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Abstract 

Accumulating evidence implicates lysosomes as mobilisable stores of Ca2+, but their 

relationship to the better-characterised endoplasmic reticulum (ER) Ca2+ store and 

significance for disease remains unclear. 

Here I show that the rapid osmotic permeabilisation of lysosomes evokes prolonged, 

spatiotemporally complex Ca2+ signals in primary cultured human fibroblasts. These Ca2+ 

signals comprised an initial response that correlated with lysosomal disruption and 

secondary long-lasting spatially heterogeneous Ca2+ oscillations that required ER-localised 

inositol trisphosphate receptors. Pharmacological and molecular inhibition of the trafficking 

protein Rab7 supressed lysosome induced Ca2+ oscillations. A synthetic agonist, of the 

endolysosomal ion channel TRPML, also evoked ER-dependent complex Ca2+ signals. Thus, 

like the Ca2+ messenger NAADP, direct mobilisation of lysosomal Ca2+ stores is sufficient to 

evoke ER-dependent Ca2+ signals through a mechanism that maybe Rab7-dependent.  

I also identify Ca2+ defects in fibroblasts from Gaucher disease (GD) and Parkinson disease 

(PD) patients with mutations in the gene (GBA1) encoding the lysosomal enzyme 

glucocerebrosidase. ER Ca2+ levels were increased in younger (but not older) patients and 

associated with enhanced responses to the ryanodine receptor modulator, cyclic ADP-ribose. 

ER Ca2+ signalling was unaffected by molecular or chemical inhibition of glucocerebrosidase, 

implicating mis-folded enzyme in pathology. Conversely, lysosomal Ca2+ signals were reduced 

in GD and PD and associated with disrupted lysosome morphology. Therefore, remodelling 

of ER-lysosomal Ca2+ stores by pathogenic GBA1 might predispose to PD. 

Finally, I identify lysosomal morphology defects in fibroblasts from PD patients with a 

common mutation in the enzyme LRRK2. These defects were reversed by silencing the 

endolysosomal ion channel, TPC2. Lysosomal pathology was recapitulated in SH-SY5Y cells 

overexpressing mutant LRRK2 and by an environmental toxin linked to PD. Ca2+ dependent 

regulation of lysosomal morphology may thus contribute in PD pathology. 

In summary, Ca2+ stores are functionally connected and their compromised homeostasis 

might connect to PD pathology. Abstract 
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Chapter 1 

Introduction 
 
Various cellular processes are regulated by changes in cytosolic Ca2+ (Berridge et al., 2000). 

Ca2+ signals originate from both the extracellular environment and intracellular Ca2+ stores. 

By far the best researched Ca2+ store is the endoplasmic reticulum (Berridge, 2002). Here, 

Ca2+-permeable ion channels, like ryanodine receptors, mediate Ca2+ release. These channels 

are gated by Ca2+ mobilising messengers and Ca2+ itself. Ca2+ buffers, pumps and exchangers 

regulate and maintain cytosolic Ca2+ levels. Ca2+ release from the ER can be rapidly 

sequestered by the mitochondria, through the mitochondrial uniporter (De Stefani et al., 

2011). This uptake is necessary for mitochondrial function. Increasing evidence identifies 

acidic organelles, such as lysosomes, as Ca2+ stores (Patel & Docampo, 2010). Lysosomes are 

known to trigger cytosolic Ca2+ signals. Indeed, the Ca2+ mobilising messenger NAADP 

(Nicotinic Acid Adenine Dinucleotide Phosphate), which targets lysosomes, evokes localised 

Ca2+ signals that become amplified by the ER (Cancela et al., 1999).  

The ER, mitochondria and lysosomes form a delicately balanced, functionally connected Ca2+ 

network within the cell. Physical connections (membrane contact sites) between Ca2+ stores 

are known to facilitate this Ca2+ coupling (Prinz, 2014). For instance, the ER forms tight 

junctions with the mitochondria for ER Ca2+ release to regulate ATP synthesis (Csordás et al., 

2006). Compartments of the endo-lysosomal system have also been shown to associate with 

the ER (Eden et al., 2010). The trafficking GTPase Rab7 regulates these contacts (Rocha et al., 

2009). It has been suggested that similar components underpin NAADP signalling (Patel & 

Brailoiu, 2012).  

The Ca2+ signalling “toolkit” generates, propagates and terminates Ca2+ signals. Any defect in 

this system make coping with a large increase in Ca2+ or persistent signals difficult to manage, 

resulting in stress to the cell (Berridge, 2012). This is a recurring problem in numerous 

diseases, including Parkinson disease (PD). PD is a common neurodegenerative movement 

disorder, characterised by the loss of dopaminergic neurons in the substantia nigra (Braak et 

al., 2004). The cause of this progressive disease is unknown, however genes (such as LRRK2) 

and environmental toxins (including paraquat) are increasingly implicated with disease 

development. Recently, mutations in GBA1, which encodes a lysosomal hydrolase, were 

identified as the most frequent genetic risk factor for PD (Sidransky et al., 2009). A single 
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mutation (like N370S) in GBA1 can enhance the risk of PD development (up to 20-fold in 

certain populations). Recessive mutations cause the common lysosomal storage disorder 

(LSD) Gaucher disease (GD). However, the cellular mechanisms that link these two disorders 

are unknown.  

Research has established that Ca2+ dysfunction contributes to both PD and GD pathology. 

Namely, substantia nigra neurons possess a unique pacemaking phenotype that is sustained 

by voltage gated Ca2+ channels (VGCC) (Chan et al., 2007). This constant Ca2+ influx has been 

shown to evoke mitochondrial stress and is thought to be the reason why these neurons 

selectively degenerate in PD (Guzman et al., 2010). The role of Ca2+ stores in PD has been 

largely neglected. However, irregular ER Ca2+ signalling has been implicated in GD (Korkotian 

et al., 1999; Lloyd-Evans et al., 2003; Pelled et al., 2005).  Thus, dysfunctional Ca2+ signalling 

might connect GD and PD.  

The genetic connection between GD and PD strongly implicates lysosomal dysfunction in PD. 

Mutations in the genes encoding several other lysosomal proteins (including the lysosomal 

ATPase, ATP13A2) have also been linked to PD (Ramirez et al., 2006). Another common 

genetic cause of PD, is a mutation in LRRK2, which encodes a multi-domain enzyme (Paisán-

Ruíz et al., 2004). Although the function of LRRK2 is unknown, this protein can regulate 

autophagy (Plowey et al., 2008) and has been localised to the endolysosomal system (Biskup 

et al., 2006; Alegre-Abarrategui et al., 2009; Higashi et al., 2009). Recent work has established 

that LRRK2 interacts with lysosomal ion channels (Gómez-Suaga et al., 2012). This interaction 

might disrupt lysosomal function and contribute to pathology.  

In this thesis I examine if Ca2+ stores are functionally connected and whether their dysfunction 

connects GD and PD.  

 

 

 

 

 

 



16 
 

Ca2+ signalling  

 
Ca2+ is a ubiquitous, abundant and highly versatile signalling cation. It is capable of regulating 

a range of physiological events from fertilisation and mitosis to cell death (Berridge, et al., 

2000). Variations in the frequency, location and amplitude of Ca2+ signals (the “Ca2+ 

signature”) provide the specificity needed to regulate Ca2+-dependent processes (Berridge, 

1997). The Ca2+ toolkit (figure 1.1), which includes Ca2+ buffers, second messengers, ion 

channels, pumps and exchangers, permit this versatility and regulate Ca2+ responses with 

high fidelity (Berridge, et al., 2000).  

Ca2+ signals are generated by influx and/or the mobilisation of intracellular Ca2+ stores. 

Various families of ion channels mediate Ca2+ influx and they are defined by their activation 

mechanism. For instance, changes in membrane potential can activate voltage-gated Ca2+ 

channels (VGCCs) in excitable cells. VGCCs can be classified by their biophysical properties 

into low voltage activated (LVA) and high voltage activated (HVA) channels (reviewed in 

Zamponi et al. 2010). Larger depolarisations open HVA and these channels can be further 

subdivided according to their pharmacological and functional characteristics. One example is 

the dihydropyridine-sensitive L-type VGCC. There are four different members (Cav1.1 

through Cav1.4) of this ion channel family and they are prominently expressed in neurons 

and muscle cells (Striessnig et al., 2010). In these locations L-type VGCC mediate synaptic 

transmission (Augustine, 2001) and contraction (discussed in more detail below). 

Ligand-gated ion channels also regulate Ca2+ influx. In neurons, the excitatory 

neurotransmitter glutamate mediates Ca2+ influx through NMDA (N-Methyl-D-Aspartate) 

receptors (Grienberger & Konnerth 2012). This NMDA receptor-mediated Ca2+ signalling is 

necessary for memory formation and consolidation. In other cell types, transient receptor 

potential (TRP) channels facilitate Ca2+ entry (Montell, 2005). Currently, 28 different TRP 

channels have been identified and they are activated by a variety of stimuli. Members of this 

large family of ion channels mostly, although not always, associate with the plasma 

membrane. Due to their heterogeneity, TRP channels are further categorised into subtypes. 

One of these is the TRP Canonical (TRPC) group, which can be found in high levels within the 

brain (Moran et al., 2004). The enzyme phospholipase C (PLC) has been shown to activate all 

isoforms of TRPCs. These channels were thought to propagate Ca2+ signals by refilling Ca2+ 

stores, but other candidates have since emerged and these are discussed in more detail 

below. 
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Figure 1.1 The Ca2+ signalling network 

Ca2+ signals are generated from Ca2+ influx (through VGCC, store operated Ca2+ Channels [Orai] and 

TRP channels) and the mobilisation of intracellular Ca2+ stores (the ER, mitochondria and 

lysosomes). On these Ca2+ stores, ion channels (including IP3R, RyR, TPC and TRPML channels) are 

gated by Ca2+ mobilising messengers (IP3, cADPR and NAADP) some of which can be activated by 

GPCR such as bradykinin receptors. The phosphoinositide PI(3,5)P2 is also known to activate 

lysosomal ion channels. Molecularly uncharacterised leak channels also mediate Ca2+ release from 

the ER. Ca2+ uptake into the mitochondria is regulated by channels (VDAC and MCU) on the outer 

and inner mitochondrial membranes respectively. The opening of PTP releases mitochondria Ca2+ 

into the cytosol. Intracellular Ca2+ homeostasis is maintained by Ca2+ binding proteins (calbindin, 

calmodulin, calretinin and parvalbumin), Ca2+ pumps (SERCA and PMCA) and Ca2+ exchangers (NCX 

and NCLX).  
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At rest, the cytosolic Ca2+ concentration of a cell is typically 100 nM, approximately 10,000 

times lower than that in the extracellular space (Berridge, et al., 2000).  Maintaining cytosolic 

Ca2+ is necessary to provide resolution to the Ca2+ signature and prevent the initiation of 

unwanted (e.g. apoptotic) pathways. Buffers, exchangers and pumps maintain intracellular 

Ca2+ homeostasis and fine-tune the spatial and temporal features of the Ca2+ signal. These 

mechanisms are so effective at regulating intracellular levels of Ca2+ that a free Ca2+ ion 

cannot diffuse more than 0.5 μm before being sequestered (Clapham, 1995). This generates 

localised Ca2+ signals (Berridge, 1997).  

Cytosolic buffers, such as calbindin D-28 and calretinin rapidly bind Ca2+ (Berridge et al., 

2003). Although, some (i.e. parvalbumin) are slower acting (Arif, 2009), all buffers bind Ca2+ 

with high affinity. As well as buffering Ca2+, Ca2+-binding proteins are capable of translating 

signals into cellular processes. For instance, calmodulin, which binds Ca2+ through EF-hands, 

interacts with many proteins to coordinate signal transduction. Calmodulin has also been 

shown to regulate Ca2+ channels (Parekh, 2011) and in neurons, it dissociates from activated 

L-type Ca2+ channels to initiate transcription via CREB (cAMP response element-binding 

protein; Wheeler et al. 2012). Many compounds have been specifically developed to bind 

Ca2+ (i.e. EGTA) and derivatives of these with fluorophores attached create Ca2+ dyes such as 

Fura-2 (Grienberger & Konnerth, 2012).  

Other Ca2+ clearance mechanisms occur at the plasma membrane. Plasma membrane Ca2+ 

ATPases (PMCA) utilise ATP to extrude Ca2+ from the cell. More specifically, for each ATP 

molecule hydrolysed, 1 Ca2+ ion is extruded (Brini & Carafoli, 2009). Notably, calmodulin can 

regulate PMCA activity (James et al., 1988). The Na+/Ca2+ exchanger, named NCX, also 

controls the efflux of Ca2+. NCX exchanges 3 Na+ with 1 Ca2+ ion and can function bi-

directionally according to membrane potential (Liao et al., 2012).  

Intracellular stores also sequester Ca2+ and these mechanisms are discussed in more detail 

below.  

ER Ca2+ signalling 

The endoplasmic reticulum (ER; sacroplasmic reticulum in muscle cells) is an excitable, 

dynamic organelle that forms a continuous network throughout the cell (Park et al., 2000). 

Aside from its role in coordinating protein synthesis and folding, the ER is a prominent store 

of intracellular Ca2+ (reviewed in Berridge 2002). ER Ca2+ regulates many cellular processes 

including autophagy and apoptosis (Stutzmann & Mattson, 2011). 
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Upon cell stimulation, Ca2+ is released from the ER by various ion channels. Inositol-1,4,5-

trisphosphate receptors (IP3R) are the most abundantly expressed ER Ca2+ channel (reviewed 

in Kiviluoto et al. 2013). These channels are encoded by three genes (ITPR1-3) and have an 

overlapping expression pattern in most tissues. Neurons, however, typically only express 

ITPR1. At the ER level, instead of being evenly distributed throughout the ER, IP3Rs are 

clustered together (Rahman & Taylor, 2009). Seo et al. (2012) recently described the 

structure of these channels. It is noteworthy that the Golgi apparatus also express IP3R and 

contribute to Ca2+ signalling (Pinton et al., 1998). IP3Rs are regulated by various molecules, 

including the Ca2+ mobilising messenger Inositol-1,4,5-trisphosphate (IP3). Plasma 

membrane-localised G-protein coupled receptors (GPCR; such as Bradykinin receptors) 

activate phospholipase C to generate IP3 and diacylglycerol (DAG) from phosphatidylinositol 

bisphosphate (PIP2). 

Another well characterised ER Ca2+ channel is the ryanodine receptor (RyR), named after the 

plant alkaloid ryanodine, which, at high concentrations, is a potent inhibitor of these 

channels (reviewed in Mackrill 2010). RyRs are non-selective cation channels, but upon 

stimulation release approximately 20 times more Ca2+ into the cytosol than IP3Rs (Kiviluoto 

et al., 2013). RyRs are encoded by three different genes (RYR1-3). RYR1 and 2 are 

predominantly expressed in muscle and cardiac cells, whereas RYR3 is more ubiquitously 

expressed (Mackrill et al., 1997a). Mutations in RYR are associated with diseases like 

malignant hyperthermia and catecholaminergic polymorphic ventricular tachycardia 

(reviewed in Betzenhauser & Marks 2010). RyRs can be regulated by both Ca2+ (discussed 

below) and cyclic ADP-ribose (cADPR). cADPR is synthesised from NAD (Nicotinamide adenine 

dinucleotide) through a cyclisation reaction catalysed by ADP-ribosyl cyclases (Lee & Aarhus, 

1991). cADPR sensitises RyRs to Ca2+ (Lee, 1993) and the action of cADPR on these channels 

requires additional proteins like calmodulin (Lee et al., 1994).  

Ca2+ mobilising messengers are hydrophilic and thus impermeable to the plasma membrane. 

Therefore, measuring physiological Ca2+ responses from ER channels is difficult. The 

traditional method for delivering messengers to the cells is through microinjection (Morgan 

et al., 2005). However, this requires considerable skill and is time consuming. Recently, 

through the addition of an acetoxymethyl (AM) group, cell permeable analogues have been 

developed (Parkesh et al., 2008; Rosen et al., 2012). Once inside the cell, esterases cleave the 

AM group and reveal the active Ca2+ mobilising messenger.  
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Both IP3R and RyR evoke complex Ca2+ responses that are often spatio-temporally diverse 

(Berridge et al., 2000). In addition to IP3 and cADPR, both these channels can be regulated by 

Ca2+ itself. This Ca2+ regulation is biphasic, where low Ca2+ concentrations activate the 

channels (also known as Ca2+-Induced Ca2+ Release [CICR]) and higher concentrations are 

inhibitory (Bezprozvanny et al., 1991). Such complex regulation can generate Ca2+ oscillations 

(Berridge, 2007). It is important to note that, Ca2+ is an allosteric modulator of IP3R but an 

activator of RyRs.  

Many other molecules can inhibit ER Ca2+ channel activity. For instance, the anti-apoptotic, 

ER-localised Bcl-2 (B-cell lymphoma 2) protein can inhibit IP3R Ca2+ release and the initiation 

of Ca2+-mediated apoptosis (Eckenrode et al., 2010; Monaco et al., 2013). IP3Rs can also be 

pharmacologically inhibited with 2-Aminoethoxydiphenyl borate (2-APB) and Xestospongin 

C. Indeed, 2-APB identified the importance of IP3Rs in the generation and propagation of 

cytosolic Ca2+ oscillations in sensory neurons (Zeng et al., 2008). 

Ca2+ can also passively leak from the ER through aqueous pores (Camello, et al., 2002). 

However, the molecular identity of the leak channel has been contested. Several putative 

channels have been proposed. These include Bcl-2, translocon and presenilins (reviewed in 

Kiviluoto et al. 2013). Notably mutations in presenilins have been associated with the 

neurodegenerative disorder Alzheimer disease (Tu et al., 2006).  

The ER Ca2+ leak is counterbalanced by high affinity ATP-dependent pumps called sarco- and 

endoplasmic-reticulum Ca2+-ATPases (SERCA) which transport cytosolic Ca2+ into the ER 

lumen (reviewed in Michelangeli & East 2011). There are a variety of SERCA isoforms, but 

SERCA2b is most universally expressed. For each hydrolysed ATP, SERCA transports 2 Ca2+ 

ions into the ER. Brody’s disease is associated with mutations in the ATP2A1 gene, which 

encodes the SERCA1 isoform. These mutations impair SERCA activity and elevate cytosolic 

Ca2+ levels in muscle cells which prevents muscle relaxation. These pumps can be regulated 

by ER-localised proteins and the inhibitor thapsigarin. Thapsigarin is commonly used to assess 

ER Ca2+ content by unmasking the leak pathway (reviewed in Michelangeli & East 2011). 

Luminal Ca2+ content of the ER ranges from 100-500 µM and is maintained by several high-

affinity Ca2+ buffers (Berridge, 2002). Many of these Ca2+ binding proteins, such as 

calreticulin, BiP (Binding immunoglobulin protein) and calnexin, are also chaperones 

(Michalak et al., 2009). The binding of Ca2+ to these chaperones can regulate protein folding. 

Changes in ER Ca2+ can disrupt this process and trigger the unfolded protein response (UPR) 
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(Mekahli et al., 2011). In order to maintain appropriate luminal Ca2+ levels the ER refills by 

stimulating a Ca2+ current across the plasma membrane (Smyth, et al., 2010). This 

phenomenon is known as store operated Ca2+ entry (SOCE). SOCE is mediated through 

interactions between the proteins stromal interacting molecule (STIM1) and Orai. STIM1 is a 

Ca2+ binding protein localised to the ER membrane that senses luminal Ca2+ through EF-

hands. At low ER Ca2+ levels, STIM1 re-locates to the plasma membrane and oligomerises. 

Here STIM1 opens the Ca2+-selective channel Orai to replenish ER Ca2+ (Penna et al., 2008). 

The close apposition of the ER to the plasma membrane facilitates SOCE (this is discussed 

further below).  

Mitochondrial Ca2+ signalling 

It is well-known that the mitochondria synthesize ATP. Additionally, mitochondria can 

regulate cell death, differentiation and Ca2+ signalling. Indeed, mitochondria were the first 

organelles to be linked with Ca2+ signalling (reveiwed in Carafoli 2012). Unlike cytosolic 

buffers, the mitochondria have a high capacity for Ca2+ and can therefore sequester large 

amounts of this signalling ion. For this reason, the mitochondria can significantly influence 

Ca2+ signalling. Indeed, these organelles can remain fixed in high Ca2+ environments to 

effectively buffer Ca2+ (Yi et al., 2004; Macaskill et al., 2009). This is particularly useful in 

neurons where mitochondria localise Ca2+ in the synaptic terminal (Rizzuto et al., 2012).  

Ca2+ must cross two membranes to enter the matrix, the outer and inner mitochondrial 

membranes (OMM and IMM respectively). Since the OMM is permeable to a variety of small 

molecules (including pyruvate and ATP/ADP) Ca2+ passes through this membrane easily. This 

permeability is attributed to the abundant presence of VDACs (voltage-dependent anion 

channels) which form diffusion pores on the OMM. Unlike the OMM, the IMM is 

impermeable and Ca2+ transport is regulated by the recently discovered mitochondrial Ca2+ 

uniporter (MCU or CCDC109A; De Stefani et al. 2011). MCU associates with various regulatory 

subunits such as MICU1 (mitochondrial Ca2+ uptake 1 protein). The knockdown of MICU1 

increases mitochondrial Ca2+ content, thus it is likely that this EF-hand protein negatively 

regulates MCU (Mallilankaraman et al., 2012).  Ca2+ is necessary for the appropriate 

functioning of these energetic organelles. Its presence in the matrix activates metabolic 

enzymes of the tricarboxylic acid cycle (TCA) to regulate energy production (reviewed in 

Rizzuto et al. 2012). 

There is a temporal restriction to the Ca2+ buffering capacity of mitochondria; excessive, 

prolonged Ca2+ presence in the matrix opens the mitochondrial permeability transition pore 
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(PTP). The opening of the PTP releases Ca2+ into the cytosol (reviewed in Crompton 1999). 

Ca2+ can also escape the mitochondria through ion exchangers. The mitochondria-localised 

Na+/Ca2+ exchanger NCLX regulates the exchange of Ca2+ with Na+ (Palty et al., 2010). 

Additionally, the Ca2+/H+ antiporter Letm1 (leucine zipper-EF hand containing 

transmembrane protein 1) has also been proposed to mediate Ca2+ release (Jiang et al., 

2009). Notably, deletions in the gene encoding Letm1 are associated with Wolf-Hirschhorn 

syndrome. This disorder is associated with seizures, congenital heart defects and mental 

retardation and identifies the importance in maintaining mitochondrial Ca2+ homeostasis 

(Jiang et al., 2013).  

Lysosomal Ca2+ signalling 

Lysosomes are acidic organelles that contain hydrolytic enzymes, such as Cathepsin C (figure 

1.2). Acidic pH is generated by V-type ATPases. Lysosomal proteins (such as the lysosome 

associated membrane protein 1, LAMP1) are highly glycosylated to afford protection from 

lytic enzymes. Lysosomal hydrolases degrade unwanted macromolecules (lipids, proteins 

etc...) and organelles through the process of autophagy.  

Against the long-standing view that lysosomes are simply passive degradative, organelles, 

evidence now suggests that these acidic organelles are also mobilisable Ca2+ stores (Patel & 

Docampo, 2010). Much of this evidence was based on studies using the lysosomotropic agent 

GPN (glycyl-l-phenylalanine 2-naphthylamide). GPN is freely diffusible, a di-peptide substrate 

for the lysosomal hydrolase Cathepsin C (Jadot et al., 1984). Once this compound is 

hydrolysed it permeabilises these organelles. Upon measuring cytosolic Ca2+, Haller and 

colleagues (1996) were the first to demonstrate that GPN evokes Ca2+ responses in MDCK 

cells (Haller et al., 1996). This has since been confirmed in a variety of cell types including 

neurons and human fibroblasts (summarised in table 1.1). Acidic hydrolases and low luminal 

pH have made the direct measurements of lysosomal Ca2+ experimentally difficult. 

Nevertheless, Christensen and colleagues (2002) determined the concentration of luminal 

Ca2+ using dextran-based Ca2+ indicators (delivered the lysosomes through endocytosis). They 

established that luminal lysosomal Ca2+ concentration is approximately 500 μM (Christensen 

et al., 2002). This value has since be confirmed in human fibroblasts (Lloyd-Evans et al., 2008) 

and is similar to the Ca2+ concentration reported within the ER (see above).  

Lysosomes have an important role in regulating cytosolic Ca2+ signalling. Indeed, lysosomes 

have recently been shown to rapidly sequester cytosolic Ca2+ signals (López-Sanjurjo et al., 

2013). However, the mechanism of lysosomal Ca2+ uptake remains elusive (Patel & Docampo, 



23 
 

2010). A proton gradient is likely important for lysosomal Ca2+ uptake since bafilomycin-A1 

(a V-type ATPase inhibitor) reduces the Ca2+ content of these organelles (Christensen et al., 

2002). It has been suggested that Ca2+/hydrogen exchangers (such as those present in plant 

vacuoles) might regulate lysosomal Ca2+ uptake in mammalian cells (Patel & Docampo, 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Lysosomes 

Lysosomes are acidic, membrane bound organelles that maintain their pH by V-type ATPases. 

Lysosomes are filled with hydrolytic enzymes including cathepsin C and glucocerebrosidase. GPN 

is a substrate for cathepsin C that can be used to permeabilise lysosomes and Conduritol β epoxide 

(CβE) can inhibit glucocerebrosidase activity. Lysosomal membrane proteins (such as LAMP1) are 

highly glycosylated to afford protection from lytic enzymes. Lysosomes are also Ca2+ stores. TPC 

and TRPML channels mediate Ca2+ release. These receptors can be activated by NAADP (Ca2+ 

mobilising messenger) and PI(3,5)P2 (a phosphoinositide). Additionally, the synthetic agonist ML-

SA1 has been shown to activate TRPML channels. The mechanism of Ca2+ uptake into the 

lysosomes is unknown. It has been proposed that Ca2+/H+ exchangers are involved. 
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Table 1.1. Summary of GPN-evoked Ca2+ responses. 

 

Lysosomes have been identified as the targets of the most potent Ca2+ mobilising messenger 

NAADP (Nicotinic Acid Adenine Dinucleotide Phosphate). This was first established by 

Churchill and colleagues (2002) when NAADP-evoked Ca2+ responses were blocked with GPN 

and bafilomycin-A1. Thus, unlike IP3 and cADPR, which release Ca2+ through well-defined ER 

channels, NAADP is unique by activating acidic Ca2+ stores. It is important to note that 

lysosomes are not the only acidic Ca2+ stores. Endosomes, lysosome-related organelles 

(secretory lysosomes) and secretory granules also store and release Ca2+ (reviewed in Patel 

& Docampo 2010; Morgan et al. 2011) 

Several molecular targets for NAADP have been proposed, including RyR (Gerasimenko et al., 

2003; Dammermann & Guse, 2005). However, in 2009 three independent laboratories 

identified Two Pore Channels (TPCs) as putative NAADP receptors (Brailoiu et al., 2009a; 

Calcraft et al., 2009; Zong et al., 2009). In these studies NAADP-evoked Ca2+ responses were 

Cell type Characterisation of GPN-evoked Ca2+ 
Response 

[GPN] 
(μM) 

Reference 

Pancreatic acinar 
cells 

Low magnitude, monotonic responses. 50 (Yamasaki et al., 2004) 
Oscillatory responses. 50 (Gerasimenko et al., 2006) 
Transient response. 200 (Menteyne et al., 2006) 

Neuronal 
cultures 

Complex responses. 200 (Tu et al., 2010) 
Large magnitude, complex responses. 200 (Pandey et al., 2009) 
Low magnitude, monotonic responses. 500 (Coen et al., 2012) 

Human 
fibroblasts 

Low magnitude, monotonic responses. 200 (Visentin et al., 2013) 

Mouse 
embryonic 
fibroblasts 

Complex responses. 200 (Coen et al., 2012) 

T-lymphocytes Complex responses. 50 (Steen et al., 2007) 

B-lymphocytes Low magnitude, complex responses. 50 (Duman et al., 2006) 

Human platelets Low magnitude, monotonic response. 50 (López et al., 2005) 

Myometrial cells Low magnitude, monotonic response. 50 (Soares et al., 2007) 

Cell lines    
HEK 

Human 
embryonic kindey 

Low magnitude, monotonic responses. 
 

200 (Reeves et al., 2006) 

MDCK 
Madin Darby 
canine kidney 

Transient, large magnitude responses. 
 

200 (Haller et al., 1996) 

THP-1 
Human Monocytic 

Monotonic responses. 
200-
400 

(Sivaramakrishnan et al., 
2012) 

RBL-2H3 
Rat basophilic 

leukemia 
No responses. 40 

(Moreno-Sanchez et al., 
2012) 

MEG01 
Human 

megakaryoblastic 
Low magnitude, monotonic responses. 50 (Dionisio et al., 2011) 
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i) inhibited in cells where TPC expression was silenced using RNA interference and ii) 

increased in cells overexpressing TPCs. TPCs contain two repeats of a 6 transmembrane 

domain that are bridged by a cytosolic loop (Ishibashi et al., 2000). It has been predicted that 

each form half of a functional channel and in order to mediate Ca2+ release TPCs dimerise 

(Churamani et al., 2012). Three TPC genes (TPCN1, TPCN2 and TPCN3) have been identified, 

but TPCN3 is absent in human genomes (Brailoiu et al., 2010a). TPCs are exclusively 

expressed in the endo-lysosomal system; TPC1 localises with endosomal compartments 

whereas TPC2 predominantly resides on lysosomal structures (Brailoiu et al., 2009a, 2010b). 

The localisation of TPC2 to the lysosomes is mediated by a dileucine targeting motif in the N-

terminus (Brailoiu et al., 2010b).  

Although many have established TPCs as the molecular targets of NAADP, Wang et al. (2012) 

recently challenged this view. By patch-clamping individual lysosomes, that had been 

enlarged with vacuolin-1, the authors showed that TPCs were gated by the lysosomal 

phosphoinositide PI(3,5)P2 (phosphatidylinositol3,5-bisphosphate) not NAADP. What was 

particularly surprising was that NAADP-evoked Ca2+ responses persisted in TPC1 and TPC2 

double knockout mice. Furthermore, they identified that TPCs are predominantly Na+-

permeable. These findings contrasted with established electrophysiological analysis of TPC2 

incorporated into lipid bilayers (Pitt et al., 2010), single lysosomes overexpressing TPC2 

(Schieder et al., 2010) and plasma membrane targeted TPC2 (Brailoiu et al., 2010b) which 

demonstrated that TPCs are both Ca2+ permeable and NAADP-gated. Recent research by Jha 

and colleagues (2014), might resolve part of this conflict having shown that TPCs are 

regulated by both PI(3,5)P2 and NAADP (Jha et al., 2014). NAADP action is further complicated 

by the finding that this messenger binds with a low molecular weight accessory proteins (Lin-

Moshier et al., 2012).  

TRPML (transient receptor potential mucolipin) is another ion channel that has been shown 

to mediate lysosomal Ca2+ release. TRPML channels are members of the TRP family of non-

selective cation channels. Originally named Mucolipins, TRPML channels are composed of 6 

transmembrane domains and a pore region (reviewed in Cheng et al. 2010). Three TRPML 

isoforms (TRPML1-3) have been identified in mammals and they have been shown to 

associate with one another. Notably, mutations in the MCOLN1 gene, which encodes 

TRPML1, are responsible for the autosomal recessive lysosomal storage disorder (LSD) 

Mucolipidosis IV (MLIV). MLIV is characterised by severe neurodegeneration and associated 
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with disrupted endo-lysosomal trafficking, substrate degradation and lysosomal biogenesis 

(reviewed in Lloyd-Evans & Platt 2011). 

TRPML 1-3 have also been localised to the endo-lysosomal system. Overexpressed, 

fluorescently tagged TRPML1 co-localised with puncta labelled with the lysosomal marker 

LAMP1 (Kiselyov et al., 2005). Although, TRPML2 and 3 also localised with lysosomes they 

have been shown to additionally associated with late endosomes and the plasma membrane 

(Kim et al., 2009). The localisation of TRPML3 to the plasma membrane and the identification 

of point mutations that increase the open probability of TRPML3 permitted the 

characterisation of channel properties. Notably, in mice these mutations cause the varitint-

waddler phenotype which is characterised by deafness, repetitive behaviour and 

pigmentation defects (Di Palma et al., 2002). By patch clamping the whole cell Kim and 

colleagues (2007) identified that TRPML3 is an inwardly-rectifying Ca2+ permeable channel 

(Kim et al., 2007). TRPML channels have since been shown to conduct a variety of cations. 

Indeed, Dong and colleagues (2008) identified that TRPML1 and TRPML2 (but not TRPML3) 

are also Fe2+ permeable. Given that TRPs are a family of non-selective cation channels, it is 

perhaps unsurprising that TRPML channels conduct a variety of cations. It is however notable 

that the channel properties of TRPML1 have been debated, where some have shown that 

this channel is actually outwardly rectifying and selectively permeable to monovalent cations 

(Kiselyov et al., 2005). Therefore, further characterisation of TRPML-mediated Ca2+ signalling 

is required. 

We know very little about the gating of TRPML channels. Indeed, it has been proposed 

NAADP activates TRPML since NAADP-evoked Ca2+ responses are supressed in human 

fibroblasts with the knockdown of TRPML1 (Zhang et al., 2011). However, these reports 

conflict with others, such as Yamaguchi et al. (2011), who have shown that pancreatic acinar 

cells from wild-type and TRPML knockout mice exhibit similar NAADP-evoked Ca2+ responses. 

It has also been shown that, like TPCs,  TRPML channels are activated by PI(3,5)P2 (Dong et 

al., 2010). Recently, synthetic TRPML agonists ML-SA1 (Shen et al., 2012) and MK6-83 (Chen 

et al., 2014) were developed. One of these synthetic compounds has been used in chapter 3 

to further characterise TRPML signalling.  

TPCs and TRPML channels are important for various cellular functions, including autophagy. 

TRPML3 has been shown to associate with autophagic vacuoles and reducing the expression 

of this channel inhibits autophagy (Kim et al., 2009). Furthermore, the stimulation of 

astrocytes with the cell permeable NAADP analogue (NAADP-AM) increases levels of 
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autophagic markers (such as LC3, light chain 3; Pereira et al. 2011). Such increases were not 

seen in cells overexpressing TPC2L265P which has a mutation in the putative pore domain 

(Pereira et al., 2011). It is unknown how NAADP and TRPML mediate autophagy, although 

organelle fusion might be involved. The endo-lysosomal system is dynamic and the fusion of 

endocytic compartments is necessary for appropriate functioning. Pryor and colleagues 

(2000) showed that both lysosome reformation and the fusion of late endosomes with 

lysosomes are regulated by luminal Ca2+ and local signalling (Pryor et al., 2000). Very recent, 

evidence has shown that TPCs might regulate lysosome fusion, morphology, and trafficking 

(Ruas et al., 2014; Lin-Moshier et al., 2014; Grimm et al., 2014). In Xenopus oocytes, TPC2 

was shown to regulate lysosomal trafficking through interactions with Rab7; an established 

trafficking GTPase (Lin-Moshier et al., 2014). Moreover, Grimm and colleagues (2014) 

identified that TPC2 is necessary for cholesterol trafficking and regulating lysosome fusion. 

Deficiencies in TPC2 made mice susceptible to liver damage (Grimm et al., 2014). In chapter 

5, I examine the role of TPC2 in Parkinson disease.  

Connecting Ca2+ stores  
 
Cells are compartmentalised to isolate specific cellular functions. However, this spatial 

separation poses certain difficulties for inter-organellar communication. Thus, cells have 

evolved several mechanisms to communicate including membrane contact sites (MCSs). 

MCSs from in regions where organelles are closely (<30 nm) associated (reveiwed in Prinz 

2014). The microdomains between organelles are highly specialised and are known to 

facilitate lipid exchange, organelle trafficking, cell death and Ca2+ signalling. 

The ER forms MCSs with several organelles and the plasma membrane (figure 1.3). These 

connections are known to regulate Ca2+ homeostasis, signalling and storage. Here I will 

further discuss the components of ER MCSs and their role in Ca2+ signalling.  

ER-plasma membrane 

The physical and functional interactions between the ER and plasma membrane (PM) are 

relatively well established (figure 1.3A). They play an important role in excitation-contraction 

coupling and SOCE. 

In myocytes, contraction is stimulated by an influx of Ca2+. The increase in cytosolic Ca2+ is a 

synchronised event and is derived from CaV1.1 (L-type VGCC also known as dihydropyridine 

receptors) on the PM (sarcolemma) and RyR on the sarcoplasmic reticulum (SR) (reviewed in 
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Bers 2002; Endo 2009). CaV1.1 open after a change in membrane potential, this influx of Ca2+ 

activates RyR, through a process known as CICR (discussed above).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 legend overleaf.  
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The coordination of this Ca2+ signalling is facilitated by MCSs between the SR and PM. The 

PM of myocytes is invaginated between sarcomeres and these invaginations are known as T-

tubules. It is here that the t-tubules connect with the SR. These MCSs are found in both 

cardiac and skeletal myocytes and are known as dyads and triads respectively. Through 

electron microscopy, Brochet et al. (2005) identified that these MCSs are tight (<12 nm). 

Junctophilins have been shown to anchor the SR and PM together (Takeshima et al., 2000). 

Importantly, knocking down these tethering proteins reduced MCSs and perturbs Ca2+ 

signalling and contraction (Takeshima et al., 2000). Thus, by apposing CaV1.1 and RyR with 

junctophilins, SR-PM MCSs enable excitation-contraction coupling.  

Figure 1.3 The diversity of ER membrane contact sites 

The ER/SR forms functional and physical connections with several components of the cell including 

the plasma membrane (A), mitochondria (B) and late-endosomes/lysosomes (C).  

(A) In myocytes (left) the CaV1.1 channels (L-type VGCC) on the plasma membrane (sarcolemma) 

associate with RyRs on the SR to mediate excitation contraction coupling. Some of these junctions 

are stabilised with junctophilins. In other cell types the ER and plasma membrane connect to 

regulate SOCE and lipid trafficking. During SOCE, STIM1 (on the ER) activates Orai channels which 

mediate Ca2+ influx. In order to refill, the ER sequesters Ca2+ using SERCA ATPases. Although not 

thought to regulate SOCE, E-syts are also present at ER-plasma membrane junctions. Sterol 

trafficking across these membrane contact sites are regulated VAP, which binds to ORP through 

its FFAT motif. 

(B) ER-mitochondria junctions (MAMs) regulate Ca2+ signalling and lipid synthesis. Ca2+ release 

from the ER-IP3R is rapidly sequestered by the mitochondria. Physical associations between IP3Rs 

and VDAC enable this uptake. Grp75 and mTORC2 are important mediators of this junction. 

Mitofusins (which homo- and hetero-typically associate) and VAPs (which associate with PTPIP51) 

are also enriched in MAMs. Furthermore, MAMs facilitate the synthesis of phosphatidylcholine 

(PC) from phosphatidylserine (PS). The mechanism behind this lipid transfer is unknown in 

mammalian cells but in yeast the ERMES complex is important.  

(C) The ER also associates with compartments of the endo-lysosomal system. These compartments 

are thought to potentiate NAADP signalling. Additionally, late-endosome ER contacts are 

important for the de-phosphorylation of endocytosed EGFR by PTP1B. VAP proteins can also 

regulate these junctions by associating with an ORP1L/RAB7/RILP complex and STARD3/ 

STARD3NL. In yeast (right) the nuclear envelope and vacuole (the equivalents of ER and lysosomes) 

are tethered together by NVJ1 and Vac8.  
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MCSs between the ER and PM are also present in non-excitable cells. These contacts are 

essential for the process of SOCE. As discussed above, when STIM1 senses low levels of Ca2+ 

inside the ER, it clusters in ER regions that are closely apposed with the PM and activates the 

Ca2+ channel Orai. Using TIRF and electron microscopy, Wu et al. (2006) identified that STIM1 

relocates to existing ER-PM MCSs. These MCSs are around 17 nm wide and, in an active 

confirmation, STIM1 extends across this distance to associate with Orai and plasma 

membrane phosphoinositides (Muik et al., 2011). However, the components that tether pre-

existing ER-PM SOCE sites are unknown. Some have proposed that STIM1 itself mediates the 

formation of new MCSs (Orci et al., 2009). During SOCE, Ca2+ enters the ER through SERCA 

pumps, which are enriched at these contact sites (Manjarrés et al., 2010). Importantly, ER-

PM MCS minimise the disturbance to cytosolic Ca2+ levels by localising Ca2+ entry. 

It is notable that proteins not involved in SOCE also mediate ER-PM MCS. For instance, 

extended-synaptotagmins (E-syts) were recently shown to tether the ER with the PM 

(Giordano et al., 2013). The extent and distance between these E-syts-associated MCSs can 

be regulated by both Ca2+ and PI(4,5)P2.  

MCSs are not only important for Ca2+ signalling but also lipid trafficking. The ER is the 

dominant site for lipid synthesis in the cell. Intracellular lipid transport relies heavily upon 

vesicle trafficking (Prinz, 2010). However, even when vesicle trafficking has been inhibited, 

lipids, such as cholesterol, still reach their appropriate destination in the PM (reviewed in 

Prinz 2010). MCSs are thought to mediate this trafficking. In yeast, ORPs (Oxysterol-binding 

protein (OSBP)–related proteins) are essential components of these contact sites (Schulz et 

al., 2009). These sterol binding proteins associate with the PM (Stefan et al., 2011) and have 

a motif (FFAT) that interacts with ER-localised VAPs (vesicle associated membrane protein–

associated proteins) (Lehto et al., 2005). It is through this VAP-ORP complex that lipids can 

be trafficked towards the PM (reviewed in Stefan et al. 2013). It is important to note that, 

VAPs have been implicated in several MCSs and these are further discussed below.  

ER-mitochondria 

The mitochondria are known to effectively sequester ER Ca2+, despite the low affinity of MCU 

(Rizzuto et al., 1993). Physical associations between these organelles facilitate this uptake by 

accumulating relatively high levels of Ca2+ (10 μM; Csordás et al. 2010). These localised 

increases in Ca2+ meet the low affinity of MCU and permit the entry of Ca2+ into the matrix 

(Rizzuto et al., 2012). The specialised ER-mitochondria MCSs are termed MAMs 



31 
 

(mitochondria-associated membranes; figure 1.3B) and they are important signalling 

platforms that occupy 5-20% of the mitochondrial surface (Rizzuto et al., 1998).  

The transfer of Ca2+ from the ER and mitochondria is necessary for ATP synthesis. The ER is 

energetically expensive, both SERCA activity and protein folding rely on ATP. When the ER-

localised ATP levels are reduced, the ER chaperone BiP (which hydrolyses ATP) is thought to 

stimulate Ca2+ release from the ER (Kaufman & Malhotra, 2014). Subsequently, this influx of 

Ca2+ into the mitochondrial matrix activates enzymes, such as pyruvate dehydrogenase, 

within the TCA cycle. Physical associations between the ER and mitochondria facilitate this 

cross-talk. 

Protein contacts tether the ER and mitochondria signalling apparatus together. As mentioned 

above, IP3R are known to cluster in specific regions. Many of these clusters are located within 

MAMs. Szabadkai and colleagues (2006) identified that VDAC (on the mitochondria) 

associates with IP3Rs. Grp75 (Glucose-regulated protein 75; member of the heat shock 

protein family) stabilises IP3R-VDAC junctions to mediate Ca2+ exchange (Szabadkai et al., 

2006). The nutrient sensor mTORC2 (the mammalian target of rapamycin complex 2) has also 

been shown to interact with and regulate this junction (Betz et al., 2013). 

Proteins that regulate mitochondrial fusion and fission are also enriched in MAMs. Mitofusin 

1 and 2 (Mfn1 and Mfn2, respectively) are dynamin associated GTPases. Mitofusins associate 

hetero- and homo-typically within MAMs. de Brito and Scorrano (2008) have shown that the 

knockdown of Mfn2, in fibroblasts, reduces MAMs and impairs mitochondrial Ca2+ uptake.  

An isoform of VAP (VAPb) has also been localised to MAMs (De Vos et al., 2012). Notably, 

mutations in VAPb are known to cause the neurodegenerative disorder amyotrophic lateral 

sclerosis (Nishimura et al., 2004). VAPb interacts with the OMM protein PTPIP51 (protein 

tyrosine phosphatase interacting protein 51) and regulates mitochondrial Ca2+ uptake (De 

Vos et al., 2012). Pathogenic mutations in VAPb were shown to increase PTPIP51 binding and 

disrupt mitochondrial Ca2+ uptake (De Vos et al., 2012). 

MAMs are also important for the synthesis of lipids (reviewed in Osman et al. 2011). In order 

to synthesise phosphatidylcholine (PC) from phosphatidylserine (PS) lipids are exchanged 

between the ER and mitochondria. PS, which is produced in the ER, is decarboxylated by 

mitochondrial enzymes and the product, phosphatidylethanolamine (PE), is then methylated 

by ER proteins. This convoluted synthesis is thought to involve MAMs. In yeast, the ERMES 

(ER–mitochondria encounter structure) complex facilitates lipid trafficking across MAMs 
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(Kornmann et al., 2009). However, proteins associated with ERMES are not conserved in 

mammals and require further characterisation.  

ER-lysosomes 

Functional connections between the lysosomes and ER have been widely reported. For 

instance, in mammalian (pancreatic acinar) cells, NAADP-evoked Ca2+ responses could be 

completely inhibited after blocking IP3R and RyR receptors (Cancela et al., 1999). Yet, 

desensitising NAADP receptors, with high concentrations of NAADP, did not affect IP3 and 

cADPR signalling (Cancela et al., 1999). The authors concluded that NAADP might function 

upstream of IP3R and RyR. Several others have also reported diminished NAADP responses 

after blocking IP3R and RyR (Churchill & Galione, 2000; Brailoiu et al., 2005, 2009b; Kinnear 

et al., 2004). However, some have interpreted these findings as NAADP acting on ER 

receptors (Dammermann & Guse, 2005). 

Since IP3R and RyR can be activated by Ca2+, local elevations in Ca2+ can stimulate signalling 

from these channels. It is generally believed that lysosomal Ca2+ release, in response to 

NAADP, triggers CICR (Figure 1.3C; reviewed in Patel & Brailoiu 2012). This can be seen when 

examining NAADP-evoked Ca2+ responses, which are biphasic. The first response is small 

(often termed the pacemaker) and thought to be lysosomal Ca2+ release. These initial 

responses are followed by a global Ca2+ signals that can be spatio-temporally diverse. It is 

these secondary responses that are sensitive to ER Ca2+ inhibitors. It is also notable that the 

functional coupling between lysosomes and the ER is bidirectional. Morgan and colleagues 

(2013) recently identified that Ca2+ release through IP3R and RyR evoked Ca2+ signals from the 

lysosomes using lysosomal pH as an indicator of NAADP activity.  

As discussed above, TPCs are the likely targets for NAADP. Part of this evidence came from 

redirecting TPCs to the PM (Brailoiu et al., 2010b). This was achieved by mutating the 

lysosomal targeting motif. However, when TPCs were re-directed to the plasma membrane 

NAADP-evoked Ca2+ responses became sluggish and were no longer sensitive to ER channel 

inhibitors (Brailoiu et al., 2010b). Additionally, NAADP-evoked Ca2+ responses in broken cell 

preparations are insensitive to ER channel blockade (Lee & Aarhus, 1995). Thus, the 

positioning of lysosomes close to the ER is necessary for “channel chatter” to occur. In 2004, 

Kinnear and colleagues identified that lysosomes and RyR co-localise in myocytes. We 

recently identified MCSs between ER-Lysosomes (Kilpatrick et al., 2013). Electron 

micrographs revealed that the majority of lysosomes (80%) form tight MCSs (20 nm) with the 

ER (Kilpatrick et al., 2013). However, the molecular identity of these junctions is unknown.  
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Yeast form stable MCSs between the acidic vacuoles and the nuclear envelope. The 

mammalian equivalents of these organelles are lysosomes and the ER, respectively. These 

junctions are anchored together through physical interactions between Vac8 (on the 

vacuole) and NVJ1 (on the nuclear envelope) (Pan et al., 2000). Overexpressing NVJ1 caused 

a marked proliferation of MCSs, whereas NVJ1 null yeast lost the majority of their vacuole-

nuclear envelope MCSs (Pan et al., 2000). This junction is thought to facilitate the 

degradation of unwanted nuclear material. Further examination of these junctions and 

homologous mammalian proteins might reveal more about lysosome-ER MCSs.  

In mammalian cells, MCSs between late-endosomes and the ER have been characterised 

(figure 1.3C). Eden and colleagues (2010) were the first to identify these junctions. These 

sites are necessary for the de-phosphorylation of endocytosed epidermal growth factor 

receptors (EGFR) by the protein tyrosine phosphatase PTP1B (Eden et al., 2010). 

Dephosphorylated EGFRs are then internalised into late-endosomes (multivesicular bodies) 

and degraded by lysosomes. This trafficking attenuates EGFR signalling, which has been 

associated with cellular migration, proliferation and survival (Eden et al., 2012). These MCSs 

might also facilitate Ca2+ exchange, especially since endosomes store Ca2+ (approximately 40 

μM; Sherwood et al. 2007) and TPC1 has been localised to endosomal compartments 

(Brailoiu et al., 2009a).  

These late-endosome-ER junctions have been molecularly characterised (Rocha et al., 2009; 

Alpy et al., 2013). Components that mediate MCSs also regulate late-endosome trafficking. 

Cytoskeletal motor proteins (dyneins and kinesins) determine the direction of endosomal 

trafficking (Korolchuk et al., 2011). These motor proteins are controlled by GTPases such as 

Rab and Arfs (Korolchuk et al., 2011). Rocha and colleagues (2009) identified that Rab7, 

localised to the late endosomes, can determine whether compartments remain fixed 

opposite the ER, or are trafficked along microtubules. When bound to GTP, Rab7 associates 

with RILP (Rab-interacting lysosomal protein) and the cholesterol sensor ORP1L. In 

cholesterol replete conditions RILP interacts with dynein through the adaptor protein 

p150Glued to be transported along microtubules. However, when cholesterol levels are low 

ORP1L attaches to VAPa on the ER through its FFAT motif. Under these low cholesterol 

conditions MCSs are formed. A recent study, using real-time imaging, revealed that 

lysosomes move along ER tubules (López-Sanjurjo et al., 2013). Thus, lysosomal trafficking 

might also occur whilst physically connected to the ER.  
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Alpy and colleague (2013) recently identified another late-endosome-ER bridging complex. 

They show that STARD3 (StAR [steroidogenic acute regulatory protein] related lipid transfer 

(START) domain-3) and STARD3NL (STARD3 N-terminal like) have FFAT motifs that interact 

with VAP proteins on the ER (Alpy et al., 2013). These junctions might regulate cholesterol 

transport. Thus cholesterol, can influence late-endosome-ER MCSs. This has important 

implications for diseases, such as atherosclerosis, where cholesterol accumulates.  

Parkinson disease and related disorders 

Parkinson disease 

Parkinson disease (PD) is a disabling and common neurodegenerative movement disorder. 

Over 1% of individuals at 65 years of age develop PD and prevalence increases to 5% by the 

age of 85 (Shulman et al., 2011). PD is clinically characterised by postural instability, rigidity, 

bradykinesia and a resting tremor (Schapira, 2009). Motor impairment has been attributed 

to the degeneration of dopaminergic neurons within the substantia nigra pars compacta 

(SNc) and subsequent dysfunction of the basal ganglia (Braak et al., 2004). The basal ganglia 

are a cluster of nuclei necessary for the coordination of movement. Dopaminergic neurons 

develop intraneuronal inclusions, called Lewy bodies, which are composed of alpha-synuclein 

(α-syn) (Braak et al., 2004). By the time PD is clinically diagnosed, more than 60% of 

dopaminergic neurons have degenerated (Shulman et al., 2011). 

As well as advanced age, several other epidemiological factors have been linked to PD onset. 

In the 1980s, a PD outbreak was reported among drug abusers. The accidental injection of 

MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), a precursor of MPP+, rapidly induced 

PD symptoms (Langston et al., 1983). This stimulated research examining the links between 

environmental toxins and PD pathogenesis (Goldman, 2014). A recent meta-analysis, 

conducted by van der Mark et al. (2012), identified that pesticide exposure can nearly double 

the risk of developing PD. One of these PD inducing pesticides, paraquat (1,1-dimethyl-4,4-

bipyridinium dichloride) is a structural analogue of MPP+. Many (including Liou et al. 1997; 

Kamel et al. 2007; Tanner et al. 2011), although not all (Hertzman et al., 1994; Firestone et 

al., 2010), have associated paraquat exposure with PD. Paraquat was one of the most widely 

used pesticides, but it has since been outlawed in many European countries. Like MPTP, 

paraquat can cross the blood brain barrier and enter dopaminergic neurons via the dopamine 

transporter (reviewed in Goldman 2014). Thus, paraquat can selectively accumulate in 

dopaminergic neurons. Many of the pathological hallmarks of PD, including α-syn 
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aggregation (Manning-Bog et al., 2002), are recapitulated in paraquat exposed animal 

models (reviewed in Dinis-Oliveira et al. 2006).  

Traditionally, PD has been viewed as a sporadic disorder that can be linked to environmental 

triggers. It was even referred to as the quintessential “non-genetic disease” (Hardy, 2003). 

However, recent research has transformed the genetic understanding of PD. Between 10-

30% of PD patients have family history of the disease. To date, 12 genes have been 

undisputedly linked with PD (Trinh & Farrer, 2013) and a number of other susceptibility loci 

have been identified through genome-wide association studies (GWAS; Nalls et al. 2011). The 

first gene associated with PD was identified in 1997 (Polymeropoulos et al., 1997). This gene, 

SNCA, encodes α-syn, the protein that aggregates in Lewy bodies. Both point mutations and 

increased gene dosage (duplication and triplication) have been reported in PD (Singleton et 

al., 2003).  

Until recently, sporadic PD was seen as distinct from familial forms. Those lines are now 

blurring since many familial gene variants have been identified in sporadic cases. For 

instance, mutations in the leucine-rich repeat kinase 2 gene (LRRK2) have been reported in 

10% of familial cases (Di Fonzo et al., 2006) and up to 4% of sporadic PD (Paisán-Ruíz et al., 

2008). This gene encodes a large, multi-domain protein called LRRK2. LRRK2 is particularly 

unusual having two enzymatic sites; a kinase and a GTPase. Several mutations have been 

described in LRRK2, however the most common mutation, G2019S, resides in the kinase 

domain (Gilks et al., 2005; Corti et al., 2011). Mutations are believed to enhance kinase 

activity (West et al., 2005) and this is consistent with a toxic gain-of-function. Neurons (and 

neuronal precursors) overexpressing mutant LRRK2 are vulnerable to death (Smith et al., 

2005) and exhibit abnormal morphology (MacLeod et al., 2006; Plowey et al., 2008). LRRK2 

is known to auto-phosphorylate (Greggio et al., 2009) and many candidate substrates have 

been proposed (Smith et al., 2005; MacLeod et al., 2013). One of these is TPC2 and this 

interaction is thought to regulate autophagy (Gómez-Suaga et al., 2012). LRRK2 is also known 

to associate with several intracellular membranes (reviewed in Cookson 2010). However, the 

mechanism underlying LRRK2 toxicity is unknown. 

Although genetics studies have advanced our understanding of PD, the mechanism 

underlying PD pathology is not as well established (Obeso et al., 2010). Much evidence 

converges on a central role of mitochondria in PD pathogenesis. Indeed, many of the toxins 

that recapitulate PD (including paraquat and MPTP) disturb the mitochondria by inhibiting 

Complex I (a resipratory chain enzyme; Schapira 2008). Consequently, large amounts of 
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reactive oxygen species (ROS) are generated (Castello et al., 2007) and apoptotic pathways 

initiated (Yang & Tiffany-Castiglioni, 2008). A direct link between mitochondria dysfunction 

and PD was identified through the post-mortem analysis of PD patient brains. Schapira and 

colleagues (1989) established that complex I is activity is impaired in SNc cells. Furthermore, 

many of the genes linked to PD encode proteins that localise to the mitochondria and 

maintain its function (Schapira, 2012). For instance, the interaction of PINK1 (PTEN-induced 

kinase 1) and Parkin (both linked with recessive forms of PD) is essential for the turnover of 

dysfunctional mitochondria (Narendra et al., 2010). Additionally, homozygotic mutations in 

DJ-1, which encodes a mitochondrial antioxidant protein that has been suggested to regulate 

neuro-protective responses, are associated with PD development (Taira et al., 2004).  

It is now emerging that lysosomes might also be involved in PD pathogenesis. Lysosomal 

deficiencies, determined using a variety of lysosomal markers like LAMP1, have been 

reported in sporadic PD patient brains and mice exposed to MPTP (Dehay et al., 2010). 

Notably, lysosome dysfunction, in these mice, preceded degeneration. As discussed above, 

lysosomes are hydrolytic organelles that mediate autophagy. The accumulation of α-syn 

implicates autophagic dysfunction in PD (Cuervo et al., 2004). Notably, impaired autophagy 

has been frequently reported in LRRK2-mediated PD (Plowey et al., 2008; Alegre-Abarrategui 

et al., 2009; Manzoni et al., 2013a). Perhaps the association of LRRK2 with lysosomal 

membranes (Biskup et al., 2006; Alegre-Abarrategui et al., 2009) instigates this defect. In 

chapter 5, I further examine the link between LRRK2 and lysosome pathology.  

Many lysosomal genes have been linked to PD. Namely, loss of function mutations in 

ATP13A2 cause autosomal recessive forms of PD. This gene encodes a lysosomal protein that 

actively transports cations across membranes. ATP13A2 has a neuroprotective role against 

several cell stressors including ROS (Covy et al., 2012) and heavy metals (Schmidt et al., 2009). 

Dehay and colleagues (2012) recently analysed lysosome morphology in patient-derived 

fibroblasts. Lysosomes appeared enlarged and clustered in ATP13A2-mediated PD. In 

addition to disrupted lysosome morphology, lysosome acidification, membrane stability and 

substrate degradation were impaired (Dehay et al., 2012). Furthermore, mutations in VPS35 

have recently been associated with PD (Vilariño-Güell et al., 2011). VPS35 (vacuolar protein 

sorting 35) is a component of the reteromer complex that traffics proteins (including 

hydrolase receptors) from endosomes back to the Golgi apparatus. Lysosome function 

depends on VPS35. Indeed, the depletion of VPS35 in HeLa cells disrupts lysosome 
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morphology (Arighi et al., 2004).  Additionally, GWAS have identified other lysosomal 

proteins (GAK and LAMP3) as PD-risk factors (Nalls et al., 2011).  

Finally, and perhaps the most convincingly, mutations in GBA1 represent the greatest genetic 

risk factor for PD. GBA1 mutations are also known to cause the lysosomal storage disorder 

Gaucher disease, discussed below. On average, across 34 studies (summarised in Beavan & 

Schapira 2013), 7% of sporadic PD cases are linked to a GBA1 mutation. Some of these reports 

are conflicting, for instance Aharon-Peretz et al. (2004) estimate a much higher penetrance 

(31%)  than others like Hu et al. (2010) at 2%. These variations might reflect differences in 

ethnicity and size of the cohort examined. It is also important to acknowledge that many 

individuals with GBA1 mutations do not exhibit PD symptoms (McNeill et al., 2012; Rana et 

al., 2013). The clinical manifestations of PD in patients with a GBA1 mutation are 

indistinguishable from other cases with subtle difference such as an earlier age of onset 

(Sidransky et al., 2009) and greater cognitive decline (Neumann et al., 2009). 

GBA1 encodes the lysosomal hydrolase glucocerebrosidase (GCase) which is important in the 

metabolism of glucocerebroside into glucose and ceramide. Mutations in GBA1 impair 

protein folding and trafficking towards the lysosomes (Ron & Horowitz, 2005), which causes 

a GCase deficiency. Consequently, undegraded substrate accumulates in the lysosomes and 

mis-folded protein aggregates on the ER. The protein responsible for GCase trafficking is the 

lysosomal integral membrane protein type 2 (LIMP2) (Reczek et al., 2007; Rothaug et al., 

2014). The gene that encodes LIMP2  (SCARB2) was recently highlighted as another PD-risk 

loci in GWAS (Do et al., 2011). This reinforces the involvement GBA1 in PD. 

GBA1 is located on chromosome 1q21 and spans 7.6kb sequence (Horowitz et al., 1989). Over 

300 pathogenic mutations have been identified in GBA1 including insertions, point mutations 

and deletions (Beavan & Schapira, 2013). The prevalence of each mutation varies across 

ethnicity. In Europe, N370S and L444P mutations are the most frequently reported (Hruska 

et al., 2008). A single mutation in GBA1 can increase the risk of PD risk. Yet, homozygotic 

mutations are the cause of the lysosomal storage disorder, Gaucher disease (GD).  

Lysosomal storage disorders 

Lysosomal storage disorders (LSD) are a group of diseases characterised by an impairment of 

lysosome homeostasis (Futerman & van Meer, 2004). As a consequence, undegraded 

macromolecules accumulate in both the lysosomes and endosomes (Futerman & van Meer, 

2004). To date, over 50 LSDs have been described.  Individually they are rare disorders but 

together LSDs occur 1 in every  7,700 live births (Meikle et al., 1999). These diseases are one 
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of the most frequent causes of neurodegeneration in children (Verity et al., 2010). 

Parkinsonian symptoms have also been reported in several LSDs including GD and Niemann-

Pick type C disease (NPC).  

GD is the most common LSD, affecting 1/40,000-60,000 live births in the general population 

(Siebert et al., 2014). In GD, the accumulation of glucocerebroside predominantly occurs in 

the cells of the reticulo-endothelial system (e.g. macrophages) (Sidransky & Lopez, 2012). 

Macrophages adopt an unusual cytoplasmic appearance akin to “wrinkled tissue paper” filled 

with defective lysosomes (Sidransky, 2004). These macrophages localise to the spleen, liver 

and bone marrow and these organs are enlarged in GD patients (Sidransky, 2004). Three 

types of GD have been characterised; type II and type III are severe, defined by neurological 

deficits and distinguished by age of onset (6 months and adolescence respectively) (Butters, 

2007). On the other hand, type I affects the peripheral organs and was once believed to spare 

the nervous system (Butters, 2007). However, the view that type I GD is non-neurological is 

now outdated. Recent evidence has established that peripheral neuropathy (Biegstraaten et 

al., 2010), dementia (Sidransky et al., 2009) and parkinsonism (Tayebi et al., 2001) feature in 

type I GD. By the age of 80, type I GD patients have an 9-12% increased risk of developing PD 

(Rosenbloom et al., 2011). 

Despite clear clinical and genetic associations between GBA1 and PD, little is known regarding 

the cellular mechanisms that connect these two diseases. In PD, most autosomal dominant 

mutations (SNCA and LRRK2) are associated with a toxic gain-of-function. On the other hand, 

recessive mutations (like PINK, Parkin and DJ-1) can be attributed to loss-of-function. For 

GBA1, arguments have been put forward for both cases. In chapter 4, I further examine the 

effects of loss- and gain-of-function in GBA1-pathology.  

Although null alleles (84dupG) have been reported (Sidransky et al., 2009), most mutations 

lead to a mis-folded enzyme. This favours the toxic gain-of-function hypothesis. Newly 

synthesised proteins undergo a strict quality control, where non-functional proteins are 

degraded through various mechanisms collectively termed ER-associated degradation 

(ERAD) (Mekahli et al., 2011). A persistent accumulation of mis-folded proteins activates the 

unfolded protein response (UPR) (Chakrabarti et al., 2011). The post-mortem analysis of 

GBA1-PD patient brains revealed that UPR markers (like BiP) are up-regulated compared to 

control samples (Gegg et al., 2012). Furthermore, UPR was also activated in transgenic 

drosophila expressing mutant GBA1 (N370S and L444P; Maor et al. 2013).  The prolonged 

activation of UPR initiates apoptotic pathways (Fribley et al., 2009) and could contribute to 
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neurodegeneration. However, primary neuronal cultures treated with pharmacological 

inhibitor of GCase (Conduritol B epoxide; CBE) and GBA1 knockout mice did not show UPR 

activation (Farfel-Becker et al., 2009). This highlights the difficulty involved when selecting 

GBA1-disease models.  

According to the loss-of-function hypothesis, reduced enzyme activity is linked to pathology. 

The accumulation of undegraded substrates could alter lysosome-dependent processes like 

autophagy. Cleeter and colleagues (2012) mimicked GCase deficiency in neuronal precursor 

cells (SH-SY5Y) by knocking down GBA1 and using CBE. Mitochondrial function was impaired 

in both these models. More specifically the authors reported reduced ATP synthesis, loss of 

mitochondrial membrane potential and increased ROS production (Cleeter et al., 2012). 

Osellame et al. (2013) report a similar mitochondrial-dysfunction in a knockout mouse model 

of GD and attribute this dysfunction to impaired autophagy.  

Disrupted lipid homeostasis could be particularly harmful to cells. Indeed, associations 

between the impaired metabolism of ceramide (the product of GCase) and PD have been 

discussed (Bras et al., 2008). Ceramide forms the back bone of sphingolipids, which have an 

important role in signal transduction and membrane composition (Platt, 2014). Notably, 

mutations in PLA2G6, which encodes an enzyme that is involved in generating ceramide, are 

known to cause PD (Paisan-Ruiz et al., 2009). Thus, loss of ceramide in GBA1-disease could 

be linked with pathology.  

Recent studies, investigating the interaction between GCase and α-syn, have shed light on 

the cellular mechanisms underlying GBA1 pathology. GCase has been localised to Lewy 

bodies (Goker-Alpan et al., 2010) and this association could contribute to PD pathology 

through a self-propagating feedback loop. Firstly, the dysfunction of lysosomes, caused by an 

accumulation of glucocerebroside, might impair the degradation of α-syn. In support of this, 

Mazzulli and colleagues (2011) show that 50% depletion of GCase (using shRNA-mediated 

knockdown), hinders general lysosomal turnover of proteins and increases the level of α-syn 

in neurons. This model is further complicated by the finding that α-syn has been shown to 

disrupt the trafficking of proteins towards the lysosomes (Thayanidhi et al., 2010b). Mazzulli 

et al. (2011) showed that this includes GCase, which becomes retained on the ER further 

exacerbating pathology. Notably, GCase activity is reduced in the brains of PD patients 

without GBA1 mutations (Gegg et al., 2012). Thus α-syn itself might reduce GCase activity. 

Indeed, GCase activity is decreased in neurons overexpressing α-syn (Mazzulli et al., 2011). 

This affirms the importance of researching GBA1 pathology for the wider PD population.  
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It is important to highlight that none of these studies have addressed why many individuals 

with a GBA1 mutation do not develop PD. In chapter 4, I investigate whether other 

pathological mechanisms are involved.   

Connecting Ca2+ with PD 
 
Several aspects of neuronal function rely on Ca2+ (Berridge, 1998). For instance, Ca2+ regulates 

neuronal plasticity (Mattson et al., 2000) and an influx of Ca2+ at the presynaptic terminal 

triggers the release of neurotransmitters (Augustine, 2001). Any impairment in Ca2+ 

homeostasis is particularly damaging to neurons since they are post mitotic cells. It therefore 

may not be surprising that Ca2+ has a prominent role in neurodegenerative diseases (Mattson, 

2007). Indeed emerging evidence has linked defective Ca2+ homeostasis in pathology of PD 

(figure 1.4).  

Dopaminergic SNc neurons are autonomously active, they generate repetitive action 

potentials (2-4Hz) in the absence of synaptic input (Grace & Bunney, 1983). This pacemaking 

activity sustains the basal levels of dopamine in connected brain regions like the striatum 

(Surmeier & Schumacker, 2013). Whilst some neurons rely on Na+ to maintain pacemaking, 

SNc neurons are driven to spike threshold by Ca2+ entry through an uncommon L-type VGCC 

named CaV1.3 (Chan et al., 2007). Although this channels is necessary for pacemaking, it 

subjects SNc neurons to a continual influx of Ca2+. Regions that surround the SNc, like the 

ventral tegmental area (VTA), also rely on pacemaking activity. However, VTA neurons do not 

exhibit Ca2+ oscillations (Chan et al., 2007) and they express CaV1.3 at low levels (Khaliq & 

Bean, 2010). These neurons are relatively resistant to death and are spared in PD (German 

et al., 1992). 

The increased Ca2+ influx coupled with the reduced expression of Ca2+ buffers might also 

make SNc neurons selectively vulnerable to degeneration. Unlike the preserved VTA neurons, 

calbindin is not expressed in high levels within the SNc (Yamada et al., 1990). Furthermore, 

the post-mortem analysis of PD brains identified reduced levels of calmodulin and calretinin 

in the SNc (Hurley et al., 2013). Importantly, calmodulin regulates the feedback inhibition of 

CaV1.3 (Huang et al., 2012). GWAS have identified several Ca2+ binding proteins as PD-risk 

factors. For instance, an association between mutations in Calbindin-1 gene and PD have 

been reported in a Japanese population (Mizuta et al., 2008).  

 



41 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Ca2+ signalling and PD 

PD, GD and NPC are all associated with dysfunctional Ca2+ signalling. In PD, excess Ca2+ influx 

through CaV1.3 can disrupt cause neurodegeneration by increasing the energetic demand of the 

mitochondria. DJ-1, PINK1 and LRRK2 mutations can impair the ability of the mitochondria to 

combat this stress. The reduced presence of Ca2+ buffers and observation that α-syn can form pores 

in the plasma membrane can further impair Ca2+ homeostasis in PD. Additionally, MPP+ and α-syn 

have been shown to interfere with the transfer of Ca2+ from the ER to the mitochondria. In GD, RyR 

are known to be hypersensitive and dihydropyridines (traditional L-type VGCC antagonists) can 

improve GD pathology. In NPC lysosomal Ca2+ content is reduced and associated with impaired TPC 

and TRPML signalling. These defects can be corrected by increasing Ca2+ uptake and reducing the 

accumulation of sphingosine.  
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Excess Ca2+ must also be pumped out of the cell. This is an energetically expensive process 

since ATP is needed  to drive Ca2+ across a steep concentration gradient to the extracellular 

environment (Surmeier, et al., 2011). Surmeier and colleagues proposed that persistent and 

long-lasting increases in cytosolic Ca2+ impose significant stress on the mitochondria by 

elevating the metabolic demand. Guzman and colleagues (2010) used a redox-sensitive 

protein targeted to the mitochondria to assess the energetic impact of pacemaking on SNc 

neurons. Oxidative stress and the transient uncoupling of the mitochondria coincided with 

pacemaking-Ca2+ influx. This stress was attenuated by DJ-1, another protein defective in PD 

that functions as a ROS scavenger and interacts with complex 1. Indeed, knockdown of DJ-1 

exacerbated CaV1.3-mediated Ca2+ influx (Guzman et al., 2010).  

Hurley and co-workers (2013) recently conducted a systematic examination of CaV1 channels 

in the PD brain. CaV1.3 levels increase in PD, often preceding pathology (Hurley et al., 2013). 

Therefore, this change in expression is an early event in PD and might influence disease 

progression. In further support of prominent role that L-type VGCC play in PD pathology, 

dihydropyridines (L-type VGCC antagonists) have been shown neuroprotective in animal 

models of PD (Ilijic et al., 2011). Furthermore, epidemiological studies have identified that 

these antagonists (FDA [Food and Drug Administration]  approved for the treatment of 

hypertension) reduce the risk of PD development (Becker et al., 2008; Ritz et al., 2010; 

Pasternak et al., 2012).  

α-syn, the primary component of lewy bodies, can also modulate Ca2+ influx. Danzer et al. 

(2007) identified that the exogenous addition of α-syn oligomers to neuronal cell lines (SH-

SY5Y) increased the permeability of the plasma membrane. Over a 2-fold increase in cytosolic 

Ca2+ levels (250 nM) have been measured in cells overexpressing α-syn (Furukawa et al., 

2006). Since mutated α-syn has an increased propensity to assemble as pores at the plasma 

membrane (Lashuel et al., 2002), it has been proposed that mutant α-syn increases Ca2+ entry 

into the cell and evokes stress in PD.  

Collectively these studies provide a mechanism for selective neuronal degeneration in PD. 

This process could affect us all as we age, since our reliance on SNc Ca2+ pacemaking increases 

with age (Chan et al., 2007). Any other disturbance in Ca2+ homeostasis is likely to advance 

the onset of PD. For instance, PINK1 mutations might also make managing excess Cav1.3-

mediated Ca2+ influx difficult. Gandhi and co-workers (2009) identified that mitochondrial 

Ca2+ release is impaired in PINK1 deficient neurons. PINK1 was shown to interact with NCLX 

and regulate efflux. A PINK deficiency also reduced the threshold for PTP opening and made 
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the cells vulnerable to death (Gandhi et al., 2009). Others have shown that PINK can also 

regulate Ca2+ uptake into the mitochondria (Heeman et al., 2011).  

Furthermore, LRRK2 mutations have also been shown to damage mitochondrial Ca2+ 

homeostasis. Overexpressing G2019S-mutated LRRK2 reduced the buffering capacity of 

mitochondria within neurons (Cherra et al., 2013). These effects where attenuated with Ca2+ 

chelators and L-type VGCC antagonists. This is reminiscent of studies conducted over 15 years 

ago where cybrid cells, containing mitochondria from PD patients, showed a delayed 

recovery from IP3 mediated Ca2+ signalling (Sheehan et al., 1997).  

The role of Ca2+ stores in PD has been largely neglected. The PD toxin MPP+ (oxidised  MPTP) 

has been shown to reduce ER Ca2+ levels (Arduíno et al. 2009). Concomitantly, MPP+ increased 

mitochondrial Ca2+ content. The authors demonstrated that Ca2+ is transferred from the ER 

to the mitochondria under stressful conditions. Moreover, MPP+-induced cell death is 

dependent upon ER Ca2+ release since blocking RyR (with dantrolene) prevented the 

activation of mitochondrial caspases (Arduíno et al., 2009). Perhaps the passage of Ca2+ from 

the ER to mitochondria regulates MPP+-mediated cell death. On a related note, α-syn has 

been shown to enhance the transfer of ER Ca2+ to the mitochondria by increasing interaction 

sites (MAMs) between the organelles (Calì et al., 2012). 

Those LSDs that have been linked to PD, also exhibit disrupted Ca2+ homeostasis (figure 1.4). 

Namely, GD is associated with abnormal ER Ca2+. Korkotian and colleagues (1999) report that 

the pharmacological inhibition of GCase, in hippocampal neurons, perturbed ER morphology 

and increased Ca2+ release through RyR. This made cells vulnerable to glutamate-induced 

Ca2+ excitotoxicity. Pre-treatment with Ryanodine (which blocks RyR) protected neurons 

from glutamate, suggesting a close relationship between ER Ca2+ release and glutamate-

mediated degeneration (Korkotian et al., 1999). Furthermore, microsome preparations 

(vesicle artefacts reformed from fragments of the ER) from rat brains treated with 

glucocerebroside (Lloyd-Evans et al., 2003) also exhibited increased RyR Ca2+ release. Pelled 

et al. (2005) extended these findings into clinical microsome preparations from GD patient 

brains. The authors identified that severe, neuronopathic forms of GD (type II) also exhibited 

increased ER Ca2+ release. These studies proposed that glucocerebroside affects the redox 

state of RyR (via its redox sensor; Feng et al. 2000), since the reducing agent DTT 

(dithiothreitol) abolished defects. 
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Dihydropyridines (e.g. diltiazem and verapamil) can, somewhat, recover the pathology of GD 

fibroblasts by significantly improving the translocation of GCase to the lysosomes and the 

enzyme activity (Mu et al., 2008; Ong et al., 2010). This effect on fibroblasts is surprising since 

they do not express VGCCs, however dihydropyridines were shown to block RyRs (Ong et al., 

2010). It is perhaps significant that dihydropyridines have also been shown to block NAADP-

mediated Ca2+ signalling (Genazzani et al., 1996). Despite being a well-known LSD, 

measurements of lysosomal Ca2+ signalling remain to be examined in GD.  

Lysosomal Ca2+ has been shown to play a crucial role in the pathology of NPC. NPC is 

characterised by the degeneration of cerebellar purkinje neurons. This LSD is caused by 

mutations in either NPC1 or NPC2 which disrupt cholesterol trafficking. As briefly mentioned 

above, PD symptoms have been reported in NPC patients. Josephs et al. (2004) described 

parkinsonian tremor in an NPC individual and their relatives. Furthermore, the post mortem 

analysis of an NPC individual revealed significant α-syn pathology in the SNc (Saito et al., 

2004). Kluenemann and co-workers (2013) recently associated several NPC1 mutations with 

PD. Although another study also found NPC1 and NPC2 mutations associated with PD, the 

frequency of these mutations did not significantly differ from controls (Zech et al., 2013). 

Dysfunctional lysosomal Ca2+ in NPC was first identified by Lloyd-Evans and colleagues (2008). 

Using cells (fibroblasts and lymphocytes) from NPC patients and neuronal cultures from an 

NPC mouse model the authors identified that mutant NPC1 can rapidly reduce lysosomal Ca2+ 

content. Excess sphingosine (a lipid that accumulates in NPC) is believed to cause this 

reduction since the exogenous addition of sphingosine reduced lysosomal Ca2+. Furthermore, 

a sphingosine synthesis inhibitor returned lysosomal Ca2+ levels to normal (Lloyd-Evans et al., 

2008). The reduction of lysosomal Ca2+ hindered NAADP signalling (Lloyd-Evans et al., 2008). 

An important role of lysosomal Ca2+ is to regulate vesicular trafficking, recycling and fusion 

(Pryor et al., 2000). Disrupted endocytosis was also reported in NPC (Lloyd-Evans et al., 2008). 

Elevating cytosolic Ca2+, by depleting stored ER Ca2+ with thapsigargin (a SERCA inhibitor), 

restored lysosomal Ca2+ levels and corrected endocytosis defects (Lloyd-Evans et al., 2008). 

Indeed, the NPC phenotype of a mouse model was improved after treatment with another, 

mild, SERCA inhibitor curcumin (Lloyd-Evans et al., 2008). Additional studies, conducted by 

Lee et al. (2010) and Visentin et al. (2013), also reported similar defects in cerebellar purkinje 

neurons from an NPC mouse model and patient fibroblasts. However, Shen and colleagues 

(2012) did not observe any differences in lysosomal Ca2+ content using similar models. 
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Although they do report defects in endocytosis and link this to the inhibitory action of 

sphingosine on TRPML1 channels (Shen et al., 2012).   

Aims 

 
Ca2+ is a highly versatile signalling cation that regulates many cellular functions. Ca2+ signals 

can originate from both the extracellular environment and intracellular Ca2+ stores. The 

intracellular Ca2+ network is closely associated, where lysosomes can trigger Ca2+ signals from 

the ER which can ultimately be transmitted to the mitochondria. Defects in any component 

of this pathway might impinge on Ca2+ homeostasis and contribute to diseases like PD. 

In this thesis, I examine the functional connections between Ca2+ stores and if their 

dysfunction is connected to PD. My aims are described below: 

1. Many have proposed that NAADP-responses are amplified by the ER. However, 

ambiguity surrounding the molecular target of NAADP has impeded the investigation 

of NAADP receptor-ER coupling. Using a lysosomal permeabilising agent I examine 

whether lysosomal Ca2+ signalling is functionally connected to the ER. 

2. The mechanism behind lysosome-ER Ca2+ coupling is unknown. However, MCSs 

between late-endosomes and the ER have been molecularly characterised. Using 

molecular and pharmacological assays I determined if similar components connect 

and regulate lysosome-ER Ca2+ coupling. I also examined whether TRPML channels 

trigger ER Ca2+ signalling, using a recently developed synthetic agonist.  

3. Emerging evidence shows that Ca2+ defects are present in both PD and GD. Using 

clinical, pharmacological and molecular models I examined whether Ca2+ might 

resolve the genetic connection between GD and PD. 

4. Accumulating evidence implicates lysosomal dysfunction in PD. In the final chapter I 

examine if other genetic and environmental PD risk factors are connected by 

lysosomal dysfunction and corrected by targeting lysosomal ion channels.  

 

 

 

 

 



46 
 

Chapter 2 

Direct Mobilisation of Lysosomal Ca2+ Triggers Complex Ca2+ Signals 

Introduction 

 
Despite emerging evidence connecting lysosomal Ca2+ dysfunction with disease (Lloyd-Evans 

et al., 2008; Coen et al., 2012; Shen et al., 2012), little is known regarding Ca2+ signalling and 

uptake mechanism of these acidic stores. Furthermore, their relationship with the well-

established ER Ca2+ network is largely unknown. Previous research has proposed that 

lysosomal Ca2+ release after NAADP stimulation “triggers” Ca2+ signalling from the ER (Cancela 

et al., 1999). Notably, targeting overexpressed TPC2 to the plasma membrane, achieved 

through mutating the N-terminal lysosomal-targeting motif, uncoupled NAADP signalling 

(Brailoiu et al., 2010b). When at the plasma membrane, NAADP-evoked Ca2+ signals were not 

potentiated by the ER and subsequently appeared “sluggish”. Intimate associations between 

lysosomes and the ER were therefore proposed important for NAADP signalling (Patel & 

Brailoiu, 2012).  

However, the target of NAADP has been disputed. Instead of gating lysosomal ion channels, 

some have argued that this Ca2+ mobilising messenger acts directly on RyR (Hohenegger et 

al., 2002; Gerasimenko et al., 2003; Dammermann et al., 2009). NAADP has been 

hypothesised to target several Ca2+ stores by binding to promiscuous accessory proteins (Lin-

Moshier et al., 2012; Marchant et al., 2012). The possibility that NAADP activates multiple 

receptors has hindered research examining the functional relationship between the ER and 

acidic Ca2+ stores. Directly releasing lysosomal Ca2+ might circumvent these difficulties. In this 

chapter I use a lysosomal permeabilising agent, to examine the functional connections 

between lysosomes and the ER.  

Methods 

Cell culture 

Human skin fibroblasts, established from healthy individuals, and HeLa cells were maintained 

in DMEM (Dulbecco's Modified Eagle Medium) supplemented with 10% (v/v) Fetal Bovine 

Serum (FBS), 100 µg/mL streptomycin and 100 units/mL penicillin (all from Invitrogen). 
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SH-SY5Y cells were cultured in a 1:1 mixture of DMEM and Ham’s F12 media supplemented 

with 10% (v/v) FBS, 100 units/mL penicillin, 100 µg/mL streptomycin and 1% (v/v) non-

essential amino acids (all from Invitrogen).  

Mixed primary neuronal cultures were prepared from the brains of mouse pups at postnatal 

day 1 by Dr Laura Osellame (Department of Cell and Developmental Biology, UCL). Primary 

neuronal cultures were maintained in Neurobasal media (Invitrogen) supplemented with 2% 

(v/v) B-27, 2 mM L-glutamine (both sigma), 10% (v/v) FBS, 100 units/mL penicillin and 100 

µg/mL streptomycin (Invitrogen). Neuronal cultures were analysed 8 days after isolation. 

Fibroblasts, HeLa cells and neuronal cultures were fed fresh media every 5 days. Media of 

SH-SY5Y cells was changed every 2-3 days. Some fibroblast cultures were treated overnight 

with 100 nM, of the vacuolar-type H+-ATPase inhibitor, Bafilomycin-A1 (Sigma-Aldrich) 

prepared in DMSO (dimethyl sulfoxide). All cultures were kept at 37oC in a humidified 

atmosphere with 5% CO2. Before experimentation cells, were plated onto glass coverslips. 

For HeLa, SH-SY5Y and neuronal cells, glass coverslips were coated with 20 μg/mL poly-L-

lysine. 

Live-cell imaging 

Ca2+ imaging 

Cells were loaded with the ratiometric fluorescent Ca2+ indicator Fura-2 after incubation with 

Fura-2 AM (2.5 μM) and 0.005% (v/v) pluronic acid (Invitrogen) for 1 hour at room 

temperature in HEPES-buffered saline (HBS) consisting of 10 mM HEPES, 2 mM MgSO4, 156 

mM NaCl, 3 mM KCl, 2 mM CaCl2, 1.25 mM KH2PO4 and 10 mM glucose (pH 7.4). 

Following three washes in HBS, cells were stimulated with either GPN (20, 100 and 200 μM; 

glycyl-L-phenylalanine-naphthylamide; SantaCruz Biotech), NAADP-AM (150 nM; from Dr 

Grant Churchill, Department of Pharmacology, University of Oxford), FCCP (carbonylcyanide-

p-(trifluoromethoxy)-phenylhydrazone; 1 μM; Sigma), bradykinin (0.1, 1 and 10 nM; Sigma), 

thapsigargin (1 μM; Merck), bafilomycin-A1 (1 μM; Sigma), 2-APB (2-aminoethoxydiphenyl 

borate; 100 µM; Sigma) or ryanodine (100 μM; Merck). Where indicated, extracellular Ca2+ 

was removed using a modified HBS solution containing 1 mM EGTA (ethylene glycol 

tetraacetic acid) instead of CaCl2. 

Lysotracker imaging 

Fibroblasts were incubated with 100 nM Lysotracker red (Invitrogen) for 30 minutes in HBS. 

After loading, cells were washed three times in HBS and imaged after stimulation with GPN.  
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Dextran imaging 

Fibroblasts were loaded with either 0.2 mg/mL dextran-conjugated Rhodamine B (MW 

10,000) or dextran-conjugated fluorescein (MW 10,000) (both from Invitrogen) overnight at 

37 oC in culture. Cells were subsequently chased for 3 hours in dextran-free culture medium 

to label lysosomes. Cells were then washed in HBS and imaged directly or in some cases 

further incubated with 100 nM Lysotracker red (Invitrogen) for 30 minutes. 

Immunocytochemistry 

Cells were fixed for 10 minutes using 4% (w/v) paraformaldehyde in Phosphate buffered 

saline (PBS), washed three times with PBS and then permeabilised for 5 minutes with β-Escin 

(40 μM in PBS). Cells were washed again (three times in PBS), and blocked for 1 hour with a 

PBS solution supplemented with 1% (w/v) bovine serum albumin (BSA) and 10% (v/v) FBS. 

Subsequently, cells were incubated for 1 hour at 37oC, with primary anti-LAMP1 (lysosomal 

associated membrane protein 1) antibody (H4A3 clone, mouse, Developmental Studies 

Hybridoma Bank) diluted (1:10-100) in blocking solution. Coverslips were washed three times 

in PBS containing 0.1% (v/v) tween (PBS-T) and incubated, for a further 1 hour at 37oC, in a 

secondary antibody conjugated to AlexaFluor 647 (mouse, 1:100 dilution; Invitrogen). Cells 

were washed again in PBS-T and incubated with 1 μg/mL DAPI (4',6-diamidino-2-

phenylindole) for 5 minutes to label the nuclei. Finally, coverslips were mounted onto 

microscope slides with DABCO (1,4-diazabicyclo[2,2,2]octane) and sealed. 

Microscopy 

Epifluorescence 

Epifluorescence images were captured every 3 seconds with a cooled coupled device camera 

(TILL photonics) attached to an Olympus IX71 inverted fluorescence microscope fitted with a 

20x objective, and a monochromator light source. Fura-2 fluorescence (emission; 440 nm) 

was visualised after sequential excitation at 340 nm and 380 nm. Lysotracker red and 

Rhodamine dextran were excited at 568 nm and 570 nm respectively and emitted 

fluorescence was captured using a 590 nm filter. 

Confocal 

Confocal images were captured using an inverted Axiovert 200M microscope attached to a 

LSM510 confocal scanner (Zeiss) fitted with a 63x Plan Apochromat water-immersion 

objective. DAPI, fluorescein-dextran, Lysotracker and AlexaFluor 647 fluorescence was 

excited using wavelengths of 364 nm, 488 nm, 543 nm and 633 nm respectively. Emitted 

fluorescence was captured using either a long-pass 385 nm filter (DAPI) or band-pass filters 

set between 505-530 (fluorescein-dextran), 560-615 nm (Lysotracker) and 655-719 nm 
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(AlexaFluor 647). Zeiss LSM 510 software was used to acquire the images. For comparison of 

lysosome integrity (after treatment with GPN), images were captured using identical 

acquisition settings. 

Analysis 

Ca2+ imaging 

To quantify Fura-2 fluorescence, the background was subtracted from the images and the 

mean 340/380 nm ratio of cells (selected through user defined region-of-interest) was 

calculated at each time point during the experiment using TILLvisION software. Prior to 

stimulation, Fura-2 fluorescence was recorded for 60 seconds to ascertain a basal Fura-2 

reading. The magnitude of Fura-2 response (Δ Ca2+) was calculated by subtracting the basal 

ratio from the peak ratio. Spontaneous increases in Fura-2 fluorescence, defined by spikes in 

the basal recordings exceeding ratio values of 0.33, were excluded from Δ Ca2+ analysis. Cells 

were classified oscillatory if more than 1 peak in Fura-2 fluorescence occurred during the 

time course of imaging. Fibroblasts were deemed responsive to stimuli if the Fura-2 

fluorescence ratio, after stimulation, increased beyond the ratio value 0.4. This threshold 

value was selected because responses exceeding 0.4 could be clearly defined as a spike in 

Fura-2 fluorescence. 

Lysotracker and dextran imaging 

After background subtraction Lysotracker and Dextran fluorescence was quantified within 

user defined regions-of-interest using TILLvisION software. For some measurements, 

fluorescence was normalised to basal values (recorded prior to stimulation).  

Confocal  

Confocal images were analysed using Image J software. For LAMP1 intensity measurements, 

background was subtracted from the images and mean grey intensity per cell measured 

within user defined regions-of-interest (comprising the whole lysosome population). 

Statistics 

Values are presented as mean ± standard error. Statistical analysis was performed using 

Minitab 17. Two-sample t-test and ANOVA analysis (followed by a post-hoc Tukey test) were 

applied to test significance. Data of p<0.05 were classed statistically as significant.   

Results 

GPN evokes complex Ca2+ signals 

GPN is a freely diffusible substrate for the lysosomal enzyme Cathepsin C (Jadot et al., 1984) 

and when hydrolysed it osmotically permeabilises the lysosomes to Ca2+ and other 
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constituents. GPN-evoked Ca2+ signals were examined in cultures of human fibroblasts 

loaded with the cytosolic ratiometric Ca2+
 indicator Fura-2. GPN generated prolonged Ca2+ 

responses (Figure 2.1A) that persisted in the absence of extracellular Ca2+ (figure 2.1B). These 

Ca2+ signals resembled those induced by the agonist bradykinin (figure 2.1C) and a cell-

permeable analogue of NAADP, called NAADP-AM (figure 2.1D). It is important to note that 

the majority of cells were unresponsive NAADP-AM (data not shown). Out of the 199 cells 

recorded only 10% responded to NAADP-AM and these cells are represented in figure 2.1D. 

GPN-evoked Ca2+ signals were also compared to those induced by depleting mitochondrial 

Ca2+ with FCCP (figure 2.1E) and ER Ca2+ with thapsigargin (figure 2.1F). In contrast to GPN, 

both FCCP and thapsigargin evoked small, monotonic and transient Ca2+ responses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 GPN evokes complex Ca2+ signals 

(A-F) Cytosolic Ca2+ responses of individual fibroblasts stimulated with either GPN (200 μM; A-B), 

bradykinin (100 pM; C), NAADP-AM (150 nM; D; only responsive cells shown), FCCP (1 μM; E) or 

thapsigargin (1 μM; F). Extracellular Ca2+ was removed in (B and F). NAADP-AM-evoked Ca2+ 

responses have been pooled from 8 experiments. 
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GPN rapidly permeabilises lysosomes  

GPN evoked surprisingly long-lasting Ca2+ responses, so the rate of lysosome 

permeabilisation was investigated in fibroblasts using the acidotropic fluorescent indicator 

Lysotracker red (Figure 2.2A-B). Lysotracker accumulated in punctate structures, consistent 

with the labelling of lysosomes (figure 2.2A). As shown in confocal (figure 2.2A) and 

epifluorescence (figure 2.2B) imaging, GPN induced a rapid loss of Lysotracker fluorescence 

which occurred around 3 minutes after its addition.  

GPN-evoked Ca2+ responses (figure 2.1A) therefore continue after the loss of Lysotracker 

fluorescence. This kinetic discrepancy was pursued by co-loading cells with Fura-2 and 

Lysotracker and simultaneously recording fluorescence emission (Figure 2.2C-E). In all cells 

examined, the loss of Lysotracker fluorescence correlated with a small increase in cytosolic 

Ca2+. Once the Lysotracker signal was depleted, secondary Ca2+ responses were observed. 

These signals were categorised into three types. In most of the fibroblasts examined, a peak 

of large amplitude was either followed by a series of oscillations (Figure 2.2C; 45±3%, n=40) 

or terminated after the initial Ca2+ spike (Figure 2.2D; 36±4%, n=40). In other cells, a 

monotonic response that primarily peaked after the loss of Lysotracker was observed (Figure 

2.2E; 18±3%, n=40).  

GPN evokes spatiotemporally complex Ca2+ signals 

GPN-evoked oscillatory Ca2+ responses were further characterised by examining the spatial 

patterning of Ca2+ signals. Representative, pseudo-coloured, Fura-2 epifluorescence images 

are shown in figure 2.3. GPN-evoked Ca2+ signals either originated at one location (typically 

close to the plasma membrane) and spread throughout the cell in a wave-like fashion (figure 

2.3A; 67±5% cells, n=15) or commenced around the cell periphery (figure 2.3B; 33±5% cells, 

n=15). For the latter of these responses, the Ca2+ wave advanced in a centripetal motion like 

the closing of an iris. In all 104 cells examined, repeated spikes originated from the same sub-

cellular location.  

GPN-evoked Ca2+ responses are concentration-dependent  

The effect of GPN on Lysotracker fluorescence and cytosolic Ca2+ signalling was further 

characterised in fibroblasts using a range of GPN concentrations (figure 2.4). Reducing GPN 

concentration delayed the loss of Lysotracker fluorescence (figure 2.4A). This was quantified 

by calculating the time taken for fluorescence to decrease by 50% (figure 2.4E). As shown in 

figures 2.4B-D, GPN-evoked Ca2+ responses also varied according to GPN concentration. At 

200 μM, GPN-evoked Ca2+ signals similar to those seen in other figures. GPN also evoked 

complex Ca2+ signals at 100 μM, but the responses were delayed (figure 2.4D and F). 
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Furthermore, 20 μM GPN appeared at the threshold of Ca2+ signal generation since the 

magnitude of Ca2+ response (figure 2.4G) and percentage of responsive cells (figure 2.4H) 

were reduced at this concentration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complex GPN-evoked Ca2+ responses are cell-type specific 

To further investigate GPN-evoked Ca2+ responses, Ca2+ signals were compared in multiple 

cell types. Similar to fibroblasts (figure 2.5A), GPN stimulated complex Ca2+ signals in cultures 

containing a mixed population of cortical cells (Figure 2.5B). However, in HeLa (figure 2.5C) 

and SH-SY5Y (Figure 2.5D) cells, responses were of low magnitude and monotonic.  

 

Figure 2.2 GPN rapidly permeabilises lysosomes  

(A) Confocal images of fibroblasts labelled with Lysotracker (white) before and 216 seconds after 

the addition of GPN (200 μM). Scale bar; 10 μm. 

(B) Average epifluorescence responses of Lysotacker labelled cells after DMSO or GPN (200 μM) 

stimulation.  

(C-E) Simultaneous measurements of Lysotracker Red (LTR; red line) and Fura-2 (blue line) 

fluorescence from individual fibroblasts stimulated with GPN (200 μM) in the absence of 

extracellular Ca2+. Inset values indicate the number of cells categorised into each cell type across 

all 40 experiments (n) analysing 557 cells. 
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GPN-evoked Ca2+ responses are dependent upon acidic organelles  

To examine the contribution of acidic organelles to GPN-evoked Ca2+ responses, cells were 

treated with bafilomycin-A1. Bafilomycin-A1 is a V-type ATPase inhibitor that prevents the 

acidification of lysosomes. Maintenance of a low luminal pH is crucial for Ca2+ uptake 

(Christensen et al., 2002). As shown in figure 2.6B, complex GPN Ca2+ signalling was largely 

inhibited after an overnight exposure to 100 nM bafilomycin-A1. However, the acute addition 

of bafilomycin-A1 did not induce Ca2+ responses (figure 2.6C). 

 

 

Figure 2.3 GPN evokes spatiotemporally complex Ca2+ signals 

(A-B) Representative pseudo-coloured epifluorescence images of GPN-evoked Ca2+ signals that 

initiated in one location and spread throughout the cell (A) or propagated in a centripetal motion 

(B). The Ca2+ traces represent the temporal profiles of the spatial images. Each vertical line marks 

the time that each image was taken. 
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Figure 2.4 GPN-evoked Ca2+ responses are concentration-dependent  

(A-D) Lystoracker red fluorescence (A) and cytosolic Ca2+ responses (B-D) of fibroblasts after 

stimulation with GPN (20, 100 and 200 μM). Lysotracker fluorescence values have been normalised 

to basal values. 

(E-F) Summary data (mean ± S.E.M) quantifying the time to taken to reach a half-maximal loss of 

Lysotracker fluorescence (E) or maximal Ca2+ responses (F).  

(G-H) Pooled data (mean ± S.E.M) quantifying magnitude of Ca2+ response (G) and percentage of 

responding cells (defined by >0.4 ratio value; H).  

Ca2+ results are from 37-64 (n) cells from 2-3 independent platings.  
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Figure 2.5 Complex GPN-evoked Ca2+ responses are cell-type specific 

(A-D) Representative cytosolic Ca2+ responses of fibroblasts (A), mixed primary neuronal cultures  

(B), HeLa cells (C) and SH-SY5Y (D) cells after stimulation with GPN (200 μM).  

Figure 2.6 GPN-evoked Ca2+ responses are dependent upon acidic organelles  

(A-B) Representative GPN-evoked Ca2+ responses of individual fibroblasts treated overnight with 

either DMSO (A) or bafilomycin-A1 (100 nM; B). 

(C) Representative cytosolic Ca2+ responses of individual fibroblasts stimulated with bafilomycin-

A1 (1 μM) in the absence of extracellular Ca2+. 
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GPN-evoked Ca2+ responses are dependent upon ER-localised IP3R 

To examine the contribution of ER Ca2+ to GPN-evoked complex Ca2+ responses, ER Ca2+ was 

pharmacologically manipulated using thapsigargin, 2-APB and Ryanodine. The SERCA ATPase 

inhibitor thapsigargin, depleted ER Ca2+ and eliminated GPN-induced oscillations, when 

compared to the DMSO control (figure 2.7A-B). Similarly the inhibition of IP3Rs with 2-APB 

significantly reduced secondary GPN responses (Figure 2.7C). However, GPN-evoked complex 

Ca2+ signalling persisted after RyR inhibition (with ryanodine; Figure 2.7D). A concentration 

of the physiological agonist bradykinin which induces a large, transient Ca2+ signal also largely 

inhibited oscillations (Figure 2.7E). Figure 2.7F summarises the inhibition of GPN-stimulated 

oscillations. 

GPN permeabilises lysosomes to small molecular weight solutes 

Many have reported that GPN increases the osmolarity of lysosomes which subsequently 

ruptures these acidic organelles, however these experiments were conducted using isolated 

lysosome preparations (Berg et al., 1994; Jadot et al., 1984). This raises concerns that the 

complex Ca2+ responses induced by GPN might be a consequence of released lysosomal 

hydrolases.  To examine the effect of GPN on lysosome morphology, cells were fixed after 

stimulation and labelled with an antibody raised to the late endosome/lysosome marker 

LAMP1. The representative confocal images shown in Figure 2.8A, demonstrate that after 

treatment with GPN lysosomes appear intact but enlarged. These effects were associated 

with a 2-fold increase in LAMP1 intensity (figure 2.8B). 

To further explore the effects of GPN on lysosome permeability, live cells were co-loaded 

with Lysotracker and a fluorescent dextran (fluorescein, MW 10,000) which was delivered 

through endocytosis. Figure 2.8C shows that Lysotracker co-localised with the fluorescein-

dextran. Consistent with figure 2.2, GPN induced a prompt loss of Lysotracker fluorescence, 

however dextran fluorescence remained within punctate structures (Figure 2.8C). 

Epifluorescence imaging of rhodamine-dextran loaded cells revealed that instead of a 

reduction, a modest increase in fluorescence was observed upon stimulation with GPN 

(Figure 2.8D-E).  

ER-evoked Ca2+ responses are unaffected by lysosome disruption  

My results suggest that ER Ca2+ is necessary for the generation of complex GPN-evoked Ca2+ 

responses in fibroblasts. Recent research has identified that lysosomes sequester ER Ca2+ and 

subsequently shape ER Ca2+ signals (Morgan et al., 2013; López-Sanjurjo et al., 2013). ER Ca2+ 

release, in response to thapsigargin, was compared in fibroblasts after overnight treatment 

with the vehicle control (DMSO, figure 2.9A) and bafilomycin-A1 (figure 2.9B). Pre-treatment 
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with bafilomycin-A1 did not affect the magnitude of thapsigargin Ca2+ response (figure 2.9C). 

However, it is noteworthy that bafilomycin-A1 significantly increased basal Ca2+ levels in 

fibroblasts (figure 2.9D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 GPN-evoked Ca2+ responses are dependent upon ER-localised IP3R 

(A-E) Cytosolic Ca2+ responses of individual fibroblasts stimulated with GPN (200 μM) after pre-

treatment with either DMSO (A), thapsigargin (1 μM; B), 2-APB (100 μM; C), ryanodine (100 μM; 

D) or bradykinin (10 nM; E) in the absence of extracellular Ca2+.  

(F) Summary data (mean ± S.E.M) quantifying the percentage of cells displaying oscillatory 

responses after GPN stimulation. Results are from 3-17 experiments (n) analysing 45-279 cells. 

ANOVA analysis, followed by a post-hoc Tukey test, was applied to test significance against control. 

***p<0.001. 
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Figure 2.8 GPN permeabilises lysosomes to small molecular weight solutes  

(A) Representative confocal images of LAMP1 (white) staining in fibroblasts fixed after 15 minutes 

treatment with either DMSO or GPN (200 μM). Nuclei were stained using DAPI (blue). Insets are 

zoomed images. All Scale bar; 10 μm. 

(B) Summary data (mean ± S.E.M) quantifying LAMP1 intensity as a percentage of DMSO CTRL. 

Results from 3 independent treatments (n) analysing 84-94 cells.   

(C) Representative confocal fluorescence images of a DAPI (blue), fluorescein-dextran (green) and 

lysotracker (red) labelled fibroblast before (left panel) and 152 seconds after (middle and right 

panels) stimulation with GPN (200 μM). All Scale bar; 10 μm. 

(D) Average epifluorescence responses of lysotracker (LTR; red trace) and rhodamine-dextran 

(DEX; black trace) labelled cells after stimulation with GPN (200 μM). Data has been normalised to 

basal fluorescence values. 

(E) Summary data (mean ± S.E.M) quantifying dextran and lysotracker intensity before (0-60 

seconds) and after (540-600 seconds) GPN addition. Results are from 3-4 independent experiments 

analysing 54-43 cells (n).  
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Discussion 

 
In this chapter I show that, in human fibroblasts, direct mobilisation of lysosomal Ca2+, using 

GPN, evokes prolonged and complex Ca2+ signalling. These Ca2+ signals were insensitive to 

extracellular Ca2+ and similar to those evoked by agonists and NAADP. GPN-evoked Ca2+ 

responses were biphasic, consisting of an initial pacemaker signal, which coincides with 

lysosome disruption, followed by various secondary responses that were spatially 

heterogeneous. Like NAADP, secondary Ca2+ responses were dependent upon ER-localised 

IP3R. Therefore, inducing a leak of small molecular weight solutes from the lysosomes with 

GPN, can be used as an effective tool to recapitulate NAADP signalling and probe the 

functional relationship between ER and acidic Ca2+ stores. Research presented in this chapter 

was published in Kilpatrick et al. (2013) and Penny et al. (2014) (both attached to the 

appendix). 

Figure 2.9 ER-evoked Ca2+ responses are unaffected by lysosome disruption  

(A-B) Cytosolic Ca2+ responses of individual fibroblasts stimulated with thapsigargin (1 μM) after an 

overnight treatment with either DMSO (A) or bafilomycin-A1 (100 nM; B). 

(C-D) Summary data (mean ± S.E.M) quantifying the magnitude of thapsigargin response (C) and 

basal Ca2+ ratios (D). Results are from 6 experiments (n) of 3 independent treatments analysing 80-

88 cells. A two-sample t-test was applied to test significance. *p<0.05. 
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The proposed TPC ligand NAADP, has previously been shown to induce complex Ca2+ 

responses. Evidence suggests that a localised release of lysosomal Ca2+ with NAADP, triggers 

global ER Ca2+ signalling. This was first reported by Cancela and co-workers (1999) where 

NAADP responses were supressed in pancreatic acinar cells upon the blockade of IP3Rs and 

RyRs. Notably, this NAADP-triggering phenomenon has been recapitulated in neuronal 

(Brailoiu et al., 2005; Heidemann et al., 2005; Brailoiu et al., 2009b) and immune (Berg et al., 

2000; Steen et al., 2007) cells. In this chapter I demonstrate that GPN-induced Ca2+ responses 

resembled those evoked by NAADP-AM (Figure 2.1) and are also amplified by the ER (figure 

2.7). Specifically, inhibiting ER Ca2+ release blocked GPN-evoked Ca2+ oscillations. These data 

agree with previous research where depleting ER Ca2+ with thapsigargin also reduced GPN 

responses (Haller et al., 1996; Sivaramakrishnan et al., 2012; Gerasimenko et al., 2006; 

Menteyne et al., 2006; Coen et al., 2012). However, thapsigargin has not always been shown 

to dampen GPN Ca2+ signalling (López et al., 2005; Visentin et al., 2013). Since secondary Ca2+ 

signals are inhibited with 2-APB (not ryanodine), GPN responses likely depend upon IP3Rs. 

However, I cannot rule out the possibility that IP3Rs on the Golgi apparatus are also involved 

in these complex GPN Ca2+ signals (Pinton et al., 1998).  

A key feature of IP3Rs and RyRs is that they are sensitive to Ca2+ (Bezprozvanny et al., 1991). 

It has therefore been proposed that NAADP responses are amplified by these ER channels 

through CICR (Cancela et al., 1999). Targeting overexpressed TPC2 to the plasma membrane, 

achieved through mutating the N-terminal lysosomal-targeting motif, altered NAADP 

signalling (Brailoiu et al., 2010b). When at the plasma membrane NAADP-evoked Ca2+ signals 

were sluggish and insensitive to the inhibition of ER Ca2+ release (Brailoiu et al., 2010b). Thus, 

for lysosome-ER “channel chatter” to occur it has been proposed that these Ca2+ stores must 

be closely associated. 

The ER is known to form MCSs (membrane regions defined by a separation of less than 30 

nm) with many organelles which are important for lipid transfer and Ca2+ signalling (reviewed 

in Prinz 2014). We have recently identified MCSs between lysosomes and the ER (report 

attached to the appendix, Kilpatrick et al. 2013). Dr Emily Eden and Professor Clare Futter 

report that more than 80% of lysosomes form contacts with the ER. Indeed, this is likely an 

underestimate since lysosomes are approximately 3-7 times larger than the sections used for 

electron microscopy, so further contacts may have been missed. Further examination of ER-

Lysosomal MCSs, revealed that these Ca2+ stores appear tethered together. Much like those 

MCSs already reported between the ER and late-endosomes (Eden et al., 2010) as well as 
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mitochondria (Csordás et al., 2006). Despite extensive MCSs reported between the ER and 

mitochondria, release of mitochondrial Ca2+ using FCCP was not sufficient to induce complex 

Ca2+ signalling (Figure 2.1E). Therefore, to evoke complex Ca2+ responses the structure of 

lysosome-ER contact sites must be unique.  

The physical coupling of these organelles likely facilitates lysosomal Ca2+ signalling by bringing 

the Ca2+ signalling apparatus together. An aggregation of Ca2+ and signalling proteins in such 

a confined space might form Ca2+ microdomains. In these microdomains accumulating Ca2+ 

could prime IP3Rs. The concept that MCSs promote Ca2+ signalling is not novel. Mitochondria 

are known to form close (around 10 nm) junctions with the ER to promote Ca2+ uptake and 

subsequent ATP production (Csordás et al., 2006; Szabadkai et al., 2006; Tarasov et al., 2012). 

In addition, the sarcoplasmic reticulum connects with L-type Ca2+ channels on the plasma 

membrane for excitation-contraction coupling in muscle cells (Franzini-Armstrong et al., 

1999). 

The size of MCSs/microdomains obstructs their experimental characterisation. However, 

computational models can be developed to simulate these environments. With the help of 

collaborators in New Zealand, our laboratory constructed a model of ER-lysosomal Ca2+ 

microdomains (report attached to the appendix, Penny et al. (2014)). We used the loss of 

Lysotracker fluorescence in fibroblasts as a proxy to model lysosomal Ca2+ release. The 

computational model was capable of qualitatively reproducing GPN-induced Ca2+ signalling 

with the matched pharmacology. We then advanced the model to probe physiological 

NAADP signalling through TPCs. TPCs were modelled on established biophysical data (Pitt et 

al., 2010) and microdomains were shown to modulate NAADP-evoked Ca2+ signals. 

Furthermore, the frequency of NAADP-induced Ca2+ oscillations was dependent upon TPC 

density within the microdomain. Thus, similar to RyR clustering (important for driving 

excitation-contraction coupling), TPCs might accumulate in microdomains to drive NAADP 

signalling. Once appropriate antibodies have been developed, this should be examined using 

immunoelectron microscopy. An interesting, yet somewhat counter-intuitive, finding of this 

model was that a high concentration of Ca2+ in the microdomain was not necessary to initiate 

CICR. Although not claiming to be the physiological state, only nanomolar concentrations of 

Ca2+ are needed to prime IP3Rs (Bezprozvanny et al., 1991).  

GPN has been widely used to investigate lysosomal Ca2+ signalling (table 1.1, chapter 1). 

Much like the evidence presented in this chapter, Ca2+ responses to GPN can vary according 

to cell type (Figure 2.5). Similar to SHSY5Y and HeLa cells, GPN evokes low magnitude, 
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monotonic Ca2+ signals in MDCK (Haller et al., 1996) and HEK (Reeves et al., 2006) cells. 

Notably, GPN stimulates complex Ca2+ signalling in both fibroblasts and neuronal cultures. 

GPN has previously been shown to elicit robust, complex Ca2+ signals in neuronal cells 

(Pandey et al., 2009; Tu et al., 2010). The variations in Ca2+ responses might be a result of 

differences in Cathepsin C activity, lysosome number, volume and Ca2+ content. Furthermore, 

ER Ca2+ homeostasis, receptor levels and MCS composition might account for different GPN 

responses across cell types. Indeed, these differences require further characterisation. 

GPN has also been used to examine lysosomal Ca2+ content (Lloyd-Evans et al., 2008; 

Dickinson et al., 2010; Shen et al., 2012; Coen et al., 2012). In order to effectively do this, Ca2+ 

stores must be uncoupled to get an accurate measure of acidic store content. Failure to 

prevent ER Ca2+ efflux might influence interpretations. A good example of this is whether 

lysosomal Ca2+ content is reduced in Niemann-Pick type C1 (NPC). Lloyd-Evans et al. (2008) 

report that lysosomal Ca2+ content is reduced in NPC, whereas Shen et al. (2012) do not see 

this disuption. These discrepancies could be attributed to the pre-treatment with (Lloyd-

Evans et al., 2008), or without (Shen et al., 2012) thapsigargin. Perhaps a better approach for 

measuring lysosomal Ca2+ content is using 2-APB. Because, unlike thapsigargin, 2-APB would 

not cause a cytosolic Ca2+ response and the subsequent activation of buffering mechanisms 

(this approach has been used in chapter 4). It is notable that, GPN-evoked Ca2+ responses, 

following pre-stimulation with thapsigargin, differ from those evoked after 2-APB and 

bradykinin (Figure 2.7). Perhaps, the functional uncoupling from the ER is incomplete upon 

IP3R inhibition/desensitisation. On the other hand, 2-APB has several non-specific effects on 

Ca2+ homeostasis (such as modifying store operated Ca2+ entry) which might also disturb GPN 

signalling.  

Although lysosomal hydrolases are believed to be harmless at neutral pH, Gerisemenko and 

colleagues (2006) attribute GPN-induced complex Ca2+ signalling to a leak of enzymes from 

the lysosomes. Indeed, they show that the inhibition of papain and cathepsins B, L and S with 

the Cathepsin-inhibitor 1 (CI-1) reduced GPN-evoked complex Ca2+ signalling (Gerasimenko 

et al., 2006). However, others have shown that CI-1 has no effect on GPN stimulated Ca2+ 

responses (Menteyne et al., 2006; Steen et al., 2007). Data reported in this chapter shows 

that GPN causes a controlled, concentration-dependent leak of small molecular weight 

solutes (<10 KDa; Figure 2.8C-E). Therefore, hydrolases, most of which are larger than 35 KDa, 

likely remain within lysosomes upon exposure to GPN. This is consistent with previous 

reports showing the lysosomal retention of 10- (Steinberg et al., 2010) and 70- (Haller et al., 
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1996) KDa dextrans after GPN treatment. To ensure hydrolases remain within the lysosomes, 

their localisation after GPN exposure requires further examination. Moreover, the effect of 

CI-1 on GPN induced Ca2+ responses in fibroblasts warrants investigation. I have also 

examined lysosomal morphology after exposure to GPN. Although the lysosomes appear 

intact, GPN appeared to enlarge these organelles (figure 2.8A). This might reflect the osmotic 

swelling. The increase in lysosome size could be significant since it might bring these acidic 

Ca2+ stores even closer to the ER. Notably, integrity and membrane contacts after exposure 

to GPN requires further examination using electron microscopy. 

Evidence presented in this chapter suggests that lysosomes hold an essential position within 

the Ca2+ network since they are capable of triggering complex Ca2+ signalling. Indeed, some 

have reported that this functional coupling is bi-directional, where lysosomes also modify ER-

Ca2+ signalling (López-Sanjurjo et al., 2013; Morgan et al., 2013). Recent research, using sea 

urchin eggs, has identified that ER Ca2+ signalling stimulates lysosomal Ca2+ release (Morgan 

et al., 2013). This was established using an innovative technique whereby the alkalinisation 

of lysosomal pH was shown to be an indicator of NAADP activity (Morgan et al., 2013; Morgan 

& Galione, 2007). It is therefore possible that NAADP signalling is sustained by the bi-

directional transfer of Ca2+ between lysosomal and ER stores. In addition, Lόpez-Sanjurjo and 

colleagues (2013) report that in HEK cells various lysosomal toxins, including bafilomycin, 

potentiate thapsigargin and IP3-mediated Ca2+ signalling. Intimate physical associations 

between lysosomes and ER, identified using total internal reflection fluorescence 

microscopy, were also proposed to facilitate this lysosomal Ca2+ uptake. However, in 

fibroblasts bafilomycin did not affect thapsigargin Ca2+ signalling in fibroblasts (figure 2.9). 

Although, bafilomycin did increase cytosolic Ca2+ (as also reported in López-Sanjurjo et al., 

2013), showing the importance of lysosomes in the maintenance Ca2+ homeostasis. 

In conclusion, lysosomal Ca2+ is sufficient to trigger complex, ER-regulated Ca2+ signalling. 

Thus, GPN can be effectively used to examine Ca2+ signalling at the ER-lysosomal interface. 

This tool evades problems associated with the potential action of NAADP on ER Ca2+ channels. 

Recently described MCSs between the ER and lysosomes might facilitate the functional 

coupling between these Ca2+ stores.  Indeed, in silico models suggest that MCSs promote 

lysosomal-ER Ca2+ signalling. However, further work characterising the composition of MCSs 

is warranted.  

 



64 
 

Chapter 3 

On the Mechanism of Lysosome-ER Ca2+ Coupling 

Introduction 

 
In chapter 2, a functional relationship between lysosomes and ER Ca2+ signalling was 

identified using a lysosomal permeabilising agent. The recently identified MCSs between 

these Ca2+ stores might contribute to this Ca2+ signalling partnership (Kilpatrick et al., 2013). 

Although our understanding of these connections is limited, we can draw parallels with 

research examining MCSs between late-endosomes and the ER (Eden et al., 2010; Rocha et 

al., 2009; Alpy et al., 2013). These studies identified the small trafficking GTPase Rab7 as an 

essential MCS component. Through interactions with RILP and ORP1L, Rab7 can regulate late-

endosome trafficking and the formation of MCSs (Rocha et al., 2009; Johansson et al., 2007). 

Specifically, RILP interacts with cytoskeletal-components to regulate minus-end trafficking 

(Johansson et al., 2007) and ORP1L is recognised by ER-localised VAP (Rocha et al., 2009). 

VAP transmembrane proteins have an essential role in lipid transport (Peretti et al., 2008) 

and have been associated with plasma membrane- (reviewed in Prinz 2014) and 

mitochondria- (De Vos et al., 2012) ER MCSs. Similar proteins might also mediate lysosome-

ER junctions and regulate Ca2+ “chatter” between these organelles. 

We have proposed that lysosome-ER MCSs facilitate signalling by NAADP (Kilpatrick et al., 

2013; Penny et al., 2014), which, for over a decade, has been established as a “trigger” for 

IP3 and ryanodine receptor activation (Cancela et al., 1999). At least two distinct ion channels 

reside on lysosomes, TPC2 and TRPMLs. Although much evidence indicates that TRPMLs are 

Ca2+-permeable, little is known regarding their role in Ca2+ signalling.  

Using knowledge derived from late-endosome-ER connections, this chapter examines if 

similar components affect lysosome-ER Ca2+ signalling. Additionally I investigate the role of 

TRPML channels in Ca2+ signalling and whether, like TPCs, they are functionally connected 

with the ER. 
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Methods 

Cell culture 

Primary human fibroblasts were cultured as described in chapter 2. In some experiments 

fibroblasts were treated overnight with the Rab7 GTPase inhibitor (CID 1067700; 100 μM; 

EMD Millipore) prepared in DMSO. 

siRNA transfection 

Fibroblasts were diluted 1x105 cells/mL and transfected with siRNAs (small interfering RNA; 

15 nM) using Lipofectamine RNAiMAX (Invitrogen) for 24 hours. Fibroblasts were transfected 

for a further 24 hours using fresh reagents and cultured for a final 24 hours in complete media 

without siRNA, before experimentation.  

A control siRNA (Allstars Negative Control siRNA) and siRNAs targeting human Rab7a (5’-

CACGTAGGCCTTCAACACAAT-3’) were purchased from Qiagen. siRNAs targeting human VAPa 

and VAPb were a kind gift from Dr Emily Eden.  

Western blotting 

Fibroblasts were harvested by scraping, washed in PBS and lysed in Ripa buffer (containing 

150 mM NaCl, 50 mM Tris [pH 7.4], 0.5% [v/v] sodium deoxycholic acid, 0.1% [v/v] sodium 

dodecyl sulphate [SDS] and 1% [v/v] Triton X-100) in the presence of EDTA-free protease 

inhibitor cocktail (Roche) for 30 minutes on ice. Samples were centrifuged at 25,000 x g at 

4oC and supernatant frozen until required for use. Protein concentration was determined 

using the bicinchoninic acid procedure. 

NuPAGE LDS sample loading buffer (Invitrogen), supplemented with 100 mM dithiothreitol 

(Sigma) was added to the homogenate preparation prior to heating the sample for 10 

minutes at 90oC. Samples were separated on NuPAGE 12% Bis-Tris gels (15 mm x 10 well, 

Invitrogen) with MOPS running buffer (Invitrogen) and protein transferred onto PVDF filters 

(Biorad) using buffer containing (48 mM Tris, 40 mM glycine, 0.04% [v/v] SDS, 20% [v/v] 

Methanol). Blots were washed with Tris-buffered saline (25 mM Tris, 137 mM NaCl and 2.7 

mM KCl, pH 7.4) containing 0.1% (v/v) Tween (TBS-T) and blocked with 5% (w/v) dried 

skimmed milk in TBS-T for 1 hour at RT. Blots were sequentially incubated with primary and 

secondary antibodies (both for 1 hour at room temperature) diluted in TBS-T supplemented 

with 2.5% (w/v) non-fat milk. In between and after antibody incubations, blots were washed 

(3 x 30 minutes) with TBS-T. Blots were developed using the ECL Prime Western Blot 

Detection System (G.E. Healthcare) and densitometry performed using Image J software.  
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The primary antibodies were used were anti-Rab7a (rabbit, Sigma; 1/500), anti-VAPa (mouse, 

R&D systems, 1/250), anti-VAPb (mouse, R&D systems, 1/500) and anti-actin (goat, 

Invitrogen, 1/500). The secondary antibodies used were anti-mouse (Santa Cruz 

Biotechnology), anti-rabbit (Bio-Rad) or anti-goat (Santa Cruz) all diluted 1/2000.  

Recurrent methods 

Ca2+ imaging was carried out as described in chapter 2. In some experiments, fibroblasts were 

stimulated with MBCD (Methyl-β-cyclodextrin; 10 mM; Sigma), ML-SA1 (Mucolipin Synthetic 

Agonist 1; 10-200 μM; Merck) and NH4Cl (100 mM; Sigma). 

Lysotracker imaging, LAMP1 immunocytochemistry, microscopy and analysis were also 

performed as described in chapter 2. 

Results 

GPN-evoked complex Ca2+ responses are Rab7-dependent 

In chapter 2, I identified GPN as a useful tool to examine Ca2+ “chatter” between lysosomes 

and the ER. We have speculated that MCSs promote ER-Lysosome Ca2+ coupling, however 

the molecular identity of these junctions is unknown. To probe the role of Rab7 in regulating 

lysosome-ER Ca2+ signalling, GPN-evoked Ca2+ responses were compared after exposure to a 

Rab7 inhibitor (Agola et al., 2012). Overnight treatment with the Rab7 inhibitor suppressed 

GPN evoked oscillations (by 80%, n = 5, from 3 independent treatments, analysing 114 

fibroblasts) and instead generated transient Ca2+ responses (figure 3.1A-B). Notably, the Rab7 

inhibitor did not affect GPN-induced lysosome permeabilisation as quantified using 

Lysotracker red (figure 3.1C-D). 

These findings were extended into a molecular model of Rab7 inhibition, where expression 

of this GTPase was suppressed using siRNAs. As shown in figure 3.2, GPN evoked complex 

Ca2+ signals in cells transfected with the control siRNA. However, Rab7 siRNA reduced 

oscillatory GPN responses by 87% (n = 7, from 3 independent treatments, analysing 139 

fibroblasts). Like the pharmacological approach, lysosome permeabilisation was not affected 

by Rab7 siRNAs (figure 3.2C-D). siRNA efficacy was assessed through Western blotting and 

using a Rab7 antibody. As shown in figure 3.2E the Rab7 siRNA was highly effective at 

reducing Rab7 protein levels when compared to the control siRNA. Lysosome morphology, 

size and positioning appeared unaffected by Rab7 siRNA (figure 3.2F).   

Rab7 interacts with cholesterol binding proteins which have also been localised to late-

endosome-ER MCSs (Rocha et al., 2009). Thus, cholesterol homeostasis might be essential to 
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lysosome-ER junctions and impact the functional coupling between these Ca2+ stores. To 

examine the effect of cholesterol on GPN-evoked Ca2+ signalling, cholesterol was depleted 

using methyl-β-cyclodextrin (MBCD). When compared to the vehicle control (figure 3.3A), 

MBCD inhibits complex Ca2+ responses induced by GPN (figure 3.3B). However, MBCD also 

delays the rate of GPN-induced lysosome permeabilisation as shown using Lysotracker (figure 

3.3C-D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

GPN-evoked complex Ca2+ responses are VAP-independent 

Through interactions with intermediate proteins, VAP is known to associate with Rab7 (Rocha 

et al., 2009). Furthermore, VAP proteins have been shown to anchor various organelles with 

the ER. To examine whether VAPs impair GPN-evoked Ca2+ signalling, siRNAs were used to 

silence both isoforms of VAP. Complex GPN-evoked Ca2+ signals were maintained upon VAP 

silencing (figures 3.4A-D) despite an 80% reduction in VAP protein levels (figure 3.4E).  

 

 

Figure 3.1 GPN-evoked complex Ca2+ responses are Rab7-dependent  

(A-D) Individual cytosolic Ca2+ responses (A-B) and average Lysotracker fluorescence responses (C-

D) of fibroblasts stimulated with GPN (200 μM) after overnight treatment with DMSO (A and C) or 

Rab7 inhibitor (100 μM; B and D). Lysotracker fluorescence values have been normalised to basal 

values. 
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Figure 3.2 GPN-evoked complex Ca2+ responses are Rab7-dependent 

(A-D) Individual cytosolic Ca2+ responses (A-B) and average Lysotracker fluorescence responses (C-

D) of fibroblasts stimulated with GPN (200 μM) after treatment with CTRL siRNA (A and C) or RAB7a 

siRNA (B and D). Lysotracker fluorescence values have been normalised to basal values. 

(E) Western blot using antibodies to RAB7a (top) or actin (bottom) and homogenates (14 µg) from 

fibroblasts treated with the indicated siRNA.  

(F) Representative confocal images of LAMP1 (white) staining in fibroblasts fixed after treatment 

with CTRL siRNA or RAB7a siRNA. Nuclei were stained using DAPI (blue). Scale bar, 10 µm. 
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ML-SA1 evokes complex Ca2+ signals 

Although established as a Ca2+ permeable ion channel, little is known regarding TRPML Ca2+ 

signalling. I took advantage of a recently developed synthetic agonist of TRPML called ML-

SA1 (Shen et al., 2012) to examine Ca2+ responses in fibroblasts. As shown in figure 3.5, ML-

SA1 evoked robust, complex Ca2+ responses. Furthermore, ML-SA1 responses were 

concentration dependent. The magnitude, area under the curve and percentage of 

responsive cells are quantified in figures 3.5E-G. At 200 μM (figure 3.5D), ML-SA1 stimulated 

oscillatory Ca2+ responses. Among the 72 cells analysed, 45±4% (n = 4) displayed oscillatory 

Ca2+ signals. 

Lysosome integrity after ML-SA1 stimulation was examined using Lysotracker red. The 

addition of ML-SA1 did not decrease Lysotracker fluorescence (figure 3.5H).  As expected, 

GPN induced a prompt loss of Lysotracker red fluorescence (figure 3.5H).  

 

Figure 3.3 GPN-evoked Ca2+ signals and permeabilisation are cholesterol-dependent 

(A-D) Individual cytosolic Ca2+ responses (A-B) and average Lysotracker fluorescence responses (C-

D) of fibroblasts stimulated with GPN (200 μM) after pre-treatment with either H2O (A and C) or 

MBCD (10 mM; B and D). Lysotracker fluorescence values have been normalised to basal values. 
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ML-SA1-evoked Ca2+ responses are dependent upon acidic organelles and ER-Ca2+ 

The role of lysosomes in ML-SA1-evoked Ca2+ responses was examined by pre-stimulating 

cells with ammonium chloride (NH4Cl). NH4Cl dissipates the lysosomal proton gradient and 

causes significant dysfunction to these acidic organelles (de Duve et al., 1974). NH4Cl itself 

induced transient Ca2+ signal and NH4Cl inhibited ML-SA1 signalling (figure 3.6A-B).   

To further investigate the complex nature of ML-SA1-induced Ca2+ responses, the 

contribution of ER Ca2+ to these signals was examined. Fibroblasts were incubated with 

thapsigargin as well as IP3R and RyR antagonists prior to ML-SA1 stimulation. As shown in 

figure 3.6, ML-SA1 evoked Ca2+ responses were completely inhibited in the presence of 

thapsigarin and 2-APB (which inhibits IP3R). Although ML-SA1-induced Ca2+ signals persisted 

upon treatment with Ryanodine (a RyR inhibitor), Ca2+ responses appeared delayed (figure 

Figure 3.4 GPN-evoked complex Ca2+ responses are VAP-independent 

(A-D) Representative cytosolic Ca2+ responses of individual fibroblasts stimulated with GPN (200 

μM) after treatment with CTRL (A), VAPa and VAPb siRNA (B), VAPa (C) or VAPb (D). 

(E) Western blot using antibodies to VAPa and VAPb (top) or actin (bottom) and homogenates (30 

µg) from fibroblasts treated with the indicated siRNA.  
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3.6F). Notably, these experiments were conducted in the absence of extracellular Ca2+ 

demonstrating ML-SA1 responses do not rely upon Ca2+ influx. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 ML-SA1 evokes complex Ca2+ signals 

(A-E) Cytosolic Ca2+ responses of fibroblasts after stimulation with ML-SA1 (10, 20, 100 and 200 

μM).  

(E-G) Summary data (mean ± S.E.M) quantifying magnitude of Ca2+ response (E), area under the 

Ca2+ curve (F) and percentage of responding cells (defined by >0.4 ratio value; G) after ML-SA1 

stimulation. Results are from 2-4 independent platings (n) analysing 30-72 cells.  

(H) Average Lysotracker fluorescence responses (C-D) of fibroblasts stimulated GPN (200 μM) and 

ML-SA1 (100 μM). Fluorescence values have been normalised to basal values. 
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Discussion 

 
I have already established that the direct permeabilisation of lysosomes, with GPN, evokes 

complex Ca2+ signals (chapter 2). In this chapter I demonstrate that Rab7, a known mediator 

of late-endosome-ER MCSs, disrupts GPN-evoked Ca2+ signals. Although Rab7 is known to 

interact with VAPs at late-endosome-ER MCSs, VAPs do not appear to mediate lysosome-ER 

Ca2+ coupling. Additionally, I show that the activation of TRPML channels, using a synthetic 

agonist, induces complex Ca2+ signals that require ER Ca2+ channels. These responses are 

similar to those induced by both NAADP (Brailoiu et al., 2009b) and GPN (chapter 2). Thus, 

Figure 3.6 ML-SA1-evoked Ca2+ responses are dependent upon acidic organelles and ER-Ca2+ 

(A-F) Cytosolic Ca2+ responses of individual fibroblasts stimulated with ML-SA1 (200 μM) after pre-

treatment with either H2O (A), NH4Cl (100 mM; B), DMSO (C), thapsigargin (1 μM ;D), 2-APB (100 

μM; E) or ryanodine (100 μM; F). C-F were conducted in the absence of extracellular Ca2+. 
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the Ca2+ “chatter” between the ER and lysosomes can be recapitulated upon TRPML 

activation and might occur through a mechanism that is Rab7-dependent.  

As well as co-ordinating transport of late-endosomes and lysosomes, Rab7 regulates 

neuronal migration, neurite outgrowth, apoptosis and autophagy (reviwed in Bucci & De Luca 

2012). Through interactions with cholesterol sensing proteins, Rab7 associates with VAP to 

stabilise late endosomes with the ER (Rocha et al., 2009). It was hypothesised that similar 

components might also mediate lysosome-ER junctions and impact lysosomal Ca2+ signalling. 

Indeed, results demonstrated that the chemical and molecular inhibition of Rab7 supressed 

complex, GPN-evoked Ca2+ responses and functionally uncoupled lysosome-ER signalling 

(Figure 3.1 and 3.2). However, transfection with VAP siRNA did not dampen GPN signalling 

(figure 3.4). Therefore, Rab7 might regulate ER-lysosome junctions but not through an 

interaction with VAP. The lack of VAP effect attests to the specificity of Rab7 inhibition. It is 

possible that since lysosomes are highly dynamic organelles, Rab7 might not be a component 

of MCSs but instead mediate the appropriate positioning of lysosomes to facilitate their Ca2+ 

coupling. The examination of lysosome morphology (figure 3.2F) did not reveal any obvious 

changes in positioning. Nevertheless, MCSs after the pharmacological and molecular 

inhibition Rab7 require examination through electron microscopy.  

It is notable that, mutations in Rab7 are associated with the neuropathic Charcot–Marie–

Tooth type 2B disease (Bucci & De Luca, 2012). Furthermore, mutations in the gene encoding 

Rab7L (Rab7-like protein) are thought to increase the risk of PD (Tucci et al., 2010). Thus, the 

finding that Rab7 mediates functional Ca2+-connections between lysosomes and the ER could 

be pathologically relevant. The consequences for disease require further examination. 

Indeed, these neurodegenerative disorders could also be a valuable model to further 

investigate Rab7 regulated lysosome-ER Ca2+ signalling. 

We know little about the regulation lysosomal-ER MCSs, but this data shows that Rab7 might 

be involved. Identifying proteins that interact with Rab7 might reveal more regarding these 

MCSs. Notably, TPCs have recently been shown to associate with Rab7 (Lin-Moshier et al., 

2014). Therefore, TPCs themselves might also form essential components of lysosome-ER 

junctions. GPN-evoked Ca2+ signalling should be investigated in fibroblasts after exposure to 

Ned-19 (an NAADP antagonist; Naylor et al. 2009) and siRNAs that silence TPC expression. 

The recently published proteomic analysis of TPC interactors (Lin-Moshier et al., 2014) might 

identify other components of ER-lysosome contact sites. For instance, ATP1A1 (Na+/K+ 

ATPase alpha-1 subunit) and MYH9 (myosin heavy chain 9) were found to associate with TPCs 
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(Lin-Moshier et al., 2014). These proteins also interact with IP3Rs (Zhang et al., 2006; Walker 

et al., 2002). So perhaps ATP1A1 and MYH9 associate with both TPCs and IP3Rs within 

lysosome-ER junctions. 

We could also learn more about these MCSs using research established in model organisms 

(Kvam & Goldfarb, 2006). For instance, in yeast, the nuclear envelope and vacuole form 

stable contacts with one another. Respectively, these organelles are the yeast equivalents of 

ER and lysosomes. Vac8 and NVJ1p are important components of these junctions, which 

function to deliver substrates for autophagic degradation (Pan et al., 2000). Perhaps the 

further examination of these yeast contacts and analogous mammalian proteins might reveal 

more concerning lysosome-ER junctions. 

MCSs not only facilitate Ca2+ signalling, but also lipid trafficking between various organelles. 

The effects of cholesterol on GPN-evoked Ca2+ signalling were difficult to investigate in 

fibroblasts because MBCD inhibited GPN-induced lysosome permeabilisation (Figure 3.3). 

This might be because Cathepsin C (among other hydrolases) are cholesterol sensitive. The 

enzyme activity of lysosomal hydrolases is dependent upon the 

cholesterol/lysobisphosphatidic acid ratio on lysosomal membranes (Kolter & Sandhoff, 

2005). Thus, by sequestering cholesterol, MBCD might affect the hydrolytic activity of 

Cathepsin C and the capacity for GPN to permeabilise lysosomes. To avoid this problem and 

still examine the impact cholesterol has on Ca2+ coupling, the effect MBCD has on ML-SA1 

and NAADP signalling should be investigated.  

Lysosome-ER junctions likely promote the coupling of lysosome-ER Ca2+ stores. It has been 

well established that NAADP-selective Ca2+ channels are functionally coupled to the ER. 

Although it has been 10 years since TRPMLs were proposed to be Ca2+ channels (Piper & 

Luzio, 2004), we know relatively little about TRPML signalling. Even the Ca2+ permeability of 

this channel has been questioned (Kiselyov et al., 2005). Using the recently developed 

synthetic agonist of TRPML named ML-SA1 (Shen et al., 2012), Ca2+ signals were examined in 

fibroblasts (Figure 3.5). ML-SA1 evoked robust Ca2+ responses that were concentration 

dependent and strikingly similar to those induced by GPN.  Notably, after stimulation with 

ML-SA1 the percentage of cells displaying Ca2+ oscillations was 45±4%, this is remarkably 

similar to signals evoked by GPN where 45±3% of fibroblasts were oscillatory (chapter 2). 

However, unlike GPN, ML-SA1 did not induce lysosome membrane permeabilisation.  
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ML-SA1-evoked Ca2+ responses are likely of lysosomal origin since they were blocked by 

alkalinisation of acidic organelles with NH4Cl (Figure 3.6). However, inducing such a 

significant change in cytosolic pH is bound to have many off-target effect. Thus, examining 

ML-SA1 responses after exposure to bafilomycin is essential. Furthermore, since siRNA 

transfection has proven so effective in fibroblasts, knocking down TRPMLs is necessary to 

assess the specificity of ML-SA1.  

Contrary to GPN-evoked Ca2+ responses, ML-SA1 signalling was completely inhibited in 

fibroblasts incubated thapsigargin and 2-APB (Figure 3.6). Perhaps release of Ca2+ by ML-SA1 

is smaller than can be detected with Fura-2. This is similar to the findings reported by Cancela 

and colleagues (1999) where NAADP signalling was completely blocked upon IP3R and RyR 

inhibition. Although ML-SA1 responses persist after the inhibition of ryanodine receptors, 

signals are delayed. Thus, TRPML signalling requires ER-IP3 (and to a lesser extend ryanodine) 

receptors. To the best of my knowledge, this is the first report showing the functional 

coupling of TRPML channels with the ER. 

The development of ML-SA1 provides many opportunities to investigate Ca2+ signalling. 

Functional coupling between TRPML and ER calcium channels should be further 

characterised by adapting the research that established NAADP-ER “chatter”. Namely, 

uncoupling the channels by targeting overexpressed TRPML to the plasma membrane and 

analysing Ca2+ responses.  

Further characterisation of TRPML-mediate Ca2+ signalling is of significant importance to 

disease. The lysosomal storage disorder MLIV (mucolipidosis IV) is associated with mutations 

in TRPML1, which renders the Ca2+ channel inactive. Indeed in electrophysiological assays, 

ML-SA1 cannot evoke a cation current in patch-clamped MLIV lysosomes (Shen et al., 2012). 

This validates the specificity of ML-SA1 and highlights the disrupted Ca2+ signalling present in 

this disease.  

NPC (Neimann Pick Type C1; another LSD) has also been associated with reduced ML-SA1 

signalling (Shen et al., 2012). NPC is clinically characterised by an accumulation of cholesterol 

and sphingosine.  U-18666A, a compound which induces cholesterol accumulation and re-

capitulates NPC phenotypes (Lloyd-Evans et al., 2008), disrupts late endosome-ER junctions 

(Rocha et al., 2009). Rocha and colleagues (2009) have shown that, through interactions with 

ORP1L, silencing NPC1 induces late endosome clustering. Perhaps, NPC mutations disrupt 

lysosome-ER junctions which then impair NAADP- (Lloyd-Evans et al., 2008), MLSA1- (Shen et 



76 
 

al., 2012) and GPN- (Lloyd-Evans et al., 2008; Visentin et al., 2013) evoked Ca2+ signalling. 

Crucially, lysosome-ER MCSs require characterisation in NPC disease.  

Rab7 might also associate with TRPML (like TPCs) to regulate signalling. Although direct 

association between TRPML and Rabs have yet to be identified. TRPML2 has been shown to 

associate with the another GTPase trafficking protein – Arf6 (Karacsonyi et al., 2007). 

Examining MLSA1-evoked Ca2+ signalling after Rab7 inhibition is critical. TRPMLs and their 

endogenous ligand PI(3,5)P2 are also involved in trafficking (Cheng et al., 2010). Therefore, 

similar to Rab7, TRPML signalling might regulate the positioning of acidic Ca2+ stores with ER 

Ca2+ channels. I could verify this hypothesis by inhibiting the synthesis of PI(3,5)P2 with YM-

201636 (Jefferies et al., 2008) or transfecting cells with siRNAs against TRPML 

In summary, I have established that lysosomal Ca2+ release triggers complex, ER-regulated 

Ca2+ signalling. Although we still have an incomplete understanding of the mechanism that 

regulates lysosome-ER Ca2+ coupling, the trafficking GTPase Rab7 is likely involved. Like late-

endosomes, Rab7 might regulate the formation of MCSs and facilitate Ca2+ exchange. 

Although, unlike many other MCSs, VAPs are not necessary for the functional coupling 

between lysosomes and the ER. Additionally, I have shown that this Ca2+ coupling can be 

physiologically recapitulated upon the activation TPRML channels. These findings have wider 

significance for diseases including LSDs and neurodegenerative disorders.  
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Chapter 4 

Defective Calcium Signalling in Parkinson Disease: Clues from a Lysosomal 

Storage Disorder 

Introduction  

 
Mutations in GBA1, the gene which encodes the lysosomal enzyme glucocerebrosidase 

(GCase), that is impaired in GD, have been identified as the most frequent genetic risk factor 

for PD (Sidransky & Lopez, 2012; Sidransky et al., 2009). These mutations cause an 

accumulation of mis-folded enzyme on the ER (Ron & Horowitz, 2005), and subsequent build-

up of substrate in the lysosomes. Despite a clear genetic association between GD and PD, 

less is known regarding the physiological mechanisms that connect these two diseases. 

The co-ordination of intracellular Ca2+ stores is necessary for cellular Ca2+ signalling. 

Lysosomes have been shown to “trigger” complex Ca2+ signals that require neighbouring ER 

Ca2+ channels (Cancela et al. 1999; Kilpatrick et al. 2013; chapters 2 and 3). ER-derived Ca2+ 

signals are ultimately transmitted to the mitochondria (Rizzuto et al., 1998). Thus, stores 

operate as an inter-connected network and defects, in any component of this pathway, will 

impinge on Ca2+ homeostasis. Indeed, emerging evidence shows that dysfunctional Ca2+ 

signalling features in neurodegenerative diseases including PD and GD (Chan et al., 2007; 

Guzman et al., 2010; Korkotian et al., 1999; Lloyd-Evans et al., 2003; Pelled et al., 2005). 

Ca2+ has an important role in PD since the dopaminergic neurons of the SNc are dependent 

upon VGCC for pacemaking activity (Chan et al., 2007). This Ca2+ entry, is a unique feature of 

these neurons and imposes significant energetic stress, which might render them vulnerable 

to degeneration (Guzman et al., 2010). This highlights the possibility that any other 

disturbance in Ca2+ homeostasis is likely to advance the onset of PD. Notably, disturbed ER 

Ca2+ signalling has been identified in various models of GD. For instance, both neuronal 

cultures (Korkotian et al., 1999) and microsome preparations (Pelled et al., 2005; Lloyd-Evans 

et al., 2003) exposed to excess GCase substrate exhibit increased Ca2+ release through RyR. 

The aim of this chapter is to examine whether intracellular Ca2+ storage dysregulation 

connects GD and PD using pharmacological, genetic and clinical cell models. 
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Methods 

Cell details 

Primary human fibroblasts (table 4.1), established from skin biopsies, were acquired by Dr 

Michelle Beavan, Dr Alisdair McNeill (Royal free hospital, UCL) and Dr Laura Osellame 

(Department of Cell and Developmental Biology, UCL).  

Dopaminergic SH-SY5Y cells with the stable knock down of GBA1 were created by Dr Michael 

Cleeter (Cleeter et al., 2012). Briefly, SH-SY5Ys were transfected with either a scrambled 

control or a “hush” GBA1 knockdown plasmid and successfully transfected cells were 

selected for using puromycin.  

Mixed primary neuronal cultures were prepared from the brains of a neuronopathic mouse 

model of GD at postnatal day 1 by Dr Laura Osellame (Department of Cell and Developmental 

Biology, UCL). In this mouse model (developed by Enquist et al., 2007) the insertion of a loxp-

neo-loxp (lnl) cassette, under K14 (keratin) promoter (via cre recombinase), into the GBA1 

gene silenced expression in all locations except the skin. Pups were derived from 

heterozygote parents and kindly genotyped by Dr Laura Osellame (as described in Osellame 

et al. 2013). Neuronal cultures were isolated from wild-type (GBA1+/+) and GBA1 knockout 

mice (GBA1-/-) and cultured for 8 days before analysis.  

GBA1-overexpression was done by Dr Joana Magalhaes (Royal free hospital). Briefly, cDNA 

coding wild-type and mutant (N370S) GBA1 were cloned into lentiviral transfer vectors. SH-

SY5Y cells were seeded in 24 well plates (5x104 cells/well). The following day, cells were 

treated with polybrene (8 ug/mL, Millipore) for 2 hours then transduced with the GBA1 

lentivirus (Multiplicity of infection = 2). 24 hours after transduction, media was replaced with 

fresh complete media. Cells were incubated for a further 2 days before analysis.  

Cell culture 

Fibroblast, SH-SY5Y and neuronal cultures were maintained as described in chapter 2.  

In some experiments, fibroblasts and SH-SY5Y cells were incubated for 8-11 days with 10 µM 

of the irreversible GCase inhibitor, Conduritol B Epoxide (CBE, Sigma-Aldrich) prepared in 

H2O. Fibroblasts were fed fresh media, containing CBE, every 5 days. SH-SY5Y media was 

replenished every 2-3 days also with CBE. 

All cultures were analysed in parallel and fibroblast passages differed by no more than 2. 

Prior to experimentation, cells were plated onto glass coverslips (for Ca2+ imaging and 

confocal microscopy) or directly into tissue culture flasks (for western blotting). 
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Ca2+ imaging 

Ca2+ imaging was performed as described in chapter 2. In some experiments cells were 

stimulated with thapsigargin (1 μM; Merck) or 25 μM cADPR-AM (from Dr Grant Churchill, 

Department of Pharmacology, University of Oxford). Where indicated, extracellular Ca2+ was 

removed using a modified HBS solution containing 1 mM EGTA instead of Ca2+. For some SH-

SY5Y cultures, cells were washed with EGTA-containing HBS and stimulated with thapsigargin 

using a perfusion system. 

Western Blotting 

Western blotting was conducted as described in chapter 3. Blots were sequentially incubated 

with the primary anti-GBA1 (overnight at 4 oC, diluted 1:500, EMD Millipore) antibody and 

secondary anti-mouse (1 hour at room temperature, 1:2000, Santa Cruz Biotechnology) 

antibody. 

Recurrent methods 

Lysotracker imaging, LAMP1 immunocytochemistry, analysis, epifluorescence and confocal 

microscopy were performed as described in chapter 2.  

Table 4.1. Details of patient-derived fibroblast cultures.  

Category Patient ID 
(Genotype Age Phenotype) 

Sex Age Genotype Clinical features 

Young GBA1
+/+

55
 Female 55 WT/WT Apparently healthy 

 
GBA1

-/-

55

GD
 Male 55 

N370S/ 
1263del55 

Type I Gaucher Disease 

 GBA1
+/-

55

PD
 Female 55 N370S/WT Parkinson Disease 

 GBA1
+/-

58

ASX
 Male 58 N370S/WT Non-manifesting carrier 

 GBA1
+/-

59

ASX
 Female 59 N370S/WT Non-manifesting carrier 

Aged GBA1
+/+

70
 Female 70 WT/WT Apparently healthy 

 GBA1
+/+

78
 Male 78 WT/WT Apparently healthy 

 GBA1
+/-

75

PD
 Female 75 N370S/WT Parkinson Disease 

 GBA1
+/+

82
 Female 82 WT/WT Apparently healthy 

 GBA1
+/-

80

ASX
 Female 80 N370S/WT Non-manifesting carrier 

 

Results 

Establishing fibroblast cultures from individuals carrying the N370S mutation in GBA1 

To examine whether GD and GBA1-PD pathology is associated with impaired Ca2+ signalling, 

primary fibroblast cultures were generated from skin biopsies of patients suffering from GD 

and PD. Both carried the N370S allele, however the GD patient was a compound 
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heterozygote with an additional 1263del55 mutation. For simplicity, these genotypes will be 

referred to as GBA1-/-GD and GBA1+/-
 
PD, respectively. Cultures were also established from 

asymptomatic (ASX), non-manifesting GBA1 carriers (GBA1+/-
 
ASX). For control purposes, 

fibroblasts were acquired from age-matched, apparently healthy individuals without 

mutations in GBA1 (GBA1+/+). The fibroblast cultures were categorised according to age. The 

“young” fibroblasts were obtained from individuals under the age of 60 whereas the “aged” 

fibroblasts were derived from individuals over 70 years old. Additional details of the 

fibroblasts, including patient codes, are provided in table 4.1. 

ER Ca2+ content is increased in young GD and GBA1-PD fibroblasts  

Since previous research has reported increased ER Ca2+ release in GD models (Korkotian et 

al., 1999; Lloyd-Evans et al., 2003; Pelled et al., 2005) ER Ca2+ content was examined in patient 

fibroblast cultures by measuring cytosolic Ca2+ in responses to 1 μM thapsigargin. 

Thapsigargin inhibits SERCA ATPase activity and depletes ER Ca2+. This allows a good 

(although indirect) estimation of ER Ca2+ content to be obtained. Thapsigargin stimulated 

transient Ca2+ responses (Figure 4.1A), consistent with revealing the ER Ca2+ leak pathway. 

These thapsigargin-evoked Ca2+ responses were significantly elevated in GBA1-/-
55

GD and in 

GBA1+/-
55

PD when compared to fibroblasts from an age-matched healthy individual (GBA1+/+
55; 

Figure 4.1B).  

 

 

 

 

 

 

 

 

 

Messenger-evoked ER Ca2+ release is increased in young GD and GBA1-PD fibroblasts 

To examine the consequences of disrupted ER Ca2+ content on physiological Ca2+ signalling, 

fibroblasts were stimulated with cADPR-AM (a cell-permeable derivative of the intracellular 

Figure 4.1 ER Ca2+ content is increased in young GD and GBA1-PD fibroblasts  

(A) Cytosolic Ca2+ responses of individual fibroblasts stimulated with thapsigargin (Tg; 1 µM) from 

a representative population of GBA1+/+
55, GBA1-/-

55
GD and GBA1+/-

55
PD

 cells. All experiments were 

performed in the absence of extracellular Ca2+. 

(B) Summary data (mean ± S.E.M) quantifying the magnitude of thapsigargin response. Results are 

from 11-26 experiments (n) from 5-9 independent platings analysing 154-367 cells. ANOVA 

analysis, followed by a post-hoc Tukey test, was applied to test significance against GBA1+/+
55. 

***p<0.001. 
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Ca2+-mobilising messenger cyclic-ADP ribose; Rosen et al. 2012).  The addition of 25 μM 

cADPR-AM evoked complex Ca2+ responses in fibroblasts (Figure 4.2A). The magnitude of Ca2+ 

response (Figure 4.2B), percentage of responsive cells (Figure 4.2C) and area under the curve 

(Figure 4.2C) were increased in GBA1+/-
55

PD fibroblasts compared to fibroblasts from an age-

matched healthy individual. Modest, increases in cADPR-AM-evoked Ca2+ responses were 

also apparent in GBA1-/-
55

GD cultures (Figure 4.2A-C) compared to GBA1+/+
55 fibroblasts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

ER Ca2+ homeostasis is unaffected in young asymptomatic GBA1+/- fibroblasts 

A significant proportion of individuals with mutations in GBA1 never develop neurological 

conditions (Sidransky et al., 2009). I therefore examined ER Ca2+ content in fibroblast cultures 

established from an asymptomatic individual with a heterozygotic mutation in GBA1 (GBA1+/-

58
ASX). Although thapsigargin-evoked Ca2+ responses appeared more heterogeneous in 

GBA1+/-
58

ASX fibroblasts when compared with control GBA1+/+
55 fibroblasts (Figure 4.3A), the 

magnitude of Ca2+ response (Figure 4.2B) did not differ between these cultures. Consistent 

Figure 4.2 Messenger-evoked ER Ca2+ release is increased in young GD and GBA1-PD fibroblasts 

(A) Cytosolic Ca2+ responses of individual fibroblasts stimulated with cADPR-AM (25 µM) from a 

representative population of GBA1+/+
55, GBA1-/-

55
GD and GBA1+/-

55
PD

 cells. All experiments were 

performed in the presence of extracellular Ca2+. 

(B-D) Summary data (mean ± S.E.M) quantifying the magnitude of response (B), percentage of 

responsive cells (C) and area under the curve (D) after cADPR-AM stimulation. Results are from 3-

5 experiments (n) from 2-3 independent platings analysing 39-75 cells. 
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with data presented in figure 4.1, thapsigargin-evoked Ca2+ responses were significantly 

elevated in GBA1+/-
55

PD fibroblasts compared to the controls.  

 

 

 

 

 

 

 

 
 

 

Similarly, as shown in figure 4.4, cADPR-AM-evoked Ca2+ responses in GBA1+/-
58

ASX fibroblasts 

were not different from control GBA1+/+
55 fibroblasts and lower than GBA1+/-

55
PD.  

ER Ca2+ content is unaffected in aged GBA1-PD fibroblasts 

ER Ca2+ content in GBA1+/-
 
PD was further examined using fibroblasts from the aged cohort. 

Unlike the young GBA1+/-
 
PD fibroblasts, thapsigargin-evoked Ca2+ responses in GBA1+/-

75
PD 

fibroblasts were similar to fibroblasts from the age-matched healthy control (GBA1+/+
78) 

(Figure 4.5A-B). It is notable that thapsigargin responses in fibroblasts from both GBA1+/+
78 

and GBA1+/-
75

PD were kinetically irregular and larger than signals evoked in fibroblasts from 

younger controls (Figure 4.1A and 4.3A). 

ER Ca2+ content increases in an age-dependent manner 

I further investigated the effect of ageing on ER Ca2+ content using in fibroblasts from healthy 

individuals of increasing age. As shown in figure 4.6, thapsigargin responses increased in an 

age-dependent manner in fibroblasts from GBA1+/+ individuals (Figure 4.6A-C). Thapsigargin 

signals in the oldest fibroblasts examined (GBA1+/+
82) were kinetically distinct from responses 

evoked in the youngest control (Figure 4.6A). Thapsigargin-evoked Ca2+ responses in the 

oldest GBA1+/+ fibroblasts resembled those evoked in fibroblasts from young GBA1-/-
 
GD and 

GBA1+/-
 
PD individuals (Figure 4.6C). 

Figure 4.3 ER Ca2+ homeostasis is unaffected in young asymptomatic GBA1+/- fibroblasts 

(A) Cytosolic Ca2+ responses of individual fibroblasts stimulated with thapsigargin (Tg; 1 µM) from 

a representative population of GBA1+/+
55, GBA1+/-

58
ASX and GBA1+/-

55
PD

 cells. All experiments were 

performed in the absence of extracellular Ca2+. 

(B) Summary data (mean ± S.E.M) quantifying the magnitude of thapsigargin response. Results are 

from 3-4 experiments (n) from 3-4 independent platings analysing 88-127 cells. ANOVA analysis, 

followed by a post-hoc Tukey test, was applied to test significance against GBA1+/+
55.  *p<0.05. 
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Figure 4.4 Messenger-evoked ER Ca2+ release is unaffected in young asymptomatic GBA1+/- 

fibroblasts 

(A) Cytosolic Ca2+ responses of individual fibroblasts stimulated with cADPR-AM (25 µM) from a 

representative population of GBA1+/+
55, GBA1+/-

58
ASX and GBA1+/-

55
PD

 cells. All experiments were 

performed in the presence of extracellular Ca2+. 

(B-D) Summary data (mean ± S.E.M) quantifying the magnitude of response (B) percentage of 

responsive cells (C) and area under the curve (D) after cADPR-AM stimulation. Results are from 4-

13 experiments (n) from 3-6 independent platings analysing 73-257 cells.  

 

Figure 4.5 ER Ca2+ content is unaffected in aged GBA1-PD fibroblasts 

(A) Cytosolic Ca2+ responses of individual fibroblasts stimulated with thapsigargin (Tg; 1 µM) from 

a representative population of GBA1+/+
78, GBA1+/-

75
PD cells. All experiments were performed in the 

absence of extracellular Ca2+. 

(B) Summary data (mean ± S.E.M) quantifying the magnitude of thapsigargin response. Results are 

from 8 experiments (n) from 3 independent platings analysing cells 112-117 cells. A two-sample t-

test was applied to test significance. ns, not significant. 
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Inhibition of GCase does not affect ER Ca2+ homeostasis  

Data thus far has identified an ER Ca2+ content defect in young patient fibroblasts carrying a 

GBA1 mutation. However, the mechanism underlying this defect remains unknown. Since 

accumulating GCase substrate might affect ER Ca2+ signalling (Lloyd-Evans et al., 2003), ER 

Ca2+ content was examined after reducing the activity of GCase using pharmacological (Figure 

4.7-4.8) and genetic (Figure 4.8-4.9) methods. Fibroblasts were chronically treated with a 

selective inhibitor of GCase called Conduritol B epoxide (CBE; 10 μM). Thapsigargin-induced 

Ca2+ responses after exposure to CBE were similar to the control (Figure 4.7A-B). The 

inhibition of GCase was extended into a more neurologically-relevant model using a human 

dopaminergic SH-SY5Y cell line. Similar to the fibroblasts, treatment with CBE did not affect 

thapsigargin responses in SH-SH5Y cells (Figure 4.8A-C). Notably, thapsigargin-evoked Ca2+ 

responses are smaller in SH-SY5Y cells (Figure 4.8) compared to fibroblasts (Figure 4.7) 

making comparisons difficult. I therefore normalised thapsigargin responses, on a given day, 

Figure 4.6 ER Ca2+ content increases in an age-dependent manner 

(A) Cytosolic Ca2+ responses of individual fibroblasts stimulated with thapsigargin (Tg; 1 µM) from 

a representative population of GBA1+/+  fibroblasts with increasing age (55, 70, 78 and 82 years). All 

experiments were performed in the absence of extracellular Ca2+. 

(B) Summary data (mean ± S.E.M) quantifying the magnitude of thapsigargin response.  

(C) Summary data (mean ± S.E.M) plotting magnitude of thapsigargin response against age. The 

fitted line is y = 0.002786 + 0.09284 χ (F = 15, d.f. = 1,47, p<0.001). 

Results are from 2-30 experiments (n) from 1-14 independent platings analysing 30-483 cells. 
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to the vehicle control. No increase in the percentage of thapsigargin response was observed 

between CBE and vehicle exposed SH-SY5Y cells (Figure 4.8C).  

 

 

 

 

 

 

 

 

 

 

These findings were further extended into molecular models of GCase inhibition (Figure 4.8) 

using SH-SY5Y cells with the stable, shRNA-mediated, genetic knockdown of GBA1. As shown 

in figure 4.8D-F, thapsigargin-evoked Ca2+ responses in GBA1-/- cells were similar to those 

evoked in the parental cell line stably overexpressing scrambled shRNA (GBA1+/+). Western 

blot analysis indicated that GCase protein level was reduced by 56% ±7 (n = 4) in GBA1-/- SH-

SY5Y cells when compared to scrambled (GBA1+/+) controls (inset Figure 4.8F).  

Finally, I examined thapsigargin-evoked Ca2+ responses in a transgenic mouse model with a 

neuronopathic GD phenotype (see methods). Ca2+ responses were analysed in cultures 

containing a mixed population of cortical cells (Figure 4.9A). Once again, no difference in 

magnitude of thapsigargin response was seen between W/T (GBA1+/+) and GBA1 knockdown 

(GBA1-/-) neuronal cells (Figure 4.9B).  

Overexpression of mutant GBA1 partially impairs ER Ca2+ homeostasis 

Figures 4.7-4.9 present strong evidence that ER Ca2+ dysfunction is not a result of reduced 

GCase enzyme activity. Thus, the alternative explanation that the retention of mutant 

enzyme at the ER (Ron & Horowitz, 2005) could cause a direct ER Ca2+ dysfunction was tested. 

SH-SY5Y cells were infected with lentiviral vectors encoding wild-type and N370S mutated 

Figure 4.7 Inhibition of GCase does not affect ER Ca2+ homeostasis in fibroblasts 

(A) Cytosolic Ca2+ responses of individual fibroblasts stimulated with thapsigargin (Tg; 1 µM) from 

a representative population of cells treated with 10 μM CBE for 8 days. All experiments were 

performed in the absence of extracellular Ca2+. 

(H) Summary data (mean ± S.E.M) quantifying the magnitude of thapsigargin response in CBE 

treated fibroblasts. Results are from 6 experiments (n) from 2 independent treatments analysing 

87-90 cells. A two-sample t-test was applied to test significance. ns, not significant. 
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GBA1 (GBA1WT and GBA1N370S respectively) and thapsigargin responses were compared 

between cultures (Figure 4.10). The overexpression of GBA1N370S caused a modest (10%) 

increase in thapsigargin responses when compared to GBA1WT (Figure 4.10B-C). However, 

the effects of GBA1N370S may have been underestimated since transduction efficiency was 

low (approximately 40%) and GBA1N370S was not fluorescently labelled. Thus, a frequency plot 

of thapsigargin responses was created (Figure 4.10D). When compared to GBA1WT, a right-

ward shift (*) in the GBA1N370S thapsigargin responses were observed (Figure 4.10D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Inhibition of GCase does not affect ER Ca2+ homeostasis in dopaminergic SH-SY5Y cells 

(A) Cytosolic Ca2+ responses of individual SH-SY5Y stimulated with thapsigargin (Tg; 1 µM) from a 

representative population of cells treated with 10 μM CBE for 10-11 days.  

(B-C) Summary data (mean ± S.E.M) quantifying the magnitude of thapsigargin response in CBE 

treated SH-SY5Y cells (B) and as a percentage of CTRL (C). Results are from 8 experiments (n) from 

3 independent treatments analysing 224-231 cells. A two-sample t-test was applied to test 

significance. ns, not significant. 

(D) Cytosolic Ca2+ responses of representative SH-SY5Y cells stimulated with thapsigargin following 

stable shRNA knockdown of GBA1 (GBA1+/+) or expression of scrambled (GBA1+/+) shRNA.  

(E-F) Summary data (mean ± S.E.M) quantifying the magnitude of thapsigargin response in the SH-

SY5Y cells (E) and as a percentage of GBA1+/+ (F). Inset is a Western blot using antibodies to GCase 

(top) or actin (bottom) and homogenates (14 µg) from SH-SY5Y cells treated with the indicated 

shRNA. Ca2+ imaging results are from 5 experiments (n) from 3 independent platings analysing 143-

150 cells. A two-sample t-test was applied to test significance. ns, not significant. 

All Ca2+ imaging experiments were performed in the absence of extracellular Ca2+.  
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Figure 4.9 Inhibition of GCase does not affect ER Ca2+ homeostasis in neuronal cultures 

(A) Cytosolic Ca2+ responses of mixed primary neuronal cultures from wild-type (GBA1+/+) and GBA1 

knockout (GBA1-/-) mice stimulated with thapsigargin (Tg; 1 µM). All experiments were performed 

in the absence of extracellular Ca2+. 

(B) Summary data (mean ± S.E.M) quantifying the magnitude of thapsigargin response in neuronal 

cultures. Results are from 4-5 experiments (n) from 2 independent cultures analysing 53-69 cells. 

A two-sample t-test was applied to test significance. ns, not significant. 

Figure 4.10 Overexpression of mutant GBA1 partially impairs ER Ca2+ homeostasis 

(A) Cytosolic Ca2+ responses of representative SH-SY5Y cells overexpressing WT or N370S mutated 

GBA1 stimulated with thapsigargin (Tg; 1 µM). 

(B-C) Summary data (mean ± S.E.M) quantifying the magnitude of thapsigargin response in the SH-

SY5Y cells (B) and as a percentage of GBA1WT (C).  

(D) Frequency plot of thapsigargin responses in all SH-SY5Y cells.  

Results are from 4-5 experiments (n) from 3 independent transductions analysing 266-365 cells.  
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Mitochondrial Ca2+ content is increased in young GBA1-PD fibroblasts 

It has been well established that the ER forms functional (Rizzuto et al., 1998) and physical 

connections (Csordás et al., 2006) with the mitochondria. Given that ER Ca2+ disruption has 

been reported in young GBA1-/-
 
GD and GBA1+/-

 
PD fibroblasts, mitochondrial Ca2+ content was 

indirectly examined in the fibroblast cultures using carbonylcyanide-p-(trifluoromethoxy)-

phenylhydrazone (FCCP). FCCP is a protonophore that uncouples the mitochondrial 

membrane potential, releases mitochondrial Ca2+ and permits the indirect measurement of 

mitochondrial Ca2+ content. Stimulating fibroblasts with 1 μM FCCP evoked small and 

transient Ca2+ signals (Figure 4.11A). FCCP-evoked Ca2+ responses were larger in GBA1+/-
55

PD 

fibroblast cultures when compared to fibroblasts from an age-matched healthy individual 

(GBA1+/+
55; Figure 4.11B). However, GBA1-/-

55
GD fibroblasts did not show increases in FCCP 

Ca2+ response (Figure 4.11B). It is important to note that because FCCP-evoked Ca2+ 

responses were modest, I again compared FCCP signals by quantifying the percentage change 

in Δ[Ca2+]. 

 

 

 

 

 

 

 

 

 

 

Lysosomal Ca2+ content is decreased in young GD and GBA1-PD fibroblasts 

We recently showed that the ER forms functional and physical connections with acidic Ca2+ 

stores (Kilpatrick et al., 2013). Since ER Ca2+ is disrupted in young GBA1-/-
 
GD and GBA1+/-

 
PD 

fibroblasts, I examined lysosomal Ca2+ content in these cultures. Measurements of lysosomal 

Ca2+ content were estimated using GPN (200 μM). GPN stimulated the typical complex Ca2+ 

Figure 4.11 Mitochondrial Ca2+ content is increased in young GBA1-PD fibroblasts 

(A) Cytosolic Ca2+ responses of individual fibroblasts stimulated with FCCP (1 μM) from a 

representative population of GBA1+/+
55, GBA1-/-

55
GD and GBA1+/-

55
PD

 cells. All experiments were 

performed in the presence of extracellular Ca2+. 

(B) Summary data (mean ± S.E.M) quantifying the magnitude of FCCP response as a percentage of 

GBA1+/+
55 control. Results are from 13-18 experiments (n) from 5-8 independent platings analysing 

184-265 cells. 
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responses reported in chapter 2. These GPN-evoked complex Ca2+ responses, appeared 

similar across the GBA1+/+
55, GBA1-/-

55
GD and GBA1+/-

55
PD fibroblast cultures (Figure 4.12A). The 

proportion of cells that oscillate in response to GPN did not significantly differ between the 

fibroblast cultures (Figure 4.12D).  

GPN-evoked Ca2+ oscillations are dependent upon ER localised IP3R. So to isolate lysosomal 

Ca2+ release, I took advantage of the antagonistic effects that 2-APB has on GPN-evoked Ca2+ 

oscillations (chapter 2). As shown in figure 4.12B, GPN-evoked Ca2+ responses become largely 

monotonic after pre-treatment with 100 μM 2-APB. When compared to fibroblasts from an 

age-matched healthy individual (GBA1+/+
55), GPN-evoked Ca2+ responses (after exposure to 

2-APB) were reduced in GBA1-/-
55

GD, GBA1+/-
55

PD (Figure 4.12E). 

The rate of GPN-induced lysosome membrane permeabilisation was compared in the 

fibroblast cultures using Lysotracker red. The decrease in Lysotracker fluorescence, did not 

differ between fibroblasts cultures (Figure 4.12C). This was quantified by calculating the time 

taken for fluorescence to decrease by 50% (Figure 4.12F).  

Lysosome morphology is disrupted in GD and GBA1-PD fibroblasts 

Lysosome dysfunction is often associated with changes in lysosome morphology. Using an 

antibody raised to the late-endosome/lysosome marker LAMP1, lysosome morphology was 

compared in the fibroblasts established from the young and aged individuals. Representative 

confocal images are shown in figures 4.13 and 4.14, data were quantified using LAMP1 

fluorescence intensity. When compared to age-matched control fibroblasts (GBA1+/+
55; 

Figure 4.13A), increased lysosome structures were observed in both GBA1-/-
55

GD (Figure 

4.13B) and GBA1+/-
55

PD (Figure 4.13C) fibroblasts. Furthermore, the lysosomes appeared 

enlarged and clustered in GBA1-/-
55

GD and GBA1+/-
55

PD cells. To a lesser extent, young and 

asymptomatic GBA1 carriers (GBA1+/-
58

ASX and GBA1+/-
59

ASX) also exhibited pathological 

morphology when compared to GBA1+/+
55 (Figure 4.13D-E). 

Similar to GBA1+/-
55

PD fibroblasts, lysosome morphology was also disrupted in the GBA1+/-
75

PD 

fibroblasts (Figure 4.14A-B). However, these defects were modest and only associated with 

a 30% increase in LAMP1 intensity (Figure 4.14E). Furthermore, fibroblasts established from 

GBA1+/-
80

ASX did not exhibit disrupted lysosome morphology when compared to GBA1+/+
82 

(Figure 4.14C-E). 
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Figure 4.12 Lysosomal Ca2+ content is decreased in young GD and GBA1-PD fibroblasts 

(A-B) Cytosolic Ca2+ responses of individual fibroblasts stimulated with GPN (200 µM) from a 

representative population of GBA1+/+
55, GBA1-/-

55
GD and GBA1+/-

55
PD

 cells. With (B) or without (A) a 

12.5 minute pre-treatment with 2APB (100 µM). 

(C) Average Lysotracker red responses of fibroblasts stimulated with GPN (200 µM) from GBA1+/+
55, 

GBA1-/-
55

GD and GBA1+/-
55

PD
 cultures.  

(D-F) Summary data (mean ± S.E.M) quantifying the percentage of cells that oscillate after GPN 

stimulation (D; 7 experiments (n) from 2 independent platings analysing 118-120 cells), the 

magnitude of GPN response (after pre-incubation with 2-APB; E; 6 experiments (n) from 2 

independent platings analysing 72-88 cells) and the time to taken to reach a half-maximal loss of 

lysotracker red fluorescence (F; 2 experiments (n) from 1 independent plating analysing 25-34 

cells). ANOVA analysis, followed by a post-hoc Tukey test, was applied to test significance against 

GBA1+/+
55.  ns, not significant. ***p<0.001. All experiments were performed in the presence of 

extracellular Ca2+.  



91 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Lysosome morphology is disrupted in young GD and GBA1-PD fibroblasts 

(A-E) Representative confocal fluorescence images of LAMP1 (white) staining in GBA1+/+
55, GBA1-/-

55
GD, GBA1+/-

55
PD, GBA1+/-

58
ASX and GBA1+/-

59
ASX fibroblasts. Zoomed images are displayed in the right 

panels. Nuclei were stained using DAPI (blue). Scale bars, 10 µm.  

(F) Summary data (mean ± S.E.M) quantifying LAMP1 intensity as a percentage of GBA1+/+
55. 

Results are from 3-17 independent platings (n) analysing 130-654 cells.  
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Agonist-evoked Ca2+ release is not altered in young GD and GBA1-PD fibroblasts 

Intracellular Ca2+ stores are delicately balanced to ensure appropriate physiological 

signalling. Since defective Ca2+ storage and signalling has been identified in both GBA1-/-
55

GD 

and GBA1+/-
55

PD fibroblasts, Ca2+ responses evoked by a physiological agonist were measured. 

Bradykinin is the principle ligand that activates the G protein-coupled bradykinin receptor 

(Hall, 1992). Fibroblasts are highly responsive to bradykinin (chapter 2, Figure 2.7E), thus a 

low concentration (1 nM) was applied to GBA1+/+
55, GBA1-/-

55
GD and GBA1+/-

55
PD cultures. 

Bradykinin stimulated robust and complex Ca2+ signals (Figure 4.15A). Ca2+ responses evoked 

by bradykinin were similar in the GBA1+/+
55, GBA1-/-

55
GD and GBA1+/-

55
PD fibroblasts (Figure 

4.15A). The magnitude of bradykinin response was not significantly different between 

GBA1+/+
55, GBA1-/-

55
GD and GBA1+/-

55
PD cultures (Figure 4.15B).  

Figure 4.14 Lysosome morphology is disrupted in aged GBA1-PD fibroblasts 

(A-E) Representative confocal fluorescence images of LAMP1 (white) staining in GBA1+/+
78, GBA1+/-

75
PD, GBA1+/+

82 and GBA1+/-
80

ASX fibroblasts. Nuclei were stained using DAPI (blue). Scale bars, 10 

µm.  

(F) Summary data (mean ± S.E.M) quantifying LAMP1 intensity as a percentage of each age 

matched GBA1+/+. Fibroblast results are from 3 independent platings (n) analysing 82-190 cells.  
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Spontaneous Ca2+ signalling is increased young GD and GBA1-PD fibroblasts 

To further probe the physiological impact of impaired Ca2+ storage, basal Ca2+ signalling was 

examined in the fibroblast cultures. Basal Ca2+ levels were similar across GBA1+/+
55, GBA1-/-

55
GD and GBA1+/-

55
PD fibroblast cultures (Figure 4.16A). However, spontaneous Ca2+ spikes 

were sometimes observed in the basal recordings of GBA1-/-
55

GD and GBA1+/-
55

PD fibroblasts 

(Figure 4.16). Over a 3 year data-collection period, the percentage of cells displaying 

spontaneous Ca2+ spikes in GBA1+/-
55

PD were significantly increased when compared to 

GBA1+/+
55 (Figure 4.16B). It is important to note that only cells with stable basal Ca2+ levels 

were selected for quantifying thapsigargin, cADPR-AM, GPN, FCCP and bradykinin responses.   

 

 

 

 

 

 

 

Figure 4.15 Agonist-evoked Ca2+ release is not altered in young GD and GBA1-PD fibroblasts  

(A) Cytosolic Ca2+ responses of individual fibroblasts stimulated with bradykinin (BK; 1 nM) from a 

representative population of GBA1+/+
55, GBA1-/-

55
GD and GBA1+/-

55
PD

 cells. All experiments were 

performed in the presence of extracellular Ca2+. 

(B) Summary data (mean ± S.E.M) quantifying the magnitude of bradykinin response. Results are 

from 6-14 experiments (n) from 3-6 independent platings analysing 89-210 cells. ANOVA analysis, 

followed by a post-hoc Tukey test, was applied to test significance against GBA1+/+
55.  ns, not 

significant. 

 

Figure 4.16 Spontaneous Ca2+ signalling is increased young GD and GBA1-PD fibroblasts 

(A) Summary data (mean ± S.E.M) quantifying basal Ca2+ ratios. 

(B) Cytosolic Ca2+ signalling from a representative population of GBA1+/+
55, GBA1-/-

55
GD and GBA1+/-

55
PD

 cells. Cells were maintained in the presence of extracellular Ca2+. 

(C) Summary data (mean ± S.E.M) quantifying the percentage cells displaying spontaneous spikes.  

Results are from 44-75 experiments (n) from 20-32 independent platings analysing 721-1196 cells. 
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Discussion 

 
Here I show that ER Ca2+ content was increased in primary fibroblasts established from 

younger GD and GBA1-PD patients relative to aged-matched control fibroblasts. Enhanced 

ER Ca2+ content was associated with increased responses to the RyR activator, cyclic ADP-

ribose. Dysfunctional ER Ca2+ signalling was shown to be a unique feature of disease since 

asymptomatic GBA1 carriers did not show disrupted ER Ca2+ homeostasis. Furthermore, ER 

Ca2+ content, in the fibroblasts established from healthy individuals, was increased in an age 

dependent manner. ER Ca2+ signalling was unaffected by molecular or chemical inhibition of 

GCase. However, the overexpression of mutant GBA1 in dopaminergic SH-SY5Y cells 

modestly recapitulated defective ER Ca2+ responses, implicating mis-folded GCase in the 

pathology of PD. Other Ca2+ stores connected with the ER were also dysfunctional in GD and 

GBA1-PD. Mitochondrial Ca2+ content was increased in GBA1-PD fibroblasts, whereas 

lysosomal Ca2+ content was reduced and associated with disrupted lysosome morphology. 

Impaired Ca2+ storage and signalling in GBA1-PD fibroblasts disrupted basal Ca2+ homeostasis 

but not agonist-evoked Ca2+ signals. Thus, accelerated remodelling of Ca2+ stores by 

pathogenic GBA1 may predispose individuals to PD. 

ER Dysfunction 

Ca2+ dysfunction is intimately associated with disease (reviewed in Berridge 2012) and this 

research suggests that GD and GBA1-PD are no exception. Indeed, Ca2+ signalling from RyR 

has previously been shown increased in GD microsome preparations (Pelled et al., 2005) and 

a neuropathic mouse model (Korkotian et al., 1999). Based on this foundation, I examined ER 

Ca2+ signalling in GBA1-associated diseases. Results demonstrate increased Ca2+ signalling in 

response to thapsigargin (used as an indirect measure to determine ER Ca2+ content) and the 

RyR agonist cADPR-AM in young diseased fibroblasts (figure 4.1-4.2). This suggests that ER 

Ca2+ content is increased in disease and associated with disrupted physiological ER Ca2+ 

signalling. 

This data contrasts with previous reports which speculate that excessive RyR flux actually 

lowers luminal ER [Ca2+] (Wang et al., 2011a). However, measurements of ER Ca2+ content 

have not been previously examined in GD. Furthermore, previous research did not report 

significant differences in ER Ca2+ release from type I GD microsomes. Instead only severe 

neuropathic GD models presented with defects (Pelled et al., 2005). Thus, to the best of my 

knowledge, this is the first account of increased ER Ca2+ content and release in type I GD. 
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A recent study has shown enhanced RyR-mediated Ca2+ signalling in iPSC-derived neurons 

from GD and GBA1-PD patients (Schöndorf et al., 2014). This complements data reported in 

this chapter. However, PD has not always been associated with increased ER Ca2+ signalling. 

For instance, Arduino and colleagues (2009) have reported reduced ER Ca2+ content in an 

MPP+ model of PD (Arduíno et al., 2009).  

Although thapsigargin, which inhibits SERCA and exposes the ER Ca2+ leak pathway, has 

frequently been used as an indirect measure of ER Ca2+ content (reviewed in Michelangeli & 

East 2011). This inhibitor might also be providing insight into ER Ca2+ leak itself. Therefore, 

elevated Ca2+ responses, after the addition of thapsigargin, might not just indicate increased 

ER Ca2+ content but also increased ER Ca2+ leak. Perhaps, the diseased fibroblasts express 

more leak channels. However, this hypothesis would be difficult to test since the molecular 

identity of these leak channels remains elusive (Kiviluoto et al., 2013). To conclusively 

examine ER Ca2+ content, more direct approaches, like using the genetically encoded Ca2+ 

sensor D1-ER (Palmer et al., 2004), should be employed.  

Compromised ER Ca2+ signalling might result from the accumulation of glucocerebroside 

(GCase substrate). This substrate not only aggregates within the lysosomes but also on the 

ER and the Golgi complex (Martin & Pagano, 1994). At the ER, glucocerebroside can be 

metabolised to other, high order, sphingolipids (Schnaar et al., 2009). Here, the substrate 

could directly impact Ca2+ homeostasis. Indeed lyso-sphingo lipids have been shown to 

modulate Ca2+ mobilisation (Furuya et al., 1996). Lloyd-Evans and colleagues (2003) 

concluded that glucocerebroside can adjust the redox potential of the RyR, through its 

interaction with the redox sensor, and modulate Ca2+ release.  

However, the data presented in this chapter suggests that an accumulation of substrate is 

not sufficient to induce ER Ca2+ dysfunction in either fibroblasts, SH-SY5Y cells or neurons. 

Pharmacologically inhibiting GCase did not induce ER dysfunction (Figures 4.7-4.8). Likewise 

the genetic knockdown of GBA1 did not affect ER Ca2+ signals (figures 4.8-4.9).  Intriguingly 

fibroblasts are known to accumulate relatively low levels of substrate (Vitner et al., 2010). 

Thus the identification of ER Ca2+ dysfunction in these fibroblasts further suggests other 

mechanisms must be involved in ER pathogenesis.  

The retention of mis-folded GCase on the ER could destabilise the organelle and perturb 

homoeostasis. Newly synthesised proteins undergo a strict quality control, where non-

functional proteins are degraded through various mechanisms collectively termed ERAD. 
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Many have shown that ERAD pathways are activated in GD (Mu et al., 2008; Wei et al., 2008) 

and that the severity of GD symptoms has been associated with the degree of GCase 

accumulation at the ER (Ron & Horowitz, 2005; Bendikov-Bar et al., 2011). Using lentiviral 

infection, marginally increased thapsigargin responses were seen cells in overexpressing 

mutant (N370S) GBA1 (Figure 4.10). However, these effects were modest and impeded by 

low transduction efficiency. Further work optimising this protocol is essential.  

Unfortunately, it is not possible to examine physiological ER Ca2+ signalling in SH-SY5Y cells 

since they are unresponsive to RyR agonists such as cADPR-AM and caffeine (data not 

shown), despite the expression of RyR (Mackrill et al., 1997a). Thus, further work is required 

to uncover the mechanism behind disrupted ER Ca2+ signalling.  

Currently it is unknown why 85-90% (McNeill et al., 2012) of individuals with a GBA1 mutation 

never develop PD (Sidransky et al., 2009). Very few studies have compared the pathology of 

GBA1-PD against asymptomatic carriers. When these comparisons have been made, similar 

defects are reported between asymptomatic GBA1 carriers and GBA1-PD patients. For 

instance, GCase activity and accumulation of GCase on the ER were not different in fibroblast 

cultures (McNeill et al., 2014). Here I report that non-manifesting GBA1 heterozygotes do not 

show increased Ca2+ signalling in response to thapsigargin and cADPR-AM when compared to 

PD patient cells (figures 4.3-4.4). Thus, ER Ca2+ homeostasis might be the defining feature of 

PD development in GBA1 carriers and can be exploited as a biomarker for disease. However, 

further work with increased patient numbers is required to validate the efficacy of this 

biomarker. Furthermore, the question remains why these GBA1 carriers not have increase 

ER Ca2+ despite similar biochemical characteristics to PD. It is important to also note that 

because risk of developing PD in GBA1 carriers is age related (McNeill et al., 2012; Rana et 

al., 2013), these carriers might still develop PD.  

Intriguingly, ageing is associated with increased ER Ca2+ content (Figure 4.6). Thapsigargin-

evoked Ca2+ signals in the fibroblasts established from aged individuals resembled Ca2+ 

responses evoked in young diseased cells. Previous reports have shown that ageing increases 

ER Ca2+ signalling in neurons (Gant et al., 2006; Puzianowska-Kuznicka & Kuznicki, 2009). 

Thus, in this respect, fibroblasts behave like neurons. However, this increased ER Ca2+ content 

perturbed the examination of older GBA1-PD fibroblasts as they were no different from their 

respective age matched controls. Perhaps GBA1-PD ER pathology is associated with 

accelerating ageing phenotypes and this effect becomes masked later in life. Notably, 

reliance upon Ca2+ influx for pacemaking activity in SNc neurons increases with age (Chan et 
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al., 2007) and imposes metabolic stress (Guzman et al., 2010). These studies provide a 

mechanism for selective neuronal degeneration in PD that will likely affect us all as we age. 

Conceivably, age-related increased ER Ca2+ signalling could exacerbate Ca2+ stress and 

contribute to PD development. 

An examination of basal Ca2+ in these cultures revealed that GBA1-PD is associated with 

increased spontaneous Ca2+ fluxes (Figure 4.16). Notably, spontaneous ER Ca2+ release has 

been reported in type II GD microsomes (Pelled et al., 2005). It is possible that increased ER 

Ca2+ contributes to these spikes. Indeed, these spontaneous fluxes might impose further 

stress on SNc neurons.  

The ER has a finite Ca2+ capacity (Berridge, 2002) and the potential increased ER Ca2+ content 

present in GD, GBA1-PD and aged individuals could impose significant stress upon the cell. 

Indeed, enhanced ER Ca2+-mobilisation has been shown to heighten neuronal sensitivity to 

glutamate (Korkotian et al., 1999). Apoptosis is often triggered by ER Ca2+ (Pinton et al., 2008), 

thus an increased ER Ca2+ pool present might increase the propensity for the induction of cell 

death.  

The ER is a specialised organelle, aside from its role in the regulation and storage of Ca2+, it is 

critically involved in the synthesis of proteins and lipids. Aberrant ER Ca2+ can interfere with 

these processes (reviewed in Paschen & Mengesdorf (2005)). Several ER chaperones are Ca2+ 

binding proteins, sensitive to any variation in Ca2+ (Michalak et al., 2009). Of importance, 

manipulating ER Ca2+ has been shown to recover protein folding in GD models (Sun et al., 

2009; Ong et al., 2010). Preventing the leak (by blocking RyR release; Mu et al. (2008)) or 

increasing the uptake (by overexpressing SERCA; Ong et al. (2010)) of ER Ca2+ can improve 

GCase folding. The Ca2+-dependent ER chaperone calnexin is believed to regulate GCase 

protein homeostasis. Ong and colleagues (2010) demonstrate that increasing ER Ca2+ 

enhances the ability for calnexin to fold dysfunctional GCase. Perhaps the raised ER Ca2+ 

levels present in GD and GBA1-PD acts as a compensatory mechanism to rescue GCase 

folding via calnexin. Indeed McNeill et al. (2014) have already demonstrated that calnexin 

levels are increased in these GD and GBA1-PD fibroblast cultures. 

Mitochondrial Dysfunction 

The ER forms functional and physical connections with acidic Ca2+ stores (Kilpatrick et al., 

2013) and the mitochondria (Csordás et al., 2006). Pathological ER Ca2+ signalling could 

damage these associated organelles and impact upon their Ca2+ homeostasis.  
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Much evidence converges on a central role of mitochondria in PD pathogenesis. Many of the 

genes linked to PD encode mitochondrial proteins (Schapira, 2012). Recent evidence has 

identified mitochondrial dysfunction in numerous GBA1 disease models. Several markers for 

mitochondrial dysfunction (such as fragmentation, reduced membrane potential and 

increased in ROS production) are present in  SH-SY5Y cells after GCase activity has been 

impaired with CBE and silencing GBA1 (Cleeter et al., 2012). Similar mitochondrial 

phenotypes have also been reported in primary neuronal cultures from the same GD mouse 

model used in this report (Osellame et al., 2013). Furthermore, these cultures exhibit an 

impaired recruitment of Parkin (a PD-linked gene) to mitochondrial membranes and impaired 

mitophagy.  

Since the mitochondria are impaired in GBA1 disease models, I examined mitochondrial Ca2+ 

in the fibroblast cultures. Responses to FCCP were increased in GBA1-PD cells indicating 

increased mitochondrial Ca2+ content (figure 4.11). However, GD mitochondrial Ca2+ levels 

were unchanged. Ca2+ defects in PD have been previously reported. For instance, cells 

deficient in the mitochondrial PD protein PINK1, exhibit a substantial delay in the efflux of 

Ca2+ from mitochondria (Gandhi et al., 2009)  and defective Ca2+ uptake into the mitochondria 

(Heeman et al., 2011). Furthermore, previous research has shown mitochondrial 

fragmentation and defective Ca2+ uptake in the LSD Mucolipidosis IV (Jennings et al., 2006). 

However, uptake and efflux of mitochondrial Ca2+ requires further examination in GD and 

GBA1-PD.  

In addition, although widely employed, this method for measuring mitochondrial Ca2+ is 

indirect. Notably this is an issue that can also be applied to the measurements of ER and 

lysosomal Ca2+. Future work requires the use of Ca2+ indicators targeted to each of these 

organelles to obtain a better estimation of luminal Ca2+ content. 

The ER and mitochondria are also physically coupled to one another through mitochondria-

associated membrane (MAM) proteins (reviewed in Hayashi et al. (2009)). Ca2+ release from 

the ER is sequestered by the mitochondria (Rizzuto et al., 1993) and therefore mitochondrial 

Ca2+ dysfunction in GBA1-PD might be a consequence of impaired ER Ca2+. It is notable that, 

this excessive transfer of Ca2+ could initiate apoptotic pathways. Alternatively, dysfunctional 

lysosomes (further discussed below) might impair mitophagy (already reported in GBA1-

diseased models (Osellame et al., 2013; Cleeter et al., 2012) and cause an excessive build-up 

of troubled mitochondria. These hypotheses require further examination. 
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Ca2+ is essential for mitochondrial function, its presence in the matrix activates metabolic 

enzymes of the tricarboxylic acid cycle to regulate energy production (Rizzuto et al., 2012). 

An imbalance of Ca2+ could affect ATP synthesis in GBA1-PD. Moreover, the prolonged 

presence of Ca2+
 in the mitochondria opens the permeability transition pore (PTP) initiating 

apoptosis (Crompton, 1999). Thus, the increased mitochondrial Ca2+ present in GBA1-PD 

could promote neurodegeneration. The increased Ca2+ influx into dopaminergic SNc neurons 

is energetically expensive to temper and thus imposes mitochondrial stress (Guzman et al., 

2010). As the mitochondria are dysfunctional in GBA1-PD this will likely only further provoke 

degeneration. However, further examination mitochondrial function is required in these 

fibroblast cultures.  

Lysosome Dysfunction  

Lysosomal dysfunction has been reported in multiple LSDs (Meikle et al., 1997). For instance, 

studies have reported increased levels of lysosome membrane proteins (primarily LAMP-1) 

in GD (Meikle et al., 1997; Whitfield et al., 2002; Zimmer et al., 1999). In this report, GBA1 

mutations were associated with aberrant lysosome morphology in young fibroblasts (Figure 

4.13). These acidic organelles appeared proliferated, enlarged and aggregated. Furthermore, 

unlike ER Ca2+ signalling, lysosome morphology was also disrupted in the fibroblasts 

established from young asymptomatic GBA1 heterozygotes. However, with increasing age 

GBA1-PD lysosome dysfunction is not as severe (Figure 4.14). Increased lysosome structures 

have recently been quantified in NPC patients and this assay has been identified as a useful 

biomarker (te Vruchte et al., 2014). It is notable that, with increasing age NPC lysosome 

dysfunction is also less severe (te Vruchte et al., 2014).  

Emerging evidence implicates lysosome dysfunction in neurodegenerative diseases (Zhang 

et al., 2009). For instance, lysosome disruption has been identified as an early pathological 

event in axon degeneration (Zheng et al., 2010). Furthermore, in familial Alzheimer Disease 

aberrant lysosome turnover is linked to mutations in presenilin-1 (Lee et al., 2010c). Thus the 

pathological lysosome morphology identified in GD and GBA1-PD agrees with other 

neurodegenerative disorders. 

Lysosome dysfunction has also been reported in PD. However, the pathology observed can 

vary between PD model examined. For instance, a recent study showed robust reductions in 

lysosomal markers within the SNc neurons of sporadic PD patients (Chu et al., 2009). 

Moreover, significant lysosome depletion has also been reported in an MPTP murine model 

of PD (Dehay et al., 2010). In contrast, fibroblasts with mutations in ATP13A2 (Dehay et al., 



100 
 

2012) and neurons overexpressing LRRK2 (MacLeod et al., 2006) are associated with 

increased lysosome structures. The recent study by Schondoroff and colleagues (2014) also 

show a proliferation and enlargement lysosome in GBA1-PD patient derived iPSC neurons. A 

more extensive analysis of lysosome morphology is required in my fibroblast cultures. For 

example, electron microscopy is necessary to better examine the ultra-structure of the 

lysosome.  

An increased need to sequester excess glucocerebroside in GBA1 mutant fibroblasts is a 

possible cause of these abnormal lysosomes. Further analysis in SH-SY5Y cells with the stable 

knock-down of GBA1 or overexpressing mutant GBA1 is necessary to determine the 

mechanism underlying lysosome dysfunction. 

The transcription factor EB (TFEB) coordinates lysosomal biogenesis (Sardiello et al., 2009). 

TFEB is dephosphorylated and translocated to the nucleus upon lysosome dysfunction 

(Settembre et al., 2012). Notably, TFEB is currently the only established transcription factor 

for GBA1 (Blech-Hermoni et al., 2010). Indeed recent research has identified Ambroxol 

hydrochloride as an activator of TFEB, which increases the expression of lysosomal genes 

including GBA1 (McNeill et al., 2014). Perhaps TFEB is activated in GD and GBA1-PD to 

stimulate GBA1 expression. As a consequence lysosomes become proliferated. However, 

TFEB activation requires further investigation in these fibroblasts.   

The degradation of α-syn is dependent upon chaperone mediated autophagy (Cuervo et al., 

2004). Many have reported an accumulation of α-syn in GBA1-disease models (Cullen et al., 

2011; Osellame et al., 2013; Manning-Boğ et al., 2009). Perhaps aberrant lysosome 

morphology impairs the degradation of α-syn. Indeed, α-syn itself has been shown to inhibit 

the trafficking of proteins from the ER to the Golgi apparatus (Thayanidhi et al., 2010a), 

including GCase (Mazzulli et al., 2011). Therefore in GBA1-PD, an increase in α-syn (likely 

caused by lysosome dysfunction) could further impact ER Ca2+ homeostasis by impairing 

GCase trafficking.   

Lysosomes are also known as “suicide bags” and have a key role in the induction of apoptosis 

(reviewed in Aits & Jäättelä 2013). A leak of cathepsin D and B (lysosomal hydrolases) into 

the cytosol promotes the release of cytochrome C from the mitochondria initiating cell death 

(Guicciardi et al., 2000). The increased lysosome presence observed in GD and GBA1-PD could 

functionally impair the cell increasing the probability of apoptosis and neurodegeneration. 

However, this hypothesis requires testing. 
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Lysosomes also function as significant Ca2+ stores. As described in chapters 2 and 3, the 

lysosomal permeabilising agent GPN induces prolonged complex Ca2+ signalling. These GPN-

evoked oscillatory signals were similar in the diseased fibroblast cultures. To ascertain a 

better estimation of lysosomal Ca2+ content, ER IP3R must be inhibited (discussed in chapter 

2). Under ER blockade GD and GBA1-PD fibroblasts exhibited reduced responses to GPN 

(despite similar permeabilisation rates), indicative of lowered lysosomal Ca2+ content (Figure 

4.12). This is consistent with the phenotypes observed in the other LSD NPC (Lloyd-Evans et 

al., 2008) and also Alzheimer Disease (Coen et al., 2012). This reduction in lysosomal Ca2+ 

content requires further characterisation. Crucially, direct measurements of luminal Ca2+ 

content must be obtained.  

The reduced lysosomal Ca2+ content in GD and GBA1-PD could impact physiological Ca2+ 

signalling. Indeed reduced content has been shown to diminish NAADP signalling in NPC 

(Lloyd-Evans et al., 2008). Unfortunately, NAADP-AM responses have not been examined in 

these fibroblast cultures due to the unresponsive nature of recent batches (chapter 2). 

However, since GPN-evoked Ca2+ oscillatory signals are no different between cultures (figure 

4.12C) NAADP-AM responses may not differ. This could be because the increased ER Ca2+ 

balances the loss of lysosomal Ca2+. 

Lysosomal Ca2+ is required for the induction of macroautophagy (Pereira et al., 2011). The 

disruption to lysosome morphology and Ca2+ homeostasis in GD and GBA1-PD could cause 

the aggregation of α-syn and effete mitochondria, both of which are autophagic substrates. 

Notably, many have reported autophagic dysfunction in GBA1-PD (Cleeter et al., 2012; 

Osellame et al., 2013). Thus, examining how lysosome morphology and Ca2+ homeostasis 

impacts autophagy in these fibroblast cultures would be of interest.  

It is interesting that despite an increase in lysosome structures, lysosomal Ca2+ content is 

reduced. This contrasts with previous data presented by Dickinson and colleagues (2010) 

who report increased GPN responses after pharmacologically imposing lysosome 

proliferation, using the cathepsin B and L inhibitor Z–Phe–Ala–diazomethylketone (Dickinson 

et al., 2010). Perhaps in GD and GBA1-PD these dysfunctional acidic organelles are “leaky” or 

have defective Ca2+ uptake. Indeed, since the mechanism of lysosomal Ca2+ uptake is 

unknown the latter would be difficult to investigate.  

Alternatively, the reduced lysosomal Ca2+ content could be a compensation mechanism for 

the increased ER Ca2+ signalling (or vice versa). Lloyd-Evans and co-workers (2008) report that 
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depleting ER Ca2+ using SERCA ATPase inhibitors can reverse NPC pathology. Notably, NPC is 

associated with reduced lysosomal Ca2+ content and signalling.  The authors demonstrate 

that SERCA ATPase inhibitors elevate cytosolic Ca2+ and compensate for lysosomal 

dysfunction. This reciprocal redistribution of Ca2+ in GD and GBA1-PD might be crucial to 

maintain Ca2+ homeostasis and could be facilitated by MCSs. 

Physiological Ca2+ signalling 

Although GBA1-PD was associated with disrupted basal Ca2+ homeostasis (Figure 4.16), 

responses to bradykinin were unchanged in the diseased fibroblast cultures (Figure 4.15). 

Bradykinin has previously been shown to stimulate IP3-mediated Ca2+ signalling in fibroblasts 

(Tao et al., 1988). Thus a lack of bradykinin effect could indicate that IP3-mediated signalling 

is not affected in GBA1-disease. However, Madin-Darby Canine Kidney Cells treated with CBE 

exhibited reduced IP3 formation after bradykinin stimulation (Mahdiyoun et al., 1992). 

Further examination of IP3 signalling in these cultures is necessary. Alternatively, agonist 

responses might be similar because the Ca2+ network, which has been remodelled, can still 

function appropriately as a whole. 

Therapy 

Current FDA approved treatment of GD focusses on reducing substrate accumulation 

through enzyme replacement therapy (ERT) (Tekoah et al., 2013). However, this treatment is 

inadequate at alleviating neuronopathic symptoms since recombinant enzymes are unable 

to permeate the blood brain barrier (Erikson, 2001). Therefore, neuro-pathology cannot be 

targeted by ERT. Alternative approaches for reducing substrate accumulation include 

inhibiting the synthesis of glucocerebroside with Miglustat (Cox, 2005). Yet, research 

presented in this chapter suggests that substrate accumulation does not impair Ca2+ 

homeostasis. Instead, mis-folded GCase contributes to the pathology of GD and GBA1-PD. 

Indeed, many of the mis-folded enzymes retain catalytic activity provided they can reach the 

lysosomes (Lieberman et al., 2009; Bendikov-Bar et al., 2013). Thus, pharmacological 

chaperones, which enable the correct folding of GCase and subsequent trafficking to the 

lysosomes, might prove therapeutically beneficial. 

I show that the remodelling of Ca2+ stores by pathogenic GBA1 might predispose to 

individuals to PD. Therefore, Ca2+ signalling proteins could represent new therapeutic targets 

for both GD and PD. Notably, inhibiting excessive RyR flux through the antagonism of these 

channels, using either siRNA, dantrolene, ryanodine or VGCC antagonists (Mu et al., 2008; 

Ong et al., 2010; Sun et al., 2009; Wang et al., 2011a, 2011b; Rigat & Mahuran, 2009) have 
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been shown to improve GD pathology. Moreover, these RyR antagonists are known to 

protect neurons from excitotoxicity (Korkotian et al., 1999). However, since these 

antagonists have been shown to increase ER Ca2+ content (Ong et al., 2010), they might prove 

even more harmful in PD. Nevertheless, the effects of these compounds on Ca2+ 

homoeostasis requires further examination.  

Summary 

Ca2+
 is an important signalling ion and its dysfunction has a prominent role in the onset of 

disease. Lysosomes trigger Ca2+
 signals which are amplified by the ER and ultimately received 

by the mitochondria. These Ca2+ stores are delicately balanced to ensure appropriate 

physiological signalling. In this chapter, defects in ER, lysosomal and mitochondrial Ca2+ 

homeostasis were identified in GBA1 associated disease. Previous evidence has shown that 

a unique Ca2+ stress is imposed upon SNc neurons (Chan et al., 2007). Thus the pathological 

Ca2+ homeostasis, associated with GBA1 mutations, might further disrupt SNc neurons and 

cause neurodegeneration. Aberrant Ca2+ might also influence protein folding, autophagy, 

ATP production and apoptotic pathways to initiate PD onset. Targeting Ca2+
 signalling might 

therefore represent new therapeutic strategy for both GD and GBA1-PD. 
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Chapter 5 

Lysosome Dysfunction - a Common Feature of Parkinson Disease? 

Introduction 

 
Lysosomes are acidic structures that have an important role in regulating Ca2+ signalling and 

autophagy. Typically lysosomes adopt a spherical form with a diameter of ~500 nm. These 

acidic structures can be found throughout the cell and their movement along microtubules 

requires the trafficking GTPases Rab7 (Bucci & De Luca, 2012) and ARL8B (ADP-ribosylation 

factor-like 8B; Korolchuk et al. 2011). In fibroblasts, lysosomes occupy >0.5% percent of the 

cell volume (Lüllmann-rauch, 2005). Dysfunction of these acidic organelles is increasingly 

implicated in the pathology of PD. For instance, mutations in the genes encoding lysosomal 

proteins, such as GCase and ATP13A2, are known to cause PD and lysosome dysfunction 

(chapter 4, Dehay et al. 2012).  

One of the most common, single genetic causes of familial PD is a mutation in LRRK2, which 

encodes the multi-domain enzyme LRRK2. The prevalent mutation, G2019S, targets the 

kinase domain of LRRK2 and increases catalytic activity (West et al., 2005). Downstream 

consequences of this gain-of-function are largely unknown. However, some reports have 

shown defects in the lysosomal-autophagic pathway. For instance, LRRK2 kinase mutations 

have been shown to activate autophagy (Plowey et al., 2008). A recent study suggested that 

this activation involves the NAADP-sensitive Ca2+ channels (TPCs) which interact with LRRK2 

(Gómez-Suaga et al., 2012). Furthermore, many have localised LRRK2 to structures of the 

endolysosomal system (Biskup et al., 2006; Alegre-Abarrategui et al., 2009; Higashi et al., 

2009; Papkovskaia et al., 2012).Thus, like GBA1-mediated PD, lysosome dysfunction might 

feature in LRRK2-PD. 

The onset of PD in the majority of patients is unknown. However, sporadic PD has been linked 

to variations in LRRK2 (Di Fonzo et al., 2006) and exposure to environmental toxins (reviewed 

in Goldman 2014). One of these toxins, paraquat, is known to impair mitochondrial function 

and cause oxidative stress (Cochemé & Murphy, 2008). Like LRRK2, paraquat has also been 

shown to activate autophagy (Kiffin et al., 2004; González-Polo et al., 2007). Mak et al. (2010) 

established that the expression of a lysosomal membrane protein (LAMP type 2A), which 
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regulates autophagy, is increased in the dopaminergic neurons of paraquat exposed mice. 

Therefore, paraquat might also disrupt lysosome function.   

In this chapter I will explore whether lysosomal defects connect genetic and environmental 

PD. 

Methods 

Cell details 

Primary human fibroblasts, established from skin biopsies, were generated by Dr Jan-Willem 

Taanman and Dr Tatiana Papkovskaia (Royal free hospital, UCL). PD patients carried the 

G2019S mutation in LRRK2. For comparison, fibroblasts were also acquired from age-

matched, apparently healthy individuals without mutations in LRRK2. Additional details of 

the fibroblasts are included in table 5.1. 

Table 5.1. Details of patient-derived fibroblast cultures. 

Patient code Sex Age Genotype Clinical features 

CTRL1 Female 50 WT/WT Apparently healthy 

CTRL2 Female 52 WT/WT Apparently healthy 

LRRK2-PD1 Female 48 G2019S/WT Parkinson disease 

LRRK2-PD2 Female 52 G2019S/WT Parkinson disease 

 
SH-SY5Y cell lines with the stable expression of wild-type and G2019S mutated LRRK2 

(Papkovskaia et al., 2012) were developed by Drs Kai-Yin Chau and Mark Cooper (Royal free 

hospital, UCL).  

Fibroblast and SH-SY5Y cultures were maintained as described in chapter 2. In some cases, 

fibroblasts were treated overnight in culture with 500 μM Paraquat (dissolved in H2O). 

Immunocytochemistry 

LAMP1 immunocytochemistry was conducted as described in chapter 2. Fibroblasts were 

also incubated for 1 hour at 37oC with anti-EEA1 (Early Endosome Antigen 1; diluted 1:100; 

SantaCruz Biotechnology) and anti-CD63 (H5C6 clone; diluted 1:10; Developmental Studies 

Hybridoma Bank) antibodies. Respectively, the secondary antibodies used were conjucated 

to Alexafluor 488 (goat) and Alexafluor 647 (mouse) (both diluted 1:100, Invitrogen).  

Microscopy 

Confocal microscopy was performed as described in chapter 2. Alexafluor 488 and AlexaFluor 

647 fluorescence was excited using wavelengths of 488 nm and 633 nm and emitted 
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fluorescence was captured using either 505-530 nm or 655-719 nm band-pass filters 

respectively. 

siRNA 

siRNA transfection was performed as described in chapter 3 using siRNA duplexes targeting 

TPC1 (5’-CGAGCTGTATTTCATCATGAA-3’) and TPC2 (5’-CAGGTGGGACCTCTGCATTGA-3’) 

(both Qiagen). 

Western blotting  

Western blotting was conducted as described in chapter 3, except homogenates were 

denatured for 1 hour at room temperature and run on NuPage 4-12% Bis-Tris gels 

(Invitrogen). Blots were sequentially incubated with the primary anti-TPC1 (1 hour at RT, 

diluted 1:200, Abcam) antibody and secondary anti-rabbit (1 hour at room temperature, 

1:2000, Biorad) antibody. 

Recurrent methods 

Lysotracker imaging and image analysis were performed as described in chapter 2.  

Results 

Lysosome morphology is disrupted in LRRK2-PD models 

Since lysosome dysfunction is often associated with changes in lysosome morphology, I 

examined lysosome form in LRRK2-PD patient fibroblasts by immunocytochemistry using an 

antibody raised against LAMP1. Representative confocal images are shown in figure 5.1A-B. 

When compared to age-matched controls, the lysosomes in LRRK2-PD fibroblasts appeared 

enlarged and clustered together. LRRK2-PD lysosome pathology was associated with 

increased LAMP1 fluorescence intensity (Figure 5.1C). Lysosome morphology was also 

examined in live cells using the acidotropic fluorescent indicator Lysotracker red (Figure 5.1D-

E). Again, lysosome form was disrupted in LRRK2-PD fibroblasts (Figure 5.1F) and associated 

with increased Lysotracker fluorescence intensity. 

To examine lysosome morphology in a more neuronal context, dopaminergic SH-SY5Y cells, 

which stably express wild-type and G2019S mutated LRRK2, were analysed (Figure 5.2). 

Similar to the diseased fibroblasts, lysosomes appeared enlarged and clustered the G2019S 

expressing SH-SH5Y cells when compared to the parental (control) and wild-type LRRK2 

expressing lines (Figure 5.2A-C). These defects were associated with a 70% increase in LAMP1 

fluorescence intensity. 
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Late, but not early, endosome morphology is disrupted in LRRK2-PD patient fibroblasts 

Since LRRK2-PD has been associated with disrupted lysosomal morphology, other 

compartments of the endo-lysosomal system were examined. Endosome morphology in the 

fibroblasts was assessed using antibodies raised to either EEA1 or CD63 which are markers 

for early and late endosomes, respectively. Early-endosome morphology in LRRK2-PD 

fibroblasts was similar to age matched controls, as shown by representative confocal images 

and EEA1 fluorescence intensity (Figure 5.3 A-B and E). In contrast, late-endosomes appeared 

enlarged and proliferated in LRRK2-PD cultures, much like the lysosomes seen in figure 5.1. 

Late endosome defects were associated with a 2-fold increase in CD63 fluorescence intensity 

(Figure 5.3F).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Lysosome morphology is disrupted in LRRK2-PD fibroblasts 

(A-B) Representative confocal fluorescence images of LAMP1 (white) staining in CTRL (A) and 

LRRK2-PD (B) fibroblasts. Zoomed images are displayed in the right panels. Nuclei were stained 

using DAPI (blue). Scale bars, 10 µm.  

(C) Summary data (mean ± S.E.M) quantifying LAMP1 intensity as a percentage of CTRL. Results 

are from 4 independent experiments analysing 94-153 cells in 2 patient and paired control 

fibroblast lines. 

(D-E) Representative confocal fluorescence images of CTRL (D) and LRRK2-PD (E) fibroblasts 

labelled with Lysotracker (White). Zoomed images are displayed in the right panels.  

(F) Summary data (mean ± S.E.M) quantifying Lysotracker intensity as a percentage of CTRL. Results 

are from 3 independent platings (n) analysing 108-109 cells in 2 patient and paired control 

fibroblast lines.  
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Figure 5.2 Lysosome morphology is disrupted in dopaminergic SH-SY5Y cells overexpressing 

mutant LRRK2 

(A-B) Representative confocal fluorescence images of LAMP1 (white) staining in CTRL 

dopaminergic SH-SY5Y cells (A) or SH-SY5Y cells overexpressing wild-type LRRK2 (B) and G2019S 

mutated LRRK2 (C). Zoomed images are displayed in the right panels. Nuclei were stained using 

DAPI (blue). Scale bars, 10 µm.  

(D) Summary data (mean ± S.E.M) quantifying LAMP1 intensity as a percentage of CTRL. Results 

from 3 independent platings (n) analysing 254-340 cells.  
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Disrupted LRRK2-PD lysosome morphology is reversed by silencing TPC2 

Previous research has reported interactions between TPCs and LRRK2 (Gómez-Suaga et al., 

2012). To probe the role of these lysosomal ion channels in LRRK2-PD pathology, siRNAs 

targeting TPCs were used. The impaired lysosome morphology seen in LRRK2 PD (Figures 5.4 

Figure 5.3 Late, but not early, endosome morphology is disrupted in LRRK2-PD patient fibroblasts 

(A-B) Representative confocal fluorescence images of EEA1 (white) staining in CTRL (A) and LRRK2-

PD (B) fibroblasts. Zoomed images are displayed in the right panels. Nuclei were stained using DAPI 

(blue). Scale bars, 10 µm. 

(C) Summary data (mean ± S.E.M) quantifying EEA1 intensity as a percentage of CTRL. Results are 

from 5 experiments of 3 independent platings analysing 155-134 cells in 2 patient and paired 

control fibroblast lines. 

(D-E) Representative confocal fluorescence images of CD63 (white) staining in CTRL (D) and LRRK2-

PD (E) fibroblasts. Zoomed images are displayed in the right panels. Nuclei were stained using DAPI 

(blue). 

(F) Summary data (mean ± S.E.M) quantifying CD63 intensity as a percentage of CTRL. Results are 

from 3 independent experiments (n) analysing 65-66 cells in 2 patient and paired control fibroblast 

line. 
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A-B) was reversed upon TPC2 siRNA treatment (figure 5.4D and E). Notably, this reversal was 

isoform-specific since TPC1 siRNA (Figure 5.4C) did not affect lysosome morphology despite 

a 90% knockdown of TPC1 protein levels in LRRK2-PD fibroblasts (shown in the inset of 5.4E).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lysosome morphology is disrupted in fibroblasts treated with a PD inducing toxin 

Data reported in this thesis demonstrates that mutations in two of the most common PD-

associated genes (GBA1 and LRRK2) disrupt lysosome morphology. However, the cause of PD 

Figure 5.4 Disrupted LRRK2-PD lysosome morphology is reversed by silencing TPC2 

(A-B) Representative confocal fluorescence images of LAMP1 (white) staining in CTRL (A) and 

LRRK2-PD (B-D) fibroblasts treated with CTRL siRNA (A-B), TPC1 siRNA (C) and TPC2 siRNA (D). 

Zoomed images are displayed in the right panels. Nuclei were stained using DAPI (blue). Scale bars, 

10 µm.  

(E) Summary data (mean) quantifying LAMP1 intensity as a percentage of CTRL. Results are from 2 

independent knockdowns (n) analysing 63-76 cells. 

(F) Western blot using antibodies to TPC1 (top) or actin (bottom) and homogenates (17 µg) from 

LRRK2-PD fibroblasts treated with the indicated siRNA.  
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in a significant portion patients is unknown. Environmental toxins, such as paraquat (Liou et 

al., 1997; Tanner et al., 2011), have been linked to the onset of PD. To examine whether 

lysosome pathology extends into environmental models of PD, the morphology of lysosomes 

was assessed in fibroblasts exposed to paraquat. As shown in figure 5.5, lysosomes appeared 

enlarged in paraquat-treated fibroblasts relative to the control cells (figure 5.5A-B). These 

defects were associated with a 2-fold increase in LAMP1 intensity (figure 5.5C).  

 

 

 

 

 
 

 

 

 

 

 

Discussion 

In this chapter I have identified pronounced endo-lysosomal morphology defects, in genetic 

and environmental models of PD. These defects can be corrected by silencing TPC2, which 

establishes these ion channels as potential therapeutic targets in PD.  

Emerging evidence has connected LRRK2 pathology with lysosomal dysfunction. As discussed 

above, LRRK2 has been localised to membranes of the endo-lysosomal system (Biskup et al., 

2006; Alegre-Abarrategui et al., 2009; Higashi et al., 2009; Papkovskaia et al., 2012). In Lewy 

body pathology, LRRK2-associated vesicular structures are swollen (Higashi et al., 2009). 

Additionally, MacLeod et al. (2006) report that mutant (G2019S) LRRK2 expression in 

neuronal cultures cause spheroid inclusions made up of enlarged lysosomes. Therefore, 

endo-lysosomal dysfunction in patient fibroblasts (Figure 5.1) and mutant LRRK2 expressing 

dopaminergic cells (figure 5.2) agrees with established research. However, it is notable that, 

Figure 5.5 Lysosome morphology is disrupted in fibroblasts treated with a PD inducing toxin 

(A-B) Representative confocal fluorescence images of LAMP1 (white) staining in CTRL fibroblasts 

(A) and fibroblasts treated with Paraquat (500 µM) overnight (B). Zoomed images are displayed in 

the right panels. Nuclei were stained using DAPI (blue). Scale bars, 10 µm.  

(C) Summary data (mean ± S.E.M) quantifying LAMP intensity as a percentage of CTRL. Results are 

from 6 treatments (n) from 4 independent platings analysing 110-157 cells. 
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some have reported reduced Lysotracker fluorescence in HEK cells overexpressing LRRK2 

(Gómez-Suaga et al., 2012). The authors proposed that this is a consequence of increased 

luminal pH. This contrasts with the data presented herein. Thus, further investigation into 

lysosomal pH in LRRK2-PD is warranted. 

Changes in lysosomal morphology can impact a number of functions. For instance, lysosome 

proliferation, stimulated by activating the lysosomal transcription factor TFEB, can affect 

protein clearance (Sardiello et al., 2009). Lysosome proliferation is also known to impair 

lysosomal Ca2+ signalling (Dickinson et al., 2010). Furthermore, lysosome positioning can 

influence recovery from nutrient deprivation as well as autophagy (Korolchuk et al., 2011). 

Thus, LRRK2-dependent defects in lysosomal morphology likely affect many lysosomal 

functions. 

LRRK2 is known to regulate intracellular membrane trafficking. LRRK2 can exert effects on 

endocytosis (Gómez-Suaga et al., 2014; Shin et al., 2008), synaptic vesicle trafficking (Piccoli 

et al., 2011) and retromer trafficking from late endosomes to Golgi (MacLeod et al., 2013). 

The association between LRRK2 and Rab trafficking proteins is thought to be essential in 

mediating these events (Shin et al., 2008; Dodson et al., 2012; MacLeod et al., 2013; Gómez-

Suaga et al., 2014). Indeed, I noted a propensity for lysosomes to cluster together in LRRK2-

PD fibroblasts. This suggests lysosomal trafficking is impaired in LRRK2-PD. The effects of 

inhibiting Rab GTPase activity on lysosomal morphology and distribution should be 

examined. The recent discoveries that TPCs interact with both Rab7 (Lin-Moshier et al., 2014) 

and LRRK2 (Gómez-Suaga et al., 2012) are perhaps significant to LRRK2 pathology because 

these proteins might associate in a ternary complex to regulate vesicular trafficking.  

Although late-endosome and lysosomal morphology is disrupted in LRRK2-PD, early 

endosome morphology is spared (Figure 5.3). Perhaps LRRK2 exerts effects on the later 

stages of the endocytic pathway. Indeed, both Gómez-Suaga et al. (2014) and MacLeod et al. 

(2013) report that only late-endosome trafficking is impaired in LRRK2-PD. 

It is also well established that LRRK2 regulates autophagy (Tong et al., 2010, 2012; Plowey et 

al., 2008; Gómez-Suaga et al., 2012; Manzoni et al., 2013b). Perhaps, the lysosome 

dysfunction present in LRRK2-PD impairs autophagic balance. Of importance, antagonising 

NAADP signalling with Ned-19 and expressing TPC2 dominant negative pore mutants have 

been shown to restore autophagy in LRRK2-G2019S expressing cells (Gómez-Suaga et al., 
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2012). This is reminiscent of data presented in this chapter, where TPC2 silencing reverses 

lysosomal morphology defects (Figure 5.4). 

It is intriguing that silencing TPC2, but not TPC1, corrected morphology defects. Perhaps this 

selectivity is because LRRK2 interacts with TPC2 (Gómez-Suaga et al., 2012). LRRK2 might 

over-activate TPC2 and cause lysosomal dysfunction. In support of this statement, Lin-

Moshier et al. (2014) have recently shown that overexpressing TPC2, yet not TPC1, 

recapitulated lysosome dysfunction in Xenopus oocytes. Increased TPC2 activity might 

promote lysosomal fusion, which is known to be Ca2+ dependent process (Pryor et al., 2000). 

Buffering cytosolic Ca2+ and measuring TPC-mediated Ca2+ signalling in LRRK2-PD is necessary 

to test this hypothesis.  

It is necessary to further examine the therapeutic benefits of targeting TPCs in LRRK2-PD. 

Antagonising NAADP action, with Ned-19 (Naylor et al., 2009), might also reverse lysosomal 

defects. Furthermore, since PI(3,5)P2 has recently been identified as an activator of TPCs (Jha 

et al., 2014), the effects of depleting this phosphoinositide should be determined. This could 

be achieved by inhibiting its synthesis with YM-201636 (Jefferies et al., 2008). The 

therapeutic benefits of targeting TPC2 could be assessed in neuronal models. It has been 

well-established that LRRK2 affects the complexity and length of neurites (MacLeod et al., 

2006; Plowey et al., 2008). Accordingly, neurite morphology serves as a sensitive measure of 

LRRK2 pathogenic activity. Neurite complexity has already been used to test the efficacy of 

LRRK2 kinase inhibitors (Lee et al., 2010a; Ramsden et al., 2011) and could now be applied to 

examine the benefits of targeting TPC2.  

To the best of my knowledge, this is the first report of lysosome pathology following exposure 

to paraquat (Figure 5.5). However, the mechanism behind this dysfunction requires further 

examination. Perhaps the reactive oxygen species (ROS) that paraquat generates causes 

lysosome dysfunction. It has already been well-established that ROS target lysosomes 

(reviewed in Kiffin et al. 2006). Indeed paraquat-evoked oxidative stress was recently shown 

to increase the expression of lysosomal membrane proteins (Mak et al., 2010). However, it 

is noteworthy that MPTP, a structurally similar analogue, has actually been shown to reduce 

the number of lysosomes by inducing lysosomal membrane permeabilisation (Dehay et al., 

2010).  

Recent work has established that cells overexpressing the lysosomal ATPase ATP13A2 

(associated with PD) are more vulnerable to paraquat toxicity (Pinto et al., 2012). This 
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suggests more direct role of paraquat on lysosomes. Since paraquat is an amine perhaps it 

accumulates within lysosomes (Kaufmann & Krise, 2007) and causes dysfunction. It has been 

estimated that paraquat has a pƘa between 9-9.5 (Milman, 2003). Consistent with this 

hypothesis, a weak base with pKa value of 9 was shown to accumulate at very high levels in 

the lysosomes (Duvvuri et al., 2005). Further work is required to uncover the mechanism 

behind paraquat-evoked lysosomal defects. 

In summary, data identifies extensive endo-lysosomal morphology defects in genetic and 

environmental forms of PD. These defects likely to impair many cellular processes. The 

striking lysosome pathology present in PD identifies lysosomes as important markers of 

disease. Indeed lysosome morphology has already been used to track disease progression in 

LSDs (te Vruchte et al., 2014). Since this lysosome impairment can be corrected by TPC2, 

efforts should focus on therapeutic viability of targeting TPCs in PD.  
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Chapter 6 

Conclusions and Future Directions 

Ca2+ is a ubiquitous signalling ion that controls a plethora of cellular functions. Many Ca2+ 

signals originate from intracellular Ca2+ stores. These Ca2+ stores are delicately balanced 

within the cell and defects in the Ca2+ network are increasingly implicated in disease. In this 

thesis I set out to examine the connections between Ca2+ stores and determine whether their 

dysfunction is connected to Parkinson disease.  

In chapter 2, I established that the lysosomes and ER are functionally coupled (Figure 6.1). It 

had already been known that NAADP can trigger Ca2+ release from ER channels (Cancela et 

al., 1999). However, the uncertainty surrounding NAADP action (Gerasimenko et al., 2003; 

Dammermann et al., 2009) had led some to doubt these findings. So I examined the 

functional coupling between these stores using a more direct approach. Much like NAADP, I 

found that the direct mobilisation of lysosomal Ca2+, with GPN, was sufficient to induce 

complex, IP3R-mediated Ca2+ signalling. Physical connections (MCSs) between lysosomes and 

the ER (Kilpatrick et al., 2013) could facilitate this Ca2+ coupling. Indeed, computational 

models confirmed that these close contacts regulate Ca2+ signalling (Penny et al., 2014).  

In chapter 3, I further examined the mechanism behind lysosomal-ER Ca2+ coupling. Previous 

research established that endosome-ER MCSs are regulated by Rab7 and VAP proteins (Rocha 

et al., 2009). So I questioned whether similar components also mediate lysosome-ER Ca2+ 

signalling. Both the molecular and chemical inhibition of Rab7, but not VAP, blocked the Ca2+ 

coupling between these stores. These findings suggest that Rab7 regulates lysosome-ER 

connections. However, our understanding of these junctions is still limited. Perhaps 

examining MCSs between other organelles and working on model organisms would advance 

this research. Additionally, using a novel synthetic activator of TRPML (Shen et al., 2012), I 

established that like TPCs, TRPML channels are capable of “chatter” with the ER. Further 

characterisation of this Ca2+ coupling is of pathological relevance since LSDs have been linked 

to dysfunctional TRPML-mediated Ca2+ signalling.  

In the subsequent chapters I identified that Ca2+ stores are disrupted in PD (Figure 6.1). 

Specifically in GBA1-PD, both ER and mitochondrial Ca2+ levels were increased, whereas 

lysosomal Ca2+ was reduced. These defects were shown to be age-dependent and associated 

disrupted physiological Ca2+ signalling. It was very interesting that ER Ca2+ was not 
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compromised asymptomatic GBA1 carriers. Thus, Ca2+ homeostasis might represent a useful 

diagnostic marker for PD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Connecting Ca2+ stores and Parkinson Disease 

In healthy fibroblasts, the direct mobilisation of lysosomal Ca2+, with GPN, can stimulate complex, 

IP3R-dependent Ca2+ signalling. Both NAADP and ML-SA1, which activate TPCs and TRPMLs, can 

also evoke complex Ca2+ signals. ML-SA1-evoked Ca2+ responses required ER-Ca2+ channels. 

Membrane contact sites and the trafficking GTPase Rab7 likely facilitate lysosome-ER Ca2+ 

coupling.  

In Parkinson disease (PD) Ca2+ stores are disrupted. In GBA1-PD patient fibroblasts the Ca2+ content 

the mitochondria and ER was increased. Enhanced ER Ca2+ content was associated with increased 

responses to the RyR activator, cADPR.  Mis-folded enzyme (GCase), but not an accumulations of 

substrate (glucocerebroside), was shown to disrupt ER Ca2+ homeostasis. Conversely, lysosomal 

Ca2+ content was reduced in GBA1-PD and associated with disrupted lysosome morphology. 

Lysosome pathology was also identified in LRRK2-PD patient fibroblasts and paraquat exposed 

fibroblasts. In LRRK2-PD, lysosomal defects might be associated with aberrant TPC2 activity since 

silencing TPC2 corrected the phenotype.  
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The functional coupling between Ca2+ stores might explain the redistribution of Ca2+. At the 

ER-lysosomal level, the reciprocal changes in Ca2+ content could be attributed to 

compensation. For instance, an accumulation of mis-folded enzyme on the ER could increase 

ER Ca2+ and to balance the Ca2+ network, lysosomal content reduces. On the other hand, 

lysosomal dysfunction might impair the capacity of lysosomes to temper Ca2+ and to 

compensate the ER has to sequester the excess Ca2+. In any scenario, the increased ER Ca2+ 

could be transmitted to the mitochondria, via MAMs.  

Since many cellular functions rely on a delicately balanced intracellular Ca2+ network, altered 

Ca2+ signalling might contribute to PD pathology, particularly in SNc neurons. It is already 

known that the unusual pace-making activity of SNc neurons, which relies on Ca2+ influx 

through VGCCs (Chan et al., 2007), imposes a unique stress on these cells (Guzman et al., 

2010). Thus, the disrupted intracellular Ca2+ signalling in ageing and GBA1-disease, could 

further impair SNc neurons and increase the risk of neurodegeneration.  

Ca2+ signalling proteins and antagonists might therefore represent viable therapeutic targets 

in PD. Already, dihydropyridines have been shown neuroprotective in animal models of PD 

(Ilijic et al., 2011) and these antagonists, which are FDA approved for the treatment of 

hypertension, reduce the risk of PD development (Becker et al., 2008; Ritz et al., 2010; 

Pasternak et al., 2012). Other strategies might involve reducing ER Ca2+ content or increasing 

Ca2+ uptake into lysosomes. However, since we do not know the mechanism of lysosomal 

Ca2+ uptake this hypothesis is difficult to test. Uncovering the molecular identity of this 

exchanger is pathologically relevant. Instead, we could reduce ER Ca2+ content by targeting 

SERCA with thapsigargin and curcumin (an antioxidant that also functions as mild SERCA 

inhibitor). Indeed, these compounds have been effectively used in NPC (Lloyd-Evans et al., 

2008).  

In addition to impaired Ca2+ signalling I also identified that both genetic (GBA1 and LRRK2) 

and environmental (paraquat) forms of PD were associated with impaired lysosomal 

morphology. Perhaps these defects disrupt lysosome-dependent processes as well as the 

physical and functional coupling with the ER (Kilpatrick et al., 2013). It is important to 

examine whether similar defects feature in idiopathic PD. For LRRK2-PD, at least, lysosome 

pathology could be corrected by silencing TPC2. This identifies TPC2 as a potential 

therapeutic target in PD. Future work should examine whether targeting TPC2 can reverse 

GBA1- and paraquat-mediated defects.  
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Fibroblasts have been used extensively in this thesis to examine Ca2+ signalling and PD. The 

large size (120 μm) and flat nature of these cells facilitates their imaging. As human cells they 

are of significant physiological relevance and are frequently used to model PD (Papkovskaia 

et al., 2012; McNeill et al., 2014). However, using skin cells to study neurodegenerative 

disease has some drawbacks. Namely, fibroblasts do not display the same gene expression 

profile as neurons. For instance, α-syn is only expressed in low levels in fibroblasts (Auburger 

et al., 2012). Furthermore, the control of receptors and ion channels in fibroblasts is not as 

complex as neurons. Therefore, the work presented here might not be representative of 

pathology in neurons. In an attempt to bridge this gap, I also used dompaminergic cell lines. 

Indeed, the pathology identified in fibroblasts could be recapitulated in these cell lines. 

However, a better, although technically demanding, approach would be reprogramming 

fibroblasts into adult IPS (induced pluripotent stem) cells and then differentiated them into 

dopaminergic neurons (Pfisterer et al., 2011; Caiazzo et al., 2011). Indeed, GD (Panicker et 

al., 2012), GBA1-PD (Schöndorf et al., 2014) and LRRK2-PD (Nguyen et al., 2011) patient 

fibroblasts have recently been converted to neurons. It is important that future research 

examines Ca2+ signalling and lysosomal morphology in these cells.  

In summary, I identified that lysosomal and ER Ca2+ stores are functionally connected and 

that their dysfunction is connected to PD. While this research has advanced our 

understanding of lysosomal and pathological Ca2+ signalling, many questions remain. Future 

research should focus on characterising lysosome-ER junctions and identifying therapies for 

PD and associated LSDs. It is also important to establish whether similar dysfunction features 

in idiopathic PD. Finally, this research should be replicated in human IPSc-derived lines to 

validate findings in a more neuronal context. 
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