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In branching cones the living web expands1

Lymphatic ducts, and convoluted glands;
Aortal tubes propel the nascent blood,
And lengthening veins absorb the refluent flood;

Introduction
The aim of this paper is to review ideas regarding the design of arterial networks in relation
to optimal design and cost minimization. I will also discuss some evidence that disease is
associated with deviations from an ‘optimal’ design. I will not review the genetic,
epigenetic, or signalling mechanisms putatively involved in establishing and maintaining
optimal design or issues related to optimal coupling of the heart and vascular system. For
these topics readers are referred to other articles.1–6

Design of arterial networks
The idea that morphology and function are causally interrelated can be traced back at least to
Hellenistic philosophy;7, 8 however attempts to make quantitative links between
morphological design and function based on mechanistic arguments or analysis emerged in
the Enlightenment, following the work of Galileo, Borelli, Newton and Harvey.9

In 1515 Leornardo da Vinci described tree boughs as preserving cross-sectional area at
branches*, but as far as I know the first attempt to quantify relationships between blood
vessels at bifurcations in an arterial network was made by James Keill in 1708. Keill made
anatomical measurements of arteries from dog, calf and man with the aim of calculating ‘the
Quantity of Blood in the Humane Body’. He found that the ratio of vessel cross-sectional
areas at a bifurcation was typically 41616 to 52126† (i.e. 1: 1.25) and used this ratio in
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1(Darwin’s notes) In branching cones, l. 259. The whole branch of an artery or vein may be considered as a cone, though each
distinct division of it is a cylinder. It is probable that the amount of the areas of all the small branches from one trunk may equal
that of the trunk, otherwise the velocity of the blood would be greater in some parts than in others, which probably only exists
when a part is compressed or inflamed
Erasmus Darwin - The Temple of Nature: Or the Origin of Society: A Poem with Philosophical Notes (1803).
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combination with geometric scaling laws to give crude estimates of total blood volume and
blood flow velocity in capillaries. Woldenberg10 has provided a detailed critical description
of Keill’s work on the arterial network, and his relationship to the English
‘iatromechanists’,‡ and to other scientists, such as Hales and Young. Young refers to Keill’s
data in his 1808 Croonian Lecture11 where he assumes a consistent increase in area of
1:1.26 at each arterial bifurcation. Young makes no comment on the possible significance of
this relationship (1:2⅓), although it seems unlikely that it could have escaped his notice.12
Roux, in his doctoral thesis later in the 19th century, undertook a detailed study of the
relationships between diameters and the angles subtended by arteries at bifurcations.13 He
concluded that ‘the shape and direction of the lumen of the blood vessels at their branch
points is mainly determined by the action of hydrodynamic forces’. Roux is probably best
known the founder of the Entwicklungsmechanik§, a ‘Kantian Mechanist’ programme for
embryology and development.14 Roux himself envisaged that development was shaped by
the interaction between forces and ‘Darwinian’ selection within an organism operating at a
cellular level.15 Roux’s views were very influential in the late 19th and early 20thcentury
and contributed to a greater integration of physics and mathematics into biological analysis.
16 In 1901 Richard Thoma17 proposed that the size of arteries depended on the velocity of
blood flow in the vessel. He proposed that the diameters between parent and offspring
branches conformed to an exponential relationship

where r0, r1 and r2 are the radii of the parent, and offspring branches at a bifurcation and x is
the branching exponent (also termed the bifurcation or junction exponent). Based on
measurements in chick embryo and human aorta he suggested that x fell between 2.5 and 3,
with values being closer to x = 3 in early embryonic life. In 1903 Hess extended Roux’s
work on branching and suggested that a typical branching angle of around 70° could be
explained by minimization of energy losses; stating that ‘the most favourable branch angle
is the angle whose cosine is equal to the ratio of the energy loss the blood undergoes in the
parent vessel compared to a branch of the same length’. Thompson referred to both Roux’s
and Hess’ work and reproduced Hess’ diagrams and calculations in the first edition of his
classic work ‘On Growth and Form’ published in 1917. Ultimately the most influential
studies of this era were those of Murray who published three articles18–20 that are now
widely viewed as the seminal early works on optimality principles in vascular design and
gave rise to the eponymous ‘Murray’s Law’.

In the first pair of papers18, 19 Murray aimed to find physical laws that described the
organization of the vascular system in relation to oxygen transport and exchange at the
capillary level. He envisaged this as ‘a problem of maxima and minima’ and employed the

†Keill is vague on units but Woldenberg (Woldenberg MJ. James Keill (1708) and the morphometry of the microcosm. Geometric
progression laws in arterial trees. In: Stoddart DR, ed. Process and form in geomorphology. London; New York: Routledge; 1997)
suggests that these are square inches
‡For further information on the iatromechanists in 17th century see Brown, T. M (1970). The College of Physicians and the
acceptance of iatromechanism in England, 1665-1695 Bulletin of the History of Medicine, 44(1), 12-30.
§Translated as ‘Developmental Mechanics’, or less literally, but more in keeping with Roux’s thinking ‘The Natural Causation of
Development’.[ref]
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idea of two competing economic factors: the cost of blood flow (i.e. power** expended) and
the cost of the blood volume. Using an assumption of Poiseuille flow and that the cost of the
blood volume per unit length was proportional to the area of the vessel, Murray calculated
that for maximal efficiency (in terms of blood flow and volume) blood flow should be
proportional to the cube of the radius of the vessel, r, hence for a bifurcating network
minimization of cost would be achieved if

where 0, 1 and 2 denote parent and offspring branches respectively. Murray demonstrates
that this gives reasonably plausible estimates of blood flow in small blood vessels; however
he notes that this simple model does not hold for the aorta and ascribes this to the pulsatile
nature of flow in this artery. In a third paper Murray extended his analysis to look at the
angles subtended by branches with respect to the axis of the parent. Using the optimality
arguments developed in his earlier paper he calculated that the optimal angle subtended by
the major and minor branches should (θ1 and θ2 respectively)

or for the combination of these angles (θ1 + θ2) – the branching angle

Murray commented that Hess had neglected the conditions in the other branch (or
continuing segment of the parent artery) on his analysis and that his conclusion was
therefore incorrect.

Another comprehensive treatment based on the minimum energy principle was undertaken
by Cohn 21, 22 in 1954. Cohn argued that four factors should be optimised: 1) the size of the
aorta; 2) capillary dimensions and the volume of tissue supplied by a capillary; 3) the
connecting system between the aorta and the capillaries, and 4) the total resistance of the
system to flow. The size of the aorta was considered to be constrained by the need to avoid
turbulence; the capillary dimensions and capillary density were determined by diffusional
considerations and the size of the erythrocyte; while the connecting network was considered
to be constructed to optimise space filling while minimising resistance. For simplicity, Cohn
assumed that branches were symmetrical and minimized resistance on the basis of Poiseuille
flow. He also assumed that the mass of the blood vessel wall was determined by Laplace’s
relationship for wall tension. Cohn then derived an ‘optimal’ relationship of

**Murray terms this factor work, but as Zamir (Zamir M. Optimality principles in arterial branching. J Theor Biol. 1976;62:227-251)
points out he is really describing power.
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where ri is the radius of the ith offspring of the parent vessel with radius, r0. This result is the
same as Murray’s when applied to symmetrical bifurcations (Cohn appears to have been
unaware of Murray’s papers). Cohn also used a space-filling argument to model the length
of the offspring vessels which he predicted should conform to the relationship

where li is the length of the ith offspring of the parent vessel with length, l1. Cohn compared
his predictions with measurements of the aortic radius, the ratio of parent to offspring
diameter, total blood flow and number of generations of branches in dog and found
reasonable agreement.

Taylor developed Cohn’s arguments and applied them to pulsatile flow in elastic arteries in a
rarely cited†† but interesting paper.23 Taylor accepted the assumptions of minimum energy
expenditure in terms of blood flow and blood volume but also argued that it would too costly
in terms of cardiac work to allow the small arterial terminations to be impedance matched to
the proximal conducting elastic arteries; hence reflections were inevitable. Essentially this
constraint appears to be an extension of the minimum volume argument, although Taylor
does not make it explicit. Taylor further assumed that optimality considerations required
global impedance (the complex ratio of pressure to flow rate) to be stable over a range of
frequencies and minimized. He drew two interesting and important conclusions from his
analysis: 1) that if the distance to the “average reflecting site” of the scattered terminations
were greater than the quarter wavelength of the fundamental harmonic then out of phase
reflections from terminations would tend to cancel out and 2) if the wave speed of the
network increased progressively outward along the paths connecting the heart to the
terminations this would tend to ‘uncouple’ the termination and minimise the impact of
reflections. Taylor concluded that the branched anatomical design of the arterial network
allowed the heart to ‘see’ the proximal distensible region while keeping the overall
compliance of the system low and minimizing the influence of reflections on the heart.
Although not couched in these terms Taylor described a system that from the heart’s
perspective looks like a ‘Windkessel’ despite the presence of reflected waves. More recently
Parker et al. have used an analogous power minimization argument to propose that reservoir
pressure, which roughly equates to Windkessel pressure, represents a minimum power
condition for the circulation and that the difference between total and reservoir pressure
(excess pressure) might be used as an indicator of non-optimal circulatory performance.24
Consistent with this suggestion excess pressure has been reported to predict cardiovascular
events independent of conventional risk factors.25

††Taylor’s paper has been cited twice since its publication in 1967 according to Scopus (accessed 10/09/2014).
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Zamir26 recognised that the optimality approaches outlined above lacked any plausible
mechanism by which global optimality could be implemented. In other words how could a
single bifurcation sense what was going on in billions of other bifurcations or the total
volume of blood in the system? Zamir27 noted that under conditions of Poiseuille flow the
shear stress, τ, was given by

where η is viscosity and Q is flow rate; hence there would be constant shear stress
throughout a bifurcating network conforming to Murray’s law. Given the known sensitivity
of endothelial cells to shear stress and other work suggesting that shear stress influenced
vascular calibre,28 Zamir therefore proposed that shear stress acting on endothelial cells
might prove to be the major mechanism maintaining blood vessel diameter around the
Murray optimum. In other papers,26, 29 Zamir described a range of possible optimality
principles for arterial bifurcations (minimal lumen surface area, minimal volume, minimal
power and minimal drag) in terms of the angle subtended by both branches (the branching
angle) and the ratio of parent to offspring areas (β) and showed that if they conformed with
Murray’s law, surface area, volume, pumping power and the drag force would all be close to
their respective minima if the bifurcation angle was within the range 75-100°. Uylings30
extended previous work to accommodate all types of steady flow including completely
turbulent flow, non-cylindrical vessels and asymmetrical branches and employed a general
flow relation that minimized power losses:

where j = 4.0 for laminar flow, j = 5.0 for turbulent flow and k is a constant. On this basis he
calculated that the optimal branching exponents would range from 2.33 to 3.0 for completely
turbulent to laminar flow respectively. He also calculated that the optimal junction
exponents would range between the limits of 2 (unbranched vessel) to 3 (symmetrically
branched vessel) with increasing branching asymmetry assuming laminar flow. Roy and
Woldenberg31 and proposed a generalized model of optimal branching geometry that
allowed relationships between angles and branching asymmetry to be determined for a range
of junction exponents. This permitted the application of the approach to a wide range of
biological and non-biological branching structures.

In 1981 Sherman12 published an influential review that summarized much of the work up to
that time and examined the extent to which Murray’s law fitted experimental data. He
concluded that the fit was good, although not perfect, and he made some important points: 1)
Murray’s law might apply to inanimate systems if a trade-off between power and volume
were made at some point during construction or development; 2) Murray’s law would only
apply to systems where flow conductance was proportional to r4 (i.e. Poiseuille flow). 3)
changes in diameter would have to be coordinated across a large region.
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Subsequent authors addressed the impact of turbulence32 and changes in viscosity across
the network;32, 33 Several studies looked at the predicted costs associated with deviation
from optimality.32, 34–36 These studies showed relatively shallow cost functions for small
deviations from optimal which became much steeper with large deviations. In general the
observed deviations seen in experimental data incurred costs that were small (<10%). Taken
together these studies and others (reviewed in 37) provided fairly substantial broad support
for Murray’s law in a range of fluid conducting systems where Poiseuille flow was present
and these data were consistent with a role for shear stress in maintaining this relationship.

West et al.38 dealt with large arteries in an important but controversial39–41 paper on
allometric scaling. They proposed that the branch exponent for large elastic arteries with
pulsatile flow should be 2 (area preserving) and that there should be a rather abrupt step-like
transition to the area-increasing (shear preserving) relationship predicted by Murray in
smaller arteries. It was assumed that branching followed a fractal-like space filling paradigm
(see below) and that capillaries were size-invariant units. Womersley’s linearized solution to
the Navier-Stokes equations was used with the assumption of a thin wall and incompressible
fluid. Under these assumptions the impedance, Z is given by

where c0 is the Moens-Korteweg wave speed, ρ is density. and

where Jn denotes the Bessel function of order n, and α is a dimensionless parameter known
as the Womersley number. This model agrees better with experimental data,42 although
some of the assumptions and its implications for allometric scaling have been criticised.39,
40, 43, 44 Savage et al.,44 while critical of the West model in some respects, used a broadly
similar approach to estimate that the transition from x = 2 to x = 3 might be expected to
occur over arteries with diameters between 1cm and 0.1cm. Huo and Kassab45, 46
formulated a scaling law for vascular trees that related cumulative vessel volume, length and
diameter in arterial trees. This approach built on the approach used by West et al. but
derived volume–diameter and flow–length scaling laws from conservation of mass without
invoking the more controversial space-filling assumptions. Huo and Kassab considered the
arterial tree as composed of multiple stem-crown units (Figure 1) and excluded capillaries
since they were not considered tree-like structures.47 They derived volume–diameter, flow–
length, diameter–length, flow–diameter and flow–volume scaling laws and showed good
agreement with experimental data.46 The estimated branching exponent varied with vessel
size, being on average ~3 in small arteries and arterioles, ~2.3 in large arteries and ~2.6
averaged over all trees studied.46
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Mechanisms of optimality

Sherman12 had considered that coordination of network behaviour would be difficult to
achieve following dynamic change in a network of arteries. Griffith and colleagues48, 49
however provided experimental evidence of a mechanism that could account for this. They
used perfused rabbit ears with five generations of branches (G0 to G4) visualised by
microangiography. They showed that flow-dependent release of endothelium derived
relaxing factor (EDRF; probably nitric oxide (NO) in this experimental system) maintained
diameters of different generations of resistance arteries close to Murray’s predicted
optimum, either under resting conditions with myogenic tone, or following vasoconstriction
with serotonin. 48, 49 When EDRF was inhibited with haemoglobin, branching exponents
deviated markedly from 3 with the average junction exponent being ~6 in the presence of
serotonin. Similar findings were made in the human retina under resting conditions in vivo
when NO synthase was inhibited by NG-monomethyl-L-arginine (L-NMMA).50 These
experimental findings are consistent with Zamir’s original proposal that shear stress is a key
influence on arterial network design, at least in arteries that experience Poiseuille flow.
However the idea that microvascular networks could be understood solely in terms of a
feedback-model mediated by endothelial shear stress has been criticised by several authors
and they emphasize that other factors influence arterial structure (e.g. pressure, oxygen
tension, and metabolic factors).51–53 Several models incorporating the effects of pressure,
smooth muscle tone, non-Newtonian rheology and metabolism have been formulated.54–57

Pries and Secomb recently proposed a sophisticated model to describe microvascular
remodelling.58 They did not discount an important role for shear stress and the endothelium
in the coordination and design of arterial networks but their model also incorporated the
effects of circumferential wall stress, metabolic factors and conducted responses as
important influences in network design and remodelling (Figure 2).

The mechanisms that might account for the closer adherence of large elastic arteries to an
area-preserving branch exponent (x ~ 2) are less well understood. However, one might
speculate that limited access of NO and other endothelium-derived mediators into the
arterial wall,59 wall circumferential stress60 and/or the effects of flow separation and
complex flow61 could be important factors.

Fractals
Fractals were first applied to arterial design in the 1980’s. At first sight fractal analysis
appears to differ from cost-effectiveness analysis, although in fact the two can be linked
through scaling considerations.38, 62 The term fractal was coined by Mandelbrot to describe
self-similar structures with a fractional (non-unity) dimension and devoted some discussion
to vascular networks in his classic book, ‘The Fractal Geometry of Nature’.63 Vascular
networks are not strictly fractal as they do not exhibit scale invariance over an infinite range
of scales,64 but they show sufficient self-similarity to be treated as fractal or pseudo-fractal.
The fractal dimension (Hausdorff-Besicovitch dimension) is widely used as a measure of
statistical self-similarity across scaling levels and can be viewed as a measure of the
effectiveness of space filling. Thus for a two-dimensional branching network (e.g. the retinal
vasculature) the upper limit of the fractal dimension should be the topological dimension
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(i.e. 2 since a flat surface is 2 dimensional) – the closer the fractal dimension is to 2 the
better the space filling. Typically the fractal dimension of healthy 2-dimensional (or 3
dimensional vascular networks analysed as a 2-dimensional slice) falls within the range 1.3
to 2.0.65 Fractal dimension can be viewed as complementary to older measures of vessel
density;66 both approaches quantify space filling, but they do not necessarily correlate
closely because differences in vessel diameter affect conventional measures of density.67
Lacunarity is another measure that may be useful in describing fractal or quasi-fractal
structures. Lacunarity quantifies the distribution of gap size, or lacunae, in the structure.
Objects with similar fractal dimensions, may differ by lacunarity; however, as yet, lacunarity
has seen only limited application to vascular networks.67–69

Takahashi70 formulated an explicit link between the fractal dimension and Murray’s law by
assuming that capillaries are of uniform size and that relationship between vessel radius and
length can be described by an allometric function

where the length exponent, a and the length coefficient, β are constants; this is consistent
with fractal recursion, i.e. the branching structure is self-similar although scale differs. 71

Under these assumptions Takahashi shows that:

where rt is the radius of the terminal vessel (or capillary) and D is the fractal dimension. So
dividing throughout by rt and taking the reciprocal

This is similar in form to Murray’s law and the branching exponent, x would be expected to
be equal to D + α. Takahashi predicted that D + α should be 2.88 and observed that this was
consistent with literature values for the branching exponent. Morphological studies indicate
that the value of α is on average close to unity (0.76 to 1.21) in healthy vasculature.70 This
also provides a rationale for using length to diameter ratio as a scale-independent
normalization of retinal vessel structure.72 Fractal dimensions in the vasculatures range
between 1.1 and 2.0,65 so one would expect x to range between ~2 and 3 by this argument.
Consistent with Takeda’s suggestion lower branch exponents were associated with lower
arteriolar microvascular density in the retinal arteriolar network.73 More recently vascular
networks have been treated as multifractal networks65, 74 i.e. networks that show
heterogeneity in scaling at different levels or regions of the network. Other approaches that
have been applied to arterial networks include graph theory75 and network topological
measures.76
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Departures from optimal design in disease
If the normal network of small arteries is close to Murray’s optimum then it seems plausible
that disease may disturb that relationship. Hutchins et al. visualised post mortem coronary
arteries using an angiographic technique.77 They reported that in normal left main coronary
arteries from 107 hearts the branching exponent was close to 3 (average x = 3.2) consistent
with Murray’s law, but declined progressively with more severe coronary artery disease with
average x = 2.2 in 17 hearts with grade 3 or 4 atherosclerosis. However the resolution of
their measurements was limited to 0.1 mm and extensive characterisation of the tree could
not be achieved due to the limitations of the angiographic approach. More recent work in
253 patients undergoing coronary artery intravascular ultrasound reported that deviation
from Murray’s law was associated with increased coronary artery calcification.78 In pigs
Zhang and Kassab reported that hypertension and LV hypertrophy was not associated with
departure of coronary artery branching exponents from 3.79

The retinal circulation offers an excellent opportunity to assess branch exponents and
microvascular architecture non-invasively in man.80 In a small study, Stanton et al.73
examined retinal arterioles using fluorescein angiography and reported that branch
exponents were similar for normotensives (mean x = 2.7) and hypertensive individuals
(mean x = 2.5), but that increased age was associated with branch exponents <3. Bifurcation
angles were more acute in hypertensives (74°) than in normotensives (84°) and declined
with increasing age in both groups. Chapman et al. reported that the branch exponents
measured from retinal arterioles in healthy men were close to optimal (mean x = 3.1), but
were significantly reduced (mean x = 2.6) in men with atherosclerosis and peripheral
vascular disease.81 Witt et al. subsequently reported that increased deviation from an
‘optimal’ branch exponent of x = 3 was associated with increased future risk of coronary
heart disease in an analysis of retinal photographs from the Beaver Dam Eye study.82

Another study in stroke patients also found average area ratios at branches exceeded the
optimal value predicted by Murray’s Law and that more deviation from optimal was
associated with ischemic heart disease and increased periventricular white matter
hyperintensities.83 Patton et al. reported that non-optimal branching of retinal arteries
associated with impaired general cognitive ability and verbal fluency, whereas non-optimal
branching angles were associated with reduced logical memory. 84 Tillin et al. found that
African-Caribbean people had less optimal retinal arteriolar branching exponents compared
with Europeans;85 this was suggested to be relevant to the greater risk of stroke86 and the
more adverse cerebrovascular impact of high blood pressure87 in this ethnic group. Greater
deviation of the branch exponent (from 3) in arteries has also been reported to be associated
with proliferative retinopathy88 and peripheral neuropathy89 in adults with type 2 diabetes.
Longer duration of Type 1 diabetes was also associated with an increased optimality
deviation.90

Non-optimal branching geometry has also been observed in relation to adverse risk factors
in early life.80 Low birth weight, a risk factor for cardiometabolic disease in adult life was
associated with increased deviation of branching exponents from optimal values in children
aged 11.91 Offspring of hypertensive parents (aged 9 – 14y) have also been reported to have
greater deviation of branch exponents from Murray’s optimal value.92
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Fractal dimension has been used quite extensively to assess vascular networks in
cardiometabolic and other diseases. Both reduced and increased fractal dimension has been
seen in several conditions that affect the circulation (table 1) and interpreted as indicative of
a suboptimal circulatory network. Null associations have also been observed. There is some
limited information regarding the relationship of fractal measures with outcomes. Low
fractal dimension of the pulmonary arterial tree on CT angiography predicted poorer
survival in one prospective study of people with pulmonary hypertension,93 and low fractal
dimension has also been associated with an increased risk of stroke.94 Being in the higher or
lower quarter of fractal dimension was associated with an increased risk of coronary heart
disease mortality.95 Greater retinal fractal dimension was independently associated with
early retinopathy in a study of young people (aged 12–20 y) with type 1 diabetes,96 but
fractal dimension was not reported to be associated with incident retinopathy in another
study of children and adolescents with type 1 diabetes.97 In older adults with type 1 diabetes
a lower retinal fractal dimension was associated with complications, including proliferative
retinopathy, neuropathy and older age, but not macrovascular disease.98, 99

Conclusions
Application of a cost minimization approach has proved useful in the analysis of arterial
networks, although it is not without limitations and a number of issues remain unresolved.
Although progress has been made we need to know more about the stimuli which shape the
network, how their effects are mediated, and to what extent they synergise. There is some
evidence that shear stress and pressure interact,53 and a range of interactions between
diverse stimuli might permit a degree of ‘weighting’ or contextualization. For instance, it
has been argued the circulation might be designed to attain highest efficiency during
exercise,42, 100 and by implication that it is slightly suboptimal under resting conditions –
effectively allowing a reserve capacity. This is consistent with some evidence, at least in
terms of minimization of wave reflection.101 If this were true, the system would need to
optimize its design in response to an intermittent physiological state, albeit one that may be
critical for survival. How is this intermittent state sensed? One possibility might be that
shear stress could have more effect on remodelling in the context of the stimuli that
accompany exercise.

Finally, is optimal design desirable? It has recently been proposed (for the bronchial tree)
that an optimal network is dangerous because of its vulnerability to imperfections or vessel
constriction and that a ‘safety margin’ is required in design.102 This seems difficult to
reconcile with the comparative cost-insensitivity of arterial networks to small deviations
from optimum, but it does raise important questions about the appropriateness of optimality
as an overriding factor in circulatory design – perhaps Murray’s law should be viewed as
‘more what you’d call “guidelines” than actual rules.’‡‡
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Figure 1.
Illustration of the ‘Stem and Crown’ model of Huo and Kassab.45, 46 Different crowns are
shown in different colours.
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Figure 2.
The model proposed by Pries and Secomb58 illustrating various influences on microvascular
remodelling (adapted from58).
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Table 1

Vascular fractal measures in cardiometabolic and other diseases. Abbreviations: CADASIL - Cerebral
Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy; CKD – chronic
kidney disease; fd – fractal dimension

Circulation Disease/Condition Summary of findings Comments References

Retinal Hypertension/High BP Lower fd Arteries and veins not distinguished 103–108

Ischemic stroke Lower fd Both arteries and veins 109

CADASIL Lower fd Arteries and veins not distinguished 110

Type 1 or Type 2 Diabetes Inconsistent Arteries and veins not distinguished 111–118

Cognitive dysfunction Lower fd Arteries and veins not distinguished 119

Alzheimer’s disease Lower fd Both arteries and veins 120

Human immunodeficiency virus (HIV) infection fd not different Arteries and veins not distinguished 121

Obesity fd not different Arteries and veins not distinguished 122

Glaucoma Lower fd Arteries and veins not distinguished 123

Renal dysfunction/CKD Lower fd 124, 125

Renal Congenitally abnormal kidneys Lower fd Only 2 abnormal kidneys examined 126

Pulmonary Pulmonary Hypertension Inconsistent 127–129
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