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ABSTRACT 

 

The pharmaceutical industry is suffering from declining R&D productivity 

and yet biopharmaceutical firms have been attracting increasing venture 

capital investment. Effective R&D portfolio management can deliver above 

average returns under increasing costs of drug development and the high 

risk of clinical trial failure. This points to the need for advanced decisional 

tools that facilitate decision-making in R&D portfolio management by 

efficiently identifying optimal solutions while accounting for resource 

constraints such as budgets and uncertainties such as attrition rates. This 

thesis presents the development of such tools and their application to typical 

industrial portfolio management scenarios. 

A drug development lifecycle cost model was designed to simulate the 

clinical and non-clinical activities in the drug development process from the 

pre-clinical stage through to market approval. The model was formulated 

using activity-based object-oriented programming that allows the activity-

specific information to be collected and summarized. The model provides 

the decision-maker with the ability to forecast future cash flows and their 

distribution across clinical trial, manufacturing, and process development 

activities. The evaluation model was applied to case studies to analyse the 

non-clinical budgets needed at each phase of development for process 

development and manufacturing to ensure a market success each year. 

These cost benchmarking case studies focused on distinct product categories, 

namely pharmaceutical, biopharmaceutical, and cell therapy products, under 

different attrition rates.  

A stochastic optimization tool was built that extended the drug development 

lifecycle cost evaluation model and linked it to combinatorial optimization 

algorithms to support biopharmaceutical portfolio management decision-

making. The tool made use of the Monte Carlo simulation technique to 

capture the impact of uncertainties inherent in the drug development process. 

Dynamic simulation mechanisms were designed to model the progression of 

activities and allocation of resources. A bespoke multi-objective 
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evolutionary algorithm was developed to locate optimal portfolio 

management solutions from a large decision space of possible permutations. 

The functionality of the tool was demonstrated using case studies with 

various budget and capacity constraints. Analysis of the optimization results 

highlighted the cash flow breakdowns across both activity categories and 

development stages.  

This work contributed to the effort of providing quantitative support to 

portfolio management decision-making and illustrated the benefits of 

combining cost evaluation with portfolio optimization to enhance process 

understanding and achieve better performance.  
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CHAPTER 1  

LITERATURE REVIEW 

1.1 INTRODUCTION 

The biopharmaceutical R&D activities are highly costly, time consuming 

and technology intensive. Each biopharmaceutical new drug development 

process costs more than $1.2 billion (DiMasi & Grabowski 2007), with the 

development duration between the new drug discovery and market approval 

ranging from 5 to 10 years (Werner 2004). The development of a 

biopharmaceutical new drug consists of several distinct phases, which 

require specific planning of resource investment. The manufacture of 

biopharmaceuticals is one of the most highly regulated and complex 

processes that requires intensive control and significant capital investment 

on the design, planning and construction of the facility (Goldstein & 

Thomas 2004). Drug developers are also facing diminishing returns from 

R&D investment as the number of new products approved by FDA per 

billion dollar on R&D spending has halved every 9 years (Scannell et al. 

2012). To maintain competitive advantages, biopharmaceutical developers 

must sustain intensive innovation either from in-house pipeline development 

or by acquiring outside product candidates. This brings up the need of a 

comprehensive decision-support tool for drug developers that not only 

focuses on finding the optimal portfolio management solutions, but also 

provides guidance on budget and capacity planning. Therefore, in this thesis, 

computational decisional tools were developed to optimize the 

biopharmaceutical portfolio decision-making under resource constraints and 

to characterize the costs associated with various development activities. 

In this chapter, the background and scope of this work are introduced by 

reviewing published literature on the drug development process, 

biopharmaceutical portfolio management decision-making, and modeling & 

optimization approaches. The remainder of this chapter is structured as 

follows. Section 1.2 introduces the biopharmaceutical drug development 
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process, including a brief overview of the activities and stages that 

constitute the drug development lifecycle. Section 1.3 reviews some of the 

key topics that influence biopharmaceutical portfolio management decision-

making. Important computational modeling and optimization techniques are 

discussed in Section 1.4 as well as their implementations in 

biopharmaceutical industry. Finally, the aim and organization of this thesis 

are presented in Section 1.5.  

1.2 BIOPHARMACEUTICAL DRUG DEVELOPMENT PROCESS 

Biopharmaceuticals have been defined as “protein or nucleic acid based 

pharmaceutical substances used for therapeutic or in vivo diagnostic 

purposes, which are produced by means other than direct extraction from 

natural biological sources” (Walsh 2006). The biopharmaceutical drug 

development process consists of a number of different stages. In the pre-

clinical trial phase, the new drug candidate is subject to a range of tests both 

in vitro and in animals in order to characterize the drug in terms of its likely 

safety and effectiveness in treating its target disease. Upon completion of 

the pre-clinical trial, the drug developer applies to regulatory authorities (e.g. 

the FDA in USA) for approval to commence clinical trials in humans, which 

are required to prove that the drug is safe and effective when administered 

to patients. The clinical trial work commences once the toxicity of the drug 

has been characterized, and the company normally patents the drug in order 

to ensure a period of monopoly in the market.  

Conventionally, there are three major phases of human clinical trials before 

a drug can be granted market approval: Phase I mainly focuses on the safety 

aspect of the product and the size of the trial is relatively small compared to 

other clinical trial phases. In Phase II, the efficacy of the drug is put to test 

where double-blinded studies are normally adopted to ensure objectivity. 

This is also the phase with the highest probability of failure for 

biopharmaceuticals. Large numbers of patients are required in Phase III 

trials as the regulatory authorities expect more accurate estimates of the 

efficacy and dosage of the drug in a larger population before granting 
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permission for marketing. This is also the most expensive and lengthy phase 

for development of biopharmaceuticals. Preparations for market launch are 

also triggered at this phase, since the manufacturing process is normally 

locked from this stage onwards.  

At the regulatory review stage, the drug developer is required to gather all 

pre-clinical and clinical data, along with characterization of the production 

process, and submit them to the regulatory authorities for approval of 

market entry. The go-ahead from regulatory authorities after the review 

stage enables the drug developer to legally manufacture and market the 

product for profit. But regulatory involvement does not end at this point; 

post-marketing surveillance, also known as Phase IV clinical trial, is 

generally undertaken, in which the company is obliged to report any 

subsequent drug-induced side effects or adverse reactions. Regulatory 

authorities also inspect the manufacturing facilities every two years to 

ensure that satisfactory manufacturing standards are complied (Walsh & 

Murphy 1999). 

1.2.1 Development time, cost, and success rate 

Biopharmaceutical drug development is a lengthy and expensive procedure. 

DiMasi claimed that the estimated average out-of-pocket clinical period cost 

per approved new drug is $361 million, and the average out-of-pocket pre-

clinical period cost per approved new drug is $198 million (DiMasi & 

Grabowski 2007). These results are concluded by evaluating project-level 

aggregated annual expenditure data from biotech firms, and are primarily 

targeted on therapeutic recombinant proteins and monoclonal antibodies 

(mAb). The risks associated with the new drug development process are 

incorporated to derive these figures.  

There are four main factors that drives the drug R&D costs: 1) the out-of-

pocket costs for development phases, 2) the success rates, 3) the 

development times, and 4) the cost of capital (Jorge Mestre-Ferrandiz 2012). 

Several published empirical studies have summarized the out-of-pocket 

costs of different clinical phases from databases of pharmaceutical 

companies. Table 1.1 presents the predominate figures in pharmaceutical 
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and biopharmaceutical product development cost estimations. There are 

significant variations in the out-of-pocket phase costs of almost all phases of 

drug development process among the studies. For clinical trial Phase I to III, 

Bogdan and Villiger’s (2010) estimations of the out-of-pocket costs are 

considerably lower than other sources. 
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Table 1 Published out-of-pocket phase costs for developing pharm
aceuticals and biopharm

aceuticals 

 Source 
Product category 

Pre-clinical 
($m

illion) 
Phase I 
($m

illion) 
Phase II 
($m

illion) 
Phase III 
($m

illion) 
R

eview
 (%

) 

(D
iM

asi et al. 2003) 
Pharm

aceutical 
N

/A
 

15.2 
23.5 

86.3 
N

/A
 

(D
iM

asi 
&

 
G

rabow
ski 2007) 

B
iopharm

aceutical 
59.88

a 
32.28 

37.69 
96.09 

(A
dam

s &
 B

rantner 
2006) 

Pharm
aceutical 

N
/A

 
32 

40 
113 

(B
ogdan 

&
 

V
illiger 

2010) 
B

iopharm
aceutical 

3~7 
4~5 

10~11 
30~60 

3
b 

(Paul et al. 2010) 
Pharm

aceutical 
5 

15 
40 

150 
40 

 a) Pre-clinical cost obtained by m
ultiplying the estim

ated clinical phase cost per investigational m
olecule by a ratio of pre-clinical to clinical expenditures; b) 

the cost of subm
ission in the U

S and Europe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T
able 1.1 Published out-of-pocket phase costs for developing pharm

aceuticals and biopharm
aceuticals 

.  

a Pre-clinical cost obtained by m
ultiplying the estim

ated clinical phase cost per investigational m
olecule by a ratio of 

pre-clinical to clinical expenditures.  

b The cost of subm
ission in the U

S and Europe. 

.  
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In 2003, DiMasi and co-workers estimated that the total development cost 

per drug was $802 million (DiMasi et al. 2003). This was considered to be 

lower than the real situation by Adams and Brantner, who estimated that the 

average capitalized development cost per new drug is $1 billion (Adams & 

Brantner 2006), using the publicly accessible database Pharmaprojects. 

DiMasi responded with new figures that raised the estimation of capitalized 

cost to $1.2 billion for biopharmaceuticals (DiMasi & Grabowski 2007). 

Together, these studies show that the cost of innovation in 

biopharmaceutical industry is rising.  

Adams and Brantner also estimated the durations of clinical trial phases for 

drugs being developed by different groups of firms by market position. The 

average durations of clinical trials for three of the highly ranked groups of 

pharmaceutical firms are presented in Table 1.2. 

Table 1.2 Average phase time for investigational compounds by firm (Adams 
& Brantner 2006). 

 Phase duration (months) 

Development 

stage 

Top 10 by 2001 

income 

Top 20 by Fortune 

rank 

Top 10 by drug 

count 

Phase I 17 21 18 

Phase II 19 23 27 

Phase III 25 29 28 

 

The success rates of monoclonal antibody therapeutics are presented in 

Table 1.3. These data were collected by the Tufts Centre in a study of drug 

development, which included 355 mAb therapeutic products in clinical 

studies sponsored by more than 100 commercial firms worldwide (Reichert 

2001). According to the consolidated results, the type of the mAb also has 

an impact on its clinical trial success rates. As presented Table 1.3, the 

average success rate of mAb therapeutics is around 20%.  
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Table 1.3 Success rates for mAb therapeutics by type and application 

(Reichert 2001). 

mAb type and application Success rate on approval (%) 

Oncological chimeric mAb 18 

Oncological humanized mAb 24 

Immunological chimeric mAb 22 

Immunological humanized mAb 19 

 

The success rates of investigational biopharmaceuticals provide drug 

developers with a picture of the probable outcome of their development 

projects. However, from a development process modeling point of view, the 

phase transition probabilities more accurately characterize the likelihood of 

a product reaching certain development stages. Evaluation of expected and 

capitalized cost for developing novel biopharmaceuticals is largely 

dependent on the phase transition probabilities.  

Several studies have been published on the phase transition probabilities for 

pharmaceuticals and biopharmaceuticals in various therapeutic areas, 

selected results from which are presented in Table 1.4. In the area of 

monoclonal antibodies, a study conducted by Reichert summarized the 

phase transition probabilities for mAb in clinical trials from 1980 to 2000 

(Reichert 2001); those results were further updated when a follow-on study 

focusing on mAb therapeutics from 1980 to 2006 was conducted in 2008 

(Reichert 2008). Table 1.4 shows the data on humanized mAb from these 

studies. For biopharmaceuticals and pharmaceuticals in general, the phase 

transition probabilities were summarized in cost estimation studies, in which 

the expected capitalized cost for developing one successful product was 

estimated based on the number of products required in each phase (DiMasi 

& Grabowski 2007). Additional data came from a study on a database of 

more than 1055 pharmaceutical drugs, summarizing the probabilities of 

entering a given phase, which can also be translated into phase transition 

probabilities displayed in Table 1.4 (Adams & Brantner 2006). The 



Chapter 1  

 23 

probabilities of phase transition from pre-clinical trial to Phase I trial for 

pharmaceuticals was estimated in a study focusing on improving R&D 

productivity for the pharmaceutical industry (Paul et al. 2010). Finally, the 

latest study on clinical success rates of drugs in various therapeutic areas 

summarized the phase transition probabilities for new molecular entities 

(NMEs) and biologics by FDA classification. The phase transition 

probabilities of large molecules and mAbs from Biomedtracker product 

categories were also presented (Hay et al. 2014). These results provide 

important source of information for further analyses.   
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Table 4 Phase transition probabilities of pharm
aceutical and biopharm

aceutical clinical trials 
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1.2.2 Manufacturing biopharmaceuticals 

Biopharmaceutical manufacturing is one of the most highly regulated and 

complex processes that requires intensive control and capital investment for 

design, planning and construction of the facility (Goldstein & Thomas 

2004). The production process can be divided into upstream and 

downstream processing. Upstream processing refers to the generation of the 

product through fermentation or cell culture processes, while downstream 

processing refers to the purification of the product from the fermentation 

broth and the formulation of the final product. The bulk of 

biopharmaceuticals currently on the market are mainly produced by genetic 

engineering using various recombinant expression systems. Although a 

wide range of potential protein production systems are available, most of the 

recombinant proteins that have gained market approval so far are produced 

either in E.coli or in mammalian cell lines. Using E.coli as a source of 

biopharmaceutical production has certain advantages such as the high 

expression rate and rapid growth rate. The vast bulk of proteins synthesized 

by E.coli are intracellular; therefore additional primary processing steps are 

required to break cells, and purification processes are required to separate 

target proteins from other impurities. On the other hand, mammalian cell 

lines as a source of biopharmaceutical production are capable of producing 

special protein products that require post-translational modifications. 

However, compared to E.coli, mammalian cell lines require more complex 

nutritional feeding and the growth is relatively slow. Additionally, 

mammalian cells are often considered more fragile when exposed to shear 

forces. The disadvantages of both expression systems for biopharmaceutical 

production increase the complexity of the manufacturing process and 

production cost.  

The number of patients needed for a clinical study dictates the minimum 

material requirement. Table 1.5 presents details of the typical dosage and 

patient numbers in clinical trials and in market (Simaria et al. 2012).  
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Table 1.5 Typical dosage and patient number for clinical trials and market 

Material requirement level Low Medium High 

Dosage per body weight (mg/kg) 1 7 15 

Dosage (mg), 150kg BW 150 1050 2250 

No. of doses per patient per year 6 26 52 

No. of patients in Phase I 20 40 80 

No. of patients in Phase II 100 200 300 

No. of patients in Phase III 1000 2000 3000 

No. of patients in market 10000 100000 1000000 

 

According to the range of dosage and patient numbers provided in Table 1.5, 

the possible range of batch numbers required for each phase for the three 

material requirement levels can be calculated (see Table 1.6). An illustration 

of the kilogram demands and batch numbers is shown in Table 1.6 for an 

assumed titre of 3g/L for mAb production for small and large scale and 

fermenter space efficiency of 70% (Chon & Zarbis-Papastoitsis 2011). . One 

contingency batch was added for production of each clinical trial stage, as 

there is risk of contamination (Lim et al. 2005). 
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Table 1.6 Material and batch required for clinical trial production.  

Clinical trial material requirement level Low Medium High 

Phase I material (g) per year 18 1092 9360 

Phase II material (g) per year 90 5460 35100 

Phase III material (g) per year 900 54600 351000 

Phase I batch per year (100L) 2 7 46 

Phase II batch per year (500L) 2 7 35 

Phase III batch per year (5000L) 2 7 35 

Note: Titre is assumed at 3g/L level and working volume 70%. One contingency 
batch added for each clinical trial. 
 

1.3 BIOPHARMACEUTICAL PORTFOLIO MANAGEMENT DECISION-

MAKING 

Apart from the characteristics of biopharmaceutical products overviewed in 

the previous section, portfolio management decision-making at an 

organizational level is also driven by parameters both inside and outside the 

boundary of organizations. In this section, the single decision-making 

criterion, net present value (NPV) is introduced, along with a number of 

factors that influence biopharmaceutical portfolio management decision-

making.  

Table 1.7 lists the key factors that influence biopharmaceutical portfolio 

management decision-making. For the decision-makers, these factors can be 

the resource characteristics of the firm, such as the capacity for production 

of biopharmaceuticals at commercial scale and the availability of large 

amounts of R&D budget, or the environment that changes the industrial 

product development landscape and market potential. The factors within the 

boundaries of firms can be altered in the decision-making process in order 

to achieve better outcomes.  The factors outside the boundaries of firms can 

only be treated as given, or inputs to the decision-making process.  
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Table 1.7 Factors that drive the portfolio management decision-making 

Factor Implications to decision-making 

Product market 

potential 

This factor affects the amount of cash inflow once the 

product is approved for marketing. It has no cash flow 

implication if the product fails. Therefore the more likely the 

product goes to market, the more influential this factor 

becomes.  

Capacity 

bottleneck 

This factor could be potentially devastating as it adversely 

influences the capability of drug development firms realizing 

the full value of product. Portfolio management decisions 

should comply with the capacity planning of the firm. 

R&D budget 

Increasing the R&D expense loosens the restriction on 

maximum number of projects the drug development firms 

can take. However, the extra fund could potentially alter the 

cost-of-capital for the firm, depends on the source of the fund 

and existing capital structure of the firm.  

Industrial 

landscape on new 

product 

development 

Key considerations when the environment of new product 

development changes: 

Does it introduce more competition? 

Is there any opportunity to add value by acquiring outside 

products or out-licensing in-house product? 

 

1.3.1 Net present value 

Net present value (NPV) has been widely accepted as the quantitative 

indicator of the value brought by the investment with implications to future 

cash flows. The NPV rule for investment decision-making suggests using 

NPV as the sole criterion and accepting the strategy that maximizes the 

portfolio NPV. Compared to other investment decision-making criteria, the 

NPV rule has the following advantages: 

1. It can be universally applied to almost all industrial decision-making 

optimization scenarios that concern the impact on future cash flows.  
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2. It takes into account the length of investment projects by using the 

discounted cash flow method. 

3. It covers the potential benefit of investment even after the cost of 

investment is fully recovered. Decision-making criteria based on 

payback period only focuses on the length it takes the project to 

recover the cost, but overlook the cash flows generated by the 

project afterwards. Using the NPV rule, decision alternatives that 

lead to different cash flow projections after the cost is fully 

recovered can be distinguished.  

4. Compared to the internal rate of return (IRR) rule, the NPV rule has 

the flexibility of covering the investment projects that may generate 

mixed positive and negative cash flows. With these projects, a single 

IRR cannot be used to describe the returns of investment.  

However, when applying the NPV rule for investment decision-making, the 

users do need to specify the appropriate discount rate, which could be 

difficult to obtain. The concept of discount rate is originated from 

opportunity cost, which requires that the return of investment should be at 

least equal to the investment in financial markets that bears the same risk. 

Failing this, the investment decision will lead to negative NPV. For 

decision-making at corporate level, the firm’s weighted average cost of 

capital is often used as discount rate. 

Empirical studies on cost-of-capital of pharmaceutical and 

biopharmaceutical industry have shown that using capital asset pricing 

model (CAPM), the real cost-of-capital ranges from 8.6% to 9.5% for 

pharmaceutical firms, and 8.6% to 10.3% for biotechnology firms. Using 

Fama and French model (F-F), the cost-of-capital for pharmaceutical firms 

ranges from 8% to 9.5%, and for biotechnology firms it ranges from 8.2% to 

10.5%, depending on the size of the firm (Harrington 2012). 

1.3.2 Construction of industrial manufacturing facilities 

For new biopharmaceutical developers who do not suffer from harsh budget 

constraints, building an in-house manufacturing facility for new product 

manufacturing is considered more profitable than using contract 
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manufacturing organizations (CMO) in the long run (Demeter 2003). A 

previous process simulation and optimization model also suggests that 

building an in-house facility tends to result in more profit in the future than 

using CMOs (George et al. 2007). 

However, the building of an in-house facility is time-consuming and 

expensive. A commercial scale biopharmaceutical manufacturing facility 

normally takes 3 to 4 years to establish, including the design, procurement, 

construction, process qualification and validation (Thiel 2004). Fixed capital 

cost for building a biopharmaceutical manufacturing plant capable of 

producing 50kg therapeutic protein annually is €300 million to €500 million 

with an up-front €100 million for commissioning (Werner 2004). The 

capital investment for building a facility with six 15,000L large-scale 

bioreactors on mAb production is $500 million, and $125 million if using 

disposables and reduce the scale to 2000L (Kelley 2009). Such costs have to 

be taken into consideration when making management decisions.  

1.3.3 Contract manufacturing 

The time factor for R&D of biopharmaceuticals is critical, as developers 

need to recover their investment by pushing products to market. Because of 

the lengthy construction time for building a commercial manufacturing 

facility, drug developers have to plan the fixed capital investment a long 

time before materials are required for the market. Given the uncertainties in 

clinical trial outcomes, it is likely that several companies have invested in 

building manufacturing facilities for a product that eventually failed to reach 

the market. Under such circumstances, CMOs can provide a solution to 

respond to changing capacity needs caused by development uncertainties.  

The batch cost of using a CMO to produce mAb is estimated at $3 million at 

the 15,000L bioreactor scale (Kelley 2009). Unlike using in-house facilities, 

the payment to a CMO is up-front and upon delivery, therefore creating 

discrete cash flow rather than continuous cash flow. But compared to 

building in-house GMP standard large-scale manufacturing facilities, the 

cost of using a CMO is significantly less.  



Chapter 1  

 31 

1.4 SALES OF EXISTING APPROVED HUMANIZED AND FULLY 

HUMAN MAB THERAPEUTICS 

The sales data of existing approved humanized and fully human mAb 

therapeutics were extracted from published reports from the innovator 

companies. Revenues from selling the products across all existing markets 

were included in the annual sales figure, some of which were transformed 

into US dollars using the exchange rate in the corresponding year when the 

report was produced. These consolidated sales figures for approved 

humanized and fully human mAb therapeutics from 1998 to 2009 are 

presented in Table 1.8. Among these FDA approved mAbs, Humira, 

Avastin, Tysabri, Synagis, Lucentis and Herceptin can be categorized as 

blockbusters (annual sales exceeds $1 billion), Vectibix, Campath, Cimzia, 

Raptiva and Xolair can be categorized as medium products (annual sales 

exceeds $100 million), while Zenapax and Soliris can be categorized as 

niche products (annual sales below $100 million). 
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Table 8 A
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(Continued) Note: a – figures extracted from Abbott annual report; b – figures 
extracted from Amgen annual report; c – figures extracted from ILEX Oncology 
annual report; d – figures extracted from Genentech annual report from 2004 to 
2008, 2009 figure extracted from Roche annual report adjusted by exchange rate 
CHF:USD; e – figures extracted from UCB annual report adjusted by exchange 
rate EUR:USD; f – Roche annual report adjusted by exchange rate CHF:USD; g – 
figures extracted from Alexion annual report, in $; h – figures extracted from 
Genentech annual report from 2003 to 2008 and Roche annual report 2009, 
adjusted by exchange rate CHF:USD; i – figures extracted from Elan annual report; 
j – figures extracted from Genentech annual report from 2003 to 2008 and Roche 
annual report 2009, adjusted by exchange rate CHF:USD; k – figures extracted 
from MedImmune annual report from 1998 to 2006 and AstraZeneca annual report 
from 2007 to 2009; l – figures extracted from Genentech annual report from 2006 
to 2008 and Roche annual report 2009 adjusted by exchange rate CHF:USD; m – 
figures extracted from Genentech annual report 1998 and Roche annual report from 
1999 to 2009 adjusted by exchange rate CHF:USD. 
 

1.5 MODELING AND OPTIMIZATION APPROACHES 

Optimization of portfolio management decisions for the development of 

new biopharmaceuticals requires an accurate and comprehensive capture of 

the critical factors involved in this process. Modeling and simulation 

techniques using fast programming tools are capable of incorporating 

numerous critical factors and constructing inter-relations of these factors, as 

well as the uncertainties. Therefore, by providing fast construction of real 

case scenarios, decision-makers can see the consequences of alternative 

choices. Beyond that, using heuristic optimization algorithms, these 

alternatives can be compared, selected and combined in such way that 

advanced solutions can be generated. Optimization of decisions, or 

combination of decisions is made possible by combining model simulation 

with optimization algorithms.  

Portfolio management and capacity planning are vital to the success of 

pharmaceutical and biopharmaceutical developers. Hence there is a need for 

suitable tools that facilitate the decision-making process in these fields. 

Simulation-based tools are useful due to their ability to generate the likely 

outcomes of a given decision, from which further analyses can be performed. 

Rajapakse et al. (2005) proposed a computer-aided simulation tool to model 

the biopharmaceutical drug development pathway, comparing portfolio 

NPVs of various decision-making scenarios. A further study incorporating 
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Monte Carlo simulation to capture the inherent uncertainties in drug 

development such as development time, COG, and yield, was developed to 

more accurately establish portfolio risk-reward characteristics (Rajapakse et 

al. 2006). George et al. (2007) proposed a multi-criteria decision-making 

framework to provide a holistic evaluation of capacity sourcing decisions 

from both financial and operational perspectives. While simulation-based 

tools have demonstrated their capability of linking a decision with its 

outcomes, the decision-maker is usually confined to the limited choices 

provided by the scenario analysis. Therefore, optimization-based tools were 

developed to search large decision spaces for the optimal decisions that 

otherwise may be hidden from the decision-maker. Broadly, these 

optimization tools use either mathematical programming methods or 

heuristic algorithms. The former transforms the problem into mathematical 

formulas and feeds them into a computational solver for optimal solutions, 

whereas the latter makes slight modifications to existing decisions in an 

iterative fashion based on concepts such as evolutionary selection.  

Mathematical programming is often applied to the capacity planning and 

supply chain management problems. Papageorgiou et al. (2001) proposed an 

MILP formulation of pharmaceutical supply chain management problem 

that takes into account the manufacturing of API and the global trading 

structures. This deterministic model is capable of processing up to 8 

products in the company’s portfolio. Further developments of the tool 

enabled it to capture the uncertainty in demand (Levis & Papageorgiou 

2004) and clinical trial outcomes (Gatica et al. 2003). Sousa et al. (2011) 

improved this tool’s capability in processing long-term strategic planning 

problems with large portfolio and multi-production sites by implementing a 

decomposition algorithm with MILP. Lakhdar et al. (2006) developed a 

biopharmaceutical supply chain management tool for planning and 

scheduling of multiple products in a single facility using MILP, with a focus 

on facility utilization and cost reduction. This tool was later improved by 

adding the capability to process multi-facility problems under demand 

uncertainty, as well as to pursue more objectives such as customer service 

level (Lakhdar et al. 2007). Siganporia et al. (2013) proposed an MILP 
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approach to address multi-site production planning of biopharmaceutical 

products with either fed-batch or perfusion bioprocesses. However, the 

analysis was based on fixed product candidates. There have been no 

previous studies focusing on scenarios in which the decision-maker is 

exposed to portfolio selection problems with given manufacturing facilities.  

Despite the development of mathematical programming-based optimization 

tools in capacity planning and supply chain management fields, it is not 

used as often in portfolio management scenarios. This may be due to the 

difficulty of translating pipeline development performance into 

mathematical formula. Mathematical programming does not easily provide 

information beyond the optimal decisions, which could be obtained by 

running a simulation-based tool with the given decision. To solve this 

problem, several tools combining mathematical programming with discrete-

event simulation in portfolio management scenarios were developed 

(Subramanian et al. 2000; Varma et al. 2007).  

The other approach uses evolutionary algorithm as the heuristics, making 

use of simulation-based tools and optimizing the decisions based on the 

feedback from the simulation process. Blau et al. (2004) developed a 

portfolio management tool with a genetic algorithm to select the optimal 

candidate combination and sequence of development. George & Farid 

(2008a) proposed a stochastic optimization framework that incorporates 

decisions in portfolio selection, activity scheduling, and outsourcing in 

clinical research and manufacturing. Probabilistic model building genetic 

algorithms using Bayesian networks were used here to solve the 

combinatorial optimization problem. The tool optimizes the solutions 

towards higher potential reward in terms of portfolio ENPV and lower risk 

of NPV below zero. This tool was extended to be capable of incorporating a 

minimum NPV constraint in its optimization process (George & Farid 

2008b).  

Although these studies have demonstrated the possibilities of using various 

tools to push the boundaries of portfolio management and capacity planning, 

they have not focused on the consequences of the optimal solutions on the 
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budget distribution across the various activities such as clinical trials, 

manufacturing, and process development. Importantly, these details are 

essential to benchmark and enhance the understanding of the implications of 

certain decisions.  

Simulation and optimization techniques are also featured in mAb process 

economics tools. Farid et al. (2005) developed a decision-support tool for 

antibody manufacturing to facilitate the decision between stainless steel and 

disposable facilities under different product demands and titres. Lim et al. 

(2006) compared fed-batch with perfusion culture for mAb processing from 

COG and capital investment perspectives. This approach incorporates the 

uncertainties in titre and yield with Monte Carlo simulation. Pollock et al. 

(2013) made use of stochastic discrete-event simulation to compare process 

economics between fed-batch and perfusion cell culture. Using the same 

technique, Stonier et al. (2012) developed a decision-support tool to assess 

the process robustness of chromatography options used in antibody 

purification. MILP and MINLP were also featured in biopharmaceutical 

facility design, especially in optimal chromatography process design (Liu et 

al. 2013a; Liu et al. 2013b). Simaria et al. (2012) developed a multi-level 

decision-making tool using genetic algorithms to facilitate chromatography 

sequence and column size optimization. Allmendinger et al. (2014) 

introduced an evolutionary algorithm for optimizing mAb purification 

chromatography sequence and column sizing towards multiple objectives 

including COG/g, process robustness, and capability of removing the 

impurities.  

The decision-maker can also make use of several commercially available 

solutions for optimization and simulation purposes. The Decision Tools 

Suite from Palisade is a general-purpose decisional tool based on Microsoft 

Excel, which uses Monte Carlo simulation for stochastic modeling, and is 

capable of implementing decision tree, neural networks, and evolutionary 

algorithms for various decision-making scenarios. As the tool is Excel-

based, it is not ideal for performing rapid data manipulation on a large scale, 

though it can be useful for product prototyping. Phoenix from Certara 

(formerly Pharsight) is a clinical trial modeling software platform for 
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processing pharmacokinetic, pharmacodynamics, and toxicokinetic data. 

Aspen Economic Evaluation package from Aspentech is a multipurpose 

chemical process optimization and economic evaluation software. BioSolve 

from Biopharm Services, a biopharmaceutical manufacturing process 

simulation software based on Microsoft Excel, provides the user with the 

flexibility of changing scale from lab to commercial, and is capable of 

rapidly establishing processes that can be configured as vaccine or mAb 

processes. It creates a dashboard-like process report that includes economic 

metrics.  

1.6 AIM AND ORGANIZATION OF THESIS 

The previous sections presented a description of the main subjects of the 

biopharmaceutical drug development process that are involved in portfolio 

management decision-making, emphasizing the key factors and 

methodology that drive the decision-making process. Modelling and 

optimization approaches addressing the above factors are reviewed with 

attention to their techniques and application scenarios. Despite the coverage 

of existing research on the subject, a portfolio management decision-making 

tool that provides full flexibility towards candidate selection and provides 

reports on critical portfolio cost characteristics for capacity and budget 

planning is still absent.  

The aim of this thesis is therefore to develop computational decision tools 

that produce quality solutions to biopharmaceutical portfolio management 

problems under changing circumstances, and to provide guidance to the 

related implementation issues from a cost evaluation prospective. The 

remainder of the thesis is structured around achieving this goal.  

In Chapter 2, a drug development lifecycle cost model is proposed for the 

purpose of cost evaluation of biopharmaceutical portfolio development. 

Monte Carlo simulation and dynamic simulation mechanisms are integrated 

in this activity-based, object-oriented tool to enable the capability of 

allocating resources under development uncertainties. A bespoke multi-

objective evolutionary algorithm is created so as to optimize portfolio 
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management decisions based on their calculated risk-reward characteristics. 

Features such as the data management system that produces reports 

regarding the performance of solutions, and the details of the drug 

development process are also described in this chapter. 

Cost evaluation of biopharmaceutical portfolio development using the drug 

development lifecycle cost model is presented in Chapter 3. Benchmarks of 

industrial average costs of developing a single product and a portfolio of 

products aiming at one market success per year are generated, with special 

attention to the cost spent on non-clinical activities. Scenarios that feature 

optimistic and pessimistic assumptions of drug success rates are also 

investigated, with various sources of out-of-pocket development costs. An 

analysis of the implications of drug development delay in the portfolio 

context discovers the cost of managing the delay at a tolerable level.  

Based on the cost benchmarks produced in Chapter 2, the implementation of 

the stochastic optimization tool for biopharmaceutical portfolio 

management decision-making is presented in Chapter 3. A hypothetical 

candidate pool is formulated with products of distinct risk-reward 

characteristics. Portfolio management decisions are optimized under various 

budget and capacity constraints, and the trends of optimal solutions are 

investigated, as well as their cost distribution details across the development 

timeline. The candidate pool is further diversified by introducing product 

candidates that are more advanced in the development process, but require 

upfront cost to develop. Optimization of portfolio management decisions 

under different budgets and upfront payments is explored, with the analysis 

on critical decision boundaries regarding the acquisition of outside products. 

In Chapter 5, the application of the drug development lifecycle cost model 

focuses on the emerging cell therapy industry. The differences in clinical 

trial, manufacturing, and process development activities between cell 

therapy and biopharmaceutical products are reviewed and the related costs 

are estimated. Cost evaluation of cell therapy portfolio development is 

performed and the results compared against those for biopharmaceuticals. 

Estimations of cell therapy market potential and gross margin are made to 
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extend the analysis of portfolio expected NPV and its vulnerability against 

delays in late stage development due to the potential market competitions. 

Finally, Chapter 6 summarizes the main contribution of this work and 

discusses likely directions for future work. 

 



CHAPTER 2  

COMPUTATIONAL DECISION TOOLS FOR STOCHASTIC 

OPTIMIZATION AND COST EVALUATION OF 

BIOPHARMACEUTICAL PORTFOLIO DEVELOPMENT  

2.1 INTRODUCTION 

As discussed in the previous chapter, studies on biopharmaceutical cost 

modelling have been focusing on total stage costs and overall out-of-pocket 

and capitalized costs, rather than how these costs distribute across clinical 

and non-clinical activities. In this chapter, a drug development lifecycle cost 

model is proposed to capture the cost distribution characteristics in drug 

portfolio development by decomposing drug development stages into 

clinical trials, manufacturing, and process development activities. More 

detailed implementations of this cost evaluation tool are presented in 

Chapter 3 and Chapter 5, featuring portfolio development of pharmaceutical, 

biopharmaceutical, and cell therapy products.  

Based on this drug development lifecycle cost model, an improved portfolio 

development model was designed, with Monte Carlo simulation to capture 

the effect of uncertainties and dynamic simulation to model the resource 

allocation process. This model was implemented as the evaluation engine of 

the stochastic optimization tool, which could be used to support portfolio 

management decision-making by providing appraisals for strategic 

decisions. A multi-objective evolutionary algorithm (MOEA) was adapted 

from the publicly available jMetal package (Durillo & Nebro 2011) and 

tailored to facilitate the decision-making of biopharmaceutical portfolio 

management. The algorithm inherits the concept of NSGA-II (Deb et al. 

2002) and uses NPV distributions provided by the portfolio development 

model as objectives for optimization. A binary string representation of 

decision variables was designed as the solution structure to allow the 

selection of any number of product candidates into the R&D portfolio. The 
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implementation of this stochastic optimization tool is presented with various 

candidate pools in Chapter 4. 

The remainder of this chapter is structured as follows. Section 2.2 describes 

the overall structure of the optimization tool, whose main components are 

separately described in the following 3 sections. The evaluation engine 

based on the drug development lifecycle cost model is discussed in Section 

2.3. The adaptation of MOEA and its working process is described in 

Section 2.4. The design of the output formats of data reports generated by 

the stochastic optimization tool, as well as the tool for data visualisation, are 

presented in Section 2.5.  

2.2 THE OVERALL STRUCTURE OF THE STOCHASTIC 

OPTIMIZATION TOOL 

The stochastic optimization tool for strategic portfolio decision-making in 

biopharmaceutical new product development is comprised of 3 functional 

components: 1) an optimization algorithm, for generating and optimization 

the strings representing portfolio management solutions, which can be 

evaluated in 2) the evaluation engine, for evaluating the quality of solution 

by constructing the portfolio development process and simulating cash flow 

performance under resource constraints and uncertainties; and finally, the 

results from the aforementioned components are collected and analysed by 

3) a data management system. A detailed diagram illustrating the 

interactions of these 3 components is presented in Figure 2.1. 
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Several prototypes of the stochastic optimization tool were built either in 

Java or in Excel with proprietary add-in for evolutionary algorithm and 

Monte Carlo simulations. The pros and cons of these modelling alternatives 

are presented in Table 2.1. Java was chosen as the modelling environment 

primarily due to its flexibility and high performance, in particular the 

object-oriented features that facilitate the design of activity-based portfolio 

development lifecycle, although it lacks instant database solution and data 

visualization tools. Nonetheless, Excel was useful for model prototyping 

since its build-in formulae and charts allow quick analysis of the results, 

which can help understanding model logics and identifying key design 

pitfalls.  

Table 2.1 Pros and cons for Java and Excel as modelling environment.  

Java Excel 

Object-oriented, highly flexible Spread-sheet based, semi-flexible 

(require using VBA for in-depth 

design) 

Professional package for implementing 

evolutionary algorithm, available for 

public 

Proprietary add-ins for genetic 

algorithm 

High performance with Java virtual 

machine 

Relatively slower 

Portable, cross-platform Available exclusively on PC and Mac 

systems 

No integrated database Integrated database with spread-sheet 

functionality 

Requires outside tools for data analysis 

and visualization 

In-house data analysis and 

visualization 

Requires outside tools for collaborative 

development 

Collaborative development achieved 

by Microsoft online services 

Note: The features of Java programming language described here is representative 
for most object-oriented programming language such as C#. Most of the features of 
Excel in this table can also be used to describe numerical computing tools such as 
MATLAB in terms of modeling biopharmaceutical portfolio development. 
 



Chapter 2 

 44 

2.3 THE EVALUATION ENGINE 

The role that the evaluation engine played in the stochastic optimization tool 

was to provide an assessment of a single solution in terms of two key 

statistics of the NPV distribution, namely the average positive NPV and the 

probability of NPV being positive. A drug development lifecycle cost model 

was developed as the backbone of the evaluation engine that provided fast 

characterization of cost distributions of portfolio development for certain 

product categories. The model first established development pathways for 

products within the portfolio, then scheduled all related activities of clinical 

trials, manufacturing, and process development for either cost evaluation, or 

the more sophisticated Monte Carlo simulation if stochastic optimization 

was required. A schematic of the running mechanism of the evaluation 

engine is presented in Figure 2.2, in which the drug development lifecycle 

cost model is surrounded by dash lines.  

As illustrated in Figure 2.2, the scope of simulation and modelling for this 

evaluation engine was limited to the activity level and above. The core 

elements of simulation were the components of drug development lifecycle, 

namely the clinical trial, manufacturing, and process development activities. 

This evaluation engine did not model the manufacturing process of a 

particular product explicitly, nor did it model the supply chain characteristic 

for transferring bulk materials from manufacturing facilities to clinical trial 

sites. Under the scope of this work, the more detailed simulations were 

considered to be of little impact to the overall performance of portfolio 

development decision-making, though they do matter in reality. Variations 

generated in Monte Carlo simulations regarding the durations and costs of 

activities can be seen as the results of different manufacturing practises or 

supply chain management decisions. Therefore the user can place his/her 

attention on the drug development lifecycle activities and how they interact 

with the resource constraints.   
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2.3.1 The drug development lifecycle cost model 

The design of the drug development lifecycle cost model followed a top-

down, activity-based approach. It created objects to represent the drug 

developing company, the drug candidates, and the activities that needed to 

be carried out in the development lifecycle. The object-oriented design of 

the classes is described in the following paragraphs, focusing on their 

specific fields and methods. The description format in these paragraphs also 

follows the naming convention that uses concatenated words each starting 

with upper case to represent class names, and lower case separated by 

underscores to represent object and method names.  

Table 2.2 presents the key aspects in designing the “Company” class for the 

drug development lifecycle cost model. This class has its specific attributes 

such as the list of portfolio products and manufacturing facilities. It also 

functions to assemble portfolio products based on the values of decision 

variables. The resource attributes, i.e. the budget and manufacturing 

facilities, were inactivated during cost evaluation process.  

Table 2.2 Key aspects of object-oriented design of the “Company” class.  

Field type Field name  

String name As the identifier of the company 
object. 

List<Drug> drugs The list of portfolio products. 

Budget budget The company’s annual R&D budget. 

double cost_of_capital The discount factor employed by the 
company for calculations of DCF and 
NPV. 

List<ManuFacility> mfs The list of manufacturing facilities 
within the company. 

Method return type Method name 

(argument) 

 

void assemble_drugs 

(int[] decisions) 
Take portfolio management decisions 
as input, assemble drugs into 
development portfolio. 

Note: The fields and methods presented in this table do not include common 
object-oriented programming elements such as object constructor. 
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Following the construction of a company object, several drug objects were 

created with key design aspects described in Table 2.3. Drug specific 

attributes such as starting stage and market potential were included, as well 

as the method to assemble all relevant development activities from clinical 

trial, manufacturing, and process development into a list of activities.  

Table 2.3 Key aspects of object-oriented design of the “Drug” class.  

Field type Field name  

int drug_number As the identifier of the drug object. 

int starting_stage The starting stage of drug, represented 
by integer indexing of development 
stages. e.g. “starting_stage = 0” means 
the drug starts at pre-clinical stage. 

double market_potential The value of the drug should it receive 
FDA approval. 

List<Activity> activities The list of activities that included in the 
drug development lifecycle. 

boolean successful The result of drug development for a 
given Monte Carlo simulation. This and 
the following 2 attributes are reset for 
every Monte Carlo simulation. 

int time_to_market The time of drug receiving FDA 
approval to market. 

int current_stage The current development stage of the 
drug. It is updated every time the drug 
enters another development stage. 

Method return 
type 

Method name 

(argument) 

 

void assemble_activities() Construct the drug development 
lifecycle by assembling activities of 
clinical trial, manufacturing, and 
process development. 

void reset() Reset the drug development status for 
every Monte Carlo simulation. 

Note: The fields and methods presented in this table do not include common 
object-oriented programming elements such as object constructor. 
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There were fields reserved for the drug object to record its development 

status during the running of Monte Carlo simulations including the result of 

development, the timing of product market approval, and the current stage 

of development. These fields were reset for every Monte Carlo simulation 

and inactivated when running the application for cost evaluation purpose.  

Activities created by the drug objects can be divided into 3 distinct sub-

classes, clinical trial, process development, and manufacturing. They were 

all inherited from the abstract “Activity” class described in Table 2.4. The 

key features that the design of the “Activity” class enables in drug 

development lifecycle cost model were the capability of distinguish costs 

from various origins and fast scheduling of activities according to their 

dependencies. Once the scheduling of activities was finished, portfolio 

development cash flow can be generated for cost evaluation purpose.  

A large portion of design aspects of the “Activity” class was dedicated to 

accommodate Monte Carlo simulation and dynamic simulation in stochastic 

optimization. This included the actual timing of activities, the mechanisms 

regarding the triggering, progression, and finishing of the activities, and 

interruptions whenever the project fails. These are discussed in the 

following sub-sections.  
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Table 2.4 Key aspects of object-oriented design of the “Activity” class.  

Field type Field name  

Drug drug The drug it belongs to. 

int stage The integer indexing of development 
stage it belongs to. 

String activity_type The type of activity (clinical trial, 
manufacturing, or process 
development). 

int duration The duration of activity. 
int cost The total cost of activity 
boolean starting If the activity is the starting activity of 

development lifecycle. 
Activity next Next activity. 

int time_start The planned starting time of activity. 
int time_start_s The actual starting time of activity. For 

each Monte Carlo simulation, the 
starting time of activity can be different 
due to delays from previous activities 
or lack of resources.  

int time_end_s The actual end time of activity. 
int elapsed_time The actual elapsed time of activity 

during dynamic simulation. 

boolean triggered Record the status of activity during 
dynamic simulation. 

Method return 
type 

Method name 
(argument) 

 

boolean triggering() Checking if the conditions of activity 
starting are met. If yes, start the 
activity. 

int progressing() Activity progression in dynamic 
simulation. Effective progression 
returns the associated cost and 
increases the elapsed time of activity. 

boolean interrupted() The activity gets interrupted when 
product fails in clinical trials. 

boolean finishing() Activate the finishing process when 
elapsed time equals the duration of 
activity.  

void reset() Reset development status. 
Note: The fields and methods presented in this table do not include common 
object-oriented programming elements such as object constructor or the ones 
created for data collection purposes. 
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2.3.2 Monte Carlo simulation 

Monte Carlo simulation is implemented here to address the uncertainties in 

the various stochastic inputs, including clinical trial lengths and costs, 

product market potentials, and most importantly, the pass/fail result of 

clinical trials. Random values are generated to represent such uncertainties 

based on assumptions of their distributions. For quantitative stochastic 

parameters such as duration of activities, product market potential, and costs, 

this tool is capable of generating random numbers following Gaussian, 

triangular, and Poisson distributions, the selection among which can be 

altered by user requirement. For the pass/fail result of clinical trials, the tool 

generates binary random values based on the phase transition probabilities. 

The random values are only generated when they are needed for efficiency 

consideration. Since during the simulation of portfolio development process 

many activities may not even be triggered, it would be a waste of 

computation time to prepare random values for their stochastic parameters. 

The market potential information is generated when the drug obtains FDA 

approval. Similarly the costs and durations of activities are generated only 

when the activities are triggered, and the pass/fail results of clinical trials are 

generated at the end of clinical trials. The random values are removed once 

a new Monte Carlo simulation is initiated by the “reset()” method included 

in the key design aspects of company, drug, and activity classes. At the 

same time, a new random number generator is created with a different seed 

to maintain the randomness. 

To determine the sufficient number of Monte Carlo simulations needed for 

providing full coverage of NPV distributions, the running average of 

portfolio NPV is analysed for 20 distinct solutions with uncertainties from 

clinical trial results. Figure 2.3 shows the convergence of NPVs as the 

number of Monte Carlo trials increases. In most situations, the NPVs 

converge before 100 trials. Increasing the number of Monte Carlo 

simulations from 100 provides little improvement in terms of capturing the 

distribution of NPVs. However, it may be necessary to re-configure the 
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number of Monte Carlo trials as the level of uncertainty changes, or when 

additional mechanism that complicates the process is introduced.  

 

Figure 2.3 Cumulative running averages of NPVs throughout multiple Monte 
Carlo simulations.  

This is a fraction of a bigger graph consists of 20 cumulative running average plots 
for 20 different solutions. The x-axis is the number of Monte Carlo trials and y-axis 
is the cumulative running average of NPVs for existing number of Monte Carlo 
trials. 
 

2.3.3 Dynamic simulation with resource constraints 

The introduction of uncertainties makes it impossible to predict the exact 

timing of activities during the simulation of biopharmaceutical portfolio 

development process. The problem is further complicated by the 

requirement to allocate resources between activities based on their timing 

precedence. Therefore, a dynamic simulation approach was proposed under 

the activity-based framework of drug development lifecycle cost model to 

represent how biopharmaceutical portfolio development takes place. This 

approach breaks up the time into small slices and updates the states of 

activities by moving the time horizon from one slice to another.  

This approach can be implemented by using commercial simulation 

packages capable of dynamic continuous simulation like ExtendSim. 
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However, the software is overly complex compared to the simulation 

requirement of this approach. It is not economical to make the purchase 

without using most of its functions. In addition, the level of control over the 

simulation process cannot be fulfilled by the proprietary software without 

the proper application interface with other modules of the tool. Therefore 

dynamic simulation is purposely built into this tool. 

Before initiating the dynamic simulation, critical starting times need to be 

established for activities that do not depend on other activities to start. This 

is accomplished by the scheduling procedure in the drug development 

lifecycle cost model, and is based on the planned durations of and the 

dependencies between the activities. The dynamic simulation process takes 

the planned starting time of the independent activities as their actual starting 

time. For other activities, their timings will be determined during the 

running of dynamic simulation. The scheduling procedure runs only once 

during the evaluation of one solution for efficiency considerations.  

The Monte Carlo simulations start when the scheduling procedure finishes. 

For each Monte Carlo simulation, the dynamic simulation moves the time 

horizon from the starting point of portfolio development to a given future 

time specified by the user.  

The dynamic simulation implemented here updates all activities for each 

time slice by invoking their triggering, progression, and finishing 

mechanisms, which were built into the model. Activities are divided into 

categories where they inherited the abstract methods from the “Activity” 

class, but the implementation of these methods differs. The three major 

categories and their mechanisms are presented as follows. 

• Category 1: Clinical trials 

The clinical trial activity category includes all the activities that trigger a 

pass/fail judgment at the end of their duration. By this definition, activities 

such as pre-clinical trials and FDA reviews are also included in this 

category, even though they are not actual clinical trials. Another feature of 

clinical trial activities is that they are normally on the drug development 
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critical path. The triggering, progression and finishing mechanisms of 

clinical trial activities are shown in Figure 2.4.  

The triggering mechanism first checks if the activity is already triggered, 

and if not, it will then check if the activity meets the triggering conditions. 

For clinical trial activities, the triggering conditions normally include 1) the 

corresponding manufacturing activity has finished to supply the required 

material, and 2) the previous clinical trial has finished and the result is 

successful. All satisfied, the clinical trial activity is then triggered, and the 

actual start time is set to the current time and activity elapsed time is set to 0.  

For an already triggered clinical trial activity, the progression mechanism is 

activated instead. Progression mechanism checks if there is enough budget 

left for the activity to carry on. If yes, the consumption is deducted and the 

progression is recorded by increasing the elapsed time by 1 unit time. The 

mechanism also reports the incurring cost to cash flow data collection.  

The finishing mechanism is invoked once the activity elapsed time equals its 

duration. For a clinical trial activity, the pass/fail result is produced by 

generating a uniformly distributed random number between 0 and 1 and 

comparing it to the phase transition probability of the activity. If the latter is 

smaller, the activity fails. The finishing mechanism also sets the current 

time as the activity’s actual end time and changes the value of end status to 

true to prevent re-invoking the progression mechanism in the next unit time. 

If the activity passes, the triggering condition will be changed for the next 

activity. Otherwise the finishing mechanism will shut down the project by 

calling the “interrupted” method of all concurrent activities for this product. 
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• Category 2: Manufacturing 

Manufacturing activities are defined as the activities that require 

manufacturing facilities to start. The design of the dynamic simulation 

mechanisms of manufacturing activities is presented in Figure 2.5.  

Similar to clinical trial activities, the triggering mechanism of a 

manufacturing activity first checks if the activity is already triggered, then 

checks if the activity meets its triggering conditions, which in this case is 

the successful completion of corresponding process development activity. 

The triggering mechanism of manufacturing differs from that of clinical 

trials in that even if all conditions are satisfied, it requires spare facility to 

start. The idle facility that the company has access to will be marked 

“occupied” once it undertakes the manufacturing activity. The progression 

mechanism of manufacturing activities is exactly the same as the one of 

clinical trial activities. The finishing mechanism is invoked once the elapsed 

time equals the duration of activity. The finishing of manufacturing activity 

does not require randomly generated number to decide whether the activity 

is successful; instead, it releases the manufacturing facility by changing its 

status from “occupied” to “idle” so that it is able to undertake other 

manufacturing tasks. Completion of a manufacturing activity changes the 

triggering condition of its next activity, clinical trial in most cases.  
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• Category 3: Process development 

Similar to clinical trial activities, the process development activities only 

require one resource for its progression, the budget. The key distinction of 

process development activities is that they do not depend on other activities 

to start. Their start times for dynamic simulation are established by the 

scheduling procedure that plans the activities based on the need of clinical 

trials. Hence the triggering condition for process development activities 

only requires that the current time is the planned start time.  

Figure 2.6 illustrates the state changes for activities from clinical trial, 

manufacturing, and process development in an example of dynamic 

simulation. Activity A and C are triggered from the start because they 

require no previous activities. They remain triggered until unit time 3 when 

Activity C is finished, which changes the triggering condition for its 

successor, Activity D. When unit time 4 hits, Activity D is triggered as its 

triggering conditions are met. In this particular example, because the length 

of Activity D is only 1 unit time, the finishing time of Activity D coincides 

with that of Activity A, making all triggering conditions satisfied for 

Activity B. Had the random generator produced a slightly longer duration 

for Activity D, Activity B would be delayed due to a lack of material supply 

from its corresponding manufacturing activity. On the other hand, if 

Activity A lasts a little longer, Activity B can not be triggered either since 

one of the triggering conditions for clinical trials is that the previous trial 

must have finished. At unit time 5, Activity B is triggered and it progresses 

through the rest of unit times in the diagram. The states of Activities A, C, 

and D are all “end” so their progression mechanism cannot be activated.  

The setup of the tool defines that the durations of activities are positive 

integer values, with the unit time being 1 week. Therefore, the durations of 

activities illustrated in Figure 2.6 are all multiples of a week. Further 

dividing the unit time is considered unnecessary at this level of simulation. 
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2.4 THE OPTIMIZATION ALGORITHM 

The purpose of optimization algorithm is to efficiently search the decisions 

space and find the optimal solutions based on the appraisals provided by the 

evaluation engine. As described in previous subsections, the simulation of 

biopharmaceutical portfolio development lifecycle with uncertainties and 

resource constraints involves complex mechanisms that pose a challenge to 

conceptually formulating the problem in mathematical form. With the entire 

evaluation engine being activity-based, a more intuitive approach is to use 

genetic algorithm as a search heuristic for finding the optimal solutions. 

This approach also has the following advantages. 

• Genetic algorithm can achieve relatively fast convergence to global 

optimum regardless of the fitness landscape. The mutation operation 

performed during the replacement of the previous generation of 

solutions enables random drift from the local optima.  

• The repeated fitness function evaluation feature of genetic algorithm 

fits well with the Monte Carlo simulation, as the increased number 

of evaluation improves the quality of fitness value. Meanwhile, the 

evaluation process is fast with the activity-based evaluation engine, 

presenting the repeated evaluation as the performance bottleneck of 

the tool. 

• For the portfolio management problem, the design of integer-based 

solution structure is simple and intuitive. Unlike problems with real 

number solutions, integer-based solution in genetic algorithm does 

not need further translation. It is a direct representation of strategic 

portfolio management decision-making. 

• Genetic algorithm produces an optimal set of solutions so that the 

user of this tool have more options in choosing the best strategy 

based on his/her preference toward implementation. This feature is 

particularly advantageous in the context of multi-objective 

optimization as competing solutions can be presented within 1 

Pareto optimal front.  
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Despite these advantages, there are limitations that require special attention 

in the design and implementation of genetic algorithm. First, there are no 

definite termination criteria for the algorithm. The algorithm can in theory 

run forever without having any improvement to its optimization objectives. 

It is therefore necessary to arbitrarily set up a termination criteria based on 

the progression of convergence to a specific problem. A trial run should be 

performed ahead of the actual optimization and the progression of 

objectives should be monitored. A decision on how many generations to run 

can then be reached by comparing the cost of an extra generation against the 

benefit in terms of improvements in objectives.  

Second, to maximize the performance of the algorithm, the user need to set 

up the running parameters for a given problem. These parameters include 

the crossover rate, the mutation rate, and most importantly, the size of the 

population. Trial runs with different combinations of these parameters 

should be performed ahead of optimization to explore the optimal setup that 

maximizes the improvement of objectives within a given number of 

evaluations.  

Third, for some solution structures, it is possible that “illegal” solution be 

generated during the optimization process, i.e. solutions that are not 

applicable for evaluation is generated. Evolution strategies are required in 

dealing with these “illegal” solutions. Viable options are 1) eliminating the 

possibility of generating “illegal” solutions by the specific design of 

solution structure; or 2) fixing the “illegal” solutions so that they are 

applicable for evaluation; or 3) setting up penalty mechanisms when “illegal” 

solutions are generated.  

The first 2 limitations are problem-specific. Therefore they are addressed in 

the implantation of the algorithm. The design of solution structure in this 

tool is inherently immune to the 3rd limitation as described in the following 

subsection.  
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2.4.1 Solution structure 

Portfolio management decisions typically concern the selection from a 

group of investment assets, in this case, product candidates of various 

characteristics. With each individual product candidate, the key question is 

whether it should be in the development pipeline, given the circumstances 

of the decision maker. Hence a solution structure in the form of a binary 

string with its length equal to the number of product candidates is proposed 

to represent the portfolio management strategy. Each bit of this binary string 

represents a unique product candidate, with the value of this bit representing 

the decision of whether to include this product candidate into the portfolio. 

See Figure 2.7. 

As mentioned before, this design completely eliminates any possibility of 

generating “illegal” solutions as long as all product candidates are eligible 

for development. The design of binary string as solution structure also 

provides utility in situations where updating product candidate pool happens 

frequently. The capability of embracing changes to the candidate pool 

matters as the ground is shifting every day in modern pharmaceutical 

industry with new discoveries and technologies emerge rapidly. For every 

new product candidate, the decision-maker can simply add it to the list of 

existing candidates without causing any conflicts.  

Compared to a design of using integers to represent the portfolio selection 

decisions, the binary string representation has the flexibility of choosing any 

number of candidates, therefore releasing the full potential that can be 

achieved by the optimization algorithm. Restrictions on how many 

candidates to choose can also be conveniently installed onto the binary 

string by limiting the number of 1 value in its bits.  
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Figure 2.7 A
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From a performance point of view, the binary string solution structure is the 

most time-saving in crossover and mutation operations, which can be 

repeated for thousands of times in running of a genetic algorithm with 100 

generations and 100 solutions in the population.  

The decision space of portfolio management optimization, in the form of 

binary string solution structure, is 2N where N is the number of candidates 

for selection. Assuming constant time cost for each evaluation, the problem 

is obviously not polynomial time solvable with any algorithm that is based 

on traversing through all viable solutions, justifying the use of 

metaheuristics for more efficient searching of decision space. A medium-

size biopharmaceutical company can easily have a 10-product pipeline. For 

big pharmaceutical companies, their pipeline sizes normally range from 30 

to 100 with compounds from various therapeutic areas at different clinical 

stages. With in-licensing option enabled, the number of eligible product 

candidates can reach 30 for small and medium biopharmaceutical 

enterprises and 200 for big pharmaceutical companies. Therefore the 

maximum decision space for small and medium biopharmaceutical 

enterprise is around 109, for big pharmaceutical companies approximately 

1060.  

2.4.2 Optimization objectives 

Net present value (NPV) is widely accepted as the key criterion for 

investment decision-making. The methodology of applying NPV rule to 

decision making is to compare NPVs of all investment strategy alternatives 

and choose the one that gives the highest NPV. For the purpose of this tool, 

the investment strategy alternatives are the solutions to biopharmaceutical 

portfolio development decision-making, which is discussed in the previous 

subsection.  

At the evaluation engine, the tool takes the solution as input and produces 

the cash flows projections by performing Monte Carlo simulation and 

dynamic simulation. NPV can be obtained by using the discounted cash 

flow method:   
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𝑁𝑃𝑉 =
𝑅!

(1+ 𝑖)!

!

!!!

 

Where t is the time when cash flow is generated, 𝑅! is the amount of cash 

flow generated at time t, i is the discount factor, and n is the scope of time 

range of dynamic simulation. As described before, in the drug development 

lifecycle cost model, the R&D expenses are viewed as negative cash flow 

(cash outflow) and the profits from marketing the product are considered 

positive cash flow (cash inflow). It is possible for NPVs to be negative 

because the discounted cash outflow may outweigh the discounted cash 

inflow. In investment terms, the decisions that lead to negative NPVs are 

considered failure in meeting the pre-determined return on investment.  

However, with the integration of Monte Carlo simulation capturing the 

uncertainties inherent in drug development process, instead of one single 

NPV, a distribution of NPVs is produced as results of various runs of cash 

flow projections. Key statistics describing the NPV distribution is adopted 

as the optimization objectives. They are 1) the average of positive NPVs 

(APNPV) and 2) the probability of NPVs being positive (p(NPV>0)). The 

former represents the potential reward should the NPV turn out to be 

positive, the latter reflects the possibility of this happening.  

The rationale behind the selection of optimization objectives is twofold. 

First, the objectives should provide sufficient information regarding the 

potential profitability and risk of investment decisions. Using APNPV as the 

profitability indicator removes the effect of negative NPV and therefore 

provides a clear picture as to how well the strategy can be on the upside. 

Meanwhile the value of p(NPV>0) suggests the likelihood of result being on 

the upside. The second point of selecting these two statistics of NPV 

distribution is that they are likely to be conflicting in the context of 

biopharmaceutical portfolio development, given the risk and cost associated 

with drug development process. Figure 2.8 presents a general categorization 

of biopharmaceutical portfolio development strategies based on their likely 

outcomes in these two objectives. The champion strategy triumphs no 

matter what risk-reward preference the user holds, if such strategy exists. 
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The gambler’s strategy can be competing with the safety strategy as the 

former focuses on potential reward while the latter suffers mediocre reward 

in exchange for safety. The selection between these 2 strategy types is 

entirely dependent on the user preference.  

 

Figure 2.8 The biopharmaceutical portfolio development strategy matrix.  

Strategies of portfolio management decisions are categories by 2 key statistics of 
their respective NPV distributions. The horizontal axis represents the possibility of 
NPV being positive and the vertical axis represents the average value of positive 
NPVs.  
 

The Pareto approach is implemented to overcome the difficulties of 

comparing solutions based on their performances in these 2 objectives. The 

details of implementation of this approach are described in the next 

subsection.  

2.4.3 NSGA-II 

Non-dominated sorting genetic algorithm II (NSGA-II) is a multi-objective 

evolutionary algorithm that uses non-dominated sorting and crowding 

distance to differentiate solutions based on their positions in the multi-
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objective space. It is very efficient in its fast non-dominated sorting 

capability to calculate Pareto optimal front and maintaining diversity. 

Figure 2.9 presents the essential mechanisms of evolution using NSGA-II. 

The initial generation of solutions are generated randomly and evaluated to 

get values of their objectives, APNPV and p(NPV>0). Then a selection 

procedure performs parental selection by randomly picking two solutions 

from the initial generation for comparison. The dominating solution from 

the two is selected as parent solution. The word “dominating” in this context 

indicates that one solution is strictly better than the other, i.e. it performs 

better in both objectives. If the two selected solutions are mutually non-

dominated, the algorithm randomly chooses one as parent solution. For 

every pair of parent solutions, the crossover and mutation operators of 

NSGA-II are implemented, creating two offspring solutions, which are in 

part the same with their parents. These offspring solutions are then 

evaluated for performance measure before the algorithm selects another pair 

of parents for offspring production. This procedure goes on until the number 

of offspring is the same as the initial generation.  

NSGA-II combines the initial population and offspring population as one, 

and preforms non-dominated sorting, i.e. assign rank to every individual 

solution by the number of times it is dominated by other solutions. The best 

solutions are the ones with the least number of getting dominated by other 

solutions, which is also the one with the lowest number in its rank. The 

Pareto front is therefore comprised of the solutions that are not dominated 

by any other solutions, i.e. the solutions with Rank 0.  

Within each rank, NSGA-II assigns crowding distance value to every 

solution. The crowding distance value is higher when solution is more 

isolated to other solutions in objective space. In this tool with 2 objectives, 

the crowding distance reaches the highest when solutions are at either end of 

the Pareto front.  
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The purpose of non-dominated sorting and crowding distance calculation is 

to provide support for environmental selection. The environmental selection 

procedure selects half of the combined population as the next generation 

based on their ranks and crowding distance values. This procedure first 

chooses the solutions with the lowest ranks. If the solutions of the same rank 

cannot be all included in the next generation, the environmental selection 

chooses the one with higher crowding distance value in order to maintain 

diversity across Pareto front.   

The selected solutions forms the next generation, which will go through the 

parental selection, offspring generation, evaluation, non-dominated sorting 

and crowding distance calculation, and finally, like its predecessor, be 

replaced by environmental selection. The algorithm keeps improving the 

quality of the population so that the current Pareto front approximates the 

true Pareto front of the problem.  

2.4.4 Managing duplications 

Since the initial population is randomly generated and there is no guarantee 

that the crossover and mutation operators will not create an offspring that is 

identical to an already generated solution, it is possible that identical 

solutions exist in the same population. Additionally, the outcome of Monte 

Carlo simulations for the same solution are not exactly the same, making it 

possible for identical solutions within the same population being mutually 

non-dominated. Therefore there can be scenario that after running the 

algorithm for several generations, the tool ends up with a Pareto front 

consisting of the same solutions. This scenario is detrimental to the diversity 

of solutions this tool can provide and should be prevented.  

The procedures of preventing duplicated solutions within population is 

proposed and illustrated in Figure 2.10. These procedures not only prevents 

solution duplications within population, they significantly improves the 

quality of evaluation results for solutions that are frequently generated.  

To eliminate identical solutions in population, the procedure keeps a record 

of the current solutions within the population and performs a duplication 
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check every time an offspring solution is generated. If it is a duplicated 

solution, the procedure discards the offspring and re-runs the genetic 

operators to generate a new offspring. However, this is not enough to 

address the duplication issue across generations. Certain solutions emerge 

again and again in different generations. The procedure does not discard the 

results of previous evaluations. It combines them with the new result to 

make it better.  

Table 2.5 presents the equations that can be used to calculate the combined 

results of evaluations. Based on the equations, the combined results can be 

calculated when the k-th evaluation is finished. The procedure only needs to 

record 3 variables: 1) the combined results of first (k-1)-th evaluations on 

the average positive NPV, 2) the combined results of first (k-1)-th 

evaluations on the possibility of getting positive NPV, and 3) the number of 

existing evaluations, k-1.  

Table 2.5 Equations for updating the evaluation results based on current and 
previous evaluation results.  

Individual 

evaluation 

results 

Combined evaluation results 

𝐴!

=   
𝑆!
𝑁!

 

𝑝! =   
𝑁!
𝑁

   

𝐴!

=   
𝑆!
𝑁!

 

𝑝! =   
𝑁!
𝑁

 𝐴!~! =   
𝐴! ∙ 𝑝! + 𝐴! ∙ 𝑝!
𝑝! ∙ 𝑁 + 𝑝! ∙ 𝑁

 𝑝!~! =   
1
2
𝑝! + 𝑝!  

𝐴!

=   
𝑆!
𝑁!

 

𝑝! =   
𝑁!
𝑁

 𝐴!~! =   
2 ∙ 𝐴!~! ∙ 𝑝!~! + 𝐴! ∙ 𝑝!
2 ∙ 𝑝!~! ∙ 𝑁 + 𝑝! ∙ 𝑁

 𝑝!~! =   
1
3
2 ∙ 𝑝!~! + 𝑝!  

...... ...... ...... ...... 

𝐴!

=   
𝑆!
𝑁!

 

𝑝! =   
𝑁!
𝑁

 
𝐴!~!

=   
𝑘 − 1 ∙ 𝐴!~ !!! ∙ 𝑝!~ !!! + 𝐴! ∙ 𝑝!

𝑘 − 1 ∙ 𝑝!~ !!! ∙ 𝑁 + 𝑝! ∙ 𝑁
 

𝑝!~!

=   
1
𝑘

𝑘 − 1 ∙ 𝑝!~ !!! + 𝑝!  

Ai – average positive NPV for the i-th evaluation; pi – possibility of getting positive 
NPV for the i-th evaluation; Si – sum of positive NPV for the i-th evaluation; Ni – 
number of positive NPV for the i-th evaluation; A1~i – average positive NPV for the 
first i-th evaluations; p1~i – possibility of getting positive NPV for the first i-th 
evaluations; N – number of Monte Carlo simulations. 
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Figure 2.10 Procedures for preventing duplicated solutions w
ithin population w

hile im
proving the 

quality of evaluation results.  

The prevention of duplications w
ithin population is achieved through Step 1 by checking if there is identical 

solutions exists in the population. The purpose of Step 2 and 3 is to com
bine the results of new

 evaluation w
ith 

the results of historical evaluations of the sam
e solution, thus im

proving the quality of evaluation results. 
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2.5 DATA MANAGEMENT AND ANALYSIS 

In order to effectively collect information regarding the running of 

optimization algorithm and evaluation of solutions, a system of data 

reporting formats is designed and implemented. The information is initially 

recorded in Java using custom designed variables such as multi-dimensional 

arrays. A data output class responsible for printing results into text 

document is created to transfer information from those variables to outside 

text files.  

There are 3 major types of reports. The generational performance report 

presents the information collected during the running of the optimization 

algorithm concerning the overall performance of solutions for a given 

population. These reports are placed in a generation-specific folder, along 

with folders for solutions and reports that are related to this generation. 

Table 2.6 presents the data-reporting format of the generational performance 

report with sample data. The purpose of this report is to record the 

performance information about a solution and its decision variables. 

Analysis of optimization results from decision space and objective space is 

based on this report.  

Table 2.6 Format of generational performance report.  

Index Rank APNPV p(NPV>0) D1 D2 D3 D4 …… 

1 0 15324789 0.54 0 1 0 0 …… 

2 0 13365987 0.56 0 1 1 0 …… 

3 1 12568712 0.49 1 0 0 1 …… 

…… …… …… …… …… 

Note: The report gives an index for each solution and presents the values of its 
objectives, the decision variables, and the non-dominated ranking. 

 

The cash flow report records the timing and origin of cash flows as well as 

their amounts for a given Monte Carlo simulation. The number of cash flow 

reports within a solution folder equals the number of Monte Carlo 
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simulations. Table 2.7 describes the format of cash flow report for a given 

Monte Carlo simulation. A multi-dimensional array was designed to 

accommodate the production of cash flow reports. At the start of each 

Monte Carlo simulation, this array is initiated with 𝑡 ∙ 𝑠 ∙ 3  dimensions 

where t represents the number of time slices for dynamic simulation, s 

represents the number of stages in the drug development lifecycle, and 3 

represents the 3 types of activities this tool simulates, namely the clinical 

trial, manufacturing, and process development. In the end of this Monte 

Carlo simulation, a method is called in the data output class to transform the 

multi-dimensional data into a text file in Table 2.7 format.  

Table 2.7 Format of cash flow report. The report specifies the timing, origin, 
and stage for each cash flow. 

Time Stage Type Value 

1 Phase I Clinical trial -35 

1 Phase I Process development -12 

1 Phase I Manufacturing -10 

2 Phase I Clinical trial -35 

2 Phase I Process development -12 

…… …… …… …… 

123 Phase III Clinical trial -72 

123 Phase III Process development -20 

123 Phase III Manufacturing -22 

…… …… …… …… 

 

Along with the production of a cash flow report, an activity report is 

generated for each Monte Carlo simulation. This report presents the actual 

timings of activities that are triggered and their states on completion. Table 

2.8 presents a sample activity report. The activity report provides critical 

information in the analysis of delays and project failures.  
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Table 2.8 Format of activity report.  

Product Stage Type Start time End time  State 

Drug 1 Phase II Clinical trial 289 372 Pass 

Drug 1 Phase III Clinical trial 381 503 Fail 

Drug 1 Phase III Manufacturing 360 380 Pass 

Drug 1 FDA Process development 450 503 Interrupted 

…… …… …… …… …… …… 

Drug 2 Phase I Clinical trial 112 173 Pass 

Drug 2 Phase II Clinical trial 173 297 Pass 

Drug 2 Phase II Manufacturing 158 170 Pass 

…… …… …… …… …… …… 

Note: This report reveals the timing of triggered activities and their states on 
completion of 1 Monte Carlo simulation. 

 

The analysis and visualisation of data in the above report formats were 

accomplished using R statistical computing language with ggplot2 data 

visualization package. The application can be found in Chapter 4 where the 

stochastic optimization tool is implemented. For results generated from drug 

development lifecycle cost model for cost evaluation purpose, Excel charts 

were created for data visualization in Chapters 3 and 5. 

2.6 CONCLUSION 

In this chapter, an activity-based drug development lifecycle cost model is 

proposed to capture the clinical and non-clinical aspects of 

biopharmaceutical portfolio development. The model is further developed 

with Monte Carlo simulation capability and dynamic simulation 

mechanisms, so that it functions as an evaluation engine for support of 

portfolio management decision-making under uncertainties and resource 

constraints. This evaluation engine produces performance appraisals for 

portfolio management strategies in the form of NPV distributions.  
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A multi-objective evolutionary algorithm NSGA-II is implemented in the 

stochastic optimization tool in order to efficiently search the decision space 

for optimal solutions. A binary string representation of portfolio 

management decisions is proposed for improved flexibility under changing 

portfolio development environment, and efficiency in genetic operations 

during the running of the algorithm. The algorithm makes use of Pareto 

optimal approach in dealing with competing optimization objectives, i.e. the 

two key statistics of the NPV distribution, the average positive NPV 

(APNPV) and the possibility of NPV being positive (p(NPV>0)). A 

procedure of managing solution duplications in population and in the course 

of optimization is introduced to maintain diversity and improve the quality 

of evaluations of frequently generated solutions.  

Various data reporting formats are introduced to facilitate the analysis of 

cost evaluation and portfolio management optimization results. The data 

management system takes advantage of the object-oriented, activity-based 

drug development cost model and stochastic optimization tool to produce 

reports that reflect the performance of generations, the cash flows and their 

respective origins, and the details of simulation of activities in their most 

explicit form. Excel charts and R statistical computing language are adopted 

in visualizing the results.  

Application of the drug development lifecycle cost model is presented in 

Chapter 3 to benchmark the cost of clinical and non-clinical activities for 

pharmaceutical and biopharmaceutical portfolio development. The model is 

further implemented in Chapter 5 with application to cost evaluation of cell 

therapy portfolio development. The stochastic optimization tool for 

biopharmaceutical portfolio management decision support is implemented 

in Chapter 4 with custom designed candidate pool featuring products of 

various risk-reward characteristics. 

 



CHAPTER 3  

COST OF MANUFACTURING AND PROCESS DEVELOPMENT 

IN BIOPHARMACEUTICAL NEW PRODUCT DEVELOPMENT 

3.1 INTRODUCTION 

The pharmaceutical industry has suffered from diminishing R&D 

productivity and increasing R&D cost over the past decade (Scannell et al. 

2012). Typical portfolio return on investment often falls short in recovering 

the capitalized cost of development considering the complexity and risky 

nature of developing new therapeutics. Compared to conventional 

pharmaceutical small molecule NMEs, biological products have a relatively 

higher overall success rate. Probabilities of FDA approval for 

investigational drugs in Phase I have been estimated to be 7.5% for NMEs 

and 14.6% for biologics (Hay et al. 2014). However, biological products are 

exposed to more technical difficulties in process development and 

manufacturing. Constant improvement of production methods requires the 

assessment of comparability to ensure the consistency of product 

characteristics that could affect safety, purity, efficacy, and stability of the 

finished product. Published studies have focused on evaluating the overall 

cost of R&D, but have not addressed the clinical and non-clinical cost 

breakdowns at each phase. Using the model proposed in the previous 

chapter, this chapter aims at benchmarking the costs across the drug 

development lifecycle with special attention to the non-clinical activities, i.e. 

process development and manufacturing.  

Pre-clinical and clinical trials often lie on the critical path of 

biopharmaceutical product development, with support from process 

development and manufacturing. Provisional budget allocations and 

planning are required to safeguard the smooth running of R&D activities. 

Therefore there is a need to accurately estimate the cost of process 

development and manufacturing activities for different attrition rate 

scenarios. On the manufacturing level, published cost of goods analyses (e.g. 

Simiaria et al. (2012); Pollock et al. (2013) were drawn upon in this study to 
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determine and benchmark the manufacturing costs for the portfolio at each 

development stage for different attrition rate configurations. Estimations of 

personnel required in process development activities across developments 

stages are discussed and utilised as the basis for process development cost 

evaluation.  

A pharmaceutical product development pathway model is introduced to 

address the cost of non-clinical activities in the context of portfolio 

development targeting one market success. The general idea of capturing 

the “at-risk” nature of process development and manufacturing activities in 

portfolio development was developed and described in Chapter 2. In this 

chapter, the model is applied to a case study featuring industrially relevant 

drug development risk and cost scenarios. The model is further extended by 

an analysis of cost associated with the “at-risk” characteristics of non-

clinical activities in probabilistic scenarios.  

The remainder of this chapter is structured as follows. In Section 3.2 and 

Section 3.3 the model of drug development lifecycle, as well as its structure, 

is described. Section 3.4 explains the assumptions made for capturing the 

impact of delays in process development activities. The background to the 

case study is described in Section 3.5, which benchmarks attrition rates, 

costs, and timeline of milestones for single product development. Cost 

evaluation of portfolio development and the analysis of economic 

implications of delay are discussed in Section 3.6.  

3.2 DRUG DEVELOPMENT LIFECYCLE DESCRIPTION 

The biopharmaceutical new product development process follows an 

established pattern. An exploratory discovery research finds a new target of 

potential therapeutic use, then a number of molecules are developed and 

optimized, and the best one among them is selected to be the product 

candidate. This product candidate then goes through the pre-clinical trial 

phase where a range of tests are run both in vitro and in animals to 

characterize the likely safety and effectiveness of this molecule in treating 
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its target disease. Upon completion of the pre-clinical trial, the drug 

developer applies to regulatory authorities (e.g. FDA in USA) for approval 

to commence human clinical trials. Clinical trials are required to prove that 

the drug is safe and effective when administered to human patients. There 

are three major phases of clinical trials before the product gets approval for 

commercialization: Phase I tests the safety of the product in human, Phase II 

assesses its efficacy and Phase III aims at definitively assessing the efficacy 

and dosage in a large number of patients. Upon completion of clinical trials, 

the drug developer is required to gather all pre-clinical and clinical data 

generated during the process, along with details of the production process 

used to make the drug and cGMP documentation, and submit to the 

regulatory authority for market entry approval. Once granted, the product 

developer can legally manufacture and sell the product.  

This study focuses on the development stages from pre-clinical to regulatory 

submission (i.e. the FDA review). The activities prior to the pre-clinical trial 

stage are not covered in this model because the costs generated at these 

stages are often shared with other compounds. Therefore the stages from 

discovery to lead optimization are omitted, leaving pre-clinical and clinical 

trial stages as the major cost drivers in this model.  

The development pathway described in this study assumed that only the pre-

clinical and clinical trials are on the critical path. To meet the timing 

requirement of activities on the critical path, the supporting process 

development and manufacturing activities occur off the critical path and 

hence are performed at risk before the go/no-go decision for the clinical trial 

is known. This model assumes for every development stage, the dependency 

exists that the occurrence of activities follows the path from process 

development to manufacturing, and then to the clinical trial. 

Manufacturing and process development activities are designed to meet the 

need of the clinical trials. In order to produce the products efficiently and at 

the required quality, the developer must, through a serious of process 

development activities, establish the manufacturing process and optimize it 
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to meet regulatory requirements as well as reduce cost. Detailed inter-

dependencies between clinical trial, manufacturing and process 

development activities are depicted in Figure 3.1. Pre-clinical trial materials 

are produced through an established cell line that provides products with 

low titre at a small scale. For Phase I and II clinical trials, process 

development focuses on process scalability and improvement of 

productivity, since more material is required for clinical trials. Process 

development for Phase III and regulatory approval mainly focuses on 

process characterization and validation. Initial process limit evaluation and 

validation studies commence at the early stage of process development prior 

to Phase III. Major characterization and validation studies run 

simultaneously with Phase III clinical trials in order to avoid causing any 

delay to submission to regulatory approval. Typical values of manufacturing 

scale and titre are incorporated in this model as 200L and 2.5g/L for pre-

clinical, 2000L and 3g/L for Phase I and II, and 5000L with 3g/L for Phase 

III and consistency batches required to validate the process. The Phase III 

scale of production was selected to match a typical commercial scale of 

production of 200kg/y for mAbs (Kelley 2009), which can be achieved with 

20 batches at the 5000L scale and 3 g/L titre. The scale and titre of 

manufacturing for commercialization is usually kept the same as Phase III, 

but this is not included in this study as it focuses on the costs of new product 

development.  
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Figure 3.1 D
ependencies betw

een process developm
ent, m

anufacturing, and clinical trials.  

The process developm
ent activities first establish m

anufacturing procedure to produce m
aterial in sm

all scale and low
 titre in 

order to supply for pre-clinical and early phase clinical trials. Then as the developm
ent of the product proceeds larger 

quantity of m
aterial are required for clinical and com

m
ercialization dem

and, hence the need for scale-up the size of 
production and optim

ize the titre and yield. Late stage process developm
ent also focus on regulatory com

pliance. The 
process param

eters need to be characterized and process consistency validated before subm
ission to regulatory approval. 
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3.3 DRUG DEVELOPMENT LIFECYCLE COST MODEL STRUCTURE 

A spreadsheet-based lifecycle cost model was built for biopharmaceutical 

drug development that captured the costs, durations, risks and 

interdependencies of both the clinical and non-clinical activities. The non-

clinical activities were broken down into process development and 

manufacturing. The term ‘process development’ was taken to include all 

bulk process and formulation development as well as the analytical effort 

for process characterisation and validation studies. The term ‘manufacturing’ 

was taken to include the cost of manufacturing batches for supply of 

material to pre-clinical and clinical trials as well as process 

validation/qualification consistency batches required for BLA submissions. 

These manufacturing costs were determined using a bioprocess economics 

model developed at UCL (Simaria et al. 2012).  

The tool establishes the product development pathway with the number of 

projects necessary to achieve a certain pre-set target. The evaluation of out-

of-pocket costs along the development pathway for a given year is based on 

two criteria: number of projects in the pipeline and total out-of pocket cost 

of a single project in that year.  

Figure 3.2 lists the required input parameters for the model and the 

processed costs in pipeline and project-specific levels. On the pipeline level, 

the model requires the user to define their target in the form of desired 

number of successful market entries, and the cost of capital in the form of 

discount rate. Project profitability is defined as the sales curve of the 

product that goes to market once the project is successful. Availability of 

technology platforms for process development activities is also considered 

on the project-specific level in this model. For pre-clinical and clinical 

studies, the phase transition probabilities (TP) are required to calculate the 

required number of projects to achieve the user’s desired target; duration & 

cost provides the basis for cost distribution in time; and demand of materials 

at clinical trial stages provides guidance on manufacturing cost evaluation. 
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Batch scale and batch cost are inputs provided at the manufacturing level to 

determine the number of production batches and the related cost. Finally, 

the cost and duration of process development activities are required, as well 

as the risk of delay in probabilistic form.  

The model then converts the inputs into outputs. At the beginning of the 

evaluation, the model builds up the timeline of the development pathway 

according to the inputs on duration of pre-clinical and clinical trials. Then 

based on their material requirements, the model generates manufacturing 

activities with the appropriate number of production batches. The timings of 

manufacturing activities are set to meet the clinical material requirement. 

The process development activities are planned to provide technical support 

for manufacturing at various stages. After the model plans all the clinical 

and non-clinical activities for developing a single product, it starts to 

calculate, based on the attrition rates of the development cycle, how many 

products the user needs at each step to achieve the target number of  market 

successes. With the number of products being developed and the cost of 

developing each one determined, the total cost is evaluated.  

The outputs at the pipeline level provide the user with information 

concerning how much it costs to achieve their target in terms of total 

capitalized cost. Figures on the out-of-pocket costs for each year are also 

presented as outputs and they serve a more practical purpose for budget 

planning. More specifically, the cost breakdown of clinical trials, 

manufacturing and process development is also available for more detailed 

budget planning. On the project level, the model produces the costs of each 

individual project and the time of proposed market entry, which gives the 

decision maker an indication of the amount of investment and the time to 

market. In addition, the model also provides valuations of a single project 

by development stage, which could be more useful to parties involved in 

product licensing deals. 
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Figure 3.2 Tool structure with input and output parameters for the model.  

The flow of information is from the left side of inputs, through the drug 
development lifecycle cost model in the middle for calculations, to the outputs of 
results in various formats on the right side.  
 

3.4 ADDRESSING THE RISK OF DELAY 

This tool is capable of analysing cost when the risk of development delay is 

considered. The starting and end times of development activities are results 

of scheduling without leaving margin for possible delays. Therefore 

whenever a delay occurs during a certain development activity, the timing 

of the subsequent dependent activities are affected and eventually delays the 

product’s marketing approval. From the out-of-pocket cost perspective, this 

model assumes that the rate of spending is constant over time for each 

activity, so the delayed activities cost more. From the capitalized cost 

perspective, it costs more when the spending period is prolonged. More 

importantly, a delay in market entry could be detrimental to a product’s 

sales, causing it to lose value.  

Delays of development activities are modelled in a probabilistic fashion in 

this model. Every activity has a probability of delay and two possible 

outcomes: normal and delayed. In this way, a binary tree, given the chance 
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and impact of delay for all activities, can be used to describe every possible 

scenario of biopharmaceutical new product development pathway when risk 

of delay is considered. The tool evaluates the cost structure for every 

possible scenario and calculates the expected values of cost using the 

probabilities of these scenarios. 

3.5 CASE STUDY SETUP 

The purpose of this set-up is to simulate the process of biopharmaceutical 

new product development pathway so that the process development and 

manufacturing costs across the biopharmaceutical drug development cycle 

can be estimated. Hence it was critical to have representative input values 

for the key risks, costs and timelines in the development cycle. The key 

assumptions were derived through a detailed review and comparison of 

various sources of industrial cost analysis data so as to derive representative 

figures as inputs for this study. An established manufacturing process 

economics model (Simaria et al. 2012) was utilized to derive the 

manufacturing costs at different titres and scales of production.  

3.5.1 Development risk profiles 

The clinical failure rates at each phase in the drug development process play 

key roles in cost evaluation. In this model, the risk of clinical failure is 

characterized by the phase transition probabilities (TPs) of projects. 

Published statistical data were drawn upon when building up the case study 

scenarios, as presented in Table 3.1. The first scenario features the most 

optimistic situation where the highest phase transition probabilities 

published for each stage were used (DiMasi & Grabowski 2007; Bogdan & 

Villiger 2010; Paul et al. 2010). Scenario 2 used an industrial average for 

the  phase transition probabilities derived from Paul et al. (2010)  to provide 

a more balanced evaluation. Scenario 3 represented a more pessimistic 

outlook. It used the industrial average phase transition probabilities from 

pre-clinical to Phase II stage, but addressed the possibility that for some 
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therapeutic areas such as Alzheimer’s disease, the phase transition 

probability of Phase III could be extremely low due to the novelty of the 

drug targets being pursued and to the lack of animal models with a strong 

capacity to predict human efficacy (Pauls et al. 2010). The likelihood of 

approval (LOA) and the required numbers of products for one market 

success from Phase I to market approval for all 3 scenarios are also 

presented. 

Table 3.1 Risk profiles of new biopharmaceutical product development 
represented by phase transition probabilities. 

Phases PC I II III FDA  PhI LOAa PhI Nb 

Optimistic  70% 85% 55% 70% 91% 29.8% 3.4 

Average 69% 54% 34% 70% 91% 11.7% 8.6 

Pessimistic  69% 54% 34% 21% 91% 3.5% 28.5 
a LOA  = likelihood of approval from Phase I. 
b N= number of Phase I products required for one market success. 

 

3.5.2 Cost estimations for developing a single product 

Cost of process development 

The definitions of process development and its associated costs in 

biopharmaceutical product development vary between sources and 

orgnaisations. In this model, process development was defined as the 

activity that establishes and optimizes the manufacturing of 

biopharmaceutical product for clinical and commercial purposes, and 

provides knowledge for regulatory compliance. The cost associated with 

process development was therefore distributed across strain development, 

process synthesis, design, optimization, characterization, validation, and the 

related analytical development activities. The cost of manufacturing clinical 

material was not included in the cost of process development, regardless of 

its scale. The cost of manufacturing consistency batches for process 

validation purpose was included in the cost of process development, only if 
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the product was not used in clinical trials or commercial sales. Otherwise it 

was considered as a cost of manufacturing. This case study assumed that the 

material produced from consistency batches would be used for Phase III 

clinical trials, therefore the related manufacturing cost was not included in 

process development.  

The estimation of process development costs adopted a full-time equivalent 

or FTE year based approach. This approach first reviewed the necessary 

tasks for each step of process development in biopharmaceutical new 

product development, then derived the workload required to fulfil these 

tasks in terms of FTE year, and applied a fixed cost incurred to the company 

in every unit of FTE year to account for the actual cost of process 

development.  

Table 3.2 contains the estimated FTE required for major process 

development activities in this model. The calculation of FTE was based on 

the number of personnel and their relative involvement in performing their 

function compared to a full-time employee. As an example of calculation, 

an employee working 2 hours per working day on this project only 

accounted for 0.25 FTE. This principle applies to all the personnel working 

in regulatory support and QC/QA functions that are not dedicated to any 

specific project.  

The cost of the process development activity was determined based on the 

total workload it required. On average, for every unit of FTE year workload, 

the overheaded cost incurred to the company was assumed to be $250,000, 

including not only the FTE salary, but also all accompanying cost in process 

development.  
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Table 3.2 Estimated personnel and cost for process development activities in 
new biopharmaceutical product development (J. Coffman, Boehringer 
Ingelheim, personal communication).  

Stages PC/Phase I Phase II Phase III FDA (PD) FDA (Comm) 

FTEs      

Project manager 1 1 2 2 0 

Process scientists 3 6 10 12 0 

Tech-transfer 1 2 4 4 0 

Regulatory support 0.5 1 2 10 0 

QC/QA 0.5 2 2 4 20 

Site support 0 0 0 0 20 

Total FTE 6 12 20 32 40 

Duration (year) 1 0.5 2 1.5 1.5 

FTE year 6 6 40 48 60 

Cost ($ million) 1.5 1.5 10 12 15 

Note: The process development activity in FDA review stage is divided into 2 
separate parts: FDA (PD), with the original process development team working towards 
submission, and FDA (Comm) with a team of QC/QA and site support personnel working 
on commercial manufacturing. 
 

For every step of process development, it was assumed that a project 

manager was required to work full time in order to coordinate the work of 

the team and communicate with other relevant divisions of the company that 

facilitate the on-going process development. For the early stages of 

development, one project manager was assumed to be sufficient for the 

relatively small process development team, whereas for the late stages of 

development, the size of the team increases significantly so that one extra 

project manager was required. Process scientists are needed for upstream 

and downstream process establishment, optimization, characterization, and 

validation. Hence they are needed from the start of the development life 

cycle. Requirement of personnel in charge of tech-transfer to pilot and 

large-scale manufacturing increases as the scale of manufacturing increases. 
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The FTE required at a scale of 200L, 2000L, and 5000L was set as 1, 2, and 

4, respectively. The regulatory support required at pre-clinical and clinical 

stages is much less than that required at the FDA review stage. The QC/QA 

personnel works on developing analytical assays for process development, 

but they are normally working for multiple projects. The FTE figures for 

QC/QA were adjusted by the number of projects that one specialist can 

simultaneously handle and the number of specialists required for each 

process development step. The process development activities at FDA 

review stage were divided into two areas, with the original process 

development group working on the final process characterization, validation, 

and documentation for submission, while another group consisted of 

QC/QA and site support personnel working on preparations for commercial 

manufacturing. Given the definition of process development described 

earlier, the preparation of commercial manufacturing was considered as part 

of process development, and hence it was important to include the cost 

incurred.   

Cost of manufacturing 

The cost of manufacturing in pre-clinical and clinical development was 

calculated using an established UCL process economics model (Simaria et 

al. 2012) with inputs on scale of fermentation, titre, and clinical material 

demand. Estimation of material demand in clinical trials was based on the 

number of patients participating in each stage. Table 3.3 presents the 

assumptions for patient numbers for clinical trials. With the assumptions 

that the average patient body weight is 86kg and the approximate dosage per 

body weight is 7mg/kg, one dose of treatment requires 0.602g material. For 

Phase I, 1 dose per patient is sufficient to test product safety. For Phase II 

and III, the number of doses administered per patient is related to the length 

of test period and the frequency of administration. This case study assumed 

the frequency of taking 1 dose every 2 weeks and the average lengths of 

clinical test for Phase II and III were 0.5 and 1 year, respectively. Typically, 

drug developers produce more product than needed for clinical trials to 
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support non-clinical uses related to quality analysis and testing as well as 

contingency inventory(e.g. in case of change in dosage or product loss). The 

ratio of overproduction applied to early phases is 250% and for Phase III is 

125%, as the uncertainty of manufacturing decreases. The adjusted demand 

that takes into account the overproduction was therefore considered the 

target demand for the process economics model to calculate the 

manufacturing cost. The target demand of pre-clinical stage material was 

assumed 0.5 kg, according to industrial opinion (J. Coffmann, Boehringer 

Ingelheim, personal communication).  

Table 3.3 Estimation of bulk product demand in clinical trials. 

Stage 
Patient 

numbera 

Duration 

(year) 
Dose Demand 

Over 

production 

Adjusted 

demand 

Phase I 40 n/a 40 24 g 
250% 4 kg 

Phase II 200 0.5 2600 1.6 kg 

Phase III 2000 1 52000 31.3 kg 125% 40 kg 

a The estimated patient numbers are from previous modelling research 

(Simaria et al. 2012) 

The adjusted demands for pre-clinical and clinical trials were then fed into 

the process economics model for calculation of the manufacturing cost. 

Assumptions related to the fermentation scale and titre are presented in 

Table 3.4. At the pre-clinical stage, the manufacturing process is established 

at a pilot scale of 200L and the titre 2.5g/L. At Phase I and II, 2000L cGMP 

facility with 3g/L titre was assumed to be the standard set up of 

manufacturing. The fermentation scale was further increased to 5000L and 

titre maintained at 3g/L at Phase III, as more material was required at this 

stage and this process scale would be locked for commercialization. The 

improvement of manufacturing scale and titre was considered the result of 

process development.  

The process economics model determined the cost per batch and this was 

split into two categories: direct and indirect cost. The direct cost accounts 
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for the use of labor, consumables, chemical reagents, and direct utilities 

during the manufacturing process. The indirect cost accounts for the cost of 

running the facility, including maintenance, general utilities, and capital 

charges. The indirect cost per batch was determined by spreading the annual 

indirect cost over a representative number of annual batches (20 in the pre-

clinical facility) and 10 in the clinical facilities).  

Table 3.4 Estimation of batch cost and number of batches required in new 
product development.  

 Model inputs 
Cost per batch 

($ million) 
 

 
Scale 

(L) 

Titre 

(g/L) 

Demand 

(kg) 
Direct Indirect Total 

Batch 

required 

PC 200 2.5 0.5 0.25 0.12 0.37 3 

Ph I & II 2000 3 4 0.56 0.71 1.27 2 

Ph III 5000 3 40 0.91 0.89 1.8 5a 

The direct cost per batch includes cost from labour, consumables, chemical 
reagents, and direct utilities. For the labour cost, the model assumes 4 operators 
working in the pre-clinical pilot scale facility and 9 operators working in larger 
scale facilities. The indirect cost accounts for the cost of facility maintenance, 
general utilities, and capital charges. These items are linked to the cost of fixed 
capital investment of building the facility. The Lang factor of facility supplying for 
pre-clinical, Phase I &II, and Phase III is 4.5, 6, 6 respectively. Using 4.5 as Lang 
factor for pre-clinical facility because GMP is not required. The indirect cost 
generated by having the facility is calculated as an annual average. The indirect 
cost per batch is calculated by spreading the annual indirect cost evenly to the 
number of batches produced. The number of batches produced every year at pre-
clinical facility is 20; at clinical facility is 10.  
a 3 of theses Phase III batches are also used for consistency batches.  
 

Cost of clinical trials 

Clinical trials contribute most to the total cost of developing 

biopharmaceutical new products. Various sources have published stage 

costs of developing new products, which can be considered as the total costs 

of clinical trials, manufacturing, and process development. Therefore, this 

model derived the costs of clinical trials using published total cost excluding 
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the non-clinical components, namely the process development and 

manufacturing costs described in the previous sections. As shown in Table 

3.5, the cost of clinical trials were derived by deducting the non-clinical 

costs from published total stage costs. For pre-clinical trials, the $7 million 

total stage cost from Bogdan & Villiger (2010) was adopted as DiMasi & 

Grabowski’s (2007) figure includes costs from previous stages. For FDA 

review stage cost, the published figure refers to pharmaceutical industry in 

general, not specific to biopharmaceuticals. Hence the cost of clinical trial 

only accounts for the fees required for BLA license.  

Table 3.5 Assumption on cost structures and comparison to published total 
stage costs for biopharmaceutical new product development.  

Cost ($ million) Pre-clinical Phase I Phase II Phase III FDA 

Published total  

DiMasi & Grabowski 2007 

Paul et al. 2010 

 

59.88 

5 

 

32.28 

15 

 

37.69 

40 

 

96.09 

150 

 

N/A 

40 

Model assumptions 

Process development 

 

1.5 

 

0 

 

1.5 

 

10 

 

27 

Manufacturing 1.11 1.27 1.27 9c 0 

Clinical trials 

(DiMasi) 

Clinical trials (Paul) 

4.4a 

4.4 

31 

13.7 

35 

37.2 

77 

131 

3b 

3 

a Cost of pre-clinical clinical trial is calculated based on $7 million stage cost 
(Bogdan & Villiger 2010).  
b $3 million is license cost only at FDA review stage. 
c This cost includes the cost to produce consistency batches. 
 

3.5.3 Development timeline and milestones 

To establish the new product development pathway, durations of activities 

and their dependencies are required. Table 3.6 presents the durations of 

activities from 3 categories, based on published sources and industrial 

opinion. Zero duration of activities indicates that there is no activity from 
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the category at the given development stage. Therefore from Table 3.6 it can 

be seen that it was assumed there would be no process development for the 

Phase I stage as the process would not be changed typically between animal 

and the first-in-human trials, and no manufacturing activity for clinical trials 

at FDA review stage.  

Table 3.6 Duration of activities.  

Stage PC I II III FDA 

Clinical trial duration (year) 1 1.6 2.4 2.7 1.5 

Process development duration 

(year) 
1 0 0.5 2 1.5 

Manufacturing duration (week) 6 5 5 13 0 

Note: Durations of clinical trials are from DiMasi & Grabowski (2007); duration of 
pre-clinical is from Paul et al. (2010); durations of process development and 
manufacturing are from industrial expertise (J. Coffman, Boehringer Ingelheim, 
personal communication), given the task for process development and number of 
production batches. 
 

In this model, the dependencies between these 3 categories of activities 

follow the rationale that 1) clinical trials, including pre-clinical tests, require 

clinical material supply which is the result of manufacturing activities; 2) 

manufacturing is supported by process development. So for any given 

development stage, the order of activities is from process development to 

manufacturing, and then to clinical trials, unless there is no such activity at 

that stage. Due to this set up, some activities have to run at risk of project 

failure, as depicted in Figure 3.3. This includes the manufacturing of Phase I 

and II materials, and the process development for Phase II. For Phase III, 

only part of the process development activity is running at risk because 

there is a preparation stage between the decision to continue and the actual 

clinical material demand. 
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ilestones.  
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arket entry. The average 
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bers of projects required to achieve one m

arket success at each stage w
ere calculated from

 the phase 
transition probabilities from

 3 scenarios featuring optim
istic, average, and pessim
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ptions for the 

product risk profiles. B
ecause of the lengthy duration for patient recruitm

ent, the actual need for clinical 
trial m

aterial in Phase III does not appear until 1.5 years after the success of Phase II.  
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3.6 RESULTS AND DISCUSSION 

A detailed analysis is presented of the process development and 

manufacturing costs across the biopharmaceutical drug development cycle. 

The non-clinical budgets needed at each phase of development to ensure a 

market success each year were estimated. The impact of different clinical 

success rate profiles on the process development and manufacturing costs at 

each stage was investigated.  

3.6.1 Cost evaluations 

The initial results were generated by the model to benchmark cost, time and 

number of projects that would finally achieve one market success at the end 

of development pathway. Under the given case study set-up, the model 

constructed a full R&D portfolio with the number of projects required to 

achieve the desired target. The development pathway was established for 

each project and its corresponding manufacturing and process development 

activities scheduled. The costs along the development timeline are 

calculated for 3 scenarios.  

The total out-of-pocket cost to have one market success was calculated by 

the model to be $442 million, $748 million, and $2417 million for 3 

scenarios featuring low, average, and high risk of failure in the process. The 

percentage of a biologics company’s R&D out-of-pocket costs that needs to 

be allocated to process development and manufacturing for each 

biopharmaceutical launched was found to vary between 16.8-21% for Phase 

I to launch success rates of 3.5 - 29.5%.. This translated into total 

manufacturing out-of-pocket costs for the portfolios under the three risk 

profiles of $30M, $54M, and $182M respectively and total process 

development out-of-pocket costs of $62M, $88M, and $225M respectively. 

Figure 3.4 indicates the breakdown of the portfolio costs for the industrial 

average scenario. The results indicate how process development and 

manufacturing budgets should be distributed across the various phases. In 
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Figure 3.4, in terms of non-clinical activities, the Phase III process 

development and manufacturing consumes the highest proportion of out-of-

pocket funds per success ($41M in the industrial average case), followed by 

the non-clinical cost for preclinical stage ($32M), process 

validation/characterization in the FDA review stage ($30M), Phase II 

($24M), and then Phase I ($16M). 
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The distribution of process development and manufacturing cost across 

development stages differs as the risk scenario changes. Defining early 

stage as from pre-clinical to Phase II and late stage as from Phase III to 

BLA submission, all early stage process development and manufacturing 

are running at risk. Therefore costs of process development and 

manufacturing from early stage increases faster than late stage as the 

development risk increases. 

Table 3.7 Process development and manufacturing cost expected to ensure 1 
market success in industrial scenarios featuring low, average, and high risk of 
failure.  

Risk profiles Optimistic (~29.8%) Average (~11.7) Pessimistic (~3.5%) 

Early 28 72 239 

Late 65 71 167 

Note: Costs of process development and manufacturing are aggregated by their 
associated development stages. Development stages from pre-clinical to Phase II 
are defined as early stage and Phase III to FDA review are defined as late stage. All 
cost figures are in $ millions. 
 

The impact of lower success rates and the resulting higher numbers of 

candidates at each phase on capacity requirement must also be considered in 

order to ensure sufficient process development labs are available as well as 

pilot and large scale GMP manufacturing facilities.  

A complete collection of cost evaluations of new drug development under 3 

risk assumptions with DiMasi and Paul’s publications as major sources for 

phase costs is presented in Figure 3.5 and Figure 3.6. 
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Figure 3.5 Cost evaluation of new drug development under 3 risk assumptions 
based on DiMasi’s phase cost. 
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Figure 3.6 Cost evaluation of new drug development under 3 risk assumptions 
based on Paul’s phase cost. 
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The total costs for each phase are summarized and their proportion to the 

total out-of-pocket cost calculated. In Figure 3.7, the division of new 

product development R&D spending is presented for 3 risk profiles, 

showing that Phase I is the major cost driver in biopharmaceutical new 

product portfolio development (37%) while the spending on FDA review 

stage is only 4.4% of the total cost. By evaluating the phase-wise cost 

composition for projects of low and high risk profiles, the model outputs 

show that there is a bigger market for early stage development projects in 

high-risk scenarios than in low risk scenarios.  

 

Figure 3.7 Cost distributions across development stages.  

The cost distributions across stages are presented under 3 scenarios featuring 
average, low, and high risk of development failure. The pie chart within this figure 
emphasizes the industrial average cost distribution for pursuing 1 market 
successful product. These costs are out-of-pocket costs including the cost spent on 
failed projects. 
 

For manufacturing and process development costs, the model summarizes 

their significance by development stages for 3 scenarios. Figure 3.8 shows 

the process development and manufacturing cost distribution across pipeline 
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development stages. Overall, the variation of success rate from 3.5% to 

~12% or to 30% makes a 2.8 or 4.4 times reduction in manufacturing and 

process development costs. In the industrial average scenario, for each 

market success, the biopharmaceutical drug developer needs to allocate 

$72M of budget to process development and manufacturing activities from 

pre-clinical to Phase II stage, and $71M from Phase III to the BLA 

submission stage. For the low risk (success rate 29.5%) and high risk 

(success rate 3.5%) scenarios, these values are $28~239M for early phases 

and $65~167M for late phases. From low risk to high risk, the investment 

into manufacturing increases faster than process development. This is due to 

the assumption that there are more at risk investments into manufacturing 

than process development, therefore increasing the number of projects 

required causes more increase in manufacturing cost. For the industrial 

average, the cost of manufacturing should be approximately 62% of the cost 

of process development. At the low risk scenario, the drug developer should 

be focusing on the late stage manufacturing and process development, as 

they are the majority of investment. At the high risk scenario, the cost ratio 

of 1) early stage process development, 2) late stage process development, 3) 

early stage manufacturing, and 4) late stage manufacturing is approximately 

1:1.15:0.95:0.6. For company with large development portfolio, cost 

reduction methods such as streamlined technology platform for process 

development and manufacturing at early stage are useful.  
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Figure 3.8 Process development and manufacturing cost distribution across 
development stages.  

The process development and manufacturing cost distributions across stages are 
presented under 3 scenarios featuring average, low, and high risk of development 
failure. These costs are out-of-pocket costs including the cost spent on failed 
products. 
 

3.6.2 At-risk sensitivity analysis 

One of the key decisions in biopharmaceutical new product development 

process is the planning of Phase III process development so that it meets the 

supply requirement of the clinical trials. Considering the high cost of Phase 

III process development, the decision maker faces the trade-off between 

higher cost and potential delay. The zero delay decision would place a 

significant portion of process development activity before Phase III clinical 

trial starts, which could lead to maximum investment lost if the project 

failed at Phase II.  

This analysis used the standard durations from base case as the mean value 

of activities. The uncertainties were introduced by applying normal 

distributions to the durations of activities. For Phase III stage, the activities 
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and time points of concern are the Phase III process development activity, 

Phase III clinical trial preparation period, and the time point of Phase II end 

and Phase III starting. A 4 months standard deviation was applied to the 24 

months duration of Phase III process development activity, indicating that 

there was nearly a 95% chance that the duration was within 16-32 months 

range (2 times the standard deviation from the mean value). By defining the 

cost invested to the process development activities on the failed projects as 

“risk cost”, this cost-risk trade-off is presented in Figure 3.9 for a 

development portfolio of average development risk.  

The likelihood of causing delay in critical path can be reduced by 

prolonging the duration of process development running at risk, i.e. starting 

the process development activity early. However, the effect diminishes as 

the risk reduces, and it is almost impossible to remove any chance of delay. 

Therefore in this analysis, a 10% likelihood of delay is introduced as the 

maximum tolerance of risk from the decision maker. To achieve this level 

of safety, the process development activity should start at 14.2 months 

ahead of the Phase III decision, which implies that potentially $18 million 

investment is made at risk and could be lost if the projects failed to proceed 

to Phase III. The risk cost is affected by the portfolio risk profile. A high-

risk profile increases the risk cost of reducing clinical trial delays.  

The above analysis is based on the assumption that the clinical trial 

preparation time is certain, which is not in some cases. Applying a 3 months 

standard deviation to the length of Phase III clinical trial preparation time 

will increase the difficulty of reducing the risk of delay. To achieve the 

same level of risk tolerance, the risk duration should be increased to 15.5 

months which translates into a risk cost of $19.7 million. On the other hand, 

if the level of uncertainty reduces and the standard deviation of process 

development length is 3 month, 12.9 months of risk duration and $16.4 

million risk cost would be adequate in achieving the target tolerance.  

If the company developed a technology that reduces the expected length of 

process development, it will reduce the risk cost significantly. For example, 
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with the industrial average risk profile, if this technology is capable of 

reducing the expected length of process development by 6 months and the 

standard deviation by 1 months, a 25% reduction, the resulting risk cost 

required to achieve the same level of safety would be $8.9 million, and risk 

duration 7 months. The value of this technology is therefore the reduction of 

risk cost for approximately $9 million.  

 

Figure 3.9 Trade-off between at risk investment into Phase III process 
development and having delay to the product development process.  

The Phase III process development activities are partially running at risk in order to 
avoid causing delays in supplying material to Phase III clinical trials. Due to the 
uncertainty within the duration of the activity itself that is quantified as a Gaussian 
distribution here, there is the possibility of causing delay to the critical path of 
development. Starting the process development at risk earlier than the expected 
required timing could mitigate the likelihood of delay, however this will increase 
the investment at risk that is defined as the cost to the projects that are going to fail. 
This analysis applied 3 levels of uncertainties to the 3 scenarios of risk profile. The 
low level of uncertainty assumes all information to be certain, apart from the length 
of the process development subjected to a 3 months standard deviation to the 
expected 24 months length (PD=3, CT=0). The medium level of uncertainty 
increases the standard deviation of process development length to 4 months (PD=4, 
CT=0). The high level of uncertainty maintains the variance of process 
development length while assuming the period between Phase III decision and the 
actual demand to be uncertain and subjected to a 3 months standard deviation to 
the expected 18 months length (PD=4, CT=3). A maximum tolerance of 10% 
likelihood of delay is applied to various levels of uncertainties and risk profiles 
yielding the timing and cost required to achieve the level of safety.  
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3.7 CONCLUSION 

This chapter benchmarks the cost to develop and manufacture therapeutic 

biologics across the drug development lifecycle, emphasizing the cost 

distributions across both development stages and clinical and non-clinical 

activities. This was achieved with the biopharmaceutical drug development 

lifecycle model described in Chapter 2 that captured the costs, durations, 

risks and interdependencies of both the clinical and non-clinical activities. 

The non-clinical activities were broken down into process development and 

manufacturing. A detailed analysis is presented of the process development 

and manufacturing costs across the biopharmaceutical drug development 

cycle on a single drug and portfolio basis. The non-clinical budgets needed 

at each phase of development to ensure a market success each year were 

estimated for three representative clinical risk profiles and two industrially 

relevant average stage cost alternatives.  The costs of process development 

and manufacturing activities at each stage and their proportions of the total 

cost were further investigated in a sensitivity analysis with changing risk 

and cost scenarios. The economic implication of efforts that minimize the 

risk of delay was explored through a probabilistic approach that applied 

uncertainties to the durations of activities. The analysis lays down the 

foundation for portfolio management optimization based on cost and risk 

related parameters, which is discussed in the next chapter.  

 

 



CHAPTER 4  

STOCHASTIC OPTIMIZATION OF BIOPHARMACEUTICAL 

PORTFOLIO DEVELOPMENT DECISION-MAKING UNDER 

RESOURCE CONSTRAINTS AND UNCERTAINTIES 

4.1 INTRODUCTION 

In Chapter 3, the cost evaluation of biopharmaceutical portfolio 

development was presented and the benchmark of cost distributions across 

development stages and activity categories were captured using a drug 

development lifecycle cost model. In this chapter, the stochastic 

optimization tool is implemented to assist biopharmaceutical portfolio 

management decision-making with a diversified product candidate pool.  

The pharmaceutical industry has suffered from diminishing R&D 

productivity and increasing R&D cost over the past decade. Portfolio 

management decisions are critical to pipeline development especially when 

exposed to outside competition such as follow-on drugs. Studies have 

indicated that most of the follow-on drugs had already started clinical trials 

before the approval of the corresponding original (first-in-class) drugs 

(DiMasi & Faden 2010). Published studies on R&D portfolio management 

have focused on decisions related to candidate selection and capacity 

sourcing, but have not concentrated on the issues of budget and capacity 

planning in different stages of development that can impact the progression 

between development milestones. By implementing the stochastic 

optimization tool described in Chapter 2, the drug portfolio developer is 

able to obtain more information regarding the actual budget and capacity 

required in various development stages, and gains insight into the cash flow 

characteristics of the optimal solutions produced by the algorithm. 

Therefore better outcomes can be achieved from the execution of optimal 

portfolio management strategies.  

The case study proposed in this chapter investigates scenarios where the 

product candidates in the portfolio are all novel in-house candidates starting 
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at the pre-clinical stage as well as scenarios where the product candidates 

available for selection in the starting portfolio include products at different 

stages of development, which can be the case for some drug development 

portfolios. Choosing a product candidate that is in a later development stage 

can be beneficial as it is more likely to reach the market and the remaining 

cost of development is less than that for a candidate that is at an earlier 

development stage. However, the drug portfolio developer may not have 

direct access to such products that are owned by other organizations. 

Acquiring these products normally involves a large amount of upfront cost, 

which can be associated to the cost spent to bring the product to the current 

stage. In this chapter, the impact of upfront cost and its interaction with 

budget constraints is presented and analysed under the scenario that product 

candidates are at different stages. 

The remainder of this chapter is structured as follows. Section 4.2 

introduces the tool implemented in this chapter. The case study input 

parameters to this tool are presented in Section 4.3 as well as the 

configurations for resources constraints and algorithm running parameters. 

In Section 4.4, the optimization of biopharmaceutical portfolio management 

is presented under budget and capacity constraints, and the impact on the  

cash flow for clinical and non-clinical activities is presented. Finally, 

Section 4.5 extends the analysis to a more diversified candidate pool with 

options to acquire outside products that are more advanced in the drug 

development process.  

4.2 TOOL DESCRIPTION 

The stochastic optimization tool implemented in this chapter was originally 

proposed in Chapter 2. The tool is comprised of 1) an evaluation engine 

capable of performing Monte Carlo simulation and dynamic simulation for 

integration of resource constraints with drug development uncertainties; 2) 

an multi-objective evolutionary algorithm for optimizing drug development 

portfolio management decisions based on the results produced by the 
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evaluation engine; and 3) a data management system to collect information 

for further analysis during the running of the tool.  

For the purpose of the analysis presented in this chapter, the tool was 

operated with its full functionality, with all the features of the 3 key 

components turned on. However, crucial inputs regarding the development 

characteristics of product candidates, the configuration of resource 

constraints, and the set up of running parameters were still required for 

formulating the case study. These are described in the following section. 

4.3 CASE STUDY SET UP 

4.3.1 New product development process 

In this study, we used the previously established new product development 

process in biopharmaceutical industry. This process was also adopted in the 

analysis of benchmarking the cost of developing biopharmaceutical product 

portfolio aiming at one market success in Chapter 3. The model captured the 

process from the pre-clinical phase through to the product market launch. 

Manufacturing and process development activities supporting the pre-

clinical and clinical trials were planned at risk so that no delays were caused 

in the critical path of clinical development. The dependencies of these 

activities were shown in Figure 3.1. Every square represents an activity that 

consumes budget and time of the drug developer in this model. Activities on 

the critical path were subjected to development failure, which was 

addressed by transition probabilities in Monte Carlo simulations.  

The benchmark results for developing a single biopharmaceutical product 

presented in Chapter 3 were used as inputs in this case study, and are 

summarized in Table 4.1. 
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Table 4.1 Durations and costs for developing a single biopharmaceutical 
product.  

  PC I II III FDA  

CT  Cost ($million) 4.4 31 35 77 3 

 Duration (year) 1 1.6 2.4 2.7 1.5 

PD Cost ($million) 1.5 0 1.5 10 27 

 Duration (year) 1 0 0.5 2 1.5 

Manu  Cost ($million) 1.11 1.27 1.27 9 0 

 Duration (week) 6 5 5 13 0 

Note: CT – clinical trial. PD – process development. Manu – manufacturing. PC – 
pre-clinical stage. I to III – Phase I to Phase III stage. FDA – FDA review stage. 
 

4.3.2 The candidate pool 

In order to illustrate the functionality of this tool, the candidates in this case 

study were designed such that no obvious solutions can be derived by using 

simple rules such as maximum expected NPV. Risk-reward trade-offs were 

specifically built in by varying the transition probabilities of products and 

their potential market values.  

The candidates were identical in terms of durations and costs of the 

activities, but differed in their chances of successfully reaching the market. 

Table 4.2 presents the risk profiles for candidates from low, medium, and 

high risk groups, which were the same as the phase transition probabilities 

used in Chapter 3 for benchmarking the development cost of developing 

drug portfolio aiming at a single market success. 

Table 4.2 Candidate risk profiles.  

 PC Phase I Phase II Phase III FDA review 

Low risk 70% 85% 55% 70% 91% 

Medium risk 69% 54% 34% 70% 91% 

High risk 69% 54% 34% 21% 91% 
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(Continued) Note: The transition probabilities from medium risk group are from 
published sources on industrial average pharmaceutical development cost study 
(Paul et al. 2010); The low risk transition probabilities are derived from the higher 
values of published transition probabilities for each phase (DiMasi & Grabowski 
2007; Nelson et al. 2010; Bogdan & Villiger 2010); The high risk groups take on 
the transition probabilities of the medium group from pre-clinical to Phase II, but 
the Phase III probability is lower to reflect the case for indications such as 
Alzheimer’s disease. 

 

The candidates were also designed to have the same, positive expected NPV, 

regardless of their risk profiles. In order to achieve this, their market values 

were tuned accordingly. The market value of a product candidate was 

defined as the sum of all discounted future cash flows brought by the 

product. It was evaluated after all the costs related to marketing and 

manufacturing of the products have been accounted for, therefore in the 

model simulation the market value was realized once the candidate reaches 

the market. For the low, medium, and high-risk candidates, their respective 

market value was set to $1500 million, $5200 million, and $21000 million 

respectively. In practice, the market value of a candidate can be easily 

translated into peak sales of the product once the sales curve and product 

life is determined. For instance, assuming the product peak sales occurs at 

the 11th year of entering the market, and the product life is 21 years, $1500 

million market value can be viewed as $600 million peak sales using the 

sales curve introduced by Bogdan & Villiger (2010) at a gross margin of 

50%. 

Thirty product candidates were created from these three risk groups, with 

each risk profile represented by 10 product candidates. The number of 

selections of product candidates in each risk group reflected the preference 

of solutions in the risk-reward trade-offs.  

4.3.3 Budget constraints 

The budget constraints in this case study were addressed by setting up an 

annually updated maximum value for development spending. The value of 

the budget constraint can directly impact the selection of product candidates. 
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However, budget constraints that are above a certain value can operate in a 

similar fashion to unlimited cash flow. Hence it was important to determine 

an effective range of budget constraints for developing this particular 

candidate pool. This was derived based on the maximum requirement of 

funds in more than half (>50%) of situations.  

The budget limits in this case study were established based on the lower 

bound of the maximum budget requirement to ensure the influence of 

budget constraint on the selection of candidates. Under this lower bound of 

maximum requirement of budget, the budget constraint has impact on most 

of the portfolio management decisions. Table 4.3 describes the procedure to 

determine the lower bound of maximum annual budget using binomial 

distributions. With the 10 products from each risk group at the pre-clinical 

stage, the number of products reaching each development stage can be 

derived by applying the binominal model with the phase transition 

probabilities of each stage. The minimum numbers of products reaching 

each stage in more than 50% of scenarios were used for determining the 

annual cost for developing products from each risk group. Finally, 

combining the annual costs from the three distinct risk groups yielded the 

defined lower bound of annual budget requirement, which was $257 million 

during the Phase I stage. Because the binomial probabilities presented in 

Table 4.3 included a scenario in which the actual number of projects was 

higher than the target number, the upper bound of the maximum budget 

requirement can be well above $257 million. In this case study, the budget 

limits were therefore set to be from $50 million to $300 million with 

increments of $50 million.   
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Table 4.3 Estimation of the lower bound of the maximum annual budget 

requirement for development of 30 biopharmaceutical R&D projects.  

Development stages PC I II III FDA 

Duration (Year) 1 1.6 2.4 2.7 1.3 

Cost of clinical trials ($million) 4.4 31 35 77 0.3 

Phase transition probability           

Low risk projects 0.7 0.85 0.55 0.7 0.91 

Medium risk projects 0.69 0.54 0.34 0.7 0.91 

High risk projects 0.69 0.54 0.34 0.21 0.91 

Probability of reaching this stage           

Low risk projects 1 0.70 0.60 0.33 0.23 

Medium risk projects 1 0.69 0.37 0.13 0.09 

High risk projects 1 0.69 0.37 0.13 0.03 

Number of projects reaching this 
Phase with >50% probability from 
10 projects 

          

Low risk projects 10 7 6 3 2 

Medium risk projects 10 7 4 1 1 

High risk projects 10 7 4 1 1a 

Binomial probability of having the 
above number of projects or more 
at these stages 

          

Low risk projects 1 0.65 0.62 0.69 0.71 

Medium risk projects 1 0.62 0.55 0.74 0.60 

High risk projects 1 0.62 0.55 0.74 0.24a 

Cost per year ($million/year)           

Low risk projects 44 135.63 87.50 85.56 0.46 

Medium risk projects 44 135.63 58.33 28.52 0.23 

High risk projects 44 135.63 58.33 28.52 0.23 

Budget required per year 

($million/year) 
132 257 118 101 0.52 

Note: The repeated trials are constructed based on 10 independent project 
candidates created for each group with distinct risk profiles. For each development 
stage, the probability of reaching that stage is calculated using phase transition 
probabilities of the previous stages. The number of project candidates reaching a 
certain stage given 10 independent trials is therefore a binomial distribution from  
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(Continued) which the lower bound of the annual budget requirement can be 
defined as the fund capable of supporting the number of projects in more than 50% 
of all the possible scenarios.  
a The probability of getting one or more projects to FDA review stage in high-risk 
group is lower than 50% from 10 candidates. This exception is made so that there 
is cost related to high-risk projects at this stage.  

 

In the model simulation, any lack of funds caused the activities to halt until 

budget was updated in the following year. Therefore a delay caused by a 

budget constraint could last potentially as long as one year. Delays in 

development affect the final market launch of the product, and in turn affect 

the product’s profitability. Previous studies indicate that delays to market 

launch may result in loss of a competitive position (e.g. Kennedy 1997). 

Hence, for every year of delay, the model assumes that the product market 

value was reduced by 35%.  

In practice, the real budget limits can be obtained through the study of 

company R&D expenses after deducting the non-cash items such as 

depreciation.  

4.3.4 Capacity constraint 

The capacity constraint in this case study was set up to determine the 

optimal capacity level, and to maximise the utility under the constraint 

through portfolio selection. Because of the probabilistic nature of 

biopharmaceutical new product development, capacity budgeting cannot be 

accurate all the time. The mismatch—too much capacity with too few 

products, or vice versa—will cause inefficiency and therefore damage the 

value of the portfolio.  

The upper bound of effective levels of capacity constraint was determined 

by configuring the capacity level such that in almost all (99%) cases the 

capacity requirement for commercial manufacturing could be fulfilled in-

house. In Figure 4.1, the capacity of commercial manufacturing was 

translated into the amount of portfolio market potential that can be achieved 

through in-house production. It was assumed that with every 120kg/year 
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increase in production, $2000 million in market value could be realized, 

based on the selling price of monoclonal antibody products. The case study 

focused on capacity constraints from 120kg/year (~50% probability of 

realizing the full portfolio market value) to 840kg/year (>99% probability of 

realizing the full portfolio market value) with 120kg/year increments in 

capacity to explore their impact on the risk-reward performances and the 

corresponding optimal portfolio selection decisions (see Figure 4.1). 
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4.3.5 Optimal configuration for population size and generations 

As discussed in Chapter 2, before implementing the non-dominated sorting 

genetic algorithm NSGA-II, trial runs have to be performed to find the 

optimal configurations for running the algorithm. A hypervolume-based 

approach was implemented to compare the performance of the algorithm 

under various running parameters, in which hypervolume represents the 

proximity to the real Pareto front. In this approach, the total number of 

evaluation was fixed at 5000 with the population size varying from 20 to 

100. Consequently the maximum numbers of generations were from 50 

(population size 100) to 250 (population size 20). The hypervolume of the 

Pareto front of the final generation was calculated to represent the overall 

performance of the algorithm in the multi-objective space. The optimal 

population size was 80 as it yielded the highest hypervolume value 

compared to other configurations of population size.  

With an optimal population size of 80, the algorithm was implemented 

without any resource constraints for 30 repeated trials. As illustrated in 

Figure 4.2, the hypervolume starts to converge after around 20 generations, 

and fully converged before 50 generations. Different independent trials 

yield very little variations in terms of hypervolume, and they tend to 

converge with the increases of the generations. Therefore for the problem 

specified in this case study, it was sufficient to have 30 independent trials 

running for 50 generations to produce a quality Pareto optimal front 

consistently.  
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Figure 4.2 The convergence of hypervolume of Pareto front for 30 
independent trials of genetic algorithm.  

The error bars are the standard errors from the distribution of hypervolume across 
30 trials.  
 

4.4 RESULTS: OPTIMIZATION UNDER RESOURCE CONSTRAINTS 

In this section, the stochastic optimization tool was implemented under 

various configurations in order to showcase its functionality under possible 

industrial scenarios. The boundaries of optimal performances were explored 

in the presence of constraints on both the budget and manufacturing 

capacity fronts. Optimal solutions generated from evolutionary algorithms 

are discussed and detailed analyses of their distinct economical and 

operational characteristics presented. 

4.4.1 Budget constraints 

Figure 4.3 shows the impact of budget constraints on decisions in portfolio 

composition and the resulting objective values. The resulting Pareto fronts 

demonstrate the trade-off between the conflicting objectives of reward, in 
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the form of the average positive NPV, and risk, in the form of p(NPV>0), as 

illustrated by the negative relationship between them. As the budget 

constraints are relaxed, improvements can be observed in both optimization 

objectives as the Pareto front shifts to the right. Hence for a given 

p(NPV>0) value, the higher the budget limit the higher the average positive 

NPV . However, the effect of improvement diminishes quickly as the 

budget limit gets closer to the lower bound of the maximum annual budget 

requirement.  

Solutions under the more relaxed budget constraints perform better than 

solutions under the more tight budget constraints in the high p(NPV>0) 

value region. Since the average positive NPV value only takes into account 

the NPVs that are positive, the higher the p(NPV>0) value, the more reliable 

the average positive NPV value. Hence the profitability of a solution can be 

compared to another only when they have a similar p(NPV>0) value. In the 

region where p(NPV>0) is greater than 0.5, solutions at the $300 million 

budget constraint dominate the solutions of all other Pareto fronts.  

From a decision-maker’s point of view, the same level of safety can be 

achieved from different budget setups by constructing the portfolio that 

matches the budget. As described in Figure 4.3, to achieve a p(NPV>0) 

value of 0.69 the company should focus on low risk projects when the 

budget is at $150 million. When the budget rises, it is more profitable with 

the same level of safety to shift the focus to more medium and high-risk 

projects.  
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Further investigation into the cash flow distributions from optimal solutions 

unveiled more details of portfolio development. Figure 4.4 illustrates that 

for solutions with a 0.79 p(NPV>0) value, the maximum average annual 

out-of-pocket cost is just right under the budget level for the scenarios at the 

$150M, $200M, $250M, and $300M annual budget levels,. The years with 

the most spending on the development timeline are the 3rd, 4th, and the 6th 

year, with the 6th year being the year of maximum annual spending for a 

solution that relies most heavily on low risk projects (5L, 1M, 1H), and the 

3rd year for solutions that lean towards medium and high risk projects.  

Costs originated from process development, manufacturing, and pre-clinical 

& clinical trials are colour-coded in Figure 4.4. Pre-clinical & clinical trials 

are the most cost-consuming in portfolio development. The costs of process 

development are mainly incurred in the 1st & 2nd year, the 4th to the 6th year, 

and the 9th & 10th year, which are often followed by a short period of 

manufacturing.  

The out-of-pocket costs of non-clinical activities are summarized in Figure 

4.4, in which comparisons of costs distributed to process development and 

manufacturing activities are made among the optimal solutions with the 

same p(NPV>0) value. Phase III process development cost tops the non-

clinical costs of in portfolio development under budget constraints, followed 

by the manufacturing cost for late stage development supply. The number of 

products at different development stages is the key driver of non-clinical 

costs. At FDA review stage, the cost of process development for the optimal 

solution under $150 million budget is higher than the one under $200 

million budget, since the former has a slightly higher average number of 

products reaching the stage. 
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To better understand the mechanism and effect of the annual budget 

constraint, the optimal solution from the $300 million constraint with a 0.79 

p(NPV>0) value was singled out as a performance checker. Simulation 

results of the cash flow performance of this solution under other budget 

constraints are presented in Figure 4.6, with the costs from different 

development stages colour-coded. Varying from $100 to $300 million, the 

annual budget constraints have a significant impact on the average portfolio 

marketing time. With an annual budget constraint of $100 million, it is 

unlikely that the portfolio products would reach the market within the 

modelling time horizon of 14 years. When the limit changes from $200 

million to $300 million, the average time to market shortens from 13 years 

to 12 years, with the average finishing time of Phase I decreasing from the 

5th year to the 4th year and Phase II from 9th year to 7th year. The time saved 

by increasing the annual budgetary limit from $300 million to $400 million 

is negligible, as in both cases the portfolio products reach the market at the 

same year, although in the $400 million scenario the Phase II activities 

finished slightly earlier than in $300 million scenario. Therefore in this case 

the ideal budget level is $300 million, as increasing the budget beyond this 

value has little impact on the portfolio profitability. Lowering the budget 

level does provide smoother spending curve, but at the expense of delaying 

the time to market and hence the timing for revenue.  

Budget planning that is more flexible than a fixed annual cap can be derived 

from this analysis. From year 0 to 3, there is a sharp increase in the 

requirement of funds that should be accounted for to safeguard the 

development process. Pre-clinical and Phase I costs are the main cost 

drivers during this time period. From the 4th year to the 6th year, while the 

total requirement of funds stays at a similar level, its distribution shifts to 

Phase II and III development stages. From the 7th year, a lower level of 

funds is required to focus on Phase III clinical trials and the process 

development activities in preparation of commercial production, till the 

years 11 and 12 when the product finally enters the market.   
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Figure 4.6 C
ost distributions on 

developm
ent tim

eline for optim
al 

solution from
 budgetary constraint 

of 
$300 

m
illion, 

highlighted 
by 

developm
ent stages.  

O
ptim

al solution from
 budgetary 

constraints of $300 m
illion that yield 

0.69 in p(N
PV

>0) value w
as picked 

and its cost distribution w
as 

sim
ulated under other budgetary 

constraints ranging from
 $100 to 

$400 m
illion. C

ash flow
 data w

ere 
collected from

 each M
onte C

arlo 
sim

ulation and averaged to calculate 
the expected figures. O

ut-of-pocket 
costs originated from

 various 
developm

ent stages w
ere highlighted 

in different degree of grey. The 
expected num

bers of projects on the 
tim

eline w
ere displayed on top of the 

total expected out-of-pocket costs at 
the bar tops. Titles from

 each sub-
figure indicate the annual budget 
level and the selection tow

ard low
, 

m
edium

, and high risk as w
ell as 

m
arket potential projects. In this 

figure the selection of projects 
rem

ains the sam
e for all budgetary 

constraints. 
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4.4.2 Capacity constraint 

This analysis explored the impact of clinical and commercial capacity 

constraints on solution performances and portfolio selection decision-

making. Drug developers are often faced with the decisions of future 

manufacturing capacity while there exists the possibility of product failure 

in clinical trials. The setup can also solve the optimal capacity configuration 

at a given level of safety. 

For pre-clinical, Phase I, and Phase II stages, decisions concerning the 

manufacturing capacity has little impact on the capacity of manufacturing 

for commercial purpose. Therefore the main reason for ensuring sufficient 

facilities to carry out the production plan is to prevent delays in the critical 

path of portfolio development. Lack of early stage manufacturing facilities 

in portfolio development may cause multiple projects queuing for the same 

facility. Simulations with full portfolio candidate products were performed 

to test the optimal setup of early stage manufacturing capacities. In Figures 

4.7 and 4.8, the impacts of changing the capacity available for pre-clinical 

and for Phase I & II production are displayed in terms of shifts in the out-of-

pocket costs on the development timeline. By changing the capacity 

dedicated to pre-clinical manufacturing from one to two facilities, the 

finishing times of all pre-clinical and clinical stage development activities 

are advanced by 1 year, and more importantly the final time to market of 

successful products is advanced by 1 year as well. Increasing the capacity 

from 2 to 4 facilities shows no improvement in terms of the products’ year 

of market entry. Nevertheless, using 3 facilities instead of 2 for pre-clinical 

production does shorten the length of pre-clinical stage and possibly enables 

the IND submission to occur 1 year ahead (Figure 4.7). Hence the optimal 

setup of pre-clinical manufacturing capacity should be between 2 and 3 

facilities. 
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Figure 4.7 C
ost distributions 

on developm
ent tim

eline for 
full portfolio candidates w

ith 
num

ber 
of 

facilities 
dedicated 

for 
pre-clinical 

m
anufacturing ranging from

 
1 to 4.  

A
ll 30 product candidates are 

selected and the associated 
cost distribution sim

ulated 
w

ith different num
ber of 

facilities available for pre-
clinical m

anufacturing. 1000 
M

onte C
arlo sim

ulations w
ere 

perform
ed in order to achieve 

the average out-of-pocket cost 
for each developm

ent stages 
presented on the tim

eline. The 
developm

ent stages are 
highlighted in different degree 
of grey. For each year, the total 
annual out-of-pocket cost is 
displayed on top of the bars. 
The title for each graph 
indicates the pre-clinical 
facility scenarios, e.g. ‘C

1 3’ 
m

eans 3 facilities dedicated for 
pre-clinical m

anufacturing. 
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Figure 4.8 C
ost distributions 

on developm
ent tim

eline for 
full portfolio candidates w

ith 
num

ber 
of 

facilities 
dedicated for Phase I and II 
m

anufacturing ranging from
 

1 to 4. 

A
ll 30 product candidates are 

selected and the associated 
cost distribution sim

ulated 
w

ith different num
ber of 

facilities available for Phase I 
and II m

anufacturing. 1000 
M

onte C
arlo sim

ulations w
ere 

perform
ed in order to achieve 

the average out-of-pocket cost 
for each developm

ent stages 
presented on the tim

eline. The 
developm

ent stages are 
highlighted in different degree 
of grey. For each year, the total 
annual out-of-pocket cost is 
displayed on top of the bars. 
The title for each graph 
indicates the Phase I and II 
facility scenarios, e.g. ‘C

1 3’ 
m

eans 3 facilities dedicated for 
Phase I and II m

anufacturing. 
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Phase I & II manufacturing tasks takes longer (10 weeks) per investigational 

product than pre-clinical manufacturing (6 weeks). The improvements of 

finishing times due to the transition from one to two facilities are 2 years 

(7th year to 5th year) and 1 year (9th year to 8th year) ahead for Phase I and 

Phase II, respectively (Figure 4.8). Increasing capacity from 2 facilities does 

not lead to significant improvement on the timing of major development 

milestones, nor does it advance the products’ market entry. Therefore the 

optimal setup of capacity for Phase I & II manufacturing should be 2 

facilities. 

For Phase III and commercial production, the capacity decision not only 

determines the timing of clinical trials, but also the profitability of products 

once they enter the market. Lack of production for commercial purposes 

may force the drug developers to seek external capacity, which in this case 

study scenario, is more expensive than in-house production. On the other 

hand, building a facility for Phase III and commercial scale production is a 

major investment that will potentially cost the drug developers hundreds of 

millions of dollars. The trade-off between building in-house facility versus 

seeking outside capacity exists, especially when the required target amount 

of production is uncertain. Simulations of portfolio development under 

uncertainty were implemented to uncover the risk-reward characteristics of 

solutions under various capacity scenarios. An evolutionary algorithm was 

applied to the solution pool in order to explore the optimal combination of 

products for a given capacity constraint. For each capacity setup, the 

optimal solutions are displayed in the form of a Pareto front.  

Figure 4.9 highlights that from 120kg/year to 360kg/year, the performance 

of Pareto fronts improves significantly. However, the rate of improvement 

diminishes rapidly above the 360kg/year level (83% coverage of the all-

candidate portfolio market potential). Therefore, aiming at around 80% 

coverage of all candidate projects can be used as a simple rule when 

encountered with capacity planning decisions.  
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Figure 
4.9 

Pareto 
optim

al 
front 

for 
solutions 

under 
capacity 

constraints 
from

 120kg/year to 840kg/year. 

A
ll the solutions here are results of 

evolutionary algorithm
s running for 

m
ultiple tim

es under various capacity 
constraints. For each capacity constraint, 
50 independent solutions are random

ly 
selected as the initial generation and then 
processed through 80 generations in order 
to find the Pareto optim

al solutions. For 
each solution, 100 M

onte C
arlo trials are 

perform
ed addressing the random

 factor in 
the evaluation m

odel, generating a 
distribution of N

PV
s representing the risk-

rew
ard characteristics of this solution. W

ith 
the percentage of positive N

PV
 p(N

PV
>0) 

as the m
easure of risk (the low

er the risker) 
and average positive N

PV
 as the m

easure 
of rew

ard (the higher the better), the 
generation evolves for 30 independent 
tim

es for each capacity scenarios. This 
figure presents the final selections of 
Pareto optim

al solutions w
ith x-axis 

representing the risk m
easure and y-axis 

representing the rew
ard m

easure. In 
general, in this figure, the Pareto front of 
higher capacity dom

inates the one of low
er 

capacity. 
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From 120kg/year to 360kg/year, the selection towards projects from distinct 

risk-reward groups drives the shift from high-risk, high-reward region to 

low-risk, low-reward region. Figure 4.10 depicts the Pareto optimal fronts 

of 120kg/year, 240kg/year, and 360kg/year constraints from the selection 

point of view. Overall, the increase in p(NPV>0) is determined by the 

increase in total number of projects selected, and projects with medium-risk, 

medium-rewards turn out to be the backbone behind the transition in all 3 

scenarios. The selection of low-risk, low-reward projects remains low for 

the 120kg/year constraint, but increases in number when p(NPV>0) 

increases under the constraints of 240kg/year and 360kg/year. For the high-

risk, high-reward projects, they are less likely to be selected in the 

120kg/year scenario when p(NPV>0) increases. The frequency of selection 

of these projects remains constant in the 240kg/year and 360kg/year 

scenarios. 
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Figure 
4.10  
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Moving from 480kg/year to 840kg/year, the capacity constraint begins to 

lose its impact on the performance of the drug development portfolio. 

Solutions from Pareto fronts were aggregated based on their p(NPV>0) 

values into 3 categories: 0.2~0.4 (high-risk), 0.4~0.6 (medium-risk), and 

0.6~0.8 (low-risk). Unpaired t-tests were performed on the solutions from 

the same risk category to confirm the impact of capacity constraints on 

average positive NPV. As shown in Table 4.4, in the medium-risk region, 

there is no significant difference of average positive NPV except when the 

capacity increases from 600kg/year to 720kg/year. In the low-risk region, 

the only significant difference exists between the capacities of 480kg/year 

and 600kg/year. The non-significant differences in risk-reward 

performances under these capacity constraints can be attributed to the cost 

of acquiring the capacity units ($88 million per unit). Therefore, the benefit 

of increasing annual production capacity drops significantly after the 

360kg/year capacity level, hence the paramount need for having at least 

360kg/year production capacity under the current configuration of the 

candidate pool. 

Table 4.4 P-values between average positive NPVs of solutions from various 
capacity constraints separated by their p(NPV>0) performances.  

Medium risk region 480kg/year 600kg/year 720kg/year 

600kg/year 0.2104 
  

720kg/year 0.0001633 0.009213 
 

840kg/year 0.0001058 0.005385 0.7344 

Low risk region 480kg/year 600kg/year 720kg/year 

600kg/year 0.01282 
  

720kg/year 0.02918 0.8204 
 

840kg/year 0.5645 0.3096 0.3977 

Pareto optimal fronts of scenarios with capacity constraints from 480kg/year to 
840kg/year were divided based on their p(NPV>0) into low-risk (0.2~0.4), 
medium-risk (0.4~0.6), and high-risk (0.6~0.8) regions. The average positive 
NPVs of solutions from the same region were tested for impact of changing 
capacity using unpaired 2-tailed student t-test. Significant results from a single 
incremental of capacity constraint are highlighted. 
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4.5 RESULTS: CANDIDATES WITH VARIOUS STARTING STAGES 

In the case study presented in this subsection, a more realistic scenario of 

product candidates is designed so that not every product starts at the pre-

clinical stage. For the products with higher risk, they are also more 

advanced in the development pathway. Table 4.5 depicts the changes made 

to the candidate pool, including the addition of upfront costs for the more 

advanced products.  

Table 4.5 Starting stage, risk profile, market value, and upfront costs for 
candidates from a more realistic scenario.  

Risk 

profile 

Starting 

stage 

% to 

market 

Post-launch NPV 

($million) 

Upfront cost 

($million) 

Low Pre-clinical 21 1500 0 

Medium Phase II 21 5200 25 

High Phase III 19 21000 35 

The risk profiles and market values of candidates are the same with the previous 
study. In this study, it is assumed that all low risk candidates are in-house without 
any upfront cost to develop. The upfront costs of the more advanced candidates 
from medium and high risk groups are from Anon. (2013). 

 

To effectively limit the decisions towards the product candidates, budget 

constraints specifically focused on upfront purchases were introduced. The 

drug developers cannot make an upfront purchase of candidates worth more 

than $105, $350, and $600 million, which is equivalent to 3 high risk 

products, 10 high risk products, and all the medium and high risk products 

(unlimited), respectively.  

The introduction of upfront budget limits has impact on the performances of 

best solutions. From Figure 4.11, the reward changes significantly when 

raising the limit from $105 million to $350 million or remove the limit. 

However, the improvement from $350 million to unlimited upfront budget 

is not as significant as the one from $105 million to $350 million. 



Chapter 4  

 

 133 

The limitation of $105 million upfront budget prevents the Pareto front from 

exploring the high p(NPV>0) region by massively in-licensing high market 

value Phase III products. With $350 million and an unlimited budget for 

upfront purchase, the Pareto fronts stay in the p(NPV>0) >0.8 region. 
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Figure 4.11 A
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Evolutionary algorithm
 is applied to 

efficiently searching the decision space under 
budget lim

its of $105, $350, and $600 
m

illion (unlim
ited) for optim

al portfolio 
selection com

binations. The candidates start 
from

 different stages and upfront costs are 
required to select the m

ore advanced 
products, therefore com

pensating their 
developm

ent efforts. The algorithm
 

processed a generation containing 80 
random

ly generated solutions for 50 evolving 
generations. C

om
bining 30 independent such 

processes for each constraint scenario, this 
figure show
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optim
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PV
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ard m
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sub-graphs above, featuring solutions from
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illion upfront budget 
constraint w

ith distinct risk-rew
ard 

perform
ances. 
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The distribution of NPVs of solutions from Pareto optimal fronts unveils the 

possible outcomes of portfolio development. With limited budget for 

purchasing late-stage projects, the distribution of NPVs is largely 

determined by the success of a few key products, showing a disconnected 

distribution of NPVs. With the addition of the more reliable medium and 

late-stage projects, the distribution of NPVs becomes more continuous, 

reflecting a more steady performance.  

Selections from Pareto optimal fronts of various upfront budget constraints 

reflect the function of product candidates from distinct groups. Under the 

$105 million limit, the low-risk, early stage, upfront free products drives the 

increases of p(NPV>0). With higher budgets for upfront payment, the 

algorithm selects solutions that take advantage of the late stage, high market 

value products.  

A trade-off between the products starting from Phase II and the ones starting 

from Phase III exists in $105 million budget Pareto front in the transition 

from high-reward, high-risk region to low-reward, low-risk region. With 

unlimited budget for purchase, the Pareto front converges into picking all 

the high market value Phase III products. 
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Based on this analysis, the decision-maker can adjust the portfolio risk-

reward preference by switching products from different groups when under 

constraint. However, the optimization results are contingent on the accuracy 

of model inputs, which can be difficult to achieve. By using the evaluation 

engine on optimal solution alone, the effect of inaccurate or uncertain inputs 

can be measured.  

Additionally, the acceptable upfront costs when in-licensing projects under 

portfolio perspective can be explored. From the same starting point of 9 

early stage, low-risk projects, 4 Phase II, medium-risk projects, and 0 Phase 

III, high-risk projects, the tool evaluates the results of performance change 

when 1 Phase III project is in-licensed. Figure 4.13 shows the possibility of 

having inefficient transition through the in-licensing deal or gaining 

absolute value based on different upfront costs. When the upfront cost is 

under $152 million, the in-licensing deal improves the portfolio 

performance in terms of both the p(NPV>0) and the expected NPV. 

Between $228 million and $1153 million, the deal results in mutually non-

dominated performance with the original state, sacrificing p(NPV>0) in 

exchange of expected NPV. When the upfront cost is $1730 million or more, 

which represents the expected NPV of this single project, the deal turns out 

to be inefficient as it results in a reduction in both aspects of performance. 
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4.6 CONCLUSION 

The stochastic optimization tool for biopharmaceutical portfolio 

management decision-making proposed in Chapter 2 was implemented this 

chapter. Case studies focusing on portfolio management decision-making 

and its interactions with budget and capacity resource constraints were 

formulated and the results discussed. The setup of biopharmaceutical 

product candidate pool took shape from the cost benchmarks produced in 

Chapter 3, and the combinations of products from distinct risk-reward 

characteristics were discussed based on the results of optimization under 

constraints of various levels. The capability of the activity-based, object-

oriented drug portfolio development model was illustrated, and in particular, 

the information within the data reports regarding the cost distribution across 

development stages and activity categories was visualized. Therefore this 

stochastic optimization tool is able to assist the decision maker by offering 

the option to implement the optimal solutions with detailed planning of 

budget and manufacturing capacity.  

The design of the tool allows more flexibility be introduced in formulating a 

diversified candidate pool, in which not all products are from the same 

starting stage. A mechanism relating to in-licensing a product was 

integrated by factoring in the upfront costs for the more advanced products. 

Budget constraint on the maximum upfront payment was designed so that 

the selections between the more advanced, high market potential, outside 

products and the less advanced, low market potential, in-house products can 

be in conflict, and therefore optimization of strategy was required. The 

performances of solutions from Pareto fronts of optimization under different 

upfront budget constraints are not comparable, as the Pareto front of high 

upfront budget completely dominates the one of lower upfront budget. 

Finally, the evaluation engine was utilized for determination of critical 

transition boundaries when in-licensing products from in portfolio 

development context. The product’s upfront cost is key to distinguish 
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whether an in-licensing deal leads to absolute portfolio value gain or 

inefficient transaction.  

 



CHAPTER 5  

DRUG DEVELOPMENT LIFECYCLE COST MODEL IN 

PRACTICE: AN APPLICATION TO CELL THERAPY 

PRODUCTS 

5.1 INTRODUCTION 

The drug development lifecycle cost model introduced in Chapter 3 is a 

general-purpose model for all pharmaceuticals that have similar 

development patterns. The cell therapy industry (CTI) is a fast growing field 

that could potentially treat millions of patients and generate revenues in the 

magnitude of tens of billions over the next decade. The stages in the 

development cycle for cell therapy products are similar to those for 

pharmaceutical products in general, with clinical trials on the critical path 

and non-clinical activities to support the progression of clinical trials. 

However, there are significant differences in the size of clinical trials and 

the success rates. In addition, cell therapy products require different 

manufacturing processes to biopharmaceuticals given that living cells are 

the final product. The manufacturing of cell therapy products follows a 

different process and hence requires different cost calculation methods. 

Given these differences, the benchmark cost evaluation in Chapter 3 

developed for biopharmaceuticals needs novel features to be incorporated 

for applying to cell therapy products with their specific development 

characteristics. In this chapter the development specifics of cell therapy 

products are addressed and the drug development lifecycle cost model is 

implemented to characterize the cost of cell therapy product portfolios. The 

drug development costs for cell therapies are compared to 

biopharmaceuticals, focusing on the differences in the total cost and non-

clinical cost ratios. This chapter also extends the analysis of how delays in 

development impact the decision-making by capturing the potential revenue 

loss. 
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This chapter is structured as follows. Section 5.2 provides a brief 

description of the cell therapy product development lifecycle, with emphasis 

on its specific phase transition probabilities and clinical trial size. The 

estimation of the market potential of cell therapy products is discussed in 

Section 5.3. The cost evaluation of developing a single cell therapy product 

is presented in Section 5.4 with a comparison to biopharmaceutical products. 

In Section 5.5 an analysis of the costs for developing a portfolio is discussed 

as well as the impact of delays on potential market revenue loss.  

5.2 DEVELOPMENT OF CELL THERAPY PRODUCTS  

5.2.1 Development lifecycle description  

The development process of cell therapy products follows the same stages 

as biopharmaceutical products, as described in Chapter 3. In a nutshell, the 

clinical trials from Phase I to Phase III form the critical path of development, 

with timely scheduled non-clinical activities, i.e. manufacturing and process 

development, providing support for trial progression and eventually 

commercial launch. These non-clinical activities are scheduled such that the 

clinical trials on the critical path suffer no delay, therefore minimizing the 

time to market. This inevitably leads to the fact that part of, or the entire 

non-clinical activity for a given development stage takes place without 

knowing whether the clinical trial that it underpins will commence or not. 

With a potential possibility of failure in clinical trials, the manufacturing 

and process development activities are actually running “at-risk”.  

Apart from maintaining these important assumptions about the product 

development cycle, changes have to be made when applying the drug 

development lifecycle cost model to cell therapy products. Firstly, the scope 

of development stages in this study focused on Phase I to FDA review and 

preclinical trials were not included given insufficient data at this point to 

estimate the cost components with confidence. Users of this tool can easily 

change this assumption as more information becomes available.  
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Secondly, the method of producing material for clinical trial supply is 

different from protein-based biopharmaceuticals. Therefore a different 

process economics model was required to capture the cost of manufacturing. 

Instead of using a product mass-based calculation, the cell therapy product 

manufacturing target is characterized by the number of cells required. In this 

study, a UCL process economics model (Simaria et al. 2014; Hassan et al. 

2014a) was used to estimate the cost of a cell therapy manufacturing process 

featuring 10-40 layer cell factories (CF-10 & CF-40) for cell expansion 

followed by tangential flow filtration (TFF) for volume reduction and 

washing and finally fill-finish. 

Finally, data was collated to estimate the clinical trial success rates and 

clinical trial patient population sizes for cell therapy products that differ 

from general pharmaceuticals or biopharmaceuticals. This is discussed in 

detail in the following sections.  

5.2.2 Phase transition probabilities  

According to the FDA, “cell therapy products include cellular 

immunotherapies, and other types of both autologous and allogeneic cells 

for certain therapeutic indications”. This study focuses on allogeneic cell 

therapies (universal donor) that have a similar business model to 

biopharmaceuticals that is product-driven rather than service-driven, 

provides off-the-shelf products and can benefit from scale-up. Examples of 

approved allogeneic cell therapies include Prochymal (Osiris) for GvHD 

and Cartistem (Medipost) for osteoarthritis.   

Cell therapies are considered to be specific due to the cell types introduced 

and do not directly interfere with other physiological functions. Small 

molecule therapies, on the other hand, are generally considered less specific. 

They may interfere with multiple targets simultaneously, which likely 

results in higher toxicity and lower efficacy. Therefore, for the purpose of 

this analysis on cell therapies, clinical trial success rates for large molecule 

therapeutics provide a more relevant scenario than those for small molecule 
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therapies. A recent study on pharmaceutical clinical trials shows that for 

large molecules, the phase transition probabilities for Phase I, II, III, and 

FDA review are 66%, 38%, 60% and 89% (Hay et al. 2014). Table 5.1 

summarizes various sources for biological and pharmaceutical product 

phase transition probabilities. 

Table 5.1 Phase transition probabilities for biopharmaceutical and 
pharmaceutical products 

Phases I II III FDA  PhI LOAa PhI Nb 

Large molecules  

(Hay et al. 2014)  
66% 38% 60% 89% 13% 7.5 

Biopharmaceutical  

(DiMasi et al. 2010) 
84% 53% 74% 96% 32% 3.2 

Pharmaceutical & 

biopharmaceutical 

(Paul et al. 2010) 

54% 34% 70% 97% 12% 8 

a. Likelihood of approval (LOA) for Phase I products.  
b. Expected number of products (N) in Phase I to achieve 1 approval. 
 

5.2.3 Number of patients in clinical trials 

Compared to most pharmaceutical and biopharmaceuticals, cell therapy 

products typically have much fewer patients in the clinical trials, especially 

for Phase III. Based on a study summary of 8386 on-going US regulated 

clinical trials, it can be calculated that the average number of subjects per 

trial for Phase I, II, and III is 42, 102, and 906 respectively (Krall 2009), see 

Table 5.2.  
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Table 5.2 Average number of subjects participating on-going US regulated 
clinical trials.  

  Phase I Phase II Phase III 

On-going US regulated clinical trials 1342 2600 1090 

Subjects (million) 0.057 0.266 0.988 

Subjects per trial 42 102 906 

The total numbers of trials and subjects for Phase I, II, and III are provided by 
Krall (2009). 
 

A data analysis into 251 clinical trial registry records on cell therapy 

products shows that the median numbers of patients in Phase I, II, and III 

are 12, 50, and 208, respectively, fewer than the average numbers of 

patients for all US regulated clinical trials (Hassan et al 2014b). Considering 

the distribution of patient numbers is positively skewed and dispersed, it is 

more appropriate to use the median values than the average values as the 

standard cell therapy clinical trial patient numbers.  

Table 5.3 Cell therapy clinical trial patient number.  

 Phase I Phase II Phase III 

N 90 111 50 

Average 17 73 252 

SD 13 77 196 

Skewness 1.53 3.62 0.93 

Median 12 50 208 

Source: Hassan et al (2014b). Data compiled from US clinical trial registry. N – 
sample size. SD – standard deviation. 
 

The differences in clinical trial enrolment can affect the overall clinical trial 

cost, assuming the cost per patient remains constant for all products in a 

given stage.  
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5.3 MARKET POTENTIAL OF CELL THERAPY PRODUCTS 

Sales revenue of product is the most essential way for drug development 

companies to recover their cost and realise the intrinsic value of products. 

Quantitative justification for portfolio management decision-making 

ultimately lies in the profitability indicators such as net present value (NPV). 

For pharmaceutical products, there are usually large variations in their 

market potential in terms of annual sales revenue, which makes it difficult 

to predict the profitability of any particular product. The determinants of 

sales revenue include therapeutic area, drug pricing, market competition, 

company’s sales force, etc. Empirical studies have been trying to discover 

the correlations between these determinants and sales revenue with a 

significantly large sample of marketed products.  

However, the purpose for this study is to equip the drug portfolio developers 

with a tool that conceptually incorporate products’ market potential into 

their decision-making process. This tool establishes the link between 

portfolio development scheduling decision and its consequences in terms of 

expected market revenue change. Once the predictions are made on 

products’ market potentials, the decision makers are able to quickly quantify 

the implications of scheduling decisions on future revenues.  

It is therefore appropriate for this study to set the market potential of 

product on par with some typical marketed cell therapy products in order to 

provide a more realistic analysis. Dermagraft, a fibroblast-derived dermal 

substitute for treating chronic diabetic foot ulcers (DFUs), grossed $44 

million on its first year of approval by the FDA in 2008, netting $28 million 

gross profit for its originate company, Advanced BioHealing. The revenue 

income from Dermagraft continued to grow in 2009 and 2010, with 

revenues of $85 million and $146 million, and gross profit of $65 million 

and $115 million (Mason et al. 2011).The sales plunged to $105 million in 

2011, when the company is purchased by Shire for $750 million, and 

rebounded to $153 million in 2012 before Dermagraft was sold to 

Organogenesis (Shire Plc 2013). Provenge, an autologous cellular 
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immunotherapy for the treatment of metastatic prostate cancer, brought $48 

million revenue for its originating company Dendreon in 2010 when it 

commenced market sales in May. In the following year it grossed $213 

million and $325 million the year after. The sales revenue fell to $284 

million in 2013 (DENDREON CORPORATION 2014). Based on sales 

figures of these industry flagship products, the following assumptions on 

typical market potential are made. 

1. First year revenue is assumed to be $50 million. This is on par with 

the first year sales of Dermagraft. Provenge’s first year sales only 

account for 7 months in market, therefore the real first year sales 

will be larger than $50 million. With sales figures conservative 

assumptions are preferred in this study therefore the smaller one is 

chosen.  

2. Peak sales income is achieved on the 3rd year of market entry. This is 

true for both of these products. After the 3rd year, the sales fall 

gradually.  

3. The amount of peak sales is $150 million. This is again on par with 

Dermagraft, which is the smaller of the two selected products. 

4. The sales ramp up curve is represented by the annual sales as 

percentage of peak sales. For this study, the percentages are 33%, 

67%, 100%, and 80% from the 1st year to the 4th year of market entry. 

This is consistent with both products after converting Provenge’s 7 

months first year sales into effective 1-year sales assuming the sales 

are proportionate throughout the year. After the 4th year, the sales 

drop to 50%, 10%, and 0% of peak sales in the 5th, 6th, and 7th year. 

6 years of effective market operation of the product is assumed due 

to the limited length of patent protection.  

5. The gross margin for cell therapy product is 65%, on par with the 1st 

year figures on Dermagraft gross profit. As the sales increase, the 

gross margin will increase due to the economies of scale. 65% marks 

the lower limit of cell therapy product’s gross margin and is 

consistent with the conservative principle. 
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Table 5.4 summarizes the assumptions on market potential of typical cell 

therapy product in this study. These assumptions are made based on 

conservative principles, which lead to relatively modest sales figures.  

Table 5.4 Market potential of typical cell therapy product.  

Year(s) after market entry 1 2 3 4 5 6 

% of peak sales 33% 67% 100% 80% 50% 10% 

Sales revenue ($million) 50 100 150 120 75 15 

Gross profit ($million) 32 65 98 78 49 10 

The peak sales of $150 million occur on the 3rd year of market entry. The gross 
margin for all sales is 65%. 
 

The linkage between development scheduling and product market potential 

takes into account the effect of competition from either other originators or 

follow-on biologics. Study shows that in 1990-2003 period there are 30% of 

follow-on drugs filed the investigational new drug (IND) application prior 

to the first-in-class compound (DiMasi & Faden 2010). The introduction of 

follow-on competitions normally accompanies price discounts (Wertheimer 

et al. 2001). In this study, the effect of market competition is quantified in 

terms of penalties to the scheduling decisions that results in delay to market 

entry. In Chapter 4, an assumption was made for biopharmaceutical 

products that one year’s delay to market would lead to a 35% loss of market 

value, due to the potential damage to the product’s competitive position 

(Kennedy 1997). Since cell therapy products are relatively new and their 

market potentially less competitive, a moderate assumption was made that 

for each year of delay, the peak sales of product is reduced by 25%.  

5.4 COST OF DEVELOPING A SINGLE CELL THERAPY PRODUCT 

5.4.1 Cost of process development 

In this study, the cost evaluation of process development activities inherits 

the framework proposed in Chapter 3, with all pre-clinical tasks transferred 
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to Phase I. This change does not contradict the assumptions on process 

development functionality in the previous analysis as there are no Phase I 

process development tasks assigned. Since the starting point of this analysis 

is Phase I, it is safe to assume the cost of process development previously 

assigned to pre-clinical stage transferred to Phase I stage. Table 5.5 presents 

the result of in-house analysis of cell therapy process development cost and 

durations. The cell therapy process development activities are divided by 

function into 4 categories: process optimization, technology transfer, 

process characterization & validation, and product stability. Compared to 

biopharmaceuticals, the process development costs of cell therapy products 

are similar for early stages (Phase I and II), but much lower for late stages 

(Phase III and FDA review).  

Table 5.5 Cost evaluation of process development activities for cell therapy 
product in clinical trials (Hassan et al. 2014b). 

 
Phase I Phase II Phase III FDA 

Process optimization ($million) 0.5 0.5 1.5 0 

Technology transfer ($million) 0.5 0.5 0.5 2 

Process characterization & validation 

($million) 
0 0 0.18 1.9 

Product stability ($million) 0.05 0.02 0.01 0 

Total cost ($million) 1.05 1.02 2.19 3.9 

Duration (year) 0.5 0.5 2 1.5 

The process development activities are divided into 4 main functions: process 
optimization, technology transfer, process characterization & validation, and 
product stability. 

5.4.2 Cost of manufacturing 

The typical manufacturing process for cell therapy products involves several 

key steps that are different from biopharmaceuticals. The cells/tissue must 

be acquired first for primary cell isolation into master & working cell banks. 

These cells are then expanded. Harvested cells from these cell cultures go 

through volume reduction and washing steps in order to properly formulate 
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the cell therapy product. Cryopreservation is typically used for allogeneic 

therapies to extend shelf-life, facilitate storage and distribution before they 

are tested for release to end-user handling. The key technologies in this 

process are cell factories (CFs) for cell expansion, followed  by tangential 

flow filtration (TFF) for volume reduction and washing. In this study, the 

facility for production for clinical trial manufacturing is fixed at CF-10 lots 

for Phase I and II and CF-40 for Phase III with TFF and vialing, with 108 

cells per dose and 2 doses per patient as treatment. The cost of 

manufacturing was calculated using a UCL process economics model 

specific for cell therapy products (Simiaria et al. 2014; Hassan et al 2014a). 

This model was configured with standard planar technologies throughout 

the development stages. The key input variable to the model was the target 

amount of cells to produce and the total cost of goods per batch was the key 

output used in this study. The cost of goods included direct costs (e.g. 

materials) and indirect costs such as the capital charge that is a yearly cost 

that takes into account the FCI, the facility’s useful life (10 years), and the 

interest rate. The capital charge was divided by each manufacturing lot 

commenced within 1 year. Table 5.6 depicts the flow of calculations for the 

cell therapy process economics model with the resulting manufacturing cost 

as output. The number of patients here is adapted from the median values of 

clinical trial enrolment for existing cell therapy products described in 

Section 5.2.   
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Table 5.6 Cost of manufacturing for developing cell therapy product.  

Development stage Phase I Phase II Phase III 

Optimal technology setup 
10 x CF-10 & 

TFF & vialing 

20 x CF-10 & 

TFF & vialing 

8 x CF-40 & 

TFF & vialing 

Dose (cells/patient) 108 108 108 

Nr. of doses/patient 2 2 2 

Nr. of patients 12 50 200 

Nr. of lots per year 3 3 14 

Clinical trial duration (year) 1.5 2.5 3 

Manufacturing cost 

($million) 
1.18 2.33 3.25 

Note: The patient numbers are assumed to be similar with the median values of 
clinical trial enrolment for existing cell therapy products. 
 

5.4.3 Cost of clinical trials 

The clinical trial activities normally contribute most to the total cost of 

developing investigational therapeutics. However, in the cell therapy area, 

due to the lack of systematic study on clinical trial costs, it is unknown what 

proportion it takes in the total cost of developing cell therapy products. It is 

therefore inevitable to make assumptions regarding the cost of clinical trials. 

In this study, the costs of clinical trials per patient are assumed to be 

consistent for all therapeutic drugs for the same trial, since the variable 

component of costs of clinical trials depends on the number of patients 

participating the trial. The cost of hospital and patient recruitment can be 

considered constant regardless of the product.. The user of this tool can alter 

this assumption as it only serves to provide realistic input for the tool.  

This assumption provides essential link between existing clinical trial cost 

studies and cell therapy clinical trial costs. In Chapter 3 the number of 

patient is assumed to be 50, 200, and 2000 for Phase I, II, and III for 

biopharmaceutical products. Section 5.2 establishes the fact that for cell 
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therapy products the number of patient enrolment is much smaller. Hence it 

is safe to say the cost of clinical trials will be lower by a significant margin. 

The exact estimates of cell therapy clinical trial costs are summarized in 

Table 5.7, where published total phase costs were used to deduce the cost of 

clinical trials for pharmaceutical products (Paul et al. 2010).  The clinical 

trials costs for cell therapy products in Phase I and II are ¼ of the costs for 

pharmaceutical drugs. In Phase III, cost of clinical trial for pharmaceutical 

products is 10-fold the cost for cell therapy products. 

Table 5.7 Cost of clinical trials for cell therapy products.  

  Phase I Phase II Phase III 

Clinical trial cost (pharmaceutical, $million) 14 37 131 

Patient number (pharmaceutical) 50 200 2000 

Cost per patient ($ thousand) 275 186 66 

Patient number (cell therapy) 12 50 200 

Clinical trial cost (cell therapy, $million) 3 9 13 

Note: The cost per patient is assumed to be consistent regardless of the nature of 
therapeutic drugs. The cost of clinical trials for pharmaceutical products are 
derived from published total phase costs less the costs of non-clinical activities 
(Paul et al. 2010). 
 

5.5 PORTFOLIO DEVELOPMENT COST EVALUATION OF CELL 

THERAPY PRODUCTS 

The drug development lifecycle cost model is implemented with cell 

therapy product development specific configurations. The results of 

portfolio development costs are presented for activities across development 

stages and clinical versus non-clinical categories. Comparisons of cost 

distributions are made between pharmaceutical, biopharmaceutical, and cell 

therapy portfolio development. A sensitivity analysis exploring the impact 

of changing Phase II transition probability is performed, showing that the 

required number of projects at Phase I and the early stage non-clinical cost 
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are most affected. Finally, the model investigates the portfolio valuation by 

constructing cash flows from development stages to market incomes, 

featuring the scenario analysis where 1-year delay occurs during the Phase 

III stage.  

5.5.1 Cost evaluation 

The portfolio development cost evaluation is achieved through model 

simulation of development activities from clinical trial, manufacturing, and 

process development. The number of products in the portfolio was 

configured such that 1 market success can be achieved on average. The drug 

development lifecycle cost model simulates the development pathway of all 

these products by deterministically scheduling relevant activities and 

produces costs distributions across both development stages and activity 

categories. 

Figure 5.1 depicts the cost evaluation of cell therapy product portfolio 

development targeting 1 market success. The overall cost of developing 1 

market successful product on average is $157 million. Dividing the 

development stages into early stage as Phase I and II, and late stage as 

Phase III and FDA review, the early stage development costs takes up 

around 75% of the total cost. The most cost extensive stage is Phase II with 

$71 million out-of-pocket cost and 35% of which is spent on non-clinical 

activities, i.e. process development and manufacturing. The ratio of clinical 

trial costs from early stage to those from late stage is approximately 2.5:1. 

The total non-clinical is about 37% of the total portfolio development cost 

across all development stages. The ratio of early stage non-clinical cost to 

late stage non-clinical cost is 2.5:1. Phase II manufacturing cost tops the 

non-clinical costs with $17 million, followed by Phase I manufacturing cost 

of $9 million. The costs of process development remain flat at $7~8 million 

throughout clinical trial stages from Phase I to Phase III. These cost 

distribution parameters can facilitate critical budget planning decisions in 

developing cell therapy products. The distributions of stage costs of each 

activity categories also reflect the ideal market composition in those 
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activities, which can be useful for analyzing gaps in existing market 

composition and discovering opportunities.  

Compared to the cost evaluation of pharmaceutical and biopharmaceutical 

products discussed in Chapter 3, the cost of developing cell therapy product 

portfolio is considerably smaller. Figure 5.2 presents the comparison of cost 

distributions of portfolio development of pharmaceutical, biopharmaceutical, 

and cell therapy products. The phase transition probabilities of 

pharmaceutical and biopharmaceutical product development are adopted 

from Paul et al. (2010) as the industrial average benchmark. The cell 

therapy product phase transition probabilities are represented by large 

molecule success rates from the study on clinical success rates of 

investigational drugs (Hay et al. 2014). The benchmark costs of 

manufacturing for all product categories are from in-house process 

economics model featuring specifically the material requirements of clinical 

trials. By analyzing the functional tasks and personnel of process 

development in each drug development stage, the benchmark costs of 

process development are produced. The costs of clinical trials for 

pharmaceutical and biopharmaceutical products are deducted from the 

published total phase costs (Paul et al. 2010; DiMasi & Grabowski 2007). 

For cell therapy products, the clinical trial costs are estimated assuming the 

cost per patient remains constant for a given stage of clinical trial and there 

are no fixed cost components. The comparison presented in Figure 5.2 

shows that the portfolio development cost of biopharmaceutical products is 

the highest among the three, primarily because of the large amount of 

spending in Phase I development. Pharmaceutical product portfolio 

development cost is around the same value, but more focusing on Phase III 

development. For cell therapy portfolio development, the most cost spent is 

on Phase II, taking up almost half (~45%) of the total development cost.  
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Figure 5.2 Cost distribution across development stages for developing an 
R&D portfolio targeting 1 market success.  

The cost distributions across stages are presented for 3 different product categories: 
pharmaceutical, biopharmaceutical, and cell therapy products. The pie chart within 
this figure features the cost distribution across development stages for cell therapy 
product. These costs are out-of-pocket costs taking into account the costs for failed 
projects. The total portfolio development cost is on the top of each bar. The costs 
for pharmaceutical and biopharmaceutical portfolio development excludes the 
costs spent on pre-clinical stage. 

 

The model also captures the cost distributed to manufacturing and process 

development activities. Figure 5.3 shows the manufacturing and process 

development cost distribution across all stages of portfolio development for 

cell therapy products as well as biopharmaceutical products. The overall 

cost of non-clinical activities is $58 million for cell therapy product 

portfolio and $129 million for biopharmaceutical product portfolio from 

Phase I to FDA review stage. Biopharmaceutical product portfolio 

development focuses more on FDA review stage process development since 

extensive process characterization and validation tasks are required to 

formulate the BLA documentation and the drug developing company also 

needs to prepare its commercial production. Cell therapy product portfolio, 
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on the other hand, is much less costly in late stage process development but 

more expensive in manufacturing to provide materials for Phase II clinical 

trial as there is quite a significant number for patient enrolment in Phase II. 

From a budget planning point of view, the transition from 

biopharmaceutical product portfolio to cell therapy product portfolio implies 

big cuts in process development costs, especially for Phase III and FDA 

review stages, and relatively small cuts in manufacturing costs.  

 

Figure 5.3 Process development and manufacturing cost distributions across 
development stages for biopharmaceutical products and cell therapy products 
portfolio targeting 1 market success.  

The costs are out-of-pocket costs including the spending on failed projects. The 
total costs of process development and manufacturing for portfolio development 
are presented on top of each bar. The process development cost of 
biopharmaceutical portfolio development in Phase I takes the value of pre-clinical 
cost as they perform similar functions in the analysis. 

 

A more detailed comparison between biopharmaceutical and cell therapy 

product portfolio development cost evaluation is presented in Figure 5.4. 

Evidently it is more than 3 times more expensive to development a 

successful biopharmaceutical product than a cell therapy product because of 

1) the higher attrition for biopharmaceutical projects: 8.6 products are 
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required at Phase I for biopharmaceuticals compared to 7.5 for cell therapy 

products; 2) the higher cost of clinical trials across all clinical stages: almost 

3.5 (Phase II) to 11 (Phase I) times higher for biopharmaceuticals than for 

cell therapy products; 3) the higher cost of non-clinical activities: more than 

2 times higher in total non-clinical cost for developing biopharmaceuticals 

than for cell therapy products as described in previous paragraphs. Despite 

the higher non-clinical costs, the ratio of non-clinical cost against the total 

cost for biopharmaceutical portfolio development is much smaller than that 

of cell therapy portfolio, almost half the percentage (19% versus 37%), 

which suggests that the cell therapy product developer should focus more on 

non-clinical activities.  

 

Figure 5.4 Cost comparisons between cell therapy product portfolio and 
biopharmaceutical product portfolio development.  

The phase transition probabilities for biopharmaceutical products are from Paul et 
al. (2010) and the total phase costs are from DiMasi & Grabowski (2007). For cell 
therapy products, large molecule clinical trial phase transition probabilities (Hay et 
al. 2014) are used and the costs of clinical trials are deducted assuming constant 
cost per patient. Number of projects required in Phase I to have 1 market success in 
average is presented, as well as the cost distribution across development stages and 
activity categories. Non-clinical activities include process development and 
manufacturing. a) The process development cost for Phase I for biopharmaceutical 
products takes the value of pre-clinical process development cost as they perform 
the same function. b) The percentage of overall non-clinical costs over the portfolio 
development cost. c) For biopharmaceutical products, this percentage takes into 
account the cost spent on pre-clinical stages.  
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5.5.2 Sensitivity analysis 

Assumptions have been made in the previous analysis of cost evaluation of 

cell therapy product development since when this study carried out the area 

was largely unexplored. It is therefore reasonable to test the sensitivities of 

cost evaluation results against those assumptions in order to obtain a more 

comprehensive understanding of the implications should those assumptions 

fail to represent the reality. In this study, the drug development lifecycle 

cost model is implemented with changing inputs in a one-factor-at-a-time 

(OFAT) fashion, capturing the percentage deviations of cell therapy 

portfolio development cost evaluation results.  

As the stage that divides early stage and late stage and with the highest 

likelihood of project failure, Phase II is selected as the research focus in this 

study. A published research study on success rates of investigational drugs 

(Hay et al. 2014) shows that variations exist in Phase II transition 

probability for development of drugs in different therapeutic areas. The 

range of possible Phase II transition probabilities is from 26% (32% lower 

than the benchmark input) to 50% (32% higher than the base case input).  

Figure 5.5 presents a sensitivity analysis of the portfolio cost determined by 

the model to the Phase II transition probability as well as other key model 

variables. In general, the increases in percentage variations of costs from 

base case are larger than the decreases caused, if changing the Phase II 

transition probability at the same magnitude. Similar percentage variations 

appear for projects required at Phase I, the early stage non-clinical cost, and 

the Phase II stage cost, revealing the fact that the calculation of these 

parameters follows the same principle of calculating expected values. The 

model constructs a portfolio based on attrition rates in order to get 1 market 

success, and works on the cost of activities from each stage by multiplying 

the cost of that activity with the number of projects required in that stage.  

The variations of total clinical trial cost as well as total cost of portfolio 

development are smaller than the variation of Phase II stage cost, since there 

is no change in the cost after Phase II, which is part of total portfolio 
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development cost. However, there is variation for Phase III non-clinical cost 

as well as its percentage of total phase cost because the non-clinical 

activities for Phase III actually starts at Phase II stage before the knowledge 

of Phase II success. Decreasing Phase II transition probability also increases 

the percentage of early stage cost against total cost, as more projects are 

required in early stages.  

 

Figure 5.5 Sensitivity analysis on cell therapy cost evaluation results when 
Phase II transition probability changes.  

The Phase II transition probability varies from 38% in benchmark analysis to 26% 
as the lowest possible value and 50% as the highest possible value for all 
therapeutic areas. The variations of cost evaluation results are reflected in terms of 
percentage increases or decreases from the benchmark.  
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5.5.3 Portfolio valuation and impact of delay to market 

The drug development lifecycle cost model is capable of capturing portfolio 

development timelines and milestones, therefore constructing expected cash 

flows. With the projections of a product’s market revenue and profit margin, 

the portfolio NPV can be achieved by the discounted cash flow (DCF) 

method that combines the cash flow generated from cost of development 

and profit of marketing the product.  

Considering the cost of portfolio development as cash outflow or negative 

cash flow, and the profit from market revenue as cash inflow or positive 

cash flow, the cash flow chart of developing a cell therapy product portfolio 

targeting one market success is established in Figure 5.6. For the first 5 

years of development, the annual cost of portfolio development is around 

$20 million except for the 3rd year where the cost surges to more than $40 

million, which deserves special attention from cell therapy developers as the 

increased amount of cost could potentially cause delay because of the 

shortage of development budget. Once after the product’s market entry, the 

drug developer should expect an injection of profit that almost covers all 

portfolio development cost. Measures should be taken at this point to ensure 

the level of market penetration that strengthens the sales, and to seek 

opportunities for making good use of the increased capital.  
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Figure 5.6 Expected cash flows for developing cell therapy product portfolio 
targeting 1 market success.  

The cost evaluation figures are separated by the time of cost incurring. All cost 
figures are treated as negative cash flow to the drug development company, with 
all gross profits from marketing the product contributing to positive cash flow. 
Scenario where 1-year delay occurs in Phase III development stage is analysed and 
the results presented along with benchmark results. The revenue and gross profit 
loss due to the increased likelihood of competition after delay are captured. 
Portfolio NPVs are produced for both scenarios based on a 10% discount factor 
specific for pharmaceutical industry NPV calculations.  

 

The simulation presented in Figure 5.6 also captures the effect of a 1-year 

delay in Phase III development. It not only causes the market entry to delay 

accordingly, but also decreases the peak sales by 75% because of the 

increased amount of competition introduced by the delay. With the limited 

time of patent protection, the total market operation time of the product is 

also reduced, resulting the revenue loss of ~$300 million or profit loss of 

~$135 million. From a portfolio NPV perspective, the original development 

scheduling provides $2 million in negative expected NPV when applying 

10% discount rate, which is reasonable considering in this study the more 

conservative assumptions of product market potential are employed. With 

the 1-year delay scenario, the portfolio expected NPV drops to negative $47 

million, which will not be tolerable to most decision makers.  
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5.6 CONCLUSION 

In this chapter, the drug development lifecycle cost model was implemented 

to benchmark the cost of developing cell therapy product portfolio aiming at 

1 market success. The costs of clinical trials, manufacturing, and process 

development across the development lifecycle of cell therapy product were 

estimated in a single product basis as inputs to the model. The cost 

evaluation of portfolio development resulted in a total out-of-pocket cost of 

$157 million per successful cell therapy product. Results of pharmaceutical 

and biopharmaceutical portfolio development cost evaluations were 

compared with cell therapy products, emphasizing the cost features of non-

clinical activities and their proportions to the total portfolio development 

cost. A sensitivity analysis investigating the impact of changing Phase II 

transition probability on the evaluation results was presented, revealing key 

mechanisms of the cost evaluation process and the magnitude of possible 

variations. Finally, an analysis utilising the cash flow functionality of the 

model explored the valuation capability of this tool by introducing the 

product’s potential market revenue and captured the ramifications of delay 

from an NPV prospective.  

 



CHAPTER 6  

CONCLUSIONS AND FUTURE DIRECTIONS  

6.1 INTRODUCTION 

Declining productivity, increasing cost, and high risk of failure in 

pharmaceutical R&D activities create the need for effective portfolio 

management decision-making and implementation. Finding the optimal 

portfolio composition from the myriad combinations of available product 

candidates is further complicated by the constraints in both R&D budget 

and manufacturing capacity. Portfolio composition decisions separated from 

the explicit characterisation of the cost distributions are of little use to 

portfolio managers, as inadequate budget planning can cause delays that are 

detrimental to portfolio value realization. This chapter summarizes the 

efforts made in this thesis in developing computational decision tools that 

produce quality portfolio management solutions while providing critical 

cost evaluations for budget planning purpose. Future developments that 

advance the understanding of these subjects are also discussed.  

6.2 OVERALL CONCLUSIONS 

The main focus of this thesis has been the design and implementation of 

computational decision tools that perform fast cost evaluation of drug 

development process and facilitate biopharmaceutical portfolio management 

decision-making under uncertainty and with resource constraints. To 

achieve this, an activity-based, object-oriented drug development lifecycle 

cost model was proposed to represent the biopharmaceutical portfolio 

development activities of both clinical and non-clinical aspects. This tool 

was implemented in Chapter 3 to benchmark the cost of developing and 

manufacturing therapeutic biologics across the drug development lifecycle. 

The costs, durations, risks and interdependencies of clinical trial, 

manufacturing, and process development activities were captured on a 

single product and portfolio development basis. Three representative 

clinical risk profiles and two industrially relevant average stage cost 
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alternatives were utilised in formulating case studies that lead to the 

analyses of clinical and non-clinical costs required at each phase of 

development to ensure a market success each year. The costs of process 

development and manufacturing activities at each stage and their proportion 

of the total cost were also investigated under these risk profiles and cost 

scenarios. Link between the efforts that minimize the risk of delay and their 

economic implications in cost evaluation was established through a 

probabilistic approach that applied uncertainties to the durations of activities.  

The drug development lifecycle cost model was also implemented to 

benchmark the cost of developing cell therapy product portfolio aiming at 

one market success. In Chapter 5, the differences between cell therapy 

product and biopharmaceutical drugs in manufacturing process and clinical 

trial size were discussed and the out-of-pocket cost for developing a single 

cell therapy product was estimated. The cost evaluations of portfolio 

development for biopharmaceuticals and for cell therapy products aiming at 

one market success were compared, highlighting the cost characteristics that 

involve non-clinical activities and their propositions to the total portfolio 

development cost. The possibility of inaccurate estimate of clinical success 

rates was addressed by exploring the impact of changing Phase II transition 

probability on the evaluation results. The analysis of delay was further 

extended in this chapter by capturing its potential damage to portfolio NPV. 

The biopharmaceutical portfolio management stochastic optimization tool 

was designed based on the drug development cost model that functions as 

the evaluation engine with Monte Carlo simulation techniques to capture the 

drug development uncertainties and dynamic simulation mechanisms to 

resolve resource allocation. Performance assessments to biopharmaceutical 

portfolio management solutions were produced by this evaluation engine in 

the form of NPV distributions. A binary string representation of portfolio 

management decisions was introduced for its flexibility, efficiency, and 

simplicity. The two key statistics of NPV distributions, the average positive 

NPV and the probability of NPV being positive, were utilised as the 
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measurements of portfolio profitability and risk. A multi-objective 

evolutionary algorithm was implemented to efficiently search the decision 

space for optimal solutions. Data management system that produces data 

reports of various formats was designed to capture the performance of the 

optimal solutions as well as details in simulation at activity level.  

This tool was implemented in Chapter 4 for optimization of 

biopharmaceutical portfolio management decision-making under effective 

budget and capacity constraints. A hypothetical product candidate pool was 

formulated with products of distinct risk-reward characteristics. This 

candidate pool was further diversified in a case study by varying the starting 

stage for R&D and factoring in upfront payment. The tool was applied to 

both scenarios, and the sets of optimal solutions as well as their cost 

distributions across development timeline and activity categories were 

discussed. The impacts of changing budget and capacity constraints were 

investigated from both decision-making and implementation perspective. 

Finally, the tool was utilized to explore critical transition boundaries that 

distinguish an in-licensing deal from “absolute value gain” to “inefficient 

transaction” in a portfolio context.  

In conclusion, this work contributes to the effort of providing quantitative 

support to portfolio management decision-making in biopharmaceutical 

industry. The benefit of combining cost evaluation with portfolio 

optimization was illustrated through the enhanced understanding of drug 

development process, which would lead to better performance in 

implementing portfolio management solutions. The tools developed in this 

thesis is flexible for adjustment with changing landscape of industrial 

pipeline development, and can be altered to accommodate decision-makers 

with various resource attributes. Effective use of the optimization and cost 

evaluation outcomes can provide more specific guidance to drug 

development process from portfolio management and resource allocation 

perspective, thus improving the financial situation of the firm and creating 

value for society.  
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6.3 FUTURE WORK 

The tools developed in this thesis contribute to the effort of providing the 

portfolio management decision makers with quantitative support. Several 

improvements can be made by integrating some key techniques. 

Firstly, more advanced multi-objective evolutionary algorithms can be 

applied to enhance the performance of the optimization process. Researches 

on meta-heuristics have provided algorithms that suit different problems. 

Comparisons of performances between different search algorithms can be 

made from efficiency and robustness perspectives to identify better 

solutions. A worthy alternative to NSGA-II would be the recently developed 

indicator-based evolutionary algorithm (IBEA). 

Secondly, as the risk indicator, the possibility of NPV being positive does 

not scale when the distribution of NPV has larger variations from zero. A 

tenth of a million dollar NPV cannot be reasonably regarded as “positive” 

when the maximum NPV is a hundred million. A more intelligent risk 

indicator can be developed so that it reflects the magnitude of NPV 

variations by re-defining what is an effective “positive”. 

Thirdly, the data generated in running of the tools can be more effectively 

managed through relational databases. The existing data management 

system designed for the tools can benefit from database normalization 

operations provided by relational database, as the data collection processes 

are mostly accomplished by multi-dimensional arrays. Using relational 

databases also enables remote access to data and encourages collaboration. 

Finally, the simulation model can be made more dynamic after variable 

cost-of-capital is introduced. The firm’s cost-of-capital is dependent on its 

capital structure, which is in turn dependent on financing activities resulted 

from increasing R&D budget.  
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