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Abstract

All travel behavior of people in urban areas relies on knowing their position. Obtain-

ing position has become increasingly easier thanks to the vast popularity of `smart'

mobile devices. The main and most accurate positioning technique used in these de-

vices is global navigation satellite systems (GNSS). However, the poor performance

of GNSS user equipment in urban canyons is a well-known problem and it is partic-

ularly inaccurate in the cross-street direction. The accuracy in this direction greatly

a�ects many applications, including vehicle lane identi�cation and high-accuracy

pedestrian navigation. Shadow matching is a new technique that helps solve this

problem by integrating GNSS constellation geometries and information derived from

3D models of buildings.

This study brings the shadow matching principle from a simple mathematical

model, through experimental proof of concept, system design and demonstration,

algorithm redesign, comprehensive experimental tests, real-time demonstration and

feasibility assessment, to a workable positioning solution.

In this thesis, GNSS performance in urban canyons is numerically evaluated us-

ing 3D models. Then, a generic two-phase 6-step shadow matching system is pro-

posed, implemented and tested against both geodetic and smartphone-grade GNSS

receivers. A Bayesian technique-based shadow matching is proposed to account for

NLOS and di�racted signal reception. A particle �lter is designed to enable multi-

epoch kinematic positioning. Finally, shadow matching is adapted and implemented

as a mobile application (app), with feasibility assessment conducted.

Results from the investigation con�rm that conventional ranging-based GNSS is

not adequate for reliable urban positioning. The designed shadow matching posi-

tioning system is demonstrated complementary to conventional GNSS in improving

urban positioning accuracy. Each of the three generations of shadow matching al-

gorithm is demonstrated to provide better positioning performance, supported by

comprehensive experiments. In summary, shadow matching has been demonstrated

to signi�cantly improve urban positioning accuracy; it shows great potential to rev-

olutionize urban positioning from street level to lane level, and possibly meter level.
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Chapter 1.

Introduction

1.1. Brief motivation

All travel behaviour of people in urban areas relies on knowing their position. Con-

sequently, positioning technologies have a wide spectrum of applications in land nav-

igation, intelligent transportation systems (ITS), location-based services (LBS) and

wireless sensor networks (WSN) (Rizos and Drane, 1998; Lewis, 2004; Kwon et al.,

2007; Groves, 2013). In a land navigation system, for example, in order to navigate

a user to a destination, a navigation system must keep updating the user's position.

Both vehicle and pedestrian navigation rely on positioning systems. ITS provides

improved transportation network operations. Transportation network monitoring,

for example, incorporates positioning technologies for localizing probes (i.e. each

vehicle). Dedicated �eets of vehicles, including FedEx, UPS trucks, taxis, or buses

may be tracked for transportation network monitoring (Kwon et al., 2007; Moore

et al., 2001; Herrera et al., 2010). The monitoring can then contribute to other im-

portant functions of ITS, e.g. tra�c control. Location-based services (LBS), a fast

growing technology sector, connects users with services according to their geograph-

ical location (Schiller and Voisard, 2004). Positioning technologies are essential in

LBS, which includes asset tracking, tour guiding, friend & family �nding, emer-

gency reporting, location based advertisement, etc.. Sensor position is essential in a

wireless sensor network (WSN), which often uses low-cost, low-power smart sensors,

networked in large numbers, to monitor and control physical conditions of homes,

20
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cities, and the environments (Mao et al., 2007). WSN has been used in defence and

surveillance area and other tactical applications (Chee-Yee and Kumar, 2003), and

in monitoring of machines, animals, vehicles and medical conditions (Lewis, 2004).

Requirements for positioning technologies can be speci�ed from numerous per-

spectives, including accuracy, integrity, continuity and availability, depending on

speci�c applications (Hegarty and Chatre, 2008).

Obtaining position has become increasingly easier thanks to the vast popular-

ity of mobile devices. Since the price drop of mobile phones in mid-1990s (Shoval,

2008), the popularity of mobile phones encouraged research using people's position

by exploiting cellular signals using Cell ID (Trevisani and Vitaletti, 2004) or sig-

nal strength (Ratti et al., 2006). Wi-Fi positioning has emerged in mobile devices,

thanks to the high density of Wi-Fi access points in metropolitan areas and the

large number of Wi-Fi enabled devices (Zandbergen, 2009). This includes both ur-

ban positioning in metropolitan scale (Cheng et al., 2005) and indoor positioning

(Liu et al., 2007) using Wi-Fi positioning techniques. However, open-space Global

Positioning System (GPS) provides better accuracy than Wi-Fi and cellular posi-

tioning (Zandbergen, 2009).

GPS, as a subset satellite constellation of global navigation satellite systems

(GNSS), has been widely used in many of the aforementioned applications in urban

environments, including land navigation (Groves, 2013; Farrell, 2008), intelligent

transportation systems (ITS) (Herrera et al., 2010), Location-based services (LBS)

(Agrawal, 2009) and wireless sensor networks (WSN) (Lewis, 2004).

However, in dense urban areas, known as urban canyons, the poor performance of

GPS positioning still occasionally causes problems in vehicle and pedestrian naviga-

tion, location-based advertisement and gaming, and other location-based services.

This is mainly because where there are tall buildings or narrow streets, the direct

line-of-sight (LOS) signals from many, sometimes most, of the satellites are blocked.

This is illustrated in Figure 1.1. Although combining other satellite navigation

systems, e.g. GLObal Navigation Satellite System (GLONASS), a satellite naviga-

tion system developed by Russia, improves GNSS positioning performance in urban

canyons, an urban canyon also a�ects the geometry as well as the number of the
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available GNSS signals. Signals with lines of sight going across the street are much

more likely to be blocked by buildings than signals with lines of sight going along

the street. As a result, the signal geometry, and hence the positioning accuracy,

will be much better along the direction of the street than across the street (Groves,

2011).

Signals 

blocked

Signals 

available

Signals 

available

Signals 

blocked

User

Buildings

Satellites

Figure 1.1.: Signal geometry of GNSS satellites in an urban canyon (aerial perspec-
tive)

Consequently, buildings in urban environments impose a vulnerability to low po-

sitioning accuracy in the cross-street direction. However, the positioning accuracy

in this direction is vital to identifying tra�c lanes for vehicles, and obtaining de-

sired positioning performance for pedestrians, particularly when a user would like

to know the correct side of the street. Identifying tra�c lanes for vehicles is very

important in many ITS applications, including driver's attention monitoring (Mc-

Call and Trivedi, 2004), lane departure warning (Kwon and Lee, 2002), and vehicle

guidance (Heimes and Nagel, 2002; McCall and Trivedi, 2006). Knowing the correct

side of the street for pedestrians can be important for step-by-step tour guiding for

tourists and the visually impaired (Groves, Wang and Ziebart, 2012).

In order to improve navigation performance in highly built-up areas, a variety of

navigation sensors have been used to enhance or augment GNSS. Typically, GNSS



1.2. Objectives 23

is combined with map-matching algorithms and may be integrated with odometers

for road vehicles. Whereas, for pedestrian users, GNSS may be combined with

mobile phone signals, wireless local area network (WLAN, or Wi-Fi), inertial sensors,

magnetic compass and barometers (Groves, 2013; Farrell, 2008). These multi-sensor

approaches improve the robustness of the position solution, but do not meet the

requirement for navigation in urban environments (Urmson et al., 2008), especially

not the cross-street accuracy (demonstrated in Chapter 3).

Shadow matching is a new technique that helps solve this problem by integrating

GNSS constellation geometries, information derived from 3D models of buildings

and received signal strength and availability (Groves, 2011). This research therefore

aims to use shadow matching in improvement of GNSS positioning accuracy in the

across street direction, and, hopefully, enable some applications of GNSS that are

now impractical.

The principle of shadow matching positioning was proposed (Groves, 2011), when

the author's started the journey as a PhD researcher. There was no literature

suggesting how such a principle of new positioning could be implemented in reality,

which means this study needed to build a positioning system almost from scratch.

Thus the study �rst con�rms GNSS's problem in urban areas from literature

(Chapter 2) and from simulation (Chapter 3), then builds the fundamental architec-

ture of the shadow matching technique (Chapter 4), after which focuses on improving

two parts of the architecture where that are considered most important (Chapter

5 and Chapter 6), and �nally adapts shadow matching for real-time scenarios and

future practice (Chapter 7).

1.2. Objectives

The overall objective of this thesis is to explore the capability of a GNSS and Three

dementional city models (3DCM) integrated positioning system, referred as shadow-

matching system, in urban canyons. Five important issues are tackled in this thesis,

namely the �ve main objectives. Detailed objectives of the report are summarised

as follows:
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1.2.1. Evaluation of GNSS positioning in urban environments

Can conventional GPS and GLONASS (using single-frequency pseudo-

range measurements) meet the positioning requirements in urban environ-

ments? More speci�cally, in urban environments, how is the positioning

performance di�erent for pedestrians and vehicles, at tra�c junctions

and between junctions, and in the along-street and cross-street direc-

tions?

If GPS and GLONASS can not guarantee reliable positioning in urban

canyons, does adding multiple constellations (Galileo and Beidou) solve

this problem? In other words, can GNSS alone solve the positioning

problem in urban canyons?

1.2.2. Shadow-matching system design

Following the principle of shadow matching, how to design a positioning

system that uses knowledge of 3D city models, i.e. what are the di�erent

options in the overall design? What are the pros and cons of each of

them?

1.2.3. Handling non-line-of-sight (NLOS) signals in shadow

matching algorithm for urban environments

When signal re�ection or di�raction occurs, how to handle the resulting

mismatches between observation and predictions?

What is the optimum scoring scheme, given the constraints of the cur-

rent visibility prediction algorithm, in a shadow matching algorithm for

smartphones, and how to determine the parameters in this scheme?

1.2.4. Kinematic shadow matching algorithms

For kinematic applications, how to combine shadow matching informa-

tion from multiple epochs to get a better position solution (particularly if
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you have an ambiguous �x)?

How accurate positions can be obtained from kinematic shadow match-

ing (compared with conventional GNSS and probability-based single-epoch

shadow matching)?

1.2.5. Feasibility assessment of shadow matching techniques

Can the designed shadow matching algorithm run in real-time on a mobile

device?

Is there a trade-o� that has to be made between high e�ciency and high

accuracy?

Is it feasible to store enhanced map data for shadow matching on user's

devices, or transmit over the mobile network? How much data storage is

required per unit area?

How does the number of GNSS constellations impact shadow matching

performance?

What is the shadow-matching performance di�erence between a smart-

phone versus a geodetic GNSS receiver?

1.3. Outline of thesis

This thesis consists of 8 chapters and one appendix and is organised as follows:

Chapter 2 �rst reviews a broad spectrum of location-related applications and dis-

cusses their requirements. Among these applications, land applications including

land navigation, intelligent transportation systems (ITS), location-based services

(LBS) and wireless sensor networks (WSN) are particularly discussed. This chap-

ter then focuses on urban environments, presents advantages and limitations of

GNSS-based and non-GNSS-based technologies in this context, which leads to the

motivation for research on shadow matching, a new technique investigated in this

work that complements conventional GNSS positioning.
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Chapter 3 evaluates the performance of GNSS with 3D building models and ver-

i�es that stand-alone GNSS in urban canyons cannot provide reliable positioning

solution, which agrees with the literature reviewed in Chapter 2. Simulation is con-

ducted using an algorithm, with a visibility prediction model that considers both

direct and di�racted signals, to quantitatively predict GNSS performance in urban

areas using a 3D architectural city model. Experiments have been conducted to

verify the simulation with real-world observations, and investigates the e�ects of

di�raction modelling. The veri�ed simulator was used to determine current and

predict future GNSS performance in urban areas. Along-street and cross-street ac-

curacy were also compared.

Chapter 4 presents possible options to design an algorithm that ful�lls the shadow

matching principle and discusses pros and cons of these options. A basic shadow-

matching algorithm is designed and implemented. The implementation is then

tested using both geodetic and smartphone grade GPS and GLONASS receivers.

This chapter also acts as an entry point for the following chapters in the thesis on

improvements of shadow matching algorithms.

Chapter 5 proposes strategies to handle non-line-of-sight (NLOS) signals in the

shadow matching algorithm introduced in Chapter 4. Two rounds of improvements

are investigated in this chapter. In the �rst round, signal visibility and di�rac-

tion in the scoring schemes are modelled against signal to noise ratio (SNR) by

empirically setting thresholds. To improve this modelling, the smartphone GNSS

signals should be better understood, thus a LOS/NLOS signal analysis with re-

spect to SNR and elevations is then performed. This analysis inspires the second

round of optimization, using Bayesian techniques, which leads to a probability-based

shadow-matching algorithm. A comprehensive performance assessment is conducted

to compare the probability-based shadow-matching algorithm in this chapter, the

basic shadow-matching algorithm presented in Chapter 4 and conventional GNSS

positioning using static smartphone GNSS measurements at 20 locations.

In Chapter 6, a new kinematic shadow-matching technique is presented. In this

algorithm, pros and cons of di�erent options of the position estimation schemes

are discussed. Detailed algorithm descriptions of the selected scheme, a particle
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�lter, are then given. Real-world experiments are �nally presented, comparing the

performance between the conventional GNSS navigation solution, the single-epoch

shadow-matching system solution as presented in Chapter 5, and the new kinematic

shadow-matching system solutions.

Chapter 7 adapts shadow matching for practice from three aspects. The �rst

aspect is whether the computation load of shadow matching is small enough for

real-time positioning on resource limited mobile platforms, e.g. smartphones. For

the �rst time, a smartphone-based real-time shadow matching positioning system is

implemented as an Android application (app). The positioning performance of the

real-time positioning system is assessed. The second aspect is to predict the future

performance of shadow matching, in the context that emerging GNSS constellations,

e.g. Galileo and BeiDou Navigation Satellite System (BDS), will be available by

2020. Quantitative predictions of future shadow matching performance from this

perspective is also covered. The �nal aspect considers potential issues that may

raise from large-scale deployment, including availability of 3D models, data storage

and transfer requirements.

Appendix A describes an algorithm of line and triangle intersection determination

that is used in this research, particular in Chapter 3.

1.4. Research output

1.4.1. Publications

JOURNALS
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DOI: 10.1002/navi.38
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� Young Scholars Award, May 2013, Chinese Satellite Navigation Conference

(CSNC), Wuhan, China

� Best Presentation Award, Jun 2012, New Navigators Seminar, Royal Institute

of Navigation (RIN), UK

1.4.3. Contribution to knowledge

There are a number of advances of this research compared with other investigations.

The following contributions to knowledge are some major ones of them:

1. Chapter 3 (Wang et al., 2012b) �rstly quantitatively veri�ed that GNSS perfor-

mance in urban canyon is worse in cross-street direction compared with along-

street direction by simulating all four GNSS constellations (GPS, GLONASS,

Galileo and Beidou) and veri�ed with experiments. A number of other ad-

vances are detailed in Chapter 3.

2. A �rst demo and performance assessment of shadow matching by scoring can-

didate positions was implemented and published in Wang et al. (2011), more

details can be found in Chapter 4.

3. A �rst implementation of a grid-based shadow matching is demonstrated and

experimentally tested in Wang et al. (2012a), with details covered in Chapter

4.

4. Chapter 5 (Wang et al., 2014) independently proposed a signal strength-based

Bayesian technique to train parameters in LOS/NLOS scoring schemes using

large sets of experimental data, and comprehensively assessed shadow match-

ing using a large set of data.

5. Chapter 6 (Wang, 2014b) independently proposed using a particle �lter for

kinematic shadow matching .



1.4. Research output 31

6. Among the literature, only Chapter 7 (Wang et al., 2013c) implemented a

real-time demo of a shadow matching algorithm, which bene�ts partly from

a system design of pre-processing 3D building models to generate building

boundaries and partly from the optimization in the real-time Android appli-

cation. This investigation is further described in Chapter 7, along with other

advances;

7. Only the author's work experimentally tested shadow matching using both

smartphone grade (Wang, 2014b; Wang et al., 2013b, 2014) and geodetic grade

(Wang et al., 2011, 2012a) GNSS receivers, while others only use geodetic grade

receivers.



Chapter 2.

Background

Localization in unfamiliar environments is commonly required in many application

contexts. This chapter reviews a number of these applications and discusses their

requirements for positioning systems and viable positioning technologies. Among

these technologies, those using global navigation satellites are focused on, with a

particular interest in their performance in urban environments. In addition to satel-

lite positioning, characteristics of other positioning techniques commonly used for

urban positioning are then reviewed. The limitations of the current performance of

these positioning techniques motivates this investigation on `GNSS shadow match-

ing'.

A broad spectrum of location-related applications is introduced in Section 2.1,

with emphasis on the role of the positioning system and the requirements for it.

Section 2.2 reviews current GNSS positioning performance and problems in ur-

ban canyons. Other positioning methods, incorporating di�erent sensors and data

sources, are compared for their advantages and limitations in Section 2.3.

2.1. Application and requirements of land

positioning technologies

Positioning technologies have a wide variety of applications in land navigation, in-

telligent transportation systems (ITS), location-based services (LBS) and wireless

sensor networks (WSN) (Rizos and Drane, 1998; Lewis, 2004; Kwon et al., 2007;

32
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Groves, 2013). People's activities are often dependent on knowing their locations.

Yet, for hundreds of years, positioning methods stayed inaccurate, expensive and

complex. However, development of wireless, electronics and information technolo-

gies has allowed a variety of location related services to improve quality of life

(Agrawal, 2009). Location related services rely on positioning technologies in order

to operate.

Requirements for positioning technologies can be speci�ed from numerous perspec-

tives, including accuracy, integrity, continuity and availability (Hegarty and Chatre,

2008). Di�erent communities may use these terms to refer to di�erent means in

accordance with a speci�c context. Typical conventions within the navigation com-

munity are adopted in this thesis. A brief de�nition of each term is given here; for

more detailed explanations and methods for computation, refer to Syrjarinne and

Wirola (2008). Accuracy is probably the most used criteria which describes the er-

ror of a measured or estimated position with respect to the unknown true position.

Integrity expresses on what level can the positioning system be trusted. Continuity

is used to describe the reliability of the positioning system, which can be lost in

cases of signal blockage or system fault. Availability describes the likelihood that

the accuracy, integrity and continuity meet their requirements, depending on each

application.

The requirements of these criteria for positioning technologies depend signi�cantly

on the speci�c application. For example, the 'accuracy' requirement varies from a

few meters for a pedestrian navigation user, to a few hundred meters for cellular

mobile advertising. From the perspective of integrity and robustness, airplane nav-

igation requires much better performance than buses.

As well as varying between applications, requirements also vary with respect to

the time frame of a given application. For instance, a vehicle navigation user requires

a better heading solution when it is at a road junction than between junctions. This

is because when a vehicle is at a junction, its direction can change signi�cantly;

whereas when it is between junctions, its direction is very unlikely to change. An-

other example would be an aeroplane also requires a much better overall positioning

performance when landing or taking o� than �ying on course.
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Among the aforementioned broad spectrum of applications, land applications for

mobile devices are the major concern of this study. Thus, land navigation, intel-

ligent transportation systems (ITS), location-based services (LBS), wireless sensor

networks (WSN) are brie�y introduced. In each application, the desired positioning

performance and available positioning technologies are reviewed.

2.1.1. Positioning technologies in land navigation

A positioning system is a key component in a land navigation system. In order to

navigate a user to a destination, a navigation system must keep updating the user's

position. The updated user location is then used for decision making to navigate the

user along the next part of the route. Requirements for a land navigation system

vary for di�erent navigation users. Land navigation using mobile devices can often

be classi�ed into two categories: vehicle navigation and pedestrian navigation.

Vehicle and pedestrian navigation have signi�cantly di�erent demands on posi-

tioning technologies. Vehicle navigation, which is relatively mature, is mostly out-

door. Research has shown that both motion constraint models (Dissanayake et al.,

2001) and geometric road constraint models of vehicles can be used to improve po-

sitioning performance (Syed and Cannon, 2004). By contrast, a pedestrian may be

both indoor and outdoor, on a road or a pavement, making it more di�culty to use

constraint models to assist positioning (Gaisbauer and Frank, 2008). A pedestrian

on a bus or car is classi�ed as a vehicle user in this case. Furthermore, vehicle and

pedestrian navigation also requires di�erent scopes of operation. This di�erence re-

sults from the fact that pedestrians may demand indoor positioning while vehicles

do not.

In terms of available positioning technologies, GNSS is often used in land naviga-

tion applications, thanks to its global 24-hour positioning capability. For example,

in terms of positioning accuracy, GPS provides meters level accuracy in open sky

areas (USA, 2014). To improve the positioning performance when GNSS blockage

happens, a variety of navigation sensors can be used to augment GNSS. Road vehi-

cles typically combine GNSS with odometers and map-matching, while pedestrians

may combine GNSS with phone signals, Wi-Fi, Bluetooth Low Energy and/or dead
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reckoning using inertial and magnetic sensors (Groves, 2013; Farrell, 2008).

2.1.2. Positioning technologies in Intelligent Transportation

Systems (ITS)

Intelligent transportation systems (ITS) provide improved transportation network

operations. According to a de�nition by the World Road Association, major func-

tions of ITS network operations are network monitoring, maintaining road service-

ability and safety, tra�c control, travel aid and user information, and demand man-

agement (Miles et al., 2000).

Transportation network monitoring, for example, incorporates positioning tech-

nologies for localizing probes. Before the era of mobile internet, tra�c monitoring

relied heavily on static loop detectors, cameras, and radars (Herrera et al., 2010).

The increased popularity of mobile phones enabled mobile phone equipped drivers to

be treated as moving probes using cellular positioning technologies (Ygnace, 2011).

GPS positioning was also investigated as a source of data for tra�c monitoring

by many research groups (Zito et al., 1995; Hall et al., 1996). Field tests have

concluded that cellular phone tracking technologies provide less accurate positions

(66% of the 3,756 probes had one or more points outside of a 200-meter accuracy

range), whereas GPS provides much better accuracy (15 meter accuracy for 95% of

the measurements); thus, GPS is more suitable for providing long sequences of time

and position with high accuracy (Yim and Cayford, 2001). More speci�c research

and tests have then been performed using dedicated �eets of vehicles equipped with

GPS or automatic vehicle location (AVL) technology, including FedEx, UPS trucks,

taxis, or buses (Kwon et al., 2007; Moore et al., 2001; Herrera et al., 2010). With

the increasing popularity of smartphones equipped with GPS, GPS on smartphones

are demonstrated to provide a real-time and accurate yet cost-e�ective way to mon-

itor tra�c information, leveraging existing cellar network for internet connectivity

(Herrera et al., 2010). Di�erential GPS may further meet the demand of better

accuracy in tra�c monitoring (Jones et al., 1999). For example, Yim and Cayford

(2001) found that in open sky environments, using consumer-grade GPS receivers,

di�erential GPS o�ers 5 meter better accuracy than stand alone GPS, which has
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15 meter accuracy, for 95% of the measurements. These studies have shown that

with either su�cient number of tra�c �xed detectors (e.g. loop detectors, cameras)

or probes (e.g. GPS enabled devices), positioning technologies can supply su�cient

information for tra�c network monitoring, which is an essential function of ITS and

contribute to other functions of ITS, e.g. tra�c control.

2.1.3. Positioning techniques in location-based services

(LBS)

Positioning technologies have a variety of applications in location-based services

(LBS), including asset tracking, tour guiding, friend & family �nding, emergency re-

porting, etc.. LBS, a fast growing technology sector, connects users with services ac-

cording to their geographical location (Schiller and Voisard, 2004). Positioning sys-

tems, incorporating information technologies, communication technologies, wireless

technologies, geographical information system (GIS), and mobile human-computer

interaction, enable services to be performed to suitable potential customers (Brim-

icombe, 2010). Some examples of location-based services are categorized in Figure

2.1.

Positioning technologies have their technical characteristics, and thus limitations,

re�ning them to certain location-based applications. The characteristics of com-

monly used positioning techniques are reviewed in Sections 2.2 and 2.3. Di�erent

applications have various requirements for positioning systems (D'Roza and Bilchev,

2003; Mountain and Raper, 2001). In location based games, for example, a position-

ing engine is used to enhance the game experience for players; thus, the requirements

to positioning technologies are unique from other location based applications. Typi-

cally, for the purpose of embedding a virtual scene in the real world, three parameters

are necessary: a coordinate of the device, the azimuth (direction) the device is fac-

ing, and the orientation (relative to the ground) (You et al., 2008). Thus, mobile

augmented reality and multi-sensor data fusion (e.g. accelerometer, gyroscope and

digital compass) are often used together to provide attitude with location, in loca-

tion based games (Broll et al., 2008; Benford et al., 2004) and virtual reality gaming,
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Figure 2.1.: Examples of the location based services. After: Agrawal (2009)

e.g. Oculus Rift (Luckey, 2014). In location based advertisement, however, accuracy

requirements are variable from a few meters to hundreds of meters (Rashid et al.,

2005). Many positioning techniques, including cellular phone positioning techniques,

GPS, Bluetooth (Rashid et al., 2008), Bluetooth 4.0 and Wi-Fi (ILA, 2014) have

been used in implementations of location based advertisement systems.

2.1.4. Positioning technologies in Wireless Sensor Network

(WSN)

The development of wireless sensor networks (WSN) enables low-cost, low-power

smart sensors, networked in large numbers, to monitor and control physical condi-

tions of homes, cities, and the environments (Mao et al., 2007). WSN can be used in

defence and surveillance area and other tactical applications (Chee-Yee and Kumar,

2003), including the Tactical Automated Security System (TASS) (Butler, 2002)

and the Tactical Remote Sensor System (TRSS) (Lee et al., 2009). It has also been

applied in monitoring of machines, animals, vehicles and medical conditions (Lewis,
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2004).

Research has shown that, in some cases, for example, cellular network and wireless

local area network (WLAN) can provide su�cient accuracy in WSN (Gustafsson and

Gunnarsson, 2005; Guolin et al., 2005). Many outdoor WSN applications typically

can accept an accuracy of 50 meters, while indoor applications require an accuracy

of a few meters (Sayed et al., 2005). However, some other positioning techniques,

including sensor fusion, may increase the quality of positioning in WSN, and thus

enable more services, e.g. emergency call services with accurate location information

(Gustafsson and Gunnarsson, 2005).

2.2. GNSS positioning in urban areas

The acronym 'GPS' is often used to refer any global navigation satellite systems.

However, the word GPS should only be used to refer the global positioning system

(GPS) operated by the United States. In this study, global navigation satellite

systems (GNSS) is used instead to refer any global navigation satellite systems.

Thanks to the fact that GNSS users can leverage free signals from satellites launched

and maintained by various countries and organizations, GNSS positioning has been

successfully and widely applied into many land applications. GNSS user equipment

provides accurate positioning solutions with 24-hour availability and global coverage.

GNSS often provides su�cient positioning accuracy in most open space, but has

limitations in other environments, especially in urban environments (Montillet et al.,

2007, 2009). This section reviews the current status of GNSS and then focuses on

its performance in urban environments, which is of particular interest in this study.

2.2.1. Current GNSS status

GNSS consists of four constellations: GPS, GLONASS, Galileo and BDS; they are

developed by United States, Russia, Europe Union and China, respectively. Some

regional navigation satellite systems (RNSS) and space-based augmentation systems

(SBAS) have been developed to boost satellite positioning in certain regions.
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GPS is the most popular GNSS, because it was the �rst GNSS in full operation

with 24 satellites (Block I/II/IIA), back to 1993 . Maybe equally importantly, GPS

has been continuously updated, for example, by the modernization plan proposed

in 1999 (Hofmann-Wellenhof et al., 2007). As a result, GPS has been pervasively

adopted in many location-based applications. It has a minimum 24 satellite con�g-

uration to ensure there are at least four satellites, the minimum number of satellites

to positioning, in view from any location on Earth. However, e�ectively, GPS now

operates a 27-slot constellation, giving improved coverage throughout the world. In

fact, There are normally even more than 27 operational satellites. For example, on

24th March 2012, there are 31 satellites in operation. Further details about GPS

performance and speci�cations can be found in the o�cial documents (USA, 2014).

In addition, the modernization process continuously improves the performance of

GPS. Figure 2.2 shows that the GPS signal-in-space user range error has decreased

in the last 13 years. The signal-in-space user range error is the di�erence between a

GPS satellite's navigation data (position and clock) and the truth, projected onto

the line-of-sight to the user, as de�ned by (USA, 2014).

GLONASS is a Russian GNSS that is also currently in fully operational. There

is also undergoing progressive renewal and modernization, resulting from substan-

tial growth in Russia's economy. Satellite orbit information provided in navigation

messages for GLONASS is in the Parametrop Zemp 1990 (PZ90.02) datum. The

current GLONASS has a 24 satellite constellation; the latest status can be found on

the o�cial website (RussianFederalSpaceAgency, 2014).

Galileo, an emerging GNSS developed by the European Space Agency (ESA), has

just �nished the In-Orbit Validation (IOV) phase, and is getting into the initial

operational capability (IOC) phase. The �rst two navigation satellites, GIOVE-A

and �B were launched in 2005 and 2008. The �rst two of four operational satellites

were launched on 21 October 2011. More detail can be found on the o�cial Galileo

website (EU, 2014).

BDS is the other emerging GNSS that plans to operate a constellation of 35 satel-

lites by 2020. In August 2014, there are 16 satellites in orbit, consisting 6 Geosyn-
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Figure 2.2.: GPS standard positioning service (SPS) signal-in-space performance,
based on USA (2014)

chronous Earth Orbit (GEO) satellites, 5 Medium Earth Orbit (MEO) satellites

and 5 Inclined Geosynchronous Orbit (IGSO) satellites, noting that GEO satellites

only o�ers a regional service. The BDS navigation satellite system signal in space

interface document was released in December, 2012. Detail of current status can be

found on its o�cial website (China, 2014).

2.2.2. Limitations of GNSS in urban canyons

Although GNSS is rapidly developing globally, as presented in the Subsection 2.2.1,

there are certain GNSS-challenged environments where GNSS cannot provide suf-

�cient performance. Deep indoors, underwater and tunnels are examples of where

GNSS can be fully blocked; indoor/outdoor transition areas and urban canyons are

challenged locations for GNSS. Amongst these locations, urban areas are of par-

ticular interest in this study. This is because both the rapid urbanizing process

in many countries, and the increasing popularity of GPS-equipped mobile devices,



2.2. GNSS positioning in urban areas 41

have boosted demands of location related applications in urban areas, as reviewed

in Section 2.1.

In dense urban areas, known as urban canyons, the poor performance of GNSS

positioning has remained a major problem in positioning. At least four satellites

are required in view to compute a positioning solution; this is mainly because the

user position has three dimensions that require three satellites in view, and the

GNSS receiver clock su�ers a considerable error that must be corrected using an

additional satellite. Thus, four satellites are required to form a positioning solution

using GPS satellites. Involving an extra satellite constellation (e.g. GLONASS)

may require an extra satellite to estimate system time di�erence to complete a

navigation solution, depending on the positioning strategy. GNSS constellations

now can normally satisfy these basic requirements in open sky locations. However,

in urban canyons, tall buildings block, re�ect and di�ract satellite signals. As a

result, at some locations, there are insu�cient signals for a navigation solution;

while in other locations, a solution can only be formed if non-line-of-sight (NLOS)

signals or multipath signals are used.

NLOS reception and multipath interference are the main sources that degrade

GNSS accuracy signi�cantly in urban canyons (Misra and Enge, 2010). Sometimes

they are grouped together as `multipath', but they are actually di�erent phenomena

that impose errors of di�erent characteristics in a positioning solution. An NLOS

signal appears when the direct line-of-sight signals are blocked; only a re�ected

signal is received; while multipath appears when both the direct line-of-sight signal

and re�ected signals are received. Their concepts are illustrated in Figure 2.3.

An NLOS signal exhibits signi�cant positive biases, because the length of the path

is always increased by re�ection. Although typically the error is tens of meters, it

is potentially unlimited. Multipath contaminates the direct signal by distorting the

correlation peak in the correlation process in the receiver. The code tracking error,

for example, can be up to half a code chip (GPS C/A code chip is about 150m).

Thus, both NLOS and multipath impose signi�cant bias in positioning using C/A

code. Although there are many methods for correcting NLOS reception (Morrison

et al., 2006; Ercek et al., 2005, 2006) and multipath interference (Jiang et al., 2011;
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Groves et al., 2010; Farret et al., 2010; Nedic, 2009; Meguro et al., 2009; Viandier

et al., 2008; Groves et al., 2013; Dodson et al., 2001; Roberts et al., 2002), they

are di�cult to be eliminated. In urban areas, NLOS and multipath mitigation can

be assisted by using image or vision based augmentation technologies, which are

transferred from mobile robot navigation or unmanned aerial vehicle navigation to

land vehicle driving assistance (Heimes and Nagel, 2002; Enkelmann, 2001; Campoy

et al., 2009; Bingham and Veth, 2009; Farley et al., 2008). For example, NLOS

can be detected using an omnidirectional infrared (IR) camera (Meguro et al., 2009;

Suzuki et al., 2011), or a �sh-eye camera (Suzuki and Kubo, 2014) in urban areas.

By detecting building boundaries, the image acquired from the camera is used to

predict visible satellites and compare with received signal to mitigate NLOS.

Figure 2.3.: A non-line-of-sight (NLOS) signal (bottom) and multipath signals (top)
based on source: Groves (2013)

Many approaches can help increase GPS positioning performance. In this study,

only those methods that are practical from the perspective of a user device are con-

sidered, rather than the whole navigation system including the space and control

segments. Some solutions using stand-alone GPS but with assistance information

(e.g. orbit and time information), high sensitivity or multipath interference mitiga-

tion are proved to help GPS positioning in urban canyons or indoor (Misra and Enge,

2010). However, the blockage caused by high buildings still increase vulnerability

to stand-alone GNSS, preventing 24-hour reliable positioning in urban canyons, and
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even worse indoors (Ji et al., 2010). More details about GNSS satellite positioning

performance in urban canyons, especially accuracy and availability, can be found

in Chapter 3. This accuracy and availability problem is simply because there are

frequently not enough `clean' signals from satellites to form a navigation solution

in the challenging environments, i.e. deep urban canyons. Thus, GPS positioning

performance in urban canyons needs improvement.

Besides GPS, GLONASS has increasingly become widely used by mobile devices

to improve accuracy and integrity in recent years, because of its modernization in

the last decade (refer to Subsection 2.2.1 for more detail). The emerging Galileo and

Compass satellite systems, developing by European Union and China respectively,

will present the opportunity to boost GNSS performance by adding more satellites

in view (more details to be discussed in Chapter 3). This improvement is because

generally, the more satellites in view, the more satellite positioning knowledge can

be contributed to the positioning engine, and thus the more accurate the solution

should be.

However, an urban canyon a�ects the geometry as well as the number of visible

GNSS signals. Poor satellite geometry means the distribution of satellites in the

sky is not optimized for similar positioning accuracy in all directions. For example,

if most satellites are distributed in a line, then it is called poor satellite geometry,

and the accuracy of GNSS positioning perpendicular to the line is much lower than

that along the line. In urban canyons, signals with lines of sight going across the

street are much more likely to be blocked by buildings than signals with lines of

sight going along the street (refer to Chapter 3 for more detail). Thus the GNSS

positioning accuracy in the cross-street direction is much lower than it in the along-

street direction. This is also illustrated by Figure 1.1, and proven by pedestrian and

vehicle simulations in Chapter 3.
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2.3. Other related positioning techniques:

advantages and limitations

In order to improve GNSS navigation performance in highly built-up areas, a va-

riety of other positioning techniques, sensors and data sources have been used to

enhance or augment GNSS positioning (Brimicombe, 2010). The range and accu-

racy of various signal based positioning technologies are compared in Figure 2.4.

Road vehicles typically combine GNSS with odometers, and map-matching algo-

rithms, while pedestrian navigation users may combine GNSS with mobile phone

signals, Wi-Fi and/or dead reckoning using inertial sensors, magnetic compass and

barometric altimeter (Groves, 2013; Farrell, 2008). This section brie�y introduces

research integrating these technologies and �nds their limits in terms of cross-street

positioning accuracy.

Figure 2.4.: Range and accuracy of signal-based positioning technologies for land
positioning applications. Adapted from source: Groves, Ziyi, Wang and
Ziebart (2012)
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2.3.1. Map matching

Map matching integrates positioning solution from a positioning system with a dig-

ital road network to augment the performance of the positioning system (Quddus

et al., 2007). Map matching has proven improved availability (Cui and Ge, 2003)

and accuracy (Quddus et al., 2003) of the overall positioning solution.

Although it has been applied in pedestrians (Bernstein and Kornhauser, 1998;

White et al., 2000), it is more often used in vehicles navigation (Greenfeld, 2002).

For example, map matching has been used to improve lane-departure-warning, col-

lision warning, and other vehicle safety systems (Joshi, 2001). In terms of the posi-

tioning technology, GNSS is often used in the vehicle positioning system (Greenfeld,

2002). Since dead reckoning (DR) using an odometer and magnetic sensors has been

commonly used in vehicle navigation (Syed et al., 2008), research has also been con-

ducted to explore application of map matching to enhance performance of such a

GPS/DR positioning system (Krakiwsky et al., 1988) that integrates GPS and dead

reckoning data, and a spatial digital database of the road network. Furthermore,

road surface height information from a 3D city model/map has also been considered

in the positioning engine to improve the position solution (Groves and Jiang, 2013).

Many algorithms have been applied in map matching. In order to integrate these

information, a Kalman �lter (Krakiwsky et al., 1988; Quddus et al., 2003) or a

particle �lter (Davidson et al., 2011) may be used. According to Quddus et al.

(2007), there are at least 35 map matching algorithms published during the period

1989-2006.

Some literature focus on map matching in urban canyons, because of the di�culty

of map matching in urban canyons where buildings block, re�ect and di�ract GPS

signals. Various algorithms have been proposed. For example, Syed and Cannon

(2004) proposed an algorithm based on fuzzy logic to cope with inaccurate mea-

surements in urban areas; Zhang et al. (2007) proposed a map matchign algorithm

that considers historical information, using road traverses and linear heading-change

model, showing a better performance in urban canyons.
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2.3.2. Wi-Fi positioning system

Wireless local area network (WLAN) technology, also known as Wi-Fi and IEEE

802.11, provides computer networking at radio frequencies around 2.4 and 5 GHz.

Wi-Fi positioning has been emerged in mobile devices, thanks to the high density

of Wi-Fi access points in metropolitan areas and the large number of Wi-Fi enabled

devices (Zandbergen, 2009). This includes both urban positioning in metropolitan

areas (Cheng et al., 2005) and indoor positioning (Liu et al., 2007) using Wi-Fi

positioning techniques. However, tested over a number of sites, it is suggested

that open-space GPS provides better accuracy than Wi-Fi and cellular positioning

(Zandbergen, 2009).

There are generally two methods used in WLAN positioning: timing-based meth-

ods and signal-strength-based methods. In timing-based WLAN positioning, sig-

nals are normally measured and used for positioning at time of arrival (TOA). In

situations where the access points in WLAN have unsynchronized clocks, another

method using time di�erence of arrival (TDOA) measurement are often used. Gen-

erally, timing-based WLAN positioning methods exhibits relatively poor accuracy.

This is mainly because timing resolution in WLAN is limited and, received signals

are often subject to attenuation and re�ection, especially in complex urban and in-

door environments (Bensky, 2008). The basic service set identi�cation (BSSID) is

the MAC address of the Wi-Fi access point that can be used to identify each Wi-Fi

access point. In both the timing-based and signal-strength-based methods, BSSID

should be used to identify Wi-Fi access points.

Fingerprinting is the most widespread positioning technique used for high-accuracy

(< 5m) WLAN positioning technique (Bensky, 2008; Groves, 2013). The fundamen-

tal principle of �ngerprinting is that the signal strength varies in di�erent locations

in an area covered by Wi-Fi signals, as illustrated in Figure 2.5. Signal strengths

from di�erent access points are highly related to the location of a Wi-Fi receiver.

There are two phases in Wi-Fi �ngerprinting positioning. In the �rst phase,

often called the survey phase or o�ine phase, a received signal strength �ngerprint

database is created over a grid mapped to the coverage area. In the second phase,

which is often called the online phase, a positioning solution is made based on
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comparison between real-time received signal strength with the signal strength map

in the database.

W-iFi Access Point

Wi-Fi Reception Information

Location

Wi-Fi Access Point

Wi-Fi Access Point
Wi-Fi Fingerprinting Database

Figure 2.5.: Signal strengths from Wi-Fi access points vary according to locations

There are a few methods for �ngerprint positioning based on database comparison.

Two commonly known methods of them are database comparison by nearest neigh-

bour search and Bayesian inference RSS location method. In the nearest neighbour

algorithm, when matching the real-time Wi-Fi measurements with the pre-surveyed

database, the estimated di�erence between the true position and each pre-surveyed

location is determined by the di�erence of each of the received signal strength vec-

tors (Bensky, 2008). The pre-surveyed location with the least di�erence is regarded

as a best match, thus is deemed as the positioning solution. In the other method, i.e.

the Bayesian inference RSS location method, a probability function is maximized

at the positioning solution using Bayes' rules that express the relation ship between

a prior and a posterior probabilities (Ito and Kawaguchi, 2005; Roos et al., 2002;

Ladd et al., 2002). Detail of Bayesian �lters that uses the Bayes' rules can be found

in Chapter 6. Further detail of the mentioned Wi-Fi positioning methods can be
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found in Bensky (2008).

2.3.3. Multi sensor and multi data source integration

In order to improve positioning performance, an increasing number of data sources

can be integrated into a positioning system. An integrated positioning system may

combines a set of sensors, including inertial measurement units (IMU), odometers,

magnetometers, baro-altimeters, compact radio frequency (RF) motion sensors, and

other sensors in addition to GNSS, to enhance positioning in dense urban areas

(Godha and Cannon, 2007; Groves, 2013; Farrell, 2008; Zhou et al., 2009; Georgy

et al., 2010; Farley et al., 2008; Groves et al., 2007).

Vision sensors have also been integrated for positioning. Light detection and

ranging (LiDAR) can be used to capture urban 3D data (Boehm, 2009), and has

proved able to provide independent positioning solution in urban environments,

when integrated with 3D images and low-cost IMU (Susca and Inst, 2010). The

LiDAR/IMU integrated system is reported to provide horizontal error of less than

10 meters, although a drawback being that a LiDAR system may be expensive.

Location of buildings in georeferenced images has been determined using 3D CAD

models, joint with low-cost GPS and a digital compass (Haala and Böhm, 2003).

Since the price drop of mobile phones in mid-1990s (Shoval, 2008), the popularity

of mobile phones encouraged research on tracking people's positioning exploiting

cellular signals using Cell ID (Trevisani and Vitaletti, 2004) or signal strength (Ratti

et al., 2006). Simulations in a mobile positioning system based on Global System

for Mobile Communications (GSM, originally Groupe Spécial Mobile) signals shows

a 49 meter error with 4 GSM Base Transceiver Stations (BTS), and 26 meter error

with 5 GSM BTS (Azaro et al., 2008).

Map matching can be considered as an integration of digital road network data

and a positioning system, as reviewed in Subsection 2.3.1.

The inclusion of additional ranging signals transmitted from pseudolites (the term

is derived from pseudo-satellite), ground-based generators and transmitters of GPS-

like signals (Novakovic et al., 2009; Lei, 2009) has also been studied to enhance

stand-alone GNSS. Commercial pseudolite positioning systems that are designed for
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urban positioning include Locata (Barnes et al., 2003) and NextNav (Meiyappan

et al., 2013). However, they are more expensive than smartphone-grade GNSS

receivers.

Signals that are designed for purposes other than navigation has also been ap-

plied into positioning. These signals are thus named signal of opportunity. For

example, digital audio broadcasting (DAB) signals (Palmer et al., 2011), TV signals

(Rabinowitz and Spilker Jr., 2005) can both be used for positioning. For example,

a positioning system that uses amplitude modulation (AM) radio broadcasts in the

medium frequency (MF) band has been developed at UCL (Webb et al., 2010).

Since both the transmitter position and the modulation format of these signals can

be publicly available, these signals are often used as signal of opportunity. Yet,

their positioning accuracy is normally less than GNSS, since they use lower band-

width than GNSS satellites, but they may supplement GNSS in GNSS-challenged

environments.

These alternative positioning approaches improve the robustness of the position

solution, because new sources of positioning knowledge that are parallel to GNSS

are involved in integrated navigation solutions; but the multi-sensor integration

does not meet the requirement for navigation particularly in urban environments

(Urmson et al., 2008). In addition, extra performance also brings extra cost and

extra hardware. More importantly, there is no evidence that any of these sensor and

data source integration techniques can particularly improve positioning accuracy in

the cross-street direction, when very small or no extra cost is desired. However, the

positioning accuracy in this direction is vital to identifying tra�c lanes for vehicles

and obtaining desired positioning performance for pedestrians, particularly when a

user would like to know the correct side of the street. Identifying tra�c lanes for

vehicles is very important in many ITS applications, including driver's attention

monitoring (McCall and Trivedi, 2004), lane departure warning (Kwon and Lee,

2002), and vehicle guidance (Heimes and Nagel, 2002; McCall and Trivedi, 2006),

etc.. Knowing correct side of the street for pedestrians can be important for step-by-

step tour guiding for tourists and the visually impaired (Groves, Wang and Ziebart,

2012).
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Thus, other approaches should be investigated to improve positioning accuracy

in cross-street direction. In this thesis, the approach, known as shadow matching

(Groves, 2011), has been researched. The technique uses 3D city models to improve

GNSS performance in urban canyons.



Chapter 3.

Multi-constellation GNSS

Performance Evaluation for Urban

Canyons Using 3D City Models

This chapter investigates the use of 3D building models to predict satellite visibil-

ity and veri�es that stand-alone GNSS in urban canyons cannot provide reliable

positioning solution. There are two main objectives of this chapter. Firstly, since

satellite visibility prediction is a pre-requisite for implementing shadow matching

algorithms, it needs to be developed and tested. Secondly, the current and future

GNSS performance needs to be examined to establish whether multi-constellation

GNSS alone can solve the positioning problem in urban canyons, particularly in the

cross-street direction. In this work, a visibility prediction model that considers both

direct and di�racted signals has been developed to predict GNSS performance using

a 3D architectural city model. Section 3.1 presents classi�cation and generation of

a 3D city model and its application in GNSS; Section 3.2 describes the satellite visi-

bility determination algorithm. Section 3.3 compares the simulation with real-world

observations to validate the simulation, and investigates the e�ects of di�raction

modelling. Section 3.4 then uses the veri�ed simulator to determine current and

predict future GNSS performance in urban areas and analyses the results in terms

of availability and integrity. Two sets of simulations representing pedestrian and

vehicle routes in central London were selected to evaluate GNSS positioning perfor-
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mance using di�erent combinations of constellations. Along-street and cross-street

accuracy are also compared. Finally, Section 3.5 summarizes the main �ndings of

this chapter, discussing the imiplication for shadow matching and for other potential

applications.

This chapter is based on a paper published in Journal of Navigation (Wang et al.,

2012b).

3.1. 3D city models and it application in GNSS

3D city models are digital representations of buildings and other objects in cities.

It is widely used in urban planning, navigation systems, intelligent transportation

systems (ITS), noise modelling, etc. There is an increasing number of technologies

available to generate 3D models.

To obtain 3D information of the earth's surface, digital aerial photogrammetry

and laser scanning are often used. Aerial photogrammetry has been used widely

with image matching techniques to generate digital terrain models (DTM), though

automation of this process has been a problem hard to solve. On the contrary, aerial

laser scanning is proved to be very e�ective in automated digital surface model

construction, though it is less suitable to measure accurately for a single object.

(Brenner, 2005). Therefore, when aiming for highly automated and accurate 3D

information collection, it is promising to combine the two technologies. After 3D

information is captured in an urban area, extraction of buildings can be conducted

to generate 3D building models.

Level of detail (LoD) is often used 3D modelling to describe the level of complexity

a 3D object representation has. It is a concept borrowed from computer graphics

to reduce geometrical complexity of visualized objects according to the distance

between objects and the user. In the domain of 3D city modelling, the convention

in the City Geography Markup Language (CityGML) encoding standard is often

used (Kolbe et al., 2005). It should be noted that the CityGML encoding standard

has been adopted as OGC standard in 2012 (Gröger et al., 2008). Five levels of

LoD are characterized in CityGML, according to the level of object details, di�ering



3.1. 3D city models and it application in GNSS 53

accuracies and minimal dimensions of objects. Examples of the �ve levels can be

found in Figure 3.1, and more details on LoD can be found in the o�cial CityGML

documentation (Gröger et al., 2008).

Figure 3.1.: The �ve levels of detail (LOD) de�ned by CityGML (source: Gröger
et al. (2008))

There is an also increased availability of digital 3D city models, both in terms of

number of cities coveraged and higher level of details (Guercke et al., 2009). To name

a few examples of among them, Google Maps 3D, Apple 3D Maps, Microsoft Bing

Maps 3D, Nokia Here 3D Maps and Edushi 3D Maps are commercially available,

while Open Street Maps 3D is available free of charge. This trend is driven by

applications of 3D building models in the construction industry, urban planning,

gaming, defense and internal security (Dowman and Arora, 2012).

In the navigation community, 3D models have been actively used to evaluate the

navigation performances of GNSS in terms of availability, coverage, using simulations

of many major cities in the world. GPS availability has been predicted using 3D

models of Tokyo, Japan and London, UK (Bradbury, 2007; Steed, 2004; Suh and

Shibasaki, 2007). Combinations of GPS and Galileo LOS availability have been

predicted in Delft and Schiphol airports in the Netherland (Kleijer et al., 2009;
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Tiberius, Christian and Verbree, 2004). In addition to GPS and Galileo, GLONASS

was also included in portfolio of GNSS constellations evaluated in Hong Kong, China

and Daejeon, Kerea (Kim et al., 2009; Ji et al., 2010). Among this research, some

focused only on LOS and NLOS prediction (Kim et al., 2009; Ji et al., 2010; Kleijer

et al., 2009), while others also included di�raction modelling (Suh and Shibasaki,

2007; Bradbury, 2007). The techniques used in this research are typically 3D ray

tracing or ray intersection, which is an established �eld in computer graphics (CG)

community, and can be optimized for faster speed using graphics hardware (Purcell

et al., 2002).

3D city models have been used to detect and eliminate NLOS GNSS signals,

improving the positioning accuracy (Francois et al., 2011; Groves, Ziyi, Wang and

Ziebart, 2012; Obst et al., 2012; Peyraud et al., 2013; Betaille et al., 2013). By

modelling the path delay as a function of user position, NLOS signals can also be

used for position determination (Bourdeau and Sahmoudi, 2012; Suzuki and Kubo,

2013).

However, for navigation purpose, signal availability prediction is only an factor,

among many others, that in�uences reception of GNSS signals on users' devices.

Real-world GNSS reception is di�cult to be predicted, especially in urban areas.

Signal obstructions, re�ections and di�ractions can be caused by both permanent

and temporary objects. Permanent objects are likely incorporated in the 3D city

models, whereas temporary objects are not. For the purpose of navigation, one

important question to answer comes from the fact that pedestrian and vehicle GNSS

users su�er signal degradation with di�erent characteristics, which has not been

investigated before. Furthermore, how GNSS accuracy is degraded di�erently in

di�erent horizontal directions relative to the street direction has not been examined.

Moreover, to the author' knowledge, little research has modelled the e�ect of the

emerging Chinese system � BDS on the overall GNSS navigation performance in

urban canyons using 3D city models. Finally, and most importantly for this thesis,

the current and future GNSS performance needs to be examined to justify whether

multi-constellation GNSS can solve the positioning problem in urban canyons on its

own, particularly when considering positioning accuracy in di�erent directions. The
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aim of this chapter is to answer these research questions.

3.2. Satellite visibility determination

Determining satellite visibility �rst requires data preparation to ensure 3D building

models, GNSS satellites and user route locations are expressed in a common refer-

ence frame. Secondly, a satellite visibility determination algorithm is designed and

developed for testing. This section describes how these are achieved.

3.2.1. Handelling city models

A software toolkit is developed for this study to store and process 3D city model data

in Virtual Reality Modelling Language (VRML), an international standard format.

It is a routine function for 3D model software to transform other formats to VRML.

Buildings in VRML format are represented by structures, which in turn compromise

polygons (normally triangle meshes). The format of the 3D city models can be any

other formats, as long as the structures are present.

Throughout this work, a real 3D city model of part of central London (around

Aldgate) supplied by ZMapping Ltd has been used. The model has a decimetre-level

of detail and is veri�ed by surveying to have decimetre-level accuracy (Bradbury,

2008).

3.2.2. Data preparation

Data sets for simulation consist of GNSS satellite orbits, building geometries from

the 3D city model and user routes. Four GNSS systems, comprising GPS, GLONASS,

Galileo and BDS, have been deployed in the simulation. The GPS and GLONASS

satellite positions are computed from the satellite broadcast ephemeris data pub-

lished online by the International GNSS Service (IGS). Galileo orbits are synthesized

using the description in the Space Interface Control Document (ICD) GJU (2006).

Orbits of the BDS system, whose full network is due to be completed in 2020,

are generated from an uno�cial description of the full global system (VanDiggelen,

2009).
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Building geometries are extracted from the city model VRML �le. User routes

are generated with reference to the city models using Rhinoceros, a 3D modelling

tool (Rhinoceros, 2014).

It is imperative to express all geometric information in a common coordinate

frame. Thus, coordinates of the satellites, user positions and model data, are trans-

formed into an earth-centred, earth-�xed (ECEF) datum, World Geodetic System

1984 (WGS-84).

It should be noted that WGS-84 has dual meanings. Generally, it means a geode-

tic datum used in GPS positioning that de�nes a Cartesian coordinate system and

an associated ellipsoid to represent the Earth, with its origin at the centre of mass of

the Earth. Each Cartesian coordinate can be transferred into a geodetic coordinate.

This theoretical de�nition of the WGS-84 datum has to be realized in practice as

a terrestrial reference frame (TRF). There are di�erent WGS-84 realizations, each

realizing a slightly di�erent datum, although all referred to as 'WGS-84'. More

speci�cally, WGS-84 may also mean the WGS-84 broadcast TRF that is the coordi-

nate system broadcast by GPS satellites to GPS receivers. In this thesis, the term

'WGS-84' is used for this speci�c meaning as a TRF, and the term 'WGS-84 datum'

is used to refer to the general theoretical de�nition.

Similar to the WGS-84 TRF, International Terrestrial Reference Frame (ITRF),

European Terrestrial Reference System 1989 (ETRS89) and Ordnance Survey Great

Britain 1936 (OSGB-36) are alternative TRFs, using slightly di�erent ellipsoids to

serve global, European and United Kingdom regions, respectively. Coordinate trans-

formations between these di�erent TRFs are achieved by applying a translation and

rotation to their Cartesian coordinates. Detailed explanations of the transformation

can be found in Ordnance Survey's documentation (Mark Crossley, 2012).

Satellite orbit data for GPS is already expressed in WGS-84; whereas satellite

orbit data for GLONASS have been transformed from the Parametrop Zemp 1990

(PZ90.02) datum into WGS-84. The Grid InQuest 6.0 DLL (Quest-Geo-Solutions-

Ltd, 2004) was used to transform the 3D city model data from the OSGB-36, used

in the UK and Ireland, to the ETRS. The coordinates are is further transformed

into ITRF 2005, which is within centimetres of WGS-84.
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3.2.3. Visibility determination algorithm

A building in 3D city models can be represented by a number of triangles. Determin-

ing visibility of a satellite with respect to a user can be regarded as testing whether

the user-satellite line-of-sight (LOS) intersects such a triangle. Thus, satellite visibil-

ity can be determined using a line and triangle intersection determination algorithm,

as described in Appendix A. In a simple satellite visibility determination algorithm,

each detailed building structure (comprising about 100,000 surfaces) within the 3D

city model is tested for blockage of the user-satellite LOS vector. Moreover, each

of these tests is applied to every satellite above the elevation mask angle in up to

four GNSS constellations, and all parts of the 3D models. An elevation mask angle

is routinely used in GNSS processing algorithms to ignore satellites whose elevation

angle is below the speci�ed angle, in order to prevent low-elevation satellites from

degrading the GNSS solution. This is because low-elevation satellites are prone to

larger atmospheric errors.

This basic approach consumes far too much processing power for a large batch

of simulations. Consider in this simulation there are a number of satellites each

moving, but all for visibility simulation at a limited number of discrete points, where

a pedestrian or vehicle user can be. Therefore, in the satellite visibility determination

algorithm used for this study, the following change is made to improve the e�ciency.

Instead of using the city model to compute the visibility of each satellite directly,

it is useful to determine the boundary of the buildings from the user's perspective

at each user location. A sky plot of the building boundary in terms of elevation and

azimuth is thus obtained. Then, satellite visibility is easily determined by comparing

the satellite's elevation with the building boundary's elevation, at the same azimuth.

This approach is more e�cient where a great number of satellite visibility tests are

performed at the same location. For real-time visibility determination, building

boundaries may be pre-computed and stored for a grid of possible user locations.

This information is also useful for shadow matching, as discussed in more detail in

Chapter 4. This strategy will also signi�cantly bene�t real-time shadow matching,

detailed explanations and discussions to be provided in Chapter 7.
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In this approach, the building boundary is determined at a number of di�erent

azimuths, spaced at regular intervals and spanning 360°. For each azimuth, the

building boundary is the highest elevation at which the LOS from a virtual satellite

at that azimuth is blocked. This is determined using bisection: �rstly the visibility

of a virtual satellite at a 45° elevation is tested. If it is blocked, then the higher

elevation region is re�ned in bisection, and the next test is performed at an elevation

of 45°+45°/2=67.5° of elevation; otherwise, the satellite is visible and the lower

elevation region is re�ned, so the next test is at 45°=45°/2=22.5° of elevation. The

bisection process continues until the boundary has been determined to within a 1°

elevation resolution. As a result, seven satellite visibility tests must be performed

at each azimuth.

With a 1° azimuth resolution, which is relatively high, 7 * 360 = 2520 satellite vis-

ibility tests are required to determine the building boundary at each user location,

which still imposes a considerable computational load. Therefore, lower azimuth

resolutions can be considered if computation power is a concern. Figure Figure 3.2

compares the building boundaries obtained with 2°, 10°, and 30° azimuth resolu-

tions. A compromise azimuth interval of 10° may be used in implementations where

the pre-processing time is limited. Then, this approach is more e�cient than the

basic approach, requiring 7 * (360°/10°) = 252 satellite visibility tests to be per-

formed at each location. The building boundaries can then be used for any satellite

visibility prediction at the same location at any epoch. There is a trade-o� between

computation load and satellite prediction accuracy.

The software toolkit for all data pre-processing and the satellite visibility deter-

mination was developed in C++. Figure 3.3 shows the software �owchart.
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Azimuth resolution 2° Azimuth resolution 10° Azimuth resolution 30°

Figure 3.2.: Sky plot of building boundaries from the perspective of GNSS users
with di�erent azimuth resolutions. (The dark blue lines represent the
roof and edge boundary of the buildings surrounding the user; the light
blue area represents the visible sky)

3.3. Experimental veri�cation

3.3.1. Experimental settings and results

Experiments have been carried out to compare the model-predicted satellite visibility

with real-world observations. Two two-hour GNSS data collection sessions were

conducted in urban environments (named test points 1 and 2). To give an example,

views of the real urban environment and the city model at test point 2 are shown

in Figure 3.4.

Accurate positions of the test sites were determined by di�erential carrier phase

GNSS positioning using four Ordnance Survey reference stations within 50 km.

A comparison is made between observed and predicted satellite visibility every

30 seconds. Figure 3.5 and 3.6 present the comparisons between real and predicted

satellites visibility for test points 1 and 2, respectively. The building boundary for

prediction was determined using a 1◦ azimuth interval. In these two �gures, G

denotes GPS satellites and R refers to GLONASS satellites.
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Figure 3.3.: Software �owchart for satellite visibility determination

The results show that in most cases, the predicted satellite visibility agrees with

the experimental observation (blue and grey dots in Figure 3.7 and 3.8). However,

there are a signi�cant number of cases where they are disagree (shown as green and

red dots). Reasons for predicting a signal that is not observed include new buildings

that are not in the database, trees and street furniture. All of these were observed

at the test sites. Obstruction of a signal by a small object can account for many of

the relatively short interruptions to signal tracking seen in the test data.

Sometimes a signal that is predicted invisible is observed. The reasons include

signal di�raction, re�ection via non-line-of-sight (NLOS) paths, city model precision

limitations, and demolished buildings. NLOS signals may be neglected as they
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Figure 3.4.: View from test point 2: the 3D city model (right) and the real environ-
ment (left)
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Figure 3.5.: Comparison of observed and predicted GPS and GLONASS satellite
visibility at test point 1

normally have large range biases so may be �ltered out of the position solution

when any consistency checking algorithms are performed. Furthermore, for the

purposes of predicting GNSS availability across a range of time and locations in

urban environments, the e�ects of demolition and construction of buildings may be

assumed to cancel. The e�ect of city model precision limitation may also be assumed

to cancel. However, di�racted signals have relatively small biases, and thus they can

be used in non-precision positioning solutions. The intermittent reception observed

for many of the unpredicted signals is characteristic of di�raction (Bradbury, 2008).

Therefore, The di�raction interference was investigated further.
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Figure 3.6.: Comparison of observed and predicted GPS and GLONASS satellite
visibility at test point 2

3.3.2. Di�raction modeling

Di�raction occurs at the edge of a building (or other obstacle) when the incoming

signal is partially blocked, noting that the path taken by a GNSS signal is several

decimetres wide. There are two approaches to predicting the e�ect of di�raction

on satellite visibility using a 3D city model. The �rst one would be to numerically

determine the di�raction �eld based on every physical factor, including the angle of

incidence of the signal, the weak signal tracking ability of GNSS user equipment, and

the detailed material properties information of the building, which is highlighted as

important for accurate prediction (Fisher et al., 2002). This method is impractical

for our purpose because the necessary information about the building materials and

antenna characteristics is di�cult to obtain and the computational complexity is

high. The second, much simpler, approach has been adopted here. This simply ex-

tends the building boundary used for satellite visibility determination by adding a

di�raction region to model the di�raction e�ect around building edge. Thus, wher-

ever the LOS intersects the di�raction region, the signal is classi�ed as potentially

di�racted instead of blocked (Bradbury et al., 2007; Walker, Rodney and Kubik,

1996). Both horizontal and vertical edges are considered for di�raction modelling.
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Here, a 3º-wide di�raction region was modelled.
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Figure 3.7.: Comparison between measured signal to noise ratio (SNR) and GNSS
signal availability for GPS PRN 10 at test point 2 (Di�raction
considered)

Figure 3.7 and 3.8 show that using the implemented di�raction model, the satellite

visibility prediction is closer to the real observations. However, this di�raction model

can only predict strong di�raction, when the signal to noise ratio decreases by no

more than 10 dB-Hz from its normal value. However, very weak signals are less

useful for navigation. Figure 3.8 also shows that the signal characteristics in an

urban area can sometimes be very complex. However, the model still successfully

predicted the strongest signals.

Figure 3.9 and 3.10 show that the di�raction model works reasonably well for

most other satellites in the experiments, increasing the reliability of the satellite

visibility prediction.
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Figure 3.8.: Comparison between measured signal to noise ratio (SNR) and
GNSS signal availability for GLONASS 7 at test point 1 (Di�raction
considered)

3.4. Performance prediction for pedestrians and

vehicles

This section describes the simulations conducted to predict multi-constellation GNSS

performance in urban canyons. Subsection 3.4.1 describes the design and con�gu-

ration of the simulation. The results are then presented and analysed within sub-

sections 3.4.2 and 3.4.3, focusing on direct LOS signal availability and dilution of

precision (DOP), respectively. DOP, as an indicator of satellite geometry, is used to

analyze positioning accuracy in di�erent directions (along-street and across-street).

In urban environments, the real-world positioning performance can be a�ected by

many factors, including signal re�ection, di�raction, blockage of human body, sur-

rounding vehicles, trees or other objects. It is unrealistic to model all these factors.

Thus, given that a perfect modelling of GNSS performance in urban canyons is not

practical, only the dominant factor in urban canyons, building blockage of LOS, is

modelled in this study. It is assumed that decreased signal availability caused by

objects blockage and increased signal availability caused by re�ection and di�raction
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Figure 3.9.: Comparison of observed and predicted GPS and GLONASS satellite
visibility at test point 1 with di�raction model

can be canceled out. Under this assumption, DOP of LOS is used to indicate the

accuracy di�erence of di�erent directions.

3.4.1. Simulation design and con�guration

Two routes, representing vehicle and pedestrian motion were generated to evaluate

GNSS navigation performance by simulation in urban environments. Both routes

pass through the same environment with the pedestrian route closer to the buildings,

as shown in Figure 3.11.

There are four important requirements of any navigation system: accuracy, avail-

ability, continuity and integrity (Misra and Enge, 2010; Groves, 2013). For both

routes, availability and integrity are evaluated using the 3D city model. Compar-

isons were then made between di�erent scenarios with various satellite constellations

in operation.

The particular area from the London city model chosen for the simulations is

around Lloyd's of London and Aldgate where there are tall buildings, as shown in

Figure 3.11.
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Figure 3.10.: Comparison of observed and predicted GPS and GLONASS satellite
visibility at test point 2 with di�raction model

Figure 3.11 shows the simulated pedestrian and vehicle routes, which are repre-

sented by the yellow and red line, respectively. The locations used for GNSS satellite

visibility determination are labelled using point identities (IDs). P represents the

pedestrian route, while V denotes the vehicle route. In order to simulate a repre-

sentative range of urban environments, alternate test points were located at road

junctions and between junctions on both routes.

The pedestrian route was generated by simulating a receiver located on the pave-

ment. The vehicle route comprises the left tra�c lane of the road, when travelling

from V1 to V23. The user antenna height modelled along the pedestrian route is

based on the assumption that when people use a GNSS-equipped mobile phone or

other portable navigation devices (PND), they normally hold it in front of their

chest. This is assumed to be 1.5 m above the ground. For the vehicle route, the

GNSS antenna is assumed to be 1 m above the ground.

For both the pedestrian and vehicle routes, four GNSS constellation scenarios

were simulated. They comprise GPS alone, GPS and GLONASS, multi-constellation

GNSS in the year 2014 and multi-constellation GNSS in 2020. The GNSS in 2014

scenario comprises the predicted GNSS operational status in 2014 (note that the

GNSS operational status in 2014 was predicted in 2011), when GPS and GLONASS
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Figure 3.11.: Routes representing vehicle and pedestrian motion (perspective view
in the left; top view in the right)

was assumed to be fully operational, while Galileo was predicted to have 9 satel-

lites in operation. The regional deployment of BeiDou Navigation Satellite System

(a.k.a. Beidou or Compass) to serve Asia should be completed, which will comprise

5 geosynchronous Earth orbit (GEO) satellites, 3 inclined geosynchronous satellite

orbit (IGSO) and 4 middle Earth orbit (MEO) satellites. This was based on the

public announcements and plans as in 2011. However, it turned out in 2014, the

Galileo has 4 in-orbit validation (IOV) satellite (GSAT0101) available and Beidou

has 16 satellites (6 GEO, 5 MEO and 6 IGSO). Thus, the scenario simulated for 2014

should correspond to actual performance at some point in 2015. The GNSS in 2020

scenario assumes that all four constellations will be fully operational as currently

scheduled. The elevation mask angle was set at 10° in all simulations.

The accuracy of GNSS position estimates basically depends upon: (i) The number

of satellites in view and their geometry and (ii) the accuracy of the range and

range rate measurements (Misra and Enge, 2010). In this work, the performance

of GNSS in urban environments is evaluated using the number of satellites in view

and the dilution of precision (DOP), both of which have been analysed for all of the

simulation scenarios described.

To minimize biases on the results that can arise from randomly chosen epochs, all

simulations were repeated at epochs every 15 minutes over one sidereal day. Thus,
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96 epochs were simulated for each of the eight scenarios. The day selected was 7th

September, 2011.

3.4.2. Performance evaluation based on satellite numbers in

view

Figure 3.12 shows the number of satellites in view, averaged over a 24-hour span,

across all epochs at each user location, including useful di�racted signals. To enable

contributions of di�erent GNSS constellations to be compared, the four colour bars

represent the additional average number of satellites for each successive scenario.

Thus, the total is obtained by summing the appropriate number of colour bars. As

shown in Figure 3.11, user locations with even point IDs are between junctions and

those with odd point IDs are at junctions.

As expected, the histograms in Figure 3.12 indicate that with more satellite con-

stellations operational, more satellites will be in view in city canyons. With only

GPS used, the average number of visible satellites is less than 4 at many locations,

which is not su�cient to provide a positioning solution. Even the combination of

GPS and GLONASS fails to provide an average of more than 5 visible satellites

at a few locations. However, with the addition of Galileo and Compass, the aver-

age visibility including di�racted signals is at least 8 satellites, except at pedestrian

Point 10, which is close to a tall building. These results illustrate the poor GNSS

performance that can arise obtained in challenging urban environments due to build-

ings blocking the satellite signals and show the potential bene�t of the new GNSS

constellations.

Figure 3.13 shows how the di�erent constellations contribute to GNSS availability

averaged across all the urban environments considered. It is apparent from the

chart that GNSS signal availability will increase signi�cantly if all of the additional

satellites proposed for launch by 2020 become operational.

To compare the performance of individual GNSS constellations, in other words,
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Figure 3.12.: Daily average number of satellites in view for the pedestrian route (top)
and the vehicle route (bottom)

the performance of GNSS now and in the future, a simple statistical analysis was

conducted based on data from both pedestrian and vehicle routes. Figure 3.14

shows the relationship between the type of user location and GNSS signal availabil-

ity for each GNSS constellation scenario. As expected, there is a clear trend that

the number of satellite in view increases with the number of satellites in operation.

Interestingly, the �gure also shows consistently fewer number of satellites in view

for the pedestrian scenarios compared with the vehicle scenarios, as well as fewer

satellites in view for locations between junctions than locations at junctions. The

di�erence may be caused by the pedestrian route being close to the buildings, result-

ing in more signals being blocked by surrounding buildings. Similarly, the locations

between junctions are typically surrounded by more buildings than the locations at

junctions.
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Figure 3.13.: Average contribution of each constellation to the number of satellites
in view for the 2020 scenario across all pedestrian and vehicle locations

As GNSS user equipment normally needs at least four satellites to provide a

navigation solution, GNSS availability is assessed by determining the percentage of

time for points on each route when at least four satellites are directly in view with

each combination of GNSS constellations. Furthermore, to evaluate the integrity of

GNSS in an urban environment, the percentage of time when at least 5 satellites are

directly in view has also been determined. This is because at least �ve satellites are

required for receiver autonomous integrity monitoring (RAIM) (Wang and Hewitson,

2006; Ochieng et al., 2002).

For both the pedestrian and the vehicle routes, Figure 3.15 compares the percent-

age of time over a day when GNSS is available for a positioning solution and for

RAIM under each simulation scenario. The average availability across all locations

in each category is shown along with the percentage of time at which each criterion

is met simultaneously at all locations within that category.

It can be seen from the charts that the availability of both a position solution
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locations

and RAIM is notably better for a vehicle-based user than for a pedestrian user.

However, even for the vehicle route, all four GNSS constellations are required for

close to 100% positioning availability and high RAIM availability. Performance is

unreliable even for the GNSS in 2014 scenario. Performance along the pedestrian

route is normally poorer, particularly at points between junctions. Therefore, even

with four fully-deployed constellations, robust and reliable pedestrian positioning

in challenging urban environments cannot be achieved using conventional GNSS

positioning alone.

3.4.3. Performance evaluation based on dilution of precision

For this study, only the horizontal performance is studied as this is the main concern

of GNSS users in urban canyons. The DOPs investigated in this work are the

horizontal DOP (HDOP), the along-street DOP (ADOP) and the cross-street DOP

(CDOP). Along-street is de�ned as the direction along the street which the GNSS

user is on. Cross-street is the perpendicular direction across the street. In an urban

canyon, most satellite lines of sight will be much closer to the along-street direction
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Figure 3.15.: Percentage of time when the number of satellites is enough for po-
sitioning (4 or more satellites) and for RAIM processing (5 or more
satellites)

than the cross-street direction.

The aim is to compare the positioning accuracy in the along-street and across-

street directions. The accuracy can be modeled by multiplying the ranging error

with a correspondent DOP value (Misra and Enge, 2010). The ranging error varies

considerably depending on the environment, receiver design and whether di�erential

techniques are used. Thus it is assumed that the pedestrian and vehicle GNSS users

uses the same GNSS receiver, use the same positioning technique, and are simulated

at the same time. Under this assumption, the range error is the same for them, and

only DOP is used as an indicator of accuracy prediction.

The horizontal, along-street and cross-street position solutions are compared in

terms of their DOP value. It is considered acceptable when the corresponding DOP

is below 5.0. For each simulation scenario, Figure 3.16 shows the average percentage

of time when criteria are met over each user location and the percentage of time the
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criteria are met at all locations simultaneously. DOP is calculated as described in

Misra and Enge (2010) and Groves (2013).
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Figure 3.16 shows that, on average, the along-street DOP is smaller than the cross-

street DOP as would be expected from the geometry of the unblocked signals. This

is more signi�cant for the pedestrian route. For the locations between junctions the

overall precision is poorer than at the junctions. For all of the simulation scenarios,

the DOP criteria are met more often along the vehicle route than the pedestrian

route. This is consistent with the availability results presented in the previous

section. Even with all four constellations, the HDOP criterion is met across the

whole route simultaneously only 69.1% of the time for the pedestrian route and

90.4% of the time for the vehicle route.
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3.5. Summary and discussion

This chapter prepares for GNSS shadow matching positioning by verifying the satel-

lite visibility determination algorithm, and quantitatively demonstrating the inade-

quacy of multi-constellation GNSS positioning in urban canyons, particularly in the

cross-street direction, thus demonstrating the need of shadow matching.

A satellite visibility determination toolkit has been developed for predicting GNSS

performance in urban environments using 3D building models. The capability to

determine satellite visibility using 3D models is a pre-requsite of shadow matching.

The toolkit was veri�ed at two test points with �eld trials. Comparison of satellite

visibility between prediction and observation demonstrated that direct line-of-sight

signals can be predicted using the 3D city model and the toolkit. However, due

to the complexity of the environments, di�racted and re�ected signals were also

observed that the original model did not predict. As di�racted signals are potentially

useful in positioning, the simulation has been modi�ed to predict them. Veri�cation

with real observations shows that the implemented di�raction model successfully

predicted most of the strong di�racted signals.

Positioning performance using di�erent combinations of GNSS, including GPS,

GLONASS, Galileo and Beidou has been evaluated by simulation using a 3D model

of London. Solution availability, RAIM availability and precision at di�erent di-

rections have been assessed for both pedestrian and vehicle routes within a urban

environments. Positioning performance using GPS and GLONASS was found to

be unreliable at some of the locations evaluated. Performance using all four GNSS

constellations was predicted to be much better, but still unreliable at a few of the

locations. Performance was better along the vehicle route than the pedestrian route,

which is closer to the buildings; and was better at junctions than between them,

where there are typically more close-distant buildings. When both Galileo and Bei-

dou systems will be operational in the year 2020, the number of available GNSS

signals in urban environments will be doubled. However, even with four constella-

tions, GNSS performance will still be unreliable at some urban locations in 2020.

Finally, positioning precision was found to be generally poorer in the cross-street

direction than in the along-street direction, because the buildings constrain the
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satellite signal geometry. Thus, other techniques are needed to complement GNSS

in the cross-street direction. One of these solutions is GNSS shadow matching,

which can potentially improve the across-street positioning accuracy by comparing

the observed GNSS signal availability with that predicted using a 3D city model

(refer to Chapter 4 for more details).

Based on the comprehensive simulations, to ensure a reliable positioning service

in urban canyons, conventional GNSS should be augmented with other techniques.

There are a number of methods, including combining GNSS with other signals,

sensors and data sources in an integrated navigation system (refer to Chapter 2 for

more details).

For many applications, the modelling technique presented in this work could also

be used to predict the best route through a city at a given time, or the best time to

perform GNSS positioning at a given location. This technique could also be applied

to GNSS signals prediction in mountainous area by using a digital elevation model

(DEM) instead of a city model.



Chapter 4.

A Two-phase Shadow Matching

Algorithm

The overall principle of the shadow matching positioning technique is to match

GNSS signal observations with predictions determined using 3D city models to im-

prove positioning in urban areas (Groves, 2011). Building on the work of experimen-

tally veri�ed visibility determination algorithm in Chapter 3, the shadow matching

technique is introduced in this chapter. There are a variety of options for designing

a detailed algorithm that ful�lls this principle. The scope of this chapter focuses on

discussing the pros and cons of these options, and proposes a shadow-matching algo-

rithm that is optimized in terms of architecture. This chapter also acts as an entry

point for the following chapters in the thesis on detailed optimizations of shadow

matching algorithms. A preliminary but complete version of the shadow-matching

algorithm is then designed and implemented. The implementation is then tested

using geodetic grade and smartphone GNSS receivers, comparing the impact on the

shadow matching technique of di�erent GNSS measurement qualities.

4.1. Introducing shadow matching research

This section reviews the principle of the shadow matching positioning technique and

its development history.

76
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4.1.1. The principle of shadow matching

The earliest concept similar to shadow matching is found at the end of a paper in

its discussion section (Tiberius, Christian and Verbree, 2004). The concept follows

a �ngerprinting principle that compares line-of-sight (LOS) availability predicted

using 3D models with received signals to determine the user's location. Recently,

another work named 'power matching' (Saab and Kassas, 2006) was also found

using similar principle with shadow matching. This work focuses on signal power

prediction of direct LOS and di�racted signals, and then matches it with received

signal strength. However, these concepts was not developed further by their authors.

The shadow matching positioning principle was �rst proposed and the name

'shadow matching' was �rst introduced in Groves (2011). The principle of shadow

matching combines two commonly known principles together: GNSS signal availabil-

ity determination using 3D building models and the �ngerprinting-like positioning

techniques. At UCL, the concept of 'shadow matching' was proposed and tested

with mathematical modelling, to improve cross-street GNSS positioning accuracy,

based on knowledge derived from 3D building models. Following the work in Groves

(2011), the author's investigation on shadow matching embarked.

The principle of shadow matching is simple. Due to obstruction by buildings in

urban canyons, from many GNSS satellites will be receivable in some parts of a

street, but not others. Figure 4.1 illustrates this, noting that the boundary between

the two regions is fuzzy due to di�raction e�ects at building edges (Bradbury, 2007).

Where each direct signal is receivable can be predicted using a 3D city model.

Consequently, by determining whether a direct signal is being received from a given

satellite, the user can localize their position to within one of two areas of the street.

By considering other satellites, the position solution may be re�ned further. At

each epoch, a set of candidate user positions is generated close to the user's low-

accuracy conventional GNSS positioning solution. At each candidate user position,

the predicted satellite visibility is matched with the real observations. The candidate

position that has the best match between the prediction and the real observations

can be deemed the shadow matching positioning solution. This process can be
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conducted epoch by epoch, so the GNSS user can be either static or dynamic.

Figure 4.1.: A satellite casts shadows on the ground, adjacent to buildings, to
demonstrate the concept of shadow matching

4.1.2. A development history of shadow matching

At UCL, shadow matching was �rst proposed and demonstrated by mathematical

modelling (Groves, 2011). A preliminary shadow-matching algorithm was developed

and veri�ed with experimental data, instead of simulation (Wang et al., 2011). This

was also the �rst shadow matching algorithm that evaluates Research degree of

matching by scoring at candidate positions. The potential of using shadow match-

ing to identify the correct side of the street was demonstrated. Then, an improved

scoring scheme has been proposed to account for the e�ects of satellite signal di�rac-

tion and re�ection. A full search grid of candidate positions was also implemented,

and experiments were conducted at over 20 locations (Wang et al., 2013a, 2012a).

Furthermore, shadow matching has been adapted to work with post-processed smart-

phone GNSS data (Wang et al., 2013b). For the �rst time, a real-time prototype

system has been developed for the Android mobile operation system, which demon-
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strates the e�ciency of the shadow-matching algorithm (Wang et al., 2013c). A

Bayesian approach is then used for estimating matching probability in the presence

of weak signals, and comprehensive performance assessment of smartphone GNSS

shadow matching has demonstrated the improvements and predicted performance

with four GNSS constellations (Wang et al., 2014). With previous research focus-

ing on static shadow-matching positioning algorithms, kinematic shadow-matching

positioning is tackled using a Kalman �lter and a particle �lter (Wang, 2014b).

Overall, the research at UCL has shown that, in urban canyons, shadow matching

is more accurate in the cross-street direction than the conventional GNSS posi-

tions (compared in the sense of using a typical navigation GNSS receiver, which

uses pseudo-range code-based, non-di�erential GNSS data), verifying its potential

to complement conventional GNSS.

In parallel with the author's research, other research groups have also conducted

research on shadow matching or a similar concept. They are Yozevitch et al. (2012,

2014) and Suzuki and Kubo (2012). Building on the work at UCL, recently, Isaacs

et al. (2014) also implemented a version of shadow matching. Di�erent versions of

shadow matching have been implemented by di�erent groups. For instance, in terms

of the way the 3D model is used, a grid-based approach (refer to subsection 4.2.1) is

used in the author's work (Wang et al., 2012a) and later combined with a particle-

�lter approach (Wang, 2014b); whereas Yozevitch et al. (2012) uses a zone-based

approach (refer to subsection 4.2.1), Suzuki and Kubo (2012) also uses a particle-

based approach, though their main focus is static surveying instead of kinematic

navigation. Detailed comparison of these di�erent options is discussed in Section

4.2. Since signal strength can be attenuated due to a variety of reasons, modelling it

using a probability theory is more appropriate than manual set parameters, and is

thus used in Isaacs et al. (2014) and Wang et al. (2014). Simultaneous localization

and mapping (SLAM) is used in Isaacs et al. (2014) to feed shadow matching results

back to the 3D maps. Following an idea similar to shadow matching, 3D models

of lamp posts were speci�cally used for positioning on open �eld roads (Yozevitch

et al., 2014).
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4.2. Shadow matching implementation options

This section discusses di�erent options for implementing the shadow matching tech-

nique into algorithms. Comparisons from two perspectives are made in this sec-

tion. The �rst comparison is conducted between a shadow-based and a point-based

shadow matching algorithm, while the second comparison concerns the trade-o�s

between cloud computing and local processing.

4.2.1. Zone-based or point-based shadow matching

There are two major di�erent approaches to the design of a shadow matching al-

gorithm, a zone-based approach and a point-based (e.g. grid-based) approach. A

zone-based approach is adopted in Yozevitch et al. (2012), which uses the 3D mod-

els to compute satellite shadows, cast by the buildings, for each satellite, and then

compares this with observations to eliminate un-matched points inside a search area,

resulting in a matched zone. In contrast, the point-based approach reverses the fo-

cus of computation: instead of calculating where the perfect matching zone is, the

satellite signal visibility at a grid of point locations is �rst calculated using 3D mod-

els. This is then compared with GNSS measurements to assign each location with

matching scores. Locations with higher degree of match can be used to estimate

user's location. This approach is adopted in this author's work Wang et al. (2012a),

Suzuki and Kubo (2012) and Isaacs et al. (2014).

These two approaches are essentially two forms of the same shadow matching

concept that should be equivalent in terms of making use of knowledge derived from

the 3D city models. A shadow-based approach starts with calculating the satel-

lite signal shadow cast by buildings, which may be more straightforward, since it

computes the 'shadow' �rst in the 'shadow matching'. It may also be straightfor-

ward to leverage GPU hardware acceleration, e.g. using OpenGL shaders (Shreiner

et al., 2013) to speed up shadow computing, since shadow mapping is routinely

supported by graphic cards (Purcell et al., 2002). A point-based shadow matching

algorithm focuses on each candidate point (user's potential location), which is nat-

urally required, e.g. in a particle �lter, to determine each particle's weight. These
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two approaches should give equivalent results in an ideal world. However, in the

real world, the zone-based approach struggles when there is not 100 percent match

between predictions and observations. Thus, the grid-based approach proposed in

Wang et al. (2012a) is better from this perspective.

Though Suzuki and Kubo (2012), Isaacs et al. (2014) and this author's work all

use a point-based approach, they have a di�erence in terms of 'which points' are

used in satellite visibility determination. Suzuki and Kubo (2012) and Isaacs et al.

(2014) �rst generate a number of particles in a particle �lter, based on an initial

position, and then use the 3D models to compute satellite visibility at each of these

randomly generated locations. Some of the author's work also uses a particle �lter

(Wang, 2014b), but most of the author's work (Wang et al. (2012a, 2013c); Wang

(2014b); Wang et al. (2013b, 2014)) opt to use a grid-based method (to be explained

in more detail in Section 4.3) �rst, before applying any positioning algorithm, e.g. a

k-nearest neighbor method (Chapter 4), a Kalman �lter (Wang, 2014b) or a particle

�lter (Chapter 6). This method separates the 3D model related computation from

a matching algorithm by pre-determining building boundaries using the 3D models

at a regularly spaced grid of points.

The motivation of this author's grid-based method comes from two reasons. The

�rst is that random particles may be too close to each other (e.g. a few centimeters

or decimeters) compared to the 3D model's resolution. In other words, it is a waste

of processing resources to compute satellite visibility for every single particle, once

the particles are too close to each other. A grid-based method solves this issue by

pre-de�ning the grid spacing, thus avoiding over-exploiting the 3D models beyond

its accuracy limit.

The other reason for using a grid-based method comes from concerns raised when

considering real-time, as oppose to post-processed, applications. For post process-

ing navigation, using a grid-based method does not a�ect correctness of the results.

Example user cases may include user location tracking, in which case users' location

can be determined o�-line after users' travel behavior. However, when it comes to

real-time scenarios, the heavy computation of processing 3D models has to be con-

ducted on the �y, i.e. at the time when positioning request is �red, if a grid-based
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method is not used. For mobile devices, this means the device's battery would be

drained faster and acquiring a positioning solution becomes slower. Whereas, a grid-

based method allows all computations that involve 3D models to be pre-processed

only once and the stored results, in the form of building boundaries (see Subsection

3.2.3), are used when needed (on-the-�y). This saves time and battery consump-

tion for the real-time applications. A potential drawback of this building boundary

approach is that the building boundaries (i.e. the intermediate pre-processed data)

may require more storage space than the original 3D model. This trade o� is re-

garded as plausible since without using the grid-based method, certain amount of

3D model data also has to be cached on user's devices, and caching itself also is the

normal practice that many map applications (Google Maps, Apple Maps) use for

their map layers. The data required for shadow matching can be regarded one of

these layers, together with other layers, e.g. base vector maps, satellite image maps,

roads, rivers and point-of-interests (POI).

4.2.2. Cloud computing or local processing

There are two system architecture options to convey shadow matching techniques

- run the algorithm locally on the device, or, on a cloud. A discussion of storage

requirements of a local processing approach and data transfer requirements of a

cloud computing approach is presented in Wang et al. (2013c). A cloud computing

approach for shadow matching is also mentioned in Isaacs et al. (2014).

The local processing approach and cloud computing approach are illustrated in

Figure 4.2 (a) and (b), respectively. In approach (a), shadow matching is performed

on the device, which pre-store the 3D city models or retrieve the model data from

a remote server. It is assumed in this approach that no building boundary is pre-

processed. This approach has a simple system structure, but requires a great amount

of computation load and thus power consumption from the device. Depending on

the computation capability of a mobile device, this process may take considerable

amount of time. Thus, approach (a) is not particularly suitable for mobile devices. In

approach (b), the device does not store 3D city models, leaving all shadow matching

processing to the cloud. The device only measure GNSS signals as it already does in
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conventional GNSS positioning, and sends its initial position and GNSS observations

(this may include signal strength measurements) to the cloud server. Once the

shadow matching positioning process is �nished, the solution can be sent back to

the user devices, which may integrate the solution with other positioning methods.

In this approach (b), the server handles most of the computation, so the device

reduces computation load and saves battery life. The device also saves storage

since no 3D models nor intermediate data needs to be stored on it. However, the

main drawback of this approach is that the computation cloud is signi�cantly more

complex than that in approach (a); and more importantly, the user has to tolerate

unpredictable delays (e.g. network delays and server response delays), which may

be the main bottle neck in the overall shadow matching positioning process.

The third approach, namely (c) in Figure 4.2, assigns most of the computationally

intensive work to the cloud server which could pre-process building boundary gen-

eration, and pre-store or transfer the results (enhanced maps for shadow matching)

to the device. The shadow matching application on the mobile device can then use

the building boundary received from the server to conduct shadow matching with

much less computation load. Using building boundary data for shadow matching,

the user devices do not need to store or directly interact with the 3D city models, in-

stead, only the useful information from the 3D models, i.e. the building boundaries,

are used. Thus, the user devices are released from the most heavy computation

involved in the shadow matching technique. Compared with approach (a), this ap-

proach leaves the less real-time processing load for the mobile device; compared with

approach (b), this approach does not completely rely on the server, which may or

may not always be fast and reliable. Furthermore, if the 3D models are copyrighted

(as they normally are) and only allowed to be stored on the server rather than dis-

tributed to each user, this problem can be eliminated using the approach (c). Thus,

approach (c) is designed and selected in this thesis.
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4.3. A six-step shadow matching algorithm

This section introduces a basic but complete version of the shadow matching algo-

rithm that is developed further later in this work. In this version, there are six steps

to follow, each of them are described in details in the following subsections.

4.3.1. The overall shadow matching system

In this work, the shadow-matching algorithm has two phases � the o�ine phase

(preparation) and the online phase (real-time positioning), consisting of six steps,

as illustrated in Figure 4.3. An o�-line phase is performed to generate a grid of

building boundaries (an enhanced map for shadow matching). In the beginning

of the online phase, the user position is �rst initialized, for example, using con-

ventional GNSS positioning solutions. In the third step, the search area for the

shadow-matching position solution is de�ned. Forth step predict the satellite vis-

ibility at each grid position using the building boundaries generated from the 3D

city model in the o�ine phase. Fourthly, the similarity of satellite visibility between

predictions and observations is evaluated using a scoring scheme to generate a score

for each grid point in the search area, from which grid positions with best matches

are found. Finally, the shadow-matching positioning solution is generated by a posi-

tioning algorithm (e.g. a modi�ed k-nearest neighbours algorithm that averages the

grid points with the highest scores). Each of the steps is described in more detail

below.

4.3.2. Step 1: building boundary generation (o�ine phase)

In the o�-line phase, building boundaries at a grid of locations are generated. A

building boundary means from a GNSS user's perspective, the building's edge de-

termined for each azimuth (from 0° to 359°) as a series of elevation angles. Figure

3.2 illustrates building boundaries with di�erent resolutions. The results from this

step show where the building edges are located within an azimuth-elevation sky plot.

Once the building boundary has been computed, it may be stored and reused easily
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Figure 4.3.: A two-phase 6-step �owchart of the shadow matching algorithm

in the online phase to predict satellite visibility by simply comparing the elevation

of a satellite with the elevation of the building boundary at the same azimuth.

To determine the building boundaries, 3D city models are used to determine visi-

bility of virtual satellites at each azimuth and elevation angle. Details of literature,

algorithm and experimental veri�cation of satellite visibility determination in build-

ing boundary generation is described in Chapter 3.

Brie�y mentioned in the Subsection 4.2.1, the design reasons for the o�-line phase

are discussed in more details here. From the perspective of mobile devices, limited

computational power, memory and battery life introduces great concern on perfor-

mance. To overcome these limits, the o�-line phase is designed to move the most

computationally intensive tasks from the mobile devices to the server (or cloud), as

discussed in Subsection 4.2.2. This algorithm design exchanges real-time computa-

tional load for a one-o� processing requirement at the server side. Speci�cally, this

is achieved by representing the 3D model in a specially designed form - building
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boundaries at a grid of positions. The observation behind the strategy is that the

vast amount of data in a 3D city model is not of direct interest to the shadow-

matching algorithm, only where the edges of the buildings are located from a user's

perspective matter. Thus, utilizing this knowledge, only building boundaries at each

candidate positions are abstracted from the 3D model. This method saves compu-

tation load because individual mobile devices do not need to compute the building

boundaries on the �y. Instead, they can simply request building boundaries at a

certain range of locations, or cache/store building boundaries for a desired region.

In building boundary generation, only buildings that are close to the candidate

position and in the direction of interest are tested. Figure 4.4 illustrates the process

and Figure 4.5 shows this re�ned search area. It should be noted that the parameters

used in this example are manually selected based on knowledge of the 3D city model

used in this work. Appropriate changes should be made if using another type of city

model. The time required to generate building boundaries at a 500m by 500m grid

of points (with 1m spacing) was 10 hours using a processor of ~3GHz.

Chapter 7 uses examples to discuss the practical side of how the size of building

boundary data is related to the size of covered region.

4.3.3. Step 2: position initialization (online phase starts)

In the second step of a shadow-matching algorithm, an initial position should be

acquired. This initial position is considered to be with low accuracy (e.g. a few tens

of meters). It may, for example, come from standard point positioning (SPP) using

GNSS pseudo-ranges, as is the normal practice in conventional GNSS positioning.

Consistency checking may be used to identify non-line-of-sight signals and remove

them from the position solution (Groves et al., 2013). Other available positioning

methods (e.g. Wi-Fi) may be introduced into this step when the GNSS SPP is poor

or unavailable. If the initial position comes with an associated accuracy, e.g. an

error covariance matrix or a con�dence region, this information may be used in the

next step to better de�ne the search region.
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Figure 4.4.: The process that generates the grid of building boundaries

4.3.4. Step 3: search area determination

The third step de�nes the search area in which candidate positions are located for

the shadow-matching position solution. A search area is de�ned based on an initial

position generated in the second step. For example, the search area may comprise the

area within a �xed-radius circle centred at the initialized position. Indoor locations

can be excluded from the search area where the building boundaries grid is generated

in the o�ine phase. The circle radius can be determined empirically. For example,

a circular search area with a 40-metre radius is used in most of the author's work,

which means it is assumed that the accuracy of initial position is within 40 metres.

This is an empirical value learned using the smartphone GNSS tested in this work. A

di�erent radius can be used in another implementation and the bigger the radius of

the search area is, more computation load is required to consider these areas. Clearly,

there is a trade-o� between saving computation power and increasing possibility of

having the true position out of the search area. Having a bigger search area may
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Figure 4.5.: The optimization used in building boundary generation by re�ning city
models according to location of a candidate user position and an azimuth
of interest. (Aerial perspective, the �gure is not drawn to scale)

also cause greater ambiguity, to be discussed in more detail in Chapter 6. More

advanced algorithms can be developed to use the knowledge from the initialization

process to optimize the search area, e.g. vary the size and direction, or use a discrete

description (e.g. particles, to be explained in more detail in Chapter 6) of its search

area based on an assessment of the quality of the initial position.

The idea of a search region is illustrated in Figure 4.6, with the green area rep-

resenting the search area centred at the initial position and the grid representing

positions where building boundaries are available.

For example, Chapter 6 uses the error distribution information of the shadow

matching result from the last epoch to estimate the current shadow matching 'search

area' in a particle �lter. Another example would be when the initial position is

generated using a conventional GNSS solution, the satellite signal geometry, and

hence the positioning accuracy, will be much better along the direction of the street

than across the street. This is because an urban canyon a�ects the geometry of the

available GNSS signals. Signals with lines of sight going across the street are much

more likely to be blocked by buildings than signals with lines of sight going along the

street, as demonstrated in Chapter 3. The search region in shadow matching can be
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Figure 4.6.: A search region in the shadow matching algorithm

adjusted to account for this information. The conventional GNSS solution has lower

across-street accuracy and higher along-street accuracy, which is complementary to

shadow-matching solution.

4.3.5. Step 4: satellite visibility prediction

To predict satellite visibility, each satellite's elevation is compared with the building

boundary elevation at the same azimuth. Where a satellite elevation is below the

building boundary, the buildings block any satellite signals, assuming there are no

holes in them allowing signals to travel through. Thus, the satellite is predicted to

be visible if the satellite is above the building boundary; otherwise, the satellite is

predicted to be invisible. This satellite visibility prediction concept is illustrated in

Figure 4.7. The visibility is given by

Vs,p =

1 θasnu ≥ θpbnu(ψas
nu)

0 θasnu < θpbnu(ψas
nu)

(4.1)
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where Vs,p denotes the predicted visibility of the satellite s at the candidate position

p, 1 means visible and 0 means invisible; θasnu denotes the elevation of satellite s, a

denotes the user antenna, n denotes the local navigation frame, and u denotes line-

of-sight unit vector; and θpbnu(ψas
nu) denotes the elevation of the building boundary at

azimuth ϕ, from the perspective of the user position. Similar naming conventions

are used in Groves (2013).

North

Elevation θ

Up

Azimuth φ

Building Boundaries

Satellite s

Figure 4.7.: Compare elevation of building boundaries with a satellite at the same
azimuth

4.3.6. Step 5: satellite visibility scoring

In the �fth step, there are two stages for calculating a satellite visibility score: satel-

lite scoring and candidate position scoring. Firstly, each satellite above the elevation

mask angle is given a score, calculated based on the predicted visibility (obtained in

the last step) and the observed visibility, using a scoring scheme. Secondly, the po-

sition scoring function is used to evaluate for each possible user position the overall

degree of match between predicted and observed satellite visibility.

An example satellite scoring scheme SS22 is shown in Figure 4.8. Only direct line-

of-sight (LOS) signals are considered using this scoring scheme. The di�raction e�ect

could also be modelled. For example, a three-degree di�raction zone is modelled for

building boundaries both horizontally and vertically in Chapter 3. Thus, in that
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model, from the perspective of a GNSS receiver, buildings are three degrees lower

and narrower than their actual height and width. If the line-of-sight (LOS) falls

within the di�raction region, the signal is predicted to be di�racted. Otherwise, it

is predicted to be invisible.

1 0

0 1

VisibleInvisible

Visible

Invisible

Prediction

Observation

Figure 4.8.: A 2 by 2 scoring scheme SS22

After each satellite is scored, each candidate position can then be scored via, for

example, summing up the scores of each satellite. The candidate positions with

higher scores indicate better matches, which conveys important information in the

next step. An example function that sums up the scores from each satellite is shown

in

fpos(p) =
m∑
i=1

fsat(s, p, SS) (4.2)

where fpos(p) is the position score for grid point p; fsat(s, p) is the score of satellite s

at grid point p; m is the number of satellites above the mask elevation angle; SS is

the scoring scheme which de�nes a score based on predicted and observed satellite

visibility.

By the end of this step, each grid position should have a score to represent the

degree to which it matches the observed satellite visibility, and thus how likely that

each candidate position is close to the true location. A shadow matching score map

is thus obtained. An example of this map is shown in Figure 4.9, which shows data

collected at location R1 (refer to Figure 4.12), to be described in more detail in

Section 4.4.1.
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This scoring scheme can been improved to acknowledge error caused by di�raction

and re�ection e�ects. Besides di�raction modelling described in Chapter 3, Chapter

5 further introduces how to smartly use signal to noise ratio (SNR) to properly

model and compensate these error. Generally, a weak signal is regarded likely to be

re�ected or di�racted, thus it is given a lower weight compared to a strong signal,

but an optimized weighting scheme should be used, as investigated in Chapter 5.
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Figure 4.9.: A example of a shadow matching scoring map that shows a range of
matching scores at a grid of locations. The true location is marked by
a black cross.

4.3.7. Step 6: positioning using scores at candidate positions

The last step of the shadow-matching algorithm is to generate a positioning solution

using scores from each candidate position. Shadow matching is essentially a pattern-

matching positioning method, which is discussed in general terms in Groves (2013).

As the process of Wi-Fi �ngerprinting is similar to this process in shadow match-

ing, the algorithms used in Wi-Fi �ngerprinting may be used in shadow matching.

Possible algorithms include, but are not limited to, k-weighted nearest neighbours

(adopted in this chapter), a Kalman �lter (adopted in Wang (2014b)) and a particle

�lter (adopted in Chapter 6).

To give an example, a method similar to k-nearest neighbours is described below
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that estimates the location by averaging the grid positions with the highest scores.

With the scoring scheme SS22, scores take integer values. Therefore, several grid

points typically share the highest score. The grid points with the highest score

are regarded as nearest neighbors in terms of their score distance (i.e. di�erence

in their scores). Since they share the same highest score, the score distance is 0.

These points can thus be considered nearest to each other from this perspective. An

average of their locations is deemed as the positioning solution. Mathematically,

this means the location estimate is determined using equations 4.3 and 4.4 for the

northing and easting projected coordinate components, Na and Ea respectively:

Na =

∑l
i=1 Ni

l
(4.3)

Ea =

∑l
i=1 Ei

l
(4.4)

where Ni and Ei are, respectively, the northing and easting coordinates of the ith

high-scoring candidate positions. Note that l varies from epoch to epoch depending

on how many candidate positions share the highest score.

4.4. Assessments using geodetic and smartphone

GNSS receivers

The satellite visibility determination method described in Chapter 3 is examined us-

ing survey-grade (geodetic) receivers. However, smartphone-grade GNSS receivers

are more feasible in most potential applications of the shadow matching technique,

due to its smaller size, cheaper cost and lower power consumption. Thus, in this

section, both geodetic and smartphone GNSS receivers are used to access the per-

formance of the shadow matching algorithm that is described in this Section 4.3.

Comparisons are conducted between these two categories of receivers, in terms of

cross-street and along-street positioning accuracy. This section �rst describes the

experimental settings and con�gurations. The shadow-matching positioning perfor-
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mance using geodetic GNSS receivers is then assessed and compared with that using

smartphone GNSS receivers.

4.4.1. Experimental settings and shadow matching

con�gurations

Experimental data was collected in the Aldgate area of central London using a

geodetic GNSS receiver (Leica Viva GS15) and a consumer-grade GNSS receiver

on a smartphone (Samsung Galaxy S3) running a bespoke Android data logging

application developed by the author. A screen shot can be found in Figure 4.10.

The SNR measurements, satellite azimuths and elevations, and the conventional

GNSS position solution are all included in the National Marine Electronics As-

sociation (NMEA) message from the phone's GNSS chip. Data from the Leica

Viva receivers are outputted as Leica's proprietary data, which can be transformed

to standard RINEX observation �les using TEQC, a toolkit for GNSS data pre-

processing (Estey and Meertens, 1999), which includes time tags, pseudo-range and

SNR measurements.

Figure 4.10.: A screen shot of the developed Android app which is used to record
GNSS data for shadow matching (including satellite PRN, signal-to-
noise ratio, azimuth, elevation and conventional GNSS positioning so-
lution).
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A 3D city model of the Aldgate area, provided by ZMapping Ltd, was used to gen-

erate the building boundary data used for the subsequent analysis. The model used

in this study is a mixed level of details (LoD) 1 and LoD 2 model, with decimetre-

level accuracy, transformed into the Virtual Reality Modelling Language (VRML)

format. Here the convention on LoD used in CityGML is used, which is discussed

in Section 3.1.

Figure 4.11 visualises the 3D model used in this study. The truth reference was

determined using a tape to measure the distance to a distinctive feature, such as

a building wall or the kerb between the road and footpath and then locating that

feature on the 3D city models. This process is accurate to decimetre level, which

is su�cient for this study since the aimed positioning accuracy is at meters level.

Other methods in surveying may also provide the truth model. For example, static

GNSS occupation of the test points may provide position with high accuracy (cm-

dm). However, this method is not considered feasible because in the deep urban

environments, severe multipath and NLOS reception signi�cantly reduces the num-

ber of 'clean' GNSS signals and thus degrades positioning accuracy. An alternative

is to set up GNSS stations in an open environment, from where total stations used

to traverse this area. However, there isn't such open environment close to this area

in central London. Thus, a truth model is obtained using the 3D city models.

Twenty experimental locations with various road layouts were selected in the area

covered by the city model. Figure 4.12 is an aerial view of the experimental area,

showing each site. Pairs of sites (pre�xed by R and G) are located on opposite sides

of the street, which enables the testing of shadow matching's ability to determine

the correct side of the street. All sites were located on the footpath, close to a tra�c

lane.

The implementation of shadow matching is based on the description in Section 4.3.

In the o�ine phase, a 1 meter by 1 meter grid has been generated, and the building

boundaries determined at each grid point. In the online phase, position initializa-

tion is performed using conventional GNSS positioning results because this study
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Figure 4.11.: The 3D model of London used in the experiments

focuses on comparing the di�erent types of receivers. Instead, position initialization

is based on the true position, acquired from the 3D city model. This is because

the performance of shadow matching algorithm using di�erent receivers are being

compared, rather than the whole positioning system. Whereas di�erent positioning

algorithms/methods used by di�erent receivers in the shadow matching positioning

initialization can result in very di�erent initial positions. Thus, in order to prevent

initialization errors from contaminating the following scoring step, the search area

for each site is centred at the true position. This area is within a radius of 20 metres

of the true position, within which candidate positions are generated. Indoor points

are eliminated by checking the point's visibility of sky. The scoring process uses a

basic S22 scoring scheme (see Figure 4.8). The modi�ed k-nearest neighbours algo-

rithm is used to determine the positioning solution of shadow-matching algorithm,
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Figure 4.12.: An aerial view of the experimental area (satellite image from Google
Earth)

as described in Subsection 4.3.7.

4.4.2. Experimental results and analysis

From the experimental results, conventional GNSS positioning is typically found

performing relatively poorly in the across street direction, and better along the

street. Figure 4.13 shows a typical example of the conventional GNSS position-

ing solution (at point G003) using weighted least square (WLS) with a Leica Viva

GNSS receiver. It demonstrates that the cross street position from the conven-

tional GNSS solution can vary by ~35 meters. This lower accuracy performance of

conventional GNSS in cross-street direction is suggested by simulated GNSS per-

formance in Subsection 3.4.3 using 3D city models. The same issue is also shown

by the mathematical modelling in Groves (2011). The lower accuracy of conven-

tional GNSS in cross-street direction demonstrates the demand for a technique like
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shadow matching to improve cross-street positioning accuracy. More detailed analy-

sis on conventional GNSS positioning using smartphone receivers and its comparison

with shadow matching solutions are given in Subsection 5.4.2 and 6.5.2.

21m

Cross-street 

direction error 

range: ~35m

True 

position

Figure 4.13.: Typical conventional GNSS positioning results showing lower accuracy
in the across-street direction and higher accuracy in the along-street
direction

To assess the performance of the shadow-matching algorithms using di�erent grade

of GNSS receivers, the north and east position errors were transformed to along-

street and cross-street position errors. Figure 4.14 shows the mean absolute devia-

tion (MAD) value of the cross-street position error at each site, using geodetic and

smartphone GNSS receivers, marked in the �gure as (a) and (b), respectively. The

MAD is calculated using

MAD =
1

n

n∑
i=1

abs(xi) (4.5)

where MAD is the mean abusolute deviation of cross-street positioning error, xi is

the cross-street positioning error at the ith epoch, and n is the number of epochs.

Figure 4.14 shows that, the cross-street accuracy is typically better than the along-
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street accuracy, for both geodetic and smartphone shadow matching solutions. Since

cross-street direction is where conventional GNSS is less accurate, this direction is

focused on in the analysis. It can be seen that, at most sites, the geodetic shadow-

matching cross-street accuracy is better than 5m, whereas for smartphone shadow-

matching solutions, there are 6 sites where its position error is bigger than 5m.

This indicates that geodetic shadow-matching solutions outperforms smartphone

shadow-matching solutions in the cross-street direction. However, there are a few

cases where geodetic shadow-matching solutions are poorer than smartphone shadow

matching e.g. G07, which might be caused by the fact that the data was collected

at di�erent times, so sometimes, the satellite con�guration was more favorable with

the smartphone data. This also suggests that the statistical results (to be presented)

may be more sensible than the direct point-by-point comparison.

Figure 4.15 further shows the overall shadow matching positioning performance by

averaging the MAD over all sites. It clearly shows the trend that geodetic shadow-

matching solutions outperform smartphone shadow matching solutions on average.

G0
1

G0
2

G0
3

G0
4

G0
5

G0
6

G0
7

G0
8

G0
9

G1
0

R0
1

R0
2

R0
3

R0
4

R0
5

R0
6

R0
7

R0
8

R0
9

R1
0

0

5

1 0

1 5

2 0

2 5
G e o g e t i c  

 

Cr
os

s-s
tre

et 
po

siti
on

ing
 er

ror
 (m

)

S i t e G0
1

G0
2

G0
3

G0
4

G0
5

G0
6

G0
7

G0
8

G0
9

G1
0

R0
1

R0
2

R0
3

R0
4

R0
5

R0
6

R0
7

R0
8

R0
9

R1
0

0

5

1 0

1 5

2 0

2 5
S m a r t p h o n e

S i t e

 A l o n g - s t r e e t
 A c r o s s - s t r e e t

Figure 4.14.: Mean absolute deviation of shadow matching cross-street positioning
error using geodetic and smartphone GNSS receivers
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Figure 4.15.: Mean absolute deviation of shadow matching cross-street positioning
error using geodetic and smartphone GNSS receivers averaged over all
sites

More analysis was conducted to calculate the proportion of results for which the

cross-street positioning error was within certain limits. This may be thought of as

the success rate for achieving certain performance speci�cations. For example, a

typical street is around 10m wide, so a positioning accuracy within 5m is considered

good enough to determine the correct side of the street, while 2m is su�cient to

distinguish the footpath from a tra�c lane. Figure 4.16 shows the success rate

averaged across all sites. The overall success rate for determining the correct side of

a street was 81.0% using geodetic receivers, compared to 62.6% using smartphones.

The success rate for distinguishing the footpath from a tra�c lane was 59.5% for

geodetic receivers and 35.2% for smartphones.

Judged based on both mean absolute deviation and proportion of results for which

the cross-street positioning error was within certain limits, it is safe to draw the

conclusion that shadow matching algorithms using geodetic receivers outperforms

when smartphones are used. It should be noted that a basic version of shadow

matching algorithms, among many possible alternatives, is used. Compared with

geodetic receivers, smartphone GNSS receivers typically track more signals, and as
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Figure 4.16.: Proportion of cross-street position errors within certain ranges (success
rate) across all sites using geodetic and smartphone GNSS receivers

a trade o�, it su�ers from lots of NLOS being tracked. As more NLOS reception on

smartphones confuses the shadow-matching algorithm, further research should be

conducted to model NLOS reception and optimize the shadow matching algorithm

to account for this e�ect. Details of this research are described in Chapter 5.

4.5. Chapter summary

In this chapter, the development history of the shadow matching technique is re-

viewed, with di�erent design options described and compared. A two-phase six-step

shadow-matching algorithm is proposed. The algorithm is implemented and tested

using both geodetic and smartphone GNSS data. Real-world GNSS data has been

collected at 20 di�erent locations in the same urban area, both on a geodetic GNSS

receiver and a smartphone app developed in this work. A comprehensive statisti-

cal performance analysis using di�erent grade of GNSS receivers is presented. The
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results show that the geodetic shadow-matching solutions achieve an average cross-

street accuracy to 2.13m, outperforming shadow matching using smartphones, which

exhibits 3.90m average cross-street positioning error. The success rate for determin-

ing the correct side of a street is 81.0%, better than 62.6% using smartphones; while

the success rate for distinguishing the footpath from a tra�c lane is 59.5%, also bet-

ter than that using a smartphone, which achieves 35.2%. As shadow matching has

a cross-street accuracy of a few meters, it is highly complementary to conventional

GNSS positioning methods.

This chapter presents results from a very basic shadow-matching algorithm. Chap-

ter 5 and 6 investigate the performance that can be achieved using more advanced

algorithms.



Chapter 5.

Probability-based Shadow

Matching Using Bayesian

Techniques

This chapter focuses on the optimization of the satellite visibility scoring (step 4,

illustrated in Figure 4.3) in the shadow matching algorithm described in Chapter

4. The importance of distinguishing direct line of sight (LOS) / non-line-of-sight

(NLOS) in shadow matching algorithms, especially on smartphones, is introduced

in Section 5.1. Two rounds of optimization are investigated. In the �rst round,

signal visibility and di�raction in the scoring schemes are modelled by empirically

setting thresholds of signal-to-noise ratio (SNR). To improve this modelling, the

smartphone GNSS signals should be better understood, thus a LOS/NLOS signal

analysis with respect to SNR and elevations is presented in Section 5.2. This analy-

sis inspires the second round of optimization, using Bayesian techniques, which leads

to a probability-based shadow-matching algorithm, as presented in Section 5.3. A

comprehensive performance assessment is conducted to compare the probability-

based shadow-matching algorithm, basic shadow-matching algorithm and conven-

tional GNSS positioning, with static smartphone GNSS measurements at 20 loca-

tions. This chapter is partially based on Wang et al. (2013a), and another paper

under review at Journal of Navigation (Wang et al., 2014).
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5.1. Importance of LOS/NLOS determination in

shadow matching

The generic shadow-matching algorithm introduced in Chapter 4 does not specif-

ically account for possible performance challenges in urban environments. More

speci�cally, challenges may come from phenomena including di�raction and NLOS

reception that the user devices are vulnerable to in urban areas. The buildings, es-

pecially with glass, metal or wet surfaces, are particular strong re�ectors that cause

signal re�ection in urban environments (Groves, 2013).

The signal re�ection problem becomes more severe for smartphone GNSS posi-

tioning. Many potential applications of shadow matching use smartphone-grade

GNSS user equipments (Groves, Wang and Ziebart, 2012). Although smartphone

GNSS receivers cost much less than geodetic GNSS receivers, they can be subject

to features including more severe signal tracking noise, multipath reception, and

stronger non-line of sight (NLOS) reception due to the low gain and linear polar-

ization of smartphone-grade GNSS antennae. These features impose di�culty when

distinguishing right-hand circularly polarized (RHCP) direct-LOS signals from the

generally left-hand circularly polarized (LHCP) NLOS/multipath signals using the

SNR (Groves et al., 2010). The higher sensitivity of smartphone GNSS receivers is

designed to increase positioning service availability, but as a trade o�, they track

the weak signals, most of which would be NLOS.

The generic shadow matching algorithm, as described in Chapter 4, is demon-

strated to have worse performance when using smartphone GNSS, compared with

geodetic GNSS receivers. This is because, essentially, the principle of shadow match-

ing assumes that where a prediction is matched with an observation, the location is

likely to be user's true location. If observed NLOS signals are not properly modelled,

when an NLOS signal is observed at a location, it will confuse the shadow matching

algorithm, which may falsely score lower at the true location, or higher at incorrect

locations.

One approach to solve the NLOS problem is to focus on using sophisticated math-

ematical model to predict NLOS reception using 3D models, as demonstrated Suzuki
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and Kubo (2012). The reality is that NLOS cannot be perfectly modelled in pre-

diction due to the fact that there are too many factors to consider in practice, e.g.

a good NLOS model requires knowing the physical materials of each part of the

building surface, which is not routinely available for 3D building models, and signal

blocking caused by user bodies and passing objects (vehicles and pedestrians). More

importantly, prediction needs to match with observation to score correctly in the

shadow matching algorithm. Thus, judging whether an observation is LOS or NLOS

is very important.

In summary, shadow matching algorithms for GNSS positioning in urban canyons

should be optimized to account for NLOS signal reception, especially for smart-

phones. In this chapter, techniques are developed to help classify the received signal

strength as LOS or NLOS based on their SNR.

5.2. LOS/NLOS analysis in respect to SNR and

elevation

The existing scoring scheme SS22 is shown in Figure 4.8. Only direct line-of-sight

(LOS) signals are considered using this scoring scheme, whereas the shadow match-

ing user equipment can also observe di�racted and re�ected signals. This mismatch

can degrade shadow-matching performance, as discussed in the Section 5.1.

A modi�ed method to improve the basic scoring scheme has been proposed and

tested in Wang et al. (2013a). This method is proved be able improve performance

of shadow matching using geodetic GNSS receivers to a certain extent (refer to Wang

et al. (2013a) for more details).

Although the modi�ed shadow matching scoring schemes account for occurrence

of weak signals and follow the common sense that a strong signal is more likely to be

a LOS signal, fundamentally, the score assumes that there is a clear SNR boundary

between direct LOS signal and NLOS and di�raction signals when, in reality, the

boundary is fuzzy, particular with a smartphone. Thus, a more realistic model might

be expected to give better results.

Determining a realistic model requires good understanding of the characteristics
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of smartphone GNSS reception. This section aims at exploring the characteristics

of smartphone GNSS receivers, with the expectation of discovering clues to improve

the scoring schemes. In other words, the better smartphone GNSS characters are

understood, the more chance that a better scoring scheme (to be presented in Section

5.3) can be designed.

5.2.1. Collection large experimental data sets

To understand the characteristics of smartphone GNSS, a large set of experimental

data should be collected. Experimental data was collected in the Aldgate area of

central London using Samsung Galaxy S3 Smartphones running a bespoke Android

data logging application. Since the same experimental data as in Chapter 3 and 4 are

used, please refer to Subsection 4.4.1 for more details about the static experiments.

An aerial view of the experimental area (satellite image from Google Earth) can be

found in Figure 4.12. Figure 4.11 visualises the 3D model used in this study.

It should be noted that the experimenters stood at each of the selected 20 loca-

tions, for two rounds of 6 minutes each. The time between the two rounds of data

collection was 4 hours, allowing the satellite constellation to change signi�cantly.

Thus, it is considered that the two rounds of data are independent of each other.

The second round of data is used for analysis in this section; whereas the �rst round

of data is used for testing the new shadow matching algorithm. Satellite visibility

information for both GPS and GLONASS (comprising time tag, satellite azimuth,

elevation and SNR) were recorded at 1Hz for post-processing using shadow match-

ing. Thus, a total of 24000 epochs, i.e. seconds, of smartphone GPS and GLONASS

data were collected at the 20 locations. The number of data sets is considered a

large data set of static smartphone GNSS data.

5.2.2. SNR and elevation analysis

Normally, a signal with a higher SNR is more likely to be direct LOS than NLOS. For

example, signals re�ected from non-shiny buildings are typically weaker than direct

signals from satellite. However, glass buildings, wet walls and surrounding vehicles
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can cause strongly re�ected signals (Groves, 2013). Thus, some NLOS signals can

be stronger than some direct LOS signals, with a smartphone antenna. With a

better antenna (e.g. geodetic), LOS signal would have to be attenuated by people,

foliage etc. to be weaker than the straight NLOS signals. On the other hand, weak

LOS (no buildings directly block the line-of-sight) signals can also be received as a

result of user body masking or signal attenuation caused by trees and surrounding

pedestrians.

As discussed in Section 5.1, the characteristics of smartphone antennae make it

more di�cult to distinguish LOS from NLOS signals using SNR measurements. In

this section, the SNR distributions of the direct LOS and NLOS signals are analysed

separately. The 3D city model is used to determine which of the received signals are

direct LOS and which are NLOS using the visibility prediction method described in

Chapter 3 and knowledge of the true user position. Signals predicted to be visible are

assumed to be direct LOS. Di�racted signals are counted in the NLOS category for

this study. The results of this analysis can be used to improve the shadow-matching

algorithm, as described in Section 5.3.

Figure 5.1 shows histograms for each of the test sites showing the normalized

distributions of the measured SNR of the direct LOS and NLOS signals. Figure 5.2

shows the LOS and NLOS SNR distributions averaged across all of the experimental

sites. Both direct LOS signals, shown in red, and NLOS signals, shown in blue,

were received at every test site, verifying that smartphone GNSS receivers usually

capture NLOS signals in urban areas. Comparing di�erent sites, it can be seen that,

at some (e.g., R02 and G10) a higher proportion of the signals received were direct

LOS whereas at others (e.g., G07 and R09), more NLOS signals than LOS were

received. Reasons for this may include the nature of the surrounding buildings and

satellite geometry.

At every site, the LOS signals are likely to have higher SNRs than the NLOS sig-

nals. However, there is considerable overlap between them, particularly between 20

and 30 dB-Hz, con�rming the expectation that both strong NLOS signals and weak

LOS signals are commonly received by smartphones in dense urban environments.
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Figure 5.1.: Normalized SNR distributions of LOS and NLOS reception at each site
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Thus, an absolute SNR boundary to distinguish LOS from NLOS signals cannot be

de�ned. Instead, the data may be used to infer the probability that a signal received

with a particular SNR is LOS. For example, it can be deduced from Figure 5.2 that

the probability of a 24 dB-Hz signal being LOS is approximately 50%, whereas a 39

dB-Hz signal has a ~90% probability of being LOS.

Figure 5.3 shows the normalized measured SNR distributions for di�erent satellite

elevations averaged across all sites. The low elevation signals are more likely to be

NLOS and the higher elevation signals are more likely to be LOS as they are less

likely to be blocked by buildings. It can be seen that for elevations below 40◦, the

SNR drops as the elevation decreases, whereas above 40◦, there is little relationship

between SNR and elevation.
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Figure 5.2.: Normalized SNR distributions of LOS and NLOS signals across all test
sites
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Figure 5.3.: Normalized SNR distributions of LOS and NLOS signals at di�erent
elevation angles

5.3. LOS/NLOS probability-based shadow

matching

Given the smartphone GNSS characteristics as analyzed in Section 5.2, a Bayesian

technique is proposed to improve the scoring scheme via sample statistics.

Given a known SNR from the smartphone GNSS receiver, the probability that a

signal is a direct LOS can be calculated. In mathematical terms, this probability

can be expressed as p(LOS|SNR = s), where s may, for example, range between

5 to 45 dB-Hz for smartphone GNSS receivers. For each of the SNR values, there

can be a correspondent conditional probability p(LOS|SNR = s) that a signal is

LOS. These conditional probabilities form a simple Bayesian network, where all of

the probabilities can be stored in a �conditional probability table� (CPT) Nilsson

(2009). The same principle applies to NLOS signals. Figure 5.4 illustrate an example

network. Since a large number of GNSS visibility samples has been computed using

the 3D city models in Section 5.2. It should be noted that each for two rounds

of data collection is separated by 4 hours to allow the satellite constellation to

change signi�cantly. The CPTs can be estimated via 'sample statistics', to be further
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discussed later.

CPT

SNR

Line-of-sight (LOS) Non-line-of-sight (LOS)

21 22 23 24 25m n

Figure 5.4.: Illustration of conditional probability table (CPT) computation. (m
means SNR smaller than 21 dB-Hz and n means SNR larger than 25
dB-Hz)

As Figure 5.1 and Figure 5.2 show, there is considerable overlap between the SNR

distributions of direct LOS and NLOS GNSS signals received by smartphones. Thus,

it is not possible to set a de�nitive SNR threshold, above which a received signal may

be assumed to be direct LOS. Consequently, the simple visibility-prediction scoring

scheme with de�nitive SNR threshold cannot be expected to work well. Instead, a

probabilistic approach via conducting sample statistics, can be adopted to estimate

the probabilities and calculate the conditional probability table (CPT) (Nilsson,

2009). In this approach, the probability of a signal being direct LOS is estimated

from the measured SNR and the satellite visibility prediction from the 3D city model

scored accordingly. A set of all these conditoinal probabilities p(LOS|SNR = s)

forms the conditional probability table (CPT), which stores the knowledge acquired

from the sample statistics. From Bayes theorem, the probability of an observed

signal being direct LOS given a measured SNR of s is
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p(LOS|SNR = s) =
p(SNR = s|LOS)p(LOS)

p(SNR = s)
(5.1)

where p(SNR = s|LOS) is the probability of an SNR of s being measured, given

that the signal is direct LOS, p(LOS) is the probability of the signal being direct

LOS and p(SNR = s) is the probability of the measured SNR being s. If li is the

proportion of signals measured that are direct LOS and for which the measured SNR

is i and ni is the proportion of signals measured that are NLOS and for which the

measured SNR is i, then

p(SNR = s|LOS) =
ls∑
i li

(5.2)

p(LOS) =
∑
i

li (5.3)

and

p(SNR = s) = ls + ns (5.4)

where it is assumed that
∑

i(ls +ns) = 1. Therefore, substituting equations 5.2, 5.3

and 5.4 into equation 5.1,

p(LOS|SNR = s) =
ls

ls + ns

(5.5)

Sample statistics can be computed to �nd the SNR distributions of LOS and NLOS

signals, ls and ns. When the amount of experimental data is large enough, sample

statistics can be used to determine CPT, which can be used in shadow matching

satellite visibility scoring. In this work, the two rounds of experimental data are

divided into a training set and a test set. The second round data are used to train

a CPT model, i.e. a p(LOS|SNR = s) model, and the �rst round of experimental
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Figure 5.5.: Left: Probability of LOS, i.e. p(LOS|SNR = s), when the SNR is
between a upper bound and a lower bound, �tted as a linear function,
a quadratic function, and a cubit function, shown in purple, green and
blue, respectively. Right: The �tting error in terms of residuals shows
good �tting with a quadratic function. A cubic function is not needed
because it results in very similar residuals with a quadratic function.

data are used for testing purpose, as described in Section 5.4.

In a CPT model, it is assumed that when the SNR is higher than a speci�ed

upper bound, the p(LOS) is regarded as a constant probability close to (but not

equal to) 1; when the SNR is lower than a speci�ed lower bound, the p(LOS) is

regarded as a constant probability close to (but not equal to) 0; when the SNR is

in between the upper bound and lower bound, a polynomial �tted model can be

used. An assumption is made that once the SNR is high enough, it is equally likely

that the signal is a direct LOS signal. For example. For example, compared with

a signal with SNR of 40 dB-Hz, another signal with SNR of 39 dB-Hz is regarded

having the same probability that it is a direct LOS signal. This is because both 39

and 40 are very high SNR values. The same assumption is made for signals with
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low SNRs. Another design is made to avoid extreme probabilities like 0 and 1. This

design helps the CPT model to cope with a very strong re�ection or a very weak

direct LOS, by not giving them full con�dence and thus allowing errors to occur.

Figure 5.5 (left) shows p(LOS|SNR = s) for SNR between 17 (lower bound)

and 35 (upper bound), marked by black crosses. It shows that p(LOS|SNR = s)

increases when the SNR increases. This can be expected, since a higher SNR implies

a higher probability that a signal is LOS. The important question is, quantitatively,

how does the p(LOS|SNR = s) increase with the SNR. To model this relationship,

a least squares method is used with three polynomial �ttings, a linear �tting, a

quadratic �tting, and a cubit �tting. Figure 5.5 (right) shows the �tting error using

these three methods. It can be seen that linear �tting results in a larger error

of at most 10% for each SNR with periodic residuals, whereas quadratic �tting

o�ers, in most cases, better than 2% errors. Thus, a linear �tting is under-�tting

and should not be chosen. Using a higher order of polynomial �tting, i.e. cubic

�tting, it provides very similar �tting errors. Thus, it can be regarded that the

quadratic �tting already model the overall shape of p(LOS|SNR = s) very well,

and a cubic �tting is thus not needed. Thus, in this work, a quadratic �tting is

adopted. Combining the quadratic �tting with the aforementioned assumptions

when the SNR is higher than the upper bound and lower than the lower bound, a

complete CPT model of p(LOS|SNR = s) can be obtained:

p(LOS|SNR = s) =


po−min s < smin

a2s
2 + a1s+ a0 smin 6 s 6 smax

po−max s > smax

(5.6)

where po−min and po−max are, respectively, the minimum and maximum probabilities

of the observed signal being LOS; smin and smax are, respectively, the minimum

and maximum SNRs at which the quadratic function applies; and a0, a1, and a2

are the coe�cients of that function. For the results presented in Section 5.4, the

parameters were: po−min = 0.2, po−max = 0.9, smin = 17, smax = 35, a0 =

−1.86887109, a1 = 0.1563262666, and a2 = −0.002245615412. The po−min and

po−max are determined from the quadratic part of the CPT model by assigning the
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value of p(LOS|SNR = 17) and p(LOS|SNR = 35), respectively. The values of

a0 a1 and a2 are determined from the sample statistics using the second round of

experimental data as described earlier. The value of smin and smax are set from

experience.

It should be noted that this model is trained using a Galaxy Samsung S3 smart-

phone, using another model of smartphone may or may not need adjustments to

the parameters, which needs further research. However, it can be expected that the

general shape of p(LOS) should remain similar.

Once p(LOS|SNR = s) is obtained, the probability that the predicted and mea-

sured satellite visibility match, pm, can be computed:

pm = 1− p(LOS|SNR = s)− p(LOS|BB) + 2p(LOS|SNR = s)p(LOS|BB) (5.7)

where p(LOS|BB) is the probability predicted from the building boundary that a

LOS signal is receivable. p(LOS|BB) is set to 0.9 if the satellite is predicted to be

visible, and to 0.2 otherwise. These values allow for di�raction and 3D model errors.

The overall matching probability is obtained by multiplying the individual-satellite

matching probabilities. However, it is more convenient to add the individual-satellite

scores. Therefore, a log-likelihood-based score between 0 and 1 is calculated from

pm using

fsat =
log(pm)− log(pm−min)

log(pm−max)− log(pm−min)
(5.8)

where pm−min = 0.26 and pm−max = 0.82 can be set as the minimum and maximum

possible values of the matching probability, pm.

5.4. Performance assessment using smartphone

GPS and GLONASS

Static shadow-matching performance was assessed using smartphone grade GNSS

chip with both GPS and GLONASS data streams collected at 20 sites, each for two
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rounds, separated by 4 hours to allow the satellite constellation to change signi�-

cantly, as described in Section 5.2. The second round of this data is used to train the

CPT model, as described in Subsecion 5.2.1; whereas the �rst round of data is used

for testing purposes in this section. The shadow-matching algorithm described in

Chapter 4 was used with the visibility scoring scheme described in Section 5.3. This

section �rst discusses a selection of satellite visibility scoring maps produced by the

probability-based shadow-matching algorithm. The cross-street positioning perfor-

mance is then assessed and compared with basic shadow matching and conventional

GNSS positioning.

5.4.1. Satellite visibility scoring

A 1-metre grid spacing is used to convey building boundary information in this

work. As described in Chapter 7, a 3-metre grid spacing is also tested showing

that positioning is about 6% more accurate with a 1-metre grid spacing than with

a 3-metre spacing. A 40-metre radius circle, centred at the conventional GNSS

positioning solution from the smartphone GNSS chip, de�nes the boundary of the

shadow-matching search area, within which each grid position is scored. The 40

metre radius value is empirically determined, since it is observed that conventional

GNSS positioning error is normally within 40 metres from the true position. Setting

a larger number for this parameter will increase the con�dence that the true posi-

tion is within the search region; however, it also impose heavier computation load.

Clearly, there is a trade-o� between computation load and positioning accuracy. 40

metre radius search region is a compromise used in this research.

Figure 5.6 shows examples of the shadow-matching scoring maps obtained at

four of the experimental locations. The coloured dots represent the grid positions,

excluding indoor locations. The highest scoring grid points are marked in dark red

and the lowest scoring grid points are marked in dark blue. The true position is

marked by a black cross. It can be seen that in most cases, the highest scoring

points are in the correct street and on the correct side, as shown in the top left and

top right subplots for R01 and G09. However, high-scoring points can also appear

on other streets, as shown in the bottom right subplot, and in the spaces behind
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buildings. In a few cases, the highest scores do not appear in the expected area as

the bottom left subplot shows. This is typically caused by strong NLOS reception

via highly re�ective glass and metal buildings. A long-term solution to this problem

is to predict NLOS reception using the 3D city model.

Figure 5.6 clearly shows that shadow matching is much more sensitive in the cross-

street direction than in the along-street direction, in line with expectations. This

complements conventional GNSS positioning which is generally more precise in the

along-street direction in urban areas due to the signal geometry. Thus, combining

the cross-street shadow-matching solution with the along-street conventional GNSS

solution will generally give the best overall position solution (Groves, Ziyi, Wang

and Ziebart, 2012). In this section, performance analysis focuses on the cross-street

component of the position solution.

Figure 5.6.: Example shadow-matching scoring maps at one epoch from di�erent
sites
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5.4.2. Performance comparison

To assess the performance of the optimized shadow matching algorithm against the

basic shadow matching algorithm and the conventional GNSS positioning solution,

the north and east position errors were transformed to along-street and cross-street

position errors. Figure 5.7 shows the absolute value of the cross-street position error

at each site from the �rst round of data. The conventional GNSS navigation solution

from the smartphone GNSS chip is compared with shadow-matching using both the

probability-based scoring scheme described in Section 5.3 and the basic S22 scheme

shown in Figure 4.8. Figure 5.8 shows the corresponding mean absolute deviation

(MAD) of each cross-street position error, using equation 4.5. Note that the results

at each site are highly correlated because each observation period was 6 minutes,

during which the constellation geometry changed slowly.

Figures 5.7 and 5.8 show that, in most cases, shadow matching outperforms con-

ventional GNSS positioning and the new probability-based shadow-matching algo-

rithm outperforms the basic algorithm. At some sites, such as G09, the shadow-

matching accuracy is better than 2m at most epochs. However, there are a few

cases where shadow matching is poorer than conventional GNSS positioning, e.g.

G07. A common cause of poor shadow-matching performance is reception of a sig-

ni�cant number of strong re�ected signals, which can confuse the shadow-matching

algorithm. Further analysis was conducted to calculate the proportion of results

for which the cross-street positioning error was within certain limits. This may be

thought of as the success rate for achieving certain performance speci�cations. For

example, a typical street is around 10m wide, so a positioning accuracy within 5m

is considered good enough to determine the correct side of the street, while 2m

is su�cient to distinguish the footpath from a tra�c lane. Figure 5.9 shows the

success rate at each site, while Figure 5.10 shows the success rate across all sites.

The overall success rate for determining the correct side of a street was 54.03%
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Figure 5.7.: Absolute cross-street positioning error using conventional GNSS, ba-
sic shadow matching (using S22 scoring scheme) and probability-based
shadow matching
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Figure 5.8.: Mean absolute deviation over all epochs of the cross-street position error
using conventional GNSS, basic shadow matching and probability-based
shadow matching.

using probability-based shadow matching, compared to 45.43% using basic shadow

matching, and 24.77% using conventional GNSS positioning. The success rate for

distinguishing the footpath from a tra�c lane was 28.17% for probability-based

shadow matching, 20.73% for basic shadow matching, and 9.52% for conventional

GNSS positioning.

5.5. Chapter summary

Signal visibility and di�raction in the scoring schemes are �rstly modelled by empir-

ically setting thresholds of signal-to-noise ratio (SNR). To improve this modelling,

separate signal-to-noise ratio distributions of direct LOS and NLOS GNSS signals re-

ceived in a dense urban area have been measured using an Android smartphone and

a 3D city model. Using these distributions, a function has been derived giving the

probability that a received signal is direct LOS based on the measured SNR. Using
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Figure 5.9.: Proportion of cross-street position errors within certain ranges at each
site using conventional GNSS, basic shadow matching and probability-
based shadow matching

this function, another optimization in shadow-matching's satellite visibility scoring

scheme has been conducted for use with smartphone GNSS measurements. In this

new probability-based shadow matching algorithm, a sample statistics technique

is used to estimate the conditional probability table (CPT) in a simple Bayesian

network.

Using GPS and GLONASS data recorded at 20 locations within central Lon-

don, the �rst comprehensive performance assessment of smartphone GNSS shadow

matching has been conducted. The results show that the probability shadow-

matching algorithm proposed in this chapter signi�cantly outperforms conventional

GNSS positioning in the cross-street direction, and is statistically better than the

basic shadow matching algorithm with S22 scoring scheme. The success rate for

obtaining a cross-street position accuracy within 5m, enabling the correct side of

a street to be determined, was 54.03% using probability-based shadow matching,
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Figure 5.10.: Proportion of cross-street position errors within certain ranges across
all sites using conventional GNSS, basic shadow matching and
probability-based shadow matching.

compared to 45.43% using basic shadow matching, and 24.77% for the conventional

GNSS position.

The research in this chapter assumes GNSS data from each epoch can only be used

individually. Further research to improve shadow matching, particularly to handle

kinematic applications, where knowledge of multiple epochs can be combined, will

be introduced in Chapter 6.



Chapter 6.

Kinematic Shadow Matching

In this chapter, for the �rst time, and in parallel to Isaacs et al. (2014), kinematic

shadow-matching positioning is investigated. Section 6.1 introduces the background

and motivation of kinematic shadow matching. A new kinematic shadow-matching

algorithm is presented in Section 6.2. In this algorithm, pros and cons of the key

component options, namely position estimation schemes, are discussed in Section

6.3. Detailed algorithm descriptions of the selected scheme, a particle �lter, are

then given in Section 6.4. A comprehensive assessment of real-world experiments

is presented in Section 6.5, with di�erent criteria applied to compare the perfor-

mance between the conventional GNSS navigation solution, the single-epoch shadow-

matching system solution, and the kinematic shadow-matching system solutions.

Finally, Section 6.6, summarize the research work in this chapter. This chapter is

partially based on work presented in paper published in ION GNSS+ 2014 (Wang,

2014b), with further algorithm improvements and experiments conducted.

6.1. Motivation

The motivation for investigating kinematic shadow matching algorithms comes from

the fact that navigation is typically kinematic, but previous research has focused on

developing static shadow-matching positioning algorithms. A single-epoch shadow-

matching algorithm, as presented in Chapter 4 and 5, is valid for static positioning,

but not optimized for kinematic cases. This is because in single-epoch shadow

124
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matching, GNSS data in each epoch is individually processed, without taking ad-

vantage of any knowledge from previous epochs. Although Suzuki and Kubo (2012)

investigated multi-epoch positioning, the aim was to improve precision of static po-

sitioning using information from multiple epochs. Although Yozevitch et al. (2014,

2012) targeted for kinematic applications, only a single-epoch shadow matching al-

gorithm was used.

Given that the update rate of a mobile GNSS device is normally 1 Hz, pedestrians

and vehicles are not likely to move so fast that the environment changes dramatically

between consecutive epochs. The single-epoch or static shadow-matching techniques

are thus ignoring important information that exists in kinematic scenarios. In sum-

mary, the existing shadow matching techniques are not optimized for kinematic

positioning. Therefore, this chapter discusses di�erent estimation scheme options

that can optimize shadow-matching positioning for kinematic cases, selects and im-

plements the most appropriate scheme to optimize kinematic shadow-matching po-

sitioning.

6.2. Design of a kinematic shadow-matching

algorithm

There can be di�erent architectures of a kinematic shadow-matching system. Figure

4.2 gives the design options in terms of the overall system architecture. Rather than

scoping at the system level, this section focuses on the algorithm-level design of a

kinematic shadow-matching algorithm.

Kinematic shadow-matching algorithms can be designed by extending the generic

single-epoch shadow-matching algorithm presented in Chapter 4. The �owchart of a

single-epoch shadow-matching algorithm is illustrated in Figure 4.3. When moving

to the kinematic positioning scenarios, the most important step to change is step

6, where a position estimation scheme is performed. In the single-epoch shadow-

matching algorithm, a method that does not take advantage of information from

previous epochs, e.g. a k-nearest neighbour (K-NN) algorithm, is used. Whereas

in a kinematic shadow-matching algorithm, this step should be replaced by an ap-
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propriate estimation scheme. An estimation scheme can, for instance, be a Kalman

�lter, a grid �lter, or a particle �lter. The trade-o�s of using each of them are dis-

cussed in Section 6.3. The algorithm �owchart of the kinematic shadow-matching

algorithm is illustrated in Figure 6.1.

1. Generate 

Building 

Boundaries

4. Determine the 

Search Area

5. Score by 

Satellite Visibility

6. (for comparison 

only) Single Epoch 

Positioning Algorithm 

(e.g. k-NN)

3. Predict Satellite 

Visibility

Building 

Boundaries 

Database

Ephemeris

3D City Models

Position Solution

2. Initial Position

Observed 

Satellite Visibility

6. Kinematic 

Estimation 

Scheme (e.g. 

Particle Filter)

Legends

Input/Output

Online Phase

Off-line Phase

Figure 6.1.: Flowchart of kinematic shadow matching (the modi�ed step 6 is sur-
rounded by a red frame)

6.3. Bayesian methods - Kalman, grid-based, or

particle �lters

Bayesian estimation methods are widely applied in positioning engines. Combining

noisy measurements observed over time using the Bayes theorem should typically be

more accurate than using a single noisy measurement. Among the Bayesian meth-

ods that combine multiple measurements, three Bayesian techniques are considered
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for implementation in kinematic shadow-matching over multiple epochs, namely

Kalman �lters, grid-based �lters and particle �lters.

The Kalman �lter is a state estimation algorithm invented by R. E. Kalman

(Kalman, 1960; Brown and Hwang, 1996; Groves, 2013). It is often used to estimate

real-time states in positioning algorithms. A Kalman �lter is considered to have the

potential to help solve the kinematic shadow-matching positioning problem for two

reasons. Firstly, Kalman �lters are commonly used in the navigation community to

integrate consecutive measurements or data from di�erent sensors, and are proven

to be e�cient and e�ective (Groves, 2013). Conversely, it is frequently observed that

in the shadow-matching algorithm, the candidate positions (those positions where

GNSS measurements best match predictions) tend to form an approximation of an

ellipse, as illustrated in Figure 6.2 (a), in which a shadow matching scoring map that

shows an unambiguous highest-scoring area, marked in red. The data was collected

at 11:40:56 on 26th, October 2012, using a Samsung Galaxy S3 smartphone. The

true locations of the site is marked by a cross in the �gure. The ellipses are used to

highlight the best matching area. Thus, a Kalman �lter should be able to represent

this. In the author's work (Wang, 2014b), a Kalman �lter designed for kinematic

shadow-matching positioning, consists of 10 steps in three phases: initialization,

state system propagation and measurement updating. However, Kalman �lters are

not focused on in this thesis because of their expected and proven defects.

A Kalman �lter may not be the optimal solution for kinematic shadow matching.

The standard Kalman �lter is a linear Gaussian estimation algorithm. Although

extended Kalman �lters (EKF) and unscented Kalman �lters (UKF) can adapt

the Kalman �lter to nonlinear systems (Gelb, 1974; Julier and Uhlmann, 2004), a

shadow matching system is not only nonlinear, but also multimodally distributed,

i.e. there could be ambiguity from the existence of multiple matching areas. This is

illustrated in Figure 6.2 (b), where there are two best matching areas in the shadow

matching scoring map. Thus the position solution is ambiguous. In this situation,

a single-hypothesis model Kalman �lter is not an adequate representation of the

multiple hypothesis models; whereas grid-based or particle �lters are adequate. The
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Figure 6.2.: Two shadow matching scoring maps that show highest-score (best
matching) area can be unambiguous (a) or ambiguous (b), which means
using a Kalman �lter can be feasible but not all the time

data was collected at 12:13:10 on the same day.

A multiple-hypothesis Kalman �lter (Reid, 1979) may account for this situation,

but it is sometimes di�cult to determine how many hypotheses models are needed.

For example, it can be seen in Figure 6.2 (a) that apart from there being major

matching areas, there are also several minor suboptimal matching areas. The bene�t

of using Kalman �lters, though, would be that less computation power is needed,

certainly compared with particle �lters.

Besides the Kalman �lter, a grid-based �lter may also help solve the problem.

A grid-based �lter uses a discrete grid to represent posterior probability density

function of any distribution (PDF), therefore it does not have to assume Gaussian

distribution of measurement noise, nor only estimate linear combinations of system

states. The idea of using a grid-based �lter is inspired from the fact that shadow

matching is based on a grid of points, where the building boundary information

is available. If this grid is used in the grid-based �lter, at least theoretically, it

maximize the use of knowledge from the building boundaries. However, in the

kinematic cases, the grid-based �lter has a limitation on its resolution - it can not

represent continuous probability states, whereas a natural property of kinematic

movement is continuity. To complement this drawback, a dense grid may be used

to reduce the error introduced by the discrete representation issue; however, the
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grid density has to be properly determined based on the desired or best available

accuracy. It sometime becomes di�cult/tricky to determine the density of grid since

the accuracy is also unknown. A denser grid also imposes higher processing load.

In addition to the Kalman �lter and the grid-based �lter, a particle �lter algorithm

is also considered in this work to improve kinematic shadow-matching position-

ing. Particle �ltering is originally named bootstrap �ltering (Gordon et al., 1993).

The general concept is to use a set of Monte Carlo (randomly chosen) weighted

samples (particles) to represent the posterior probability density function (PDF)

(Thrun et al., 2005). Unlike the Kalman �lter, particle �lters are nonlinear non-

Gaussian Bayesian estimation techniques (Gordon et al., 1993; Gustafsson et al.,

2002). Furthermore, a particle �lter can naturally handle multimodal distribution

that a Kalman �lter cannot. In fact, each particle can be regarded as a hypothesis

model. Last but not the least, rather than �xing particle resolution in a grid �l-

ter, particle �lters can adjust itself to have higher density of particles in the high

probability region.

In summary, particle �lters have a strong potential to better solve the kinematic

shadow-matching problem. Although a Kalman �lter may be more e�cient to run,

the restricted measurement model can not represent the natural properties of shadow

matching resulting from its inherit ambiguity - it is non-linear and non-Gaussian.

In addition to the non-linear and non-Gaussian nature of a particle �lter, more

importantly, it can estimate multiple hypothesis distributions. The robustness using

a particle �lter is thus better when compared with a Kalman �lter (Wang, 2014b).

Compared with a grid-based �lter, particle �lters are better in kinematic shadow

matching, with the ability to adjust itself in spatial resolution. Thus, a particle �lter

is used in this work for kinematic shadow-matching positioning.

6.4. Particle �lter design

An architectural overview of the particle �lter is shown in Figure 6.3. There are

four phases, comprising initialization, system updating, measurement updating and

resampling, in 10 steps. These are detailed in the following descriptions.



6.4. Particle �lter design 130

Particle from last 

epoch

3. State 

propagation
2. System update

6. Normalize 

particle weights

9. Position state

update

New shadow 

matching 

estimate

1. Generate 

particles

Conventional 

GNSS position

5. Particle 

weighting based on 

higher-score points

4. shadow 

matching scoring

7. Particle sorting 

and calculate 

CDF

8. Importance 

resampling

10. Repeat 

from step 2

Legends

Initialization

System 

Propagation

Measurement 

Update

Resampling

Figure 6.3.: The particle �lter architecture for kinematic shadow-matching position-
ing

6.4.1. Initialization phase

Step 1: Initialization: Generate random particles [x̂1+
0 , ..., x̂n+

0 ] in a Gaussian distri-

bution, based on the initial conventional GNSS positioning solution

 ng
0

eg0

+

. A

particle is a representation of posterior density function (PDF) of the state variables,

i.e. the horizontal position.

x̂+
0 =

 ng
0

eg0

+

(6.1)
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P+
0 =

 σ2
0,n σ0,ne

σ0,ne σ2
0,e

 (6.2)

[x̂1+
0 , ..., x̂n+

0 ] ∼ N(x̂+
0 ,P

+
0 ) (6.3)

where in the Gaussian distribution, the initial mean position x̂+
0 is denoted as ng

0

eg0

+

, ng
0 is the northing component and e

g
0 is the easting component of the ini-

tial GNSS position, and the error covariance matrixP+
0 is denoted as

 σ2
0,n σ0,ne

σ0,ne σ2
0,e

,

the σ2
0,n and σ

2
0,e are the variances of the northing and easting components of initial

position error, respectively; and σ0,ne is the covariance between northing and easting

components. In this work, σ2
0,n and σ2

0,e are set to be 202m2, and σ0,ne is set to be

0. This means in each direction, it is assumed that 68.27% of particles lie within

20 metre deviation of the centre, which in the initialization phase is de�ned as the

conventional GNSS position. Since the GNSS receiver does not provide information

needed to calculate the correlation between northing and easting components, it is

also assumed that there is no correlation between the two components. N represents

the normal distribution, i.e. Gaussian distribution.

6.4.2. System update phase

Step 2: Generate random noise to account for user motion.

In order to take user motion into consideration, random noises [r1
k−1, ..., r

n
k−1] for

each particle x̂i+
k−1 ∈ [x̂1+

k−1, ..., x̂
n+
k−1] are generated, obeying a Gaussian distribution

N [0,Qk−1,r], where Qk−1,r is the covariance matrix of the system noise.

rik−1 =

 ni
k−1

eik−1

 (6.4)
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Qk−1,r =

 σ2
k−1,r,n σk−1,r,ne

σk−1,r,ne σ2
k−1,r,e

 (6.5)

[r1
k−1, ..., r

n
k−1] ∼ N [0,Qk−1,r] (6.6)

where σ2
k−1,r,n and σ2

k−1,r,e are the northing and easting components of the system

noise variance, and σk−1,r,ne is the error covariance between easting and northing

components. In this work, since no IMU or magnetometer is used to provide the

user's moving direction or speed, it is assumed that a user's movement follows a

Gaussian distribution in which σ2
k−1,r,n and σ

2
k−1,r,e is 22m2 (a normal walking speed),

and there is no correlation between the two components, thus σk−1,r,ne is set to be 0.

The system update rate is the same as the measurement update rate, i.e. once per

second; this setting means it is assumed that user may walk with a speed of roughly

2 m/s.

Step 3: The user motion that is modelled as random noises [r1
k−1, ..., r

n
k−1] is then

added to the particles [x̂1+
k−1, ..., x̂

n+
k−1] to update their states.

[x̂1+
k , ..., x̂n+

k ] = [x̂1+
k−1, ..., x̂

n+
k−1] + [r̂1+

k−1, ..., r̂
n+
k−1] (6.7)

6.4.3. Measurement update phase

Step 4: For the k-th epoch, perform the steps 1 to 4 in the GNSS shadow match-

ing algorithm described in Figure 6.1, which is initialized at the last particle-�lter

positioning solution x̂+
k−1. Scores that use the optimized scoring scheme described

in Section 5.3 are acquired at a grid of positions within the search region of the

shadow matching algorithm, noted as [ĉ1+
k−1, ..., ĉ

m+
k−1]. Each of these grid positions is

associated with a matching score, denoted as s
ĉ
j+
k−1

. points

Step 5: Compute the particle weights based on the shadow matching scoring

outputs.
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Before this step, the particles are assumed to have equal weights. A particle's

new weight is evaluated based on its l-closest grid points in two sub-steps. In this

study l is set to be 16, since it is assumed grid points within a roughly 2 meter range

of the particle contribute to the weight. Figure 6.4 gives an example to illustrate

that the two-meter range, and the concept that the more distance the grid point is

to the particle, the lower weight it contributes to the overall weight of the particle

(denoted as lighter in color).
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Figure 6.4.: Particle (marked in red) weighting based on shadow matching grid as-
sociated with matching scores (marked in di�erent shades of black).
The darker a grid position is means that its matching score has more
contribution to the overall weighting of the particle.

The �rst sub-step is an initial weighting. For each particle xi−
k (1 ≤ i ≤ n), its

weight wi−
k (1 ≤ i ≤ n) is de�ned as a sum across intermediate results wij−

k (1 ≤

j ≤ l), which is inversely proportional to the Euclidean distance di−k between this

particle xi−
k and the grid position ĉj+k−1ε[ĉ

1+
k−1, ..., ĉ

l+
k−1], multiplied by the score of

the j-th grid position s
ĉ
j+
k−1

. When the nearest candidate is within 1 meter to the

current particle of interest, its distance is considered to be 1 meter.

wij−
k =


s
ĉ
j+
k−1

, (di−k < 1meter)

1

di−k
× s

ĉ
j+
k−1

, (di−k > 1meter)

(6.8)
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wi−
k =

l∑
j=1

wij−
k (6.9)

After this initial weighting, particles whose adjacent grid points have higher

matching scores are weighted higher. However, particles with low weights should be

eliminated, i.e. it is assumed that only particles that are with high weight should

have contribution to the �nal weighting. Thus, in the second sub step, another

operation is conducted to promote particles with weight of the top p percent of

scores:

ŵi−
k =

wi−
k −min(wi−

k )− [max(wi−
k )−min(wi−

k )]× [1− p]
[max(wi−

k )−min(wi−
k )]× p

(6.10)

where min(wi−
k ) and max(wi−

k ) represent the minimum and maximum value of wi−
k ,

respectively. In this work, p is set to be 5%, which means that the particles whose

weight are within top 5 percent will contribute to resampling phase. Setting a larger

number for p means the particle weights are less trusted. Consequently, more error

can be tolerated; however, this way also increases the chance that unmatched areas

contaminate the positioning solution. Setting a smaller number means only particles

with very high level match can survive, thus may resulting in over trusting the highly

matched particles. Thus, it is an empirical value to be set. After the second sub

step, weight of these particles is still proportional to its initial weight.

Step 6: Normalize the weights of each particle, so that

n∑
i=1

wi+
k = 1 (0 ≤ wi+

k ≤ 1) (6.11)

wi+
k =

ŵi−
k∑n

i=1 ŵ
i−
k

(6.12)
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6.4.4. Importance weight resampling

Resampling is needed to replace the particles with negligible weights, so that all

the particles can still maintain its close representation of posterior density function

(PDF) of the estimated position and thus accuracy can be maintained. At the

same time, it saves computing resources by eliminating the particles with negligible

weights (Groves, 2013).

Step 7: Incrementally sort the particles [x̂1−
k , ..., x̂n−

k ] according to their normal-

ized weights wi+
k , so that x̂1−

k < x̂2−
k < ... < x̂n−

k , and compute the cumulative

density function (CDF), noted as [cdf 1
k , ..., cdf

n
k ], using the following formula:

cdf i
k =

i∑
h=1

wh+
k (6.13)

Step 8: Generate n random variables in a uniform distribution.

[u, ..., unk ] ∼ U(0, 1) (6.14)

For each uik ∈ [u1
k, ..., u

n
k ] , �nd the corresponding particle by choosing the �rst

particle in [x̂1−
k , ..., x̂n−

k ] for which its cdf i
k is bigger than u

i
k ; as a result, a new set

of particles [x̂1+
k , ..., x̂n+

k ] is generated.

Step 9: The average position of these new particles is deemed the positioning

solution:

x̂+
k =

1

n

n∑
i=1

x̂i+
k (6.15)

Repeat 2 � 9.
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6.5. Experiments and results analysis

To evaluate the performance of the proposed new algorithms, kinematic experiments

were conducted in central London using smartphones. In this section, the 3D city

model and the experimental routes are �rst outlined, with the con�guration of the

shadow-matching algorithm then described. Finally, positioning results of conven-

tional GNSS positioning, single-epoch shadow matching, and particle �lter shadow

matching are compared.

6.5.1. Experimental con�gurations

A 3D city model of the Aldgate area of central London, supplied by ZMapping Ltd,

was used. Refer to Chapter 3 for details. Figure 6.5 shows part of the city model

used in this work, with experimental area marked.

Experimental area

Figure 6.5.: The 3D city model used in shadow matching experiments. The area
marked in red is where the three routes of experiments were conducted.

The experimental area is a built-up area, where three experimental routes were

selected on Fenchurch Street and Leadenhall Street. Figure 6.6 shows photos taken

at the street, showing the urban environments. Two of the routes, numbered route
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1 and 3, were located on the northern side of Leadenhall Street and southern side

of Fenchurch Street, respectively. Another specially designed route that covers both

southern side of Leadenhall Street and northern side of Fenchurch Street is se-

lected, to test the algorithm against the scenario when a tra�c turn over exists.

These routes allow system performance comparison between users at di�erent sides

of street. This design is because that if the proposed algorithm can determine the

user's position no matter which side the user is at, it is more probable that the

algorithm is not producing the correct answer by chance.

The directions of the two streets (Leadenhall Street and Fenchurch Street) are

east-west and northeast-southwest, respectively. Due to the lack of updated 3D

model data coverage available to the author, there are not available streets with

north-south direction for experiments. The 3D model data used in this research

was produced earlier than the year 2005, thus it is out of date for approximately

10 years compared with the date of this research. Numerous buildings have been

demolished or built in the overall area, as a normal practice in central London.

Thus, the experimental sites have to be carefully selected where the 3D models can

still approximately re�ect real world environments. This issue implies that updated

3D models are the per-requisite for shadow matching techniques, which potentially

can be a drawback of applying the shadow matching technique.

Yet a lack of an exact north-south direction street does not a�ect this research

signi�cantly, since it is not as important and interesting as streets of east-west

direction in the testing purpose of this study. This is because the north-south

component of GNSS positioning accuracy is typically worse than that of the east-

west component, especially in mid-latitude areas, e.g. United Kingdom (Meng et al.,

2004). This is due to the global distribution of GNSS satellites, e.g. for United

Kingdom, a larger portion of satellites operates on the southern hemisphere of the

sky. Buildings on a east-west direction street block some of these satellites, at north-

south direction, resulting in a worse positioning performance at this direction. Thus,

an east-west direction street is expected to need shadow matching more signi�cantly,

and thus is more important and interesting to be tested.

All routes were selected on the footpath close to the tra�c lanes. Figure 6.7 shows
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an aerial view of the experimental routes in a satellite image from Google Earth.

The truth model in this experiment is set using the 3D city model by identifying

the same unique positions from the 3D city model and the real world. A pedestrian

walked in steady speed from the start to the end of each route.

Figure 6.6.: Urban environments on route 1 (left), and route 2 (right)

Using the GNSS data-recording app adapted from earlier work (screenshot shown

in Figure 4.10), a Samsung Galaxy S3 smartphone was used to record GNSS data

on Route 1 and 3, and a Google Nexus 5 phone was used to record data on Route

2, both with a frequency at 1Hz. Both GPS and GLONASS observations were

recorded, including satellite visibility information and positioning results from the

smartphone GNSS chip. 500 particles are used in the particle �lter. Other numbers

of particles (1000 and 2000) have been tested and have shown similar results, thus

it is assumed that 500 particles are enough to represent the PDF.
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Route 2

40m

Figure 6.7.: The 3 experimental routes illustrated in a satellite image, noting that
there is a distortion of the airborne image. In real world, the routes are
set on the curves between pavements and vehicle lanes

6.5.2. Positioning performance assessment

In this section, the overall performance of the single-epoch and particle �lter shadow-

matching positioning systems are assessed and compared with the conventional

GNSS solution from the smartphones.

To compare the performance of shadow matching against the conventional GNSS

positioning solution, the position errors are transformed from local coordinates (nor-

thing and easting) to the along-street and across-street directions. As mentioned

in Section 2.3, the cross-street direction is the main concern in this study, because

the sensitivity in this direction matters to many applications of interest, including

determining the correct side of the street for pedestrian navigation, and lane identi�-

cation for vehicle navigation and intelligent transportation systems. Figure 6.8 (left)

shows the positioning results (against time) of the conventional GNSS navigation

solution from the smartphone GNSS chip, compared with the two shadow match-

ing algorithms: single-epoch shadow matching and particle �lter shadow matching,
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Figure 6.8.: Positioning error in time series (left) and histogram (right) of conven-
tional GNSS (green), single-epoch shadow matching (blue), and particle
�lter shadow matching (red), in cross-street direction
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expressed as absolute errors in the cross-street direction. The right graphs in the

same �gure show the histogram of the error distribution shown to the left.

There are a few interesting points that can be observed from this �gure. Firstly,

the overall characteristics of the shadow matching and conventional GNSS solutions

are very di�erent. The conventional GNSS solutions are smoother, as smoothing

algorithms (e.g. a Kalman �lter) are commonly used in navigation GNSS chipsets.

However, the shadow matching solutions, no matter which version, tend to be closer

to zero, which means their accuracy is better, though they vary more with time.

Secondly, the particle �lter shadow matching signi�cantly outperforms both of the

other methods, including the single epoch shadow matching. The Particle Filter

shadow matching has a smoothing e�ect as well, which in many cases has fewer

variations compared to the single-epoch shadow matching. For all the routes, the

particle �lter shadow matching positioning results show a clear peak at zero-error.

It is clearly demonstrated that the particle �lter shadow matching solution has

improved on the conventional positioning error, in the across-street direction, from

typically 10 - 40 meters to within 2-3 meters (except the middle part of route 2) in all

the routes. In route 2 and 3, the particle �lter shadow matching is also better than

conventional GNSS solutions and single epoch shadow matching in most epochs. In

route 2, the epochs in the middle of the route when the particle �lter positioning

result has a larger error was when the experimenter was a making a turn. The

turning in particle �lter shadow matching is delayed compared with when the real

event happened. This is the pay-o� when using a �lter, since when the turning

actually happened, the particle �lter may treat new measurements that suggests

a turn to be errors. However, soon after more measurements suggesting the same

turning, the �lter then believes a turning has happened. This result suggest that

when there is a turning, a particle �lter shadow matching may need to be improved

on checking it, but essentially, this is a trade o� based on the level to trust abnormal

measurements.

In order to evaluate the performance across all of the epochs, a statistical analysis

was performed. Mean absolute deviation (MAD) was used as an indicator to evaluate

the performance from a statistical perspective. MADs of cross-street position error
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for conventional GNSS and shadow matching, single epoch shadow matching and

particle �lter shadow matching are compared in Figure 6.9. Bars in the left sub-

�gure show MADs for each route and the right sub-�gure shows the mean MADs

over all routes.

It is shown in Figure 6.9 that the across street positioning performance of particle

�lter shadow matching is signi�cantly better than conventional GNSS positioning.

The single epoch shadow-matching algorithm reduced the mean cross-street error,

compared with conventional GNSS solutions, from 12.56m to 4.56m � by 61.2%,

averaged over routes 1, 2, and 3. The particle �lter shadow-matching algorithm re-

duced the mean cross-street error to 2.16m � by 81.6%, compared with conventional

GNSS positioning solutions.

R o u t e  1 R o u t e  2 R o u t e  30

1 0

2 0

Cr
os

s-s
tre

et 
MA

D (
m)

 C o n v e n t i o n a l  G N S S
 S i n g l e  e p o c h  s h a d o w  m a t c h i n g
 P a r t i c l e  f i l t e r  s h a d o w  m a t c h i n g

1 2 . 7 6

4 . 5 6

2 . 1 6

0

2

4

6

8

1 0

1 2

1 4

 

 

 

Me
an

 Cr
os

s-s
tre

et 
MA

D (
m)
 C o n v e n t i o n a l  G N S S
 S i n g l e  e p o c h  s h a d o w  m a t c h i n g
 P a r t i c l e  f i l t e r  s h a d o w  m a t c h i n g

Figure 6.9.: Mean absolute deviation (MAD) of cross-street positioning errors using
di�erent methods

Further statistical comparisons were conducted to assess the positioning perfor-

mance as a success rate of achieving a certain accuracy threshold in the cross-street

direction, and the results are shown in Figure 6.10. As the street is around 10m

wide, a positioning accuracy of less than 5m is considered good enough to distin-

guish sides of streets, while a positioning accuracy better than 2m is considered good

enough to distinguish the footpath from a tra�c lane, and tra�c lanes from each

other (lane identi�cation).
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Figure 6.10.: Success rate comparison between di�erent positioning methods in each
route

It can be seen from Figure 6.10 that single epoch shadow matching is better

than conventional GNSS. On average, particle �lter shadow matching performs best

as for determining the correct side of a street (5 meter error), its success rate in

these results is 94.0%, while for single epoch shadow matching it is 70.4%, and for

conventional GNSS it is a poor 17.8%. The success rate for distinguishing a footpath

from a tra�c lane (2 metre error) is 70.9% for particle �lter shadow matching, while

for single-epoch shadow matching it is 57.9%, and merely 6.8%, for conventional

GNSS positioning.

6.6. Chapter summary

While single-epoch shadow matching works only for static applications, now, for

the �rst time (parallel with Isaacs et al. (2014)), kinematic shadow matching is

tackled. Since a Kalman �lter has its limitations, including linear and Gaussian

distribution assumptions; a particle �lter, a non-linear non-Gaussian estimator, is

designed. Compared with single-epoch shadow matching, the particle �lter shadow

matching optimize position estimation of moving objects (pedestrians or vehicles

with GNSS enabled devices) using data from multiple epochs.

Real-world kinematic experiments were conducted in an urban area in London.

An Android application was adpated to record the GNSS data stream on a smart-

phone. Three di�erent routes, on two di�erent streets, were tested by a pedestrian,

providing a performance assessment of the new system. The second route also

includes a direction change. Evaluation and comparison between three methods
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(conventional GNSS, conventional single-epoch shadow matching, and particle �lter

shadow matching) was conducted. The particle �lter is proven able to smooth the

results compared with single-epoch shadow matching, as can be seen in Figure 6.8.

Compared with conventional GNSS, the single-epoch shadow matching reduces the

mean cross-street positioning error from 12.56m to 4.56m � by 61.2%, and further

down to 2.16m using the particle �lter shadow matching. The particle �lter shadow

matching improves the success rate of distinguishing the footpath from a tra�c lane

(2-meter-error) from 57.9% to 70.9%, compared with single-epoch shadow matching;

and the success rate of distinguishing sides of streets (5-meter-error) from 70.4% to

94.0%.

In summary, the 3 experimental routes together prove that the proposed particle

�lter improves positioning accuracy signi�cantly compared with single-epoch shadow

matching, which was introduced in Chapter 5, and they both outperform positioning

results of conventional GNSS. Thus, particle �lter shadow matching has the potential

to improve mobile device positioning in urban areas from street level to lane-level.



Chapter 7.

Adapting Shadow Matching for

Mobile Applications

This chapter aims at answering the question - is shadow matching feasible in prac-

tice? Three perspectives of this question are tackled. The �rst perspective comes

from whether the computation load of the shadow matching technique (as presented

in Chapter 4) is small enough for real-time positioning on resource limited mobile

platforms, e.g. smartphones. The low-computational power of mobile devices can be

an obstacle to the practicality of a real-time shadow matching positioning system.

To the author's knowledge, no work has been reported by other researchers to im-

plement a shadow matching algorithm on mobile systems that can run in real time.

In this research, the 3D models are pre-processed, thus the real-time computational

load is smaller than for algorithms that engage directly with the 3D models. For

the �rst time, a smartphone-based real-time shadow matching positioning system

is proposed and implemented, aiming at real-time meters-level cross-street accuracy

in urban canyons, as presented in Section 7.1 and 7.2. The positioning performance

of the real-time positioning system is brie�y assessed in Section 7.3. Furthermore,

in the context that emerging GNSS constellations (e.g. Galileo and Beidou) will

be available, at least planned, by 2020, the future of shadow matching should be

predicted and supported by experimental results and reasonable assumptions. Thus

the second perspective is to predict the future performance of shadow matching.

Numerical predictions of shadow matching performance from this perspective are

145
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described in Section 7.4. The �nal perspective considers potential issues that may

raise from large-scale deployment, including availability of 3D models, data storage

and transfer requirements, which are discussed in Section 7.5. Sections 7.1, 7.2, 7.3

and 7.5 are partially based on a paper presented in ION GNSS+ 2013 (Wang et al.,

2013c); while section 7.4 is based on part of Wang et al. (2014).

7.1. A real-time shadow matching system

This section describes the design of a real-time shadow-matching positioning system.

The overall architecture of the real-time positioning system is �rst described. Algo-

rithm modi�cations, which are essential for real-time e�ciency, are then presented.

7.1.1. Overall system architecture

There are di�erent approaches to design a shadow-matching system. In a real-time

shadow matching system, the approach in which a cloud server interacts with the

smartphone user is preferred, with reasons give in Section 4.2. In this design, the

smartphone �rst sends a positioning request with an initial position (e.g. GNSS

or Wi-Fi positioning solution) to a server in the cloud. The server then gathers

the building boundary data (as explained in Subsection 4.3.2) that enables shadow-

matching positioning, according to the user's initial position and sends them back

to the user. Finally, the smartphone performs the shadow-matching algorithm and

determines a positioning solution. The overall architecture of the shadow-matching

system is illustrated in Figure 7.1.

7.1.2. Algorithm optimization for better e�ciency

The main strategy for improving real-time e�ciency is that the building boundaries

are pre-computed and stored on a server. The bene�ts of this strategy are discussed

in general in Section 4.2. Here, the advantages that bene�ts a real-time positioning

system is focused on. From the perspective of mobile devices, the system trades
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Figure 7.1.: Overall architecture design of a real-time shadow matching system

time and real-time computing power against a one-o� processing requirement at the

server side. Speci�cally, this is achieved by representing the 3D model in a specially

designed form - building boundaries at each candidate position. The logic behind

this strategy is that the vast amount of data in a 3D city model is not of direct

interest to the real-time shadow-matching algorithm. The interest is where the edges

of the buildings are located from a user's perspective. Thus, utilizing this knowledge,

only the building boundaries at each candidate position are abstracted from the 3D

model. This method saves real-time computational load because individual mobile

devices do not need to compute the building boundaries on the �y. Instead, they

can simply request building boundaries at a certain range of locations, or cache a

desired region.

Using stored building boundaries, fewer than �fty comparison and addition oper-

ations are required to calculate an overall shadow matching score for one candidate

position with two GNSS constellations. Therefore, shadow matching may be per-

formed in real time on a mobile device with several hundred candidate positions,

where necessary.

7.2. Application development on Android devices

An application (app) that runs on the Android operating system has been developed.

This section brie�y introduces the smartphone and the operating system involved
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in this work, then describes the application development in more detail.

7.2.1. Smartphone and the Android operating system

The smartphone used in this work is a Samsung Galaxy S3 smartphone. It receives

signals both GPS and GLONASS satellites. The smartphone runs on the Android

operating system, a Linux-based operating system primarily for mobile devices. It is

the most common smartphone operating system. According to the �gures released

from analyst �rm International Data Corporation (IDC), Android smartphone ship-

ments accounted for 75% of all smartphones shipped worldwide in the third quarter

2012 (IDC, 2012).

While Android and iOS are probably the two most popular smartphone operations

systems, iOS does not provide an interface for individual satellite signal reception

information, thus it is not used.

7.2.2. App design and development

The app has been developed in the Java programming language using Eclipse, a

popular software development environment (SDE) for Android application develop-

ment (Google, 2014b). The app was built on standard Android platform 4.0.3, using

the Android application programming interface (API) to retrieve information from

the GNSS chip. In this implementation, the building boundary data was computed

on a server, and then stored on the SD card of the smartphone, rather than on a

remote server.

The Android operation system listens to the real-time GNSS messages from the

GNSS chip, interprets GNSS information from them, and provides the information

to app developers through the Android API. The information is also accessible

in National Marine Electronics Association (NMEA) format from an Android API

function GpsStatus.NmeaListener. The public interface GpsStatus.Listener outputs,

in real-time, the information provided by the GNSS chip, and contains a number of

attributes. The useful attributes for this application include the azimuth, elevation

and SNR of GPS and GLONASS satellites in view. The latest location determined
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by the GNSS chip is output by the public interface LocationListener. This data feeds

into the shadow matching positioning engine, together with the building boundary

data stored on an SD card. The new positioning engine then computes the user's

position by de�ning a search region centered at the conventional GNSS solution.

Finally, the positioning results are displayed on maps using the Google Maps API.

The �owchart of the app is illustrated in Figure 7.2.

A smartphone with a GNSS chip

NMEA message
Conventional 

GNSS Position

Building Boundary 

Database

Shadow Matching 

Positioning Engine Activity

Real-time Positioning 

Solution

NMEA log file

(Time, ephemeris, SNR)
Position log file

(Time, position)

LocationListenerGpsStatus.Listener

Ephemeris 

and SNR
GNSS position

Building 

Boundary 

Display using the Google Maps API

Figure 7.2.: The �owchart of the real-time application running on Android devices

7.3. Real-time experiments

To evaluate the performance of a real-time shadow matching system on smartphones,

experiments were conducted in central London. The fundamental aim of this section

is to demonstrate that an mobile application with the proposed shadow matching

architecture can run in real-time on a smartphone. Additionally, this section also
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discusses whether a compromise on accuracy is necessary to maintain the real-time

processing e�ciency.

Subsection 7.3.1 outlines the 3D city model and the test sites, and describes the

con�guration of the shadow-matching system, which uses a basic S22 scoring scheme

with a grid of 3 meter spacing. A typical example of the real-time experiments

is described in subsection 7.3.2. Recorded GNSS data is then processed using an

identical algorithm to that in the real-time system. Subsection 7.3.3 shows the

scoring maps, which are important intermediate results of the shadow-matching

system. The positioning results compared between the new system and conventional

GNSS positioning are given in Subsection 7.3.4.

7.3.1. Experimental settings

The 3D city model of the Aldgate area of central London, supplied by ZMapping

Ltd, was used. It is the same 3D model used through out the thesis. Refer to

Section 3.2 for more detail. The model has a high level of detail and decimetre-level

accuracy. Figure 4.11 shows the city model.

Four experimental locations with di�erent road conditions were selected on Fenchurch

Street, a built-up urban area. shows photos taken at the street, showing the urban

environments. Two of the sites, named RT1 and RT2, were located at a `T' junc-

tion between Fenchurch Street and Fenchurch Buildings Road. The other two sites,

named RT3 and RT4, were selected between junctions on Fenchurch Street. In ad-

dition, RT1 and RT3 are located on opposite side of the street, enabling the new

system to also be tested for its ability to distinguish the correct side of the street.

The same layout applies to RT2 and RT4. All sites were selected on the footpath

close to the tra�c lanes. Figure 7.4 shows an aerial view of the city model and a or-

thophoto, illustrating the locations of the four experimental sites. The truth model

is set using the 3D city model, as explained in Subsection 4.4.1. The slight o�set

of about 3m between the city model and the orthophoto is caused by the geometric

distortions of the orthophotos.
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Figure 7.3.: Photos taken at the experimental sites, showing the urban environments
in experiments

Before the experiment, in the o�ine phase of this work, a grid with 3-meter spac-

ing was generated. Indoor points were then eliminated and building boundaries were

determined at outdoor points. The building boundaries were stored in a specially

de�ned format in a database, and pre-loaded on the smartphone used in this ex-

periment. A basic S22 scoring scheme is used in the shadow matching positioning

algorithm.

Real-time shadow-matching positioning was performed on a Samsung Galaxy S3

smartphone with a 5-second interval for real-time position display in Google Maps.

The experimenter stood at each location for 6 minutes. Both GPS and GLONASS

observations were used. Real-time satellite visibility information and positioning

results were recorded at a 1-second interval for later analysis.

7.3.2. Real-time experiments

A real-time shadow-matching positioning experiment was conducted. The typical

processing time for the system was found to be 1-2 seconds with a Samsung Galaxy

S3 smartphone, measured using another smartphone. The smartphone used in this

experiment, Galaxy S3, was a model released in 2012 with a Quad-core 1.4 GHz
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Figure 7.4.: An aerial view of the experimental site on Fenchurch Street: 3D city
model (above) and orthophotos. (below)

Cortex-A9 processor and a 1 GB RAM. If a more recent model of smartphones is

used, e.g. Samsung Note 4, which doubles CPU speed and triples memory space

(Quad-core 2.7 GHz Krait 450 (SM-N910S) processor and 3GB ROM), an even faster

performance can be expected. It also should be noted that no multi-core optimiza-

tion was conducted, i.e. only one CPU core was used in the experiment. Taking

the potential improved CPU, memory and multi-core techniques into consideration,

the demonstration shows that the basic shadow matching algorithm, presented in

Chapter 4, is fully workable on a smart device, e.g. a smartphone. A video demo of

the experiment can be found on Youtube (Wang, 2014a).

In real-time, a 40-meter radius candidate circle, centred at the conventional GNSS

positioning solution provided by smartphone GNSS chip, is used to generate candi-

date positions de�ning the search region for the shadow-matching technique. The
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pre-calculated candidate grid of building boundaries (i.e. the o�-line phase database)

is loaded at this stage.

Figure 7.5 shows a photo taken in the real-time experiment using the developed

shadow-matching application (app) at site RT2. As the application is a prototype of

the real-time shadow-matching system, both the conventional GNSS solution of the

smartphone GNSS chip and the positioning solution of the new system are displayed

to the experimenter for a real-time comparison. The blue points are the conventional

GNSS solutions, while the red points represent the solutions of the shadow matching

system. For illustration purposes, the true position is marked by a white cross, and

the cross-street and along-street direction is also marked. It is shown in Figure 7.5

that the conventional solutions are on the wrong side of the street, and distributed

sparsely in the cross-street direction in comparison with the solutions of the shadow

matching system. However, the conventional GNSS positioning solution in the along-

street direction is correct. The shadow-matching real-time solutions are distributed

more consistently in the across-street direction, on the correct side of the street.

The characteristics of real-time shadow matching is the same with post-processed

shadow matching in term of providing high positioning accuracy in the across-street

direction, which is determined by the nature of shadow matching - the measurements

of building's shadows are dominantly in the cross-street direction.

This is in line with the expected bene�ts of the new system which gives better

across-street accuracy, and provides evidence suggesting that, in the long term,

combining the cross-street position component of a shadow matching positioning

system with the along-street component of a conventional GNSS position will provide

a better overall positioning solution.

7.3.3. Analysis of shadow matching scoring results

At each observation epoch, a comparison is made between the predicted and observed

satellite visibility, and the score scheme is applied accordingly. To illustrate the

distribution of scores at the grid points, Figure 7.6 shows examples of the score

maps at each experimental location. The coloured dots represent the candidate
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x

Figure 7.5.: A photo of the real-time experiment using the developed shadow-
matching application on a smartphone at site RT2, showing that shadow
matching (marked in red) o�ers higher accuracy in cross-street direc-
tion, and conventional GNSS (marked in blue) provides higher accuracy
in the along-street direction.

positions. The scale represents the score obtained for the candidate position in

the shadow-matching algorithm, with higher scores representing a higher con�dence

level that the user is at this location. The true location of the experimental site is

shown by a black cross in each colour map.

In Figure 7.6, it is clearly demonstrated that the scoring shadow-matching algo-

rithm is sensitive to changes in the cross-street direction, but less sensitive in the

along-street direction. This is in line with expectations, and complements conven-

tional GNSS positioning which is generally more precise in the along-street direction

in urban areas due to the signal geometry. Combining the cross-street shadow-

matching solution with the along-street conventional GNSS is an approach to in-

telligent urban positioning (IUP) Groves, Ziyi, Wang and Ziebart (2012). Refer to

Figure 7.5 for an real-time example illustrating this feature.

There are some spaces between buildings that fall within the search area, but

the highest scoring points are predominantly in the correct street. It can also be

inferred from Figure 7.6 that in most cases, the highest score areas (dark red) appear

on the correct side of the street. However, the high scores do not always appear at
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Figure 7.6.: Shadow-matching scoring map at one epoch for four experimental sites

the expected area. This multiple matching area phenomena can be handled using a

particle �lter, as described in Chapter 6. In order to further analyze the consistency

of positioning performance of the implemented positioning system over the whole

period of the experiment, more analysis is presented in the Subection 7.3.4.

7.3.4. Performance comparison with conventional GNSS

In this section, the overall performance of the real-time shadow-matching position-

ing system is assessed and compared with the conventional GNSS solution from

the GNSS chip in the Samsung Galaxy S3 smartphone, both in real-time. The

performance in the cross-street direction is the main concern.

A 3m grid spacing of the building boundaries is used in the real-time shadow

matching algorithm. The grid spacing may in�uence the shadow matching position-

ing accuracy. For comparison purpose, a post-processing shadow matching algorithm

using a 1m grid spacing is also conducted.
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To assess the performance of real-time shadow matching against the conventional

GNSS positioning solution, the position errors are transformed from local coordi-

nates (Northing and Easting) to the along-street and across-street directions. Figure

7.7 shows the positioning results of the conventional GNSS navigation solution from

the smartphone GNSS chip, compared with the shadow-matching positioning re-

sults, expressed as errors in the across-street direction. It shows that, in most cases,

the shadow matching solution outperforms the conventional GNSS positioning so-

lution. The shadow matching solution has improved the conventional positioning

error from typically 10 - 40 meters to within 5 meters in the most epochs. In the case

of RT2, the shadow-matching solution accuracy is better than 2m in most epochs.
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Figure 7.7.: Comparison of cross-street positioning error between conventional
GNSS solution provided by the smartphone and the shadow-matching
solution, both based on real-time data
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On the right side of each sub-�gure in Figure 7.7, the position error distribution

is compared between the shadow-matching solution and the conventional solution.

It is shown that shadow matching improves the positioning accuracy, reducing the

average error to less than 5 meters on average in each case.

In order to evaluate the performance across all of the epochs, a statistical anal-

ysis was performed. An indicator, mean absolute derivation (MAD), as described

in formula 4.5, was used to evaluate the performance from this perspective. In

order to show the improvements of shadow matching over conventional GNSS po-

sitioning, the MADs at each site are compared in Figure 7.8. The bar shows the

mean across-street positioning error using the conventional and shadow-matching

algorithm, respectively. It should be noted that the statistics cover a 6-minute ob-

servation period, during which the constellation geometry changed slowly, so the

results are highly correlated, temporally, allowing consistency of the system to be

evaluated. It is shown in Figure 7.8 that the across street positioning performance

of shadow matching is signi�cantly better than conventional GNSS positioning solu-

tion. The shadow-matching positioning algorithm reduced the average cross-street

error by 36.9%, 77.6%, 90.8% and 71.3% for RT1, RT2, RT3, and RT4 respectively.

The new positioning system reduces the cross-street positioning error from 14.81

m of the conventional solution to 3.33 m of the new system, averaged over all four

experimental sites. This is a 77.5% reduction of cross-street positioning errors on

average. The RMS di�erence shows that the consistency of the shadow-matching

solution also outperforms the conventional solution.

Further statistical comparisons have been conducted to assess the positioning

performance as a success rate over 6 minutes, and the results are shown in Figure 7.9.

As the street is around 10m wide, a positioning accuracy of less than 5m is considered

good enough to determine the correct side of the street, while a positioning accuracy

better than 2m is considered good enough to distinguish the footpath from a tra�c

lane. Averaged over the four experimental sites, the success rate using shadow

matching for determining the correct side of a street is 54.4%, signi�cantly improved

from the success rate of 20.9% for the conventional solution. The success rate of
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Figure 7.8.: Left: Comparison of the cross-street mean absolute deviation over all
epochs between the conventional GNSS positioning solution, the real-
time (RT) and post-processing (PP) shadow-matching solution, noting
that the RT shadow matching uses a 3 meter spacing scoring grid, while
the PP shadow matching uses a 1 meter spacing scoring grid; Right: the
averaged cross-street positioning error from 4 experimental sites

distinguishing the footpath from a tra�c lane is 25.6% for shadow matching, also

considerably increased from 7.7%, for the conventional GNSS positioning.

Figure 7.10 shows the positioning results of the new system compared with the

conventional GNSS solution in Google Earth. The blue dots represent the locations

of the conventional GNSS solution, recorded in real-time. The purple dots denote

the positioning solutions provided by the new system. The tags represent the true

location of the site in each case. It can be seen that typically, the new system gives

solutions more consistent with each other in cross-street direction. The solutions also

have better accuracy in the cross-street direction, compared to the conventional

solution. However, the conventional solution is more accurate in the along-street

direction, in line with expectations.

The shadow matching positioning system is a suitable complementation to conven-

tional GNSS positioning. As shadow matching improves the cross-street positioning

signi�cantly, it shows a high potential to be combined with conventional GNSS and

other possible techniques for better overall performance.
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Figure 7.9.: Success rate of cross-street positioning error within certain ranges, com-
pared between the conventional GNSS solution, the real-time (RT) and
post-processing (PP) shadow-matching solution

It should be noted that selection of a suitable grid spacing of building boundaries

in�uences the performance and speed of the shadow matching system. The current

implementation of the real-time shadow-matching system utilizes a grid of building

boundaries with 3-meter spacing. It already shows a signi�cant performance im-

provement in comparison with conventional GNSS positioning. A grid with 2-meter

spacing, 1-meter spacing or even denser spacing can potentially be applied. In this

work, a 1-meter spacing was also tested. This version of shadow matching, described

here as a post-processing shadow matching, provides an improved performance of

6% in terms of a reduction of the mean error averaged over the four sites, as can

be seen in Figure 7.8. From the positioning success rate of each site, as shown in

Figure 7.9, it can be seen that the performance of the real-time and post-processing

shadow matching di�ers site by site and are similar to each other. However, using

the grid with a 1-meter spacing requires roughly 9 times more computational time
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Figure 7.10.: The positioning solution shown in Google Earth orthophoto view (The
blue dots represent the locations of the conventional GNSS solution.
The purple dots denote the positioning solutions provided by the new
system. The tags represent the true location of the site in each case.
Image © 2013 Bluesky)

in comparison with using a grid with 3-meter spacing. Clearly, there is a trade-o�

between the accuracy of the shadow-matching system and the running time. The

reason a grid with 3-meter spacing is �nally used in the real-time system is that it

gives the best compromise between performance and speed. Variable grid spacing

is also possible, e.g. start with 3m and then go to 1m around the matching area.
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7.4. Performance prediction of four-constellation

shadow matching

Shadow matching has been assessed for its performance with the current GNSS

constellations in Chapter 5. However, GNSS constellations are developing with

time, so it is important to question how shadow matching will perform in the future.

Shadow matching uses multiple satellites to localize the user's position. Thus, using

more satellites might be expected to produce a more accurate position solution.

To predict how shadow matching will perform in the future when Galileo and

BDS, are fully operational, a four-constellation scenario was simulated by combin-

ing GPS and GLONASS data from two separate visits to each experimental site.

More details of the experimental settings are described in Chapter 5. The interval

between visits was about four hours, allowing the satellite constellation geometry to

change signi�cantly. The probability-based shadow matching algorithm is used in

this assessment, as described in Chapter 5.

Figure 7.11 shows the MADs for each site and averaged across all sites of the cross-

street positioning errors of two- and four-constellation shadow matching, together

with conventional GNSS positioning (from the �rst observation period only). At

some sites, shadow matching performed better with four constellations, while at

others, it performed better with two constellations. Looking at the average across

all of the sites, the two-constellation implementation performed slightly better.

Figure 7.12 shows the success rate for achieving cross-street positioning errors

within certain bounds. Using four constellations slightly increased the probability

of achieving a cross-street position solution within 1, 2 or 3m, but reduced the

likelihood of achieving a position within 4 or 5m. A possible explanation is that in

environments where the current shadow-matching algorithm works well, additional

satellites provide additional information that is used to re�ne the position solution.

However, in environments unfavourable to shadow matching, such as those with

lots of highly re�ective buildings, using more satellites results in more strong NLOS

signals that confuse the shadow-matching algorithm.
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Figure 7.11.: The MAD of the cross-street positioning error of 2- and 4-constellation
shadow matching and 2-constellation conventional GNSS for each site
(a) and averaged across all sites (b)

Overall, these results show that the number of available satellites is not the main

factor limiting shadow-matching performance. Improvements to the algorithms will

be needed to increase shadow matching's reliability.

7.5. Large-scale implementation of shadow

matching

7.5.1. Availability of 3D city models and satellite information

The shadow-matching system relies on knowing building's locations (from 3D, 2.5D

city models, or high resolution digital surface models), therefore, the availability of

the models is of importance. Fortunately, there are an increasing number of 3D city

models available through the internet. A few commercial examples include Google

Maps 3D by Google Inc. (Google, 2014a), iOS 3D Maps by Apple Inc. (Apple,

2014), Bing Maps 3D by Microsoft Corporation (Microsoft, 2014), Nokia Here Maps

3D (Nokia, 2014) and Edushi 3D Maps (available for China) (Edushi, 2014). In

addition to the commercial 3D maps, some free and cheap 3D maps are provided by

some organisations, including Open Street Maps 3D (OSM-3D) (OpenStreetMap,
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Figure 7.12.: The cumulative success rate of cross-street positioning error with cer-
tain meters of bound, comparing conventional GNSS and shadow
matching with 2 and 4 constellations

2014).

The satellite tracking information required by the shadow matching system in

real-time has also been available to use. The shadow-matching system only requires

information on whether the satellites are tracked or not, instead of pseudo-range

or carrier phase measurements. The required information is provided on a regular

basis in NMEA sentences (NMEA, 2014), as a uniform interface standard, by many

consumer-grade GNSS receivers, and by mobile devices with an Android operat-

ing system. With the signal-to-noise ratio (SNR) message also regularly available

through NMEA sentences, shadow matching can provide more reliable performance,

as demonstrated in Chapter 5, using probability-based SNR modelling techniques.

7.5.2. Data storage and transfer requirements

Shadow matching requires the knowledge of the building boundaries to work. Thus,

the building boundaries database should be transferred to the user device on the

�y or pre-downloaded (Groves, Wang and Ziebart, 2012). Building boundaries with
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a 1-degree resolution in azimuth require about 300 bytes of storage per grid point,

without compression.

As mentioned in Groves, Wang and Ziebart (2012); Wang et al. (2013c), with a 3

by 3 meter grid, a 1km long 20m wide street would contain 2222 grid points, which

would require 651 kB of data storage. If the similarities between adjacent azimuths

are exploited for compressing data, substantial data compression should be possible;

perhaps up to a factor of ten. A 4 GB �ash drive could store 6292 � 62920 km of

road network. The Great London metropolitan area contains about 15,000 km of

road.

However, the built-up areas that require shadow matching for better positioning

may be 10% of the total. Thus, it may be practical to preload the building bound-

aries onto a smartphone. An alternative method is to transfer the data over the

mobile network as required. On a 100-meter long 20-meter wide street, only 222

grid points are needed for shadow matching, which requires 141 kB of data. Transfer-

ring this would take less than two seconds using the 3G mobile phone network with

a normal data plan. Thus, in practice, it is feasible to implement shadow-matching

system on a smartphone, a PND, or other consumer-grade navigation device.

7.6. Chapter summary

This chapter adapts shadow matching for mobile applications and assesses its feasi-

bility in practice. A smartphone-based shadow-matching system, assisted by knowl-

edge derived from 3D models of the buildings, has been designed. The new system

is optimized to improve computational e�ciency to account for the low processing

power and limited storage on smartphones. The design of the real-time shadow-

matching system and the optimizations has then been implemented, with details

explained. A shadow-matching application (app) for the Android operating system

has been developed.

Furthermore, with the previous shadow-matching algorithms tested mainly on

personal computers, for the �rst time, a demonstration is performed on a smartphone

with a real-time GNSS data stream. The computational e�ciency of the system is
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thus veri�ed, showing its potential for larger scale deployment. The experiment was

conducted at four locations. Analysis was conducted to evaluate the performance

of the system. The experimental results show that the proposed real-time system

outperforms the conventional GNSS positioning solution. Instead of using a 1 meter

grid spacing as in the post-processing shadow matching system (refer to Chapter

4), a 3 by 3 meter grid is used in the real-time system, providing a balance taking

a trade-o� between e�ciency and accuracy.

In addition, the performance of four-constellation GNSS shadow matching was

predicted using GPS and GLONASS data collected at two di�erent times at the

same sites. The additional satellites slightly improve shadow-matching performance

under benign conditions, but not in more challenging environments.

Finally, the implementation of shadow matching on a larger scale has been as-

sessed, showing that both server-based and handset-based models are feasible in

terms of processing load, dissemination of building boundary information and avail-

ability of 3D mapping.

It should be noted that the system does not require real-time rendering of 3D

scenes or any additional hardware, making it power-e�cient and cost-e�ective. An

increasing number of smartphones have multi-core CPU, GPU, or both, enabling

parallel processing techniques and hardware acceleration techniques to be exploited

for improved e�ciency of shadow matching.



Chapter 8.

Conclusions

This study brings the shadow matching principle from a simple mathematical model,

though experimental proof of concept, system design and demonstration, algorithm

redesign, comprehensive experimental tests, real-time demonstration and feasibility

assessment, to a workable positioning solution. The conclusions of this research are

presented in Section 8.1. Five topics that are related to shadow matching techniques

have been investigated in this study, comprising evaluation of GNSS positioning

in urban environments, shadow-matching system design, handling non-line-of-sight

(NLOS) signals in shadow matching algorithm on smartphones, kinematic shadow

matching algorithms, and feasibility assessment of shadow matching techniques.

Speci�c research questions and detailed conclusions are described under each topic.

References within the thesis are given where appropriate. Future research recom-

mendations and potential applications of this research are discussed in Section 8.2.

8.1. Conclusions of this research

8.1.1. Evaluation of GNSS positioning in urban environments

Can conventional GPS and GLONASS (using single-frequency pseudo-

range measurements) meet the positioning requirements in urban environ-

ments? More speci�cally, in urban environments, how is the positioning

performance di�erent for pedestrians and vehicles, at tra�c junctions

167



8.1. Conclusions of this research 168

and between junctions, and in the along-street and cross-street direc-

tions?

Positioning performance using GPS and GLONASS was found to be unreliable,

based on the number of visible satellites and their geometry, in urban canyons. Per-

formance was found better for vehicles than pedestrians, who are closer to the build-

ings; and was better at junctions than between junctions, where there are typically

more surrounding buildings. Finally, positioning precision was found to be gener-

ally lower in the cross-street direction than in the along-street direction, because the

buildings constrain the satellite signal geometry as illustrated in Figure 1.1. This

�nding motivated investigation into shadow matching techniques, which showed the

potential to improve positioning performance in the cross-street direction.

To draw this conclusion mentioned above, a satellite visibility determination

toolkit was developed for predicting GNSS performance in urban environments us-

ing 3D building models, as described in Chapter 3. The toolkit was veri�ed at two

test points with �eld trials. Comparison of satellite visibility between prediction and

observation demonstrated that direct line-of-sight signals can be predicted using the

3D city model and the toolkit. However, due to the complexity of the environments,

di�racted and re�ected signals were also observed that the original model did not

predict. As di�racted signals are potentially useful in positioning, the simulation has

been modi�ed to predict them. Veri�cation with real observations shows that the

implemented di�raction model successfully predicted most of the strong di�racted

signals.

If GPS and GLONASS can not guarantee reliable positioning in urban

canyons, does adding multiple constellations (Galileo and BDS) solve this

problem? In other words, can GNSS alone solve the positioning problem

in urban canyons?

Even with all four constellations, GNSS performance will still be unreliable at some

urban locations in 2020. Performance using four fully-operational GNSS constel-

lations was predicted to be much better than GPS and GLONASS only, but still

unreliable at a few of the test locations. GNSS signal availability has been quanti-
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tatively veri�ed to double by the year 2020, based on the assumption that both the

Galileo and BDS systems will be fully operational by then, as their published plans,

though the currently delayed progress may suggest this point will also be delayed.

This conclusion was drawn by evaluating positioning performance using di�erent

combinations of GNSS, including GPS, GLONASS, Galileo and BDS, from simu-

lation using a 3D model of London. Solution availability, RAIM availability and

precision at di�erent directions have been assessed for both pedestrian and vehicle

routes within a urban environments.

Thus, based on the simulations, to ensure a reliable positioning service in urban

canyons, conventional GNSS from smartphones should be augmented with other

techniques. There are a number of methods, including combining GNSS with other

signals, sensors and data sources in an integrated navigation system (refer to Chapter

2 for more details). Another solution is the scope of the thesis - GNSS shadow

matching, which can potentially improve the across-street positioning accuracy by

comparing the observed GNSS signal availability with that predicted using a 3D city

model (refer to Chapter 4 for more details).

8.1.2. Shadow-matching system design

Following the principle of shadow matching, how to design a positioning

system that uses knowledge of 3D city models, i.e. what are the di�erent

options in the overall design? What are the pros and cons of each of

them?

The overall principle of shadow matching is to match GNSS signal observations with

predictions determined using 3D models. There are a variety of options designing a

detailed algorithm that ful�lls this principle.

In terms of what to calculate �rst, there can be zone-based or point-based shadow

matching algorithms, as discussed in Section 4.2. A zone-based approach starts

with calculating the satellite signal shadow cast by buildings, using 3D city mod-

els; whereas a point-based shadow matching algorithm can start with calculating

building boundaries (as explained in Section 4.3) at each candidate point (user's
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potential location) using 3D city models. A zone-based approach makes it straight-

forward to leverage GPU hardware acceleration (e.g. using OpenGL shaders) to

speed up shadow computing; whereas a point-based approach allows separating the

3D model processing from positioning process, in this work, via an intermediate

format, namely building boundaries. Thus a point-based approach has a reduced

real-time computation load.

In terms of where to put the shadow matching computation load, there can be

options including cloud computing, local processing or a combined approach, as

illustrated in Figure 4.2. Completely allocating shadow matching processing to the

cloud or on the mobile device was considered time consuming and energy ine�cient.

Whereas dividing the computation load between the two o�ers a good balance,

though trade-o�s have to be made between real-time accuracy and computation

time, depending on available computation power provided by mobile devices.

8.1.3. Handling non-line-of-sight (NLOS) signals in shadow

matching algorithm for urban environments

When signal re�ection or di�raction occurs, how to handle the resulting

mismatches between observation and predictions?

Two modelling options for the received signal strength were considered to improve

shadow matching performance on smartphones as presented in Chapter 5. The

�rst option uses empirically determined discrete thresholds to determine whether

an observed satellite signal is direct LOS. Furthermore, a probability-based shadow

matching was proposed, and proven to improve the positioning performance via im-

proved NLOS handling. Separate signal-to-noise ratio (SNR) distributions of direct

LOS and NLOS GNSS signals received in a dense urban area were measured using

an Android smartphone and a 3D city model, using large data sets of measurements.

SNR models that handle NLOS signals are derived from a Bayesian technique using

sample statistics methods, based on the SNR distributions.

What is the optimum scoring scheme, given the constraints of the current

visibility prediction algorithm, in a shadow matching algorithm for smart-
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phones, and how to determine the parameters in this scheme? (given

that real signals are not just direct or blocked, but re�ected, di�racted,

multipath-contaminated and attenuated by body shadowing and the e�ects

of antennas with highly directional gain patterns?)

Using distributions of SNR learned from a large set of real-world GNSS data, a

function has been derived giving the probability that a received signal is direct LOS

based on the measured SNR, using the 3D city models. Using this derived function,

an optimized shadow-matching's satellite visibility scoring scheme has been achieved

for use with smartphone GNSS measurements. In this new probability-based shadow

matching algorithm, a sample statistics technique is used to estimate the conditional

probability table (CPT) from large amount of GNSS measurement data.

Based on comprehensive experimental data, what is the performance of shadow

matching, compared with conventional GNSS positioning? What is the performance

di�erence between a basic shadow-matching algorithm and a probability-based shadow

matching?

Using GPS and GLONASS data recorded at 20 locations within central Lon-

don, the �rst comprehensive performance assessment of smartphone GNSS shadow

matching has been conducted. The results show that the probability shadow-

matching algorithm proposed in Chapter 5 signi�cantly outperforms conventional

GNSS positioning in the cross-street direction, and are statistically better than

the basic shadow matching algorithm with S22 scoring scheme in Chapter 4. The

success rate for obtaining a cross-street position accuracy within 5m, enabling the

correct side of a street to be determined, was 54.03% using probability-based shadow

matching, compared to 45.43% using basic shadow matching, and 24.77% for the

conventional GNSS position.

8.1.4. Kinematic shadow matching algorithms

For kinematic applications, how to combine shadow matching informa-

tion from multiple epochs to get a better position solution (particularly if

you have an ambiguous �x)?
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For the �rst time (in parallel to Isaacs et al., 2014), kinematic shadow-matching

positioning is investigated in Chapter 6. The key advantage a kinematic shadow

matching algorithm should take is to make use of information from multiple epochs.

A Kalman �lter, a grid �lter, and a particle �lter are compared in terms of their

ability to describe non-linear and non-Gaussian distributed measurement errors,

spacial resolution of posterior density function (PDF), and capability in handling

ambiguous position �x. A Kalman �lter is predicted and proven (Wang, 2014a) to

have its limitations, including linear and Gaussian distribution assumptions. A par-

ticle �lter, a non-linear non-Gaussian estimator, is preferred. Compared with single-

epoch shadow matching, the particle �lter shadow matching improves the position

estimation of moving objects (pedestrians or vehicles with GNSS-enabled devices)

using data from multiple epochs, without the constraints of linear and Gaussian

distribution assumptions of the measurement model, and o�ers self-adapted spatial

resolution of the PDF, as described in in Chapter 6.

How accurate positions can be obtained from kinematic shadow match-

ing (compared with conventional GNSS and probability-based single-epoch

shadow matching)?

To answer this question, real-world kinematic experiments were conducted in an

urban area in London. An Android application was adapted to record the GNSS

data stream on a smartphone. Three di�erent routes, on two di�erent streets, were

tested by a pedestrian, providing a performance assessment of the new system.

The second route also includes a direction change. Evaluation and comparison

between three methods (conventional GNSS from smartphones, probability-based

single-epoch shadow matching in Chapter 5, and particle �lter shadow matching in

Chapter 6) was conducted. The particle �lter is proven able to smooth the results

compared with single-epoch shadow matching, as can be seen in Figure 6.8. Com-

pared with conventional GNSS, single-epoch shadow matching reduces the mean ab-

solute deviation (MAD) cross-street positioning from 12.56m to 4.56m � by 61.2%,

and further down to 2.16m using the particle-�lter shadow-matching algorithm.

Particle-�lter-based shadow matching improves the success rate error of distinguish-
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ing the footpath from a tra�c lane (2-meter-error) from 57.9% to 70.9%, compared

with single-epoch shadow matching; and the success rate of distinguishing sides of

streets (5-meter-error) from 70.4% to 94.0%.

In summary, the kinematic experiments together prove that the proposed particle

�lter (in Chapter 6) improves the positioning accuracy signi�cantly compared with

the single-epoch probability-based shadow matching algorithm, described in Chapter

5, and they both outperform positioning results of conventional GNSS.

8.1.5. Feasibility assessment of shadow matching techniques

Can the designed shadow matching algorithm run in real-time on a mobile

device?

It is demonstrated that shadow matching algorithms can run in real-time on a

smartphone. Smartphone-based shadow-matching system, assisted by knowledge

derived from 3D models of the buildings, has been designed and implemented, as

presented in Chapter 7. The new system is optimized to improve computational

e�ciency to account for the low processing power and limited storage capacity of

smartphones. A shadow-matching real-time application (app) for Android operating

system has been developed. The experimental results show that the real-time system

outperforms the conventional GNSS positioning solution, reducing the cross-street

positioning error by 69.2% on average.

Is there a trade-o� that has to be made between high e�ciency and high

accuracy in shadow matching?

It is shown that a trade-o� between e�ciency and accuracy exists, in the shadow

matching algorithms, as expected. Selection of a suitable grid spacing of build-

ing boundaries in�uences both the performance and speed of the shadow matching

system. The current implementation of the real-time shadow-matching system, de-

scribed in Chapter 7, uses a grid of building boundaries with 3-meter spacing. It

already shows a signi�cant performance improvement in comparison with conven-

tional GNSS positioning. A grid with 2-meter spacing, 1-meter spacing or even

denser spacing can potentially be applied. In this work, a 1-meter spacing was also
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tested, providing an improved performance of 6% in terms of reduction of mean error

averaged over the four sites, compared with the post-processing shadow matching

using the algorithm described in Chapter 4. However, using the grid with 1-meter

spacing requires roughly 9 times more computational time in comparison with using

a grid with 3-meter spacing. Clearly, there is a trade-o� between the accuracy of

the shadow-matching system and the running time. The reason a grid with 3-meter

spacing was �nally used in the real-time system is that it gives the best compromise

between performance and speed.

Is it feasible to store enhanced map data for shadow matching on user's

devices, or transmit over the mobile network? How much data storage is

required per unit area?

It is feasible to implement shadow-matching system on a smartphone with enhanced

map data either stored on devices or transfered over the mobile network. With a 3

by 3 meter grid for the real-time shadow matching scenario presented in Chapter 7,

it is estimated that a 4 GB �ash drive could store 6292 � 62920 km of road network,

enough for the Great London metropolitan area, without any data compression.

However, the built-up areas that require shadow matching for better positioning may

be 10% of the total. Thus, it may be practical to preload the building boundaries

onto a smartphone. It is also estimated that transferring the required data for

shadow matching would take less than two seconds using the 3G mobile phone

network with a normal data plan, as presented in Chapter 7.

How does the number of GNSS constellations impact shadow matching

performance?

The performance of four-constellation GNSS shadow matching was predicted and

compared with using only GPS and GLONASS in Section 7.5. The additional

satellites were found to slightly improve shadow-matching performance under benign

conditions, but not in more challenging environments. More speci�cally, using four

constellations slightly increased the probability of achieving a cross-street position

solution within 1, 2 or 3m, but reduced the likelihood of achieving a position within

4 or 5m. Overall, results showed that the number of available satellites is not
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the main factor limiting shadow-matching performance, as presented in Chapter

7. Improvements to the algorithms will be needed to increase shadow matching's

reliability.

What is the shadow-matching performance di�erence between a smart-

phone versus a geodetic GNSS receiver?

Smartphone-grade GNSS receivers are more feasible for most potential applications

of the shadow matching technique, but have di�erent characteristics with geodetic

GNSS receivers o�ers, as discussed in Section 4.4 and Section 5.1. Analysis based

on real-world GNSS data collected at 20 locations, both on a geodetic GNSS re-

ceiver and a smartphone app developed in this work, suggests that the geodetic

shadow-matching solutions outperforms shadow matching using smartphones. The

comparison were made with both solutions computed using the basic shadow match-

ing algorithm described in Section 4.3.

8.2. Recommendations for future research and

potential applications

8.2.1. Future research

Since Chapter 3 demonstrates that conventional GNSS has a lower accuracy in

the cross-street direction than in the along-street direction, and from various ex-

periments in this work, it is demonstrated that shadow matching provides better

accuracy in the cross-street direction than in the along-street direction compared

with conventional GNSS, it is suggested that, in the future, the cross-street com-

ponent of shadow-matching should be combined with the along-street component

of conventional GNSS. This idea was proposed in Groves, Ziyi, Wang and Ziebart

(2012), now, this is con�rmed by the work presented in this thesis (e.g. as shown in

Figure 7.5). To ensure that the shadow-matching information is weighted correctly

in a combined solution, a method to determine the uncertainty and reliability of

the shadow-matching solution should be developed. The probability determination

method developed in the weighting step of a particle �lter, as presented in Chapter
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6, or the method used to compute the error covariance matrix in the Kalman �lter

(Wang, 2014a), might be used for this purpose.

Re�ected signals should be predicted in the satellite visibility prediction phase of

shadow matching to identify NLOS signals. This is because, in shadow matching,

basically, predictions should match with observations to contribute to a positioning

solution. Thus, both predictions and observations should be properly understood.

This thesis focuses more on understanding observations from the SNR measure-

ments, leaving the understanding of predictions to be investigated in the future.

Actually, there are two bene�ts of identifying re�ected signals in the satellite vis-

ibility prediction phase. The �rst is that a better initial position can be achieved

in the �rst step of the shadow-matching algorithm. Secondly, the knowledge of a

predicted NLOS signal can further improve the scoring scheme in shadow-matching

algorithm. Both these bene�ts can potentially improve the performance of shadow

matching.

3D maps have di�erent resolutions. Currently, research on shadow matching

is conducted using a high-resolution 3D building model of London. However, for

shadow matching on a bigger scale, detailed 3D building models may or may not be

available everywhere; or 3D building models may not be needed with extremely high

accuracy. An increase of the 3D building model resolution may not signi�cantly im-

prove the performance of shadow matching once the resolution has already reached

a certain level. Normal 2D map is much more widely available and have bene�ts of

low cost and low data storage. Employing 2D maps in shadow matching may exploit

these advantages. Thus, the relationship between performance of shadow matching

and level of detail of the city map is worth further investigation.

8.2.2. Applications

In this thesis, shadow matching has been demonstrated able to provide lane-level

positioning, and possibly metres-level across-street accuracy. Metres-level across-

street accuracy in urban areas bene�ts a number of existing LBS and creates new

applications. For example, vehicle lane detection may be feasible with meters-level

across-street accuracy. Although lane guidance systems are now common for in-car
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navigation systems, a lane detection system may enable a lane guidance system to

not only guide the correct lane but also alert when the present lane is incorrect.

Similarly, intelligent transportation systems (ITS) may use this technique to direct

individual vehicles for maximizing tra�c �ow, and for prioritizing emergency vehi-

cles. In situations where crossing the road takes considerable e�ort for pedestrians,

location-based advertising (LBA) systems could use this technique to target the

most suitable customers on the same side of the street. Some augmented-reality

games may enhance the experience of the players through more accurate position-

ing. Perhaps most importantly, step-by-step guidance for the visually impaired and

for tourists can bene�t from higher positioning accuracy in urban areas in order to

work. Navigation in mountainous regions could also bene�t from this system when

a digital elevation model (DEM) is available.

For many applications, the modelling technique presented in Chapter 3 could also

be used to predict the best route through a city at a given time, or the best time to

perform GNSS positioning at a given location. This technique could also be applied

to GNSS signals prediction in mountainous area by using a digital elevation model

(DEM) instead of a city model.
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Appendix A.

Line and Triangle Intersection

Determination Algorithm

Algorithms testing direct line-of-sight (LOS) visibility are mature in computer vision

and are known as line segment-plane collision detection. Among those algorithms,

one suitable for use in determining whether a satellite is blocked by buildings is

described in this appendix.

A.1. Geometrical representation in satellite

visibility determination

The satellite position and user position are denoted S and U in the model, respec-

tively. The buildings in the city model are each represented by multiple triangles

(triangle meshes). Consider a triangle ∆ABC with vertices A, B and C. The in-

tersection point of the segment US (line-of-sight vector) and the plane containing

∆ABC is denoted I. The vector rABdenote the position of point B with respect to

point A de�ning the line AB. All other vectors are similarly de�ned. The normal

vector to ∆ABC is n. The origin is O. This is illustrated in Figure A.1.
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Figure A.1.: Intersection between user-satellite line of sight and a triangular com-
ponent of a building model

A.2. Intersection algorithm

Ray and triangle intersection is a common operation in computer graphics. A three-

step method is implemented comprising the following steps.

1) Determine whether there is an intersection of the plane containing ∆ABC and

the segment US.

2) Compute the point of intersection I where it exists.

3) Test whether the point of intersection I is inside or outside the boundary of

∆ABC. The steps are now described in more detail. Equations A.1 and A.2 show

vectors in the plane of ∆ABC.

rAC = rOC − rOA (A.1)

rAB = rOB − rOA (A.2)
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The normal vector to ∆ABC:

n = rAC × rAB (A.3)

As I lies on the line US, it is subject to the its parametric equation:

rOI = rOS + t�(rOS − rOU) (A.4)

The vector rOI, rOS and rOU, respectively denote the points of I, S and U with

respect to the origin O. t is a real number and 0 < t < 1, since satellites have a

longer distance to earth than users.

If n�(rOS − rOU) = 0, then the user-satellite LOS vector is parallel with the plane,

which means that there is no intersection between LOS. Otherwise, it intersect the

plane of ∆ABC.

The second step is to determine the position of the intersection point I. Because

Ilies within the plane of ∆ABC, n�(rOS − rOU) = 0, therefore from (A.4),

[rOS+t�(rOU − rOS)− rOA]�n = 0 (A.5)

Rearranging:

t =
(rOA − rOS)�n
(rOU − rOS)�n

(A.6)

Substituting this into (A.4) gives the position of I.

The third step is to determine whether the point of intersection is within ∆ABC. If

it is, then the user-satellite LOS is blocked by ∆ABC, which means that the building

is blocking the GNSS signal. A method based on triangle area computation is used

as described below.
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Figure A.2.: A point I lying within ∆ABC (left) and outside ∆ABC(right)

There are two scenarios to consider. One is where point of the intersection is

within the triangle or on the boundary. The other where it is outside of the triangle.

Let S denote the area of a triangle. If

S∆ABC = S∆ABI + S∆AIC + S∆IBC (A.7)

Then I is inside ∆ABC or on the boundary, as illustrated in Figure A.2 (left).

While if

S∆ABC < S∆ABI + S∆AIC + S∆IBC (A.8)

I is outside , as illustrated in Figure A.2 (right).

S∆ABI + S∆AIC + S∆IBC = S∆ABC + 2S∆AIC > SS (A.9)

The area of a triangle can be computed using Heron's formula (Alperin, 1987):

S∆ABC =
√
p � (p− a) � (p− b) � (p− c) (A.10)
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where

a is the length of side BC of ∆ABC,

b is the length of side AC of ∆ABC,

c is the length of side AB of ∆ABC,

p = a+b+c
2

.
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