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Antanas Žilinskasa,∗, Eric S Fragab, Joakim Beckb,c, Audrius Varoneckasa

aInstitute of Mathematics and Informatics, Vilnius University
bCentre for Process Systems Engineering (CPSE), Department of Chemical Engineering,

UCL (University College London)
cDepartment of Statistical Science, UCL (University College London)

Abstract

Optimization based process design tools are most useful when combined with
the human engineer’s insight. Further insight can be gained through the use
of these tools by encouraging the exploration of the design space. Visual-
ization is one technique which makes it easier for an engineer to understand
the designs identified by an optimization tool. There are many visualization
techniques but most are for individual process designs or for understanding
the behavior a design space when a single design objective is considered.
Most design problems, however, are multi-objective. This paper presents a
multi-objective visualization method and applies it to the industrially rele-
vant design of pressure swing adsorption systems.
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1. Introduction

Computer based industrial process design is a challenging task due to
a combination of factors, with complex mathematical models and multiple
often conflicting objectives being just two of these factors. Multi-objective
optimization tools provide a mechanism by which designs can be identified
and trade-off curves generated. These allow the engineer to gain insight into
the key characteristics of potentially good designs before moving on to more
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detailed simulations and pilot plant tests. Insight is gained by analyzing the
designs and the trade-off curves and one of the most useful techniques for
analysis is visualization. This paper demonstrates the potential of multi-
dimensional visualization for a case study of industrial relevance.

2. Mathematical model

Pressure swing adsorption (PSA) is a cyclic adsorption process for gas
separation and purification. PSA systems have the potential of achieving a
higher productivity for CO2 capture than alternative separation processes [1],
such as absorption. However, an efficient and cost-competitive PSA unit
is one that achieves high levels of purity and recovery of the product, two
competing objectives [2]. Multi-objective optimization methods are therefore
required to generate suitable trade-off curves and that allow an engineer to
identify those designs which best resolve the conflict in these objectives.

Optimization based design methods require mathematical models of the
system. Mathematical models for PSA processes are governed by partial
differential algebraic equations (PDAE). The performance of a PSA process
is usually based on its behavior at cyclic steady state (CSS). At CSS, the
physical conditions at the end of a cycle are identical to those at the beginning
of that cycle. To reach CSS from start-up may take hundreds or thousands
of cycles [3]. The simulation of a PSA process, therefore, is computationally
challenging since the resulting system of PDAEs that needs to be solved
is usually large and stiff. Also, hyperbolic PDEs, which often are used,
tend to generate solutions suffering sharp fronts in the gas concentration
profile, and non-physical oscillations due to shock waves [4]. Because of this,
the task to perform PSA simulation can be very time-consuming; a single
simulation to CSS can take minutes, hours, or even days. Most optimization
approaches thus either use simplified governing equations or limit their search
to a reduced design space [3]. More recently, surrogate modeling techniques
have been used to address the computational challenge [5].

Given suitable models and appropriate optimization methods, trade-off
curves may be generated. The challenge then becomes one of understanding
what characteristics of the designs identified are important for the objectives
considered, with the aim of enabling an engineer to choose one or more
designs for further, more detailed, analysis. Visualisation becomes a key tool
in the engineer’s repertoire to address this challenge.
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Figure 1: 2-bed/6-step PSA Skarstrom Cycle

To illustrate this challenge and a potential approach, we have chosen a
case study from literature that is challenging and sufficiently complex (see [6])
while not intractable computationally. The PSA process is shown in Figure 1
with the process steps shown on the left and the process configuration on the
right. This is the PSA Skarstrom cycle with an added pressure equalization
step as proposed in [6]. The PSA cycle considered is defined by the following
6 steps: feed pressurization (FP), feed/adsorption (F), light end equalization
(LEE), countercurrent depressurization (CnD), light reflux (LR), and ligh
end pressurization (LEE). The FP step is characterized by a high-pressure
gas mixture entering the bed while not permitting any gas to leave. The F
step is characterized by a high-pressure bed with feed entering the bed. LEE
are pressure equalisation steps, and typically used to conserve the energy
of the system. CnD is depressurization with the same flow direction as the
adsorption flow. LR is countercurrent low-pressure desorption with light
product purge.

The transitions between the process steps are regulated by the stem posi-
tions of the valves. The 7 valves involved are shown in the process configura-
tion in Figure 1. The system is symmetrical with the axis of symmetry going
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through the feed and vent units. On both sides of each bed is a bed header
which is usually used to ensure a homogeneous flow distribution in the bed.
The units labeled “Feed”, “Vacuum” and “Vent” provide the boundary con-
ditions for the PSA system. Briefly, the Feed unit is an inlet which provides
the gas mixture to separate; the Vacuum unit is an outlet which provides
vacuum pressure for the purge and blowdown steps; the Vent unit is an out-
let at atmospheric pressure. These three units are referred to as feed units.
The tanks next to the feed units are buffering the flow so that the pumps
can be operated continuously. The tanks and bed headers are connected by
valves which control the flow rates in the system and thus the cycle steps.

This PSA system is considered for the recovery CO2 from the flue gas in
a power plant. With the pressure equalization step the CO2 purity can be
enriched [6] at the price of a small increase in power consumption. The use of
LR steps typically leads to an improved product recovery. One expects that
with higher CO2 purity, the system will consume more power at the vacuum
pump. The system parameters that are considered fixed are given in Table
2.

Table 1: System parameters for the PSA unit.

Parameter value unit
Lb Bed length 0.12 m
rb Bed radius 0.0175 m
εb Bed void fraction 0.387 -
VCH Bed header volume 5.2 × 10−5 m3

rp Pellet radius 9.15 × 10−4 m
εp Pellet void fraction 0.35 -

The adsorption beds are packed with zeolite 13x pellets [7]. The stem
positions open and close at specific times during the course of a cycle to
control the PSA operation. See Table 2 for the stem positions for the different
process steps of this 6-step PSA Skarstrom cycle. Here 0 means that the
valve is closed, 0.5 half open, and 1 fully open. The PSA cycle is performed
through the coordinated operation of the 7 valves. The feed unit supplies
a gas mixture of constant pressure, temperature, and feed composition, and
therefore held at the initial operating conditions.

The mathematical equations involved describe conservation of mass and
energy, pressure profiles, and adsorption kinetics in an adsorbent bed. There
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are mass balance equations for the individual gas components and non-
isothermal energy balance equations for the adsorbate in the gas phase, the
adsorbate in the solid phase, and for the bed wall. The model is an axial
dispersed plug flow model, where the axial dispersion term represents the
contribution to axial mixing. The pressure drop along the bed is given by
the well-known Ergun equation [3]. The Ergun equation is the steady-state
momentum balance of gas flow and relates the pressure drop to the gas ve-
locity along the adsorbent bed. The mass transfer is modeled using the
linear driving force (LDF). The LDF model is a linear approximation of the
homogeneous diffusion equation for the mass transfer rate. Moreover, the
Langmuir adsorption isotherm is used in this study with the data provided
in [8].

Table 2: Stem positions for the valves amounting to the different steps. The numbers
represent the fraction of the corresponding valve which is open.

Steps for bed 1 V1 V2 V3 V4 V5 V6 V7
FP 1 0 1 0 1 0 0
F 1 0 r3 0 1 0 r7
LEE 0 0 0 0 0 0 1
CnD 0 1 0 1 0 0 0
LR 0 1 0 1 0 r6 r7
LEE 0 0 0 0 0 0 1

The bed header and the tanks are modeled as continuously stirred tanks,
and the flow rate in the feed unit is controlled by valve equations:

F = rjcvcT

√
|p0 − pLb

|
ρf

. (1)

Here rj is the stem position, cv the valve coefficient, p0 and pLb
are the

pressures at the two inlets, respectively, cT is the total concentration and ρf
is the fluid density. The pressure in the tank is given by the ideal gas law.
The boundary conditions for the gas phase concentrations and the enthalpy
are given by the Danckwerts boundary conditions for flow into the bed and
the no diffusive flux for flow out of the bed.

For further details on the mathematical model considered in this work,
see [8].
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The computational model used relies on the finite volume scheme using
40 volume elements with a Van Leer flux limiter. The simulation time for a
single design configuration ranged between 10 minutes to an hour, depending
on the design configuration used. The PSA cycles are simulated in succession
until CSS has been reached. The backward differentiation formula (BDF) of
5th order is used for time integration.

3. Statement of the relevant optimization problem

The PSA design problem is to maximize two conflicting objectives, the
product purity and recovery, from 15% CO2-85% N2. The CO2 purity and
recovery during cycle k is calculated from the total number of moles passing
through the vacuum and feed units:

Purityk
CO2

=
nk
vac,CO2

− nk−1
vac,CO2∑Nc

i=1(n
k
vac,i − nk−1

vac,i)
, (2)

and

Recoveryk
CO2

=
nk
vac,CO2

− nk−1
vac,CO2

nk
feed,CO2

− nk−1
feed,CO2

, (3)

where Nc is the number of gas components, and nvac,i is the number of moles
of component i leaving at the vacuum unit, and nfeed,i the number of moles
of component i entering at the feed unit. To calculate the total number of
moles you need to integrate the flow rate over time. The two objectives are
thus determined by Equation (2) and (3) for the CSS cycle.

The decision parameters for the PSA design problem are given in Table
3.

The described optimal design problem can be mathematically formulated
as

FP = max
X∈A

F (X), F (X) = (f 1, f 2)T , (4)

X = (x1, . . . , x6)
T , A = {X : 0 ≤ xj ≤ 1}, (5)

where xj, j = 1, 2, . . . , 6 denote optimization variables (decision parameters)
re-scaled to the unit interval, F (X) is the vector objective function the first
component of which f 1(X) is CO2 Purity, and the second component f 2(X)
is CO2 Recovery, and the optimization result FP is the Pareto front of the
formulated bi-objective optimization problem. For the convenience of the
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Table 3: Decision variables for the PSA design problem.

Variable Description Range Unit
r7 Purge-to-feed [0,1] -
tfeed Feed/purge time [0,200] s
Ffeed Feed flow rate [5 × 10−4,8 × 10−3] mol s−1

pvac Vacuum pressure [0.02,0.4] bar
r3, r6 Valve parameter for 3, 6 [0.3,1] -
Tfeed Feed temperature [290,340] K

readers, who are not experts in multi-objective optimization, we briefly re-
view important facts of the latter; for the comprehensive presentation we
refer to [9, 10].

The solution of a bi-objective maximization problem, frequently named
Pareto front, is the set of Pareto optimal objective vectors, i.e. those vectors
both components of which can not be increased. Geometric interpretation
of Pareto front is the north-east border of the feasible objective region. The
vector of variables corresponding to a Pareto optimal solution is named a
Pareto optimal decision.

Solving a bi-objective maximization problem (by means of so called a pos-
teriori methodology [10]) means computing a discrete representation of the
Pareto front. From a theoretical point of view, all Pareto optimal solutions
are acceptable since none is inferior with respect to any other. However,
from an application’s point of view, the solutions can frequently be ranked
by taking into account factors not included in the mathematical model of
the design problem. A representation of the Pareto front found is typically
presented to the decision maker who then makes the final decision, i.e selects
the most appropriate vector from the set of Pareto optimal decisions.

There are many methods for computing a discrete representation of a
Pareto front. To select a suitable one, the available information on the prop-
erties of the objective functions should be taken into account. Let us mention
two polar cases. In the case of concave smooth objective functions, the meth-
ods which generalize the methods of classical mathematical programming are
efficient [10]. On the other pole are problems where information about prop-
erties of the objective functions is very scarce, and their derivatives are not
available. Especially difficult are problems with “noisy” objective functions
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[11], the values of which are e.g. computed by Monte Carlo methods. In such
so called black-box optimization case, methods based on statistical models
of objective functions seem most appropriate [12].

The applied problem considered in the present paper should not be at-
tributed to these polar classes of problems, however. Since the analytical
representation of objective functions is not available their concavity cannot
be examined. The application of classical methods is also hardly possible
because of not availability of derivatives of the objective functions; their nu-
merical estimation would take too much of computing time because the algo-
rithms of objective functions are themselves computationally intensive. On
the other hand, the objective functions in question do not correspond to the
black-box model since some regularity can be expected because of underlying
physical model. The errors in computation of the objective function values
are not so significant that the objective functions to be considered ”noisy”. A
similar situation is typical for applications with mathematical models of high
mathematical complexity. Numerous publications recommend in such a cases
application of genetic algorithms; we refer to comprehensive presentations in
a number of monographs [9, 13, 14].

NSGA-II (The Non-dominated Sorting Genetic Algorithm-II), proposed
by Deb et al. [15], has been selected as the multi-objective GA in this
study. It uses a parameter free crowded-comparison operator and elitism
to attain diversity. The elitist mechanism combines the best parents with
the best offspring. An initial population is created, typically at random. A
population is ranked according to non-domination: first, all non-dominated
individuals are collected into a single category, in which all individuals are
assigned the same fitness value, equal to the category number (1 is the best,
2 second best, and so on). This group of individuals in category 1 is put
aside, and the procedure is repeated for the non-dominated individuals of
the remaining part of the population, for category 2, and so on. This leads
to several layers of non-dominated individuals, called fronts, with the first
front being the Pareto front.

The fitness of an individual is thus determined primarily by the category
number it belongs to, and secondarily by its ranking within the group of indi-
viduals in the category. The ranking within the group is achieved by sorting
the individuals with the crowded-comparison operator. This sorting mech-
anism promotes diversity and achieves well-spread fronts. In the next step
of the algorithm, offspring are generated using crossover and mutation oper-
ators. This algorithm uses the real-coded genetic algorithm with simulated
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binary crossover and polynomial mutation (see [16]), which requires a few
parameters to be specified: crossover rate, crossover index, mutation rate,
and mutation index. The new population for the next generation is selected
according to the non-dominated sorting (described above). N offspring are
generated and combined with the population of parents and offspring. Then,
the N best individuals are selected from this combined population of size 2N.
Here N is the population size of the initial population.

The crowded-comparison operator, given in [15], when ranking individ-
uals in group is based on distances in the objective space between all the
individuals in the group and two additional boundary points (to improve the
spread of the fronts). An individual is considered better than another if the
individual has a better non-dominated rank (category number) or if it has a
higher crowded-comparison value at the same non-dominated rank.

Because the bi-objective function in this case study is computationally
expensive, a small population size, 16, is used. Furthermore, we have used
crossover rate 9/10, crossover index 5, mutation rate 1/6, and mutation in-
dex 20. These are the default values given in [15], with one exception: we
used a lower crossover index as it produces a higher crossover productivity,
i.e., a larger spread of offspring solutions to that of the parents. This may
prevent future populations from becoming too homogeneous. These settings
are chosen based on our experience with NSGA-II in the study of surrogate
modeling [8] for pressure swing adsorption design problems.

4. Visualization of the optimization results

The application of the chosen NSGA-II multi-objective algorithm to the
problem considered resulted in computing of N = 1584 two dimensional
vectors of objectives Fi at the points Xi, i = 1, . . . , N , the components of
which belong to the unit interval: 0 ≤ xji ≤ 1 where the index j, (1 ≤ j ≤ 6),
denotes the number of component of the i-th vector.

The subset of Fi, i = 1, . . . , N constituted of non-dominated points rep-
resents the Pareto front of the considered problem FP; it consists of NP=179
two-dimensional vectors; the corresponding subset of Xi, i = 1, . . . , N is
denoted by XP. A graphical drawing of the Pareto front is the standard
presentation of results of a bi-objective optimisation problem [9, 10]. By
a visual analysis of the drawing a decision maker can chose an appropriate
trade-off between the objectives. Since the Pareto front is represented by a
finite number of points, the representation precision crucially depends on the
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number and distribution of points. The drawing of the Pareto front of the
considered problem is presented in Figure 2(a). The points are distributed
rather densely and uniformly over all Pareto front but has some discontinuity
at the beginning of the upper part of the graph which indicates some neigh-
borhood of minimum of f 2(·). The very precise computation of the ends of
this discontinuity does not seem important since the most interesting part of
the Pareto front is that including the kink. For a better identification of this
part of the Pareto front a graph of f 1(Xi) and f 2(Xi), Xi ∈ XP is presented
in Figure 2(b) where the horizontal axis is for the indices reordered according
to the increase of f 1(Xi), Xi ∈ XP. The kink of the Pareto front is formed
by the solutions of the indices of which belong to the interval (80, 140).
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Figure 2: a) Pareto front of the considered problem; b) the graphs of f1(Xi) and f2(Xi),
Xi ∈ XP with respect to the reordered indices.

By a visual analysis of graphs in Figure 2 an appropriate Pareto solution
can be selected as well as the decision X ∈ XP which corresponds to the
selected Pareto solution. However, such a choice is not always satisfactory
since it does not pay respect to such properties of the corresponding decision
as e.g. the location of the selected decision vector in the feasible region A.
The analysis of the location of the set of efficient points in A can be especially
valuable in cases of structural properties of the considered set important for
the decision making. For example, some subsets of A might not be forbidden
but may be unfavorable, and that property may not be easy to introduce into
mathematical model. The analysis of the properties of the set of efficient
points can enable the discovery of latent variables, a relation between which
essentially defines the Pareto front.

Numerous statistical methods are developed for the estimation of the
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impact of particular variables to the response in question [17]. Since the con-
sidered optimization problem is bi-objective, the Pareto front and the set of
the non-dominated decisions are single dimensional manifolds; in other words
it is a curve in the six dimensional unit cube. In principle, the parametric
description of such a curve could be derived using a least-squares technique.
However, the numerical solution of general non-linear least-squares problems
is difficult [18]. Therefore an exploratory analysis of the available data seems
reasonable here since it may highlight important specific properties of the
problem in question.

A suitable method for the discovery of a structure in multidimensional
data is visualization [19, 20]. For the applications of visualization methods
in applied optimization, in a context close to the present paper, we refer
to [21, 22, 23]. A recent paper [24] discusses broader perspectives of the
visualization role in chemometrics.

To get an idea on the location of XP in the six-dimensional unit cube, a
multidimensional scaling based algorithm [25] has been applied to the two-
dimensional visualization of a set of six-dimensional points consisting of XP

and the cube vertices. The multidimensional scaling based visualization al-
gorithm has been applied because it is suitable for highlighting the structure
of data sets with up to 10 variables and 1000 points. For theory of mul-
tidimensional scaling we refer to [26, 27] and for the general advantages of
multidimensional scaling based visualization algorithms we refer to [28]. The
favorable properties of the multidimensional scaling based visualization are
demonstrated also in [29] where images of hyper-cubes and hyper-simplices
of various dimensions are presented.

In Figure 3 the two-dimensional image of the vertices of six-dimensional
cube is presented which is obtained using a version of the algorithm of multi-
dimensional scaling proposed in [25]. Let us note that the symmetries in the
original data are preserved in the image. Our previous experience, e.g. from
the investigation presented in [21], suggests that this visualization method
reasonably highlights the location of a set of points of interest with respect
to the vertices of the hyper-cube.

In the problem considered, the number of points in the set to be visualized
was equal to 243; there were 179 points representing the Pareto front and
64 vertices of the hypercube A. The results are presented in Figure 4 where
the images of the Pareto points are represented by colored circles (o) and the
cube vertices are represented by stars (*).

As it is clearly seen in Figure 4 the set XP consists of two subsets. The
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Figure 3: Two-dimensional image of vertices of the six-dimensional hypercube.

0

1

Figure 4: Two-dimensional image of the discrete representation of the set of Pareto optimal
decisions, and vertices of the six-dimensional hypercube; the markers 0 and 1 shows the
location of minimizers of f2(·) and f1(·) respectively.
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smaller subset is in some vicinity of the minimizer of the second objective
function f 2(·). The second, larger, subset is located closely to the line seg-
ment connecting the points marked by numbers 0 and 1. The other cube
vertices are considerably further from that subset of XP than the points
marked by 0 and 1. The latter points represent the vertices of the hyper-
cube (0, 0, 1, 0, 0, 1)T and (0, 1, 1, 0, 0, 1)T . From the graph it can be guessed
that the most significant variable for the selection of a Pareto decision is x2,
and the values of other variables can be chosen close to the boundary values
x1 = x4 = x5 = 0, and x3 = x6 = 1.

5. The analysis of exploratory guess

The visualization applied to the available data gives a reason to guess the
variable x2 as the most significant variable defining a point on the Pareto
front. However, visual exploratory approach does not provide reliable con-
clusions, and a further analysis is necessary either to prove or to reject this
guess.

If the guess above is correct, a clearly expressed dependency between the
value of x2 and the position of the corresponding point on the Pareto front
should exist. To indicate such a dependency in Figure 5(a), the values of x2
are shown depending on the index of a Pareto optimal solution where the
latter are sorted according to the increase of f 1(Xi).
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Figure 5: a) The dependency of x2 on indices of ordered points in the Pareto front; b) the
graphs of f1(X(t)) and f2(X(t)), where values of t correspond to the kink of the Pareto
front.

The linear dependency between x2 and the index of a Pareto optimal de-
cision is clearly seen in the Figure 5(a) for the indices which belong to the
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interval (20, 170), which is much longer than the interval of interest indicated
above. Since the points of the discrete representation are distributed over the
Pareto front quite densely and uniformly, all characteristics of interest can
be presented as functions of the index as an independent variable. However
such a parametric description of problem data has a disadvantage: the inde-
pendent variable has no interpretation in the engineering terms of problem
formulation.

A variable t varying along the line in Figure 5(a) seems well suitable for
usage as an independent variable for parametric description of the data of
interest. The value of t can be interpreted as a value of x2 smoothed along
the Pareto front. The values of t in the interval 0.15 ≤ t ≤ 0.4 correspond to
the kink of the Pareto front. The relationship between f 1(Xi), f

2(Xi) and
corresponding value of t is presented by Figure 5(b). The graphs of x2(t),
and x4(t) 0.15 ≤ t ≤ 0.4 are presented in Figure 6(a).
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Figure 6: a) The dependency of x2 (increasing curve) and of x4 (lower graph) on t,
0.15 ≤ t ≤ 0.4; b) two-dimensional image of the discrete representation of a part of set of
Pareto optimal decisions, and vertices of the six-dimensional hypercube where the markers
0 and 1 shows location of closest vertices, and the markers 2 and 3 indicate the decisions
of the ends of most interesting part of the Pareto front.

To highlight the location of the most interesting part of the Pareto optimal
decisions corresponding to the kink of the Pareto front, the part of image of
Figure 3 is presented in Figure 6(b). The images of the closest vertices
are marked by 0 and 1. The points 2 and 3 mark images of the decisions
corresponding to the values of t equal to 0.15 and 0.45 correspondingly.

Before the analysis presented above, we expected that a high-temperature
adsorbent bed would be advantageous to achieve a high CO2 content in the
product stream [30]. Also, we expected that a purge-to-feed would reduce the
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CO2 content of the heavy product. We also knew that the amount of feed gas
that enters the system is linear with respect to the feed/purge time, x2, which
explains why x2 displayed such a substantial impact on the performance.
For example, long cycle times typically diminish the recovery but lead to
a higher purity of the heavy product as the adsorbent beds approach the
saturation limit. The feed flow rate, x3, which also affects the amount of
feed gas that enters, is not as influential, but partially this is because the
design constraint given for the flow rate in the design problem. This can be
observed in Figure 6(a).

It is however quite surprising in this case that when comparing the opti-
mal design with respect to the purity, against the recovery, on the most inter-
esting segment of the Pareto curve, they only disagree on the feed/purge time,
whereas for the other design parameters they concur. Hence, the visualiza-
tion method revealed that the purity and recovery is only weakly conflicting;
in this case the two objectives only contested each other on the feed/purge
time.

6. Conclusions

This is the first parametrization of the set of Pareto optimal decisions
targeted at the optimal design of pressure swing adsorption systems, which is
a relevant and challenging design problem. This multi-objective visualization
method can be a valuable tool to explore the relationship between competing
objectives for the promising designs identified by a bi-objective optimization
method. It may enable a decision maker to better understand the relation
between different objectives and also their place in the overall design space.
This understanding will lead to better informed decisions.
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[12] A. Žilinskas, A statistical model-based algorithm for black-box multi-
objective optimization, International Journal of System Science, 45(1)
(2014) 82 – 93.

16



[13] M. Gen, R. Cheng, Genetic algorithms and engineering optimization,
Wiley, 2000.

[14] M. Sakawa, Genetic algorithms and fuzzy multiobjective optimization,
Kluwer, 2001.

[15] K. Deb, A. Pratap, S. Agarwal, T. A. M. T. Meyarivan, A fast and
elitist multiobjective genetic algorithm: NSGA-II, IEEE Evolutionary
Computation, 6(2) (2002) 182–197.

[16] K. Deb, M. Goyal, A combined genetic adaptive search (GeneAS) for
engineering design, Computer Science and Informatics, 26(4) (1996) 30–
45.

[17] J. Miller, J. Miller, Statistics and Chemometrics for Analytical Chem-
istry (6th Edition), Pearson Education Canada, 2010.
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