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Abstract

Polycomb group proteins maintain cell identity by repressing developmental
regulator genes specific for other cell types. There are two main complexes:
Polycomb repressive complex 1 (PRC1) and 2 (PRC2). PRC2 methylates histone H3
lysine 27 (H3K27me3), creating a binding site for PRCI that ubiquitinates
H2AK119. Polycomb target genes are associated with stalled RNA polymerase II
(RNAPII), and the initiation marker H3K4me3, known as bivalent chromatin. Our
laboratory has demonstrated that short RNAs are transcribed from the promoter
region of these genes in human T-cells, while the work carried out as part of the
present thesis demonstrates that short RNAs are also transcribed in murine
embryonic stem cells (ESCs). This indicates that they are conserved across different
species and cell types. Northern blotting for RNAs <200 nucleotides extracted from
murine ES cell deficient for PRC2 and PRC1 revealed that short RNA production
is independent of Polycomb activity. When cells differentiate and Polycomb-target
genes become activated, short RNAs are depleted. Given that PRC2 interacts with
RNA, this loss of short RNAs might allow gene activation. Additionally, polycomb
response elements (PRE) have been detected in Drosophila. These elements are
necessary and sufficient for polycomb recruitment. A recently identified PRE,
HOXDI11.12, recruits PRC2 in human mesenchymal stem cells (MSC). It is
hypothesized that PRE activity is due to the transcription of short RNAs. Blotting
for RNA extracted from MSC identified short RNAs transcribed from D11.12.
Moreover, these short RNAs can form the same secondary structure as the
previously-identified short RNAs and are also located at a CpG island. Furthermore,
RASL12 and YBX2 behave as PREs while D11.12 from active HOXD11 enhances

gene expression, potentially also acting as a Trithorax response element (TRE).
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Chapter 1 — Introduction

During early development of multicellular organisms pluripotent cells
differentiate into multiple, distinctly(Koontz et al., 2001) specialized cells. As every
cell contains exactly the same genetic information but with different sets of genes
being expressed/silenced, the process of cell differentiation requires meticulous
regulation of gene expression, particularly those that encode for transcription factors
and determine the anterior-posterior axis and segment identity of metazoan
organisms. These genes encode proteins with a homeobox domain and are named
HOX genes. It is also fundamental that HOX and other developmental genes are
maintained in the correct spatial and temporal expression pattern over multiple
rounds of mitotic cell division and cell differentiation, which is assured by a set of
proteins of the polycomb group. This ensures preservation of cell identity and
proper body pattern formation throughout the development.

The study of deregulation in gene orchestration is important, as it is a critical
pathway leading to diseases such as developmental disorders and cancer.
Understanding of mechanisms leading to such gene silencing or activation is a

prerequisite for identifying possible ways of counteracting them therapeutically.

1.1 Embryonic development

Embryonic development starts with cellular division and subsequent and gradual
specialization of totipotent and pluripotent cells (cells that can become any or nearly
any cell type, respectively) into cells that perform specific functions (Evans and Hunter,
2002). During embryogenesis, differentiating cells go through several stages of
compartmentalization for commitment and to perform specific functions. Cellular

differentiation involves meticulous regulation and orchestration of expression of
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developmental genes, accomplished through communication between neighboring cells

and their environment.

Drosophila embryogenesis is followed by three larval stages and pupal stage
where metamorphosis happens to form an adult fly., Mammalian embryonic
development, on the other hand, progresses in two major stages: embryogenesis, where
critical stages for the formation of the embryo happens; and fetal development, where

the organs of the embryo grow and mature.

1.1.1 Gene regulation in Drosophila embryogenesis

The first set of transcription factors-encoding genes activated on the onset of
zygotic transcription is the gap genes, such as the hunchback and Kruppel genes. These
are segmentation genes and are regulated by maternal genes. Together they are
responsible for the periodic expression of other segmentation genes, pair-rule genes,
such as paired gene, and the localized expression of several homoeotic genes (Gutjahr
et al., 1993; Stanojevic et al., 1989). During early embryogenesis, segmentation genes
establish cellular patterns of gene repression including the Hox genes, which control
metamerization (Duncan, 1986; Hodgson et al., 1997; Mulholland et al., 2003; Strutt
and Paro, 1997; Tie et al., 2001). Besides metamerization, segmentation genes are also
expressed during the development of nervous system (Doe and Scott, 1988; Doe et al.,
1988; Patel et al., 1989). Hox genes are homeotic genes that encode for transcription
factors (TFs) involved in the development of body structures according to the anterior-
posterior specified body plan containing a homeobox DNA sequence. This box encodes
for a DNA- or RNA- binding homeodomain. However, not all homeobox-containing
genes are homeotic, and some segmentation genes also contain a homeobox sequence

(Gutjahr et al., 1993; Slack, 2012). Hox genes start being expressed at the phylotypic
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stage and their initial pattern of expression is regulated by the gap and pair-rule genes
(Bienz and Muller, 1995). In Drosophila melanogaster there are two clusters of Hox
genes: the Bithorax Complex (BX-C) and the Antennapedia Complex (ANT-C). These
genes are crucial for the anterior-posterior development in embryogenesis (Faust et al.,

1998; O'Carroll et al., 2001; Pasini et al., 2004).

1.1.2 Mammalian embryogenesis

The embryogenesis in mammals has 5 major stages (listed in order of
occurrence): fertilization, cleavage, blastulation, gastrulation and organogenesis (Figure
1). The process starts with the fertilization of the egg cell (ovum) by a sperm cell,
(spermatozoon) forming the zygote. Cleavage follows this step with multiple divisions
of the zygote without growth in volume; thus, each mother cell is divided into daughter
cells with half of the size. This stage is under maternal effect as protein expression is
provided by maternal messenger RNA. After four cellular divisions a Morula is formed,
and at this point, there is the onset of zygotic transcription where the zygote starts
expressing its own genes. The process continues with the blastulation, where a layer of
cells surrounding a fluid is formed called the bastula, and it is followed by the formation
of an inner agglomeration of cells designated ‘inner cell mass’ (ICM) giving rise to a
blastocyst (the outer layer of cells is trophoblast), and ends with the implantation of the
embryo. In gastrulation there is cell movement from the inner cell mass of the blastocyst
to form three germ layers: endoderm, mesoderm, and ectoderm. This process is
accompanied by region specification where cells become committed to the formation of
an anteriorposterior body plan — phylotypic stage. This gives rise to an embryonic disk
with a primitive streak, a thickening of the embryonic disk along the median line from
the rostro to half of the embryo. The embryo is then ready for organogenesis. This stage

starts with neurulation, and which occurs simultaneously with transversal segmentation
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of paraxial mesoderm. The segmentation gives origin to different body parts from
which structures derive. There is primitive formation of heart, and then other structures

follow. (Gutjahr et al., 1993; Slack, 2012).
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Zygote - 2 cells - E1.5 4 cells - E2 8 cells - E2.5
1cellE 0.5
ICM Archenteron
Trophoblast Blastocoel
Mesoderm
Endoder Ectoderm
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16-32 cells Morula Blastula - E5 Blastocyst - E6 Gastrula

-E3-E4

Figure 1: Steps in human embryogenesis. After fertilization there are successive cleavages
producing a 32-cells Morula, which arrange themselves to produce a cavity called Blastocoel.
With the formation of the Blastocyst cell specialization begins. The Inner Cell Mass (ICM) gives
rise to ESCs that will form the three germ layers of the gastrula.

1.2 Cellular differentiation and chromatin

ESCs are derived from the inner cell mass of the blastocyst. They can
differentiate into a broad spectrum of cells (pluripotency) and they can propagate
continuously (self-renewal). OCT4, SOX2, and NANOG are key to the pluripotency of
ESCs (Avilion et al., 2003; Chambers et al., 2003; Mitsui et al., 2003; Nichols et al.,
1998). OCT4 promotes segregation of ICM and their commitment to the embryonic
lineage in the pre-implantation embryo, while CDX2 determines trophoblast lineage
(Nichols et al., 1998; Niwa et al., 2005; Strumpf et al., 2005). Other proteins that are
chromatin modifiers (better described from the next chapter onwards) also play a role in

cell fate determination during the pre- and post-implantation embryogenesis. Examples

15



in the pre-implantation embryo are SETDB1 (SET domain, bifurcated 1; also known as
ESET and KMT1E), a histone modifier that is crucial for implantation by recruiting
OCTH4 to silence developmental regulators in ICM, which would otherwise become
trophoblasts, including CDX2 (Bilodeau et al., 2009; Lohmann et al., 2010; Yeap et al.,
2009; Yuan et al., 2009); and Mbd3 (methyl CpG-binding domain protein 3 gene), a
chromatin remodeller that also upholds ICM development by preventing expression of
trophoblast-specific genes (Kaji et al., 2007). Other examples include: MOF, which
directly binds to Nanog, Oct4 and Sox2; and other chromatin modifiers such as TIP60,
TRRAP (transformation/transcription domain-associated protein), BRG1, and
SMARCBI (SWI/SNF-related matrix-associated actin-dependent regulator of
chromatin subfamily B member 1) (Bultman et al., 2000; Bultman et al., 2006; Ho et
al., 2009; Kidder et al., 2009; Li et al., 2012; Lohmann et al., 2010; Yeap et al., 2009;

Yuan et al., 2009).

Chromatin remodeling has an effect on gene expression and therefore on cellular
differentiation. In undifferentiated cells, like ESC, chromatin is mostly open, meaning
that it is accessible to transcription factors and specific modifications that allow
genomic transcription of both coding and non-coding elements (Efroni et al., 2008).
Thus, undifferentiated cells are low in heterochromatin, and their chromatin is less
condensed when compared to differentiated/adult cells. As cells differentiate, global
chromatin remodelling occurs and exchanges of chromatin proteins are reduced (Ho and
Crabtree, 2010; Park et al., 2004a). Expectantly, multipotent adult stem cells such as
hematopoietic stem cells and neural progenitor cells, which occur at low amounts in
tissues, have an intermediate chromatin state with only a sub-set of ‘stemness’ genes

active (Schuettengruber et al., 2009).
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1.3 Chromatin structure and epigenetics

Chromatin is composed of a long DNA molecule wrapped around histones and
other bound proteins. There are five types of histone designated H1, H2A, H2B, H3 and
H4, which are highly conserved among eukaryotes (Szenker et al., 2011). The simplest
form of chromatin is a ‘beads-on-a-string’ fiber, each bead being the smallest unit of

chromatin and designated the nucleosome.

Chromatin structure is largely influenced by epigenetic modification,
modification caused by environmental factors that alter gene expression without
changes to the DNA sequence and which are heritable, mostly by a processes not fully

understood.

1.3.1 Chromatin structure

Chromatin structure affects transcription (activation or repression) and other
processes involving DNA, including replication, DNA repair, and recombination (Li et
al., 2007). Changes to chromatin compaction by chromatin remodelers, epigenetic

modifications and histone variants makes DNA accessibility easier or more difficult.

1.3.1.1 The Nucleosome

The nucleosome is composed of four different histones, a H3/H4 tetramer and
two H2A/H2B dimers, forming an octamer wrapped by 145-147 base pairs (bp) of DNA
in a 1.8 helical turn (Figure 2). Chromatinized DNA in the nucleus also contains H1

bound to the region of exit and entry points of the DNA to the nucleosome.
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Figure 2: A nucleosome. Eight histone proteins (H4, H3, H2B, H2A) are wrapped around by
145-147 bp of DNA. H1 keeps DNA wrapped around the octomer.

In the genome there are nucleosome-free regions, and other regions with defined
nucleosomes positions (Jiang and Pugh, 2009; Lee et al., 2007; Yuan et al., 2005).
Nucleosome assembly on DNA is dependent on DNA sequence and other surrounding
proteins (Segal and Widom, 2009). H1 is more abundant in repressed loci than in
activated genes (Cockerill, 2011). Nucleosome plus H1 and other proteins form a 10nm
fibre in vitro. In the presence of 0.5 mM MgCl, or 60 mM NaCl, this fibre coils for
further compaction into a 30 nm ‘solenoid’ fibre, but it is unclear if such a structure
exists in cells. Further compaction into loops and rosettes is thought to form

chromosomes and this compaction can reach 10,000-fold.

Nucleosomes interfere with transcription regulation through modifications on
histone tails, DNA methylation, variation in histone composition through incorporation
of histone variants and through histone rearrangement/displacement by chromatin
remodeling factors, such as histone chaperones and ATP-dependent chromatin
remodelers (Campos and Reinberg, 2009; Kouzarides, 2007; Li et al., 2007).
Differences in histone variants include changes in their primary amino-acids sequence

that can range from a few changes to changes in large domains and they confer different
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properties to the nucleosome (Szenker et al., 2011; Talbert and Henikoff, 2010).
Regarding H3, there are seven variants: H3.1 (mammalian-specific), and H3.2 are both
canonical thus expressed during S phase where DNA is actively replicating; three H3.3
variants are associated with actively transcribing chromatin (G1, and G2 phases); and
there are also the primate-specific H3.Y and H3.X (Allshire and Karpen, 2008;
Wiedemann et al., 2010; Witt et al., 1996). Correlating with H3.3 presence at active
genes, nucleosomes containing this variant are less stable and unable to recruit H1 that
is involved in chromatin compaction (Braunschweig et al., 2009; Jin and Felsenfeld,
2007). Histone H2A comprises the canonical H2A (most abundant), the variant H2A.Z
(vertebrate variants H2A.Z-1 and H2A.Z-2) that confers stability to the nucleosome thus
avoiding eviction of the H2A/H2B dimer, H2A.X involved in DNA repair, H2A.Bbd
(H2A.B) associated with active genes during spermatogenesis, and macroH2A (mH2A1
and mH2A?2) ((Bonisch and Hake, 2012; Hoch et al., 2007; Park et al., 2004b; Soboleva
et al., 2012; Talbert and Henikoff, 2010). Interestingly, when H2A.Z is combined with
H3.3 the nucleosome becomes more unstable and with higher turnover rates than other
combination of these histones (Jin and Felsenfeld, 2007). RNA Polymerase II (RNAPII)
recruits facilitator of active transcription (FACT), which evicts the H2A/H2B dimer
while RNAPII passes through the nucleosome during transcription; the dimer is then

replaced after the polymerase has passed (Reinberg and Sims, 2006).

1.3.1.2 Histone modifications

The N-terminus tail of histones is flexible, protruding outwards, and can be
subjected to posttranslational covalent modifications such as methylation, acetylation,
ubiquitination, and phosphorylation (Bernstein et al., 2007; Bonasio et al., 2010;
Zentner and Henikoff, 2013). Most of these modifications occur on lysines (Lys or K)

residues in the tails. Methylation can also occur on arginine (Arg or R) whereas
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phosphorylation occurs on serines and threonines (Li et al., 2007). Histone
posttranslational modifications can lead to either a permissive or repressive
environment for transcription by causing changes in chromatin structure or by recruiting
other factors. Histone modifications that promote transcription are acetylation (ac) on
Lys and Arg residues of histones H3 and H4 (for example H3K27ac) (Margueron and
Reinberg, 2011), di- or tri-methylation (me) of Lys4 residue of H3 (H3K4me2/3),
H3K36me, H3K79me, and monoubiquitination (ub1) of H2BK 123, while modifications
that are correlated with transcriptional repression are methylation on H3K9, H3K27 and
H4K20 and ubiquitination (ub) of Lys119 (H2BK119ub) (Kouzarides, 2002; Martin and
Zhang, 2005; Nguyen and Zhang, 2011; Peterson and Laniel, 2004). Histone acetylation
directly alters chromatin structure by neutralizing positively charged lysine residues on
the histone tails, loosening their interaction with negatively charged DNA. Other
histone modifications form binding sites for other chromatin regulatory proteins. During
gene activation, methylation of H3K4 forms a binding site for activator enzymes such
as acetylases and nucleosome remodelers (Pray-Grant et al., 2005; Santos-Rosa et al.,
2003; Sims et al., 2005; Wysocka et al., 2005). SET domain-containing Trithorax group
of proteins (TrxG) (described in section 1.5), such as the MLL group of proteins,
catalyze di- and tri-methylation of H3K4 at transcription start sites (Schuettengruber et
al., 2011). H3K36me is an elongation mark that locates along the coding regions of
active genes contrary to H3K27me3 that localizes at promoter regions of silenced genes
(Mikkelsen et al., 2007). Histone modifications have specific patterns of distribution on
the genome and many of them are known to be dynamic (Bernstein et al., 2007;

Lanzuolo and Orlando, 2007; Li et al., 2007).

Histone modifications can be epigenetic. As such, these marks are transmitted
from mother to daughter cell during mitosis, thus keeping the gene in the same
transcriptional state (Margueron and Reinberg, 2010; Probst et al., 2009). Epigenetic
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modifications are therefore a memory of past stimuli that can be changed in response to
opposite signals. Whilst epigenetic modifications like H3K9me and DNA methylation
(a cis modification that occurs on CpG dinucleotides) are well studied and understood,
the process by which inheritance of H3K4me3, H3K27me3 and other modifications

happens is not so well understood and require more research on the subject.

1.3.2 Epigenetic modifications

Two processes are considered to be the basis for epigenetic changes: histone
modifications and DNA methylation. The links between these two processes is not well
understood, however it is known that a specific histone methyltransferases can recruit
DNA methyltransferases to target genes (Vire et al., 2006). Although some epigenetic

effects can be reversible, X-chromosome inactivation and imprinting are permanent.

1.2.2.1 Methylation of Lysine-27 on H3

H3K27me2/3 is a very important and broad repressive histone mark. It is a
dynamic modification catalyzed by polycomb repressive complex 2 (PRC2, which is
better described in chapter 1.4.4) and removed by the demethylases of the Jumonji C
family: UTX (also named KDM6A), and JMJD3 (also known as KDM6B) (Agger et al.,
2007; De Santa et al., 2007; Hong et al., 2007). UTX, unlike JMJD3, contains a
tetratricopeptide motif for which predictions indicate functions in protein-protein
interactions, and it is mainly enriched at promoter compared to protein-coding regions

(Agger et al., 2007). Both demethylases regulate HOX gene clusters.

H3K27me3 is present in 15% of the H3 proteins in mammalian ESCs (Peters et
al., 2003). In the fruit fly and mammals, the CREB-binding protein (CBP)-mediated

histone mark H3K27ac is believed to antagonize H3K27 methylation and is enriched in
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its absence (Tie et al., 2009). A few studies (Azuara et al., 2006; Francis et al., 2009;
Hansen et al., 2008; Margueron et al., 2009) have given glimpses of how H3K27me3
might be preserved through DNA replication. Once H3K27me3 is established, PRC2
binds to it at the G1 phase of cell division, and this is sufficient for both the recruitment
of the three core subunits of this complex and to direct H3K27me3 on the new daughter
strand during DNA replication. PcG can physically be maintained on the chromatin

during replication in vitro (Francis et al., 2009).

1.2.2.2 DNA methylation

DNA methylation is a known epigenetic modification that happens on position 5
of cytosines (5SmC) of the dinucleotide CpG palindrome. It causes gene silencing when
located on a transcription start site (TSS) but stimulates transcription and may even
influence splicing when located in the gene body (Jones, 2012). It occurs in most
animals; exceptions being, for instance, the nematode worm Caenorhabditis elegans
that has no methylation and the fruit fly Drosophila melanogaster that rather methylates
CpT dinucleotides at a low percentage. On the other hand, vertebrates account for the
group of animals with highest amount of methylated CpG (Bird, 2002), they have over
85% of CpG sites methylated. Another phenomenon is the occurrence of CpG islands,
DNA regions with 200 base pair or more that are CpG-rich (ten times higher than
average in the genome) that associate with 60% of promoters, including all of the
housekeeping genes and half of tissue specific genes (Antequera and Bird, 1993; Larsen
et al., 1992). Only less than 10% of these regions are permanently methylated (Bergman
and Cedar, 2013; Bird, 2002). An example of this is X-chromosome inactivation and
genomic imprinting. SmC is also important for chromosome stability by repressing
repeated regions such as centromeres allowing proper chromosome segregation during

mitosis, and by repressing transposable elements (Moarefi and Chedin, 2011). CpG
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island origin has been suggested to result from the deoxyribonucleic triphosphate pool
present at a determined time-frame window of S phase (Cross et al., 1991). However
this factor might contribute, if this were the only factor, C:G incorporation would occur
along the entire body of the gene rather than enriched at the 5’end and promoter.
Another suggestion comes from the fact that replication initiation sites co-localize with
CpG islands and have different properties of transcription elongation, being possible
that their components could render difficult the access of enzymes that catalyze DNA
methylation (Antequera, 2003; Antequera and Bird, 1999). Maintainance of DNA
methylation is accomplished by the three DNA methyltransferases (DNMT3a,
DNMT3b and DNMTI1). De novo DNA methylation is mediated by DNMT3a,
DNMT3b whereas DNMT 1 uses as substrate hemimethylated DNA duplex to include a
methylation diagonally on the new strand, a process important for example in
imprinting (Wood and Oakey, 2006). De novo methylation by DNMT?3a at intergenic or
non-promoter-proximal regions also has the capability of inhibiting silencing by PcG in

neurogenic genes being fundamental for neurogenesis (Wu et al., 2010).

1.4 Polycomb

1.4.1 The discovery of polycomb group proteins in Drosophila

Polycomb (Pc) is a gene first identified in the fruit fly Drosophila melanogaster
in 1947 by P. Lewis for its essential role in maintaining Hox genes in a repressed state
as concluded from random mutagenesis screens and observation of their phenotypic
effects (Breen and Duncan, 1986; Duncan, 1982; Gaytan de Ayala Alonso et al., 2007;
Jurgens et al., 1971; Lewis, 1978; Paro and Hogness, 1991; Struhl and Akam, 1985).
This way, like Pc, a number of other genes were identified and therefore designated
polycomb group proteins (PcG) (Breen and Duncan, 1986; Duncan, 1982; Grimaud et

al., 2006b; Jurgens et al., 1971; Lewis, 1978; Sato and Denell, 1985; Struhl and Akam,
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1985). PcG proteins are involved in regulation of gene expression by keeping genes
repressed that were initially regulated by segmentation genes. The expression of
segmentation genes fades, and Hox genes are then kept repressed by polycomb group
(PcG) proteins. PcG proteins do not only silence Hox genes. The first indication of this
phenomenon came in 1989 where it was observed that the Pc protein also binds to PcG
genes (Zink and Paro, 1989). Later genomic distribution including genome-wide studies
of PcG proteins distribution revealed they occupy genes encoding for transcription
regulators involved in development and responsible for cell differentiation (e.g.
neurogenesis), morphogenesis, and signalling pathway both in flies and mammals
(Boyer et al., 2006; Bracken et al., 2006; Lee et al., 2006; Negre et al., 2006; Schwartz
et al., 2006; Squazzo et al., 2006; Tolhuis et al., 2006). The expression of some
polycomb proteins becomes barely detectable at the end of embryogenesis (Gutjahr et
al., 1995). Polycomb-mediated silencing is conserved from plants to humans, thus
reflecting the importance of this mechanism (Birve et al., 2001; Cao et al., 2002;
Czermin et al., 2002; Franke et al., 1992; Kuzmichev et al., 2002; Levine et al., 2002;
Ross and Zarkower, 2003; Schumacher and Magnuson, 1997; Shao et al., 1999; Simon

and Kingston, 2013; Tie et al., 2001).

PcG proteins are found in the form of multi-subunit complexes. There are five
identified polycomb complexes in Drosophila: Polycomb repressive complex 1 (PRC1),
PRC2, Pho-Repressive Complex (PhoRC), dRING-associated factors (dRAF) and
Polycomb Repressive Deubiquitinase (PR-DUB) (Francis et al., 2004; Lanzuolo and
Orlando, 2012). With the exception of dRAF all their components have orthologues in
mammals (Klymenko et al., 2006; Lanzuolo and Orlando, 2012; Scheuermann et al.,
2010; Schuettengruber and Cavalli, 2010; Simon and Kingston, 2009). The first
indication that PcG proteins form complexes was in Drosophila from the observation
made by co-immunoprecipitation showing that the proteins polycomb (Pc),

polyhomeotic (Ph) and posterior sex comb (Psc), which all belong to PRCI1, co-
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precipitate (DeCamillis et al., 1992; Franke et al., 1992). Similar observations were
made for Esc and E(z) (belonging to PRC2) and further biochemical purifications
confirmed the existence of two separate complexes (Jones et al., 1998; Shao et al.,

1999; Tie et al., 1998).

1.4.2 Polycomb group proteins in mammals

Genome-wide chromatin immunoprecipitation (ChIP-Chip) analysis in mouse
and human ESCs (Boyer et al., 2006; Lee et al., 2006) showed that PRC proteins bind to
homeodomain-encoding genes of transcriptional regulators - Hox genes — that are
involved in anterior-posterior development, as well as other developmental genes.
Mammals have four clusters of HOX genes: HOX A, B, C, and D; each localised on
different chromosomes. Studies show that PRC proteins also bind to cell cycle and
proliferation genes (Negre et al., 2006; Oktaba et al., 2008; Schwartz et al., 2006;
Squazzo et al., 2006), and genes encoding components of signal transduction pathways
such as Wingless and Notch (Janody et al., 2004; Tolhuis et al., 2006). Other processes
where PcG have been involved include X-inactivation (Silva et al., 2003; Wutz, 2011;
Zhao et al., 2008), genomic imprinting (Martinez and Cavalli, 2006; Terranova et al.,
2008; Wolff et al., 2011), senescence (Aguilo et al., 2011; Bracken et al., 2007; Jacobs
et al.,, 1999), cancer (Simon and Lange, 2008), cell reprogramming (Pereira et al.,
2010), and immunity through maintenance of thymic epithelium (Liu et al., 2013),
lymphopoiesis in B-cell development (Su et al., 2003), and in controlling CD4+ T-cells
differentiation into T helper 1 (Thl) and Th2 (Tumes et al., 2013). The many
implications of this group of proteins show their importance for a variety of treatments
that can be reflected on cancer, tissue regeneration and the induction of pluripotent stem

cells.
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1.4.3 The PRC1 Complex

PcG proteins are conserved from flies to humans (Levine et al., 2002). In
mammals, there are two main complexes of polycomb proteins - PRC1 and PRC2 —
with a higher number of homologues and isoforms (from 16 different genes in

Drosophila to 37 in mice and humans) that can result in molecular redundancy

(Whitcomb et al., 2007).

Table 1: Polycomb group complexes and its respective subunits. Based on Lanzuolo and Orlando (2012)

Drosophila Mammals

Polycomb repressive complex 1 (PRC1)

Ph HPHI1-3

Psc PCGF1-6

Pc CBX2-8
dRybp RYBP, YAF2
Sce Ringl A-B

Polycomb repressive complex 2 (PRC2)

E(2) EZH1, EZH2
Su(z)12 SUZ12

Esc EED

Nurf55 RbAp46/48
Jarid2 JARID2

Jing AEBP2

Pcl PCLI1-3

Pho repressive complex (PhoRC)

Pho YYI

dSfmbt SFMBTI1

Polycomb repressive deubiquitinase (PR-DUB)

Calypso BAP1

ASX ASXL1
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PRCI is composed of six groups of subunits (Table 1). The components of this
complex and respective Drosophila/mammalian orthologues are: Ph/HPHI-3
(polycomb-like protein); Pcs/ PCGF1-6; Pc/CBX family (Polycomb Chromobox
protein); Sce (Sex comb extra)/RINGIA/B and dRybp/RYBP (Ringl/YY1-binding
factor) and Y'Y 1-associated factor 2 (YAF2) homologues (Francis et al., 2001; Lanzuolo
and Orlando, 2012; Levine et al., 2002; Simon and Kingston, 2009). PCGFs (PcG ring
fingers) group is constituted by the paralogues NSPCI1 (nervous system Pcl)/PCGFI,
MELI18/PCGF2, PCGF3, BMI1/PCGF4, PCGF5, MBLR (Mell8 and Bmil-like ring
finger)/PCGF6. Each paralogue has been identified to be part of a distinct PRCI,
forming six different complexes, PRC1.1-PRC1.6. In particular, PRC1.2 and PRC1.4
can form two sub-complexes of unique subunit composition, one that contains CBX and
HPH, and another that rather contains RYBP/YAF2. These two sets of subunits are
mutually exclusive as they compete for binding to RING1B. This non-CBX-containing
PRCI1 or RYBP-PRCI1 is designated non-canonical or variant PRC1 (Gao et al., 2012).
RYBP-PRCI contains other associated proteins such as L3AMBTL2 or KDM2b (Farcas
et al., 2012; He et al., 2013; Qin et al., 2012; Trojer et al., 2011; Wu et al., 2013). RYBP

and YAF2 are homologues and mutually exclusive too.

HPH1
Ring1 HPH2 -
Ring2 HPH3 Ringl
Ring?2
( Ring HPHw _
e s
PCGF CBX RYBP/YAF2
PCGE2 - PCGF1 PCGF
CBX2 PCGF2
CBX6 PCGF4
CBX7 PCGF5
CBX8 PCGF6
Canonical PRC1: Non-Canonical PRC1:
PRC1.2 and PRC1.4 PRC1.1 - PRC1.6

Figure 3: PRC1 complex. Representation of canonical (PRC1.1-PRC1.6) and non-canonical
PRC1 complex (PRC1.2 and PRC1.4). Canonical and non-canonical PRC1.2 and PRC1.4 are
mutually exclusive.
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1.3.3.1 PRCI-mediated gene repression

RING1A/B, an ubiquitin E3 ligase, promotes the mono-ubiquitination of histone
H2A at lysine 119 (H2AK119ubl) (Bentley et al., 2011; Brown et al., 1998; Cao et al.,
2005; Kallin et al.,, 2009; Wang et al., 2004a). Reports show that H2A mono-
ubiquitination by PRC1 contributes to gene silencing by blocking RNAPII elongation in
ESCs (Brookes et al., 2012; Stock et al., 2007; Zhou et al., 2008), concordant with
studies showing that PRC1 and RNAPII co-localize at target genes (Breiling et al.,
2001; Dellino et al., 2004; Min et al., 2011). If H2AK119ubl is lost, even though
H3K27me3 is present, repression is also lost (Bernstein et al., 2006a; de Napoles et al.,
2004; Wang et al.,, 2004a). It has also been shown experimentally that this gene
silencing mark is heritable (de Napoles et al., 2004). H2AK119ub1 co-localises with

H3K4me3 at a higher percentage than H3K27me3, 97% to 79% (Brookes et al., 2012).

Blocking RNAPII transcriptional elongation is not the only way of PRCI
repressiveness. Indeed, PRCI silences target genes through various mechanisms: it
inhibits ATP-dependent chromatin remodelling of the hASWI/SNF complex, and induces
chromatin compaction in a manner that requires nucleosomes but not histone
modifications such as H2AK119ubl since it can be accomplished in tail-less histones
(Eskeland et al., 2010; Francis et al., 2004; King et al., 2005; Margueron et al., 2008;
Shao et al., 1999). Psc (Polycomb sex comb), a Drosophila ortholog of human PCGF1-
6, is the main subunit part of the PRC1 core components responsible for this type of
repression, since mutation in this subunit but not in dRINGI cause gene activation.
However, loss of ubiquitination through mutation of Ringl leads to complete loss of
repressive activity at some other genes (Gutierrez et al., 2012). PRC1 also recruits
histone deacetylases (HDACs) (Tie et al., 2001; van der Vlag and Otte, 1999). The

diverse PRC1 complexes occupy distinct genomic loci but their target genes show
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similar enrichments of gene ontology (GO) terms (Gao et al., 2012). PRC1 contains a
single unit of each subgroup of the complex, and they are interdependent of one another
for gene repression (Maertens et al., 2009). Nonetheless, orthologs can co-localize
through the binding of multiple PRC1 complexes simultaneously (Maertens et al., 2009;

Pemberton et al., 2014).

1.4.4 The PRC2 complex

PRC2 is composed of four core subunits, where the catalytic component is the
SET domain of the subunit enhancer of zeste homologue 2 (EZH2) (Cao et al., 2002;
Czermin et al., 2002; Kuzmichev et al., 2002), which is conserved from flies to humans.
The other three core subunits are suppressor of Zeste 12 (SUZ12), embryonic ectoderm
development (EED), and Retinoblastoma-associated proteins 46 and 48 (RbAp46/48;
also known as RBBP7/4; and Nurf55 in Drosophila) (Cao and Zhang, 2004a;
Margueron and Reinberg, 2011; Nowak et al., 2011) and each is relevant for the
functionality of the complex. Non-stoichiometric subunits of PRC2 are adipocyte
enhancer-binding protein 2 AEBP2 (Peng et al., 2009), JARID2 (Chen et al., 2011;
Landeira et al., 2010; Pasini et al., 2010; Peng et al., 2009), and PHF1 (PCL1), PHF19
(PCL3), MTF2 (PCL2) which are the mammalian orthologs for the fruit fly polycomb-
like (Pcl) protein (Margueron and Reinberg, 2011; Simon, 2010). HDACs, although not
part of PRC2, also interact with this complex. JARID2 (jumonji (jmj) AT-rich
interactive domain (ARID) 2) belongs to jmj family of proteins, whilst AEBP2
(adipocyte enhancer binding protein 2) is a zinc finger protein (He et al., 1999; Kim et
al., 2009), evolutionarily well conserved from flies to mammals (Kim et al., 2009) that
is present in murine brain tissue, which has been shown to co-purify with the
mammalian PRC2 (Cao et al., 2002; Cao and Zhang, 2004a, b) and shares the same

target loci (Kim et al., 2009).
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1.4.4.1 PRC2-mediated gene repression

PRC?2 is firstly recruited to its genomic site to catalyse methylation of H3K27
(Cao et al., 2002; Czermin et al., 2002; Kuzmichev et al., 2002; Muller et al., 2002).
The SET domain of EZH2 is required for recruitment to target genes (Margueron et al.,
2008) while EED and SUZ12 are necessary for the enzymatic activity of EZH2 (Cao
and Zhang, 2004b; Montgomery et al., 2005; Pasini et al., 2004) . Esc (EED ortologue)
binds directly to histone H3 and this binding is necessary for the catalytic activity,
which indicates that PRC2 interacts with chromatin through histones rather than
binding directly to DNA (Tie et al, 2007). Similarly, mammalian EED binds
H3K27me3, suggesting a mechanism by which this histone mark may be propagated
(Margueron et al., 2009). EED may also function in PRC2 repressive activity through

its interaction with HDACs (van der Vlag and Otte, 1999).

The PRC2 component EZH2 has a variant paralogue, EZH1, which might
confer different properties to the complex and these two paralogs are mutually
exclusive in the complex (Margueron et al., 2008). EZH]1 can replace EZH2 in PRC2
and is particularly predominant in adult non-dividing cells, and is capable of
polynucleosome compaction. EZH? is highly expressed during embryogenesis and in
proliferating cells. Complexes containing EZH2 have higher HMT activity than
EZH1-containing complexes (Bracken et al., 2003; Margueron et al., 2008; Shen et
al., 2008). Although EZH1 methylates H3K27 weakly, it mediates gene repression
mainly through chromatin compaction accomplished through binding to a few
nucleosomes and bringing them together (Margueron et al., 2008). Still, EZH1 seems
to complement EZH2 in maintaining stem cell identity (Shen et al., 2008). Another
function related with transcriptional activation as also been reported for EZHI1

(Mousavi et al., 2012; Stojic et al., 2011). The H3K27me3 mark enables condensation
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of chromatin and inhibition of chromatin remodelling, facilitated probably by
providing a binding site for PRC1 (Cao et al., 2002; Czermin et al., 2002; Francis et
al., 2001; Kirmizis et al., 2004; Kuzmichev et al., 2002; Muller et al., 2002; Shao et

al., 1999).

There are also four distinct isoforms of EED due to alternative translational
starting sites. PRC2 has been categorized as the form of the complex containing the
largest isoform, EED-1, and can assist methylation of both H3K27 and H1K26, whereas
complexes containing the shortest isoforms, EED-3 and EED-4, named PRC3, can only
methylate H3K27 (Kuzmichev et al., 2004). The EED-2 isoform is expressed only in
cancer and undifferentiated ES cells, and is part of another complex, PRC4, which

preferentially methylates H1 (Kuzmichev et al., 2005).

JARID2 has essential roles in tissue development and has been identified as a
transcriptional repressor with demethylase activity (Takeuchi et al., 2006). JARID2, like
other PcG proteins, is also required for the differentiation of mouse ESCs (Pasini et al.,
2010). The jmjC domain is a characteristic feature of the jmj family of H3K27-specific
demethylases but due to amino-acids substitutions it is inactive in JARID2 (Cloos et al.,
2008; Swigut and Wysocka, 2007). The ARID domain, present in JARID2, binds to
DNA specially enriched for CG and GA dinucleotides, but is not present in every jmj
protein. JARID2 binds to more than 90% of previously mapped PcG target genes and is
sufficient to recruit PcG proteins (Landeira et al., 2010; Li et al., 2010; Pasini et al.,
2010; Peng et al., 2009; Shen et al., 2009). This recruitment and tethering of PRC2 is
dependent on the ARID domain DNA-binding ability (Kim et al., 2003; Li et al., 2010;
Pasini et al., 2010; Peng et al., 2009). There are reports saying that JARID2 inhibits
HMT activity of PRC2 (Peng et al., 2009; Zhang et al., 2011), and controversially, other
reports show that it rather stimulates HMTase activity (Li et al., 2010; Mejetta et al.,

2011). It is rather possible that JARID2 fine-tunes the H3K27me3 level in vivo as
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suggested by Shen et al (2009). JARID2 can bind to DNA potentially through its ARID
domain, thus facilitating anchoring of PRC2; ChIP-Seq shows a significant binding
overlap between the two (Landeira et al., 2010; Li et al., 2010; Pasini et al., 2010; Peng
et al., 2009; Shen et al., 2009). JARID2 inhibition leads to loss but not complete
abolition of PcG binding and a subsequent reduction of H3K27me3 and H2AK119ub
levels on target genes (Landeira et al., 2010; Li et al., 2010; Shen et al., 2009). Besides
the ARID domain, JARID2 contains a CSHC2 zinc finger and both may synergize to
bind to DNA (Kim et al., 2004; Kim et al., 2003; Li et al., 2010). Landeira et al. (2010)
further shows that the presence of Ser 5 phosphorylated RNAPII correlates with the
presence of JARID2, implying that JARID?2 is required for the poised state of PRC

engaged genes and subsequent reactivation.

There are 3 PCL proteins, which bind to subsets of PRC2 binding sites and are
also involved in PcG recruitment (Aloia et al., 2013; Brien et al., 2012; Hunkapiller et
al., 2012; Walker et al., 2010). PHF19 (PCL3) binds to H3K36me3 through its Tudor
domain also recruiting the H3K36me3 demethylase NO66 (Brien et al., 2012).
Knockdown of PHF19 results in reduction of both H3K27me3 and SUZI2 binding
(Hunkapiller et al., 2012). In Drosophila, it is required for high levels of H3K27me3 but
not H3K27mel and H3K27me2 (Nekrasov et al., 2007). RbAp46/48 (PRC2) are
histone-binding proteins that are also present in HDAC and co-repressor complexes

(Cao et al., 2002; Kuzmichev et al., 2002).

1.4.5 Canonical and noncanonical PcG gene repression
In canonical PcG repression, PRC1 and PRC2 often co-occupy target sites
(Boyer et al., 2006; Ku et al., 2008; Schwartz et al., 2006). PRC2 is firstly recruited to

the target genes exerting its catalytic activity; PRC1 subsequently follows by binding to
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H3K27me3 through the CBX chromodomain, which recognizes this modification.
Therefore, H3K27me3 functions as a docking site for PRC1 recruitment and targeting
(Figure 3) (Cao et al., 2002; Fischle et al., 2003; Min et al., 2003). In murine ESCs,
CBX7 is probably the main recruiter of PRC1 as it is more predominant in these cells.
However, as cells differentiate, CBX7 fades and only a subset of canonical PRCI
(CBX2- and CBX4-containing PRC1) prevails, as they are fundamental for proper

differentiation (Aloia et al., 2013; Gao et al., 2012).

Noncanonical PRC1 is a variant that does not contain CBX or PHC and is
composed of one PCGF paralog, RYBP and RING1A/B. RYBP and CBX are mutually
exclusive (Gao et al., 2012; Kalenik et al., 1997). This means that a different
recruitment mechanism of PRC1 must exist that is independent of PRC2. RYBP binds
to RING1B through its C-terminal domain and this is important for its functionality by
enhancing H2AK 119 ubiquitination independently of PRC2 (Gao et al., 2012; Tavares
et al., 2012) Recent work in mouse ESCs also indicates that RYBP-PRCI1 can be
recruited independently of PRC2 to unmethylated CpG islands via KDM2b (Farcas et
al., 2012; He et al., 2013; Wu et al.,, 2013). RYBP-PRC1 and CBX7-PRCI target
overlapping genomic sites, being the genes bound by both the most repressed (Morey et
al., 2013). Additionally, RYBP has been demonstrated to possess repressive activity, by
binding to YY1 and possibly establishing a link between YY1 and PcG (Garcia et al.,

1999).

Concordant with different mechanisms of PRCI silencing, PRC1 and PRC2 can
bind genomic sites independently of each other’s action (Ku et al., 2008; Richly et al.,
2010; Sing et al., 2009; Trojer et al., 2011). Due to this independent binding of PRCI
and PRC2, questions regarding the role of H3K27me3 have been raised. Supporting
recruitment of PRC1 independently of H3K27me3, there is a low abundance of

H3K27me3 (Nekrasov et al., 2007) at the core of PRE regions whereas PC is highly
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enriched, and that H3K27me3 occupies broad domains whereas PC rather occupies
narrow regions (Papp and Muller, 2006; Schwartz et al., 2006). Furthermore, after the
absence of the lysine tri-methylation, the loss of PRC1 is gradual (Ohno et al., 2008).
Not only recruitment of PRC1 can be independent of H3K27me3 as PRCI1-dependent
H2AK119ubl leads to PRC2 recruitment and subsequent H3K27 trimethylation
(Blackledge et al., 2014). Additionally, and as mentioned above in section 1.2.2.1,
H3K27me3 can recruit PRC2 (Hansen et al., 2008). Histone variants also play a role in
polycomb targeting. Histone H3.3 is required for higher rates of histone turnover and
has been demonstrated to be involved in the establishment of H3K27me3 via promoting

interaction of its histone chaperone with PRC2 (Banaszynski et al., 2013).

PRC1

H2AK11 QUL

!
H3K27me3

H3K27me3

Figure 4: Representation of the canonical mechanism of polycomb mediated gene
repression. PRC2 is recruited to the genomic site, trimethylates H3K27, which servesas a
binding site for PRC1. RING1B, the catalytic subunit of PRC1 the monoubiquitanates H2AK119,
which cause RNAPII to stall.

1.4.6 Other PcG complexes

Biochemical purification of pleiohomeotic (Pho) revealed that it forms a third
PcG complex in Drosophila, known as Pho repressive complex (PhoRC) (Klymenko et
al., 2006). This complex is composed of Pho, pleiohomeotic-like (Phol) and SCM-

related gene containing four MBT domains (dSfmbt). The transcription factor yin yang-
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1 (YY1) has been described as the mammalian homolog of Pho (Brown et al., 1998;
Klymenko et al., 2006; Wang et al., 2004a); it is conserved between vertebrates
(Pisaneschi et al., 1994; Shi et al., 1991); and is ubiquitous. While it is known that Pho
and Pho-like proteins are important for polycomb repressiveness in Drosophila, the role

of YY1 in mammals is not clear (Atchison et al., 2003; Srinivasan and Atchison, 2004).

1.5 Trithorax group proteins

Trithorax group proteins (TrxG) are counterparts of the PcG proteins that also
maintain gene expression patterns through epigenetic modifications (Maeda and Karch,
2006; Ringrose and Paro, 2004), but act antagonistically to them (Moehrle and Paro,
1994). They have long-term effects in Drosophila Hox genes but there is no certainty of
such effect in vertebrates (Maeda and Karch, 2006; Ringrose and Paro, 2004).
Expression of the genes regulated by the PcG-TrxG system are fine tuned and dynamic
along the development (Ringrose, 2007), this being essential for embryonic
development and cell differentiation (Christophersen and Helin, 2010; Schumacher and
Magnuson, 1997) and stem cells and differentiated cells identity by binding to essential
developmental regulators, cell growth and proliferation factors (Mendenhall and
Bernstein, 2008; Ringrose and Paro, 2004; Ringrose et al., 2003). Like PcG, they are

conserved across species (Ringrose and Paro, 2004; Schuettengruber et al., 2007).

Proteins of the Trithorax group act in multimeric complexes that can be divided
in two groups: 1) SET domain-containing histone methyltransferases; 2) ATP-
dependent chromatin-remodelling factors. Some other TrxG proteins can bind to DNA
and act as chromatin remodelers and histone modifiers (Schuettengruber et al., 2011).
Complexes of the first group include COMPASS that catalyses the trimethylation of

H3K4 (Wu et al., 2008); COMPASS-like (MLLI1-2 in one complex and MLL2-4 in
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another complex) that has tumor suppressor activity (Yang and Hua, 2007) and
catalyses of the acetylation of H4K16 (Gu et al., 1992). The demethylase UTX also
belongs to the COMPASS-like complex, which removes H3K27me3 mediated by PRC2
(Agger et al., 2007); and ASHI1 that has methyltransferase acivity for H3K36. To the
second group belong SWI/SNF that binds to acetylated histones via its bromodomain
(part of Brahma; BRM and BRG1) (Chatterjee et al., 2011); ISWI that recognizes
H3K4me3 via its PHD finger (Wysocka et al., 2006); and CHD1-8 that bind to
H3K4me3 and have histone deacetylase activity (Gaspar-Maia et al., 2009;

Schuettengruber et al., 2011).

Studying of the mechanisms underlying Trx function can open new doors to cell
regeneration, longevity and environmental stresses as well as possibly other venues

(Greer et al., 2011; Klebes et al., 2005; Siebold et al., 2010).

1.6 Genomic profiling of polycomb function

PcG proteins, known gene repressors, have some targeted genes that have low to
high levels of activity (Brookes et al., 2012; Nishiyama et al., 2009; Tolhuis et al.,
2006; Young et al., 2011). However, this might be due to allelic differences in
expression where one allele is expressed and the other one is silent (Brookes et al.,
2012); this is possibly to be the case of imprinted genes. 20% of silent genes do not
show ChIP-seq signal for H3K27me3, PRC1 or 2, nor RNAPIIL. From the same study
(Brookes et al., 2012), PRC-target silent genes may show the presence of H3K27me3
only (no RNAPII present), which mainly happens in differentiated cells (with signalling
and stimuli genes) where developmental regulators specific to other cell types have to

be maintained in a silent state to maintain cell identity; or presence of both PRCs
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deposited marks plus RNAPII, which occur more on developmental and metabolism-

related genes important for embryogenesis.

1.6.1 Bivalency

Numerous promoters of mammalian developmental genes are associated with bivalent
chromatin, a term coined by Bernstein et al. (2006a) because it contains two
antagonistic histone marks: H3K27me3, a marker for gene repression, and tri-
methylation at H3K4, a marker of transcription initiation present in active genes
(Azuara et al., 2006; Bernstein et al., 2006a). Bivalent genes are silent but some show a
low level of expression (Brookes et al., 2012; Voigt et al., 2013). Bivalent domains are
dominant at the pre-implantation stage and are a common feature of ESC (Alder et al.,
2010) but not of the Drosophila epigenome (Schuettengruber et al., 2009). Bivalency
occurs in different cell types in mammalian species, including humans (Pan et al., 2007;
Voigt et al., 2013; Zhao et al., 2007), and other vertebrates too (Vastenhouw et al.,
2010). Bivalency is a particular signature of ESCs where mouse and human bivalency
largely overlap (Voigt et al., 2013). Bivalent marks co-exist in the same nucleosome
(Voigt et al., 2012), although not in the same histone (Voigt et al., 2012; Young et al.,
2009), meaning that they are not a result of cell heterogeneity. To further support this
conclusion, a study (Marks et al., 2012) took advantage of 2i medium (that functions by
inhibiting both Erk signaling and glycogen kinase 3 (Ying et al., 2008), thus preserving
the naive state of ESC by keeping the expression of lineage-specific genes at a lower
level and thus preserving cellular homogeneity (Nichols and Smith, 2009)), to culture
ESC and still found bivalent domains, although fewer in number. Bernstein et al.
(2006a) studied bivalent domains in highly conserved noncoding elements (HCNEs),

which are mostly present at genes that encode for TFs such as Hox and Sox, Fox and
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Pax gene families (Bernstein et al., 2006a). Especially the regulatory regions of
vertebrate Hox clusters contain HCNEs in and around the genes existing around 200 of
these loci (Bejerano et al., 2004; Lindblad-Toh et al., 2005; Woolfe et al., 2005). 75%
of H3K27me3 domains (5 kb) in HCNEs are also methylated on K4 where 50% of these
are present at TFs genes (Bernstein et al., 2006a; Lee et al., 2006). In a broader genomic
study, Mikkelsen et al. (2007) identified three different classes of promoter according to
CpG content. 99% of CpG-high promoters — promoters of housekeeping genes or
developmental genes — were enriched for H3K4me3, 22% of which were bivalent.

There is therefore a correlation between CpG islands, bivalency and conserved regions.

Upon cell differentiation, most bivalent domains resolve into monovalent
H3K27me3 (some of which become DNA methylated) (Mohn et al., 2008), H3K4me3
or neither mark (Mikkelsen et al., 2007). Nonetheless, many new bivalent sites are
formed in progenitor stem cells that also have a ESC-like prevalence of bivalent
domains, as it is the case in neural progenitor cells (NPC), mesenchymal stem cells
(MSC), hematopoietic stem cell (HSC), showing this is a highly dynamic process (Cui
et al., 2009; Mikkelsen et al., 2007; Mohn et al., 2008; Paige et al., 2012). Bivalency
occurs in cultured ESCs as in the inner cells of the blastocyst of the developing embryo
(Rugg-Gunn et al., 2010). In the trophoblast and extra-embryonic endoderm stem cells,
H3K9me3 replaces H3K27me3 mark and function as bivalent marks (Rugg-Gunn et al.,

2010).

It is also worthy to note that bivalency can also happen with the repressive mark
H2Aubl, which blocks RNAPII transcription, where 97% of the marks coincide with
H3K4me3 whereas 79% of H3K27me3 overlaps H3K4me3. The three marks can co-

exist (Brookes et al., 2012).
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1.6.2 Elongation by RNAPII and transcriptional pausing

Production of mRNA starts with the assembly of a pre-initiation complex (PIC)
together with general transcription factors (GTFs) and a mediator complex, being these
recruited to gene promoter. It was initially thought that blocking such recruitment was
the only way of regulating gene expression. However, it was found that regulation could
happen at the level of elongation too (Figure 4). Promoter-proximal pausing, first
identified in Drosophila heat shock promoters, for example HSP70 (Gilmour and Lis,
1986; Rougvie and Lis, 1988), is associated with transcripts of around 20-60
nucleotides (nt) (Rasmussen and Lis, 1993; Rougvie and Lis, 1988). Other ground-
breaking examples of such studied genes are HIV TAR, from which transcripts of 59-nt
are produced from the HIV LTR in unstimulated cells (Kao et al., 1987); and MYC
(Bentley and Groudine, 1986). In these three cases, pausing is due to the action of two
factors: DRB sensitivity-inducing factor (DSIF) and negative elongation factor
(NELF). The repressive activity is antagonized by the recruitment of positive
transcription elongation factor (P-TEFb) (Marshall and Price, 1992). Subsequent
genome-wide studies demonstrated that this type of transcriptional regulation is a
common feature in Drosophila and mammalian genomes too (Guenther et al., 2007;
Nechaev and Adelman, 2008; Price, 2008; Zeitlinger et al., 2007), probably to allow

rapid and efficient expression upon physiological changes.

The ends of the integrated HIV provirus comprise a long terminal repeat (LTR)
segmented into U3, R, and U5 (Knipe, 2006). In naive resting CD4 T-cells the
provirus is in a latent state but transcription is still initiated, producing a short RNA
named TAR (trans-activation response element). TAR is a cis RNA required for the
activation of the provirus through binding of the viral Tat (trans-activator of

transcription) protein, which occurs when T-cells encounter an antigen and are
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activated. A significant feature of the TAR RNA is its stem-loop secondary structure
that is required for Tat binding (Feng and Holland, 1988). Initiation of transcription
takes place at the U3/R border of the 5’LTR but in the absence of Tat transcription is
aborted about +55 to +59 downstream of TSS and RNAPII stalls (Kao et al., 1987).
At HIV, as well as in cellular genes, RNAPII phosphorylated at Ser5 but not Ser2
stalls downstream of the TSS (Yamaguchi et al., 2013). Activation of transcriptional
elongation occurs after recruitment of the elongation factor P-TEFDb, in the HIV case
by Tat. The CDK9 subunit of P-TEFb phosphorylates RNA polymerase II Ser2 (Kim
et al., 2002) as well as NELF and the DSIF subunit Spt5 causing them to dislodge
(Fujinaga et al., 2004; Ivanov et al., 2000). Additionally, EZH2 has been linked to the
HIV LTR (Friedman et al., 2011), which was found tri-methylated at H3K27 and
ubiquitinated on H2A (Kim et al., 2011). Knockdown of EZH2 leads to reactivation of

the provirus (Friedman et al., 2011).

Pausing can also happen further into productive elongation (Adelman and Lis,
2012; Brookes et al., 2012). Such genes, for example Lhx5, Pitx1, and Zfp503, show
higher expression levels upon de-repression than genes where RNAPII is paused near
the TSS, such as Fgf5, Kcne4, and Lrat (Brookes et al., 2012). Consistent with the
presence of a transcription initiation marker (H3K4me3) at polycomb-target genes,
RNAPII is recruited to the promoter, starts transcription, but stalls and ceases
productive elongation (Chopra et al., 2009; Dellino et al., 2004; Stock et al., 2007).
RNAPII is present at a substantial percentage of H3K27me3-associated silent genes
from Drosophila to humans (Guenther et al., 2007; Muse et al., 2007; Zeitlinger et al.,
2007). At perichromatic regions, border regions of condensed chromatin, transcription
is mainly paused and this region is also rich in polycomb proteins (Cmarko et al., 1999;
Ruthenburg et al., 2007; Shahbazian and Grunstein, 2007; Trentani et al., 2003).
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The largest subunit of RNAPII, RPB1, contains a Carboxy-terminal domain
(CTD) that comprises the heptapeptide consensus sequence N-Tyr1-Ser2-Pro3-Thr4-
Ser5-Pro6-Ser7-C repeated 26 times in yeast, 42 in Drosophila and 52 times in
mammals. The residues in this sequence are subjected to post-translational
modification, particularly the phosphorylation of Serine (Ser) residues (Patturajan et
al., 1998). RNAPII can be unphosphorylated, Ser5 phosphorylated (S5P), and
hyperphosphorylated (S5P + S2P). Phosphorylation of Ser 5 is essential for
transcription initiation, capping and recruitment of Lys4 methyltransferases; while
escape from the pause position, transcription elongation, polyadenylation, splicing and
recruitment of Lys36 HMT require phosphorylation at Ser 2 (Brookes et al., 2012;
Cadena and Dahmus, 1987; Sims and Reinberg, 2004). Therefore, paused RNAPII is
phosphorylated only at Ser5 at bivalent genes that are silent, and have no H3K36me3;
however S5P can also be found on coding regions at low levels (Brookes et al., 2012).
PRC genes are mainly S5P, and hyperphosphorylated RNAPII is not detected above
background levels (Brookes et al., 2012; Stock et al., 2007). Such polycomb active
genes encode for transcription factors involved in ESC identity such as Hmga2, Klf4
and Tbx3. Levels of Nanog, a ESC mark of pluripotency, influences whether PcG
target genes are expressed or not. RNAPII stalling at PcG target genes has been
attributed to the H2AK119ub1 modification by PRC1 (Brookes et al., 2012; Stock et

al., 2007).

41



\< - H3K27me3

A Z— A S— A A A—

Promot
romoter RNA-coding sequence
A - H3K4me3

\ . - H3K36me3
P
P —
! . RNAPII | ‘
B rOMOter Sy "
RNA-coding sequence
&- s2P

- RNA
P —
C Fﬁ . . ! . ! [ RNAPI | !
romoter . a -
——2» RNA-coding sequence ~—

—— RNA

Figure 5: Gene transcription; A — Silent genes: transcription is inhibited at the level of
initiation where the recruitment of RNAPII to the promoter is inhibited; Gene site is highly
methylated on H3K27. B — Silent gene: transcription is inhibited at the level of elongation.
RNAPII is phosphorylated at Serine-5 only and the promoter is methylated both at H3K27 and
H3K4. C — Gene is expressed: RNAPII is phophorylated at both Serine-5 and -2; promoter is
methylated at H3K4 only and the body of the gene is trimethylated at H3K36.

1.7 Polycomb recruitment to chromatin

1.7.1 Polycomb Responsive Elements in flies

Polycomb responsive elements (PREs) are cis-regulatory sequences initially
identified in transgenic Drosophila embryos and larvae that confer polycomb repressive
activity (Muller and Bienz, 1991; Simon et al., 1993), thus recruiting PRC1 and PRC2
complexes (Oktaba et al., 2008). Identification of PREs has proven difficult given the
lack of identifiable sequence homology. Using algorithms based on several aspects that
seem relevant to Drosophila PREs, quite accurate predictions have been attained for this
animal model. Unfortunately, it has been harder to find it in mammals where only three

PRE sequences have been identified so far.
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PREs of the Drosophila Hox clusters, like the bithoraxoid PRE, can be located
thousands of base pairs away, 20-30 kb, from the transcription start site (Chan et al.,
1994; Sengupta et al., 2004), whereas PREs like engrailed (Kassis, 1994) and many
other Drosophila PREs are located close to the transcription start sites (Bloyer et al.,

2003; Schwartz et al., 2006).

In Drosophila, PcG proteins interact with chromatin by binding to Pho and Pho-
like proteins (Brown et al., 1998; Wang et al., 2004a). Genome-wide binding profile of
PhoRC, PRC1, and PRC2 shows that the three complexes co-localise on a large set of
genomic sites, identified as PREs, and that Pho not only directly interacts with Pc
(PRC1) and Esc/E(z) (PRC2) but it is also required for the recruitment of both
complexes (Oktaba et al., 2008; Schwartz et al., 2006; Wang et al., 2004a). But, little is
known regarding the regulation of Pho binding to PREs. It is likely that the carboxy-
terminal binding protein (CtBP) interacts with Pho in its recruitment as analysis of the
PREs scr and engrailed in wild-type and mutated Drosophila embryos revealed that
loss of this protein results in an increased expression of intergenic transcripts and in a
reduced binding of Pho (Basu and Atchison, 2010). A binding site of 17bp has been
identified for Pho (Brown et al., 1998), with a consensus sequence of only four base

pairs, CCAT, considered the core binding site of Pho (Ringrose et al., 2003).

Pho/Phol alone are not sufficient to recruit PcG complexes in vitro (Brown et al.,
2003; Dejardin et al., 2005), and Pho/Phol double mutants don’t generally interfere with
PcG binding in polytene chromosomes (Brown et al., 2003; Wang et al., 2004b). Other
DNA-binding proteins must be important for PRE functionality and many have been
identified in Drosophila. These proteins include GAGA factor (GAF: also known as
TRL), pipsqueak (Psq), zeste, dorsal switch protein 1 (Dspl), grainyhead (GH) and
specificity protein 1 (SP1) or Luna (also known as KLF) (Simon and Kingston, 2009).

In an attempt to predict PREs on a large scale, Ringrose and colleagues designed an
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alignment-independent algorithm that searches for one or more possible motifs for each
of the proteins GAF, Psq, zeste and Pho/Phol. They found that clustered pairs rather
than single cluster motif were required to distinguish between Drosophila PREs and
non-PREs (Ringrose and Paro, 2007; Ringrose et al., 2003). Another study suggested
that although Gaf, Zeste and Pho sites are necessary, they are not sufficient to make a
PRE (Dejardin et al., 2005). Taking this into consideration, Rehmsmeier and co-
workers constructed another prediction algorithm by incorporating the Dspl, GH, and
Sp1/KLF sites, and including comparative genomic data from four Drosophila genomes
it improved the overlapping of predicted PREs with published polycomb ChIP data
from 20% to 34% (Hauenschild et al., 2008). Recently, it has been shown that Dspl is
important for PcG recruitment given that abolishment of Dsp1l binding to certain PREs
causes loss of PcG proteins binding, thus showing relevance in their recruitment
(Dejardin et al., 2005; Wang et al., 2010). None of these proteins, however, are
considered part of the polycomb group since mutations do not lead to PcG phenotype

(Schuettengruber et al., 2009).

Genetic evidence demonstrates that Drosophila PREs also function as TREs
(Trithorax response element), as these sequences are bound by both TrxG and PcG
proteins (Chan et al., 1994; Orlando et al., 1998; Papp and Muller, 2006; Tillib et al.,
1999) and supported by the existence of bivalency at PcG-target sites (Schuettengruber
et al., 2009). Trithorax group (TrxG) proteins are required for active gene transcription
(Ringrose and Paro, 2004). They include the proteins Trithorax (Trx) and Ashl (absent,
small, or homeotic discs 1), two SET domain-containing proteins that methylate H3K4
(Klymenko and Muller, 2004). An example is the bithorax Fab-7 PRE/TRE, which is
capable of recruiting PcG proteins as well as acting as a TRE that can maintain the
memory of active chromatin states during embryogenesis (Cavalli and Paro, 1999;

Klymenko and Muller, 2004). The relative levels of PcG, and Trx at target genes
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determine the chromatin state, thus creating a delicate and dynamic balance (Schwartz
et al.,, 2010). Interestingly, the PRE binding proteins Zeste, Gaf and Pipsqueak also
appear to have an activatory function (Decoville et al., 2001; Hagstrom et al., 1997;

Huang et al., 2002).

1.7.2 Polycomb Responsive Elements in mammals

Although much has been investigated about PRE/TREs in Drosophila, in
mammals, PREs are not well defined. PRE-kr (Kreisler), is the first mammalian PRE to
be identified (Sing et al., 2009). It is 3kb long and regulates expression of the mouse
MafB/Kreisler gene. PRE-kr was capable of causing repression of a reporter gene in a
PcG-dependent manner and both PRC1 and 2 complexes can bind the PRE sequence,
albeit PRC2 binding is weak, which suggests different binding requirements. Although
prediction algorithms did not identify the PRE-£7, it contains a 450-bp highly conserved
region between human, mouse and chicken, and the consensus Pho/YY 1-binding sites

and GAGAG motifs (Sing et al., 2009).

Another mammalianPRE, identified in the human Hox cluster between the genes
HOXDI11 and HOXD12, is designated HOXD11.12 (Woo et al., 2010). It is 1.8 kb long,
is enriched for both H3K4me3 and H3K27me3, has a highly conserved sequence of
237-bp, and contains GC-rich sequences. Characteristics consistent with Drosophila
PREs include YY1 binding sites, nucleosome depletion and repression by PcG protein
maintained throughout differentiation. Woo et al. (2010) showed that deletion of the
YY1 binding motif and especially the highly conserved region, as well as interaction
with the protein RYBP, all interfere with PRE repressive ability and especially PRC1

binding.

Common characteristics of these two PREs are: regions of high sequence
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conservation (Lee et al., 2006), and GC-rich sequences (Ku et al., 2008). GC-rich
regions are preferentially bound by PcG (Lynch et al., 2012), and seem to be sufficient
to recruit PRC2 (Mendenhall et al., 2010). Other characteristics of PREs include
nuclease-hypersensitivity, revealing nucleosome depletion at these sites (common with
Drosophila PREs) (Mohd-Sarip et al., 2006; Muller and Kassis, 2006; Papp and Muller,
2006), and chromatin flanking a PRE sequence that contains nucleosomes marked with

H3K27me3 (Pan et al., 2007; Schwartz et al., 2006).

1.6.3 The involvement of YY1

YY1 is a multifunctional protein (Bushmeyer et al., 1995) that performs roles
in DNA repair (Wu et al., 2007) and transcription regulation, capable of acting as both
an activator (Cai et al., 2007; He et al., 2010; Seto et al., 1991) and a repressor
(Atchison et al., 2003) of genes, due to the possession of distinct domains (Bushmeyer
et al., 1995). Its effect on the silencing of transcription can be accomplished through
multiple mechanisms (Galvin and Shi, 1997; Guo et al., 1995), for example, by
interacting with transcription factor LSF to inhibit the expression of HIV-1 provirus —

a mechanism not well understood (Romerio et al., 1997).

Pho, YY1, and Phol are all sequence-specific DNA binding proteins that contain
related zinc finger DNA-binding domains (Brown et al., 2003; Brown et al., 1998).
YY1 interacts with the protein RYBP, which in turn interacts with the PRCI1
components RING1A, RINGIB, and M33/CBX2. YY1 has also been reported to
interact with the PRC2 and PRC1 subunits EED and BMI1 respectively (Caretti et al.,
2004; Satijn et al., 2001). Conversely, another report indicates that YY1 does not
interact with PRC2 (Li et al., 2010). The discrepancy of these results might be due to

different cell types or antibody specificity.
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YY1 is the mammalian homolog of Pho and HMGB2 is the mammalian
homolog of Dspl (Gabellini et al., 2002). Kriippel-related zinc-finger protein/T-helper-
inducing POZ/Kriippel-like factor (cKrox/Th-POK) is the vertebrate orthologue to the
Drosophila Gaf, and are linked to PcG recruitment (Matharu et al., 2010). While it is
known that Pho and Phol are important for Polycomb repressiveness in Drosophila, the
role of YY1 in mammals is not fully clear. The observation that the consensus binding
sequences of Pho and YY1 have a perfect match suggests that YY1 is a PcG protein.
(Brown et al., 1998). Studies in Drosophila show that YY1 recruits (Caretti et al., 2004)
and interacts with PcG proteins, like EED (Atchison et al., 2003; Palacios et al., 2010;
Satijn et al., 2001; Srinivasan and Atchison, 2004), and Pho also interacts and co-
localises with both PRC1 and PRC2 (Klymenko et al., 2006; Mohd-Sarip et al., 2002;
Oktaba et al., 2008; Wang et al., 2011). Nonetheless, a study in mouse ESC has
evidenced that YY1 does not interact (Vella et al., 2012) nor co-localise with PRC2
(Squazzo et al., 2006). Among other observations that YY1 might constitute a PcG
protein that its binding sites are present and required for the four known mammalian
polycomb responsive elements: PRE-k7, HOXDI11.12, HOXCI11.12 and HOXB4.5
(Woo et al., 2010, 2013). It functionally compensates for Pho in Drosophila (Atchison
et al., 2003; Srinivasan et al., 2005), YY1 is a developmental gene regulator essential
for embryogenesis and tissue formation (Donohoe et al., 1999; He et al., 2007).
However, YY1 distribution does not correlate with PcG genome-wide (Squazzo et al.,
2006), but it is possible that YY1 is implicated in PRC recruitment for a specific set of
genes only, what would reflect the variety of mechanisms involved (Simon and

Kingston, 2013).
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1.7.4 Other potential mammalian recruiters

Proteins such as JARID2, AEBP2, and PCL may act to tether PcG to chromatin
(Casanova et al., 2011; da Rocha et al., 2014; Kim et al., 2009; Landeira et al., 2010;
Nekrasov et al., 2007). Tetl was found to demethylate DNA at CpG islands in mouse
(Tan and Shi, 2012) and is also important for PRC2 binding to chromatin and both
PRC2 and Tetl co-localise at more than 95% of target sites (Wu et al., 2011). SNAIL is
another protein that interacts with EZH2 and SUZ12, at the E-cadherin gene of mouse
ESCs (Herranz et al., 2008). Runx1/CBFb recruits PRC1 in a subset of PcG targets in a
PRC2-dependent manner (Yu et al., 2012). REST is required for the recruitment of both
complexes in a sub-fraction of Pc-regulated neural genes (Dietrich et al., 2012). Other
proposed proteins are NurD (Reynolds et al., 2012), and PLZF (Barna et al., 2002).
Despite PRE binding proteins being mostly absent in vertebrates, prominent features of
PcG proteins are their association with promoter regions, bivalent domains, CpG-rich

promoters, high sequence conservation, and also with ncRNAs.

A new consensus in the field is that CpG islands are involved in polycomb
recruitment. Introduction of CpG island or GC-rich DNA into the genome of mESCs is
sufficient for PRC2 binding, suggesting that PRC2 is recruited to these sites (Ku et al.,
2008; Mendenhall et al., 2010). However, CpG islands that are associated with activator
factors or that are DNA methylated do not recruit PRC2 (Lynch et al., 2012;

Mendenhall et al., 2010).

Recent studies (Blackledge et al., 2014; Cooper et al., 2014; Kalb et al., 2014)
have shown that PRC2 and H3K27me3 can also form and be recruited by the variant
PRCI through H2AK119ubl. PRC2 subunits that bind to this modification are JARID2
and AEBP2, which subsequently stimulate H3K27me3 (Kalb et al., 2014). Loss of
H2AK119ubl leads to subsequent loss of PRC2 and H3K27me3 occupancy genome-

wide. Variant PRCI is probably recruited to CpG islands through recognition of non-
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methylated CpG by the CXXC-zinc finger domain of KDM2B (Blackledge et al.,
2014). It was also demonstrated that hypomethylated CpG islands are in fact sufficient
to recruit PRC1 and PRC2 and that PcG recruitment is default to these regions;
counteraction of polycomb recruitment at these sites is accomplished by histone H3 tail

modifications (Cooper et al., 2014).

1.8 The role of polycomb in ESC pluripotency, differentiation

and development

ESCs are derived from the inner cell mass of the blastocyst. They can
differentiate into a broad spectrum of cells (pluripotency) and they can propagate
continuously (self-renewal). OCT4, SOX2, and NANOG are key to the pluripotency of
ESCs (Avilion et al., 2003; Chambers et al., 2003; Mitsui et al., 2003; Nichols et al.,
1998) and they co-localise with PRC2 at developmental genes (Boyer et al., 2005; Lee
et al,, 2006). PcG function is particularly relevant in neural, hematopoietic and
epidermal stem cell proliferation, self-renewal and differentiation (Aloia et al., 2013;

Mohn et al., 2008; Molofsky et al., 2003).

It is fundamental that Hox and other developmental genes are coordinated in a
correct spatial and temporal expression pattern over multiple rounds of mitotic cell
division and differentiation, thus ensuring a correct formation of the body structure.
Genome-wide analyses have revealed that PcG proteins are highly enriched at the
promoter region of hundreds of developmental regulators in ESC that would otherwise
induce cell differentiation (Azuara et al., 2006; Boyer et al., 2006; Lee et al., 2006;
Mikkelsen et al., 2007; Negre et al., 2006). Hence, genes necessary for a specific cell

type are expressed while unnecessary genes are repressed. ESCs have been highly used
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for the study of polycomb group proteins given the relevance of these proteins in

pluripotency and differentiation.

During embryogenesis, PcG proteins regulate anterior-posterior development
(Simon et al., 1992). Mutations lead to ectopic expression of developmental genes and
therefore to segment defects. Mutations in Eed, Ezh2, Suz12, Rybp and Ringlb (not
RinglA), even cause lethality by gastrulation arrest (Alkema et al., 1995). Knockout of
Ring1B leads to premature differentiation of neural stem cells (Roman-Trufero et al.,
2009), and knockouts of Jarid2 and Kdm2b cause improper neural development
(Fukuda et al., 2011; Takeuchi et al., 1995). Mell18 or Bmil deficiency causes anterior-
posterior defects at the axial skeleton plus immune deficiency, while simultaneous
mutation of both components cause lethality (Akasaka et al., 1996; Alkema et al., 1995;

van der Lugt et al., 1994).

1.9 Polycomb disregulation in cancer

Mutations as well as alterations in epigenetic modifications can result in
repression of tumor suppressors or genomic stabilizer genes and lead to the formation of

carcinogenic cells (Benetatos et al., 2013; Bracken and Helin, 2009; Richly et al., 2011).

Deregulation of PcG protein expression, particularly EZH2 overexpression or
gain of function is correlated with progression of several types of cancer including
prostate, lymphoma, breast, melanoma, bladder, gastric, and renal cancers and also
correlated with poor prognostic (Simon and Lange, 2008; Velichutina et al., 2010).
EZH2 is particularly important as it silences the expression of over 200 tumor
suppressors (Simon and Lange, 2008). EZH2 harbor several heterozygous mutations at
the tyrosine 641 of the C-terminal SET domain, which do not correlate with loss of

function but rather an enhancement of function of H3K27me2 on its substrate

50



(Sneeringer et al., 2010; Yap et al.,, 2011) and are found in a low but significant
percentage on a two different types of lymphomas (Morin et al., 2010). Another
mutation found at a lower percentage in lymphoma cell lines is Alanine to Glycine
mutation on position 677 of the EZH2 protein that has an enhancement of function as

the previous described mutation but acts on H3K27, H3K27mel, and H3K27me2.

Glioblastoma is an aggressive form of cancer, with a high mortality rate, that
arises from astrocytes and which accounts for 20% of all brain tumors in children
(Saran, 2002). A frequent mutation in the glioblastoma tissue occurs in histone H3.3,
which is incorporated during brain development, and consists of a replacement of lysine
27 by methionine (K27M). H3 Lysine 27 amino-acid is a common site for histone
modifications such as the referred methylation and acetylation. Therefore, mutation at
this position can lead to alteration in gene expression, in a way by inhibiting the
enzymatic activity of PRC2 (Khuong-Quang et al., 2012; Lewis et al., 2013;

Schwartzentruber et al., 2012).

In all types of endometrial stromal tumors (EST) the zinc fingers of SUZ12 and
JAZF1 are fused. Such fusion occurs in stromal nodules too indicating that stromal
proliferation from an initially benign tumor can develop into EST (Koontz et al., 2001).
Also JAZF1-PCL1 fusions in ESTs. EZH2 also cooperates with other histone modifiers
such as DNMTs (Vire et al., 2006), and HDAC (Tie et al., 2001; van der Vlag and Otte,
1999), which are found and linked to various types of cancer. Sites that are marked by
H3K27me3 may become CpG methylated; DNA methylation sites are, to some extent,
also marked by H3K27me3 and EZH2 (Fahrner et al., 2002; McGarvey et al., 2006;
McGarvey et al, 2008). PRC1 has also been linked to cancer given that

medulloblastoma cells overexpress BMI1 (Leung et al., 2004).
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Targeting PcG proteins can be a strategy to reduce metastasis and increase
effectiveness of chemotherapeutic drugs (Bracken and Helin, 2009; Crea et al., 2011;
Croonquist and Van Ness, 2005; Kemp et al., 2012; Varambally et al., 2002). An
example of a drug that depletes cellular levels of PRC2 core components and associated
H3K27me3 is S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A
(DZNep). This drug has low in vivo cytotoxicity (Bray et al., 2000), and induces
apoptosis of cancer cells leaving normal cells alive (Tan et al., 2007). Another potential
group of therapeutic drugs constitutes S-adenosyl-L-methionine (SAM)- competitive
inhibitors as the SET domain contains a pocket for a SAM methyl donor (Copeland et
al., 2009). It will be a clinical challenge to develop combined drugs to target

methyltransferases (for histone and DNA) as well as HDACs.

1.10 Non-coding RNAs

Only around 2% of the mammalian genome is transcribed into coding messenger
RNA (mRNA), and at least 90% of transcribed RNA is non-coding (ncRNA) (Bertone
et al., 2004; Birney et al., 2007; Cheng et al., 2005; Djebali et al., 2012; Kapranov et al.,
2002; Rinn et al., 2003), which means that it is not translated into proteins, giving rise
to thousands of transcripts, most of which are uncharacterized. This phenomenon is
known as ‘pervasive transcription’ and has been described in most eukaryotic organisms
(Berretta and Morillon, 2009) (Mercer et al., 2009), with the transcriptome of human

ESCs comprising around 10°-5x10* transcripts (Brockdorff, 2013).

Comparing the amount of ncRNA with the amount of genes (~20,000-25,000)
between organisms suggests that rather ncRNA may be critically important for
determining the complexity of eukaryotes (Costa, 2010). Concordant with their wide
variety, they have a myriad of functions many of which are regulatory at different levels
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(transcription, post-transcriptional processing, and regulators of protein activity)
(Britten and Davidson, 1969; Geisler and Coller, 2013; Jacob and Monod, 1961).
ncRNA can be divided into small ncRNA (sRNA), smaller than 200 nt, and long
ncRNA (IncRNA), longer than 200 nt. The diverse types of ncRNA include ribosomal
RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), small nucleolar
ncRNA (snoRNA), micro RNA (miRNA), small interfering RNA (siRNA), piwi-
interacting RNA (piRNA), and long non-coding RNA such as long intergenic RNA
(lincRNA) and others. The former three types of RNA mentioned above can be
described as classical non-coding RNAs. In eukaryotes about 80% of all RNA is rRNA;
tRNA makes up 15% whereas mRNA accounts for only 5% (Warner, 1999). Lin-4
miRNA (Lee et al., 1993; Wightman et al., 1993), and XIST (Borsani et al., 1991,
Brockdorff et al., 1992; Brown et al., 1992) were the first non-classical ncRNAs with

assigned functions.

1.10.1 ‘Housekeeping’ ncRNAs — rRNA, tRNA, snRNA

The central dogma of molecular biology views the existence of three types of
RNA involved in protein synthesis: the mRNA, which is a copy of the DNA blueprint
for the amino-acid sequence; the rRNA which forms a ribonucleoprotein complex of
two subunits, called the ribosome, that bind together during mRNA translation; and the
tRNA that transports the amino-acids to the ribosomes. Sequences of rRNA genes are
highly conserved. There are four different types of rRNA in eukaryotes designated 28S,
18S, and 5.8S that result from the cleavage of a single long precursor (pre-rRNA), and
5S that is transcribed from a separate gene and is not processed extensively. In the
nucleolus, pre-rRNA assembles with ribosomal proteins that are imported from pre-
ribosomal particles. With the exception of 5S precursor rRNA, rRNA is cleaved twice,
firstly to form 18S and 28S + 5.8S, then secondly to form the three different rRNAs.

53



Cleavage of pre-rRNA is accomplished by a complex of proteins with snoRNA (a
subgroup of snRNA) that form small nucleolar riboprotein complex (snoRNPs). RNAPI
transcribes this pre-rRNA from a single promoter in the nucleolus whilst 5S rRNA,
together with tRNA and snRNA, is transcribed by RNAPIII in the nucleus. tRNA, like
rRNA, is also processed by cleavage of pre-tRNA at the 3’ and 5 ends by two different
ribozymes. CCA sequence is then added to the 3’ end and some bases are modified.
snRNAs range in size from 50-200 nt. snRNAs, particularly the U-type snRNAs (U1,
U2, U5, and U4/U6), are important regulatory molecules involved in pre-mRNA
splicing. Splicing takes place in large complexes, called spliceosomes, composed of
these snRNAs and proteins to form small nuclear ribonucleoproteins (snRNPs). For the
splicing process, firstly U1l binds the 5’splice site (SS) consensus sequence of the pre-
mRNA, followed by U2 binding to the branch consensus sequence point. The branch
corresponds to a point where the 5’SS becomes ligated to the intron. Then a complex
formed by U4/U6 and U5 joins the spliceosome as Ul is released and a lariat-like
structure is formed with U5 binding the 3° SS and causing excision of the intron

(Cooper, 2000).

1.10.2 MicroRNA and siRNA

MicroRNAs (miRNAs) belong to a class of non-coding RNAs that have a post-
transcriptional gene expression regulatory function. miRNAs are single stranded RNAs
(ssRNA) approximately 19-25 nucleotides in length and were first identified in the
nematode C. elegans (Kim, 2005; Lee et al., 1993; Wightman et al., 1993), the founding
members being /in-4 and let-7. MiRNAs also occur in flies, mice and humans and
hundreds of these RNAs exist (He and Hannon, 2004) that act in combination with
RNA-binding proteins to bind to the mRNA 3’untranslated region (UTR), through base

pairing, and consequently gene expression is silenced by inhibiting translation. With the
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exception of miRNAs located on Alu-repetitive regions, which are transcribed by
RNAPIII, primary miRNAs are transcribed by RNAPII to form a primary (pri)-miRNA
molecule of hundreds to thousands of nucleotides long that is cleaved by the RNase III
enzyme Drosha to form a double-stranded (ds) hairpin-shaped precursor miRNA (pre-
miRNA; ~70-nt). pre-miRNA is transported to the cytoplasm of the cell and is cleaved
again by another RNase III enzyme, Dicer (Bernstein et al., 2001; Bushati and Cohen,
2007; Ketting et al., 2001; Tijsterman and Plasterk, 2004). Subsequently, Argonaute2
(Ago2) is recruited and forms a trimeric ribonucleoprotein complex designated RNA-
induced silencing complex (RISC) (Gregory et al., 2005; Liu et al., 2004; Maniataki and
Mourelatos, 2005). RISC and its target mRNA accumulate in processing-bodies (P-
bodies) where mRNA degradation happens (Liu et al., 2005; Pillai et al., 2005; Sen and
Blau, 2005). There are suggested biological function of miRNA targeting in
embryogenesis including germ layer formation, morphogenesis and organogenesis,
control of developmental timing, neuronal patterning, haematopoietic cell
differentiation, and cell proliferation and death (Brennecke et al., 2003; Chang et al.,
2004; Chen et al., 2004; Johnston and Hobert, 2003; Lee et al., 1993; Pauli et al., 2011;
Reinhart et al., 2000; Wightman et al., 1993; Yekta et al., 2004). Changes in the
expression profile of miRNAs have been detected in tumors; indeed miRNAs can act as
tumor suppressors such as miR-15a and miR-16-1or act as oncogenes such as miR-155
miR-17-92 (Calin and Croce, 2006). Another type of small RNA, siRNA, differs from
miRNA in that it can have several different sources and it cleaves target mRNAs that

are either endogenous or viral RNA (Forstemann et al., 2007; Tomari et al., 2007).

55



1.10.3 New classes of ncRNAs

1.10.3.1 Promoter-proximal short RNAs

Short RNAs around TSS of active protein-coding promoters, termed TSS-
associated RNAs (TSSa-RNAs) or promoter-associated short RNAs have been
identified, which are transcribed within 1.0-1.5 kb from the TSS and are smaller than
200 nt, some of them <22nt (Core et al., 2008; Kapranov et al., 2007; Seila et al., 2008;
Taft et al., 2009). Such RNAs are predominantly associated with active and CpG islands
promoters. Core et al study used a global run-on-sequencing (GRO-seq) assay, where a
ribonucleotide analog is added to BrU-tag, to confirm that RNAPII is actively engaged
in transcription (Core et al., 2008). Both studies found that short promoter-associated
RNAs are transcribed in the sense and unexpectedly in antisense direction too (Core et
al., 2008; He et al., 2008; Secila et al., 2008). TSSa-RNAs sense locate downstream of
the TSS and peak at around +0 and +50 nt whereas antisense ones are detected upstream
of TSS around -100 and -300 (Core et al., 2008; Seila et al., 2008). A relevant feature of
these short RNAs is their highly significant association with CpG islands (Flynn et al.,
2011; Seila et al., 2008). Another type of small RNA, identified up to 5 kb upstream of
promoter and designated “PROMPTs” have been found to be very unstable (Preker et
al., 2008). These transcripts are actively transcribed by RNAPII (Core et al., 2008) and

are not produced by Dicer, as they remain present in dicer-/- ESCs (Seila et al., 2008).

Given that short RNAs have been discovered around transcription start sites
(Core et al., 2008; Kapranov et al., 2007; Seila et al., 2008; Taft et al., 2009) and that
polycomb target genes are often associated with H3K4me3 (Bernstein et al., 2006a) and
RNA Pol II (Brookes et al., 2012; Stock et al., 2007), our laboratory hypothesized that

short RNAs are also produced from repressed polycomb target genes. Using
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microarrays, our laboratory identified short RNAs transcribed from the 5’ region of
protein-coding genes in human CD4+ T-cells. The previous studies (Core et al., 2008;
Kapranov et al., 2007; Seila et al., 2008; Taft et al., 2009) showed that short RNAs are
transcribed mainly from active genes, but the short RNAs identified in our laboratory
are transcribed from both mRNA-producing and non-mRNA-producing genes,
indicating that they are also transcribed from silent and polycomb-associated genes.
This set of silent genes contained RNAPII that was positionally associated with the

short RNAs.

1.9.3.2 Long non-coding RNAs (IncRNA)

The advent of microarray and next-generation sequencing technologies have
allowed genome-wide identification of thousands of new transcripts (Carninci, 2009;
Jacquier, 2009; Mattick et al., 2010). LncRNAs can be sense or antisense, and they can
also act in cis or in trans, as already exemplified above. As far as known, most of
IncRNAs are capped and polyadenylated and even though are not exported from the
nucleus to the cytoplasm like mRNA but have no or little open reading frame (ORF)
(Carninci et al., 2005). LncRNA show low sequence conservation except for a subset of
these RNAs at exons (Brockdorff, 2013; Brosius, 2005; Struhl, 2007). This fact
indicates that structure might be mainly responsible for ncRNAs activity rather than
sequence. LncRNA control processes like imprinting, such as Airn (antisense to Igf2r
RNA non-coding) and Kcnglotl (Kcnql-overlapping transcript 1); dosage
compensation as for Xist (X chromosome inhibition) (Nagano and Fraser, 2011; Wilusz
et al., 2009); gene regulation, which can be in cis as it is the case of the IncRNA at the
dihydrofolate reductase (DHFR) locus that binds to the DHFR promoter to inhibit its
expression, or in frans it is the case of HOTAIR (HOX antisense intergenic RNA) (Pauli
et al.,, 2011). They have also been linked to cell cycle regulation and pluripotency
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(Nagano and Fraser, 2011; Wilusz et al., 2009) and can be developmentally regulated
(Mercer et al., 2009). IncRNAs have also been found important in other cell types that
not ESCs, for example the long non-coding RNA named Braveheart that is required for

the cardiovascular lineage commintment (Klattenhoff et al., 2013).

A class of IncRNA is contained within intergenic regions and therefore
designated large intergenic RNA (lincRNA). LincRNAs can have a myriad of functions
(Geisler and Coller, 2013; Guttman et al., 2009; Guttman et al., 2011; Huarte et al.,
2010; Hung et al., 2011; Orom et al., 2010; Wang et al., 2011; Wilusz et al., 2008).
They exhibit a chromatin profile identical to active genes, thus being transcribed from
H3K4 and H3K36 methylated regions (Guttman and Rinn, 2012). Some of them have
enhancer-like function (Orom et al., 2010; Wang et al., 2011), and at least 30% of
lincRNAs interact with one of multiple chromatin-regulatory complexes (Guttman et al.,
2011). These RNAs have suggested functions in ESC pluripotency and differentiation
(Guttman et al., 2011; Pauli et al., 2011), for instance the lincRNA-RoR is a regulator of
reprograming of cells into induced pluripotent cells (iPSCs) (Loewer et al., 2010).
IncRNAs have also been found important in other cell types than ESCs, for example the
long non-coding RNA named Braveheart that is required for the cardiovascular lineage

commitment (Klattenhoff et al., 2013).

1.10.4 Polycomb-RNA interactions

An important characteristic of RNA is that not only can it interact with protein
complexes but it can also bind to chromatin bringing the possibility of ncRNA
functioning to target protein complexes to specific genomic sites (Guttman and Rinn,

2012). Although there is no evidence that ncRNAs are involved in the targeting of PcG
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proteins in Drosophila, RNA may form a linkage between PcG and chromatin in
mammals (Beisel and Paro, 2011). Recruitment of polycomb complexes to mammalian
target genes is still not well understood. However, mammalian PRC2 has been reported
to interact with a wide range of IncRNAs (Rinn and Chang, 2012; Wang and Chang,
2011) derived from intergenic and intragenic regions, and which have been suggested to

be PcG recruiters (Pandey et al., 2008; Rinn et al., 2007; Zhao et al., 2008).

Central to X-inactivation in female mammals (a process indispensable for
chromosome dosage compensation) is the cis acting ~17 kb X-inactive-specific
transcript (XIST) that accumulates on the inactive X-chromosome (Xi) (Brockdorff et
al., 1992; Brown et al., 1992; Plath et al., 2003). The first indication of a correlation
between PRC2 and the Xi was the observation of an enrichment of EED/EZH2 and
H3K27me2/3 on the Xi territory (Duthie et al., 1999; Mak et al., 2002; Plath et al.,
2003; Silva et al., 2003). Further experiments confirmed a correlation between XIST
expression and PRC2 recruitment (Kohlmaier et al., 2004; Mak et al., 2004; Plath et al.,
2003). XIST contains a structure called RepA (A-repeat region) embedded within XIST
intron 1. Rep A consists of A-rich spacer sequence followed by a 26-nt GC-rich core
sequence forming a double stem-loop that repeats itself 7.5x to form a structure of 1.6
kb (Brockdorff et al., 1992; Brown et al., 1992; Zhao et al., 2008). PRC2, particularly
EZH2, as shown by EMSA, binds to RepA through a conserved double stem-loop
(Zhao et al., 2008). However, the interaction is not very specific given that Ezh2 can
also interact with antisense RNA. Furthermore, RepA alone is not the key recruiter of
PRC2 as RepA-lacking XIST can also recruit PRC2 (Kohlmaier et al., 2004). The
localization domain of XIST, RepC, binds to YY1. YY1 also tethers to this non-coding
RNA, bringing it to X nucleation centre (Jeon and Lee, 2011). Inactive X chromosome
(Xi) is largely occupied by H3K27me3, and monoubiquitylation of H2A has also been
linked to Xi (Bernstein et al., 2006b; de Napoles et al., 2004; Smith et al., 2004).

Members of PRC1 have been shown to associate with Xi including most of the CBX
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members (not CBX4) (Bernstein et al., 2006b; de Napoles et al., 2004; Hernandez-
Munoz et al., 2005; Plath et al., 2004). CBX7, is particularly enriched in the inactive X
chromosome (Bernstein et al., 2006b). Recently, the chromatin remodeller ATRX has
been demonstrated to directly interact with RepA/Xist, which is required for PRC2

loading on XIST (Sarma et al., 2014).

Another PRC2-interacting ncRNA is the 2.2-kb HOTAIR (Hox antisense
intergenic RNA) located on human chromosome 12, which acts in trans (Gupta et al.,
2010; Rinn et al., 2007). HOTAIR originates from the HOXC locus but appears to
function to repress the HOXD cluster region on chromosome 2 by interacting with
PRC2, through its 5’-end, and adding H3K27me3 marks across a 40kb region (Rinn et
al., 2007). How HOTAIR is directed to its targeting sites is unknown. HOTAIR is over
expressed in some primary tumors; this overexpression induces genome-wide
retargeting of PRC2 and can be indicative of metastasis and poor prognosis (Gupta et al.,
2010; Kogo et al., 2011). This ability of HOTAIR to confer cellular invasiveness is
specifically dependent on PRC2 (Gupta et al., 2010). The HOTAIR 3’-end has been
found to interact with LSDI1, a component of CoREST/REST that has demethylase
activity against H3K4 (Tsai et al., 2010). It seems that IncRNAs may contain multiple
binding sites for different proteins, thus directing and combining different histone
modifications. Similar to HOTAIR, thousands of other IncRNAs have been identified in
different organisms that associate with chromatin remodeling complexes, including

PRC2, and this interaction is required for their function (Khalil et al., 2009).

Another PRC2-interacting IncRNAs is the 91kb transcript from the imprinted
potassium voltagegated channel, subfamily Q, member 1 (Kcngl) cluster, termed Kenql
overlapping transcript 1 (Kcnqlotl), located on mouse chromosome 7. In this case, the
cluster of paternal alleles is repressed by the expression of Kenqlotl, and deletion of
the Kcnqlotl promoter results in loss of imprinting of most genes of that cluster

(Fitzpatrick et al., 2002). Kenqlotl requires direct interaction of PRC2 with Kenqlotl
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ncRNA for spreading of H3K27me3 throughout the locus (Pandey et al., 2008).

BMI1 and CBX7 have been reported to repress the INK4b/ARF/INK4a locus, a
master regulator of cellular senescence in case of stress (Bernard et al., 2005; Gil et al.,
2004). This repression is mediated by ncRNA ANRIL (antisense non-coding RNA in
the INK4 locus), which binds to the CBX7 subunit of PRC1 through its chromo domain,
and causes repression in cis (Yap et al., 2010). ANRIL is an antisense noncoding RNA
that spans along 3040 kb of the INK4b/ARF/INK4a locus (Pasmant et al., 2007).
Human MOV 10, a putative RNA helicase previously implicated in post-transcriptional
gene silencing, associates with CBX7 and is required for repression of Ink4a/Arf and the

presence of H3K27me3 (El Messaoudi-Aubert et al., 2010).

In this introduction I have reviewed the involvement of the polycomb group of
proteins in animal development, their function and what is known about their
mechanism of action. It is still poorly understood how these proteins interact with
chromatin despite the advances in recognizing ncRNA as an intermediate. It is not
known how these RNAs are regulated, and how specifically they interact with
polycomb proteins. Although the functions of a subset of IncRNAs have been identified
and correlated with changes in gene expression, the majority of ncRNAs have no
assigned function, opening the possibility of new functions potentially linked with
protein binding. It is also being considered how environmental factors affect such RNA

functionality and regulation.
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Aims of this project

PREs are well defined in Drosophila allowing for their prediction in this
organism but not so well characterized in mammals due to lack of consistency found in
this sequence. However, it has been observed that they contain PRC2-interacting CpG
island and that PRC2 also interacts with RNA, leading to the hypothesis that these

might constitute features of mammalian PREs.

Some genes are regulated at the level of elongation and poised for activation. As
RNAPII and transcription positive marks are associated with polycomb-targeted genes,
I hypothesised that short RNAs are transcribed from DNA regions around the TSS of
many genes regulated by polycomb, and that these same regions might behave a PREs

like in Drosophila.

This project has two principal aims. Firstly, to investigate whether short RNAs
are transcribed from repressed polycomb target genes and whether this is a result of
polycomb activity. Secondly, to investigate whether the DNA regions that produce short

RNAs behave as PREs.
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Chapter 2 — Methods

2.1 RNA purification and fractionation

Total RNA was purified using TRizol was as follows: 1x10” pelleted cells per
millilitre of TRizol were dissolved by pipetting and vortexing, while lysate was
incubated for 5 min at room temperature (RT). 0.2 ml of chloroform was added, the
lysate shaken by hand for 15 seconds and incubated for Smin at RT. The organic and
aqueous layers were then separated by centrifugation at 12,000g for 15 min at 4°C.
0.5 ml of the top aqueous layer was pipetted into a fresh tube and 0.5 ml of
isopropanol was added. This was vortexed and RNA allowed to precipitate by
incubating at RT for 10 min, then pelleted by centrifugation at 12,000g for 15 min at
4°C. The supernatant was discarded and the pellet washed by adding 1ml of 75%
Ethanol, followed by vortexing and centrifuging at 7500g for 10min at 4°C.
Finally, pellet was dried for 5 min at RT and dissolved in RNase-free water
(Ambion). When required, total RNA was fractionated into long and short (<200 nt)
using a mirVana miRNA kit (Ambion) by following the manufacturer’s instructions.
Purified RNA was quantified using a nanodrop.

For short RNA purification using RNAzol, 1x10 cells were dissolved in 1ml
of RNAzol, vortexed and 0.4 ml of double distilled water added into the lysate. The
solution was mixed by manual stirring for 15 seconds and incubated for 10 min at
RT. Cell debris was pelleted by centrifuging at 12,000g for 15min at 4°C, and 1 ml
of the aqueous phase, containing total RNA, was transferred to a new tube. 0.4 ml
of 75% ethanol was added, solution was vortexed, incubated for 10 min, and
centrifuged at 12,000 g for 8 min at 4°C to precipitate long RNA. 1ml of supernatant
containing short RNA was pipette into a new tube and stored at -20°C. The long

RNA fraction was washed by adding 0.4 ml of 75% ethanol, vortexed and
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centrifuged 8,000 g for 3 min. Supernatant was discarded and the pellet washed a
second time. Residual supernatant was removed with a micropipette and RNA
resuspended in RNase-free water without drying. For shrt RNA purification, 0.8 ml
of isopropanol added to the samples, vortexed and precipitated at -20°C for 30
min, then centrifuged at 12,000 g for 20 min. The short RNA pellet was washed
twice in 0.4 ml of 70% isopropanol, centrifuged at 8,000 g for 3 min, and re-
suspended in water the same way as long RNA.

RNA was treated with DNase-turbo (Ambion) at 37°C for 30 minutes. For
total purified RNA, DNase was stopped by addition of 1/10" volume of terminator
mix (0.1M EDTA pH 8.0, 1 mg/ml glycogen). Total and short DNased RNAs were
purified by ethanol precipitation at -20°C for 30 min, then centrifuged and washed
as described above. Total, long, and short RNAs were examined with an Agilent
Bioanalyzer to confirm RNA quality and fractionation size. Short RNA was
purified from PBMCs, neurons and ES cells with TRizol and from MSC and drug-
treated CEM cells with RNAzol.

In a test experiment to analyse differences between the two methods, RNA
was purified in parallel from CEM cells with TRizol and RNAzol. Equivalent
amounts of each fraction purified with RNAzol were also pulled together and re-

fractionated using the mirVana miRNA Kkit.

2.2 Northern blotting

5 ng of DNase-treated short RNA was mixed with loading buffer (Ambion)
and heated to 95°C for 5Smin, and then loaded into 15% acrylamide-7M Urea TBE
Novex gels (Invitrogen). Denatured RNA was resolved in 1X TBE in parallel with

radio-labelled Century and Decade markers (Ambion) for 1hr at 200V. The RNA
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was electroblotted to a Nytran Supercharge membrane (Whatman) for 1.5hr with a
starting current of 200mA. 0.5X TBE was used as the running buffer. Fixation to
the membrane was performed by UV-crosslinking using 1200mJ, followed by
baking it for 1hr at 80°C. The 49-nt northern probes used to detect the short RNAs in
human cells (PBMCs, SH-SY5Y) were designed based on the 60-nt microarray
probes (Table 3). The mouse probes were chosen based on homology to the
human microarray probes. Probes to detect novel short RNA in the HOXD11.12
PRE were designed across the entire element (Table 4) based on the DNA sequence
extracted by Woo et al. (2010). The probes were produced by Integrated DNA
Technologies, are 49 nucleotides long, and contain a 3’ StarFire extension
system for labelling. Radioactive labelling was carried out according to
manufacturer’s instructions, and MicroSpin G-25 (GE HealthCare) columns were
used to purify labelled probes. Before probing, membranes were pre-hybridised in
UltraHyb buffer (Ambion) at 35°C for 30 min. Labelled and purified probes were
added into the buffer, and left to hybridize at 35°C for 16hr. The washes were
performed with a solution composed of 2X SSC and 0.5% SDS, and consisted of
three washes at 35°C for 5min each with a fourth wash at 42°C for 5-10min. The
membranes were then exposed to a phosphor screen for at least 48hr. The
phosphor screen was scanned wusing a STORM phosphoimager
(Molecular Dynamics). Blotting for the murine knockout cell lines was performed

with the help of lab colleague Aditi Kanhere.
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2.3 Cell culture

Mesenchymal stem cells

Immortalised Mesenchymal Stem Cells (MSC) (Funes et al., 2007) were
cultured at 37°C and 5% CO2 in MesenCult® MSC Basal Medium (Human)
with 10% MesenCult® Mesenchymal Stem Cell Stimulatory Supplement (Human)
until ~60% confluency. Human primary MSC have limited proliferative potential in

vitro.

Neuronal cells

SH-SYSY cells were cultured in DMEM with 10% FCS until 40-50%
confluent and then terminally differentiated in DMEM with 5% FCS and 10pM

retinoic acid (Sigma) for 7 days.

PBMC purification

Peripheral blood mononuclear cells were isolated from standard buffy coat by
gradient centrifugation using lymphoprep. Blood was diluted 1 in 4 HBSS. Lymphoprep
and HBSS were warmed to 37°C. 15 ml of Lymphoprep were added to six 50 ml Falcon
tubes and 35 ml of diluted buffy coat was carefully layered on top and centrifugated at
1600 rpm, brake zero, for 30 minutes. Interphase layer was removed into a new tube.
Then spun at 1600rpm for 10 minutes, brake nine; supernatant discarded and pellet

gently resuspended in 50 ml HBSS.
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CEM cells

CEM were grown in RPMI-1640 medium supplemented with 10% Fetal calf

serum (FCS) and 1% streptomycin/ Penicillin.

Murine ES cells

The growth of Ezh2 knockout cell lines (Ezh2-1) (Landeira et al., 2010; Su et
al., 2003) was performed by Filipe Pereira and Cynthia Fisher, while the growth of
Ring1B knockout cell lines (ES-ERT2) (Endoh et al., 2008; Stock et al., 2007) was
carried out by Emily Brooks. Murine ES differentiation into motor neurons (Wichterle

et al., 2002; Wichterle and Peljto, 2008) was accomplished by Warren Whyte.

2.4 Quantitative reverse-transcription PCR

Total RNA was purified from the mouse ES cell differentiation stages,
Ringl1B and Ezh2 knockout cell lines, and drug treated CEM cells, and treated
with DNase turbo. Samples were then reverse transcribed with SuperScriptll
(Invitrogen) primed with oligo-dT or random primers for RNA extracted from CEM
cells for the RNAPII inhibition study described below. Controls with no reverse
transcriptase were performed to ensure that qPCR products are cDNA derivates.
Samples were subjected to SYBR green quantitative PCR (Qiagen) containing 5-15
ng cDNA and a primer concentration of 300nM. Change in the expression of
Ybx2, Msx1, Hes5 and Pcdh8, in the murine cell lines, was calculated relative to
day 0 and normalized to Actin using the formula ‘gene of interest’/Actin. The amount
of nascent Actin RNA in the RNAPII inhibition experiment was measured by

comparing the Ct to that of 5S rRNA using the formula 2(C!(3S RNA) = Ct(p-Actin))
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2.5 Chromatin immunoprecipitation

The Chromatin immunoprecipitation (ChIP) protocol followed that of Lee and
colleges (Lee et al., 2006). MSC were grown as described above and crosslinked by
addition of 1% formaldehyde to the culture medium for 10 minutes at room
temperature. Formaldehyde was quenched with 0.125M of glycine, the cells washed
twice with cold PBS, scraped from the plate surface, washed twice with cold PBS and
then flash frozen and stored at -80°C. Cells were lysed by re-suspension in lysis
buffer 1 (50mM Hepes KOH pH7.5, 40mM NaCl, ImM EDTA, 10% glycerol,
0.5% IGEPAL CA-630, 0.25% Triton X-100) rocked for 10 min at 4°C, centrifuged
and the entire process repeated with lysis buffer 2 (10mM Tris pH 8, 200mM
NaCl, ImM EDTA, 0.5mM EGTA). Extracted nuclei were re-suspended in buffer
3 (1I0mM Tris pH 8, 100mM NaCl, ImM EDTA, 0.5mM EGTA, 0.1% sodium
deoxycholate, 0.5% N-lauryl sarcosine) and sonicated on ice at 24W for 5 minutes
total (pulses of 30s separated for gaps of 1 minute) with a Misonix Sonicator 3000.
Complete protease inhibitor (Roche) was added to each buffer. 100 ul Dynal
Protein G magnetic beads were coated with 10 pg of respective antibody by 8 hr
incubation at 4°C, and washed. Antibodies used were: H3K27me3 (Abcam ab6002),
H3K4me3 (Abcam ab8580), and H3 (Abcam ab1791). Sonicated cell lysate (whole
cell extract) from 5x10"7 MSCs was immunoprecipitated overnight with the
antibody-coated beads at 4°C. 100 ul of whole cell extract was preserved to be
used as a control. Beads were washed 5 times with RIPA buffer (25mM Tris-HCL,
150mM NacCl, 1%NP-40, 1% sodium deoxycholate, 0.1% SDS) and once with TE
containing 50 mM NaCl. To elute the immunocomplex from the beads these were
incubated at 65°C for lhr with vortexing every 10 minutes, and then pelleted. The

supernatant was then left incubating for an additional 6 hr in order to reverse the
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protein-DNA crosslinks. Control whole cell extract was also reverse crosslinked.
Samples were then treated with 8 pl RNAseA (10 pg/ul), and 4 pl proteinase K
(20 pg/ul). Immunoprecipitated and whole cell extract DNA were purified by
phenol:chloroform:isoamyl alcohol phase separation and ethanol precipitation and
then quantified using a nanodrop. Quantitative PCR (qPCR) was performed using the
SYBR green PCR (Qiagen) system. Samples contained 5-15 ng cDNA and a primer
concentration of 900 nM for HOXDI11.12, 600 nM for HOXCS, and 300 nM for
Actin primers. To quantify ChIP vs input DNA, serial 1/10 dilutions of whole cell

extract (WCE) were prepared to construct a standard curve.

2.6 RNA secondary structure

The stem-loop-stem structure motif in RepA interacts with PRC2 (Zhao et
al., 2008). Using the RepA RNA structure as a model, prediction of RNA
structures was performed with the help of Aditi Kanhere. Structures were identified
within 200nt of sequence surrounding probes that detected short RNAs using
RNAmotif (Macke et al., 2001). Free-energy structures were predicted using

RNAfold (Hofacker and Stadler, 2006).

2.7 RNA polymerase II inhibition

CEM cells were grown to confluency ( 1x10° cells/ml), and 1x108 cells were re-
suspended in 100 ml of medium per treatment. Cells were treated with 10 pM
Flavopiridol (4.56mM stock concentration; Invitrogen), or Spg/ml ActinomycinD
(10mg/ml stock concentration; Sigma) for 10 hours. A control sample received no
drug treatment. One hour after adding the drugs, 2ml of cell suspension were aliquoted

to use as a control for drug inhibition of RNAPII by stimulating the cells to
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differentiate, which was accomplished with 50 ng/uL. of PMA and 500 ng/ pL of
Ionomycin added into one ml of each sample, the other one ml was used as a control.
Therefore, after the 10 hours treatment, control samples for drug inhibition were
stained with anti-CD69-PE antibody (Miltenyi). First cells were washed in PBS
containing 4% FCS, 5 pL antibody were added and incubated for 15 min at 4°C in the
dark. Cells were crosslinked with 2% formaldehyde and washed in PBS before being
analysed by flow cytometry.This will allow the drug to inhibit for the transcription of
mRNA including CD69. After drug treatment, test cells were centrifuged at
12,000rpm for 5 min and resuspended in RNAzol for a final concentration 2x107

cells/ml.

2.8 Cloning

The HOXDI11.12 PRE was identified from Woo et a/ (2010), and potentially
new PRE sequences were identified from regions with short RNAs flanked by
H3K27me3 peaks. Primers underlying the H3K27me3 peaks were designed to
amplify these regions by PCR (Table 2). The sequences between each of the two
peaks were amplified from genomic DNA from human PBMCs. Pfx50 or Pfu
DNA polymerases (Invitrogen) were used because they produce fragments with
blunt ends. The fragment sizes were confirmed by gel electrophoresis, then
purified and ligated with T4 ligase (Promega) into the pCR-Blunt Vector
(Invitrogen). A ligation control was performed with water. The ligation products
where transformed into TOP10 E. coli competent cells (Invitrogen) by heat shock.
Cells were grown in Luria-Bertani broth (LB) at 37°C overnight, and the plasmids
were extracted with Miniprep Kit (QIAgen). The presence of insert and orientation
was checked by sequencing. The subcloned inserts were separated from the pCR-

Blunt vector by digestion with Xbal for MSX1, Spel and Xbal for YBX2, and Spel
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and Nhel for RASLI12, all have compatible overhang ends. To linearise the
luciferase vector, YYlpLuc was digested with Nhel (Promega). Following 2hr
digestion, the vector was treated with CIAP (Promega) to avoid self- ligation.
Presence and orientation of insert were checked by sequencing. Ligation,

transformation and plasmid purification were performed as above.

2.9 Deletions in D11.12 PRE

The northern blot probes that detected short RNAs corresponded to a DNA
sequence of 150 base pairs. To delete this short RNA sequence, the region of
HOXDI1.12 upstream of the short RNA area (5°D11.12) from HOXDI11.12
YYlpLuc was amplified to produce a fragment with recognition sites for Sacl at one
end of PCR product and Nhel at the other end. The 5’HOXD11.12 fragment and empty
YYlpLuc vector were digested with these enzymes, ligated together, and the
resultant clone linearized with Agel and Nhel. The HOXD11.12 region downstream
of short RNA (3’HOXD11.12) was amplified with primers enclosing recognition sites
for Agel and Nhel, and ligated into the vector containing the 5’HOXDI1.12.
HOXDI1.12 with deleted short RNA sequence (AshortRNADI1.12) was
confirmed by sequencing. HOXD11.12 PRE with deleted conserved region was
obtained from Woo et al (2010). Disruption of short RNA secondary structure was
performed using site directed mutagenesis, following the QuikChange protocol
(Stratagene) (Liu and Naismith, 2008). According to this method, forward and reverse
primers align only for 17 nt (primer-primer complementary sequence; pp) and the non-
overlapping (no) comprises a longer sequence that requires a higher melting
temperature. A mutation was created for each first and second short RNAs of
HOXD11.12 consisting of a 10nt long change in DNA sequence located on the pp
region of each primer, designed using RNAFold to search for a mutation that would

disrupt the secondary structure. 30 ng of template DNA (D11.12pYY 1Luc) were used
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in a 50 pL reaction with Pfx Accuprime polymerase. PCR cycles used for the first and
second mutation were as follows: 15 times (95°C, 1min; Tm no -5°C, 1min; 68°C, 8min)
plus Tm pp -5°C, Imin and 68°C, 30 min. 10 uL of PCR reaction plus loading buffer
were ran by gel electrophoresis (0.8% agarose) using template plasmid as a control to
confirm amplification. After the first cycle and before the second one the plasmid was
cloned into TOP10 E. coli and isolated. Samples were sequenced to check for any

unwanted mutation, and subsequently miniprepped.

2.10 Luciferase assay

The following procedure is adapted from the work of Woo et al. (2010). The
parental pTranslucent (pLuc) (Panomics) expresses a firefly luciferase reporter gene
from a Herpes simplex virus thymidine kinase promoter, but has low expression
levels (Woo et al., 2010). In order to promote luciferase expression, another vector
was used with an YY1 enhancer sequence introduced upstream of the promoter
(YY1pLuc). New PREs and D11.12 PRE were inserted immediately upstream of
the YY1 enhancer. Transfected constructs were as follows: pLuc, YY1pLuc, D11.12
YYIpLuc, AshortD11.12 YYl1pLuc, and control, pIRESneo3 LTR C20orfl12mut
Luc, a control previously used in our lab 3x10° cells were seeded into each well of a
96-well plate. Cells were transfected with Fugene HD (Roche) 12 hrs later
using a 6:2 Fugene:DNA ratio and adding to each well 75% of standard
volume. The Renilla luciferase plasmid (pRL-TK) (Promega) was used as the
assay control. Both luciferases were measured with the Dual-Luciferase Reporter
Assay System (Promega) 48 hr post-transfection. Results were first normalized to
pRL-TK and then further normalized so that pLuc RLU represented 0% activity and

YY1pLuc 100%.
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Chapter 3 — Regulation of short RNA transcription at
polycomb target genes

3.1 Introduction

The small RNAs identified by Seila et al. (2008) and Core et al. (2008) were
detected in ESCs and cell lines. Our laboratory also detected thousands of short RNAs
from promoter, introns, and exons of protein-coding genes of human CD4+ T-cells
indicating that production of small RNAs is a common feature of the transcriptome of
somatic cells (Kanhere et al., 2010). Short RNAs detected in our laboratory are
concentrated at 700 bp either side of the TSS, are 50-200 bp long, are from sense strand,
and some of them were located on the same genes as TSSa-RNAs but on different
positions. Furthermore, they could be detected from both active and silent genes equally,

whereas only small RNAs have been previously detected only at active genes.

Concordant with production of short RNA, RNAPII was located at the site of
these short RNAs. H3K4me3 was also found present at the same location as RNAPII on
these silent genes, with H3K27me3 peaks flanked by RNAPII and H3K4me3. These
features correlate with described transcriptional pausing, a common mechanism of
regulating polycomb-target genes. These results show that these short RNA-producing
silent genes are targets of polycomb. In Drosophila, Polycomb often targets TSSs with
a stalled RNAPII and is linked to the production of short RNAs (Enderle et al., 2011;
Kharchenko et al., 2011).

Using RepA — the Xist RNA element responsible for PRC2 binding — as a
positive control, our laboratory utilized electrophoretic mobility shift assay (EMSA)
and RNA immunoprecipitation (RNA IP) to successfully demonstrate that short RNAs
also interact with PRC2. Furthermore, our laboratory has identified SUZ12 as the
binding subunit, and that binding is dependent on the secondary structure of the short

RNAs. SUZI12 was not observed to bind to the RepA sequence encoded by ssDNA,
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dsDNA or a RNA-DNA duplex. This interaction was also true in living cells and when
incorporating the short RNA in the HIV LTR and submitting it to luciferase activity it
lead to gene repression in cis.

Given the production of short RNAs at paused polycomb targeted genes, and that
PRC1 inhibits RNAPII elongation through H2A ubiquitination, we hypothesized that
short RNAs are a by-product of polycomb activity and therefore, dependent on
H3K27me3 and H2AKI119ub. Furthermore, polycomb-tarfeted neuronal genes
constitute a subset of polycomb targets, which means that as ESCs differentiate to
primary motor neurons (PMN) and the genes becomes activated short RNAs should

resolve.

3.2 Results

3.2.1 Purifying different lengths of short RNA

The RNAs identified in our laboratory are short in length. RNA purification
begins with total RNA extraction, followed by fractionation which can be accomplished
by two methods: TRIzol or RNAzol. In order to assess whether TRIzol and RNAzol
methods of RNA purification are equivalent, RNA was purified from a CEM cell line
using the two methods in parallel. TRIzol purifies total RNA, which then requires
fractionation using the mirVana system, while RNAzol purification separates short (<
200 nt) and long RNA fractions in one step. To better address any possible
difference between the two methods, RNA was purified with RNAzol alone,
with TRIzol an mirVana and thirdly, by pooling equal proportions of the
short and long RNA fractions purified by RNAzol back together and re-fractionated
using the mirVana system. Northern blotting for short RNA from HOXC6 has been
shown to produce short RNA in T-cells and MSC. This blotting revealed that the short
RNA fraction purified directly with RNAzol lacks the ~200nt short RNA that are

present in RNA purified with TRIzol and mirVana. This RNA can be observed when
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long and short RNAzol fractions are pooled together with long RNA and re-
fractionated through total RNA purification with the mirVana system (Figure 6).
Therefore, ~200 nt RNAs fractionate into the long RNA fraction upon purification via
RNAZzol. It was consequently determined that TRIzol and mirVana were most suitable
for subsequent experiments as it was possible to maintain a greater ranger of short RNA
species.

HOXC6
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Figure 6: Test for the fractionation of small RNA by different methods. Northern blotting in
CEM cell line to compare two different methods of RNA purification and short RNA fractionation:
A two step method involving first total RNA purification (with TRIzol) and then fractionation (with
mirVana); and the other method that purifies and fractionates in a single step (with RNAzol).
Lane 1 — short RNA purified with RNAzol, Lane 2 — short RNA purified with RNAzol, the two
fractions were pooled together and re-purified with the mirVana system, Lane 3 — short RNA
purification with TRIzol and the mirVana system.

3.2.2 Short RNAs transcribed from silent genes are conserved between

human and mouse

Our laboratory has previously detected short RNAs in primary resting cD4”"
T-cells. It was first verified whether short RNAs could indeed be produced from the
promoter region of silent genes in mouse ESCs. Moreover, conservation is a sign of
functional significance. To analyze this, H3K27me3 and PRC2 ChIP-Chip data from
Boyer et al. (2006) were used to identify genes targeted by Polycomb in murine ES

cells. These set of genes was compared to the set of genes producing short RNAs
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identified in T-cells, to select for common genes silenced in both cells types and to
identify short RNA sequences conserved between human and mouse (performed by
laboratory colleague Aditi Kanhere). Probes for northern blotting were designed to
detect murine Pcdh8, Ybx2, Hes5 and MsxI short RNAs. The blots showed short
RNA bands for all these genes, therefore I have demonstrated that they are also
transcribed in murine ES cells (Figure 7A and B). This supports strong evidence that
production of short RNAs at Polycomb targets is conserved between these mammalian

species and between ES cells and T cells.
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Figure 7: Short RNA is conserved between human and mouse. (A) Northern blotting for
detection of short RNAs extracted from human CD4+ T-cells. RASL12, YBX2, PAX3, HOXCES,
HOXA7, C200rf112, BSN, HES5, NKX2-1, MARK1, and NKX2-2 are repressed in this cell type.
The size of markers is shown on the left side in nucleotides. Short RNAs are sized around 200—
50 nt on the probed genes. (B) Northern blotting for detection of short RNAs extracted from wild-
type murine ES cells. Pcdh8, Ybx2, Hes5 and Msx1 genes are repressed in murine ES cells.
The size of markers are shown on the left side in nucleotides. RNAs are sized around 100 nt on
exons of Pcdh8 and Msx1; and around 200 nt for Ybx2 exon and Hes5 promoter. Short RNA
production is therefore shown to be conserved from mouse to human.
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3.2.3 Short RNA transcription is independent on polycomb activity

Given that Polycomb-repressed genes contain stalled RNA polymerase, due to
ubiquitination of H2AK119, short RNA might be a by-product of PRC2 repressive
activity. To evaluate the validity of this assumption, further work was carried out in
collaboration with Amanda Fisher’s group. They have generated a murine ES cell line,
Ezh2-1.3, that uses a tamoxifen-inducible cre-lox system to create a null mutation to
delete the catalytic SET domain of Ezh2, which was subsequently cultured in the

presence of tamoxifen for five days by Filipe Pereira.

To confirm that the inducible knockout is effective, H3K27me3 and Ezh2 were
analysed for five days after tamoxifen treatment by western blotting (performed by
Keijo Viiri). As indicated in the western blot, the Ezh2 SET domain is abolished one
day after addition of tamoxifen and a truncated form of Ezh2 appears, which is
accompanied by loss of H3K27me3 (Figure 8A). In contrast, blotting for short
RNAs showed that short RNAs do not show a change in abundance four to five
days after adding tamoxifen (Figure 8B). 5S rRNA was used as loading control. In
order to confirm that short RNA transcription are also unaffected by loss of PRC2
function, JARID2"" murine knockout from Fisher’s laboratory was utilized (Figure 8C).
Northern blotting revealed that short RNAs are also transcribed from Msx1 and Hes5 in
these cell lines, consistent with the results from the Ezh2 deletion experiment. These
results demonstrate that production of short RNA is indeed independent and
upstream of H3K27 methylation.
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H2A ubiquitination has been suggested to be involved in polymerase stalling

(Stock et al., 2007), implying that this might be the polycomb component responsible

for the short RNA production. H2A ubiquitination is catalysed by the PRC1 subunit

Ring1B. A murine ES cell line, Es-ERT2, was used to test the dependency of short

RNAs on H2AK119ub. Es-ERT?2 contains a tamoxifen-inducible conditional knockout

of the RinglB and is also homozygous null for the functional homologue RinglA.

Following addition of tamoxifen, cells are progressively depleted of H2Aub but

preserve the overall levels of PRC2 and H3K27me3 (Endoh et al., 2008; Stock et al.,

2007). These cells were grown by Emily Brooks (MRC CSC). Blotting for short RNAs

at Hes5, Msx1, and Ybx2, showed that loss of Ringlb had no effect on short RNA

transcription (Figure 8D). Es-ERT2 and Ezh2-1.3, cells could have been treated with

tamoxifen for more than 3 or 5 days respectively; however, longer treatments induce

cell differentiation because of the activation of differentiation-associated genes. This

indicates that short RNAs are transcribed independently of RinglB activity and

independently of the H2Aub-mediated block to elongation and are not degraded within

the time-frame of tamoxifin induction.
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Figure 8: Transcription of short RNAs from cells lacking Polycomb subunits. (A) Western
blotting for H3K27me3, and Ezh2, in Ezh2-1.3 cell line (Ezh2 knockout) (by Keijo Viiri) to
measure the efficacy of deletion of the SET domain, which contains histone methyltransferase
activity. Measurements were made before the addition of tamoxifen (day zero) and over a time
course of five days after addition of tamoxifen. Two days after the addition of tamoxifen, Ezh2 is
mutated and H3K27me3 disappears. Antibody against H3 was used as a loading control. (B)
Northern blotting of short RNA in murine Ezh2-1.3 cell line at the genes Ybx2, Msx1, and Hesb.
Short RNAs were measured in a 5-day treatment course after addition of tamoxifen. Day zero
was used as a control before addition of tamoxifen. Production of short RNA is maintained
constant along the time course treatment. Short RNAs have a size of around 200 nt in Hes5 and
Ybx2, and around 90 nt for Msx1.
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Figure 8: Transcription of short RNAs from cells lacking Polycomb subunits. (C) Northern
blotting for short RNA transcribed from Msx1 and Hesb in Jarid2 knockout cells, wild type (+/+),
JARID2 heterozygous (+/-), and JARID2 homozygous (-/-) from JM8 mouse ESCs. Short RNA
was purified using a single step method with RNAzol. (D) Northern blotting in ES-ERT2 (Ring1B
knockout) cell line. Short RNAs were measured over a three day time course with and without
(control) addition of tamoxifen. Short RNAs have a size of around 200 nt in Hes5 and Ybx2, and
around 90 nt for Msx1. Therefore, production of short RNAs is independent of polycomb
repressive activity. 5S rRNA was used as a loading control.
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To measure whether polycomb loss resulted in derepression of these short RNA-
producing genes, mRNA expression was measured at these genes by qPCR (Figure 9A
and B). RNA was reverse-transcribed using oligo-dT primers and qPCR performed with
primers that spanned an intron. It was found that none of the genes were upregulated
upon loss of EZH2 and only Msx/ increased expression upon loss of RinglB.
Therefore, short RNA production remains constant even upon gene derepression caused
by loss of polycomb binding. This means that the short RNAs act upstream of

Polycomb activity and are not a by-product of the repressive state it maintains.

To verify that short RNA expression remains constant even if loss of
Polycomb activity causes mRNA induction, expression data (Shen et al., 2008) was
sought to identify genes that are derepressed after Ezh2 deletion. Pax3 increases in
expression in Ezh2-1.3. Northern blotting shows that short RNA remains constant in
Ring1B knockouts (Figure 9C). Therefore, even at genes that are upregulated upon
polycomb loss, short RNA production remains constant. It can be concluded from these
experiments that PRC1 and PRC2 does not function to regulate short RNA production
at polycomb target genes. Also, microarray data could have been compared with ChIP-
Seq data to identify polycomb target genes that are up-regulated upon Ezh2 and Ringl
deletion before conducting the experiments to select only for genes that polycomb

targets and which are derepressed upon polycomb removal.
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Figure 9: mRNA expression at genes producing short RNAs. (A) Quantitative PCR to
measure changes in mRNA levels in the genes Hesb5 (grey), Ybx2 (white), and Msx17 (black) in
Ezh2-1.3 cells upon knockout of the polycomb Ezh2 subunit of PRC2. Measurements were
performed during a 5-day treatment with tamoxifen. Messenger RNA levels were normalised to
Actin and to the time zero control. (B) Quantitative PCR for measurement of mRNA in ES-ERT2
cells before and after addition of tamoxifen to induce deletion of Ring1b, showing that only Msx1
is upregulated. (C) Northern blotting for short RNA transcribed from Pax3, which is derepressed
in Ring1B knockout cell lines.
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3.2.4 Short RNAs are lost from polycomb target genes active in other cell

types

Evidence from our laboratory indicates that short RNAs might bind to the

PRC2 complex. If short RNAs are necessary for Polycomb repression one might

expect that loss of Polycomb gene activation is accompanied by loss of short RNAs.

Gene Ontology describes the function of genes and the relation between them. To

assess a possible correlation between transcriptional states and short RNA, we made

use of the fact that many PRC-targeted silent genes in T-cells have a neuronal function

using Gene Ontology analysis (performed by Aditi Kanhere). Therefore, predictions

were made for genes repressed in T-cells but active in neurons using gene

expression data in T-cells (in house data) and looking at the function of the gene.

RNA from the neuroblastoma cell line SH-SY5Y was used in northern

blots to look for the absence of short RNAs at genes silent in T-cells and active in

neurons. As expected, the neuronal genes FOXN4, HEYI, MARKI, NKX2-2, BSN and

HESS5 show short RNAs in PBMCs but in the SH-SY5Y neuronal cell line these are

reduced (Figure 10A). On the other hand, short RNAs are expressed at equal levels in

both PBMCs and neuroblastoma cells for the genes YBX2 and NKX2-1, which are

silent in both cell types. These results suggest that short RNAs are indeed a

characteristic of Polycomb-silenced genes.
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To observe the loss of short RNA during gene activation in a dynamic system,

murine ES cells were differentiated into motor neurons (MN) (by Warren Whyte in

Rick Young’s lab) by addition of retinoic acid (RA) into embryonic bodies (EB)

(Wichterle et al., 2002). Hes5 and Pcdh8 are repressed in ESCs but activated in MN

as confirmed by the increase in mRNA levels analysed by quantitative reverse-PCR

(qPCR) (Figure 10B). Using northern blotting, it was found that short RNAs gradually

decrease as the genes are activated (Figure 10C). For Hes5, the progressive loss of

the ~190 nt RNA is accompanied by the appearance of smaller RNAs, suggesting that

there is degradation of the short RNA. Supporting these results, our laboratory has

shown that short RNAs interact with PRC2, hence depletion of short RNAs could

destabilise the association of PRC2 with chromatin allowing gene activation. It is

interesting to note that gene activation during differentiation was coupled to a loss of

short RNAs (Figure 10C) but gene activation (of Msx1 and Pax3) due to polycomb

deletion was not (Figure 8B and D). Therefore, perhaps short RNAs may only disappear

upon natural physiological cell differentiation processes.
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Figure 10: Loss of short RNAs upon gene activation. (A) Northern blotting for short RNAs at
the neuronal genes FOX4, HEY1, NKX2-1, MARK1, BSN, and HESS5. These genes are active in
SH-SYS5Y neuronal cell line, and repressed in PBMCs. YBX2 and NKX2-1 are repressed in both
cell types, and were used as controls. P — Peripheral blood mononuclear cells (PBMCs); N —
SH-SY5Y neuronal cell line. (B) Quantitative PCR showing increased levels of transcription of
Hesb (grey) and Pcdh8 (white) during ES cell differentiation to motor neurons. Primers were
designed at the 3’ end of each gene. mRNA levels were normalised to Actin. EB, embryoid
bodies (day 2); EB+RA, EB treated with retinoic acid (day 2, 8 hours later); NPC, neuronal
precursor cells (day 3), PMN, motor neuron precursors (day 4); MN, motor neuron (day 7). (C)
Northern blotting for short RNA from Hes5 and Pcdh8, which become activated during the step-
wise 4-day differentiation to PMN.(D) Density of the major band on the northern blots of figure 10C. Data
was analysed using the software TotalLab Quant.
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3.2.5 Short RNAs are stable transcripts

A previous report has shown that the RNAPII present at polycomb-target genes
is phosphorylated at Ser-5 but not at Ser-2 (Stock et al., 2007). In order to demonstrate
that this is also true of the RNAPII transcribing the short RNAs, CEM cells were
treated with Flavopiridol (FLAV), an inhibitor of P-TEFb phosphorylation of Ser-2,
and Actinomycin D (ACTD), which inhibits RNAPII initiation. It was first confirmed
that these compounds were specific for RNAPII by performing qPCR on RNAPII-
transcribed B-Actin 5’end mRNA using primers for the first exon and first intron, and
RNAPIII-transcribed 5S rRNA, as well as via analysis of RNAPI-transcribed 18s and
28S rRNA integrity using a Bioanalyser, in which peaks at the corresponding sizes
were observed (Figure 11A and B). To confirm that the drug treatment was efficient,
expression of the activation marker CD69 was stimulated by PMA and Ionomycin. If
the drugs are inhibiting the transcription of mRNA, then the cell should not be
capable of upregulating CD69. FACS analysis for stained CD69 confirms that drug
treated cells show a drastic reduction compared to non-treated cells (Figure 11C).
Short RNAs were then purified from control and drug-treated cells and blotted for
NKX2-1 and YBX2. These two genes were chosen since previous experiments from the
laboratory of Richard Jenner showed that they have a good short RNA signal in this cell
line. Hypothesizing that short RNAs are products of initiated but not fully-elongating
RNAPIIL, no changes were expected in short RNA expression in Flavopiridol treated
cells, and reduced expression in Actinomycin D treated cells. However, short RNAs
were still found to be expressed (Figure 11D) after treating the cells with
Actinomycin D. These results indicate that short RNAs are stable transcripts and that
such types of analyses may not be suitably informative for RNAPII phosphorylation
state. It is postulated that RNAPII is the polymerase most likely responsible for short
RNA transcription, considering its presence at polycomb target genes (Kanhere et al.,
2010; Stock et al., 2007). However, these results also open the possibility that short

RNAs are rather transcribed by RNAPIII or RNAPI.
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Figure 11: Effect of inhibition of RNAPII transcription on short RNA transcription. (A)
Bioanalyser traces showing integrity of RNA extracted from CEM cell treated with Flavoporidol
(top), Actinomycin D (middle), and no drug control (bottom). (B) Quantitative PCR showing
reduced levels of B-Actin nascent RNA relative to 5S rRNA in drug-treated cells. Flav —
Flavopiridol; ActD — ActinomycinD. (C) FACS analysis of percentage of control and
PMA/lonomycin stimulated CEM cells expressing the T-cell receptor CD69. Upon inhibition of
RNAplI with Flavopiridol (Flav) and Actinomycin D (ActD) the cells cannot efficiently produce
CD69. (D) Northern blotting for short RNA in CEM cells treated with Flavopiridol (Flav),
ActinomycinD (ActD), and control with no drug. NKX2-1 and YBX2 genes are repressed in the
CEM cell line.
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3.3 Discussion

3.3.1 Short RNAs are transcribed in the absence of Polycomb

When levels of H3K27me3 or H2Aub are lost by knocking-out their
respective catalytic proteins, short RNAs transcribed from these repressed Polycomb-
target genes remain unchanged. This occurs even when PcG knockdown results in de-
repression of some PRC targeted genes. Since Hes5 and Ybx2 do not show an increase
in mRNA expression upon RinglB knockout, and Hes5, Ybx2 and MsxI are not
upregulated upon Ezh2 knockout, ChIP-qPCR could have been used to confirm that
these genes are polycomb targets. The reason the three genes did not behave in the same
way upon polycomb knockout could be due to different physiologic characteristics,
such as lack of activators for Hes5 and Ybx2, or RNA might be transcribed from these
genes upon polycomb knockout, but not be fully processed. Regarding the use of Pax3
to confirm short RNA expression upon mRNA up-regulation upon polycomb knockout,

ChIP-qPCR could have been performed to confirm Ezh2 binding at Pax3.

JARID?2 is probably involved in PRC2 recruitment and according to Landeira et
al. (2010) it is also involved in the recruitment of S5P RNAPII. However, JARID2
knock down does not completely abolish SSP RNAPII recruitment, hence the presence
of short RNAs in JARID2 knock down cells is expected. In constrast, genes which are
naturally activated during ES cell differentiation into motor neurons exhibit depletion
and even degradation of short RNAs. This indicates that their invariance upon Ezh2

and Ringl loss does not merely reflect their stability. Furthermore, this suggests that
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cell differentiation is associated with specific signals or transcription factors that lead to
reduction in short RNA; in contrast, merely removing polycomb components does not.
Another curiosity relies on the mechanisms that lead to short RNA degradation, which
due to its apparent stability could be due o the action of exosomes. There is no certainty
that these short RNAs are produced in the absence of longer RNA forms and they might
instead result from breaking down of a long nascent RNA molecule. Accordingly,
Brookes et al. (2012) showed that PRC targets, which are highly interlinked with S5P

RNAPII, produce transcripts that do not mature into mRNA.

Considering that PRC2 interacts with RNA, short RNAs might function
upstream of Polycomb, stabilizing the association of PRC2 with chromatin. Short
RNAs could act like the ncRNAs HOTAIR, Xist, (Pandey et al., 2008; Rinn et al.,
2007; Zhao et al., 2008), and other large intergenic non-coding (linc) RNAs, a group a
RNAs containing more than 3300 members of which 20% associate with PRC2 and
are required for its repression (Khalil et al., 2009). Moreover, the polycomb protein
Cbx7 also interacts with chromatin in an RNA-dependent manner (Bernstein et al.,
2006a). ANRIL is an antisense RNA from the Ink4a/Arflocus that binds to the Cbx7
protein (Yap et al., 2010). Indeed, the interaction of the newly identified short RNAs
with PRC2 has been confirmed in our laboratory. Xist is a ncRNA involved in X
chromosome inactivation through PRC2. It possesses a repetitive element named
RepA that has a double-stem loop structure which has been found to directly interact

with PRC2 (Zhao et al.,, 2008). Structural analysis of the short RNA in our
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laboratory indicated that similar to the RepA element, these short RNAs also form a
double stem-loop structure which is required for the PRC2 binding in vitro. The exact
mechanism by which these short RNAs affect Polycomb-chromatin interaction is
currently unclear, but the RNAs could possibly function in the interaction of PRC2 with

its target loci.

3.3.2 Short RNAs are stable transcripts

Repressed polycomb-target genes contain bivalent chromatin, have RNAPII
associated with their promoter region and produce short RNAs, indicative of
expression regulated at the level of transcription elongation. Stalled RNAPII is
phosphorylated at Ser-5 only, while Ser-2 phophorylation of the RNAPII CTD
(hyperphosphorylated RNAPII) is required for a productive elongation. Genes
targeted by polycomb exhibit SSP RNAPII only (Stock et al., 2007). In an attempt to
demonstrate that short RNAs are transcribed by RNAPII phosphorylated at Ser-5 but
not at Ser-2, cells were treated with Flavopiridol, which inhibits Ser-2 phosphorlation
only, or Actinomycin D, which inhibits RNAPII initiation. I found that upon total
inhibition of RNAPII, short RNAs did not disappear. It is therefore likely that these
short RNAs are stable transcripts. The fact that the short RNAs are detected even
though they are not associated with actively transcribing polymerase is reflective of
their stability. It would be also interesting to analyze the presence of the short RNAs

upon knock-down of PcG members or look at the drug treated short RNAs during
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cellular differentiation. ChIP could also have been performed to detect the different states
of RNAPII. It is currently unclear as to how these short RNAs are generated. They
might be products of RNAPII stalling or derived from broken unspliced long RNAs,
which is a possibility supported by the fact that Kapranov and colleagues have been

able to identify overlapping long and short RNAs (Kapranov et al., 2007).

3.4 Summary of Chapter 3

1) Short RNAs are transcribed from polycomb target genes in murine ES cells in
addition to human T-cells. Consequently, they are likely to be a general feature of the

mammalian transcriptome.

2) Production of short RNAs is independent of Polycomb activity, indicating the

possibility that they may function upstream of PRC2.

3) Short RNAs are depleted from genes in cells where those genes are active, and
this can be observed as a dynamic process when genes become activated through cell

differentiation. This suggests that they might function in PcG mediated repression.

4) Short RNA levels are not affected by inhibition of RNAPII by Actinomycin D.
This either implies that they have a long half-life, or are transcribed by RNAPIII or

RNAPI.
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Chapter 4 - The role of short RNAs in polycomb response

element function

4.1 Introduction

The mammalian genome produces thousands of transcripts most of which are
non-coding RNA. Beside the extensively studied interactions of polycomb elements
with IncRNAs, small RNAs have also been linked to PcG-mediated repression. It has
been demonstrated that, in Drosophila, polycomb requires RNA interference (RNA1) to
function (Grimaud et al., 2006a). Other non-micro-RNAs were identified at polycomb-
target genes that we designated short RNA and which seem to be a common feature
among higher order organisms. Given that short RNAs are transcribed upstream of
polycomb recruitment, they bind PRC2 (Kanhere et al., 2010) and that they get
degraded as polycomb repressed genes become activated, short RNAs might have a
function related with polycomb recruitment. Although Polycomb response elements
(PREs) have been identified and characterized in Drosophila, evidence for their
presence in mammals has been lacking. This is due to the fact that PcG-binding is not
a critical factor to determine a PRE sequence. The PcG protein Pho is consistently
associated with Drosophila PREs, yet the presence of its consensus sequence is not
enough to define a PRE. The same is true for its mammalian homolog YY1, which is a
multi-functional protein that interacts with several regulators including EED and BMII.
In Drosophila some PREs were correctly identified based on DNA-binding motifs, but
such were absent in mammalian sequences. Therefore, new features must characterise

PREs in mammals. A newly identified human PRE, designated HOXD11.12, revealed
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some striking similarities with the chromatin regions around the short RNAs our
laboratory identified. Such similarities include flanking H3K27me3 peaks (Kanhere et
al., 2010) conserved regions within the PRE, a location at CpG-islands, and nuclease-
hypersensitivity (Woo et al., 2010). Nucleosome depletion is characteristic of
Drosophila PREs too, and is closely associated with the histone variant H3.3, which is
more easily disassembled. These shared features suggest that short RNA transcription
sites might function as PREs, and that this may be due to the interaction of short RNAs
with PRC2. The microarray that Jenner used to identify short RNAs was limited to
regions around protein-coding gene start sites. HOXD11.12 is located in between the
HOXD11 and HOXDI12 genes and is not represented on the array. Therefore, it was

unknown whether short RNAs are transcribed from HOXD11.12.

It is well established in Drosophila that PRE can act as a TRE (Trithorax
response element), thus the sequence having a dual function (Chang et al., 1995; Tillib
et al., 1999). Furthermore, they have the potential to switch states between them
(Beuchle et al., 2001; Cavalli and Paro, 1998, 1999; Klymenko and Muller, 2004).
Some of the factors used to construct the algorithm that predicts PRE/TRE participate in
both activation and repression such as Zeste, Gaf and Pipsqueak (Decoville et al., 2001;
Dejardin and Cavalli, 2004; Hagstrom et al., 1997; Huang et al., 2002). Another
relevant point is the involvement of a ncRNA enconded by the PRE/TRE bithoraxoid
(bxd) in the recruitment of the methyltransferase ASHI to activate Ultrabothorax (Ubx)
gene expression (Sanchez-Elsner et al., 2006). A IncRNA transcribed from the 5 end of
the HOXA locus called HOTTIP, also interacts with WDR5-MLL complex to induce

H3K4 trimethylation and HOXA activation (Wang et al., 2011).
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4.2 Results

4.2.1 Short RNAs are transcribed from the HOXD11.12 PRE

Comparing the data from our laboratory to that published by Woo et al (2009),

such similarities included an identical pattern of H3K27me3 distribution, high CpG

content, and low nucleosome occupancy (analysed by Aditi Kanhere). This evidence

has led to the hypothesis that short RNAs might be transcribed from PRE elements

and that these are responsible for PRE activity. A closer look at the HOXD11.12

region on the UCSC Human Genome Browser re-enforced this hypothesis by

revealing the presence of a TSS located between the two H3K27me3 peaks (Figure 12).

Woo et al (2009) identified the Polycomb recruitment activity of the

HOXD11.12 PRE in ES-cell derived mesenchymal stem cells (MSC), where the

HOXDI11 and HOXD12 genes are repressed. The similarities between our short RNA

transcription sites and the HOXD11.12 PRE lead to the question of whether short RNAs

are also transcribed in HOXDI11.12. To this end, an immortalised MSC line derived

from bone marrow was used (Funes et al., 2007). This cell line has a different

origin to those used by Woo et al. (2010), which are derived from H1 and H9 human

ESCs. Chromatin immunoprecipitation with antibodies against H3K4me3, and

H3K27me3 was performed followed by qPCR analysis to verify that HOXD11.12 is
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also targeted by polycomb in these cells (Figure 13A). However, given the low

enrichment of H3K27me3, it would have been useful to perform ChIP-qPCR for PRC2

to ensure that this gene is being targeted by polycomb.

Given the resemblance of the HOXD11.12 PRE to the short RNA loci we had

identified, we hypothesized that the mammalian PRE might also produce short RNAs.

To test this, fifteen probes, < 100 nucleotides apart, were designed across the entire

HOXD11.12 region. Northern blotting with these probes revealed that short RNAs are

transcribed from HOXDI11.12 around the alternative HOXD11 TSS (Figure 13B).

These RNAs are about 20 to 30 nucleotides long and occupy a region 150 nucleotides

long. Short RNA bands can also be observed at the control gene HOXC6 in MSCs,

shown by our laboratory to be repressed and to produce short RNA in T-cells, and

enriched for H3K27me3 in MSC (Woo et al., 2010). These results reveal that short

RNAs are transcribed from the HOXD11.12 PRE in MSCs.
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Figure 12: Analysis of short RNAs transcribed from HOXD11.12. (A) Secondary structure
derived from the RepA ncRNA (top) used to identify similar structures within short
RNAs.Predicted secondary structures found in short RNAs transcribed from the D11.12 PRE
(bottom). (B) Localisation of the HOXD11.12 PRE and the sequences with predicted double
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localised between H3K27me3 peaks (top panel; from Woo, 2010) and contains an alternative
TSS for HOXD11 (bottom panel). The short RNAs are situated on a CpG island.
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Figure 13: Detection of short RNAs transcribed from HOXD11.12. (A) Quantitative PCR for
detection of H3 (black) H3 K4me3 (grey) and H3K27me3 (white). B-Actin was used as control.
HOXCS8 is repressed in wild type Mesenchymal Stem Cells but not in carcinogenic transformed
(5hit) mesenchymal stem cells (Funes JM et al. 2007). DNA levels were normalised to H3. (B)
Northern blotting detecting short RNAs at the HOXD11.12 PRE. 15 probes were designed
spanning the entire HOXD11.12 sequence (top panel). HOXCG6 is repressed in T-cells (PBMCs
and CEM) and in MSCs and was used as a positive control.
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4.2.2 HOXD11.12 short RNAs contain stem-loop structures and are located
at a CpG island

The PRC2 binding site within mouse Xist RepA is a double stem-loop
structure that is repeated 7 times (Figure 12A) (Zhao et al., 2008). Moreover, the
novel short RNAs identified in our laboratory also have the potential to form this
structure. For this reason, the short RNAs identified in HOXDI11.12 were examined
to find whether they could also form the same structure. A general structural motif
was derived based on the RepA sequence, and RNAmotif was used to detect
sequences that would produce this structure in the immediate surroundings of probes
number 7 and 8, and could fold into a double stem-loop structure, and to confirm
the free-energy values for these structures were under -6.5kcal/mol. Two ~30 nt long

sequences with predicted double stem-loop were identified (Figure 12A).

Furthermore, it has been shown that PcG proteins localise to CpG islands (Ku
et al., 2008), and that these islands might be important for Polycomb recruitment. Sites
of short RNA transcription were also commonly associated with CpG islands.
Consistent with this, the HOXD11.12 short RNAs are also transcribed from a CpG
island (Figure 12B). These results indicate that short RNAs transcribed from

HOXD11.12 PRE have the potential to interact with PRC2.

4.2.3 Role of short RNAs in HOXD11.12 PRE activity

Given the presence of short RNAs in HOXDI11.12, I sought to determine
whether these short RNAs are required for HOXD11.12 PRE activity. To this end,
HOXD11.12 was cloned into a luciferase reporter vector that contains an YY1 region
and a promoter from the TATA box of Herpes simplex virus thymidine Kinase (pYY1-

Luc) as performed by Woo ef al. (2009). In addition, mutations in HOXD11.12 were
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generated; deleted conserved region (marked by the green box in Figure 14A), deleted
short RNA region (marked by the red box in Figure 14A) and disrupted RNA secondary
structure with point mutations (Figure 14B), in order to allow the significance of these
DNA sequences in PRE activity to be assessed. The UCSC genome browser was used
to design primers that would amplify the sequences upstream and downstream of the
region to be deleted and the halves then ligated together. Site directed mutagenesis was
used to disrupt the short RNA structure, by designing primers that align at the mutated
region and have no-overlapping much longer than the pp region of the primers. This
allows for amplification of the mutated plasmid in a single step. The vectors were then
transfected into MSCs produced by Funes et al. (2007). Measurement of luciferase
activity revealed that the HOXD11.12 insert in the pYY1-Luc vector did not have
repressive activity in MSCs, despite the fact that the endogenous region is trimethylated
at H3K27 (Figure 15A). However, H3K27 trimethylation was only 2-fold enriched and
this might be a reason why no repressive activity was observed. The conditions of MSC
cell culture were altered in an attempt to induce cellular differentiation into
chondrocytes and observe possible changes in gene expression. To this end, MSCs were
transfected in high and low confluency and for each of these conditions transfection
from cells that grew with serum and another set without added serum was performed.
Chondrocytes are formed when MSCs are left at high confluency with no added serum
(Augello and De Bari, 2010), therefore results could be compared between induced
chondrocytes and MSCs. In none of these conditions did HOXD11.12 exhibit repressive
activity (Figure 15B). In an attempt to identify a cell type in which the HOXD11.12
sequence has a repressive activity, I experimented transfecting it into other cell types —
Hela and SH-SYS5Y. Again, in both cell lines exogenous HOXD11.12 failed to repress
the reporter gene. In fact, all these cell types HOXD11.12 rather has an activatory

effect, acting instead like a Thritorax response element (TRE).
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Figure 15: Activity of HOXD11.12 PRE/TRE. (A) Luciferase expression in percentage of
Relative Light Units (RLU %) from a vector containing one of the potential PRE D11.12
upstream of the promoter, measured in transformed mesenchymal stem cells (MSCs, 5 hit;
Funes JM et al. 2007), Hela, and the neuronal cell line SH-SY5Y. AConsD11.12,
AshortRNAD11.12, and AshortRNAstructD11.12 respectively correspond to D11.12 sequence
with deleted conserved region, D11.12 sequence with deleted shortRNA region, and with
mutation of the shortRNA region that disturbs the double stem loop structure. PLuc (-), and
YY1pLuc (+) represent the negative and the positive controls, respectively. RLU is normalized
so that pLuc(-) is 1% and pYY1Luc(+) is 100%, according to the method of Woo et al. (1), (2),
and (3) represent independent clones. (B) Luciferase expression in percentage of Relative Light
Units (RLU %) from a vector containing the HOXD11.12 sequence upstream of the promoter,
measured in transformed MSCs. Clone details as in (A). Cells were placed in several condition:
low confluency with serum (white), low confluency without serum (starving; light grey), high
confluency with serum (dark grey), and high confluency starving (black).
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4.2.4 Other short RNA loci can potentially behave as PREs

HOXD11.12 shares similarities with the short RNAs regions identified in our
laboratory, as described on section 4.2.1. These regions include the two flanked
H3K27me3 peaks with short RNAs in the centre, and which contains a TSS. The
regions analysed here correspond to HOXDI11.12, YBX2, RASL12, and MSXI. To
confirm that these DNA sequences similarly to HOXD11.12 have repressive activity,
they were cloned into the pY Y 1Luc as before and individually transfected them into the
MSCs, Hela, and SH-SYS5Y cells. Not every sequence was repressive in every cell type
(Figure 16A). MSX1 was not repressive in any of the cells used and instead had an
enhanced activity in MSC and Hela. RASL12 was repressive only in SH-SYSY, and
YBX2 was repressive in Hela and SH-SYSY. Again, different conditions of MSCs cell
culture were tested to see if it would have any effect on luciferase activity by
stimulating chondrocytes formation. MSX1 failed to gain repressive activity in serum-
starved, high confluence cells and there was also little effect on the two other potential
PREs, RASL12 and YBX2 (Figure 16B). In an attempt to determine whether the MSX1
short RNA loci could be repressive, cell types were analyzed for MSX1 that has high
levels of H3K27me3 using the UCSC genome browser. MSX1 was positive for
H3K27me3 in HI1-ES cells and NHEK (Figure 17A), meaning that this cell line could

be a good cell line to try this transfection.
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Figure 16: Potential PRE activity of other short RNA loci. (A) Luciferase expression in
percentage of Relative Light Units (RLU %) from a vector containing one of the potential PRE
MSX1, RASL12, and YBX2 upstream of the promoter, measured in transformed MSCs (5 hit;
Funes JM et al. 2007), Hela, and neuronal cell line SH-SY5Y. PLuc (-), and YY1pLuc (+)
represent the negative and the positive controls, respectively. (1), (2), and (3) represent
potential PRE sequence obtained from different clones. (B) Luciferase expression in percentage
of Relative Light Units (RLU %) from a vector containing one of the potential PRE MSX1,
RASL12, and YBX2, measured in transformed MSCs,. PLuc (-), and YY1pLuc (+) represent the
negative and the positive controls, respectively. Cells were placed in several condition: low
confluency containing serum (white), low confluency with no serum (starving; light grey), high
confluency with serum (dark grey), and high confluency starving (black).
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Figure 17: Trimethylation levels in different cell types. (A) - HIESC (green) and NHEK
(pink) cells have high levels of H3K27me3 on the MSX1 gene. (B) — H1ESC (green), HUVEC
(orange), and NHEK (pink) cells have high levels H3K27me3 on HOXD11.12. Both figures
were generated and data extracted from the UCSC genome browser. The y-axis represents
number of reads.

4.3 Discussion

4.3.1 Short RNAs are transcribed from the HOXD11.12 polycomb response

element

PRE elements are regulatory sequences are defined as being necessary and
sufficient for the recruitment of PcG proteins. Identification of PREs in Drosophila
had proven difficult due to the lack of sequence homology, apart from the presence of
the consensus Pho/YY1 binding sites. Eventually, the identification of several PRE-
binding DNA-binding proteins, such as Pho allowed the construction of PRE
prediction algorithms in Drosophila. Unfortunately, apart from the mammalian non-
functional homologue of Pho, YY1, there are no known mammalian homologues for
these factors. However, short RNAs transcribed from polycomb-targeted genes in

mammals bind to PRC2 and thus may mediate PRC2 recruitment.
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Recently, two mammalian PREs have been identified, one in mice and the
other in humans. Surprisingly, there is no conservation of the YY1 binding site in the
mouse PRE-kr. There are though a few similarities between the Drosophila PREs
and the newly found human HOXDI11.12 PRE. These include nucleosome
depletion, and high sequence conservation across species. The loci surrounding short
RNAs produced from mammalian Polycomb targets share all these common features
and are also located on CG rich regions, implicated in PRC2 recruitment in mammals.
CpG islands and nucleosome-free areas have a relative overlap, which might mean that
CpG di nucleotide frequency contributes to the absence of nucleosomes, perhaps
because these sites are frequently sites of transcription initiation. Moreover, nucleosome
depletion is conserved from Drosophila to humans indicating its importance, probably

for the recruitment of proteins.

Similar between HOXD11.12 and the short RNA loci identified in our
laboratory, was the H3K27me3 distribution pattern around the TSS, which was
identical between the HOXDI11.12 sequence and DNA sequences from where the
short RNAs are transcribed. Furthermore, analysis on the UCSC browser revealed
that just as short RNAs are transcribed from the 5’ region of target genes,
HOXD11.12 also contains an alternative TSS for HOXD11, which lies in between the
two H3K27me3 peaks. Although some Drosophila PREs are located far from the
promoter region in the HOX cluster, most are located at TSS (Oktaba et al., 2008;

Schwartz et al., 2006).

Given the similarities between HOXD11.12 and our short RNA regions, it is
possible that HOXD11.12 also produces short RNAs. Using northern blotting, found
that this was indeed the case. Some RNAs such as Xist, HOTAIR and Kcnqlotl bind
to PcG proteins. Short RNAs identified in our laboratory have double stem-loops that
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also interact with PRC2. RNAs from the HOXD11.12 PRE have a structure similar to
that of the RepA subunit of Xist, which also binds to PRC2, thus indicating a potential

similar function for the HOXD11.12 short RNAs.

4.3.2 Activity of potential PREs and TREs

As mentioned above, HOXD11.12 shares a few similarities with the short RNA
loci identified in our laboratory including the fact that HOXD11.12 also produces short
RNAs. This lead to the question of whether these short RNAs are required for
HOXD11.12 PRE activity. The transfection of the HOXD11.12pYY 1Luc vector from
Woo et al. (2010) into immortalised MSCs gave contradictory results compared to those
obtained by that article. This is possibly due to the use of a different type of MSCs to
that used by Woo; I used bone-marrow derived cells whereas Woo et al. (2010) used
MSCs differentiated from H1 and H9 hESC. According to Young ef al. (2011) there are
three profiles of H3K27me3: 1) broad domains and these genes are silenced, 2) bivalent
genes, that are also silenced, 3) narrow peaks at the promoter of active genes. It is
possible that the HOXD11.12 behaves as the third profile of H3K27me3. It is also
possible that endogenous and exogenous HOXD11.12 do not behave in the same way,
hence, ChIP-QPCR for detection of H3K27me3 at the vector would be useful. It is also
possible that given that the HOX clusters are involved in development and
differentiation, which are highly regulate by PcG, and cancer cells show changes in
expression of PcG proteins (Alharbi et al., 2013; Cillo et al., 1995; Jin and Sukumar,
2010), it is probable that transformed MSCs have changed expression pattern of HOX
genes making it possible that the expression of alternative TSS of HOXD11 is altered.
When attempting to use chondrocytes to analyze HOXD11.12 there are a couple of
possible reasons for the negative results. One is that chondrocytes have active
HOXD11, the second is that MSCs did not properly differentiate into chondrocytes. To

check for this last possibility, potential chondrocytes could have been stained for Alcien
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Blue, a dye that stains sulfated proteoglycans deposits thus indicating the presence of
functional chondrocytes. Given that the vector might not be chromatinized, an
alternative to the method used would be integrating the vector into the genome, which
could be accomplished by lentivirus infection or homologous recombination into gene
deserts (Lienert et al., 2011). Although endogenous HOXD11.12 in MSCs seems to be
repressed, its level of H3K27me3 is not very high. Therefore, it was reasonable to look
in the UCSC genome browser for cell types where HOXD11.12 is marked by high
levels of H3K27me3. I found that HOXD11.12 was highly positive for H3K27me3 in
HI1-ES, HUVEC and NHEK (Figure 17B) for which transfection of HOXD11.12 in

these cells could be possible.

Other cell types (Hela and SH-SY5Y) were transfected with the vectors in an
attempt to identify other cellular environments in which the sequences behaved as PREs
and repressed luciferase expression. YBX2 in Hela, and SH-SYSY cells and RASL12 in
SH-SYSY cells have repressive effects on luciferase expression, meaning that they
might indeed be mammalian PREs. Inversion of the PRE-kr leads to loss of its function.
It would be interesting to check whether inversion of these potential PREs would have
the same effect. Other relevant experiments would be, likely what was done in
HOXD11.12, to delete the short RNA site in both YBX2 and RASL12 to analyze the
relevance they have on PcG recruitment and following positive results to mutate these
short RNA sequences in order no disrupt double stem-loop structure to assign its

significance in PcG interaction.

Unexpectedly, HOXD11.12 has an activatory effect in bone-marrow derived
MSCs, Hela, and neuronal SH-SYSY cells, potentially acting like a TRE, perhaps
because the endogenous HOXDI11.12 region is active in these cells. Indeed, a report
shows that HOXDI1 is expressed in motor neurons (Misra et al., 2009). In fact, the
PRE sequence can reversibly switch between silencing and activation, also acting as a
TRE (Beuchle et al., 2001; Cavalli and Paro, 1998, 1999; Klymenko and Muller, 2004).

A recent study suggests that the switch occurs at the transition of direction of
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transcription of ncRNAs, making it possible that, besides the sense short RNAs we
identified, there could also be antisense short RNAs (Herzog et al., 2014). Furthermore,
it is not surprising that PRE can act as TRE as polycomb proteins generally associate
with promoters. It is possible that like Drosophila PREs, mammalian PREs can
alternatively act as TREs in the absence of PRC binding. To confirm this possibility I
would have to analyze the recruitment of proteins belonging to the Trithorax complex

such as MLL and SET1.

4.4 Summary of chapter 4

1) Short RNAs are transcribed from the human HOXDI11.12 PRE, suggesting that

PRE function may be mediated by PcG-RNA interactions.

2) D11.12 short RNAs present the same characteristics as previously identified short

RNAs. They contain a potential double stem-loop structure, and are located within a

CpG island.

3) The HOXD11.12 PRE also possesses activatory function, depending on the cellular

context, potentially acting as a TRE.

4) The RASLI12 and YBX2 short RNA loci are repressive in SH-SYS5Y cells but not
MSCs and Hela cells, whereas YBX2 is repressive in MSCs and Hela , but not SH-
SYSY cells. This demonstrates that the repressive effects of such loci is cell-type

specific.
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Chapter 5 - Conclusions

As part of the work carried out for this thesis, investigations have been carried
out regarding aspects of non-coding RNA transcription and the recruiting mechanism of
Polycomb group proteins to their target regions. In order to best analyze purified and
fractionated RNA, two different methods were compared: single step RNAzol, and two
step TRIzol/MiRvana methods. It is concluded that TRIzol/MiRvana method gave

better quality RNA because use of RNAzol led to loss of ~ 200nt RNA species.

Previously, our laboratory observed that RNA Pol II is present at Polycomb
target genes and that short RNA transcripts are present. This work has been extended to
show that the production of these RNAs is conserved across species as they are
produced in human primary resting CD4" T-cells and in mouse ESCs. By extension,
this indicates there might be functional significance for these short RNAs. It has also
been successfully demonstrated that such RNAs are very stable by observing their

presence in cells treated with RNAPII inhibitors.

Polycomb proteins have no known DNA-binding sites and it is not clear how
they target mammalian genes. A question asked was whether short RNAs produced at
repressed polycomb targeted genes would also express these short RNAs when the gene
was active. Therefore, in our laboratory, the production of short RNA from neuronal
genes was compared between differentiated SH-SYSY neuronal cells, where these
genes were active and PBMC cells were these genes were silenced by polycomb. It was
observed that short RNAs were present only at genes in the cell type in which they were
repressed by polycomb. Furthermore, differentiation of ES cells to motor neurons
demonstrated a gradual loss of short RNAs as genes became activated. Hence there is a

link between short RNA production and gene activity. On these lines, it became
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important to test whether the presence of short RNA was a mere by-product of
polycomb silencing activity at these genes or whether they were produced upstream of
polycomb activity. Ezh2 and RinglB knockout ESC lines were utilised to test and
subsequently verify that production of short RNAs at this repressed genes is
independent of PRC activity. It is questionable whether the short RNAs are actually a
product of longer RNA degradation. Not every gene begins mRNA expression upon
polycomb knockout, a phenomenon not currently well-understood and possibly
indicates the existence of different mechanisms of polycomb action, or some genes
might not reactivate when deleted polycomb because the transcription factors necessary

are nor present.

Attempts were made to test whether short RNAs could be functional rather than
just merely being waste products of RNAPII pausing. It was later further demonstrated
in the laboratory that these short RNAs bind to the SUZ12 subunit, and have a double
stem loop structure similar to the RepA motif in the Xist RNA, a structure that seems to
be important for interaction with PRC2. It is important to make future in vitro (EMSA)
and in vivo (RNA IP or Chip) experiments with mutations that disrupt the double stem
loop structure to draw conclusions regarding the importance of short RNA and its

specific secondary structure.

Using computational algorithms to identify specific sequences enriched at
polycomb target sites, it was possible to predict Drosophila PREs with some accuracy
(Ringrose and Paro, 2004; Ringrose et al., 2003). Unfortunately, the same algorithms
could not predict PREs in mammals due to lack of homologies between sequences.
Therefore, different features must rule the determination of mammalian PREs. It was
noticed that there are similarities between the identified short RNA regions and a newly

identified mammalian PRE, HOXD11.12. Such similarities include a nucleosome-
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depleted region, a CpG island, high sequence conservation and flanking H3K27me3
peaks. Given these reasons and similarities between the short RNA regions and the
HOXDI11.12 PRE, tests were carried out to determine whether this PRE also produces
short RNAs, for which positive results were obtained. Overall, it is indicative that these
five features might constitute typical characteristics of a mammalian PRE. The
HOXD11.12 RNAs also have the potential to form a double-stem loop structure and
hence have the potential to interact with PRC2. Further analysis of the activity of
HOXD11.12 showed that HOXD11.12 acts as an enhancer of expression in cells where
HOXDI11 is expressed. Therefore, this PRE could potentially also function as a TRE.
Other DNA sequences (YBX2 and RASL12) with a series of characteristics identical to
HOXDI11.12, for which respective genes are repressed in those cells types, produce
short RNAs and can potentially behave as a PRE. It is important to test whether PRC
structures are present at these sites by ChIP-qPCR. The importance of these features is
based on the facts that conserved region of HOXD11.12 is essential for abundance of
polycomb proteins at the site; PRC2 is associated with CpG island, although it is not
very well understood why, being possible that the reason is due to KDM2b binds to
unmethylated DNA at CpG; furthermore, nucleosome depletion allows for accessibility
of proteinic complexes. These features are associated with polycomb protein binding

allowing for its repressive activity.
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Chapter 6 - Future Research

Although short RNAs are transcribed upstream of polycomb activity and that they bind
to SUZ12, it has not been demonstrated that they are crucial for silencing of respective
genes, nor that the DNA sequences comprising these short RNAs might be PREs. It is
also unknown whether these short RNAs are transcribed by RNAPII phosphorylated
only at Ser5. It is also of importance to analyze whether short RNAs are a product of
polymerase stalling or derived from long RNA processing. A list of future studies to be

carried out in order to answer relevant remaining questions are presented as follows:

Experiments involving transcriptional analysis:

1. A well-known ncRNA, Kcnglotl, is transcribed from the antisense
strand of the Kcngl cluster (Pandey et al., 2008). ANRIL is another antisense
ncRNA identified (Yap et al., 2010). Additionally, thousands of novel short
RNAs mapped genome-wide are antisense to known genes (Kapranov et al.,
2010). Although short RNAs identified in our laboratory are transcribed from
the sense strand, this evidence indicates there is a probability of antisense
RNA being transcribed from polycomb target genes. Future research could
therefore include designing northern probes to detect antisense long and short

RNA at polycomb target genes.

2. Although microarray analysis in CD4" T-cells from our laboratory
shows that short RNAs are transcribed from silent genes (no detected
mRNA), this does not rule out the possibility of longer non-poly-adenylated

RNA being transcribed from the same locus. Specifically, it is important to
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understand why transcription of these long RNAs is not associated with
H3K79me2 or H3K36me3. A plausible reason can be found in the explanation
that they are unspliced RNAs transcribed by Ser-5 phosphorylated Pol II
(Hargreaves et al., 2009). It is possible that short RNAs are actually products
from such unprocessed long RNAs. Supporting this idea is the overlap between
novel long and short RNAs transcriptional fragments (Kapranov et al., 2007).
Northern blotting for detection of long RNA could be performed to test whether

there long RNA at this short RNA producing genes.

3. To prove that short RNAs are transcribed by RNAPII phosphorylated
at Ser-5 only, CEM cells can be treated with drugs that inhibit P-TEFb from
phosphorylating the Ser-2, for example, the drugs Flavopiridol and DRB. In
parallel, total inhibition of RNAPII initiation can be accomplished with
Actinomycin D or Alpha-Amanatin. However, previous experiments revealed
that these short RNA are very stable as northern bands persist from cells
treated with Actinomycin D, and Amanatin. A new method is required which
only detects new transcripts. To address this issue, new RNA transcripts
could be evaluated by pulse-chase experiments using radiolabelled nucleotides.
Therefore, only RNA newly transcribed after the addition of the drugs, would

be detected by northern blotting.

4. To test whether other RNA polymerases might transcribe the short
RNAs, different RNA polymerases inhibitors should be tested with pulse-chase
and compared. Thus, Flavopiridol and DRB do not inhibit RNAPII transcription
initiation only, while Triptolide inhibits both RNAPII and RNAPI transcription
initiation. On the other hand, Alpha-Amanitin inhibits transcription of RNAPII

and RNAPIII but not RNAPI (Bensaude, 2011).
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5. Short RNA is degraded/depleted upon gene activation during
neuronal differentiation but not when polycomb is depleted. RNA
degradation can be achieved by ribonucleases, namely: endonucleases that
cut RNA internally, 5’ exonucleases that hydrolyze RNA from the 5’ end, and 3’
exonucleases that degrade RNA from the 3’ end. A systematic knockdown of
components of these pathways during cell differentiation would be highly
beneficial to observe and identify the exact pathway, which lowers H3K27me3

levels.

Experiments involving analysis of PREs:

6. For a sequence to function as a PRE, it would have to recruit
Polycomb proteins. To this end, ChIP could be used for several
polycomb components, with subsequent analysis of enrichment by

qPCR.

7. To confirm that the HOXDI11.12 PRE in immortalised MSCs also
confers repressiveness, this PRE was cloned into a luciferase vector, as
performed by Woo et al. (2010). However, it was not possible to recapitulate
the repressive effect of the HOXD11.12 sequence on luciferase expression in
bone marrow derived MSCs in the present work. Therefore, it may be that
HOXD11.12 behaves differently in these cells compared to the ESC-derived
MSCs used by Woo et al. and therefore using these cells may be required.
Other cell types containing high levels of H3K27 methylation on the
HOXD11.12 region have been identified, and transfection of these cells may
reveal that the HOXD11.12 sequence is repressive in these cell types.

Another promising strategy that could be employed is the
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performance of nucleofection instead of tranfection with
electroporation, given that it allows better cell viability and

transfection rates of up to 95% (Zeitelhofer et al., 2007).

8. In order to better examine the potential PRE sequences in a
chromatinized state, the vector could be integrated into the genome
by lentivirus infection or by homologous recombination into a gene
desert or through the CRISPR technique described in Wilkinson and

Wiedenheft (2014).

9. Our laboratory also showed that PRC2 binds to short RNA and that
the secondary structure is fundamental for this binding in vitro. EMSA
experiments using wild-type and mutated short RNAs in HOXD11.12 PRE
would show whether this is also the case for the short RNA at this potential

PRE. Cell extracts from Escherichia coli expressing recombinant PRC2 would

be used for EMSA.

10. It would be also important to test if short RNAs at HOXD11.12 are
important for PRE function in cells by showing that it binds to PRC2. To this
end, native RNA immunoprecipitation for SUZ12 could be carried out and
checked for short RNA enrichment by qPCR. By constructing DNA mutations
that lead to short RNA disruption, it would be possible to confirm if they are
indeed important for PRC recruitment. Compensatory mutations that restore the
RNA structure could then be introduced and checked for PRC2 binding and

luciferase expression.
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11. A characteristic of Drosophila PcG system is that they maintain
repressive states as the cells divide. Woo et al. (2010) reported that
HOXDI11.12 repressive ability could be heritably transmitted through cell
differentiation (Woo et al., 2010). This feature could also be tested in other
short RNA loci by making use of the mESC’s differentiation to motor neurons.
Genes repressed in both murine stem cells and neurons, such as NKX2-1
and YBX2, could be used for such analyses. Pcdh8 becomes
activated upon differentiation, and could be used as a positive control. This
experiment would also show whether short RNA transcription from PRE

elements is a common feature between mice and humans.

12. PREs can also act as TREs. In order to analyse the TRE functionality,
ChIP for Trithorax proteins (e.g. MLL and SETI1) could be performed in
transfected cells showing high luciferase activity. By RNA IP in cell extract or
by EMSA in vitro, it would be beneficial to check for TrxG binding to short
RNA, as it has been shown that the IncRNA HOTTIP can can target proteins of
the trithorax complex to the HOXA locus (Wang et al., 2011). Our laboratory
has tested for sense-strand short RNA, and it is possible that the RNA that

binds to TrxG is rather anti-sense strand (Herzog et al., 2014).

Search for other possible short RNA function and interactions:
13. Binding of PRCI1 to polycomb target genes is not directly dependent on
H3K27 methylation by PRC2 (Blackledge et al., 2014). Moreover, the CBX7
subunit of PRC1 has an RNA binding domain (Bernstein et al., 2006a) and
has been shown to bind the ncRNA ANRIL (Yap et al., 2010). EMSAs and
RNA IP could reveal whether this domain also binds short RNA at polycomb
target genes.
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14. shRNA-medicated knockdown of short RNAs was not found to
be efficient (Russell Bouwman and Richard Jenner, personal
communication). Thus other methods would be needed to assess the
functionality of the short RNAs. It would be possible to transfect into
MSCs a YY1pLuc vector with a single mutation that disrupt the short
RNA stem-loop and then create a compensatory mutation somewhere
else that restores the RNA structure and where the DNA is still

mutated.
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Annexes

Table 2: List of primers used for amplification in different experiments.

Experiment Target Forward Reverse
HesS nRNA TTTGTATGGGTGGGTGCATGT AAGCCTTCAGAACAGCCTGTGT
PechB mRNA ATTGGGATTTTATCTTTCACCAGAA CCACAGACTCAAGATCTACAAGTTGIT
GPCR for mRNA in ES cells defficient
for E2h? and Ricg 1B or during Maxl mRNA CCAGCCCTATAGAAAGCAAGGA CCOCTCAGAGCAATGCTTTG
differentiation to purons
Yo mRNA CCCACCACCATACTGGAGTGA AGAGTCAGTTGGAAACTGGCAGAT
ActinmRNA TTGTCCCCCCAACTIGATGT CCCTGGCTGCCTCAACAC
Actin §'mRNA ACCATGGATGATATCGCC TCGGCTGGCOGGCTTAC
 GPCR for gene expression upan
ishibition of FNAPIL in CEM cells SSIRNA GATCTCGGAAGCTAAGCAGG AAGCCTACAGCACCCGGTAT
MSXIDNA GGACAGAAGTTCAGAGCGAG CAGCTCCTACTGCGAGAAAG
Auplification of posestial PREs fom RASLI2DNA GCAGGAGCTAGCACTAGATCC CTGGCTIGAAACGAACACAT
Tuman genome
YEX2DNA ACAGAGGGAGACCTTGTGIC GCTTCAAGGTATTCCTACCCT
DILI2 GACTCTGTGGC
Deetion of he DI1 12 ar SDILI2DNA CAGTGCAAGTGCAGGTGCCAGAAC CGCGCTAGCACCGGT CTTGTCC
contains sbart RNAs IDILI2DNA CGCGACCGGTCAAGGGTCCGOGCTAAGGA CGCGCTAGCCAGTGTGATGGATATCTG
. Y CTGCGTTICGGGT GGAGGCTAGATCTIC
b oF Short BN second ShortRNA 1 DNA CCGAAGATCTAGCCTCC GGGGC GGGGCGCAGCCAGCOGCTC
stucture
Short RNA2 DNA GGAGTAAAGATGCCGGCCGOCCCCTTOCCCTAT CCGGCATCTTTACTCCTTAGCGCGACCCTIGES

Table 3: Northern blotting probes used for detection of short RNAs in murine
ES cells, and human CEM, PBMCs and SH-SY5Y cell lines.

Gene Species Sequence
SSIRNA Human & mouse TTAGCTTCCGAGATCAGACGAGATCGGGCGCGTTCAGGGTGGTATGGCC
BSN Human GCGGTGCTCACACTCTCGGCGCCGCCGCTGCCGCCGCCATCTCCCAGCT
FOXN4 Human CAATGCCCGGCATTGCCCGGGAGGAGGGAGCAAAGCCGACCCTGCAAGG
HESS Human GATGCCGGGAGCCCCGCGCCTCAATATGCTGCCTTTICCCAGGCCGCCA
HesS GATGCTGAGAGCCCCGCGCCTCAATATGCTGCCTTTTCCCAGGCCGCGG
HEY1 Human CGCGGCAGGCCTGCGCTCGCCTCCCGCTCTGGCTCGGCTCCGCTCCGCC
HOXC6 Human GCCATTAGCACCAATTATTAGAGAGATCCCGAGTGCCCAGGACCCTCCC
MARK1 Human GGCGCGAATGTCTCGGCTCGGTCCGCGCGGTCACAGCCACCGCCGCCGC
Msx1 Mouse GCTTCCTGTGATCGGCCATGAGGGCCTCCACGCTGAAGGGCAGGAGTGA
NEX2-1 Human ATGAGCGAGCGAGTCTGGGGACGAACCCTGGGGCCGCACTGTTGGTCTA
NEX2-2 Human GGAGGAGGGAAAAAATCCTCTTTAACATTCACCGGTTCCTACCTCCCCG
Pax3 Mouse GGTGAGGGAGGGTGGTGACGAGGCAGGAACACGTCCCAAGTCTCCTCCC
Pcdh8 Mouse ATCCTCTTCGAACGTGCTGTATCGGACTGTCTTGCTCTGGGCCACTGAG
YBX2 Human CTCATCCCGCCGGGTCCAGTACCGGCCACAGCCGCCACCGCCCCGGCCC
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Table 4: Northern blotting probes spanning the HOXD11.12 PRE.

Order of probes on D11.12 from 5' to 3'

Sequence

CAACTGATTGAATGCCAGATGAAGCTGTITTTITICTCGTTTTAAAACTG

GGGTGAAGGGGCATCCCCCCACATGAATATTTACAACGGTTCCAGATTT

AGGGATTCTGAGTCATTTCATTTATTGCCACTACAGTTCTGCAAGAAAG

CACCCAAGATAAGACACTAACTTGACCTTAACTTTGTCAGGGCGCCCCT

AAACGCAGGGAGCGCACCAGGCCTTCGGGGCGCAGCCAGCCGCTCCGCG

CAGCCTCCGGACCCGCGCGTCCCGCTCGAGAACCTACCGTGAAGACCCC

CCCCCCGACCCACTCCACAACCCAGAGCGCTTTCATTCCAGTCCCAGCC

O o |~ | |w | & |

AGCCATCTGCAGTGGCGCGCCGGTGCATAGGGGAAGGGGGCGGCCGGCC

CAGGCAGCCCGGCGCCCCCAGTATGGAGCCTGCTGACCGCCGAAGAGGG

11

GAGGACTTCAACCCGGGTCTTTATGTGTCTGGGGATTCGCAAAATTCTC

12

GGATCTCTCTCCTAAAATGGCTCCCTGGACGCTGCACACTGGCCCTGCG

13

AGCTGGCACCCCCGCCCAGATTCCAGCTGACATTCTTCTCCTCAACCCA

14

AACACTGCGCAAATAGGTCTGTGGCGACTGGAGGGCATCGAGCCTCCCC

15

CCCACCGTGCGGACAGACAGAGAAAAGGCGGGTGGTCTGAGCTAATATC
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