 
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Figure 8.1: Additional anatomical considerations when planning PCMRI 
studies in patients with chronic liver disease  
Imaged cirrhotic livers were (a) commonly atrophic and of irregular outline; (b) were associated 
with ascites, as demonstrated by the high perihepatic signal; (c) were associated with pleural 
effusions, as demonstrated by the high signal in the right hemithorax; (d) occasionally PV 
thrombus was identified, as shown but the low intravascular signal (, white) in the right portal 
vein; (e) TIPSS stents (▲, white) were not associated with significant artefact and (f) multiple 
extra-hepatic shunts, as shown by the tortuous vessels (, white) were commonly identified. 

 
  

(a) (b) 

(c) (d) 

(e) (f) 
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All PCMRI data was acquired at the same resolution as previously (336 x 336 matrix size, 5 

mm slice thickness, field-of-view 271 x 210 mm and consequent in-plane spatial 

resolution of 0.808 x 0.625 mm2) and undertaken in expiratory breath-hold.  Given that 

patients with liver disease are likely to have higher heart rates and smaller breath-hold 

capacity, the decision was made to use a low temporal resolution PCMRI acquisition with 

only seven phases through the cardiac cycle.  This enabled measurements to be completed 

within a single breath-hold (< 15 seconds).  To mitigate the potential sampling errors that 

might arise as a result of the lower temporal resolution acquisition and other factors, all 

measurements were performed in triplicate and recorded measurements were averaged 

across three acquisitions.  Pulse oximetry was used for cardiac gating.  Prior to 

scanning, all patients were instructed on the breath-hold protocol to maximise compliance 

with instructions while in the scanner. 

In order to validate PCMRI measurements, all patients included in the study 

underwent invasive transjugular haemodynamic studies.  Measurements of hepatic 

venous pressure gradient (HVPG) [15, 23, 34] and indocyanine green (ICG) clearance [39, 

40] were obtained after hepatic venous catheterisation and based on the principles 

described in section 1.2.3.  

To study the ability of PCMRI to detect differences and changes in haemodynamic 

parameters in patients, data was collected at baseline and post-treatment in patients 

enrolled on a phase II trial of obeticholic acid (OCA) or following a transjugular 

intrahepatic porto-systemic shunt (TIPSS) procedure.  Obeticholic acid is an agonist of the 

farnesoid-X-receptor (FXR), a transcription factor expressed in several tissues, including 

the liver [459].  FXR is activated by bile acids and is known to regulate the expression of 

multiple genes including those responsible for bile acid homeostasis, carbohydrate and 

lipid metabolism, vasoregulation and possibly even fibrosis [460-464].  There have been a 

number of proposed mechanisms for the vasoactive effects of FXR activation, including 

reduced asymmetric dimethyl-arginine (ADMA) levels (with resultant increases in 

endothelial nitric oxide synthetase (eNOS)) [465, 466].  Preclinical studies using in-situ 

perfused BDL mouse livers have demonstrated reductions in portal pressure and 

intrahepatic resistance in response to treatment [467].  Clinical studies performed in 

patients with portal hypertension have also demonstrated post-treatment reductions in 

HVPG [468]. 

 TIPSS procedures can be used to treat secondary complications of portal 

hypertension with indications ranging from acute management of variceal bleeds to 

elective management of refractory ascites [24, 469].  The principle of creating a large 
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physical shunt between the hepatic and portal veins, has been shown to have profound 

effects on hepatic haemodynamics, with previously demonstrated changes in portal and 

azygous venous flow using PCMRI [194]. 

 With this in mind, in this section we aim to (a) demonstrate the feasibility of using 

our newly developed PCMRI methods to measure haemodynamic parameters in patients 

with chronic liver disease, (b) assess the agreement and explore the relationship between 

PCMRI and invasive haemodynamic measurements, (c) characterise differences between 

cirrhotic patients with significant portal hypertension and normal volunteers using PCMRI 

and (d) demonstrate the potential of PCMRI in measuring post-treatment changes in 

patients (i) participating in a phase II OCA trial and (ii) undergoing TIPSS procedures. 
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8.4 METHODS 

8.4.1 SUBJECTS AND PREPARATION 

Local ethics committee approval was obtained and all participants provided informed 

written consent.    Participant information sheets and consent form copies can be found in 

Appendix F.  Histologically confirmed cirrhotic patients requiring elective invasive 

transjugular studies were identified from the hepatology outpatient clinic (n = 9) (most of 

which were subsequently screened for recruitment into the phase II OCA trial, n = 7) and 

elective TIPSS lists for refractory ascites (n = 5).  Subjects were contacted by post with 

participation confirmed after follow-up telephone call.  There were eleven male (aged 

50.27±3.311 years) and four female (aged 53.50±3.663 years) patients recruited into the 

study.  Subjects were excluded if (a) they had any contraindication to standard MR 

imaging, (b) were unable to give consent, (c) were allergic to Gd-DOTA (gadoterate 

dimeglumine), (d) had deranged renal function, with estimated glomerular filtration rate < 

30 ml/min or (e) were allergic to ICG.  Participants were asked to remain fasted for six 

hours prior to imaging with ad libitum consumption of water but not caffeinated fluids. 

8.4.2 SAMPLE SIZE 

Correlation of PCMRI TLBF with ICG clearance was prioritised for calculation of sample 

size.  At the time of planning the study, it was unclear if formal ICG clearance 

measurements were to be undertaken (therefore yielding measurements in units other 

than ml/min/100g).  Studies were therefore planned based on Pearson’s correlation 

analysis.  Power calculations were undertaken for a statistical power of 90% and a 5% 

significance level.  Assuming a correlation coefficient r ≥ 0.6 as clinically useful, a sample of 

n = 25 subjects would be advised. 

8.4.3 TWO-DIMENSIONAL CINE PCMRI 

Imaging was performed as previously, using a 3.0T scanner (Achieva, Philips Healthcare, 

Best, Netherlands) with a 16 channel body coil (SENSE XL-Torso, Philips Healthcare, Best, 

Netherlands).  The coil was positioned over the lower thorax and upper abdomen and 

subjects were monitored using digital pulse oximetry and bellows. 

 Initial scouts were performed to ensure inclusion of the entire cardiac and liver 

volume within the field-of-view.  Coronal images of the upper abdomen and lower thorax, 

and sagittal images including the abdominal great vessels were obtained with successive 

expiratory breath-holds using a gradient echo sequence.  Localisation of the vascular 

structures of interest was performed as described previously (section 5.5.1), with 
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additional anatomical imaging through the PV.  PCMRI studies were planned through the 

PV, common HA, proximal IVC, distal IVC and aortic root in succession.  Where HA 

anatomical variations were noted (n = 3), measurements were made as close as possible to 

the aortic origin and measurements were obtained from more than one vessel where 

necessary.  Studies were performed in expiratory breath-hold and cardiac gated using 

peripheral pulse oximetry and settings listed previously (table 5.3).  Before each scan, 

subject heart rate was recorded on the scanner console software to optimise the 

arrhythmia rejection window.  Acquisition time for each measurement was less than 20 

seconds.  Each PCMRI study was repeated three times in succession.  All PCMRI 

measurements, including planning time were usually completed within 20 minutes.  

Quantitation was performed using the freely available software package, Segment 

(Medviso, Lund, Sweden). 

8.4.4 VOLUMETRIC ASSESSMENT AND BULK FLOW NORMALISATION 

All PCMRI bulk flow measurements were normalised to liver volume.  Liver volume was 

measured using 5 mm slice thickness gradient echo coronal anatomical images.  

Segmentation was performed manually using Amira (Amira Resolve RT, Visage Imaging, 

Berlin, Germany).  A tissue density of 1.0 g/ml was assumed [193]. 

8.4.5 CAVAL SUBTRACTION PCMRI CONSISTENCY STUDIES 

Caval subtraction PCMRI consistency studies were undertaken as previously (section 5.5).  

To measure the consistency of estimated TLBF using subtracted PCMRI IVC flows, 

comparison was made with bulk inflow PCMRI measurements at the PV and common HA.  

Comparisons between caval subtraction PCMRI estimated and directly measured HA flow 

and HA fractions were also studied. 

8.4.6 INVASIVE VALIDATION STUDIES 

After ultrasound guided cervical puncture of the right internal jugular vein (Sonosite 

Titan, SonoSite Inc, Washington, USA), the right hepatic vein was cannulated under 

fluoroscopic guidance (Axiom Artis Zee, Siemens Healthcare, Munich, Germany) using a 

balloon-tipped catheter (Cordis, Roden, Netherlands).  Care was taken to advance the 

catheter into a wedged position, with no collateral run-off, as confirmed using digital 

subtraction angiography (Omnipaque, Amersham Health, Little Chalfont, UK).  Wedged 

and free hepatic venous pressure measurements were made with the balloon inflated and 

deflated respectively.  Pressure traces were monitored continuously to confirm stability of 

the recordings and paired pressure readings were performed in triplicate.  HVPG was 

calculated as the difference between free and wedge hepatic venous pressure.  Average 

measurements were recorded for final analysis. 
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 Total liver blood flow was measured invasively using a weight-based primed and 

subsequent continuous infusion of ICG (Pulsion Medical Systems, Munich, Germany).  

Simultaneous paired samples, following radial artery puncture at the wrist and from the 

hepatic vein (following cannulation for HVPG measurement) were collected.  ICG 

extraction was then calculated in accordance with the Fick principle [39, 470].  ICG TLBF 

measurements were normalised to anatomical MRI derived liver volumes for comparison 

with PCMRI measurements. 

 For ICG and PCMRI measurements of TLBF (L/min), intra-hepatic resistance (IHR, 

dynes.sec/cm5) was calculated from HVPG (mmHg) using the following equation [471-

473]: 

IHR =
HVPG ∙ 80

TLBF 
 

 
(Equation 8.1) 

 
Validation of PCMRI estimated TLBF and IHR was undertaken using ICG-derived TLBF and 

IHR. 

8.4.7 HAEMODYNAMIC CHARACTERISATION STUDIES 

To investigate the ability of PCMRI to characterise differences between patients, data was 

stratified using invasive HVPG measurements.  Cirrhotic patients with HVPG 

measurements ≥ 12 mmHg were deemed as higher risk portal hypertensive patients as 

they are known to be at higher risk of developing variceal bleeds [474-476].  To control for 

the presence of cirrhosis, comparison with PCMRI flow parameters obtained from normal 

volunteers at baseline was also undertaken.  Subject recruitment and methods for this 

cohort are described in section 5.5.2. 

8.4.8 BASELINE AND POST-TREATMENT STUDIES 

For patients recruited into the efficacy cohort of the phase II OCA trial, both MRI and 

invasive studies were undertaken before and following a 12 day course of 25 mg oral OCA.  

All MRI studies were performed within 6 days of the invasive studies. 

For patients undergoing TIPSS procedures, MRI studies were undertaken before 

and after a single invasive procedure.  Pre-TIPSS HVPG measurements were recorded for 

correlation with baseline measurements.  Post-TIPSS MRI studies took place within two 

days of the TIPSS procedure. 

  



~ 421 ~ 
 

8.4.9 STATISTICAL ANALYSIS 

Kolmogorov-Smirnov tests were used to confirm normality of variable distributions.  

Consistency and validation studies were assessed using paired t-tests, Bland-Altman 

analysis of agreement with calculation of the coefficient of repeatability and assessment of 

correlation between measurements using Pearson’s correlation coefficient.  The 

relationship between HVPG and PCMRI haemodynamic parameters was investigated using 

Pearson’s correlation coefficient.  Differences between normal volunteer controls, 

cirrhotics (HVPG < 12 mmHg) and cirrhotics (HVPG ≥ 12 mmHg) were assessed using one-

way analysis of variance (ANOVA) with corrections for non-sphericity.  Post-hoc Tukey’s 

tests were conducted where significant differences were identified.  Given the small 

sample sizes, baseline and post-OCA treatment differences were analysed using Wilcoxon 

matched pairs signed rank tests.  The threshold of statistical significance was defined to be 

p < 0.05. 
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8.5 RESULTS 

8.5.1 COHORT FEATURES 

A total of n = 14 patients were recruited into the MRI study, with n = 7 patients derived 

from the phase II OCA trial, n = 5 from elective TIPSS lists and n = 2 requiring invasive 

haemodynamic assessment from hepatology outpatient clinic.  All patients had established 

alcoholic cirrhosis, with the exception of one patient with chronic hepatitis C cirrhosis 

(baseline TIPSS cohort) and another patient with non-alcoholic steatohepatitis cirrhosis 

(hepatology clinic, but non-OCA trial).  Post-treatment MRI scans were performed in n = 8 

patients (n = 4 post-OCA, n = 4 post-TIPSS), but full paired data sets were only available for 

n = 5 patients (n = 4 OCA trial, n = 1 post-TIPSS).  A total of 19 scans were performed.  

Cohort features are summarised in table 8.1. 

Table 8.1: Cohort numbers for clinical studies 
 

 BASELINE POST-TREATMENT 
Phase II OCA trial 7 4 (all paired) 

Elective TIPSS 2 4 (n = 1 paired) 

Hepatology outpatient clinic 2 - 

 
Exclusions included one subject who developed an urticarial reaction to ICG, following 

baseline invasive flow studies.  Post-OCA ICG measurements were therefore not 

undertaken in this subject.  HVPG data was recorded prior to and just after TIPSS 

insertion, but because of inconsistencies in the methodology of post-TIPSS HVPG 

recordings, this data was excluded.  ICG clearance studies were not undertaken in patients 

undergoing TIPSS procedures because of logistical considerations. 
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8.5.2 PCMRI FEASIBILITY 

PCMRI flow studies in cirrhotic patients demonstrated physiological (figure 8.2) and 

pathological flow profiles through the PV (figure 8.3), common HA, proximal IVC, distal 

IVC and aortic root. 

  

  

 

 
Figure 8.2: Bulk flow profiles 
through the cardiac cycle in cirrhotic 
patients using cine PCMRI 
Data from the same subject demonstrating flow 
profiles for the (a) PV (overall flow 1634±61.67 
ml/min), (b) common HA (overall flow 
396.7±37.16 ml/min), (c) proximal IVC (overall 
flow 3750±125.7 ml/min), (d) distal IVC 
(overall flow 5722±162.2 ml/min) and (e) 
aortic root (overall flow 8368±288.6 ml/min).  
Multiple flow profiles are shown for each vessel 
as three measurements were performed in 
succession. 
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Retrograde PV flow, a well-documented phenomenon in chronic liver disease, was 

observed in one subject both pre and post-OCA (figure 8.3).  The presence of retrograde 

PV flow had implications for the calculation of PCMRI estimated HA flow, TLBF and HA 

fraction, which we explore in the discussion. 

  

 

 
 
Figure 8.3: Retrograde portal venous 
flow in a cirrhotic patient at baseline 
Sagittal anatomical image (a) demonstrating the 
PV (▲, white) and HA (, white) and phase 
contrast velocity map (b), of the same slice 
demonstrating opposing directional flow shown 
by white signal in the PV (▲) and dark signal in 
the HA ().  Bulk flow profiles for the PV in this 
patient (overall flow -358.4±50.81 ml/min ) are 
shown in (c). 

 
Compliance with breath-holds was more of an issue in patients (figure 8.4), but because of 

the volume of blood flow underpinning phase contrast signal, quantification was not 

necessarily problematic. 
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Figure 8.4: Motion artefact during measurement of portal venous flow in a 
cirrhotic patient at baseline 
Oblique anatomical image (a) demonstrating the PV (▲, white) and phase contrast velocity map (b), of 
the same slice demonstrating flow signal from the PV (▲).  In spite of the corruption by motion 
artefact best appreciated in (a), bulk PV flow was still quantifiable.  The triplicate measurement 
average for this patient was 550.8±19.94 ml/min. 
 

8.5.3 CAVAL SUBTRACTION PCMRI CONSISTENCY 

Consistency of caval subtraction PCMRI was assessed by comparison of (a) estimated 

TLBF with the sum of directly measured PV and HA flow, (b) estimated HA flow with 

directly measured HA flow and (c) estimated HA fraction with directly measured HA 

fraction.  Agreement was assessed in patients (n = 14), at baseline and post-treatment 

using a total of nineteen measurements.  Patients from all three cohorts were pooled into 

baseline and post-treatment categories for analysis. 

Paired t-tests demonstrated a non-significant difference between estimated TLBF 

and directly measured TLBF at baseline (mean difference 7.327±4.478 ml/min/100g; p = 

0.1328) and an almost significant difference post-treatment (mean difference 11.01±4.841 

ml/min/100g; p = 0.0571).  The coefficient of variation was higher for caval subtraction 

PCMRI measurements at baseline (58.49% vs 49.50%; estimated TLBF vs directly 

measured TLBF) but not post-treatment (40.39% vs 49.97%; estimated TLBF vs directly 

measured TLBF).  Graphical analysis (figure 8.5b) showed significant and strong 

correlations between estimated and directly measured TLBF using PCMRI (r = 0.9712; p < 

0.0001). 
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Figure 8.5: Agreement between estimated TLBF derived from caval 
subtraction PCMRI and inflow TLBF measured directly with PCMRI in 
patients with cirrhosis 
Strong correlations and encouraging agreements between estimated TLBF and directly measured 
TLBF were demonstrated at baseline (■) and post-treatment (▲).  The coefficient of repeatability 
between measurement methods for the entire dataset was 27.64 ml/min/100g. 

 
Because a fixed quantity (PCMRI PV flow) was subtracted from estimated and directly 

measured TLBF, paired t-tests for estimated and directly measured HA flow demonstrated 

the same mean differences and significance levels as previously.  The coefficient of 

variation was higher for estimated HA flow measurements at baseline (78.32% vs 70.74%; 

estimated vs directly measured HA flow), but similar post-treatment (32.71% vs 31.81%; 

estimated vs directly measured HA flow).  Graphical analysis (figure 8.6b) showed 

significant correlations between estimated and directly measured HA flow using PCMRI (r 

= 7927; p < 0.0001). 

 
 

  
Figure 8.6: Agreement between estimated HA flow derived from caval 
subtraction PCMRI and HA flow measured directly with PCMRI in patients 
with cirrhosis 
Although strong correlations were observed between estimated and directly measured HA flow at 
baseline (■) and post-treatment (▲), the coefficient of repeatability between measurement 
methods for the entire dataset was 27.64 ml/min/100g, which was large in view of absolute HA 
flow. 
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Paired t-tests demonstrated a non-significant difference between estimated and directly 

measured HA fraction at baseline (mean difference 2.959±2.399%; p = 0.2486) and post-

treatment (mean difference 5.217±2.776%; p = 0.1092).  The coefficient of variation for 

estimated HA fraction was smaller than when measured directly at baseline (46.86% vs 

57.11%; estimated vs directly measured HA fraction), but larger than when measured 

directly post-treatment (40.30% vs 30.09%; estimated vs directly measured HA fraction).  

Graphical analysis (figure 8.7b) showed significant correlations between estimated and 

directly measured HA fraction using PCMRI (r = 0.8581; p < 0.0001). 

 
 
 

  
Figure 8.7: Agreement between estimated HA fraction derived from caval 
subtraction PCMRI and HA fraction measured directly with PCMRI in 
patients with cirrhosis 
Strong correlations were observed between estimated and directly measured HA fraction at 
baseline (■) and post-treatment (▲).  The coefficient of repeatability between measurement 
methods for the entire dataset was 14.39%. 

8.5.4 CAVAL SUBTRACTION PCMRI VALIDATION 

Validation of PCMRI measurements of TLBF and PCMRI (combined with HVPG) derived 

IHR was undertaken using measurements of TLBF and IHR determined using ICG.  Patients 

from all three cohorts were pooled into baseline and post-treatment categories for 

analysis.  Agreement was assessed in patients at baseline (n = 5) and post-treatment (n = 

3).  Given the small numbers in each cohort, baseline and post-treatment pairs were 

pooled for analysis.  TLBF measurements using PCMRI and ICG were significantly different 

(mean difference -35.78±12.28 ml/min/100g; p = 0.0226).  The coefficient of variation 

was slightly lower for PCMRI TLBF (42.98% vs 50.77%; PCMRI TLBF vs ICG TLBF).  

Graphical analysis (figure 8.8b) demonstrated modest positive correlation between the 

two methods, that approached significance (r = 0.6436; p = 0.0851). 
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Figure 8.8: Validation of PCMRI TLBF with ICG clearance in cirrhotic 
patients 
Despite small sample size (n = 8), encouraging positive correlation between PCMRI estimated 
TLBF and invasive methods was demonstrated at baseline (■) and post-treatment (▲).  The 
coefficient of repeatability between measurement methods for the entire dataset was a large 
68.10 ml/min/100g. 

 
Mean differences between paired PCMRI IHR and ICG IHR measurements were also 

significantly different (mean difference -729.0±177.5 dynes.sec/cm5; p = 0.0045).  The 

coefficient of variation was considerably smaller for PCMRI IHR (50.02% vs 86.24%; 

PCMRI IHR vs ICG IHR).  Graphical analysis (figure 8.9b) showed an encouraging positive 

and significant correlation between the two methods (r = 0.8382; p = 0.0094). 

 
 

  
Figure 8.9: Validation of PCMRI IHR using ICG IHR in cirrhotic patients 
An encouraging and strong positive correlation between PCMRI and invasive methods was 
demonstrated at baseline (■) and post-treatment (▲).  The coefficient of repeatability between 
measurement methods for the entire dataset was a large 984.2 dynes.sec/cm5. 

8.5.5 NON-INVASIVE AND INVASIVE HAEMODYNAMIC PARAMETER RELATIONSHIPS  

The relationship between HVPG and PCMRI haemodynamic parameters was evaluated in 

ten patients, at baseline (n = 10) and post-treatment (n = 5) using a total of fifteen 

measurements.  Poor and non-significant correlations were demonstrated across the 

entire cohort between HVPG and PV flow (r = 0.1216, p = 0.6660), HVPG and estimated 

TLBF (r = 0.2576, p = 0.3539), HVPG and estimated HA flow (r = 0.2658, p = 0.3384) and 

HVPG and HA fraction (r = 0.3582, p = 0.2293).  Interestingly both baseline estimated HA 

0 5 0 1 0 0 1 5 0

- 1 5 0

- 1 0 0

- 5 0

0

5 0

1 0 0

1 5 0

A v e r a g e  o f  t w o  T L B F

m e a s u r e m e n t s  ( m l / m i n / 1 0 0 g )

M
e

a
n

 d
if

f
e

r
e

n
c

e
 o

f

e
a

c
h

 m
e

t
h

o
d

 o
f

T
L

B
F

 m
e

a
s

u
r

e
m

e
n

t

(
m

l/
m

in
/1

0
0

g
)

( r  =  0 . 6 4 3 6 ,  p  =  0 . 0 8 5 1 )

0 5 0 1 0 0 1 5 0 2 0 0

0

2 0

4 0

6 0

8 0

1 0 0

P C M R I  T L B F  ( m l / m i n / 1 0 0 g )

IC
G

 T
L

B
F

(
m

l/
m

in
/1

0
0

g
)

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0

- 3 0 0 0

- 2 0 0 0

- 1 0 0 0

0

1 0 0 0

2 0 0 0

3 0 0 0

A v e r a g e  o f  t w o  I H R

m e a s u r e m e n t s  ( d y n e s . s e c / c m
5

)

M
e

a
n

 d
if

f
e

r
e

n
c

e
 o

f

e
a

c
h

 m
e

t
h

o
d

 o
f

IH
R

 m
e

a
s

u
r

e
m

e
n

t

(
d

y
n

e
s

.s
e

c
/c

m
5

)

( r  =  0 . 8 3 8 2 ,  p  =  0 . 0 0 9 4 )

P C M R I  I H R  ( d y n e s . s e c / c m
5

)

IC
G

 I
H

R

(
d

y
n

e
s

.s
e

c
/c

m
5

)

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

(a) (b) 

(a) (b) 



~ 429 ~ 
 

flow (figure 8.10c) and HA fraction (figure 8.10d) demonstrated positive correlations with 

HVPG, which though just above significance for estimated HA flow (r = 0.6251, p = 0.053), 

were significant for HA fraction (r = 0.7755, p = 0.0141). 

 

  
 

  

Figure 8.10: HVPG correlations with hepatic PCMRI flow parameters in 
cirrhotic patients 
Encouraging correlations were detected between baseline (■) estimated HA flow and HVPG (r = 
0.6251, p = 0.053) and baseline HA fraction and HVPG (r = 0.7755, p = 0.0141).  Poor HVPG 
correlations were demonstrated for pooled baseline (■) and post-treatment (▲) PV flow, TLBF, 
HA flow and HA fraction data. 

 
No HVPG correlations were demonstrated for estimated TLBF as a percentage of cardiac 

output (r = -0.4009, p = 0.1386) or estimated HA flow as a percentage of cardiac output (r 

= -0.01486, p = 0.9581).  Interestingly, a weak but just non-significant positive correlation 

was demonstrated for baseline HA flow as a percentage of cardiac output and HVPG (r = 

0.5778, p = 0.0802). 
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Figure 8.11: HVPG correlations with cardiac output normalised hepatic 
PCMRI flow parameters in cirrhotic patients 
A weak correlation but just non-significant was detected between baseline (■) estimated HA flow 
as percentage of cardiac output and HVPG (r = 0.5778, p = 0.0802).  Poor HVPG correlations were 
demonstrated for pooled baseline (■) and post-treatment (▲) TLBF and HA flow as a percentage 
of cardiac output. 

 
The strongest HVPG correlation across pooled data was demonstrated using cardiac 

output (r = 0.571, p = 0.0260) (figure 8.12). 

 

 
 
 
Figure 8.12: HVPG correlation 
with cardiac output in cirrhotic 
patients 
A weak but significant positive 
correlation was detected between pooled 
baseline (■) and post-treatment (▲) 
cardiac output and HVPG. 
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It is worth noting that the calculation for IHR includes HVPG (equation 8.1), so a positive 

correlation would be expected between these two variables.  In the absence of the baseline 

outlier (HVPG 15 mmHg, IHR 2913 dynes.sec/cm5), a modest but significant positive 

correlation was detected (r = 0.6177, p = 0.0323). 

 
 
 
Figure 8.13: HVPG correlation 
with PCMRI IHR in cirrhotic 
patients 
No correlation was detected between 
pooled baseline (■) and post-treatment 
(▲) data.  Significant correlations were 
detected in the absence of the outlier 
(HVPG 15 mmHg, IHR 2913 dynes.sec/cm5). 
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8.5.6 HAEMODYNAMIC CHARACTERISATION STUDIES 

Comparisons were undertaken between patients (n = 11) and controls (normal volunteers, 

n = 13).  Data collected in patients at baseline (n = 11) and post-treatment (n = 4) was 

pooled together before further stratification into datasets with HVPG < 12 mmHg (n = 3 

baseline, n = 3 post-treatment) and those with HVPG ≥ 12 mmHg (n = 8 baseline, n = 1 

post-treatment). 

 Unpaired t-tests demonstrated an expected significant difference in HVPG between 

the two cirrhotic cohorts (HVPG<12 mmHg: mean 8.833±0.8724 mmHg; HVPG≥12 mmHg: 

mean 15.50±0.6814 mmHg; p < 0.0001) (figure 8.14a).  IHR in the cirrhotic HVPG≥12 

mmHg cohort (non-normally distributed, median 772.6 dynes.sec/cm5) was higher than in 

the cirrhotic HVPG<12 mmHg cohort (median 563.3 dynes.sec/cm5), but this difference 

was just above statistical significance (U = 9.000, p = 0.0593) (figure 8.14b). 

 

 

 

Figure 8.14: HVPG and PCMRI IHR in cirrhotic portal hypertensive patients 
An expected significant difference was noted in HVPG, with differences in PCMRI derived IHR 
approaching significance.  IHR was higher in cirrhotics with more severe portal hypertension, as 
expected by the mathematical derivation of this parameter. 
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Liver volume was found to be significantly different across all three cohorts (F(2, 24) = 

4.725; p = 0.0186), however significant differences on post-hoc testing were only 

identified between control and cirrhotic patients with HVPG<12mmHg.  No significant 

difference in liver volume was recorded between less and more severely portal 

hypertensive cirrhotics (figure 8.15). 

 

 
 
Figure 8.15: Liver volume in 
cirrhotic portal hypertensive 
patients  
A significant increase in mean volume was 
detected between controls and cirrhotics 
with HVPG<12mmHg.  Mean liver volume 
declined in more severely portal 
hypertensive patients with significant 
difference in relation to the other two 
cohorts. p-value quoted for one-way 
ANOVA test. 
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No significant difference in PV flow was detected across all three cohorts (F(2,25) = 

0.9861; p = 0.3871) (figure 8.16a).  Differences between estimated TLBF however did 

approach significance (F(2, 25) = 3.177; p = 0.0590), with post-hoc tests demonstrating a 

significant difference between controls (mean TLBF 68.85±4.737 ml/min/100g) and 

cirrhotics with HVPG≥12 mmHg (mean TLBF 113.3±21.69 ml/min/100g) (figure 8.16b).  

Estimated HA flow was also significantly different across all three cohorts (F(2,25) = 

4.432; p = 0.0227), with significantly higher HA flow in cirrhotics with HVPG≥12 mmHg 

(mean HA flow 38.41±7.846 ml/min/100g) relative to controls (mean HA flow 

11.99±4.821 ml/min/100g) (figure 8.16c).  No significant differences in HA fraction were 

detected across the three cohorts (F(2,23) = 1.736; p = 0.1986) (figure 8.16d). 

 
 

 
  

Figure 8.16: PCMRI hepatic haemodynamic parameters in cirrhotic portal 
hypertensive patients 
p-values are quoted for one-way ANOVA tests.  Post-hoc test differences in TLBF and HA flow 
were demonstrated between cirrhotics with HVPG > 12 mmHg and controls, but not between 
cirrhotic patients with differing severities of portal hypertension. 
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No significant differences were detected between the three cohorts for estimated TLBF as 

a percentage of cardiac output (F(2, 24) = 0.7723; p = 0.4731) or estimated HA flow as a 

percentage of cardiac output (F(2, 24) = 1.695; p = 0.2049) (figure 8.17). 

  
Figure 8.17: PCMRI hepatic haemodynamic parameters relative to cardiac 
output in cirrhotic portal hypertensive patients 
p-values are quoted for one-way ANOVA tests.  No significant differences between the three 
cohorts were identified. 

 
Cardiac output was significantly different across all three cohorts (F(2, 24) = 17.01; p < 

0.0001), with significant differences on post-hoc testing between cardiac output in 

controls (4094±206.1 ml/min) and the elevated cardiac output recorded in cirrhotic 

patients with HVPG<12 mmHg (5851±806.6 ml/min) and cirrhotic patients with HVPG≥12 

mmHg (7598±556.1 ml/min).  No significant differences were detected on post-hoc 

testing between cirrhotic cohorts (figure 8.18). 

 
 
 
 
Figure 8.18: Cardiac output in 
cirrhotic portal hypertensive 
patients 
p-values are quoted for one-way ANOVA 
tests.  Significant differences on post-hoc 
testing were identified between diseased and 
control cohorts, but no significant difference 
was recorded between cirrhotics with 
varying severity of portal hypertension. 
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8.5.7 POST-TREATMENT HAEMODYNAMIC RESPONSE 

Of the seven patients included in the MRI study screened for participation in the phase II 

OCA trial, one subject was found to have a baseline HVPG of 10 mmHg.  This patient did 

not participate in the trial (as determined by trial exclusion criteria) and was therefore 

excluded from our haemodynamic response study.  MRI data was obtained at baseline (n = 

6), with post-OCA measurements obtained for four patients. 

 Mean baseline PV flow (56.25±17.97 ml/min/100g) declined post-treatment 

(30.63±22.33 ml/min/100g), but this difference was not significant (median difference -

10.76 ml/min/100g, W = -10.00, p = 0.1250) (figure 8.19a).  Mean baseline estimated 

TLBF (97.39±22.21 ml/min/100g) was similar post-OCA (88.69±10.71 ml/min/100g) and 

this difference was found to be not significant (median difference 10.69 ml/min/100g, W = 

4.000, p = 0.6250) (figure 8.19b).  Estimated HA flow at baseline (37.15±10.47 

ml/min/100g) increased post-OCA (50.28±10.78 ml/min/100g), but this difference was 

also non-significant (median difference 17.25 ml/min/100g, W = 4.000, p = 0.6250) 

(figure 8.19c).  Estimated HA fraction at baseline (32.61±4.706%) also increased post-

treatment (45.80±11.27%), but this difference was also non-significant (median difference 

2.392%, W = 4.000, p = 0.5000) (figure 8.19d). 
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Figure 8.19: PCMRI hepatic haemodynamic parameters in cirrhotic patients 
at baseline and following treatment with OCA 
p-values are quoted for one-way ANOVA tests.  Post-hoc test differences in TLBF and HA flow 
were demonstrated between cirrhotics with HVPG > 12 mmHg and controls, but not between 
cirrhotic patients with differing severities of portal hypertension. 

 
Mean estimated TLBF as a percentage of cardiac output at baseline (19.39±3.980%) was 

similar post-treatment (19.14±2.729%) and this difference was shown to be non-

significant (median difference 2.669%, W = 2.000, p = 0.8750) (figure 8.20a).  Estimated 

HA flow as a percentage of cardiac output at baseline (6.824±1.287%) increased post-OCA 

treatment (10.36±1.855%), but this difference was also shown to be non-significant 

(median difference 3.152%, W = 4.000, p = 0.6250) (figure 8.20b). 
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Figure 8.20: PCMRI hepatic haemodynamic parameters relative to cardiac 
output in cirrhotic patients at baseline and following treatment with OCA 
p-values are quoted for one-way ANOVA tests.  No significant differences between the three 
cohorts were identified. 

 
Average cardiac output at baseline (7545±757.6 ml/min) declined post-treatment 

(6711±892.2 ml/min), but this difference was non-significant (median difference -551.6 

ml/min, W = -8.000, p = 0.2500) (figure 8.21). 

 

 
 
Figure 8.21: Cardiac output in 
cirrhotic patients at baseline and 
following treatment with OCA 
p-values are quoted for one-way ANOVA 
tests.  No significant differences between 
the three cohorts were identified. 

 
Mean HVPG at baseline (16.17±0.6009 mmHg) was also reduced post-treatment 

(11.25±1.315 mmHg), but this difference was also non-significant (median difference -

4.500 mmHg, W = -10.00, p = 0.1250).  Mean PCMRI IHR at baseline (1246±354.1 

dynes.sec/cm5) also declined post-OCA treatment (736.3±33.59 dynes.sec/cm5) but given 

the lack of post-treatment significant differences for any of the variables used to calculate 

it, no significant difference in post-treatment IHR was detected (median difference -500.5 

dynes.sec/cm5, W = -8.000, p = 0.2500). 
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Figure 8.22: HVPG and PCMRI IHR in cirrhotic patients at baseline and 
following treatment with OCA 
An expected significant difference was noted in HVPG, with differences in PCMRI derived IHR 
approaching significance.  IHR was higher in cirrhotics with more severe portal hypertension, as 
expected by the mathematical derivation of this parameter. 

 
Only five patients were recruited into the TIPSS cohort, and of the two datasets at baseline, 

only one of these was paired with post-treatment data (table 8.1).  Statistical analysis was 

therefore deemed inappropriate, but as proof-of-principle of the ability of PCMRI to detect 

haemodynamic changes post-TIPSS, we present the data from the single patient in whom 

both baseline and post-TIPSS MRI measurements were made. 

 Post-TIPSS increases were noted in PV flow (+40.65 ml/min/100g), estimated HA 

flow (+25.34 ml/min/100g), estimated TLBF (+66.00 ml/min/100g) and also HA fraction 

(+7.135%).  Increases in estimated TLBF as a percentage of cardiac output (+24.76%) and 

estimated HA flow as a percentage of cardiac output were also recorded (+8.713%).  A 

decline in cardiac output was observed (-1499 ml/min) (table 8.2). 

Table 8.2: Haemodynamic parameters at baseline and post-TIPSS (n = 1) 
 

 BASELINE POST-TIPSS 
PV flow (ml/min/100g) 64.79 105.4 

Estimated TLBF (ml/min/100g) 83.34 149.3 

Estimated HA flow (ml/min/100g) 18.55 43.89 

Estimated HA fraction (%) 22.26 29.39 

Estimated TLBF/CO (%) 20.11 44.88 

Estimated HA flow/CO (%) 4.477 13.19 

Cardiac output (ml/min) 7618 6119 

HVPG (mmHg) 12 8 

IHR (dynes.sec/cm5) 626.5 233.1 
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8.6 DISCUSSION 

 
We have demonstrated that adapted standard clinical cine PCMRI protocols to measure 

bulk vessel flow in upper abdominal vessels can be used in cirrhotic patients.  While this in 

itself is not novel, we have applied the methods we have developed for estimating TLBF 

and HA flow and for the first time in these patients and used them to non-invasively 

investigate haemodynamic parameters in chronic liver disease.  The application of these 

methods in cirrhotic patients has identified specific clinical considerations which we 

explore in this section. 

8.6.1 FEASIBILITY 

Retrograde PV flow represents a significant pathological derangement of bulk flow that 

can readily occur in cirrhotic patients with portal hypertension.  Using the system of 

equations based on the principle of conservation of mass presented in section 5.3, we 

would argue that the following expression in this exceptional situation does not hold true: 

𝑄𝑇𝐿𝐵𝐹 = 𝑄𝑑𝑖𝑠𝑡𝑎𝑙 𝐼𝑉𝐶 − 𝑄𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 𝐼𝑉𝐶  

(Equation 8.2) 
 
Where ‘ 𝑄𝑇𝐿𝐵𝐹 ’ represents estimated total liver blood flow and ‘ 𝑄𝑑𝑖𝑠𝑡𝑎𝑙 𝐼𝑉𝐶 ’ and 

‘𝑄𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 𝐼𝑉𝐶’ represent flow in the supra-hepatic, sub-cardiac IVC and infra-hepatic, 

supra-renal IVC respectively. 

We would argue instead however, that the presence of retrograde PV flow 

represents a special instance of the principle of conservation of mass because regardless 

of the pathological state of the liver, the inflow and outflow from the liver must always be 

equivalent.  The following expression, for example, still holds true, given that PV flow 

(𝑄𝑃𝑉) is a negative term: 

𝑄𝑃𝑉 +  𝑄𝐻𝐴 = 𝑄𝑑𝑖𝑠𝑡𝑎𝑙 𝐼𝑉𝐶 − 𝑄𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 𝐼𝑉𝐶  

(Equation 8.3) 
 

The only difference is that hepatofugal PV flow must represent an outflow and therefore 

for expressed in terms of the principle of conservation of mass: 

𝑄𝑖𝑛 = 𝑄𝑜𝑢𝑡 
𝑄𝐻𝐴 = 𝑄𝑑𝑖𝑠𝑡𝑎𝑙 𝐼𝑉𝐶 − 𝑄𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 𝐼𝑉𝐶 − 𝑄𝑃𝑉 

(Equation 8.4) 
 
While this finding is implicit, an important consequence of it is that in this situation TLBF 

must equate to HA flow alone (and not the sum of PV and HA contributions).  This would 
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make sense as the only afferent blood to the liver in the presence of retrograde PV flow 

would be from the HA itself: 

𝑄𝑇𝐿𝐵𝐹 = 𝑄𝐻𝐴 
(Equation 8.5) 

 
It therefore follows that in this exceptional situation, HA fraction is by default 100%, and 

the estimated TLBF as a percentage of cardiac output and estimated HA flow as a 

percentage of cardiac output are equal.  For the single case with baseline and post-OCA 

retrograde PV flow, data was processed using these modifications.  We would argue that 

inclusion of HA fraction data of 100% would erroneously skew the small samples available 

for analysis and for this reason HA fraction data from the patient with retrograde PV flow 

was not included.  It is worth noting that good consistency of PCMRI inflow and outflow 

measurements was observed using these modifications both at baseline and post-OCA in 

the patient with hepatofugal PV flow. 

A major concern with the implementation of abdominal quantitative MRI protocols 

in patients is compliance with breath-hold instructions during the scan.  Our data have 

demonstrated that consistent and coherent data can be obtained, even in patients with 

poor compliance.  A major strength of our protocol is the use of triplicate-averaged 

measurements, and a reliance on large high flow volume vessels for quantification.  The 

amount of phase contrast signal from a vessel is reliant on the difference between the 𝑉𝑒𝑛𝑐 

setting and the velocity of flowing spins within the vessel itself.  Loss of signal from 𝑉𝑒𝑛𝑐 

overestimation is particularly troublesome in a smaller vessel such as the HA (where there 

are fewer spins to begin with), which in combination with motion artefact can have 

ruinous effects on quantification [182]. 

 Finally important considerations for patients scanned post-TIPSS, include clinical 

safety and any artefacts arising from the TIPSS stent that may compromise quantification.  

Because of concerns over heating effects, particularly at higher field strengths, all post-

TIPSS scans were only performed after ensuring the stent manufacturer had confirmed 3T 

MRI compatibility [477].  No adverse effects were reported by patients or radiographers.  

We endeavoured to measure PV and caval flow at sites where the stent was not visualised 

so at no point did stent artefact compromise quantification.  Previous PCMRI studies at 

lower field strength planned through the stents have however confirmed adequate 

quantification in spite of possible artefact [194, 478]. 

8.6.2 CONSISTENCY AND VALIDATION 

As with previous normal volunteer data, we used analysis of agreement between 

independently measured PCMRI inflow and outflow to confirm the consistency of these 



~ 442 ~ 
 

and derived measurements.  This demonstrated very good agreement between each 

measurement method, with a coefficient of repeatability of 27.64 ml/min/100g for TLBF 

and HA flow estimations.  This was larger than the coefficient of repeatability between 

PCMRI inflow and outflow measurements in normal volunteers (22.77 ml/min/100g), and 

may be a result of greater motion artefact in the patient data affecting quantification.  

Contrastingly, the coefficient of repeatability between direct and estimated PCMRI HA 

fraction was 14.39% in cirrhotic patients, compared with 29.57% in normal volunteers.  

Percentage error was calculated in the same way as previously (table 8.3) and for 

estimated TLBF was encouraging.  The percentage error associated with HA flow 

(22.62±8.247%) was however much larger than for TLBF, as a result of the same 

coefficient of repeatability for the measurement of a smaller absolute value.  Interestingly, 

no negative estimations of HA flow were made using the caval subtraction method, 

indicative of the generally higher HA flows recorded in cirrhotic patients.  The percentage 

error associated with estimated HA flow in patients was also smaller than in normal 

volunteers (28.32±18.38%).  Similarly, HA fraction was associated with a much more 

acceptable coefficient of repeatability between measurement methods of 14.39% 

(compared with 29.57% in normal volunteers), a likely consequence of the greater 

magnitude of measured values rather than any inherent difference in quality of data 

acquired (table 8.3). 

Table 8.3: Error estimation for PCMRI derived flow measurements in 
cirrhotic patients 
 

 GLOBAL MEAN* MEAN DIFFERENCE TO 

‘GOLD STANDARD’ 
ESTIMATED 

PERCENTAGE 

ERROR 
Caval subtraction 

PCMRI TLBF 
115.0±13.13 

ml/min/100g 
8.878±3.236 ml/min/100g† 7.720±2.814% 

Caval subtraction 
PCMRI HA flow 

39.24±5.275 
ml/min/100g 

8.878±3.236 ml/min/100g† 22.62±8.247% 

Caval subtraction 
PCMRI HA fraction 

30.29±3.468% 3.889±1.781%† 12.84±5.880% 

(*pooled mean across baseline and post-treatment measurements; †direct inflow PCMRI measurements 

gold standard) 

 
As with previous preclinical and normal volunteer data, application of the caval 

subtraction method to estimate TLBF and HA flow suffers from error propagation.  Errors 

in the measurement of distal and proximal IVC flows summate in the estimation of TLBF, 

and estimation of HA flow suffers from the additional error associated with PV flow.  In 

this preliminary study we used a small sample of gold-standard invasive measurements of 

ICG clearance to validate PCMRI TLBF measurements and PCMRI derived IHR 

measurements.  ICG TLBF was consistently less than PCMRI estimated TLBF, and the 

coefficient of repeatability was large (68.10 ml/min/100g) with an estimated percentage 
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error for PCMRI TLBF measurements of 36.81±12.63% (table 8.4).  The difference 

between the methods identifies an important distinction in the implications of the 

parameters measured by each quantification method.  For ICG clearance, hepatic plasma 

flow (HPF) (subsequently converted into TLBF using the haematocrit) is inversely related 

to the difference between arterial and hepatic venous ICG concentrations (‘𝐼𝐶𝐺𝐴’ and 

‘𝐼𝐶𝐺𝐻𝑉’, respectively) (equation 8.6): 

𝐻𝑃𝐹 =
𝐸

𝐼𝐶𝐺𝐴 − 𝐼𝐶𝐺𝐻𝑉
 

(Equation 8.6) 
 
Where ‘𝐸’ represents ‘splanchnic turnover rate’, a function of ICG infusion rate, body mass, 

urinary excretion (assumed to be zero) and change in arterial concentration between 

timed samples (assumed to be 0.0001, across all datasets based on previous data) [450, 

468].  Implicit to equation 8.6, is that a reduction in TLBF will be reflected in an increase in 

the difference between arterial and hepatic venous concentration.  ICG however is 

selectively taken up by hepatocytes (a property which is essential for blood flow 

quantification), but which also implies that the arterial-venous difference is dependent on 

the hepatocyte capacity to take up the dye (and therefore their function).  In this sense, 

ICG derived TLBF is measure of ‘effective’ blood flow, dependent on bulk flow but also on 

the integrity and state of the hepatic tissue that is being perfused.  This is especially 

relevant in cirrhosis where not only is there potential for impaired hepatocyte uptake of 

ICG, but also intra-hepatic shunting whereby blood can circulate through the hepatic 

vascular bed without perfusing hepatocytes.  This contrasts starkly to PCMRI, which 

purely measures bulk flow in afferent or efferent vessels around the liver.  In a cirrhotic 

liver, one would therefore expect to have lower ‘effective’ blood flow than the actual 

volume of blood flow circulating through the liver.  This could certainly explain the 

observed persistent overestimation of TLBF by PCMRI.  It also adds weight to the 

implications of the positive (but just above not-significant) correlation recorded between 

PCMRI and ICG TLBF (r = 0.6436, p = 0.0851). 

 Finally, IHR measured using PCMRI and HVPG demonstrated a large coefficient of 

repeatability (984.2 dynes.sec/cm5) and estimated percentage error (95.43±23.24%) 

(table 8.4).  Although suggestive of substantial differences between the methods, these 

observations could be explained by the differing implications of each the TLBF 

measurement methods (as discussed previously).  The positive (and significant) 

correlation between the methods (r = 0.8382, p = 0.0094) is encouraging. 
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Table 8.4: Error estimation for PCMRI derived haemodynamic measurements 
in cirrhotic patients 
 

 GLOBAL MEAN* MEAN DIFFERENCE TO 
ICG GOLD STANDARD 

ESTIMATED 

PERCENTAGE ERROR 
Caval subtraction 

PCMRI TLBF 
97.20±12.60 

ml/min/100g 
-35.78±12.28 

ml/min/100g† 
36.81±12.63% 

Caval subtraction 
PCMRI estimated IHR 

763.9±164.7 
dynes.sec/cm5 

-729.0±177.5 
dynes.sec/cm5† 

95.43±23.24% 

(*pooled mean across baseline and post-treatment measurements) 

8.6.3 HAEMODYNAMIC PARAMETER RELATIONSHIPS 

Measurement of HVPG is invasive but essential in the diagnosis and management of portal 

hypertension.  Hepatic pressure and flow parameters are linked by resistance, as given by 

the expression for IHR (equation 8.1).  The investigation of any trends between flow 

parameters and HVPG are valuable because they can be used to inform our understanding 

of the pathophysiology of portal hypertension and because strong associations with non-

invasive parameters have the potential to independently predict HVPG and IHR.  Unlike 

previously published clinical studies, we have recorded a comprehensive range of non-

invasive hepatic haemodynamic parameters for each subject, including PV flow, HA flow, 

HA fraction, cardiac output and composite variables such as IHR.  We review the 

implications of our findings for each of these in turn. 

   In the normal volunteer cohort, it would be reasonable to assume that PV flow 

equates to splanchnic blood flow as all blood draining the GI tract is physiologically 

diverted to the liver before entering the systemic circulation.  In cirrhotic patients with 

portal hypertension however, efferent splanchnic blood passes into the portal vein but is 

also diverted via extra-hepatic shunts bypassing the liver and into the systemic circulation 

at the sites of porto-systemic anastomosis (commonly lower oesophageal, superior rectal, 

umbilical, etc).  Consequently, while a relationship between HVPG and splanchnic blood 

flow is likely to exist, any relationship between HVPG and PV flow in cirrhotic patients is 

likely to be weak, as demonstrated by our data (HVPG vs PV flow r = 0.1216, p = 0.6660) 

and previously published findings in the literature [192, 193, 195, 200, 382].  Previously 

presented data (Chapters 4, 5 and 7) demonstrating lower PV flow in BDL rats which were 

noted to have relatively absent macrovascular extra-hepatic shunts would also support 

this hypothesis, as PV flow in these subjects is likely to be representative of splanchnic 

blood flow. 

Given the contribution of PV flow to TLBF, the absence of any relationship between 

HVPG and estimated TLBF in our data is therefore not unexpected (r = 0.2576, p = 0.3539).  

In support of this, previously acquired data at our institution has shown a very weak 
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relationship between ICG derived TLBF and HVPG in patients with stable cirrhosis, with 

reductions in ICG TLBF recorded only in decompensated or ACLF patients [450]. 

More interestingly, the demonstration of a lesser role of PV flow serves only to 

underscore the importance of HA flow in chronic liver disease.  Even when allowing for the 

small cohort size, the correlations at baseline between estimated HA flow (r = 0.6251, p = 

0.053) and HA fraction (r = 0.7755, p = 0.0141) are telling of the significance of HA flow in 

the vascular pathophysiology of portal hypertension.  It is perhaps even more interesting 

that post-treatment measurements of estimated HA flow and HA fraction, though small in 

number seem to challenge the trend. 

A positive correlation between cardiac output and HVPG in stable cirrhotic 

patients has previously been reported at our institution and highlights the importance of 

the heart in the pathophysiology of haemodynamic dysfunction in liver disease [450].  

Although a mild positive, just non-significant HVPG correlation was demonstrated for 

baseline HA flow as a percentage of cardiac output (r = 0.5778, p = 0.0802), in the 

presence of a positive HVPG correlation of both cardiac output and HA flow, a stronger 

correlation could be achieved by the product of these two variables.  The physiological 

significance of this variable would be uncertain but highlights an interesting point around 

the use of multivariate regression and mathematical modelling.  In this case, the small 

sample size precluded multivariate regression analysis, but it would be anticipated that 

once large datasets were accrued, such analysis would be an important step towards 

prediction of HVPG using purely non-invasive parameters. 

Finally, it is worth noting that poor correlations were demonstrated between 

HVPG and PCMRI IHR (r = 0.4498, p = 0.1230).  This was disappointing given that HVPG is 

a term in the calculation of IHR.  Given the small sample size, and apparent single outlier 

(HVPG 15 mmHg, IHR 2913 dynes.sec/cm5), the analysis was repeated after exclusion of 

this point to yield a significant positive correlation (r = 0.6177, p = 0.0323).  Interestingly, 

the outlying measurement was observed in the subject with retrograde PV flow at 

baseline. 

8.6.4 HAEMODYNAMIC CHARACTERISATION STUDIES 

Using HVPG to stratify cirrhotic portal hypertensive patients at higher risk of developing 

complications, we characterised differences in PCMRI haemodynamic parameters between 

normal volunteer controls and cirrhotics with differing risk profiles.  We review these 

findings alongside previous differences demonstrated in preclinical subjects (sections 5.4 

and 7.4) where appropriate. 
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We demonstrated expected differences between cirrhotic cohorts in HVPG, and 

just non-significant differences in IHR (mean difference 554.1±325.0 dynes.sec/cm5, U = 

9.000, p = 0.0593).  The latter is an especially disappointing result as it implies that the 

addition of flow data to HVPG measurement in the computation of IHR generates a 

parameter with poorer discriminatory value (for complication risk) than HVPG alone.  The 

borderline significance however does not exclude the possibility of a type II error, and a 

difference in IHR may become more apparent in a better powered study. 

 We demonstrated that there were significant differences in liver volumetry, with 

an increase in liver volume in lower risk cirrhotics, but interestingly no difference 

between cirrhotic cohorts or higher risk cirrhotics and controls.  This would confirm the 

development of hepatomegaly in less advanced disease, with similar or reduced liver 

volume in higher risk patients suggestive of atrophy/shrinkage observed in more 

advanced disease [479].  Such a pattern of volumetric change would be in keeping with the 

predominantly alcoholic aetiology of chronic liver disease in the patient cohort. 

It is worth noting that previously presented preclinical data demonstrated consistently 

elevated liver mass in BDL rats.  Although mechanistic factors in the aetiology of disease 

could explain this phenomenon, preclinical studies of course have the advantage of much 

greater homogeneity within the cohort and better control of confounding disease related 

variables.  The important implication of this difference however, is when comparing 

preclinical and clinical volume normalised flow parameters discussed below. 

 In support of the earlier discussion of splanchnic blood flow, we found no 

difference in PV flow between control and cirrhotic cohorts.  Interestingly, a significant 

difference in estimated TLBF was demonstrated on post-hoc testing between controls and 

higher risk portal hypertensive cirrhotics.  On initial inspection, this result is not 

supported by previously presented preclinical data, which consistently showed lower 

estimated TLBF in hydrated and non-hydrated BDL rats.  Absolute, non-normalised 

estimated TLBF measurements in rats however, demonstrate a significantly greater TLBF 

in BDL rats (figure 5.17, replicated in figure 8.23b).  This therefore highlights the 

confounding effect of heterogeneous liver volumetry in cirrhotic patients. 
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Figure 8.23: Comparison of bulk estimated TLBF in humans and rats 
Significant differences in bulk estimated TLBF (non-normalised to liver volume) were 
demonstrated in (a) patients (p = 0.0062) and (b) non-hydrated rats (p = 0.0125), with significant 
differences on post-hoc testing in the human study between normal volunteers and high risk 
cirrhotic portal hypertensive patients. 

 
We did however demonstrate significant differences in estimated HA flow across control 

and higher and lower risk portal hypertensive cirrhotic patients.  Unfortunately, post-hoc 

differences were only detected between control and higher risk cirrhotic patients, but the 

finding of elevated HA flow in cirrhosis is supported by previous measurements in non-

hydrated BDL rats.  This finding once again highlights the importance of HA flow in the 

chronic liver disease. 

 Interestingly, a significant difference in HA fraction was not detected between 

control and cirrhotic patients, a finding that was corroborated by previous data from 

hydrated sham and BDL rats.  Comparison of cardiac output demonstrated significant 

differences between cirrhotic patients and normal volunteers, but not between higher and 

lower risk portal hypertensive cirrhotics.  This finding is supported by published clinical 

data confirming hyperdynamic circulation in cirrhosis [450, 452, 453, 455] but also by 

previously presented preclinical data in non-hydrated and hydrated BDL rats.  Neither 

normalisation of estimated TLBF or estimated HA flow to cardiac output demonstrated 

any differences between normal volunteers and cirrhotic patients.  The failure to 

demonstrate any difference in these parameters was corroborated by data in non-

hydrated and hydrated BDL rats. 

 There are several important methodological observations which we acknowledge 

may compromise the interpretation of some of these analyses.  Firstly, the decision to 

stratify the cirrhotic cohort into patients with a HVPG cut off of 12 mmHg is arguably too 

conservative.  Clinically significant portal hypertension is diagnosed when HVPG > 10 
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mmHg, and therefore stratification at this level would be more justifiable clinically [19, 

475].  Although we argue the 12 mmHg threshold on the basis of complication risk, 

moving the threshold to 12 mmHg would place only two datasets in the low risk cirrhotic 

cohort rendering quantitative analysis inappropriate. 

 Secondly, analysis should ideally be performed using baseline data only but in this 

study we included post-OCA treatment datasets (n = 4) because of the small sample sizes.  

In the cirrhotic HVPG<12 mmHg cohort, three of the six datasets were obtained post-

treatment while in the cirrhotic HVPG≥12 mmHg cohort, only one of the datasets was not 

obtained at baseline.  Previous analysis of the relationship between HVPG and 

haemodynamic parameters identified post-treatment data as outliers to the preliminary 

baseline data trend demonstrated by HA flow, HA fraction and HA flow as a percentage of 

cardiac output.  Arguably, this data could have contaminated potential differences 

between the lower and higher risk cirrhotic cohorts. 

 Finally, comparisons were made with both hydrated and non-hydrated preclinical 

data on the basis that although patients were fasted before each scan, they were advised to 

consume water ad libitum.  It is therefore impossible to define if patients were indeed 

hydrated/non-hydrated at the time of scanning.  Importantly, no haemodynamic 

parameter trends between normal volunteers and cirrhotic patients were recorded that 

disagreed with those observed in sham and BDL rats. 

8.6.5 POST-TREATMENT STUDIES 

Small sample size compromised the evaluation of haemodynamic changes post-OCA and 

post-TIPSS.  No significant changes were demonstrated for any of the non-invasive or 

invasive haemodynamic parameters post-OCA, although eyeballing individual patient 

trends, it is clear that some patients recorded profound differences post-treatment.  

Preliminary findings from the larger group of patients recruited into the phase II trial 

stratified patients into responders (post-OCA HVPG<12 mmHg or HVPG reduction >15%; 

n = 9) and non-responders (n = 5) [468].  Only one of our MRI study subjects was classed 

as a non-responder.  Interestingly, ICG TLBF data from six trial subjects demonstrated a 

median 25% increase post-OCA.  This finding was not supported by PCMRI estimated 

TLBF measured in four subjects. 

 Unfortunately, haemodynamic parameters for post-treatment patients recruited 

into the TIPSS study were not paired with invasive HVPG measurements (n = 4).  These 

measurements were to be undertaken immediately after the TIPSS stent was sited, but 

because of inconsistencies in the methodology of the HVPG measurements, these were not 

included in post-treatment analyses.  Data from the single subject who underwent baseline 
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and post-TIPSS non-invasive studies demonstrates the potential for PCMRI in 

demonstrating post-therapeutic changes in this context.  Further studies with larger 

patient numbers are planned. 

8.6.6 GENERAL CRITICISMS 

A major criticism of this study is the small sample size used.  Invasive measurements and 

patient recruitment took place at a different site to the MRI scanner, so that logistical 

factors often restricted patient involvement or enthusiasm.  There were also important 

omissions to the imaging protocol, which have arisen as a result of progressive 

development of the methodology rather than a deliberate omission.  For example, 

although only bulk flow PCMRI haemodynamic measurements were recorded, DCE MRI 

and cardiac cine MRI measurements would be important to include in future planned 

studies.  As demonstrated by the data presented in section 7.4, evaluation of tissue 

perfusion and cardiac systolic function are important aspects of haemodynamic state, 

which taken together with PCMRI provide much more comprehensive understanding of 

haemodynamic phenomena in disease. 

8.6.7 FUTURE DIRECTIONS 

An essential focus of future work would be to reinforce the findings in this study with the 

recruitment of greater patient numbers.  Larger numbers of invasive validation data using 

ICG clearance would be invaluable in confirming the accuracy of PCMRI estimated TLBF 

measurements and securing credibility for more widespread use of the technique in the 

clinical community.  Larger size data sets from the OCA trial would also provide insight 

into haemodynamic changes post-treatment but also demonstrate the potential 

application of PCMRI in clinical trials.  Studies of the TIPSS cohort would be amenable to 

much larger scale studies, thereby providing a solid platform for demonstrating the 

sensitivity of PCMRI methods, but also investigating the complex haemodynamic 

phenomena that occur pre and post-TIPSS insertion. 

 Our data has also demonstrated ample new opportunities for protocol refinement 

and development.  Inclusion of cardiac cine MRI for the assessment of systolic but also use 

of cardiac PCMRI for measuring diastolic function would also be important in using our 

methods to improve our understanding of cardiac dysfunction in the pathophysiology of 

portal hypertension.  Finally DCE MRI, with the refinements introduced in Chapter 6, ASL 

and potentially dynamic hepatocyte-specific contrast enhanced (DHCE) MRI have the 

ability to not only inform tissue perfusion but also quantify intrahepatic shunting in 

disease. 
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 The quantification of splanchnic shunting is an important challenge in non-

invasive assessment, particularly as there is an intuitive correlation between the volume 

of shunting and the severity of portal hypertension.  PCMRI has already been used by 

others to quantify azygous flow in chronic liver disease (section 1.3.6), but the absence of 

well-designed and well-powered studies of azygous flow have to date compromised both 

clinical data and enthusiasm. 

Massive extrahepatic shunting as seen in the presence of retrograde PV flow, is a 

unique (and possibly separate) pathological phenotype as identified by this study.  The 

very occurrence of retrograde PV flow has important ramifications for our understanding 

of the haemodynamic pathophysiology underpinning portal hypertension and the 

significance of some of the measurements made using PCMRI.  Assessing this phenomenon 

using the principle of conservation of mass, for example, there is the theoretical possibility 

of ‘caval steal’ – net retrograde hepatic venous flow.  The occurrence of this phenomenon 

is not inconceivable, especially in congestive hepatopathy of cardiac cirrhosis, but also in 

the presence of cirrhotic cardiomyopathy.  As the only afferent supply to the liver in 

patients with hepatofugal PV flow is from the hepatic artery, these patients are also likely 

to be especially vulnerable to changes in systemic perfusion induced by inflammation as 

seen in ACLF.  Caval subtraction PCMRI measurements could readily be used to study 

these phenomena. 

The measurement of renal blood flow is also pertinent particularly in the context 

of hepato-renal syndrome (HRS).  Although feasibility studies have not been undertaken, 

caval subtraction MRI could theoretically be applied quite easily in the measurement of 

renal blood flow, at the added expense of only a single additional PCMRI study of the infra-

renal proximal IVC. 

As a final point, the most robust and well-documented index of chronic liver 

disease is HVPG.  Combining HVPG with flow, we can estimate IHR, and only once 

equipped with all three of these variables can we comprehensively assess hepatic 

haemodynamics.  The measurement of HVPG requires hepatic venous cannulation and it is 

difficult to argue a clinical role for MRI derived flow measurements if at the time of HVPG 

measurement, ICG clearance can be easily ascertained.  The real value-added from imaging 

will emerge when protocols are developed that can be used to non-invasively measure 

sinusoidal pressure alongside those developed for the assessment flow and perfusion.  

There has been growing interest in the investigation of the relationship between HVPG 

and biomechanical imaging (MR and ultrasound elastography) quantification.  It can be 

argued that both acute (humoral) and chronic (microarchitectural) changes likely to drive 
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alterations in HVPG are also likely to have a physical impact on tissue stiffness.  Early data 

has demonstrated encouraging correlations with liver and splenic stiffness measured 

using transient elastography, particularly at lower HVPG values (< 10 mmHg) [250, 480].  

MR elastography data has to date been less convincing [296, 297, 481], but the ultimate 

goal would be the development of a single ‘one-stop’ imaging protocol in which PCMRI, 

DCE MRI (with PCMRI correction) and MRE are performed in succession.  Hepatic 

sinusoidal ‘pressure maps’ generated from MRE data could then be used in conjunction 

with DCE MRI perfusion maps to generate maps of intra-hepatic resistance.  These in turn 

could be used to predict sites of intrahepatic shunting, identify segmental areas affected 

more severely affected by disease, qualify focal hepatic parenchymal lesions, and be used 

to inform therapeutic interventions ranging from optimising the position of TIPSS stents 

to planning and enhancing surgical outcomes. 

  



~ 452 ~ 
 

8.7 CONCLUSION 

 
In this section, we have demonstrated the feasibility of using PCMRI to measure 

haemodynamic parameters in patients with chronic liver disease.  We have (i) adapted 

previous methods to deal with the eventuality of retrograde PV flow, (ii) demonstrated 

that we can acquire useful quantitative data even in the presence of motion artefact and 

poor compliance with breath-hold instructions and (iii) shown that patients with TIPSS 

stents can be imaged safely and without compromising any PCMRI quantification. 

 We have demonstrated good consistency of estimated (caval subtraction) PCMRI 

TLBF with directly measured PCMRI TLBF in the same subject and shown improved 

consistency of estimated HA flow and estimated HA fraction with their directly measured 

counterparts relative to normal volunteers.  Preliminary validation with invasive ICG 

clearance demonstrated encouraging correlations between ICG and PCMRI TLBF and 

PCMRI IHR but poor agreement.  The latter may be secondary to differences in the 

implications of TLBF quantification using ICG rather than intrinsic PCMRI measurement 

error. 

 We have investigated the relationship between PCMRI haemodynamic parameters 

and invasive pressure measurements, to identity estimated HA flow, HA fraction and 

cardiac output as important correlative parameters with HVPG.  We have also 

characterised differences in haemodynamic parameters between normal volunteer 

controls and cirrhotics with lower and higher risk of developing portal hypertensive 

complications.  These comparisons have demonstrated differences between normal 

volunteers and lower risk cirrhotics in liver volume and cardiac output, and differences 

between normal volunteers and higher risk cirrhotics in estimated TLBF, estimated HA 

flow and cardiac output. 

 Finally, we applied PCMRI methods to measure changes in hepatic haemodynamic 

parameters in a small sample of patients post-OCA and post-TIPSS.  Although PCMRI 

demonstrated profound haemodynamic changes in certain subjects, no significant post-

OCA haemodynamic parameter changes were recorded. 
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8.8 CLOSING COMMENTS 

 
This chapter represents the culmination of previous preclinical and clinical work, defined 

by ultimate translation to the bedside, with investigational studies in patients with chronic 

liver disease.  In this chapter, we have shown how adapted protocols can be applied in the 

clinical setting to obtain useful quantitative information and shown that the novel caval 

subtraction PCMRI method proposed in this thesis is still consistent in patients and has 

credible potential for invasive validation. 

 Building on previous preclinical and normal volunteer data, we have confirmed 

relative passivity of the liver to changes in PV flow and underscored the importance of HA 

flow and cardiac output in the pathophysiology of portal hypertension.  Finally, we have 

demonstrated the potential of our PCMRI methods in the evaluation of pharmacological 

and interventional therapies in cirrhotic patients with portal hypertension. 

 The conclusions of this chapter are preliminary – the study findings are restricted 

both in terms of size and scope.  The importance of this chapter is however paramount.  

While being the final chapter in this thesis, it is in many ways the first chapter in the drive 

toward bringing MR haemodynamic modelling into the clinic as a viable tool in the 

management of patients with chronic liver disease. 
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SUMMARY OF FINDINGS 
 

 

 

 

 

 

“…from you, 
dark monarch, 

giver of syrups and of poisons, 
regulator of salts, 

from you I hope for justice: 
I love life: Do not betray me! Work on! 

Do not arrest my song.” 
 

- Ode to the liver [2]. 
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The findings presented in this thesis are broad, extending across the preclinical and 

clinical remit, including outcomes from developmental/validation work for different MR 

techniques and findings with implications for our understanding of the pathophysiology of 

chronic liver disease. 

 In reflection of this, findings have been arranged in two tables (table 9.1 and 9.2), 

with conclusions from preclinical and clinical experiments matched where they pertain to 

similar investigational objectives. 
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Figure 9.1: Summary of development and validation findings 
PRECLINICAL CLINICAL 

a) DCE MRI: 
 DCE MRI can be used to estimate hepatic perfusion in healthy rats 

at 9.4T. 
 Though repeatable, measurements, show large variance and poor 

agreement with invasive TTUS validation. 
 Effective refinements to DCE MRI methods at 9.4T include use of 

the inversion recovery method for T1 measurement, improved VIF 
sampling through use of a syringe driver and a dual bolus approach 
to contrast agent delivery. 

 Implementation of DCE MRI protocols in larger animals (as would 
be required for studies of animals with disease) was unsuccessful 
because of lack of a robust strategy to deal with inflow effects. 
 

 Clinical DCE MRI can be used to quantify perfusion at 3.0T in normal 
volunteers. 

 Pharmacokinetic modelling of DCE MRI data with alternative 
models can have significant effect on quantification. 

 We propose use of the dual input single compartment model with 
‘constrained free modelling of pre-estimated VIF delays’ as a novel 
strategy to derive physiologically meaning estimates of VIF delays. 

 Using seven-day reproducibility data we propose the use of dual 
input single compartment pharmacokinetic modelling with the 
following novel post-processing refinements for quantification: 

- ‘constrained free modelling of pre-estimated VIF delays’ 
- correction of arterial input functions using PCMRI aortic flow 

measurements 
- the use of PCMRI caval subtraction measurements of TLBF to 

correct DCE MRI quantification. 
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Figure 9.1: Summary of development and validation findings (continued) 
PRECLINICAL CLINICAL 

b) PCMRI: 
 Two-dimensional respiratory, but non-cardiac gated PCMRI can be 

used to measure PV flow in rats at 9.4T.  These measurements are 
repeatable and preliminarily reproducible with good agreement 
with invasive validation using TTUS. 

 Fixed delay multiphase cardiac gating can be implemented using 
pulse oximetry to measure pulsatile vessel flow. 
 

 

 We propose ‘caval subtraction PCMRI’, a novel method for 
measurement of TLBF and HA flow using 2D PCMRI measurements 
of IVC and PV flow. 

 Using cine PCMRI, this method can be used to measure 
haemodynamic parameters in sham and BDL rats at 9.4T. 

 
 
 
 Caval subtraction PCMRI measurements in conjunction with direct 

measurements of PV flow and cardiac output can be used to 
evaluate effects of haemodynamic stress. 
 

 We have translated ‘caval subtraction PCMRI’, a novel method for 
measurement of TLBF and HA flow using 2D PCMRI measurements 
of IVC and PV flow. 

 Using cine PCMRI, this method can be used to measure 
haemodynamic parameters in normal volunteers and cirrhotic 
patients at 3.0T. 

 We propose an adaptation of the caval subtraction method to 
qualify flow parameters in the context of retrograde PV flow 

 Caval subtraction PCMRI measurements in conjunction with direct 
measurements of PV flow and cardiac output can be used to 
evaluate effects of treatments for portal hypertension. 
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Figure 9.1: Summary of development and validation findings (continued) 
PRECLINICAL CLINICAL 

b) PCMRI (continued): 
 Good agreement between PCMRI aortic root flow and cardiac cine 

MR cardiac output was demonstrated in sham and BDL rats. 
 Good agreement between PCMRI PV flow and invasive TTUS was 

demonstrated in sham rats. 
 
 Reasonable agreement between PCMRI HA fraction and fluorescent 

microsphere HA fraction was demonstrated. 
 
 Measurements of estimated caval subtraction HA flow and fraction 

suffer from error propagation. 
 
 Cine PCMRI PV flow measurements are repeatable. 
 

 Good agreement between PCMRI aortic root flow and cardiac cine 
MR cardiac output was demonstrated in normal volunteers. 

 Good consistency between caval subtraction PCMRI and directly 
measured PCMRI PV and HA flow was demonstrated in normal 
volunteers and cirrhotic patients. 

 Preliminary validation of caval subtraction PCMRI TLBF with 
invasive ICG clearance in cirrhotic patients demonstrated 
encouraging correlations, but poor agreement between methods. 

 Measurements of estimated caval subtraction HA flow and fraction 
suffer from error propagation. 

 
 Good seven-day reproducibility of cine PCMRI PV flow and 

estimated TLBF was demonstrated. 
 Seven-day reproducibility of PCMRI estimated HA flow and fraction 

was inferior to seven-day reproducibility of directly measured 
PCMRI HA flow and fraction 
 

c) ASL: 
 FAIR ASL can be used to estimate hepatic perfusion in sham and 

BDL rats at 9.4T. 
 Look-Locker hepatic parenchymal T1 measurements demonstrate 

good repeatability. 
 Analysis of agreement with caval subtraction PCMRI TLBF 

demonstrated a tendency for ASL to underestimate hepatic 
parenchymal perfusion. 
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Figure 9.2: Summary of pathophysiological findings 
PRECLINICAL CLINICAL 

 PV ligation is detected using DCE MRI but fails to demonstrate the 
hepatic arterial buffer response. 
 

 BDL rats demonstrate higher hepatic parenchymal T1 relative to 
their sham counterparts 

 

 

 Caval subtraction PCMRI demonstrates reduced TLBF and HA 
fraction at baseline in BDL rats. 

 Both sham and BDL rats demonstrate reductions in PV flow in 
response to terlipressin, with failure of the hepatic arterial buffer 
response in BDL animals. 

 Hydrated BDL rats demonstrate reductions in estimated TLBF, 
reduced PV flow and impaired hepatic arterial buffer response. 

 Sham and BDL rats demonstrate relative passivity to changes in PV 
flow, with impaired regulation of HA flow in BDL rats. 
 

 
 

 Post-prandial studies in normal volunteers demonstrate expected 
rises in PCMRI PV flow, TLBF and a negative hepatic arterial buffer 
response. 

 
 
 PCMRI estimated TLBF and estimated HA flow (but not PV flow) are 

increased in higher risk portal hypertensive patients. 
 

 
 
 
 BDL rats demonstrate features of cirrhotic cardiomyopathy: 

hyperdynamic circulation, elevated systolic function at rest and 
poor reserve under stress. 

 In spite of having a hyperdynamic circulation, BDL livers fail to 
place a comparable demand on systemic circulation despite 
increased organ:body mass ratio. 
 

 We have demonstrated that PCMRI HA flow, HA fraction and cardiac 
output are important correlative parameters with HVPG. 

 
 PCMRI cardiac output is increased in lower and higher risk portal 

hypertensive patients. 
 

 Liver volume is increased in lower risk, but not higher risk portal 
hypertensive patients. 

 

 ACLF is characterised by reductions in TLBF and HA flow, absence 
of normal sepsis-induced hepatic hyperaemia and blunted cardiac 
systolic response to sepsis. 

 Preliminary investigation in a cohort of portal hypertensive patients 
undergoing treatment with obeticholic acid did not demonstrate any 
significant haemodynamic difference post-treatment. 
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APPENDIX A  
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L-NAME AND TERLIPRESSIN DOSAGE REGIME EXPERIMENTS 

 

AIM: 

To determine a safe and ideal doses of L-NAME and terlipressin to achieve reductions in 
portal flow for periods suitable for imaging 
 

METHODS: 

1. Sprague-Dawley rats (n = 4, 265-710g), anaesthetised with isoflurane. 
2. Jugular venous line sited. 
3. Laparotomy with siting of TTUS probe around the portal vein. 
4. Animal allowed to stabilise for 10 minutes before baseline flow measurement 

recording. 
5. Bolus drug dose given intravenously followed by 1 ml hepsal flush. 
6. Flow changes recorded until flow trends suggested a return to baseline, unless 

limited by time constraint. 
7. For L-NG-nitro arginine methyl ester (L-NAME), studies were performed in n = 2 

using 10 mg/kg and 20 mg/kg doses. 
8. For terlipressin (Glypressin, Ferring Pharmaceuticals, UK), studies were 

performed in n = 2, using bolus doses titrated up from 0.1μg to 100μg. 
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RESULTS: 

 

 

Figure 
A.1 
PV flow 
response 
to 
L-NAME 
Data is 
presented 
from two 
subjects. 

 
No response was observed following boluses of 0.1 μg, 0.5 μg and 5 μg doses of 
terlipressin.  
 

Figure A.2 
PV flow 
response to 
terlipressin 
Data is 
presented from 
two subjects. 

 
 
Normalised to animal weight, the 10μg dose equated to 19.6 μg/kg and the 50 μg dose 
equated to 98.23 μg/kg.  At all doses used, no adverse effects were identified using either 
drug. 
 

DISCUSSION/CONCLUSION: 

Using this data, it was decided that a bolus dose of 10 mg/kg would be suitable for L-
NAME studies and a bolus dose of 100 μg/kg would be suitable for terlipressin studies. 
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TERLIPRESSIN DOSAGE REGIME EXPERIMENTS 

AIM: 

To determine a safe and ideal terlipressin infusion dose to deliver a sustained reduction in 
portal venous flow for imaging. 

METHODS: 

1. Sprague-Dawley rats (n = 2, 417g and 521g), anaesthetised with isoflurane. 
2. Jugular venous line sited. 
3. Laparotomy with siting of TTUS probe around the portal vein. 
4. Animal allowed to stabilise for 10 minutes before baseline flow measurement 

recording. 
5. Forty minute infusion initiated, with flow changes recorded after the infusion was 

stopped, until flow trends suggested a return to baseline. 
6. Terlipressin (Glypressin, Ferring Pharmaceuticals, UK) studies were performed 

using infusion rates of 4μg/min and 9μg/min. 

RESULTS: 

 
Figure B.1: PV flow response to terlipressin infusion 
Data is presented from two subjects.  The terlipressin infusion was started at zero minutes and 
stopped after 40 minutes. 
 
Normalised to animal weight, the 4μg/min dose equated to 8.4 μg/kg/min and the 9 μg 
dose equated to 17.5 μg/kg.  The animal receiving the 9 μg/min died after 90 minutes.  No 
adverse effects were observed when using the 4 μg/min infusion. 

DISCUSSION/CONCLUSION: 

The 8.4 μg/kg/min appeared to show a sustained PV response, which responded almost 
immediately when terlipressin was stopped.  This was not the case at the higher 17.5 
μg/kg/min dose.  A sustained response was required for approximately 30-40 minutes to 
enable acquisition of a full ‘post-terlipressin’ haemodynamic dataset.  It was therefore 
decided that this could be achieved using an infusion dose of 10 μg/kg/min.  Given that 
sustained PV flow reduction seemed to only last 20-25 minutes, a loading bolus dose of 
100 μg/kg (based on data presented in Appendix A) would be used, to achieve a more 
immediate reduction, followed by the 10 μg/kg/min infusion. 
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PRECLINICAL VALIDATION, REPEATABILITY AND STUDIES OF 

THE HEPATIC ARTERIAL BUFFER RESPONSE – SUBJECT 

PARTICIPATION DETAILS 

 

SHAM COHORT: 

 1 2 3 4 5 6 7 8 9 10 11 12 13 
BASELINE TTUS              

BASELINE MICROSPHERES              
BASELINE PV FLOW PCMRI              

BASELINE CAVAL SUBTRACTION PCMRI              
BASELINE CARDIAC CINE MRI              

BASELINE AORTIC ROOT FLOW PCMRI              
REPEATABILITY PV FLOW              

TERLIPRESSIN INFUSION              
POST-TERLIPRESSIN PCMRI              

POST-TERLIPRESSIN TTUS              
POST-TERLIPRESSIN MICROSPHERES              

 

BDL COHORT: 

 1 2 3 4 5 6 7 8 9 10 11 12 
BASELINE MICROSPHERES             

BASELINE PV FLOW PCMRI             
BASELINE CAVAL SUBTRACTION PCMRI             

BASELINE CARDIAC CINE MRI             
BASELINE AORTIC ROOT FLOW PCMRI             

REPEATABILITY PV FLOW             
TERLIPRESSIN INFUSION             

POST-TERLIPRESSIN PCMRI             
POST-TERLIPRESSIN MICROSPHERES             

 
For both cohorts, greyed areas of the table represent data that was acquired but not 
usable, because of problems errors with the PCMRI sequence that was used.  In the sham 
cohort, subjects 1-3 did not experience the full protocol, as developmental issues were still 
being addressed.  In the BDL cohort, subjects 1 and 5 expired prematurely before the 
protocol was complete.  For BDL subject 6, difficulties with gating while imaging the distal 
IVC resulted in artefact so that quantification of TLBF could not take place.  For both sham 
and BDL cohorts, shortages of microspheres towards the end of the study resulted in 
baseline but not post-terlipressin injections taking place.  Baseline data is presented as 
“non-hydrated” data in section 7.4.  No other data presented in this section, was or will be 
incorporated into the main results presented at any other point in this thesis. 
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BLOOD FLOW STUDIES IN CHRONIC LIVER DISEASE – 

PRECLINICAL STUDIES – SUBJECT PARTICIPATION DETAILS 

 

SHAM COHORT: 

 1 2 3 4 5 6 7 8 9 10 11 
BASELINE CARDIAC CINE MRI            

BASELINE CAVAL SUBTRACTION PCMRI            
BASELINE ASL            
LPS INFUSION            

POST-LPS PCMRI            
POST-LPS ASL            

POST-LPS CARDIAC CINE MRI            

 

BDL COHORT: 

 1 2 3 4 5 6 7 8 9 10 11 
BASELINE CARDIAC CINE MRI            

BASELINE CAVAL SUBTRACTION PCMRI            
BASELINE ASL            
LPS INFUSION            

POST-LPS PCMRI            
POST-LPS ASL            

POST-LPS CARDIAC CINE MRI            

 
For both cohorts, the greyed areas of the table represent data that was acquired but not 
usable.  For the sham cohort, problems with gating compromised subject 11 and distal IVC 
PCMRI flow measurements for subject 10.  For the BDL cohort, problems with jugular 
venous cannulation in subjects 10 and 11 meant that it was impossible to determine if 
correct doses of fluid resuscitation or LPS had be given. These datasets had to be 
discarded.  For subject 7-9, problems with gating resulted in artefacted and unusable 
PCMRI and ASL quantification.  Cardiac cine data in subjects 8 and 9 was however, still 
usable.  Subjects 1, 2, 6 and 7 expired before the imaging protocol was complete. 
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