
Detecting Malware with Information Complexity

Nadia Alshahwan Earl T. Barr David Clark George Danezis

Department of Computer Science
University College London, UK

nadia.alshahwan,e.barr,david.clark,g.danezis@ucl.ac.uk

ABSTRACT
This work focuses on a specific front of the malware detection
arms-race, namely the detection of persistent, disk-resident mal-
ware. We exploit normalised compression distance (NCD), an in-
formation theoretic measure, applied directly to binaries. Given a
zoo of labelled malware and benign-ware, we ask whether a sus-
pect program is more similar to our malware or to our benign-
ware. Our approach classifies malware with 97.1% accuracy and
a false positive rate of 3%. We achieve our results with off-the-
shelf compressors and a standard machine learning classifier and
without any specialised knowledge. An end-user need only collect
a zoo of malware and benign-ware and then can immediately apply
our techniques.

We apply statistical rigour to our experiments and our selec-
tion of data. We demonstrate that accuracy can be optimised by
combining NCD with the compressibility rates of the executables.
We demonstrate that malware reported within a more narrow time
frame of a few days is more homogenous than malware reported
over a longer one of two years but that our method still classifies
the latter with 95.2% accuracy and a 5% false positive rate. Due
to the use of compression, the time and computation cost of our
method is non-trivial. We show that simple approximation tech-
niques can improve the time complexity of our approach by up to
63%.

We compare our results to the results of applying the 59 anti-
malware programs used on the VirusTotal web site to our malware.
Our approach does better than any single one of them as well as the
59 used collectively.

1. INTRODUCTION
Arms races are often ruinous. The malware arms race is no ex-

ception. Despite the widespread use of anti-virus software, mal-
ware is imposing a significant productivity tax on society, slowing
machines and wasting bandwidth. Moreover, there are no SALT
talks to provide respite periods. The race is relentless.

The evolving sociology of malware, and in particular the growth
of industrial scale production of polymorphic and metamorphic
variants of existing malware, is straining the ability of existing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

methods of detection, via bit signatures and dynamic analysis, to
cope with this production volume. A number of researchers have
considered ways to leverage existing techniques. Since the early
to mid 2000’s there has been research into semantics of programs,
on the assumption that identifying semantic invariants can help to
overcome metamorphic variation.

This decade has seen research into similarity metrics and appli-
cations of machine learning. The motivation is that signature-based
approaches, whether syntactic or behavioural, require painstaking
manual analysis to isolate the signature, and so cannot handle pre-
viously unseen malware. In contrast, a successful similarity metric
could extrapolate the features of its two labeled input sets of mal-
ware and non-malware and, at least some of the time, avoid upfront
analysis and detect previously unknown malware, potentially auto-
matically.

A generic similarity metric has existed for the last decade or
so, the Normalised Information Distance (NID) [14]. It works on
syntax rather than semantics but it has a deep mathematical foun-
dation that is connected to information theory, probability theory,
the theory of randomness, and algorithmic complexity theory. It
has the unparalleled advantage of being universal in the sense that
it minorises (intuitively: incorporates) every other possible sim-
ilarity measure — but has the slight drawback of being uncom-
putable. On the other hand there exists an effective approximation
to NID that uses compressors, the Normalised Compression Dis-
tance (NCD) [9].

The promise of building a malware detector on the back of NCD
is its good approximation to universality. If NCD detects malware
well, it could do so without requiring any static or dynamic analy-
sis or preprocessing. All one would need to detect malware is suffi-
cient processing power, a good compressor, and known collections
of malware and non-malware, and nothing more. Being generic, it
can be directly applied to binary executables. This lack of need for
specialised knowledge and techniques introduces a “garage assem-
bly” element into the approach.

Our objective in this paper has been to answer the question,
“How well does NCD detect malware when we apply it to binary
executables?", and to answer it with empirical rigor. The answer,
incidentally, is, “Very well!”. We found that when you apply the
method to malware collected within a short time scale of a few
days it detects malware with 97.5% accuracy — rather astonishing
from a standing start. Once you attain accuracy levels in the mid
90’s, it becomes increasingly difficult to improve on them so we
used the flexibility and power of the Decision Forest Classifier to
improve accuracy incrementally to this 97.5% level.

In this paper we have made the following contributions:

1. We have conducted the first statistically rigorous, experimen-
tal evaluation of the ability of NCD to detect malware using

1

ar
X

iv
:1

50
2.

07
66

1v
1

 [
cs

.C
R

]
 2

6
Fe

b
20

15
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/29412099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

only binary executables.

2. We have demonstrated that NCD, as used in our approach, is
competitive with commercial anti-malware tools: it outper-
forms any single one and matches the performance of all of
them together.

3. We have used NCD in conjunction with a state-of-the-art
classifier, the Decision Forest Classifier, that scales well, is
inherently parallel, and is tuneable.

We have been inspired by Wehner’s 2007 paper in which she
applies NCD to cluster polymorphic worms found in network traffic
[18]. Unlike our own work, her work lacked any attempt to make a
definitive statistical statement.

2. BACKGROUND
This paper is founded on the use of compressors to achieve upper

bounds on the Kolmogorov complexity of strings. (This concept of
complexity is also called algorithmic information or information
complexity.) Our interest is in the application of an existing uni-
versal, generic, similarity metric to detect malware. This similarity
metric is called the Normalised Information Distance (NID). Like
Kolmogorov complexity it is not computable so we are forced to
use the best, general approximation to it, called the Normalised
Compression Distance (NCD).

In what follows we outline the underlying ideas, try to provide
intuitions about how the similarity metric works, and outline the
relationship between Kolmogorov complexity and NCD. The ma-
terial paraphrases material in papers by Li, Cilibrasi, Vitányi and
others and further readings may be found in Li and Vitanyi’s book
[14, 15].

First, we work in a world of strings so any objects we wish to
consider must be encoded as strings. This is not a strong restric-
tion as numbers, computer programs and many other objects can
be encoded as strings. So, encode all objects as binary strings
x ∈ {0,1}∗. We can totally order all such strings, first according
to length, and then lexicographically within each length. Every
string in the ordering, x, can then be identified with the number of
its position in the ordering; its length can be given by a function len
where

len(x) = blog(x+1)c.

It is desirable that we can work, if possible, in a setting where the
set of strings we consider is a prefix set, i.e. no string in the set
is the prefix of another. This restriction is not necessary but desir-
able. The prefix set property tends to imply other good properties,
for example being able to associate a probability distribution (tech-
nically a semi-measure) with our binary strings – which in turn
assists in making the connection between Kolmogorov Complexity
and Shannon entropy. One way to obtain a prefix-free encoding of
numbers and programs is to use a self-delimiting code for a string,
x, such as

x = 1len(x)0x

Then it can be shown that {x : x ∈ {0,1}∗} is prefix-free [15].
Kolmogorov Complexity is sometimes called the universal min-

imum description length. The act of description requires a descrip-
tion language so we say that ϕ(p) = x means that p is a description
of x using the description language ϕ . Now we can define the con-
ditional complexity of a string given a starting string as the length
of the shortest description that takes the given, starting string as
input and produces the string.

Definition 2.1. (The conditional complexity of a string)
The conditional complexity of x given y is

Cϕ (x|y) = min{len(p) : ϕ(y, p) = x}
Here, p is a partial recursive function that takes y as input and

outputs x. The conditional complexity of x is just the length of the
shortest funtion that can do this

It can be shown that the set of partial recursive functions on a
domain of prefix-free strings is sufficiently expressive to capture
description languages and that for every pair of strings there is, in
theory, a best description language in this set in that descriptions
in this language are shorter than descriptions in any other language
for this pair of strings.

Theorem 2.1. ∃ a partial recursive prefix function Ψ0 s.t. ∀ partial
recursive prefix functions Ψ there is a constant c with

CΨ0(x|y)≤CΨ(x|y)+ c

for all pairs of strings x and y. The constant c is independent of x
and y, only depending on Ψ0 and Ψ.

The import of this theorem is that minimum description length is
language dependent – but by fixing the description language we do
not lose out. As we consider increasingly longer strings, the con-
cept of a minimal description length independent of the description
language asserts itself. One consequence is that when we apply our
similarity metric to malware, confidence in our results increases
with the length of the strings compared.

The conditional Kolmogorov complexity of a string x given a
string y is written K(x|y) =CΨ0(x|y) while the (unconditional) Kol-
mogorov Complexity of a string is written K(x) =CΨ0(x|ε) and Ψ0
is usually taken to be a universal computer such as the universal
Turing machine.

The similarity metric ideally should be a distance metric, i.e.
should satisfy the axioms of a distance metric. The obvious defini-
tion for the minimal information distance between a pair of strings,
x and y, is the length of the shortest program for a universal com-
puter to transform x into y and y into x. However the conditional
algorithmic complexities of two strings considered in each order
are not in general equal, i.e. K(x|y) 6= K(y|x). Because symme-
try fails, this “obvious” definition is not a distance metric. This
can be fixed by simply taking the least upper bound of the condi-
tional complexities. Then there remains the problem of comparing
strings of quite different lengths. “Normalising” the distance with
respect to the least upper bound of the algorithmic complexities of
the two strings handles this problem. The result is the Normalised
Information Distance (NID).

Definition 2.2. (NID)

e(x,y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
NID calculates a value in [0,1] and is a universal, generic, upper

semi-computable distance metric satisfying a density requirement
in {0,1}∗. It is universal because it can be shown to be less than any
other similarity metric between two strings. So if any two strings
are similar because of any feature that they share and this can be
captured in a metric, it can also be captured with NID. This univer-
sality in turn makes NID completely generic. It does not depend
on any particular features of the strings so it can be applied to any
type of strings. It is upper semi-computable because it can be ap-
proximated from above by a sequence of functions into the rational
numbers that converge on NID in the limit. It is a useful, non-
degenerate metric because at any finite distance from a string there
is at most a certain, finite number of other strings.

2

However, Kolmogorov complexity is not a partial recursive func-
tion so it is not computable and must be approximated. Any ap-
proximation is necessarily an upper bound, as explained above. We
use compression programs to calculate computable upper bounds.
Compressors are not the only possible way to approximate algo-
rithmic information content but they are natural, since they ex-
ploit repetitive patterns in a string. The better your compression
program, the more tightly your upper bound approximates Kol-
mogorov complexity. Useful detection and classification methods
for malware using algorithmic complexity give an advantage in the
arms race as to do better may require the intellectually prohibitive
cost of developing a better compressor. Even then, it is not imme-
diately clear how this advantage can be exploited.

We follow Cilibrasi and Vitanyi in simply replacing K(x) and
with Z(x) where Z(x) is the length of the compressed version of
string x produced by a compression program Z. Simply substituting
Z for K in the definition of NID creates the problem of interpreting
Z(x|y). To sidestep this problem, Cilibrasi and Vitanyi employ the
following result.

Lemma 1.

max{K(x|y),K(y|x)}= K(xy)−min{K(x),K(y)}

where xy is the concatenation of the strings x and y.

The result of replacing K with the upper bound Z is called the
Normalised Compression Distance

Definition 2.3. (NCD) The Normalised Compression Distance is
given by

eZ(x,y) =
Z(xy)−min{Z(x),Z(y)}

max{Z(x),Z(y)}
Like NID, NCD calculates a value in [0,1] although this outcome

depends on how normal is the compressor used. The key term in
the definition is the term Z(xy) as this is what makes the distance
work. It is also the term that is more expensive to compute as it’s
a longer string to compress than x and y individually and because
the number of comparisons grows quadratically with respect to the
number of strings being compared. A normal compressor is so
called because it is well behaved with respect to this term.

Definition 2.4. Normal Compressor A compressor, Z, is normal if
it satisfies for all strings x, y and z:

1. Z(xx) = Z(x) and Z(ε) = 0,

2. Z(xy)≥ Z(x),

3. Z(xy) = Z(yx),

4. Z(xy)+Z(z)≤ Z(xz)+Z(yz)

up to an additive O(log n) term with n the maximal binary length
of any string involved in the (in)equality.

Assuming that we use a normal compressor, intuitions about how
the distance works can be gained by applying NCD to a single file.
Z(xx) = Z(x) so NCD(x,x) = Z(x)−Z(x)/Z(x) = 0, i.e. every file
is completely similar to itself. Not all compressors behave in this
normal way. We discuss our choice of 7zip as compressor in Sec-
tion 3.

To build your intuition about how NCD works, it is instructive
to consider NCDS, which replaces the normal compressor Z with
file size in the definition of NCD. NCDS has the unwanted property
that NCDS(x,y) = 1, for all x and y. WLOG, let S(x)< S(y), then

NCDS =
S(xy)−min(S(x),S(y))

max(S(x),S(y))
=

S(x)+S(y)−S(x)
S(y)

=
S(y)
S(y)

= 1.

Figure 1: The NCD of files to themselves for different file sizes
using different compressors.

3. CLASSIFYING MALWARE USING NCD
The Normalised Compression Distance (NCD) works by find-

ing common patterns between two strings using compression algo-
rithms. Therefore, there are no restrictions on the type of strings
to which we can successfully apply NCD. If we want to use NCD
to find similarities between programs, we can apply it to any string
representation of a program, such as the source code, an execution
trace, an abstraction of the program or the program’s binary.

Applying NCD directly to the binary representation of the pro-
gram eliminates the manual effort needed to reverse engineer or
execute the program to obtain an execution trace. In the case of
malware, this is particularly useful because malware writers go to
great lengths to prevent their programs from being reversed engi-
neered or revealing their malicious behaviour when executed within
a controlled environment like a virtual machine. Further, executing
malware outside of a controlled environment is unsafe.

3.1 Choice of Compressor
NCD is an upper bound on information distance. The choice of

compressor determines how tight this upper bound will be. Previ-
ous research [8] found that the size of strings we want to compare
and the size of the block or window that the compressor uses af-
fect the values of NCD. Our own experiments confirm this finding
and indicate that a compressor similar to 7-zip performs well (i.e.
using 7-zip, NCD(x,x) is close to zero) for our domain, classifying
malware and benign-ware. Figure 1 shows the results of our ex-
periment. The x-axis is the size of the file while the y-axis is the
NCD of the file to itself. We can clearly see that 7-zip outperforms
the other three compressors (gzip, winzip and bzip2). The window
size in 7-zip can be set to a maximum of 4GB, making it suitable
to calculate NCD for two files with a combined size of up to 4GB.

3.2 Classifier
We build a classifier based on NCD to classify individual pro-

grams. We design a random forest classifier using NCD and com-
pressibility ratio features to classify programs as benign or mali-
cious. A decision forest [6] is an ensemble classifier composed of
multiple, independent decision trees. Trees are trained indepen-
dently over a randomly selected subset of the features at each de-
cision point. When classifying a program, each tree’s decision is
a vote; the forest’s decision is affirmative when the fraction of the
affirmative votes of its trees exceeds a threshold. Tuning the deci-

3

sion threshold leads to a classifier with different true positive rate
versus false positive rate trade-offs. Random forest training and
classifying can be parallelized, and they exhibit good classification
and generalization performance [10].

Feature selection. Our classifier takes as input a vector of n+ 1
real-valued features in the range [0.0,1.0]. We form this vector as
follows. The first feature is a program’s compressibility ratio, the
ratio of its compressed size to its uncompressed size. The other n
features are the NCD of the program with n other reference pro-
grams, n

2 benign ones and n
2 malicious ones. We select these n

reference programs uniformly at random from our collection of la-
beled programs. We can show that some features are more impor-
tant to the forest’s decision than others. In future work, we plan
to extract, then exploit this knowledge to choose features more ef-
fectively. The binary features used in the decisions in the decision
trees in the random forest are random thresholds on the one of the
n+1 features.

Training. To train the random forest classifier, we start from a set
of programs labeled as benign or malicious. The set of training
programs is disjoint from the reference programs used to compute
the NCD and from the evaluation set used subsequently to estimate
the classification performance of our approach.

Training a random forest involves training each decision tree in-
dependently, while injecting sufficient randomization, as described
below, to ensure robust learning. Our approach is to use the full
training set to train each forest, but randomize the set of features
made available to train each decision point in each tree. We de-
fined this restricted feature set by picking an index into the feature
vector uniformly at random, then, to make the decision binary, we
pick a threshold, again uniformly, from all the vectors in the test set
at this index.

We greedily built individual decision trees by selecting and stor-
ing a feature at each decision point, out of the restricted set, to
minimize the Shannon Entropy over the labels of their leaves. Con-
cretely, given an initial set of items B at a decision point d, we try to
partition B into L over d’s left subtree and R over d’s right subtree
to maximize the information gain:

I = H(B)− |L|
|B|

H(L)+
|R|
|B|

H(R), (1)

where H denotes the Shannon entropy function over the distribution
of labels in the set, and | · | the cardinality of the set.

Trees are grown to their maximum height, unless no proposed
feature allows a significant information gain, set by a cut-off thresh-
old. In each decision tree, each leaf stores the number of benign and
malicious programs assigned to it.

The distribution of the training data plays a role in the accuracy
of the resulting classifier when applied to unknown items. The rel-
ative prevalence of labels in the training set influences the maxi-
mization of information gain, as seen in Equation 1. Increasing the
prevalence of items with a particular label in the training set intro-
duces a higher penalty for misclassifying those items. We therefore
test our classifiers under different training conditions to ensure they
are robust, and detect good training distributions to improve their
performance.

Our training implementation is parallelized to use an arbitrary
number of cores on a single computer, and can easily be ported to
a distributed setting.

Classification. Given an unknown program, we wish to label it as
benign or malicious. First, its n+ 1 feature vector is computed by
calculating its compressibility ratio, and its NCD to the n refer-

ence programs. Then each decision tree in the forest assigns the
program to a leaf: decisions based on the program’s feature vector
branch left or right, until a leaf is reached. We interpret each leaf
as an empirical probability the item is benign or malicious, and the
decisions of all trees are averaged to derive the overall likelihood
for each category.

Evaluation metrics. The traditional metric for success for a classi-
fier is accuracy, defined as the number of correctly classified items
over the total number of items. Unfortunately, this measure con-
founds Type I and Type II errors. Considering the classifier’s false
positive and false negative rates separately is easier to understand
and interpret.

Since the output of a random forest is a real in [0.0,1.0], a deci-
sion boundary may be set within this range over which one classi-
fies a program as malicious. Different decision thresholds exhibit
different True Positive (TP) and False Positive (FP) rates. The Re-
ceiver Operating Characteristic illustrates the trade off between TP
and FP for all possible decision boundaries.

The concrete problem of malware detection is one where the base
rate of positives (malware) may be significantly lower than 50%.
Thus, a key metric of success is the true positive rate (the fraction
of positives classified as positives), for extremely low rates of false
positives (the fraction of negatives misclassified over all negatives).
A high rate of false negatives would otherwise lead to the vast ma-
jority of items recognized as positives being misclassifications. For
this reason, our evaluation illustrates ROC curves in the false posi-
tive range of 0%–10% only.

The choice of feature and training sets impacts the effectiveness
of the classifier. Refining the selection process of those two sets
and adding lightweight preprocessing steps (e.g., unpacking packed
malware) is expected to improve results. In this paper, however,
we want to isolate and investigate the performance of NCD and
decision forests without the interference of other techniques.

Finally, some of the n+ 1 features may be more important than
others’ in providing information to classify programs as benign
or malicious. To determine feature importance we follow the ap-
proach suggested by Breiman [6] and report the fraction of trees
that use a specific feature. We consider that a feature is used in a
decision tree if any threshold was applied to it anywhere in a tree
to decide the outcome of a branch.

3.3 Lower Bound on NCD
Computing NCD can be time consuming because it is a pair-

wise measure. The most expensive part of the computation is the
compression of the concatenation of the two strings. Compressing
each string separately is also time consuming but only needs to be
performed once for each string while the compression of the con-
catenation needs to be performed for every possible combination of
strings.

We can improve the scalability of using NCD if we can find a
way to minimise the number of comparisons we have to make. One
way to achieve this is to approximate the lowest NCD we can obtain
for a pair of strings. If this value is high (for example 0.8 or 0.9),
then we know that the two strings are not similar and we can skip
calculating their NCD. We now show how to compute such a lower
bound, using only the compression of each string. Assuming Z is
a normal compressor (Section 2) and that Z(y) ≤ Z(x) (the case

4

Z(y)≤ Z(y) is symmetric), we have

eZ(x,y) =
Z(xy)−min{Z(x),Z(y)}

max{Z(x),Z(y)}

=
Z(xy)−Z(y)

Z(x)
.

The smallest NCD value we can then obtain occurs when x,
the longer string, fully contains y, the shorter string. In this case,
Z(xy) = Z(x) and we have

eZmin(x,y) =
Z(x)−Z(y)

Z(x)
= 1− Z(y)

Z(x)
.

For example, if Z(x) = 10 and Z(y) = 3, we know, without com-
pressing xy, that the minimum NCD we can obtain is 0.7 = 1− 3

10 .
We can then choose a threshold, based on application domain, and
compute eZmin(x,y). If eZmin(x,y) exceeds this threshold, we are
not interested in, and do not compute, the exact NCD(x,y).

3.4 Evading NCD
Large scale production of malware depends on the automated

generation of variants of the same malware. To evade detection by
NCD, variant generators must increase the NCD between the orig-
inal malware and its variants. To this end, they have two choices:
add new content or obfuscate.

If we apply the previous formula for NCD lower bounds to a file
with itself, we have

eZmin(x,x) = 1− Z(x)
Z(x′)

.

We can clearly see that we need to add at least 100% more unique
content (increase Z(x′) by 100%) to increase NCD to 0.5. This
NCD value might not even be enough to evade detection, as a 0.5
similarity to known malware may still flag the new variant as sus-
picious to an NCD-based classifier.

Alternatively, we can evade detection via obfuscation or replac-
ing content to increase Z(xx′), the compressed size of the malware
x concatenated to its variant xx′. Variant generators must, as in the
first case, obfuscate a large percentage of unique content to increase
the NCD of x and x′. This increase in the effort needed to generate
variants raises the bar for malware writers and makes generating
variants a more laborious and time consuming task. Adding high
entropy junk to each variant might overcome this obstacle. How-
ever, the large increase in the size of the resulting variants is likely
to undermine their viability by hindering their propagation.

In our experiments, we found that the majority of false posi-
tives occurred in setup and installer files. These files perform ac-
tions that, from first principles, are similar to malware actions (e.g.,
change the file system or the registry). This result suggests that
NCD might be able to capture behaviour typical of malware even
across different malware families.

4. EVALUATION
We designed our study to answer the following research ques-

tions:

RQ1: How accurate is NCD in classifying malware?

As mentioned before, NCD is lightweight in that it can be applied
directly to the binary executables without the need for reverse en-
gineering or executing the programs. This research question in-
vestigates NCD’s performance (accuracy and false and true posi-
tive rates) in classifying programs as malware or benign-ware.

RQ2: How accurate is using compressibility rates in classifying
malware?

We expect malware to have higher entropy than benign-ware be-
cause, in the current state of the malware arms race, malware de-
signers often use polymorphism (compression and encryption) to
avoid detection. Therefore, we expect malware to be less com-
pressible than benign-ware. Using compressibility rates is less
computationally expensive than NCD because compressibility rate
is a feature of an individual program while NCD is a pairwise fea-
ture. In this question we investigate the performance of compress-
ibility rates (accuracy and false and true positive rates) compared
to NCD in classifying malware.

RQ3: Is malware reported in the same timeframe more likely to
have similar patterns?

The malware we originally collected was reported by the pub-
lic on the VirusWatch Archive in a period of 8 consecutive days.
This fact might influence results if malware reported within a short
time period is more homogenous. We investigate this issue by re-
peating our experiments on a new sample set that was reported on
randomly selected dates spread throughout a little under two years
and examining the results.

RQ4: How much can we reduce the cost of using NCD by using
approximations based on NCD lower bounds?

The performance of an NCD based classifier is expected to rely on
the number of programs that are used to build and train the classi-
fier. However, a larger number of samples leads to a larger num-
ber of NCD pairwise comparisons. Since the time complexity for
NCD is quadratic, the effect of increasing the sample set on per-
formance might make the approach impractical. We can use NCD
lower bounds to approximate NCD and reduce the cost. However,
before using approximations in the classifier, we first empirically
quantified savings, in the number of computations, this approxi-
mation achieves in practice.

RQ5: How does an NCD classifier compare to commercial and
open-source anti-virus software?

We labeled the programs in our samples as malware or benign-
ware based on the source from which we obtained them. Although
we expect this classification to be reasonably accurate, we can not
guarantee that it is 100% accurate as benign-ware might be mis-
takingly reported as malware to the virus repository we used. Sim-
ilarly, we cannot guarantee that no malware exists in the benign-
ware set. To have a ground truth, we need to reverse engineer
and analysis each program in the sample set; a labour intensive
solution that is not practical. However, we can leverage anti-virus
software to gain a better understanding of our samples and our
results.

4.1 Corpus
We collected malware and benign-ware to form the corpus for

our experiments in the following way: For malware, we used a
script to automatically download all executable binaries that were
reported on the VirusWatch Archive1 from the 4th until the 11th
of April. We configured the script to attempt to download a file a
maximum of 3 times and to abort a connection after 5 seconds of
idle time.

For benign-ware, we collected all executables from two Win-
dows 7 machines. We found collecting benign programs to be more

91http://lists.clean-mx.com/pipermail/
viruswatch/

5

http://lists.clean-mx.com/pipermail/viruswatch/
http://lists.clean-mx.com/pipermail/viruswatch/

All Samples Set 1 Set 2 Set 3
Size (KB) Size (KB) Size (KB) Size (KB)

Type Num mean med. mean med. mean med. mean med.

Benign 3,046 932 116 903 118 766 112 1,006 110
Malware 14,656 4,287 500 3,120 500 3,279 501 2,449 501

Table 1: Descriptive statistics of the malware and benign samples
used in our study.

challenging than collecting malware because benign-ware sources
do not offer executables but rather offer installers and setup files.
Collecting only installer files would not be representative of benign-
ware, while using them to install applications and then collect the
resulting binary files proved to be a laborious. Therefore, we de-
cided to collect executables from existing machines.

After collecting all samples, we filtered the results to retain only
Windows executables using the results of the Linux File utility.
We then used the Linux fdupes utility to identify and remove any
duplicate files. The fdupes utility compares files first by size, then
MD5 signature and finally uses a byte-by-byte comparison. Table
1 provides some statistics about our corpus.

To conduct our experiments and have multiple data points that
can allow for statistical analysis, we randomly sampled 1,000 pro-
grams from each type (malware and benign-ware) from our corpus.
We repeated the sampling process (with replacement) three times
creating three sets of 2,000 programs each. We then conducted each
experiment in our study on each sample set independently and then
analysed and compared results. Statistics about the the samples sets
can also be found in Table 1.

4.2 Classifier Parametrisation
The Random forest classifier we built to label programs as be-

nign or malicious has a number of parameters that need to be fixed
before training and classification may take place.

The random forests we trained for all experiments consist of 400
individual decision trees trained independently in parallel. Ran-
domness is injected into the training process by considering a fresh
random selection of 30 features (out of the available n+1) for train-
ing each tree branch, but making all training data available. Trees
are grown, adding branches, until the information gain is less than
0.001 bits, or a depth of 5 branches has been reached.

We experimented with training under two conditions: first, we
train the classifier with an equal number of benign and malicious
training exampled; second, we severely bias the training set by us-
ing 10% benign and 90% malicious examples. The biased training
condition heavily penalizes false positives, and should lead to fewer
of those at the expense of increased false negatives.

4.3 NCD Classifier
For each of our three 2,000-program sample sets described in

Section 4.1 , we first calculated pairwise NCD using the 7-zip com-
pressor. Figure 2 is the distance matrix for sample set 1: the darker
dots represent similarity (lower NCD) while lighter areas represent
dissimilarity (higher NCD). The programs are ordered in the matrix
such that benign-ware comes first followed by malware. The ma-
trix shows that the malware in the set is clearly homogenous while
benign-ware is similar to neither other benign-ware nor malware.
Similar results are observed for the two other sample sets.

We applied the algorithm described in Section 3 to the three sam-
ple sets. We set the number of features to n = 200+1, namely the
compression ratio and the NCD from 200 randomly chosen pro-
grams — 100 known benign and 100 known malicious. The size of
the training and test sets as 600 and 600 respectively (with 300 be-

Figure 2: NCD matrix for Sample set 1.

nign and malicious sample each). Because the results are dependent
on the choice of sub sets, we repeated the experiment 30 times for
each set by randomly selecting different subsets to act as features,
training and test sets. We note that the size of the sample gives lim-
ited resolution for very small True Positive Rates and False Positive
Rates. This limitation can be overcome by using larger (but more
difficult to gather) corpus of malware.

The results for each run are represented as a Receiver Operating
Characteristic (ROC) curve. Figure 3 shows the ROC curve for the
30 runs of the experiment for sample set 1. The blue curve shows
the average results while the grey area is between the maximum
and minimum of the 30 runs. Each point on the curve represents the
accuracy rates we can achieve by using a different vote threshold to
differentiate between malware and benign-ware.

The x-axis is the false positive rate while the y-axis is the true
positive rate. The maximum accuracy that can be achieved across
all runs (displayed at top of the graph) is 97.5%. The average max-
imum accuracy achieved is 97.1% with an average false positive
rate of 3% and average true positive rate of 97.3%. However, if we
choose a different threshold, we can reduce false positives or in-
crease true positives by sacrificing accuracy. The choice of thresh-
old depends on the objective we want to achieve. For example,
we can have no false positives if we chose a more conservative
threshold, but accuracy and true positive rate would be reduced, on
average, to 92.2% and 84.9% respectively. On the other hand, we
can set the threshold higher and capture all true positives but also
capture on average around 22% false positives.

The results for the other two samples are similar. The first set of
columns of Table 2 (under header NCD) shows the average false
positive (FP), true positive (TP) and accuracy rates (Acc) for our
experiments over 30 runs for each of the sample sets.

To understand how NCD and decision forests contributed to the
observed results, we used a simple clustering algorithm (k-medoids)
to cluster the programs in each sample set using NCD as the dis-
tance. In k-medoids clustering, k random points are selected as the
centres (or medoids) of each cluster. All other data points are then
assigned to the cluster in which they are closest to the medoid. A
random point in the cluster is then swapped with the medoid and
the calculations are recomputed. If the swap causes the cost to be

6

0.00 0.02 0.04 0.06 0.08 0.10
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T
ru

e
 P

o
si

ti
v
e
 R

a
te

ROC Curve (accuracy=0.975)

Figure 3: ROC curve for 30 runs of the NCD classifier for Sample
set 1.

NCD Comp Rate Combined
Sample FP TP Acc FP TP Acc FP TP Acc

Set 1 0.030 0.973 0.971 0.057 0.961 0.952 0.030 0.974 0.972
Set 2 0.034 0.978 0.972 0.037 0.961 0.962 0.030 0.985 0.977
Set 3 0.034 0.976 0.971 0.060 0.969 0.955 0.030 0.978 0.974

All 0.032 0.976 0.971 0.051 0.964 0.956 0.030 0.979 0.974
Table 2: Average best value for accuracy with average correspond-
ing false positive and true positive rates for each sample set and
each approach.

reduced (the sum of distances within each cluster), the new medoid
is used, otherwise the original medoid is kept. The process is re-
peated until there is no change in medoids. We applied this algo-
rithm to each sample set setting k to 35. We labeled each cluster as
a malware or benign-ware cluster based on the dominating number
of samples in the cluster. We then calculated false and true posi-
tive rates as well as accuracy. The results (Table 3) show that NCD
alone can achieve high levels of accuracy in classifying malware
and benign-ware (95.6-95.8%), however using decision forests im-
proves performance.

The answer to RQ1 is that NCD is effective in classifying mal-
ware and benign-ware and when used in conjunction with decision
trees can achieve an average accuracy of 97.1% with average false
positive rates of 3.2s% and true positive rates of 97.6%.

4.4 Compressibility Rate Classifier
As mentioned before, we expect malware and benign-ware to

have different compressibility rates (compressed size / original size).
We plotted the compressibility rates of our samples to test our intu-
ition. Figure 4 shows the box plots for sample set 1: The boxes rep-
resent the middle 50% compressibility rates of the sample, divided
by the line that represents the median while the whiskers represent
the top (and bottom) 25%. The box plots confirm that there is a
clear difference in compressibility patterns between malware and
benign-ware. Similar results are observed for the other two sets.

Inspired by these encouraging results, we repeated the experi-
ments in RQ1 using compressibility rates as features instead of
NCD. The main benefit of using compressibility rates (CR) in-
stead of NCD is that NCD is a pairwise calculation while CR is
just calculated once for each program. The results (second set of
columns in Table 2) show that although the accuracy achieved with

Sample FP TP Acc

Set 1 0.052 0.968 0.958
Set 2 0.040 0.952 0.956
Set 3 0.042 0.953 0.956

All 0.045 0.958 0.957
Table 3: Accuracy, false positive and true positive rates for each
sample set using NCD and k-medoids clustering with 35 clusters.

Figure 4: Compressibility rates of malware and benign-ware for
sample set 1.

CR is lower than that obtained by NCD, the reduction is on average
around 1.5% (97.1%–95.6%). Figure 5 shows the ROC curve (blue
curve) and variation (grey area) in false positive and true positive
rates using a compressibility rates classifier using the same sample
of programs as Figure 3.

Finally, we tried combining NCD with compressibility rates to
see if the two approaches are complementary. The combined ap-
proach achieves on average higher accuracy (97.4% vs 97.1%),
lower false positive rates (3% vs 3.2%) and higher true positive
rates (97.9% vs 97.6%). The average results over 30 runs are re-
ported in the last set of columns in Table 2) while Figure 6 shows
the roc curve for the same sample as Figures 3 and 5.

We applied a two-sided Mann-Whitney test to the accuracy ob-
servations and found that the differences between the three ap-
proaches are statistically significant with 95% confidence.

The answer to RQ2 is that compressibility rates are effective
in classifying malware and benign-ware and can achieve an aver-
age maximum accuracy of 95.6% with average false positive rates
of 5.1% and true positive rates of 96.4%. NCD classifiers per-
form statistically significantly better than compressibility rate clas-
sifiers. Combining NCD and compressibility rates statistically sig-
nificantly improves performance.

4.5 Size of Malware Reporting Window
A threat to validity of our study is that the malware we collected

was reported within a short time-frame. If malware spreads in out-
breaks where several variants are released by an adversary at the
same time, this might suggest that our approach could lose effec-
tiveness over time. To investigate this issue, we repeated all our
experiments with samples that have more diverse reporting times.
We selected 10 random dates from the period between 1/1/2013
and 1/10/2014. We then downloaded all the Windows executable
malware reported on those 10 dates and processed them in a simi-

7

0.00 0.02 0.04 0.06 0.08 0.10
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T
ru

e
 P

o
si

ti
v
e
 R

a
te

ROC Curve (accuracy=0.956)

Figure 5: ROC curve for compressibility rate classifier over 30 runs
for Sample set 1.

0.00 0.02 0.04 0.06 0.08 0.10
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

ROC Curve (accuracy=0.976)

Figure 6: ROC curve for 30 runs of the combined compressibility
rate and NCD classifier for Sample set 1.

lar manner to our original corpus. We then randomly selected 1,000
malware from this new corpus and 1,000 benign programs from our
original set of benign-ware and repeated the experiments in RQ1
and RQ2.

Figure 7 shows the distance matrix for the new diverse set. The
malware in this sample is noticeably less homogenous than the pre-
vious sets. However, the same general conclusion still holds: mal-
ware is more similar to malware than benign-ware while benign-
ware is not similar to other benign-ware or malware.

Table 4 depicts the average best accuracy across 30 runs of the
classifier for NCD, compressibility rates and the combined approach.
Figures 8, 9 and 10 show the ROC curves for our 30 runs for the
NCD classifier, the compressibility rate classifier and the combined
classifier. The overall average accuracy results for each approach
are slightly lower than those obtained from the previous samples.
Interestingly, the results in these figures contain higher variation,
as you can observe in the larger grey area in each graph, compared
to Figures 3, 5 and 6. This higher variance is expected; it is a con-
sequence of the greater malware diversity of this data set. Further,
this variance and the tailtale staircase pattern of low resolution in
the ROC curves is confined to FPR below 5% (due to the size of
our sample sets, Section 4.3) but disappears above that threshold.

Figure 7: NCD matrix for a diverse (with regards to reporting time)
sample set.

Approach FP TP Acc

NCD 0.050 0.954 0.952
Comp Rate 0.057 0.879 0.911
Combined 0.057 0.962 0.953

Table 4: Average best value for accuracy with average correspond-
ing false positive and true positive rates for the diverse sample set
and each approach.

Inference always depends on the choice of feature and training
sets; this result suggests that, for our approach to be successful in
practice, we may need to evolve the classifier over time. This might
not be a significant concern since the process of building the clas-
sifier is completely automated and safe (since it does not require
running the malware). This result also suggests that rebuilding the
classifier need not be frequent since, even across a two-year inter-
val, the classifier is still reasonably accurate.

Figure 11 shows the difference in compressibility rates between
malware and benign-ware for the diverse set. Similar to the previ-
ous sets, there is a clear difference between the two sets. However,
the average accuracy is much lower than the accuracy observed for
the previous sets. This might be caused by the larger number of out-
liers in malware that have a lower compressibility rate. Figure 13,
which is representative of the importance gain of our experimental
runs, suggests that our data contains “Kevin Bacon” programs that
effectively partition the rest of the programs because they lie near,
and even define, the centre of clusters in the data. In the upper left
of the Figure 13, these programs give rise to the NCD measures that
are the most prevalent feature. Thus, another reason for the drop in
our accuracy may be due to the fact that the more diverse a data set
is, the less likely one is to select these highly discriminant, “Kevin
Bacons”.

The answer to RQ3 is that malware reported in a tighter time-
frame is more homogeneous than malware reported over a longer
period of time. Nonetheless, our NCD classifier still achieves 95.2%
accuracy with 5% false positive and 95.4% true positive rates, on
average.

4.6 NCD Cost Reduction

8

0.00 0.02 0.04 0.06 0.08 0.10
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T
ru

e
 P

o
si

ti
v
e
 R

a
te

ROC Curve (accuracy=0.958)

Figure 8: ROC curve for 30 runs of the NCD classifier for the di-
verse sample set.

0.00 0.02 0.04 0.06 0.08 0.10
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

ROC Curve (accuracy=0.916)

Figure 9: ROC curve for 30 runs of the compressibility rate classi-
fier for the diverse sample set.

As mentioned before, we can reduce the cost of computing NCD
in terms of time and computation power by skipping calculations
that we think might not contribute to the effectiveness of the clas-
sifier . For example, we might decide that if the lower bound on
NCD for a pair of programs is 0.99, the effort needed to compute
the real value (which would be between 0.99 and 1) is not justified.

We empirically estimate the percentage of calculations that we
can skip by using lower bounds on NCD by setting the threshold
at different values. For each of our four sets, we count the number
of pairs where the lower bound on NCD is equal to or above a
number of thresholds that range from 0.8 to 1 with 0.01 increments.
Figure 12 shows the plot for each set. The x-axis is the different
thresholds of NCD while the y-axis is the saving in percentage of
computations. Each set consists of 2,000 programs; therefore, the
total number of computations needed is 2,001,000.

The graph shows that the results for the three original sets is al-
most identical while the diverse set offers even more savings at each
point of the threshold. If we set the NCD lower bound threshold at
which we rely on approximation to 0.99, we already save 8–16% in
the number of calculations. The percentage of calculations we can
save grows gradually with the threshold and reaches between 37 to
49% even at a threshold as high as 0.9. These results indicate that

0.00 0.02 0.04 0.06 0.08 0.10
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

ROC Curve (accuracy=0.958)

Figure 10: ROC curve for 30 runs of the combined compressibility
rate and NCD classifier for the diverse sample set.

Figure 11: Compressibility rates of malware and benign-ware for
the diverse sample set.

we can reduce the cost of using NCD by using this simple tech-
nique of approximating lower bounds. Approximating NCD lower
bounds can be considered a more refined way to use compressibility
rates to classify, since these lower bounds compare the compressed
size of two strings individually rather than the compression of their
concatenation.

The answer to RQ4 is that we can achieve savings from 8–16%
by setting the lower bound threshold to use approximations to 0.99.
The savings we can achieve increase as we reduce the threshold and
reach 55–63% for a 0.8 threshold.

4.7 Comparison to Anti-Virus Software
To gain a better understanding of our results we scanned all sam-

ples using Virus Total. Virus Total 2 (a subsidiary of Google) pro-
vides an online service that scans files using up to 59 different anti-
virus engines. The service also provides an API that can be used in
batch scanning. We used uirusu 3 which is an interface written in
Ruby to simplify uploading and scanning files using the Virus Total
API.

The Virus Total website only accepts files smaller in size than

92https://www.virustotal.com

93https://github.com/arxopia/uirusu

9

https://www.virustotal.com
https://github.com/arxopia/uirusu

Figure 12: Savings in percentage of NCD calculations using lower
bound thresholds.

Set 1 Diverse Set
Mal. Ben. Mal. Ben.

Scanned 994 1,000 980 1,000
Detected 941 94 789 105
Not Detected 59 906 206 895
Anti-Virus Highest 883 45 525 47
Anti-Virus Lowest 0 0 0 0

Table 5: Summary of results of scanning sample set 1 and the di-
verse set using Google’s Virus Total service.

64MB while the API only accepts files smaller than 32MB. It is
sufficient to submit the MD5 hash code of a program if the file it-
self was submitted and analysed previously by another user. We
scanned our malware and benign-ware samples using the API. Nat-
urally, because we have no ground truth, we can only report on false
positives and negatives by assuming that our initial labelling is cor-
rect. However, the results of scanning might give us an insight into
our results and our samples.

Table 5 summarises the results of the Virus Total scan on sample
set 1 and the diverse set (sets 2 and 3 show similar results to set 1).
The first row shows the number of scanned files. All programs were
scanned successfully except 6 malware programs from sample set
1 and 20 from the diverse set, which violated the size limitation.
The number of programs classified by at least one anti-virus engine
as malware is shown on the second row. Interestingly, the number
of malware detected in sample set 1 is considerably higher than the
number detected for the diverse set (941 vs 789). This mirrors our
NCD classifier results where average best accuracy across 30 runs
for sample set 1 was higher than that for the diverse set (97.1% vs
95.2%). This result might indicate that the difference in NCD clas-
sifier accuracy for the two sets is caused by inaccuracy in the orig-
inal labelling rather than the diversity of the sample set. However,
more experiments have to be conducted to verify this observation.

We also notice that in both sets, around 10% (94 and 105) of
benign-ware was classified by at least one anti-virus engine as mal-
ware. Examining the names of these misclassified programs reveals
that they are mostly uninstallers, setup files and updaters. Interest-
ingly, we observed a similar phenomenon in our NCD classifier.
The similarity between malware and uninstallers, that was detected
by NCD, might be caused by the fact that they perform similar ac-
tions (e.g., writing to the file system, changing the registry). This
might suggest that some of the anti-virus engines used in Virus To-
tal work in a similar manner to NCD (i.e., identify similar patterns).
However, a more detailed analysis is needed to determine if these
detected files are really false positives or if they are in fact mal-
ware. It is also worth noting that the majority of these programs

Set 1 Diverse Set
FP TP Acc. FP TP Acc.

Engine 1 0.019 0.888 0.935 0.022 0.529 0.756
Engine 2 0.006 0.176 0.586 0.005 0.536 0.768
All Engines 0.094 0.947 0.926 0.105 0.805 0.851
Table 6: Scan results of the top performing engines in both sets.

were only flagged as malware by one or two engines out of the 59
engines used in Virus Total. In fact, only 11 programs out of all
benign-ware were classified as malware by more than 5 engines.
The engine that flagged the most benign-ware as malware for both
sets (45 and 47), was only able to detect a small number of malware
(35 and 54) in sample set 1 and the diverse set. This engine claims
to use a DNA matching algorithm to detect malware which might
explain the similarity in false positives to our NCD classifier.

The final two rows of the table show the highest and lowest num-
ber of malware and benign-ware that were classified by a single
anti-virus engine as malware for each sample set. Again we can see
a noticeable difference between the two sample sets in the number
of detected malware. The best performing engine in sample set 1
found 883 out of 994 malware (88.8%), while in the diverse set
the best performing engine found 525 out of 980 (53.6%). In each
set, a different engine had the best performance. Table 6 shows
the false positive, true positive and accuracy rates for these two en-
gines. Engine 1 was the best performing engine in sample set 1 and
the second best performing engine in the diverse set. We can see
from the results in the table that the false positive rate is around 2%,
however accuracy rates are considerably lower than those obtained
by any of our classifiers.

Engine 2 is the best performing engine in the diverse set but only
detected 175 malware in sample set 1. This engine has a very low
false positive rate but also suffers from low accuracy. Note that we
can achieve low false positive rates in our classifiers by adjusting
the voting threshold in the decision forest while achieving higher
accuracy rates than those achieved by these two engines. In both
samples, our classifiers achieve considerably higher true positive
rates than the combined performance of all 59 anti-virus engines.
We also have a lower false positive rate and higher accuracy. These
results, however, are provided for reference and cannot be used to
compare our approach to these engines. The reason is that these re-
sults are for the whole set while our approach uses a sub set of pro-
grams as feature and training sets. Additionally, as we explained
before, we do not have a ground truth and we do not know how
these commercial engines work and how much manual effort is in-
volved in building them compared to our approach which is fully
automated.

4.8 Feature Importance Analysis
We follow the methodology by Breiman [6] to evaluate the im-

portance of specific features, on the basis of how often they are
used in the random forest classifier. Figure 13 illustrates the im-
portance of each of the 201 features in a single run of the classifier
training on sample 1. The features are ordered by importance on
the x-axis, with the most used features to the left, and the least
used to the right. On the y-axis we plot the prevalence, a proxy for
importance, of each feature within the random forest.

It is noteworthy that a bag a of about 10–20 features are rela-
tively important and used quite often. By inspection we note that
compressibility is usually within these commonly used features, but
is not always the most common one. This illustrates, along with
the improved performance, that NCD does add value to classifica-
tion, and provides valuable features. We also note that the bulk of

10

0 50 100 150 200
Feature

0

50

100

150

200

250

300

350

P
re

v
a
le

n
ce

Figure 13: Relative feature importance.

features provide some value, and we conjecture keeping a varied
portfolio makes classification more robust and general.

5. RELATED WORK
Since NCD has been around since 2003, it is not surprising that

there are a number of papers that use or refer to Kolmogorov com-
plexity or information theoretic techniques, not necessarily NCD.
These can be grouped into two closely related but different prob-
lems: those that consider detection only (as does this paper) and
those that consider classification, either in conjunction with the de-
tection problem or by itself..

5.1 Detection
Dang, Liu and others use dynamic Markov compression (DMC)

to classify binary executables as malware or benign programs. Nei-
ther their method nor their results are reported in a clear way [11].
They do some light pre-processing by removing headers and white
spaces and converting each executable to hexadecimal. For each
executable they select substrings of length 1 KB, 10 KB and 100
KB in a manner not explained. This is to reduce the space over-
head required in their compression approach. They compress can-
didate strings using DMC models for both known benign files and
a known set of malware. The candidate is classified according to
the smallest compression of the file achieved. They experiment
on 2000 benign files and 1000 malware with 15% of the benign
files used for training along with with 30% of the malware and the
remainder in a test set. The results are given as ROC curves but
without any discussion, accuracy rates or other information.

Gong, Tan and Zhu devise a detection scenario for malware through
the use of compression with Prediction by Partial Matching (PPM)
[12]. They build Markov Models of different malware families but
only offer a “preliminary experiment”. This seems to consist of
200 malware divided into training and test seta in a 30%–70% split.
However they don’t provide any results or descriptions of the ex-
periments.

Abbas and Harris sketch an intrusion detection system that em-
ploys compression and hashing [2]. Their system has components
that profile worms, profile the network, profile malware, and pro-
file events on the system. All of these profilers employ NCD. The
malware profiler is intended to test samples gathered from various
sources against various anti-virus vendors to establish some ground
truth. then the sample, once identified as malware, is run in a sand-
box environment and information is collected. A fuzzy hash is cre-

ated which acts as a profile. A matrix of NCD values is created for
the set of profiles and used to determine a distance threshold which
is saved with the database. Collectively, this becomes the malware
detector. The report of the “initial runs” of the system is not clear
with regard to success in malware detection.

5.2 Classification
Wehner uses NCD to cluster worms and compressibility to iden-

tify packed and encrypted traffic on a network [18]. She uses root-
less tree diagrams as per the CompLearn tool developed by Cili-
brasi [1] together with discussion of the clustering results. There is
no rigorous experimental approach or intention to evaluate NCD as
a classifier.

Bailey, Overhead and others use NCD in the context of clus-
tering data derived from five minutes of instrumented execution of
malware on a virtual machine [4]. Their aim is to address the incon-
sistencies and variations that arise in labels for malware programs
from the various tool specific systems. They argue that a label sys-
tem for malware files should be consistent and complete and that la-
bels should be concise. They demonstrate that existing systems fail
to achieve this by assembling a corpus of 3,700 malware collected
between 2004 and 2007 and analysing these files with five differ-
ent AV tools. They use the Backtracker system to capture event
information during the execution. After extracting information of
interest, such as files modified, processes created, network connec-
tions made, they use this to create an execution profile for each
program. By applying NCD pairwise to the profiles they have the
raw material for a hierarchical clustering algorithm and they evalu-
ate the results of this with respect to the consistency, completeness
and concision of the labels in comparison to those produced by the
malware tools. Although their experiments are comparable to ours
in scale they are not aiming to detect and classify programs as mal-
ware or benign programs.

Apel, Bockermann and Meier experimentally evaluate a set of
distance measures for programs with the aim of identifying the
most appropriate measure for clustering malware based on behaviours
[3]. They consider this as contributing to a detection approach but
their experiments only seek to cluster malware rather than clas-
sify candidates. They collect 1195 malware samples from honeypot
sites and produce traces from these using CWSandbox. They com-
plain about the difficulty of establishing some ground truth with
respect to the files. They use the traces to compare and evaluate
four distance metrics: Levenshtein distance, approximated edit dis-
tance, Normalised Compression Distance, and Manhattan Distance
using tries. They rank these distances according to their ability
to cluster the traces, measured by the number of continuous (sic)
system call sequences that are shared by the traces in the cluster.
Their conclusions include that NCD should not be used to analyse
malware execution traces.

Gurrutxaga, Arbelaitz et alia also evaluate a set of distance mea-
sures as to their suitability for clustering dynamic traces produced
by malware [13]. They cite both Bailey et alia and Wehner. Mal-
ware is executed for one minute in a controlled environment and
information about the execution is collected. They compare differ-
ent metrics, including NCD, as well as two different ways of rep-
resenting the collected data. They use three hierarchical clustering
algorithms and evaluate the each of these three sets of choices

Wicherski has developed a fast, non-cryptographic hashing al-
gorithm for malware clustering that works on files in Portable Ex-
ecution format [19]. The information hashed includes the file’s
compressibility ratio as an upper approximation to its Kolmogorov
Complexity alongside structural properties such as heap commit
size. Again, the aim is to cluster malware rather than develop a de-

11

tector. He tests his algorithm on two corpora consisting of 184,538
and 90,105 malware and evaluates the resultant clusters by examin-
ing the names of the malware and by comparison with clustering on
benign programs where he can more easily obtain a ground truth.

Calliat, Desnos and Erra speculate that NCD might be used as a
first filtering tactic to select malware from a database of known mal-
ware to find those most similar to an unknown malware [7]. Their
paper offers no experimental evidence and it is not clear whether
they are aiming to detect or only classify.

Although it is an application neither of NCD or nor of compres-
sion, Baysa, Low and Stamp’s investigation of similarity between
malware groups produced by metamorphic engines is interesting as
a point of comparison as it is entropy based and is applied directly
to executables [5]. Their similarity measure relies on earlier work
by Sorokin who developed a comparison technique which com-
pares (executable) files via what he names structural entropy [16].
This involves using wavelet analysis to split each file into segments
of varying entropy levels. Bays et alia use structural entropy com-
parison as a filtering method then compute a similarity score via
the Levenshtein distance between corresponding segments for files
that pass the filter. They apply their similarity measure to three
groups of malware files, each group produced by applications of a
single metamorphic engine, and investigate how well the similarity
measure distinguishes the group from a fixed group of 16 benign
programs.They report 100% detection accuracy for the malware
groups produced by the G2 and MWOR engines and an accuracy
of 0.93539 for the detecting the group produced by the NGVCK
engine.

Finally, Symantec’s AESOP detection system is an interesting
commercial example of leveraging an existing detection and clas-
sification tool (in this case Symantec’s) via a similarity measure to
enable detection on a larger scale while avoiding the need to stati-
cally or dynamically analyse every file [17]. AESOP relies on the
large database owned by Symantec and voluntarily contributed to
by users of Norton utilities (Norton Community Watch). Through
the simple observation that some machines/users tend to accumu-
late malware while others do not they can perform a highly light
weight analysis of file associations via machines and, starting from
the ground truth established by their anti virus tool, classify bil-
lions of files within realistic timescales. NCD/compression is a
computationally expensive but requires no proprietary database of
millions of machines and their files. Furthermore, scalability can
be radically improved through the use of a classifier.

6. CONCLUSION
In future work, we plan on experimenting with selecting those

features that provide the most information, and building cheaper
classifiers on this basis. Reducing the number of features may make
classification faster, as NCD only has to be computed over a smaller
number of files, at the possible cost of reducing robustness and ac-
curacy. Establishing the optimal trade-off between high-value fea-
tures and performance is a promising avenue for future work.

As we have shown, the combination of NCD and decision forests
is powerful, with many potential applications. We have begun ap-
plying it to execution traces and log files.

7. REFERENCES
[1] Learning through compression.

http://www.complearn.org/ncd.html.
[2] F. H. Abbasi and R. Harris. Intrusion detection in honeynets

by compression and hashing. In Proceedings of the 2010
Australasian Telecommunication Networks and Applications
Conference, 2010.

[3] M. Apel, C. Bockermann, and M. Meier. Measuring
similarity of malware behaviour. In The 5th LCN Workshop
on Security in Communications Networks (SICK). IEEE,
2009.

[4] M. Bailey, J. Oberheide, J. Andersen, M. Z. Mao,
F. Jahanian, and J. Nazario. Automated classification and
analysis of malware. In Recent Advances in Intrusion
Detection, the 10th RAID Symposium. Springer, 2007.

[5] D. Baysa, R. M. Low, and M. Stamp. Structural entropy and
metamorphic malware. Journal of computer virology and
hacking techniques, 9:179–192, 2013.

[6] L. Breiman. Random forests. Machine learning, 45(1):5–32,
2001.

[7] B. Caillat, A. Desnos, and R. Erra. Binthavro: Towards a
useful and fast tool for goodware and malware analysis. In
Proceedings of the 9th European Conference on Information
Warfare and Security. Academic Publishing Ltd., 2010.

[8] M. Cebrián, A. Manuel, and A. Ortega. Common pitfalls
using the normalised compression distance: what to watch
out for in a compressor. Communications in Information and
Systems, 5(4):367 – 384, 2005.

[9] R. Cilibrasi and P. M. B. Vitányi. Clustering by compression.
IEEE Transactions on Information Theory,
51(4):1523–1545, 2005.

[10] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests:
A unified framework for classification, regression, density
estimation, manifold learning and semi-supervised learning.
Foundations and Trends in Computer Graphics and Vision,
(7):81–227, 2011.

[11] W. Deng, Q. Liu, H. Cheng, and Z. Qin. A malware detection
framework based on Kolmogorov complexity. Journal of
Computational Information Systems, 7(8):2687–2694, 2011.

[12] T. Gong, X. Tan, and M. Zhu. Malware detection via
classifying with compression. In The 1st international
conference on information science and engineering
(ICISE2009), 2009.

[13] I. Gurrutxaga, P. Arbelaitz, J. Ma Perez, J. Muguerza, J. I.
Martin, and I. Perona. Evaluation of malware clustering
based on its dynamic behaviour. In Seventh Australasian
Data Mining Conference, 2008.

[14] M. Li, X. Chen, X. Li, B. Ma, and P. M. Vitányi. The
similarity distance. Transactions on Information Theory,
50(12), 2004.

[15] M. Li and P. Vitányi. An introduction to Kolmogorov
Complexity and its applications. Springer, 2008.

[16] I. Sorokin. Comparing files using structural entropy. Journal
of Computer Virologyy and Hacking Techniques,
7(4):259–265, 2011.

[17] A. Tamersoy, K. Roundy, and D. H. Chau. Guilt by
association: large scale malware detection by mining
file-relation graphs. In 20th ACM SIGKDD conference on
Knowledge Discovery and data mining, 2014.

[18] S. Wehner. Analysing worms and network traffic using
compression. Journal of Computer Security, 15(3):303–320,
2007.

[19] G. Wicherski. peHash: A novel approach to fast malware
clustering. presented at Usenix ’09 Workshop on Large-scale
Exploits and Emergent Threats (LEET ’09), 2009.

12

http://www.complearn.org/ncd.html

	1 Introduction
	2 Background
	3 Classifying Malware Using NCD
	3.1 Choice of Compressor
	3.2 Classifier
	3.3 Lower Bound on NCD
	3.4 Evading NCD

	4 Evaluation
	4.1 Corpus
	4.2 Classifier Parametrisation
	4.3 NCD Classifier
	4.4 Compressibility Rate Classifier
	4.5 Size of Malware Reporting Window
	4.6 NCD Cost Reduction
	4.7 Comparison to Anti-Virus Software
	4.8 Feature Importance Analysis

	5 Related Work
	5.1 Detection
	5.2 Classification

	6 Conclusion
	7 References

