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Abstract

This thesis studies several topics in the area of weak gravitational lensing and addresses

some key statistical problems within this subject. A large part of the thesis concerns

the measurement of galaxy shapes for weak gravitational lensing and the systematics

they introduce. I focused on studying two key effects, typical for model-fitting shape

measurement methods. First is noise bias, which arises due to pixel noise on astronomical

images. I measure noise bias as a function of key galaxy and image parameters and found

that the results are in good agreement with theoretical predictions. I found that if the

statistical power of a survey is to be fully utilised, noise bias effects have to be calibrated.

The second effect is called model bias, which stems from using simple models to fit galaxy

images, which can have more complicated morphologies. I also investigate the interaction

of these two systematics. I found model bias to be small for ground-based surveys, rarely

exceeding 1%. Its interaction with noise bias was found to be negligible. These results

suggest that for ongoing weak lensing surveys, noise bias is the dominant effect.

Chapter 5 describes my search for a weak lensing signal from dark matter filaments in

CFHTLenS fields. It presents a novel, model-fitting approach to modelling the mass dis-

tribution and combining measurements from multiple filaments. We find that CFHTLenS

data does provide very good evidence for dark matter filaments, with detection significance

of 3.9σ for the filament density parameter relative to mean halo density of connected halos

at their R200. For 19 pairs of the most massive halos, the integrated density contrast of

filaments was found on a level of 1 · 1013M�/h.

The appendices present my contribution to three other papers. They describe practical

applications of the calibration of noise bias in the GREAT08 challenge and the Dark

Energy Survey. I also present the results of the validation of reconvolution and image

rendering using FFTs in the GalSim toolkit.
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Chapter 1

Introduction

Observational evidence from multiple cosmological probes point towards a theory in which

our Universe started with a hot big bang, and has been expanding ever since. Moreover,

in recent times, the expansion rate seems to be accelerating. This theory, The Standard

Model of Cosmology is called ΛCDM (Λ - Cold Dark Matter). It is built upon several

pillars: (i) Einstein’s theory of General Relativity, (ii) The Cosmological Principle, (iii)

dark energy, manifested by the expansion of the Universe, and (iv) the existence of cold

dark matter, and (v) a period of rapid expansion after the Big Bang, called Inflation. In

this chapter I will briefly present observational evidence for the cosmological paradigms

and then describe the basics of the theory behind the standard model.

1.1 Observational evidence

This section presents the most important observational data sets which all seem to point

towards the standard model of cosmology. These include recession velocities of type Ia

supernovae, abundance of light elements, cosmic microwave background, distribution of

large scale structure and observational effects attributed to dark matter: galaxy rotation

curves and gravitational lensing, among others. This list is by no means complete, as

there are many more types of observations which can be used to study cosmology. In

this chapter I outline only the most important and relevant to the work presented in this

thesis.
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Figure 1.1. Cosmic microwave background temperature anisotropies, as seen
by the Planck satellite (Planck Collaboration 2014a).

Inflation

Observations of the Cosmic Microwave Background (CMB) (Penzias & Wilson 1965;

Mather et al. 1990; Spergel et al. 2003; Planck Collaboration 2014a) are a fundamental

data set for cosmology. Its striking property is the fact that its temperature is constant

across the sky to 1 part in 105. The uniformity of this temperature gives rise to the horizon

problem: why is it that parts of the sky which could not have been causally connected

before show such uniform distribution? The theory of Inflation provides a compelling

answer to this question. It states that shortly after the beginning of the Universe, space

underwent a phase of rapid accelerated expansion, which put previously bound plasma

out of causal contact. Tiny fluctuations in the CMB temperature (Fig. 1.1) have a typical

spatial scale, around 1◦, and serve as standard rulers. These rulers measure the size of

causally connected regions at the time when CMB was imprinted on the sky and have

information used to constrain cosmological models.

Big Bang Nucleosynthesis

A compelling evidence that creates a foundation of Big Bang cosmology is the abundance

of light elements (Olive et al. 1999; Kawasaki et al. 2005) . Until around one second after

the Big Bang, matter formed of protons and neutrons was very dense. As the Universe

expanded and cooled, protons and neutrons combined together and created helium isotopes

H-3 and H-4 and deuterium, as well as lithium. This process is called the Big Bang

nucleosynthesis. Theoretical calculations for these nuclear processes predict that about
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Figure 1.2. Galaxy distribution in 2dF survey (Colless 1998). Structures in this
distribution are clearly visible. Statistics of these structures can be used to test
cosmological models.

25% of the Universe consists of H-4. Recent stellar observations agree with theoretical

predictions to great accuracy.

Structure formation

The distribution of matter in the Universe, in the visible and invisible forms, also sup-

ports the concordance model (Colless 1998; Eisenstein et al. 2005; Tegmark et al. 2004)

. About 10,000 years after the Big Bang, the tiny fluctuations in matter density started

to collapse under the force of gravity. The theory of this process is also well understood

and can predict the statistical properties of the matter distribution. Figure 1.2 shows the

distribution of galaxies as measured by the Two Degree Field survey (2dF). Large scale,

web-like structures in galaxy distribution are very prominent.

Dark matter

One of the fundamental concepts in cosmology is the existence of dark matter. It was

first postulated after a discovery of increased rotation velocities of galaxies at far radii

from the galactic cores (e.g. Rubin et al. 1980). The baryonic content of galaxies was not

enough to explain the shape of the rotation curves, and adding an invisible mass provided

a good explanation. Perhaps the most convincing evidence for this invisible form of mass,

which also characterises its properties, is the distribution of mass and X-ray emitting gas

in the Bullet Cluster (e.g. Markevitch 2005; Clowe et al. 2006), as shown in Fig. 1.3. This

system contains two clusters undergoing a merger. They have already collided once; after
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Figure 1.3. The Bullet Cluster. The blue colour shows dark matter density
distribution, measured using gravitational lensing. The red color is the X-ray
emitting gas. Composite Credit: X-ray: NASA/CXC/CfA/ M.Markevitch et al.;
Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona (Clowe et al. 2006).
Optical: NASA/STScI; Magellan/U.Arizona (Markevitch 2005).

the collision, the gas has decelerated much faster than the dark matter due to pressure

of collision, and is visible between dark matter peaks. Dark matter clumps, which do

not interact by pressure, went straight through each other, and are decelerated only by

gravitational force. This important property of dark matter plays a key role in modern

cosmological models.

Dark energy

Evidence for an accelerating Universe is provided by observations of distant type Ia super-

novae (Perlmutter et al. 1998; Riess et al. 1998), amongst others. Supernovae are treated

as standard (or standardizable) candles, which emit light with the same intensity inde-

pendently of their distance. This can be used to calculate the physical distance to an

exploding star. Observation of its spectrum can provide information about its recessional

velocity. This dependence is called Hubble’s Law (Hubble 1929). Recent observation of

supernovae supply evidence that the most distant ones move away from us with increasing

velocity (Fig. 1.4). This recession is attributed to the expansion of space between us and

the star. A cause for this expansion is called dark energy and its nature is one of the

biggest unsolved questions in cosmology.
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Figure 1.4. Hubble diagram for 42 high-redshift Type Ia supernovae from the
Supernova Cosmology Project, and 18 low-redshift Type Ia supernovae from the
Calan/Tololo Supernova Survey (Perlmutter et al. 1998). High redshift super-
novae are receding from us with increasing velocity. Data is fit using several
cosmological models, and prefers a dark energy dominated universe.

Evidence for dark energy also comes from CMB and large scale structure observations.

Measurements of CMB anisotropies indicate that space is close to being flat. Observations

of the properties of galaxy clusters suggest that, if space is indeed flat, the matter (both

dark and baryonic) must consist only of ≈ 30% of the total mass-energy in the Universe.

Thus, to reconcile the flatness of space and low matter density today, dark energy has to

be incorporated into the cosmological model.

1.2 Theory of General Relativity

Einstein’s attempts to reconcile Newton’s theory of gravity and his own theory of Special

Relativity led to formulation of the Theory of General Relativity. The proposal was that

gravity is not a force in a conventional sense, but rather a manifestation of the curvature

of spacetime, induced by the presence of matter. This theory addressed two main discrep-

ancies between Newton’s theory and Special Relativity. Firstly, in Newton’s theory, the

gravitational potential Φ responds instantaneously to a disturbance in matter density ρ,

which violates Special Relativity’s rule that no signal should travel faster than the speed

of light. Secondly, it naturally incorporated the Equivalence Principle, a very precisely

confirmed observational rule which states the equality of inertial and gravitational mass.

Einstein’s field equations describe how the curvature of spacetime relates to the distri-
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bution of matter at some event. In this theory, matter and energy distribution is described

as the energy - momentum tensor, which, for a perfect fluid, incorporates the total energy

density ρc2 (including all potential energy contributions from forces on particles and their

kinetic energy from thermal motion), and isotropic pressure p in three-dimensional space.

This tensor, for a inertial reference frame, is shown in Eqn. 1.1.

[Tµν ] =


−ρc2 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 (1.1)

For a general fluid, off-diagonal terms are non-zero, and incorporate viscous stresses, heat

conduction and momentum of energy conducted by it.

Geometry of the spacetime affected by gravitating matter is described in terms of

the metric tensor gµν , Ricci Tensor Rµν , and curvature scalar R, so that Einstein’s field

equation is given by 1.2

Rµν −
1

2
gµνR =

8πG

c4
Tµν (1.2)

where G is the gravitational constant. This equation can be then used to find equation

of motion of a particle. Note that in the absence of matter (and radiative energy and

momentum), Tµν , the curvature vanishes, Rµν . Another property is that, in the weak

field limit, these equations in most cases simplify to Newton’s gravity. Gravitational

Lensing is an interesting case where a discrepancy exists between Einstein’s and Newthon’s

descriptions; the bend angle of light is two times larger in relativity.

1.3 Cosmological constant and dark energy

Einstein’s field equations are not unique. A cosmological constant term can be added to

Eqn. 1.2 and the field equation will still be consistent with energy conservation∇µTµν = 0,

such that (Eqn. 1.3)

Rµν −
1

2
gµνR+ Λgµν =

8πG

c4
Tµν . (1.3)
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The cosmological constant term acts like a gravitational repulsion, whose strength in-

creases linearly with distance (see Carroll 2000; Martin 2012 for recent reviews). It is

postulated as a possible explanation for the expansion of the Universe. This is a unique

‘substance’ with properties never encountered before. First, its equation of state includes

negative pressure p = −ρc2. Secondly, it depends only on the metric tensor gµν , which

indicates that it is a property of vacuum itself. Thirdly, it fixes the energy density of the

vacuum, so that ρvac = Λc2

8πG .

Calculation of vacuum energy, dubbed dark energy for its mysterious nature, is one of

the biggest unsolved problems in physics. It disagrees drastically with calculations from

quantum mechanics; the sum of all zero-point energies of all fields known in nature differs

from limits on Λ set from cosmological observations by 120 orders magnitude! Different

phenomenological models of dark energy are postulated: a fifth force, where dark energy

is a scalar field, which can evolve with time (see Copeland et al. 2006 for review), modified

gravity theories state that accelerated expansion can be a result of gravity laws differing

from General Relativity on large scales (see Clifton et al. 2012 for review).

1.4 The Friedman - Lemâıtre - Robertson - Walker geome-

try

The Standard Model of Cosmology is a description of the universe based on General

Relativity, which includes several key assumptions based on observational evidence. The

First is the cosmological principle. It states that the Universe is homogeneous on large

scales (the matter distribution is uniform) and isotropic (there is no preferred point in

space). In other words, at any time, the Universe looks statistically the same from all

positions in space, and all directions are equivalent.

Assuming idealised fundamental observers, which have no peculiar velocity with respect

to surrounding matter on large scale, a comoving coordinate system can be created. In

this system, the proper time along each observers worldline is equal to its time coordinate

(x0 = τ) and orthogonal to spatial coordinates. An expanding universe can be described

in terms of a scale factor a(t) depending only on cosmic time (today a(t0) = 1). This scale

factor describes a change in physical distance between fundamental observers now and at

time t.

Another consequence of assuming the cosmological principle is a restriction on the
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curvature of spacelike coordinates. Homogeneity and isotropy force this space to be a

maximally symmetric 3-space. The three-dimensional curvature tensor Rijkl for such space

will be dependent only on one number - curvature K. If K = 0 then the space is flat

(Euclidean), if K > 0, the space is closed (a 3-sphere), and K < 0 indicated the space is

open (a hyperboloid). Recent cosmological observations suggest that our Universe is flat

and this is an assumption often made in cosmology and astrophysics (see Lahav & Liddle

2014 for review on cosmological parameters).

These assumptions lead to a formulation of the Friedman-Robertson-Walker metric

ds2 = c2dt2 − a2(t)
[
r2 + f(r)2(dθ2 + sin2 θdφ2)

]
(1.4)

where r, θ, φ are spherical polar coordinates, and r is a comoving distance, which depends

on the curvature of the spacetime in the following way

f(r) =


1√
K

sin
(
r
√
K
)

K > 0

r K = 0

1√
−K sinh

(
r
√
−K

)
K < 0

(1.5)

Using Einstein’s field equations 1.2 with the FRLW metric results in two unique cosmo-

logical field equations

(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
(1.6)

ä

a
= −4πG

c2
(ρ+ 3p) (1.7)

These are called Friedman-Lemâıtre-Robertson-Walker equations and describe the time

evolution of the scale factor.

1.5 Cosmological redshift

In the Standard Model of Cosmology, with gravity described by General Relativity and

an expanding universe with FLRW metric, there are only a few cosmological parameters

which will describe the entire history of the Universe. Historically, the first parameter to

be measured was the Hubble parameter, which describes the rate of expansion.

An expanding space will cause photon wavelengths to be stretched (so that frequency
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νemit → νreceive), in a way related to the scale factor. Assuming the scale factor changes

slowly with cosmic time, the FRW metric can be used to derive:

1 + z =
νemit

νreceive
=
areceive

aemit
(1.8)

Using the FRW metric, the recessional velocity v of a nearby galaxy can be directly related

to its distance d via

v = cz = Hd (1.9)

where the Hubble parameter defines the expansion rate H = ȧ
a , and its measurements at

the present day indicate that it is close to H0 = 70 km s−1 Mpc−1 (Planck Collaboration

2014a). The formulation of this Hubble’s law in 1929 following the observation of Cepheids

was a starting point of Big Bang Cosmology.

1.6 Cosmological fluids

Other cosmological parameters describe the content of the Universe, in terms of density of

its components, called cosmological fluids. If we define the relationship between pressure

and energy density for a cosmological fluid as an equation of state

p = wρc2 (1.10)

we can use the Friedman equations to establish a relationship

ρ ∝ a−3(1+w) (1.11)

which gives the evolution of density ρ of a cosmological fluid in terms of the scale factor

a. But what are these cosmological fluids and how do they behave? I will briefly describe

three groups of density components: matter ρm, radiation ρr and vacuum energy ρΛ.

1.6.1 Matter

Matter is a term commonly referring to both baryonic and dark matter, both of these

species are non - relativistic (in the Cold Dark Matter model). Current measurements

indicate that Dark Matter consists of 25% of the total matter-energy of the Universe, and
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Baryonic matter only 5%.

Baryonic matter is all of the ‘ordinary’ particles. Cosmologists refer to Baryons more

widely than particle physicists, including leptons. The important property of baryons is

that they are visible; they interact with light and can be observed directly. Most of the

baryons in the Universe were created during the Big Bang Nucleosynthesis (BBN), which

happened in the first 100 seconds after the Big Bang. The Universe is dominated by light

elements created at the BBN: Hydrogen (74%), Helium (26%), and traces of metals (also

produced later in stars) (Olive et al. 1999; Coc et al. 2013).

Dark matter is believed to be a particle beyond the standard model of particle physics,

although it has not yet been detected directly. It has a property that it does not interact

strongly with light, except via gravity, and it can only be observed indirectly, through, for

example, measurements of gravitational lensing (see Sec. 2) or measurement of galactic

rotation curves.

Dark matter is believed to be in a form of dust: its thermal energy is much smaller

than its rest energy, and so it can be considered to have no pressure. Non-relativistic

baryonic matter can also be approximated as pressureless. This requirement sets wm = 0

and from 1.11 we calculate that its density evolves as ρm ∝ a−3, and scales with redshift

as (1 + z)3.

1.6.2 Radiation

Radiation consists of a group of relativistic particles: neutrinos and photons, which have

very small or zero rest mass. There is evidence of neutrinos having mass; however it is

very small, close to 0.3 eV (Goobar et al. 2006; Thomas et al. 2010; Battye & Moss 2014).

Neutrinos, as well as photons, have the equation of state wr = 1/3. Their density scales

with redshift as (1+z)4, the additional factor of (1+z) comes from the redshifting of each

photon. Most photons and neutrinos constituting the radiation energy of the Universe

come from the cosmic microwave background (CMB), with a present day temperature of

2.726K. Radiation is believed to constitute around 10−4 of the total density, which is a tiny

fraction compared to earlier times (Planck Collaboration 2014b). This massive change is

due to the fast decaying (1 + z)4 scaling factor.
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w ρ(a) ∝ Ωj ≈
radiation 1/3 a−4 10−4

matter 0 a−3 0.3
curvature -1/3 a−2 0
cosmological constant -1 a0 0.7

Table 1.1. Evolution of density of components with scale factor. Last column
contains the fraction of critical density for each component today. Values Ωj are
approximate, but in agreement with recent cosmological observations.

1.6.3 Vacuum

As already described in Sec. 1.3, the vacuum is a perfect fluid with p = −ρc2, which

indicates negative pressure. The equation of state of the vacuum is therefore w = −1.

Recent cosmological observations estimate the contribution to total energy density as high

as 70% today. The reason for this domination is that ρΛ does not change with time, and

other forms of energy decrease their densities as the Universe expands. In alternative

phenomenological dark energy models, w is allowed to change as a function of scale factor.

The simplest modification is to use a linear expansion w(a) = w0 + (1 − a)wa. There is

a significant effort nowadays to measure the dark energy equation of state parameters w0

and wa, including with weak gravitational lensing tomography (see section 2.4).

Having established the types and properties of cosmological fluids, we can now trace the

composition of the density back in cosmological time. It is a common practice to work

with dimensionless density parameters defined as a fraction of the critical density

Ωj(t) = ρj(t)/ρcr(t) (1.12)

where ρcr = 3H2(t)
8πG is the critical density, which can be derived from first Friedman Equa-

tion 1.6, and j stands for a component fluid. Fractional contribution of each component

to the total critical density today Ω is noted as Ωm, Ωr, ΩΛ, excluding the additional

contribution from the curvature Ωk. Table 1.1 shows the evolution of cosmological fluids

and gives the observed values for density parameters today.

Using the measured values for these cosmological parameters, we can plot the density

of each of the components as a function of scale factor, starting from the Big Bang. Figure

1.5 presents the history of the composition of the Universe. We notice that, shortly after

the Big Bang, the Universe was radiation dominated, then it transitioned to being
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Figure 1.5. The evolution of composition of the total density of the Universe
as a function of scale factor. Credit: Mark Whittle, University of Virginia.

matter dominated, and finally, only recently to being dark energy dominated.

Having outlined the big picture of the history of the Universe, now is a good time to

take a look at the most significant cosmological events happening during these periods.

Shortly after the Big Bang the Universe was in a form of hot, dense plasma. Its distribu-

tion was homogeneous, disrupted only by tiny quantum fluctuations. Photons were not

able to travel freely, as they were constantly scattering electrons. No particles could form,

as the bonds were immediately destroyed by photons. As the Universe expanded, the

energy of photons decreased. When the scale factor was around ten orders of magnitude

smaller than today, the first nuclei started to form. This Big Bang Nucleosynthesis cre-

ated hydrogen, helium and lithium (and their isotopes). The observed abundance of these

elements today matches the theoretical predictions remarkably well, and this fact is one of

the main observational pillars of modern cosmology. In the radiation domination era, no

structures in matter could be formed, as the gravitational collapse of inhomogeneities was

counteracted by pressure from radiation. A notable time in this timeline is the matter-

radiation equality, when Ωm = Ωr, which happened around redshift zEQ ∼ 3100. After

this transition, when the background temperature was around 3000◦ K (redshift of 1000)

the density fell enough so that electrons started to bind with protons to create first atoms.
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This time is called the recombination. This was followed by photon decoupling, and pho-

tons to be able to stream freely. These photons reach us today at temperature of 3◦ K

in a form of background radiation, called the cosmic microwave background (CMB). The

CMB has a black-body spectrum and its temperature is uniform to one part in 105. Tiny

anisotropies in the CMB are a result of oscillations started by quantum fluctuations at

the time of Inflation. Anisotropies in this background are another very important observ-

able, matching the theoretical predictions very well. In the matter-dominated era, when

the radiation pressure decreased, the inhomogeneities started to grow under gravitational

collapse. Dark matter began to collapse into halos and baryons started to create stars

and galaxies. Photons travelling through these overdense regions started to be subject to

gravitational lensing.

1.7 Early Universe

Until this point we assumed that the Universe was completely homogeneous and isotropic;

it is clearly a great simplification as the Universe we observe does in fact have inhomo-

geneities. All structures: clusters, galaxies, planets, even us, are a consequence of the

perturbations in the initial distribution of mass-energy. These perturbations come from

quantum fluctuations at the time of the Big Bang, and can be described simply as

δ =
δ(x)− ρ̄

ρ̄
(1.13)

where ρ̄ is the mean density in the Universe. No matter how small, these perturbations

will start to grow due to gravity. An overdensity will only affect matter in a radius which

is causally connected to it. This radius is called the horizon, and corresponds to comoving

scales greater than (aH)−1. Hubble time H−1 ∝ t corresponds to the time since the

beginning of expansion, and the factor a converts to comoving coordinates. However,

observational measurements of the CMB show that its temperature is uniform to one

part in 105. This is unexpected, since separate parts of the sky could not have been in

causal contact before, according to our picture until now. This is in fact called the horizon

problem. A solution to this problem, which also gives a set of initial conditions for the

density perturbations, is provided by a group of theories called inflation. Inflation is a

period of accelerated expansion in the Early Universe, which increases the scale factor

rapidly by more than 27 orders of magnitude. This process rapidly puts a previously
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connected region out of causal contact, which will result in the homogeneous temperature

of CMB we observe today. It is believed to be driven by a scalar field called inflaton,

which undergoes a phase transition at the end of the inflation era and decays into other

particles. Most theories of inflation predict the spectrum of initial density perturbations,

called the primordial power spectrum, to be almost constant and in a form of power law

Ps(k) ∝ kns−1, where ns is the spectral index. Most recent measurements of ns are close to

1 (Planck Collaboration 2014b). These perturbations provide initial conditions for their

further evolution. The evolution of each Fourier mode δ(k, η) can be traced as a function

of cosmic time, and we can predict its value today.

1.8 Structure formation

Structures in the Universe can be described in terms of the isotropic power spectrum

P (k) = 〈|δk|2〉. Using the standard model and inflation theory, the matter power spectrum

today can be calculated, and compared to observations. To calculate it, its evolution has to

be traced from the primordial power spectrum, through radiation- and matter-dominated

eras, to the present day. This evolution process is described by two functions: transfer

function and growth function at late times. Schematically, it is written as

Φ(k, z) = Φ(k)p × T (k)×G(z) (1.14)

where subscript p corresponds to primordial time, T is the transfer function and G is the

function describing scale-independent, linear growth. Using linear perturbation theory

and following (Liddle & Lyth 2000), this growth is described as

δ̈ + 2
ȧ

a
δ̇ = 4πGρδ. (1.15)

Amplitude of the transfer function T (k) is controlled by a normalisation parameter σ8.

It is defined as the root mean square of matter density, which is smoothed with a top-

hat filter sphere with a radius of 8 Mpc/h. Normalisation of the power spectrum is an

important cosmological parameter due to being degenerate with the matter density Ωm.

As the Universe expands, scales of increasing size will begin to re-enter the horizon.

The transfer function for a mode k will depend on the time this mode enters the horizon.

Let us highlight the three most important stages in this evolution, which will create the
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characteristic shape of matter power spectrum today.

First let us consider modes outside the horizon. During the radiation domination era,

these modes will have experienced a fixed growth at rate ∝ a2. During matter domination,

this rate would have been ∝ a. If a scale enters the horizon during the radiation-dominated

era, its growth is completely suppressed by the pressure from radiation. If this entry

happens after matter-radiation equality, growth continues as ∝ a. Finally, non-linear

growth will be affecting small scales to a degree which cannot be ignored, starting from

scales kNL ' 0.2 h Mpc−1 for most models.

Perturbation terms will also enter the geometry part of Einstein’s equation 1.3. On

the geometry side, the metric is decomposed in to scalar and tensor parts. The scalar

part couples to the density of matter and radiation and is responsible for most of the

inhomogeneities and anisotropies. Tensor perturbations, called gravitational waves, do

not couple to density and are not responsible for evolution of large scale structure. Here,

I will consider only the scalar perturbations. In the Conformal Newtonian Gauge, the

scalar metric in the perturbed Universe is often written as

ds2 = a2(η)[(1 + 2Ψ)dη2 + δij(1− 2Φ)dxidxj ] (1.16)

where Ψ is the Newtonian potential (often called time-like) and Φ is the perturbation to

spatial curvature (often called a space-like potential). In General Relativity, these two

potentials are equal and related to the overdensity via the Poisson equation

k2Φ = 4πGρma
2δ. (1.17)

The prediction for the matter power spectrum today supported by observations is shown

on Fig. 1.6. The characteristic peak of this spectrum corresponds to a mode which entered

the horizon at the time of matter-radiation equality.

1.8.1 Sheets, filaments and halos

Formation of structure is more difficult to describe in the non-linear regime. Large N-body

simulations are often used to calculate statistics of matter distribution on small scales.

These simulations start from some initial conditions and then trace the displacement of

all dark matter particles through cosmic time. Simulations reveal that the structure of
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Figure 1.6. Matter power spectrum measurements from various cosmological
probes. Source: Tegmark et al. (2006). The non-linear contribution, not shown in
this figure, starts around k ' 0.2 and induces characteristic small ’wiggles’ onto
the spectrum shape. For more recent measurements from Planck and CFHTLenS,
see for example (MacCrann et al. 2014).

matter resembles a web-like network, where peaks, called halos, are connected to each other

by extended structures, called filaments. Fig. 1.7 shows a slice through the Millenium

simulation (Springel et al. 2005), with a massive halo in the centre and several filaments

connected to its neighbours.

There exist several useful approximations which allow us to understand the dynamics

of structure formation without resorting to N-body simulations. The Zel’dovich approxi-

mation (Zel’dovich 1970) is an approach in which the initial displacement of dark matter

particles is calculated, and its movement is assumed to continue in this initial direction.

Proper coordinates q of the given particle are modified by a displacement field f .

x(t) = q(t) + b(t)f(q) (1.18)

where b scales the displacement function. The deformation tensor can be calculated as

∂fi/∂qj . Collapse of the structure will take place first along the direction corresponding

to the largest negative eigenvalue of this tensor. For a triaxial ellipsoidal distribution of
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Figure 1.7. Cosmic web, consisting of dark matter halos, sheets and filaments.
Image from Millenium simulation (Springel et al. 2005).

matter, the largest negative eigenvalue is aligned with the shortest axis of the ellipsoid.

Such a distribution will collapse along this axis into a flattened structure called a pancake.

Collapsing along the second largest eigenvalue will make this distribution take a form of an

extended filament, with an overdensity forming in its centre. Finally, the entire structure

will collapse into a concentrated halo. This simplified view of the formation of structure

of the cosmic web seems to match well with simulations.

1.8.2 NFW halo profile

The spatial distribution of dark matter in halos is often modelled with a Navarro-Frenk-

White profile (NFW) (Navarro et al. 1997). Radially averaged halos were found to have

the same profile, independent of halo mass, initial density fluctuation spectrum, and the

values of cosmological parameters. The radial profile of matter density follows

ρ(r) =
ρ0

r
Rs

(
1 + r

Rs

)2 (1.19)

where Rs is the scale radius and ρ0 is the density, and these parameters vary among halos.

The total mass of this distribution is divergent: it is customary to truncate it at a specific

radius, called the virial radius. The virial radius is often taken to be the radius at which

the average density encircled by it is 200 times the critical density of the Universe, and
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Figure 1.8. Properties of intercluster filaments, measured by Colberg et al.
(2005). Left panel shows the fractional abundance of filaments as a function of
their length. Middle panel presents the average radial density distribution for
straight filaments. Distribution of scale radius parameters is shown in the right
panel.

called R200. Virial and scale radii are related via a concentration parameter c, so that

Rvir = cRs. The relation between the total mass of the halo (and hence R200) and its

concentration is studied using N-body simulations. For example, Duffy et al. (2011) uses

large N-body simulations to determine this relation for WMAP cosmology. The mass-

concentration relation is well described by a power law for halos with masses between

M200 = 1011–1015M�/h. In Chapter 5, a relation was used with the form of

c =
5.72

(1 + z)0.71
(M200/1014)−0.081 (1.20)

where z is the redshift of the cluster and M200 is the total mass within the virial radius.

1.8.3 Properties of filaments

N-body simulations have been used to study properties of filaments. Colberg et al. (2005)

identified 228 filaments connecting clusters with masses M200 > 1014. They found that

halos separated by less than 5 Mpc/h are almost always connected by a dark matter

filament, and their abundance falls as the distance increases. The left panel on Fig. 1.8

shows the fractional abundance of filaments for varying distance between halos. Moreover,

when distance increases, filaments have an increasing probability of being wrapped; they

do not connect halos in a straight line, but by a bent arch. For lengths greater than 15

Mpc/h, close to half of the filaments are wrapped.

Colberg et al. (2005) also measures the radial density profile of straight filaments

(middle panel on Fig. 1.8). This profile follows an inverse square law starting from a
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radius rs. An equation which approximates this function well is

ρ(r) =
ρ0

1 + r2/r2
s

. (1.21)

Radius parameter rs differs from one filament to another. The right panel on Fig. 1.8

shows the distribution of radii measured for straight filaments. It seems that filaments

can vary in thickness, from 0.5-3 Mpc/h. Relatively little is known about filaments from

direct observations. One of the first direct detections of dark matter filaments was made

by Dietrich et al. (2012), who measured the mass distribution between A222/A223 clusters

using weak gravitational lensing. For more on filaments see Chapter 5.

1.9 Recent measurements of cosmological parameters

To summarise the theory chapter, I will briefly describe the values of cosmological parame-

ters as measured by the most recent cosmological probes. In many ways the measurements

from all probes, such as supernovae, CMB, Baryon Acoustic Oscillations (BAO), and cos-

mic shear point towards the same region of parameter space. Measurements indicate

that we are living in a Universe which is 13.8 Gyr old, and has recently transitioned

from being matter-dominated to dark-energy-dominated, with cosmological parameters

Ωm = 0.31+0.16
−0.17 and ΩΛ = 0.69 ± 0.01. These values come from a combination of: CMB

temperature measurements from the Planck satellite, CMB polarisation analysis from

the Wilkinson Microwave Anisotropy Probe (WMAP), high resolution CMB temperature

measurements fromthe Atacama Cosmology Telescope (ACT) and South Pole Telescope

(SPT) and BAO measurements from the Sloan Digital Sky Survey (SDSS), as reported

in (Planck Collaboration 2014b). The left panel on Fig. 1.9 shows the remarkable agree-

ment of multiple cosmological probes in the Ωm − ΩΛ plane. These include slightly older

measurements of CMB temperature from WMAP.

Recently, measurements of cosmic shear from the Canada - France - Hawaii Telescope

Lensing Survey (CFHTLenS) has put competitive constraints on cosmological parameters.

Lensing is especially useful on constraining the Ωm−σ8 relation, as it breaks the degeneracy

which exists between these two parameters in the CMB measurements. A combination of

constraints from the CFHTLenS, the Baryon Oscillations Spectroscopic Survey (BOSS),

WMAP CMB temperature and supernovae observations with the Hubble Space Telescope

(HST) point towards measurements of σ8 = 0.794+0.016
−0.017, see middle panel on Fig. 1.9
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Figure 1.9. Constraints on cosmological parameters from various probes. Left
panel comes from Lahav & Liddle (2014). This figure comes from 2008 and
measurements of CMB temperature as measured from WMAP. Planck offers more
precise measurements of CMB temperature. Middle panel comes from Heymans
et al. (2013) and right panel from Planck Collaboration (2014b).

(Heymans et al. 2013).

Planck has also put constraints on the evolution of dark energy equation of state

parameters. In the most simple parametrisation where the equation of state parameter

is evolving as a function of the scale factor a as w(a) = w0 + wa(1 − a), parameters w0

and wa were measured. Although there is no evidence of dark energy evolution, which

corresponds to w0 = −1 and wa = 0, the precision on this measurement is low (Fig. 1.9,

right panel). Cosmic shear is a probe with great potential for improving this measurement

(Albrecht et al. 2006). The Dark Energy Survey (see section 2.8) aims to improve the

quality of these constraints.



Chapter 2

Gravitational lensing

According to Einstein’s theory of General Relativity, the presence of gravitating matter

creates a curvature in the spacetime. In such space, photons travelling from a source

to an observer will follow a curved trajectory. This results in the light ray being bent

around gravitating matter. The bending of light rays can cause interesting effects on

the images of galaxies emitting them: they can be distorted and magnified in size and

brightness, their apparent positions can be changed. Depending on the configuration of

the light source (background galaxy), gravitating mass (for example, a foreground dark

matter halo) and observer positions, and the mass of the lens, the strength of the lensing

effect can vary greatly, leading to three distinct types of lensing: strong lensing, weak

lensing and microlensing.

The observer can register the image of the background source in multiple locations,

smeared into a full or partial ring. Such phenomena are called Einstein crosses, or Einstein

rings, respectively. These are examples of strong gravitational lensing. If the lensing effect

is less pronounced, the image of the background galaxy can be slightly distorted, or sheared.

This effect is called weak gravitational lensing. In fact, the majority of observed galaxies

are weakly lensed, and a typical change the galaxy shape due to shear, measured by the

major-to-minor axis ratio, is of order 1%. Finally, if the gravitating mass is very small

(for example, a planet or a star), then gravitational lensing can be observed only in the

apparent change in brightness of the source. For example, if a source passes around the lens

periodically, then it will seem brighter when passing behind the lens. This effect is called

39
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Figure 2.1. Images of gravitational lensing effects created by a massive galaxy
cluster Abel 1698. Credit: NASA, N. Benitez (JHU), T. Broadhurst (The He-
brew University), H. Ford (JHU), M. Clampin(STScI), G. Hartig (STScI), G.
Illingworth (UCO/Lick Observatory), the ACS Science Team and ESA.

microlensing. An example image containing both weakly and strongly lensed galaxies is

shown in figure 2.1. It shows a galaxy cluster Abel 1698 which acts as a massive lens.

In this chapter we focus on weak gravitational lensing. Firstly, we describe its principles

2.1. Then we discuss the lensing observables in Section 2.3. Section 2.4 describes how to

use these observables to study cosmology with two point correlation functions.

2.1 Lens equation

Let’s consider a thin, spherically symmetric lens with mass density distribution ρ(ξ, z),

where ξ is the angle vector from centre of the lens and z is the line of sight distance. This

lens will have a projected mass density, defined

Σ(ξ) =

∫
ρ(ξ, z)dz (2.1)

The image of this background galaxy, located such that the impact factor is ξ, will be

deflected by an angle α̃. The deflection angle of a light ray can derived from GR by
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Figure 2.2. A schematic for bending of light due to gravitational lensing. Image
credit: Michael Sachs (creative commons licence).

calculating a geodesic of a photon travelling in the proximity of large mass and be expressed

as (see Bartelmann & Schneider 1999 for review)

α̃ =
4πG

c2

∫
ξ − ξ′
|ξ − ξ′|2 Σ(ξ′)d2ξ′2 (2.2)

where G is the Gravitational Constant. Fig. 2.2 shows a configuration for source, lens

and observer positions. Given the distances from the observer to the lens Dd, observer to

the source Ds and lens to source Dds, it is possible to calculate the true, unlensed position

angle for the source galaxy by analysing the geometry of the system presented in Fig 2.2.

β = θ − Dds

Ds
α̃(Ddθ) (2.3)
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where θ = ξ/Dd is the angle of the observed background galaxy. Note that for fixed β

there may be multiple θ which gives solutions to Eqn. 2.3. That means that the source

can be multiply imaged, entering the regime of strong lensing.

2.2 Convergence and lensing potential

In this section I will discuss two very useful quantities in gravitational lensing: convergence

and deflection potential. These are used later to derive lensing observables, such as shear

and magnification. Let us define dimensionless convergence

κ =
Σ(Dsθ)

Σcr
(2.4)

where Σcr = c2Ds
4πGDdsDd

is the called critical surface density. Convergence can be used to

determine between strong and weak lensing regimes. If κ � 1, then the galaxy is only

weakly lensed and κ ≥ 1 suggests a strong lensing effect. The deflection angle can be

written in terms of convergence (by combining Eqns. 2.4 and 2.2)

α̃ =
1

π

∫
R2

d2θ′κ(θ′)
θ − θ′
|θ − θ′|2 (2.5)

Deflection potential is defined as

Ψ(θ) =
1

π

∫
R2

d2θ′κ(θ′) ln |θ − θ′|. (2.6)

Then, the bending angle can be expressed as a gradient of the lensing potential: α = ∇Ψ.

2.3 Image distortions

How can we describe the way that the galaxy light is redistributed when it passed through

a gravitational lens? Let us consider a galaxy image with intensity Is[β] on the source

plane, which is observed and has the intensity of Io[β(θ)] on the observers plane. We would

like to find a mapping which will modify the light distribution from the source to the lens

plane. If the size of the object is small compared to the impact factor ξ, this mapping

can be locally linearised and represented as a Jacobi matrix A(θ) = ∂β
∂θ . Brightness of an

image at the observer’s plane and angle θ are related to source plane image in the following
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way:

Io(θ) = Is[β0 +A(θ0) · (θ − θ0)] (2.7)

where β0 = β(θ0) and θ0 is the point around which the transformation was linearised. This

Jacobian is a symmetric and trace-free matrix, as it preserves surface brightness of the

source galaxy. With these properties, it can be expressed as a single complex number, as

there exists a one-to-one mapping between such matrices and complex numbers. Equation

2.8 shows how to relate this Jacobian to the deflection potential (Eqn. 2.6), and introduces

complex gravitational shear γ.

A(θ) = δij −
∂2Ψ(θ)

∂θi∂θj
=

 1− γ1 − κ −γ2

−γ2 1 + γ1 − κ

 (2.8)

Another way to relate the shear to the deflection potential is

γ1 =
1

2
(Ψ,11 −Ψ,22) , γ2 = Ψ,12. (2.9)

Shear can additionally be related to convergence as

γ =
1

π

∫
R2

d2θ′D(θ − θ′)κ(θ′) , D =
−1

(θ1 − iθ2)2
(2.10)

which is a two-dimensional convolution with the shear response kernel D.

As a complex number, shear can be expressed in terms of magnitude and angle

γ = γ1 + iγ2 = |γ| exp(2iφ). (2.11)

Shear is a spin-2 vector, which transforms into itself after a rotation of 180◦. Another

property of shear γ is that its magnitude does not exceed unity: |γ| < 1.

Very commonly used quantities are the reduced shear g , conformal shear η, and dis-
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tortion δ, which are related to ellipse axis ratio q = a/b via Eqn. 2.12

g =
γ

1− κ =
a− b
a+ b

e−η = a/b = q

δ =
a2 − b2
a2 + b2

= tan(η). (2.12)

For more details about different shear parameterisations, see (Bernstein & Jarvis 2001).

In this work I will mostly use the reduced shear parameterisation. If an isotropic luminos-

ity distribution, which has a diagonal covariance matrix as measured by its quadrupole

moments, is transformed by a shear g, its covariance matrix C will become (Eqn. 2.13)

C−1 =

 1+|g|2−2g1

1−|g|2
−2g2

1−|g|2

−2g2

1−|g|2
1+|g|2+2g1

1−|g|2

 (2.13)

Note that this covariance does not include the change in the apparent size of the galaxy

induced by lensing. Gravitational lensing also induces magnification, which is a change

in apparent galaxy size (Gaztanaga 2003; Schmidt et al. 2011). Magnification can be

expressed in terms of the determinant of the Jacobian matrix (Eqn. 2.14)

µ =
1

detA =
1

(1− κ)2 − |γ|2 (2.14)

Magnification and shear are the two most commonly used lensing observables. Including

higher order expansion in the transformation of lensing images gives rise to flexion (Bacon

et al. 2006; Rowe et al. 2013; Velander et al. 2011).

2.4 Cosmology with weak-gravitational lensing

Gravitational lensing is a unique probe of cosmology. Its uniqueness stems from the fact

that image distortions induced by matter are an unbiased tracer of mass of this matter.

Another feature of weak lensing is the fact that matter distribution in the large scale

structure can be studied as a function of redshift, thus probing its evolution in time.

Statistics of distribution of mass can be used to constrain cosmological parameters and

test the laws of gravitation on large scales (e.g. Kaiser 1996).

The observed lensing shape is an effect of distortions induced by all intervening matter
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Figure 2.3. Light from a distant galaxy propagating through the large scale
structure of the Universe. The most contribution to the lensing signal comes
from structures half way between a source and a observer. Image from Refregier
(2003).

along the line of sight. As the lensing strength depends on the redshift of the source galaxy

and the lens, distortions are integrated in the radial direction with a specific kernel, called

the lensing kernel. Lensing potential thus becomes

Ψij =

∫ χh

0
dχ∂i∂jΦg(χ) (2.15)

where Φ is the Newtonian potential, χ is the comoving distance, χh is the distance to

horizon, derivatives are performed on the sky plane, and the lensing kernel is

g(χ) = 2

∫ χh

χ
dχ′n(χ′)

r(χ)r(χ′ − χ)

r(χ′)
(2.16)

where r = DA/a, and DA is the angular diameter distance (Refregier 2003). The number

density of galaxies n(χ) is assumed to be normalised and depends on the depth of a survey.

The lensing kernel has a property that it peaks around half-way between an observer and

a source. Fig. 2.3 shows a schematic of the path of a light ray from a distant galaxy to

an observer through the large scale structure. In addition to shape distortion, LSS also

changes the position angle at which the galaxy is observed. The integral in Eqn. 2.15

should be taken along the perturbed photon path, but the deflection is typically small,

so to first order it can be integrated along a straight line. This is known as the Born

approximation.
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2.4.1 Shear two point statistics

A commonly used statistic of the shear distribution is a two-point angular correlation

function, expressed as

ξ±(θ) = 〈γ+γ+〉 ± 〈γ×γ×〉 (2.17)

where + and × are tangential and cross component of shear defined with respect to the

angle joining the two galaxies. The correlation function is related to the shear power

spectrum via the Hankel transform

〈ξ+ξ+〉+ 〈ξ×ξ×〉 =

∫
`d`

2π
(CEE` + CBB` )J0`θ (2.18)

where CEE is the E-mode and CBB is the B-mode of the power spectrum. Gravitational

lensing does not produce any B-mode shear, as distortions produced by clumped mass can

only produce E-mode patterns. Measurements of the B-mode can be a useful diagnostic

for systematics in a survey. However, the B-mode can be observed due to survey area

covering only a fraction of the sky, which is the case for most surveys.

The two-dimensional, angular shear power spectrum can be related to the three-

dimensional matter power spectrum, which is predicted by various cosmologies. In fact,

the 2D power spectrum can be calculated as an integral of the 3D power spectrum with

a weight function. This calculation is simplified greatly using the Limber approximation,

which considers the fact that, for small angles, only large scale modes along the line of

sight contribute to the integral. The final power spectrum is (Refregier 2003)

C` =
9

16

(
H0

c

)4

Ω2
m

∫ χh

0
dχ

[
g(χ)

ar(χ)

]2

P (
`

r
, χ) (2.19)

where H0 is the Hubble parameter today, Ωm is the matter density today, a is the scale

factor. Note that the observable used for this measurement is the reduced shear g. The

impact of using reduced shear instead of cosmic shear was quantified by Dodelson et al.

(2005). Cosmic shear was detected first by four groups 15 years ago (Wittman et al. 2000;

Kaiser et al. 2000; Van Waerbeke et al. 2000; Bacon et al. 2000b), and since then has been

a growing field of research.

Cosmic shear can also be estimated at different redshifts. Using photometric estimators
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Figure 2.4. Lensing power spectra calculated by Takada & Jain (2005). Redshift
bins were z ∈ [0, 1.3] and z ∈ [1., 2.2]. Spectrum 12 is the cross-component
between bins. Boxes show the measurement error from sample variance and
shape noise. Linear contribution to bin 11 is shown in a solid line to give an idea
about the size of non-linear effects. Shot noise contribution to the measurement
is shown with the dashed curve.

of redshifts, source galaxies can be put into bins in z. This measurement is called cosmic

shear tomography (Takada & Jain 2005). Fig. 2.4 shows the example power spectra for

two redshift bins. In particular, this probe is useful for constraining the evolution of the

dark energy equation of state (see Albrecht et al. 2006).

2.4.2 Requirements on biases on shear measurements

Systematic errors on measurements of shear will cause the estimated cosmological parame-

ters to be biased. It is important to calculate how exactly these systematic errors translate

to the bias on cosmological parameters. In this section I summarise the findings of Amara

& Refregier (2007), who give formulas for required shear systematics as a function of the

size and depth of a survey.

Forecasting the uncertainty on measured cosmological parameters for a survey is often

done using a Fisher matrix formalism. An observed power spectrum of shapes of galaxies

(Cobs
` ) is a sum of true lensing signal (C lens

` ), noise contribution (Cnoise
` ), and systematics

(Csys
` ): Cobs

` = C lens
` +Cnoise

` +Csys
` . An estimator Ĉ lens

` = Cobs
` −Cnoise

` is assumed to be

biased, as the systematic term is not known, or corrected to a known level of uncertainty.
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This estimator then has an error of

∆C` =

√
1

(2l + 1)fsky
(2.20)

where fsky is the sky fraction covered by a survey. Then, the maximum likelihood of cosmo-

logical parameter p̂i is found, following the ususal minimization of χ2 =
∑

l ∆C
−2
` [Ĉ lens

` −
C lens
` (pi)]

2. An estimate of uncertainty on the cosmological parameter is then calculated

using an inverse of the Fisher matrix

Fij =
∑
ij

∆C−2
`

dC lens
`

dpi

dC lens
`

dpj
(2.21)

If we include the residual systematic on C` in the analysis and assume it to be small, we

can calculate bias on cosmological parameters with respect to the true parameter ptrue
i as

in Eqn. 2.22, assuming summation convention

b[p̂i] = 〈p̂i〉 − 〈ptrue
i 〉 = (Fij)

−1Bij (2.22)

where Bj =
∑

` ∆C−2
` Csys

`
dClens

`
dpj

is the bias vector. A cosmological survey will be able to

achieve its potential if systematic errors are smaller than statistical errors, and criterion

2.23 is satisfied

b[p̂i] ≤ σ[p̂i] (2.23)

where σ2[p̂i] = (Fii)
−1 is the statistical error on a parameter. If this condition is not met,

it is not useful for a survey to take more data.

The bias on shear is usually decomposed into multiplicative and additive bias, following

Heymans et al. (2006): gobserved = mgtrue + c. This decomposition is particularly useful

as the PSF shape introduces mainly the additive systematic.

Amara & Refregier (2007) used the criterion 2.23 to put limits on multiplicative and

additive shear biases, assuming equal systematic and statistical errors. They considered

investigating a wide range of bias models. These models included additive and multi-

plicative biases with and without redshift evolution, as well as different dependencies on

scale: (i) log-linear, (ii) with the same shape as the lensing signal and (iii) when a single

parameter can mimic a small change in cosmological parameter pα: Csys
` = A2

Cij`
dpα

, where
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Figure 2.5. The ratio of systematic to statistical errors for the multiplicative
bias for various cosmological parameters. The evolution with redshift followed a
power-law 2.24, with m0 = 5 ·10−3. This figure illustrated that for this parameter
configuration the redshift dependence has to be small in order for the systematics
to be sub-dominant. Figure from Amara & Refregier (2007).

A2 is the normalisation factor.

Here I consider only the multiplicative bias model with redshift evolution. This evo-

lution was modelled as a power law

m = m0(1 + zm)βm . (2.24)

In figure 2.5 the ratio of systematic to statistical error is shown for multiplicative bias

evolving with redshift. Systematic errors are sub-dominant for βm < 1.5, and that is the

set throughout the rest of their analysis.

This kind of analysis is repeated for a range of bias models. When reporting the

final requirements on the bias, the approach was very conservative: the most biased out

of all the cosmological parameters was driving the constraints on the shear systematic

level. Moreover, the bias was allowed to change sign as it evolved in redshift. The most

important conclusions were that both the additive and multiplicative signals have to have
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weak dependence on redshift. The tolerance on additive and multiplicative for a custom

survey with area As, median redshift zm and number density of galaxies ng is (Eqn. 2.26)

σ2
sys < 10−7

(
As

2 · 104 deg2

)−0.5 ( ng

35 arcmin−2

)−0.5
(

zm

0.9 deg2

)−0.6

(2.25)

m0 < 10−3

(
As

2 · 104 deg2

)−0.5 ( ng

35 arcmin−2

)−0.5
(

zm

0.9 deg2

)−0.6

(2.26)

In section 3.2, in Table 4.1 I show the requirements calculated for typical survey specifi-

cations, for current, ongoing and far future surveys. Good progress has been made in the

development of shear measurement methods over the last decade, and the tools currently

used do satisfy these requirements (see Sec. 2.7 and Fig. 2.7). However, reaching the

systematic floor of m < 10−3 will be increasingly difficult and much more effort is needed

in development of shear measurement algorithms and calibration methodologies.

2.5 Shear measurement and its systematics

In this section I describe the practical aspects of measurement of shear. I start with

outlining the lensing galaxy image generation process. Next, I describe popular approaches

to shear measurement and sources of systematic biases inherent to these methods. Finally,

I highlight the importance of shear accuracy testing programmes, organised by the lensing

community.

Galaxies in the universe are intrinsically elliptical, even in the absence of gravitational

lensing. Therefore, it is not possible to measure shear from individual galaxy images;

shear has to be measured statistically. The key property which allows us to make such

a measurement is that, in the absence of intrinsic alignments, rotation angles of galaxies

are random and unlensed galaxy ellipticities average to zero: 〈ei〉 = 0. If a galaxy with

perfectly elliptical isophotes and shape ei is distorted by a shear g, then the resulting

ellipticity of the observed galaxy el will be (Eqn. 2.27)

el =
ei + g

1 + g∗e
(2.27)

Equation 2.27 can be used to show that the lensed galaxy ellipticity is an unbiased shear

estimator (Schneider & Seitz 1994; Seitz & Schneider 1996), to third order in shear, so

that 〈el〉 = g.
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Figure 2.6. Forward process for creation of galaxy images observed by a tele-
scope. Image credit: Bridle et al. (2009b)

.

In reality, however, galaxies do not have perfectly elliptical isophotes, so it is not clear

what the shape of such a galaxy would be. In principle, a covariance matrix of all photons

coming from the galaxy could be used. This approach is not practical, as galaxy light can

extend far away from its centre and thus prevent its precise calculation in the presence

of noise on the images. That is why practical shape measurement often uses ellipticity

estimators, which transform as Eqn. 2.27. Multiple shear measurement methods have

been proposed over the last two decades. Before I introduce them, I will first discuss other

effects which affect observed galaxy images.

2.5.1 Forward process for observed galaxy images

The image of a galaxy is subject to several degrading effects before it is recorded. Figure

2.6 shows the forward process for observed galaxy images. Firstly, distortion comprises

the lensing effects, including shear, magnification and higher order flexions. When the

photons travel through the earth’s atmosphere (in the case of ground-based observations),

and telescope optics, the image is being convolved by a Point Spread Function (PSF). Then

the light is integrated within pixels of the detector, and this induces further convolution

with a pixel response kernel, followed by downsampling of the image. Additionally, the

detectors register noise from photons in the atmosphere and inside the detector. For

ground-based observations, the noise is sky-limited, and it can be well described as additive

Gaussian noise. For space-based imaging, the noise is often modelled as Poisson, as the

number of background photons is low. Detector noise is often assumed to be Gaussian.

A shear measurement method has to invert this process, and be able to statistically

recover shear g, including accurate treatment of PSF, pixelisation and noise effects. It

is very important to account for the PSF convolution accurately, as it affects the galaxy

image in a similar way that the shear can (Paulin-Henriksson et al. 2008). PSF size can
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often be of similar size as the galaxy, and in principle is limited by the telescope optical

system. Given the telescope aperture D and light wavelength λ, the size of the PSF scales

as λ/D. Telescope optics models provide estimates of PSF properties, but in general, the

PSF at the position of the galaxy is not precisely known. Under the assumption that the

PSF varies slowly across the telescope field of view, one can use neighbouring stars to

estimate the PSF on the position of the galaxy (e.g. Gentile et al. 2012b). Even when the

PSF at the position of the galaxy is known very well, a shape measurement method has

to account for it accurately. Many approaches to this deconvolution problem have been

proposed, and I will discuss them in section 2.6.

Noise related effects can also introduce a significant bias on lensing measurements,

especially if high magnitude galaxies are used. In (Refregier et al. 2012; Kacprzak et al.

2012) I studied the theoretical foundations of noise bias, its magnitude and properties.

Finally, it is common that a survey will take several images of the same galaxy at

different times (and with different PSF). These exposures can be dithered with respect

to the centre of the imaged galaxy, and taken at different angles, which can introduce

distortions related to the World Coordinate System (WCS). A shape measurement method

has to be able to perform well on multiply-imaged galaxies, either by using co-added pixels,

or fitting the images jointly. Other effects that can affect the quality of shape measurement

are discussed in Sec. 2.5.2.

2.5.2 Considerations for measurement of shapes

In Section 2.5.1, I discussed the effects that play a significant role in the creation of the sky

image. However, this list is not exhaustive, and there exists a range of other effects and

considerations which are important for shear estimation. In this section I will highlight

some of the most important ones, but again, this list will not be exhaustive.

Complex galaxy morphologies

Morphologies of galaxies can be complicated; they can have bulges, bars, spiral arms,

bright star-forming clusters and dust lanes. Despite the fact that most of the small scale

variation in the brightness distribution is smeared out by the PSF, galaxy morphology can

influence shear measurement. Some methods (see Sec. 2.6) use parametric galaxy models

to fit the image pixels, and if the models are underfitting (not able to capture all possible

galaxy morphology aspects after blurring), this can cause a bias (Bernstein 2010; Voigt &
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Bridle 2009; Kacprzak et al. 2013). This bias is called model bias. I measured the scale of

model bias for the first time using high resolution galaxy images from the Hubble Space

Telescope, degraded in quality to resemble ground based observations. I found it to be

sub-percent level, see Sec. 4.4, which can be important for future surveys.

Distribution of galaxy parameters, as seen by a survey

Many methods use empirical calibration factors derived from simulations. At the precision

level required by ongoing and future surveys, the resulting calibration factors are strongly

dependent on input to the simulation. If shear is to be calibrated correctly, the simulation

input must represent the real survey data very well. Distributions of true parameters

of galaxies in the survey, such as magnitudes, sizes, intrinsic ellipticities, Sérsic indices

(see Sec. 2.6), etc., have to be known. Obtaining these is not an easy task, as the

only parameters measured directly from survey images are noisy. An approach has been

proposed by Refregier & Amara (2014) to infer these distributions, using a control loop

approach. In this method, the simulations are created repetitively until the distribution

of observed parameters match. In the future, the importance of shear calibrations using

large simulations will increase, as higher precision of the measurement will be required.

Blending

The fraction of galaxies which are blended with a neighbour increases greatly with limiting

magnitude. In current surveys, such as the Dark Energy Survey (DES), reaching the

magnitude of 24, the fraction of blends can be as high as 10%. For the Large Synoptic

Sky Survey (LSST), this fraction will increase even more, posing a fundamental limit on

the statistical power of the survey if blends are to be rejected (Chang et al. 2013). Most

of the current shape measurement methods are not designed to deal with blends, and this

will become a major challenge in the future.

2.6 Shape measurement methods

In this section I will describe a range of shear measurement methods, highlighting their

differences in the PSF deconvolution process, optimization, and general performance.
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2.6.1 Quadrupole moment methods

The first methods used for lensing measurements were based on weighted quadrupole

moments (e.g Kaiser et al. 1994; Luppino & Kaiser 1996; Hirata & Seljak 2003; Okura &

Futamase 2010). These moments measure the covariance of the weighted galaxy luminosity

around a central point and then correct for the PSF. The quadrupole moment is defined

as

qxy =

∑
(xi − x̄i)(xj − x̄j)W (x− x̄)I(x)∑

w(x− x̄)I(x)
(2.28)

where i, j ∈ 1, 2 are image coordinates and x̄ is the centre of the moment. The weighting

function is often selected to maximise the signal to noise ratio (SNR) of the measurement

and to decrease the contribution of the noise from pixels which are far from the edge of the

postage stamp. The PSF correction is done after the moments are measured, analytically,

using the moments measured from the PSF, under the assumption that both PSF and

the galaxy have small ellipticities. Then, the ellipticity can be extracted from quadrupole

moments (Eqn. 2.29)

el =
q11 − q22 + 2iq12

q11 + q22 + 2
√
q11q22 − q2

1

. (2.29)

Erben et al. (1999); Bacon et al. (2000a) used numerical simulations to test various KSB

weighting schemes and they concluded that shear values can be recovered with systematic

uncertainty of around 10%. Melchior et al. (2012) presented a method in which the decon-

volution of the moments can be done exactly in the absence of noise, weighting function

and perfect centroiding, and then studied the impact of those effects on deconvolution in

moment space. Moment-based methods often used a responsivity correction, an empiri-

cal calibration factor applied to the shear estimator. Advantages of quadrupole moments

methods are that in principle they do not assume any light profile for a galaxy, and thus

are free of model bias. In particular, Bernstein (2010), demonstrated Fourier Domain Null

Testing (FDNT) method, which calculates unbiased estimates of shape even for galaxies

which have very complicated morphologies and strong ellipticity gradients.
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2.6.2 Shapelets

Methods based on shapelets (Refregier 2001; Massey & Refregier 2006; Nakajima & Bern-

stein 2006) use a decomposition of an image onto an orthogonal basis set. In the shapelet

methods family, the basis often consists of Gauss-Hermite or Gauss-Laguerre polynomials.

These are essentially Gaussian profiles multiplied by a polynomial function. This basis

set is complete and able to reconstruct all images given a basis set which is big enough.

The same decomposition is done to the PSF, and then the convolution can be carried

out analytically using just the shapelets coefficients. Galaxy shapes can then be calcu-

lated analytically from the basis set coefficients. Point estimators are used for fitting, and

solving for the best fit coefficients requires a matrix inverse. However, in practice it is

not tractable to use a full shapelet coefficients expansion; a truncated basis set has to be

used for both practical implementation reasons and to prevent overfitting the noise. This

creates a fundamental limitation; shapelets in general resemble Gaussian intensity pro-

files, whereas galaxies usually follow Sérsic profiles (Sérsic 1963), which have much higher

kurtosis. This makes shapelets a basis set not well suited for galaxy profiles when a finite

set of basis function is used.

2.6.3 Model fitting methods

Another popular approach involves model-fitting methods. In these, a parametric model

is used for galaxy and PSF images. Most often used models are generalised Gaussian

profiles, in astronomy known as Sérsic profiles, which follow this function

I(x) = A exp
(
−k[(x− x0)

ᵀ
C−1(x− x0)]0.5n

)
(2.30)

where A is the amplitude, k = 1.9992n − 0.3271, x0 is the centre of the profile, C is the

covariance matrix and n is the Sérsic index of the profile, controlling its kurtosis. For

an isotropic profile, diagonal covariance matrix elements will define a half-light radius of

the profile, re, which encloses half of the total flux. Two most commonly used Sérsic

indices are n = 1 (Exponential profile) and n = 4 (DeVaucouleurs profile), which are

commonly used models for galaxy discs and bulges, respectively. Model fitting methods,

such as (Kuijken 1999; Bridle et al. 2002; Zuntz et al. 2013; Miller et al. 2007; Gentile et al.

2012a) use these profiles to model galaxy light profiles. PSF modelling is often done using

other parametric models. Then, convolution is done either numerically on a fine grid or
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analytically after decomposing the fitted galaxy and PSF profile into a sum of Gaussians.

A likelihood function is used, such as in Equation 3.7 and the final shape estimator is then

derived from this likelihood function. Often used estimators include Maximum Likelihood

(ML) or Mean Posterior (also known as Bayesian Estimator). For finding this estimator,

various numerical optimization algorithms are used, such as numerical steepest descent (for

example, Levmar or Minuit), adaptive grid search, or implementations of the Markov

Chain Monte Carlo methods (MCMC). Model fitting, like other methods, suffers from

noise bias effects, as the resulting estimator is a non-linear function of pixel intensities

affected by Gaussian noise. It is also not free from model bias, as models are simplistic and

not able to characterise the complex morphologies of galaxies. Finally, the optimization

process can introduce systematic effects; for example, the starting point and convergence

of steepest descent algorithms can influence the shear estimator.

2.6.4 Bayesian methods

Bayesian methods are an alternative approach. Rather than aiming to produce an unbiased

estimator of shear, they combine full probability distributions of shear from many galaxies.

For example, Bernstein & Armstrong (2013) presented a way of combining the likelihoods

of galaxies which avoids noise bias. An implementation of this method by Sheldon (2014)

also shows promising results. As these methods do not produce e1 and e2 estimators for

each galaxy but store information about the likelihood of a galaxy in some form, other

steps of the weak lensing analysis have to be adjusted to accommodate for this change.

Up until today, these methods are still in early stages of development.

2.6.5 Stacking methods

Another approach which does not use a shear estimator for each galaxy is based on stacking

the images in pixel space. In such a stack, in the absence of applied shear, the individual

galaxy intrinsic ellipticity will average out and create an image with elliptical isophotes.

When the shear is constant, the ellipticity of the resulting stack should be the same as

applied shear. Lewis (2009) and Hosseini & Bethge (2009) demonstrated the performance

of stacking methods on GREAT08, with the latter winning the main challenge. Note that

good performance was achieved in the presence of constant PSF on all images, which is

not the case for real galaxy surveys. These methods are in principle immune to model

bias, as according to the central limit theorem individual morphologies of galaxies should
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Figure 2.7. Multiplicative bias reported by shear challenges. For challenges
which included branches, I list the result from fiducial branch. The concrete
value represents the bias for the winning method, or the simulation’s statistical
limit, if it was achieved. Note that the details of the simulations varied greatly,
including the parameters of the fiducial branch. Additionally, the way of reporting
of results was not consistent, which is why this figure should be treated more as
a guideline than actual result. Results of the GREAT3 are preliminary.

converge to a Gaussian when stacked. Such a stack should also be able to avoid noise

bias, as the noise is suppressed in a linear way. However, a centroid has to be estimated

very accurately for this process to work; otherwise shear might be underestimated. As for

Bayesian methods, stacking methods do not use estimators, and require following stages of

processing to be adjusted. In particular, it was not demonstrated how a stacking method

could estimate the correlation function of galaxy shapes.

2.7 Shear testing programmes

To test and compare the performance of these methods, the weak lensing community

organised a series of shear testing challenges, based on simulated data. Shear Testing

Programmes 1 (STEP1) (Heymans et al. 2006) and 2 (STEP2) (Massey et al. 2006) were

organised internally inside the community and provided simulated data sets with a high

degree of realism, including unknown PSF, complicated galaxy morphologies, blended ob-

jects and image artefacts. These projects were followed by Gravitational Lensing Accuracy

Testing Challenges: GREAT08 (Bridle et al. 2009b,a), GREAT10 (Kitching et al. 2013,

2011) and GREAT3 (Mandelbaum et al. 2014), which were opened to the Astronomy,

Computer Science and Statistics communities. The approach to GREAT challenges was

different than to STEP. GREAT started with a simplified version of the problem and
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targeted specific questions in shear measurement, such as impact of the low SNR galaxies

(GREAT08), variable shear (GREAT10) and influence of realistic galaxy morphologies

(GREAT3), among others. Addressing specific questions helped to isolate the impact of

different effects on shear measurement and design methods to address them.

The results of these challenges indicate a progressive improvement in the accuracy of

the methods 2.7. We can notice a steady improvement in the accuracy of shear mea-

surement methods over the last 10 years. Also, the sheer number of methods and teams

entering the challenge increased greatly, reaching 23 the in recent GREAT3 challenge,

which indicates increasing interest in both lensing and statistical communities.

2.8 Weak lensing with the Dark Energy Survey

Dark Energy Survey (DES) is an international project, with six participating countries

and 27 institutes, which will use observations of a large fraction of the sky for a range

of science goals. The main driver of DES is to learn about the properties of dark energy

by observations of complementary probes such as galaxy clusters, weak lensing, baryon

acoustic oscillations and supernovae. There are many other branches of science active

within the DES, such as, for example, Milky Way science. The DES will additionally

provide a great legacy data set.

The DES is planning to observe 5000 deg2 of southern sky to a great depth, with

limiting magnitude often larger than 24. The survey also has a deep component, which will

observe 6 deg2 to magnitude greater than 25. Figure 2.8 shows the survey strategy planned

as for mid 2014, when the survey is entering its third year of observations. In particular,

the survey overlaps fully with the area observed by the South Pole Telescope (SPT),

which detected clusters using the Sunyaev-Zeldovich effect, and the Vista Hemisphere

Survey (VHS). Overlap with other astronomical projects will allow us to learn more about

objects observed by the DES.

DES is observing in four filters: griz. The detectors using charge coupled device

(CCD) technology, are designed to be particularly sensitive to redshifted light, allowing

probing high-redshift galaxies. Photometry in four bands is used to estimate the redshift

of a galaxy, called photometric redshift. It is calculated by comparing the magnitudes of

observed galaxies with spectra of galaxies observed using other methods. This training set,

or template set, will be partially obtained using spectroscopic follow-ups to DES targets.
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Figure 2.8. Dark Energy Survey observing area, as planned mid 2014. Area
within the black shaded region was observed during first year of the survey.
Area marked with red corresponds to observing season 2012-2013, during which
verification of the instrument took place.

Combined with measurements of galaxy shapes, DES will provide a very powerful data

set for dark energy science.

The home of the DES is the Cello Tololo Interamerican Observatory in northern Chile.

A four-meter Blanco Telescope is used by the DES for a period from 2012 to 2017, ob-

serving almost exclusively for the DES in the southern summer time. The Dark Energy

Camera (DECam) is a prime focus camera on the top of the Blanco, a unique wide-field

camera with 62 science CCDs with 520 megapixels and images 3 square degrees with 0.27

arcsecond/pixel resolution.

First light of DECam was on 12 September 2012 and started a season of Science

Verification, during which a number of technical challenges have been solved to improve

the performance of the telescope. During this period observations were taken to full survey

depth providing scientists with an almost-150-deg2 deep dataset, which has already been

used for a number of science publications. First observing season of the DES main survey

programme started in autumn 2013. I had the great privilege to visit CTIO and perform

observations for the DES from 24 to 30 January 2014.

One of the many science goals of the DES is the measurement of the dark energy equa-

tion of state. Due to its wide field nature, the DES will provide very accurate measurement

of w0. In the wCDM model, the dark energy equation of state parameter evolves with the

scale factor a as w(a) = w0 +wa(1−a). Figure 2.9 shows the Fisher-matrix-based forecast
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Figure 2.9. Fisher-matrix-based-forecast of the Dark Energy Survey constraints
on the parameters of the dark energy equation of state. Source: Dark Energy
Survey Science Program book.

of constraint on the w0 −wa plane from The Dark Energy Survey Science Program book.

Combined probes will be able to constrain the dark energy equation of state to a few

percent precision. This is a very powerful test of the ΛCDM paradigm; measurement of

departure from a value of w = −1 will indicate that Einstein’s model with a cosmological

constant as a driver of cosmic expansion will have to be modified.

Weak gravitational lensing is a very important, complimentary probe in this measure-

ment. Cosmic shear is the most promising weak lensing probe, but measurements such

as galaxy-galaxy lensing and three-point statistics are also being worked on. Next to

cosmic shear, magnification is another observable with great potential for cosmological

observations.

To achieve the full potential of the cosmic shear probe, the shear measurement pipeline

has to deliver efficient and bias-free measurement of galaxy shapes. For the DES, the re-

quirements on multiplicative bias on the shear is m < 0.004 and on additive bias c < 0.0006

(see Sec. 2.4.2). The DES shear measurement pipeline is being developed at the University

of Manchester and the University of Pennsylvania, with contributions from many others. I

0http://www.darkenergysurvey.org/reports/proposal-standalone.pdf

http://www.darkenergysurvey.org/reports/proposal-standalone.pdf
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Figure 2.10. Mass reconstruction of cluster RXC J2248.7-4431 (Melchior et al.
2014). Left column is a multi-colour image the field, centred on the cluster.
Middle panel is a weak-lensing aperture mass significance map, overlaid with
galaxies (black dots). Cluster member galaxies were found using redMaPPer
cluster finder. Right panel: same redMaPPer galaxies for larger field of view.

have been involved in the core work of the Shear Pipeline Testing working group. My main

contributions were coding and testing the Im3shape pipeline (see Appendix A) and run-

ning simulations to calibrate noise related effects for the Early SV clusters measurements

(Appendix B) and SVA1 release.

The first publication using Im3shape shear catalogues was by Melchior et al. (2014)

and describes mass and light distribution in four massive clusters. Figure 2.10 shows a

mass map for a RXC J2248.7-4431 cluster, the mass of which has been found to be in

good agreement with the literature, and measured to be M200 = 17.6+4.5
−4.0 1014M�. This

work demonstrated the good performance of the DECam instrument and weak lensing

data analysis pipeline. With the weak lensing pipeline already producing reliable shear

measurements, in the next few years the DES will provide researchers with exciting op-

portunities for weak lensing science.

2.9 Weak lensing with the CFHTLenS survey

The Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) (Heymans et al. 2012)

is a optical galaxy survey containing the largest weak lensing dataset to date. It cover 154

square degrees of deep multi-colour data obtained by the CFHT Legacy Survey, in five

optical bands u∗, g′, r′, i′, z. The 5σ limiting magnitude in the i-band was i′ ∼ 25.5. The

survey had a wide and deep components, observations of which finished in early 2009. It

used the 3.6m telescope and the MegaCam imager, with 36 CCDs totalling 340 megapixels.

The area of the wide survey consisted of four fields: W1 ( 63.8 square degrees), W2 ( 22.6

square degrees), W3 ( 44.2 square degrees) and W4 ( 23.3 square degrees). Images were
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Figure 2.11. Distribution of PSF parameters in the CFHTLenS survey. Images
of stars were fitted with parameter of the Moffat model I(r) = I0[1 + (r/rs)

2]β,
where I(r) is the intensity at radius r, I0 is the profile normalisation, rs is the
scale radius and β is a parameter affecting the profile of the PSF. Additionally,
an elongation in e1 and e2 directions were fit.

reduced using the THELI pipeline (Erben et al. 2012). The survey strategy was optimised

for weak lensing measurements: the lensing band i′ was observed only in good seeing

conditions. The distribution of PSF parameters is shown in Fig. 2.11 (Miller et al. 2012).

CFHTLenS shear was measured using the Lensfit algorithm (Miller et al. 2012),

which fits a bulge+disc galaxy model using a Bayesian framework. Only galaxies with

signal-to-noise ratio of SNR > 10 were considered, which resulted in ∼ 1 · 107 galaxies

in the catalog. This corresponds to galaxy density of ∼ 18/arcmin2. Systematic errors in

the shear measurement were calibrated using simulations, called GREAT-CFHTLenS and

SkyMaker. Distributions of the measured ellipticity parameters, SNR and galaxy sizes are

shown in Fig. 2.12.

Photometric redshifts were calculated for galaxies in the catalogue, reaching z ∼ 2

(Hildebrandt et al. 2011). Peak of the stacked photo-z distribution was z ∼ 0.7. Stacked
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Figure 2.12. Distribution of measured parameters of galaxies in the
CHFHTLenS survey. Upper panels: signal to noise ratio νSN , half light ra-
dius r/arcsec. Lower panels: ellipticity modulus |e| and fraction of the flux in
the bulge component B.

probability distributions of galaxy redshifts P (z) is shown on Fig 2.13.

CFHTLenS has provided a dataset for many important measurements of gravitational

lensing signal, used to constrain cosmological parameters. Kilbinger et al. (2013) used the

2D measurement of shear-shear correlation function to constrain cosmological parameters.

Heymans et al. (2013) extended this analysis to include 5-bin tomography and mitigating

the impact of intrinsic alignments. This weak lensing dataset was also used by Simpson

et al. (2012) to test the laws of gravity. Higher order statistics of shear field were used to

constrain cosmological parameters in Fu et al. (2014). Recently, Liu et al. (2014) used the

shear peak statistics to put constraints in the Ωm, σ8, w0 parameter set.
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Figure 2.13. Stacked redshift probability distribution P (z) for three values of
limiting magnitude in the CFHTLenS dataset.



Chapter 3

Measurement and Calibration of

Noise Bias in Weak Lensing

Galaxy Shape Estimation

Weak gravitational lensing has the potential to constrain cosmological parameters to high

precision. However, as shown by the Shear TEsting Programmes (STEP) and GRavi-

tational lEnsing Accuracy Testing (GREAT) Challenges, measuring galaxy shears is a

nontrivial task: various methods introduce different systematic biases which have to be

accounted for. We investigate how pixel noise on the image affects the bias on shear

estimates from a Maximum-Likelihood forward model-fitting approach using a sum of co-

elliptical Sérsic profiles, in complement to the theoretical approach of an associated paper.

We evaluate the bias using a simple but realistic galaxy model and find that the effects of

noise alone can cause biases of order 1-10% on measured shears, which is significant for

current and future lensing surveys. We evaluate a simulation-based calibration method

to create a bias model as a function of galaxy properties and observing conditions. This

model is then used to correct the simulated measurements. We demonstrate that, for the

simple case in which the correct range of galaxy models is used in the fit, the calibration

method can reduce noise bias to the level required for estimating cosmic shear in upcoming

lensing surveys.

65
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3.1 Introduction

Weak gravitational lensing is an important cosmological probe, which has the greatest

potential to discover the cause of the accelerated cosmic expansion (e.g. Peacock et al. 2006;

Albrecht et al. 2006, 2009). In the standard cosmological model dark energy affects both

the expansion history of the universe and the rate of gravitational collapse of large scale

structure. The rate of this collapse can be studied by observing the spatial distribution

of dark matter at different times in the history of the universe. Gravitational lensing

occurs when the path of light from distant galaxies is perturbed while passing through

intervening matter. This phenomenon causes the images of galaxies to be distorted. The

primary observable distortion is called gravitational shear, and typically causes the galaxy

images to be stretched by a few percent. The scale of this effect is related to the amount of

matter between the source and the observer, and to their relative geometry. Thus, cosmic

shear can provide a valuable dataset for testing cosmology models (Kaiser 1992; Hu 1999).

Several upcoming imaging surveys plan to observe cosmic shear, including the KIlo-

Degree Survey: KIDS, the Dark Energy Survey (DES)1, the Hyper Suprime-Cam (HSC)

survey2 the Large Synoptic Survey Telescope (LSST)3, Euclid4 and WFIRST 5. For these

surveys, it is crucial that the systematics introduced by data analysis pipelines are un-

derstood and accounted for. The most significant systematic errors are introduced by (i)

the measurements of the distance to the observed galaxies using photometric redshifts,

(ii) intrinsic alignments of galaxies, (iii) modelling of the clustering of matter on the small

scales in the presence of baryons, (iv) measurement of lensed galaxy shapes from imperfect

images. In this chapter, I focus on the latter.

To evaluate the performance of shear measurement methods, simulated datasets have

been created and released in form of blind challenges. The Shear TEsting Programme 1

(STEP1: Heymans et al. 2006), was the first in this series, followed by STEP2 (Massey

et al. 2006). Both challenges aimed to test end-to-end shear pipelines and simulated galaxy

images containing many physical effects including those stemming from telescope optics

and atmospheric turbulence. A modified approach was taken in the GREAT08 (Bridle

et al. 2009a,b) and GREAT10 (Kitching et al. 2011) challenges, which sought to isolate

1http://www.darkenergysurvey.org
2http://www.naoj.org/Projects/HSC/HSCProject.html
3http://www.lsst.org
4http://sci.esa.int/euclid
5http://exep.jpl.nasa.gov/programElements/wfirst/
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independent parts of the data analysis process. They explored the impact of different true

galaxy and image parameters on the shear measurement, by varying them one at a time

among various simulation realisations. These parameters included signal to noise ratio,

galaxy size, galaxy model, Point Spread Function (PSF) characteristics and others. The

results showed that the shear measurement problem is intricate and complex. Existing

methods proved to be sufficient for current surveys, but there is room for improvement for

the future.

For a well resolved, blur-free, noise-free image, the galaxy ellipticity can be calculated

by taking the moments of the image (Bonnet & Mellier 1995). However, a typical galaxy

image used in weak lensing is highly affected by the observation process. The image

degrading effects are (i) convolution with the PSF of the telescope, (ii) pixelisation of the

image by the light buckets of the detector, (iii) pixel noise on the image due to the finite

number of photons from the source and atmosphere (roughly Poisson) and detector noise

(often assumed Gaussian), and (iv) galaxy colours being different from the stars used to

map the PSF (Cypriano et al. 2010) and a function of position on the galaxy (Voigt et al.

2011).

Moment-based methods such as KSB (Kaiser et al. 1994), and most recently DEIMOS

(Melchior et al. 2012), and FDNT (Bernstein 2010) measure the quadrupole moment of

the image, using a masking function (often Gaussian) to counter the effects of noise, and

then correct for the PSF. Decomposition methods, e.g. shapelets or a Gauss-Laguerre

expansion, (Refregier 2001; Bernstein & Jarvis 2001; Nakajima & Bernstein 2006) use an

orthogonal image basis set which can be easily convolved with the PSF. Noise is accounted

for by regularisation of the coefficients matrix and truncating the basis set to a finite

number of elements. Simple model fitting methods based on sums of Gaussians (Kuijken

1999; Bridle et al. 2002), Sérsic profiles (Miller et al. 2007; Peng et al. 2002), create an

ellipticity estimator from a likelihood function. Stacking methods (Lewis 2009; Hosseini &

Bethge 2009), which have been demonstrated for constant shear fields, average a function

of the image pixels to increase the signal-to-noise ratio and then deconvolve the PSF.

All these methods introduce some level of systematic error, coming from different,

method specific sources. Bias on the shear can result from inaccurate centroiding of the

galaxy, for example see Lewis (2009). Another source, model bias, results from using a

galaxy model which does not span the true range of galaxy shapes. Voigt & Bridle (2009)

quantified the shear measurement bias from using an elliptical isophote galaxy model on
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a galaxy with a a more complicated morphological structure in the presence of a PSF (see

Lewis 2009 for a general proof). Melchior et al. (2009) investigated the effectiveness of

shapelets at representing more realistic galaxies. Viola et al. (2010) and Bartelmann et al.

(2011) quantified biases on the KSB method and investigated possibilities to correct for

it.

Pixel noise bias arises from the fact that ellipticity is not a linear function of pixel

intensities in the presence of noise and PSF. Hirata et al. (2004) showed its effects on

second order moment measurements from convolved Gaussian galaxy images. The bias

due to pixel noise on parameters fitted using Maximum Likelihood Estimators (MLEs)

for elliptical shapes was demonstrated by (Refregier et al. 2012 hereafter R12), for the

case when the noise is Gaussian and the correct galaxy model is known. It presented a

general expression for the dependency of the bias on the signal to noise ratio. It also

demonstrated the consistency of analytical and simulated results for the bias on the width

for a one parameter Gaussian galaxy model. Although R12 and this chapter discuss biases

that arise from ML forward fitting methods, I suspect that noise bias will play a role in

every nonlinear parameter estimation method. For example, in moment - based methods,

ellipticity is often defined as a ratio of moments of pixel intensities, and thus introduces

nonlinearity (Melchior & Viola 2012).

In this chapter, I show the significance of this bias for weak lensing measurements

using more realistic galaxy images. I find that the bias as a function of true input pa-

rameters is consistent with the theoretical framework derived in R12. Furthermore, I

present a method to effectively remove this noise bias for realistic galaxy images. Us-

ing the Im3shape shear measurement framework and code (Zuntz et al. 2013), I use a

forward model fitting, Maximum Likelihood (ML) approach for parameter estimation. I

create a model of the bias as a function of galaxy and PSF parameters by determining

their bias from various simulations that sample parameter space. I apply this model to

the noisy MLEs and demonstrate that this procedure successfully removes the noise bias

to the accuracy required by upcoming galaxy surveys. By performing a calibration that

depends on the specific statistics of every recorded galaxy, this method is independent of

the overall galaxy and PSF parameter distributions.

This chapter is organised as follows. Section 3.2 summarises the equations governing

the cosmic shear measurement problem and describes methods to quantify the biases on

estimated parameters. I also discuss the requirements on those biases for lensing surveys,
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followed by a summary of the cause of bias arising from image noise. In Section 3.3,

I show the results of bias measurements. A method for correcting the noise bias based

on numerical simulations is presented in Section 3.4. I conclude and briefly discuss this

approach and alternatives in Section 3.5. In the Appendices, I detail the method used for

measuring the multiplicative and additive bias and tabulate our results and fit parameters.

3.2 Shear measurement biases in model fitting

I first discuss the parametrisation of shear measurement biases, and present an overview

of the model fitting approach. I summarise recent work on noise bias in a simple case, and

then describe our shear measurement procedure and simulation parameters.

3.2.1 Quantifying systematic biases in shear estimation

In weak gravitational lensing the galaxy image is distorted by a Jacobian matrix (see

Bartelmann & Schneider 1999; Bernstein & Jarvis 2001; Hoekstra & Jain 2008 for reviews)

M =

 1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 , (3.1)

where κ is the convergence and γ = γ1 + iγ2 is the complex gravitational shear.

For a galaxy with elliptical isophotes I can define the complex ellipticity e as

e =
a− b
a+ b

e2iφ, (3.2)

where b/a is the galaxy minor to major axis ratio and φ is the orientation of the major

axis anticlockwise from the positive x-axis. The post-shear lensed ellipticity el is related

to the intrinsic ellipticity ei by

el =
ei + g

1 + g∗ei
(3.3)

for |g| ≤ 1 (Schneider & Seitz 1994), where g = γ/(1 − κ) is the reduced shear. In the

weak lensing regime κ� 1, γ � 1 and g ≈ γ. I assume κ� 1 throughout this chapter.

Galaxies have intrinsic ellipticities which are typically an order of magnitude larger

than the shear. If the ellipticity is defined as in Equation 3.2 then the average ellipticity is

an unbiased shear estimator (e.g. Schneider & Seitz 1994). In practice el is averaged over a
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Survey mi ci
Current 0.02 0.001

Upcoming future 0.004 0.0006
Far future 0.001 0.0003

Table 3.1. Summary of the requirements for the bias on the shear for current,
upcoming and far future surveys.

finite number of galaxies and the error on the shear estimate (referred to as ‘shape noise’)

depends on the distribution of galaxy intrinsic ellipticities and the number of galaxies

analysed.

The accuracy of a shape measurement method can be tested on a finite number of

images in the absence of shape noise by performing a ‘ring-test’ (Nakajima & Bernstein

2006). In the ring-test, the shear estimate is obtained by averaging the measured eo

estimates from a finite number of instances of a galaxy rotated through angles distributed

uniformly from 0 to 180 degrees. If êl is the measured lensed ellipticity, then the shear

estimate is γ̂ = 〈êl〉 and the bias on the shear is

b[γ̂] = 〈êl〉 − γt, (3.4)

where γt is the true shear. This bias on the shear is usually quantified in terms of mul-

tiplicative and additive errors mi and ci for both shear components i = 1, 2 such that

γ̂i = (1 +mi)γ
t
i + ci, (3.5)

assuming γ̂1 does not depend on γt2, and vice versa (Heymans et al. 2006). The require-

ments on the level of systematic errors for current and future galaxy surveys are expressed

in terms of mi, ci in Amara & Refregier (2007) and are summarised in Table 4.1.

3.2.2 Galaxy shear from model fitting

A simple approach to measuring ellipticity is to use a parametric model. For galaxy fitting,

models such as sums of Gaussians (Kuijken 1999; Bridle et al. 2002), Sérsic profiles (Miller

et al. 2007), and Gauss - Laguerre polynomials (shapelets) (Refregier 2001; Bernstein &

Jarvis 2001; Nakajima & Bernstein 2006) were used.

In general, model fitting methods are based on a likelihood function. Under uncorre-
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lated Gaussian noise, this function is

L = p(θ|I,M) (3.6)

logL = χ2 =
1

2

N∑
i=1

[Mi(θ)− Ii]2/σ2
i (3.7)

where θ is a set of variable model parameters, I is the observed galaxy image, M is a

model function, M(θ) is the model image created with parameters θ, and N the number

of pixels in images I and M. These equations assume a known noise level on each pixel

σi, which is often assumed constant σi = σnoise. Sometimes a prior on the parameters is

used to create a posterior function.

Usually an ellipticity estimator is derived from this likelihood function; so far maximum

likelihood estimators (MLE; e.g. Im3shape, Shapelets), mean likelihood (Im2shape) and

mean posterior (e.g. LensFit) have been used. I use the MLE in this chapter.

Parametric models based on elliptical profiles typically use the following galaxy pa-

rameters: centroid, ellipticity, size, flux and a galaxy light profile parameter. Often a

combination of two Sérsic profiles (Sérsic 1963) is used to represent the galaxy bulge and

disc components, with identical centroids and ellipticities.

The model also contains information about other effects influencing the creation of

the image. These image parameters are not often a subject of optimisation: noise level

σnoise, PSF kernel and the pixel integration kernel. SNR is often defined as SNR =√∑N
i=1 I

2
i /σnoise and this definition will be used throughout this chapter. This definition

of SNR is the same as in GREAT08, but different to GREAT10: SNR=20 here corresponds

to SNR=10 in GREAT10.

3.2.3 Noise bias

The bias of parameter estimation for MLEs in the context of galaxy fitting was first studied

by R12. The authors derived general expressions for the covariance and bias of the MLE

of a 2D Gaussian galaxy model convolved with a Gaussian PSF. For a nonlinear model,

in the Taylor expansion of χ2 (in equation 3.7) the terms in even power of the noise

standard deviation are found to contribute to the estimator bias. The analytical results

were confirmed by simulations using a single parameter toy model. It was also noted that

the bias is sensitive to the chosen parametrisation, especially if the parameter space is
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bounded.

Expanding on work presented in R12, I introduce a generalisation of noise bias equa-

tions in R12 to include the case when the galaxies measured have unknown morphologies.

I use an expansion around the parameters of the best fit model to the noiseless data. Note

that in this formalism there is no true value of the parameters, as the real galaxy can have

morphology which is not captured by the model. This in fact gives rise to model bias,

which has to be evaluated empirically from low noise calibration data.

Let us define the following set of variables

gp - true noiseless image (3.8)

at - vector of best fitting parameters for gp (3.9)

fp(a) - model image with parameters a at pixel p (3.10)

np - noise at pixel p (3.11)

σn - noise standard deviation (3.12)

ρ =
f0

σn
- signal to noise, assume total flux f0 = 1 (3.13)

Log - likelihood of image data given a set of parameters is

−2 logL = χ2(a) =
1

σ2

∑
p

[gp + np − fp(a)]2 (3.14)

Maximum likelihood point â is defined as

â = arg min
a

χ2(a) ⇔ ∂χ2(a)

∂ak
= 0 ∀ k (3.15)

where

∂χ2(a)

∂ak
=

2

σ2

∑
p

[
[gp + np − fp(a)] (−1)

∂fp(a)

∂ak

]
(3.16)

An expansion of â around the true parameters at gives

âk = atk + αa
(1)
k + α2a

(2)
k︸ ︷︷ ︸

δak

(3.17)
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Expanding fp(â) about at gives

fp(â) = fp(a
t) +

∑
i

δai
∂fp(a

t)

∂ai
+

1

2

∑
ij

δaiδaj
∂2fp(a

t)

∂ai∂aj
(3.18)

And finally, expanding
∂fp(â)
∂ai

gives

∂fp(â)

∂ak
=
∂fp(a

t)

∂ak
+
∑
i

δai
∂2fp(a

t)

∂akai
+

1

2

∑
ij

δaiδaj
∂3fp(a

t)

∂akaiaj
(3.19)

Now we substitute (3.17), (3.18), (3.19) into (3.16), ignore terms O(α > 2), and use the

residual rp := gp − fp(at). For convenience let’s use
∂fp(at)
∂ak

=
∂f tp
∂ak

, and then we can write

∂χ2(a)

∂ak
=

−2

σ2

∑
p

(
α

[
np
∂f tp
∂ak
−
∑
i

a
(1)
i

∂f tp
∂ai

∂f tp
∂ak

+ rp
∑
i

a
(1)
i

∂2f tp
∂ai∂ak

]

+α2

[
np
∑
i

a
(1)
i

∂2f tp
∂ai∂ak

−
∑
ij

a
(1)
i a

(1)
j

∂f tp
∂ai

∂2f tp
∂aj∂ak

−
∑
i

a
(2)
i

∂f tp
∂ai

∂f tp
∂ak
− 1

2

∑
ij

a
(1)
i a

(1)
j

∂2f tp
∂ai∂aj

∂f tp
∂ak

+ rp
∑
i

a
(2)
i

∂2f tp
∂ai∂ak

+
1

2
rp
∑
ij

a
(1)
i a

(1)
j

∂3f tp
∂ai∂aj∂ak

])
(3.20)

Using definitions in the following Eqn. 3.21

D
(1)
ip :=

∂f tp
∂ai

(3.21)

D
(2)
ijp :=

∂2f tp
∂ai∂aj

D
(3)
ijkp :=

∂3f tp
∂ai∂aj∂ak

Fij :=
∂f tp
∂ai

∂f tp
∂aj

= D
(1)
ip D

(1)
jp

and summation over repeated indices, we can collect the first order terms

O(α) = 0 ⇔ D
(1)
kp np − Fika

(1)
i + rpD

(2)
ikpa

(1)
i = 0 ∀ ak (3.22)
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Solving for first order terms

a
(1)
i = (Fik − rpD(2)

ikp)
−1D

(1)
kp np (3.23)

〈a(1)
i 〉 = 0 (3.24)

As expected from the result of (Refregier et al. 2012), the first order terms average to zero.

For convenience, we can use a Fisher matrix modified by the residual rp

F̃ik := (Fik − rpD(2)
ikp) (3.25)

Covariance between two parameters is

〈a(1)
i a

(1)
j 〉 = F̃−1

ij D
(1)
jp 〈npnp〉︸ ︷︷ ︸

σ2

D
(1)
jp F̃

−1
ij (3.26)

= σ2F̃−1
ij FijF̃

−1
ij (3.27)

Covariance between a parameter and a noise pixel, using (3.23), is

〈a(1)
i nm〉 = 〈F̃−1

ij D
(1)
jp npnm〉 = F̃−1

ij D
(1)
jp δ(m = p)σ2

n (3.28)

Solving for second order terms in (3.20) gives

O(α2) = 0 ⇔ (3.29)

a
(1)
i D

(2)
ikpnp

+ a
(1)
i a

(1)
j

(
1

2
rpD

(3)
ijkp −D

(1)
jp D

(2)
ikp −

1

2
D

(1)
kp D

(2)
ijp

)
− a(2)

i F̃ik = 0 ∀ ak (3.30)
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Averaging second order terms, rearranging and substituting (3.28) and (3.27) we arrive at

〈a(2)
i 〉 = σ2

nF̃
−1
ik

[
+F̃−1

lj D
(1)
jp D

(2)
lkp

+
1

2
F̃−1
lj FljF̃

−1
lj D

(3)
ljkprp

−F̃−1
lj FljF̃

−1
lj D

(1)
jp D

(2)
lkp

−1

2
F̃−1
lj FljF̃

−1
lj D

(1)
kp D

(2)
ljp

]
(3.31)

This is our main result, showing how the residual between the best fit and the noiseless

real galaxy image is modifying the noise bias equations. It introduces the third derivative

of the model function scaled by the residual D
(3)
ljkprp. It also modifies the Fisher matrix,

and may prevent the cancellation of two terms in D
(1)
jp D

(2)
lkp. If there is no model bias, and

the residual rp = 0, and the expression reduces to the result from (Refregier et al. 2012)

shown in Eqn. 3.32.

〈a(2)
i 〉 = σ2

nF
−1
ik

[
+ F−1

lj D
(1)
jp D

(2)
klp

− F−1
lj D

(1)
jp D

(2)
klp

− 1

2
F−1
lj D

(1)
kp D

(2)
ljp

]
= −1

2
σ2
nF
−1
ik F

−1
lj D

(1)
kp D

(2)
ljp. (3.32)

The presence of the terms scaling with σ2
n gives rise to the noise bias effect. The reason

for this effect can be understood intuitively, as follows: the non-linear nature of the model

fitting problem is causing the final maximum likelihood solution to be a non-linear function

of normally distributed pixel intensities. When averaged over many pixel noise realisations,

these estimators are not normally distributed. In fact, this distribution has a non-zero

skew and which causes its mean to be biased.

3.2.4 Im3shape pipeline

The analyses in this chapter were performed using the Im3shape shear measurement

framework and code. Here I outline the system, which will be described in more detail in

Zuntz et al. (2013).
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Each simulated galaxy is fitted with a model containing two co-centric, co-elliptical

Sérsic components, one de Vaucouleurs bulge (Sérsic index=4) and one exponential disc

(Sérsic index=1). The amplitudes of the bulge and disc were free but the ratio of the

half light radii was fixed to 1.0. They are convolved with the true Moffat PSF model to

produce a model image. Since there is high resolution structure in de Vaucouleurs bulges

I made the models at a higher resolution than the final images. I use a resolution three

times higher in the outer regions and 45 times higher in the central 3×3 pixels of the final

image. Since very highly elliptical images are hard to simulate accurately I restrict the

allowed space of models to those with |e| < 0.95.

I find the peak of the likelihood using the Levenberg-Marquadt method (Lourakis

Jul. 2004) using numerical gradients of each image pixel in the likelihood. I tested the

performance of the optimiser for variety of input galaxy and image parameters to ensure

that the optimiser always converges to a local minimum by evaluating the likelihood in

the neighbourhood of the found best fit point for multiple test noise realisations. In this

nonlinear optimisation problem multiple likelihood modes are possible. However, for our

simple model, I found that usually there was only one local minimum (i.e. the bias results

did not depend on the starting parameters given to the minimiser). I will discuss this

further in (Zuntz et al. 2013).

3.2.5 Simulation parameters

The galaxies used for this study were created using a two component model: a Sérsic profile

of index 4 for the bulge and a Sérsic profile of index 1 for the disc. Both components

have the same centroid, ellipticity and scale radius. The galaxy model used for fitting

encompassed the one used to create the true galaxy image; therefore I am isolating the

noise bias effect from the model bias effect in this study. The PSF was modelled as a

Moffat profile with a FWHM of 2.85 pixels and Moffat β parameter of 3 (see, e.g., Bridle

et al. 2009a for a definition of the Moffat and the notation adopted here). I use the same

PSF in the fit as in the simulated images to prevent any bias effects caused by incorrect

modelling of the PSF. I fit a total of 7 parameters: galaxy centroid x, y; galaxy ellipticity

e1, e2; galaxy size r; bulge flux Fb; and disc flux Fd.

I expect variation in the following physical parameters to have the most significant

influence on the noise bias, and therefore the bias will be evaluated as a function of:
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• Signal-to-noise ratio (SNR),

• Intrinsic galaxy ellipticity,

• PSF ellipticity,

• Size of the galaxy compared to the size of the PSF, expressed as Rgp/Rp, which is

the ratio of the FWHM of the convolved observed object and the FWHM of the PSF.

Note that this is not the same as the parameter I fit. This is because the noise bias

strongly depends on the PSF parameters, and the galaxy radius parameter alone

would not fully capture this dependence.

• Light profile of the galaxy, described by the flux ratio Fb/(Fb + Fd), which is the

flux of the bulge component divided by total flux of the galaxy. For a purely bulge

galaxy, Fb/(Fb + Fd) = 1 and for a disc galaxy Fb/(Fb + Fd) = 0. In our model, I

allow the amplitudes of the components to be negative, so the flux ratio can take

both values Fb/(Fb+Fd) > 1 and Fb/(Fb+Fd) < 0. Therefore, for Fb/(Fb+Fd) > 1,

the galaxy has a negative disc component, which results in the galaxy being less

‘peaky’ than a galaxy with Fb/(Fb +Fd) = 1, and the galaxy model image may even

be more similar to a galaxy with Fb/(Fb + Fd) < 1. An alternative might be to use

a more flexible radial profile, for example a larger number of Sersic components, or

allowing the Sersic indices to be free parameters in the fit.

These parameters will be used to create a model for the noise bias. I expect these

physical parameters to best encapsulate the main dependencies of the bias, although I am

aware that there may exist other statistics that better capture bias variation.

I do not show the effect of the galaxy centroid on the bias, as no significant dependence

on this parameter was found in our experiments. I measured the noise bias for a simulated

galaxy image with identical model parameters, once located in the middle of a pixel and

once on the edge of a pixel. I found no difference in ellipticity bias to our desired precision.

I note that centroiding errors in the case of model fitting may impact ellipticity esti-

mates differently when compared with moment based and stacking methods (e.g. Melchior

et al. 2012). For model fitting approaches, the centroid is just another parameter in the

fitted model. In the simulations, the galaxy centroid is randomised. Should there be any

dependence of the ellipticity bias on the galaxy centroid, uniform randomisation of the
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Parameter Fiducial Deviations

D1 SNR 20 40, 200
D2 Rgp/Rp 1.62 1.41, 1.82
D3 Fb/(Fb + Fd) 0.5 0 , 1
D4 ePSF1 0.05 0, 0.1

Table 3.2. Summary of parameters used for simulations. For D3 two different
parametrisations are shown for clarity.

true galaxy positions within one pixel allows this potential source of bias to be included

fairly in our simulations.

The values for the simulation parameters are summarised in Table 3.2. Their choice is

based on galaxies used in GREAT08. I define a fiducial parameter set and make departures

D1 to D4 in one parameter at a time using the values given in the Table. I restrict our

analysis to SNR values of 20 and greater because I find convergence of the minimiser does

not pass our quality tests at lower values.

However, the SNR values of most interest for upcoming surveys are low, and therefore

I use the lowest SNR I can use with confidence by default for all simulations. I investigate

a SNR value of 200 which matches that of the GREAT08 LowNoise simulation set, plus an

intermediate value of 40 which is also used in GREAT08. By default, I use a galaxy with

half the flux in a bulge and half in a disc. The two perturbations I consider are to pure

bulge and pure disc. Finally I explore the dependence of noise bias on the PSF ellipticity,

spanning the range from zero to 10%.

For the minimisation parameters used in this chapter, Im3shape takes around one

second per galaxy, which is typical for model fitting methods. To obtain our desired

accuracy on noise bias I needed to simulate 2.5 million galaxies for each set of simulation

parameters shown in Table 3.2. Therefore the computations shown in this chapter took

of order 1 year of CPU time. This computational burden limited the number of points I

could show on the figures to 3 per varied parameter.

3.3 Evaluation of the noise bias effect

In this section I evaluate the noise bias as a function of galaxy and image parameters. I

define the noise bias on an ellipticity measurement as

b[ê] = 〈ê〉 − etrue. (3.33)
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Figure 3.1. Histograms of ML parameter estimates for the fiducial galaxy model.
Top panels show the distribution of measured ellipticity (ê1) parameters for true
intrinsic galaxy ellipticity of 0.3 (left) and 0.7 (right), marked with green dashed
line. The empirical mean of these distributions is marked with a red solid line.
The magenta line shows the Gaussian probability distribution centered on the
true ellipticity and with the same variance as the distribution of ê1. The middle
panels shows the distribution of the ML estimates for both ellipticity components
– for true intrinsic ellipticity of [0.3,0.0] (left) and [0.7,0.0] (right), marked with
the plus sign. The mean of this distribution is marked with a cross sign. The
effective boundary on the ellipticity parameter space (|e| = 0.95) is marked with
black dotted line. The bottom panels show histograms of measured size (Rgp/Rp)
and light profile (Fb/(Fb+Fd)) parameters. True values for these parameters are
marked with red solid line – true Rgp/Rp = 1.6 and true Fb/(Fb + Fd).
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I calculate the bias using the following procedure: I create a galaxy image with some true

ellipticity, add a noise map and measure the MLE of the ellipticity. Then, I repeat this

procedure with different noise realisations which results in a distribution of noisy MLE

ellipticities. The difference between the mean of this distribution and the true galaxy

ellipticity is the bias on ellipticity.

The histograms of ML estimates for 300 thousand noise realisations are plotted in

Figure 3.1 to illustrate the nature of the noise bias. The galaxy and image had default

parameters described in Section 3.2.5 and intrinsic ellipticities of e1 = 0.3, e2 = 0 and

e1 = 0.7, e2 = 0 in the left and right upper and middle panels, respectively. The spread

of values comes from the Gaussian noise added to the images to approximate the finite

number of photons arriving on the detector. As discussed in Section 3.2.5, I assume a

default SNR value of 20.

Two effects contribute significantly to the bias on ellipticity for the left hand panels in

which the true ellipticity is e1 = 0.3, e2 = 0. The ellipticity distribution is slightly skewed

away from being a Gaussian. There is a larger tail to high ellipticity values than to negative

ellipticity values. The peak is shifted to lower ellipticities, which is also visible in the two-

dimensional histogram in the middle-left panel of Figure 3.1. Overall there is a net positive

bias to larger ellipticity values, as shown by the vertical solid line which is to be compared

with the vertical dashed line placed at the true value. Although this net positive bias is

hard to see by eye, it is significant at the level of shear measurement accuracy required

from future observations. This is discussed in more detail in the following sections.

Furthermore, the ellipticity parameter space is theoretically bounded at an ellipticity

modulus of unity. This is exacerbated by any realistic measurement method which will

break down just short of unity. The consequence of this effect is visible for a galaxy with

true intrinsic ellipticity of |e| = 0.7, shown in the upper-right and middle-right panels. For

this example, it counteracts the noise bias effect by reducing the amount of overestimation.

For more noisy or smaller galaxies, which will have larger variance in the ellipticity MLEs,

this effect will be stronger and may even cause the ellipticity to be underestimated, see

3.2 for an illustration of this.

No skew of the ê2 distribution is visible on the middle panel of Figure 3.1. In fact,

when egalaxy2 = ePSF2 = 0, then b[ê2] is consistent with zero to our accuracy.

Distributions of other fitted parameters are also biased and skewed, as discussed in R12.

I show histograms of fitted galaxy size and galaxy light profile in the two bottom panels
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of Figure 3.1. The convolved galaxy to PSF size ratio peaks at lower values than the ones

that are used in the input simulation but there is a tail to larger values. Overall the mean

is biased low by around 2%. The flux ratio is skewed to larger values and overestimated

by around 8%. Moreover, this distribution has two modes; one close to the truth, and

one close to Fb/(Fb + Fd) = 1.5. This kind of bimodality is not unexpected in nonlinear

problems. Here it may be related to the characteristics of the Fb/(Fb + Fd) parameter;

one of components in models with Fb/(Fb + Fd) = 1.5 can have a negative flux and the

corresponding image can in fact be more similar to the one with Fb/(Fb + Fd) = 0.5.

The shear measurement biases thus depend on the galaxy intrinsic ellipticity in a

non-trivial way. However, this can be converted into the shear measurement bias for a

population of galaxies at different orientations using the ring test.

3.3.1 Measurement of the bias on the shear

The multiplicative and additive bias was measured using the following procedure.

1. Evaluate the bias on a grid in observed ellipticity: A grid in observed ellipticity

parameter was created for each test galaxy in Table 3.2. This grid consisted of

8 angles on a ring. At each angle, 15 ellipticity magnitudes were used in range

{0, 0.05, . . . , 0.7}. This grid is presented in Figure 3.2. For each point on this grid, I

evaluate 20000 noise realisations, and average them to obtain the bias. The number

of noise realisations is chosen so that the uncertainty on the mean was smaller than

σe < 10−3.

2. Create a model of the bias as a function of observed ellipticity: A third order 2D

polynomial was fit to the surface of the bias. Not all terms in the 2D expansion were

used to avoid overfitting of the data. In particular, I used {1, e1, e
2
1, e

2
2, e

3
1} for fitting

the bias on e1, analogously for e2. This expansion takes into account the inherent

rotational symmetry of the problem: rotating galaxy ellipticity and PSF ellipticity

vectors results in the rotation of the bias vector.

3. Perform a ring-test to calculate m and c: The parametric model of the bias surface

allows us to perform a ring test at any desired intrinsic ellipticity.

The upper panels of Figures 3.2 present the grid (dots) and interpolated surface (colour

scale) of the magnitude of bias as a function of true e1 and e2 for a circular and elliptical
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PSF. I note that for circular PSF within the modelled range, the bias surface has a circular

symmetry which demonstrates that the problem is symmetric and that the effect of the

pixel orientation with respect to the galaxy is not strong. The lower panels of Figure 3.2

present cross sections of the above grid and surface for each angle. The bias on ellipticity

changes sign for large intrinsic ellipticities. This is due to the edge effect of the ellipticity

parameter space, described in 3.3.

3.3.2 Characteristics of the shear bias

For the default galaxy and image parameters I find a multiplicative shear measurement

bias of a few per cent. For an intrinsic galaxy ellipticity of 0.3 I find m = 0.02 which is

an order of magnitude larger than the requirement for upcoming surveys. The additive

shear measurement bias is around c = 2 × 10−3 which is larger than the requirement for

upcoming surveys, and around an order of magnitude larger than the requirement for

far-future surveys.

The multiplicative and additive shear measurement bias is shown as a function of

galaxy and image parameters in Figure 3.3. Data points for those plots are listed in Table

3.3, and the functions I fitted are given in equations in Table 3.4, both in the following

section 3.3.3.

The upper panels show the dependence on the image SNR. This demonstrates clearly

that the bias I observe is truly a noise bias, since the biases tend to zero at high SNR.

Indeed for a SNR of 200 the biases are well below the requirement even for far-future

surveys. The dependence on SNR is well described by a quadratic function, shown as a

fitted line, as discussed anecdotally (Bernstein, priv. com.) and as expected from the

derivations in Hirata & Seljak (2003) and R12.

The upper middle panels of Figure 3.3 show the dependence on the ratio of convolved

galaxy to PSF size, as defined in Section 3.2.5. The derivations in R12 showed that for

Gaussian functions, the bias on the size parameter increases with the size of the PSF (Eq.

17). In our simulations the bias on the shear has a similar trend, as I observe an increased

bias with decreased galaxy size relative to the PSF. The bias is reduced by a factor of

almost three when the convolved galaxy to PSF size increases from 1.41 to the default

value of 1.62. I modelled this dependence by using inverse power expansion with terms in

(Rgp/Rp− 1)−2 and (Rgp/Rp− 1)−3.
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Figure 3.2. Top panels: The colourscale presents the model of the magnitude
of the bias on the estimated galaxy ellipticity, |b[ê1] + ib[ê2]| as a function of
true galaxy ellipticity e1 and e2 for PSF ellipticity ePSF = {0.0, 0.0} (left) and
ePSF = {0.1, 0.0} (right). The model was created using biases measured from
simulations on a grid of true ellipticity values shown by the diamond points.
Middle and bottom panels: bias on ê1 as a function of true absolute ellipticity |e|
for ePSF = {0.0, 0.0} (middle left) and ePSF = {0.1, 0.0} (middle right), Rgp/Rp =
1.4 (bottom left) and pure bulge (bottom right). All other parameters are held at
the fiducial values (see Section 3.2). Lines (dashed magenta , dash - dotted cyan,
dotted blue, solid red) correspond to true ellipticity angles {0, π/8, π/4, 3π/8}
joined with {π/2, 5π/8, 3π/4, 7π/8}. Lines are third order polynomial fits to the
points. The middle left and right panels correspond to the fiducial galaxy model
with circular and highly elliptical PSF, respectively, as in the top panels.
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The lower middle panels of Figure 3.3 show the bias as a function of the flux ratio.

Both multiplicative and additive bias change signs when the galaxy light profile changes

from bulge to disc. Bulges are underestimated and discs are overestimated. This peculiar

behaviour of the bias demonstrates the complexity of this problem. I use a straight line

to fit the points, and this works reasonably well.

The dependence on PSF ellipticity is shown in the bottom panels of Figure 3.3. As

expected, e.g. from Paulin-Henriksson et al. (2008), the dependence of the additive shear

measurement bias is much greater than that of the multiplicative bias. The additive shear

bias dependence is very close to linear (shown by the fitted lines). Rotational symmetries

in the problem, also visible on Figure 3.2 indicate that there is very little dependence on

the pixel orientation with respect to the PSF and galaxy. This essentially means that I

can use results for the PSF aligned with the x - axis for any other PSF angle, by rotating

the coordinate system. Moreover, this indicates that the size of a pixel with respect to the

size of the convolved object does not play a significant role for the sizes used here (size of

the postage stamp was 39 pixels and of convolved object FWHM was 4.5 pixels).

For the fiducial galaxy model I find that the multiplicative bias on the shear is positive.

In contrast, many methods tested on the STEP and GREAT08/10 simulation sets under-

estimate the shear (i.e. report a negative m). I note, however, that the characteristics

of the noise bias will depend not only on the shear measurement method, but also on

the distribution of true galaxy surface brightness profiles (as shown by the Fb/(Fb + Fd)

dependence in 3.3). Moreover, the results from the STEP and GREAT08/10 challenges

are affected by other types of biases, such as underfitting and centroiding, which are not

included here.

3.3.3 Parameters and functions used to create models of the bias on

ellipticity and shear

In this section I list the parameters for the fitting functions which characterise the bias

on the shear as a function of galaxy size, signal to noise ratio, PSF ellipticity and galaxy

morphology.

Table 3.3 contains the multiplicative and additive bias measurements for all galaxies

used in this work. See Appendix 3.3.1 for details of how these values were calculated.

Fiducial galaxy parameters were: SNR = 20, Rgp/Rp = 1.6, FWHMPSF = 2.85, ePSF =
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{0.05, 0}, βMoffat = 3, fluxbulge/fluxtotal = 0.5, rbulge/rdisc = 1.0. Table 3.4 contains

equations of the functions in Figure 3.3. Table 3.5 contains the parameters of polynomial

function fitted to the bias on ellipticity, for example in Figure 3.2. The equation used with

these parameters is

b[ê1] = a
(0)
1 + a

(1)
1 ê1 + a

(2)
1 ê2

1 + a
(3)
1 ê2

1ê2 + a
(4)
1 ê3

1, (3.34)

accordingly for b[ê2] with parameters a2.

3.4 Noise bias calibration

In this section I investigate how the bias measurements can be used to calibrate out the

noise bias effect. First, I create a model of the bias on the ellipticity measurement as a

function of four measured parameters: ê1 , ê2 , R̂gp/Rp , ̂Fb/(Fb + Fd), similar to Figure

3.2 (note that I do not directly use the functions presented on Figure 3.3, as they show

a bias on shear in the form of m and c, instead of the bias on the ellipticity). I apply

an additive correction predicted by our model directly to the measured ellipticity values.

Finally I verify the accuracy of this procedure by testing it using a ring test consisting of

10 million noisy fiducial galaxies.

This approach will not provide a perfect calibration, as our model of biases is calculated

for a set of galaxies with particular true galaxy and image properties. In practice I will

only know the measured galaxy parameters, which are noisy, as illustrated in Figure 3.1.

Therefore, if I read off the bias values from the measurements of the noisy measured galaxy

parameters they will not be exactly the correct bias values for that galaxy. In this section,

I investigate the scale of this effect.

The estimator of the ellipticity ê is biased, so that ê = ẽ+ b[ê], where ẽ is the unbiased

estimator. By definition ẽ averaged over noise realisations is equal to the true ellipticity,

so that 〈ẽ〉 = etrue.

I estimate the true shear g with an estimator ĝ in a ring test. I write the following

equations to show mathematically what is happening when I do the correction on the
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individual galaxy ellipticities.

ĝ = 〈〈êl〉N 〉R = 〈〈ẽl〉N + b[êl]〉R (3.35)

= g + 〈b[êl]〉R (3.36)

where el = e + g is the lensed ellipticity, and subscripts N and R denote averages over

noise realisations and around the ring respectively. Eq. 3.36 shows that the bias of the

shear estimator will be equal to the bias on the lensed ellipticity e+g, averaged over noise

realisations and the ring. This is the bias I aim to calibrate.

I create a correction model which describes b[ê] as a function of four galaxy parameters,

i.e.

b[ê] = β(θ) = β(e1, e2, Rgp/Rp, Fb/(Fb + Fd)) (3.37)

Then I apply this correction to the noisy estimates θ̂, creating an estimator of the correction

β(θ̂) and I update our ellipticity estimate to be

êβ ← ê− β(θ̂). (3.38)

Using this correction in the ring test implies

ĝβ = g + 〈b[ê+ g]− 〈β(θ̂)〉N 〉R. (3.39)

Because I am applying the correction to the noisy maximum likelihood estimates, the

correction itself can be biased under noise, so that b[β(ê, . . . )] = 〈β(θ̂)〉 − b[ê]. Including

this ‘bias on the correction’, I expect the the final bias on the shear after applying our

calibration procedure to be

b[ĝβ] = 〈〈b[β(ê+ g)]〉N 〉R (3.40)

cβ = 〈〈b[β(ê)]〉N 〉R (3.41)

mβ =
〈〈b[β(ê+ g)]〉N 〉R − 〈〈b[β(ê)]〉N 〉R

g
. (3.42)

Testing this procedure will include finding out how big the term in Eq. 3.41 is.

In practice I create the model of the bias β(θ) (Eq. 3.37) using a learning algorithm
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based on Radial Basis Functions (RBF) Interpolation6, trained on all our simulated results.

This learning algorithm performed a regression task, and interpolated the measured points

in the θ space predicting the value of β for any new parameter vector. This algorithm used

a nonparametric kernel method. Then I use Eq. 3.38 to correct the ellipticity estimates.

The calibration procedure was tested by generating nearly ten million galaxy images

using the default galaxy parameters. The ring test was performed as follows: a set of

galaxies was simulated with the galaxy intrinsic ellipticity angles equally spaced at 16

values from 0 to π, (i) with no shear applied (ii) with a shear of g1 = 0.1 applied. In

total 300,000 galaxies were simulated at each angle in the ring, for each shear value. To

compute the uncalibrated shear measurement bias, the measured ellipticity was averaged

over all galaxies with a given shear to obtain a shear estimate for that population. Then

a straight line was fitted to the resulting shear estimates as a function of input shear

to obtain the usual m and c. To compute the calibrated shear measurement bias, the

measured ellipticities were corrected using Eq. 3.38 before averaging to obtain the shear

estimate.

The uncalibrated and calibrated shear measurement biases are presented in Figure 3.4.

I see that the uncalibrated shear measurement biases are well outside the requirement for

upcoming surveys, as discussed earlier. The calibration reduces the additive bias by a

factor of around three, and the multiplicative bias by a factor of around ten. I find

that the bias term in Eq. 3.41 is insignificantly small to the accuracy afforded by our

simulations. Therefore the calibrated biases are now within the requirement for upcoming

surveys for both additive and multiplicative shear biases.

3.5 Conclusions

In this chapter I have investigated the effect of noise on shear measurement from galaxy

images. I have found that this can significantly bias shear measurement from realistic

images, even though the bias goes away completely for images with lower noise levels. This

was previously studied in (Hirata et al. 2004) and R12, who demonstrated the existence

of this noise bias effect. I quantified noise bias using images simulated from more realistic

galaxy models and I used a forward fitting shear measurement method which fitted a

matching set of galaxy models to the simulations (Im3shape, Zuntz et al. (2013)). These

6http://www.mathworks.com/matlabcentral/fileexchange/10056
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Figure 3.4. Values of multiplicative (m) and additive (c) bias for uncalibrated
(blue) and calibrated (red) shear estimates. Ellipses indicate one sigma error
bars.

models are based on observationally-motivated combinations of exponential disk and de

Vaucouleurs bulge models and are broadly representative of the light profiles of realistic

galaxies. They have also formed the basis of previous weak lensing simulation programmes

(Heymans et al. 2006; Bridle et al. 2009a; Kitching et al. 2013). I use a maximum likelihood

estimator (MLE) to obtain galaxy ellipticity estimates from the images, and use these

ellipticity estimates as our noisy shear estimates. I find that the shear measurement

biases often exceed ∼1% and even approach ∼10% for the smallest galaxies and highest

noise values I consider in this chapter.

One feature of the simulations presented is that they are deliberately internal: test

galaxies are generated using the same models and routines used later for fitting them, the

only difference being the addition of noise. In this way I are able to explore the effects of

noise biases in isolation from the contribution of underfitting or model bias (e.g. Melchior

et al. 2009; Voigt & Bridle 2009; Bernstein 2010). The fact that the biases I detect are

considerable, even when fitting with perfect knowledge of the parametric galaxy model,

is striking. I conclude that, for many methods, bias from unavoidable noise in galaxy

images must be considered an important potential source of systematic error when seeking

shear inference at sub-percent level accuracy. The existence of noise bias is likely to be a

common feature to many shape measurement methods (Hirata et al. 2004; R12). Unless

shape measurement methods are theoretically constructed to avoid noise bias, empirical
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calibration with simulations is necessary.

I quantified the noise bias as a function of image and galaxy parameters and found a

strong dependence. I found that the dependence on image signal-to-noise ratio is inverse

square, as expected from symmetry arguments (e.g. see R12). The dependence on galaxy

size is quite non-linear and rises steeply as the galaxy size decreases relative to the PSF size.

The bias depends on the galaxy profile in a complicated way. I find that for our fiducial

parameters shears are overestimated for exponential disc galaxies and underestimated for

de Vaucouleurs bulge galaxies. The dependence on bulge to total flux ratio is reasonably

consistent with a linear relation. There is a good linear relation between the additive shear

measurement noise bias and the PSF ellipticity.

Many shape measurement methods are potentially subject to noise bias, and for these

methods this sort of calibration will be an important step in order to reduce systematic

errors below the level required for upcoming survey datasets. I illustrate a correction

scheme based on a model of the measured biases, as a function of observed galaxy prop-

erties. Note that this is not expected to remove the bias completely because the observed

galaxy properties are not the true galaxy properties and therefore I will be using slightly

the wrong bias correction. This correction was able to reduce ellipticity estimator biases

to lower levels than those required for the upcoming lensing surveys, for a fiducial galaxy

with SNR=20 and a typical intrinsic ellipticity of magnitude 0.3.

There is a small residual bias remaining after this first level of correction. This is

due to the scatter and bias in measured galaxy parameters about their true values. This

scatter and bias is an output of the simulations and could therefore be propagated into a

second level of bias correction which would reduce the residual bias yet further, into the

realm of far-future surveys.

The calibration scheme I proposed can only be applied to a method which, in addition

to ellipticity, also produces estimates of other parameters; it will probably be difficult to

use it with a method such as KSB, which primarily aims to estimate only the ellipticity

parameters.

This calibration approach is extremely computationally expensive and would ideally be

carried out for a large range and sampling of image and galaxy parameters. The resolution

of our results was limited by the available computing time. The final results shown in this

chapter took over 1 year of CPU time.

These results are obtained using the same two-component co-elliptical galaxy model
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in the simulations and in the fits. In practice it will be necessary to investigate more

complicated galaxy morphologies, which may not be precisely modelled in the fits. See

(Zuntz et al. 2013) for noise bias calibration applied to GREAT08 data.

For future surveys the simulated data must be carefully constructed in order to recreate

realistic observing conditions, and the realistic properties of the underlying galaxies (the

latter requirement poses greater difficulties than the former). The deep imaging of the

real sky is potentially an expensive overhead for future surveys, but may prove necessary

for confidence in the final results. Accurate estimates of gravitational shear from methods

affected by noise bias will rely on consistent strategies for measuring and correcting these

systematic effects.

The presented calibration scheme does not use the information about the galaxy pa-

rameters distribution in the universe. I found that the measured galaxy parameters were

a sufficiently good proxy for the true galaxy parameters that the noise bias could be cor-

rected well enough for upcoming surveys. If this result were generally true then this places

less stringent requirements on the simulations because the galaxy population demograph-

ics would not need to match exactly with reality, and the simulations would only have

to span a realistic range of galaxy parameters. However, different calibration schemes

could be created based on the distributions of galaxy parameters. The simplest solution

would be to calculate one m and c for the whole population of galaxies, randomly drawing

not only noise maps but also galaxy and image parameters from histograms of measured

parameters from galaxies in the survey. Using this method is not limited to maximum

likelihood fitting; potentially all shear measurements methods could be calibrated that

way.

I have used a white Gaussian noise model. In general it should be possible to repeat this

procedure for a case of correlated noise. It should also be possible to repeat the procedure

for Poisson noise. Our bias results will also depend on the number of parameters used in

the fitting. I have used seven free parameters and fixed the ratio of radii of the bulge and

disc galaxy components to unity. I also assumed no constant background in the image,

whereas this could also be included as a free parameter in the fit. An uncertain variable

background level would complicate the analysis further.

Another approach would be to use a fully Bayesian analysis: use the full likelihood dis-

tribution (or samples) of ellipticity given the noisy images and propagate this uncertainty

to the cosmological parameters. In this case the calibration would not be necessary.



Chapter 4

Sérsic galaxy models in weak

lensing shape measurement:

model bias, noise bias and their

interaction

Cosmic shear is a powerful probe of cosmological parameters, but its potential can be

fully utilised only if galaxy shapes are measured with great accuracy. Two major effects

have been identified which are likely to account for most of the bias seen for maximum

likelihood methods in recent shear measurement challenges. Model bias occurs when the

true galaxy shape is not well represented by the fitted model. Noise bias occurs due

to the non-linear relationship between image pixels and galaxy shape. In this chapter I

investigate the potential interplay between these two effects when an imperfect model is

used in the presence of high noise. I present analytical expressions for this bias, which

depends on the residual difference between the model and real data. They can lead to

biases not accounted for in previous calibration schemes.

By measuring the model bias, noise bias and their interaction, I provide a complete statisti-

cal framework for measuring galaxy shapes with model fitting methods from GRavitational

lEnsing Accuracy Testing (GREAT)-like images. I demonstrate the noise and model in-

teraction bias using a simple toy model, which indicates that this effect can potentially be

95
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significant. Using real galaxy images from the Cosmological Evolution Survey (COSMOS)

I quantify the strength of the model bias, noise bias and their interaction. I find that the

interaction term is often a similar size to the model bias term, and is smaller than the

requirements of current and near future galaxy surveys.

4.1 Introduction

Weak gravitational lensing is a very important and promising probe of cosmology (see

Schneider 1995; Bartelmann & Schneider 1999; Hoekstra & Jain 2008 for reviews). Mat-

ter between a distant galaxy and an observer causes the image of the galaxy to be distorted.

This distortion is called gravitational lensing. Almost all distant galaxies I observe are

lensed, mostly only very slightly, so that the observed image is sheared by just a few per-

cent. Weak gravitational lensing shear is particularly effective in constraining cosmological

model parameters (Albrecht et al. 2006; Peacock et al. 2006; Fu et al. 2007; Kilbinger et al.

2013). Measuring the spatial correlations of those shear maps in the tomographic bins of

redshift can shed light on the evolution of dark energy in time (Hu 2002; Takada & Jain

2005; Huff et al. 2011; Heymans et al. 2013; Benjamin et al. 2012) and modified gravity

(Simpson et al. 2012; Kirk et al. 2013).

Several projects are planning to measure cosmic shear using optical imaging. The

KIlo-Degree Survey (KIDS)1, the Dark Energy Survey (DES)2, the Hyper Suprime-Cam

(HSC) survey3, the Large Synoptic Survey Telescope (LSST)4, Euclid5 and Wide Field

Infrared Survey Telescope (WFIRST)6.

However, accurate measurement of cosmic shear has proved to be a challenging task

(Heymans et al. 2006; Massey et al. 2006; Bridle et al. 2009a; Kitching et al. 2013). There

is a range of systematic effects that can mimic a shear signal. In this chapter, I focus on

biases in the measurement of shear. Other important systematics are: intrinsic alignments

of galaxy ellipticities, photometric redshift estimates and modelling of the clustering of

matter on small scales in the presence of baryons.

Prior to shearing by large scale structure, galaxies are already intrinsically elliptical.

1http://kids.strw.leidenuniv.nl/
2http://www.darkenergysurvey.org
3http://www.naoj.org/Projects/HSC/HSCProject.html
4http://www.lsst.org
5http://sci.esa.int/euclid
6http://exep.jpl.nasa.gov/programElements/wfirst/
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This ellipticity is oriented randomly on the sky in the absence of intrinsic alignments.

Then a few percent change in this ellipticity is induced as the light travels from the galaxy

to the observer through intervening matter. During the observation process, the images

are further distorted by a telescope Point Spread Function (PSF) and, in case of ground-

based observations, also by atmosphere turbulence. Additionally the image is pixelised

by the detectors. Due to the finite number of photons arriving on the detector during an

exposure, the galaxy images are noisy. Additional noise is induced by the CCD readout

process in the detector hardware.

The complexity of this forward process makes the unbiased measurement of the shear

signal very challenging. Bonnet & Mellier (1995) showed that for very good quality data,

simple quadrupole moments of the images can be used as unbiased shear estimators.

Example methods utilising this approach are Kaiser et al. (1994); Kaiser (1999); Hirata &

Seljak (2003); Okura & Futamase (2010). For PSF convolved galaxy images, one can use

DEconvolution In MOment Space (DEIMOS Melchior et al. 2012) to remove the effects

of the PSF from the quadrupole.

Model fitting methods use a parametric model for the galaxy image to create a like-

lihood function (often multiplied by the prior function) in all parameters, from which

ellipticity estimators are then extracted. Galaxy images are often modelled by Sérsic

functions: Im3shape (Zuntz et al. 2013) uses a 7-parameter bulge + disc model and infers

the parameter values by maximum likelihood estimation. Miller et al. (2007, 2012) uses

a similar model, and mean posterior for the estimator. Another frequently used galaxy

model is a decomposition into a Gauss-Laguerre orthogonal set (Refregier 2001; Bernstein

& Jarvis 2001; Nakajima & Bernstein 2006), ‘shapelets’. The complexity of this model

can be controlled by changing the number of coefficients in the shapelet expansion.

In the context of model fitting methods, if the model is not able to represent realistic

galaxy morphologies well enough, then the shape estimator will be biased (Bernstein 2010;

Voigt & Bridle 2009). This bias is often called the model bias or underfitting bias.

In the presence of pixel noise on the image, the unweighted quadrupole moment will

give an unbiased estimate of the quadrupole, with a very large variance. However, the

shear is defined as a ratio of quadrupole moments, and Hirata & Seljak (2003); Melchior

& Viola (2012); Okura & Futamase (2012) showed that this induced non-linearity leads

to a bias. This bias is often called the noise bias.

For model fitting methods, the noise related bias was studied in Refregier et al. (2012
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hereafter R12), where analytical expressions were given for the estimator bias. It presented

the noise bias as a simple statistical problem, assuming that the true galaxy model was

perfectly known. The noise was added to images which were created by the same model

function which then later was used to fit it. In (Kacprzak et al. 2012 hereafter K12) I

have used the Sérsic galaxy models to quantify the magnitude of noise bias and presented

a calibration scheme to correct for it. Again, here the true galaxy model was perfectly

known. In Zuntz et al. (2013) I have further developed the calibration scheme. It was then

applied to the GREAT08 simulation set (Bridle et al. 2009b,a), with satisfactory results

on most challenge branches.

In this chapter I investigate the next piece in the puzzle: what if model biases and

noise biases occur at the same time? This will certainly be the case for real galaxy surveys:

the galaxies have realistic morphology and the images are noisy. In that situation there

may be some interaction between noise and model bias.

Figure 4.1 demonstrates this concept. Is shows two effects studied so far:

• model bias - when the galaxy image is noiseless, and the fitted model does not

represent the complicated galaxy features well

• noise bias - when galaxy image is noisy, and the fitted model is perfectly representing

the galaxy

and the effect I investigate more in this work:

• model bias, noise bias and their interaction - when the true galaxy has realistic

morphology, the fitted model does not represent the galaxy well, and the observed

image is noisy.

I present analytic equations for the noise bias when the true galaxy model is not

perfectly known. Then I use a toy model to show that the interaction terms have the

potential to be significant. To evaluate the significance of this interaction terms I use

26113 real galaxy images from the COSMOS survey (Mandelbaum et al. 2011), available

in the GalSim7 toolkit (RoI et al., in prep.).

Therefore, by evaluating the model bias, noise bias and their interaction, I attempt to

answer the question: can I use Sérsic profiles to represent galaxies in fitting to realistic

noisy data? However, our answer is limited to a simple bulge + disc galaxy model, which

7github.com/GalSim-developers/GalSim

github.com/GalSim-developers/GalSim
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Figure 4.1. A demonstration of the concept of noise and model bias interac-
tion. Left-hand side postage stamps show the images which are going to be fit
with a parametric galaxy model. Right-hand side postage stamps represent the
images of best fitting models. In this work I compare the results of these two
simulations. Simulation 1 uses the real galaxy image directly to measure noise
bias, model bias and their interaction jointly in a single step (blue dot-dashed
ellipse). Simulation 2 first finds the best fitting parametric model to a real galaxy
image (black solid galaxy cartoon), and create its model image (dashed magenta
ellipse). This process introduces the model bias. The next step is to measure the
noise bias using this best fitting image as the true image. The fit to the noisy
image is represented by red dotted ellipse. In this simulation noise and model
bias interaction terms are absent. The difference of the results of Simulations 1
and 2 measures the strength of noise and model bias interaction terms.
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is commonly used in model fitting shape measurement methods for weak lensing. Also, I

use the PSF and pixel size that corresponds to the parameters of a conservative upcoming

ground-based Stage III survey. It is possible to perform similar analysis for different galaxy

models and telescope parameters, as well as for different types of estimator (maximum

posterior, mean posterior).

Calibration of biases in shear measurement is becoming an increasingly important part

of shear pipelines. Miller et al. (2012) used a calibration for noise bias as a function of

galaxy size and signal to noise ratio. Systematic effects may depend on many different

galaxy and image quality properties, and increasing the accuracy of the bias measurement

will require including more of these effects into the pipeline. This will increase the com-

plexity of the modelling and the computational cost of the simulation. Moreover, it will

require knowledge of the true underlying parameters for a galaxy sample, either in the

form of a representative calibration sample of images, or an inferred galaxy parameters

distribution. Refregier & Amara (2014) introduced a procedure to infer these parameters

via a Monte Carlo Control Loops approach. So far, in various simulations, galaxy images

were often created using a parametric Sérsic model function. An important question is: are

the realistic galaxy morphologies important for shear bias measurement? The upcoming

GREAT3 challenge (Mandelbaum et al. 2013, in prep) is planning to answer this question

by testing using images of galaxies in the COSMOS survey. In this chapter I provide an

initial answer to this question. A more detailed study of galaxy model selection is going

to be presented in (Voigt et al. 2013, in prep.) and calibration sample requirements in

(Hirsch et al. 2013 in prep.).

It is worth noting that some shear measurement methods apply a fully Bayesian formal-

ism and use a full posterior shear probability (Bernstein & Armstrong 2013) in subsequent

analyses. These methods are considered to be free of noise and model related biases and

present a promising alternative approach to problems studied in this chapter.

This chapter is organised as follows. Section 4.2 contains the principles of cosmic

shear analysis. Section 3.2.3 presented the analytic formulae for noise and model bias

interaction, as a generalisation of the noise bias equations derived in R12. I present a toy

model for the problem in section 4.3. In Section 4.4 I use the COSMOS sample to evaluate

the noise and model biases, and show the significance of the interaction terms. I conclude

in Section 4.5.
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4.2 Systematic errors in model fitting

In this section, first I present the basics of the model fitting approach to shear measurement

and then discuss the biases it introduces. I discuss the requirements on this bias in the

context of current and future surveys. Then I introduce analytical expressions for the

noise bias, including interaction terms with the model bias.

4.2.1 Shear and ellipticity

Cosmic shear as a cosmological observable can be related to the gravitational potential

between the distant source galaxy and an observer (for a review see Bernstein & Jarvis

2001). Ellipticity is defined as a complex number

e =
a− b
a+ b

e2iφ, (4.1)

where a and b are the semi-major and semi-minor axes, respectively, and φ is the angle

(measured anticlockwise) between the x-axis and the major axis of the ellipse. The ob-

served (lensed) galaxy ellipticity is modified by the complex shear g = g1 + ig2 in the

following way

el =
ei + g

1 + g∗ei
. (4.2)

In the absence of intrinsic alignments the lensed galaxy ellipticity is an unbiased shear

estimator (Seitz & Schneider 1996).

To recover this ellipticity, the shear measurement methods correct for the PSF and the

pixel noise effects. This procedure can introduce a bias. Usually shear bias is parametrised

with a multiplicative m and additive c component

γ̂j = (1 +mj)γ
t
j + cj , (4.3)

where γ̂ is the estimated shear and γtj is the true shear. Additive shear bias is usually

highly dependent on the PSF ellipticity and can be probed using the star-galaxy correlation

function (e.g. Miller et al. 2012), which can be measured from real data. Efforts are made

to calibrate it using simulations (Miller et al. 2012 K12). Requirements for multiplicative

and additive bias are summarised in Table 4.1, derived from Amara & Refregier (2007).
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Survey area (sq deg) mi ci
Current 200 0.02 0.001

Upcoming future 5000 0.004 0.0006
Far future 20000 0.001 0.0003

Table 4.1. Requirements for the multiplicative and additive bias on the shear
for current, upcoming and far future surveys, based on Amara & Refregier (2007)

.

When fitting a galaxy model with co-elliptical isophotes, this ellipticity is often amongst

the model parameters. An estimator is created using a likelihood function, which in the

presence of white Gaussian noise has the form

−2 logL =
1

σ2

∑
p

[gp + np − fp(a)]2 (4.4)

where p is the pixel index running from 1 to N , where N is the number of pixels, a is a set

of variable model parameters, gp is the noiseless galaxy image, np is additive noise with

standard deviation σn and fp is a model function.

In this approach, the two main systematic effects are noise bias and model bias. Model

bias has so far been studied in the context of low noise (or noiseless) images. Lewis (2009);

Voigt & Bridle (2009); Bernstein (2010) demonstrated that fitting a galaxy image with a

model which consists of a basis set (or degrees of freedom) smaller than in the true galaxy

image, then the model fitting method can be biased. This bias can even be larger than the

current survey requirements. Voigt et al. (2013, in prep) quantify the model bias using

real galaxy images from the COSMOS survey, for different galaxy models used in the fit.

Noise bias arises when the observed galaxy images contain pixel noise. K12 showed

that for a galaxy with noise level of S/N > 200 noise bias is negligible. However, for

galaxies with S/N ≈ 20 it can introduce a multiplicative bias up to m = 0.08, which

is large compared to our requirements for future surveys (see Table 4.1). This is a very

important systematic effect that will have to be accounted for to utilise the full statistical

power of a survey.

R12 showed analytic expressions for the noise bias in the case when the true model is

perfectly known. The key idea was that the value of the parameter estimator obtained

from the noisy data lies near the true value for this parameter, so an expansion can be

used to calculate it. It turns out that the terms which depend on the first power of

noise variance disappear when averaged over pixel noise realisations. Second order terms,
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however, give rise to the noise bias. The bias was quantified for a simple Gaussian galaxy

model using both analytical expressions and simulation, which were found to be in good

agreement.

In section 3.2.3 I expanded the derivation in R12 to the case when the true galaxy

model is not known.

4.3 Toy model for the problem

To demonstrate the noise and model bias interaction I create a simple toy example. Galaxy

models used in this example will be single Sérsic profiles (Sérsic 1963), where surface

brightness at image position x:

I(x) = A exp(−k[(x− x0)
ᵀ
C−1(x− x0)]1/(2n)) (4.5)

where x0 is galaxy centeriod, C is galaxy covariance matrix (see e.g. Voigt & Bridle (2009)

for relation to ellipticity), k = 1.9992n− 0.3271 and n is the Sérsic index. Therefore, the

model has six parameters which are being fit: two centroid parameters, two ellipticity

parameters, a scale radius and an amplitude parameter.

Instead of a real galaxy, I use a single Sérsic profile with a fixed index. Hereafter I will

refer to that galaxy as the real galaxy, as it will serve as a real galaxy equivalent in our

toy example, even though it is created using a Sérsic function. I fit it with another single

Sérsic profile, but with a different index. In this section I will refer to it as the galaxy

model. This way I introduce model bias - the real galaxy is created using a Sérsic profile

with a different index than the model I fit.

The impact of the noise and model interaction bias terms introduced in Eqn. 3.31 can

be measured in the following way (Fig. 4.1). I use the real galaxy, add noise to it, and

measure the ellipticity by fitting the galaxy model. This process will include the noise

bias, model bias and their interaction terms, which are dependent on the pixel residual

between the best fit to the noiseless image and the real galaxy image (Eqn. ??). This

process is described in Simulation 1 in Fig 4.1. These residuals will be zero if instead of

the real galaxy image I use the best-fitting galaxy model (Simulation 2 in Fig 4.1). This

is the pure noise bias scenario, as described in Eqn. 3.32. To measure the model bias

and noise bias jointly, I use a two step procedure. In step 1 I obtain the best fit image

to the noise-free real galaxy. Thus I obtain the model bias measurement. In step 2 I use
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Figure 4.2. Noise and model bias toy model. The upper and middle panels
show the galaxy ellipticity estimated when a wrong Sérsic index Sj is used. True
ellipticity was etrue1 = 0.2. True Sérsic index was 1 and 4 for the top and middle
panels respectively. Additionally, a star marks the true Sérsic index, to guide
the eye. Magenta dash-dotted line with cross dot markers shows the model bias;
ellipticity estimated by a fit with Sérsic Sj in the absence of noise. Blue and red
lines with + and ×markers, respectively, show the mean ellipticity measured from
galaxy image with added noise, when: (1) galaxy image has the true Sérsic index,
(2) galaxy image is the best fit with Sérsic index Sj . Bottom panel shows the
fractional difference between [(1)− (2)]/etrue1 . Grey bands mark the requirement
on multiplicative bias for current and upcoming surveys.
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this model image to measure the mean of noise realisations by repeatedly adding noise

to it. The strength of the noise and model bias interaction terms scaled by the residual

rp in Eqn. 3.32 can be measured by taking the difference between the mean of the noise

realisations from the cases when the true image is a real galaxy and when the true image

is the best-fitting galaxy, obtained earlier.

Fig. 4.2, upper and middle panels 2 show these cases when the real galaxy is a Sérsic

with an index of 1 and 4, respectively. I used a Moffat PSF with FWHM = 2.85 pixels,

and kept the half light radius of these galaxies so that the FWHM of the convolved object

divided by the FWHM of the PSF is 1.4. These settings were used in the GREAT08

challenge and in previous noise bias work. The true ellipticity of the real galaxy was set

to etrue
1 = 0.2. For the noisy cases, I used S/N = 20, where S/N =

√∑N
p=1 g

2
p/σnoise

(see Bridle et al. 2009a). This is an optimal, matched-filter S/N: it uses the profile

which is assumed to be known in advance. In practice, it is not possible to window

aperture or model-fitting S/N using the precisely known profile, and so real data S/N are

always lower. They can commonly be lower by as much as a factor of 2: the SExtractor

FLUX_AUTO / FLUXERR_AUTO often gives∼ 0.5 the reported S/N of the (Bridle et al. 2009a)

definition (for typical SExtractor settings in simulations of deep optical astronomical data).

Therefore the S/N minimum explored therefore corresponds approximately to what would

be designated as ∼ 10 in real data, such as CFHTLenS.

Fig. 4.2 shows the mean measured ellipticity efit
1 as a function of the Sérsic index

of the fitted model. The magenta dashed line shows the pure model bias measurement.

There was no noise on the images in this case: the mean is taken from the average of

simulated images, which had a centroid randomly sampled within a central pixel in the

image. Standard errors for this measurement are so small that they are not visible on this

plot. I see that if the correct model is used, then the measured ellipticity is equal to the

true ellipticity etrue
1 = 0.2. This point is additionally marked with a star. For the real

galaxy case with a Sérsic index of 4 (middle panel), ellipticity is underestimated when the

index of the fit is smaller than 4. The same applies to the case when the Sérsic index of

the real galaxy is 1. For that case, ellipticity is overestimated if the fitted index is greater

than 1.

The mean of the noisy realisations for the noise bias + model bias + their interaction

is marked by a blue solid line with plus + markers. For this case I were adding noise to

the real galaxy images (Sérsic profiles with indices 1 for the top panel and 4 for the middle
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true image m1 m2 std(m1) std(m2) c1 c2 std(c1) std(c2)

real galaxies 0.0238 0.0227 0.0006 0.0006 -0.0019 -0.0018 0.0001 0.0001
best-fitting galaxies 0.0230 0.0218 0.0007 0.0006 -0.0017 -0.0017 0.0001 0.0001

difference 0.0008 0.0009 0.0009 0.0009 -0.0001 -0.0001 0.0001 0.0001

Table 4.2. Multiplicative and additive biases measured from the noise realisa-
tions with S/N = 20. This is the bias when all galaxies are included, without
splitting into size or redshift bins. The difference is the strength of the model
and noise bias interaction terms.

panel). Noise bias effects cause overestimation of ellipticity, relative to the underlying

model bias, for fitted Sérsic indices of 0.5 − 3. For indices 3 − 4 the ellipticity becomes

underestimated.

The red solid line with cross × markers shows the model bias and noise bias without

the interaction terms. To obtain it, I use the best fit model image to the noiseless real

galaxy with a given Sérsic index (x-axis). Then I add noise realisations with the same

noise variance as in the case above. The mean of noise realisations is marked with the

red line and cross points. The interaction terms cause the blue and red lines to differ.

When the true model is used in the fit (Sérsic index 1 and 4 for the left and right panels

respectively), then noise and model interaction bias terms are zero, and mean biases are

consistent.

The bottom panel shows the difference between the noise + model + interaction mea-

surement bias and the noise + model only bias, which probes the strength of the interaction

terms. In this case I plotted this difference as the fractional bias, δeinteract/etrue. This frac-

tional bias will be similar to the multiplicative bias in Eqn. 4.3 measured from a ring test

(Nakajima & Bernstein 2006). Red crosses and green circles correspond to cases where

the true Sérsic index was 1 and 4, respectively. The current and upcoming survey require-

ments are shown as light and dark grey bands, respectively. In the toy example, noise and

model interaction bias terms in Eqn. 3.31 can be as significant as δeinteract/etrue = 0.02.

This demonstrates the potential significant impact of effect: this contribution can exceed

the upcoming survey requirements.

The difference is smaller than the effects of the noise bias or model bias alone. In frac-

tional terms, the noise bias on ellipticity was of order δenoise = (〈efit〉 − etrue)/etrue = 0.1.

The maximum model bias measured in this example was δemodel = (〈efit〉 − etrue)/etrue =

0.2 when the real galaxy was created using Sérsic index Sj = 1 and fitted model galaxy

had Sérsic index of Sj = 4.
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I have demonstrated that using the wrong galaxy model can give rise to significant

noise and model interaction bias terms. However, this bias will strongly depend on the

model I use and the real galaxy morphologies. In the next section I quantify the strength

of the model bias, noise bias and their interaction using real galaxies from the COSMOS

survey, and use a more realistic bulge + disc galaxy model to perform the fit.

4.4 Biases for real galaxies in the COSMOS survey

In this section I evaluate the strength of the noise and model bias interaction terms using

real galaxy postage stamp images from the COSMOS survey (Mandelbaum et al. 2011),

available for download alongside the GalSim software8 (RoI et al., in prep.). This training

dataset consists of 261113 galaxy images, selected with magnitudes iF814W < 22.5 from

the full COSMOS sample. This sample comes from May 2011 release, see SHERA web

page9 for details.

The comparison is done in a very similar way to that in Section 4.3: I compare the

mean of the estimators from noisy images for the case when the true image is a real galaxy,

relative to the case when the true image is a best fit of our model to the real galaxy

without added noise. This time, I use more a realistic fitted galaxy model, consisting of

two components: bulge and disc. The bulge component is a de Vaucouleurs profile with

Sérsic index n = 4, disc is an Exponential profile with Sérsic index n = 1, ratio of the half

light radii of the components was set to rB/rD = 1. Both components were fixed to have

the same centroids and ellpticities.This model was previously used in Zuntz et al. (2013)

and K12.

This time, however, I can not afford to repeat this procedure for all 26113 galaxies

available in the COSMOS sample, due to computational reasons; constraining the multi-

plicative bias to σm < 0.004 for a single galaxy image with S/N = 20 requires of order 4

million noise realisations. Instead, I group those galaxies in bins of size, redshift, morpho-

logical classification, and also model bias. For each galaxy in a bin I use a number of ring

tests, with different shears.

I create a set of 8 shears by using all pairs of g1, g2 ∈ {−0.1, 0.0, 0.1}, except for

g1 = g2 = 0.0. The reason for missing out this middle point is that it brings very little

statistical power for constraining the multiplicative bias, whereas additive bias is already

8https://github.com/GalSim-developers/GalSim/wiki/RealGalaxy%20Data
9http://www.astro.princeton.edu/ rmandelb/shera/shera.html
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Figure 4.3. Model bias, noise bias and their interaction as a function of various
galaxy properties. Left and right panels show multiplicative and additive biases,
respectively. The biases shown here are the average of two components: m =
(m1 + m2)/2, ditto for additive bias. The series on these plots presents: (i)
the model bias, obtained from noiseless real galaxy images from the COSMOS
catalogue, available in GalSim (green plus), (ii) the noise bias, calculated from
noise realisations, when the true galaxy was a bulge + disc Sérsic model (red
circles); the parameters of that model were that of a best-fit to the noiseless real
galaxy images, (iii) the noise bias and model bias interaction terms (blue crosses),
obtained by subtracting results of Simulation 1 and Simulation 2, described on Fig
4.2, (iii) model bias + noise bias + their interaction (black diamonds), calculated
from noise realisations, when the true galaxy was the real COSMOS galaxy image.
The upper left panel shows the biases as a function of galaxy size, measured with
respect to the PSF size (FWHM of the convolved galaxy divided by the FWHM
of the PSF). The upper right panel shows the biases as a function of the Hubble
Sequence Index, where the index corresponds to types: 1 . . . 8 Ell-S0, 9 . . . 15 Sa-
Sc, 16 . . . 19 Sd-Sdm, ≥ 20 starburst. The lower left panel shows the biases as a
function of galaxy photometric redshift. The lower right panel shows the biases
as a function of the value of the galaxy model bias.
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constrained quite well. For each shear I create a ring test with 8 equally spaced angles.

Our simulation data set consisted of two sets of almost 10 million galaxy images:

the first set was created using real galaxy images, the second using their best-fitting

Sérsic representations. The number of noise realisations per COSMOS galaxy image was

variable and dependent on the number of galaxies in bins of redshift and morphological

classification. There are very few galaxies with high redshift or low Hubble Sequence

index available in the COSMOS sample, so the number of noise realisations for each of

these galaxies had to be larger than for others to reach the desired statistical uncertainty

for these bins. However, when showing results for the entire sample, like in Table 4.2

described in following paragraphs in this section, I re-used every galaxy the same number

of times.

The image pixel size was 0.27 arcsec, and I fitted to postage stamps of size 39 × 39

pixels. I use a Moffat profile for the target reconvolving PSF, with FWHM of 0.7695

arcsec= 2.85 pixels, and β = 3. The ellipticity of the PSF was gPSF
1 = gPSF

2 = 0.05. When

I added noise to the simulated images, the signal to noise ratio was again S/N = 20.

I measure the ratio of the FWHM of the convolved galaxy (without noise) to the

FWHM of the PSF (Rg∗p/Rp). FWHM of the PSF-convolved galaxy is measured nu-

merically from an image of the best fitting bulge plus disc model drawed on a fine

grid, with both galaxy and PSF ellipticities set to zero. For small galaxies the shear

is strongly underestimated due to noise bias. Multiplicative bias for galaxies in size bin

of Rg∗p/Rp ∈ (1.2, 1.3) is mi ∼ −0.2, whereas model bias is still on sub-percent level.

Therefore I remove all galaxies with Rg∗p/Rp < 1.3 for the purpose of this work.

If I perform a reconvolution and shearing operation on a galaxy image containing noise,

the final image will contain correlated noise which may align with the shear direction. To

assure that this effect is not dominant in our results, I only consider COSMOS galaxies for

which S/N > 200. Details of sample selection and the properties of the remaining galaxies

are shown in section 4.4.1, and also discussed in Mandelbaum et al. (2011). The majority

of the galaxies contained in this sample are of redshift z < 1.5 and the convolved size of

FWHM < 3 arcsec and are blue (Hubble sequence index > 9). There is a dependence

between the galaxy size and Hubble sequence index: most of the elliptical galaxies are

small, with convolved FWHM < 1 arcsec, while spiral galaxies span a range of sizes. Sizes

of galaxies also depends on redshift: high reshift galaxies tend to be small, while bigger

galaxies can have bigger sizes. Dependence of Hubble index on redshift is not prominent.
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Figure 4.4. Distribution of convolved galaxy size, redshift and Hubble Sequence
index. For discussion of the figure, see Section 4.4. The two parameter distribu-
tions are estimated using a Kernel Density Estimator for clarity. One parameter
histograms are normalised.

4.4.1 Properties of the galaxy sample

This appendix describes a distribution of convolved size, redshift and Hubble Sequence

index in the sample of galaxies used in this work. Distribution of these parameters is

shown in Fig 4.4, and discussed in Section 4.4.

From the full sample of 26113 galaxies from the COSMOS survey (available via the

GalSim software package), we selected 18311 galaxies with HST noise limit of S/N > 200

and valid redshift estimates (we removed all galaxies where ZPHOT = −99). The noise

considered here comes from the HST ACS camera, and does not relate to the noise bias

effects studied in this paper. After reconvolving the high resolution HST images with

ground PSF, we add more noise at S/N > 20 level. We limit the sample to low HST

noise images to avoid influencing our main results by the noise on original HST images.
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This noise is further sheared and convolved by the reconvolution procedure, and this can

influence the model bias and noise bias results, if S/N is low. However, at later stage of

analysis we perform another cut, on the Rgp/Rp < 1.3. This kind of cut will be applied

to real survey data too, as small galaxies are usually removed from analysis. We find that

this size cut removes almost all galaxies with S/N > 200 anyway, as more noisy galaxies

tend to be small.

Nevertheless, selection of images used for calibration is a very important task; the

images have to represent the survey sample well for the calibration to be accurate. Various

cuts made on different stages of analysis (including the HST COSMOS survey selection)

can create a difference between the calibration and survey samples. This difference may

be hard to understand. More discussion on the selection issues for calibration samples can

be found in Mandelbaum et al. (2011) and Rowe et al. (2014).

4.4.2 Results

I compared the bias obtained from real galaxy images (including the interaction terms)

and best-fitting images (excluding interaction terms) for the whole sample available in

GalSim. Table 4.2 shows the differences between those. The results indicate that for the

entire selected sample the difference is positive and on a very small level of m ≈ 0.001 ,

and only 1σ significant.

The mean model bias measured by Im3shape with a bulge + disc model was of order

m = 0.005 and c = 0.0003. Additionally, I measured the model bias for each individual

galaxy in the sample and obtained standard deviation on multiplicative bias std(m) = 0.02.

Model bias can vary significantly, but happens to average out to a rather small value.

Fig. 4.3 shows the noise bias, model bias and their interaction as a function of different

galaxy and image properties. The series are as following: (i) model bias only (green plus),

measured from noiseless images, (ii) noise bias only (red circles), measured by subtracting

two bias measurements: noisy measurement from best fitting Sérsic models, and noiseless

real images, (iii) noise bias and model bias interaction (blue cross), obtained by subtracting

measurement from noisy images of real galaxies, and bias obtained from noisy images of

their best Sérsic representations (subtracting results of Simulation 1 and Simulation 2,

described in Fig 4.1), (iv) total bias, containing all these effects (black diamonds with

dashed line), measured from noisy images of real galaxies.

The upper left panel shows those biases as a function of the true size of the real
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galaxy, measured as Rg∗p/Rp. For more discussion and investigation of the model bias

results alone see Voigt et al. (2013, in prep.). Estimates from galaxies with Rg∗p/Rp > 1.3

seem to be biased positive in the presence of noise. The noise bias decreases as the size of

the galaxy increases. This dependence is similar to the one presented in K12. For a galaxy

with Rg∗p/Rp = 1.6, in K12 the noise bias was m = 0.039 for disc galaxies, m = −0.013

for a bulge galaxies and m = 0.02 for galaxies with bulge-to-disc ratio of 1. Here, galaxies

with this size are biased on the level of m = 0.035.

The difference between noise bias obtained from the real galaxies and their best-fitting

Sérsic models is shown using green line with plus markers. This difference shows directly

the strength of the noise and model bias interaction terms. The difference is very small,

consistent with zero to the accuracy limit imposed by the finite number of noise realisations

I simulated. This is the case for all the size bins. This means that these terms are either

small enough not to make a difference, or their contribution averages out, which should

therefore also make no difference to shear statistics, to first order.

The upper middle panels show the multiplicative and additive bias as a function of

Hubble Sequence index. The index corresponds to the following types: 1 . . . 8 Ell-S0,

9 . . . 15 Sa-Sc, 16 . . . 19 Sd-Sdm, ≥ 20 starburst from (Bruzual & Charlot 2003). The

majority of galaxies in our COSMOS sample have Hubble index > 9. For those galaxies,

I can not see a significant difference between noise bias from real galaxy images and their

best Sérsic representations. For the elliptical galaxies, however, see a 1−2σ deviation from

zero. This difference is still small within the requirements for upcoming galaxy surveys,

although they would dominate the error budget.

The noise and model bias interaction does not significantly deviate from zero as a

function of galaxy redshift, for either additive or multiplicative bias.

The model bias should be dependent on the residuals of the best fit image to the real

galaxy image, and so should the noise and model bias interaction. I wanted to investigate

if there is a dependence between those two effects. Therefore the bottom panels show

the biases as a function of model bias. It seems that the noise and model interaction

bias terms do not depend strongly on the model bias, which may indicate that their

contribution averages out to a very small value, for this galaxy sample.
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4.5 Discussion and conclusions

I investigated the problem of shape estimation using model fitting methods, studying

in detail the impact of using a model which does not represent the galaxy morphology

completely, with noise included. For noiseless galaxies, Bernstein (2010); Voigt & Bridle

(2009) introduced and investigated the model bias, which will depend on the complexity

of the fitted model. Noise bias, studied in R12 and K12 was derived for the case when the

true noiseless galaxy can be represented perfectly by our fitted model - there was no bias

in the absence of noise. This bias depends on the signal to noise of the image, as well as

galaxy size and other properties.

In this work I generalised the noise bias derivations to the case when an imperfect

model is used. The interaction between the noise and model bias depends on the residual

of the best fit model and the real galaxy image. I isolated the terms dependent on this

residual, by comparing the noise bias arising when the true underlying image is the real

galaxy (residual present), and when it is a best-fitted Sérsic image (residuals absent). I call

this difference a noise and model bias interaction. Thus, model bias, noise bias and their

interaction make a complete picture of biases I can expect for fitting parametric models

to isolated real galaxy images.

A simple toy model was shown to demonstrate the potential influence of these terms.

In our simple toy model, I encountered model biases on a level of 20%, noise biases of

order 10%, and the interaction terms of order 1− 2%. For the toy model, the interaction

terms are small compared to model and noise biases, but significant enough that I can

detect it using a simulation with finite number of noise realisations.

I then investigated the shear bias induced by model fitting for the real galaxy images

available in a COSMOS sample (Mandelbaum et al. 2011). The mean model bias measured

by Im3shape with a bulge + disc model was small; of order m = 0.005 and c = 0.0003.

The standard deviation of model bias for individual galaxies is higher; on the level of

std(m) = 0.02. This indicates that the model bias can be quite variable, but it averages

to a very small value. This fact suggests that to properly calibrate a shape measurement

method for future high precision lensing experiments knowledge of the spatial distribution

of properties of lensing sources may be needed, including evolution with redshift. This

could come, for example, from galaxy clustering and galaxy evolution studies. However, I

leave quantification of the requirements on the knowledge of spatial and redshift properties
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of galaxies to future work (see Voigt et al. in prep).

For the signal to noise level of S/N = 20, the maximum noise bias I obtained was on the

level of m ∼ 0.04 and c ∼ −0.003, for galaxies falling into a size bin of Rg∗p/Rp ∼ (1.4, 1.6).

As a function of galaxy size, the noise bias dependence is very compatible with K12;

it decreases as the galaxy size increases. The magnitude of this bias corresponds to a

galaxy sample with approximately 2/3 disc-like and 1/3 bulge-like galaxies. The intuitive

explanation in the dependence can be based on the derivation in Section 4.2. In general,

the bias scales as S/N−2. But it also depends on the inverse of the Fisher matrix. This

matrix is dependent on the derivatives of pixel image with respect to the model parameters.

If those derivatives are large, then the image contains more information about the galaxy.

If the galaxy is small compared to the PSF, those derivatives will be small. If the galaxy

is close to a delta function, those derivatives will be close to zero and this will result in

large bias. Therefore for smaller galaxies, the bias is larger. The decrease of magnitude

of bias for galaxies with size Rgp/Rp < 1.4 is difficult to ascribe to a single effect, and

can be attributed to a few factors, optimizer inefficiency, inclusion of higher order terms

in S/N−1, effects of the limited ellipticity boundary.

Noise bias as a function of other galaxy properties, such as redshift and morphological

classification, is also variable. However this is almost certainly due to the correlation of

the property with galaxy size, which influences the noise bias the most.

The noise and model bias interaction terms prove to be very small, usually almost

consistent with zero to the accuracy I simulated, which varied from σm ∼ 0.001 to σm ∼
0.006 across bins in different parameters. The only deviation from zero was found for

galaxies with Hubble Sequence Index < 19, which corresponds to ellipticals. The noise

and model bias interaction terms were estimated as m = 0.004 ± 0.002, which is a 2σ

deviation from zero and on the borderline of near future surveys requirements.

The most important shear bias dependence is on galaxy redshift, as it impacts the

shear tomography the most. I split our galaxy sample into bins of redshift and measured

the model and noise biases for each bin. Noise and model bias interaction does not seem

to deviate more than 1− 2σ from zero for each bin.

This indicates that the bulge and disc Sérsic model should be a good basis for noise bias

calibrations for current surveys. Furthermore, the model bias and noise bias calibrations

can be performed in two separate steps. Using Sérsic profile parameters to evaluate the

noise bias can reduce the simulation volume significantly, by using a procedure described
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in K12. Similarly, if noise bias equations can be evaluated analytically or semi-analytically

with sufficient precision, the fact that the noise and model bias interaction terms can be

neglected to the accuracy of roughly σm ∼ 0.003, means that the noise bias prediction

task can be simplified even further. Also, if a galaxy model used proves to be robust

enough and introduce negligible model bias, simulations based on Sérsic models should

prove sufficient for the shear calibration.

For the results presented in this chapter I used a Sérsic, co-elliptical, co-centric bulge

+ disc model, with fixed radii ratio of the two components. This model choice is well

motivated, but arbitrary to some extent. Selecting a good model for a galaxy is not a

trivial task. Increasing the model complexity by adding more parameters (for example

allowing for different, variable ellipticities for bulge and disc components) can result in

lower model biases (Voigt & Bridle 2009). Our intuition is that for any model-fitting

method applied to ground based observations should show negligible noise and model bias

interaction, if the complexity of models used has similar number of degrees of freedom.

For upcoming and far future surveys, the noise and model bias interaction terms might

become important. Minimizing this contribution may involve finding a better galaxy

model (simultaneously decreasing the model bias), and/or using representative calibration

images and reconvolution technique. When a good quality, representative image sample

is available, or model bias calibration is necessary, it will always be more accurate to use

the images themselves.
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Chapter 5

Detection of weak lensing by dark

matter filaments in CFHTLenS

I search for the weak lensing signal from dark matter filaments between LRGs residing

in massive clusters in CFHTLenS fields. I use a model for two halos and a filament

and measure the likelihood of its parameters. The lensing signal from filaments is very

weak, making them difficult to detect individually. Thus I combine measurements from

multiple pairs of halos, taking a product of likelihood estimates from filament model fits.

To partially account for intrinsic variability in the properties of each halo I parametrize

its density relative to the densities of connected halos. Using 19 pairs of halos, selected to

have a detectable weak lensing signal in each halo and having at least one halo with mass

M200 > 2.5 × 1014 h−1M�, I detect the filament signal at ' 3.9σ significance. The peak

filament density relative to the mean density of paired halos at their R200 is measured

as ∆Σfilament
peak /∆Σhalos

R200 = 0.50 ± 0.13. For two halos of mass M200 = 3 × 1014 h−1M�,

this corresponds to a peak projected filament density of ∆Σfilament
peak ≈ 1013 hM�Mpc−2.

The filament radius is more weakly constrained as Rscale = 1.66+0.81
−0.54 h

−1Mpc. Overall,

the model containing a filament is preferred over a model without filaments with a p-

value of 0.0003. To further validate the detection, I investigate the potential influence of

effects that can mimic a filament signal, including the lensing signal from the connected

halos and lensing from other large scale structures at different redshifts. Null tests using

simulated halo pairs at random points in CFTHLenS indicate that these effects do not

117



5.1. Introduction 118

have a significant impact on the detection.

5.1 Introduction

A prominent feature of large-scale matter structure in standard cosmological models is

the existence of intercluster filaments. These filaments are believed to lie between most

massive clusters and consist of dark matter, hot gas and galaxies. In the future, these

objects can be useful for studying cosmology and gravity. In particular, comparison of

properties of filaments at different redshifts and in different density environments can tell

us more about the collapse of matter in gravitational instability scenarios, including with

modified gravity.

Filaments have recently been detected using gravitational lensing (Jauzac et al. 2012;

Dietrich et al. 2012; Clampitt et al. 2014), as well as in the distribution of galaxies (Zhang

et al. 2013; Tempel et al. 2013) and the thermal Sunyaev-Zel’dovich effect using X-ray

and CMB data (Planck Collaboration 2012). Many theoretical studies using N-body

simulations (e.g. Cautun et al. 2014; Higuchi et al. 2014; Sousbie 2013; Bond et al. 2010)

have quantified the properties of the cosmic web. In particular, early work by Colberg

et al. (2005) showed that filaments are abundant: for massive halos separated by up to

12h−1Mpc the probability of finding a filament approaches 80%.

In this chapter I look for weak lensing signal from dark matter filaments in CFHTLenS

shear data. I use a probabilistic approach, fitting a model consisting of two dark matter

halos and a connecting filament. Measuring this signal is challenging. Individual filaments

are difficult to detect with current weak lensing data as their signal is faint. Mead et al.

(2009) use simulations to estimate the signal to noise ratio (SNR) of filament detections as

a function of number of background galaxies used for lensing, using multiple approaches.

They report that individual filaments can be detected with ∼2σ confidence using lensing

data with ∼30 galaxies per arcmin−2.

Recently, Dietrich et al. (2012 D12 hereafter) detected a single filament with a sig-

nificance of 4.1σ, using SuprimeCam data with high source galaxy number density. This

filament is serendipitously oriented almost parallel to the line of sight. Such a configu-

ration increases the projected density contrast and the lensing signal, but such objects

are of course rare. To increase the SNR of detection, one can combine measurements

from multiple halo pairs. Clampitt et al. (2014) adopted a stacking technique to combine
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measurements from SDSS lensing data. In this work, I select 19 pairs of lensing-detected

halos and combine estimates of filament parameter likelihoods derived from model fits to

CFHTLenS data.

A second difficulty is that the filament signal is degenerate with the lensing introduced

by the connected halos themselves. Any method aiming to detect filaments must account

for this. Maturi & Merten (2013) derive a set of optimal filters to achieve this, while

Clampitt et al. (2014) use a nulling technique which exploits symmetries in the lensing

signal around individual halos. Dietrich et al. (2012) and Mead et al. (2009) employ

multiple methods including parametric model fitting, using NFW (Navarro, Frenk & White

1997) profiles for the halos. I also present multiple methods to remove the halo signal:

halo parameter marginalisation with both derived and flat priors, and the subtraction of

maximum likelihood and expectation halo contributions (see Sec. 5.4).

A challenge when combining measurements from multiple halo pairs is the selection

of pairs likely to have filaments, since not all close halos are predicted to be connected

by filaments (e.g. Colberg et al. 2005). Filaments are more likely to connect close halos.

As including unconnected halos in a sample of filament candidates will dilute the signal

and make detection more difficult, it is important to select the pairs most likely to con-

tain a filament. To address this problem I use a simple algorithm to compare probable

connections between halos in CFHTLenS.

Not all filaments are predicted to be equally dense, and each filament’s density will

depend on many factors including halo masses, environment and history. When combining

estimates from multiple halo pairs this variation in density would ideally be accounted for,

as would variation in other parameters, such as the radius of a filament, which may be

similarly affected. To partially address density variations due to the immediate environ-

ment I use a model in which the filament density is dependent on the mass of halos it

connects.

The chapter is organised as follows. In Sec. 5.2 I describe the details of our model.

Sec. 5.3 presents our algorithm for selecting halo pairs which probable to have a dark

matter filament. Details of our analysis are shown in Sec. 5.4. In Sec. 5.5 I present results,

and conclude in Sec. 5.6.
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5.2 Filament model

I use a simple parametric mass model for the shear signal due to two halos and a connecting

filament. For the halos I use an NFW profile (Navarro et al. 1997). The filament is a

cylindrical profile with two free parameters: a projected peak mass density and a scale

radius governing thickness.

I expect the filament density to be related to the density of connected halos. Although

this relationship is probably very complicated, we do not expect the peak surface density

of filaments to exceed the peak density of halos. Therefore some dependence of filament

density relative to the density of halos is needed.

I scale the peak projected filament density to the mean of the paired halos’ projected

density at their respective virial radii R200. The free scaling parameter is

Df = ∆Σfilament
peak /∆Σhalos

R200 (5.1)

where ∆Σhalos
R200 = (∆Σhalo1

R200 + ∆Σhalo2
R200)/2, and where ∆Σ denotes sky-projected mass den-

sity. The scaling relation (5.1) is oversimple, as filaments will depend non-trivially on

their environment and formation history. However, current wide field data do not sup-

port greater model complexity, and this filament model has the advantage of taking some

account of connected halo properties without adding parameters. I do not use the same

scaling for the radius parameter, which is measured in h−1Mpc.

Another property of filaments is that the projected density contrast is dependent on

the line of sight distance between halos. Observed density ∆Σ will be related to density

observed if I were looking at this filament ‘side-on’, ∆Σside−on, in the following way:

∆Σ ≈ ∆Σside−on ·
Dtot

Dsky
(5.2)

where Dtot is the total length of the filament and Dsky is its length on the sky plane.

This means that filaments with the same density distribution in 3D will have different

projected densities in 2D, depending on orientation with respect to an observer. For a

method which combines measurements from multiple pairs, this effect will introduce a

scatter in measured ∆Σ. That is why, in our parametrisation, the ∆Σ is always measured

as though the filament was seen side-on. I include that effect when the shear model is

drawn, effectively fitting the ∆Σside−on parameter. Throughout the rest of the chapter I
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will use only ∆Σside−on, and refer to it with just ∆Σ.

I use the same model filament convergence profile as D12:

κ(R, θ) =
κ0

1 + exp
(
|θ|−θl
σ

)
+
(
R
Rs

)2 (5.3)

where the coordinate R is angular distance perpendicular to the filament axis, θ is a

coordinate along the filament axis with an origin at the mid-point, Rs is a scale radius, θl

is the point where the filament begins, and σ regulates the length of the smooth increase of

density at the beginning of the filament region. Density contrast is very close to constant

along the line joining the halos. This is also a simplification, as N-body simulations

Colberg et al. (2005) indicate that a filament’s density vary along its line with a smallest

density in the mid-point.

I fix θl such that filaments begin at 1 h−1Mpc from each halo center, motivated by

the typical virial radii of M200 ' 1 – 3 × 1014 h−1M�. The transition scale was fixed at

σ = 0.25h−1 Mpc, close to the value used by D12, who found that this parameter was

very poorly constrained by the data. I verified that changing this parameter to 0.5 did not

noticeably change our results. Following Mead et al. (2009) and Maturi & Merten (2013), I

use reduced shear g1(R, θ) = −κ(R, θ), g2(R, θ) = 0. I notice that this equation is true for

a infinite filament bar. Symmetry arguments can be used to derive this dependence. For

the infinite bar model, the derivatives of deflection potential with respect to the coordinate

varying along the axis connecting the halos. This means that all derivatives in Eqn. 2.9

can be set to zero. For a case of a finite filament, as used in our model, some non-zero g2

is expected. However, I do not model this part, as most of the signal is indeed in the g1

part.

For the halos I use spherical NFW profiles despite the predicted, and detected, as-

phericity of real halos (e.g. Evans & Bridle 2009). However, this work is focused on

filament detection, and uses halos pairs of moderate projected separation (4 – 12 Mpc;

see Sect. 5.3) for which extreme halo ellipticity would be required to mimic a filament

signal. With future data it will be interesting to explore how halos align with connecting

filaments. Additionally, it is a matter of debate whether a halo elongation towards the

axis of the filament should be considered a part of the filament itself.

I fit a single parameter for each halo profile, M i
200 for i = 1, 2, relating each halo’s

concentration ci to mass via the scaling of Duffy et al. (2011). Halo centroids are fixed
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Figure 5.1. Example model for lensing signal used in this work. For clarity, no
shear whiskers were drawn within the radius of 1 Mpc/h from the centres of halos.
In this region the shear signal is much higher than in the filament region. This
mask was not present in the fitting process. Peak density contrast of this filament
is ∆Σ = 1013 M�Mpc−2h, and radius is Rs = 1.5 Mpc/h. Masses of both halos
are 3 · 1014 M�/h. As the mean ∆Σhalos

R200 = 2 · 1013 M�/h, this corresponds to
Df = 0.5.

to the position of the Luminous Red Galaxy (LRG) used to select the halo. The shear

contribution from the halos is calculated using the equations in Wright & Brainerd (1999).

Thus, our model has four degrees of freedom: Df , Rs, M
1
200 and M2

200. An example

density map and corresponding shear in the surrounding region is shown in Fig. 5.1.

Regions within 1 h−1Mpc from halo centres were masked for clarity on the plot, as the

shear is significantly larger there.

5.3 Pair selection

In this section I present the procedure I followed to create a sample of halo pairs, between

which I look for filament signal. I use LRGs from SDSS DR10 (SDSS Collaboration

2014) as halo tracers, finding 2187 inside the CFHTLenS wide fields. These LRGs have

spectroscopic redshifts, giving precise distance estimates.

I wish to select pairs of LRGs which are likely to trace haloes with a connecting

filament. This is important, as non-connected halo pairs will bias our result low and

possibly prevent detection. As a pre-processing step, I fit a spherical NFW profile (with a

single free parameter M200 as in Sec. 5.2) to the shear around selected LRGs in CFHTLenS

(see Sec. 5.4 for details of the fitting process), and measure the lensing halo detection
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significance. Equipped with a sample of LRGs with known positions and lensing mass, I

proceed to select pairs of halos for filament detection.

From all possible LRG halo pairs, a filament sample is selected according to the fol-

lowing considerations:

1. A filament is likely to connect a halo only to its closest neighbour in a particular

direction. I use the following algorithm to create a graph of possible connections.

Starting with most massive halo, I find all its neighbours within 30 Mpc/h. Then,

starting with the closest neighbour, I begin to add to the connections list. Before I

add a new connection, I check the angle that this new connection would form with

all connections which have already been added. I add a connection only if this angle

is always greater than 90 degrees. I repeat this procedure for all halos, making sure

I do not duplicate connections. This procedure creates 474 pairs.

2. After creating a graph of possible connections, I perform another selection. I require

the distance between halos to be between 4-12 Mpc/h. According to Colberg et al.

(2005), these pairs have a good chance of being linked a dark matter filament. The

halos can not be too close to each other on the sky plane, as the lensing signal,

although enhanced by large projection angle, would be very hard to distinguish

from halo signal. Therefore I set the minimum of 4 Mpc/h for the separation in the

sky plane.

3. Connected halos have to be massive. I select only those pairs, for which at least

one halo has measured mass M200 > 2.5 · 1014 using its lensing signal. Significance

level of minimum 1σ is also required. This selection, combined with above cut on

distance, produces 20 filament pairs.

4. As I do not want to re-use the shears in a filament region, data stamps can not

overlap greatly. I remove one pair, which overlapped with another one. Here I

choose a shorter connection, leaving the sample size at 19. Within the sample, 4

pairs remain which share a cluster, but the filament regions do not overlap. To

avoid re-using information assumed to be independent, I should remove one of pairs

in such system. However, I do not do this for our main sample, as the halos signal

is removed from by marginalisation, so I expect that effect influences the filament

parameters very little. Indeed, when I compare main result with a result with those

4 connections removed, it changes only very slightly (see Sec. 5.5).
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The final set of connections is shown on Fig 5.2. Colour of the halo signifies its redshift.

There are no pairs in CFTHLenS W2 field, as it was not sufficiently covered by BOSS

spectra. Further details of each pair are described in Table 5.2. Grey lines indicate all 476

connections found by first step of our procedure. I consider that the distance calculations

can be affected by peculiar velocities of LRGs. Clampitt et al. (2014) estimated that the

error on line of sight distance due to peculiar velocities of LRGs can be of order of 6

Mpc/h. In worse case scenario, this effect would increase the connection length to about

20 Mpc/h. This can be tolerated, as it is still probable for clusters separated by this

distance to be connected by a filament (Colberg et al. 2005).

In all calculations I assumed flat ΛCDM cosmology, with Ωm = 0.27. I verified that

the results change insignificantly when Ωm = 0.3 is used instead.

5.4 Analysis

I begin our analysis with fitting isotropic NFW halos to the position of BOSS LRGs. The

fit is done using a grid search in M200 parameter, with concentration taken from the mass-

concentration relation. I prepare shear postage stamps, within 4x4 Mpc region around

a LRG. Shear catalogues are taken from the official CFHTLenS release (Heymans et al.

2012; Miller et al. 2012; Erben et al. 2012). I bin shears with pixel size of 0.1 MPc, using

the following formula:

gp =

∑
i∈p eiwi∑

ei∈p(1 +mi)wi
(5.4)

where gp is the shear at pixel p, ei is a galaxy shear estimator in CFHTLenS, wi is the

weight corresponding to that galaxy, and mi is the multiplicative bias correction. I create

maps for both g1 and g2 components, but I additionally subtract the additive correction

from the g2 component before averaging. There may be other systematics present in

the data, and some CFHTLenS fields had to be excluded from cosmic shear calculations.

However, these fields were found not to impact galaxy-galaxy lensing science (Hudson et al.

2013), and I also do not attempt to remove them. Additionally, as the pair orientation

angle should be random, I expect any additive systematic to be uncorrelated with it and

not bias our measurement. As the weights in CFHTLenS catalogs are close to, but not

exactly corresponding to inverse variance errors, I follow Hudson et al. (2013) and use

a fixed error on the shear: σ(gp) = 0.28/
√
neff , where neff = (

∑
i∈pw)2/(

∑
i∈pw

2) is
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the effective number of galaxies in pixel. I have verified that treating weights as inverse

variance errors by using equation σ(gp) = [
∑

i∈pwi]
−1/2 changes our results only very

slightly. I require CFHTLenS galaxies to have parameter fitclass=0. The selection of

background source galaxies is performed by using a strict cut on Z_B column; I use only

those galaxies for which redshift is greater than the mean redshift of halos plus 0.2. For

creating a shear signal, I use p(z) created using average probability of normalised PZ_full.

I measure the likelihoods of M200 and significance intervals of individual detections. This

task is performed using grid search with 2000 points distributed evenly between 1012 and

1015 M�/h. I use measured masses to select halo pairs for further filament analysis, as

explained in section 5.3.

For each of the 19 selected pairs, I draw a rectangular box around the pair region, as

in Fig. 5.1, with 4 Mpc/h in y-direction and leaving additional 4 Mpc/h on each side of

halos. I create shear postage stamps as in Eqn. 5.4. I proceed to fit a model described

in Sec. 5.2. I use the following ranges for parameters: M200 ∈ [1013, 1015] M�/h for

both halos, Df ∈ [0, 1.2] and Rs ∈ [0.001, 4]. The default grid sizes were (15, 15, 30, 30)

for four model parameters, respectively. Likelihood is measured for each combination of

parameters on a grid, which gives a total of 202500 grid points. I verified that increasing

the density of the grid changes our results at a negligible level.

With these likelihood cubes I proceed to analysing the filament signal. I aim to plot

the constraints on Df and Rs parameters. To combine the measurements from 19 pairs, I

multiply the two parameter likelihoods of individual pairs. Before that, however, I have to

remove the contribution from halo lensing. I compare four schemes of removing this signal:

marginalisation with constructed prior, marginalisation with a flat prior, subtraction of

halo signal inferred via maximum likelihood, and subtraction using the expectation of

M200. The aim of this comparison is to demonstrate that the detection is robust to halo

signal removal methods.

First method, constituting our main result, is a full probabilistic treatment: I marginalise

the halo parameters with a prior on halo M200. I construct this prior by taking a mean

of likelihoods of M200 calculated in the pre-processing step (from 4x4 Mpc/h postage

stamps), for all halos in the sample of 19 pairs. Note that this prior was inferred using

stamps which could consist a part of a filament, but I do not expect this to influence the

results significantly, as halo shear signal is much greater than the filament signal. Fig. 5.3

presents the prior calculated this way. Marginalisation is performed as following
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1014 1015

M200 M¯/h

Figure 5.3. Prior on M200 created for 38 halos. This prior was created by taking
the average likelihood of M200 parameter, which was fit to 4x4 Mpc/h cutouts
surrounding the LRG.

p(Df , Df |S) =
∏
i

∫
L(Si|Df , Rs,M1,M2)π(M1)π(M2)dM1dM2 (5.5)

where L is the likelihood function and π are priors, and Si is the data vector, with index

i iterating over halo pairs.

In the second method a flat prior on M200 of halos is used. The third approach

multiplies those Df – Rs distributions, for which halos M200 correspond to maximum

likelihood fits to halo signal measured earlier from single parameter fits to 4x4 Mpc/h

postage stamps. The fourth approach also removes the halo signal using a point estimate,

and this estimate is an expectation of M200. Note that the last approach is the most

conservative, as M200 values are always higher than for the maximum likelihood method.

I plot the constraints on Df and Rs parameters, improving the resolution of the grid

with a spline interpolation.

5.5 Results

With a set of 19 pairs, I calculate the posterior probability on filament parameters using

the methods described in Sec. 5.4. As described in section 5.2, these parameters are:

filament’s peak density relative to mean density of halos at their R200 (Df) and filament’s

scale radius (Rs). Coordinates and measured parameters for these pairs are presented in

Table 5.2.
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5.5.1 Significance

I report a detection of mean filament lensing, with maximum posterior probability at

Df = 0.50 ± 0.13 and Rs = 1.66+0.81
−0.54. Significance for Df is 3.9σ for best fit radius and

3.3σ for marginalised Rs. The radius is poorly constrained, especially its upper limit has

very large error. Rs is significant at 3.1σ level for the best fit Df and 2.7σ for marginalised

Df . Figure 5.4 shows the measured constraint. Middle and lower panels show likelihood

for single parameters, with the other either fixed to maximum likelihood or marginalised.

When I compare the model with a filament against the null model using a maximum

likelihood ratio test, I obtain a p - value of 0.0003. That suggests strong evidence for the

extended model.

Alternative methods of accounting for the halo signal give similar detection significance,

as shown in Table 5.1. The lowest threshold of 3.1σ is reached for halo removal with

maximum likelihood M200. The fact that the detection holds for all the proposed halo

signal removal methods indicates that the results is not strongly dependent on the choice

of the method. In particular, the main result is not driven by the use of a custom prior

on mass. The last line shows the result if I did not allow for pairs in the sample to share

one connecting halo, reducing our sample to 15 pairs. This result is shown for first halo

removal method. There is no noticeable difference in central values of parameters, and

the significance decreases as expected.

The uncertainty on filament density is large, but it is possible to try to relate filament

density contrast to mass of the connected halos. For two halos with mean mass Mhalos
200 =

3 · 1014M�/h, the filament density contrast is between ∆Σ = 0.9–2.2 · 1013 M�Mpc−2h.

Assuming the length of a filament to be 10 Mpc/h, I estimate the filament mass between

0.7 · 1013 and 1.9 · 1014M�/h for best-fit radius, and can reach 3 · 1015 for large radii, given

our poor constraint on this parameter. Although these estimates do overlap, I point out

that our measurement considered an ensemble of halo pairs, each of which had a filament

(or accidentally selected unconnected region) of different mass. Moreover, our best fit

filament radius was more than twice as large as in D12, where the radius was not well

constrained and set to 0.5 Mpc. These large errors do not allow us to draw conclusions

about a typical mass of a filament in the Universe.

The filament signal is much higher for the most massive pairs of halos. I found five

pairs for which the mass of both halos to exceeds Mhalos
200 > 2 · 1014M�/h. For these pairs,
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Figure 5.4. Posterior probability of mean filaments parameters, from a sample
of 19 halo pairs. Top panel shows the constraint on Df and Rs parameters. The
maximum of this distribution is at Df = 0.50±0.13 and Rs = 1.66+0.81

−0.54, which cor-
responds to 3.9σ detection for density and 3.1σ for the radius. Lines correspond to
68% and 95% confidence intervals. Lower panels contain single parameter distri-
butions, for other parameter set to either best fit (solid) or marginalised (dashed)
with a flat prior in a volume, which was the same as shown in top panel. Best
marginalised parameters were Df = 0.42+0.16

−0.13 (3.3σ) and Rs = 1.53+1.27
−0.56 (2.7σ).
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# pairs Df = ∆Σfilament
peak /∆Σhalos

R200 Rscale

halo mass marginalisation with a derived prior 19 0.50± 0.13 (3.9σ) 1.66+0.81
−0.54 (3.1σ)

halo mass marginalisation with a flat prior 19 0.43± 0.12 (3.6σ) 1.79+1.01
−0.62 (2.9σ)

point estimate halo removal with maximum likelihood 19 0.41± 0.12 (3.5σ) 1.76+1.05
−1.05 (1.7σ)

point estimate halo removal with expected M200 19 0.42± 0.12 (3.6σ) 1.77+1.02
−0.67 (2.8σ)

avoid connections sharing a halo 15 0.50± 0.15 (3.4σ) 1.48+0.72
−0.50 (2.9σ)

most massive pairs, M1
200,M

2
200 > 2 · 1014M�/h 5 1.17± 0.23 (4.3σ) 0.90+0.27

−0.23 (3.7σ)

longer filaments, 10 – 22 Mpc/h 36 0.19± 0.06 (3.2σ) 1.54+0.94
−0.66 (2.4σ)

Table 5.1. Summary of results obtained with several halo removal approaches.
The main results used a full probabilistic method. The detection significance
varies slightly between these methods, but the detection holds for all of them. The
impact of our derived prior is not dominating the significance for our main result.
For last two rows, halo signal was removed via marginalisation with a prior. Fifth
row shows the results for a reduced sample of 15 pairs, in which I did not allow
connections to share a halo. Second to last row shows the constraint for five
most massive pairs. Last row shows the result for longer filaments, from 10 to 20
Mpc/h, allowing 12 of them to share a halo. For that case halo mass requirement
was lowered, requiring at least one of the halos to have M200 > 2 · 1014M�/h.

I measured Df = 1.17 ± 0.23 (4.3σ) and Rs = 0.90+0.27
−0.23 (3.7σ). This is more than

twice the signal from 19 pairs, however, due to small number of pairs, it’s quite uncertain.

Constraints from this sample and the main sample of 19 pairs overlap on approximately

2σ level. It is not unexpected for more massive systems to have more massive filaments.

Moreover, the linear dependence of mass of filament on connected halos I assumed in our

model is likely to be flawed. Another possible reason for this discrepancy can be the fact

that connections between halos of smaller mass can be less abundant; our 19 pair sample

may contain accidentally selected disconnected halos. I do not attempt to quantify the

influence of this selection effect in this work. Selection effects can be studied further by

testing the algorithm on simulations.

Allowing for longer filaments also gives a good detection significance, however, the

constraint on the radius is much worse. I found 40 pairs with maximum separation of

20 Mpc/h, and after removing 5 pairs which overlapped in shear region, I obtained a

constraint on Df = 0.31 ± 0.07 and Rs = 1.9+0.8
−0.6. Density parameter Df is smaller

than for shorter filaments, but the fact that I am using additional pairs gives comparable

significance. The requirements on halo mass was kept the same as before. For this sample

there are many filaments which share a halo, if I were to remove connections so that no
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halos are re-used, sample size would decrease to 23. Detection significance would also fall

accordingly to between 2 – 3 σ depending on the random choice of removed connections.

5.5.2 Null test: random points

Measurement of filament parameters may also be affected by other signals not included in

our model. Large scale structures (LSS) on different redshifts can create a lensing signal,

which can be mimic a filament. Note that to make a detection, fI am only concerned

about effects which can bias the measurement high. If the parameters are biased and the

detection still holds, I would not attempt to correct for such a systematic. One way to

test the effects of LSS is create a sample of random points in CFHTLenS and measure

filament parameters centred at these points, with a random orientation. In this random

points null test, I use the same parameters for pairs as for our main sample, including

their redshifts and separations. I add signal from two halos with M200 parameter taken

from best fits to halos in our main result sample. I make new shear cut-outs for 32 sets of

19 pairs. I go through the same fitting procedure with a four parameter model. None of

the 32 random points sets produced a filament lensing detection with significance greater

than 2.5σ in both Df and Rs. The right panel of Fig. 5.5 shows the product of likelihood

for this null test. This likelihood is a mean of 32 sets; within each set likelihoods of 19

pairs were multiplied together. Notice the smaller range on the x-axis compared to Fig.

5.4. These contours are quite broad, but notice that in the region of our best fit, the mean

probability is low. This suggests that it is very unlikely that the mean likelihood measured

from CFHTLenS filaments (Fig. 5.4) is a result of a noise or LSS fluctuation. Blue dashed

lines shows the result of multiplying 32 · 19 likelihood surfaces, instead of taking a mean

of 32. The fact that this product is consistent with zero indicates that there is no bias

due to cosmic shear or other large scale structures. This allows us to conclude that our

measurement was not affected by LSS to a level which could affect the detection.

5.6 Conclusions and discussion

I have detected weak lensing signal between massive clusters in CFHLenS centred on BOSS

LRGs. The detection significance was close to 3.9σ, depending slightly on halo signal

removal method. The central parameters measured for filament peak density relative to

mean halos density at their R200 was Df = 0.50 ± 0.13. It is interesting to compare our
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Figure 5.5. Average likelihood of filament parameters for random points null
test. Shaded regions show the mean likelihood for 32 products of 19 pairs. This
distribution is broad, as expected, due to no filament signal present. The fact that
our best fit point lies outside the mean contours suggests that our measurement
significance is not dominated by noise. Confidence intervals for a product of
likelihoods of 19 · 32 measurements is shown in dashed lines. This measurement
is consistent with zero for the Df parameter, which indicates that there is not
bias on this parameter due to noise and large scale structure.

result to previous measurements in the literature. For example, the A222/A223 system

studied by D12, had two clusters separated by ∼ 11 Mpc/h, and the mean mass was

∼ 3 ·1014. A simple calculation shows that, if it was measured face-on, its peak ∆Σ would

be approximately 2 · 1013 M�Mpc−2h. If this configuration was used with our best fit Df ,

then this density contrast would be ∆Σ = 0.9–2.2 · 1013 M�Mpc−2h. This seems to be a

good agreement, but one must remember that the uncertainty on our result is still very

large.

Scale radius was measured at Rs = 1.66+0.81
−0.54, and constrained at 3.1σ away from zero.

Its upper limit was, however, poorly constrained, with 2σ contours not closing for the

value of 4 Mpc/h. Our measurement of filament radius indicates a preference for thick

filaments. This is in agreement with observations in Clampitt et al. (2014), where they
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report that the data prefers filaments with radii greater than 1 Mpc/h. The upper limit is

not well constrained, reaching 4 Mpc with 1 – 2σ confidence. This is indeed much higher

than N-body simulations predict, for example, Colberg et al. (2005) found only very small

number of filaments with radius Rs > 3 Mpc/h.

I have used a novel probabilistic approach for combining measurements from multiple

cluster pairs to increase the SNR of detection. Within this method, it is very easy to

change parameters describing the filaments without transforming the data itself. For

example, as I expect the filament mass to depend on its environment, I used filament

density contrast tied to density of halos. I also accounted for differences in projected

density among filaments due to different line of sight distances between connected halos.

I found both these changes to parametrisation to increase the significance of detection.

I also checked that the signal I detected can not be explained by random noise fluc-

tuations and shear signal from large scale structures at different redshift. I performed a

random points null test, simulating 32 times the data volume. This test used pairs created

from random points in CFHTLenS with artificially added shear signal from dark matter

halos. I found that the parameters of filaments measured from this null test are consistent

with zero, with large scatter. This scatter, however, was not large enough to explain our

main result, thus allowing us to conclude that the signal measured in the main result of

this chapter can not solely come from LSS or random noise fluctuations.

Future lensing surveys will open possibilities for studying intercluster dark matter

filaments with increased accuracy. With 100-200 halo pairs it will become possible to

characterise properties of filaments as a function of their environment, for example halo

masses. A comparison with number of galaxies residing in filaments, as well as hot gas,

to density of filaments can also be an interesting avenue of investigation.



Chapter 6

Concluding remarks

Weak gravitational lensing is an unbiased probe of matter in the Universe and provides

unique opportunities for new discoveries in cosmology and astrophysics. Measurement of

galaxy shear, a main weak lensing observable, is very challenging due to the complicated

forward process for obtaining galaxy images and the non-linear nature of measurement

techniques. Chapters 3 and 4 of this thesis were focused on studying systematics associated

with this measurement using model-fitting methods. I particularly focused on effects

of noise bias and model bias. Chapter 5 presented a detection of intercluster filaments

in CFHTLenS wide fields. I introduced a novel, probabilistic approach to combining

measurements from multiple filaments and applied it to CFHTLenS data. In this final

chapter I will review the prospects for precision cosmology with weak gravitational lensing,

and focus on practical applications of calibration of noise and model bias effects. I will

also outline future directions for weak lensing studies of dark matter filaments.

6.1 Shear measurement and its calibration

In Kacprzak et al. (2012) and Refregier et al. (2012) I introduced and characterized a

statistical model for noise bias in maximum likelihood (ML) model-fitting methods. Noise

bias arises due to the fact that the ML shape estimator is a non-linear function of pixel

intensities, affected by additive noise. We derived analytic expressions for bias on the fitted

parameters, which demonstrate that this bias scales with 1/SNR2 and other parameters
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such as galaxy size and morphology. A histogram of ellipticity estimators (see Chapter 3,

Fig. 3.1) is not symmetric and its skewness creates a difference between the truth and the

mean, thus causing a bias on the shear. I showed that this effect can introduce order of

5% biases on the shear and cannot be neglected for lensing surveys. We found that noise

bias depends on the galaxy’s true parameters, such as pre-convolved size, ellipticity, and

morphology. These parameters are measured with large noise, and probably also significant

bias. Any simulation-based calibration scheme will have to infer the true distributions of

these parameters. These distributions will also be dependent on the specifications of a

survey, and may vary with observing conditions. That may complicate the calibration

process.

Another important challenge in shape measurement is the model bias. When a galaxy

model used to fit an image is not able to capture all its complicated morphological features,

shear estimates can be biased (Voigt & Bridle 2009; Bernstein 2010). Using the Shear

Reconvolution Analysis technique (Mandelbaum et al. 2011), we can now evaluate the

scale of this effect. In Kacprzak et al. (2013) I used a realistic bulge + disc galaxy

model, and calculated the model bias using images from the HST COSMOS survey. I

measured the multiplicative bias resulting from using simple models for each one out of

20000 galaxies released (Mandelbaum et al. 2011). I found that the standard deviation of

multiplicative bias exceeds even the current galaxy survey requirements, while its mean

is small. Additionally, I found that there is a slight dependence of model bias on the

morphological type of a galaxy. As this is sufficient for current surveys’ requirements,

further investigation will be necessary to control this effect below the m < 0.1% level

required by WFIRST and Euclid.

Since noise bias estimates have typically assumed perfect knowledge of the galaxy

models, it is also important to investigate if the statistical model of the noise bias is still

a good description of the problem. In (Kacprzak et al. 2013) I extended the derivation for

bias on the ML estimates to the case when an imperfect model is used. Simulation using

COSMOS images allowed us to quantify the model bias and its impact in the presence of

noise (see Chapter 4, Fig. 4.3). We measured the strength of model-noise bias interaction

finding it small enough for current galaxy surveys: with multiplicative bias m = 0.0008±
0.0009 for the entire population and m = −0.004± 0.002 in the worst case scenario. This

effect has not yet been tested to the accuracy required by space based observing programs

and more investigation will be required to assure that model and noise bias calibrations
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are jointly effective.

I made successful attempts to apply noise bias calibration in a simplified setting. In

Kacprzak et al. (2012) I applied a very simple calibration scheme to a single galaxy. In that

calibration, we treated the noisy estimates of size and ellipticity parameters as if they were

the true parameters. This, potentially, can introduce an error, but we found it to be small,

and shear had been calibrated to a good precision. In (Zuntz et al. 2013) I successfully

applied the calibration to the GREAT08 challenge. Noise bias calibration has also been

successfully applied in practice: Miller et al. (2012) used it to correct the CFHTLenS shear

catalogues. For the Dark Energy Survey, noise calibration will be done in a similar way,

using precise simulations of large volumes of data. Within the next two years, the control

of shear systematics has to be improved from current the m ∼ 5% level to m ∼ 0.3% level.

The effectiveness of these calibration schemes will strongly depend on how well the noisy

data is represented by the calibration training sets. For example, an approach proposed

by Refregier & Amara (2014) uses a Monte Carlo Control Loops approach to creating well

matched training sets. In this approach, a space of input parameters to simulations is

explored. The quality of match between the simulation and survey data is assessed by

comparing statistics of measured, noisy parameter distributions. Distributions which well

match the survey data are than perturbed, which allows us to quantify the uncertainty on

the input to the simulation.

Another promising approach to shape measurement is to use Bayesian methods. Bern-

stein & Armstrong (2013) and Sheldon (2014) presented a probabilistic approach, in which

the shear is not calculated using, hopefully unbiased, estimators g = 〈e〉. Instead, more

information is stored about each galaxy shear, and calculation of g is more complicated.

That approach requires modifications to existing pipelines which use shear information,

such as correlation function calculations. However, these methods have demonstrated the

ability to avoid noise bias.

6.2 Using colour information to improve the accuracy of

shear estimation

A good way to improve the accuracy of a measurement is to include more available data.

Measurement of galaxy morphologies from high resolution images in different bands can

be also useful for investigation of feasibility of multi-band shear measurement. The KIDS,
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DES, HSC, WFIRST and LSST surveys will use multiple filter observations. Galaxies have

slightly different intrinsic shapes in each band, but the amount of shearing due to lensing

is the same in all bands. This fact can potentially be utilized to significantly increase

the SNR of ellipticity measurement up to a factor of approximately
√
N , where N is the

number of observed bands. In the context of noise bias this can be a very significant gain,

due to the fact that the noise bias scales with 1/SNR2, as showed earlier. This approach

has not yet been demonstrated in the literature. Using high-resolution imaging from the

HST, it is possible to investigate whether using a prior in the form of a covariance of

shapes in different bands can be used to do a joint estimation of shear.

A critical issue for performing lensing with a wide-filter instrument such as Euclid is the

understanding of wavelength dependence of the Point Spread Function (PSF) and galaxy

colour gradients. The shape of the PSF varies with wavelength for two main reasons: optics

of the telescope introduce an Airy disk with size inversely proportional to the wavelength,

and the Modulation Transfer Function (MTF) of the CCDs creates more diffusion for

higher energy photons. The Euclid mission will use a wide optical filter, and that can

introduce two potential problems. Firstly, if the Spectral Energy Distribution (SED) of

a galaxy differs from the one of a star used to estimate the PSF, the shear estimate will

be biased beyond the survey requirements. Cypriano et al. (2010) demonstrated methods

to ensure that the PSF used for shape deconvolution matches the true PSF smearing the

galaxy. Secondly, if the SED of a galaxy varies within the galaxy itself (for example,

redder central bulge and bluer spiral arms), then the PSF will depend on the position in

the image. Voigt et al. (2011) demonstrated that this problem can not be neglected for

Euclid, and proposed a calibration scheme using large numbers of well resolved galaxy

images from the HST archive. Semboloni et al. (2012) developed this approach further

and showed that the HST archive will contain enough galaxies to calibrate this effect by

the time Euclid is operational.

This calibration can be a very sensitive process, as the shear bias depends strongly on

galaxy morphology. Precise knowledge of distribution of galaxy properties with redshift

will be required. With new tools (Mandelbaum et al. 2011; Rowe et al. 2014) and ∼ 60000

galaxy images from the HST it is possible to study effects related to galaxy colours. This

avenue of research can potentially have a high impact on the field of shear measurements.
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6.3 Weak lensing by dark matter filaments with CFHTLens

and future surveys

Weak lensing by dark matter filaments is a relatively new area of research. A range of

reasons make the measurement of this signal very challenging. Firstly, the signal from

filament lensing is very faint; its strength is close to an order of magnitude lower than

lensing by dark matter halos. Current lensing data sets often do not have a necessary

number density of sources. Detection of individual pairs is very difficult, although Dietrich

et al. (2012) has identified a filament between two massive clusters using Subaru data, with

25 galaxies per square arcmin (priv. comm). Next to a good number of lensing galaxies,

this filament had a high projected surface mass density due to to its specific orientation:

it was observed “through the barrel”, which boosted the density contrast by a factor of 3.

Combining measurements from multiple pairs can increase the SNR of detection. However,

one must be sure that the pairs selected for such a sample indeed have a filament between,

otherwise the measurement can be biased low. Without pre-selection using other data

sources (for example X-ray or galaxy counts), it is hard to quantify this effect. Clampitt

& Jain (2014) detected signal from filament lensing using more than 200,000 LRG pairs in

SDSS, finding the level of ∆Σ ≈ 1 ·1012M�h/Mpc2. Compared to the result from Dietrich

et al. (2012), where if the filament was seen face-on, ∆Σ ≈ 2 · 1013M�h/Mpc2, there is

an order of magnitude difference. This difference is not unexpected, as Clampitt & Jain

(2014) used all LRGs independent of their mass, and probably also included connections

which contained voids instead of filaments.

In Chapter 5 I presented a detection of filament lensing using the most massive halos

in CFHTLenS wide fields. I chose the halos using the LRG sample from BOSS. As the

strength of a filament is likely to be related to density of connected halos, I tied the halo

density to filament density using the relation Df = ∆Σfilament
peak /∆Σhalos

R200. The radius of a

filament was controlled by a scale radius parameter Rs. I used a parametric model with

two halos and a filament and fitted this model to shear postage stamps cut out from

CFHTLenS data. For 19 pairs of filaments connecting halos with at least one of them

more massive than 2 · 1014M�/h, we measured Df = 0.50 ± 0.13 and Rscale = 1.66+0.81
−0.54.

For two halos with masses of M200 = 3 · 1014M�/h, that corresponds to peak density

contrast of a filament of ∆Σfilament
peak = 1013 M�Mpc−2h. I confirmed that the fluctuations

due to shape noise, cosmic shear and other large scale structures in the line of sight do
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not have enough power to mimic the filament signal for 19 pairs.

By varying the parameters of halo pairs coming into our sample, I found that the

value of Df parameter can vary significantly. For example, restricting halo masses to

be both greater than M200 > 2.5 · 1014 M�h/Mpc, density parameter Df increased by a

factor of 2. Conversely, when longer pairs were considered, from 10 − 20 Mpc/h , this

parameter halved. Although it is expected that our linear scaling of filament density with

density of halos is not correct, I point out that this variation can be due to contamination

of our sample by pairs which are disconnected. Given that I selected pairs only using

their halo properties (mass, distance and proximity to other halos), I may have included

empty regions in the sample. This contamination is an important issue for future filament

characterisation studies and can be addressed, as mentioned before, by using non-lensing

data, for example, X-ray.

Detection was just a first step in learning about matter distribution in intercluster

filaments using weak lensing. Many extensions of this research are possible. For example, it

would be very interesting to use other mass-mapping techniques to explore the environment

of pairs of halos selected for the filament sample. One could study more about orientation

of halo ellipticity with respect to filaments. Alternatively, a more complex model including

ellipticity could be used for halos. This would increase the computing time significantly, for

grid-based optimisation. MCMC techniques can also be used, but multiplying likelihood

surfaces using MCMC samples can pose challenges; before taking a product, probability

density has to be reconstructed from samples. This can be a difficult process, especially

when measuring signals which are on the edge of a box prior. Although several approaches

have been proposed for density estimation with bounded domain, using cyclic or reflective

methods, in practice I found them hard to apply to this problem in a way which would not

distort the result, when compared to grid-based optimization. Nevertheless, applying grid-

based optimization to an 8 parameter model may be tractable using parallel computing,

if likelihood evaluation will be distributed on many cores.

Another interesting extension of filament science is to cross-correlate filament regions

with the same regions in other data sets. These data sets can include thermal Sunyaev-

Zel’dovich (tSZ) effect measurements from Planck (Planck Collaboration 2012), X-ray

and measurements of galaxy counts. However, more investigation is needed to assess the

feasibility of such measurements.

Upcoming wide field shear surveys will provide an order of magnitude larger shear
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catalogues. This opens up a possibility of finding more filament pairs, given a good spec-

troscopic LRG sample is available in that area. Increasing the number of pairs by 10 would

allow us to attempt to characterise the filament signal’s dependence on its environment,

for example, as a function of connected halo masses. Properties of filaments as a function

of their length is also very interesting. Projects such as the Dark Energy Survey and Hyper

Suprime Cam will provide 5000 and 2000 square degrees of lensing data respectively in

upcoming years. If bright cluster galaxies found in the centre of massive clusters detected

in these surveys will be followed up by spectroscopy, interesting new avenues of filament

research will be opened.



Appendix A

Im3shape: A maximum-likelihood

galaxy shear measurement code

for cosmic gravitational lensing

This appendix is a fragment of a paper by Zuntz et al. (2013), to which I contributed very

significantly and was therefore second author. I developed and tested core Im3shape mod-

ules: convolution, optimization, image rendering. I also designed and applied calibration

using simulations. In this appendix I present sections considering noise bias calibration

only. Text in this section was written in collaboration with other authors.

A.1 Noise Bias Calibration

At the noise levels in the RealNoise Blind Challenge we do expect that we need to correct

for the noise bias effect described in Refregier et al. (2012), Kacprzak et al. (2012) and

references therein. We describe our approach to noise bias calibration in this section.

In Kacprzak et al. (2012) we ran Im3shape on noisy simulations with a range of

input parameters to find the behaviour of the noise bias with galaxy properties. We

then attempted to remove the bias by matching the measured galaxy properties to the

simulation input parameters to predict the expected bias, which we subtracted off. We

ran this method on branch 3 of our GREAT08 analysis, which has the same galaxy model
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as Im3shape, and found Q = 166, with m = 3.0 × 10−2 and c = 7 × 10−4 which is

nearly satisfactory for current experiments but well outside our requirements for upcoming

experiments.

This straightforward correction fails to do better because the observed properties are

themselves noisy (and thus noise-biased), and so our bias estimate is itself biased. In

practice, we have found it ineffective to fully calibrate galaxy ellipticity measurements one-

by-one using their individual properties, and turn instead to a population-based approach

in which a complete class of galaxies is calibrated collectively.

The approach that we take is discussed in Appendix A.3. Briefly, we use the deep data

from the low-noise part of the challenge to provide distributions of the galaxy properties,

and then perform simulations to compute the mean multiplicative and additive biases for

those properties. We then apply these mean biases to the shear estimates from each set.

To predict biases for a given parameter set we simulate galaxies at grid points with

scale radii rd = {1, 2.5, 5} and bulge flux fractions F = {0, 0.5, 1}, and with ellipticity

from e1 = −0.8 to 0.8. At each grid point we fit a cubic polynomial to the bias ê− etrue as

a function of etrue, and store the coefficients. To get the bias for intermediate parameters

we use a Gaussian radial basis function interpolator. Since the simulations are costly we

simulate only at S/N = 20, and extrapolate to other values using the result from Refregier

et al. (2012) and Kacprzak et al. (2012) that the bias scales as the inverse of the square

of the signal-to-noise.

There are several factors about the structure of GREAT08 that are unrealistic in this

context. Firstly, not every branch in the main sample has a corresponding low-noise

version, whereas in real surveys it should be possible to match populations with more care

in most cases. This would tend to make noise calibration harder on GREAT08. Secondly,

the sizes of galaxies in GREAT08 are not drawn from a population - they have a single

true value. This would tend to make calibration more effective than is realistic. We also

note that the information needed to fully perform the calibration in this way was not

public at the time of the challenge.

Where possible we match branches using the corresponding low-noise branch; where

none exists we use the nearest approximation. See Appendix A.3 for more details.



A.2. Scores 144

b/d b+d off

103

Q

Galaxy type

Rot. Fid. e×2

PSF

10 20 40

S/N

1.22 1.4 1.6

103

Rgp/Rp

b/d b+d off

−0.05

0.00

0.05

m

Galaxy type

Rot. Fid. e×2

PSF

10 20 40

S/N

1.22 1.4 1.6

−0.05

0.00

0.05

Rgp/Rp

b/d b+d off
−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

c

Galaxy type

Rot. Fid. e×2

PSF

10 20 40

S/N

1.22 1.4 1.6
−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003
Rgp/Rp

Figure A.1. The Quality factor score Q, multiplicative bias m, and additive bias
c obtained in the RealNoise-Blind section of the Great08 challenge. Each column
shows scores with a different variation from the fiducial galaxy parameters. The
thick solid blue line is our primary result, the Im3shape scores following the
matched-population noise bias calibration described in the text. The dashed
green line is the score without any calibration. The green bands are the require-
ments for current and upcoming surveys. The thin grey lines are other entrants
at the time of the challenge, with dots indicating stacking methods. The galaxy
types are bulge or disc (50% of each; labelled b/d), co-elliptical bulge plus disc
(b + d) and bulge plus disc with offset centroids (off). The PSF values were
fiducial (fid), rotated by 90◦, and double ellipticity(e× 2).
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A.2 Scores

Q-factor scores and m and c values for the pre- and post-noise bias calibration results are

shown in figure A.1. Even before the calibration the bias on the S/N = 40 galaxies was

small enough that we achieved a quality factor Q > 1000, with m and c small enough for

upcoming surveys. At lower signal to noise, as we expect, the pre-calibration Q factor

drops to below 100.

After the noise bias calibration procedure described above the Q factors and the c

values reach the levels required for upcoming experiments for most of the branches of

the challenge. The results are stable with PSF type. The m values are somewhat more

variable but, depending on the exact branch, can reach the required levels. In particular

the value is good in the b/d branch, where where we expect no model bias.

Our most encouraging result is the stability across the galaxy type branches. The only

branch for which we use the correct model is the first galaxy type, where the simulation

model is single-component bulge or disc. For all other branches we expect some model

somewhat like the ones discussed in section 4.2, but as in that section the effect is not

critical for current surveys.

The branches for small and noisy galaxies are clearly more problematic, and we would

be forced to remove such galaxies from any current analysis. We believe the extrapolation

fails badly in the high-noise case because of a slowdown in the magnitude of the bias

with ellipticity, which does not follow the b ∼ (S/N)−2 relation that we used. Very noisy

galaxies have much broader scatter in measured ellipticity, and when these values start to

push up to the edge of the space, at |e| = 1, this acts as an m < 0 bias which partially

counteracts the usual m > 0 one. Missing this effect can lead to extrapolated values

over-correcting the bias.

A.3 Noise bias calibration using deep data

Noise bias is the difference between the expectation of the maximum-likelihood result found

by a model fitter like Imshape, which is a biased estimator, and the true underlying value,

coming from the non-linear mapping between parameters and image. Its typical value is

a few percent, and we need to remove it to reach our target accuracy levels.

The size of the bias depends sensitively on the true parameters of the galaxy, and if

these were known we could remove noise bias completely. However, we have access only
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to noisy estimates of these parameters and therefore our estimate of the noise bias is itself

noisy, and biased. We can think of this as a bias-on-bias problem, and we find that failing

to account for it means we significantly miss our targets.

We can get around this problem if there is a subset of our observational data that is

deeper than the bulk of our sample, and therefore of greater signal-to-noise, to a degree

sufficient that it has negligible noise bias. This is often the case in real surveys that seek

to detect high redshift supernovae, and it is approximated in the GREAT08 challenge

with LowNoise Blind data set (although the galaxy types in this set do not match those

in the main sample exactly). In this case we do not calibrate each galaxy individually, but

instead find a mean bias for the population and apply it en masse.

Biases m(θ) and c(θ) will afflict each of our galaxies, depending on the true galaxy

properties θ. We can calculate mean values of this bias m̂ and ĉ, and apply these evenly

to all the galaxies, such that the mean galaxy ellipticity (which is our goal) is correct.

The mean of the bias across the population is given by:

m̂ =

∫
m(θ)p(θ)dθ. (A.1)

We find the distribution p(θ) using fits to the deep data, and m(θ) using simulations - for

each point θp in a grid in the parameter space we simulate many galaxies and determine

the value m(θp). We can then interpolate between these values to do the integral, and

finally apply the mean m̂ to all the galaxy estimates.

A similar process is used for the c bias, except that c varies directly with the PSF. This

dependence stems from the fact that PSF ellipticity can directly mimic the lensing signal.

Linear dependence of shear systematics was shown in, among others, (Paulin-Henriksson

et al. 2008) and used as a model in systematics analysis ??.

We calculate the ĉ assuming a fiducial PSF with ellipticity epsf
0 aligned with the e1

direction. The applied value to apply to each galaxy is then:

c1 + ic2 = ĉ · e
psf

epsf
0

· eiθpsf . (A.2)



Appendix B

Mass and galaxy distributions of

four massive galaxy clusters from

Dark Energy Survey Science

Verification data

This appendix contains my contribution to paper by Melchior et al. (2014) describing mass

and light distribution measured from the Dark Energy Survey early science verification

data. I have provided simulations and calibration for shear catalogue used in this work.

The text was written in collaboration with other authors. The following paragraph is

taken from Melchior et al. (2014), section 4.2.1.

Noise-bias calibration

Shape measurements are affected by a prominent bias when the galaxy images become

noisy (e.g. Massey et al. 2006). This is a consequence of the observable, the galaxy el-

lipticity, being non-linearly related to the flux in each pixel and applies to model-fitting

methods and moment-based measures of the ellipticity alike (Melchior & Viola 2012; Re-

fregier et al. 2012; Kacprzak et al. 2012).

To calibrate Im3shape’s response to noise bias we simulate mock galaxies, using the
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GalSim1 (Rowe et al. 2014) framework. In particular, we adopt the methodology of

Mandelbaum et al. (2011) and degrade high-resolution and high-significance images from

COSMOS to the DECam resolution and magnitude limit. We approximate the coadd

PSF by a circular Moffat (1969) profile with seeing values ∈ [0.7, 0.8, 0.9] arcsec, spanning

the range of most of our observing conditions. Applying exactly the same cuts as for

shape catalogues from the coadd images, we have verified that both magnitude and size

distributions of the simulated galaxies closely match the observed ones. Adding an artificial

shear γ of order 5%, we can infer the shear response

mn ≡
∂〈ε〉
∂γ

(B.1)

as a function of the signal-to-noise ratio SNR and FWHM_RATIO. The result is shown in B.1.

At high SNR, the shear can be measured in an unbiased fashion for all galaxy sizes, whereas

the noise bias gets progressively worse for lower SNR, scaling roughly as SNR−2, consistent

with findings of Bernstein & Jarvis (2001). It is counter-intuitive that the smallest galaxies

show the least amount of bias. Also, at very low SNR the larger galaxies show an intriguing

upturn. We interpret both as higher order effects of the noise bias. According to Kacprzak

et al. (2012), only even orders of SNR can appear in the noise-bias relation, therefore we

attempt to parametrise the dependence with the following polynomial model,

mn ≈ c0 + c2SNR
−2 + c4SNR

−4, (B.2)

whose best-fit parameters are listed in B.1. The applied noise-bias corrections are taken

from these fits in each of the size bins.

1https://github.com/GalSim-developers/GalSim

https://github.com/GalSim-developers/GalSim
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FWHM_RATIO c0 c2 c4 Ngal [%]

∈ [1.20, 1.30] 1.010± 0.012 −3.9± 3.6 −64± 129 24.2
∈ [1.30, 1.40] 1.001± 0.012 −17.2± 3.4 +229± 127 19.0
∈ [1.40, 1.50] 1.019± 0.013 −30.2± 3.5 +587± 130 15.3
∈ [1.50, 1.60] 1.028± 0.016 −30.5± 4.1 +498± 150 12.0
∈ [1.60, 1.70] 1.019± 0.018 −28.9± 4.8 +438± 174 9.8
∈ [1.70, 1.80] 1.042± 0.021 −28.3± 5.4 +326± 193 7.3
∈ [1.80, 1.90] 1.014± 0.024 −23.4± 6.2 +271± 214 5.0

Table B.1. Best-fit parameters of B.2 to the simulated data from B.1. The last
column indicates the percentage of all galaxies with shape measurements in any
band to fall into the given bin, averaged over all fields and riz filters.
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Figure B.1. Noise bias on the multiplicative term mn of the shear response
as a function of Im3shape’s SNR for different values of the galaxy FWHM RATIO.
The solid lines are even-order polynomial fits to the data (cf. B.2). The bottom
panel shows the SNR distribution of galaxies with shape measurement from any
single-filter coadd image, averaged over all fields and riz filters.
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Appendix C

GalSim: The modular galaxy

image simulation toolkit

In this appendix I present a section in paper by Rowe et al. (2014). I have designed

and implemented validation schemes for image rendering methods in GalSim. These

schemes tested the FFT-based and photon shooting based drawing engines (C.1.1) as well

as reconvolution procedure (C.1.2). I have run and analysed results of these tests and

provided the data to the authors. The only exception is the test showing the dependence

of rendering accuracy on Sérsic index, which I keep in this section for completeness. Text

describing these results was written in collaboration with other authors. Section numbers

marked with §correspond to sections in Rowe et al. (2014).

C.1 Numerical validation

In this Section we describe the investigations that were undertaken to validate the accuracy

of GalSim image simulations. Although an exhaustive validation of the rendering of every

combination of galaxy/PSF profiles and observing conditions is impractical, certain key

aspects of GalSim performance are shown here. Emphasis is placed on confirming that

GalSim meets the stringent requirements on image transformations for lensing shear and

magnification simulation.
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In particular, our metric for validating that the rendered images are sufficiently accu-

rate is based on measurements of the size and ellipticity of the rendered profiles, calculated

using the adaptive moment routines described in §8.

We define the following “STEP-like” (see Heymans et al. 2006) models for the errors

in the estimates of object ellipticity g1 and g2 and size σ:

∆gi = migi + ci, (C.1)

∆σ = mσσ + cσ, (C.2)

where i = 1, 2. The method of estimating the errors ∆gi and ∆σ varies for each of the

validation tests described below, but a common component is adaptive moments estimates

of rendered object shapes from images (see §8). We will use the formulae above when

describing the nature of the errors in each test.

As discussed in Mandelbaum et al. (2014), a well-motivated target for simulations

capable of testing weak lensing measurement is to demonstrate consistency at a level

well within the overall requirements for shear estimation systematics set by Euclid (e.g.

Cropper et al. 2013; Massey et al. 2012): mi ' 2×10−3 and ci ' 2×10−4. Such values also

place conservative requirements on galaxy size estimation, as the signal-to-noise expected

for cosmological magnification measurements has been estimated as . 50% relative to

shear (e.g. Van Waerbeke 2009; Schmidt et al. 2011; Duncan et al. 2013).

Only if these stringent Euclid conditions are met comfortably will simulations be widely

usable for testing weak lensing shear estimation, and other precision cosmological applica-

tions, in the mid-term future. For each validation test we therefore require that GalSim

produce discrepancies that are a factor of 10 or more below the Euclid requirements, i.e.

mx < 2×10−4, cx < 2×10−5, where x = 1, 2, σ corresponding to g1, g2 and σ, respectively.

The tests in this Section were conducted over a period of extended validation of the

GalSim software between July 2013 and the time of writing this paper. During this

time period, corresponding approximately to versions 1.0 and 1.1 of GalSim, the routines

for rendering objects did not change significantly (except where modifications were found

necessary to meet the validation criteria on mx and cx defined above).
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C.1.1 Equivalence of DFT rendering and photon shooting

One of the principal advantages of the photon shooting method (see §6.3) is that the

implementations of the various transformations described in §4.4 are very simple. Photons

are just moved from their original position to a new position. Convolutions are similarly

straightforward. On the other hand, DFT rendering (see §6.2) needs to deal with issues

such as band limiting and aliasing due to folding (cf. §6.2.1).

Thus a powerful test of the accuracy of our DFT implementation is that the the two

rendering methods give equivalent results in terms of measured sizes and shapes of the

rendered objects. An unlikely conspiracy of complementing errors on both sides would be

required for this test to yield false positive results.

Of all the objects in Table 3, Sérsic profiles are the most numerically challenging to

render using Fourier methods. Especially for n & 3, the profiles are extremely cuspy in the

centre and have very broad wings, which means that they require a large dynamic range

of k values when performing the DFT. They thus provide a good test of our choices for

parameters such as folding threshold and maxk threshold (see §6.4) as well as general

validation of the DFT implementation strategies.

For our test, we built Sersic objects with Sérsic indices in the range 1.5 ≤ n ≤ 6.2.

The half-light radii and intrinsic ellipticities |g(s)| were drawn from a distribution that

matches observed COSMOS galaxies, as described in Mandelbaum et al. (2014). The

galaxies were then rotated to a random orientation, convolved with a COSMOS-like PSF

(a circular Airy profile), and then rendered onto an image via both DFT and photon

shooting.

The error estimates were taken to be the difference between the adaptive moments

shape and size estimates from the two images:

∆gi = gi,DFT − gi,phot (C.3)

∆σ = σDFT − σphot (C.4)

For each galaxy model, multiple trials of the photon-shooting images were made, each

with very high S/N to avoid noise biases (107 photons shot per trial image). The mean

and standard error of ∆gi and ∆σ from these trials were used to estimate values and

uncertainties for mx,DFT and cx,DFT using standard linear regression.

Differences between shape and size estimates are illustrated in Fig. C.1, for n = 1.5
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Figure C.1. Difference between measured shears (upper panel: g1; central panel:
g2; lower panel: σ) for Sérsic profiles simulated using the photon-shooting and
DFT rendering methods, plotted against the (shot noise free) shear and size
measured from the DFT image. Results are shown for 30 galaxies with realistic
size and shape distribution, and Sérsic index values n = 1.5, 6.2. (Note that the
‘peakiness’ of the high-n profiles results in their low σ estimates.) The best-fitting
lines are shown, and estimates of the slopes mx,DFT for these and other values of
n are plotted in Fig. C.2.
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Figure C.2. Estimates of m1,DFT, m2,DFT and mσ,DFT, corresponding to
rendering-induced discrepancies in ellipticity g1, g2 and size σ, respectively, as a
function of Sérsic index n. These slope parameters are defined by Eqns. C.1 and
C.2 for the differences between measurements from DFT and photon-shooting-
rendered images of Sérsic profiles. The shaded region shows the target for Gal-
Sim based on not exceeding one tenth of weak lensing accuracy requirements for
Stage IV surveys such as Euclid (see §9).

and n = 6.2. Fig. C.2 shows derived estimates of mx,DFT for these and other Sérsic indices

tested. Tolerances are met on m-type biases, although discrepancies in ellipticity can be

seen to increase somewhat as n increases. It was found that c-type additive biases were

consistent with zero for all n indices.

Fig. C.3 shows results from a high-precision investigation of mx,DFT as a function

of GSParams parameters (see §6.4), using a randomly selected sample of 270 galaxies

from COSMOS at each parameter value and large numbers of photons. Each galaxy

was generated in an 8-fold ring test configuration (Nakajima & Bernstein 2006) to fur-

ther reduce statistical uncertainty. The plot in Fig. C.3 shows the impact of increasing

the folding threshold parameter: as expected, the rendering agreement decreases as

folding threshold increases, and the representation of object size is most affected. Anal-

ogous results were achieved for many of the parameters discussed in §6.4, and the default

GSParams parameters were found to give conservatively good performance in all tests.
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Figure C.3. Estimates of m1,DFT, m2,DFT and mσ,DFT, corresponding to
rendering-induced discrepancies in ellipticity g1, g2 and size σ, respectively, as a
function of the GSParams parameter folding threshold. Each point shows the
average from the randomly-selected sample of 270 unmodified COSMOS galaxy
models described in §9.1. The rendering parameter folding threshold is de-
scribed in §6.4 and takes a default value of 5 × 10−3, indicated by the dotted
line. As for Fig. C.2 these parameters are defined by the model of Eqns. C.1 and
C.2. The shaded region shows the target for GalSim based on not exceeding one
tenth of weak lensing accuracy requirements for Stage IV surveys (see §9).

C.1.2 Accuracy of reconvolution

As a final demonstration of GalSim high precision operation, we tested that we can

accurately apply the reconvolution algorithm of §6.5 (Mandelbaum et al. 2011). The aim

is to represent the appearance of a test object following an applied shear gapplied, when

viewed at lower resolution.

This test was carried out using Sersic profiles convolved by a known COSMOS-like

PSF (a circular Airy profile), rendered at high resolution (0.03 arcsec/pixel). These

images, along with images of the PSF, were then used as inputs to initialize RealGalaxy

objects, mimicking the use of real COSMOS galaxy images. In the usual manner these

objects were sheared and reconvolved by a broader (ground-based or Stage IV space-based
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survey) PSF, then rendered at lower resolution.

Because of the use of an underlying parametric Sérsic profile, the rendering of which

has been validated in §9.1, we can also render the convolved, sheared object directly at

lower resolution to provide a reference for comparison. We quantify any error in the

effectively applied shear due to the reconvolution process as mi,reconv and ci,reconv, defined

according to Eqn. C.1.

The test was done for 200 profiles whose parameters were selected from the real COS-

MOS galaxy catalogue described in Mandelbaum et al. (2014), using random galaxy rota-

tions in an 8-fold ring test configuration (Nakajima & Bernstein 2006).

Since galaxies with different light profiles might be more or less difficult to accurately

render using reconvolution, we must consider not only the mean values of m and c, but

also investigate their ranges, which could identify galaxy types for which the method fails

to work sufficiently accurately even if it is successful for most galaxies.

Fig. C.4 shows the standard deviation ofmi,reconv as a function of the folding threshold

parameter described in §6.4. Near the GalSim default value of 5× 10−3, our requirement

mi,reconv < 2 × 10−4 is met comfortably in the ensemble average. Across the sample of

200 COSMOS galaxies a small fraction (3/200) exceeded our requirement for the default

folding threshold value for m2,reconv. However, we do not believe that this represents

enough of a concern to change the default GSParams settings. Provided that a represen-

tative training set of galaxy models (such as the COSMOS sample), of sufficient size, is

used, the variation in mi,reconv seen in Fig. C.4 should not prevent simulations using the

reconvolution algorithm from being accurate to Stage IV requirements for weak lensing.

If greater accuracy is required, users wishing to reduce the impact of these effects

can modify the values of the GSParams according to their needs. In this case, reducing

folding threshold by a factor of 10 brings m2,reconv within requirements for all 200

galaxies tested. Additive biases ci,reconv were found to be extremely small (and consistent

with zero) in all cases.

These results show that the approximations inherent in the reconvolution process do

not significantly interfere with GalSim ability to render accurate images suitable for weak

lensing simulations, for a realistic range of galaxy profiles drawn from COSMOS.
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C.1.3 Limitations

While results presented in this Section are encouraging, with the default settings providing

accuracy that comfortably exceeds our requirements by a factor of 5–10 in many cases,

it must be remembered that no set of tests presented in this article could be sufficient

to positively validate GalSim performance for all possible future applications. Users

of GalSim are strongly advised to conduct their own tests, tailored to their specific

requirements.

One specific caveat worthy of mention is the adoption of a circular PSF for all tests

presented. A circular Airy was chosen as a simple approximation to the PSF found in

COSMOS and other HST images. GalSim makes no distinction between those objects

describing PSFs and those describing galaxies when rendering convolutions of multiple

profiles. However, while unlikely, it is possible that a subtle bug or other coding issue

might only be activated for cases where both galaxy and PSF break circular symmetry.

Another caveat is that we only used a particular set of COSMOS galaxies for the

training sample. It is plausible that galaxy models drawn from a population with a

different redshift distribution to the COSMOS sample, or imaged in a filter other than

F814W, might have sufficiently different morphological characteristics to fail the rendering

requirements adopted in this work.

In many cases, therefore, users may find it necessary to modify the tests presented here,

especially where the inputs and requirements of their analyses differ significantly from the

assumptions presented here. Some of the tests in this Section will hopefully serve as a

useful starting point for these investigations.
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Figure C.4. Multiplicative slope mi,reconv for the reconvolution test of §C.1.2,
for g1 and g2, as a function of the folding threshold parameter (cf. §6.4). The
exterior error bars show the full range of values for the 200 models tested, and
the points and interior error bars show the mean and standard error. The shaded
region shows the target for GalSim based on not exceeding one tenth of weak
lensing accuracy requirements for Stage IV surveys (see §9). The default value
of folding threshold is indicated by the dotted line.
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