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Abstract

Attenuation correction is essential for reliable interpretation of emission tomog-

raphy; however the use of transmission measurements to generate attenuation

maps is limited by availability of equipment and potential mismatches between

the transmission and emission measurements. This work investigates the possi-

bility of estimating an attenuation map using measured scatter data without a

transmission scan.

A scatter model has been developed that predicts the distribution of photons

which have been scattered once. The scatter model has been used as the basis of

a maximum likelihood gradient ascent method (SMLGA) to estimate an attenua-

tion map from measured scatter data. The SMLGA algorithm has been combined

with an existing algorithm using photopeak data to estimate an attenuation map

(MLAA) in order to obtain a more accurate attenuation map than using either

algorithm alone. Iterations of the SMLGA-MLAA algorithm are alternated with

iterations of the MLEM algorithm to estimate the activity distribution. Initial

tests of the algorithm were performed in 2 dimensions using idealised data before

extension to 3 dimensions. The basic algorithm has been tested in 3 dimensions

using projection data simulated using a Monte Carlo simulator with software

phantoms.

All soft tissues within the body have similar attenuation characteristics and so

only a small number of different values are normally present. A Level-Set tech-

nique to restrict the attenuation map to a piecewise constant function has there-

fore been investigated as a potential way to improve the quality of the recon-

structed attenuation map.

The basic SMLGA-MLAA algorithm contains a number of assumptions; the ef-

fect of these has been investigated and the model extended to include the effect

of photons which are scattered more than once and scatter correction of the pho-
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topeak. The effect of different phantom shapes and activity distributions has

been assessed and the final algorithm tested using data acquired using a physical

phantom.
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1 Introduction

When performing myocardial perfusion imaging (MPI) using single photon emis-

sion computed tomography (SPECT), variation in attenuation of different tissue

types in the thorax can lead to significant artefacts in the reconstructed image

unless a correction for attenuation is performed. Avoiding such artefacts is clearly

desirable since these can mimic perfusion defects and hence lead to incorrect di-

agnosis. Attenuation correction is also essential if quantitative analysis is to be

performed, e.g. comparison of images with a normal database.

The use of X-ray Computed Tomography (CT) images and sealed source transmis-

sion scans to provide an attenuation map is well established (Zaidi & Hasegawa

2003). However, there are a number of disadvantages to this approach to attenua-

tion correction. Firstly, the use of a transmission scan to provide the attenuation

map can result in a mismatch between the activity distribution and the attenu-

ation map as a result of patient movements, including those due to respiration.

Secondly, a new generation of gamma cameras for cardiac imaging is now becom-

ing available. These cameras have the possibility to provide more rapid image

acquisition but most do not have the hardware required to acquire a transmis-

sion scan and addition of such hardware would be technically challenging. The

final consideration when using a transmission scan to acquire attenuation data is

that of patient dose; the use of both sealed sources and X-ray CT results in an

increased radiation dose to the patient which it would be desirable to avoid if a

suitable alternative could be found.

The objective of this work is to develop a reconstruction algorithm for SPECT

imaging that includes attenuation correction without the use of a separate trans-

mission scan.
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1.1 Overview of Thesis

Some existing approaches to attenuation correction in SPECT imaging and the

role of SPECT in cardiac imaging are discussed in Chapter 2. Other factors

which can affect the accuracy of SPECT image reconstruction are also discussed;

in particular the role of scatter correction.

Chapter 3 shows the development of a new model for scatter sinograms in 2

dimensions using the Klein-Nishina model for scattering probability. The model

developed is compared to data generated using Monte Carlo simulation for a

number of different phantoms.

The scatter model developed is incorporated into a scatter based maximum like-

lihood gradient ascent (SMLGA) reconstruction algorithm in Chapter 4 which

is tested using simulated data and compared to reconstructions with perfect at-

tenuation correction and without attenuation correction. An existing method

of attenuation correction using photopeak data (the MLAA technique (Nuyts

et al.. 1999)) is also investigated and the combination of the MLAA and SMLGA

algorithms tested.

Chapter 5 extends the 2-dimensional scatter model to 3 dimensions. The use of an

improved model for the estimation of scattering within voxels close to the source

voxel, modelling of the collimator resolution and changes to the attenuation and

scattering as a result of reduced photon energy and in different tissue types are

also considered.

The final scatter model is used for 3-dimensional image reconstruction in Chapter

6. The use of a ‘one-step’ late approximation to the gradient of the likelihood of

the attenuation map is considered in the 3-dimensional case and some possible

methods of reducing the time taken to perform the reconstruction are investi-

gated.

In Chapter 7 some techniques for limiting the number of unknown variables in

the reconstruction problem are considered. The use of a piecewise constant (level

set) method of limiting the variation in the reconstructed attenuation map is

investigated. The effect of the choice of attenuation map used to initialise the

reconstruction process is also discussed. As an alternative to the level set tech-

nique constraints are used to fix the attenuation map in some regions of the

reconstruction.
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In Chapter 8 the algorithm is validated with data generated using Monte Carlo

simulation and data acquired using a physical torso phantom. The effects of pho-

tons which are scattered multiple times and detected within the scatter window

and of scattered photons within the photopeak window are also considered in this

chapter.

Finally, a summary of the findings of each chapter and potential areas for future

investigation are outlined in the Conclusions (Chapter 9).
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2 Background

2.1 SPECT Imaging

The aim of this project is to improve image quality in nuclear medicine single

photon emission computed tomography (SPECT) imaging by developing a recon-

struction algorithm which includes attenuation correction without a transmission

scan. This has particular relevance to Myocardial Perfusion Imaging (MPI).

SPECT imaging involves the administration to a patient of a pharmaceutical

which is labelled with a radioactive isotope; this is known as a radiopharmaceuti-

cal. The radiopharmaceutical is taken up by tissues within the body in proportion

to the metabolism of the administered compound. The aim of the study is to

determine the distribution of the radiopharmaceutical within the body by mea-

suring the emitted radiation outside the body (Fokas et al.. 2006). For SPECT

studies a series of planar images are acquired at a number of different angles

around the body to provide projection views which can be used to reconstruct

the distribution of the radioactive tracer in slices through the body (Patton &

Turkington 2008). The images obtained give functional information which is

complementary to the structural information provided by other modalities such

as magnetic resonance imaging (MRI) or X-ray computed tomography (CT).

A common approach to SPECT imaging studies is to use radioactive isotopes

which decay primarily via emission of a gamma photon. This is because other

radioactive particles are highly attenuated in tissue and are therefore unlikely

to travel far enough to be detected; hence, they can not be used for medical

imaging. The isotope that is most commonly used is technetium-99m (99mTc)

which decays via isomeric transition with a half-life of approximately 6 hours,

producing gamma rays with an energy of 140keV (ICRP 1983). Emitted gamma
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Figure 2.1: Schematic diagram of a conventional gamma camera

photons are detected using a gamma camera when the photon interacts with and

deposits its energy at a detector.

2.1.1 Gamma Cameras

In conventional gamma cameras, photon detection occurs using a sodium iodide

(NaI) crystal which is doped with thallium (Tl); this is referred to as the scintilla-

tion crystal. A schematic diagram of a conventional gamma camera is presented

in Figure 2.1. Incident gamma photons deposit their energy in the crystal lattice

structure when they interact with electrons, promoting them into the conduction

band. As the electrons return to the valence band the consequent change in en-

ergy results in the emission of a light photon, with wavelength within the visible

range. The light photons are detected by an array of photomultiplier (PM) tubes

which converts them into electrons and amplifies the signal. The voltage of the

output signal is directly proportional to the energy deposited in the scintillation

crystal.

A lead collimator is positioned in front of the camera face in order to provide

positional information about the photons incident on the crystal. Only photons

which are travelling approximately perpendicular to the camera face are detected,

while photons travelling at more oblique angles are absorbed in the collimator.

The design of the collimator will affect both the resolution and the sensitivity of

the camera; collimators with a small acceptance angle will provide high resolution

but a lower sensitivity.
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The location where the gamma photon was incident on the camera face is deter-

mined by considering the relative amplitudes of the signals from each of the PM

tubes. The point within the crystal where the interaction occurred will be within

the area defined by the contact area with the PM tube that has the greatest

amplitude signal. The precise location is determined by considering the relative

amplitudes of different groups of PM tubes with the point of interaction occur-

ring closer to groups with higher amplitude. For example the PM tubes can be

divided into two groups (+X and −X) depending on the position of the centre

of the PM tube along the horizontal axis of the camera face, relative to the cen-

tre. If the sum of the amplitudes of the PM tubes in the +X group is greater

than in the +X group the interaction can be determine to have occurred in the

+X half of the crystal; the exact distance from the central line is given by the

relative amplitude of the +X and −X signals. The vertical position can then be

determined in a similar way by considering +Y and −Y signals.

2.1.1.1 Dedicated cardiac gamma cameras

Recently a number of gamma cameras optimised for cardiac imaging have become

available. These cameras have a smaller field of view, compared to traditional

cameras, and often use multiple relatively small solid state detectors. Here, the

use of solid state detectors offers an improved sensitivity with the potential of

higher spatial and energy resolution. As a result the image acquisition time can

be significantly reduced without compromising image quality.

To further reduce imaging times data acquisition can be focussed on a region of

interest centred on the heart; known as a region centric acquisition. The region

centric acquisition is acquired by either moving each detector or by using a moving

pinhole array such that more time is spent with the detectors pointing towards

the heart

2.1.2 Factors Affecting Image Accuracy and Quantifica-

tion

There are a number of factors which can limit the quality of SPECT images unless

they are corrected for. One of the most significant of these is that as photons

travel though a material there is a finite probability that they will interact with
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that material resulting in attenuation of the photon via either absorption or

scattering. The probability of attenuation depends on the energy of the photon

and the type of material it is travelling through. The effect of attenuation on

SPECT images and correction for it is discussed in Section 2.4. When a photon

interacts with a material its energy may be totally absorbed by the material in

which case the photon is lost. Alternatively the photon may transfer part of its

energy to the material and undergo a change of direction in a process known as

inelastic or Compton scattering. The effect of scatter, and correction for it, is

discussed further in Section 2.5.

The quality of a SPECT image is also affected by the finite resolution of the

imaging system. In conventional gamma camera systems the collimators are

used to limit the acceptance angle of photons incident on the detector to be

approximately perpendicular to the camera face. In an idealised case this means

that all photons detected at a given point on the detector originated along a

vector normal to that point on the detector. However, in reality collimator holes

have a finite size and hence a finite acceptance angle. Photons detected may,

therefore, have originated anywhere within a finite solid angle subtended from

the point of detection. The resolution of the gamma camera system is defined

by the full width at half maximum of the image of a point source. It, therefore,

depends on the distance of the source from the collimator. Improved resolution

is obtained by positioning the source close to the detector. Since the resolution

is defined by the geometry of the collimator holes and the distance of the source

from the detector it is possible to model system resolution accurately and hence

improve the resolution of the reconstructed images.

The accuracy with which individual voxel values of SPECT images can be deter-

mined is affected by the partial volume effect. At the boundaries between different

regions two or more organs may be included in the same voxel of the image. As

a result the apparent uptake value calculated for the voxel is the average of the

different tissues contained within the voxel. This effect is particularly significant

for small regions because the proportion of the region that is located close to a

boundary is increased; for very small regions the maximum activity within the

region may not be accurately recovered as the apparent activity is spread over a

volume which is larger than the true region volume. The finite resolution of the

gamma camera will also contribute to the partial volume effect as some counts

from each voxel are measured in the neighbouring detector bins and hence the
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boundaries between different uptake regions become blurred. The use of resolu-

tion modelling of the camera system in the reconstruction process can help to

reduce the impact of the camera resolution characteristics on the partial volume

effect.

Dead-time of the imaging system is caused by the finite time needed by the

detectors to respond to each photon that is incident on the detector. If a second

photon is incident on the detector a very short time after the previous photon (i.e.

during the dead-time) the system is unable to respond and the second photon is

lost. The effect of dead-time can reduce the sensitivity of the imaging system, and

hence limit the accuracy of quantification, particularly at high count rates. The

effect of dead-time can be minimised by the use of small crystal sizes. However

at high count-rates the number of photons detected will not increase linearly

with the number of photons that are incident on the imaging system and so it

is essential to ensure that images are acquired at count-rates within the linear

portion of the system response curve if accurate quantification is to be performed.

Patient movement during the image acquisition process can result in artefacts in

the reconstructed images. This may occur as a result of physiological motion,

such as breathing, or voluntary motion. The effect of movement during the scan

disperses the activity from the moving region over a larger volume resulting in

reduced image contrast. Furthermore, a mismatch between different phases of the

image set (e.g. different frames of a dynamic series or between emission and trans-

mission scans where they are acquired sequentially) may also occur. Mismatches

between the emission and transmission scans can result in errors in the atten-

uation correction process and hence introduce artefacts into the reconstructed

activity distribution.

2.1.3 Image Reconstruction

In order to visualise an activity distribution, acquired projection data must be

reconstructed to give the activity at each point in the field of view of the detector.

The simplest way to do this is to use back projection. In this reconstruction tech-

nique the number of counts at each detector point is added to each point within

the field of view that is visible at that detector point. This method results in a

‘star artefact’ around regions of high activity (Figure 2.2); when data from more

projections are added the ‘star’ becomes less prominent, however, the resulting
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Figure 2.2: Activity distribution reconstructed from 9 projection angles using a
back-projection technique showing a ‘star artefact’

image is blurred. Blurring can be reduced using a high-pass filter. However this

often amplifies noise in the image requiring the use of a low-pass filter to ensure

a satisfactory signal to noise ratio. This type of reconstruction is easy to im-

plement but does not take account of the noise characteristics of the data and

so is best suited to low noise situations such as X-ray CT acquisitions. SPECT

data tends to have much poorer count statistics and so is best reconstructed us-

ing an algorithm that accounts for the noise characteristics of the data. Such

algorithms are much more complex and are generally used in an iterative process

which aims to identify the activity distribution whose calculated projections most

closely matched the measured projection data. Iterative image reconstruction is

discussed in more detail in Section 2.3.

2.2 Measurement of Cardiac Function

2.2.1 The Structure and Function of the Heart

The primary function of the heart is to pump blood around the body. During

the diastole phase of the cardiac cycle the ventricles, shown in Figure 2.3 (Health

Curriculum 2012), are relaxed and the mitral and tricuspid valves are open. This

allows deoxygenated blood from the body to flow from the right atrium to the

right ventricle and oxygenated blood to flow from the left atrium to the left
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Figure 2.3: The structure of the heart

ventricle. The atria then contract forcing more blood into the ventricles after

which the ventricles begin to contract and the mitral and tricuspid values close.

Blood is forced from the right ventricle to the lungs and from the left ventricle

to the rest of the body (systole). The muscular wall of the left ventricle is the

thickest of the four chambers of the heart because, in order to transport blood

around the whole body, it contracts with a much greater force than the other

chambers.

In order to allow repeated cycles of contraction and relaxation to occur the car-

diac muscle is supplied with blood via the coronary arteries. In the presence of

Coronary Artery Disease (CAD) arteries supplying the cardiac muscle become

narrowed resulting in reduced blood flow to the heart muscle; this is known as is-

chemia. When there is a severe interruption to blood flow a myocardial infarction

(heart attack) can occur resulting in the death of the region of the myocardium

which receives its blood supply from the compromised artery. Damage caused by

an infarction is irreversible and can compromise the function of the heart. In cases

of less severe narrowing of the coronary arteries sufficient blood may be supplied

to the myocardium at rest. However, during exercise, when the oxygen demand

of the muscles increases, CAD can prevent sufficient blood reaching the heart

muscle resulting in pain and shortness of breath. Coronary artery disease is the
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single most common cause of death in the European Union and so its diagnosis

and treatment is an area of significant interest (Allender et al.. 2008).

Determining the most appropriate medical treatment for CAD requires accurate

assessment of the presence of ischemia and the viability of the affected heart

muscle. The size and location of plaques which cause narrowing of the coronary

arteries can be assessed using coronary angiography or cardiac CT. These tests al-

low the location of plaques to be accurately visualised and are helpful in planning

treatments. However, they do not give any indication of the impact the plaque

has on perfusion or the viability of the cardiac muscle. Myocardial perfusion

imaging (see Section 2.2.2) can be used to assess regions of ischemia which may

benefit from revascularisation as well as regions of infarcted and normal tissue

where further treatment would not provide any benefit.

2.2.2 Myocardial Perfusion Imaging

Myocardial Perfusion Imaging (MPI) is performed routinely using both Single

Photon Emission Computed Tomography (SPECT) and Positron Emission To-

mography (PET). Both techniques involve the intravascular injection of a radioac-

tive tracer which is taken up by the myocardium in proportion to the perfusion of

the myocardial muscle. Currently, SPECT imaging is more commonly performed

than PET imaging because gamma cameras and SPECT tracers are more widely

available. MPI studies are normally carried out in two parts; one where the pa-

tient is resting in order to show the normal perfusion of the heart and the other

where the heart is stressed and hence requiring perfusion.

An ideal tracer for myocardial perfusion imaging would be taken up in the my-

ocardium in linear proportion to blood flow in the area and be retained there dur-

ing the acquisition process. The two pharmaceuticals that are most commonly

used for SPECT myocardial perfusion imaging, sestamibi and tetrofosmin, are

both labelled with 99mTc. However, thallium (201Tl) may also be used.

The sestamibi and tetrofosmin compounds are lipophilic and diffuse from capil-

laries into the cardiac myocytes where they associate with mitochondria within

the cell. The distribution of the tracer is therefore associated with normal mi-

tochondrial function. In areas where the cells are hypoxic as a result of severe

ischemia mitochondrial function, and hence the tracer uptake, is reduced. There
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is no significant redistribution of either compound from the initial uptake distri-

bution after 3 hours. This lack of redistribution means that imaging does not

have to be performed immediately after the stress test; however two separate

injections are required to obtain stress and rest images.

Exercise testing is the normal method of stressing the heart. This is performed,

using a fixed protocol on a treadmill, or bicycle, in order to raise the patient’s

heart rate to approximately 80% of the theoretical maximum (220 - age). If this

heart rate can not be achieved the test results can not be accurately interpreted

as the blood vessels supplying the heart may not be fully dilated. When patients

are unable to reach their target heart rate by exercising, e.g. in cases of physi-

cal incapacity or uncontrolled hypertension, pharmacological stress agents (e.g.

adenosine or dobutamine) are used.

During the image acquisition process an electrocardiogram (ECG) signal can be

used to divide the collected counts into a number of bins (normally 8 or 16) which

correspond to different parts of the cardiac cycle, a process known as ‘gating’.

Reconstruction of gated images allows movement of the wall of the left ventricle

to be assessed and the ejection fraction (LV EF ) to be calculated (Equation 2.1).

LV EF =
VD − VS
VD

(2.1)

where VD and VS are the volumes of the left ventricle at end-diastole and end-

systole respectively.

In order to allow visual inspection of the perfusion of the left ventricle acquired

data are normally reconstructed into slices along the short, horizontal long and

vertical long axes as illustrated in Figure 2.4. Images acquired at rest and at

stress can be compared to identify areas of abnormal perfusion (perfusion de-

fects). Perfusion defects which are visualised in both the rest and stress images

indicate previous infarctions which have resulted in the death of the myocardial

muscle. A perfusion defect present in the stress image but not in the correspond-

ing segment of the rest image indicates a region of ischemia which may benefit

from revascularisation, or a stent, to improve blood flow to the region.

In order to perform more quantitative analysis polar plots may be used (Garcia

et al.. 1985); an example is shown in Figure 2.5. These plots display a represen-

tation of the perfusion of the complete left ventricle on a single, circular, image;
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Figure 2.4: Reconstruction planes for myocardial perfusion imaging

Figure 2.5: Polar plot for normal left ventricle with uniform uptake in all regions.

the apex is located at the centre of the plot with the base at the edge of the plot.

The use of polar plots allows images to be compared to a database of images of

normal (healthy) hearts to evaluate the extent and severity of any defects quan-

titatively. However, the use of quantitative analysis is limited by artefacts within

the acquired images which can significantly alter the appearance of the tracer

distribution. The attenuation and scatter of photons as they pass through the

tissue surrounding the heart are significant causes of artefacts in myocardial per-

fusion images, hence, accurate correction for them is required in order to improve

the quality of the reconstructed images.
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2.3 Iterative Image Reconstruction

Iterative techniques have a number of advantages over analytical techniques such

as filtered back projection. In particular, filtered back projection does not handle

noise optimally and lacks flexibility for different scanner configurations. Iterative

reconstruction techniques can take account of noise within the measurement pro-

cess as well as attenuation, scatter and the measurement characteristics of the

system resulting in reduced noise in the final reconstructed image.

There are many different iterative reconstruction algorithms but they all have the

same basic aim; that is to find an estimated image whose projections match the

measured projection data. One of the most commonly used iterative reconstruc-

tion algorithms for emission tomography is the maximum likelihood expectation

maximisation (MLEM) algorithm derived by Shepp & Vardi (1982) and separately

by Lange & Carson (1984). The algorithm is derived using the Poisson nature

of the data to calculate the likelihood that the given estimate of the activity dis-

tribution matches the true activity distribution, given the measured projection

data.

If the measured SPECT projection data is given by (nnn∗)d =
∑
b

nbd, where nbd is

the number of counts emitted from voxel b that are detected at detector element

d, then the expected number of counts emitted from b that will be detected at

d is equal to the activity in voxel b multiplied by element bd of the transfer

matrix AAA0 which describes the physical characteristics of the imaging system and

attenuation within the patient. The relationship between activity and detected

counts is described by Poisson statistics. Therefore,the probability (or likelihood)

of detecting a count (λbd) in d given activity λλλb at b is given by Equation 2.2.

P (nbd | λbd) =
∏
b

∏
d

λ
nbd
bd · e−λbd
nbd!

(2.2)

λbd = (AAA0)bd · λλλb
(AAA0)bd = cbd exp

[
−
∫ d
b
µµµ(x)dx

]
cbd gives contribution of geometric effects to the probability of a photon

from voxel b reaching detector d.

x is the position along the ray between b and d

The log-likelihood is calculated from Equation 2.2 by taking the natural logarithm
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of both sides giving:

lnP
(
nbd | λbd

)
=
∑
b

∑
d

(
nbd · ln

(
λbd
)
− λbd − ln

(
nbd!
))

(2.3)

The conditional expectation of the log-likelihood given the measured projection

data and the current estimate of the activity distribution, (λ̂̂λ̂λi)b is then given by

Equation 2.4.

E
[

lnP
(
nbd | λbd

)
| (nnn∗)d, (λ̂̂λ̂λi)b

]
=∑

b

∑
d

(
E
[
nbd | (nnn∗)d, (λ̂̂λ̂λi)b

]
· lnλbd − λbd − E

[
ln(nbd!)

])
(2.4)

E
[
nbd | (nnn∗)d, (λ̂̂λ̂λi)b

]
is the fraction of the counts measured in detector element d

that are expected to have originated from voxel b and is defined as:

E
[
nbd | (nnn∗)d, (λ̂̂λ̂λi)b

]
=

(AAA0)bd · (λ̂̂λ̂λi)b∑
b′

(AAA0)b′d · (λ̂̂λ̂λi)b′
· (nnn∗)d (2.5)

= pbd

In order to maximise the conditional expectation of the log-likelihood the partial

gradient of the function is found with respect to λλλ, as shown in Equation 2.6.

∂

∂(λλλ)b
E
[

lnP
(
nbd | λbd

)
| (nnn∗)bd, (λ̂̂λ̂λi)b

]
=

∂

∂(λλλ)b

∑
d

(
pbd · ln((AAA0)bd(λλλ)b − (AAA0)bd(λλλ)b − E

[
ln(nbd!)

])
=
∑
d

pbd
(λλλ)b
− (AAA0)bd (2.6)

In order to find the maximum, the gradient of the conditional expectation of

the log-likelihood can then be set equal to zero and rearranged to find the next

estimate of the activity distribution, λλλi+1, as shown in Equation 2.7. This is the
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commonly used MLEM formula derived by Lange (Lange & Carson 1984).

(λλλi+1)b =
∑
d

pbd
(AAA0)bd

=
(λλλi)b∑

d

(AAA0)bd

∑
d

(AAA0)bd · (nnn∗)d∑
b′

(AAA0)b′d(λλλ
i)b′

(2.7)

The MLEM formula above is used as an iterative process for estimating an ac-

tivity distribution from measured projection data. When increasing numbers of

iterations are performed the likelihood that the estimated distribution is equal

to the true distribution increases, however the estimates will also appear increas-

ingly noisy and so in clinical practice the reconstruction is often stopped after

a small number of iterations in order to produce images which are visually ap-

pealing. However, not all regions of the image will converge at the same rate

and so this approach can lead to reduced accuracy of the reconstruction. Using a

larger number of iterations and then smoothing the resulting image would ensure

that all regions of the image have converged and reduce the noisy appearance of

the image. The accuracy of the MLEM reconstruction technique depends on the

accuracy of the transfer matrix.

One significant limitation of the MLEM algorithm is the time taken to perform

a reconstruction. Each iteration of MLEM, which includes a forward and back-

ward projection step, takes approximately twice as long as reconstruction using

the filtered back projection method. Since around 20 iterations are commonly

performed this leads to reconstruction times which are approximately 40 times

longer.

A number of methods for increasing the speed of the reconstruction have been

proposed which have facilitated the use of iterative reconstruction techniques

in widespread clinical practice (Hutton et al.. 1997). The number of iterations

that are required in order for iterative reconstructions to converge to a solution

can be reduced by the use of preconditioning filters (Clinthorne et al.. 1993),

or by the inclusion of some prior knowledge about the expected solution in the

algorithm (Lange et al.. 1987). Alternatively the calculation of the reconstruction

can be reduced, the ordered subsets method (Hudson & Larkin 1994) is the most

widely used of these techniques. The Ordered Subsets Expectation Maximisation

(OSEM) method uses a small subset of the measured projections to perform each
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update (sub-iteration) of the activity distribution. A number of sub-iterations

are then performed in order to utilise the complete set of measured projections.

The projections which are included in each sub-iteration are selected such that

the amount of new information that is included is maximised. Provided that the

number of projections in each subset is not too small and that the subset order

is carefully selected the estimated activity distribution resulting after each sub-

iteration of the OSEM algorithm is virtually indistinguishable from the estimate

resulting from the same number of full iterations of the MLEM algorithm (Zaidi

2006).

2.3.1 The Transfer Matrix

The transfer matrix AAA0 describes the physical characteristics of the imaging sys-

tem. The elements of AAA0 give the probability that a photon emitted from voxel

b, travelling in direction Ω will be detected in detector element d. The quality

of the reconstructed image depends on the accuracy of the transfer matrix which

can include the effects of attenuation and scatter as well as geometric factors. In

order to include the effects of attenuation the transfer matrix is divided into two

parts, a geometric part, CCC with elements cbd, and an attenuation part (γγγbd) as

described in Equation 2.8.

γγγbd = exp

[
−
∫ d

b

µµµ(x)dx

]
(2.8)

µµµ is the matrix defining the linear attenuation coefficient at each point in

the reconstruction volume

x is the position along the ray between b and d

There are a number of ways to calculate the geometric component, CCC, of the

transfer matrix (the radiological path). One method is to pre-compute the rela-

tionship between every voxel and every detector element, however, this requires

a very large matrix to be stored. Siddon et al. (Siddon 1985) have suggested an

efficient method of calculating the radiological path that requires a much smaller

matrix to be stored (scaling with 3N rather than N3 for matrix size N). It

also has the advantage that the order of the voxels along the radiological path

is known, which is important for the calculation of attenuation along the path.

This method works by considering the array of voxels to be the intersection vol-
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(i) (ii) (iii)

Figure 2.6: Illustration of (i) central ray (Siddon method) and (ii) rotation based
projectors; (iii) original matrix

umes of sets of equally spaced parallel planes. The intersection of the radiological

path with each set of planes is then calculated. Since, within each set of planes,

individual planes are parallel and equally spaced, each intersection point does

not need to be calculated individually. Instead the first intersection with each

set of planes can be calculated and all the other intersection points generated by

recursion. Once the intersection points have been calculated for each set of planes

they are sorted into order. This gives the position of each intersection along the

radiological path. The intersection length with a given voxel is then the difference

between two adjacent intersection points along the radiological path and the voxel

index is calculated from the relationship between the starting and end points of

the radiological path and the location of the planes that define the image array.

Han et al.. (1999) proposed a potential improvement to the Siddon ray tracing

technique (Siddon 1985) which increments from one point on the ray to the next

removing the need for a number of multiplicative steps in the Siddon technique.

A limitation of the Siddon method is that it only considers the central ray of

each projection line; the contribution of a pixel to a given ray is considered as

the length of the pixel that lies on the central ray, expressed as a fraction of

the pixel size. As a result, at oblique angles to the image matrix some pixels

may be included in multiple rays and the total contribution from all rays could

be greater than one. Improvements to the ray path calculation can be achieved

using tubes or volumes in place of central rays (Popescu & Lewitt 2004, Scheins

et al.. 2006, Schretter 2006). An alternative method of calculation is to used

a rotation based projector as illustrated in Figure 2.6. In this case the image

matrix is rotated to the required angle in order to calculate which pixels lie

along each path. The rotated image is then interpolated to fit a square matrix

from which projections are calculated using the sum of the pixels along each
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column. This method of projection is limited in accuracy by the accuracy of

the interpolation method used; but has the advantage that detector resolution

effects may be easily incorporated as the distance of each row of pixels in the

interpolated image is a known distance from the detector and can therefore be

convolved with an appropriate point spread function to match the response of

the detector to sources at that distance from the detector.

2.4 The Effect of Attenuation and Attenuation

Correction

As photons travel through any material there is a finite probability that they

will interact with it. For photons with energies in the range normally encoun-

tered in nuclear medicine (in the keV range) there are two main mechanisms of

interaction. Photoelectric interactions occur when the incident photon interacts

with an electron and the energy of the photon is totally absorbed. Alternatively,

the photon may undergo a scattering interaction in which the photon is removed

from the primary beam, resulting in attenuation of the primary beam. After a

scattering interaction the scattered photon may go on to interact or be detected

elsewhere. The process of scatter and the potential problems associated with it

are discussed in Section 2.5.

The transmission of photons through an attenuating material is given by Equation

2.9 (Sorensen & Phelps 1980) and depends on the energy (E) of the incident

photons.

I(E) = Io(E) exp
(
−
∫ X

0

µ(x,E)dx
)

(2.9)

Io(E) is the incident intensity

I is the transmitted intensity

µ(x,E) is the linear attenuation coefficient at point x

Since attenuation depends on both the path length through a material and the

linear attenuation coefficient of the material, photons which originate further from

the detector or in, or behind, a dense material will be attenuated more than those

from more superficial regions. The effect of attenuation on image quality can be
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significant since the thickness and density of the tissue will vary for different

regions of the patient’s anatomy. Myocardial imaging is particularly susceptible

to attenuation effects given the range of different tissue types that are present in

the thorax.

With experience it may be possible to interpret images with attenuation arte-

facts as knowledge of the most likely attenuation distributions and associated

effects can be used by an experienced operator to mentally correct the recon-

structed images. However, in order to increase confidence in the interpretation of

images and to allow quantitative analysis, correction of attenuation is essential.

There are two broad classes of attenuation correction; those which use a separate

transmission scan and those which do not.

2.4.1 Transmission Based Attenuation Correction

Currently the most accurate methods of attenuation correction (for both PET

and SPECT studies) make use of transmission scans to provide an attenuation

map using either radionuclides or X-ray CT.

The use of radionuclides for transmission scanning was proposed in the 1950s

(Mayneord 1952) and since then several possible scanning geometries have emerged

to use radionuclide transmission scans as a means of providing attenuation cor-

rection for SPECT or PET studies (Zaidi & Hasegawa 2003, Bailey 1998). The

acquisition of the radionuclide attenuation map may be performed before, after,

during or interleaved with the emission study. Sequential imaging is technically

easiest; however, this results in increased imaging time and accurate registra-

tion of the emission and transmission scans may not be possible due to patient

movements. Acquiring the two scans simultaneously removes registration prob-

lems and means that any blurring as a result of physiological movements (e.g.

breathing) are perfectly matched. One of the main limitations of the accuracy

of radionuclide transmission scans for attenuation correction occurs due to cross-

talk between the two scans. It is important that cross-talk and spill-over from the

emission scan to the transmission scan is minimised(Ficaro et al.. 1994). Another

source of degraded image quality arising from the use of radionuclide transmis-

sion scans occurs due to noise from the transmission scan propagating through to

the emission reconstruction. In order to avoid this long scan times can be used

to improve the signal to noise ratio of the transmission image. Alternatively,
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segmentation of the transmission image can be performed to delineate regions

of different tissue types and known attenuation coefficients can then be applied

(Meikle et al.. 1993, Bettinardi et al.. 1999, Xu et al.. 1996, Zaidi et al.. 2002).

In recent years hybrid SPECT/CT systems, combining traditional gamma camera

with an x-ray CT scanner, have largely replaced the use of sealed sources. The use

of a CT scan provides patient specific attenuation maps, but, must be converted,

from the x-ray energy at which it is acquired, to the primary photon energy

of the isotope used for the emission scan (Blankespoor et al.. 1996). The use

of CT systems for transmission scanning offers an advantage over radionuclide

transmission scans as the scan can be used not only for attenuation correction but

also for localisation of lesions when the SPECT and CT images are co-registered.

However, there are also a number of disadvantages. Firstly, the use of CT scanners

can result in much higher patient doses. This increase can be limited through

the use of ‘low dose’ scanning protocols when a diagnostic quality CT scan is not

required. When the transmission and emission scans are acquired sequentially, as

is always the case with CT attenuation maps, significant artefacts can occur in

the reconstruction as a result of mis-registration of the transmission and emission

datasets (Goetze & Wahl 2007, Lautamaeki et al.. 2008, Martinez-Moeller et al..

2007, McQuaid & Hutton 2008).

2.4.2 Attenuation Correction without Transmission Scan-

ning

The ability to determine an attenuation map without the need for a separate

transmission scan is an area of ongoing interest. Such a technique would not

be subject to errors arising from the matching of the attenuation map and the

emission data. It may also be suitable for the new generation of dedicated cardiac

gamma cameras whose physical characteristics make the inclusion of a transmis-

sion scanning system difficult or impossible 2.1.1.1.

The simplest method of attenuation correction without a transmission scan is to

assume a known body outline, which may be obtained by manually contouring

the body outline or using automatic edge detection of the photopeak or scatter

data (Zaidi & Hasegawa 2003). Here, a uniform attenuation coefficient can then

be assigned to all points within the outline. Chang (1978) proposed a method

of implementing such a correction using a known outline and known attenuation
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coefficient. The basis of the correction considers each point within the image

separately and calculates a correction factor at each point by comparing the

filtered back-projection of the measured data with and without the effect of at-

tenuation. When the imaged object is an extended source this method results

in the over-correction of some areas and the under-correction of others, depend-

ing on the precise source distribution. A secondary correction can be performed

to compensate for this by re-projecting the corrected image and subtracting the

new projections from the corresponding original projection. An ‘error image’ can

then be formed by filtered back-projection and corrected in the same way as the

primary image. The final image is then obtained by adding the corrected ‘error

image’ to the original corrected image. This process can be repeated for a num-

ber of iterations in order to further improve the reconstruction but one iteration

is normally sufficient for the image to converge. However, the use of a uniform

attenuation coefficient within a known outline is not suitable for cardiac studies

due to the difference in attenuation between soft tissue and lung.

The use of scatter window measurements to determine a convex body outline has

been proposed for the situation where a uniform attenuation coefficient can be

used within the body outline (Ben Younes et al.. 1988). The extension of this

technique, applied to lung imaging where photopeak data can easily be used to

identify the lung boundary, has been found to be successful in producing a syn-

thetic attenuation map using assigned attenuation coefficients for the lung and

soft tissue regions (Núñez et al.. 2009, Bailey et al.. 2008). Pan et al.. (1997) pro-

posed a further improvement in myocardial SPECT imaging using counts acquired

in both the photopeak and scatter windows to semi-automatically identify both

the body and lung outlines and then assigning average attenuation coefficients

of 0.05 and 0.15 cm−1 to the segmented lung and soft-tissue regions respectively.

The resulting attenuation map was smoothed using a Gaussian filter. A similar

technique, implemented by Toshiba Medical Systems, has been shown to improve

sensitivity to coronary artery disease in the left anterior descending artery terri-

tory and specificity in the right coronary artery territory (Yamauchi et al.. 2014).

However, a number of difficulties with the technique were identified. The most

significant of these was the difficulty in accurately identifying the lung boundary;

particularly in cases with reduced difference in lung and soft tissue uptake and in

larger patients where a reduced number of photons were detected. Furthermore,

the use of a single value for lung attenuation, rather than a patient specific value

(Van Dyk et al.. 1982), will increase the error in the estimation.
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Bronnikov (1995) proposes an alternative method of estimating the outline of fea-

tures within the attenuation map from the measured SPECT data. This approach

uses a Maclaurin expansion to give a linearised approximation to the relationship

between the SPECT data and the attenuation map at opposite detectors, result-

ing in a first order approximation to the attenuation map. The accuracy of the

reconstruction is limited by the presence of large variations in the activity distri-

bution as well as by circularly symmetrical attenuation, which limit the clinical

applications for the technique.

The first statistical method to estimate both the activity distribution and at-

tenuation map without the use of a transmission scan was proposed by Censor

et al.. (1979). A pixel by pixel description of the image space is used to define

the number of photons reaching each detector element d using Equation 2.10.

nnn∗ = AAA(µµµ)λλλ (2.10)

nnn∗ is the vector of the number of photons detected in each detector element

AAA(µµµ) is the transfer matrix including attenuation

λλλ is the activity distribution

Censor notes that the resulting system of equations for realistic situations is ex-

tremely large with 2N unknowns (where N is the total number of pixels) and that

it is impossible to solve exactly due to effects such as measurement inaccuracy,

noise corruption of the data and the discretisation in the model. Instead they

propose solving the set of inequalities given by Equation 2.11 to identify values

of λλλ and µµµ which are ‘close enough’ to nnn∗ to provide an acceptable solution to

the recovery of the true activity distribution.

nnn∗ − εεε ≤ AAA(µµµ)λλλ ≤ nnn∗ + εεε (2.11)

εεε is a vector of suitable tolerances

This problem is described as a mixed convex-concave feasibility problem. Equa-

tion 2.10 can be considered to define a set of hypersurfaces for which λλλ and µµµ have

values which would result in the measured projection data nnn∗. Each inequality

defines a hyperslab which surrounds the corresponding hypersurface and repre-

sents an acceptable region in which λλλ and µµµ must lie, hence, the intersection of all

the hyperslabs defines the final acceptable values of λλλ and µµµ. A solution is found
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using an iterative process which alternately compares the projections, using the

current estimates of λλλ and µµµ, to the concave and convex surfaces of the inequality

hyperslabs.Updates are performed to steps towards the inside of the hyperslab

depending on the gradient of the difference between the inequality surface and

the current projection estimate, using suitable regularisation parameters.

An alternative statistical method for estimating both the activity distribution and

attenuation map from just emission measurements was proposed by Nuyts et al..

(1999) (see section 4.1.2 for further details). This method is based on the MLEM

iterative reconstruction algorithm and an a-priori probability distribution using

alternating iterations to update the activity distribution and attenuation map. A

similar approach was considered by Krol et al.. (2001) using maximum likelihood

estimation.

Crepaldi & De Pierro (2007) extended the work of Nuyts to try to eliminate

the problem of cross talk between the activity and attenuation. They used the

standard MLEM as the basis of the activity estimation and a Newton-Raphson

method to maximise the attenuation map. The model was further refined by use

of a multiplication factor in order to increase the absolute number of observations

so that the problem was better determined. An iterative data refinement was

used to further enhance the solution. The effect of this improved algorithm

was demonstrated to reduce cross-talk between activity and attenuation cardiac

phantom simulations. However, the resulting algorithm required large numbers of

iterations to converge; of the order of 5 times greater than the original method for

use of the multiplicative factor and 250 times higher when both the multiplicative

factor and an iterative data refinement step were used.

Defrise et al.. (2012) investigated the use of the algorithm developed by Nuyts

(Nuyts et al.. 1999) in PET imaging where time of flight information was available.

This work demonstrated that the addition of the time of flight data significantly

improved the quality of the reconstruction and enabled accurate reconstruction

of the attenuation map for PET imaging.

Ramlau et al.. (2000) and Panin et al.. (2001) use approximations to the at-

tenuated Radon transform as the basis of alternating iterative algorithms to si-

multaneously reconstruct the activity distribution and attenuation map. The

approximation used by Ramlau is evaluated from the sum of a linear operator

depending on λλλ and a bi-linear operator depending on λλλ and µµµ. Reconstruction
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results were found to be highly dependent on the choice of the attenuation map

used to initialise the reconstruction due to the presence of local minima. Cross-

talk between the attenuation and activity reconstructions was also found to limit

the quality of the reconstruction.

Panin et al.. (2001) uses ‘Principal Component Analysis’ with a knowledge set

of existing attenuation maps. The attenuation map to be reconstructed approx-

imated using the expansion of the eigenvectors of the cross-correlation matrix

(limited to the largest eigenvalues) with the objective of finding the expansion

coefficient for each of the eigenimages. The resulting set of linear equations is

solved using a least squares approach with regularisation. The resulting algo-

rithm was initially tested using computer simulations which found that accurate

reconstruction was possible where strong constraints were used. However, in the

reconstruction of patient studies the reconstruction of the lung regions was found

to be poor.

Attempts to avoid cross-talk between the activity and attenuation reconstructions

have been made by reconstructing the activity distribution and attenuation map

separately. This type of reconstruction can be performed by using consistency

conditions relating to the attenuated Radon transform. The method proposed

by Natterer (1993) uses an affine distortion of an initial attenuation map using

unknown distortion parameters to match the initial map to the required solution.

This method showed good results for computer simulations using simple attenua-

tion maps. Madsen & Lee (1999) have considered a method of using consistency

conditions to improve an estimate of lung regions obtained from warping a ref-

erence image creating by averaging 50 PET transmission datasets. The resulting

attenuation map was found to depend on both the initial lung estimates and

the activity distribution showing that consistency conditions are not sufficient

to accurately optimise an attenuation map where both the organ contours and

attenuation are unknown.

In order to reduce the extent of the problem Bronnikov (1999) suggests the use

of discrete consistency conditions, using a matrix representation in place of the

continuous transform. This reduces the problem to a set of non-linear algebraic

equations which can be solved to find µµµ without reconstructing the activity distri-

bution. In order to solve the set of non-linear equations an iterative search method

is used with non-linear operators to constrain the attenuation coefficients to be

greater than zero and to include information about the values of attenuation for
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different tissue types. The change in attenuation at each step is determined using

Newton methods; Tikhonov regularisation is used to control the size of each New-

ton step. Results of a reconstruction using computer simulated data indicate that

the technique is able to reconstruct a number of regions within a body outline,

although some smoothing occurs as a result of the regularisation. The algorithm

also appears to be robust to noise in the measured projection data. The algo-

rithm was also tested using real data acquired using a physical torso phantom.

The resulting reconstruction provided acceptable accuracy in the reconstruction

of the body outline and lung regions. However, a region of high attenuation cor-

responding to the spine was incorrectly located in the reconstruction, appearing

significantly closer to the centre of the body than in the true phantom. The use of

discrete consistency conditions has also been extended to three dimensions with

similar results (Bronnikov 2000).

2.4.3 Attenuation Correction with Multi-spectral Emis-

sion Data

The use of more than one region of the emission spectrum has been investigated

for potential methods of reconstructing a more accurate attenuation map with-

out the use of a transmission scan. For SPECT studies that are acquired using

radioactive isotopes with multiple energy photon emissions, there is a possibility

to estimate an attenuation map using the differential attenuation of the pho-

tons. The likelihood of photon attenuation depends on the energy of the photon

with low energy photons experiencing preferential attenuation. Since multiple

energy isotopes emit photons at more than one discrete energy in a constant ra-

tio, measurements of the relative size of the different photopeaks detected should,

theoretically, enable an attenuation map to be recovered. Hansen & Siegel (1992)

suggest a method of reconstruction using the high and low energy peaks from

the decay of thallium-201 independently in order to allow the low-to-high count

ratio, and hence an attenuation correction map, to be calculated. The use of

this technique is limited by its high susceptibility to image noise and down scat-

ter to the low energy window. Kaplan et al. (Kaplan et al.. 1999a, Kaplan &

Haynor 1999, Kaplan et al.. 1999b) have developed a penalized weighted least

squares iterative algorithm which uses differential attenuation information to si-

multaneously estimate both the activity distribution and attenuation map (Dif-

ferential Attenuation Method, DAM). The results show improved accuracy of the
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reconstructed images when using DAM as compared to using no attenuation cor-

rection or using a uniform attenuation correction. However it has not been tested

with data including scatter which would have a significant effect on the accuracy

of the reconstruction.

The use of measured scatter data in the reconstruction of an attenuation map has

been suggested by Sitek et al.. (2007). The method proposed uses measurements

of scatter photons made in several separate energy windows, assuming that all

photons have only been scattered once. The probability of scatter within each of

the windows is modelled using the current estimate of the activity distribution

and knowledge of the Compton scattering angles that correspond to the measured

photon energies. The algorithm was tested using a physical torso phantom and

demonstrated good reconstruction of the phantom outline. The regions of the

lung were also distinguished but the boundaries were not well defined.

2.5 The Effect of Scatter and Scatter Correction

As discussed in section 2.4, scatter of photons can contribute to the attenuation

of the primary photon beam as scattering can alter the direction of travel of a

photon and hence it will not be detected in the same place as it would have been

in the absence of scattering. There are two types of scattering which can occur;

coherent or Rayleigh and incoherent or Compton scattering. Coherent scattering

involves virtually no loss of energy from the incident photon and results in only a

very small change in angle. As a result photons which have undergone coherent

scattering can often be included as part of the primary beam.

Compton scattering occurs when a photon interacts with an atomic electron.

A fraction of the photon’s initial energy is transferred to the electron and the

direction of travel of the photon is altered. The angle through which the photon

is scattered depends on the amount of energy that is transferred to the electron.

The probability of scatter is given by the Klein-Nishina equation (Equation 2.12

(Zaidi 2006)) which gives the differential scattering cross section dσ/dΩ as a

function of scattering angle, θ.

dσ

dΩ
=
r2
e

2
(1+cos2 θ)

[
1

1 + α(1− cos θ

]2[
1+

α2(1− cos θ)2

[1 + α(1− cos θ)](1 + cos2 θ)

]
(2.12)
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α = E/moc
2

re is the classical radius of the electron

E is the energy of the incident photon

mo is the rest mass energy of the electron

c is the speed of light in a vacuum

Scatter may occur within the patient volume or outside the patient in the colli-

mators, bed, detector or materials behind the detector. Once a photon has been

scattered it may be directed away from the detectors and hence will not have any

impact on the image quality other than as a result of attenuation (as discussed

in section 2.4). However photons which originate both inside and outside the

gamma camera field of view may be scattered such that they are directed toward

one of the gamma camera detectors. The detection of scattered photons results

in loss of contrast in the reconstructed image and prevents accurate quantitative

measurements being made. The reason that scattered photons degrade image

quality is because of the change of direction that occurs during the scattering

process. This means that, unless scatter correction is performed, the detected

scattered photon is assumed to have come from an emission site perpendicular to

the point of detection and hence is incorrectly located during the reconstruction.

During the image acquisition an energy window, centred on the photopeak, is

used to exclude scattered photons which have undergone significant energy loss.

The use of an energy window is a simple and effective way to reduce the effect

of scatter; however, in myocardial imaging using 99mTc the ratio of scattered to

unscattered counts recorded in the energy window is approximately 0.34 (Zaidi

& Koral 2004). Scatter can, therefore, significantly affect image quality and an

effective means of scatter correction is very important.

2.5.1 Scatter Correction Methods

In order to perform an accurate scatter correction a method of estimating the

number of scattered photons that reach each detector bin is required. Zaidi

& Koral (2004) and Hutton et al.. (2011) present reviews of scatter correction

methods and discuss the technique of modelling scatter. The distribution of

scattered photons will depend on both the activity distribution within the object

and the attenuation of it. Existing scatter models can be broadly divided into two

categories; those which use measurements of scatter (e.g. King et al.. 1997, Ogawa
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et al.. 1991) and those which use a theoretical model of scatter, normally including

a measurement of attenuation.

A relatively simple method of estimating attenuation from known scatter is the

slab-derived scatter estimation (SDSE) method (Frey & Tsui 1993) which models

the response of line sources embedded in slabs of material. The resulting scatter

functions were modelled using a central Gaussian function with exponential tails

and the parameters used to describe these functions were fitted as a function of

the source depth. The distance from the collimator was also modelled allowing

the slab based scatter function for any source depth and source to detector dis-

tance to be calculated. The scatter for more complex object shapes can then be

approximated to an appropriately sized slab phantom and the scatter response

function for that phantom calculated, provided the surface of the true object is

convex. Use of the method with complex uniformly attenuating materials was

found to significantly increase the accuracy of quantification. The method has

also been successfully extended to three-dimensions (Beekman et al.. 1997). A

further extension to the method has also been proposed (Frey & Tsui 1996) in or-

der to improve the accuracy of the technique with Tl-201 SPECT and for objects

with non-uniform attenuation; the effective source scatter estimation (ESSE).

Welch et al.. (1995) have proposed a method of modelling scatter which uses a

Gaussian function, with factors derived from Monte Carlo simulation, to calcu-

late the probability of a photon scattering through a given angle and still being

detected in the photopeak window. The probability of scatter is assumed to be

linearly dependent on the measured attenuation coefficient at the point of scat-

ter. The calculated scatter factor is used to calculate the number of photons

scattered within a given voxel from the number of photons entering the voxel

(the sum of photons passing through the voxel corrected for attenuation). The

number of scattered photons which go on to reach the detector is calculated,

again correcting for attenuation. They note that the scatter probability is, in

theory, a combination of the Klein-Nishina formula, the cross section for Comp-

ton scattering and the energy dependent detection probability of the gamma

camera. However even if these items are accurately modelled there would still

be a component from higher order scatter events and so they use the Gaussian

function multiplied by attenuation coefficient rather than attempting a more ac-

curate model of first order scatter. The scatter function is incorporated in a

two-dimensional projector-backprojector and used with an MLEM algorithm in
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order to reconstruct a scatter corrected activity distribution.

Walrand et al.. (1994) also use an approach where a single scatter event is mod-

elled, however they use the Klein-Nishina formula to model scatter at this point

and an effective attenuation coefficient prior to the point of scatter to account for

photons which are scattered multiple times. This assumes that photons which

have been scattered multiple times will not be detected in the photopeak energy

window. The technique has been shown to produce accurate results for homoge-

neous phantoms where the object outline is accurately defined but has not been

tested with inhomogeneous attenuation densities.

Meikle et al.. (1994) propose a transmission based scatter correction which is

based on a convolution subtraction method. In this method the measured emis-

sion projection data are corrected (potentially iteratively) using scatter fractions

calculated from experimentally derived factors and measured transmission data

by performing a two dimensional convolution of the scatter fraction with the

geometric mean of each projection pair. The use of the geometric mean of the

projection data means that this technique was only applied to data acquired over

360o. Hutton et al.. (1996) extend the convolution subtraction technique to allow

it to be used with data that is collected over 180o.

With the increase in computer capabilities in recent years Beekman et al.. (2002)

have been able to develop a Monte Carlo based scatter correction technique for

estimating scatter as part of an iterative reconstruction. In order to reduce the

complexity of the calculation required, a dual matrix reconstruction technique is

used, i.e. the transfer matrix used for the forward projection step includes at-

tenuation, scatter and detector blurring while the back projection step includes

only the effects of attenuation and detector blurring. Monte Carlo simulation

is used for the forward projection step making use of convolution based forced

detection, which makes use of an analytic detection model instead of a stochas-

tic one in order to reduce the noise in the simulated projections. The speed of

reconstruction is further improved by using variable numbers of photon histories,

with fewer photons simulated in the initial iterations where the image detection

does not need to be modelled so precisely. Photon histories from the previous

iteration are also used in order to reduce the number of histories that need to be

calculated at each step. The use of the Monte Carlo reprojection step was found

to significantly reduce artefacts in the reconstructed images when compared to

reconstruction without scatter correction and those with an scatter correction
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using an approximate scatter function. Further methods of accelerating recon-

struction using a Monte Carlo based forward projection step have been proposed,

resulting in clinically realistic reconstruction times (of the order of a few minutes)

(de Wit et al.. 2004, Sohlberg et al.. 2008).

2.6 Monte Carlo Simulation

When comparing a number of different reconstruction techniques it can be dif-

ficult to assess which offers the best overall image quality as the true solution

may not be known. The use of software simulations allows image reconstruction

algorithms to be tested using data where the correct solution is known and so the

error in the reconstructed image can be quantified.

Monte Carlo methods are computer algorithms that use repeated random sam-

pling in order to simulate a given system. In order to perform a Monte Carlo sim-

ulation of a system, probability density functions are required for the processes

that occur in each part of the system. Provided that the probability density

functions are accurately defined a Monte Carlo simulation can be performed by

randomly sampling the distributions. The accuracy of the outcome parameters

depends on the number of samples that are performed. Monte Carlo simulation

allows accurate modelling of the processes within a system to provide realistic

results whilst enabling individual parameters to be precisely controlled so that

their effect can be examined.

In nuclear medicine imaging systems Monte Carlo simulation can be used to

model each photon path. Each photon path begins with the emission of a photon

which is calculated from the distribution of activity. From the point of emission

the path length to the next point of interaction is calculated based on the energy

of the photon and the density and composition of the material it is travelling

through. At the interaction point the type of interaction that occurs is assigned

to be either photo-electric, Compton scatter, coherent scatter or pair production

based relative probabilities defined by the partial attenuation coefficients for each

interaction type. For coherent and Compton scatter events the scattering angle is

calculated based on the relevant cross-section; for Compton scatter the resulting

energy of the photon is also calculated. Subsequent interaction points are calcu-

lated from the direction of travel from the first interaction point and the path
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length in this direction. Repeated interactions are calculated until the photon

reaches the detection system. The detection of a photon by the imaging system

can also be modelled to include the effects of collimation, interactions within the

scintillation crystal and the use of energy windows.

In this work the SIMIND Monte Carlo program (Ljungberg & Strand 1989), which

simulates nuclear medicine medical imaging systems, has been used. The SIMIND

code allows the user to choose different materials for the detector and cover and to

input a range of different phantoms including direct input of the XCAT phantom

(Segars et al.. 1999). Photoelectric, incoherent, coherent interactions and pair

production are simulated within the phantom and detector parameters such as

the energy pulse-height distribution and pulse pile-up due to finite decay time

of the scintillation light emission, can be modelled. The energy resolution of the

system is simulated by convolving the energy imparted with an energy-dependent

Gaussian function. Collimators are also included in the simulation and can be

selected from a file containing many clinical collimators or specified in terms of

the acceptance solid angle. The maximum number of scatter events that occur

and the energy window for detection can also be specified by the user.
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3 Development of a Model for

Measured Scatter Data

As discussed in Section 2.5 the probability of scatter occurring at a given point in

an object is closely related to the linear attenuation at that point. It is therefore

proposed that if scattered photons can be accurately modelled and measurements

are made of scattered photons at the time of measuring the emission sinogram

(i.e. a scatter sinogram is also recorded) then the emission and scatter sinograms

can be used to jointly reconstruct both the activity distribution and attenuation

map. In this chapter a model for first order scatter, which could be used as

the basis of an algorithm to estimate the attenuation map from modelled and

measured scatter, has been developed.

3.1 Theory

3.1.1 Basic Scatter Model Theory

The emission and subsequent scatter of photons prior to detection can be consid-

ered to be independent Poisson processes (Lewitt & Matej 2003) such that the

measured emission sinogram (nnn∗) is the sum of a sinogram without scatter (nnnp)

and a sinogram which contains only scatter events (nnns). During the scattering

process photons lose energy and so measurements of the emission sinogram using

an energy window centred on the photopeak energy normally contain only part

of the scatter sinogram. A number of methods have been investigated which aim

to estimate the contribution of nnns to the measured photopeak emission sinogram

so that the contribution of scatter events can be removed from the measured

emission sinogram either before or during image reconstruction. Here we aim
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Figure 3.1: Illustration of the path of a scattered photon

to develop a model for scatter which can reproduce the distribution of scattered

photons measured both in the photopeak window and in an energy window posi-

tioned below the photopeak.

The path of a scattered photons is illustrated in Figure 3.1 and can be considered

to consist of 4 parts; the emission of a primary photon, the travel of the primary

photon from the point of emission to the point of scatter, the scatter of the photon

and the travel of the scattered photon from the point of scatter to the point of

detection.

The photon is emitted from voxel b and travels along the path shown to voxel

k. The probability of a photon being emitted in voxel b and travelling in the

direction of voxel k depends on the activity in voxel b ((λλλ)b) and the distance

between the two voxels. The path length, R, between the two voxels is calculated

from the voxel indices using Pythagoras’ theorem. It is assumed that emission

occurs at a point source located at the centre of the voxel and that the scatter

voxel can be approximated by a sphere with volume equal to the volume of the

cubic voxel, i.e. a sphere with radius r = p/ 3

√
3

4π
, where p is the length of one

side of the cubic voxel. The solid angle (Ω) subtended by the scatter voxel to

the emission voxel can then be calculated using Equation 3.1a (Serway 1982), as

illustrated in Figure 3.2. The fraction of the total number of photons emitted

that are directed towards the scattering voxel (ωbk) is found by dividing Ω by the
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Figure 3.2: Illustration of the solid angle subtended by the scattering voxel to
the emission source, approximated by a sphere

total solid angle of a sphere (4π) and is given by Equation 3.1b.

Ω = 2π(1− cos θ) (3.1a)

ωbk =
1− cos θ

2
(3.1b)

θ = tan−1
( r
R

)
(3.1c)

The number of photons that reach the scattering voxel will also depend on the

attenuation between the point of emission and the point of scatter. This can be

calculated by using the Siddon method (Siddon 1985) to calculate the path from

a given source voxel to all possible points of scatter, i.e. all other voxels within

the matrix. The attenuation along the path is then the sum of the attenuation

of each voxel along the path multiplied by the proportion of that voxel which

the path intersects. In order to calculate the total number of photons reaching

each scattering voxel from all sources of emission a sum over all emission voxels

must be calculated. The speed of this computation can be improved by only

calculating paths for source voxels b where the activity (λλλ)b is greater than zero.

An alternative method of performing the same calculation is to rotate the matrices

containing the emission and attenuation images to align each source and scatter

voxel; however the process of rotating a matrix is slow and so the Siddon method

offers a significant time saving.

For the 2-dimensional case (i.e. a single slice of voxels) the total number of pho-

tons, from all points of emission, arriving at each scattering voxel is stored with

information about the initial direction of travel of the photons. This is done by
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storing a set of 360 matrices corresponding to the number of photons arriving

at each voxel travelling at each possible angle (rounded to the nearest degree).

The probability of the photons arriving at each voxel being scattered towards the

detector can be calculated using the Klein-Nishina formula (Equation 3.2 (Klein

& Nishina 1929)).

∂σ

∂ε
= πr2

e

mec
2

E0

[
1

ε
+ ε

] [
1− ε sin2 θ

1 + ε2

]
(3.2)

∂σ
∂ε

is the differential scattering cross-section

r2
e is the classical radius of an electron

mec
2 is the rest mass of an electron

ε = E1

E0

E0 is the initial photon energy

E1 is the energy of the scattered photon

Where the angle of scatter, θ, is determined by the change in energy of the

photons according to the Compton formula (Equation 3.3 (Serway 1982)).

∆λ =
h

mec
(1− cos θ) (3.3)

∆λ = hc
∆E

, is the change in wavelength of the photon

∆E is the corresponding change in energy

h is Plank’s constant

c is the speed of light in a vacuum

Figure 3.3 shows the relative probability of a photon being scattered through a

given angle, assuming a wide energy window so that all scattered photons are

detected. After the relative probability of scatter through the angle required for

the photons to reach the detector has been calculated the total probability of

scatter occurring is determined using the the linear attenuation coefficient at the

point of scatter. The probability of a photon not being attenuated as it travels

through the scattering voxel is given by the Beer-Lambert Law (Equation 3.4a)

and so the probability of scattering is given by Equation 3.4b; this assumes that

the proportion of photons which are attenuated by processes other than Comp-

ton scattering is negligible. This assumption can be justified by considering the

Hubbell data (Hubbell 1969) for physiologically relevant compounds at energies

corresponding to common gamma emitters. For example the attenuation of water
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Figure 3.3: Relative Klein-Nishina probability of a photon being scattered
through a given angle

at 150keV is 0.151cm−1 with attenuation due to Compton scatter of 0.148cm−1.

p(survival) = exp(−(µµµ)kx) (3.4a)

p(scatter) = 1− exp(−(µµµ)kx) (3.4b)

(µµµ)k is the linear attenuation coefficient of scattering voxel k

x is the path length through a voxel

The contribution of photons which are scattered in the same voxel as they are

emitted (i.e. where b = k) must also be considered. In this case the probability

of scatter is the same for all directions, since there is an equal probability of

emission for all directions. The voxel is again approximated to a sphere with the

same volume as the cubic voxel and the point of emission is assumed to be a point

source located at the centre of the voxel. The probability of a photon travelling

in a direction within the slice of interest can be calculated using Equation 3.5a

as the solid angle subtended by the area of a ring around the centre of the voxel

at a distance equal to the spherical radius of the voxel which has a height equal

to the radius of the equivalent sphere (see Figure 3.4). The total probability of

scatter is again found using the Beer-Lambert Law (Equation 3.4b) but in this
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Figure 3.4: Illustration of the solid angle subtended by the surface exiting a voxel
within a given slice of voxels where the point of emission is within the scattering
voxel which is approximated by a sphere

case the distance travelled by the photon is not equal to the size of the voxel;

it is the distance from the point of emission to the edge of the sphere (i.e. the

radius of the sphere = p/ 3

√
3

4π
). The probability of scatter is then multiplied by

the number of photons emitted in the voxel and added to the number of scattered

photons calculated as described in the preceding paragraphs.

Ω =
A

r2
(3.5a)

Ω =
2πr · r
r2

(3.5b)

ω =
Ω

4π
(3.5c)

ω = 0.5 (3.5d)

The final part of the scatter model is then to calculate the attenuation from the

point of scatter to the point of detection for each detector angle, this calculation

has been performed using a rotation based projector. After scattering photons

have reduced energy and so will experience increased attenuation. This effect has

been ignored in the basic scatter model but is considered in Chapter 5.

The complete basic scatter model (sss(µµµ)) is given by Equation 3.6.

sss(µµµ) = AdAdAd(µµµ)SkSkSk(µµµ)AkAkAk(µµµ)φφφ+AdAdAd(µµµ)SbSbSb(µµµ)φφφ (3.6)

φφφ = QQQ⊗ λλλ (3.7a)
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(AkAkAk)bjk = ωbk exp

[
−
∫ k

b

µµµ(x)dx

]
(3.7b)

(SkSkSk)kjj′ = (1− e(µµµ)k)Njj′ (3.7c)

(SbSbSb)bkjj′ =

{
0.5
(

1− e−(µµµ)k
3
√

3
4π

)
, b = k

0 b 6= k
(3.7d)

(AdAdAd)kj′d = ckj′d exp

[
−
∫ d

k

µµµ(x)dx

]
(3.7e)

(λ)b gives the activity in voxel b.

QQQ is the emission function and gives the proportion of photons emitted

within a solid angle defined by Ωj. QQQ is isotropic and could define an infi-

nite number of directions j.

φφφ gives the number of photons emitted from each voxel b travelling in each

direction j; this is a block vector with B blocks each of length J .

AkAkAk is the attenuated transfer matrix giving the probability of a photon

emitted from voxel b reaching voxel k; this is a block matrix with B by K

blocks, each block is a J by J diagonal matrix since the transfer matrix is

not associated with a change in direction.

SkSkSk is the probability of a photon scattering in voxel k from direction j (de-

fined by the positions of b and k) to direction j′ (defined by the positions

of k and d); this is a K by K block diagonal matrix where each block has

J by J ′ elements.

Njj′ is the Klein-Nishina probability of scattering from direction j to j′.

SbSbSb is the probability of scattering occurring in the same voxel as the emis-

sion; this is a B by K block diagonal matrix where each block has J by J ′

elements.

AdAdAd is the attenuated transfer matrix giving the probability of a photon

scattered in voxel k reaching detector element d; this is a block matrix

with K by D blocks, each block is a J ′ by J ′ diagonal matrix since the

transfer matrix is not associated with a change in direction.

ckj′d gives contribution of geometric effects to the probability of a photon

from voxel k, travelling in direction j′, reaching detector d.
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3.1.2 Effect of Energy Resolution

The Klein-Nishina formula predicts the number of photons that will be scattered

through a given angle which can be related to the change in photon energy using

the Compton scatter formula. In reality the effect of the energy resolution of the

gamma camera is that photons scattered through a given angle are not detected

with a single discrete energy but with a spread of energies. The energy resolution

of a gamma camera depends on the incident energy of the photons and normally

results in the photopeak having a full width at half maximum (FWHM) of ap-

proximately 10% at 140keV. The FWHM will vary with incident photon energy,

however a simplified model which uses an energy resolution of 10% at all energies

has been used in this work.

In order to include this effect in the calculation of the probability of detecting

a photon which has been scattered through a given angle, the Klein-Nishina

probabilities calculated using Equation 3.2 are converted to energy using the

Compton formula (Equation 3.3). Each point on this curve is then blurred using

a Gaussian with an area of unity and FWHM equal to the energy resolution of

the gamma camera at that point e.g. for a camera with an energy resolution of

10% at 100keV the FWHM will be 10keV, and at 50keV the FWHM will be

5keV. The number of photons that are scattered through a given angle and are

detected in the selected energy window is then found by calculating the integral

of the blurred curve, for the given angle, with the integration limits set by the

selected energy window.

The effect of the energy window on the detection of photons which are scattered

in the same voxel as they are emitted must also be considered. In this case the

number of scattered photons which are detected in the given energy window is

calculated as a fraction of the total number of scattered photons, taking into

account the energy resolution as described above. The number of photons which

are scattered in the emission voxel can then be calculated as before and multiplied

by this detection fraction.
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3.2 Method

The accuracy of the scatter model has been tested by comparing sinograms esti-

mated using the model to those generated using the SIMIND Monte Carlo pro-

gramme (Ljungberg & Strand 1989) for a number of different phantoms. Each

phantom included a 2-dimensional activity distribution in order to simplify the

calculation of the scatter distribution; the phantoms used are shown in Figure

3.5. The first phantom contains a slab of uniform attenuation and a point source

of emission, which is located outside the region of attenuation. The second phan-

tom has a similar attenuation distribution and a point source of emission but in

this case the emission source is located just inside the region of attenuation. In

the final case the male XCAT phantom (Segars et al.. 1999) (formerly known as

the NCAT phantom) is used to provide both the activity and attenuation. The

XCAT phantom allows the user to generate activity distributions and attenuation

maps at different phases of the cardiac and respiratory cycles and with different

activities for male and female phantoms; in this work a male XCAT phantom

without respiratory or cardiac motion with the arms raised above the head has

been used.

In each case activity was present only in the slice of interest but the attenuation

extended through the full simulation volume in the Monte Carlo simulations, this

was to avoid potential artefacts caused by photons passing along the edge of the

single slice of interest. The Monte Carlo simulation used a high detector resolution

and the estimated sinograms assumed perfect detector resolution. Measurements

were simulated and estimated for four detector positions which were at 90o to

each other as indicated in Figure 3.5. Initially the model was tested for an open

energy window so that the effect of the energy resolution of the detector could be

ignored. Similar scatter sinograms were then calculated using an energy window

of 80keV to 126keV including a detector energy resolution of 10% in both the

Monte Carlo simulation and the scatter model. All the estimated and simulated

sinograms excluded the contributions of primary photons and of photons which

had been scattered more than once.
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(a) (b)

(c i) (c ii)

Figure 3.5: Phantoms used to test basic scatter model. (a) Attenuation slab with
external point source, (b) attenuation slab with internal point source, (c) XCAT
phantom (i) activity and (ii) attenuation

3.3 Results

Figure 3.6 shows the profile of the sinograms generated using the SIMIND pro-

gramme for each phantom with the sinograms calculated using the scatter model

derived in Section 3.1.1. The sinograms calculated using the scatter model have

been normalised to have the same mean value as the corresponding Monte Carlo

simulation. The result of this is a scaling factor which is required to account for

differences in the sensitivity of detection for the scatter model and the Monte

Carlo simulations. Table 3.1 shows the scaling factor calculated for each of the

simulation set-ups.

Figure 3.7 shows the scattered sinograms calculated and simulated for an energy
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(a)

(b)

(c)

Figure 3.6: Sinograms estimated for an open energy window using the basic
scatter model and simulated using the SIMIND Monte Carlo programme for (a)
an attenuation slab with external point source, (b) an attenuation slab with
internal point source, (c) XCAT phantom activity and attenuation
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Normalisation Factor
Attenuation slab, external point source 1.52
Attenuation slab, internal point source 1.49
NCAT phantom 2.50

Table 3.1: Normalisation factors calculated for calculated sinograms compared to
simulated sinograms

Phantom 80-126keV Open Energy
Window Window

Attenuation slab, external point source 0.1568 (0.0875) 0.0574 (0.0846)
Attenuation slab, internal point source 0.0021 (0.0182) 0.0012 (0.0090)
NCAT phantom 0.0033 (0.0897) 0.0022 (0.0493)

Table 3.2: Root mean square error for calculated sinograms compared to sim-
ulated sinograms in an open energy window and an 80-126keV energy window
including energy resolution effects; the mean value for the simulated sinogram is
given in brackets for comparison.

window of 80keV to 126keV, with an energy resolution of ±10% using each of

the phantoms illustrated in Figure 3.5. The calculated sinograms have again

been normalised to have the same mean value as the corresponding Monte Carlo

simulation. The mean and root mean square errors in the estimated projection

data are shown in Table 3.2. These results show good agreement between the

simulated and calculated results.

3.4 Discussion

The normalised sinograms show that the distribution of scatter events calculated

using the scatter model is very similar to the Monte Carlo simulation data in the

two dimensional case. However, there is some difference in the number of scatter

counts originating within the scattering voxel compare to those originating in

a different voxel. The effect of this is that the contribution of scatter events

occurring outside the emission voxel is too small compared to the contribution of

scatter events occurring in the emission voxel. This can be seen most clearly in the

estimation of the sinogram for a point source within a slab of attenuation where

the peak is overestimated in all projections compared to Monte Carlo simulation

even after the total number of counts has been normalised to the same value in

both the simulated and estimated projection data (Figure 3.6b).
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(a)

(b)

(c)

Figure 3.7: Sinograms estimated for a typical scatter energy window including
effect of energy resolution, using the basic scatter model and simulated using the
SIMIND Monte Carlo programme for (a) an attenuation slab with external point
source, (b) an attenuation slab with internal point source, (c) XCAT phantom
activity and attenuation
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The overall result is that the scaling factor required to match the number of

scatter events calculated for the XCAT phantom to the number simulated using

Monte Carlo. It has been shown that the effect of camera energy resolution

on the measurement of scattered photons within a given energy window can be

accurately incorporated into the model of the detection of scatter by blurring the

calculated Klein-Nishina scattering probabilities.

The existing model presented here includes a number of approximations which

may limit the accuracy of the reconstruction that can be obtained when using the

scatter model as the basis of an attenuation reconstruction algorithm. Firstly,

the solid angles used to calculate the number of photons that reach each voxel

from each possible emission location have been calculated using an assumption

that the activity is located at a point at the centre of the emission voxel. It

has also been assumed that the voxel where scattering occurs presents a circular

area to the emission voxel, such that the volume of the sphere is the same as

the volume of the cubic voxel. These approximations can be considered to be

accurate for scatter voxels which are far from the point of emission; however for

voxels which are close to the emission voxel (particularly the nearest neighbours)

the approximations may not be an accurate representation of the true geometry

and hence may introduce errors into the scatter model.

An empirically derived scaling factor has been used to normalise the scatter dis-

tribution estimated using the model presented here, to the same mean value as

the scatter distribution found from the SIMIND Monte Carlo simulation. The

primary purpose of this scaling factor is to account for the sensitivity of the

gamma camera simulated by the Monte Carlo code. However, it also helps to

compensate for inaccuracies in the scatter model.

3.5 Conclusion

An accurate 2-dimensional model for first order scatter has been developed. The

accuracy of the model has been shown to be good for different phantoms and en-

ergy windows, including the effect of the energy resolution of the gamma camera,

when compared to scatter distributions created using Monte Carlo simulation.

Further work is required to extend the model to 3 dimensions and to improve the

accuracy of the estimation of scatter from voxels close to the point of emission
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compared to the point source approximation used in the model presented here.
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4 Estimation of Attenuation from

Measured SPECT data

In the work outlined in this chapter a new method of estimating an attenuation

map directly from measured SPECT data has been developed. The algorithm

uses the model for scatter presented in Chapter 3 to provide an estimate of the

expected scatter distribution, based on a current estimate of both the activity

distribution and attenuation map, which is compared to the measured scatter

distribution. The inclusion of additional information available about the attenu-

ation of the imaged object, from the measured photopeak data, to improve the

accuracy of the attenuation map compared to the use of scatter data alone has

also been investigated.

4.1 Theory

4.1.1 Reconstruction of Attenuation Map using Scatter

Data

If (sss(µµµ))d is the expected number of scatter events detected in detector element

d, then the log-likelihood (Ls) for the observed scatter sinogram and a given (or

estimated) activity distribution can be derived to be that given by Equation 4.1,

c.f. derivation of Equation 2.4. The current estimate of µµµ can then be updated

by maximising the gradient of the likelihood function.

Ls(µµµ) =
∑
d

(−(sss(µµµ))d + (nnns)d · ln(sss(µµµ))d) (4.1)
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nnns is the measured scatter projection data

The scatter model developed in Section 3.1.1 can be substituted into the likelihood

function and differentiated with respect to µµµ in order to maximise the likelihood.

∂Ls(µµµ)

∂µi
=
∑
d

(
−∂(sss(µµµ))d

∂µi
+

(nnns)d
(sss(µµµ))d

· ∂(sss(µµµ))d
∂µi

)
(4.2)

∂(sss(µµµ))d
∂µi

=
∂AdAdAd(µµµ)

∂µi
SkSkSk(µµµ)AkAkAk(µµµ)φφφ+AdAdAd(µµµ)

∂SkSkSk(µµµ)

∂µi
AkAkAk(µµµ)φφφ

+AdAdAd(µµµ)SkSkSk(µµµ)
∂AkAkAk(µµµ)

∂µi
φφφ+

∂AdAdAd(µµµ)

∂µi
SbSbSb(µµµ)φφφ+AdAdAd(µµµ)

∂SbSbSb(µµµ)

∂µi
φφφ (4.3)

In order to simplify the algorithm each scatter path can be considered to have

three distinct parts, each of which depend on the attenuation coefficient along

that section of the path. The three parts comprise: the portion of the path from

the point of emission up to the point of scatter, the point of scatter itself and

the portion of the path from the point of scatter to the point of detection. The

effect of changing the attenuation coefficients before and after the point of scatter

can be assumed to be small compared to the effect of changes to the coefficient

at the point of scatter and so they can be assumed to be constant for a given

iteration. That is, only the attenuation at the point of scatter is updated by a

given iteration although the new attenuation map is then used to calculate the

attenuation along each part of the path in the next iteration. This approach leads

to a ‘one-step late’ iteration process which is much simpler to calculate for each

iteration and hence results in significantly reduced calculation times. Sitek et al..

(2007) use a similar ‘one-step late’ approach to estimate an attenuation map from

measurements of scatter using knowledge of the relationship between Compton

scattering angle and the change in energy of the incident photon to predict how

many photons are detected in energy windows positioned below the photopeak.

When using the ‘one-step late’ approach the gradient of expected number of

scatter events becomes:

∂(sss(µµµ))d
∂µi

≈ AdAdAd(µµµ)
∂SkSkSk(µµµ)

∂µi
AkAkAk(µµµ)φφφ+AdAdAd(µµµ)

∂SbSbSb(µµµ)

∂µi
φφφ (4.4)
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The differentiation is achieved by calculating a series of partial derivatives for each

scatter point k, these are then used to update the current estimate of µµµ (Equation

4.5) with a step size αs which is set manually. This algorithm is referred to as

the Scatter based Maximum Likelihood Gradient Ascent (SMLGA) algorithm.

(µµµi+1)k = (µµµi)k + αs ·
∑
d

(
−
∑
b

D′bd(µµµ
i, k) + (nnns)d ·

∑
bD
′
bd(µµµ

i, k)

(sss(µµµ))d

)
(4.5)

D′bd(µµµ
i, k) =

∑
b6=k

[
(φφφ)bωbjk exp

[
−
∫ k

b

µµµ(x)dx

]

ckj′d exp

[
−
∫ d

k

µµµ(x)dx

]
Njj′e

−(µµµi)k

]

+
3

√
3

4π

(λλλ)b=k
2

ckj′d exp

[
−
∫ d

k

µµµ(x)dx

]
e−(µµµi)b=k

3
√

3
4π (4.6)

4.1.1.1 Non-uniform imaging geometries

In cases where the measurement system does not sample the image volume uni-

formly the update to the estimate of the attenuation map at each point will be

affected by the extent to which each voxel is under or over-sampled by the mea-

surement system, which can result in instability in the reconstruction. In order

to compensate for this, and prevent over correction of under-sampled regions, a

normalisation factor (χχχ) has been introduced. The normalisation factor has been

defined to be the number of photons that would be detected at each measurement

location in the absence of an effect relating to attenuation at the point of scatter.

The normalised scatter update algorithm is given by Equation 4.7.

(µµµi+1)k = (µµµi)k +
αs

(χχχ)kd
·
∑
d

(
−
∑
b

D′bd(µµµ
i, k) + (nnns)d ·

∑
bD
′
bd(µµµ

i, k)

(sss)d

)
(4.7)
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(χχχ)kd =
∑
b 6=k

[
(φφφ)bωbjk exp

[
−
∫ k

b

µµµ(x)dx

]

· ckj′d exp

[
−
∫ d

k

µµµ(x)dx

]
Njj′

]

+
3

√
3

4π
· (λλλ)b=k

2
· ckj′d exp

[
−
∫ d

k

µµµ(x)dx

]
(4.8)

4.1.1.2 Joint Reconstruction of Activity and Attenuation

In order to jointly estimate the activity distribution and attenuation map from

measurements of primary photons in a photopeak window and scattered photons

in a lower energy window iterations of the traditional MLEM algorithm and

SMLGA algorithm are alternated as described by Figure 4.1.

4.1.2 Reconstruction of Attenuation Map using Emission

Data

As discussed in Section 2.4.2 the photopeak emission sinogram also includes in-

formation about the attenuation of the object being imaged. Nuyts et al.. (1999)

have proposed a maximum likelihood algorithm (MLAA) to simultaneously esti-

mate activity and attenuation distributions from an emission sinogram. In order

to reconstruct the activity distribution iterations of the MLEM algorithm (as

derived in Section 2.3, Equation 2.7) are used. The attenuation map is updated

using a gradient-ascent maximum likelihood algorithm (Equation 4.9) derived by

Nuyts. Steps to update the activity distribution and attenuation map are alter-

nated (as in the MLEM-SMLGA algorithm) so that the current estimate of the

activity distribution is used in one iteration to update the estimate of the atten-

uation map which is then itself used in the next iteration to update the activity

distribution.

(µµµi+1)b = (µµµi)b +
αp

η
∑
d

qbd
·
∑
d

qbd

1− (nnn∗)d∑
b′

(AAA0)b′d(λλλ)b′

 (4.9)
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Figure 4.1: Combined MLEM-SMLGA algorithm for the joint estimation of ac-
tivity and attenuation from measured scatter and photopeak data
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qbd =
∑
b′

(AAA0)b′dxb′ld(λλλ)b′ (4.10)

αp is a relaxation parameter

η is the diameter of the reconstruction area

xb′ld is the intersection length of the path from b′ to d with voxel l

In order to improve the joint estimation some a priori knowledge can also be

included in the algorithm. Projection lines which contain no activity can give no

information about the attenuation coefficients resulting in missing attenuation

data. Nuyts et al. assumed that there is activity uptake within the skin, and that

noise can be neglected, and so projection lines with zero activity correspond to

regions outside the body and therefore have zero attenuation. A small constant

value is, therefore, subtracted from the attenuation coefficients of pixels within

these projection lines which has the effect of forcing the attenuation coefficient

towards zero outside the region containing most or all of the activity.

A priori information about the attenuation coefficients can be included in the

form of a multi-modal probability distribution, thus assuming that only typical

values for the attenuation of soft tissue, air, bone and the lungs will be found

(Equation 4.11); in the presence of noise a 2D Gibbs distribution can also be used

in order to encourage local smoothness (Ms(~µ~µ~µ); Equation 4.12).

∂Ma(µµµ | µ̄g, g = 1...G)

∂µµµ
=


µµµ−tg−1

σ2
g

tg−1 < µµµ ≤ tg−1+µ̄g
2

µµµ−µ̄g
σ2
g

tg−1+µ̄g
2

< µµµ ≤ µ̄g+tg
2

µµµ−tg
σ2
g

µ̄g+tg
2

< µµµ ≤ tg

(4.11)

µ̄g is the mean of the Gaussian function used to define the intensity prior

σg is the standard deviation of the Gaussian function

tg are defined to be the points of intersection between neighbouring Gaus-

sians; it is assumed t0 = −∞ and tG =∞

Ms(~µ~µ~µ) = −
∑
mn

wmnΦδ ((µµµ)m − (µµµ)n) (4.12)

Φδ (z) =
(z2)

2δ2 + z2
(4.13)

wmn = 0 if pixels m and n are not nearest neighbours and the Euclidean

distance between m and n if they are nearest neighbours
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z is the difference between the values at m and n

δ is a constant which represents the tolerance to variation in the pixel

values.

The resulting equation for estimating the attenuation distribution is shown in

Equation 4.14.

(µµµi+1)b = (µµµi)b +
αp

η
∑
d

qbd − αp∂2M(~µ~µ~µ)/∂(µµµ)2
b

·

∑
d

qbd

1− (nnn∗)d∑
b′

(AAA0)b′d(λλλ)b′

+
∂M(~µ~µ~µ)

∂(µµµ)b

 (4.14)

M(~µ~µ~µ) = βmMa(~µ~µ~µ) + βgMs(~µ~µ~µ) (4.15)

βm and βg are weighting parameters for the priors.

4.1.3 Reconstruction of Attenuation Map from Emission

and Scatter Data

In order to optimise the reconstruction of the attenuation map from measured

SPECT data without the need for a separate transmission map it is proposed that

information from both the scatter and photopeak energy windows can be used.

Since the emission and scatter of photons are independent processes the joint

likelihood is the sum of the likelihoods for the measured scatter sinogram and

the measured emission sinogram given the current estimates of attenuation and

activity and hence each part of the likelihood can be maximised independently.

As a result the update for the attenuation map at each step is the sum of the

updates calculated for the scatter data and emission data independently (the

SMLGA-MLAA algorithm, Equation 4.16).

µµµi+1 = µµµi + αp∆µpµpµp(b) + αs∆µsµsµs(k) (4.16)
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∆µpµpµp(b) =
1

η
∑
d

qbd
·
∑
d

qbd

1− n∗d∑
b′
ab′dλb′

 (4.17)

∆µsµsµs(k) =
1

(χχχ)kd
·
∑
d

(
−
∑
b

D′bd(µµµ
i, k) + (nnns)d ·

∑
bD
′
bd(µµµ

i, k)

(sss)d

)
(4.18)

αp is the relaxation parameter for the MLAA reconstruction update

αs is the relaxation parameter for the SMLGA reconstruction update

4.2 Method

In order to assess the potential of reconstructing both the activity distribution and

attenuation map from measured SPECT data, without a separate transmission

scan, reconstructions were performed using a 2-dimensional realisation of the male

XCAT phantom (Segars et al.. 1999) (formerly known as the NCAT phantom).

Initially simulated measurements were created using an idealised situation by

using the same transfer matrix and scatter model in the reconstruction algorithms

as were used to generate the ‘measured’ data. The photopeak data was free from

scatter (i.e. it was assumed to have been perfectly scatter corrected prior to

reconstruction) and data in the scatter window contained only photons that had

been scattered once (i.e. photons which had been scattered multiple times were

excluded as were primary photons falling in this window).

Data were simulated, without noise, for two standard, parallel hole collimator,

SPECT geometries with projections every 2o over 360o and every 2o over 180o.

A geometry equivalent to that of a dedicated cardiac scanner was also simulated;

this is referred to as a pseudo DSPECT geometry. In order to simulate this

imaging geometry a mask was used to extract the projection lines measured by

the DSPECT camera from a standard parallel projection sinogram; the full and

masked sinograms are shown in Figure 4.2.

For each reconstruction an initial estimate of the activity distribution was made

by performing five iterations of the MLEM algorithm, using an assumption of

zero attenuation throughout the field of view. One iteration of the estimation of

the attenuation map was then performed starting from an initial estimate of the

attenuation map with uniform attenuation approximately equal to the attenua-

tion of soft tissue in the region where the initial reconstruction of the activity was
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Figure 4.2: Full 360o sinogram and sinogram masked to produce pseudo-DSPECT
geometry

greater than zero. Iterations of the MLEM and attenuation map update algo-

rithms were then applied alternately in order to improve the estimates of both the

activity distribution and attenuation map. In order to improve the convergence

of the algorithms the attenuation was constrained to be zero outside the body

outline where the reconstructed activity per pixel was less than 1. Reconstruc-

tions were performed using the SMLGA algorithm, the MLAA algorithm and

the combined SMLGA-MLAA algorithm. The results from these reconstructions

were compared to reconstructions of the activity distribution without attenuation

correction and with perfect attenuation correction.

In order to compare the accuracy of the reconstructions performed using different

techniques the difference between the images reconstructed using the technique

being tested have been compared to the true activity distribution and attenuation

map on a pixel by pixel basis. The overall accuracy (bias) of each technique has

been assessed by calculating the mean error for all pixels. However, in order to

reduce the effect of artefacts in the reconstructed images the absolute pixel values

may not be essential as long as any systematic error is uniform for all pixels.

The uniformity of the errors of individual pixels (precision) has been assessed

by normalising the estimated image to have the same mean as the true image

and then calculating the root mean square error. The root mean square error

has been selected to assess the precision of the techniques because the individual

pixel errors are not generally normally distributed; an example is shown in Figure

4.3.

When considering the reconstruction of myocardial perfusion images it is not

necessarily essential to accurately reconstruct the complete thorax as long as the

region of the myocardium is correctly reconstructed. A region of interest was,
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Figure 4.3: Distribution of errors for individual pixels from activity distribution
reconstructed using the without attenuation correction compared to the true ac-
tivity distribution.

therefore, produced around the heart and the mean and root mean square errors

inside this region calculated.

4.3 Results

The activity distributions recovered using different methods of estimating the

attenuation map are shown in Figures 4.4, 4.8 and 4.12 for the 360o, 180o and

DSPECT geometries respectively; the differences between the activity distribu-

tions and the true activity phantom are shown in Figures 4.5, 4.9 and 4.13. The

attenuation maps reconstructed by each technique are shown in Figures 4.6, 4.10

and 4.14 for the 360o, 180o and DSPECT geometries respectively and the differ-

ences between these and the true attenuation map are shown in Figures 4.7, 4.11

and 4.15.

In each case the results for reconstructions without attenuation correction, and

with perfect attenuation correction, are also shown. The mean and root mean

square errors (as defined in Section 4.2) for the whole images and for a region of
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Activity Distribution
Image Region

Mean RMSE Mean RMSE
SMLGA technique -0.0044 1.1301 0.0665 1.5998
MLAA technique -0.3779 2.5243 1.0025 2.3412

SMLGA-MLAA technique 0.0090 0.7187 0.0319 0.9360
Exact attenuation correction −2.573× 10−5 0.4021 0.0088 0.3058

No attenuation correction -3.7969 4.3377 -6.3789 3.4502

Attenuation Map
Image Region

Mean RMSE Mean RMSE
SMLGA technique −1.087× 10−5 0.0077 0.0005 0.0136
MLAA technique −2.583× 10−3 0.0170 0.0092 0.0246

SMLGA-MLAA technique 6.647× 10−5 0.0044 0.0002 0.0075

Table 4.1: Mean error and root mean square error (RMSE) in reconstructions
using idealised simulated data with a standard 360o imaging geometry for the
whole image and for a region of interest centred over the heart.

interest centred over the heart are shown in Tables 4.1, 4.2 and 4.3. The results

show that the use of data acquired over 360o and 180o produce very smilar results.

In both cases the SMLGA algorithm shows improved reconstruction compared to

the MLAA algorithm and reconstruction without attenuation correction. Further

improvement, especially close to the boundaries between different tissue types, is

achieved when the SMLGA and MLAA algorithms are combined.

The pseudo-DSPECT geometry also demonstrates accurate reconstruction when

using the SMLGA and combined SMLGA-MLAA algorithms in the region at the

focus of the acquisition. However, reconstruction of the posterior region of the

body (i.e. the area furthest from the camera location) is poor. This is as expected

due to under-sampling in this region.

In order to highlight artefacts introduced into the myocardium by the reconstruc-

tion progress an enlarged view of the activity distribution in this region is shown

in Figures 4.16, 4.17 and 4.18 for the 360o, 180o and DSPECT geometries respec-

tively. In each case the errors have been scaled to the mean error in the region of

interest over the heart in order to demonstrate the variation in the reconstructed

myocardium. These results show that in this region, which is over-sampled by

the pseudo-DSPECT imaging geometry, the results for this type of acquisition

are as accurate as those obtained using standard SPECT imaging geometries.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Reconstructed activity distributions for a standard 360o imaging ge-
ometry; (a) true phantom activity distribution (b) SMLGA reconstruction, (c)
MLAA reconstruction, (d) SMLGA-MLAA reconstruction, (e) using true atten-
uation map, and (f) without attenuation correction
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(a) (b)

(c) (d)

(e)

Figure 4.5: Difference between the reconstructed activity distributions and true
activity phantom for a 360o imaging geometry; (a) SMLGA reconstruction, (b)
MLAA reconstruction, (c) SMLGA-MLAA reconstruction, (d) using true atten-
uation map, and (e) without attenuation correction
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Activity Distribution
Image Region

Mean RMSE Mean RMSE
SMLGA technique -0.0133 1.1150 -0.0444 1.2709
MLAA technique -0.2633 2.5141 1.2720 2.2920

SMLGA-MLAA technique 0.0059 0.7767 0.0491 0.9143
Exact attenuation correction 0.0000 0.4386 0.0075 0.5237

No attenuation correction -3.7515 3.9364 -6.1370 2.2756

Attenuation Map
Image Region

Mean RMSE Mean RMSE
SMLGA technique −5.079× 10−5 0.0086 -0.0007 0.0177
MLAA technique −2.263× 10−3 0.0193 0.0098 0.0287

SMLGA-MLAA technique 6.252× 10−5 0.0055 0.0004 0.0107

Table 4.2: Mean error and root mean square error (RMSE) in reconstructions
using idealised simulated data with a standard 180o imaging geometry for the
whole image and for a region of interest centred over the heart.

Activity Distribution
Image Region

Mean RMSE Mean RMSE
SMLGA technique -0.0213 1.1536 -0.0145 1.2680
MLAA technique -0.1812 2.6340 1.6097 2.2699

SMLGA-MLAA technique 0.0101 0.7955 0.0684 1.0527
Exact attenuation correction -0.0025 0.5091 0.0503 0.5884

No attenuation correction -3.7458 3.7955 -6.0152 2.4581

Attenuation Map
Image Region

Mean RMSE Mean RMSE
SMLGA technique 9.911× 10−5 0.0096 0.0006 0.0167
MLAA technique −9.235× 10−4 0.0209 0.0103 0.0283

SMLGA-MLAA technique 2.958× 10−4 0.0076 0.0009 0.0128

Table 4.3: Mean error and root mean square error (RMSE) in reconstructions
using idealised simulated data with a pseudo-DSPECT imaging geometry for the
whole image and for a region of interest centred over the heart.
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(a) (b)

(c) (d)

Figure 4.6: Reconstructed attenuation maps for a 360o imaging geometry; (a) true
phantom attenuation map (b) SMLGA reconstruction, (c) MLAA reconstruction,
(d) SMLGA-MLAA reconstruction
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(a) (b)

(c)

Figure 4.7: Difference between the reconstructed attenuation map and true at-
tenuation phantom for a 360o imaging geometry; (a) SMLGA reconstruction, (b)
MLAA reconstruction, (c) SMLGA-MLAA reconstruction
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Reconstructed activity distributions for an standard 180o imaging
geometry; (a) true phantom activity distribution (b) SMLGA reconstruction, (c)
MLAA reconstruction, (d) SMLGA-MLAA reconstruction, (e) using true atten-
uation map, and (f) without attenuation correction
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(a) (b)

(c) (d)

(e)

Figure 4.9: Difference between the reconstructed activity distributions and true
activity phantom for a 360o imaging geometry; (a) SMLGA reconstruction, (b)
MLAA reconstruction, (c) SMLGA-MLAA reconstruction, (d) using true atten-
uation map, and (e) without attenuation correction
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(a) (b)

(c) (d)

Figure 4.10: Reconstructed attenuation maps for a 180o imaging geometry; (a)
true phantom attenuation map (b) SMLGA reconstruction, (c) MLAA recon-
struction, (d) SMLGA-MLAA reconstruction
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(a) (b)

(c)

Figure 4.11: Difference between the reconstructed attenuation map and true
attenuation phantom for a 180o imaging geometry; (a) SMLGA reconstruction,
(b) MLAA reconstruction, (c) SMLGA-MLAA reconstruction
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Reconstructed activity distributions for a pseudo-DSPECT imaging
geometry; (a) true phantom activity distribution (b) SMLGA reconstruction, (c)
MLAA reconstruction, (d) SMLGA-MLAA reconstruction, (e) using true atten-
uation map, and (f) without attenuation correction
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(a) (b)

(c) (d)

(e)

Figure 4.13: Difference between the reconstructed activity distributions and true
activity phantom for a pseudo-DSPECT imaging geometry; (a) SMLGA recon-
struction, (b) MLAA reconstruction, (c) SMLGA-MLAA reconstruction, (d) us-
ing true attenuation map, and (e) without attenuation correction
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(a) (b)

(c) (d)

Figure 4.14: Reconstructed attenuation maps for a pseudo-DSPECT imaging
geometry; (a) true phantom attenuation map (b) SMLGA reconstruction, (c)
MLAA reconstruction, (d) SMLGA-MLAA reconstruction
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(a) (b)

(c)

Figure 4.15: Difference between the reconstructed attenuation map and true
attenuation phantom for a pseudo-DSPECT imaging geometry; (a) SMLGA re-
construction, (b) MLAA reconstruction, (c) SMLGA-MLAA reconstruction
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(a) (b)

(c) (d)

(e)

Figure 4.16: Relative errors in the activity distributions reconstructed in the re-
gion of the myocardium for a 360o imaging geometry; (a) SMLGA reconstruction,
(b) MLAA reconstruction, (c) SMLGA-MLAA reconstruction, (d) using true at-
tenuation map, and (e) without attenuation correction
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(a) (b)

(c) (d)

(e)

Figure 4.17: Relative errors in the activity distributions reconstructed in the re-
gion of the myocardium for a 180o imaging geometry; (a) SMLGA reconstruction,
(b) MLAA reconstruction, (c) SMLGA-MLAA reconstruction, (d) using true at-
tenuation map, and (e) without attenuation correction
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4.4 Discussion

The work presented here shows a new method of attenuation correction without

the need for a separate transmission scan. The potential for such a method of at-

tenuation correction has wide appeal in SPECT imaging because of the reduction

in radiation dose to the patient and removal of potential mismatches between the

transmission and emission scans. The ability to perform an attenuation correc-

tion without transmission scan would also be applicable to all types of gamma

cameras including those, such as a number of dedicated cardiac scanners, where

it would be difficult or impossible to add a transmission based scanning system

for attenuation correction. This chapter demonstrates a first step towards an

accurate method of attenuation correction using scatter data

Results for reconstructions using data simulated over 360o were found to be sim-

ilar to reconstructions for data simulated over 180o for all the algorithms tested.

When reconstruction of the emission data was performed using the exact atten-

uation map only very small differences between the true and estimated activity

distribution were found. The differences seen are due to the finite size of the

detection matrix. When no attenuation correction is performed the activity es-

timated towards the centre of the body is significantly reduced compared to the

true activity and the activity close to the body boundary is over-estimated. This

effect occurs because photons from close to the centre of the body have a higher

probability of attenuation and so are less likely to be detected. If attenuation

correction is not performed, the attenuated photons are not accounted for and it

appears as though there are less photons emitted from regions behind areas of

attenuating material resulting in a global underestimation of the activity (i.e. a

negative mean error)

As previously demonstrated by other authors (Nuyts et al.. 1999, Krol et al..

2001), significant cross-talk was present in the reconstruction of both the activity

distribution and attenuation map using just the photopeak data. This results

in areas of low attenuation in the region of high activity (e.g. the myocardium)

and increased attenuation in regions of low activity (e.g. the lungs). The effect of

cross-talk on the activity distribution is to reduce the variation in the activities

seen, with regions of high activity reduced and regions of low activity increased

compared to the true activity distribution.

The SMLGA reconstruction algorithm developed here shows improved recon-
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(a) (b)

(c) (d)

(e)

Figure 4.18: Relative errors in the activity distributions reconstructed in the
region of the myocardium for a pseudo-DSPECT imaging geometry; (a) SMLGA
reconstruction, (b) MLAA reconstruction, (c) SMLGA-MLAA reconstruction,
(d) using true attenuation map, and (e) without attenuation correction

104



struction compared to both reconstruction without attenuation correction and

reconstruction using the MLAA method to estimate the attenuation map; this

is shown by the reduced bias and spread of errors globally and in the region of

interest centred over the heart. The body outline is accurately reconstructed

and the lungs are clearly visualised; an increase in attenuation corresponding to

the ribs is also seen. However, the reconstruction of the attenuation map close

to boundaries of different tissue types is poorer than near to the centre of each

region. The effect of this is particularly significant where both lung and rib are

present close to the high activity region of the myocardium and results in an

underestimation of the attenuation in this area. When the SMLGA algorithm

is combined with the MLAA algorithm a more accurate reconstruction of both

the activity distribution and attenuation map is possible. This is because the

use of scatter data in the SMLGA part of the combined algorithm prevents the

cross-talk seen when using the MLAA algorithm alone and the use of the MLAA

algorithm with the SMLGA stabilises the reconstruction close to the boundaries

between different tissue types.

When considering a pseudo-DSPECT acquisition set-up it is found that the right

posterior region of the body is not reconstructed as well as in the standard imaging

geometries. This is as expected since this region is under sampled by the pseudo-

DSPECT acquisition. Results considering a region of interest centred on the

myocardium demonstrate that accurate reconstruction is achieved in this region.

4.5 Conclusion

The use of scatter data has been shown to provide an accurate method of recon-

structing an attenuation map, in 2 dimensions, without the use of a transmission

scan. The results obtained using the SMLGA algorithm developed here demon-

strated improved reconstructions, compared to reconstruction without attenua-

tion correction or using an attenuation map estimated using an MLAA technique,

for data acquired using standard SPECT imaging geometries of 360o or 180o, or

using a pseudo-DSPECT imaging geometry. The results were further improved,

particularly close to the boundaries between different tissue types, by combining

the SMLGA developed with the MLAA algorithm.
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5 An Enhanced Scatter Model in

3 Dimensions

The model for scatter developed in Chapter 3 was shown to represent accurately

the distribution of scattered photons in simplified 2-dimensional cases. In the

work outlined in this chapter the simple 2D model is first implemented and tested

in three dimensions. The three dimensional model is then extended to represent

more accurately the real situation by considering the relative effect of voxels

close to the scattering voxel compared to more distant voxels and the effect of

the resolution of a real collimator (as opposed to perfect parallel projection). The

simple scatter model assumed that all attenuation was as a result of Compton

scattering and so in the enhanced model the validity of this assumption has been

investigated, as has the effect on the probability of detection of the reduction in

photon energy after scattering.

5.1 Theory

5.1.1 Implementation of 3D model

The extension of the calculation of the scatter projections in 2-dimensions to

3-dimensions is conceptually quite simple; the emission pixel and scatter pixel

may now lie in different planes and so the number of photons from each point

of emission travelling to each scatter point is calculated for all pixels in the 3D

volume. The initial direction of travel of each photon is now defined by two

angles; the direction of travel in the x − y plane (θbk) and the direction relative

to the z-axis (ψbk). Given the number of possible directions of travel it is not

practical to store these directions in 3D and so the angle of scatter required to
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Figure 5.1: Diagram to illustrate combination of angles in 3-dimensions.

reach detector position d is calculated from the angle of the detector (Φd) and

angles θbk and ψbk for each possible pair of points in the image matrix.

In order to calculate the overall angle of scatter (ϕbkd) the change in direction in

the x − y plane (∆θ) and relative to the z-axis (∆ψ), from the initial direction

of travel to the direction of travel required for detection, must be combined. For

a standard imaging geometry, assuming perfect detector resolution, the direction

of travel required for detection is always parallel to the x− y plane and so ∆ψ is

equal to ψbk. Figure 5.1 shows the geometry of the 3-dimensional case. The line

from B to K is a vector representing the initial direction of travel of the photon,

and from B to K’ is the projection of this line onto the x − y plane; the line

from B to D gives the direction of travel required to reach the detector. In this

diagram angle ∆ψ is equal to the angle defined by points KBK’ and ∆θ by points

K’BD. The overall angle of deflection (ϕbkd), defined by points KBD can then be

derived using Equation 5.1.

cos(∆θ) =
BD

BK’
(5.1a)

cos(∆φ) =
BK’

BK
(5.1b)

cos(ϕbkd) =
BD

BK
(5.1c)

= cos(∆θ) · cos(∆ψ) (5.1d)

ϕbkd = cos−1(cos(θbk − Φd) · cos(ψbk)) (5.1e)

107



5.1.2 Near Neighbour Effects

The original geometric model developed as part of the basic scatter model as-

sumes that each voxel can be considered as a point source in relation to all other

voxels. This assumption is valid when voxels are at large distances from each

other; however, it is not valid for neighbouring voxels. In voxels close to the

emission voxel the exact point of emission within the source voxel and of in-

teraction within the scattering voxel will have a significant effect on both the

probability of an interaction occurring and the direction of travel of the photon

prior to scattering, and hence on the probability of detecting a scattered photon

at a given detector location, within a given energy window. In order to determine

the overall probability of detecting photons scattered in voxels close to the point

of emission, a series of Monte Carlo simulations have been performed using the

SIMIND programme. In each simulation a single scattering location has been

defined as a cubic voxel consisting of 83 sub-voxels, positioned at the centre of

the simulation volume. An emission voxel of the same size has then been defined

at a series of locations close to the scattering voxel. All voxels, other than the

scattering voxel, were defined to have zero attenuation. For each simulation de-

tectors were placed at 360 angles, equally spaced around the simulation volume,

parallel to the z-axis.

From the simulation results the probability of detecting a scattered photon at a

given detector angle has been found, for a given source position, with a range of

energy windows. These probabilities have been normalised to the probability of

detecting a scattered photon at the same detector position when the source voxel

is at the same location as the scattering voxel, using an open energy window.

The calculation of the probability of the detection of scattered photons in the

scatter model has been modified such that the scatter probability for voxels close

to the emission voxel is taken to be the simulated probability instead of the

combination of the Klein-Nishina scattering probability and the solid angle. The

probability of scatter at distant voxels is calculated from the average angular

distribution for distant voxels. These values are scaled according to the solid

angle that the scattering voxel subtends to the emission voxel, calculated as in

the original scatter model. It is expected that, for scattering voxels which are

at a significant distance from the source voxel, the model of solid angle used in

the original scatter model will be provide a reasonable approximation. In order
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to assess this the total probability of detecting scattered photons at any angle,

in an open energy window, in the Monte Carlo simulation has been compared to

the solid angle model by scaling the Monte Carlo result at a distant voxel to the

theoretical value of solid angle at that voxel and comparing the values at other

locations closer to the source voxel.

5.1.3 Resolution Modelling

The effect of blurring on the accuracy of reconstruction has been investigated for

many years with early papers considering the combined effect of scatter and col-

limator response by measuring the system response to point sources positioned

at different depths in a tissue equivalent phantom (Miller et al.. 1985, Hebert

et al.. 1993). Alternatively Zeng et al.. (1991) have proposed a method for deriv-

ing the blurring as a result of the collimator, without the contributions of scatter,

septal penetration and intrinsic spread of photons in the detector, from the known

geometry of the collimator hole.

In recent years algorithms which include the response of a SPECT system to a

point source have become more widespread in clinical use. These algorithms con-

sider the overall geometric response of a SPECT system to a point source, which

depends on the distance of the source from the collimator, separately to the effects

of scatter. A number of methods of estimating the effect of the distance depen-

dent blurring have been developed in both PET and SPECT imaging (Gilland

et al.. 1994, Brix et al.. 1997, Zeng et al.. 1998), many of which use a Gaussian

of different widths to approximate the point source response at different source

to collimator distances. The simulation of the measured projection can then be

calculated as the convolution of the activity distribution at each point with the

point source response at that source to detector distance, prior to calculating the

ray sum for each detector location. In SPECT the effect of attenuation may be

included by multiplying the activity at each voxel by the total attenuation from

that point to the detector (Gilland et al.. 1994).

The projection of the scattered photons from the point of scatter to the point

of detection is the same as that for primary photons and so the same resolution

model can be used. Methods of applying the resolution model can be divided

into three broad categories; convolution in image space, Fourier transformation

followed by multiplication in Fourier-space and, incremental blurring between
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Figure 5.2: Kernel used to approximate collimator response blurring between
layers.

layers such as the method proposed by Zeng et al.. (1998). Convolution in real

space is generally the least efficient technique and so the possible time saving

from using Fourier transforms or incremental blurring have been investigated.

In order to apply the resolution model using incremental blurring a measured col-

limator response function has been used to derive a series of five point blurring

kernels where each kernel approximates the blurring from one layer to the next,

stepping towards the camera face. Each detector angle is treated separately with

the attenuation map and activity distribution (or scattered photon distribution)

matrices being rotated to be parallel to the detector. This allows the inter-layer

blurring to be applied as the result from the previous layer added to the distri-

bution for the current layer and convolved with the kernel for the current layer.

The blurring from the final layer to the detector face is calculated by convolution

with a Gaussian with width defined by the collimator response function for the

distance of the final layer from the camera face.

The five point blurring kernels are of the form illustrated by Figure 5.2 and are

subject to the normalisation constraints

b =
1− a

4
(5.2a)

0 < a ≤ 1. (5.2b)

The blurring from each layer l to the detector is approximated by a Gaussian of

width σl, as given by Equation 5.3.

fl(x, y) =
1√

2πσ2
l

exp

(
−x

2 + y2

2σ2
l

)
(5.3)

Using Equations 5.2a and 5.3 the collimator response for a layer (l+ 1) adjacent
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to layer l can be approximated as

fl+1(x, y) ≈ afl(x, y) + b [fl(x+ 1, y) + fl(x− 1, y)

+fl(x, y + 1) + fl(x, y − 1)] (5.4)

and hence a new function t3 defined such that

t3 ≈ at1 +
1− a

4
t2 (5.5)

where

t1(x, y) = exp

(
−x

2 + y2

2σ2
l

)
(5.6a)

t2(x, y) = exp

(
−(x+ 1)2 + y2

2σ2
l

)
+ exp

(
−(x− 1)2 + y2

2σ2
l

)
+ exp

(
−x

2 + (y + 1)2

2σ2
l

)
+ exp

(
−x

2 + (y − 1)2

2σ2
l

)
(5.6b)

t3(x, y) =
σl
σl+1

exp

(
−x

2 + y2

2σ2
l+1

)
(5.6c)

The cost function F (a) given by Equation 5.7 is minimised, using a least squares

method, with respect to a. Parameter a can then be calculated using Equation

5.8 for each layer within the image volume (Zeng et al.. 1998).

F (a) =
∑
x

∑
y

[
at1(x, y) +

1− a
4

t2(x, y)− t3(x, y)

]2

(5.7)

a =

∑
x

∑
y (t3 − t2/4) (t1 − t2/4)

(t1 − t2/4)2 (5.8)

In order to apply the resolution model in Fourier-space each detector angle is

again treated separately with the attenuation map and activity distribution (or

scattered photon distribution) matrices being rotated to be parallel to the detec-

tor. A fast Fourier transform is performed for each layer of the image and for

the corresponding Gaussian blur. The blurring of each layer is then calculated by

a point by point multiplication of the two transforms before the inverse Fourier

transform is calculated. An advantage of using this technique is that the decon-
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volution of the image with the resolution blurring can also be easily calculated

by point by point division of the Fourier transform of the blurred image and the

transformed blurring Gaussians.

5.1.4 Effect of Increased Attenuation

The Compton scattering process results in reduction of the photon energies as well

as a change in direction and so the attenuation experienced by photons after the

point of scatter will be increased, as illustrated in Figure 5.3 (Berger et al.. 2010).

The effect of the increased attenuation after the point of scatter can be included

in the scatter model by applying an appropriate scaling factor to the attenuation

at each voxel after the point of scatter. The data illustrate that the variation

for soft tissue and lung is very similar but that of bone is significantly different.

As a result two different sets of scaling factors have been used, one for voxels

corresponding to lung and soft tissue and the other for voxels corresponding to

bone.

The increase in attenuation will be different for each scattered photon depending

on the angle it has scattered through and hence its final energy. In the current

implementation of the scatter model it is not practical to calculate the changed

attenuation for all photons individually and so the mean photon energy within

the selected scatter energy window has been calculated and the scaling factors

for this energy have been applied to all scattered photons.

5.1.5 Absorption Effects

The basic scatter model assumes that the contribution of processes other than

Compton scattering to the overall attenuation in tissues is negligible at 140keV.

In the case of soft tissue and lung this is a reasonable assumption since Compton

scatter accounts for 97.75% and 97.53%, respectively, of the total attenuation

(Berger et al.. 2010). However, for bone the contribution of the photoelectric

effect is more significant and so only 90.53% of the attenuation is a result of

Compton scattering. The effect of the reduced scattering which occurs compared

to that predicted from the linear attenuation coefficient has been incorporated

into the scatter model by the use of two scaling factors, applied to the attenuation

coefficient at the point of scatter. For voxels with linear attenuation less than or
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Figure 5.3: Variation in attenuation with photon energy scaled relative to the
attenuation at 140keV for soft tissue (red), lung tissue (green) and bone (blue)

equal to 0.16cm−1, i.e. lung and soft tissue, a scaling factor of 0.98 has been used

while for those with higher attenuation, i.e. bone, a scaling factor of 0.9 has been

used.

5.2 Method

5.2.1 Implementation of 3D model

Although the extension from 2 dimensions to 3 dimensions is conceptually simple

it is very computationally expensive as now each voxel is linked to m3 other

voxels rather than m2. In order to reduce the number of calculations required

the effect of calculating the number of photons reaching each scatter point on a

reduced matrix has been investigated in 2 dimensions. In order to do this the

original 642 matrices of attenuation and activity are re-sampled onto 322 matrices

and the number of photons reaching each scatter point calculated. This matrix

of photons reaching each point is then interpolated back to a 642 matrix before

the contribution of photons scattered at the point of emission is added and the
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forward projection to the detector takes place. The scatter sinogram calculated

for a single slice of the XCAT phantom has been calculated using this acceleration

method and compared to the standard calculation. In the 3-dimensional projector

the number of slices is compressed in a similar way.

The accuracy of the single scatter model has been assessed by comparing the re-

sults of the model for a 3-dimensional XCAT activity and attenuation distribution

with the results of a SIMIND Monte Carlo simulation. In both the model and the

simulation the activity extended over 64 slices of the phantom. The Monte Carlo

simulation used LEHR collimators and included only single scatter events; the

contribution of primary photons in the scatter window was excluded. In order to

compare the distribution of the scattered photons both the model and simulation

results were scaled to the mean value in the central slice for all projections.

In order to assess the effect of the proposed improvements to the scatter model,

each version of the model has been used to calculate the scatter distribution at 8

detector locations, at 45o to each other, using the XCAT phantom; each version

adds the next improvement to the previous version of the model. The error in

the number of scatter photons at each detector pixel predicted by each model

compared to the Monte Carlo simulation has been calculated by normalising the

results from each version of the model to have the same mean value obtained

using Monte Carlo simulation. The overall accuracy of each version of the scatter

model for each phantom has been determined by considering the square root of

the mean of the square of the differences between the normalised model results

and the Monte Carlo simulation at each detector pixel.

5.2.2 Resolution Modelling

The first step in any resolution model is to measure the point source response of

the collimator to be used. In this work the SIMIND programme has been used

to simulate the response of a gamma camera using Low Energy High Resolution

(LEHR) collimators. A series of simulations have been performed using point

sources at different distances from the camera face, with no attenuation. The

number of photons measured at each location on the detector face was then

fitted with a Gaussian.

The efficiency of the techniques used to calculate the effect of the collimator
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Figure 5.4: Normalised scatter sinograms estimated for a typical scatter energy
window using reduced matrix compared to standard calculation in 2 dimensions

response on the measured projections has been assessed by comparing the average

time taken to calculate 90 projections for a 643 matrix.

5.3 Results

Figure 5.4 shows the scatter sinograms calculated using the XCAT phantom with

a reduced matrix size to accelerate the calculation compared to the standard

calculation method. The profiles shown correspond to 4 detector positions at

90o to each other. The maximum absolute percentage difference between the

normalised profiles is 0.23%; the mean absolute percentage difference is 0.07%.

This demonstrates that a reduced matrix size can be used to calculate the number

of photons reaching each scatter point without adversely affecting the accuracy

of resulting scatter sinogram.

Figure 5.5 shows a profile through the central slice of the Monte Carlo simulated

scatter and model results for 2 projections angles at 90o to each other. Figure 5.6

shows the difference between the simulated and model results for 8 projections at

45o to each other. In each case the mean value in the central slice of all projections
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Figure 5.5: Scatter distributions calculated for the central slice of the 3D XCAT
phantom using Monte Carlo simulation and the scatter model

has been calculated for the calculated and simulated sinograms and the calculated

sinograms scaled such that they have the same mean as the simulation result. The

objective here is to identify local variation in the two sets of projection data. A

positive value indicates that the scatter model overestimates the activity at that

pixel compared to the Monte Carlo simulation. The opposite applies for negative

values.

The results indicate that the scatter model is able to broadly recreate the correct

shape of distribution, however, it is clear that significant sources of error exist

within the original scatter model. In particular it is noted that the number of

scattered photons detected is overestimated close to the centre of the body while

it is underestimated in more superficial regions.

5.3.1 Near Neighbour Effects

The variation in probability of detecting a photon at a given detector angle with

distance between the source and scattering voxels is shown in Figure 5.7; in

each case an energy window of 20 to 200keV has been used. The number of
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Figure 5.6: Error in scatter distributions calculated for the 3D XCAT phantom
using the scatter model compared to Monte Carlo simulation (as shown in Figure
5.5)

117



Figure 5.7: The relative detection probabilities for scattered photons at detector
positions around a single scattering pixel positioned at (0,0,0). The emission
source is located at (1,0,0) position 1, (2,0,0) position 2, (3,0,0) position 3
and (5,0,0) position 5 (each voxel is 0.624cm). The Klein-Nishina probability of
scattering through each angle is also shown

photons detected at a given angle has been normalised to the total number of

photons detected for the given source location. The Klein-Nishina probability

for each angle is also shown for comparison. For scattering voxels close to the

point of emission there is much less variation in scatter probability with detector

angle than predicted using the Klein-Nishina formula. This is because when the

scattering and source voxels are close together photons with a large range of

initial directions of travel will interact with the scattering voxel compared to the

original model which predicts a single angle based on the location of the centres

of the two voxels. For scattering voxels which are at a distance of more than 3

voxels from the source voxel the distribution of scattered photons does not change

with distance and is approximately equal to the Klein-Nishina prediction.

Figure 5.8 shows the simulated variation in the total probability of scatter with

distance between the scatter and emission voxels compared to the theoretical

probability, calculated from the solid angle subtended by one voxel to another.

Two or three simulations were performed at each of the distances investigated

and the uncertainty in the simulation results has been estimated as the range
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Figure 5.8: The relative probability for detection of scatter events in all detectors
at all energies for different source to scatter voxel distances. The Monte Carlo
results and calculated solid angle have been normalised to the values at the most
distant voxel location.

defined by the different simulation results; these uncertainties are illustrated as

error bars on the graph. The results show that, for voxels which are separated

from the source pixel by distance of more than 3 pixels, the total probability of

scatter occurring is similar to that calculated using the theoretical model of solid

angle.

5.3.2 Resolution Modelling

The width of the Gaussian functions which best fitted the response of a gamma

camera, with LEHR collimator, to a point source at different distances from the

camera face is shown in Figure 5.9. The time taken to perform the resolution

blurring calculation using full convolution, Fourier transform and incremental

blurring techniques is shown in Table 5.1.

These results show that the use of incremental blurring is approximately three

times faster than the use of a fast Fourier transform (FFT) technique where each

layer is blurred individually. However, the incremental blurring technique sums
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Figure 5.9: Distance dependent blurring of a point source for LEHR collimators

Convolution Mean time Standard
Technique (s) Deviation
Full Convolution 111.2 0.1
Fourier Transform 5.216 0.012
Incremental Blurring 1.753 0.009

Table 5.1: Times taken to calculate resolution blurring effects using different
techniques

the contribution along each path during the calculation while the FFT technique

calculates the contribution of each layer separately before summing the contribu-

tion of all layers. In the reconstruction algorithm, when calculating the partial

derivatives for each point in the image matrix, the contribution from each point

to each detector element is required and not just the sum of contributions along

each path. As a result the use of incremental blurring would take significantly

longer as the process would need to be repeated for each layer individually. The

FFT technique has therefore been selected for use in this work.

Figure 5.10 shows the forward projection of primary photons with and without

the resolution model compared to the SIMIND simulation of the same XCAT

phantom for the central slice of the anterior projection. The root mean square

errors in the projection data generated using the model with and without depth
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Figure 5.10: Comparison of Monte Carlo simulation of primary photon projection
data with forward projection model with and without depth dependent resolution
effects.

dependent resolution effects were 0.045 and 0.096 respectively; the distribution of

the differences between the model and Monte Carlo projections are shown in Fig-

ure 5.11. These results demonstrate a reduction in errors seen at the boundaries

between different tissue types.

5.3.3 Comparison to Monte Carlo Data

Table 5.2 shows the root mean square error when comparing the normalised

scatter projection data calculated using each version of the scatter model to the

Monte Carlo simulation for two energy windows; 80-126keV and 126-154keV.

Each version of the scatter model adds the next improvement to the previous

version of the model. Figure 5.12 show the differences between the models and

the Monte Carlo simulation across the detector in an 80-126keV energy window

for two projections positioned at 90o to each other.

The results show that the use of Monte Carlo simulations to estimate the contri-

bution of the emission voxel’s near neighbours to the measured scattered photons,

provides a significant improvement to the accuracy of the model. The addition
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(a) (b)

Figure 5.11: Distribution of errors of primary photon projection data (a) with
and (b) without depth dependent resolution effects compared to Monte Carlo
simulation.
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80-126keV window 126-154keV window
Original Model 0.077 0.075
Near Neighbour 0.073 0.069
Resolution model 0.056 0.050
Increased Attenuation 0.056 0.051
Absorption Effects 0.056 0.050

Table 5.2: Root mean square error for each model compared to Monte Carlo
simulation

of modelling of the collimator response to a point source further improves the

accuracy. However the inclusion of the effect of increased attenuation after the

point of scatter and the difference in the scatter fraction between bone and soft

tissue do not provide any additional improvement.

5.4 Discussion

The scatter model has been successfully extended from a single slice to three

dimensions. It has been shown that the accuracy can be improved by using data

acquired from Monte Carlo simulation to estimate the scatter from voxels close

to the source voxel. As expected, the inclusion of depth dependent resolution

modelling improves the accuracy of the forward projection at the boundary be-

tween regions with different activity levels. This is reflected in the reduction in

the number of voxels with large errors compared to the Monte Carlo simulation.

As a result the distribution of errors is shown to be closer to the ideal situation

(i.e. when the model and simulation produce identical results) and the overall

root mean square error is reduced.

Inclusion of the effect of the increase in attenuation of photons after scattering

(as a result of the reduction in photon energy) does not affect the results for a

window centred over the photopeak. This is because photons detected in this en-

ergy window have not experienced significant energy loss. For photons detected

in a lower energy window the use of the mean energy window to estimate the

effect of increased attenuation for all photons is not sufficiently accurate to pre-

dict the difference in attenuation experienced. This is demonstrated by a small

increase in the errors calculated when including this effect in the model. A more

accurate model of the increase in attenuation with reduced photon energy could

be produced by calculating the reduction in energy for each photon path (from
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Figure 5.12: Comparison of Monte Carlo simulation with forward projection scat-
ter model. Top line: original model, second line: including near neighbour effects,
third line: including resolution model
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Figure 5.12: Comparison of Monte Carlo simulation with forward projection scat-
ter model (continued). Top line: including reduced attenuation after the point of
scatter, second line: including variation in Compton scatter fraction

the scattering angle) and applying the increase in attenuation separately for each

path. However, this would require a separate forward projection for each pos-

sible scattering angle and hence is not currently feasible to implement in three

dimensions.

The results also suggest that the inclusion of differences in the scatter fraction for

different materials does not significantly improve the accuracy. This is because

the proportion of attenuation that occurs as a result of Compton scattering is

similar for all soft tissues and only a small amount of bone is present in the thorax.

It is anticipated that if the scatter model were to be used in regions other than

the thorax this effect may be more significant.

Given the results presented here, the final scatter model has been defined to
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include the effect of differences in scatter pattern for voxels close to the source

voxel and the effect of blurring as a result of the distance from the scatter voxel

to the detector but the energy effects are not included. The complete model is

given by Equation 5.9.

sss(µµµ) = A′dA
′
dA
′
d(µµµ)S ′kS

′
kS
′
k(µµµ)A′kA

′
kA
′
k(µµµ)φφφ +A′dA

′
dA
′
d(µµµ)SbSbSb(µµµ)φφφ (5.9)

φφφ = QQQ⊗ λλλ (5.10a)

(A′kA
′
kA
′
k)bjk = ω′bjk exp

[
−
∫ k

b

µµµ(x)dx

]
(5.10b)

(S ′kS
′
kS
′
k)kjj′ = (1− eµk)N ′jj′ (5.10c)

(SbSbSb)bkjj′ =

{
0.5
(

1− e−µk 3
√

3
4π

)
, b = k

0 b 6= k
(5.10d)

(A′dA
′
dA
′
d)kj′d = c′kj′d exp

[
−
∫ d

k

µµµ(x)dx

]
(5.10e)

λλλ is the activity distribution.

QQQ is the emission function and gives the proportion of photons emitted

within a solid angle defined by Ωj. QQQ is isotropic and could define an infi-

nite number of directions j.

φφφ gives the number of photons emitted from each voxel b travelling in each

direction j; this is a block vector with b blocks each of length j.

A′kA
′
kA
′
k is the attenuated transfer matrix giving the probability of a photon

emitted from voxel b reaching voxel k; this is a block matrix with b by k

blocks, each block is a j by j diagonal matrix since the transfer matrix is

not associated with a change in direction.

ω′bjk is the modified solid angle (as shown in Figure 5.8), i.e. the proportion

of photons from voxel b that will pass through voxel k as a result of their

relative locations

S ′kS
′
kS
′
k is the probability of a photon scattering in voxel k from direction j (de-

fined by the positions of b and k) to direction j′ (defined by the positions

of k and d); this is a k by k block diagonal matrix where each block has j

by j′ elements.

N ′jj′ is the probability of scattering from direction j to j′ based on simu-

lation results for near-neighbours (as shown in Figure 5.7) and the Klein-

126



Nishina probability for distant voxels.

SbSbSb is the probability of scattering occurring in the same voxel as the emis-

sion; this is a b by k block diagonal matrix where each block has j by j′

elements.

A′dA
′
dA
′
d is the attenuated transfer matrix giving the probability of a photon

scattered in voxel k reaching detector element d, including the distance

dependent resolution of the detector; this is a block matrix with k by d

blocks, each block is a j′ by j′ diagonal matrix since the transfer matrix is

not associated with a change in direction.

c′kj′d gives contribution of geometric effects to the probability of a photon

from voxel k, travelling in direction j′, reaching detector d including the

distance dependent collimator response.

5.5 Conclusion

The 2-dimensional scatter model presented in Chapter 3 has been successfully

extended to 3 dimensions. Improvements to the model have been made by mod-

elling the scattering of photons in voxels close to the point of emission using Monte

Carlo simulation. The use of resolution modelling has also been investigated and

found to improve the accuracy of the estimation of both scattered and primary

photons. However, it has been found that including the effects of increased pho-

ton attenuation after the point of scatter and increased photon absorption in

bone (as compared to soft tissue) does not offer any significant improvement in

accuracy of the scatter model compared to Monte Carlo simulation.
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6 Reconstruction in 3 Dimensions

In this chapter the improved 3-dimensional scatter model derived in Chapter 5 is

used to test the reconstruction algorithm developed in Chapter 4 in 3 dimensions

and to investigate the importance of including resolution effects in all parts of the

reconstruction algorithm. The use of ordered subsets or a reduced matrix size

for the attenuation map reconstruction are considered as possible techniques for

reducing the time taken to perform the reconstruction.

6.1 Theory

6.1.1 One Step Late Assumption

In Section 4.1 a one-step late approximation to the gradient of the likelihood

function was used in order to improve calculation times. This approximation

assumes that the effect of changes to the attenuation before and after the point

of scatter can be considered to be small compared to the effect of changes at the

point of scatter. The validity of this assumption in 3 dimensions has been tested

by calculating the change in likelihood between two attenuation maps (given the

true activity distribution) when the attenuation is set to be equal to the correct

value for different parts of the sinogram estimation. Three estimated scatter

sinograms were calculated, using the estimated value of the attenuation map

prior to the point of scatter, at the point of scatter or after the point of scatter,

the true attenuation was used at all other points for each sinogram estimation.

The relative likelihood of each sinogram was then calculated using Equation 6.1.

L(µµµ,λλλ) =

∑
d (−(sss(µµµ))d + (nnns)d · ln(sss(µµµ))d)∑
d (−(nnns)d + (nnns)d · ln(nnns)d)

(6.1)
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6.2 Method

6.2.1 Simulated Data

For each of the tests presented in this chapter projection data were simulated

using a rotation based forward projector (developed in MatLAB) which was per-

fectly matched to the projectors used in the reconstructions, with resolution mod-

elling equivalent to LEHR collimators. In each case a standard SPECT geometry

was used with projections every 4o over 360o and 323 or 643 detector elements per

projection. In each case the simulations were performed using a 3D realisation of

the male XCAT phantom without respiratory or cardiac motion with the arms

raised above the head.

The mean and root mean square error in the reconstructed activity distribution

and attenuation map were calculated for each reconstruction in order to compare

the results of the different reconstructions.

6.2.2 Use of Polar Plots

The use of polar plots to represent the activity distribution through the my-

ocardium on a single image has been proposed by Garcia et al.. (1985). In such a

representation slices of the myocardium from the apex to the base are displayed

as concentric rings on a polar plot with the apex appearing at the centre of the

image and the base as the outermost circle. In this work code has been devel-

oped which creates polar plots for a given image by first rotating it such that

slices through the volume correspond to the short axis slices and then extracting

slices containing part of the myocardium; for reconstructions using the XCAT

phantom the rotation angles and slices required were determined from the true

XCAT phantom. A mask was then applied to the image so that voxels which

did not correspond to part of the myocardium were set to zero; the mask for

reconstructions of the XCAT phantom was determined from the true phantom

and with the use of a threshold in other cases.

The centre of each short axis slice was determined automatically from the reorien-

tated images such that there was an equal number of counts in each quadrant of

the image. Each short axis image was then radially divided into 36 segments and
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the total counts in each segment calculated. The ring in the resulting polar plot

was also divided into 36 segments with each segment being assigned the value of

the total counts in the corresponding short axis slice segment.

In order to compare the relative activity reconstructed by different methods,

and hence to aid the identification of perfusion defects, each image set was re-

orientated and masked to give the short axis views of the myocardium without

extra-cardiac activity. These sets of short axis images were then scaled to have

the same mean value as the reference image (e.g. reconstruction with perfect at-

tenuation correction) and a voxel by voxel subtraction performed. The difference

image was then used to calculate a polar plot of the scaled differences between

the two images in order to identify local variation in the two estimated activ-

ity distributions. A positive value indicates that the a technique overestimates

the activity in that segment compared to reconstruction with exact attenuation

correction. The opposite applies for negative values.

6.2.3 Effect of Resolution Modelling

In Section 5.1.3 the use of resolution modelling to improve the accuracy of esti-

mation of forward projection of photons from the point of emission to the point

of detection, and hence to improve the accuracy of the reconstructed activity

distribution, was discussed. Since the detection process is the same for primary

and scattered photons the same resolution model could be used in the reconstruc-

tion of the attenuation map as in the reconstruction of the activity distribution.

However, since the attenuation map is unlikely to require the same level of de-

tail as the activity distribution it is possible that the inclusion of the resolution

model will not improve the reconstruction of the attenuation map or that the

the model may be able to be omitted from either the MLAA or SMLGA steps of

the attenuation map reconstruction. This would have the potential to reduce the

time taken to perform the attenuation map estimation step of the reconstruction

algorithm.

In order to assess whether it is necessary to include a model of the collima-

tor response in the reconstruction of the attenuation map, reconstructions were

performed which included the resolution model in the activity distribution re-

construction (MLEM) only, in the activity reconstruction and either the MLAA

step or the SMLGA step of the attenuation reconstruction and finally in all parts
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of reconstruction. In each case the resolution model was included only in the

forward projection part of the reconstruction.

6.2.4 Improving Calculation Time

In order to reduce the total time taken for the solution to converge, two possible

techniques for reducing the amount of data used in each iteration have been

considered.

6.2.4.1 Ordered Subsets

The use of ordered subset (OS) algorithms has been shown to significantly reduce

image reconstruction times for activity distributions (Hudson & Larkin 1994)

and transmission tomography (Erdogan & Fessler 1999, Beekman & Kamphuis

2001). Ordered subset methods group the projection data which is to be used to

reconstruct the image into blocks (or subsets). Each subset is then used in turn

to perform a sub-iteration of the reconstruction in the same way as the full data

would be used in a standard iteration. Each subset is used in turn and one full

iteration is defined to be a single pass through all the subsets.

The order in which the projections are processed in a ordered subset algorithm

may be arbitrary but, as Hudson & Larkin (1994) note, it may be advantageous to

select the order of the subsets such that the maximum amount of new information

is introduced by each subsequent projection. In the work presented here the

projections in each subset have been chosen such that there is maximal angular

separation between the projections within each subset; i.e. for s subsets, subset

1 contains projections 1, (s+ 1), (2s+ 1), (3s+ 1)..., (ns+ 1), subset 2 contains

projections 2, (s+ 2), (2s+ 2), (3s+ 2)..., (ns+ 2) etc.

The effect of using 2, 5, 10, 15 or 45 subsets has been compared to reconstruction

without the use of subsets in order to assess the effect of both the quality of the

reconstructed images and the time taken per iteration. The same subsets were

used in all parts of each reconstruction.
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6.2.4.2 Reduced Matrix size

The attenuation map created during the reconstruction process is used only for

attenuation correction (and potentially for scatter estimation) and so fine details

within the attenuation do not necessarily need to be recovered by the reconstruc-

tion process. Hence, it may be sufficient to reconstruct the attenuation map on

a coarser matrix than that which is used for the activity distribution. In order

to investigate this a reconstruction which uses the standard 643 matrix size for

all iterations has been compared to those which use a coarse 323 matrix for all

iterations or a 323 matrix for the initial iterations and a 643 matrix for the final

1, 2, 5 or 10 iterations of the attenuation map reconstruction. A 643 matrix was

used for all iterations of the activity distribution and a total of 10 iterations with

10 subsets were performed in each case.

6.3 Results

6.3.1 One Step Late Assumption

The relative likelihoods of scatter sinograms with estimated attenuation in each

part of the estimated sinogram are shown in Table 6.1. These results show that

if the scatter is estimated only at locations prior to the point of scatter then

the likelihood is very close to the maximum. Hence, changes to the attenuation

prior to the point of scatter will not have a significant effect on the likelihood.

However, the effect of estimating the attenuation after the point of scatter is

similar to estimation at the point of scatter and so this is also important to the

calculation of the gradient of the likelihood. The scatter update algorithm has

therefore been modified to include the effect of changing the attenuation after the

point of scatter as shown in Equation 6.4.

∂Ls(µµµ)

∂µµµ
=
∑
d

(
−∂(sss(µµµ))d

∂µµµ
+

(nnns)d
(sss(µµµ))d

· ∂(sss(µµµ))d
∂µµµ

)
(6.2)
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Location of estimated scatter Relative Likelihood
Prior to scatter point 0.999

At scatter point 0.816
After scatter point 0.822

Table 6.1: Relative likelihood of scatter sinograms estimated with the true atten-
uation at different points.

∂(sss(µµµ))d
∂µi

≈ ∂AdAdAd(µµµ)

∂µi
SkSkSk(µµµ)AkAkAk(µµµ)φφφ+AdAdAd(µµµ)

∂SkSkSk(µµµ)

∂µi
AkAkAk(µµµ)φφφ

+SbSbSb(µµµ)φφφ+
∂SbSbSb(µµµ)

∂µi
AdAdAd(µµµ)

∂AdAdAd(µµµ)

∂µi
φφφ (6.3)
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∑
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∑
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6.3.2 Effect of Resolution Modelling

The results of the 3-dimensional reconstruction of data generated using the rota-

tion based projector with resolution modelling of LEHR collimators, for the 323

male XCAT phantom, are shown in Figure 6.1. The images are from a central

slice through the phantom and demonstrate that the inclusion of the resolution

model in the MLAA step has the most significant effect on the accuracy of the

reconstruction. When the resolution model is included in all parts of the re-

construction the cross-talk between the emission and attenuation is reduced and

some contrast can be seen between the lung and soft tissue regions.
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(a) (b)

(c) (d)

(e)

Figure 6.1: Reconstructed attenuation maps for the central slice of a 3D recon-
struction using a 360o imaging geometry; (a) true phantom attenuation map (b)
with resolution modelling for emission only, (c) with resolution modelling for
emission and MLAA reconstruction steps, (d) with resolution modelling for emis-
sion and SMLGA reconstruction steps and, (e) with resolution modelling in all
parts on the reconstruction
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(a) (b)

(c)

Figure 6.2: Reconstructed activity distribution for the central slice of a 3D re-
construction using a 360o imaging geometry; (a) exact attenuation correction, (b)
scatter based attenuation correction, (c) without attenuation correction

Figure 6.2 shows the results of the reconstruction with scatter based attenuation

correction for a central slice through the 643 male XCAT phantom compared to

reconstruction with perfect attenuation correction and without attenuation cor-

rection. Figure 6.3 shows polar plots of the activity distribution in the heart

region for each reconstruction technique. The difference between the activity

distribution reconstructed in the area of the heart with perfect attenuation cor-

rection and that reconstructed using either scatter based attenuation correction

or without attenuation correction are shown in Figure 6.4.
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(a) (b)

(c)

Figure 6.3: Polar plot of reconstructed activity distribution in the region of the
heart of a 3D reconstruction using a 360o imaging geometry; (a) exact attenua-
tion correction, (b) scatter based attenuation correction, (c) without attenuation
correction

6.3.3 Improving Calculation Time

6.3.3.1 Ordered Subsets

The time taken to perform each sub-iteration of the reconstruction for different

numbers of subsets is shown in Table 6.2. The root mean square errors in the

attenuation map and activity distribution after each sub-iteration are shown in

Figures 6.5 and 6.6 respectively. The results show that a reduction in calculation

time can be achieved when using ordered subsets without compromising recon-

struction accuracy, provided that enough projections are included in each subset.

When very large numbers of subsets are used there is not enough information

included within each subset to enable a good update to the current estimate of
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(a) (b)

Figure 6.4: Polar plot of error in reconstructed activity distribution in the region
of the heart of a 3D reconstruction using a 360o imaging geometry compared to
reconstruction with exact attenuation correction; (a) scatter based attenuation
correction and (b) without attenuation correction

Number of Subsets Time per sub-iteration
(min)

1 23
2 19
5 17
10 16
15 15
45 13

Table 6.2: Difference in calculation time when using different numbers of subsets

either the attenuation map or the activity distribution to be made.

6.3.3.2 Reduced Matrix size

The changes in the root mean square error of the reconstructed attenuation map

and activity distribution with iteration number are shown in Figures 6.7 and

6.8 respectively, when a reduced matrix size is used for different numbers of

iterations. The results show use of the reduced matrix size beyond the very early

iterations results in a poorer activity distribution reconstruction than the use of

the full 643 matrix size. However the use of the reduced matrix size for the first

iteration (with 10 subsets) enables the activity distribution to reach a slightly

better solution than the use of a 643 matrix size throughout. This is likely to be

due to improved convergence of the central areas of regions within the attenuation
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Figure 6.5: Variation in root mean square error, of the reconstructed attenuation
map, with sub-iteration number for reconstructions using different numbers of
subsets.

Figure 6.6: Variation in root mean square error, of the reconstructed activity dis-
tribution, with sub-iteration number for reconstructions using different numbers
of subsets.

map for this early iteration preventing the activity distribution tending towards

a less accurate local minima.

6.4 Discussion

The suitability of the one-step late approximation, which was used in the 2-

dimensional SMLGA algorithm (Chapter 3), in the 3-dimensional situation was
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Figure 6.7: Variation in root mean square error, of the reconstructed attenuation
map, with sub-iteration number for reconstructions using a coarse (323) matrix
for different numbers of iterations.

Figure 6.8: Variation in root mean square error, of the reconstructed activity
distribution, with sub-iteration number for reconstructions using a coarse (323)
matrix for different numbers of iterations.

assessed by considering the likelihood of the estimated scatter projection data

where exact and approximate attenuation maps were used in different parts of

the scatter projection data estimation. It has been found that the use of an ap-

proximate attenuation map prior to the point of scatter, in the scatter estimation,

does not significantly affect the likelihood of the resulting scatter projection data

when compared to the use of the exact attenuation map. However, the use of an

approximate attenuation map at either the point of scatter or after the point of

scatter does significantly affect the likelihood of the estimated scatter projection
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data. As a result the one step late approximation is not appropriate in 3 dimen-

sions and the effect of changes to the attenuation after the point of scatter must

be included in the calculation of the gradient (Equation 6.3). This ‘half step’ late

approach has been used in all subsequent reconstructions.

The inclusion of the detector characteristics (resolution modelling) in the recon-

struction of activity distributions has been shown to significantly improve the

resolution of the resulting images (Zeng & GuIlberg 1992, Brix et al.. 1997).

However, the use of similar characteristics in the reconstruction of an attenua-

tion map, used only for attenuation correction, has not been presented in the

literature. In this chapter the use of resolution modelling in both the MLAA

and SMLGA parts of the attenuation step of the reconstruction has been con-

sidered. The results demonstrate that, unless the detector characteristics used

in the MLAA step are well matched to the measured projection data, the recon-

struction of the attenuation map reproduces the prominent features seen in the

activity distribution rather than the true attenuation map. The inclusion of the

resolution model in the SMLGA part of the algorithm appears to be less critical

to the reconstruction, however, it does allow the cross-talk between the activity

and attenuation reconstructions to be reduced. The resolution model has, there-

fore been included in all parts of the reconstruction algorithm for all subsequent

tests.

Comparison of reconstructions using the scatter based technique for estimating

the attenuation map with reconstructions without attenuation correction and

with perfect attenuation correction demonstrate that this method of attenuation

correction offers an improvement over reconstruction without attenuation correc-

tion. However, the large number of unknown parameters mean that there are

many possible solutions and so the likelihood of the reconstruction converges to

a local minima rather than finding the global minimum. Further work is required

to investigate methods of reducing the sensitivity of the algorithm to local min-

ima. Chapter 7 considers the use of constraints to limit the number of possible

solutions and hence aims to reduce the number of possible local minima.

The use of ordered subsets was found to reduce calculation times without com-

promising the quality of the reconstructed images. However, it is noted that the

reduction in calculation time is much smaller than that seen in conventional OS

algorithms. This is because in the scatter estimation the majority of the calcula-

tion time is taken to calculate the number of photons reaching each scatter point.
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This part of the calculation does not depend on the number of measurement

positions and hence is not affected by the use of ordered subsets.

As Hudson & Larkin (1994) reported s iterations of the standard algorithm pro-

vide similar results to one iteration of the OS algorithm with s subsets. They

also noted that with only 2 projections per subset slightly worse results were

found than when larger numbers of subsets were retained in each subset. Here

we have found that the results obtained when using just 2 projections were sig-

nificantly worse than when using larger numbers of projections. The solution

appears to oscillate between a number of different images after each sub-iteration

and hence is much slower to converge towards the optimal solution. Hudson &

Larkin (1994) observed a similar effect and suggest that in all cases the algorithm

appears to cycle between different limit images but that these images are similar

and when larger numbers of projections are included in each subset they become

indistinguishable.

When estimating an attenuation map that is to be used for attenuation correction

only, it is not necessarily essential to recreate all the details of the distribution.

The use of a coarser matrix size for the estimation of the attenuation map was,

therefore, considered. The results showed that the use of a coarse matrix resulted

in a poorer quality activity distribution reconstruction when used for more than

a few initial iterations.

6.5 Conclusion

The use of the SMLGA-MLAA algorithm to estimate an attenuation map without

measured transmission data has been found to improve the quality of reconstruc-

tion of an activity distribution compared to reconstruction without attenuation

correction. Further work is required to consider possible methods for improv-

ing the estimation of the attenuation map and hence the quality of the activity

distribution reconstruction.

It has been demonstrated that the total reconstruction time can be reduced, with-

out compromising image quality, by using ordered subsets for both the activity

and attenuation map reconstruction and by using a coarse matrix for the initial

iterations of the attenuation map reconstruction.
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7 Use of Constraints for

Improved Attenuation Map

Reconstruction

In this chapter the use of a piecewise constant model for the attenuation map

is considered, in place of the initial voxel by voxel reconstruction, as a possible

method of enabling a more accurate and stable reconstruction of the attenuation

map and activity distribution. The effect of the choice of attenuation map used

to initialise the reconstruction is also investigated.

Alternative constraints to limit the values in some regions of the voxel by voxel

reconstruction method are also considered in this chapter.

7.1 Theory

7.1.1 Piecewise Constant Reconstruction

The problem of reconstructing an attenuation map can be considered as the

recovery of a piecewise constant function. The function may be considered to

have four levels, corresponding to air, soft tissue, lung tissue and bone. The

attenuation coefficients for air and soft tissue are well defined and so do not need

to be estimated. For improved accuracy, however, the values for the lung and

bone regions should be recovered in the reconstruction. The use of level sets

offers a possible method of recovering the attenuation map as a piecewise linear

function. The use of level sets to recover piecewise linear functions was originally

proposed by Osher & Sethian (1988) for tracing interfaces between fluid flow
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phases but has also been used to identify the location of discontinuities in digital

image functions (Berger 2001, Dorn et al.. 2000, Dorn & Lesselier 2006, Litman

et al.. 1998, Vese & Chan 2002).

In the simplest case the image to be recovered can be considered to comprise two

regions with attenuation coefficients µ0 and µ1. The level set function ρρρ is defined

to be positive inside the region and negative outside such that the attenuation

(µµµ) is given by Equation 7.1 (van den Doel et al.. 2010).

µµµ(ρρρ) = µ0(1−H(ρρρ)) + µ1H(ρρρ) (7.1)

H(ρρρ) is the Heaviside function defined by Equation 7.2

H(ρρρ) =

{
1, ρρρ > 0

0, ρρρ ≤ 0
(7.2)

If a larger number of regions are required more level set functions can be defined;

n level set functions will allow up to 2n regions. In the case of the attenuation map

reconstruction, 4 regions are required and so two level set functions (ρρρ1 and ρρρ2)

are required; the attenuation is then given by Equation 7.3 (Chan & Tai 2003).

µµµ = µ0(1−H(ρρρ1))(1−H(ρρρ2)) + µ1H(ρρρ1)H(ρρρ2)

+ µ2H(ρρρ1)(1−H(ρρρ2)) + µ3(1−H(ρρρ1))H(ρρρ2) (7.3)

In the case of the attenuation map the region where µµµ = µ0 is known to be air.

Hence, µ0 can be set equal to zero and the calculation of µµµ simplifies to Equation

7.4.

µµµ = µ1H(ρρρ1)H(ρρρ2) + µ2H(ρρρ1)(1−H(ρρρ2)) + µ3(1−H(ρρρ1))H(ρρρ2) (7.4)

The level set definition of µµµ can then be substituted into the calculation of the

scatter and emission models (sss(µµµ) and nnn∗(µµµ) respectively) and the likelihood of

µµµ(ρρρn) given the current estimate of the activity distribution is given by Equation

7.5.

L[µµµ(ρρρn)] = LS[µµµ(ρρρn)] + LN [µµµ(ρρρn)] (7.5)

Since the Heaviside function is discontinuous a continuous approximation must

be used in order to define the derivative. In this work the approximation given by
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Equation 7.6 has been used. The likelihood can then be minimised with respect

to the level set functions as shown in Equation 7.7 where the derivatives of LN

and Ls are calculated exactly as in Chapters 4 and 6 respectively.

H̃ =
1

1 + e−kρ
(7.6)

k defines how sharp the transition a ρ = 0 is.

∂L(µµµ)

∂ρρρn
=
∂LS(µµµ)

∂µµµ
· ∂µ

µµ

∂ρρρn
+
∂LN(µµµ)

∂µµµ
· ∂µ

µµ

∂ρρρn
(7.7)

The partial derivatives of µ with respect to ρρρn are given by Equation 7.8.

∂µ

∂ρρρ1

=
ke−kρρρ1

(1 + e−kρρρ1)

(
µ1H̃(ρρρ2) + µ2(1− H̃(ρρρ2))− µ3H̃(ρρρ2)

)
(7.8a)

∂µ

∂ρρρ2

=
ke−kρρρ2

(1 + e−kρρρ2)

(
µ1H̃(ρρρ1)− µ2H̃(ρρρ1) + µ3(1− H̃(ρρρ1))

)
(7.8b)

If any of the values µn are not known a-priori, as in the case of lung tissue, they

can be estimated by minimising with respect to µn (van den Doel et al.. 2010)

(Equation 7.9); the value of µn for the soft tissue region can be fixed since is

constant in all subjects.

∂L(µµµ)

∂µn
=
∂LS(µµµ)

∂µµµ
· ∂µ

µµ

∂µn
+
∂LN(µµµ)

∂µµµ
· ∂µ

µµ

∂µn
(7.9)

∂µµµ

∂µ1

= H̃(ρρρ1)H̃(ρρρ2) (7.10)

∂µµµ

∂µ2

= H̃(ρρρ1)
(

1− H̃(ρρρ2)
)

(7.11)

∂µµµ

∂µ3

=
(

1− H̃(ρρρ1)
)
H̃(ρρρ2) (7.12)

7.1.2 Fuzzy Cluster Segmentation

When using gradient ascent based iterative reconstruction algorithms it is possible

for the solution to converge towards a local minimum rather than the true global

minimum. As a result the solution obtained can depend on the initialisation of
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the reconstruction, with reconstructions that are initialised with images closer to

the true solution being more likely to converge to the true solution. In the case

of a joint activity distribution and attenuation map reconstruction algorithm

the activity distribution obtained by the first step of the reconstruction could

be used to provide information which enables a more accurate initialisation by

performing an automatic segmentation of the activity distribution to identify

different regions.

The use of a fuzzy cluster segmentation algorithm has been investigated for this

purpose. The use of fuzzy clusters has previously been used in Nuclear Medicine

imaging for segmentation of dynamic neuroreceptor imaging (Acton et al.. 1999)

and to improve the accuracy of attenuation correction in PET imaging with noisy

transmission scans (Zaidi et al.. 2002) and produces good results when used as an

automated tool for robustly segmenting noisy images. Fuzzy cluster segmentation

is an iterative process in which every voxel is assigned a membership probability

for each cluster, depending on the cluster’s central value. Such a technique is

well suited to the segmentation of nuclear medicine images because it allows for

uncertainty in voxel values as a result of image non-uniformities, noise and partial

volume effects.

A number of different fuzzy cluster algorithms have been developed which are

optimised for different problems including that of highly noisy data. The problem

presented here will include noise but not at very high levels and so the fuzzy C-

means (FCM) used by Zaidi et al.. (2002) has been used; this algorithm requires

the number of clusters to be set as an input parameter.

The FCM algorithm iteratively minimises the mean square Euclidean distance

between each data point (i.e. each voxel value within the image) and the centroid

values of the clusters in order to minimise the objective function JFCM given by

Equation 7.13 (Acton et al.. 1999) by determining the centroids of each cluster

and the membership grade for each voxel for each cluster. As the number of

clusters increases, the minimum of the objective function will be reduced up to

the limit where every voxel is assigned to a unique cluster. The “fuzzification”

parameter m (1 < m < ∞) defines how the system responds to noise and also

the certainty of the assignment for each voxel to a cluster.

JFCM =
1

2

C∑
i=1

v∑
j=1

Um
ij ‖λj − wi‖2 (7.13)

145



C is the number of clusters

v is the number of voxels in the image to be segmented

Uij is the membership grade for voxel j belonging to cluster i

m is the “fuzzification” parameter

λj is the activity in voxel j

wi is the centroid value for cluster i

Initially the cluster centroid values are set to random values and the membership

grade matrix (UUU) is calculated for these starting values using Equation 7.14.

Uij =
( 1
d2ij

)1/(m−1)∑C
i=1( 1

d2ij
)1/(m−1)

(7.14)

dij =
√

(λj − wi)2 (7.15)

The membership grade matrix is then used to determine the updated cluster

centroid values using Equation 7.16.

wi =

∑v
j=1(Uij)

mλj∑v
j=1(Uij)

m
(7.16)

The iterative process is stopped once the maximum change in the membership

grades Uij between consecutive iterations is less than the iteration tolerance δ.

The final membership probability for each voxel to each cluster is then calculated.

A threshold for cluster membership pc is then applied (i.e. the probability of a

voxel belonging to a cluster is lower than the required certainty) and each voxel

is assigned to the cluster for which it has the highest membership probability.

Using a value of zero for pc will ensure that all voxels are assigned to a cluster

even if they are outliers while as the value of pc increases the number of voxels

which are not assigned to any cluster will increase.

7.2 Method

For each of the tests presented in the this chapter the projection data were sim-

ulated using a rotation based forward projector as described in Section 6.2.1. A

323 matrix size was used for the tests to investigate the use of Level Sets and for

the voxel by voxel reconstructions that were compared to the Level Set recon-
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structions. The use of constraints within the voxel by voxel reconstruction was

tested using the standard 643 matrix size.

7.2.1 Piecewise Constant Reconstruction

The use of level-sets to improve the accuracy of the reconstruction of the atten-

uation map was initially tested with just soft tissue and lung regions (since the

amount of bone in the thorax is small). The values of attenuation of soft tissue

and lung were fixed at the known values for the XCAT phantom used. In order to

ensure that the resolution of the attenuation map was matched to the resolution

of the activity distribution a value of k = 30 was used in the approximation of

the Heaviside function (Equation 7.6). The use of this value of k also ensured

that the transitions in the attenuation map were smooth enough to be observed

within one or more voxels of the attenuation map (and not between voxels) as

this allowed the algorithm to detect (and hence modify) the transitions between

regions more easily.

The effect of the choice of attenuation map used to initialise the reconstruction

procedure has been tested for four different attenuation maps. The simplest

initialisation was the same for every slice in the image volume with a uniform

cylinder defining the body outline containing two cylinders to approximate the

lungs. The most accurate initialisation determined the body and lung boundaries

from the true attenuation map and so exactly defined the lung and body regions.

Two initialisations using the fuzzy cluster segmentation technique described in

Section 7.1.2 were then tested. The central slice of the resulting attenuation maps

are shown in Figure 7.1.

The first fuzzy cluster segmentation was carried out using an initial reconstruction

of the activity distribution estimated from five iterations of the MLEM algorithm

with an assumption of zero attenuation. The segmentation was performed setting

the “fuzzification” parameter to 3 and the iteration tolerance to 0.001 with 6

clusters; the membership probability for each cluster was set to 0. The two

clusters with the lowest centroid value were deemed to be the background region

and the low activity region at the boundary of the body outline and so both were

set to the background region of the attenuation map while all other clusters were

defined to fall within the body outline. The contrast between the lung and soft

tissue in the reconstruction of the activity distribution was not sufficient to allow
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(a) (b)

(c) (d)

Figure 7.1: Attenuation maps used to initialise reconstruction algorithm; (a) ex-
act segmentation of attenuation map, (b) estimated from segmentation of activity
reconstruction, (c) estimated from segmentation of scatter reconstruction and,(d)
unguided estimate

direct segmentation of the lungs and so the lungs were initially estimated as two

uniform cylinders positioned either side of the midline. However, regions of high

activity are not expected within the lungs in myocardial perfusion imaging and

so the lung outline was improved by removing voxels which had been assigned

to high activity clusters from the lung region. An improved segmentation was

performed using a reconstruction of the scatter sinogram after five iterations of the

MLEM algorithm. The image was segmented with the “fuzzification” parameter

set to 3 and the iteration tolerance to 0.001 with 10 clusters; the membership

probability for each cluster was set to 0. Each cluster was manually assigned to

be soft tissue, lung or background.

The Level Sets algorithm was then tested with different number of degrees of free-
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(a) (b)

Figure 7.2: Attenuation maps used to initialise reconstruction algorithm; (a)
regions of lung and soft tissue only and (b) with lung, soft tissue and bone regions.

dom compared to estimation with just soft tissue and lung regions with known

attenuation coefficients. Firstly the value of attenuation in lung was estimated us-

ing a starting value of 0.05voxel−1 (compared to the true value of 0.054voxel−1).

A region corresponding to bone was then added to the reconstruction, first with

fixed attenuation in all regions (0.27voxel−1 in bone) and then estimating the

attenuation in lung and bone (starting values 0.05voxel−1 and 0.26voxel−1, re-

spectively). The attenuation maps used to initialise the reconstructions with and

without regions of bone are shown in Figure 7.2.

7.2.2 Constrained Voxel by Voxel Reconstruction

In Chapter 4 it is shown that when considering a single two dimensional slice

of a phantom it is possible to accurately reconstruct an attenuation map, and

hence the activity distribution, using the SMLGA-MLAA technique. However,

in Chapter 6 it was found that in 3-dimensions the reconstruction of the attenu-

ation map is much poorer with some cross-talk between the lung and soft tissue

regions. These results suggest that if the estimation of the attenuation map could

be restricted to a smaller volume it may be possible to produce a more accurate

reconstruction. In order to do this the attenuation in some regions of the recon-

struction has been fixed to a value which can be assumed with a high degree of

confidence.

The first region considered is the abdomen. It is known that the apex of the
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heart is contiguous with the diaphragm. A reconstruction has, therefore, been

performed with all attenuation below the level of the heart and within in the body

outline fixed at the value of soft tissue. This is a reasonable assumption since the

only bone within the abdomen is the spine which is distant from the region of

the heart and therefore unlikely to significantly affect the reconstruction in the

cardiac region. In each iteration of the algorithm an update to the attenuation

in the abdominal region is calculated in order to allow the body outline to be

modified.

A second reconstruction was performed which not only fixed the attenuation in

the abdominal region but also aimed to reduce the effect of cross-talk between

the attenuation and activity reconstructions in the cardiac region by fixing the

attenuation in regions of high activity equal to soft tissue. This is a reasonable

assumption since the nature of the pharmaceuticals used in myocardial perfusion

imaging is that they are only taken up in soft tissues. Regions of high activity

were defined to be those with activity above 55% of the maximum value in the

reconstructed activity distribution.

7.3 Results

7.3.1 Piecewise Constant Reconstruction

7.3.1.1 Effect of Attenuation Map Initialisation

The central slice of the attenuation maps reconstructed after initialisation with

the maps shown in Figure 7.1 are shown in Figure 7.3. The resulting errors in

the region of the heart (as compared to reconstruction with exact attenuation

correction) are demonstrated by the polar plots in Figure 7.4. The mean and

root mean square errors for each reconstruction compared to reconstruction with

exact attenuation correction are shown in Table 7.1.

The results show that, as expected, using an exact segmentation to initialise the

attenuation map reconstruction enables a significant improvement in the accu-

racy of the final reconstructed image. The use of an attenuation map initialised

from a fuzzy cluster segmentation of the initial activity distribution reconstruc-

tion improves the accuracy of the reconstruction of both the activity distribution
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(a) (b)

(c) (d)

Figure 7.3: Attenuation maps reconstructed after initialisation with (a) exact
segmentation of attenuation map, (b) estimated from segmentation of activity
reconstruction, (c) estimated from segmentation of scatter reconstruction and,
(d) unguided estimate

and attenuation map in the region of the myocardium. This results in a reduction

in the artefact seen in the infero-lateral region of the reconstruction of the my-

ocardium after initialisation with the unguided estimate of the attenuation map.

The results are further improved by use of an improved segmentation based on

the reconstruction of acquired scatter data.

The choice of attenuation map used to initialise the reconstruction has a large

effect on the resulting reconstruction which indicates that the algorithm is not

always able to find the global maximum for the likelihood. The joint likelihood

of the activity distribution and attenuation map for each reconstruction has been

calculated, relative to the maximum likelihood, using Equation 7.17 and com-

pared to the likelihood of each starting condition. The results are shown in Table
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(a) (b)

(c) (d)

Figure 7.4: Polar plots showing the relative difference between the reconstructed
activity distributions for different estimated attenuation compared to exact atten-
uation correction after initialisation with (a) exact segmentation of attenuation
map, (b) estimated from segmentation of activity reconstruction, (c) estimated
from segmentation of scatter reconstruction and, (d) unguided estimate

7.2. These results show that the gradient of the likelihood is very shallow with

multiple combinations of attenuation map and activity distribution having very

similar likelihood. This suggests that a likelihood based algorithm may not be

able to find the true solution without the addition of some extra constraints.

L(µµµ,λλλ) =

∑
d (−(nnn(λλλ))d + (nnnp)d · ln(nnn(λλλ))d) +

∑
d (−(sss(µµµ))d + (nnns)d · ln(sss(µµµ))d)∑

d (−(nnnp))d + (nnnp)d · ln(nnnp)d) +
∑

d (−(nnns)d + (nnns)d · ln(nnns)d)
(7.17)
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Activity Distribution
Image Region

Mean RMSE Mean RMSE
Exact Segmentation -4.6209 11.2708 -3.1827 4.8391

Activity Segmentation -4.5789 12.5074 -3.3074 10.9809
Scatter Segmentation -3.7804 13.8291 -0.5748 6.9910
Unguided Estimate -7.8281 21.9468 -10.9827 17.3257

Attenuation Map
Image Region

Mean RMSE Mean RMSE
Exact Segmentation -0.0066 0.0321 -0.0026 0.0065

Activity Segmentation -0.0076 0.0364 -0.0055 0.0178
Scatter Segmentation -0.0052 0.0387 -0.0010 0.0060
Unguided Estimate -0.0105 0.0441 -0.0160 0.0355

Table 7.1: Mean error and root mean square error (RMSE) in reconstructions
using different attenuation map initialisations compared to reconstruction with
exact attenuation correction, for the whole image volume and for a region of
interest centred over the heart.

Relative Likelihood
Initial Final

Exact Segmentation 0.90345 0.99894
Activity Segmentation 0.94512 0.99894
Scatter Segmentation 0.91665 0.99894
Unguided Estimate 0.90778 0.99894

Table 7.2: Relative likelihood of activity distribution and attenuation maps for
each attenuation map initialisation at initialisation and after reconstruction.

7.3.1.2 Effect of Number of Degrees of Freedom

Figure 7.5 shows the central slice of the attenuation maps reconstructed using

a level set piecewise constant technique with different degrees of freedom; the

attenuation values in each region are shown in Table 7.3. The results demon-

strate that the estimation of the attenuation coefficient in each region as well as

the region boundaries does not significantly affect the reconstructed attenuation

maps. However the inclusion of a region corresponding to bone, in addition to

the lung and soft tissue regions, does not enable recovery of the bone regions and

is unstable in these areas. The best level set method for determining the different

regions of the attenuation map, therefore, has been determined to be that which

estimates the attenuation coefficient in lung and which includes only lung and
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Attenuation Coefficient
(voxel−1)

Soft Lung Bone
Tissue

True Attenuation Map 0.187 0.054 0.27
All values fixed (no bone) 0.187 (f) 0.054 (f) 0 (f)

All values fixed (with bone) 0.187 (f) 0.054 (f) 0.27 (f)
Estimated lung only 0.187 (f) 0.053 (e) 0 (f)

Estimated lung, fixed bone 0.187 (f) 0.057 (e) 0.27 (f)
Estimated lung and bone 0.187 (f) 0.056 (e) 0.026 (e)

Table 7.3: Attenuation coefficients used and estimated during Level Sets recon-
struction. Values which are fixed prior to reconstruction are indicated (f) and
those estimated during the reconstruction process are indicated (e).

soft tissue regions.

7.3.1.3 Comparison of Piecewise Constant Reconstruction to Voxel

by Voxel Reconstruction

The mean and root mean square errors of reconstructions performed using the

voxel by voxel and level set piecewise constant methods of estimating the at-

tenuation map, compared to reconstruction using the exact attenuation map (as

defined in section 4.2), are shown in Table 7.4 for the whole images and for a

region of interest centred over the heart. The mean and root mean square errors

of the estimation of the attenuation map using the level set technique are found

to be higher when considering the full image volume but are reduced in the region

of interest centred over the heart.

The central transaxial slice through the heart activity distributions recovered us-

ing the voxel by voxel and level set piecewise constant methods of estimating

the attenuation map are shown in Figure 7.6, compared to reconstruction with

exact attenuation correction and without attenuation correction. The differences

between this slice of the activity distributions reconstructed with each estimated

attenuation map compared to using exact attenuation correction are shown in

Figures 7.7. The same slice of the attenuation maps reconstructed by each tech-

nique are shown in Figure 7.8 and the differences between these and the true

attenuation map are shown in Figure 7.9. The accuracy of the reconstructed

activity distribution through the whole myocardium is shown using polar plots of
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(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Attenuation maps reconstructed using Level Sets piecewise constant
technique for the central slice of a 3D reconstruction using a 360o imaging geome-
try; (a) true phantom attenuation map (b) with fixed lung attenuation coefficient
and no bone, (c) with estimated lung attenuation coefficient and no bone, (d)
with fixed lung and bone attenuation coefficient, (e) with estimated lung and
fixed bone attenuation coefficient, (e) with estimated lung and bone attenuation
coefficients.
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Activity Distribution
Image Region

Mean RMSE Mean RMSE
Voxel by Voxel reconstruction -3.9287 15.4861 -2.5544 8.1414

Level Set reconstruction -3.7776 13.8277 -0.5809 6.9836
No attenuation correction -34.3016 38.4769 -41.1806 17.3907

Attenuation Map
Image Region

Mean RMSE Mean RMSE
Voxel by Voxel reconstruction -0.0044 0.0381 -0.0027 0.0104

Level Set reconstruction -0.0052 0.0387 -0.0010 0.0060

Table 7.4: Mean error and root mean square error (RMSE) in reconstructions
using simulated data with a standard 360o imaging geometry with estimated
attenuation correction compared to reconstruction with exact attenuation cor-
rection, for the whole image volume and for a region of interest centred over the
heart.

the myocardial region (created as described in Section 6.2.2) for reconstructions

using voxel by voxel and level set reconstruction techniques, Figure 7.10. The

results for reconstructions using exact attenuation correction and without atten-

uation correction are also shown. The error in each region of the myocardium is

shown in Figure 7.11 for each reconstruction technique compared to reconstruc-

tion with exact attenuation correction.

These results demonstrate that in the region of the heart the use of the level set

technique to limit the range of possible attenuation values allows the contrast

between the lung and soft tissue attenuation to be recovered and prevents the

over-estimation of the attenuation seen close to the centre of the heart in the

voxel by voxel reconstruction. As a result the reconstructed activity distribution

has reduced errors, particularly in the regions of the inferior and infero-lateral

walls.

Figures 7.12 and 7.13 show the true and reconstructed attenuation distributions

close to the bottom and the top of the reconstructed volume respectively. The

results show that both the voxel by voxel and level set estimations correctly iden-

tify the body outline in the regions where it is convex and show some reduction in

attenuation in the region of bowel gas; in the case of the level set algorithm this

has been assigned as lung tissue. Close to the top of the reconstructed volume

the body outline becomes convex around the shoulders. The voxel by voxel esti-
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(a) (b)

(c) (d)

Figure 7.6: Central transaxial slice through reconstructed activity distributions
for a standard 360o imaging geometry; (a) voxel by voxel reconstruction, (b)
Level-Set reconstruction, (c) without attenuation correction, (d) exact attenua-
tion correction

mation fails to reconstruct the correct outline in this area and instead produces a

larger area of low attenuation to blur the convex surface. The Level Set algorithm

is able to partially recreate the convex surface but the sharpest internal corners

remain blurred.

7.3.2 Constrained Voxel by Voxel Reconstruction

Figure 7.14 shows the activity distributions reconstructed using the unconstrained

SMLGA-MLAA voxel by voxel reconstruction and for two constrained reconstruc-

tions, with fixed attenuation in the abdomen and with fixed attenuation in the

abdomen and in regions of high activity. The corresponding attenuation maps are
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(a) (b)

(c)

Figure 7.7: Difference between the reconstructed activity distributions for differ-
ent estimated attenuation compared to exact attenuation correction for a 360o

imaging geometry for the central transaxial slice; (a) voxel by voxel reconstruc-
tion, (b) Level-Set reconstruction, (c) without attenuation correction

shown in Figure 7.16 and the errors in the activity distributions and attenuation

maps, compared to reconstruction with perfect attenuation correction, are shown

in Figures 7.15 and 7.17 respectively. Polar plots of the activity distributions

and the relative error in the activity distribution for each reconstruction method

are shown in Figures 7.18 and 7.19. Table 7.5 shows the mean and root mean

square error for each reconstruction technique in the whole image and in a region

of interest centred over the heart.
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(a) (b)

(c)

Figure 7.8: Central transaxial slice from reconstructed attenuation maps for a
360o imaging geometry; (b) voxel by voxel reconstruction, (c) Level-Set recon-
struction, (c) true phantom attenuation map

7.4 Discussion

The different tissues within the human body are known to have only a limited

number of different attenuation values (namely soft tissue, lung and bone) with

only small variations in attenuation between different regions of similar type.

The attenuation map used for attenuation correction, therefore, does not need to

estimate the attenuation at every point within the body but only to assign each

point to the correct type and to estimate the attenuation of each tissue type. In

the work presented here a level sets technique has been used to produce this type

of piecewise constant reconstruction and to investigate the number of regions that

are required for reconstruction of a sufficiently accurate attenuation map of the

thorax for attenuation correction purposes. It has been shown that the use of
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(a) (b)

Figure 7.9: Difference between the reconstructed attenuation map and true at-
tenuation phantom for a 360o imaging geometry for the central transaxial slice;
(a) voxel by voxel reconstruction, (b) Level-Set reconstruction

Activity Distribution
Image Region

Mean RMSE Mean RMSE
Unconstrained Reconstruction 0.4125 1.8046 0.6502 1.8542
Fixed Abdominal Attenuation 0.2482 1.6850 -0.2302 1.3417

Fixed High Activity Attenuation 0.2794 1.6698 -0.1218 1.0040

Attenuation Map
Image Region

Mean RMSE Mean RMSE
Unconstrained Reconstruction 0.0037 0.0248 -0.0023 0.0060
Fixed Abdominal Attenuation 0.0018 0.0206 -0.0016 0.0061

Fixed High Activity Attenuation 0.0020 0.0206 -0.0014 0.0054

Table 7.5: Mean error and root mean square error (RMSE) in reconstructions
using attenuation maps estimated on a voxel by voxel basis without constraints,
with fixed attenuation in the abdominal region, and with fixed attenuation in the
abdominal region and regions of high activity.
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(a) (b)

(c) (d)

Figure 7.10: Polar plots of reconstructed activity distributions in the myocardium;
(a) exact attenuation correction (b) voxel by voxel reconstruction, (c) Level-Set
reconstruction, (d) without attenuation correction

the level sets technique is most reliable when only regions of soft tissue and lung

are included. When a region corresponding to bone is allowed the reconstruction

appears to become unstable in areas which correspond to bone and in some cases

these areas are assigned to lung tissue; they are assigned to soft tissue when a

bone region is not permitted. In the case where there is no bone but the value of

lung attenuation is estimated it has been found that the value of lung attenuation

can be recovered by the algorithm with reasonable accuracy.

The use of the level sets technique to produce a piecewise constant attenuation

map was found to result, globally, in larger errors than, the voxel by voxel recon-

struction, due to the fact that some regions within the reconstructed attenuation

map were assigned to the wrong tissue type. However, the errors in the region

of the myocardium were reduced. This is because the limited number of possi-
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(a) (b)

(c)

Figure 7.11: Polar plots showing the relative difference between the reconstructed
activity distributions for different estimated attenuation compared to exact atten-
uation correction; (a) voxel by voxel reconstruction, (b) Level-Set reconstruction,
(c) without attenuation correction

ble attenuation values enabled the algorithm to correctly recreate the contrast

between the soft tissue and lung, and also prevented the overestimation of the

attenuation that was observed close to the centre of the myocardium in the voxel

by voxel reconstruction. The level set algorithm was also able to more accurately

recreate the concave surfaces of the body close to the top of the reconstructed

volume.

However, when using a level sets technique the choice of attenuation map used

to initialise the reconstruction has been shown to be critical to the final solu-

tion. This is due to the large number of variables that the reconstruction aims

to recover which means that a large number of attenuation map and activity

distribution combinations have very similar likelihood. The level sets version of
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(a) (b)

(c)

Figure 7.12: Transaxial slice from close to the base of the reconstructed attenu-
ation maps for a 360o imaging geometry; (b) voxel by voxel reconstruction, (c)
Level-Set reconstruction, (c) true phantom attenuation map

the reconstruction algorithm only modifies the boundaries between the different

regions and so is very slow to change regions which are distant to the boundaries

in the initialisation image. As a result the reconstruction of the activity distri-

bution in these areas tends to converge towards a solution which best matches

the initial attenuation value. The maximum likelihood gradient ascent algorithm,

therefore, is not able to distinguish between this and the global maximum in the

likelihood and hence determine the best solution.

In order to reduce the dependence of the solution on the initialisation of the

attenuation map an alternative approach has been considered using a voxel by

voxel estimation of the attenuation map whilst limiting the possible values of the

attenuation in some regions.
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(a) (b)

(c)

Figure 7.13: Transaxial slice from close to the top of the reconstructed attenuation
maps for a 360o imaging geometry; (b) voxel by voxel reconstruction, (c) Level-Set
reconstruction, (c) true phantom attenuation map

When the reconstruction is performed without the use of additional constraints

the resulting attenuation map shows very little contrast between the different

regions of the phantom. This causes the attenuation in the lung to be over-

estimated and hence the activity distribution in the region of the heart is generally

over-estimated. When the attenuation in the region of the abdomen is fixed equal

to that of soft tissue the quality of the reconstruction of the attenuation map is

significantly improved with a clear difference in attenuation between the lungs

and soft tissue being observed. However, the attenuation in the region of the high

activity of the myocardium is under-estimated as a result of cross-talk between

the activity and attenuation map reconstructions. This is similar to the effect

demonstrated by Nuyts et al.. (1999) and Krol et al.. (2001) when using photopeak

data alone to perform a joint reconstruction of the attenuation map and activity
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(a) (b)

(c)

Figure 7.14: Central transaxial slice through reconstructed activity distributions
for a standard 360o imaging geometry; (a) without constraint, (b) fixed abdominal
attenuation, (c) fixed abdominal and high activity attenuation.

distribution of SPECT studies. The effect of this cross-talk has been reduced by

fixing the attenuation in regions of high activity to be equal to that of soft tissue.

In this case the reconstructed attenuation map demonstrates good reconstruction

of the body boundary and reasonable recovery of the contrast between the lungs

and soft tissue; however, the attenuation in the region of the mediastinum which

corresponds to the chamber the left ventricle of the heart is over-estimated.

The effect of the inaccuracies in the attenuation map is to over-estimate the

activity of the anterior wall, relative to the rest of the left ventricle, as this is

the region which is most affected by the overestimation of the lung attenuation.

The overestimation of the attenuation in the chamber of the heart would be

expected to have most effect on the septal and lateral walls of the heart, since the

photons detected from these areas will pass through the chamber of the heart on
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(a) (b)

(c)

Figure 7.15: Difference between the reconstructed activity distributions for dif-
ferent attenuation map estimation compared to exact attenuation correction for a
360o imaging geometry for the central transaxial slice; (a) without constraint, (b)
fixed abdominal attenuation, (c) fixed abdominal and high activity attenuation.

some of the sinogram projections. However the polar plots of the errors in these

walls suggest that the effect is not significant compared to the over-estimation of

attenuation in the lung regions.

7.5 Conclusion

The use of a level sets technique to limit the attenuation map to be piecewise

constant shows improved results in the region of the myocardium compared to

estimation on a voxel by voxel basis. The algorithm achieved the best results

when limited to regions of soft tissue and lung, and in this case was able to
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(a) (b)

(c)

Figure 7.16: Central transaxial slice through reconstructed attenuation map for
a standard 360o imaging geometry; (a) without constraint, (b) fixed abdominal
attenuation, (c) fixed abdominal and high activity attenuation.

accurately recover the value of attenuation in lung. However, a large number

of attenuation map and activity distribution combinations were found to have

a similar likelihood and so the reconstruction produced by the gradient ascent

algorithm was found to be highly dependent on the attenuation map used to

initialise the algorithm when using level sets.

An improved reconstruction was achieved when using a voxel by voxel reconstruc-

tion technique with additional constraints. It has been shown that, by fixing the

attenuation in the abdomen and the region of the heart to be equal to that of

soft tissue, the regions of the lung can be clearly distinguished from soft tissue

within the attenuation map and hence a more accurate activity distribution can

be recovered.
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(a) (b)

(c)

Figure 7.17: Difference between the reconstructed attenuation map and true
attenuation map for a 360o imaging geometry for the central transaxial slice; (a)
without constraint, (b) fixed abdominal attenuation, (c) fixed abdominal and
high activity attenuation.
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(a) (b)

(c)

Figure 7.18: Polar plots of reconstructed activity distributions in the myocardium;
(a) without constraint, (b) fixed abdominal attenuation, (c) fixed abdominal and
high activity attenuation.
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(a) (b)

(c)

Figure 7.19: Polar plots showing the relative difference between the reconstructed
activity distributions for different estimated attenuation compared to exact at-
tenuation correction; (a) without constraint, (b) fixed abdominal attenuation, (c)
fixed abdominal and high activity attenuation.
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8 Validation and Limitations

8.1 Method

8.1.1 Effect of Phantom on Reconstruction Accuracy

In order to test the robustness of the reconstruction algorithm developed in the

preceding chapters it has been tested with three variations of the XCAT phantom

(Segars et al.. 1999). The first phantom was a typical male phantom without res-

piratory or cardiac motion (as used in the preceding chapter). The second was a

female phantom with the same activity in each region as the male phantom. The

final phantom was a male phantom with increased activity in the lung region in

order to simulate reduced contrast in the activity between these two regions. Both

the female phantom and the phantom with increased lung activity included respi-

ratory and cardiac motion which results in blurred boundaries between different

tissue regions. The activity in each region of each phantom is shown in Table 8.1

and the central slice of each phantom’s activity distribution and attenuation map

are shown in Figures 8.1 and 8.2 respectively.

Region Male Female Low
Contrast

Left ventricle myocardium 55 55 55
Other myocardium 30 30 30
Lung 4 4 8
Soft Tissue 10 10 10
Blood 10 10 10
Liver 55 55 55

Table 8.1: Activity assigned to each region of the variations of the XCAT phan-
tom.
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(a) (b)

(c)

Figure 8.1: Activity distribution for the central slice of the XCAT phantom
(a)male phantom, (b) female phantom and (c) male phantom with increased
lung activity

Projection data were generated for each phantom using the rotation based pro-

jector developed in this work for primary photons and for photons scattered once

and detected in an energy widow of 80-126keV. Resolution effects were simulated

using the convolution technique described in Section 5.1.3 for a low energy high

resolution collimator. Perfect rejection of scattered photons from the photopeak

data was included and the scatter data contained only photons which had been

scattered once.

Each data set was reconstructed using the SMLGA-MLAA algorithm developed

in this work, estimating the attenuation map on a voxel by voxel basis. A initial

estimate of the activity distribution was made by performing five iterations of

the MLEM algorithm without attenuation correction. An initial estimate of the

attenuation map was determined by segmentation of the initial activity distribu-
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(a) (b)

(c)

Figure 8.2: Attenuation map for the central slice of the XCAT phantom (a)male
phantom, (b) female phantom and (c) male phantom with increased lung activity

tion (using a fuzzy cluster technique) to find the body outline; points within the

body outline were assigned the attenuation of soft tissue (0.15cm−1) and points

outside the body were assigned zero attenuation. Sub-iterations of the MLEM

algorithm (to estimate the activity distribution with fixed attenuation) were then

alternated with sub-iterations of the SMLGA-MLAA algorithm (to estimate the

attenuation map with fixed activity). 10 iterations were performed, each with 10

subsets. The first iteration used a reduced matrix size (323) for the estimation of

the attenuation map for all subsets; in all other iterations a matrix size of 643 was

used for both the activity and attenuation estimations. After each sub-iteration

of the attenuation map reconstruction, constraints were applied to limit the at-

tenuation in the abdominal region to be that of soft tissue inside the body outline

and zero outside it and to fix the attenuation in regions of high activity (greater

than 55% of the maximum counts per pixel) to be that of soft tissue.
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8.1.2 Estimation of Higher Order Scatter Events

In order for reconstruction of real data sets to be possible it is necessary to include

correction for photons that are scattered more than once (‘higher order’ scatter

events) and for primary photons that are detected in the scatter window. The

contribution of higher order scatter events will depend on the attenuation of the

object which the photons travel through and the energy of each photon after the

first scatter event. As a result the calculation of the exact distribution would

be extremely complex. Instead, a simple estimate of the higher order scatter,

using a blurred version of the first order scatter sinogram, which ignores the

influence of the attenuation map on the higher order scatter event distribution,

has been investigated. This is similar to the method proposed by Ollinger (1996)

for PET scatter correction. The complete scatter sinogram (sss∗(µµµ)) is then the

sum of the first order scatter sinogram (sss(µµµ)), the higher order scatter events

(hhh) and the primary photon sinogram multiplied by an appropriate scaling factor

(wp) depending on the number of primary photons detected in the given energy

window; Equation 8.1.

sss∗(µµµ) = sss(µµµ) + hhh+ wpnnn
p (8.1)

hhh ≈ wh (B ⊗ sss(µµµ)) (8.2)

B is a smoothing function

Four different approximations (given by Equations 8.3) to higher order scatter

event distribution were investigated in order to determine the best fit to true

higher order scatter distribution. Each approximation was compared to higher

order scatter event distributions created using the SIMIND Monte Carlo sim-

ulator. Sinograms containing only photons which had been scattered once and

containing photons which had been scattered up to ten times were produced using

the Monte Carlo simulator and a sinogram containing photons which had been

scattered between two and ten times was generated by subtracting the first order

scatter from the multiple order scatter sinogram. Simulations were performed for

three realisations of the XCAT phantom (a standard male phantom, a standard

female phantom and a male phantom with reduced contrast between the lung

and soft tissue activities), in each simulation data were collected for six energy

windows corresponding to the photopeak (126-154keV) and 5 scatter windows
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with low energy cut-off between 60 and 100 keV and high energy cut off 126 keV.

Estimated first order scatter sinograms were calculated for each phantom for each

scatter window using the complete scatter model described by Equation 5.9. The

estimated and simulated sinograms were generated for projections every 2o over

360o with 642 detector elements in each projection.

hhh = wh

exp
(
− xxx2

2σ2
G

)
)

2πσ2
G

⊗ sss(µµµ)

 (8.3a)

hhh = wh

exp
(
− xxx2

2σ2
G

)
)

2πσ2
G

⊗ sss(µµµ)

+ ws (8.3b)

hhh = wh (exp (−σExxx)⊗ sss(µµµ)) (8.3c)

hhh = wh (exp (−σExxx)⊗ sss(µµµ)) + ws (8.3d)

The MatLAB fminsearch function was used to find the parameters σG, σE, wh

and ws that produced the lowest root mean square difference between the Monte

Carlo simulation and the approximation in a given energy window for each of the

three XCAT phantoms. The resulting RMS difference was used to determine the

best approximation to the higher order scatter events.

The weighting factor wp was determined by comparing the total number of counts

in all projections for each phantom in the Monte Carlo simulated data to the

estimated data for primary photons. The calculated weighting factors and blur-

ring widths for the best approximation method were then used to estimate the

complete sinogram measured in each energy window. The root mean square dif-

ference between the complete estimated sinograms and the complete Monte Carlo

sinograms were compared for each energy window and each XCAT phantom re-

alisation. The root mean square difference was used to assess the accuracy of the

estimation for each energy window and hence to help select the most appropriate

energy window to use in the SMLGA reconstruction algorithm. When selecting

an appropriate energy window it is also important to consider the effect of noise

since smaller energy windows will have a lower signal to noise ratio and will have

an increased uncertainty when comparing the measured and estimated sinograms

in the reconstruction algorithm.
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The SMLGA-MLAA reconstruction algorithm assumes that both the higher order

scatter distribution and primary photon contribution to the counts measured in

the scatter energy window are independent of attenuation. The full scatter sino-

gram can, therefore, be substituted into the update equation derived in Chapter

6 to give Equation 8.4, where sss∗(µµµ) is given by 8.1 and D′bd(µµµ
i, k) is as given in

Equation 6.5 (repeated here for clarity).

(µµµi+1)k = (µµµi)k + αs ·
∑
d

(
−
∑
b

D′bd(µµµ
i, k) + (nnns)d ·

∑
bD
′
bd(µµµ

i, k)

(sss∗(µµµ))d

)
(8.4)
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∑
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[
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8.1.3 Scatter Correction of the Photopeak

The complete scatter model developed can also be used to estimate the contri-

bution of scatter events to the photopeak and hence could be used to perform

a scatter correction of the photopeak sinogram. The potential of this has been

assessed by performing reconstructions of Monte Carlo simulations of photopeak

projection data generated for the male XCAT phantom with perfect attenuation

correction and scatter correction performed either using the exact scatter data

or using scatter correction estimated by the scatter model developed in this work

using the true attenuation map and the current reconstruction of the activity

distribution.

As discussed in Section 2.5 a number of different methods of scatter correction

have been developed. One of the simplest of these, and the most commonly used

clinically, is the triple energy window (TEW) method. The triple energy window
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scatter correction estimates the contribution of scatter to the photopeak using

small energy windows positioned immediately above and below the photopeak

window (King et al.. 1997, Ogawa et al.. 1991, Buvat et al.. 1995, Gustafsson et al..

2000). The difference in counts between these two windows can be attributed to

scatter in the lower energy window; alternatively all the counts in the lower

window can be assumed to be scatter, removing the need for the upper energy

window. A scaling factor is applied to the counts detected in the scatter window

and the resulting number of counts is subtracted from the corresponding pixel in

the photopeak measurements either prior to or during the reconstruction process.

A simplified TEW calculation, with a single energy window below the photo-

peak, has been investigated here as a possible method of scatter correction as it

is much faster to calculate than the estimate of scatter using the scatter model.

The scaling factor relating the number of counts in the scatter window to the

scatter counts in the photopeak was assessed using Monte Carlo simulations of

three realisations of the XCAT phantom with the SIMIND programme for five

different scatter windows. Each scatter window had a maximum energy of 126keV

while the lower energy cut off varied between 60 and 100 keV. In each case the

scaling factor was calculated to be that required to match the mean number of

counts in the scatter window (for all detector elements and all phantoms) to the

mean number of scatter counts recorded in the photopeak window. In order to

determine the optimum position of the window for the TEW correction the root

mean square difference between the true photopeak scatter and that estimated us-

ing the appropriately scaled scatter measurement was calculated. This optimum

TEW correction was then used as a third method of scatter correction during the

reconstruction of the activity distribution with perfect attenuation correction.

8.1.4 Validation

The final SMLGA-MLAA algorithm to jointly estimate an activity distribution

and attenuation map without the use of a transmission scan has been tested us-

ing Monte Carlo data generated for the XCAT phantom and a physical torso

phantom. In each case reconstructions were performed using projections every 4o

over a 360o rotation using the SMLGA-MLAA algorithm to estimate attenuation

and the MLEM algorithm to estimate activity. The resulting activity distribu-

tions were compared to reconstruction of the same data using perfect attenuation
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correction and without attenuation correction.

Each reconstruction was performed using 5 iterations with 10 subsets and alter-

nated sub-iterations of the activity estimation with sub-iterations of the attenu-

ation map estimation. Scatter correction was performed during the MLEM and

MLAA parts of the reconstruction.

When considering scatter correction as part of the SMLGA-MLAA algorithm it

is also possible that the scatter model could be used to estimate the contribution

of scatter to the photopeak. However, the calculation of the scatter sinogram

requires knowledge of both attenuation map and activity distribution and so is

unlikely to provide an accurate scatter correction in the early iterations of the

algorithm when the estimations of both the activity distribution and attenuation

map contain significant errors. Hence, the TEW estimation of scatter was used

to provide the scatter correction of the first full iteration (10 sub-iterations) of

the algorithm before the scatter distribution was estimated using the scatter

model. After each full iteration the contribution of scatter to the photopeak

was estimated using the scatter model from the current estimates of the activity

distribution and the attenuation map.

8.1.4.1 Monte Carlo Data

The SIMIND Monte Carlo simulator was used to generate projection data for

the male XCAT phantom using three energy windows; 126-154keV (the photo-

peak), 90-126keV (the main scatter window) and 100-126keV (for TEW scatter

correction). Each energy window accepted photons which had not been scattered

and those which had been scattered up to 10 times. Data were simulated for 64

slices, each of width 0.625mm, centred on the myocardium. The attenuation map

corresponding to the XCAT phantom extended beyond the field of view of the

detector but the activity was restricted to within the field of view (i.e. scatter

from outside the field of view of the camera was not considered). The use of a

LEHR collimator was included in the Monte Carlo simulation to determine the

resolution of the projection data; scatter within the collimator was also allowed.

Reconstructions were performed with perfect attenuation and scatter correction,

without attenuation correction using TEW scatter correction and, with attenua-

tion correction estimated using the SMLGA-MLAA algorithm and scatter correc-
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tion estimated as described above. The accuracy of the use of the scatter model

as a method of scatter correction at each point in the reconstruction was assessed

by calculating the mean and root mean square difference between the estimated

scatter and the true scatter distribution after each full iteration.

After each sub-iteration of the attenuation map estimation using the SMLGA-

MLAA algorithm, constraints were applied to limit the attenuation in the ab-

dominal region to be that of soft tissue inside the body outline and zero outside

it and to fix the attenuation in regions of high activity (greater than 55% of the

maximum counts per pixel) to be that of soft tissue.

8.1.4.2 Data Spectrum Phantom

Projection data were acquired for the Data Spectrum torso phantom using a GE

Discovery 670 SPECT-CT system with LEHR collimators. Each compartment of

the phantom was filled using 99mTc-pertechnetate such that the activity seen in

the heart, body, lung and liver compartments were similar to those normally seen

clinically. A matrix size of 642 was used for each projection giving a pixel size of

8.84mm for the acquired data. Three energy windows were used; 126-154keV for

the photopeak, 100-126keV to provide data for a TEW scatter correction and 90-

100keV which was combined with the TEW window to provide data for the scatter

part of the attenuation map reconstruction. A fixed radius of rotation of 30cm

was used and data were acquired with an average of 450kcounts per projection

in the photopeak; typically clinical scans have an average of 200-300kcounts per

projection.

The Data Spectrum phantom only recreates the torso and so only the top of

the abdominal region is included. Therefore, it is not appropriate to fix the

attenuation of the abdominal region to that of soft tissue in the reconstruction

of the phantom data. Instead, the attenuation in slices beyond the extent of the

phantom was fixed at zero.

When using real measurement data the exact contribution of scatter to the photo-

peak data is unknown. The ‘gold-standard’ reconstruction in this case, therefore,

was assumed to be using the acquired CT data for attenuation correction with

the scatter correction regime described above. This used a TEW estimate of

scatter for the first full iteration of the reconstruction; in subsequent iterations
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the contribution of scatter to the photopeak was estimated from the CT based

attenuation map and the current estimate of the activity distribution using the

scatter model. The results of this reconstruction were compared to that using the

SMLGA-MLAA algorithm with scatter correction estimated using the TEW tech-

nique and the scatter model and, reconstruction without attenuation correction

using TEW scatter correction throughout.

8.2 Results

8.2.1 Effect of Phantom on Reconstruction Accuracy

Figures 8.3 and 8.4 show the activity distributions and attenuation maps recon-

structed for each version of the XCAT phantom using the SMLGA-MLAA algo-

rithm; results from reconstructions performed using exact attenuation correction

are also shown for comparison.

8.2.2 Estimation of Higher Order Scatter Events

Tables 8.2, 8.3 and 8.4 show the root mean square difference between each ap-

proximation to the higher order scatter events and the Monte Carlo simulation

of the higher scatter event distribution for the male, female and low contrast

phantoms respectively. These results show that in most cases the difference in

the errors produced by each approximation is small. However, the approximation

given in Equation 8.3b was found to produce the most accurate results more often

than any of the other models. This model has therefore been selected to estimate

the distribution of higher order scatter events that contribute to the measured

scatter data.

The scaling factors and Gaussian blur widths found for the three different XCAT

phantoms were averaged in order to find the overall factors to be used in the

calculation of the full scatter sinogram. These values are shown in Table 8.5

for each of the energy windows tested. The selected approximation for higher

order scatter event estimation has been substituted into Equation 8.1, with the

appropriate scaling factors, and used to estimate the complete measured sinogram

in each energy window. Since the scatter process is associated with a loss of energy
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(a) (b)

(c) (d)

(e) (f)

Figure 8.3: Activity distribution reconstructed for the male XCAT phantom using
(a) SMLGA-MLAA algorithm and (b) exact attenuation correction, for the female
XCAT phantom using (c) SMLGA-MLAA algorithm and (d) exact attenuation
correction and, for the male XCAT phantom with increased lung activity using
(e) SMLGA-MLAA algorithm and (f) exact attenuation correction
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(a) (b)

(c) (d)

(e) (f)

Figure 8.4: Attenuation maps reconstructed using the SMLGA-MLAA algorithm
for (a) the male XCAT phantom, (c) the female XCAT phantom and, (e) for
the male XCAT phantom with increased lung activity. The corresponding true
attenuation maps are shown for (b) the male XCAT phantom, (d) the female
XCAT phantom and, (f) for the male XCAT phantom with increased lung activity.
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Energy window Approximation
(keV) a b c d

126-154 0.1093 0.1063 0.1093 0.1081
60-126 1.0383 1.0470 1.0383 1.0074
70-126 0.7967 0.7254 0.7967 0.8196
80-126 0.5812 0.5288 0.5812 0.5961
90-126 0.3967 0.3941 0.3967 0.4013
100-126 0.2433 0.2408 0.2433 0.2409

Table 8.2: RMS error in higher order scatter approximation compared to Monte
Carlo data for the male XCAT phantom.

Energy window Approximation
(keV) a b c d

126-154 0.0964 0.0968 0.0964 0.0976
60-126 0.9849 0.9940 0.9849 1.0131
70-126 0.7545 0.7600 0.7545 0.7770
80-126 0.5487 0.5020 0.5487 0.5650
90-126 0.3737 0.3734 0.3737 0.3807
100-126 0.2286 0.2169 0.2286 0.2274

Table 8.3: RMS error in higher order scatter approximation compared to Monte
Carlo data for the female XCAT phantom.

Energy window Approximation
(keV) a b c d

126-154 0.0964 0.0965 0.0964 0.0972
60-126 0.9590 0.9574 0.9590 0.9663
70-126 0.7342 0.7320 0.7342 0.7402
80-126 0.5350 0.5011 0.5350 0.5388
90-126 0.3661 0.3629 0.3661 0.3658
100-126 0.2263 0.2249 0.2263 0.2236

Table 8.4: RMS error in higher order scatter approximation compared to Monte
Carlo data for the low lung contrast XCAT phantom.

it is expected that energy windows which accept lower energy photons will include

more photons which have undergone multiple scatter events and hence will have

a higher scaling factor wh.

Generally the effect of increased numbers of higher order scatter photons in en-

ergy windows with a lower cut-off energy is that the error in the estimation of

the complete sinogram is increased as shown by the root mean square differences

between the estimated sinograms and the sinograms simulated using the SIMIND
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Energy window (keV) wh ws wp σG
126-154 8.05× 10−4 1.32× 10−3 1.04× 10−2 2.24
60-126 2.58× 10−2 7.03× 10−4 9.92× 10−5 1.45
70-126 1.60× 10−2 5.71× 10−3 9.92× 10−5 3.17
80-126 1.12× 10−2 5.25× 10−3 9.92× 10−5 6.01
90-126 1.07× 10−2 8.51× 10−4 9.92× 10−5 1.52
100-126 1.07× 10−2 8.51× 10−4 9.92× 10−5 2.67

Table 8.5: Scaling factors used in the calculation of the full scatter sinogram.

Energy Root Mean Square Error Average Count-rate
window (keV) Male Female Low contrast Mean per detector

126-154 0.697 0.506 0.437 0.547 8.74
60-126 1.135 3.713 1.055 1.967 10.80
70-126 0.893 1.103 0.820 0.939 9.25
80-126 0.643 0.897 0.628 0.723 7.59
90-126 0.480 0.921 0.458 0.620 5.89
100-126 0.323 1.777 0.307 0.802 4.05

Table 8.6: Root mean square error between estimated and simulated complete
sinograms for different energy windows.

Monte Carlo programme for each realisation of the XCAT phantom (Table 8.6).

This would suggest that using a small energy window positioned close to the

photopeak would offer the highest accuracy in the estimation of scatter. How-

ever, the use of the smallest energy window (100-126 keV) was found to have

an increased root mean square error. This is likely to be due to the rejection of

large numbers of single scatter photons as well as those which have been scattered

multiple times and hence a higher level of noise in the Monte Carlo simulation.

Increased noise would also be found in real measured data and so the energy

window of 90-126keV was determined to be the most suitable for the estimation

of the scatter sinogram.

8.2.3 Scatter Correction of the Photopeak

The scaling factor calculated to relate the total counts in each energy window to

the scatter in the photopeak is shown in Table 8.7. The root mean square error of

scatter estimated in the photopeak window using each lower energy window is also

shown for the three phantoms tested. The results demonstrate that, as expected

the most accurate estimate of the photopeak scatter is obtained by using a small
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Energy Scaling Factor Root Mean Square Error
window (keV) Male Female Low contrast

60-126 0.2113 0.527 0.506 0.490
70-126 0.2467 0.511 0.492 0.477
80-126 0.3009 0.496 0.478 0.463
90-126 0.3873 0.480 0.463 0.449
100-126 0.5638 0.459 0.441 0.429

Table 8.7: Scaling factors used to relate low energy scatter window measurements
to photopeak scatter and root mean square error between estimated and simulated
peak scatter for different energy windows.

Image Region
Mean RMSE Mean RMSE

Scatter model 0.0407 0.4939 0.0717 0.4024
TEW 0.1286 1.3711 0.4013 1.0847

Table 8.8: Mean error and root mean square error (RMSE) in reconstructions
of the male XCAT phantom with perfect attenuation correction using different
scatter correction techniques compared to reconstruction with exact scatter cor-
rection, for the whole image volume and for a region of interest centred over the
heart.

energy window placed close to the photopeak. This is because a higher low energy

cut-off excludes more photons which have been scattered through large angles or

that have been scattered multiple times and which would be excluded from the

photopeak window due to their reduced energy. The scaling factors estimated

here for energy windows with lower energy cut-offs of 90 and 100keV show good

agreement with the values reported by Buvat et al.. (1995) and Gustafsson et al..

(2000) of 0.55 and 0.43 respectively for a 92 to 125keV window

Figure 8.5 shows the central slice of the XCAT activity distribution calculated

from Monte Carlo data with perfect attenuation correction using exact scatter

correction compared to scatter correction estimated using the scatter model de-

veloped in this work and using a triple energy window technique. The difference

between the results of the two estimation methods compared to that from exact

scatter correction for this slice is illustrated in Figure 8.6. The activity distribu-

tion in the region of the heart is shown for each technique as polar plots in Figure

8.7 and the corresponding errors in Figure 8.8. The mean and root mean square

errors in the whole reconstruction volume and in a region of interest centred over

the heart are shown in Table 8.8.
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(a) (b)

(c)

Figure 8.5: Activity distribution reconstructed for the male XCAT phantom from
Monte Carlo data using perfect attenuation correction with (a) perfect scatter
correction, (b) scatter correction estimated using the scatter model and, (c) with
TEW scatter correction.

8.2.4 Validation

8.2.4.1 Monte Carlo Data

Figure 8.9 shows the activity distribution for the central slice of a reconstruction

using Monte Carlo data using the SMLGA-MLAA algorithm to estimate an at-

tenuation map and the scatter model to estimate the contribution of scatter to

the photopeak. The activity distributions reconstructed when using perfect at-

tenuation and scatter correction and, without attenuation correction using TEW

scatter correction are also shown for comparison. The error in each reconstruction

compared to the reconstruction with perfect attenuation correction is shown in

Figure 8.10. The attenuation map that was reconstructed by the SMLGA-MLAA
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(a) (b)

Figure 8.6: Error in reconstructed activity distribution reconstructed for the male
XCAT phantom using perfect attenuation correction with (a) scatter correction
estimated using the scatter model and (b) with TEW scatter correction, compared
to reconstruction with exact scatter correction.

algorithm is shown in Figure 8.11. Polar plots of the activity distribution in the

myocardium for each reconstruction are shown in Figure 8.12 and the correspond-

ing differences compared to reconstruction with perfect attenuation correction in

Figure 8.13.

The suitability of the use of the scatter model to estimate the contribution of scat-

ter to the photopeak in the case where the true attenuation map is not known has

been assessed by considering the mean and root mean square difference between

the estimated scatter in the photopeak and the scatter distribution found from

the Monte Carlo simulation. The errors after each iteration are shown in Table

8.9; the error in the TEW estimate compared to the exact scatter distribution is

also shown.

8.2.4.2 Data Spectrum Phantom

Figure 8.14 shows the activity distribution for the central slice of a reconstruction

of data acquired for the Data Spectrum torso phantom using the SMLGA-MLAA

algorithm to estimate an attenuation map and the scatter model to estimate the

contribution of scatter to the photopeak. The activity distributions reconstructed

when using CT based attenuation correction and scatter correction estimated

from the scatter model and, without attenuation correction using TEW scat-

ter correction are also shown for comparison. The error in each reconstruction
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(a) (b)

(c) (d)

Figure 8.7: Polar plots of myocardial activity distribution reconstructed for the
male XCAT phantom using perfect attenuation correction with (a) perfect scatter
correction, (b) scatter correction estimated using the scatter model and (c) with
TEW scatter correction.

Iteration Mean RMSE
1 0.053 0.2247
2 0.011 0.1793
3 0.033 0.1730
4 0.019 0.1695
5 0.024 0.1697

TEW estimate 0.002 0.4585

Table 8.9: Mean error and root mean square error (RMSE) in estimates of the
contribution of scatter to the photopeak where the exact attenuation map is
not known, for estimation using the scatter model with the estimation of activ-
ity distribution and attenuation map reconstructed after each iteration of the
SMLGA-MLAA algorithm and for a TEW estimation.
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(a) (b)

Figure 8.8: Polar plots of error in reconstructed activity distribution in the region
of the heart reconstructed for the male XCAT phantom using perfect attenua-
tion correction with (a) scatter correction estimated using the scatter model and
(b) with TEW scatter correction, compared to reconstruction with exact scatter
correction.

compared to the reconstruction with CT based attenuation correction is shown in

Figure 8.15. The attenuation map that was reconstructed by the SMLGA-MLAA

algorithm is shown in Figure 8.16. Polar plots of the activity distribution in the

myocardium for each reconstruction are shown in Figure 8.17 and the correspond-

ing differences compared to reconstruction with perfect attenuation correction in

Figure 8.18.

8.3 Discussion

Tests performed using different variations of the XCAT phantom, with data cre-

ated using the same model as used in the reconstruction algorithm, demonstrate

that each region of the phantom attenuation map can be distinguished in all

cases. However, the contrast between different tissue types is reduced, resulting

in an overestimation of activity in regions of low attenuation and an underesti-

mation in regions of high attenuation. The use of a female phantom presents the

algorithm with a convex surface, between the breasts, which can be more difficult

to recreate. The results presented here show that the concave region of the body

outline is blurred but is partially recreated.

Other authors (Yamauchi et al.. 2014) who have attempted to recreate an at-
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(a) (b)

(c)

Figure 8.9: Activity distribution reconstructed for the male XCAT phantom us-
ing (a) SMLGA-MLAA algorithm to estimate attenuation, (b) exact attenuation
correction and, (c) without attenuation correction.

tenuation map from scatter data have found that poor contrast in the activity

distribution between soft tissue and lung prevented accurate assessment of the

lung outline in the attenuation map. However, the results of the SMLGA-MLAA

algorithm show the opposite effect and the contrast between lung and soft tissue

in the attenuation map is more accurately recovered, with better delineation of

the boundary, in the case where activity within the lung is increased.

The use of the scatter model developed in this work as a method of scatter correc-

tion of the photopeak has been shown to enable a more accurate reconstruction

than the use of a triple energy window estimation of scatter. When comparing

the activity distribution reconstructed using the exact attenuation map and the

two scatter estimation methods with reconstruction using the exact attenuation

and scatter correction the scatter model is shown to produce lower mean and
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(a) (b)

Figure 8.10: Error in reconstructed activity distribution reconstructed for the
male XCAT phantom using (a) SMLGA-MLAA algorithm to estimate attenua-
tion and, (b) without attenuation correction, compared to reconstruction with
exact attenuation correction.

(a) (b)

Figure 8.11: Attenuation map reconstructed for the male XCAT phantom using
(a) SMLGA-MLAA algorithm to estimate attenuation and, (b) true attenuation
map.

root mean square errors in the whole image and in a region of interest centred

over the heart. This indicates that the bias in the reconstructed activity values is

reduced and the precision is increased. The scatter model developed in this work

can, therefore, be considered as a reasonable method of scatter correction where

the attenuation map is known a-priori.

The final SMLGA-MLAA algorithm, with compensation for higher order scatter

events and using the scatter model developed in this work as the basis of a scatter
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(a) (b)

(c)

Figure 8.12: Polar plots of myocardial activity distribution reconstructed for the
male XCAT phantom using (a) SMLGA-MLAA algorithm to estimate attenua-
tion, (b) exact attenuation correction and, (c) without attenuation correction.

correction of the photopeak, was tested with Monte Carlo data simulated for the

male XCAT phantom and using images acquired for the Data Spectrum torso

phantom.

Reconstruction of projection data generated using Monte Carlo simulation demon-

strate that the body outline can be recovered using the SMLGA-MLAA algorithm

and that some contrast between lung and soft tissue is observed. There is also

some increased attenuation in the region of the ribs on the right side of the body.

However, the boundaries between the lung and soft tissue are not well defined and

the true contrast between the lung as soft tissue is not recovered. The use of the

estimated attenuation map reduces the global underestimation of counts found

when reconstructing the activity distribution without attenuation correction and

improves the uniformity of the reconstruction in the region of the myocardium.
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(a) (b)

Figure 8.13: Polar plots of difference in myocardial activity distribution recon-
structed for the male XCAT phantom using (a) SMLGA-MLAA algorithm to
estimate attenuation and, (b) without attenuation correction, compared to re-
construction with exact attenuation correction.

When performing reconstruction without attenuation correction the scaled errors

in the heart (shown in Figure 8.13) demonstrate an overestimation in the activity

in the anterior wall and an underestimation in the inferior wall. This is because

the anterior wall is closest to the chest wall and hence photons from this region

are less likely to be attenuated that those originating more centrally in the body,

such as the inferior wall of the heart.

The accuracy of the estimation of the contribution of scatter to the photopeak

using the scatter model with an estimated activity distribution and attenuation

map demonstrates increased bias compared to estimation using a TEW technique

for all iterations. This is due to the overestimation of the attenuation in the lung

causing an increase in the predicted scatter from these regions. However, the

precision of the estimation is shown to be better than the TEW estimation for

all iterations. This may be due to the reduced noise in the estimated scatter

projections compared to the simulated TEW data.

When considering the results of the reconstruction of projection data acquired

using the Data Spectrum phantom, the attenuation per voxel evaluated using

SMLGA-MLAA broadly matches the CT based method except for two regions.

Firstly, the estimated attenuation at the spine is significantly underestimated

(estimated attenuation is close to 0). Here, the activity distribution is close

to zero resulting in a very low estimated attenuation. A similar, but opposite
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(a) (b)

(c)

Figure 8.14: Activity distribution reconstructed for the Data Spectrum torso
phantom using (a) SMLGA-MLAA algorithm to estimate attenuation, (b) CT
based attenuation correction and, (c) without attenuation correction.

effect is observed in the region of the heart where the high activity results in

a significant overestimation of the attenuation (by a factor of approximately 2).

The region below the phantom (the patient bed) shows high levels of noise in

the reconstruction due to the absence of activity in this region. This could be

overcome by fixing the values of attenuation in the region of the patient bed to

match the known attenuation and geometry of the bed.

Comparison of the distribution of errors in the reconstructed activity distribution

for the myocardium is demonstrated using polar plots showing the difference be-

tween the SMLGA-MLAA reconstruction or reconstruction without attenuation

correction compared to reconstruction using CT based attenuation correction. In

each case the errors have been normalised to a mean of zero so that the variability

within the myocardium is more clearly visualised. The reconstruction without at-
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(a) (b)

Figure 8.15: Error in reconstructed activity distribution reconstructed for the
Data Spectrum phantom using (a) SMLGA-MLAA algorithm to estimate atten-
uation and, (b) without attenuation correction, compared to reconstruction with
CT based attenuation correction.

(a) (b)

Figure 8.16: Attenuation map reconstructed for the Data Spectrum torso phan-
tom using (a) SMLGA-MLAA algorithm to estimate attenuation and, (b) CT
based attenuation map.

tenuation correction is shown to overestimate the activity at the apex of the heart

(shown at the centre of the polar plot) and underestimate the activity towards

the base of the heart (shown towards the outer rings of the polar plot). This

effect is as expected since the apex of the heart lies closer to the chest wall and so

photons from this region will experience less attenuation than those originating

closer to the base of the heart. The use of the SMLGA-MLAA algorithm to es-

timate attenuation results in a reconstructed activity distribution with a smaller

range of errors in the region of the myocardium and hence demonstrates that

195



(a) (b)

(c)

Figure 8.17: Polar plots of myocardial activity distribution reconstructed for the
Data Spectrum torso phantom using (a) SMLGA-MLAA algorithm to estimate
attenuation, (b) CT based attenuation correction and, (c) without attenuation
correction.

this technique offers an improvement in reconstructed image quality compared to

reconstruction without attenuation correction.

The results presented here also demonstrate that the use of scatter information

in the joint reconstruction can improve the quality of the final images when

compared to other joint estimation techniques presented in the literature. Sitek

et al.. (2007) have also investigated the use of scatter data to improve the joint

estimation of an activity and attenuation without transmission scanning. They

also found that the use of scatter data can enable a reasonable reconstruction of

the attenuation map for the Data Spectrum torso phantom with some recovery

of the contrast between soft tissue and lung.
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(a) (b)

Figure 8.18: Polar plots of difference in myocardial activity distribution recon-
structed for the Data Spectrum torso phantom using (a) SMLGA-MLAA algo-
rithm to estimate attenuation and, (b) without attenuation correction, compared
to reconstruction with CT based attenuation correction.

Other authors have developed techniques to jointly estimate attenuation and ac-

tivity using a maximum likelihood optimisation technique (Nuyts et al.. 1999,

Krol et al.. 2001). When tested with computer simulated, parallel beam, projec-

tion data these algorithms show significant cross-talk between the activity and

attenuation reconstructions with regions of high activity appearing in the recon-

structed attenuation map as regions of low attenuation. Similar cross-talk effects

are seen in a number of alternative regularised non-linear optimisation techniques

(Dicken 1999, Gourion et al.. 2002).

Bronnikov (2000) demonstrated that cross-talk between the activity and attenua-

tion reconstruction could be avoided when using consistency conditions to recreate

a simple mathematical torso phantom; however in 3 dimensions the attenuation

towards the centre of the body was reduced compared to the true attenuation

and the boundaries between regions were not accurately recovered in either 2 or

3 dimensions. Yan & Zeng (2009) also investigated the use of consistency condi-

tions to recreate an attenuation map with regions of different attenuation. They

demonstrated that an automatic segmentation can be performed for regions with

sharp boundaries; however, the algorithm was found to fail in cases with high

noise and blurred boundaries between regions.

Crepaldi & De Pierro (2007) presented a technique for reducing the effect of cross-

talk in maximum likelihood based joint estimation by introducing an additional
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iterative data refinement step. Tian et al.. (2006) also developed an algorithm

which appears to be less susceptible to cross-talk using Kalman filtering to develop

a linearised optimisation. Both the improved maximum likelihood algorithm and

Kalman filtering technique demonstrated good reconstruction of phantoms using

noise free computer simulated data with a parallel beam geometry; neither have

been tested in the presence of noise or with realistic collimation.

The results of reconstruction using the SMLGA-MLAA algorithm developed in

this work demonstrate the potential of the technique. However, further work is

recommended to improve the quality of the attenuation map reconstructed using

the SMLGA-MLAA algorithm. Possible areas for consideration include:

• improving the accuracy of the scatter model used as the basis of the algo-

rithm, in particular the approximation of higher order scatter events could

benefit from more accurate estimation,

• the use of an alternative optimisation strategy may to help avoid local

minima in the likelihood of the reconstructed images and,

• additional constraints could be applied to further reduce the ill-posed nature

of the problem.

8.4 Conclusion

The results presented in this chapter demonstrate that the SMLGA-MLAA algo-

rithm can be used to reconstruct realistic data with improved accuracy compared

to reconstruction without attenuation correction. The accuracy of the recon-

struction does not appear to be significantly affected by the phantom shape and

is improved in cases with more distributed activity distribution.

The use of the scatter model as a basis for scatter correction of photopeak data

has been shown to improve precision compared to TEW scatter correction, even

in the case where the attenuation map is not exact.

Further work is required to reduce the appearance of artefacts in the attenua-

tion map reconstructed using the SMLGA-MLAA algorithm and to reduce the

influence of the under-lying activity distribution on the attenuation map recon-

struction.
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9 Conclusion

9.1 Main Conclusions

In Chapter 3 an accurate 2-dimensional model for single order scatter was devel-

oped. The accuracy of the model was shown to be good for different phantoms

and energy windows, including the effect of the energy resolution of the gamma

camera, when compared to scatter distributions created using Monte Carlo sim-

ulation. This model was extended to 3 dimensions in Chapter 5. Improvements

to the model were made by modelling the scattering of photons in voxels close

to the point of emission using Monte Carlo simulation. The use of resolution

modelling was also investigated and found to improve the accuracy of the es-

timation of both scattered and primary photons. However, it was found that

including the effects of increased photon attenuation after the point of scatter

and increased photon absorption in bone (as compared to soft tissue) did not

offer any significant improvement in accuracy of the model compared to Monte

Carlo simulation.

In Chapter 4 the use of scatter data, estimated using the model derived in Chap-

ter 3, was shown to provide an accurate method of reconstructing an attenua-

tion map, in 2 dimensions, without the use of a transmission scan. The results

obtained using the SMLGA algorithm demonstrated improved reconstructions,

compared to reconstruction without attenuation correction or using an attenua-

tion map estimated using an MLAA technique, for data acquired using standard

SPECT imaging geometries of 360o or 180o, or using a region-centric imaging ge-

ometry. The results were further improved, particularly close to the boundaries

between different tissue types, by combining the SMLGA developed here with

the MLAA algorithm.
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The basic scatter model is developed in Chapter 5 to allow extension from 2

to 3 dimensions and to more accurately model the contribution of scatter from

voxels close to the point of emission. This improved scatter model is then used

as the basis of the 3-dimensional reconstruction and in Chapter 6 the use of the

SMLGA-MLAA algorithm to estimate an attenuation map without measured

transmission data was also shown to improve the quality of reconstruction of an

activity distribution compared to reconstruction without attenuation correction

in 3 dimensions. The use of ordered subsets in all parts of the reconstruction was

shown to offer some saving in calculation time without adversely affecting the

quality of the reconstructed images. The possibility of using a reduced matrix

size of the calculation of the attenuation map was also considered as a method

of reducing the total calculation. This was found to reduce the quality of the

final reconstruction when used for all iterations, however, in the early iterations

it provided a significant time saving without affecting image quality.

The use of a level sets technique to limit the attenuation map to be piecewise

constant showed improved results in the region of the myocardium compared to

estimation on a voxel by voxel basis in Chapter 7. The algorithm achieved the

best results when limited to regions of soft tissue and lung, and in this case was

able to accurately recover the value of attenuation in lung. However, a number

of attenuation map and activity distribution combinations were found to have

a similar likelihood and so the reconstruction produced by the gradient ascent

algorithm was found to be highly dependent on the attenuation map used to

initialise the algorithm. As an alternative to the use of level sets, the voxel by

voxel calculation was modified to restrict the value of the attenuation map in some

regions. This demonstrated that reducing the number of variables that must be

found during the reconstruction process has the potential to greatly improve the

quality of the final reconstructed images.

Validation of the final SMLGA-MLAA algorithm, including the contribution of

photons that have been scattered multiple times, was performed using projec-

tion data generated using Monte Carlo simulation and using data acquired for

a physical torso phantom. The results, presented in Chapter 8 demonstrated

that the SMLGA-MLAA algorithm can be used to reconstruct realistic data with

improved accuracy compared to reconstruction without attenuation correction.

The accuracy of the reconstruction did not appear to be significantly affected

by the phantom shape and was improved in cases with more uniform activity
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distribution.

The use of the scatter model as a basis for scatter correction of photopeak data

has been shown to improve precision compared to TEW scatter correction, even

in the case where the attenuation map is not exact. However, inaccuracies in the

estimated attenuation map, in particular the overestimation of the attenuation

in the region of the lungs result in an increase in the bias of the estimation; in

general the number of scattered photons is overestimated by the scatter model.

9.2 Summary of Contribution

The following points summarise the issues addressed and highlight the novel con-

tributions presented in this thesis:

• A new model for single scatter has been developed and tested in 2 dimensions.

• The basic 2-dimensional scatter model has been extended to three dimensions

and improved by more accurate modelling of the contribution of scatter from

voxels close to the source voxel.

• A reconstruction algorithm (SMLGA) has been developed to estimate an at-

tenuation map from measured scatter data.

• The SMLGA algorithm has been combined with a published method of estimat-

ing attenuation from photopeak data (MLAA) in order to improve the accuracy

of the reconstruction compared to either technique alone.

• The use of the scatter model developed in this work for scatter correction of the

photopeak has been investigated and shown to offer and improvement of TEW

scatter estimation.

• The SMLGA-MLAA reconstruction algorithm has been validated using Monte

Carlo simulation with the XCAT phantom and real measurements of a physical

phantom and has been shown to enable recovery of the body outline and partial

recovery of the lung regions.
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9.3 Future Work

The maximum likelihood gradient ascent algorithm used to iteratively reconstruct

an attenuation map from measured scatter data was found to be highly sensitive

to the attenuation map used to initialise the algorithm when using a piecewise

constant technique. This was shown to be due to the fact that a number of

combinations of activity distribution and attenuation map were found to have

very similar likelihood. Future work could be directed to investigate alternative

algorithms which are more able to identify the global maximum in the likelihood

than the gradient ascent technique used here. Algorithms such as simulated

annealing, which sample the solution space more widely, may offer a potential

alternative which is less sensitive to the starting conditions selected.

The scatter model developed in this work, and used as the basis of the SMLGA

algorithm, does not attempt to calculate accurately the paths of photons which

have been scattered more than once. This is because the calculation of all pos-

sible paths for photons which have been scattered more than once is practically

impossible for any realistic matrix size and phantom. In this work the detection

of photons which have been scattered multiple times has been approximated by

a combination of the first order scatter sinogram, the primary scatter sinogram

combined with a blurred versions of the scatter sinogram. The use of a Monte

Carlo technique to simulate realistic scatter paths would be worthy of future

investigation. A number of efficient Monte Carlo algorithms have been devel-

oped for scatter correction in SPECT imaging (Beekman et al.. 2002, Sohlberg

et al.. 2008, de Wit et al.. 2004) which could potentially be further developed to

allow their use within the reconstruction algorithm. This would enable a complete

estimate of scatter in both the scatter and photopeak windows to be performed

based on the current estimates of the activity distribution and attenuation map

which could have the potential to improve the accuracy of the estimation and

hence the reconstruction that can be achieved.

The version of the SMLGA-MLAA algorithm used here has been developed in

MatLAB and takes several hours to run a complete reconstruction (∼12 hours for

5 iterations with 10 subsets). Further work is required to improve the efficiency

of the algorithm. A first step towards this may be achieved in MatLAB through

the use of mex files to access C-code or using CUDA code to make more efficient

use of available graphic processing units than is possible with just the MatLAB
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parallel toolbox functions.

9.4 Papers arising from this work

The following publications have been submitted/published from the work pre-

sented in this thesis:

• Cade S. Bousse A. Arridge S. Evans M. & Hutton B. (2010). Estimating

an attenuation map from measured scatter for 180o cardiac SPECT, Journal of

Nuclear Medicine 51(Supplement 2): 1357.

• Cade S. C. Arridge S. Evans M. J. & Hutton B. F. (2011). Attenuation map

estimation without transmission scanning using measured scatter data, Nuclear

Science Symposium Conference Record, pp. 2657-2663.

• Cade S. C. Arridge S. Evans M. J. & Hutton B. F. (2013). Use of measured

scatter data for the attenuation correction of single photon emission tomography

without transmission scanning, Medical Physics 40(8).

• Cade S. C. Arridge S. Evans M. J. & Hutton B. F. Use of measured scatter

data to reconstruct an attenuation map for attenuation and scatter correction,

Physics in Medicine and Biology, in preparation.

203



References

Acton P. D., Pilowsky L. S., Kung H. F. & Ell P. J. (1999). Automatic segmen-

tation of dynamic neuroreceptor single-photon emission tomography images

using fuzzy clustering, European Journal of Nuclear Medicine 26(6): 581–

590.

Allender S., Scarborough P., Peto V., Rayner M., Leal J., Luengo-Fernandez R. &

Gray A. (2008). European Cardiovascular Disease Statistics 2008, European

Heart Network.

Bailey D. L. (1998). Transmission scanning in emission tomography, European

Journal of Nuclear Medicine 25(7): 774–787.

Bailey D. L., Schembri G. P., Harris B. E., Bailey E. A., Cooper R. A. & Roach

P. J. (2008). Generation of planar images from lung ventilation/perfusion

SPECT, Annals of Nuclear Medicine 22: 437–445.

Beekman F. J., de Jong H. W. A. M. & van Geloven S. (2002). Efficient fully 3-D

iterative SPECT reconstruction with Monte Carlo-based scatter compensa-

tion, IEEE Transactions on Medical Imaging 21(8): 867–877.

Beekman F. J. & Kamphuis C. (2001). Ordered subset reconstruction for x-ray

CT, Physics in Medicine and Biology 46(7): 1835–1844.

Beekman F. J., Kamphuis C. & Frey E. C. (1997). Scatter compensation meth-

ods in 3D iterative SPECT reconstruction: A simulation study, Physics in

Medicine and Biology 42(8): 1619–1632.

Ben Younes R., Mas J. & Bidet R. (1988). A fully automated contour detec-

tion algorithm the preliminary step for scatter and attenuation compensa-

tion in spect, European Journal of Nuclear Medicine and Molecular Imaging

204



References

14: 586–589.

Berger M. (2001). A level set method for inverse problems, Inverse Problems

17: 1327–1355.

Berger M. J., Hubbell J. H., Seltzer S. M., Chang J., Coursey J. S., Sukumar

R., Zucker D. & Olsen K. (2010). XCOM: Photon cross section database,

Online. Accessed 06/12/2011.

http://physics.nist.gov/xcom

Bettinardi V., Pagani E., Gilardi M. C., Landoni C., Riddell C., Rizzo G., Cas-

tiglioni I., Belluzzo D., Lucignani G., Schubert S. & Fazio F. (1999). An auto-

matic classification technique for attenuation correction in positron emission

tomography, European Journal of Nuclear Medicine 26(5): 447–458.

Blankespoor S. C., Xu X., Kaiki K., Brown J. K., Tang H. R., Cann C. E. &

Hasegawa B. H. (1996). Attenuation correction of SPECT using X-ray CT

on an emission-transmission CT system: Myocardial perfusion assessment,

IEEE Transactions on Nuclear Science 43(4): 2263–2274.

Brix G., Doll J., Bellemann M. E., Trojan H., Haberkorn U., Schmidlin P. &

Ostertag H. (1997). Use of scanner characteristics in iterative image recon-

struction for high-resolution positron emission tomography studies of small

animals, European Journal of Nuclear Medicine 24(7): 779–786.

Bronnikov A. V. (1995). Approximate reconstruction of attenuation map in

SPECT imaging, IEEE Transactions on Nuclear Science 42(5): 1483–1488.

Bronnikov A. V. (1999). Numerical solution of the identification problem for the

attenuated radon transform, Inverse Problems 15(5): 1315–1324.

Bronnikov A. V. (2000). Reconstruction of attenuation map using discrete con-

sistency conditions, IEEE Transactions on Medical Imaging 19(5): 451–462.

Buvat I., Rodriguez-Villafuerte M., Todd-Pokropek A., Benali H. & Di Paola R.

(1995). Comparative assessment of nine scatter correction methods based on

spectral analysis using monte carlo simulations, Journal of Nuclear Medicine

36(8): 1476–1488.

Censor Y., Gustafson D., Lent A. & Tuy H. (1979). New approach to the emis-

sion computerized tomography problem - simultaneous calculation of at-

205

http://physics.nist.gov/xcom


References

tenuation and activity-coefficients, IEEE Transactions on Nuclear Science

26(2): 2775–2779.

Chan T. F. & Tai X.-C. (2003). Level set and total variation regularization for

elliptic inverse problems with discontinuous coefficients, Journal of Compu-

tational Physics 193: 40–66.

Chang L.-T. (1978). A method for attenuation correction in radionuclide com-

puted tomography, IEEE Transactions on Nuclear Science NS-25(1): 638–

643.

Clinthorne N. H., Pan T. S., Chiao P. C., Rogers W. L. & Stamos J. A. (1993).

Preconditioning methods for improved convergence-rates in iterative recon-

structions, IEEE Transactions on Medical Imaging 12(1): 78–83.

Crepaldi F. & De Pierro A. R. (2007). Activity and attenuation reconstruction for

positron emission tomography using emission data only via maximum likeli-

hood and iterative data refinement, IEEE Transactions on Nuclear Science

54(1, Part 1): 100–106.

de Wit T. C., Xiao J. B., Bokulic T. & Beekman F. J. (2004). Monte-Carlo based

statistical SPECT reconstruction: Influence of number of photon tracks,

IEEE Nuclear Science Symposium Conference Record, IEEE, pp. 3018–3021.

Defrise M., Rezaei A. & Nuyts J. (2012). Time-of-flight PET data determine

the attenuation sinogram up to a constant, Physics in Medicine and Biology

57(4): 885–899.

Dicken V. (1999). A new approach towards simultaneous activity and attenuation

reconstruction in emission tomography, Inverse Problems 15(4): 931–960.

Dorn O. & Lesselier D. (2006). Level set methods for inverse scattering, Inverse

Problems 22: R67–R131.

Dorn O., Miller E. L. & Rappaport C. M. (2000). A shape reconstruction method

for electromagnetic tomography using adjoint fields and level sets, Inverse

Problems 16: 1119–1156.

Erdogan H. & Fessler J. A. (1999). Ordered subsets algorithms for transmission

tomography, Physics in Medicine and Biology 44: 2835–2851.

206



References

Ficaro E. P., Fessler J. A., Rogers W. L. & Schwaiger M. (1994). Comparison of

americium-241 and technetium-99m as transmission sources for attenuation

correction of thallium-201 SPECT imaging of the heart, Journal of Nuclear

Medicine 35(4): 652–663.

Fokas A. S., Iserles A. & Marinakis V. (2006). Reconstruction algorithm for single

photon emission computed tomography and its numerical implementation,

Journal of The Royal Society Interface 3(6): 45–54.

Frey E. C. & Tsui B. M. W. (1993). A practical method for incorporating scatter

in a projector-backprojector for accurate scatter compensation in SPECT,

IEEE Transactions on Nuclear Science 40(4): 1107–1116.

Frey E. C. & Tsui B. M. W. (1996). A new method for modeling the spatially-

variant, object-dependent scatter response function in SPECT, IEEE Nu-

clear Science Symposium Conference Record, Vol. 2, pp. 1082 –1086.

Garcia E. V., Van Train K., Maddahi J., Prigent F., Friedman J., Areeda J.,

Waxman A. & Berman D. S. (1985). Quantification of rotational thallium-

201 myocardial tomography, The Journal of Nuclear Medicine 26(1): 17–26.

Gilland D. R., Jaszczak R. J., Wang H., Turkington T. G., Greer K. L. & Coleman

R. E. (1994). A 3d model of non-uniform attenuation and detector response

for efficient iterative reconstruction in SPECT, Physics in Medicine and

Biology 39: 547–561.

Goetze S. & Wahl R. L. (2007). Prevalence of misregistration between SPECT

and CT for attenuation-corrected myocardial perfusion SPECT, Journal of

Nuclear Cardiology 14(2): 200–206.

Gourion D., Noll D., Gantet P., Celler A. & Esquerre J. P. (2002). Attenuation

correction using SPECT emission data only, IEEE Transactions on Nuclear

Science 49(5): 2172–2179.

Gustafsson A., Arlig A., Jacobsson L., Ljungberg M. & Wikkelso C. (2000). Dual-

window scatter correction and energy window setting in cerebral blood flow

SPECT: a monte carlo study, Physics in Medicine and Biology 45: 3431–

3440.

Han G. P., Liang Z. R. & You J. S. (1999). A fast ray-tracing technique for TCT

and ECT studies, IEEE Nuclear Science Symposium Conference Record, Vol.

207



References

1-3, pp. 1515–1518.

Hansen C. L. & Siegel J. A. (1992). Attenuation correction of thallium SPECT us-

ing differential attenuation of thallium photons, Journal of Nuclear Medicine

33(8): 1574–1577.

Health Curriculum (2012). Online. Accessed August 2012.

www.infomat.net/infomat/focus/health/health_curriculum/images/

heart.gif

Hebert T., Murphy P., Moore W., Dhekne R., Wendt R. & Blust M. (1993). Ex-

perimentally determining a parametric model for the point-source response of

a gamma-camera, IEEE Transactions on Nuclear Science 40(4, Part 1): 967–

971.

Hubbell J. H. (1969). Photon cross sections, attenuation coefficients, and energy

absorption coefficients from 10keV to 100GeV, National Standard Reference

Data System NBS-29.

Hudson H. M. & Larkin R. S. (1994). Accelerated image reconstruction using

ordered subsets of projection data, IEEE Transactions on Medical Imaging

13(4): 601–609.

Hutton B. F., Buvat I. & Beekman F. J. (2011). Review and current status of

spect scatter correction, Physics in Medicine and Biology 56(14): R85.

Hutton B. F., Hudson H. M. & Beekman F. J. (1997). A clinical perspective of

accelerated statistical reconstruction, European Journal of Nuclear Medicine

24(7): 797–808.

Hutton B. F., Osiecki A. & Meikle S. R. (1996). Transmission-based scatter

correction of 180 degrees myocardial single-photon emission tomographic

studies, European Journal of Nuclear Medicine 23(10): 1300–1308.

ICRP (ed.) (1983). ICRP Publication 38: Radionuclide Transformations: Energy

and Intensity of Emmissions., Annals of the ICRP.

Kaplan M. S. & Haynor D. R. (1999). Differential attenuation method for si-

multaneous estimation of activity and attenuation in multiemission single

photon emission computed tomography, Medical Physics 26(11): 2333–2340.

208

www.infomat.net/infomat/focus/health/health_curriculum/images/heart.gif
www.infomat.net/infomat/focus/health/health_curriculum/images/heart.gif


References

Kaplan M. S., Haynor D. R. & Vija H. (1999a). Comparison of the differential

attenuation method for multi-emission SPECT with conventional methods

of attenuation compensation, IEEE Nuclear Science Symposium, Conference

Record, Vol. 1-3, pp. 879–883.

Kaplan M. S., Haynor D. R. & Vija H. (1999b). A differential attenuation method

for simultaneous estimation of SPECT activity and attenuation distribu-

tions, IEEE Transactions on Nuclear Science 46(3, Part 2): 535–541.

King M. A., de Vries D. J., Pan T. S., Pretorius P. H. & Case J. A. (1997). An

investigation of the filtering of TEW scatter estimates used to compensate for

scatter with ordered subset reconstructions, IEEE Transactions on Nuclear

Science 44(3, Part 2): 1140–1145.

Klein O. & Nishina Y. (1929). Uber die streuung von strahlung durch freie

electronen nach der neuen relativistischen quantendynamik von dirac, Z.

Physik 52: 853–869.

Krol A., Bowsher J. E., Manglos S. H., Feiglin D. H., Tornai M. P. & Thomas E. D.

(2001). An EM algorithm for estimating SPECT emission and transmission

parameters from emission data only, IEEE Transactions on Medical Imaging

20(3): 218–232.

Lange K., Bahn M. & Little R. (1987). A theoretical-study of some maximum-

likelihood algorithms for emission and transmission tomography, IEEE

Transactions on Medical Imaging 6(2): 106–114.

Lange K. & Carson R. (1984). EM reconstruction algorithms for emission

and transmission tomography, Journal of Computer Assisted Tomography

8(2): 306–316.

Lautamaeki R., Brown T. L. Y., Merrill J. & Bengel F. M. (2008). CT-based

attenuation correction in Rb-82-myocardial perfusion PET-CT: incidence of

misalignment and effect on regional tracer distribution, European Journal of

Nuclear Medicine and Molecular Imaging 35(2): 305–310.

Lewitt R. M. & Matej S. (2003). Overview of methods for image reconstruction

from projections in emission computed tomography, Proceedings of the IEEE

91(10): 1588–1611.

Litman A., Lesselier D. & Santosa F. (1998). Reconstruction of a two-dimensional

209



References

binary obstacle by controlled evolution of a level-set, Inverse Problems

14: 685–706.

Ljungberg M. & Strand S.-E. (1989). A Monte Carlo program for the simulation

of scintillation camera characteristics, Computer Methods and Programs in

Biomedicine 29(4): 257 – 272.

Madsen M. T. & Lee J. R. (1999). Emission based attenuation correction of PET

images of the thorax, IEEE Nuclear Science Symposium Conference Record.,

Vol. 2, pp. 967 –971.

Martinez-Moeller A., Souvatzoglou M., Navab N., Schwaiger M. & Nekolla S. G.

(2007). Artifacts from misaligned CT in cardiac perfusion PET/CT stud-

ies: Frequency, effects, and potential solutions, Journal of Nuclear Medicine

48(2): 188–193.

Mayneord W. V. (1952). The radiography of the human body with radioactive

isotopes, British Journal of Radiology 25: 517–525.

McQuaid S. J. & Hutton B. F. (2008). Sources of attenuation-correction artefacts

in cardiac PET/CT and SPECT/CT, European Journal of Nuclear Medicine

and Molecular Imaging 35(6): 1117–1123.

Meikle S. R., Dahlbom M. & Cherry S. R. (1993). Attenuation correction using

count-limited transmission data in positron emission tomography, Journal

of Nuclear Medicine 34(1): 143–150.

Meikle S. R., Hutton B. F. & Bailey D. L. (1994). A transmission-dependent

method for scatter correction in SPECT, Journal of Nuclear Medicine

35(2): 360–367.

Miller M. I., Snyder D. L. & Miller T. R. (1985). Maximum-likelihood reconstruc-

tion for single-photon emission computed-tomography, IEEE Transactions

on Nuclear Science 32(1): 769–778.

Natterer F. (1993). Determination of tissue attenuation in emission tomography

of optically dense media, Inverse Problems 9(6): 731.
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Appendix A Software

Development

The software used in this work has been developed in MATLAB Version R2011a.

Below is a list of the made programmes developed with a brief description of each;

all the programmes listed were created by the author and made use of functions

within MATLAB toolboxes where appropriate.

• CombinedUpdate: Calculate new attenuation map from individual updates

calculated using Nuyts, scatter and Level set techniques with appropriate

scaling factors.

• FuzzyCluster: Perform fuzzy cluster based segmentation of images using

given cluster start values and iteration tolerance.

• KleinNish: Calculate scatter factors based on the Klein-Nishina formula

(Klein & Nishina 1929) for a given photon energy window.

• LevelSet UpdateVals: Calculate partial derivatives of existing level sets for

use in 3D attenuation map estimation.

• ReconParam: Create parameters required for repeated use in forward pro-

jection and reconstruction of scatter data; includes scatter factors and paths

and collimator response blurring functions.

• RotateMAPAttn and RotateMPAAttn 3D: Perform MAP iterative image

reconstruction of attenuation map using Nuyts method (Nuyts et al.. 1999)

with rotation based projectors for a parallel beam geometry (in 2 or 3

dimensions respectively).

• RotateMAPAttn 3DBlur SC: Perform MAP iterative image reconstruction
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of attenuation map using Nuyts method (Nuyts et al.. 1999) with rota-

tion based projectors including the effects of collimator blurring. Scatter

correction can performed during the reconstruction process.

• RotateOSEM and RotateOSEM 3D: Perform OSEM iterative image recon-

struction of given sinogram using given attenuation data using rotation

based projectors for a parallel beam geometry (in 2 or 3 dimensions respec-

tively).

• RotateOSEM 3DBlurSC: Perform OSEM iterative image reconstruction of

given sinogram using given attenuation data using rotation based projec-

tors including the effects of collimator blurring. Scatter correction can

performed during the reconstruction process.

• RotateScatterSino and RotateScatterSino3D: Calculation of scatter sino-

gram using Klein-Nishina formula with a rotation based projector (in 2 or

3 dimensions respectively).

• RotateScatterSino3D P2: Calculation of scatter sinogram using data ob-

tained from simulations to give scatter angles and solid angle effects for

nearest neighbours with a rotation based forward projector.

• RotateScatterSino3D BlurP: Calculation of scatter sinogram using data ob-

tained from simulations to give scatter angles and solid angle effects for

nearest neighbours. Distance dependant resolution effects are included in

this version which uses a rotation based forward projector and operates in

3D.

• RotateScatterSino3D Energy and RotateScatterSino3D EnergyC: Modifi-

cation of the calculation of scatter sinogram to include the effect of increased

attenuation after the point of scatter with and without the effect of reduced

scatter fraction in bone respectively.

• RotateScatterUpdate: Iterative update of attenuation map in 2 dimensions

using measured and estimated scatter sinograms. Scatter is modelled using

Klein-Nishina data; the forward and backprojections are rotation based.

• RotateSino and RotateSino3D: Create attenuated sinogram using a rota-

tion based projector with parallel beam geometry (in 2 or 3 dimensions

respectively).
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• RotateSino 3DBlur: Create attenuated sinogram using a rotation based

projector including the effects of collimator blurring.

• ScattRecon 3DBlur: Iterative update of attenuation map using measured

and estimated scatter sinograms using first order scatter only. Scatter is

modelled using data obtained from simulations to give scatter angles and

solid angle effects for nearest neighbours. Distance dependant resolution

effects are included in this version which uses a rotation based forward

projector and operates in 3D. This reconstruction is uses the same scatter

estimation method as RotateScatterSino3D BlurP.

• ScattRecon 3DBlur Full: This is a modification of ScattRecon 3DBlur to

include the effect of photons which have been scattered multiple times and

of photons that have not been scattered and which are included in the

measured scatter sinogram.

• SiddonPoints: Use Siddon method (Siddon 1985) to create paths between

a source voxel and each target voxel.
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