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A B S T R A C T

Investigations of geomorphology and morphodynamics within the coastal zone have tended to

treat the open coast as an independent system to that of any neighbouring estuaries. This

separation is also evident within shoreline management, which has traditionally been

undertaken within the context of coastal cells or estuarine valleys. The focus of this research

is a comparative analysis of morphodynamic behaviour and sedimentary characteristics of

connected open-coast – estuary systems. The north coast of Cornwall, southwest England, is

notably indented and dominated by bedrock cliff and shore platforms. However, it also

comprises some broad embayments that accommodate estuarine valleys and open coast,

typically sandy beaches. The region provides an ideal environment within which to assess

broad-scale coastal change and the association between estuarine and open-coast

morphodynamics. Furthermore, it provides an opportunity to consider regional coherence in

coastal behaviour and to evaluate the relative importance of local physical context vs. regional

climate forcing. The Hayle, the Gannel and the Camel estuaries that are located within St

Ives, Crantock and Padstow bays respectively, have received considerable attention in terms

of the impacts of mining on estuarine sedimentation. The impacts on sediment supply,

sedimentology and mineraology have been explored extensively in these past studies,

however, very little consideration has been given to the nature of coastal geomorphology and

coastal system dynamics. This PhD research explores mesoscale coastal dynamics, and

evaluates coastal behaviour over decades to centuries in the context of climate and sea-level

change.

Historical geomorphological evolution of these estuaries and their adjacent shorelines are

examined to evaluate morphodynamic connectivity through the application of shoreline

analysis tools (such as Digital Shoreline Analysis System (DSAS) and Location Probability

Analysis). This study showed that low shoreline recession along the north Cornwall coast,

where sediments are present, has attributed most to the significant sea-level rise in this region

(no significant change was observed on rocky low water shorelines). The high water shoreline

imposes a different pattern of change in response to constraining factors which are triggered

by both environmental factors and historical human activities. Changes over contemporary

time scales are focused on bedform movement into, within and landward of inlets and are

primarily driven both by waves in the outer estuary/ebb delta region and by tides in the

channels/flood delta region. The inlets, however, are largely fixed in position by the bedrock
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valley, and channel dynamics within the estuary are dependent on the accommodation space

provided by the valley.

Sedimentary linkages are also explored through the sedimentological and geochemical

analysis of sediments sampled from the intertidal zone of these systems. Based on grain-size

parameters, there is considerable homogeneity in the sediment populations specific to the sub-

environments sampled and analysed. There is evidence of sediment mixing between

estuarine and beach environments. Geochemical (XRF) and mineraological composition of

sediment indicate contamination by mine waste tailings in the estuaries resulting from major

historical mining activities in the region with Sn, Cu, As and Zn as predominant in the Hayle,

Pb and Zn in the Gannel and Sn, W, and Zr in the Camel estuaries.

This research presents a multidisciplinary approach that employs a range of computer and lab-

based analyses to integrate geospatial resources (including published maps, chart archives,

etc) and sedimentological characteristics (including grain size and XRF analyses). The thesis

is the first comprehensive comparative investigation of the morphodynamic behaviour and

sedimentology of these north Cornwall estuaries.
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1 INTRODUCTION

___________________________________________________________________________

1.1 Coastal systems

The coastal environment, a triple conjunction of land, water and air, is a complex physical

environment that requires a holistic / system approach (Carter, 1988). The seaward extent of

coastal environment is characterised by the outer continental shelf (~200m depth) with the

limit of territorial waters. This section of the coastal system can be referred to as the open-

coast. It is mainly shaped by waves coming from the offshore zone and breaking at the

nearshore zone (Dean and Dalrymple, 2002). Open coasts are impacted by issues such as beach

and marine pollution (Jeftic et al., 2009), shoreline recession and accretion (Oyegun, 1991;

Albert and Jorge, 1998; Ado et al., 2008; Brooks and Spencer, 2010; BaMasoud and Bryne,

2012), coastal erosion (Hanson et al., 1984; Quélennec, 1987; Clayton, 1995; Cai et al., 2009;

Dhar and Nandargi, 2003; Galloway, 2009; Munji et al., 2011; Lieske et al., 2013; Koerth et

al., 2013), sea-level rise, saline intrusion and destabilisation (e.g. Bird, 1985; Dean and

Dalrymple, 2002; Munji et al., 2011; Teasdale et al., 2011) and coastal flooding (Galloway,

2009; Munji et al., 2011; Koerth et al., 2013; Lieske et al., 2013; Adamo et al., 2014; Gallien,

et al., 2014). Coastal erosion and flooding are major global problems causing significant

economic loss, ecological damage and various societal problems in coastal system

environments. In Europe, these problems cause serious loss of properties, infrastructure and

beach width annually costing millions of Euros in economic damage (European Commission,

2004; Marchand et al., 2011).

Concerns is increasing over natural environmental forcing such as changes in storm surge

frequency, sea-level and wave climate changes present acute ecological, environmental,

morphological, sedimentological, and geochemical challenges within coastal environments

(Komar, 1976; Davis, 1978; Carter, 1988; Pattiaratchi,(ed) 1996; Pye, 1996; Cabanes et al.,

2001; Dhar and Nandargi, 2003; Holgate and Woodworth, 2004; Blott et al., 2006; Teasdale

et al., 2011). The implementation of hard coastal protective measures like flood defences on

sandy coasts may be easy and long lasting (e.g. Anfuso et al., 2011; Gallien, et al., 2014);

such may not be an easy task in a muddy coast (Saengsupavanich, 2013). However, the reality

of a combination of increasing storminess (Donat et al., 2011; Young et al., 2011) and the

continuous accelerating sea-level rise (Donnelly et al., 2004) dictate the need to improve

flood and erosion defences for the protection of coastal livelihoods and infrastructures

(Bouma et al., 2013). One recent proposal is the integration of nature into coastal defence

schemes, that is, the integration of both the soft and hard options, which are observed to offer

innovative and cost effective means of protecting the coast from the mirage of challenges and

issues (Borsje et al., 2011; Liquete et al., 2013; Temmerman et al., 2013). Good examples of

this innovation is exemplified by emphasising the role of coastal wetland and ecosystem
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services in protecting shore lines (see Gedan et al., 2011; Shepard et al., 2011; Liquete et al.,

2013). Current practices regarding flooding or erosion management show measures with local

perspectives designs (Marchand, et al., 2011). They are often in a reactive way without any

regard for the larger temporal and spatial domination of coastal sediment or intrinsic

processes which are at the root of the problem, especially in Europe (European Commission,

2004). Also, many countries lack or have weak coastal policy, lack sufficient funding, limited

public understanding, consistent ad hoc arrangements at alleviating the impacts of

erosion/flooding, data and field observations, etc is making it difficult for coastal

managers/scientists to be able to address the coastal problems through the appropriate

measures (Marchand, et al., 2011; Gallien, et al., 2014). As long as both anthropogenic and

environmental forcing are ever present in coastal environments, studying them can never be

exhaustive despite the challenges or problems confronting the system.

Similarly, estuaries, as the interface between the terrestrial and fluvial upland and the seaward

wave- or tide- dominated regimes of the open coast (van Der Wal et al., 2002) are complex

system partly as a result of either the complexity of estuarine sediment dynamics and

morphological evolution (Karunarathna et al., 2008); their interaction with the physical

dynamics of the open coast (Hibma et al., 2004) or as a result of varied range of human

activities (Pye, 1996). Estuaries are defined as a semi-enclosed or enclosed coastal water-

body where marine waters are diluted by freshwater (Pritchard, 1967). Human needs for

navigational purpose, training walls, port development, channel dredging, waste disposal into

the estuarine environment and tidal power generation encourages pressing issues on estuaries,

including flood defence, shoreline erosion, inlet instability as a result of

sedimentation/morphodynamics, (Pye, 1996; van der Wal et al., 2002; Blott et al., 2006;

Gallien, et al., 2014). Most estuarine systems all over the world are under human-induced

pressures which lead to a tension between economic activities and the integrity of the

environment, for example, utilisating estuaries for navigation routes (Schuttelaars et al.,

2013), mangrove destruction in paving way for agriculture, overexploitation for firewood and

charcoal production (Barbier et al., 2008; Clark, 1996; Granek and Ruttenberg, 2007; Masalu,

2000; Othman, 1994; Thampanya et al., 2006; Saengsupavanich, 2013), excavation of ponds

for aqua-cultural activities (Primavera, 2006), groundwater pumping and petroleum

exploitation (Arthurton, 1998; Lin, 1996; Oyegun, 1993), or dredging/dam construction

(Cooper et al., 2001; Wang et al., 2012). Loss of estuarine habitat (EEA, 2010), degradation

in estuarine ecosystems like seagrasses (Bos et al., 2008; Waycott et al., 2009), salt marshes

(Adam, 2002; Boorman, 1999), mangrove forests (Barbier et al., 2008; Das and Vincent,

2009; Valiela et al., 2001), saline water intrusion up rivers and estuaries (Cai, et al., 2009),

eutrophication and pollution of estuarine sediments and habitats (Chakraborty et al., 2012;

Rabalais et al., 1996; Rabouille et al., 2008; Seitzinger et al., 2010), reclamation of estuarine

wetlands (Costanza, et al., 2008; Shepard et al., 2011; Liquete et al., 2013), damage to

wetland and biodiversity (Jing et al., 2012), and destruction of sand dunes (Everard et al.,
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2010). These are all examples of environmental and ecological problems associated with the

estuarine environment.

The need to mitigate such problems lead to the development of estuarine protective measures.

Options to protect and preserve the estuaries include soft and hard alternatives. The soft

approach involves managing or protecting the estuaries through non-structural measures like

artificially replanting of mangrove (mangrove reforestation) (Saengsupavanich, 2013),

relocation of estuarine communities or creation of a set-back line (New South Wales

Government, 1990; Sanò et al., 2011), ecological engineering (Borsje et al., 2011), and

planned retreat (Abel et al., 2011) among others. The arguments against soft options include

the impracticality in reality of mangrove reforestation, for example, due to the longer time it

takes for the mangrove to take roots, become strong and dense enough to withstand waves or

protect intense coastal flooding (Saengsupavanich, 2013), even the mangrove may need hard

coastal structures to dissipate waves, high currents and tides to increase their survival rate

(Hashim et al., 2010). The likely unwillingness of estuarine residents to move out of their

homes in relocation is a challenge which hinder the soft options in many estuarine

environments of the world. These challenges are obvious facts which encourage the

implantation of hard alternatives that involve construction of hard fences and other

engineering protective measures in order to immediately stop the estuarine erosion and

flooding, while other management tools can be explored once the relative stability is achieved

(Tamin et al., 2011; Saengsupavanich, 2013).

1.1.1 The physical nature of coastal environments

The key physical drivers of coastal processes and factors associated with coastal change are

waves, tides, sea level change, sediment supply and the mediation of these by inherited or

more slowly changing geological context/controls. Human intervention (coastal engineering

such as coastal protection structures, marinas and commercial port development, land

reclamation, river regulations works, unregulated dredging, etc) can impart significant control

on these processes, particularly in terms of sediment budget. However, waves, storm surges,

tides, wind parameters and oceanic circulations are the main processes that determine the

physical nature of the coastal environment. These processes can co-exist either individually,

in many cases, or in diverse interactions that drive the coastal processes (Longuet-Higgins and

Stewart, 1960; Prandle and Wolf, 1978; Jansen, 1992; Bao, et al., 2000; Welsh, et al., 2000;

Moon, 2005).

The changing nature of coastal environment is linked to significant shifts in wave and wind

climates, which are key drivers of coastal change. Generation of storm surge, sea surface

stress and coastal circulation are believed to be significantly influenced by wind and wave
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(Janssen, 1992; Smith, et al., 1992; Mastenbroek, et al., 1993; Moon, 2005). Smith, et al.,

(1992) show that the sea surface stress in the North Sea decreases as wave increases while

Janssen (1991) and Moon et al., (2003) show that increased ocean waves enhance the drag of

airflow and surge in storm predictions and occurrences in a coastal environment. Similarly,

significant surface coastal wave action is noted to influence the distribution of near-surface

distributions of physical atmospheric and climatic properties such as temperature, velocity,

salinity and ocean circulation (Kantha and Clayson, 2004; Mellor and Blumberg, 2004;

Moon, 2005). Increased wave heights and the frequency of strong winds, especially in the

North Atlantic to the north and west of the UK (Hadley, 2009) are reported in studies by

Gulev and Hasse (1999), Gulev and Grigorieva (2004) and Alexander et al. (2005). Gulev

and Hasse (1999) discovered that changes in swell height of the North Atlantic are consistent

with increase in significant wave height. Gulev and Grigorieva (2004) note that the long-term

changes in wind wave height of the North Atlantic is closely associated with both the North

Atlantic and North Pacific Oscillation as well as El-Nino-Southern Oscillation in the Pacific.

However, notable increases in wave height could not be attributed directly to influence of

climate change or natural variability since other studies like Carretero et al. (1998) found

comparability of the present wave and storm climate with what was obtainable at the

beginning of the 20th Century (as reported in Hadley, 2009). What these findings suggest is

that these physical processes are active in a coastal environment and their dynamics drive the

changes in the system.

Diverse interaction in physical processes on the coastal environment are also obvious,

especially the influence of physical parameters like tides, storm surges and oceanic currents.

For example, tides and storms cause unsteady wind and wave propagation in the North Sea

when the wave-current interactions are assessed (Tolman, 1991). These parameters are

reported to also influence coastal wave scenarios in the Gulf Stream (Holthuijsen and Tolman,

1991; Komen et al., 1994). Tides, wind waves, storms surges and oceanic circulations largely

determine the nature of physical processes in the coastal system and drive morphodynamics

(Moon, 2005). Although there have been efforts to separate and understand individual

physical processes by a number of studies in the last few decades (e.g. Smith et al., 1992;

Janssen, 1989, 1991, 1992; Mastenbroek et al., 1993; Zhang and Li, 1996, 1997, etc),

however these processes interact and influence one another and also the coastal environment

(Moon et al., 2003; Moon, 2005). In another perspective, the non-linear interaction between

tides and storm surges are demonstrated to affect the prediction of sea-levels in coastal

environment (Tang et al. 1996) while Simmons, et al., (2004) suggest that the interaction of

tide and other physical parameters improve the coastal mixing processes in the coastal

environment. This view is also supported by Schiller (2004) finding of the essential influence

of tide in transportation and mixing processes in Indonesian coastal environment.
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The 5th Assessment Report of Intergovernmental Panel on Climate Change (IPCC, 2013)

reached a conclusion that the global average sea-level rose by an average of almost 2 mm yr-1

in the 20th century, faster than preceding centuries, and also exhibiting evidence of continued

acceleration during the 20th century. Also, evidence from coastal tide gauges and satellite

radar altimetry has shown that the rate of sea-level rise has increased since the early 1990s to

c. 3 mm yr-1. Sea-level rise remains one of the key driving mechanisms of coastal system over

the mid- to long-term scale (Holgate and Woodworth, 2004; Church and White, 2006; and

Hadley, 2009). In the last decade, as reported in Pickering, et al., (2012), an accelerated rate

of 3.1 mm yr-1 is observed globally (Cazenave and Nerem, 2004; Holgate and Woodworth,

2004). These global trends are generally reflected in the UK-specific data (Hadley, 2009) with

lower trends in Scotland principally as a result of impacts of uplift by post-glacial isostatic

adjustment (Woodworth et al., 1999). Post-glacial sea-level rise and eustacy are shown to

experience long-term tectonic and isostatic vertical movements of coastal margins (Pirazzoli,

1976; Pitman, 1978; Flemmin, 1982; Leeder, 1988). Northern UK and Scandinavian coasts

are reported to have longer geomorphological changes arising from these isostatic re-

adjustments as a result of the Scottish and Scandinavian ice-sheets removal in the first half of

the Holocene (e.g. Steers, 1946; Tooley, 1978). Such changes in sea-level have the potential

to affect the tidal dynamics on coastlines, nearshore zone and shelf seas by possibly

increasing the propagation speed and strength of tidal wave (Pickering et al., 2013), although

there may be different local responses in some coastal systems (see for example, Roos et al.,

2011; Pickering et al., 2012; Shennan and Horton, 2002; Ward et al., 2012).

Sediment dynamics in a coastal system is another physical nature of the coastal environments.

The demand and supply, that is the transfer and the withdrawal, of sediments in a coastal

system is rarely constant but continuous (Dean and Dalrymple, 2002). Coastal changes and

morphodynamic evolution are determined, to an extent, by these sediment fluxes/movements.

Recently, investigation of the rates and role of sediment transport processes are addressed in

three studies: EUROSION (2004), Futurecoast (Burgess et al., 2004) and Foresight Future

Flooding (Evans et al., 2004a). It is noted in the studies that the knowledge of the sediment

fluxes and driving processes is very important not only for the management of flood and

coastal defences, but also for the understanding and prediction of changes in coastal

environment. The sediment flux determines the coastal changes and morphodynamic

evolution of coastal features and environments. The transfer and the movement of sediments

within the coastal system may be a result of many forcing mechanisms. The driving force

behind these processes within a coastal system include: wave action, tidal currents, river and

estuary flow and wind (Komar, 1976; Davis, 1978; Pethick, 1984; Carter, 1988). Though

rivers may be supplying over 90% of the coastal sediment input (Pethick, 1984), dam

construction is reducing this supply world-wide (Pye, 1997). The need to understand the

physical processes governing the sediment erosion and deposition will always remain vital in

the overall understanding of changes taking place in the coastal systems.
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1.1.2 Scales of coastal morphodynamics

Many factors influence the shape, sediment transport, structure, morphological behaviour and

dynamics in coastal environment – in response to changing environmental conditions and/or

human interference (de Vriend, et al., 1993). Notable of these factors are the physical process

discussed in the previous section. Of importance to the morphodynamic processes in coastal

environment is the adjustments in coastal system. Wright and Thom (1977) defined coastal

morphodynamics as the ‘mutual adjustment of topography and fluid dynamics involving

sediment transport’ while de Vriend (1991) defined it as the ‘dynamic behaviour of alluvial

boundaries of fluid motion’. Combined effects of the processes in the evolution of coastal

landforms are inherently non-linear and time dependent (Cowell and Thom, 1994). It is

articulated by Wright and Thom (1977) that the mutual interaction between coastal landforms

and coastal processes influence morphodynamic evolution over a broad range of spatial and

temporal (time) scales (French, 1997).

Table 1.1 presents a summary of time-scales and processes that constantly shape and re-work

coastal systems. These scales at which the coastal processes interplay and operate can be

grouped into four classes or dimensions based on the considerations presented by Stive et al.,

(1991), de Vriend (1991) and Cowell and Thom (1994). ‘Instantaneous’ time involves the

morphodynamic processes of a cycle of primary physical forcing agents, such as tidal cycles,

waves, currents. Absolute time-scale of the operating process is in seconds, minutes, hours

and days, and this relate to coupling of morphology and fluid flows which can cause sediment

grain movement. ‘Event’ scale operate at time span of single event which forces

morphological changes in the coastal system. Such event could be storm surge or seasonal

variations in physical conditions and can ‘comprise time-averaged effects of instantaneous

process during a single fluctuation’ (Cowell and Thom, 1994:36). ‘Engineering or historical’

time-scales entail many cycles of processes causing sediment movements/transport, formation

and loss of habitats, salt marshes or dunes, etc. Absolute time-scale of this period involves

decades–centuries evolution or longer-term forcing, such as sea-level change (meso-scale

dynamics). ‘Geological’ scales involve the continuos trends in environmental conditions with

less dependence on individual or instantaneous fluctuations. The morphodynamic process (for

example, relative sea-level response to glaciations) is at an absolute millennial time scale.
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Table 1.1 Time scale of coastal changes in relation to both absolute and human times-
Source: French (1997: 9)

Absolute
time scale

Human time scale Coastal processes

Millenia Response of sea level to glaciation

Centuries Shifts in settlement and industry
History coastal change- loss of towns and
villages

Decades Coastal engineering and protection
Formation and loss of habitats- marshes,
dunes, etc

Years Coastal engineering and protection Effects of protection works, longshore drift
Months Impacts of tourism Seasonal adjustments, shore profiles

Weeks
Impacts of tourism, emergency coastal
protection works, extraction

Shore profiles, spring-neap, tidal cycles

Days Emergency flood protection works Storm surges, defence breaches
Hours Sewage, litter Tidal cycles
Minutes Wave and currents
Seconds Sediment grain movement

1.1.3 Process framework

Sedimentary system, ‘as a set of deposits formed in one geomorphological environment (e.g.

estuary, coastal embayment, or submarine canyon’ (Gao and Collins, 2014:268)) are

beneficial in the understanding and establishment of process framework or environmental

condition in a coastal system (Ijmker et al., 2012). The nature of sediments in a coastal

environment reflects the operation of sedimentary transport processes at spatial (local,

regional) or temporal time scales (Anthony and Héquette, 2007). As the nature of processes

such as tidal, wave and fluvial regimes are important in the understanding and classification

of morphodynamics in coastal systems (e.g. Dalrymple et al., 1992; Burningham, 2008), the

significance of sediment structures and controls on coastal environment should not be ignored

as they exhibit considerable dynamicity that are attributed to short-term events, long-term-

forcing, historical/geological controls or anthropogenic modifications (e.g. Burningham,

2008).

There are many sources and sinks of coastal sediments, including those derived from cliff and

shore erosion, supplied by/from the rivers, washed in from alongshore, blown from the land,

washed in from the sea floor, from artificial nourishment and waster tipping, or from biogenic

sources like from corals, sabellariids, diatoms, and other marine organisms that supply

skeletal material to coastal sediments (e.g. Komar, 1976; Davis, 1978; Bird, 1996; Dyer,

1986; Carter, 1988; Dyer, 1986; Dean and Dalrymple, 2002). The sediment sources can be

categorised into primary or secondary depending on the process leading to its source (Boggs,

2001). Generally, sediments are transported from the regions of higher to lower energy,

suggesting that exposed sections of open-coast are more likely to experience consistent

erosion unless supplied with sediments from other higher sources (Carter, 1988). Sheltered

embayments and estuaries, on the other hand, are expected to be sediment sinks for eroded

materials as a result of minimal energy in such system (e.g. Brew et al., 2000).
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Apart from the key drivers of coastal processes which exert control on estuarine and coastal

morphology, the inherited antecedent framework such as drainage patterns (e.g. Fitzgerald, et

al., 2002; Bertin, et al., 2004), valley character (e.g. Roy et al., 2001), accommodation space

(e.g. Heap and Nichol, 1997), and sea-bed geology (e.g. McNinch, 2004) also exert control on

the geomorphic evolution on the estuarine system. These examples demonstrate that more

than physical processes are important in the process-response and geomorphic sensitivity in

coastal system framework.

Consequently, coastal seas and estuaries have had a long and varied history of anthropogenic

interference. They have served as a viable source of many valuable resources for economic,

social and recreational activities (Pattiaratchi, 1996). In the distant past, the coastal

environment provided food and security (Carter, 1988) but as human needs advanced, the

demands and use of the coasts increase and become more varied. Most of the world’s largest

and economically active cities are located in the coastal zone and it is also the region to which

anthropogenic wastes are discharged (Jeftic et al., 2009). Goldberg (1994) states that 50% of

the world’s population lives within 1km of the coastal zone, and this population is predicted

to grow at a rate of about 1.5% during the next decade. An alternative analysis by Cai et al.

(2009) places two-thirds of the world’s major cities with over 60% of the population and

significantly higher levels of economic activity within in the coastal zone. The works of

Reclus (1873), Wheeler (1902), Owens and Case (1908), Johnson (1919), Stamp (1939) and

Steers (1946) are examples of early investigations into the complex development of coastal

environments and their complicated relationship with human society. It is argued that if

humans had not sought to make use of the coastal environment/zone, there would have been

few environmental problems (Clayton, 1995). Thus the presence of humans in the coastal

environment is argued to interfere and modify the coastal systems and causing many

environmental challenges in many parts of the world (Viles and Spencer, 1995). One of the

pressing challenges is coastal erosion (e.g. Dhar and Nandargi, 2003; Galloway, 2009; Munji

et al., 2011; Lieske et al., 2013; Koerth et al., 2013). However, in term of process framework,

anthropogenic interference in coastal system control manifests itself in modification of wave,

tidal and fluvial regimes and alteration of sediment supply (e.g. Nordstrom and Roman, 1996;

Albert and Jorge, 1998; Pye, 1996; Blott, et al., 2006; Royo, et al., 2009; Komar, 2010).

1.2 Estuary-coast interaction

Estuaries are generally considered as sinks or sources (in timescales, mechanisms, etc) for

sediment and associated particle-reactive pollutants in their role as they interface between

rivers and ocean (Pethick, 1984; Perillo, 1995; Rees et al., 2000; Rogers and Woodroffe,

2012; Viguri et al., 2002; Yang, et al., 2006). Estuarine interaction with the open-coast occurs



Introduction

Temitope Oyedotun 9

on different levels: this can be hydrodynamic (prism effects, asymmetry, littoral drift etc – for

example, Bruun and Gerritsen, 1960; Uncles et al., 2006; Manning et al., 2010) but can also

involve sediments (e.g. Allen et al., 1980; Coulombier et al., 2013; Lawler, 2005; Mitchell et

al., 2003; Rees et al., 2000; Rogers and Woodroffe, 2012; Ruhl et al., 2001; Townend and

Whitehead, 2003). Tidal deltas, and associated sediment bypassing processes and exchanges

with adjacent beaches exert significant influence on the morphodynamics of estuary-coast

processes (Hayes, 1975; FitzGerald, 1988; Hicks and Hume, 1996; Hicks et al., 1999;

FitzGerald et al., 2000b; Gaudiano and Kana, 2001; Burningham and French, 2006). There

are, however, complex responses and the challenge of separating intrinsic from extrinsic

controls on system behaviour. For example, extrinsic forcing is of importance in estuaries,

especially as it affects the residence time of materials in the estuary and the estuarine

morphological development (Pattiaratchi, 1996). In Jervis Bay (East Coast of Australia), the

flow structure and water exchange through the estuary entrance is dominated by low

frequency circulations during exchange processes, thus enhancing the flushing of the coastal

embayment (Holloway, 1996). At Mobile Bay, Texas USA, on other hand, upwelling occurs

at the landward extent as a result of wind-driven estuarine-coast exchange processes which

leads to the deposition of warm saline water in the estuary (Schroede et al., 1996). The

internal tidal asymmetry plays an important role in sediment and salt balance that cause the

landward, near-bed transport at the residual and over-tide frequencies in the Columbia River

estuary (Jay and Musiak, 1996). These examples indicate that the mixing and transport

processes during water and sediment exchanges between estuary and open-coast affect

conservative materials within the system. These linkages can therefore play important roles in

the morphological development of landforms within the coastal system.

Estuaries are important component of coastal systems, themselves often comprising a

significant suite of coastal landforms. Coastal research is replete with studies of estuarine

environments, but often in isolation from the neighbouring open-coast environments.

Geomorphologically, estuaries are a significant component of the coastal system due to their

importance as sediment source and sink (Pethick, 1984; Perillo, 1995). Estuaries worldwide

are exposed to an increasingly complex suite of environmental perturbations originating

within their watershed and externally from climatic forcings (Wetz and Yoskowitz, 2013).

They are also heavily used and, in most regions, contain larger proportions of land at risk

from flood risk than the open-coast. Typically, estuaries are sensitive to change, combining

threats from the terrestrial and the ocean side (Monbaliu et al., 2014). Certainly the potential

in estuaries for sediment mobilisation (e.g. wave breaking, fluidisation of the bed, erosion by

currents, pick up by wind, fluvial input, side slope subsidence, etc), advection (e.g. tidal

current, near bed flow, density current, wave-driven flow, meteorological induced flow,

vessel induced currents, etc) and deposition (e.g. reduction of wave breaking and wave-driven

flows, deposition from suspension and interception of side slope subsidence) mechanisms

make them sensitive to changes in the broader coastal environment (Monbaliu et al., 2014).
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The topographic features of a coastal valley and the vertical distribution of the

accommodation space influence the sedimentary evolution of an estuary (e.g. Heap and

Nichol, 1997). This suggests that estuary behaviour is not always a strict product of wave-

tidal-fluvial regimes alone (Burningham, 2008). Burningham (2008), for example,

demonstrated that there is a complex response to the historical behaviour of the mixed energy

and mixed sediment estuaries while examining the ebb channel dynamics in the Loughros

estuaries of northwest Ireland. Three phases of geomorphic response were identified for the

172 year history: - a steady state of equilibrium which characterised the 19th century, - a

subsequent period of dynamic response to sudden extrinsic forcing, and, - adjustments to

intrinsically forced changes in the structural control of the estuary. It was argued that the

combinations of ‘extrinsic forcing mechanism’ and ‘intrinsic structural controls’ drive

historical controls on estuary morphodynamics. The author concluded by advising that the

systems largely unaffected by human impacts be examined so as to form a wider

understanding of coastal morphodynamics in an age dominated by discussion on

anthropogenic influence on coastal environments.

The examples presented in this section illustrate the complexities of estuary-coast

connectivity and justify the reason for further work to advance our knowledge of the

processes governing estuarine morphodynamic behaviour, especially at historical and

contemporary timescales. The inherent complexities of estuary-coast systems, especially in

relation to the physical processes, sediment movement and geomorphological changes present

a range of challenges. The present understanding that the sea-level has risen since the mid-

20th Century (Cabanes et al., 2001; Holgate and Woodworth, 2004; Woodworth et al., 2009;

Teasdale et al., 2011) is also adding to the debate on how this phenomenon is having effects

on contemporary coastal systems.

There is thus a need for a more integrated approach whereby the connectivity between

adjacent estuarine systems is explicitly considered. Hitherto, specific estuaries and adjacent

coasts have tended to be studied in isolation rather than as interacting phenomena at a regional

scale. This piecemeal approach tends to neglect the potential for coeval behaviour of adjacent

estuaries. No meaningful appreciation of system behaviour, or predictions of future

morphological changes, can be made if the processes which led to the present form are poorly

understood. There is a need for adequate understanding of the evolution of the present form as

well as the present-day physical processes operating across and between estuaries and open-

coast. This research, therefore, seeks to provide an avenue to explore the morphological

changes occasioned by the relationship/interactions between adjacent systems as a way of

separating externally-forced changes from their internal dynamics.

1.2.1 Process linkages
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Geomorphological dynamics and physical processes affecting the interaction between open-

coast and estuaries are unique and have therefore received attention of recent researchers. The

scientific attention is partly as a result of the complexity of estuarine dynamics (Karunarathna

et al., 2008) and their interaction with the physical dynamics of the open coast (Hibma et al.,

2004) and varied range of human activities (Pye, 1996). Sediment exchange between the

estuary and open-coast depends critically on many factors; for example, on the dynamics of

inlets and the processes within/around the inlets (Aubrey, et al., 1993); the intermittent

estuary-coast entrances (Haines, et al., 2006; Morris and Turner, 2010; and Natesan, et al.,

2014); the pattern of inlet movement and stability (Walton and Adams, 1976; Chandramohan

and Nayak, 1994); the transport forcing or process circulation pattern that drive the

geomorphologic changes and the connected processes around the inlets which drive linkages

between the estuary and the coast (Panda, et al., 2013).

The process linkage between estuary and open-coast is maintained by tides (e.g. Escoffier,

1940), dynamic equilibrium of inlet (e.g. Natesan, et al., 2014), littoral drift (e.g.

Chandramohan and Nayak, 1994), wave regimes through the inlet in a wave-dominated

coastal environments (e.g. FitzGerald, 1988), and, through exchange of sediment supply to

the open-coast/adjacent beaches and the backbarrier systems (FitzGerald, 1988). Estuary-

coast system linkages are stated by many authors to be impacted by tidal flow or wave

dominance in the system (e.g. Oertel, 1972; Hayes, 1979; FitzGerald, 1996; FitzGerald, et al.,

2002; Morris, et al., 2001, 2004). Evaluation of this linkage is fundamental in understanding

the function and evolution of estuary-coast interaction in the overall coastal system in many

ways. Firstly, this process determines the exchange of sediment between the open-coast and

estuaries (Smith, et al., 2008). Secondly, it determines the influence of coastal processes in

the vicinity of the inlet (e.g. Davis and Fox, 1981; Dallas and Barnard, 2011). Thirdly, it can

influence the partial or total wave sheltering of adjacent coastline, and thereby

indirectly/directly reduce shoreline erosion and increase shoreline accretion (e.g. Marino and

Mehta, 1987). Fourthly, the evaluation of the linkage process can show the dynamic balance

between the dominant tidal regime within estuarine system and wave processes at the open

coast. This kind of evaluation can determine the ebb-delta morphology and the impacts/effects

of ebb-tidal currents, which can lead to the inducement of either net-onshore or net-offshore

directed sediments movement (e.g. Hayes, 1975; Walton and Adams, 1976; Dallas and

Barnard, 2011). Fifthly, the morphodynamic coupling between ebb-tidal delta, back-barrier

system (estuaries) and inlet throats – all of which remain in constant and dynamic equilibrium

in response to large scale hydraulic forcing, collectively or individually, make the estuary-

coast process linkage key element in behaviour and evolution of coastal system (e.g. Dean,

1988; Stive, et al., 1998; Stive and Wang, 2003; Elias and van der Spek, 2006).

Elias and van der Spek (2006), while writing on the tidal inlet morphodynamics, note that the

change in the equilibrium state in any of the estuary-coast components will effect sediment
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exchange within and between the other parts of the components. The change can cause small

scale/temporary delivery or storage of sediments in compensating the equilibrium or it may be

impacted by the large scale natural forcing such as sea-level rise, storm surges, tsunami, etc or

by the anthropogenic intervention such as damming part of the estuarine system, construction

of ports/jetties in the system – the impact of which can cause the entire inlet system to evolve

a new equilibrium. Other studies also note that the relative wave vs. tidal energy are mostly

important in changing the equilibrium morphology in the system. It is noted that the wave

dominated ebb tidal system pushes coastal system towards the inlet throat while the tide-

dominated energy pushes the system offshore (e.g. Brunn and Gerritsen, 1959; FitzGerald,

1982, 1988, 2000a). This form of sediment by-passing and sediment exchanges under mixed

energy condition explain the morphodynamic and stability of inlet throat, the movement of

ebb channels, and the evolution of coastlines. Other factors which play prominent role in this

linkage process and behaviour in equilibrium maintenance include: amount and nature of

sediment supply, sedimentation history, bedrock layers, basing geometry, freshwater

discharges by the rivers, increase in water extractions upstream for irrigation purposes, etc

(FitzGerald, 1996; Shuttleworth, et al., 2005; Elias and van der Spek, 2006).

Stability of forcing in the system and estuary-coast equilibrium relationship can also be

related to the concept of tidal prism. Average velocity over a tidal cycle (e.g. O’Brien, 1931,

1969), the longshore transport (e.g. Brunn, et al., 1978), and the effectiveness of the

relationship between average velocity, longshore transport, throat area and peak discharge

(after Hume and Herdenforf, 1992) are effective indicators of equilibrium and stability of tidal

prism (that is, the volumes of fluid into the inlet that are generally between the mean high and

low tides). According to Fontolan, et al. (2007), in consideration of the relationship between

tidal inlets and dynamics of estuarine-coastal system, the hydrodynamic equilibrium of tidal

inlets predicts and determines ebb-delta growth, especially in cases where there is no

significant alteration of morphology of the inlet. This study showed that the tidal discharge is

closely related to the size, structure and modification of tidal inlet, which directly/indirectly

correlates with the driving force in the dynamics of the linkages/interactions.

Therefore, in terms of process linkage, tidal inlets that are hydronomically controlled by

interaction of tides, waves and rivers as the driving process (Boothroyd, 1985; Burningham

and French, 2006) and the nature of sediment in movement (FitzGerald, et al., 2002) exert

significant influence on the morphodynamics of the estuary-coast systems.

1.2.2 Estuary mouth and inlet dynamics

Inlets, as the common features in the estuarine coastal system, are highly important and

significant in sediment exchange in estuary-coast system as they have great influence on the

environment and ecological components of the system (Siegle et al., 2007). Inlets are defined
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as ‘the passage between the ocean and adjacent estuary or lagoon, encompassing the channel

and associated sediment bodies’ (Hayes, 1980; Siegle et al., 2007). Specifically, the tidal inlet

is defined as the narrow waterway that connects an estuary, a bay, a lagoon to open-coast or

the ocean and is maintained by tidal currents (Watt, 1905; Chapman, 1923; Brown, 1928;

O’Brien, 1931; Escoffier, 1940; Dissanayake et al., 2009; Natesan et al., 2014). It is

principally the opening by which water, sediments, nutrients, etc are exchanged between the

open-coast/sea and the backbarrier basin (Elias and van der Spek, 2006). The investigation of

inlet has been a subject in coastal research since the 1930s with the study of stability of inlets

in the USA by O’Brien (1931, 1969). Inlet channels are very important in the supply and

accumulation of eroded sediments at the seaward (coastal section) and the landward section of

the system where the flow velocities subside after passing through the often narrow inlet

throat (that is at the ebb- and flood- tidal delta respectively) (Elias and van der Spek, 2006).

Tidal inlets, according to Hayes (1979), usually occur in meso-tidal environments and they

are noted for a moderate wave energy of c. 0.6 – 1.5m (Castelle, et al., 2007) and they are

found in major part of the world’s sediment coastlines (Elias and van der Spek, 2006).

Cross-sectional area of inlets and the state of forcing parameters significantly influence the

linkage process in coastal system. Therefore, inlet remains significant in estuary-coast

interaction because of the physical processes acting in the system (Komar, 1996). Past studies

have explored the influence the inlet system exerts on various driving processes in the context

of estuary-coast interaction. Examples of the earlier studies include: Fitzgerald, et al. (1979)

which suggest that the tidal inlet body shelter wave propagation in the estuary; Hayes and

Kana (1976)’s observation of littoral drift which are trapped at the downdrift side of the ebb

delta as a result of wave refraction. Other influence of inlet reported include the trapping of

beach sand on the estuaries and delta as a result of littoral drift bypassing (e.g. Fitzgerald and

Hayes, 1980; Fitzgerald, 1984). The growth of sediment complexes at the ebb delta planform

as well as its characteristics erosion and deposition cycles that emphasise the influence of

temporal and spatial scale in inlet processes are other findings from Fitzgerald and Hayes,

(1980); Fitzgerald (1988). Hicks, et al. (1999) monitored the mixed energy (principally tide

dominated) inlets and observed the quasi-annual signal as a result of the reflection of cross-

shore sediments forced by storm waves and the reversal of longshore transport processes at

the inter-annual time scales. While the longshore process is observed to cause the sediment

oscillation between the two headlands along the open coast, the refraction-induced transport

processes cause the divergence of erosion and accretion at the inlet system (or ebb-delta

system).

Further importance of inlet in estuary-coastal system is the possibility of choking. As waves

propagate from the open coast through the inlet into the estuary, there is possibility of

decrease in tidal-wave amplitudes which can result into the development of phase lags relative

to the coastal sea-surface fluctuations (MacMahan, et al., 2014). Such tidal choking



Introduction

Temitope Oyedotun 14

influences the ability of estuary in transportation and flushing (Kjerfve, 1986; Hill, 1994); in

the damping of high-frequency tidal energy (Keulegan, 1967); in varying ebb channel water

depths (Hill, 1994); in acting as a hydraulic low-pass filter and responses between the estuary

and the ocean (Di Lorenzo, 1988; Kjerfve and Knoppers, 1991; MacMahan, et al., 2014), and

in the decay of amplitudes of semi-diurnal tidal fluctuations (MacMahan, et al., 2014).

The seasonality of some inlets in enforcing geomorphological response in estuary-coast

interaction are also reported in the literature. Examples of such seasonal inlet systems

reportage are in Brunn, (1986) for Krishnapantnam/Ponnai inlets in India; Hodgkin and Clark

(1988) on the inlets in Western Australia; Gordon (1990) on Wollumboola inlets of New

South Wales in Australia. Other works include Cooper (1994), Newton and Mudge (2005),

Bertin, et al. (2005), and Sennes, et al., (2007), etc. These inlets are sealed by the formation of

sand bar at the coastal entrance of the estuaries during the summer time when the stream flow

into the estuaries is very low or non-existence, or when the swell waves dominate the open

coast for a long period without its penetration into the estuaries or as a result of the increase in

the rate of sediment transport longshore-ward. During this seasonal dynamics, there is

deterioration in the use of estuaries for ecological or anthropogenic purpose - except it is

maintained through the intervention like dredging so as to sustain the navigability purpose of

the inlet (the cost of which are mostly high). Other effects of this sort of seasonal inlet

dynamics on the estuary-coastal system are: the reservation of sediments for beach

nourishments (e.g. Castelle, et al., 2006, 2007), encouragement of littoral stability adjacent to

the inlets (e.g. Elias, et al., 2006), the need for replacement of water in the estuaries/lagoons

in an environment where they are being used for aquaculture (e.g. Bertin, et al., 2005), and

the problem of water quality maintenance in the system (e.g. Newton and Mudge, 2005).

Dynamicity of inlet system shows that inlets are very important in the overall estuary-coast

interaction and the overall coastal system dominant processes.

The complexities of the processes at the inlet have been emphasised in this section based

principally on the transport, sedimentological, morphological and hydrological parameters.

Importance of the inlets in understanding the estuary–coast interaction processes remain

primarily in the area where waves, tides and rivers interact (Boothroyd, 1985; Burningham

and French, 2006) while also acting as the conduit for the movement of sediments. The inlet

exerts significant influence on the morphodynamics of adjacent shorelines (FitzGerald, 1988;

Hicks et al., 1999), the interruption of the continuity of longshore sediment transport and

exchange of sediments between both landward and seaward shoals (Burningham and French,

2006), therefore constitute important small system within the overall coastal system

consideration.
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1.3 Management perspectives - UK coasts and estuaries

The United Kingdom (UK) is a coast-dominated country and is relatively well endowed with

estuaries on the account of its varied geology. From the coastline of England and Wales, the

furthest point is only 110 km while the large proportion of the UK population lives within the

10 km of the coast (Environmental Agency, 1999; Hadley, 2009). The varied geology of the

UK imparts varying degrees of structural control and varied sediment regimes (mud, sand,

gravel, etc). The distribution of different rock types, the direction of tectonic movements and

the rate of tectonic activities account for the much of the varied nature of physical processes

and morphodynamic changes at the coast (Pye, 1997). The combination of these activities has

a significant influence on the quantity and type of sediments supplied to the coastal zone (Pye

and Neal, 1994). Geologically, Britain can be divided into two major parts based on its

lithological features and relief ‘along a line drawn approximately from the Tees to Lyme Bay’

(Pye, 1997). To the west and north, lithologies are dominated by hard rock of igneous and

metamorphic composition ranging from Precambrian to Triassic. To the east and south of this

divide, sedimentary rocks are mainly Cretaceous to Holocene in age (Pye, 1997). This

geological framework, to a large degree, accounts for a broad scale of widespread subsidence

in southeast England from the beginning of the Mesozoic era, causing submergence of river

valleys and estuaries, such as that of Severn (Pye and Neal, 1994).

As the coasts are constantly changing in a variety of ways through the interaction of land and

sea, this has given rise to dynamic and diverse geomorphological and geographical features

including soft shores, rocky shores and cliffs, narrow and wide coastal shelves, hilly or flat

coastal plains and a wide variety of wetlands (Hadley, 2009). The varied coastal processes

and climate in the UK cause the complexity of tidal regimes (amphidromes), wave climate

and regional variation in sea level history.

The UK has a particularly large number of estuaries (in excess of a hundred), equating to

more than a quarter of northwest European estuaries by area (HR Wallingford et al., 2006). In

all, 163 estuaries were identified and classified (ABPMER et al., 2008: 25-28). Many research

works are reported on the estuaries and coastlines of the UK. Examples of the research on

some of the estuaries include the works of Pye (1996), van der Wal et al. (2002), Blott et al.

(2006), van der Wal & Pye, 2004; Nicholls et al., 2000; Burningham and French, 2008, etc.

Of all the estuaries in the UK, Thames estuary is one of the few which is extensively studied

(see, for example, van der Wal & Pye, 2004; Nicholls et al., 2000; Burningham and French,

2008). Key issues which are widely reported in literatures about UK estuaries include

shoreline change; shifts in bank and channel configurations; changes in sediment volumes;

changes in sediment transportation between the inner estuary and outer estuary; the constant

and continuous subjection of estuaries to both spatial and temporal sequence of changes in

response to both physical and human activities; channels infilling; that anthropogenic
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activities are outstripping natural forcing factors in causing the morphological changes in

some of the estuaries; etc. Also, the combined forces of sea-level rise (Woodworth et al.,

1999; Holgate and Woodworth, 2004; Church and White, 2006), storminess (Alexander et al.,

2005) and anthropogenic activities are another cogent issues which also drive interest in UK

estuaries.

Similarly, some research on UK coasts is well reported in the literature. Examples of the

research on some of the coastlines include Esteves, et al., (2009), Burgess et al., 2004; Evans

et al., 2004b. Quantification and management of shoreline changes along the Sefton Coast in

UK is the focus of Esteves et al. (2009). The Sefton coast, which is between Mersey and

Ribble estuaries in northwest England, is stated to be rapidly eroding in the last century,

although the rate of erosion are differ at one point to another. Coastline erosion in the UK has

had several recent major studies (Halcrow Group Ltd et al, 2001; EUROVISION, 2004;

Burgess et al., 2004; Evans et al., 2004b). These confirmed that about 28% of the coastline in

England and Wales are currently undergoing erosion rates which are greater than 10 cm year-1

based on the detailed and substantial analyses of rates and location of erosion around the UK.

Although open-coastal and estuarine areas can be ecologically, environmentally, socially and

economically rich, sea-level rise (causing higher and extreme water levels), adverse

atmospheric situation causing coastal flooding, storm surge propagation, extreme wave

conditions and intense anthropogenic conditions, are threatening these systems (Monbaliu, et

al., 2014). These challenges facing the UK coasts and estuaries have led to various strategies

and interventions in managing the UK coastline and estuaries.

1.3.1 Strategy context

The historical importance of estuaries for navigation and commerce has led to a plethora of

research. For example, Beardall et al. (1991) reported that many estuaries in the UK (for

instance the Blyth Estuary in Suffolk) experienced major reclamation in the Roman, Norman

and 16th/17th Century periods. There is significant potential for this sort of large-scale

anthropogenic intervention in many UK estuaries, especially larger systems. Research interest

tends to follow, and the Thames estuary is a good example of a large, human-impacted system

(e.g. The Thames Estuary Project 1996 and 1999; van der Wal & Pye, 2004; Nicholls et al.,

2000; Burningham and French, 2008). The attention other large systems receive is partly due

to a long history of dredging, reclamation, port development, training wall construction, and

especially from both a flood defence and habitats protection perspective (e.g. Cooper et al.,

2001).

The historic separation of coast from estuary in the UK is illustrated in the national coastal

management strategy and policy. Shoreline Management Plans (SMPs) are based on coastal
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cells that do not extend into estuaries. The open coasts around England and Wales were

initially classified into a framework of coastal cells, comprising 11 cells and 48 sub-cells

(Figure 1.1). The major cells were considered to be more-or-less closed systems, with

sediment transfers occurring between cells only under extreme conditions (Motyka and

Beven, 1986). Cell divisions and sub-divisions were based on coarse (i.e. sand and gravel)

sediment paths with boundaries at major headlands and estuaries (referred to as sediment

sinks). These have served as a basis for strategic and future-planning in Shoreline

Management Plans (Motyka and Brampton, 1993).

Cooper and Pontee (2006) criticised the coastal cell concept as a framework for shoreline

management on the basis that, whilst it works very well at compartmentalised coasts that are

dominated by transport of beach-grade material, it does not make provision for cohesive

sediments very well. Moreover, important aspects of estuary-coast interaction are ignored.

Time variation in coastal behaviour is also ignored in the classification (Motyka and

Brampton, 1993), yet cell boundaries can clearly change over longer time intervals. Finally,

the underlying sediment budget model neglects other aspects of landform processes and also

wave dissipation. With the expectation of rising sea-levels and ever increasing population in

England and Wales, it was therefore recommended that the full spatial and temporal range of

coastal elements, estuary processes, offshore features and the over-all interactions between the

elements should be incorporated for effective and sustainable management of the coastal

environment (Cooper and Pontee, 2006).

As a result of the review of the cells concept, it is clear that the initial concept (first generation

of SMP) is not perfect neither is it consistent. It was, therefore, recommended that a new

guidance plan be established, to rely on more recent science data that emerged from

FutureCoast, Regional Atmospheric Soaring Predictions (RASP), Regional Monitoring, etc

projects. As a result, the Environment Agency commissioned Halcrow Ltd to carry out the

FutureCoast project that now provides a framework for the second generation of SMPs, which

include a 100 years’ timeframe that considers behaviour and management over three epochs

(20, 50 and 100 years). The plans include a modification of boundaries, more consideration of

policy units and increased opportunities for local Coastal Groups to undertake groundwork.

Units of management are rationalised from 49 coastal cells to 22 SMP units (Figure 1.2). The

2nd generation SMPs are expected to deliver a high level of improved baseline understanding

and full integration of adjoining SMPs. They have the advantage of greater involvement of

stakeholders and improvement of Action Plan integration, to increase confidence in the plan.
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Figure 1.1 Sediment cells around the coast of England and Wales
(adapted from Motyka and Brampton (1993), Cooper and Pontee
(2006)). Figure 1.2 2nd Generation of SMPs around the coast of England and Wales

(adapted from Nicholls et al. (2013)).
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1.3.2 Intervention

In contrast to the organisation of the England and Wales coastline into sediment cells and

SMPs as strategy for coast and estuarine management, efforts have been made to also

classify UK estuaries according to their geomorphological origins and/or contemporary

physical process regimes – another key intervention in management practices. Examples of

such classifications include Davidson and Buck (1997), DEFRA (2002) and ABPMER et

al. (2008). The FutureCoast (DEFRA, 2002) scheme, modified by ABPMER et al. (2008),

classified UK estuaries in the manner shown in Table 1.2 according to a set of simple rules

(summarised in Table 1.3).

Table 1.2 Estuary typology (after ABPmer et al. (2008), modified from Defra (2002))
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1
Glacial valley

Fjord X X X X X X
2 Fjard 0/1/2 X X X X X X X
3

Drowned river valley
Ria 0/1/2 X X X X X X

4 Spit-enclosed 1/2 X E/F X/N X X X X X X
5 Funnel-shaped X X E/F X X X X X X
6 Marine/fluvial Embayment X X X X X X X
7 Drowned coastal plainTidal inlet 1/2 X X E/F X X X X X

Notes: X indicates a significant presence.
1 Spits: 0/1/2 refers to number of spits; E/F refers to ebb/flood deltas; N refers to no low water channel;
2 Linear Banks: considered as alternative form of delta.
3 Channels: refers to presence of ebb/flood channels associated with deltas or an estuary subtidal channel.
4 Flood Plain: refers to presence of accommodation space on estuary hinterland.

Table 1.3 Development and demonstration of systems based estuary simulators
(EstSim) rules to identify estuary type using the UK estuaries database

Type Behavioural
Type

Rule

1 Fjord Glacial origin, exposed rock platform set within steep-sided relief and with
no significant mud or sand flats

2 Fjard Glacial origin, low lying relief, with significant area of sand or mud flats
3 Ria Drowned river valley in origin, with exposed rock platform and no linear

banks
4 Spit-enclosed Drowned river valley in origin, with one or more spits and not an embayment
5 Funnel-shaped Drowned river valley in origin, with linear banks or no ebb/flood delta and

not an embayment
6 Embayment River or marine in origin (i.e. not glacial), with multiple tidal rivers

meeting at or near mouth and a bay width/length ratio1 of 1 or greater, and
no exposed rock platform

7 Tidal inlet Drowned coastal plain in origin, with barrier beaches or spits
1 Where bay extends from sea opening to the confluence of the rivers (From Page 24, ABPMER et al.

(2008))
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In the UK, one of the intervention strategies of conserving and managing the network of

national and international important sites of geological, geomorphological and

environmental heritage/features is the establishment of such as Sites of Special Scientific

Interests (SSSIs), including coastal environments - meaning that such sites are managed by

conservation bodies (Thomas and Cleal, 2005; Prosser, 2008; Prosser, et al., 2011).

Fletcher, et al. (2014) review the principal marine and coastal intervention/policy in

England since 1999 and conclude that the changes in coastal governance framework in

England (and UK by extension) are in the establishment of key and strategic national

policy, legislation, emergence of institutions, establishment of Marine Protected Area

network, for marine and coastal issues. On coastal management, the responsibilities for

marine and coastal management are divided among varieties of administrative bodies and

government agencies (Ballinger, 2005; Smith, et al., 2008; Stojanovic and Ballinger,

2009). A key feature of intervention on this is the development of regional coastal

initiatives that are aimed at improving decision making for the overall governance of the

coastal system. However, based on various management interventions in the coastal system

management in the UK, some issues are noted. These include: decline in partnerships

among the various initiatives, complexity in coastal affairs, the division of estuary and

open-coast management in Marine and Coastal governance down the years, and conflicting

management objectives by different government departments (e.g. see Fuller and Randall,

1988; Ballinger, 1999; Sellers, 2010; Fletcher, et al. 2014).

The EUROVISION (2004) report suggested that of the 17,380 km UK coastline, 3008 km

are currently undergoing erosion while a further 3,185 km are being protected by

engineering structures. A complex interaction of physical factors (sea-level change,

geomorphology, storminess, waves, tides, near shore current) and human factors (land

reclamation, river regulation works, unregulated dredging, etc) are shaping the UK

coastline through the dynamic process of erosion and accretion. However, it is also clear,

in this section, that estuaries have tended to be studied and considered for management

purpose separately from open-coasts and also from each other. This is despite evidence to

suggest that this potentially neglect important processes, correlated and connected

behaviour. There is therefore a need for a more integrated approach whereby estuaries and

open coast environments are considered as a set of adjacent – and potentially coupled-

systems. Analysis of estuary-coast connectivity at a regional scale has the potential to

provide insights into the relative importance of internal estuary morphodynamics and

externally-imposed forcing.

1.4 Aims and objectives
The main aim of this thesis is to investigate the morphological evolution of coupled estuary

- open coast systems, focusing on the relative importance of intrinsic estuary
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morphodynamics and regional coastal forcing. This aim is addressed via a number of

specific objectives:

 To examine the comparative historical and contemporary behaviour of estuary -

open coast systems. The key hypothesis here is that coastal systems within the same

region, experiencing regional similarities in forcing, display consistent behaviour over the

mesoscale (years to several decades). This objective seeks to describe and understand the

historical and contemporary geomorphology of regionally co-located coastal systems

drawing from past and recent maps, aerial photography and LiDAR data.

 To explore the nature of sedimentary environments throughout estuary - open coast

systems. The underlying hypothesis being tested here is that sediments across connected

estuary - open coast systems are interchanged, and that spatial variations in sedimentary

character are a product of local changes in the process energy regime. Key questions being

addressed through this objective are: whether sediment sources are common between

estuary and open coast environments, and what is the evidence for sediment pathways

connecting the estuaries and open coast?

 To evaluate the importance of regional wave climate forcing as a driver of

contemporary coastal and estuarine change. It is hypothesised that wave climate is a

fundamental control on coastal processes, particularly in terms of sediment delivery and

transport, and morphological change. This third objective is to briefly examine the role of

seabed morphology in modifying nearshore wave climate, and thereby driving localised

variance in these coastal processes.

 To consider the relative importance and wider implications of local versus regional

controls on coastal system dynamics.

1.5 Thesis structure

This chapter has highlighted the importance of estuaries in the broader context of coastal

change and outlined the nature of some of the most pressing coastal system challenges. A

brief overview of estuary-coast interaction, and the management concepts in relation to the

UK, provide a context for the aim and objectives of the present research.

Chapter two of this thesis sets out the scientific research design and methodologies adopted

in achieving the aim and objectives. This chapter also summarises the various data sources

and discusses some critical data quality issues.
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Chapter three discusses the geological/physiography, geomorphological context and

sedimentary environment of the southwest region of England and the three case study

estuaries: the Hayle, Camel and Gannel. The geological and geomorphologic context of

each estuary is summarised, together with the physical processes, sedimentary regime,

climate and anthropogenic factors.

Chapter four examines the historical and contemporary coastal behaviour of the case study

systems. This focuses on shoreline change analyses, locational probability mapping of the

principal ebb channels. the ebb channel morphodynamics. Recent airborne LiDAR (Light

Detection and Ranging) datasets are used to infer contemporary morphodynamic

behaviour.

Chapter five presents the result of the analysis of metocean data focusing on investigation

of historical and contemporary coastal forcings as drivers of coastal processes.

Chapter six analyses surface sediments sampled during a field campaign undertaken in

2011. Sedimentological and geochemical analyses are presented, and discussed in the

context of source, supply, mixing and dynamics. These are considered with respect to

spatial and morphological dynamics of the estuaries/sysytems.

In Chapter seven, bathymetric change analyses and numerical wave modelling are used to

evaluate the importance of extrinsic forcing of wave and sea-bed morphology on the coast

and the estuaries in the region.

Chapter eight discusses the implications of results presented in previous chapters in view

of the interaction between estuary and adjacent open coast environments in southwest

England, and considers the importance of these results more generally in line with the

objectives set out in this research. The chapter summarises the main conclusions of the

research, and makes recommendations for further work.

A series of appendices of the papers published and posters presented out of this work are

included, while the separate CD includes summaries of the main datasets used. Data are

provided on the enclosed CD, arranged in four main folders (Ordnance Survey historical

data, historical bathymetrical data, LiDAR data, sedimentological data and metocean data).
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2 METHODOLOGY

__________________________________________________________________________

2.1 Research design - overview of research methodology

Historical trend analysis (HTA) is one of the key methods utilised in the first step of

analyses undertaken in this research. This approach involves change analysis over historical

(decade to century) timescales (Blott, et al., 2006; HR Wallingford, et al., 2006) that is used

to assess past behaviour, and patterns of erosion and deposition. Secondary data (maps,

charts, aerial photographs, topographical and bathymetric surveys, and so on) are vital in the

historical, and also the recent (contemporary), trend analysis. This analysis is aimed at

addressing the first objective of this research enumerated in chapter 1. Therefore the

research starts with sourcing of secondary geospatial resources (historical and recent), which

are integrated as part of consideration of meso-scale coastal dynamics and contemporary

behaviour (see chapters four and five).

Another key objective of this research is the exploration of sediment dynamics and

sedimentary evolution at the study sites. Of importance to the achievement of this objective

is the utilisation of primary data. Therefore geomorphological field surveys (for sediment

sampling) and progressive laboratory/sedimentological analyses (including grain size

analysis and XRF for geochemistry of a small sub-sample analysis) are the second key stage

of this research.

The third step is the consideration of coastal climate and sea-level changes as drivers of the

open-coast and estuarine behaviour. Investigation of spatial and regional climate/physical

data (waves, wind, sea-level) is the main component of this step. Interpretation of the key

findings from these three strands of research undertaken at the study sites is then projected

to wider understanding of the estuary-coast systems’, interactions and responses to internal

dynamics and regional processes.

Figure 2.1 presents the summary diagrammatic flow chart of the research steps and

methodology utilised in this research.
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Figure 2.1 Flow chart summarising the work flow of this study.

2.2 Historic trend analysis

2.2.1 Data sources

The analysis of historic shoreline change underpins the first research objective (Chapter 1.4),

concerned with the extent to which coastal evolution exhibits any regional coherence. It has

been stated that the “patterns of shoreline erosion and deposition are often indicative of

changes in the sedimentary budget of a coastline” (Viles and Spencer, 1995:6). In most

investigations of shoreline change, the mean low and high water marks (MLW and MHW

respectively) are used to represent the shoreline, representing both a coastline position and

also a simple expression of shoreline morphology. The quantitative analysis of shoreline

change over historic timescales is very important for understanding processes which drive

coastal erosion and accretion (Sherman and Bauer, 1993), for computing regional sediment

budgets (Zuzek et al., 2003), identification of hazard zones (Al Bakri, 1996) or as the basis

for the modelling of morphodynamics (Maiti and Bhattacharya, 2009). The dynamic

processes of shoreline erosion and accretion are often attributed to hydrodynamic forces

(e.g. river cycles, sea-level rise), geomorphological changes (e.g. spit development),

anthropogenic actions (e.g. port development, tidal power generation, construction,

dredging) or other episodic forcing (e.g. sudden storm events, earthquakes and tsunamis,

rapid seismic events) (Scott, 2005; Maiti and Bhattacharya, 2009). To this end, major effort
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was made to identify and secure relevant maps and charts. Table 2.1 lists the data acquired

and utilised in this analysis.

2.2.2 Geospatial techniques

Historical Trend Analysis, referred to as HTA henceforth, is the principal geospatial

technique adopted here to investigate changes in the shoreline of these estuary-coast systems

(Blott et al., 2006; HR Wallingford et al., 2006). A GIS (Environmental System Research

Institute (ESRI) ArcGIS v9.3.1) is used to delineate shorelines and evaluate dynamics in

channel positions, channel morphology, erosion and deposition over specific time epochs.

HTA has been widely used in the UK. For example, Pye and van der Wal (2000) report on

the application of HTA to four estuaries, the Ribble, Mersey, Southampton Water and

Humber. Blott et al. (2006) applied both the HTA and Expert Geomorphological

Assessment (EGA) methods to investigate the long-term morphological change and its

causes in the Mersey estuary, NW England. In a similar vein, Cashin (1949), Price and

Kendrick (1963), Thomas (2000) and Thomas (2002) applied HTA to investigate the cause

of morphological dynamics in the Mersey estuary. This shows the application of HTA has

spanned almost 50 years. HR Wallingford (2001) undertook a series of HTA studies on the

Stour Estuary between 1997 and 2001 to develop an understanding of the changes in the

system occasioned by successive port development over the period of 1965-1999.

Table 2.1 Datasets used for the analysis of historical shoreline change

Source Date Data Scale Accuracy

Hayle
Ordnance
Survey

1845
1908
1936
1948
1963
1989
2010

Old series, 1st Edition
County Series: 3rd Revision
County Series: 3rd Revision
National Grid: 1st Imperial edition
National Grid: National Survey
Latest National Grid edition
Master Map Vector data (Tiles)

1:2,500
1:2,500
1:2,500
1:10,560
1:2,500
1:10,000
1:2000

+/-10m
+/-10m
+/-10m
+/-10m
+/-10m
+/-5m
+/-5m

Gannel
Ordnance
Survey

1888
1977
1996
2012

County Series
National Survey
1st Metric Edition
MasterMap Edition

1:10560
1:2500
1:10,000
1:2000

+/-10m
+/-10m
+/-10m
+/-5m

Camel
Ordnance
Survey

1880
1907/8
1962
1973
1979
2010

Padstow First Revision County series
County Series: 1st Revision
National Grid Padstow
National Grid Padstow
National Grid Padstow
Master Map Vector data (Tiles)

1:2,500
1:10,560
1:10,560
1:2,500
1:10,000
1:25,000

+/-10m
+/-10m
+/-10m
+/-10m
+/-10m
+/-5m
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HTA is aided by the use of the Digital Shoreline Analysis System. The Digital Shoreline

Analysis System (DSAS) is a GIS tool that can be used in HTA to examine past or present

shoreline positions or geometry. One of the main benefits of using DSAS in coastal change

analysis is its ability to compute the rate-of-change statistics for a time series of shoreline

positions. The statistics allow the nature of shoreline dynamics and trends in change to be

evaluated and addressed. DSAS is developed as a freely available extension to ESRI’s

ArcGIS (Thieler et al., 2009). It has been updated and upgraded over time, so multiple

versions exist allowing its use with ArcView 3.2 through to ArcGIS v10. In 2013, a web-

based version (DSASweb) was released (USGS, 2013). Download and further information

on the installation and use of DSAS can accessed at http://woodshole.er.usgs.gov/project-

pages/dsas/. Instructions, usage of the software and the configuration of input and output

parameters are well documented in Thieler et al. (1994a, 1994b and 2009).

There has been increasing concern regarding the likely long-term impacts of changes in the

natural physical and environmental forcing factors (hydrodynamic, geomorphologic and

rapid seismic forces) as well as anthropogenic activities and human interventions (Sherman

and Bauer, 1993; Al Bakri, 1996; Zuzek et al., 2003; Blott et al., 2006; Maiti and

Bhattacharya, 2009). However, before any predictions of future morphological responses

can be made with confidence, there is the need to understand the past changes as well as

determine the envelope of natural variability associated with long-term trends or cycles. On

sedimentary coastlines, the shoreline (and changes in erosion and deposition) is perhaps the

most basic indicator of changes in sediment dynamics, budgets and forcing. Shoreline

change analysis is hence one of the multiple approaches in monitoring and understanding the

changes in coastal/estuarine systems.

There are numerous examples of the use of DSAS in the study of coastal behaviour and

shoreline dynamics. Table 2.2 reviews examples of recent studies that have utilised DSAS in

Historical Trend Analysis and the examination of coastal system dynamics, shoreline and

cliff geometry, modelling and estimations. In the present study, DSAS is used to compute

various rates of change statistics for the Mean Low Water (MLW) and Mean High Water

(MHW) shorelines. More specifically, in this study DSAS is used to undertake:

i. The mapping of historic configurations of shoreline position over the period covered

by the available historical spatial data (listed in Table 2.1);

ii. The evaluation of historic changes and trends of individual or selected transects

(discrete alongshore positions). Within DSAS, shoreline change is calculated at specific

transects, and the time-series of change at specific locations are evaluated using the DSAS

output;
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iii. The analysis of shoreline geometry, including foreshore steepening (using the

distance between mean high and low water marks (after Taylor et al., 2004)) and orientation

(for example, to examine rotational tendencies (e.g. Nebel et al., 2012)).

Table 2.2 Recent studies on shoreline and cliff geometry which made use of DSAS

Coastline feature studied Articles
Historical record of coastline
dynamics

Carrasco, et al., 2012; Montreuil and Bullard, 2012;
González-Villanueva, et al., 2013; Jabaloy-Sánchez, et al.,
2013.

Shoreline variation, shoreline
erosion and coastal changes

Houser, et al., 2008; Brooks and Spencer, 2010; Restrepo A,
2012; Beetham and Kench, 2013; Hapke, et al., 2013; Rio, et
al., 2013; Houser and Mathew, 2011.

Gully development and evolution Draut, et al., 2011; Leyland and Darby, 2008.
Cliff retreat and erosion Rio and Gracia, 2009; Brooks, et al., 2012; Katz and

Mushkin, 2013; Young, et al., 2014.
Cliff measurement and modelling Hackney, et al., 2013; Thébaudeau, et al., 2013.

2.2.3 Shoreline digitisation and data quality consideration

The main stages in the shoreline analysis workflow, as undertaken using DSAS within

ArcGIS, are summarised in Table 2.3. Shoreline positions are important features defined in

DSAS analysis. Specific features of interest - here, the Mean Low Water (MLW) and Mean

High Water (MHW) marks - are extracted through digitisation. These shoreline positions are

explicitly indicated on Ordnance Survey (OS) and other national mapping agency

publications which make for simple digitisation and analysis within a GIS, thereby reducing

some complications associated with automatic shoreline detections (Ryu et al., 2002; Loos

and Niemann, 2002; Maiti and Bhattacharya, 2009). When digitising from other sources

(e.g. satellite images, aerial photographs etc), accurate and careful digitisation of shoreline

position, possibly with constant reference to the same feature, is recommended before the

computations of DSAS are initiated. This form of analysis is not immune to the usual

limitations associated with digitisation and synthesisation of variable quality and resolution

data derived from various sources as a result of irregular time sampling interval. For

example, reliance on Ordnance Survey (OS) mapping relies on the accurate and consistent

interpretation of surveyors and cartographers over decades and centuries (Fenster et al.,

1993; Burningham, 2005). Older surveys were usually land-based whilst later ones are often

derived from aerial photography (Fenster et al., 1993).

Care was undertaken to ensure that accurate digitisation and critical review of features are

considered in the source materials. The calculated measures of change provided by DSAS

are only as reliable as the sampling and measurement accuracy associated with the source

materials. Therefore, in this study mapping errors were estimated as ±10 m for the pre-2000

maps and ±5 m for post-2000 maps (Anders and Byrnes, 1991; Crowel et al., 1991; Thieler
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and Danforth, 1994a; Moore, 2000). Any form of spatial or laboratory analysis is always

aimed at finding solutions to certain spatial problems or to understand certain processes

(Uluocha, 2007). In order to achieve this focus, the significance of data quality cannot be

over-stressed. The issue of data quality was therefore given prominence. Care was taken to

determine the integrity, quality and relevance of any data used in the analyses. The indices

which were used in data quality check include logical consistency, completeness, positional

accuracy and precision, scale, spatial resolution and currency (temporal accuracy and

precision), (Faiz and Boursier, 1996; Jones, 1997; Dobson, 2002; Uluocha, 2007).

Table 2.3 Workflow for using DSAS in shoreline change analysis (after Thieler et al., 2009)

Inputting data
- creation of shorelines, mostly through digitisation as polyline in shapefile/feature class;
- creation of baseline, mostly through digitisation as shapefile/feature class;
- setting of default parameters in DSAS extension, which include transect settings; shoreline
calculations parameters setting; metadata settings and log file output options;
- setting of the cast transect parameters, whether simple or smooth as well as transect metadata.
Outputting to geodatabase
- transect generation is exported to the geodatabase;
- editing of individual transects where needed
- within the geodatabase, calculation of change statistics by selecting the desired statistics to be
calculated in DSAS;
- specification of confidence interval and shoreline intersections thresholds, etc
- DSAS processes the submitted information and validates the user’s selections before outputting the
results to the personal geodatabase
Output statistics
- the generated statistical results are then presented/analysed within ArcGIS or exported to other
packages like Microsoft Excel for further analyses and processing
- the output are also modified to visually represent the change in statistics in ArcGIS, etc.

2.2.4 Shoreline analysis and interpretation

The DSAS approach calculates shoreline rates of change based on the measured differences

between the shoreline positions associated with specific time periods. The following

statistical measures (from Thieler et al., 2009) were computed for this research:

(i) Shoreline Change Envelope (SCE): a measure of the total change in shoreline

movement considering all available shoreline positions and reporting their distances,

without reference to their specific dates.

(ii) Net Shoreline Movement (NSM): reports the distance between the oldest and

the youngest shorelines. It is useful to compare the SCE and NSM metrics to gauge the

extent to which shoreline changes throughout the period considered are reflected in the

net change.

(iii) End Point Rate (EPR): derived by dividing the distance of shoreline movement

by the time elapsed between the oldest and the youngest shoreline positions. This

metric has been shown to provide an accurate measure of the net rate of change over

longer term and it is relatively easy to apply in shoreline analyses. Further justification
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for the choice of this method over other methods of estimate is its ability to reliably

indicate shore change irrespective of the availability of intermediate shoreline dates

(see Milligan et al. (2010a, 2010b, 2010c, 2010d for example). Unlike the Linear

Regression Rate (LRR), it is unaffected by variations in the temporal resolution of

data, and instead summarise change based on the net change (NSM) over the full time

period considered.

The transect spacing adopted along the coastline of each of the study site was 5 m with 20 m

simple baseline smoothing distance while the change statistics was based on 95%

Confidence Interval. The above parameters were evaluated for coastlines (bays) of the

estuaries to show the spatial patterns of movements of the shorelines. To quantitatively

measure the amount of shoreline shift along each transect, the oldest shoreline position was

chosen as the baseline to which all other shorelines were referred. With reference to that

baseline, positive and negative changes indicate shoreline progradation and recession

respectively. To quantitatively examine the temporal characteristics of the transects, the

cumulative rate of change at some locations in the system were selected and examined. The

cumulative change in the shoreline positions along the same transects are plotted in graphs

with ‘year’ plotted along the X-axis and the corresponding cumulative change in shoreline

positions with respect to 1845 shoreline plotted on the Y-axis for St Ives- Hayle and respect

to 1888 shoreline for Crantock-Gannel and 1881 for Padstow-Camel systems respectively.

The locational probability analysis was used to investigate the ebb channel migration within

the estuary.

2.2.5 Locational probability analysis

Analysis of the historical morphodynamic evolution of estuarine ebb channels was

undertaken using Locational Probability Analysis (LPA) (Graf, 2000; Wasklewicsz et al.,

2004). This involved digitisation of individual estuarine channels from the historical maps as

feature layers before being converted to raster layers. Channel data for each time period was

classified such that cells representing the ebb channel was assigned a value of 1 and other

cells as 0. Following Graf (2000), weights were assigned to each rasterised layer according

to the relation

Wn = tn/m

where Wn = is the weighting value assigned to map n, tn is the number of years represented

by map n, and m is the total number of years for the historic record. The rasterised data

layers are then overlayed in date order based on the Graf’s algebraic equation and the

overlay methodology by Burrough (1986) and Tomlin (1991). The main purpose of adopting

this method is to evaluate the evolution, persistence and consistency of channel position

over time.
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Accordingly, the data were carefully scrutinised for logical consistency, completeness,

positional accuracy and precision (after Faiz and Boursier, 1996; Jones, 1997; Agumya and

Hunter, 1997; Dobson, 2002; Uluocha, 2007). This process enabled payment of particular

attention to geo-referencing, which was repeated where necessary to achieve Root Mean

Square (RMS) errors better than < 5 m in most cases.

2.2.6 Bathymetric change analysis

Historic bathymetric data are acquired from UKHO chart 1686, which were surveyed and

published in 1931 and obtained from British Library (shelfmark BAC 1686). The chart is

scanned at 300 dpi. The scanned raster image is then georeferenced to British National Grid

(OSGB 36) in ArcGIS 9.3 using the Ordnance Survey georeferenced data. The Root Mean

Square (RMS) spatial error for the geo-rectification/geo-referencing process was <30m. The

most recent bathymetric charts covering the north Cornwall coast are published in 2008:

charts 1178, 1149 and 1156 are obtained through the Seazone Marine Data Supply (accessed

through the EDINA Marine Digimap Service).

Soundings, contours and shorelines are digitised from all charts into point layers with depths

initially referenced to the chart datum. As chart datum varies spatially, and its associated

tidal reference changed over time (e.g. MLWS vs. LAT), depths are converted to Ordnance

Datum. A Natural Neighbour interpolation is performed using the Spatial Analyst tool in

ArcGIS 9.3 to generate regular grids for the each digitised bathymetric layers. A region of

interest that is covered by all available charts is defined for further analyses. Change in

bathymetry is then computed for the period between 1931 and 2008 using a simple raster

calculation.

This research methodology is documented in detail by Burningham and French (2011), and

sources of errors in the analyses are well established. Potential analytical errors in this work

include digitisation errors and gridding techniques (Gibbs, 1999). Quantifying these errors is

difficult, and a cautious interpretation of the results presented in Chapter 7 is recommended.

2.3 Contemporary morphology

The techniques mostly used in mapping intertidal topography focused on the analysis of

airborne stereo-photogrammetry, optical satellite imagery, airborne and satellite

interferometry, Light Detection and Ranging (LiDAR) data (after Lillesand and Keifer,

2000; Mason, et al., 2006; Gallay, 2013). In the present study, the LiDAR data obtained

from Channel Coast Observatory (CCO) are extensively utilised. The main purpose of using

the LiDAR surveys for the study sites is to assess the recent morphological change within

the estuarine intertidal zone. Aerial photographs, supplemented by Google and Bing aerial
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images provide a shorter-term perspective on planform morphological changes, especially in

the vicinity of the inlet channels.

2.3.1 Data sources

Airborne LiDAR surveys covering the sites of interest were obtained from the Channel

Coast Observatory and the dates of the LiDAR flights for the data used in the research are

summarised in Table 2.4. The LiDAR datasets provide information with which to

investigate the recent morphological behaviour of the systems. The zones of notable change

of vertical erosion, deposition and no change are obtained by undertaking a difference

calculation between temporally consecutive surveys: this is achieved in ArcGIS 9.3. A

measure of ±0.025m is used to differentiate areas of minimal change from those exhibiting

notable morphological change. Transects are also extracted from these spatial surfaces in

order to explore the morphological features associated with the changes observed. This is

undertaken in Matlab. Some LiDAR data could not be used due to data distribution in

integer, not float, format (for example, 2009 Hayle LiDAR).

Table 2.4 LiDAR datasets used for Hayle, Gannel and Camel systems.

Source Map Date Data Datum Uncertainty Value

Hayle
Channel Coast
Observatory

15/09/2007
09/09/2008
10/09/2009
10/04/2010

LiDAR
LiDAR
LiDAR
LiDAR

ODN +/-15cm+
+/-40cm+
+/-15cm+
+/-15cm+

Gannel
Channel Coast
Observatory

02/27/2008
16/04/2009
09/02/2010
10/03/2011

LiDAR
LiDAR
LiDAR
LiDAR

ODN +/-15cm
+/-30cm
+/-15cm
+/-40cm

Camel
Channel Coast
Observatory

02/27/2008
16/04/2009
09/02/2010
10/03/2011

LiDAR
LiDAR
LiDAR
LiDAR

ODN +/-15cm*
+/-30cm*
+/-15cm+
+/-15cm+

*-Attribute Accuracy Value +- Positional Accuracy (Vertical)

Further details about LiDAR Data:

LiDAR instrument manufacturer OPTECH

Instrument model ALTM Gemini 06SEN191

Average flight height (metres) 1000 mAGL (approximate)

Swath width (metres) 1025

Grid size (metres) 1

Units of elevation reading for ASCII grid file mAOD

Units of elevation reading for text file mAOD

2.4 Sediment sampling and analyses

Sampling of surface sediments within the intertidal zone of each system was undertaken

with a view to characterise their sediment regimes and, potentially, identifying estuary–coast
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sediment pathways. Sampling was carried out between 24 - 27th October 2011 within the

estuaries and also along the adjacent stretches of open coast. Sediments were sampled from

the surface through to a depth of 15 cm in order to evaluate short- versus long-term sediment

trends.

2.4.1 Field sampling and descriptive sedimentology

A total of 143 short cores (length <15 cm) were collected from the intertidal zone of the

estuaries and along the beaches using a 65 mm diameter tube (Figure 2.3 a-f). The main

reason for sampling a 15 cm short-core was to obtain a more complete understanding of

changes in the instantenous (surface) sedimentology. The immediate surface may reflect

only process dynamics associated with the most recent high tide, but sampling to a greater

depth can increase the temporal reference of the sedimentary environment. Sample locations

were located randomly within individual and key sedimentary sites in each system, and

positioned using a hand-held Global Positioning System (GPS), (±3 m rms error). Chapter 6

provides full detail of the sampling locations and positions for each of the study sites, which

is summarised here in Table 2.5. An effort was made to ensure that sufficient samples were

collected from within the estuaries and along the beach areas, across the full intertidal zones.

Cores acquired at low tide, were sealed, tagged and returned to the laboratory intact.

A B C

D E F

Figure 2.2. (A) & (B)-the 15cm pipe used in the core sampling, (C), (D), (E) and (F)-
hammering, retrieving and bagging of sediment core.
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Cores were sliced at 1 cm intervals (down-core) (Figure 2.4 a - f) and grain size distribution

of these subsamples were analysed using a Malvern MasterSizer 2000 particle analyser,

which uses a laser diffraction principle (Figure 2.5), detecting sizes across the range of 0.02

– 2000 µm (Malvern, 1999). No sediment coarser than sand (>2,000 µm) was present. Folk

and Ward (1957) grain size statistics (median (D50), sorting (spread of the distribution) and

skewness (asymmetry of distribution)) were calculated using GRADISTAT (Blott and Pye,

2001). Multivariate analyses of the grain size distributions were undertaken in Matlab.

Table 2.5 Summary of sediment samples acquired at the study sites

Site Number of
estuarine samples

Number of open
coast samples

*Underlying reasons

Hayle - St Ives 40 40 SSSIs locations are not covered
because of the restriction in the
site.

Gannel - Crantock 10 9 A smaller site, sampling density
was maintained, which
generated a smaller number of
samples when compared to the
other systems.

Camel - Padstow 22 22 SSSIs restrictions in the
sampling sites limited the
anticipated random sampling to
areas freely accessible to the
public

Total 72 71
Grand total 143

SSSIs – Site of Special Scientific Interests

A B C

D E F

Figure 2.3 Preparation of sediment samples: (A) splitting the core, (B) split and open core, (C
% D) slicing the core sediment into 1cm layers, (E) bagging the sediment, (F) bagged and
labelled sediments.
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A B C

Figure 2.4 (A) Malvern optical unit, (B) the wet dispersion and stirring accessory, and (C) the
computer display of particle size distribution.

Various configurations, settings and runs for the same sample were considered for Malvern

MasterSizer 2000 equipment while preparing the sediment for analysis. Tables 2.6, 2.7 and

2.8 are examples of results obtained when the equipment was set up and tested for the grain

size measurement runs. The most consistent results were obtained when the time of the

processing was set to 45 seconds and the pump stirrer speed to 2,500 rpm for the three

cycles of runs (Table 2.8). The result for sample 3 (Table 2.8) was so consistent with all of

the variables (obscuration, residuals, span, Malvern statistical parameters) considered for

data analysis and quality. Tables 2.6 and 2.7 are examples of results which were obtained at

the testing stage of the analysis of the same sediment samples. The results of these tests

(Tables 2.6 and 2.7 for examples) were not consistent at three cycles of runs for the same

sample when Malvern equipment was set to 2000 and 2250rpm (pump speed) and 12” and

30” (time) respectively. From the consideration of quality of the results generated based on

different equipment test settings, the time (45 seconds) and pump speed (2500 rpm)

configuration/settings that yield the 99.9% consistent results during the trial of the main

Malvern setting parameters used in the grain size analysis presented in this research. Tables

2.6 – 2.8 represent the results of different settings for the same sample.

Table 2.6 Setting 1- Time- 12”, Pump Speed: 2000rpm
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1(2) 12.9 2.373 1.33 702.653 0.0107 561.9 336.9 631.8 1174
1(3) 14.96 2.925 1.22 873.884 0.00872 687.8 427.3 817.3 1422
1(Average) 12.61 2.15 1.49 708.801 0.0153 391.1 297.4 633.8 1244
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Table 2.7 Setting 2- Time- 30”, Pump Speed: 2250rpm
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2(3) 7.5 2.868 1.19 600.056 0.012 499.3 309.1 550.2 961.4

2(Average) 6.95 2.506 1.47 631.653 0.0169 354.6 276 559.2 1099

Table 2.8 Setting 3- Time- 45”, Pump Speed: 2500rpm
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3(1) 12.67 0.424 0.84 319.815 0.0207 290.387 203.1 304.6 457.4

3(2) 12.56 0.453 0.83 318.706 0.0207 289.664 202.9 303.8 455.1

3(3) 12.58 0.461 0.83 319.497 0.0207 290.359 203.3 304.6 456.3

3(Average) 12.6 0.446 0.83 319.339 0.0207 290.136 203.1 304.3 456.3

2.4.2 Sediment size analysis

Grain size analysis has been widely used to statistically examine spatial changes in sediment

size properties. It was pioneered by McLaren (1981), improved by McLaren and Bowles

(1985), and further modified by Gao and Collins (1992). Applications include the studies by

McLaren et al. (1993); Masselink (1992); Gao and Collins (1994); Gao et al (1994);

Flemming (2007); Le roux and Rojas (2007); McLaren et al. (2007); McLaren and Singer

(2008); Plomartis et al. (2008); and Poulos and Ballay (2010).

Grain-size trends, which may be primarily related to abrasion and selective sorting effects

(Le Roux and Rojas, 2007), are naturally the result of sediment transport processes

(Krumbein, 1938; Russell, 1939; Swift et al., 1972; Stapor and Tanner, 1975; McCave,

1978; Harris et al., 1990; Le Roux and Rojas, 2007). Key grain-size statistics (e.g. those

relating to the average, sorting, skewness and kurtosis) have traditionally been obtained by

sieve or settling techniques (Blott and Pye, 2001; Le Roux and Rojas, 2007). However,

modern laser diffraction sediment size analysers permit much more rapid processing of large

numbers of samples (Eshel et al., 2004; Blott and Pye, 2006).
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Despite its importance in understanding sediment provenance, sediment grain sizes are

difficult to characterize because of the range in the order of magnitude (Friedman and

Sanders, 1978; McLaren and Bowles, 1985). However, over the years most sedimentologists

have used or adopted the logarithmic Udden-Wentworth grade scale (Udden, 1914;

Wentworth, 1922) with classification based on the boundaries differentiated by the factors of

two (Table 6.1). Krumbein (1934), on the other hand, took the Udden-Wentworth

classification further by developing a phi scale (f) and proposing that the Udden-Wentworth

grade scale value be logarithmically transformed into phi (ᶲ) values using the expression: 

ᶲ = -log2d

where d is the grain size in mm. With the geometric series, the log2 can be used to linearise

the logarithmic grain size distribution to fit Udden-Wentworth scale. These log-normal

distributions were conventionally used by Visher (1969), Middleton (1976) and Wrywoll

and Smith (1985; 1988) for example. Many sedimentologists have, however, advocated

comparisons which has led to a rise in the consideration of alternative distributions. For

example, the works of Bagnold and Barndorff-Nielsen (1980) and Hartmann and

Christiansen (1992) advocated the application of logarithmic transformation of both grain

size and frequency scales. Despite various propositions to sediment distribution

measurements, the log-normal distribution continues to be in use to date.

Blott and Pye (2001) developed a series of computational routines for the rapid analysis of

grain size statistics regardless of any standard measuring techniques. The macros, written in

Microsoft Visual Basic for use within Microsoft Excel and distributed within the

spreadsheet package GRADISTAT, allow the calculation of statistical variables

arithmetically, geometrically (in metric units) and logarithmically (in phi units) using Folk

and Ward (1957) graphical methods. The authors discovered that results in metric units

through Folk and Ward (1957) measures appear to provide the most robust basis for routine

comparisons of variable sediment composition. In GRADISTAT, the statistical method of

moment analysed geometrically based on the log-normal distribution metric size values is

the result presented this section. Table 6.2 shows the grain size metrics classification groups

of sorting and skewness discussed in this chapter.
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Table 2.9 Size scale adopted in the GRADISTAT program, compared with those previously
used by Udden (1914), Wentworth (1922), and Friedman and Sanders (1978). From Blott and
Pye (2001: page 1239).

Grain size Descriptive Terminology

Phi Metric
Udden (1914) and

Wentworth (1922)

Friedman and

Sanders (1978)

Blott and Pye (2001)
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Cobbles

Very large boulders B
o

u
ld

ers

Large boulders Very large

Medium boulders Large

Small boulders Medium Boulders

Large cobbles Small

Small cobbles Very small

Pebbles

Very coarse pebbles Very coarse G
rav

el

Coarse pebbles Coarse

Medium pebbles Medium Gravel

Fine pebbles Fine

Granules Very fine pebbles Very fine

Very coarse sand Very coarse sand Very coarse S
an

dCoarse sand Coarse sand Coarse

Medium sand Medium sand Medium Sand

Fine sand Fine sand Fine

Very fine sand Very fine sand Very fine

Silt

Very coarse silt Very coarse S
ilt

Coarse silt Coarse

Medium silt Medium Silt

Fine silt Fine

Clay
Very fine silt Very fine

Clay Clay

Table 2.10 Geometric method of moment graphical measures, after Folk and Ward (1957)
(from Blott and Pye, 2001: 1240)

Greenwood (1969) found that the basic frequency distribution in grain size statistics could

be used to differentiate sediments from different sedimentary environments, the assertion of
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which was disputed by Moiola and Weister (1968) in another study, although clearer

delineation exists when distinctly different environments are compared. Difficulties in

differentiation arise most commonly when the sedimentary environments considered are all

sourced from a single sediment population, and in these cases, subtle differences in the

distribution are likely the most effective delimiter.

Folk and Ward (1957) grain size statistics (median (D50), sorting (spread of the distribution)

and skewness (asymmetry of distribution) were calculated from the raw Malvern-derived

grain size distribution using the GRADISTAT macro for Microsoft Excel (Blott and Pye,

2001). The grain size distribution of the multiple samples from each site were also explored

using principal component analysis (PCA) to reduce the data into a smaller number of key

variables. Hierarchical cluster analysis (using Euclidean distance and average linkage) was

applied to the grain size distribution to organise samples into groups comprising similar

sedimentological characteristics, specifically for each of the system. These calculations were

undertaken in Matlab.

2.4.3 XRF analysis

The sedimentological characteristics of sedimentary environments in the coastal systems

studied were also examined in terms of elemental composition. This geochemistry is

hypothesised to characterise sediment source compositon, of the parent rock, climatic-

environmental conditions determining sediment formation and transportation, and possible

anthropogenic interactions with the sediment supply chain (Pettijohn, et al., 1987; Johnsson,

1993; Basu, 2003; Weltje and von Eynatten, 2004; Bloemsma, et al., 2012). The XRF is

used here to complement the grain size analyses in the sedimentological characterisation of

of sedimentary environments within, and connectivity between, the estuary and open coast

system. X-ray Fluorescence Spectrometry (XRF) is used to determine the major oxide and

trace element composition of sediment samples. The major and trace elements in their

oxidised state are determined as percentage of composition. They comprise Na, Mg, Al, Si,

P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb,

Mo, Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba, La, Ce, Hf, Ta, W, Hg, Tl, Pb, Bi, Th and U. The

samples used in the XRF analyses were obtained from 0-5 cm sediment depth from a range

of estuarine and open coastal sample locations.

The samples were freeze-dried at ~600C in MODULO 4k Freeze Drier (Figure 2.7a) for five

days before the dried samples were pulverised into a fine powder using an agate mortar and

pestle (Figure 2.7b). To avoid contamination and the mixture of sub-environment samples

during preparation stage, both faces of the compression die for each of the samples for the

analysis were well covered (Figure 2.7c). Each pulverised ground sample was then weighed

prior to analysis (Figure 2.7d) and the weight for each of the 21 samples ranged from 4 to 6
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grams. These subsamples were analysed using a Spectro XLab Pro 2000 to produce the high

X-ray intensity, that permits the quantitative analysis of elements in the ng-range (after

Jenkins, et al., 1995).

The generated data were then analysed in Matlab and Paleontological Statistics (PAST)

software (Hammer, et al., 2001) for comparison of major and minor/trace element

composition across the three systems while the geospatial comparison of some major and

minor elements composition were explored in ArcGIS. Major elements were measured in

percentage (%) while trace elements were measured in µg/g. The evidence for the sediment

sources at the study sites are already covered in some works, therefore the investigation of

the source of elemental composition are considered in line with what has been established in

the literature (for example, Reid and Scrivenor, 1906; Bryan et al., 1980; Pirrie et al., 1999;

Pirrie et al., 2000a, b; Rollinson et al., 2007; Pirrie et al., 2009, etc).
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A B

C D

Figure 2.5 (A) MODULO 4k Freeze drier (B) pulverising into using agate mortar and pestle
(C) storing the pulverised sample in compression die and (D) weighing the sample.
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2.5 Metocean analyses

2.5.1 Metocean characteristics

Meteorological and oceanographic community (metocean) are always concerned with the

supply of environmental data and models for accurate approximation of ocean’s physics

(Bitner-Gregersen, et al., 2014). Time series (1823 – 2012) of winter NAOi, wind climate,

tidal conditions and recent sea-level rise were analysed and plotted in Microsoft Excel.

These analyses are aimed at addressing the third objective of this research. The intention

here is to evaluate the importance of physical environmental forcings as agents of change

within the coastal system. Historical time-series of wind climate based on indices for St

Mawgan, and the winter NAOi with 50th and 99th percentile correlation were collated to the

N, E, S, W, NW and SW quadrants as the correlation at NE and SE were found to be

insignificant. Also, usage of all directions, especially each 100 sector, was able to show very

specific changes in directions (without obstruction of significant signature), and this is why

the historical analyses presented in chapter 4 do not follow the 900 bin. The contemporary

wave climate conditions using the 20 year (1999 – 2009) hindcast hourly wave parameters

supplied by ABPmer, are analysed in Matlab. Specifically, the wave parameters at West

(Long. -5.67, Lat. 50.65) and Central West (Long. -5.33, Lat. 50.55), which are within the

study areas, are considered for contemporary wave condition analysis. Key variables

explored were: frequency of wave direction and significant wave height, frequency

distribution of wave direction and wave period, time-series of significant wave height and

wave approach. For the tidal conditions and sea-levels at Newlyn, the time-series of

minimum and maximum tidal residuals are considered while the monthly and annual sea-

level were investigated in Microsoft Excel. Chapter 5 presents the results of these metocean

analysis and exploration.

Forcing of coastal change was explored through the analysis of key metocean data, focusing

on wind and wave climate and sea-level change (Table 2.9). Wind data acquired through the

Meteorological Office Integrated Data Archive System (MIDAS) Land and Marine Surface

Stations Data was obtained from the British Atmospheric Data Centre (BADC)

(http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_ukmo-midas). Due to the

limitations of the temporal extent of this data, which extends back to the 1950s, the North

Atlantic Oscillation index (NAOi) was also considered to provide a measure of wind climate

extending over the full history covered by the coastal change datasets (late 1800s to present).

NAO monthly indices were downloaded from the University of East Anglia Climate

Research Unit (http://www.cru.uea.ac.uk/cru/data/nao), and associations between the winter

NAOi and wind climate measures were analysed following Burningham and French (2013).

Hindcast wave measures (1991 - 2009) derived (using SEASTATES modelling suites) for

the north coast of Cornwall were supplied for the purpose of this research by ABPmer.
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Annual and monthly mean sea-level data for Newlyn, the location where tidal data are

collated for the region, were acquired from the Permanent Service for Mean Sea Level

(http://www.psmsl.org/). These data are used in the assessment of historical coastal forcing

(Section 4.2) and contemporary coastal climate (Section 5.2).

Table 2.11 Metocean datasets used in this study

Dataset Location Dates Resolution

Surface wind climate
BADC

St Mawgan
5.013°W, 50.435°N

1957-2008 Hourly

NAO index
CRU

n/a 1823-2013 Monthly

Hindcast wave climate
ABPmer 4.92°W, 50.67°N

1991-2009 Hourly

Mean sea level
PSMSL

Newlyn
5.543°W, 50.103°N

1916-2012 Monthly
Annual

2.5.2 Wave modelling

Simulating Waves Nearshore (SWAN, henceforth) is a sophisticated and widely used third

generation Eulerian spectral wave model that computes growth, decay and transformation of

the discrete wave action balance equation (Booji et al., 1999; Neill et al., 2009). It is

specifically designed for modelling irregular waves in coastal regions/environments, using

the deep water regime and seabed bathymetry (Booji et al., 1999; Ris et al., 1999; Wolf et

al., 2000; Neill et al., 2009). SWAN (version 40.91A) was run, using both the 1931 and

2008 bathymetries, to investigate the variation in coastal and estuarine wave climate. The

simulation of wave propagation was carried out for two different periods (1931 and 2008) of

the wave climate in the region. The objective here is to briefly examine the role of seabed

dynamics on the nearshore open coast processes. It is hypothesised that the upper shoreface

has control on nearshore morphology through modification of the incoming wave climate.

Two representative of moderate - wave energy conditions were used in the simulation of

influence of bathymetric controls on the nearshore and offshore wave climate (Table 2.10).

Offshore wave conditions were derived from wave buoy and hindcast data, and focused on

higher energy wave climates. The first scenario applied used wave conditions from

February, 2013 (wave buoy data of 26 February, 2013 at Sevenstones Lightship from

National Data Buoy Centre (NDBC) - www.ndbc.noaa.gov, accessed on 26/02/2013). The

significant wave height (Hs) of 4.5 m having a period of 10.0s was simulated on the two

bathymetries (1931 and 2008); these conditions represent a typical winter wave climate. The

second simulation focused on extreme conditions, and used the 99th percentile wave climate

derived from analysis of ABPmer hindcast wave model for a position to the northwest of the

study area, giving the measures 6.52 m (Hs), 9.3s (period) and 28.5° (spread). The results of

this modelling are presented in Chapter 7 to illustrates the influence of the bathymetry on the

wave climate. The SWAN model was run in time-dependent mode on the two bathymetric
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data and was set up with an extent of about 40 km in the offshore directions and about 60

km in the long-shore direction (after Wolf et al., 2000).

Table 2.12 Wave climate scenarios used in SWAN modelling

Source Location Dates Hs (m) T0 (s) Spread
(°)

NDBC Stevenstones
Lightship
6.100°W, 50.103°N

26/02/2013 4.5 10.0 30.5

Hindcast wave
climate
ABPmer

West point
5.67°W, 50.65°N 12/02/2007 6.52 9.3 28.5
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3 STUDY AREA

_________________________________________________________________________

3.1 Geological setting

Southwest England is one of the nine (9) sub-national regions of England, with an

estimated area of 9,200 square miles (23,828 km2), formed of a peninsula between the

English and Bristol channels (SWRDA, 2006) in the northeast Atlantic (Figure 3.1). The

coastal zone of Southwest England is regarded as the longest of England’s regions with a

total of 702 square miles (1,130 km2) (SWRDA, 2006). The county of Cornwall occupies

the western-most extent of this region. Geologically, the region is largely igneous and

metamorphic to the west, and mainly sedimentary in the east of River Exe. Granite and

slate, that underlie Cornwall and the west, have exerted significant geological control on

the coastal system, which is rock-dominated with moorland hinterland, unlike in the wide,

flat clay vales, chalk and limestone lowland to the east (SWRDA, 2006). The climate of

the region has been classified as oceanic (Cfb) according to Köppen climate classification,

with cool and wet winters and warmer summer. The annual rainfall ranges between 900 –

1000 millimetres (39 in) in the lowlands and up to 2,000 millimetres (39 in) on higher

ground (Met Office, URL). The summer average temperature ranges from 180C (640 F) to

220 C (720 F) while the winter minimum averages range from 10 C (340 F) to 40 C (390 F)

across the region (Met Office, URL).

The geology of north Cornwall is classified as resistant (Clayton and Shamoon, 1998) and

it is formed of Devonian (345-395 MaBP) sandstones, shales, conglomerates and

limestones (Buscombe and Scott, 2008). To the west, between St Ives and Newquay, is

dominated by the Porthtowan formation consisting of slates inter-bedded with sandstones

and siltstones (Buscombe and Scott, 2008). More details about the formation in the region

are described by Campbell (1998); Bird (1998), Scourse and Furtze (1999), Halcrow

(2002) and Buscombe & Scott (2008).
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Figure 3.1 The Southwest Region of England position in Great Britain

3.2 Holocene context

Evidence of early Holocene (ca. 11,400 – 6800 cal. yr BP) coastal systems for Southern

England is limited (Waller and Long, 2003). However, the bathymetric maps investigation

suggests a probability of marine flooding of British Channels in the earliest Holocene

(Wrywoll and Smith, 1985, 1988) while palaeographical maps evidence indicates flood

occurrence at western area of the Channel around the 11,400 calendar year before present

(cal. yr BP) forming a marine waterway which is connected with and through the southern

North Sea basin around 8300 cal. yr BP (Lambeck, 1995; Shennan et al., 2000; Waller and

Long, 2003). Further evidence of early Holocene of coastal evolution is recorded within

Southampton Water with the record of marine silts deposition at around ca – 20 m

Ordnance Datum (OD, the mean sea-level Newlyn) depth of Clashot Spit (Hodson and

West, 1972). Godwin and Godwin (1940) pollen analysis of basal organic deposits at

Southampton Water suggests deposition commenced before 10,000 cal. yr BP and at
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around 5 m below the modern surface, confirming a deposit which must have started

accumulating above Relative Sea-Level (RSL). The accessibility and analysis of

sedimentary deposits after 6,800 cal. yr BP show that largely fine-grained sediments (of

minerogenic and organogenic source) accumulated against the circumstance of prevailing

rising RSL which contributed to the wider development of coastal barriers (Waller and

Long, 2003). During this period, around ca. 6,200 – 5,000 cal. yr BP, Healy (1995)

discovers the peat insertion within coarse sand and a further formation of basal peats in

Cornwall (specifically at Marazion Marsh) to the depth of between -6.21 and -4.71mOD.

Also, Morey (1983) notes the migration and formation of organogenic sediments in

response to landward barrier at Slapton Ley during the mid-Holocene (ca. 6,800 – 3,700

cal. yr BP). The late Holocene (ca. 37,00 cal. yr BP onwards) witnessed widespread

inundation and minerogenic sedimentation that contributed to a relative low rates of long-

term RSL, barrier instability and sediment reworking especially in the southern coast of

England (Waller and Long, 2003). Within the last 1,000 year or thereabout, the “coastal

land reclamation and sea-defence construction has accelerated” in southern England

(Waller and Long, 2003:354). A contrasting situation appears to be observed in Cornwall

as the evidence here suggests more extensive deposition of organogenic sediments,

although not a continuous process, during the Holocene (Waller and Long, 2003).

The different analyses of crustal movements within Great Britain based on geologic,

geodetic and tide gauge information revealed patterns of relative uplift in (highland)

Scotland and relative subsidence in the south of England (Valentin, 1954; Churchill, 1965;

Kelsey, 1972; Rossiter, 1972; Shennan, 1983, 1989; Woodworth, 1987; Shennan and

Horton, 2002). During the Holocene, crustal downwarping occurred throughout southern

England and most of Wales with southeast and southwest England experiencing a net

subsidence rate of over 1 mm yr-1 since 4000 BP (Shennan, 1989; See Figure 3.2). This

uneven spatial distribution of uplift and subsidence is attributed, in part, to the isostatic

recovery from Pleistocene ice melt that led to the crustal upward movement of land in

northwest Britain during the Holocene and the net subsidence (downwarping) in southern

England as a result of the combination of regional-scale subsidence and the collapse of

proglacial ‘forebulge’ after the Pleistocene ice melt (Pye, 1997).
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Figure 3.2 The estimated rates (mm yr-1) of crustal movement in Great Britain. (From

Shennan, 1989: page 87)
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3.2.1 Holocene and Sea-level change

The Southwest of England was observed to be ice-free during the Last Glacial Maximum

(LGM) with its post-glacial RSL history having implications for proglacial forebulge

dynamics, the flexing of outer part of the earth (crust and upper mantle) near the ice

margin that eventually migrated and collapsed as ‘the land-based ice retreats’ (Massey, et

al., 2008). There wasglobal ‘eustatic’ sea level rise during the Holocene as a result of the

combination of melting glaciers/ice sheets, and the thermal expansion of the upper layer of

the ocean (Mörner, 1971; Shennan 1989; Shennan and Horton, 2002). The effect of which

led to the rise in sea-level to 40 m in approximation. However, different parts of the world,

Great Britain inclusive, experienced quite distinct and contrasting responses to the

‘relative’ sea-level rise during the course of Holocene as a result of ‘isostatic’ tectonic

movement (Milne, et al., 2008). As far as south-west Britain is concerned, Kidson and

Heyworth (1978) suggested that the region was tectonically stable, therefore the local

relative sea level rise in this region could be an indication of eustatic change (Edwards,

2006). While the relative sea-level rose more or less continuously between 13,000 and

6,000 BP in North-west England, it has been suggested that the rise began in the region by

14,000 BP, then continued at a rapid rate until 6,000 BP (Pye, 1997) but reached its current

altitude at about 4,000BP (Edwards, 2006) since when it has continued at a slower rate of

c. 2 – 3 mm year-1 (Pye, 1997).

However, the coastline of southwest England is determined to be currently undergoing

relative subsidence at faster rate (approximately at 0.9 – 1.4 mm yr-1) than any other coasts

in Great Britain (Shennan and Horton, 2002; Massey et al., 2008). The recent gravity

measurements by Teferle, et al. (2006) determines absolute subsidence rates of 0.1 ± 0.9

mm yr-1 while recent GPS measurements suggest a subsidence rate of 0.0 ± 0.5 mm yr-1

(Massey et al., 2008). Compared to global anomalous subsidence average, the rate of sea-

level rise of ~1.6 mm yr-1 in Southwest England (using the tide gauge measurement in

Newlyn, Cornwall since 1916) does not differ significantly (Woodworth, et al., 1999). A

higher rate of relative sea-level rise of 1.0 - 2.3 mm yr-1 contributes to widespread loss of

intertidal flats and saltmarshes, erosion of coastal cliff and landward retreat of shingle

barriers (Woodworth et al., 1999). Figure 3.3 shows the calculation of RSL change using

the present tidal range values and the modelled changes for both inner- and outer- estuarine

deposits by Shennan and Horton (2002). The channel coasts of Cornwall produced only 7

scattered sea-level index points (SLIPS) with the relative -1.27 mm yr-1 rate since 4,000 cal

yr BP and the best estimate rate of -1.21 mm yr-1 (Healy, 1995; Shennan and Horton,

2002). The current recommended rate of sea-level rise for southwest England is now c. 1.8

mm yr-1 (PSMSL, 2013).
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Figure 3.3 Sea-level index point for location 52 in Great Britain plotted as calibrated age
against change in sea-level relative to present (m). The best estimate of the late Holocene
trend for the location is plotted as solid line. The dashed line shows the predicted RSL from
model described by Shennan, et al., (2002). [The figure is adapted from Shennan and Horton,
2002: 518]

3.2.2 Coastal evolution

The different patterns of sea-level changes through mid- to late- Holocene age have had

profound effects on coastal evolution. Analysis of more than 1200 sea-level index points

and 180 limiting dates for the 52 locations in Great Britain by Shennan and Horton (2002),

covering the last 16 000 years show maximum relative uplift in central and western

Scotland of c. 1.6 mm yr-1 and maximum subsidence of c. 1.6 mm yr-1 in southwest

England (Shennan and Horton, 2002). Raised marshes, barrier systems, abandoned shore

platforms and beach ridge plains from the mid- to late- Holocene are common in Scotland

and northwest England. In southern England, however, sediment consolidation increases

the subsidence in areas with thick sequences of Holocene sediments, contributing an

average of c. 0.2 mm yr-1 to land subsidence (Shennan and Horton, 2002). The continuing

trend of subsidence and submergence in the southwest region has formed a coastline of

drowned river valleys and estuaries. The contrasting relative sea-level histories have had

(and still have) profound effects on coastal landforms and evolution.

3.3 Contemporary coastal processes

3.3.1 Process regime

The wind and wave climate of the southwest of England is dominated by North Atlantic

weather systems and storm activity. The 10% exceedance significant wave height (Hs10%)

is 2.5 – 3 m (Draper, 1991; NERC, 1998) characterised by a mixture of Atlantic swell and
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locally generated fetch-limited wind waves (Buscombe and Scott, 2008) that exhibit a

Mean Spring tide Ranges (MSR) of 4.2 to 8.6 m (UK Hydrographic Office, 2003; Scot, et

al., 2007). The annual mean offshore wave power, was estimated to be between 21kW/m

and 25kW/m (DTI, 2004; SWRDA, 2004). Wave energies along the north Cornwall coast

are sufficiently high to be used in the development and piloting of wave energy convertors

(Millar et al., 2007; Smith et al., 2012; Stokes et al., 2014).

The spring tidal range along the north coast of Cornwall is around 5 – 6 m (UKHO, 2003).

Tidal currents are generally weak (≤~ 0.75ms-1) except in local areas around headlands

(Figure 3.4) (Halcrow, 2002) and at tidal inlets. Southwest England is the second most

exposed area of Great Britain after the Western England, therefore strong winds are active

in this region. The bulk of the strongest winds are from southwest and northeast caused by

the passing of West - East Atlantic depression over the Great Britain with a change in

west–northwest direction when depression ceases/leaves. The winds in Southwest England

are stronger in winter as the strength of frequencies and depression increase while the

lightest mean wind speeds occur in summer, – gusty wind also follow this pattern of

scenarios (Metcalf, et al., 2003). To the North-east of the region and in the the inland

areas, the mean wind speed are generally low. For example in places like Yeovilton (the

Somerset lowland), the mean wind speed is two-thirds of that of St Mawgan of Cornwall

(Metcalf, et al., 2003).

Figure 3.4 Tidal residuals within the study area, according to Halcrow (2002) and Buscombe
and Scott (2008:8). Arrow size is relative to the magnitude of tidal flux. The map extent is 100
km2.
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3.3.2 Sediment and sediment transport in the region.

The early works of Stride (1963) and Pingree and Griffiths (1979) present contrasting

patterns of sediment movement in southwest England. While Pingree and Griffiths (1979)

suggest the region experiences a net northwesterly sediment transport under the

westerly/southwesterly prevailing waves, Stride (1963) suggests opposite based on the

bedform symmetry, stating that the sediment moves out of southern bight of the North Sea

in northward direction. It is currently believed that waves cause the seasonal

onshore/offshore movement of sediments along the shoreline (Scott et al., 2007; Buscombe

and Scott, 2008). However, sediment movement is thought to be limited due to water

depths, the pattern of the inlets in the region, the structure of the headlands and limited

volume of sediments (Halcrow, 2002; Buscombe and Scott, 2008). Figure 3.5 shows an

overview of the bathymetry of the study area. The areas around the shorelines are

obviously shallower than those further away offshore. The nearshore sediment circulations

patterns in the region is thought to stay close to the coasts as the sediments in southwest

England are driven by north/easterly waves and south-westerly swell during the storms

(Buscombe and Scott, 2008).

Figure 3.5 Bathymetry of the southwest England shoreface.
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3.4 Study sites

3.4.1 Southwest England case study

As noted in the preceding chapter, the UK is very rich in estuaries (over 160 according to

Defra, 2006) with more than a quarter of the northwestern European estuaries occurring in

the UK (Defra, 2006). Many of these have been studied separately from their adjoining

coasts, often in isolation from the broader coastal context. In contrast, the present study is

based on a more integrated analysis of a regional cluster of estuaries, focusing on the north

coast of Cornwall, southwest England. The Hayle, Gannel and Camel estuaries and their

adjacent open-coast shorelines (Figure 3.6) have been the subject of various studies in the

past, but no regional synthesis of the historical behaviour has yet been attempted. Also

important, is the availability of various datasets to support characterisation of coastal and

estuarine geomorphology and analysis of shoreline change, not least the airborne LiDAR

datasets available through the Channel Coast Observatory (www.channelcoast.org). These

three neighbouring systems also provide an excellent opportunity to examine the

sedimentary linkages between coast and estuary, and to investigate the extent to which

their historical behaviour exhibits any regional coherence.

Figure 3.6 Location of the selected study sites on the north coast of Cornwall, southwest
England.

The north Cornwall coast is exposed to a predominantly westerly wave climate with a 10%

annual exceedance wave height of 2.5 – 3 m and a 1 in 50 year extreme offshore wave
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height of 20 m, with the possibility of wave heights regularly exceeding 5 m during the

winter months. This is the season when long period swells of 15 seconds wave or more are

common (Royal Haskoning, 2011). The Hayle, Gannel and Camel estuaries and their

adjacent open-coast shorelines (bays) are discussed extensively in this section.

3.4.2 St Ives Bay and the Hayle Estuary

The Hayle estuary lies within St Ives Bay in the Penwith District of Cornwall (Figures

3.7). The Hayle estuary comprises approximately 1.2 km2 of largely intertidal sand flats,

mud flats and saltmarsh. St Ives Bay extends c. 8 km between the headlands of

Porthminster and Godrevy Points: the Hayle Estuary enters the Bay west of centre. The

estuary lies within the drowned valleys of the Rivers Hayle and Angarrack. The Hayle

Estuary has been classified as bar built estuary in the Joint Nature Conservation Committee

(JNCC) inventory while ABPMER et al. (2008) classified it as ‘spit enclosed’ (ERP2

Geomorphological Type). It means the estuary is formed in a drowned river valley with

one or more spits bounding the estuary mouth. The aerial photograph of Hayle estuary is

presented in Figure 3.7 showing rocky and sediment shoreline.

St Ives Bay contains 10 distinct beach systems (covering a total area of 2,802,500 m2),

coastal dunes and the Hayle inlet (Buscombe and Scott, 2008). It can be considered as a

closed sedimentary system whereby little or no exchange of sediment (sand or coarser) to

neighbouring bays occurs. This implies that local patterns of erosion and deposition are

likely to be balanced within the embayment and redistribution of reworked sediment is

common. It is thought that sediment linkage between offshore and the shoreline is limited

(Babtie, 2002; Buscombe and Scott, 2008). The sedimentary cover overlies a rock floor,

which lies at an average of 3.40 m below Ordnance Datum Newlyn (ODN). The tidal

regime in St Ives Bay is macro-tidal (mean range at spring tides 5.8 m; Table 3.1) and

storm surges may add 1 m or more to predicted tidal levels (Pugh, 1987; Table 3.2).

The bedrock geology of St Ives Bay and the Hayle catchment is largely composed of

Devonian metasediments (mudstones, siltstones, slates and sandstones). Permian granitic

intrusions bound the bay to the west (at St Ives), and border the Hayle catchment to the

south and southeast. Elsewhere, Devonian intrusions and lavas form resistant headlands

(e.g. St Ives Head). Permian and Devonian intrusive dykes maintain a strong southwest-

northeast alignment, whilst primary faults are aligned northwest-southeast. Structurally, the

Hayle estuary comprises two river valley basins extending southwest (River Hayle) and

northeast (River Angarrack).
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Figure 3.7 (A) The St Ives Bay and Hayle Estuary. Inset: Its location in Southwest England,
and (B) the 30/08/2012 Google aerial photograph showing the sediment and rocky shoreline.
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Figure 3.8 Photographs showing A) the Hayle Estuary by Lelant Rail Station and B) the
Barrepta Cove/ Carbis Bay (Field picture, 25/10/2011)
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Table 3.1 Summary of typical water levels at St Ives (Lat. 50.21
0
N Long. 5.43

0
W). Data taken

from Admiralty Chart, © Crown Copyright / SeaZone Solutions Ltd [2008]

Tidal State Water Level (m ODN) Height (m CD)
Mean High Water Spring
(MHWS)

+3.2 6.6

Mean High Water Neap (MHWN) +1.5 4.9
Mean Low Water Neap (MLWN) -1.0 2.4
Mean Low Water Spring
(MLWS)

-2.6 0.8

Table 3.2 Summary of extreme water levels at St Ives (Lat. 50.21
0
N Long. 5.43

0
W) [Source:

Defra/EA (2004)]

Return Period (years) Water Level (m ODN)
1 in 2 3.55
1 in 5 3.63
1 in 10 3.66
1 in 20 3.69
1 in 50 3.72
1 in 100 3.75
1 in 200 3.76

Note: Figures in Table 3.2 above exclude surge or long term sea level rise; m ODN refers to metres
above Ordnance Datum Newlyn.

Settlement and use within the Hayle valley has an extended history due to the role of the

river and estuary as an important harbour. The name ‘Hayle’ was derived from the Cornish

word ‘hayl’ or ‘heyl’, which means ‘tidal flats’ or ‘estuary’. The development of the

copper and tin mining industry in Cornwall led to the advancement of a mining community

around Hayle in the 18th century. The intense industrial and commercial activities led to the

establishment of Hayle harbour which handled many thousands of tonnes of coastal and

transatlantic shipping during the 19th century. The further development of Hayle harbour

involved the construction of training walls, quays, slicing of ponds and dredging. Also, in

order to maintain a navigable channel for shipping, there has been a long history of sand

extraction from the estuary (Noall, 1984; Pascoe, 2005). Related to this, there are several

commissioned studies on the Hayle:

 Harvey’s Hayle’s Report on engineering works and maritime activities, by

Harvey & Co in 1966 (Vale, 1966);

 Port of Hayle - aspects to be considered in relation to future requirements.

Consultant Report by Hydraulics Research Station (1976);

 An investigation of sediment dynamics in the Hayle Estuary Cornwall by

Sea Sediments (1983);

 Water Level Control in Hayle Harbour by Sir Alexander Gibb & Partners

(1989);

 Hayle Harbour- Hydraulic and siltation studies by HR Wallingford (1989);
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 Cornwall & Isles of Scilly Coastal Group, Lands End to Hartland Point

Shoreline Management Plan by Halcrow Group (1999); and,

 Hayle Harbour Hydrodynamic Modelling Report by Babtie Group Limited

(2002).

Newman (1976), with his team at the Hydraulics Research Station, visited Hayle Harbour

and subsequently carried out a desk review on the hydraulic problems of the port area, on

the request of Penwith District Council. The Newman’s report referred to capital dredging

in the harbour entrance where about 49,000 tonnes of sands were dredged between 1972

and 1975, and concluded that: (i) the estuary and the bar areas would be accumulating sand

on a small scale especially with the then current sluicing operations; (ii) the maintenance of

the water depths in the channel and over the bar would require the artificial removal of

sediments and sand accumulations; and (iii) the increased shoaling in the channel and the

bar area is as a result of reduction in tidal volume at Copperhouse Pool due to progressive

siltation from land areas. The report concluded by recommending hydraulic investigations

of the estuary in case of future developments. It should, however, be noted that the report

was limited by lack of detailed survey data.

An investigation of sediment dynamics in Hayle was carried out in 1983 for the owners of

Port of Hayle Ltd with following objectives: (i) determination of water and sediment

movement due to tidal, river and wind/wave induced flows; (ii) determination of the long-

term stability of the estuary should no change be implemented; and (iii) the possibility of

maintaining deepened channels or pools within the estuary by sluicing. Field

measurements were carried out, sediments sampled and analysed, while the historical

survey charts were also reviewed and the possible transport scenarios discussed in a bid to

achieve the objectives. The main conclusion of the report centred on the conceptual sand

transport processes and dynamics within the estuary. The Sea Sediments study contained

useful field information and reference on sediment and water interaction in the Hayle

estuary. Sea Sediments (1983) used the figure 3.8 to diagrammatically explain how the

constructive waves, during their south-westerly direction (before refraction) approach to

Hayle beach, supply sand to the foreshore especially at the westernmost points. The wave

rays model for the situations for 1848, 1930 and 1983 show that the landward movement of

sand continues until when the waves ‘feel the-bottom’ and then allow the tidal currents to

act on the sand flowing in parallel to the channel axis before being ultimately transported

seawards. It was observed that during the early period, the net supply of sand to the system

during the flood tide decrease the tidal prism. This example from Sea Sediments (1983)

investigation shows that the system responds sensitively to changes in wave patterns and

sand transport systems.
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Figure 3.9 Historical sand supply model for the entrance into Hayle Estuary [Courtesy of Sea
Sediments, 1983: 119].
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The 1989 field surveys by Sir Alexander Gibb & Partners and HR Wallingford, on the

other hand, were focused on monitoring tidal levels and water/sediment movements in the

Hayle Harbour respectively. While Sir Alexander Gibb & Partners’ report focused on

tidal/water levels, the HR Wallingford project was on sediment, hydraulics and siltation in

the harbour. The two reports concluded that the proposed harbour village development

would not have any adverse effects on both water and sand movements.

Babtie Group Ltd (2002) assessed the estuarine and coastal processes of Hayle Harbour

through numerical hydrodynamic modelling. The objectives of the project ranged from

investigating the rapid accretion/erosion of sediments in the harbour, the effects of

dredging on sediment transport processes and reductions in beach levels to investigating

interaction between the retreating dunes and dredging activities. The findings of the

investigation indicated that waves play a significant role in the transport and redistribution

of sediments within the intertidal zone; and that the dominance of the flood tide over Hayle

beach resulted in the transport of sediments towards the mouth of the estuary during the

spring tide. The reports recommended a simple monitoring scheme whereby positions of

dune crest and toe are measured at three month interval to assist in the determination of

dune recession or sediment accretion in the estuary.

The previous works, as summarised and discussed above, focused on the developments and

maintenance of the estuary for harbour development with the exception of Sea Sediment

and Babtie Group’s reports which investigated sediment dynamics and hydrodynamics of

Hayle harbour, its effect on sediment accretion and transport processes, respectively. The

reports, however, have not considered the impacts of both natural forcing and human

activities on coastal-estuarine processes, and the morphodynamic connection/interaction,

because the objectives of those projects were restricted to the scope of their commissions.

Nevertheless, it is very pertinent to understand how the impacts of the natural processes

and barrage of human activities have influenced the major evolution and development of

the estuaries.

Rollinson et al. (2007) investigated the sediment geochemistry and mineralogy of shallow

cores in the Hayle as a result of mining activities that took place in the estuary. A high

level of tin and copper were discovered in the sediment samples, associated with

contributions from historic mine and smelt wastes. Importantly, the authors established that

much of the surface sediment within the main southwest basin of the Hayle had been

deposited prior to 1880 and that more recent sedimentation had been removed by recent

and continuous erosion. The impact of this metal pollution is considered further by Bury

and Durrant (2009) who examined the role of metal pollution on population traits of brown

trout (Salmo trutto L.) living in the river Hayle, Cornwall, UK. Although major mining

activities ceased in late 19th century, it was shown that metal pollution affects the genetic
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diversity and inbreeding of the brown trout, despite the fact that the brown trout in the

rivers are highly adapted to the elevated metals. The Hayle and other Cornish systems have

received considerable attention in terms of the impact of mining (principally for Sb and Sn)

on sedimentation. Although pollution and chemistry indicators are considered extensively

in past studies, very little consideration is given to the nature of estuary-coast linkages in

terms of sedimentary processes and morphodynamic evolution.

Issues relating to the changing beach levels around the Hayle estuary inlet received some

community and media attention over recent years. A local campaign group, Save our Sands

(SOS) successfully raised awareness of beach dynamics, which also featured in the

national news (BBC, 2011; Figure 3.9). There is a consensus among the groups that there

is an urgent need to protect the beaches in order to avert their disappearance. The report

quoted one Mr Egan as saying that the Hayle beach, as at 2011, was 5 m (16 ft) lower than

it was in 2005. This is an indication of the attention that such dynamic systems are gaining

among the research interest groups, the media and concerned organisations/individuals

(Figure 3.10).

Figure 3.10 The headline caption about Hayle beach on the BBC website
(http://www.bbc.co.uk/news/uk-england-cornwall-14415539. Accessed on 11/08/2011).
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Figure 3.11 Some rocks fragments and stones left at Black Cliff by some residents or
concerned organisations in a bid to check erosion at the beach (Field picture, 25/10/2011).

3.4.3 Crantock beach and the Gannel estuary

The Gannel estuary lies between Pentire Point East and Pentire Point West, on the north

coast of Cornwall, southwest England (Figures 3.12 and 3.13). The estuary is a ria

estuarine system comprising sandy intertidal flats within a narrow valley merging with a

large sandy beach-dune system (Crantock) at the seaward extent, and saltmarshes at the

landward extent. Around 70% of the estuarine valley is intertidal (Davidson et al., 1991). It

is suggested that the estuarine system (between the Devonian slate/sandstone headlands of

Pentire Points East and West (Hollick et al., 2006)) functions as a self-contained sediment

cell (Dyer, 2002). However, there may be weak and intermittent alongshore transport and

some limited exchange of sediments between the bay and open-coast, especially across the

broad intertidal zone, and during storm conditions (Royal Haskoning, 2011; see also Figure

3.12).

The estuary is the tidal outlet for the River Gannel. Similar to Hayle, the mouth of Gannel

was extensively used for shipping and other maritime activities until the late 20th Century

when trading decreased as a result of development of Newquay harbour and the siltation of

the River Gannel (Royal Haskoning, 2011). This coastline is macrotidal (mean spring tide

range 6.4 m) (Table 3.3), and is exposed to a predominantly westerly wave climate with a
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10% annual exceedance wave height of 2.5 – 3 m and a 1 in 50 year extreme offshore

wave height of 20 m. Wave heights regularly exceed 5m during the winter months and

swells of 15 seconds or more are common (Royal Haskoning, 2011).

Figure 3.12 (A) Crantock Beach and the Gannel Estuary, Cornwall, located in the southwest
England, and (B) the 20/08/2012 Google aerial photography showing the rocky and sediment
shoreline.

Table 3.3 Summary of typical water levels at Newquay (Lat. 50° 25‘ Long. 5° 05’)

Tidal State Water Level (mODN) Heights in metres above datum
Mean High Water Spring (MHWS) +3.4 7.0
Mean High Water Neap (MHWN) +1.7 5.3
Mean Low Water Neap (MLWN) -1.1 2.5
Mean Low Water Spring (MLWS) -3.0 0.6

(Data taken from Admiralty Chart, © Crown Copyright / SeaZone Solutions Ltd [2008])
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Figure 3.13 The Crantock beach from Pentire Point West (Field Picture, 29/10/2011).

Pirrie et al. (2000) investigated the impacts of mining on sedimentation in the Camel and

Gannel estuaries. Sedimentological, mineralogical and geochemical tests were carried out

on sediments sampled from the intertidal zone so as to determine the importance of mining

on sediment supply. Very high concentrations of Pb and Zn were observed within estuarine

sediments, and significant enrichment of Zr, Ce, La, Y and Ag. The probable deposition of

these minerals could be linked to the release of particulate mine waste as a result of mine

closure in the late 19th or early 20th Century. The impact of mining on sedimentation in

the Gannel estuary had earlier been recognised by Reid and Scrivenor (1906) when it was

commented that “the washings from these mines, combined with the shell-sand, drifted in

by the sea, have almost silted up the estuary of the Gannel, which can no longer be used for

shipping” (cited in Pirrie et al., 2000:22). As with other Cornish estuaries, the past studies

on the Gannel focused on the impact of mining on sedimentation, and no consideration has

been given to the nature of morphodynamic evolution, sedimentary processes, and linkages

between estuary and open coast.

3.4.4 Padstow bay and the Camel estuary

The Camel estuary in Padstow bay is a shallow and sandy valley ria estuary which has

been drowned by post-glacial rising sea level (Brew and Gibberd, 2009). It is also a macro-
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tidal estuary (Table 3.4), with a mean spring tide range of 6.3 m at Padstow, decreasing to

2.8 m near the estuary head c. 12 km up the valley. The system has a narrow meandering

channel which shifts across the estuary but with a core area of 8.39 km2, inter-tidal area of

6.10 km2 and tidal range of 5.9 m. It is located on JNCC grid reference SW 935755

(Davidson et al., 1991; EMPHASYS, 2000; Dyer, 2002; Townend, 2005).

The system is more than 0.8 km wide at Padstow Bay and stretches inland for

approximately 8.1 km into Wadesbridge where it starts narrowing (Murray, 1984; Figure

3.15). The estuarine environments include saltmarsh, mud-flats, sand-flats, sub-tidal

channels, sand dunes and grazing marsh (Brew and Gibberd, 2009; Figures 3.14B). The

total intertidal area is around 6 km2, with 92% of this being intertidal flats (Buck, 1993;

Brew and Gibberd, 2009). There are various geological structures in Camel system,

although the rocks are described principally as slates which are of Middle (Trevone) and

Upper (Pentire succession) Devonian age (Gauss and House, 1972). In southern zone of

the estuary between Padstow and Wadesbridge (the mid- and Inner- Estuary) (Figure 3.15),

the formation is of Trevose Slate (older) Formation which are thrust over the younger

Harbour Cove Slate Formation while the northern zone are of the juxtaposing/mixture of

older and younger Polzeath Slate Formation (Durning, 1989). The north and east of the

outer estuary succession shows greater tectonic complexity with a southward facing

recumbent fold style (Gauss and House, 1972). The total catchment area for the estuary

comprises the rivers which drain the Devonian metasediments of the Harbour Cove,

Polzeath, Trevose and the Tredorn Slate formations (Selwood et al., 1998; Pirrie et al.,

2000). Pirrie et al. (2000) reports that basaltic lavas commonly occur within the Harbour

Cove and Trevose Slate formations on the north side of the estuary while River Camel

drains the western margin of the Moor granite. In summary, the catchment geology for the

Camel system comprises mainly Devonian slates and granite with some shales and

sandstones.

Table 3.4 Summary of typical water levels at Padstow (Lat. 50° 33’ Long. 4° 56’)

Tidal State Water Level (mODN) Heights in metres above datum
Mean High Water Spring (MHWS) +3.5 7.3
Mean High Water Neap (MHWN) +1.8 5.6
Mean Low Water Neap (MLWN) -1.2 2.6
Mean Low Water Spring (MLWS) -3.0 0.8
(Data taken from Admiralty Chart, © Crown Copyright / SeaZone Solutions Ltd [2008])
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Figure 3.14 (A) The Padstow bay and Camel Estuary. Inset: Location in Southwest England,
and (B) the the 20/08/2012 Google aerial photograph showing the sediment and rocky
shoreline.
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Figure 3.15 Photographs of Padstow Bay at Low Tide (top, 31/10/ 2011) and Camel estuary at
Low Tide (bottom, 31/10/2011)

Brew and Gibberd (2009) divided the Camel estuary into three reaches: outer, middle and

inner. The outer Camel is approximately 1 km wide and dominated by a large intertidal

sandflat connected to the west bank of the north-facing mouth. The sub-tidal channel flows

from the bar and Daymer intertidal sandflats in a narrow upstream (Figures 3.12 and 3.13)

passing close to the Rocky shoreline (Brew and Gibberd, 2009). The inner estuary is

dominated by large intertidal sandflats and salt marsh. The headlands of Steeper Point and

Pentire Point - Widemouth provide sufficient shelter which enable the Camel estuary to be

the most important sediment sink in the Padstow bay (Halcrow, 2002; Defra, 2002). Brew

and Gibberd (2009) suggested that in the late 1920s, the main sub-tidal channel in the
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estuary switched from the western to the eastern side of the outer estuary, causing changes

in sand-flat and sand dune distribution, although had little impact on local saltmarshes. The

study concluded by observing that Camel Estuary appeared to have a dynamic ‘positive

sediment budget’ with the capacity to regularise sediment removed (as a result of dredging

activities) through mainly marine sediment supply and a limited fluvial sediment supply.

Pirrie et al. (2000), in another study, discovered that there is a clear stratigraphical

geochemical anomaly for Sn, W and Zr, which corresponds with abundant cassiterite,

wolframite and zircon. The release of particulate mine waste as a result of mine closure in

the late 19th or early 20th century was asserted to be responsible for downstream estuarine

sedimentation. These findings are indications that both human and physical processes have

impacted the sedimentology and mineralogical configuration in the estuary. It is also an

indication that one singular action may have a long-term effect on estuarine morphology

and geochemistry.
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4 SHORELINE AND ESTUARINE CHANGE ANALYSIS

___________________________________________________________________________

4.1 Mesoscale morphodynamics

One of the objectives of this research is to examine the comparative historical behaviour of

estuary - open coast systems. Historical trend analysis (HTA) methods (as described in section

2.3) were used to investigate the historical coastal behaviour of the study sites. Each of the

selected systems were analysed, and the findings compared in a bid to assess the regional

coherence in coastal morphodynamics. The investigation of shoreline change was undertaken for

the period covered by the mid-19th century to early 21st century. The historical movement in the

position of mean low and mean high water (MLW/MHW) were investigated in GIS using the

Digital Shoreline Analysis System (DSAS) toolbox developed by the USGS. Estuary ebb

channel dynamics were examined using the locational probability analysis approach (Graf,

2000). The historical datasets utilised include multiple map editions from Ordnance Survey

(Section 2.3.1). In addition, recent LiDAR data (2008-2012) were analysed using topographic

profiles and surface change analysis.

4.1.1 Shoreline change analysis

This section presents findings relating to the historical evolution of shorelines and the

geomorphology of the bays and estuaries of southwest England in a bid to address the first object

of this research. It documents and characterises the historic behaviour of the shorelines of St Ives

Bay, between Porthminster Point and Godrevy Point (where the Hayle Estuary is located); at

Crantock Beach between Pentire Point West and Pentire Point East (where the Gannel Estuary is

located); and at Padstow Bay between Steeper Point and Pentire Point - Widemouth (where

Camel Estuary is located) (see Figure 2.1 and Chapter 3.4 for the location and detailed

description of the sites), using Geographical Information Systems (GIS).

4.1.1.1 Changes in Mean Low Water (MLW) and Mean High Water (MHW)

In most applications, the measures of shoreline change are used to make a cumulative summary

of the processes that have impacted the coast through time (Dolan et al., 1991). The spatial

distribution of measures of change [Shoreline Change Envelope (SCE), Net Shoreline Movement

(NSM) pattern and End Point Rate (EPR)] associated with the MLW and MHW marks, as

computed using DSAS in the ArcGIS environment, are presented in Figures 4.2, 4.3 and 4.4 for

St Ives Bay, Crantock Beach and Padstow Bay respectively.
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St Ives Bay

The envelope of variability in the high water shoreline (MHW) throughout the bay is relatively

consistent, ranging 50-100 m at over 60% of transects (Figure 4.1A (i)). Changes are noticeably

greater around Port Kidney Sand, on the west bank of the Hayle inlet and ebb delta, which is

where the maximum movement in the low water (MLW) shoreline occurs. Net shoreline change,

reflecting patterns of erosion and accretion are, however spatially varied (Figure 4.1Aii). The

MLW shoreline is predominately erosional between the Carbis Bay and Port Kidney Sand,

where 30 m to 320 m recession has occurred over 165 years. In contrast, the MHW shoreline

along this stretch has been primarily accretional, though it exhibits smaller scale shifts. The

eastern part of St Ives Bay is more varied in scale and direction of change. In and around the

Hayle inlet, changes of the order ±50-100 m are shown in the MHW, but the scale of change in

MLW is about half of this (±0-50 m). The MHW shoreline is more consistent (stable) along the

Black Cliff to Godrevy Towans shoreline which predominately shows small-scale accretion. The

MLW here is more mixed, with pockets of accretion, but rather more evidence of small-scale

erosion. Rates of change (as shown by the end point rate (EPR) in Figure 4.1iii) are relatively

small for large stretches of the bay (±0.25 m yr-1), but increase significantly within the inlet

region, and are also particularly high in the MLW between Carbis Bay and Port Kidney Sand.

Interestingly, the west bank of the inlet exhibits greater rates of change than the east bank.

Small scale changes (-0.24 – 0.25 m yr-1) dominate the historical dynamics, experienced by

76.4% of MLW transects and 90.8% of MHW transects (Table 4.1). In general, greater rates of

recession are expressed in the shift in MLW (22.2%) than MHW (12%), broadly suggesting that

the intertidal zone has experienced some degree of narrowing, and assuming no change in tidal

regime, has presumably steepened. However, there is no any direct spatial association between

changes in the two shorelines.

The association between the Shoreline Change Envelope (SCE) and Net Shoreline Movement

(NSM) for the MLW and MHW shorelines is explore in Figure 4.2. As shown, there is no

correlation between SCE and NSM in St Ives Bay. The magnitude of NSM increases with

increasing SCE implying that the net change over the history considered is a good reflection of

the overall envelope of variability in the system. But it is clear a range of magnitudes of

shoreline change are experienced in both those parts of the system that are erosion-dominated

and those parts that are accretion-dominated.
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Figure 4.1 St Ives Bay – Hayle estuary pattern of change (1845 – 2010): i) Shoreline Change
Envelope (SCE), ii) Net Shoreline Movement (NSM) and iii) rate of change based on the earliest
and most recent surveys (EPR) for Mean Low Water (MLW) and Mean High Water (MHW).
Inset: location of the shorelines.

Table 4.1 Summary of MHW and MLW movements and trends in St Ives Bay

Change rate (m yr-1) No. of MLW
transects

% of MLW
shoreline

No. of MHW
transects

% of MHW
shoreline

< -1 6 0.28 3 0.2

-1 - -0.25 473 22.2 69 4.4

-0.24 – 0.25 1,628 76.4 1,411 90.8

0.26 – 1.00 23 1.1 72 4.6

> 1.01 1 0.05 0 0.0
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Figure 4.2 Correlation between SCE and NSM for MLW (A) and MHW (B) in Hayle System.
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Crantock Beach

Figure 4.2 summarises the scales and rates of change in shoreline position at Crantock Beach.

Scales of change in the position of MLW are maximum in the centre of the bay and minimum in

the inlet (Figure 4.2Ai). The changes are almost entirely the consequence of recession (landward

movement) of the low water shoreline at a rate of 0.1 - 0.8 myr-1 (Figure 4.2Aiii). The only place

in the lower foreshore where significant erosion is not taking place is along the ebb channel

margins within the inlet. Comparison of the SCE with NSM shows that the majority of change in

the position of MLW change exhibited here is equivalent to the difference between the earliest

(1888) and most recent (2012) shorelines. The shifts in MLW position are predominately

erosional, at rates of between -0.81 to -0.10 m yr-1 in the 124 historical years (Figure 4.2 Aiii).

The only place in the bay where there has been negligible change in MLW shoreline positions

are in the rocky outcrops of Pentire Point West and East respectively. The inlet to the Gannel

estuary shows a more variable response of minimal erosion and accretion. This may be as a

result of the location which would be influenced by the short-time interference of dynamic

activities of River Gannel and tidal fluctuations.

The scales of change in the position of high water (MHW) are somewhat reduced by

comparison. First, it is clear that the rock-dominated shorelines along Pentire Points West and

East have changed very little (<20 m) over the 124 year period (Figure 4.2B). Second, the high

water shoreline of Crantock Beach has shifted in position by up to around 140 m, but is largely

characterised by change of the order of 30-60 m. Shifts in MHW are generally the product of

shoreline advance (deposition), and there is evidence that gross change (SCE) is greater than net

change (NSM). In the absence of significant changes in tidal regime, the product of a retreating

low water and advancing high water is the steepening of the intertidal profile. The SCE

associated with the Crantock dune system MHW is greater to the west than the east, suggesting

that the orientation of the shoreline shifts from distinctly parallel to MLW to being at a slight

angle. However, the net consequence of these changes appears to be minimal as the NSM is

relatively consistent along the dune shoreline.

The analyses show that most transects experience less than 0.25 m yr-1 retreat or advance (88.7%

of MHW and 62.2% of MLW), largely dominated by the bedrock shorelines along the inlet and

in the outer bay (Table 4.2). However, > 36.7% of MLW shorelines are erosion-dominated (i.e.

these have experienced a net landward retreat in position) compared to 0.4% for the MHW.

Rates of change in MLW are greater than rates of change in MHW. Fewer transects show

evidence of deposition, with only less than 1% experiencing advance in the MLW and 11%

showing seaward shifts in the MHW. Here too, there is no direct spatial association between

changes in the two shorelines.
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Statistically, there is evidence of a good correlation between SCE and NSM (Figure 4.4) both

MLW and MHW. The more mobile shorelines (largest SCE) are associated with negative

accretion at 78% for the MLW and at 64% to positive NSM for the MHW (Figure 4.4). The

correlation performance for these measures are clearly much better (0.74 and 0.64 respectively)

than for the other study sites (St Ives Bay and Padstow Bay) as the correlation between the

measures in the other sites indicate poor relationship between largest SCE and NSM.

Figure 4.3 Crantock Beach – Gannel estuary pattern of change (1845 – 2010): i) Shoreline Change
Envelope (SCE), ii) Net Shoreline Movement (NSM) and iii) rate of change based on the earliest
and most recent surveys (EPR) for Mean Low Water (MLW) and Mean High Water (MHW).
Inset: location of the shorelines.

Table 4.2 Summary of MHW and MLW movements and trends at Crantock beach

Change rate (m yr-1) No. of MLW
transects

% of MLW
shoreline

No. of MHW
transects

% of MHW
shoreline

< -1 2 0.4 1 0.1

-1 - -0.25 167 36.7 3 0.4

-0.24 – 0.25 283 62.2 647 88.7

0.26 – 1.00 3 0.7 80 11

> 1.01 0 0 1 0.1
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Figure 4.4 Correlation between SCE and NSM for MLW (A) and MHW (B) in Gannel System.
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Padstow Bay

Historical changes in shoreline position within Padstow Bay (associated with the Camel estuary)

are notably different to those illustrated in St Ives Bay and Crantock Beach. The Padstow Bay

low water shoreline has a limited envelope of variability when compared with the other systems

considered here (0-20m). Figure 4.3 summarises the scales and rates of change in shoreline

position at Padstow Bay. Changes of around 20-40m are evident along the eastern shoreline,

around Pentire Point - Widemouth and Daymer Bay (Figure 4.3Ai). Transects between Stepper

Point and Harbour Cove remain relatively stable with varied rates of erosion and minimal total

accretion of low water position (Figure 4.3 Aiii). Rates of change reach a maxima at Pentire

Point - Widemouth where shifts of between -0.10 and -0.25 m yr-1 are observed (Figure 4.3Aiii).

Padstow Bay is relatively confined in comparison to St Ives and Crantock, and Widemouth to

Steeper Point represents the open-coast before the narrower inlet of the Camel estuary just south

of Daymer. Rock platform dominates the shorelines of the open coast around Steeper Point and

Pentire Point - Widemouth and this is likely responsible for the relative stability in the MLW

shoreline when compared with St Ives and Crantock bays.

There is a relative stability in the shoreline change envelope of the MHW shoreline (Figure

4.3B), where only Daymer Bay stands out as showing any dynamics. But net accretion here of ~

10 m illustrates the minimal shoreline movement during the 132 year period considered. Rates of

change (± 0.24 m yr-1) in all of the bay for the high water shoreline indicates a relative stability.

Rocky shorelines that border the bay are certainly less responsive than sedimentary shorelines,

but here also seem to provide a stabilising role, perhaps either through sheltering from the

impacts of tides and waves, or simply constraining morphodynamic behaviour. It is also possible

that the orientation of the bay and estuary may facilitate a more enhanced sheltering role of the

Pentire Point and Steeper Point headlands. Overall, the direction of change is rather more

balanced here than in the St Ives or Crantock bays. However, there is no correlation between

largest SCE and NSM within Padstow Bay. The more mobile shorelines (largest SCE) are not

related to negative accretion for the MLW (5%) nor to positive NSM for the MHW (20%)

(Figure 4.6). Stability is experienced along 87.6% of the MLW and 99.2% of the MHW

shorelines, although 12% of the MLW experiences retreat (Table 4.3). Sediments are broadly

recycled within the open coast system here, certainly much more so than in the systems further

west.
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Figure 4.5 Padstow Bay – Camel estuary pattern of change (1845 – 2010): i) Shoreline Change
Envelope (SCE), ii) Net Shoreline Movement (NSM) and iii) rate of change based on the earliest
and most recent surveys (EPR) for Mean Low Water (MLW) and Mean High Water (MHW).
Inset: location of the shorelines.

Table 4.3 Summary of MHW and MLW movements and trends in Padstow Bay

Change rate (m yr-1) No. of MLW
transects

% of MLW
shoreline

No. of MHW
transects

% of MHW
shoreline

< -1 0 0 1 0.

-1 - -0.25 93 12 8 1.0

-0.24 – 0.25 679 87.6 1260 99.1

0.26 – 1.00 3 0.4 2 0.2

> 1.01 0 0 0 0
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Figure 4.6 Correlation between SCE and NSM for MLW (A) and MHW (B) in Camel System.
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4.1.1.2 Temporal characteristics of shoreline change

Investigation of single or individual transects are utilized here in order to evaluate more fully the

shoreline change statistics associated with shoreline change analysis (for example, Fletcher et al.,

2003; Hapke et al., 2006; and Romine et al. 2009).

St Ives Bay

Shoreline changes are spatially and temporally varied (Figure 4.4). There is a very little change

in MHW at the Port Kidney Sand (B), inlet (C) and the northern beaches (Godrevy Towans) (E)

but a landward retreat of MLW of over 30m throughout the history explored here. However,

progressive recession (> -40m) of both MHW and MLW is evident at Carbis Bay (A) and more

so at Black Cliff (D) over the same time scale in the mid-1900s.

Figure 4.7 Cumulative change in shoreline position along transects (A) T340 & T342 (MHW) and
T246 & 249 (MLW) (Carbis Bay), (B) T520 & T523 (MHW) and T425 & T429 (MLW) (Port
Kidney Sand), (C) T829 – T830 (MHW) and T730 & T732 (MLW) (Inlet), (D) T848 & T850
(MHW) and T834 & T835 (MLW) (Black Cliff) and (E) T1280 &T1289 (MHW) and T1389 &
T1386 (MLW) (Godrevy Towans), followed by location of transects in St Ives Bay. Positive change
shows accretion; negative change reflects erosion. {Within graph presentation: MHW – Black
colour line, MLW – Red colour line}.
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The western shorelines in Carbis Bay (A) show general retreat, but this is mostly associated with

20-30 m of erosion between 1845 and the subsequent survey in 1909. Here most transects show a

landward shift, but close to the inlet at Port Kidney Sand (B), although the net change is

negligible, this masks episodes of advance and retreat in the 1920s and the 1960s. This pattern of

movement is also evident in transects on the western margin of the inlet at Black Cliff (D), but is

almost inverse of the small-scale shifts in the Inlet (C), where small erosion-accretion episodes

are shown. At Black Cliff (D) the mid-century dynamics are superimposed on a general trend of

retreat. At Godrevy Towans (E), again very small-scale change in the MHW position comprises

slight retreat until the early 1900s followed by minor advance in the mid-1900s. Rates of change

in the position of MLW are in the range ± 0-5.8 m yr-1, but are smaller (± 0-1.5 m yr-1) for MHW

(Figure 4.1). This equates to a total shift of -0.35 to +838 m in the position of MLW over the 165

year period analysed here, and -0.65 to +241 m in the position of MHW. These shifts vary

throughout the bay, where regions of stability are found in close proximity to areas of significant

change, as illustrated by the shoreline change envelopes shown in Figure 4.1. The scales of

change evidenced here are often well within the uncertainty of the historic mapping products,

which makes it difficult to ascertain and evaluate coastal change. It is clear though that in some

places, significant change has taken place (e.g. Black Cliff), and that the behaviour is

characterised by both episodic change (e.g. periods/cyles of erosion and accretion) and

progressive change where temporally and spatially localised shifts are superimposed on an

underlying erosional or accretional trend.

Crantock Beach

Comparison of the time series of changing shoreline position in Crantock (Figure 4.6) shows

how important it is to consider both the envelope of variability (SCE) and the net change (NSM

and EPR). Transects at Pentire Points West (A, T47 and T48, T35 and T36 for MHW and MLW

respectively) and East (D, T866 and T867, T766 and T767 for MHW and MLW respectively)

show consistency in shoreline positions, principally because they represent the rocky shorelines

(indicated in aerial photograph of Figure 3.12). Changes along the Pentire Points are small, but

the inlet shoreline also shows small-scale shifts, and these are likely within the accuracy margin

(C, T560 and T561 for MHW, T460 and T462 for MLW). There is some suggestion here though

that the MHW shoreline goes through periods of slight recession followed by advance, which

might be linked to migration and meandering of the low tide channel. At Crantock Beach (B,

T351 and T353, T252 and T253 for MHW and MLW respectively) however, the high water

shoreline has advanced more substantially (c. 25 m), but this net positive change masks an

episode of erosion during the late 19th century while the low shoreline consistently retreat

landward through out the considered historical timescale. Plots of the sedimentary shorelines (B

and C) show that the most recent shoreline is a significant departure from those from previous

years. In most cases, the change between the late 1990s and 2012 is greater than change at any

other time.
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Figure 4.8 Cumulative change in shoreline position along transects (T) (A) T47 & T48 (MHW) and
T35 & T36 (MLW) (Pentire Point West), (B) T351 & T353 (MHW) and T252 & 253 (MLW)
(Crantock Beach), (C) T560 & T561 (MHW) and T460 & T462 (MLW) (Inlet) and (D) T866 &
T867 (MHW) and T766 & T767 (MLW) (Pentire Point East) at Crantock Beach, followed by
location of the selected transects. Positive change shows accretion; negative change reflects erosion.
{Within graph presentation: MHW – Black colour line, MLW – Red colour line}.

Padstow Bay

In Padstow Bay, transects at Steeper Point (A, T81 and T82) and Harbour Cove (B, T251 and

T255) on the west margin exhibit relative stability in the high water shoreline throughout the

historical timescale considered (Figure 4.9). On the eastern margin, the high water shoreline at

Daymer Bay (C, T537 and T538), closer to the inlet, advanced minimally from the 1920s while

Pentire Point - Widemouth (D, T1220 and T1224) shows little movement throughout the 129

years considered. The stability of the high water positions, over space and time, throughout the

rocky shorelines of Padstow Bay is clearly a product of the bedrock nature of these shorelines.

The MLW shorelines, on the other hand, retreated in the bay. Depositional shorelines here are

limited to local sinks, such as at Daymer Bay, where greater change is evident for the high water

shorelines.
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Figure 4.9 Cumulative change in shoreline position along transects (A) T80 & T81 (MHW) and T280 & T281 (MLW) (Steeper Point), (B) T250 & T254
(MHW) and T350 & T353 (MLW) (Harbour Cove), (C) T1229 & T1230 (MHW) and T636 & T638 (MLW) (Daymer Bay) and (D) T1220 – T1224 (MHW)
and T1320 & T1324 (MLW) (Pentire Point - Widemouth) in Padstow Bay, followed by location of these selected transects in the bay. Positive change shows
accretion; negative change reflects erosion. {Within graph presentation: MHW – Black colour line, MLW – Red colour line}.
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4.1.1.3 Intertidal steepening through MHW and MLW movement

The analyses of MHW movements revealed varied responses within and between the coastal

systems considered here. Almost half of the high water shoreline in Padstow Bay and Crantock

show signs of historical retreat (42%) compared to 75% of the high water shoreline in St Ives

Bay. Changes in the low water shoreline are rather different, with recession occurring along

more than half of the Padstow Bay shoreline (51%), and extended reaches of St Ives Bay and

Crantock Beach (83% and 71% respectively) (Figures 4.1, 4.3, and 4.5 respectively). The

scenario observed in this study could be compared to what Taylor et al. (2004: 181) referred to

as “lateral landward retreat through non equilibrium profile”. The pattern of change shown

indicates an overall dominance of erosion along the sediment shorelines while the rates of retreat

and advancement are occurring at unequal levels between MHW and MLW leads to a change in

foreshore geometry (beach width and beach slope) (Figures 4.10 – 4.12). Analysis of intertidal

widths and slopes here again reveals considerable spatial variation in the response of the

intertidal foreshore over this historical timescale. Landward shift in MLW, and seaward advance

(or even relative stability) in MHW produces a narrower and steeper intertidal zone (Figures 4.7-

4.9), and this is evidenced at some specific locations. Sites within St Ives Bay are perhaps the

most convincing, but this is largely related to the continuity of the beach environment within this

system; specifically, Carbis Bay and Port-Kidney Sand show historical foreshore narrowing and

steepening (Figure 4.10). Crantock Beach also shows a selection of transects where steepening

has occurred (Figure 4.11), but the picture is more muddled in Padstow Bay (Figure 4.12).

Shoreline change analysis suggests an overall dominance of erosion, the landward movement of

the sediment shoreline positions with the rates of retreat occurring at unequal rates between

MHW and MLW. The overall historical beach width (c. 1845) at Carbis Bay was approximately

180m while that of Porth Kidney Sand and Black Cliff areas were around 400m and 800m, with

a slope of <3°. However, the modern beach width in Carbis Bay is currently around 120m

indicating a reduction of around 50-60m. Beach width in Porth Kidney Sand and Black Cliff

areas have remained stable while there is a reduction of around 10m at the Hayle ebb delta.

Intertidal width at Crantock has reduced from around 300-400m in 1888 to around 150m in 2012

(Figure 4.11). Landward shifts in MLW, evident in St Ives Bay and Crantock, has resulted in a

narrower and steeper intertidal zone. These broad, dissipative beaches still retain a low gradient

morphology, so it may be likely that the morphodynamics of these systems has shown limited

changes as they still function as dissipative intertidal zones. Steepening is evident where the

MHW shoreline is rock-dominated, which precludes the recession of the high water shoreline.

There is evidence at Crantock however, of retreating MLW coincident with an advancing MHW,

which leads to increased steepening. The source of sediment accumulation in the supratidal zone

is unknown, but it is possible that shifts in the nearshore, low water shoreline might release

sediment that could, under conditions conducive to onshore accretion, result in backshore

deposition. In this area, small foredunes are now present across the region where the upper
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foreshore existed in the late 1800s. Areas where both MLW and MHW are retreating tend to be

located where both shorelines are sediment-dominated, and here foreshore steepening is less

clear as rates of change are similar.

The overall recession in MLW could be attributed to a rise in sea-level, which this region has

certainly experienced over the historical time scale. Relative sea-level rise in southwest England

is c. 1.8 mmyr-1 (PSMSL, 2013). In many locations, sediment shorelines are known to undergo a

complete landward shift in response to sea-level rise (e.g. the Bruun rule), but the presence of

bedrock or other fixed upper foreshore or supratidal feature forces the profile to respond out of

equilibrium, leading to an overall steepening of the foreshore (for example, at Widemouth in

Padstow, Figure 4.12). In the three study sites, a rather more complex signature of retreating

MLW and advancing MHW suggests decreased sediment supply to the beach system, in addition

to the vertical shift associated with sea-level rise. Tidal bays are known to be complex systems

subject to various marine and terrestrial influences. They are controlled by a combination of

hydrodynamic processes, sea-level change, sediment supply, the antecedent geological

framework and anthropogenic activities (Blott et al, 2006; Moore et al, 2006). Landward shifts

in MLW could, therefore, be as a result of more factors than the sea-level rise alone. The high

water shoreline (MHW) on the other hand, exhibits a more complex pattern of variability. The

transects which exhibit accretion or seaward movement were found on the western extent of the

Hayle ebb delta (Porth Kidney Sand) and the northeast beaches of St Ives Bay (Godrevy

Towans), Crantock Beach and the western margins of Padstow Bay (Steeper Point to Harbour

Cove). Retreat occurred at the Carbis Bay (western St Ives Bay beaches) and Black Cliff (eastern

extent of the Hayle ebb delta), close to the inlet to Gannel inlet (Crantock), and, east Padstow

Bay (Daymer Bay and Pentire Point-Widemouth).
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Figure 4.10 Beach width (expressed as the distance between MHW and MLW) and slope (width/mean tide range) in the earliest (1845 – colour red) and
most recent (2012 – colour black) mapping available for St Ives Bay and the Hayle inlet. (See Figure 3.7 for location).
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Figure 4.11 Beach width (expressed as the distance between MHW and MLW) and slope (width/mean tide range) in the earliest (1888 – colour red) and
most recent (2012 – colour black) mapping available for Crantock Beach and the Gannel inlet. (See Figure 3.12 for location).
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Figure 4.12 Beach width (expressed as the distance between MHW and ) and slope (width/mean tide range) in the earliest (1907 – colour red) and most
recent (2012 – colour black) - mapping available for Padstow Bay and the Camel inlet. (See Figure 3.14 for location).
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4.1.2 Locational probability analysis

The variations in the ebb channel positions in each of the estuaries associated with these

bays can be characterised on the basis of planform morphology through time (Wasklewicsz

et al., 2004). This integrative approach enhances the analysis of historic channel change

and ebb migration within the estuaries. The weighting values based on Graf’s (2000)

formula Wn=tn/m, where Wn is the weighting applied, tn is the time period associated with a

specific record or survey, and m is the total time period covered by all records/surveys

considered) assigned to each of the ebb channel layers from the historic archives of the

estuaries are presented in Table 4.4. The weights are based on the years covered by the

historical maps for each of the estuary.

Table 4.4 Weighting values for the MLW Channel Location Probability Value for estuaries

Year Length of record (years) Equation (Wn = tn/m) Weight (Σ = 100%)*
Hayle (St Ives Bay)
1845 63 63/168 37
1908 28 28/168 17
1936 12 12/168 7
1948 15 15/168 9
1963 26 26/168 15
1989 21 21/168 13
2010 3 3/168 2
Gannel (Crantock)
1888 89 89/125 71.2
1901
1977

13
76

13/125
76/125

9.6
6.1

1996 16 16/125 12.8
2012 1 1/125 1
Camel (Padstow Bay)
1881
1907

26
55

26/132
55/132

19.6
41.6

1962 11 11/132 8
1973 37 37/132 28
2010 3 3/132 2.3
*Highly dependent on data availability

The ebb channel networks within the three estuaries comprise a main low tide channel,

which is sustained as a continuous feature through the historical record, and some

temporally and spatially variable branching and braided channels (Figure 4.13). The

morphometric overview of the changing channel planform shows that channel width

decreases upstream in all three estuaries. This scenario has been well-documented in

previous works on fluvial systems (see for examples Leopold, et al., 1964; Leopold, et al.,

1993; Marani, et al., 2002 and Burningham, 2008). Consideration of channel shape

indicates that there are relatively marked differences in meander structure between the

inner and outer estuary/inlet. In the Hayle (Figure 4.13A) and Camel (Figure 4.13C)

estuaries, clear meandering is present within the mid-/inner estuary, but close to the outer

estuary/inlet region, the meander enlarges significantly to almost exhibit no meander at all.

The meanders within the Gannel estuary are spatially limited and appeared to be relatively

mobile (Figure 4.13B). Broadly, there is a limited shifts in length and width of the ebb

channel in these estuaries.
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The most stable areas of the ebb channel system seem to be the inlet and outer-estuary.

Consistency in ebb channel positions between the estuaries suggests controls or forcings

that is regionally coherent. The historical sequence of planforms presented in Figure 4.13

have shown that there is little movement at the most seaward and landward extents of the

estuary (the inlet and head) although there appear to be gradual shifts in the position of the

ebb channels throughout the main region of the estuary.

Locational probability analysis highlights the spatial variation in ebb channel dynamics,

and can also be used to express the degrees of morphodynamic activity within each system.

Within the Hayle (Figure 4.14), around a third of the area that has historically

accommodated the channel system is in the 26-50% probability class, indicating that

within this part of the system, the channel has been present for at least a quarter to a half of

the historical period considered here. High probability values dominate the inlet region,

indicating that this is relatively stable in comparison to other parts of the system, such as

the inner estuary (Figure 4.14). Around 46% of the historically occupied channel area has

accommodated the ebb channel more than 50% of the time (28% of the area has 76-100%

probability and 18% has 51-75% probability). Areas showing evidence of increased

variability (where probabilities of channel occurrence are low) represent less than a quarter

of the channel area (12% of the area is 1-10% probability; 10% is in the 11-25% class).

These are mostly within the inner estuary and Copperhouse Pool areas (Figure 4.14).

Spatial changes in ebb channel position can be summarised as lower probabilities within

inner estuary (both west and east valleys) and higher probabilities in the inlet and central

section. This implies that the inlet/central axis of the estuary has been more stable over the

historical period, possibly aided by anthropogenic activies, whereas inner reaches are more

dynamic, and possibly less constrained.
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Figure 4.13 Changing planforms of the estuarine ebb (low tide – MLW) channels in the (A)
Hayle, (B) Gannel and (C) Camel respectively.
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Figure 4.14 Historical channel location probability mapping of the ebb channel in Hayle
Estuary.

The location probability analysis for the Gannel ebb channel network reveals stability and

activity along the entire length of the estuary (Figure 4.15). Within the estuary, shifts in the

ebb channel are focused on progressive extensions in low channel meanders. The highest

probability classes, representing greater stability in channel position, cover around two-

thirds of the estuary channel area (18% of the channel area is in the 76-100% class, 47% in

the 51-75% class). This suggests that the low-tide system is largely consistent. Only

localised patches of mobility are evident. There is clearly a dominant ebb channel position

along the northern margin of the estuary, and this has changed very little in the history

considered here. The more dynamic parts of the ebb channel are found in the mid- and

inner- estuary, associated with meandering, exhibiting reduction in channel width and the

cut-offs of channel length in the mid-estuary.

Similar patterns of channel shifts are also observed in Camel estuary (Figure 4.16). The

zones of high probability of occurrence over the 132 historical years are again the inlet
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region within the outer estuary. The zones of variable or low probabilities are within the

mid- and inner estuary. Channel meandering is apparent here, although some positions

remain relatively stable through the entire 132- historical year record, the most notable of

which is the outer-estuary. The highest probability class (76-100%) accounts for just over a

third of the estuary channel area (38%) mainly in the inlet, while the high probability class

(51-75%) accounts for 30% of the area, and runs through the mid- to outer sections of the

estuary (Figure 4.16). The dynamic parts of the system (low probability class) class are

concentrated in the inner and part of the mid section of Camel Estuary, and seem to relate

to channel migration.

Figure 4.15 Historical channel location probability mapping of the ebb channel in Gannel
Estuary.

Figure 4.16 Historical channel location probability mapping of the ebb channel in Camel
Estuary.
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4.1.3 Summary of historical morphological change

The behaviour of the high and low water shorelines is spatially and temporally complex.

Figure 4.17 summarises the historical trends observed, and illustrates the strong control of

the bedrock on shoreline dynamics. Rock-dominated shorelines have experienced little

change over the last 120 years, whereas sediment-dominated shorelines exhibit both

advance and retreat, but also small-scale changes, and are therefore far more dynamic. In

all the systems, the low water shoreline has experienced retreat, or no significant net

change. None of the low water shorelines have advanced. In contrast, the high water

shoreline experienced a much more varied behaviour - in Crantock, the dune-associated

high water shoreline prograded seaward but in St Ives Bay, the dune-topped shoreline near

the Hayle inlet eroded significantly. Elsewhere, rocky shorelines displayed negligible

change and sediment shorelines show variable change. The consequence of this pattern of

change is a broad-scale steepening of the foreshore over the historical time-scale, and some

localised reshaping of the coastline.

Figure 4.17 Summary of historical shoreline changes in the St Ives, Crantock and Padstow
bays.

This analysis has shown that some parts of the estuarine systems behave differently, with

some being more dynamic than others. Although the channels have shown some mobility,

the spatial constraints imparted by the valleys, and the limitations on accommodation space

that this imposes, has ensured that the channels have maintained a broadly similar position
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throughout the history presented here. Increased channel dynamics are locally evident,

particularly in the mid- and inner estuary locations, but these do not show any consistent or

persistent behaviour, suggesting channel migration is an ongoing process driven more by

hydrodynamic response to the physical structure of the estuarine valley and sediment infill.

Perhaps surprisingly, the inlet and outer-estuary regions display high channel stability with

high/highest probability class.

The LPA results are compared in Figure 4.18, which shows the proportion of the estuarine

channel environment covered by each stability (probability) class. The important results to

draw from this are: 1) two-thirds of the historical envelope of ebb channel area in each

estuary has accommodated the low tide channel for at least 50% of the last 100+ years and

2) although differences exist between the three systems, the skew of the distribution to the

higher probability (increased stability) classes implies that the ebb channel is not a

particularly dynamic feature of these estuaries.

Figure 4.18 Summary of LPA results for all estuaries considered here, based on the
proportion of the channel environment covered by each probability class.

4.2 Contemporary coastal behaviour

The previous chapter has focused on the historical coastal behaviour and morphodynamics

in the study sites. The short-term, contemporary morphodynamic behaviour of the systems

is now considered, and focuses on a four-year investigation of the recent morphological

behaviour and short-term morphodynamics.

4.2.1 Recent morphological change

Recent LiDAR data (2008-2012) from Channel Coast Observatory were analysed using

topographic profiles and surface change analysis. The 2009 Hayle LiDAR data could not

be used due to data distribution in integer format, and not as float. The change analysis of

repeat LiDAR surveys for St Ives Bay and the Hayle (Figure 4.19) show small lateral shifts

in channel position, but the analysis shows that movement of low amplitude bars and high

tide berms dominate the
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short term beach dynamics. Much of the topographic change shown in LiDAR change analysis is

balanced across the system as expected with onshore/offshore bar/berm movement. Between

2008 and 2011, the vast proportion of beaches (36.4% of the proportion) to the north of the

Hayle inlet showed evidence of accretion, and in fact the primary signature of change is

accretional (positive), as the average net change was 0.013m. Erosion was almost entirely

associated with the ebb tidal delta (Porth Kidney Sands) (~1.7%), except for some erosion in

Carbis Bay (~1%) and some along the high water shorelines of the inlet. It is worth noting that

there is some asymmetry to the change in Carbis Bay where erosion dominates to the east and

accretion dominates to the west. This could reflect small-scale rotation in the beach deposit in

this small bay. The patterns of positive and negative change across the ebb-tidal delta are best

explained by the migration of swash bars across the broad intertidal flat: the location of the bars

in the earlier time frame is shown as a significant erosional patch, and where they are present in

the latter time frame is shown as a large accretional patch. Within the estuary, change is limited

to two clear patches of accretion, one in the central basin, and one within the western arm. In

both cases, between 0.5 and 1m of accretion has taken place across large banks within and

alongside the channel. Although some of this change could be attributed to channel migration

(there are certainly some linear erosional features alongside the channels, it seems likely that

most of this sediment has been brought into the estuary through the inlet, and these features are

comparable to flood-tidal deltas. Table 4.5 presents the frequency volume of classes of

magnitude of change in Figure 4.19.

In Carbis Bay however, the rotational change evidenced between 2008 and 2011 is reversed,

where erosion now dominates the west, and accretion to the east. This seems to suggest that

Carbis Bay switches between westerly and easterly skewed orientation. Due to problems with the

2009 data, it is not possible to establish whether this is an annual rotation, but consideration of

the total change between 2008 and 2012 shows that the changes of 2011-2012 have dominated

over the slightly longer period. Conversely, it is the accretional signature in beach change from

2008-2011 that is maintained as a signature in the slightly longer term (2008-2012).

The change between 2011 and 2012 (with average net change of 0.043 m3) is to some extent

comparable to that shown for 2008-2011 (with average net change of 0.013 m3). The majority of

change is focused on the ebb delta region, but in this time frame, very little change is evident for

beaches to the east and west of the inlet. There are patches of both small-scale accretion and

erosion within the estuary, some of which looks to be the result of small shifts in channel

position.
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Figure 4.19 Recent morphological change in Hayle Estuary.
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Table 4.5 Frequency analysis for classes of magnitude of change in the Hayle system

Volume of sediment movement (change) (m
3
)

2008 – 2011 2011 – 2012 2008 - 2012
Average net change

(m
3
)

0.013 0.043 0.15

Classes of Magnitude
(m)

Absolute (m
3
) *% of

proportion

Absolute

(m
3
)

*% of
proportion

Absolute

(m
3
)

*% of
proportion

-5 - -2 3384 1 3705 0.11 21321 0.6
-2 - -1 57361 1.7 39114 1.11 88669 2.4
-0.5 - -0.25 283517 8.4 353479 10.04 250964 6.9
-0.25 – 0.25 1919625 56.6 2757723 78.4 2047100 56.1
0.25 – 0.5 898832 26.5 262276 7.5 939314 25.8
0.5 – 1 229112 6.8 226041 6.4 329703 9.0
1 – 2 106276 3.1 66396 1.9 119340 3.3
2 – 5 24 0.001 29 0.001 166 0.004

*Instead of comparing directly here - the number of cells in classes of magnitude of change is

represented as a % (proportion) rather than an absolute.

The Crantock-Gannel system shows perhaps slightly smaller scales of change to those evidenced

in St Ives Bay (Figure 4.20). Here though, changes within the estuary part of the system are of

comparable magnitude. Between 2008 and 2009, the most significant patterns of erosional and

accretion occur on the beach, aligned in a cross-shore pattern. Along the southwest margin, a

large area of erosion dominates, but further north on the beach, accretion dominates. The patterns

suggest that sediment movement on this beach is in the form of large-scale migratory bedforms,

but that these are neither shore-parallel nor shore-normal in structure or movement. Closer to the

inlet, it is clear small lateral shifts in channel position have resulted in a succession of linear

erosional and accretional signatures. This continues into the estuary, but here there is also

evidence of larger, more diffuse areas of erosion and accretion that would be associated with

bedform movement over the intertidal flats.

Between 2009 and 2010, somewhat interesting patterns of erosion and accretion continue to take

place across the Crantock foreshore. Again, they are more generally concentrated to the

southwest, but there is also further change alongside the channel and inlet. In this case, quite

significant erosion is evident along most of the southern margin of the inlet, but perhaps in

balance to this, a large deposit is shown around the seaward extent of the channel. Between 2010

and 2012, accretion is evident across most of the mid-foreshore, extending shore-parallel across

most of the bay. To the seaward of this, some erosion is shown, and erosion is along evident in

the upper foreshore closer to the inlet. Within the estuary, the rather erosional expression shown

in the 2009-2010 change map is replaced by a distinctly accretional signature.

When considering the sequence of events between 2008 and 2012, perhaps what is most striking

about the series of changes shown here is the behaviour of depositional features on Crantock

beach. Quite a significant volume of material accumulated on the lower foreshore on the

southwest side of the Bay between 2008 and 2009 that subsequently dispersed cross-shore

(landward), and then moved alongshore (northeastward). This suggests that sediment is delivered
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to the west part of the beach, and is then redistributed north- and eastward over the following 2

or 3 years across the rest of the foreshore. Table 4.6 presents the frequency volume of classes of

magnitude of change in Figure 4.20.

Figure 4.20 Recent morphological change in Gannel Estuary.

Within the estuary however, there appear to be different cycles of erosion and deposition that

might relate specifically to channel meandering, but also seem to suggest quite significant

delivery of sediment into the estuary from the inlet region. Certainly, over the 4 year period, the

margins of the inlet show significant erosion and reshaping, whilst the estuary shows a complex
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mosaic of accretion and erosion, possibly associated with the movement of megaripples (See

figure 6.9) through the system.

Table 4.6 Frequency analysis for classes of magnitude of change in the Gannel system

Volume of sediment movement (change) (m
3
)

2008 –
2009

2009 –
2010

2010 –
2012

2008 - 2012

Average net

change (m
3
)

0.02 0.032 0.077 0.12

Classes of
Magnitude
(m)

Absolute
(m3)

*% of
proportio

n

Absolute
(m3)

*% of
proportion

Absolute
(m3)

*% of
proportio

n

Absolute
(m3)

*% of
proportio

n
-5 - -2 86 0.01 63 0.001 219 0.02 119 0.01
-2 - -1 3943 0.54 1177 0.2 3046 0.3 1503 0.2
-0.5 - -0.25 49960 6.84 92674 12.5 82112 8.15 62466 6.3
-0.25 – 0.25 649718 89.02 585558 79.1 816249 81 731398 73.7
0.25 – 0.5 48786 6.68 100180 13.5 127757 12.7 164153 16.6
0.5 – 1 10853 1.49 33304 4.5 30991 3.1 59342 6.0
1 – 2 2152 0.29 4484 0.61 3527 0.35 8579 0.9
2 – 5 7 0.001 16 0.002 2 0.0001 8 0.00

*Instead of comparing directly here - the number of cells in classes of magnitude of change is

represented as a % (proportion) rather than an absolute.

Patterns of change in Padstow Bay and the Camel estuary are complicated, with multiple patches

of erosion and accretion evident throughout the system, and throughout the time periods

considered here (Figure 4.21). Only surveys from 2008 and 2011 extend across the outer estuary

and open coast. Focusing initially on the estuary, between 2008 and 2009, the change was

primarily characterised by accretion – large areas of intertidal flat experienced 0.25-2m vertical

accretion. To some extent, quite a lot of this change was associated with channel margins, and

evidenced for migration is shown in the presence of spatially-matched, narrow patches of erosion

and accretion either side of the main channels. From 2009 to 2011, the general patterns of

change are spatially comparable, but the signature is reversed and erosion dominated. Channel

migration clearly continues, most notably along the stretch to the east of Padstow where the west

bank is eroded and the east bank exhibits accretion. Changes between 2011 and 2012 appear

very similar to those between 2008 and 2009, where again, erosion is largely aligned with

channel margins, and large surfaces of intertidal flat show an accretionary signature. Table 4.7

presents the frequency volume of classes of magnitude of change in Figure 4.21.

Channel migration driving erosion and accretion is not evident in the outer bays of Harbour Cove

and Daymer Bay. These intertidal flats form the ebb-delta, and here deposition and erosion seem

to follow the formation of large sedimentary deposits such as sand waves and their migration

across the flats. This is clearer in Daymer Bay, where the deposits are shore-parallel, but in

Harbour Cove, features are more complex and variable in structure, though the dynamic zone is

clearly the lower, rather than upper foreshore.
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The net consequence of these changes (2008 to 2012) reveals quite substantial changes have

occurred over the vast majority of the intertidal environment of the Camel. In comparison, the

open coast beach in Padstow Bay exhibits very little change over a similar period (2008 to 2011).

Although the lack of lidar data for the open coast site precludes a direct comparison, it is clear

that the small patches of accretion evident are insignificant in comparison to the dynamics shown

in the estuary, inlet and ebb-delta regions.

Figure 4.21 Recent morphological change in Camel Estuary.



4. Shoreline and Estuarine Change Analysis

Temitope Oyedotun 100

Table 4.7 Frequency analysis for classes of magnitude of change in the Camel System

Volume of sediment movement (change) (m
3
)

2008 – 2009 2008 – 2011 2009 – 2011 2011 – 2012 2008 - 2012
Average net change

(m
3
)

0.092 0.017 -0.094 0.083 0.10

Classes of
Magnitude (m)

Absolute

(m
3
)

*% of
proportion

Absolute

(m
3
)

*% of
proportion

Absolute

(m
3
)

*% of
proportion

Absolute

(m
3
)

*% of
proportion

Absolute

(m
3
)

*% of
proportion

-5 - -2 9036 0.14 27569 0.41 24593 0.4 15173 0.2 32492 0.52
-2 - -1 24215 0.38 112448 1.66 106625 1.7 28175 0.5 103650 1.65
-0.5 - -0.25 77626 1.22 574998 8.5 758198 12.3 269715 4.4 518505 8.24
-0.25 – 0.25 5450930 85.5 5464654 80.7 5369911 87.1 5349288 86.4 4608093 73.3
0.25 – 0.5 541003 8.5 507484 7.5 276593 4.5 455679 7.4 699224 11.1
0.5 – 1 222355 3.5 303270 4.5 130640 2.1 190315 3.1 378332 6.0
1 – 2 47727 0.75 141760 2.1 31260 0.5 80505 1.3 261670 4.2
2 – 5 276 0.01 356 0.01 311 0.001 332 0.001 351 0.001

*Instead of comparing directly here - the number of cells in classes of magnitude of change is represented as a % (proportion) rather than an absolute.
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4.1.1 Short-term morphodynamics

Cross-sectional profiles can be investigated using the LiDAR data (Moore, et al., 2009) in order

to examine the behaviour of specific cross-shore features. Cross-sections extracted from LiDAR

data for St Ives Bay (2008 – 2011) are shown in Figure 4.22. The western transects (T1, T2, T3)

show varied shifts around the high water mark – some accretion at T1 and T3, and more

significant erosion at T2. The northern beach transects (T5, T6) show very small changes in the

position of MHW. Beach level fluctuates by up to 75 cm (as shown in the vertical accretion at T3

and erosion at T5), but again the story is not consistent across the bay. Transect T4 crosses the

main ebb channel in the inlet. Here, significant vertical change has occurred over the 2 - 3 year

period, but only on the eastern margin: the west bank has changed little in comparison. Referring

back to the spatial mapping of change, the deposits here (of >2 m) are associated with the

migration of sand waves/spits into the inlet from the upper foreshore of the beach.

At Crantock, the shoreface cross sections (T1 and T2) reveal only small changes in the position

of MHW and MLW, and small-scale shifts in the beach level during the four year (2008 – 2011)

(Figure 4.23). The estuarine transects (T3 – T5) which crosses the main ebb channel in the inlet

and inner estuary reveal year to year localised erosion and deposition, which appears to be linked

to sandbank movement and channel migration/shifting in the Gannel estuary. The inlet transects

(T3) shows variable change over the 4 year period, whilst T4 (extending over the flood-delta just

landward of the inlet) illustrates the role of mobile and migrating sandwaves (wavelength 8 –

10cm, height 10 – 30cm) in the re-organisation of sediment over the larger intertidal forms.

These bedforms progressively move over the broad intertidal flood-delta platform into the

estuary. As expected, the flood-delta is forced primarily by tidal currents, but the changes also

suggest that this supply of sediment into the estuary might drive shifts in channel position.

Transects within the Camel estuary (Figure 4.24) reveal variable shifts in surface levels over the

intertidal flats, with year to year localised erosion and deposition. On the open coast (T1), there

is some suggestion of overall accretion between 2008 and 2011, particularly across the upper

foreshore, but the changes are quite minimal. Within the ebb-delta and inlet region, larger scales

of change are more evident. Broad, but low features move across the lower foreshore in both T2

and T3: these do not show progressive change, and the envelope of variability is consistent

across the foreshore. Within the inlet however, there is distinct evidence of accretion on both

margins of the inlet. In particular, the east bank displays progressive accumulation across the

mid and upper foreshore. In places, the vertical accretion is c. 1m, and this has led to a narrowing

of the mid-tide inlet by around 25m. Given the presence of intertidal bars across the foreshore to

the north (T3), it is likely that this accretion has benefitted from sediment supply via these

mobile foreshore bars.
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Figure 4.22 LiDAR cross-sections for transects 1 – 6 (T1 - T8) in St Ives Bay (Inset: transects
positions of the LiDAR cross-sections in the estuary).



4. Shoreline and Estuarine Change Analysis

Temitope Oyedotun 103

Figure 4.23 Transects positions of the LiDAR cross-sections in Gannel Estuary (Inset: transects positions of the cross-sections). Please note different
elevation (y-axis) and distance scales (x-axis).
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Into the estuary, the wide transect at T5 shows the lateral extent of the channel network through

the estuary. This transect in particular seems to suggest that changes in elevation of the intertidal

flat surface are less distinct than changes associated with channel movement. A small static

channel exists close to the west bank, but there are several substantially larger channels within

the mid-estuary where there is evidence of progressive migration (shown by the gradual retreat

or advance of the channel margin) and channel switching (where channels seem to appear and

disappear). Channel switching is particularly clear around 900m into the transect, where a

substantial channel was present in 2009 but completely gone by 2011. It is not clear whether

shoals either side prograded and therefore enclosed and infilled this channel or whether sediment

was delivered from up/down stream. But it is clear that channels in the mid-Camel estuary are

significantly more active than in the Hayle or Gannel. As the valley begins to narrow, the

intertidal structure becomes less variable. At T6, the intertidal surface shows both erosion and

accretion over the 4 years, but channel position has remained relatively stable, and this is

furthermore the case at T7.

4.1.2 Inlet dynamics

The dynamics of tidal inlet aids in the understanding of the morphodynamics and interaction

between of components of open coast – estuarine systems (O’Connor et al., 2011). The inlets in

this study have all shown significant positional stability over the historical timescale. A review

of the channel position through the inlet and ebb delta shows that although notably stable in all

cases, inlet channel variability is more apparent in the Hayle and Gannel estuaries than the

Camel (Figure 4.25). The central section of the Hayle inlet channel is static, but the position

envelope increases in both the seaward and estuary directions. Exploring the detail within this,

the channel moved eastward until the 1960s since when it has been west: the channel still lies to

the west of its 1845 position (Figure 4.25C). Inlet channel dynamics in the Gannel estuary are

similar (Figure 4.25D), however the timing of change in direction of movement was much later

(mid-1900s). The scales of movement in the Camel are much reduced (Figures 5.7B), and they

follow small shifts rather than continued migration. These differences in historical scale inlet

behaviour appear to suggest that despite exposure to the same regional processes, estuary inlets

respond differently. This is the result of antecedent differences between the systems, such as

geomorphology, geological configuration, intrinsic tidal forcing specific to the individual estuary

physical structure, or sedimentary characteristics that determine the mobility of sediments within

each system. Of course, the other probable influence is the intensity of the past anthropogenic

influences in each of the estuaries.
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Figure 4.24 Transects positions of the LiDAR cross-sections in Camel Estuary (Inset: transects positions of the cross-sections). Please note different
elevation (y-axis) and distance scales (x-axis).
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Figure 4.25 Channel position variability in the estuary inlets (A), and the historical sequence of channel migration as captured in a transect-based average
change analysis analysis (B-D). In all transects, the transects extend from the west margin of the inlet, with eastward channel movement shown as positive
change and westward channel movement as negative change.
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The historical and contemporary evaluation/observation of inlet morphology indicate their

positional stability, however, the inlet throat cross - section indicates morphological instability as

there are shifts in the inlet channel positions. Headland sheltering is suggested to be mostly

probably a factor responsible for positional stability of the inlet in the estuaries (Hume and

Herdendorf, 1992). Also, the inlet form is stated to be dependent on the relative strength of tidal

and wave energies, and to some extent sediment supply (FitzGerald, 1988; Burningham and

French, 2006). The three estuary inlets examined here are localised coastal systems where the

physical shape of the bay and estuary environment is a product of bedrock. Tidal flows are

constricted between the resistant rock headlands (e.g. Camel and Gannel) or by the

unconsolidated sand barriers (for example, Hayle estuary). One might expect therefore that the

Hayle inlet would exhibit increased movement, but the sand barrier is underpinned at various

points by bedrock, and it is likely that this retains more control that might be expected based on

surface characteristics. Rocky features such as Pentire Point East, the Steeper Point and Pentire

Point -Widemouth at the mouth of Gannel and Camel estuaries respectively will likely play an

important role in protecting the inlet region from the predominantly northerly to westerly wave

attack. In St Ives Bay, headlands are not found beyond the inlet (the wider Bay headlands are so

distant that their influence would be minimal) and here the ebb-delta of Porth Kidney Sand is

large and provides some sheltering.

The time intervals between historical surveys can often mask dynamic inlet behaviour simply

due to poor temporal resolution (Burningham, 2005). Further analysis of the inlet regions, using

aerial imagery and lidar data, suggests that stability follows over the short-term scale too. The

recent physiography of inlet morphology as shown via the GoogleEarth historical imagery is

evaluated for Hayle, Gannel and Camel inlets (note: the Google Earth imagery is evaluated

without any consideration of tidal cycle variations, and focues on qualitative assessment of

changes in the overall geomorphology). The Hayle inlet displays considerable stability (Figure

4.26). Although the imagery is taken at different stages of the tide, it is clear that the channel has

maintained a constant position that favours the westerly bank of the inlet. In the imagery, and the

additional time frames provided by the lidar data, it seems that this bias to the west is a

consequence of sediment movement into the inlet from beaches to the northeast.

The images and lidar data clearly show small spits extending from the northeast into the inlet

region, and it is likely that sustained sediment delivery in this manner would continue to force

the channel into a westerly position. This might explain the tendency for the channel to then

bend northeastward as it crosses the ebb-delta toward the sea as this meander is forced into

position at the apex (within the inlet). There is some evidence that the channel route across the

ebb-delta is rather more variable - although broadly maintained a common path, it is clear that

smaller-scale meanders and shifts take place in the channel here. This is likely to be the result of

the movement of sand bodies such as swash bars across the ebb-delta.
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Figure 4.26 The recent Google and Channel Coast Observatory (09/03/2008 and 06/04/2012) aerial photograph of tidal inlet in Hayle Estuary. (Source of
the image: Aerial Google Map of southwest England (c) 2013 Infoterra Ltd & Bluesky and Channel Coast Observatory).
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In the Gannel inlet, the channel hugs the northern margin, and has done historically

through to present (Figure 4.27). The meanders here appear to be well-tuned to the valley

shape. The channel stays close to the bedrock shoreline through the Crantock beach region,

which forms the first meander. It detaches slightly as the bedrock valley narrows and just

before the northern shoreline sharply trends to the north, where the valley broadens a little.

This might reflect flood tide forcing of the channel position which retains for a while the

alignment of the seaward part of the system. The tendency to then return to the northern

shoreline, rather than simply cross the valley at this point is related to the large intertidal

flat just landward of the inlet. This could be considered the flood-delta and it is a

significant depositional zone within the estuary. The general position of the large-scale

features change very little over the long- and short-term suggesting that valley shape might

exert significant controls on tidal flow and sediment movement here.

31/12/2001 17/05/2005

31/12/2005 08/10/2009

Figure 4.27 The recent Google aerial photograph of tidal inlet in Gannel Estuary. (Source of
the image: Aerial Google Map of southwest England (c) 2013 Infoterra Ltd & Bluesky).

Out of the three systems, the Camel inlet shows the least degree of change (Figure 4.28).

The channel through this inlet is substantially larger (wider and deeper) than in the Hayle

and Gannel, primarily due to the significant difference in estuary area and therefore tidal

prism (the intertidal zone of the Camel is 610ha compared to 321ha and 85ha for the Hayle

and Gannel respectively).
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31/12/2001 31/12/2005

31/12/2006 08/10/2009

Figure 4.28 The recent Google aerial photographs of tidal inlet in Camel Estuary. (Source of
the image: Aerial Google Map of southwest England (c) 2013 Infoterra Ltd & Bluesky).

The recent aerial imagery and lidar data show that the inlets and rocky shore in this study

are perhaps the most stable part of the coastal systems. Shoreline, intertidal surface and ebb

channel change analysis has shown that some significant changes have taken place within

these coastal systems over various temporal scales, but that the inlet has remained one of

the most consistent features. The ebb tidal delta in all cases comprises large swash-bar type

features that migrate across the foreshore, generating complicated patterns of erosion and

deposition over the shorter time-scale (see Figures 4.19 – 4.24). This sediment movement

can also be linked to changes in the upper foreshore along the inlet-associated margins.

Considering this evidence for large-scale sediment movement across the open coast and

inlet beaches, it is surprising that the ebb channel has maintained a consistent route. As

determined before, it is likely that the bedrock shoreline, both within the inlet regions and

beyond, plays a role in maintaining the position of the channel.

Sediment transport directions are variable around the inlet regions, and some

anthropogenic activities complicate the sediment supply process further. The Hayle ebb

delta for example is skewed to the east, suggesting some west to east longshore sediment

transport. Sediment also moves east to west into the inlet via small sand spits and waves

that migrate along the eastern margin. Maintenance dredging of the inlet removes much of

this sand from the inlet/estuary system (See:

http://www.hayleharbourauthority.com/Public_Pages/dredging.aspx for details of dredging

activities in Hayle Estuary). The Gannel inlet shows small-scale morphological instability

as the channel throat slightly widens and/or deepens to varying degrees as tidal processes

probably cause fluctuations in sediment movement and supply. The cross-sections which
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cover the flood-tidal delta illustrates the role of mobile and migrating sandwaves

(wavelength 8 -10m, height 10-30cm) in the re-organisation of sediment over the larger

intertidal forms. These are progressively moving into the estuary, so clearly forced by tidal

currents - and this in turn drives shifts in channel position. The changes in channel position

between the 2008 and 2012 are mostly widening by some ~20 m primarily in response to

movement of sediments by tidal forcing.

The complexities of the processes at the inlet have been emphasised in the works of

O’Brien (1931), Heath (1975), Walton and Adams (1976), Vincent and Corson (1981),

Marino and Mehta (1987), Hume and Herdendorf (1987, 1988a, 1988b), and so on, largely

attributed to variance in morphological and hydrological parameters. The inlet exerts

significant influence on the morphodynamics of adjacent shorelines (FitzGerald, 1988;

Hicks et al., 1999), the interruption of the continuity of longshore sediment transport and

exchange of sediments between both landward and seaward sediment systems

(Burningham and French, 2006).

4.1.3 Summary of contemporary morphological change

The contemporary behaviour of the shorelines and ebb channels at the systems also reveal

spatial and temporary complexity as rock-dominated shorelines, similar to the historical

morphodynamics in the system, experienced little or no change over the four years, while

the sediment-dominated shorelines exhibit alternation of both minimal advance and retreat.

At the yearly scale, intertidal bars and sand waves migrate across the foreshore and into the

inlet region. The systems’ inlets exhibit the dynamic movements and migration within the

short-space of time considered here. Flood dominance in the outer estuary encourages the

net landward movement of sediment across inlet-associated beaches and supplies sediment

to the macro-tidal estuaries. Temporal behaviour suggests shifts in the flood-ebb balance

are occurring on an annual scale, particularly in the Camel estuary where large areas of

accretion followed a year or two later by large areas of erosion. Channel migration is an

important driver of the erosion and accretion experienced in these estuaries, but these

changes are focused on the channel-margins, a distinctly different geomorphic signature to

the large-scale accretion and lowering evidenced over the intertidal flats. The analysis

presented in this sub-section has shown that some parts of the estuarine systems behave

differently, with some being more dynamic than others. Ebb channels showed some

mobility, however the spatial constraints imparted by the geology and rock-interface limits

the dynamic movements of the channels in the system. Channel migration within each

system are shown to be capable of eroding and releasing large volumes of sediment which

are then perhaps transported via the ebb tide out of the estuaries to be deposited nearshore

to the ebb deltas. It is therefore possible that the net effect over several years is balanced as

sediment arriving at the ebb delta might simply be sourced from the release of sediment

within the estuary, through channel dynamics.
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5 METOCEAN ANALYSIS

_________________________________________________________________________

The previous chapter has focused on the historical and contemporary coastal behaviour and

morphodynamics of the study sites. The forcing of coastal change is explored in this

chapter and the analysis of key metocean data, focusing on historical and contemporary

wind and wave climate as well as tide and sea-level change, are presented here. The

objective here is to evaluate the importance of regional forcing as the driver of historical

and contemporary coastal change.

5.1 Historical coastal forcing

5.1.1 Wind and storm climate

Coastal forces (waves, wind and tide) play major roles in many coastal environmental

processes, both at the open ocean and in coastal zones. As waves propagate toward the

coast, the interaction between orbital motions and the bottom (Dodet, et al., 2009) drives

sediment transport, which has been described as sediment migration (Carter, 1988; Black

and Oldman, 1999; Dodet et al., 2009). Wave-driven sediment transport forces much of the

morphodynamic behaviour of coastal systems. Therefore, it is essential to understand the

historical, spatial and temporal variations of this coastal forcing in evaluating their

influence on the morphodynamic evolution of the coast-estuarine environment. This

section is focused on reporting the historical coastal parameters for the study area,

specifically considering the southwest England wind climate (using data from St Mawgan,

which is the only available data for this project) and sea-level record (using data from

Newlyn, which provides the tide record for southwest England) (Figure 5.1). The

association of wind climate, storminess and the North Atlantic Oscillation (NAO) in

influencing geomorphic change within the coastal environment of southwest England over

the last 150 years is examined here.
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Figure 5.1 Location of the sites for the historical coastal parameters consider.

Directional frequency of winds recorded at St Mawgan show that wind direction is

predominately westerly (Figure 5.2). Low energy winds (0-10kts) are dominated by

southerlies and easterlies whereas higher energy winds (>10kts) are more frequently from

the west. High speed easterly winds are rare. Changes in wind speed, wind direction and

atmospheric pressure, particularly during storms, enhance the generation of positive surges

and large waves (Phillips et al., 2013). These changes can in turn increase coastal erosion

risk, affect the shifting of shoreline positions and the general morphology of the coastal

environment.

Large-scale atmospheric pressure patterns (e.g. North Atlantic Oscillation) have been

linked to changes in wind speeds and directions (Hurrel, 1996; Phillips et al., 2013). The

major modes of climatic variability in the Northern Hemisphere are known to exert a

strong control on the North Atlantic climate, especially from the central North America to

Europe and Northern Area (Bell and Lisbeck, 2009; Phillips et al. 2013). The NAO is

associated with an oscillation in atmospheric mass between the Arctic and subtropical

North Atlantic (Burningham and French, 2012). The station-based NAO index (NAOi) is

calculated as a normalised pressure difference between the north (e.g. Iceland) and the

south (e.g. Azores), but can also be derived through Empirical Orthogonal Function (EOF)

analysis of sea-level pressure anomalies over a wider mid-North Atlantic zone. Positive

phases of the NAOi are associated with strengthening of the North Atlantic storm track,

resulting in stronger than average wind speeds and increased storminess in mid-latitude,

western Europe. Negative phases are linked to drier, calmer conditions in northwest

Europe. Wintertime is when the atmosphere is noted to be most active dynamically and the
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role of the NAO on storm and wind climate is most pronounced in winter (Hurrell and

Deser, 1999; Burningham and French, 2012). The winter NAO index (wNAOi) is

calculated as a mean of monthly indices across the winter period: December-March is used

here (Figure 5.3) although a range of winter month combinations are more widely used

(Burningham and French, 2012).

Figure 5.2 Wind rose (the directional frequency distribution of wind direction) for wind
speed and direction for St Mawgan.

The wNAOi is associated with multiple aspects of climate (wind, air temperature,

precipitation), which are integrated over space and time (Straile and Stenseth, 2007). The

linkages of NAO and some specific climate parameters have been used to predict

ecological variability (see Hallet et al., 2004), determination of regional precipitation and

dynamic river flow (Trigo et al., 2004; Mares, et al., 2009); wind speed and ocean wave

height (Bouws et al., 1996), and more specifically in coastal studies as a proxy for

storminess in wave heights (e.g. Esteves et al., 2011), wave directions (Bruneau et al.,

2011), wind and wave storms (Qian and Saunders, 2003; Atkinson, 2005; Wolf and Woolf,

2006). The full review of the linkages are provided by Vincente-Serrano and Trigo (2011)

and Burningham and French (2012). Of importance in coastal studies is the linkages of the
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wNAOi with timing and magnitude of extreme wind events and their role in driving

sediment erosion and deposition (e.g. Barthology et al., 2004; Dawson et al., 2004;

Burningham, 2005; Clarke and Rendell, 2006; Burningham and French, 2012) and in

effecting significant geomorphic change (Davis et al., 2004; Knight and Burningham,

2011; Jiménez et al., 2012).

Persistent positive phases in the wNAOi occurred in the late 1880s and early 1900s, and

also from the late-1970s to mid-1990s (Figure 5.3). Extended periods of negative wNAOi

are uncommon and relatively short in comparison to the positive phases. The winter

months of 1915, 1939, 1955, 1967-1968, and 1975-1976 experienced extreme minima in

wNAOi (< -1). Most recently, the winters of 1995 and 2009 experienced the most extreme

lows. The pattern of change in the wNAOi does not adhere to an overall trend, but rather a

cycle of shifts between positive and negative phases. There is some evidence for an

increase in the range of variability in more recent years. The implications of positive

phases in the NAO for the historical period explored here are increased storminess in the

1980s - early 1990s and followed by a less persistent and more variable climate in recent

years.
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Figure 5.3 Time series of winter (DJFM) NAO index.

The wind direction frequency has been shown to be strongly associated with NAO winter

index (Burningham and French, 2012), and this is evidenced in the St Mawgan dataset,

which shows a strong positive correlation between the frequency of westerly winds and the

wNAOi (Table 5.1). Furthermore, strong positive correlations exist between the strength of

westerly winds and the wNAOi. Figures 5.4 and 5.5 present the time series of change in

wind direction frequency, median wind speeds associated with these directions, and 99th

percentile wind speeds. As highlighted in Table 5.1, there are strong positive correlations

between the wNAOi and the frequency of westerly winds (R=0.71), and strong negative

relationships are observed with the easterlies (R=-0.68). Rotation of the direction quadrants

by 45° reveals that the significant correlations are associated with northeasterlies (-0.68)
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and southwesterlies (R=0.76). There was no significant linear relationship between the

wNAOi and median or extreme (99th percentile) wind speeds within each of these wind

direction quadrants.

Table 5.1 Correlations for NAO with wind directions for St Mawgan (1957-2008): strong
correlations (|R|>0.5 and significant at p<0.01) are highlighted in bold/red.

Year (1957-2008) Wind metric correlation (R)
Frequency N (315-45) -0.36

E (45-135) -0.68
S (135-225) 0.38
W (225-315) 0.71

50th percentile windspeed (kts) N -0.14
E -0.43
S 0.13
W 0.20

99th percentile windspeed (kts) N -0.05
E -0.36
S 0.01
W 0.04

Frequency NE (0-90) -0.68
SE (90-180) -0.45

SW (180-270) 0.76
NW (270-360) 0.33

50th percentile windspeed (kts) NE -0.66
SE -0.28
SW 0.30
NW 0.23

99th percentile windspeed (kts) NE -0.33
SE -0.10
SW 0.20
NW 0.01

50th percentile speed (kts) All directions 0.22
99th percentile speed (kts) All directions 0.18

Correlations between time and these wind measures, which could point to mesoscale

(decadal) trends in wind climate, are summarised in Table 5.2. These show quite different

patterns of correlations to the analysis with the wNAOi. Whereas it is the proportion of

wind recorded from the southwest-west and northeast-east that are strongly associated with

the temporally-variable patterns in North Atlantic pressure systems, median wind speeds

that show significant temporal trends over the last 50 years. The 50th percentile (median)

wind speed (from NE direction) is significantly negatively correlated with time (R=-0.66)

exhibiting a broad decline in speed over the last 50 years. Indeed all correlations between

wind speed measures and wNAOi are negative, suggesting that there has been a significant

reduction in wind climate energy at St Mawgan over the last 50 years. The correlations

with time of median wind speed from the north (R=-0.82) and west (R=-0.62) shows a

significant decrease over the period considered here. This is reiterated when considering

the rotated quadrants; median speeds for winds recorded from the northeast, northwest and

southeast all show a significant decline over time. These temporal trends are to some

degree mirrored in the extreme (99th percentile) wind speeds: but it is only wind recorded

from the north that achieves a correlation coefficient of |R|>0.5. Although all correlation
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coefficients associated with the 99th percentiles are negative, the results suggest a rather

weaker decreasing trend in the extreme wind speeds. It is particularly notable that the

strong positive phase of the wNAOi during the 1980s to mid-1990s is not at all reflected in

the median and extreme wind speeds recorded at St Mawgan. The far stronger signal here

is the long-term trend of decreasing wind speeds.

Figure 5.4 Time series of wind climate based on records from St Mawgan, Southwest
England, UK: showing 50th percentile and 99th percentile of wind speed, and direction
frequency (collated to cardinal (N, E, S, W) quadrants). Temporal correlations are reported
in Table 4.6.
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Figure 5.5 Time series of wind climate based on records from St Mawgan, Southwest
England, UK:,showing 50th percentile and 99th percentile of wind speed, and direction
frequency (considering only the SW, NW quadrants*). Temporal correlations are reported in
Table 4.6.

*The winter NAOi at NE and SE are found to be insignificant, therefore the presentation of the historical

analysis in N,E,S,W, NW and SW (See chapter 2.6.1 for more explanation).
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Table 5.2 Correlations (temporal) for the wind measures for St Mawgan (1957-2008): strong
correlations (|R|>0.5 and significant at p<0.01) are highlighted in bold/red.

Year (1957-2008) Wind metric Correlation (R)
Frequency N (315-45) -0.07

E (45-135) -0.18
S (135-225) 0.29
W (225-315) 0.07

50th percentile windspeed (kts) N -0.82
E -0.47
S -0.31
W -0.62

99th percentile windspeed (kts) N -0.52
E -0.40
S -0.15
W -0.35

Frequency NE (0-90) -0.18
SE (90-180) -0.06

SW (180-270) 0.20
NW (270-360) 0.03

50th percentile windspeed (kts) NE -0.69
SE -0.63
SW -0.34
NW -0.71

99th percentile windspeed (kts) NE -0.48
SE -0.40
SW -0.16
NW -0.39

50th percentile speed (kts) All directions -0.66
99th percentile speed (kts) All directions -0.36

The findings/analyses presented in this section confirm that for southwest England, the

NAO appears to be responsible for driving year to year changes in the frequency of

westerlies and easterlies, but has had little impact on the strength of winds. It is not

possible to say that the positive phases of the NAO in the late 1880s and early 1900s and

also from around 1978 to 1991 were responsible for increased climatic activity and

increased energy, but it is possible that these periods of increased frequency of westerlies

might have driven an increase in wave energy, or possibly an increase in west-southwest to

east-northeast wind blown sediment transport across beaches in the region. Several studies

have linked positive wNAOi in driving coastal geophysical processes through the

occurrence of higher than average wind speeds, increased storminess and storm frequency

(e.g. Rogers, 1997; Dickson, et al., 2000; Clarke and Rendell, 2009). The dominant

positive wNAOi phases at the first half of 20th century (also noted by Pye and Neal, 1994)

and the frequent stronger southwest wind speed and direction may be accountable for

possible storm and stronger climatic parameters which enforced morphological changes of

shoreline positions at the study sites. Southwest England is seemingly experiencing a more

complex forcing of changing wind climate which can be partly linked to the NAO (in

terms of frequency of westerlies) but also comprises a more persistent trend of decreasing

energy.

In the northwest Ireland, during the 19th and early 20th Century, Burningham (2005)

showed that the timing of storms impacting the region clustered around the periods of
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sustained positive NAO winter index. The coastal and maritime climate of the southwest

UK has been noted to be largely shaped by the eastward sweep of depressions from the

Atlantic coast (Allen and Duffy, 1998; Phillips et al., 2013), and the analyses here show

the predominance of west-southwesterlies in the wind climate of this region. The persistent

phases of positive NAO do correlate with increased frequency of these west-

southwesterlies, and this might drive specific morphological changes associated with

direction of forcing, for example shoreline movements. But the 1980s-1990s appear to be

one of the least dynamic periods of the history considered in the shoreline change analysis.

It is also possible that sustained winds from a specific direction could force estuarine

waters to be retained in the valley longer, or conversely the flood tide could be held back

by such winds, which would influence tidal transport of sediments within the ebb channel

and morphology of the estuary. This is a possibility with the consideration of the

orientation of the coastlines of the study sites and the estuaries. Although the land based

wind measurements do not reflect coastal oceanic winds (Schwing and Blanton, 1984),

winds still remain a critical factor in determining regional weather patterns (Phillips et al.,

2013) and changes in dominant patterns do affect shoreline equilibrium and dynamics

(Cazenave and Llovel, 2010, Phillips et al., 2013). It cannot be categorically stated that the

historical wind measures and the Northern Hemisphere atmospheric pressure as indicated

by the North Atlantic Oscilliations observed in the century could have enhanced the

generation of surge levels which engineered the morphological changes and

morphodynamics at the coastlines, the evidence in other studies cited here, however,

suggest this is a possibility. Perhaps more important is the role of decreasing wind speeds

in coastal dynamics. This would imply a reduction in morphodynamic activity, but there is

little evidence of this in the historical morphological change analysis that has shown a

broad erosional trend superimposed by decade-scale fluctuations.

5.1.2 Sea-level change

Wave and tidal processes are important in the consideration of coastal dynamics, but

extended temporal datasets for these parameters are rarely available. The impact or role of

these processes on mescoscale coastal dynamics is often controlled by the underlying

trends in changing sea-level which influence the vertical position that these processes

operate at. Sea-level change is an important aspect of coastal forcing that must be

considered when evaluating the behaviour and trends in historical coastal change.

Monitoring or understanding sea-level change is important for both socio-

economic/environmental reasons (WöppeImann et al., 2007; Phillips et al., 2013) and the

evaluation of its impact on highly vulnerable estuarine and low lying coastal zones

(Barbosa and Silva, 2009). Figure 5.6 presents the historical change in mean annual sea-

level for Newlyn. There has been a normal increase in Celtic sea-level from 1920, but this

has shown some acceleration since the 1960s (Phillips et al., 2013). The published rate of
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sea-level rise for southwest England was quoted as c. 5 mm yr-1 in a 2004 report

(Defra/EA, 2004) but is currently recognised as 1.77 mm yr-1 (PSMSL, 2013).

Figure 5.6 Annual mean sea-level at Newlyn, exhibiting a rise over the 20th century at a rate
of c. 1.77 mmyr-1 (R2 = 0.88, p<0.001).

The overall erosion and landward shift in the MLW shoreline positions may be attributed

to the rise in sea-level that this region has experienced. Woodworth (2010) described

annual mean sea-level as “the combination of tidal level, surge level, mean sea level, waves

and their respective interactions”. This parameter remains a very important phenomenon

as a rise in sea-level increases the elevation at which these coastal processes (tides, surges,

waves) operate, and often makes the coastal zone vulnerable to morphologic changes.

Furthermore, an increase in sea-level increases the likelihood of inundation in susceptible,

low-lying areas and also enables storm surges and waves to penetrate further inland

(Gönnert, 2004; Kleinosky et al. 2007; Phillips et al., 2013). This is a possible, less

specific, threat to the coastal systems considered here, where the ria valleys have little

space for low-lying land. But it is certainly likely that sea-level rise has been a key driver

of the underlying coastal erosion experienced regionally on the north Cornwall coast as the

rise correlates with observed MLW shoreline erosion in the region in the 20th century.
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5.2 Contemporary coastal climate

5.2.1 Sea level

It is widely believed that sea-level has risen significantly since the mid-20th century, with

global rates in mean sea level rise estimated to be 3.1 mm yr-1 (Cabanes et al., 2001;

Holgate and Woodworth, 2004; Leuliette et al., 2004; Church and White, 2006;

Woodworth et al., 2009; Teasdale et al., 2011). On a regional scale, the character of sea-

level is much more variable (Teasdale et al., 2011) as a result of a more local factors such

as tectonic and glacio-isostatic movements (Firth and Stewart, 2000; Teasdale et al., 2011).

As discussed earlier, there has been a consistent rise in sea-level in the Celtic Sea since the

1920s. The trend of the rise continues in the 21st century, with some fluctuations, at a rate

of c. 3.35 mmyr-1 (Figure 5.7). The dataset is too short to place any meaning in this trend,

but it does seem clear that annual mean sea-level rise subsided between 2002 and 2005

before increasing again to 2010. The recommended rate for the region remains c. 1.77

mmyr-1 (PSMSL, 2013). With the recent observation and the expected rate, such kind of

increase is expected to inevitably affect wave climate, tidal processes and the

morphodynamic evolution of the north Cornwall coastlines.



5.Metocean Analysis

Temitope Oyedotun 123

Figure 5.7 Newlyn monthly mean sea level (top); and annual mean sea level (bottom) with
short-term linear trend.

5.2.2 Contemporary wave conditions

Waves form when the water surface is disturbed either by wind, earthquakes or planetary

gravitational forces (Carter, 1988). ABPmer supplied the 20 year (1999 – 2009) hindcast

hourly wave parameters for sites in the southwest Celtic Sea (north of the Cornwall coast).

Specifically, West Point (Long. -5.67, Lat. 50.65) and Central West Point (Long. -5.33,

Lat. 50.55) data, which are directly associated with the study area, are analysed and

presented here. Figure 5.8 presents wave roses for the 1991-2009 data, showing frequency

distribution of wave direction, significant wave height and wave period. The largest

proportion of waves typically occurs from the westerly with 56.2% and 60.9% at West and

Central West points respectively. Waves from the north are far more infrequent, with

17.6% and 19.2% for West and Central West points respectively, and given the reduced

fetch, waves from the southeast are very rare.

Considering the time-series of change over this period (Figure 5.9), a seasonal signature is

evident, whereby summer wave heights are substantially lower than winter wave heights.

Lower annual measures (median and 99th percentile wave heights) stand out for the years

1992, 2001 and 2003, and the winters of 1996-7, 1997-8 and 2007-8 show some evidence

of higher than normal wave heights. There is no suggestion in these data that wave heights

are increasing or decreasing over the 20 year period.

The coastal systems considered in this study all occupy a northwesterly aspect. The

offshore wave climate is dominated by westerlies, but in some cases, it might be the more

northerly waves that are more aligned to the bays. Basic metrics of the wave climate split

on the basis of direction (westerly vs. northerly) are summarised in Table 5.3. The findings

show that northerly waves are smaller (in terms of height and period) than westerly waves,

but have a slightly wider spread indicating that westerlies are more likely swell-dominated

and northerlies comprise an increased wind-wave component. Also, waves reduce in size

as they move in from the west: waves at West point are larger than those at Central West
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point. Local wave climates will depend quite strongly on location and orientation, and this

is explored further in Chapter 7.

Figure 5.8 Wave roses for 1991-2009 data, showing A) frequency distribution of wave
direction and significant wave height and B) frequency distribution of wave direction and
wave period.
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Figure 5.9 Time series of significant wave height (1991-2009) at the West and Central West
points.

Table 5.3 Wave climate summary (1991-2009) for westerly (225-315°N) and northerly (315-
45°N) waves.

Westerly waves Northerly waves
Percentile West point Central West

point
West point Central West

point
Proportion (%) 56.2 60.9 17.6 19.2
Vector mean direction 262.58

Significant wave height (m)
50th 1.67 1.56 0.96 0.89
90th 3.99 3.69 2.27 2.11
99th 6.52 6.04 4.39 4.12

Wave period (s)
50th 5.62 5.53 3.90 3.77
90th 8.12 7.84 5.58 5.43
99th 10.05 9.77 7.41 7.22

Wave spread (°)
50th 31.00 29.73 34.91 33.73
90th 41.18 39.57 52.82 50.90
99th 63.17 60.95 72.22 70.70
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5.2.3 Tidal conditions

One of the most important coastal factors which influences change on coastlines is the state

of the tide. Increased wave energy has greater potential to cause notable hazard on the

coastline at high tide. The spring tidal range for the region is around 5-6 m (UKHO, 2003)

and the coast can be described as macro-tidal. Tidal currents in the region have been

described as generally weak (< ~0.75ms-1) except in local areas around the headlands

(Halcrow, 2002). Monthly tidal residuals for Newlyn are presented in Figure 5.10. This

shows the extent to which abnormaly high or low water levels occur. The lowest monthly

water levels are around 0-0.5m, with minimum surges of -0.1 - -0.5m. The maximum

monthly water levels range 5.5-6.5 m (highest astronomical tide level at Newlyn is 6.13m

above chart datum) and monthly mean maximum surges are up to 1 m. The envelope of

variability over the 12 year period is relatively consistent, where year to year fluctuations

occur on similar scales. The highest monthly mean water level recorded was 6.42m in

October 2004 and the lowest was -0.01 in February 1996, but these are not considerably

outside the normal range.

Figure 5.10 Tidal residuals recorded at Newlyn. Levels are relative to Admiralty chart
datum.
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6 SEDIMENTOLOGY AND SEDIMENT PROCESSES

___________________________________________________________________________

The study of sediments and sedimentary deposits has been described to be “primarily concerned

with the physical classification of sediments, the interpretation of sediment source and

provenance, sediment transport processes and the composition and form of depositional features

and sedimentary structures” (Friedman and Sanders, 1978). One of the objectives of this study is

to examine the sedimentary linkages between the coast and the estuary at the selected study sites.

The aim here is to investigate the similarities and differences in sediment texture and

geochemistry to understand how closely related the coast and estuary sediment populations are,

and gain a better understanding of the controls on sediment supply and transport within and

between coast and estuary. The knowledge of temporal and spatial distribution of sedimentation

processes of deposition, transport and erosion was noted to be fundamental on a variety of issues

in estuaries and transitional basins (Apitz et al., 2007; Molinaroli et al., 2009).

The erosion, transportation, entrainment or deposition of sediment particles by any medium/fluid

is partly controlled by the chemical and physical properties of the particles themselves and also

that of the driving mechanisms (Blott, 2001). Sediment characteristics may be changed during

the transport processes and be sorted according to size, shape, mineralogy and density (Pye,

1994). Grain size is one of the most important of the physical properties of sediments, and can

reveal important information about the sediment source, transport history and depositional

situation (Folk and Ward, 1957; Friedman, 1979, Bui et al., 1990; Boggs, 2001). The influence

of heterogeneous sediment properties on coastal processes was shown by Holland and Elmore

(2008) to be commonly underestimated due to difficulties in characterising and quantifying the

various types of sediments. The application of extended and multivariate statistical analyses of

grain size distributions can be effective at identifying discrete similarities and differences

between mixed sediment populations (Lucio et al., 2004; Mante et al., 2007), and this broader

consideration of grain size data is followed here. Furthermore, the use of XRF technology (an

analytical technique which exposes solid samples to an x-ray source (Billets, 2006)) to ascertain

sediment geochemistry through elemental composition is therefore also considered here in the

characterisation of sediment composition. Here, laser-sizing analysis of sediment texture is

supported by X-ray fluorescence (XRF) analysis of selected samples to estimate the elemental

composition and spatial variations of the sediment source and connectivity (between estuary and

coast) in the study sites.
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6.1 Sedimentology

The nature of estuary sediments reflects the transport processes operating at local and regional

scales as well as the longer-term evolution of estuary morphology (Anthony and Héquette,

2007). Grain-size remains the most important property to inform our understanding of these

linkages as it provides fundamental information on sediment transport dynamics and the history

and provenance of sediment supply (Blott and Pye, 2001). Grain size statistics calculate from

the distribution - median, sorting and skewness - are most commonly used to explore the nature

of the sediments investigated, and the broad similarities and differences between sample

populations. The following section explores the variability in sediment characteristics within

each system with a view to elucidating the nature of the sedimentary linkages that occur between

the estuary and adjacent open coast.

6.1.1 St Ives Bay and the Hayle estuary

A total of 80 short cores were collected in October 2011, from four different zones within the

Hayle estuary and St Ives Bay intertidal sedimentary environment (Figure 6.1). Site A, in the

inner estuary (Lelant Water/Carrack Gladden; Figure 6.2) is a broad intertidal flat, the surface of

which is characterised by two forms of bedforms: sandy megaripples (c. 10-20m wavelength (λ)) 

and irregular small scale (c. 1-2m) hollows (scour features) in muddier unconsolidated

sediments. The sandy upper planar foreshore of St Ives Bay beaches (sites B and D; Figure 6.2)

merge with a broader and flatter beach at the inlet of the Hayle estuary (site C) where

megaripples (c.10-20m wavelength) and transverse wave-current ripples (c.10-25cm wave

length) persist.
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Figure 6.1 The St Ives Bay - Hayle Estuary sites sampled for sediment analysis, Inset: the location
of the site in southwest England.

{Note: the establishment of larger parts of the system as SSSI constrained the spatial distribution of sediment sampling}
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Site A Site B

Site C Site D

Figure 6.2 St Ives-Hayle photographs showing surface conditions in the four main sedimentary
environments surveyed. Sites are A – Lelant/Carrack Gladden, B – Carbis Bay/Barrepta Cove, C –
Black Cliff and D – Godrevy Towans (see Figure 6.1 for location).

Grain size distributions of sediment sampled from sites A to D are summarised and presented in

figures 6.3. Sediment at sites A and D are dominated by particles in the medium sand range

(250-500 µm) while sites B and C comprise, in comparison, a mixture of medium sand and

coarser distribution (500-1000 µm). The grain size distribution here illustrates the clear

consistency of sediment sampled in sites B with the modal size lying within the coarser sand

(CS) region of the size spectrum (around 600 µm). The mean distribution at site C is very similar

to that at site B, but site C lacks consistency between samples which range between medium

coarse and very coarse sand. Site D comprises mostly medium sand (MS) population, again with

a broad consistency between samples. Site A in the inner estuary is distinct in the significance

presence of finer material, either as a distinct clay population, a silty population or a silty tail to a

dominant sandy population. Clay and silt are not present in the surface samples obtained at sites

B-D. The beach samples (sites B-D) are a mixture of coarse/very coarse sand. The presence of

the fine-medium sand population in all of the sites however suggests that sediment exchange is

active between sites, possibly moving for one site to the other.
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Figure 6.3 Surface sediment characteristics in the St Ives Bay - Hayle estuary system. Grain size
distributions are shown for all samples obtained within the depth range 0-15cm at locations in the 4
main sedimentary environments examined: sediment at each site is also summarised as a mean
distribution (solid black line). Sites are A – Lelant/Carrack Gladden, B – Carbis Bay/Barrepta
Cove, C – Black Cliff and D – Godrevy Towans.
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Descriptive sediment statistics (Figure 6.4) show that surface sediments of the open coast and

inlet (Carbis Bay, Black Cliff and Godrevy Towans, Sites B, C and D) are generally moderately

well (MWSo) / moderately sorted (MSo) and largely symmetrical. These sites do show some

discrete differences. Site B is moderately sorted whilst C and D are moderately well sorted. Sites

B and D are generally coarser than site C which is primarily medium sand (MS). The inner

estuary samples (Lelant/Carrack Gladden, Site A) are a mix of silts, very fine (VFS), and

medium sands (MS) that are poorly (PSo) / very poorly sorted (VPSo), and are largely negatively

(fine) skewed (FSk).

Figure 6.4 Exploratory sediment analysis – grain-size statistics – (A) Mean vs. Sorting (B) Mean vs.
Skewness (C) Median vs. Sorting and (D) Median vs. Skewness. See Table 2.10 for the Folk and
Ward classification boundaries of these metrics.

Figure 6.5 presents a summary of grain size statistics obtained from the sites. Comparison of

grain size statistics grouped by site (sedimentary environment) and sample depth (0-5cm, 5-

10cm and 10-15cm from the intertidal sediment surface) reveals little systematic variation in
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grain size parameters with depth. However, differences between sub-environments are evident,

with the estuarine samples (Site A) being finer, less well sorted, and more strongly negatively

skewed. Kruskal Wallis analysis of variance shows that differences between sites are significant

(at the 99% level) for the median (μm), sorting (μm) and skewness statistics (Table 6.3). This is 

primarily driven by the properties of sediments from site A which is significantly different from

all other sites for all metrics except skewness (for site B) and sorting (for site D). There is no

significant difference between the median grain sizes at sites B and C, and no significant

difference between skewness at sites C and D. Perhaps more interesting is the lack of significant

difference in grain size statistics between sample depth (at the 99% level). The results show the

consistency in sediment characteristics with depth suggesting that the depositional environments

are well mixed to at least 15cm depth. The analysis shows that variability in sediment size

characteristics within the St Ives Bay - Hayle intertidal system is the product of sedimentary

environment, not sample depth.

Figure 6.5 Summary of sediment statistics for sedimentary environments at the Hayle Estuary.
Data are divided based on Site (A - D, located in Figure 6.1) and depth (using 0-5cm, 5-10cm and
10-15cm stratigraphic units).

Table 6.1 Results (p-value) of one-way analysis of variance of selected sediment statistics,
considering groupings based on sample site and depth, using the Kruskal Wallis non-parametric
method.

Group D50 Sorting Skewness

Site <0.001 <0.001 <0.001

Depth 0.793 0.562 0.076

Site A & Depth 0.685 0.44 0.025

Site B & Depth 0.67 0.817 0.782

Site C & Depth 0.484 0.075 0.841

Site D & Depth 0.186 0.277 0.738

0-5cm & Site <0.001 <0.001 0.006

5-10cm & Site <0.001 <0.001 0.007

10-15cm & Site <0.001 <0.001 <0.001
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Multivariate analyses were undertaken to explore patterns in the full particle size distribution. A

principal component analysis (PCA) reduced the data to two principal components (PCs) which

in combination, account for 96% of the total variance (Figure 6.6). PC1 (82% of the variance)

reflects the presence of medium sand (MS), to a lesser extent coarse/very coarse sand (CS/VCS),

and some fine sand (FS), but a distinct lack of material smaller than this. PC2 (14% of variance)

relates to a coarser component (presence of coarse and very coarse sand), and a lack of a fine-

medium sand. PC1 is strongly correlated (negatively) with sorting, whereas PC2 is very strongly

correlated (positively) with median grain size. Biplots of these PCs (Figure 6.7B) show that

samples are distinctly separated on the x axis (PC1) and spread across a large range on the y axis

(PC2). Samples from sites B and D (west and east extent of the open coast) are strongly

separated on PC2: samples from B are associated with positive PC2 scores (coarser sand)

compared to negative scores for D (fine-medium sand), but both are associated with mid-high

PC1 scores (relatively well sorted). Only samples from site A (estuary) show any significant

distribution along PC1, reflecting a mix of well to poorly sorted sediments at this site, in addition

to the presence of very fine material. Samples from site C (inlet) suggest a mix of sediment

characteristics from sites B (west bay) and the better sorted sediments from A (estuary). The

PCA provides no evidence of association between sediment characteristics and sample depth

(Figure 6.7C), but again highlights the strong association with sedimentary environment.

Cluster 1 refers to medium to high values on both PC1 and PC2, indicating a dominance of the

coarser grain sizes and small contribution of finer material to these distributions. This cluster

generally characterises the beach environments. Cluster 2 refers to high PC1 and low PC2

values, which corresponds to a dominance of fine and medium sand in the grain size distribution.

This cluster largely represents estuarine sediments, though several beach samples also exist in

this group. Cluster 4 refers specifically to low PC1 and PC2 values, representing those samples

containing a mix of fine material (silt and very fine sand) and limited coarser component: cluster

4 comprises entirely estuarine samples (Figure 6.7A).

The clusters identified are closely associated with site (sedimentary environment), which is a

significantly more effective discriminator of sediment characteristics (Figure 6.7B) than

stratigraphic depth (Figure 6.7C). The results reveal that the open coast environment is

predominantly characterised by a mixture of medium-coarse sand while the estuarine intertidal is

characterised by a mixture of medium to fine sand and some finer material. Stratigraphically,

there appears to be a high degree of consistency in the PC-based sample clustering from surface

through to 15 cm deep (Figure 6.7C). These results also suggest that sediment characterisation in

this physical context is relatively insensitive to the sampling depth within the near-surface zone.

A more detailed analysis of stratigraphic variations is undertaken in Section 6.1.5.
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Figure 6.6 Principal component scores in relation to the grain size distribution for the St Ives Bay -
Hayle system (see text for explanation).

Figure 6.7 St Ives – Hayle combined plots of PCA and cluster analysis of the grain size distribution
(A), comparing the relative sub-environment (B) and relative stratigraphic depth (C).

*Note: Cluster demarcation - Cluster 1 {Thick line}, Cluster 2 {dashed line}, and Cluster 3{light dot line}
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6.1.2 Crantock beach and the Gannel estuary

In Gannel Estuary, a total of 19 short cores (length < 15 cm) were collected, during October

2011 field sampling, from the Gannel - Crantock intertidal zone (Figure 6.8) using a 65 mm

diameter tube. Sample locations were positioned using a hand-held Global Positioning System

(GPS), (±4 m). The Gannel is a ria estuarine system comprising sandy intertidal flats (c.70% of

the valley is intertidal Davidson, et al., 1991) within a narrow valley merging with a large sandy

beach-dune system (Crantock) at the seaward extent, which is characterised by sandy

megaripples (c. 10 - 25m wavelength) bedform sediments that merge with a narrow sandy

intertidal flats and saltmarshes that infilled the valley at the landward estuarine extent where

megaripples (c. 5-10m wavelength) persists (Site B, Figure 6.9B).

Figure 6.8 The Crantock Beach - Gannel Estuary sites sampled for sediment analysis.

Figure 6.9 Photographs showing surface conditions in the two main sedimentary environments
surveyed. Sites are A – Crantock Beach and B – Gannel Estuary (see Figure 6.8 for location).
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Figure 6.9 cont.

Grain size distributions of sediment sampled from the two sites (A and B) are summarised and

presented in figures 6.10. Sediments at site A (Crantock Beach) are dominated by particles in a

mixture of medium sand (250-500 µm) and coarser/very coarser sand distribution (500-1000

µm) while sediments at site B (the inner estuary) in the inner estuary comprises a more broad

medium sand (MS, 250-500 µm), and relative population of fine sand (FS, 125-250 µm), silt (4-

63 µm) and clay (0-4 µm). The continued presence of the medium sand population in the two

sites suggests that sediment exchange is active between the estuary and the beach.

Figure 6.10 Surface sediment characteristics in the Crantock beach - Gannel estuary system, for all
samples obtained within the depth range 0-5cm: sediment at each site is also summarised as a mean
distribution (solid black line). Sites are A – Crantock Beach, B – Estuary.
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Figure 6.11 Exploratory sediment analysis – grain-size statistics – (A) Mean vs. Sorting (B) Mean

vs. Skewness (C) Median vs. Sorting and, (D) Median vs. Skewness.

Median (µm), sorting (µm) and skewness values of sediment samples (sites identified in Figures

6.8 and 6.9) from both estuary and beach environment are summarised in Figure 6.12. Median

grain size is consistently variable through the shallow stratigraphies examined here, but sediment

recovered from the two sub-environments show marked differences. The bulk of the samples

(76%) can be classified as moderately to well sorted sand, while about 24% of samples can be

described as poorly to extremely poorly sorted sand or silt. Sediment size sorting improves with

an increase in grain size. The more poorly sorted sediments are classified as silt/fine sand and the

moderately to well sorted sediments are classified as medium/coarse sand.

Figure 6.12 shows sediment results for the Gannel-Crantock system defined by site (sedimentary

environment) and sample depth (0-5cm, 5-10cm and 10-15cm from the intertidal sediment
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surface). The boxplot analyses here show little systematic variation in grain size parameters with

depth as there are significant difference in depth for median statistical parameters but no

significant different for the sorting and skewness. The significant differences for median (with

the exception of sorting and skewness) are reported across all the sites with depth and at 10-15

cm for skewness. Differences between estuary and beach environments are significant (at 99%

level) for both the median (μm) and skewness across the sites but not significant for sorting 

(standard deviation expressed in μm units) (Table 6.4). The results clearly show the consistency 

in the sedimentary processes over the depth of 15cm for the two sites as there is no significant

difference based on the sample depth (p > 0.05) across all the sites and depth and for all the

statistical parameters considered here (Site A & Depth and Site B & Depth, Table 6.4 and Figure

6.12). Here, the sample sites are not associated with significant differences but with sample

depth for median, irrespective of the depth (up to 15 cm). There is no significant impact of

sorting through the 0 – 15 cm depth, 0 – 10 cm depth for skewness but significant difference for

the 10 – 15 cm depth for skewness.

Figure 6.12 Summary of sediment statistics for sedimentary environments at the Gannel Estuary.
Data are divided based on sub-environment (Beach and Estuary, located in Figure 6.5) and depth
(using 0 – 5cm, 5- 10cm and 10 – 15cm stratigraphic units)

Differences in the sediment population, and evidence for mixed sediment sources (e.g. the likely

input of mining waste derived sediment vs. the contribution from the marine environment) may

explain the differences in grain size texture, but these summary statistics are often blunt tools

with which to compare sediments with complicated grain size distributions. Multiple modes are
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particularly difficult to account for in summary statistics, but the full distribution allows

recognition of these sub-populations (Figure 6.10). The difficulty with distribution data is that it

is not readily comparable (sample to sample), but multivariate statistics can be used to derive a

smaller number of variables which to compare the majority of the variance in the data, in

addition to exploring differences and associations in the data for the grouping of similar

characteristics.

Table 6.2 Results (p-value) of one-way analysis of variance of selected sediment statistics,
considering groupings based on sample site and depth, using the Kruskal Wallis non-parametric
method.

Group D50 Sorting Skewness

Site <0.001 0.605 <0.001

Depth 0.431 0.896 0.409

Site A & Depth 0.11 0.503 0.161

Site B & Depth 0.38 0.733 0.837

0-5cm & Site <0.001 0.283 0.005

5-10cm & Site <0.001 0.693 0.087

10-15cm & Site <0.001 0.61 <0.001

Principal Component Analysis (PCA) was used to reduce the grain size distributions across all

samples into a smaller number of key variables. Hierarchical cluster analysis (using Euclidean

distance and average linkage, which produced the strongest cophenetic correlation of 0.74) was

applied to the grain size distributions to organise samples into groups comprising similar

sedimentological characteristics. The principal component analysis of the grain size distribution

presented here derived two principal components (PCs) which also together account for

approximately 93% of the variance (Figure 6.13). PC1 explains 76% of the variance and is

dominated by the medium sand (MS) part of the distribution, and to a lesser extent coarse/very

coarse sand (CS/VCS) and some fine sand (FS), but a distinct lack of material smaller than fine

sand. PC2, accounting for 17% of the variance, relates to a coarse component, specifically the

presence of coarse and very coarse sand (VCS), and the lack of a fine-medium sand (FS/MS)

component.
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Figure 6.13 Principal component scores in relation to the grain size distribution (see text for
explanation).

The principal component and cluster analyses of the Gannel sediments reveal that the beach

environment is predominantly characterised by a mixture of medium-coarse sand while the

estuarine intertidal is characterised by a mixture of medium-fine sand and finer material.

However, there is some clear overlap in sediment populations from these sub-environments,

evidenced in clusters 1 and 2 (Figure 6.14A). This implies that there is at least some sediment

exchange (sand) between beach and estuary and that this is contemporary, given that it is

evidenced by sediments at, and close to, the surface. Stratigraphically, there appears to be a high

degree of consistency in the PC-based sample clustering from surface through to 15 cm deep

(Figure 6.14C and Section 6.1.5). This further supports the inference that both the

compartmentalisation and partial exchange between beach and estuarine sub-environments can

be attributed to the contemporary process regime. These results also suggest that sediment

characterisation in this physical context is relatively insensitive to the sampling depth within the

near-surface zone.
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Figure 6.14 Crantock beach - Gannel combined plots of PCA and cluster analysis of the grain size
distribution (A), comparing the relative sub-environment (beach vs. estuary (B)) and relative
stratigraphic depth (C).

*Note: Cluster demarcation - Cluster 1 {Thick line}, Cluster 2 {dashed line}, and Cluster 3{light dot line}

Comparison of these first two principal components in a bivariate plot shows that sub-

environment (estuary or beach) is a clear discriminator of sediment characteristics (Figure

6.14B), whilst stratigraphic depth is not (Figure 6.14C). Hierarchical cluster analysis of the grain

size distributions facilitates a more formal grouping of samples comprising similar grain size

distributions. The separation of samples identified in the PCA is clarified in the clustering of

samples into 5 groups; all but 2 samples (both mid-depth, estuarine samples) are within clusters

1, 2 and 4, which can be described as environment-specific groupings (Figure 6.14). Cluster 1

refers to medium to high values on both PC1 and PC2, indicating a dominance of the coarser

grain sizes and small contribution of finer material to these distributions. This cluster generally

characterises the beach environment. Cluster 2 refers to high PC1 and low PC2 values, which

corresponds to a dominance of fine and medium sand in the grain size distribution. This cluster

largely represents estuarine sediments, though several beach samples also exist in this group.

Cluster 4 refers specifically to low PC1 and PC2 values, representing those samples containing a

mix of fine material (silt and very fine sand) and limited coarser component: cluster 4 comprises

entirely estuarine samples.



6. Sedimentology and Sediment Processes

Temitope Oyedotun 143

6.1.3 Padstow Bay and the Camel estuary

Using a 65-mm-diameter tube, 44 short cores (length < 15 cm) were collected, in October 2011,

from the seven separate intertidal sedimentary environments (sites) across the Camel estuary

(Figure 6.15). Sample positions were recorded (±3 m rms error) using a hand-held Global

Positioning System (GPS). The sedimentary environments of the estuary are characterised by

extensive sand flats. In the outer estuary, planar high intertidal beaches merge with low intertidal

flats (e.g. site A, Figure 6.16), whilst the middle reaches are characterised by a variety of

bedforms (sites C, D and F, Figure 6.16) ranging from megaripples (c. 10-20m wavelength) and

to wave-current ripples (c. 10-25 cm wavelength). In the upper reaches of the estuary, extensive

sand flats give way to narrow muddier features that merge with relic gravel shoreline deposits.

Consideration of the full grain size distribution across the sites provides an opportunity to

characterise sediment populations and explore mixing (Figure 6.17). The grain size distributions

illustrate the clear similarity across a large proportion of the sediments sampled, with the modal

size generally lying within the medium sand (and upper parts of the fine sand) region of the size

spectrum. Sediment in the range 160-500 µm (representing the overall 16th-84th percentiles)

constitutes the dominant sediment population in this estuary, and this population is present

throughout the system, except at the far inner estuary (site G). Site D (southeast of Padstow) is

possibly the only site where this population is not significantly supplemented with sediment

across a broader range of sizes. In the outer estuary, the 160-500 µm population merges with a

coarser (500-2000 µm) one, whereas mid-estuary sediment (C, E and F) is mixed with a distinct

finer (silt and clay) population presenting a bimodal distribution. The inner estuary site G is also

bimodal, but comprises a clay population and a more dominant broad silt/very fine sand

population.
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Figure 6.15 The Padstow Bay - Camel Estuary sites sampled for sediment analysis.

{Note: the establishment of larger parts of the system as SSSI constrains the spatial distribution of sediment sampling}

Visual inspection of the outer estuary samples (sites A and B) suggests that the coarse to very

coarse sand population that is mixed with the core fine-medium sand population, is composed of

shell fragments. This is a common feature of outer-estuary and inlet-associated beaches

(Buynevich and Fitzgerald, 2003), and the lack of this population from the rest of the estuary

suggests i) lower energy processes that are unable to break down intact shells, leading to a

paucity of shell fragments; ii) lack of transport or attrition during transport of shell fragments

from the outer to inner estuary; and possibly iii) a lack of mollusc-habitat.
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Figure 6.16 Padstow – Camel photographs showing surface conditions in the seven main
sedimentary environments surveyed. Sites are the outer estuary (A – Harbour Cove/Hawker’s
Cove, B – Daymer Bay), mid-estuary (C – Porthilly Cove, D – near Padstow, E, F) and inner
estuary (G). See Figure 6.15 for location.
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Figure 6.17 Surface sediment characteristics in the Padstow Bay - Camel estuary system. Grain size
distributions are shown for all samples obtained within the depth range 0-15cm at locations in the 7
main sedimentary environments examined: sediment at each site is also summarised as a mean
distribution (solid black line). Sites are A – Harbour Cove/Hawker’s Cove, B – Daymer Bay, C –
Porthilly Cove, D – near Padstow, E – mid-estuary, F – mid-estuary, and G – inner-estuary.
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Figure 6.17 cont. Surface sediment characteristics in the Padstow Bay - Camel estuary system.

The exploratory sediment analysis of grain size statistics – mean vs. sorting, mean vs. skewness,

median vs. sorting and median vs. skewness are presented in Figure 6.18. The seaward sites A

and B comprise 12% and 57% positively skewed and mid-estuary sites D and F are largely

symmetrical. Very positively skewed sediments only occur at site E, where symmetrical

distributions dominate but negatively skewed sediments are also present. Sites C and G are

dominated by negatively and very negatively skewed sediments (73% and 90% respectively).

Overall, sediment distributions from the outer estuary have a coarse tail (i.e. an important coarse

sand component), and those from sites C (Porthilly Cove) and G (inner estuary) comprise a

significant fine tail (of fine sand, silt and clay). This suggests that the headland to the immediate

north of Porthilly Cove might have provided important protection to the tidal flat there, allowing

the deposition of very fine material. In general, the sediment statistics show that the outer and

middle estuarine sediments are moderately well/well sorted, near-symmetrical/positively skewed
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medium-coarse sand. Inner estuary samples are finer (sand and silt), less well sorted and

negatively skewed. Sites in the mid estuary exhibit characteristics of both the seaward and

landward sediments.

Figure 6.18 Exploratory sediment analysis – grain-size statistics – (A) Mean vs. Skewness (B) Mean

vs. Sorting (C) Median vs. Skewness and, (D) Median vs. Sorting

The median (µm), sorting (µm) and skewness statistics derived from the grain size distributions

of sediment sampled from each of the sub-environments are summarised and presented in Figure

6.19. Median grain size remains relatively consistent across sites A to F, broadly classed as

medium sand (250 - 500 µm). There is clear consistency (and no significant difference) in

sedimentology at each site, irrespective of depth below the surface (Table 6.5). The seaward sites

(A and B) also comprise coarser samples (8 - 12% coarse sand) whilst the mid-estuary sites (C

and D) comprise finer samples (10 - 18% fine/very fine sand). Farther into the estuary, silts and

clays are increasingly present. Sediment at sites E and F retains the medium sand characteristics

of the seaward sites, but several samples here are silt or clay (<63 µm). Silt dominates (97%) at
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site G where some variation with depth is apparent: fine silt at the surface and very coarse silt at

depth.

The vast majority of sediments throughout the estuary are either moderately well sorted (46%) or

moderately sorted (33%), but those at site G are very poorly sorted (Figure 6.19). There is also a

significant difference in sorting at different depths at site G, where surface sediments are far

more poorly sorted than those found at depth. Sediment at sites C and D in the broadest part of

the estuary (Porthilly Cove and Padstow respectively) also exhibit significant, but less

pronounced differences in sorting with depth. Where sorting varies with depth, there is no

consistent trend: at site D, sorting worsens with depth, but at site C the 5 - 10cm unit is more

poorly sorted than deeper or surface sediments. Sediment near Padstow (D) is particularly well

sorted, as with most sediment from site E where there are also occasional samples across the

depths that are extremely poorly sorted. Sediment size distributions are predominately

symmetrical (72% of samples).

The results clearly show that the contemporary sedimentary processes are consistent over a depth

of 10 to 15 cm. The sedimentological discrimination demonstrated here is present throughout the

cm-scale units. This could be the result of contemporary sediment activation (transport

mechanisms) occurring throughout the near-surface profile. Alternatively, this may indicate

significant consistency in the processes responsible for transport and deposition over the

sedimentary timescale associated with the accretion of this profile. It is clear that a consistent

sedimentary interpretation is achieved irrespective of where a sediment sample is obtained

within 10 to 15 cm of the intertidal surface.

The continued presence of the fine-medium sand population within the near-surface deposits

throughout the outer and central the estuary suggests that sediment exchanges remain quite

active between these zones. This might reflect the characteristics of the primary sediment source

for this sediment, which could be marine, largely derived from glacigenic shelf sands that

contribute a fine-medium sand population to a wide range of coastal sedimentary environments

in northwest Europe (Ballantyne, 2002). Large-scale tidal-current forced bedforms extend well

into the central region of the estuary, demonstrating the ability of tidal currents to transport large

quantities of this fine-medium sand (Figure 6.19). It is this tidal forcing that is clearly most

important here in transferring sediments between the sedimentary systems, and enabling the

delivery of the core fine-medium sand to most parts of the estuary.

Sedimentologically, the inner estuary presents a significant departure from the other

environments examined. The fine-medium sand population has not been transported this far into

the estuary: it is likely that channel-margin deposits will comprise some of this core sediment,

but the intertidal flats here are largely mud-dominated, reflecting a progressive reduction in

energy regime toward the estuary head and estuary margins.
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Figure 6.19 Summary of sediment statistics for sedimentary environments within Padstow
Bay/Camel estuary. Data are divided on the basis of site (A to G, located in Figure 10) and depth
(using 0-5cm, 5-10cm and 10-15cm stratigraphic units)

Table 6.3 Results (p-value) of one-way analysis of variance of selected sediment statistics,
considering groupings based on sample site and depth, using the Kruskal Wallis non-parametric
method.

Group D50 Sorting Skewness

Site <0.001 <0.001 <0.001

Depth 0.405 0.681 0.355

Site A & Depth 0.527 0.820 0.82

Site B & Depth 0.257 0.656 0.633

Site C & Depth 0.111 0.019 0.051

Site D & Depth 0.322 0.036 0.708

Site E & Depth 0.188 0.6 0.608

Site F & Depth 0.125 0.088 0.408

Site G & Depth 0.549 0.536 0.254

0-5cm & Site <0.001 <0.001 <0.001

5-10cm & Site <0.001 <0.001 <0.001

10-15cm & Site <0.001 <0.001 <0.001

In Camel Estuary, the principal component analysis of the grain size distribution account for

approximately 96% of the variance (Figure 6.20). The PC1 indicates 89% of the variance is

dominated by the medium sand (MS) part of the distribution, and to a lesser extent coarse/very

coarse sand (CS/VCS) and some fine sand (FS), but a distinct lack of material smaller than fine

sand. PC2, accounting for 7% of the variance, relates to a coarse component, specifically the

presence of coarse and very coarse sand (VCS), and the lack of a fine-medium sand (FS/MS)

component.
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Figure 6.20 Principal component scores in relation to the grain size distribution at Camel Estuary
(see text for explanation).

Combined plots of PCA and cluster analysis of the grain size distribution presented in Figure

6.21 compare the principal components of the relative sub-environment (B) and relative

stratigraphic depth (C). This comparison shows that the main sub-environments (outer-estuary,

mid-estuary or the inner-estuary) are the clear discriminator of sediment characteristics (Figures

6.21A and B), whilst stratigraphic depth is not (Figure 6.21C). Separation of samples identified

in the PCA is clarified in the clustering of samples into 4 groups; all but 2 samples (both mid-

depth, estuarine samples) are within clusters 1, 2 and 4, which can be described as environment-

specific groupings (Figure 6.21A). Cluster 1 refers to medium to high values on both PC1 and

PC2, indicating a dominance of the coarser grain sizes and small contribution of finer material to

these distributions. This cluster generally characterises the outer-estuary and mid-estuary

environment. Cluster 2 refers to high PC1 and low PC2 values, which corresponds to a

dominance of fine and medium sand in the grain size distribution. This cluster largely represents

mid - estuarine sediments. Cluster 4 refers specifically to low PC1 and PC2 values, representing

those samples containing a mix of fine material (silt and very fine sand) and limited coarser

component: cluster 4 comprises entirely inner estuarine samples.
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Figure 6.21 Padstow – Camel combined plots of PCA and cluster analysis of the grain size
distribution (A), comparing the relative sub-environment (B) and relative stratigraphic depth (C).

*Note: Cluster demarcation - Cluster 1 {Thick line}, Cluster 2 {dashed line}, and Cluster 3{light dot line}

Sediment populations are relatively coherent throughout the 15cm sampling depth, and more

broadly do not present any consistent or well developed trends from surface to depth (Figure

6.21C). Overall, this suggests that compartmentalisation and sediment interchange within the

estuary can be attributed to the sedimentary process regime, and that the grain size signature of

this is almost completely insensitive to depth. Only in the upper reaches of the estuary are there

significant and systematic variations in sedimentology with sediment depth, exhibiting a fining

upward and increasingly poorly sorted sequence. This suggests a broadly low energy regime that

is possibly impacted infrequently by higher energy processes. Without further analysis of

sediment geochemistry, it is not clear the extent to which these are sourced from fluvial inputs,

or indeed if they are linked in any way to mining waste. Section 6.2 explores the sedimentary

connectivity of the system through the evaluation of geochemical composition of the intertidal

sediments.
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6.1.4 Regional comparison of surface sedimentology

In general, the sedimentary environments of the systems investigated in North Cornwall are

characterised by sand flats. However, the differences in sediment patterns are evident based on

the grain size distributions from the different depositional environments. On a regional level,

there is evidence that the open coast and beach/dune system of all the three coastal systems are

composed of the coarse/very coarse (CS/VCS) and medium sand (MS) grain sizes with small

contributions of finer material to the distributions (Figures 6.3, 6.10, 6.17). A closer look at the

distribution of the sediment on a regional perspective shows that about 82% (for Hayle), 76%

(for Gannel) and 89% (for Camel) of the sediment composition are dominated by medium sand

(MS) part of the distribution, and to a lesser extent coarse/very coarse sand (CS/VCS) and some

fine sand (FS). The components of the sand at the beaches and open coast of the estuary are

predominantly characterised by a mixture of medium – coarse sand while the estuarine sediment

population are mainly a mixture of medium - finer sand and finer materials. Although silts and

clays are present in the inner environment of the estuaries, they are however absent in the open

coast/beaches/outer section of the estuaries. This ubiquitous pattern of arrangement shows that

grain size diameter varies spatially in response to the local hydrodynamic forces and conditions.

In terms of sorting and skewness, the sediments along the coastlines of the estuaries in the

region, are largely moderately well sorted with near symmetrical/positive skewness while those

found in the inner estuaries are less well sorted and some, negatively skewed (See Sections 6.1.1

– 6.1.3).

The sediments sampled along the coastlines/outer estuary-seaward indicate the mixture of fine

medium and coarse sand population, likely reflects the combination of marine sediment source

and higher energy processes. Within the estuaries, the silt and clay population, combined with

the fine-medium sand, suggests mixing with fluvially-sourced material. The coarse sediments

found in some points within the estuarine environments may have constitute ‘lag’ deposits which

may be too heavy to be transported during the flow processes thereby left “in situ” as other

materials are being sorted and transported.

In summary, from the grain size composition/distribution perspective, the sand population in

most of the outer estuary/beaches in all of the three estuaries in the region are composed of

similar single particle-size population with minor variation in systematic characteristics. The

simple interpretation which can be given to this form of distribution is that the major sand

population in the region is derived from a seaward source (possibly from the Celtic sea where the

estuaries are opened to) with possible small contributions from the fluvial/river borne sediments.

The overlap of marine derived and fluvial-derived sediment population is evidenced in where

there is exchange between the estuary and the beach (coast), notably by samples from the estuary

mouth and inlet – (for example, sites C in Hayle, site B in Gannel and sites C and D in Camel).

This means that to a large extent, there is at least some exchange between the inner estuary and
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the beach, evidenced by the sediment at, and close, to the surface. This line of hypothesis is

investigated further by examining the elemental composition of the sediment samples at the

estuary and along the coast in some of the sites of the investigation in all of the three estuaries -

this is discussed in section 6.2.

6.1.5 Stratigraphic variations in sediment texture

The study of any grain size trend should take into the account the sampling depth. Gao and

Collins (1992) stated that sampling depth must not be too great so as to avoid mixing “ancient”

and “modern” net transport, if the grain-size trend is aimed at identifying the local dynamic

forces determining the transport of sediment. This section provides a generalised indication of

down core (length <15 cm) changes in sediment textures in the estuaries. The stratigraphic

investigation of the texture can provide information or important insights into depositional

processes and probably the environmental condition driving the depositional processes.

6.1.5.1 Local site-specific detail

The principal component and cluster analyses of the sediments in the estuaries have been used to

decompose the grain-size distributions into four main clusters of sediments compositions.

Figures 6.22, 6.24 and 6.26 for St Ives bay-Hayle, Crantock-Gannel and Padstow-Camel systems

respectively present the stratigraphic of sediment distribution from the surface through to 15cm

depth. In St Ives-Hayle system, there appears to be a degree of consistency in sediment

distribution pattern from surface through the 15cm depth in all of the sample sites, except at Site

B where there is a contribution of silt at 6 – 7cm below the surface (Figure 6.22). Similarly in

Crantock-Gannel system, the relative consistency of sediments composition and distribution

through-out the 15cm sub-surface depths are noticed in the two sites, except at 1 – 2 cm and 3 –

4 cm where there are relative significant contribution of silt in Site A (Crantock Beach) and

notable signature of clay sediment from 6 cm down-core to 15 cm at Site B (the Gannel’s inner

estuary) (Figure 6.24). For Padstow-Camel system, the variation in depth of sediment

composition is pronounced at Site F and G where silt (Site F) and combination of silt and clay

sediments (Site G) provide the variation in sediment consistency. The slight variation is also

observed at 6 – 7 cm and 4 – 6 cm at Sites B and C (as a result of presence of silt and clay

respectively) (Figure 6.26).

Figures 6.23, 6.25 and 6.27 respectively present the stratigraphical clustering of the surface

through the 15cm depth. The sediment samples in the estuaries are classified in the clustering of

the samples into distinct environment of specific groups based on Principal Components (PC)

discussed in Section 6.1.1 (specifically based on Figures 6.7, 6.14 and 6.21).
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Cluster 1 refers to medium to high values of the principal sediment components, indicating a

dominance of coarser grain sizes and small contribution of finer materials to the distributions.

This cluster types characterises the beach environment of Godrevy Towans of the Hayle Estuary

(Figure 6.23), Crantock Beach of Gannel Estuary (Figure 6.25) and the outer-estuary of Camel

(Figure 6.27) respectively.

Cluster 2 refers to the high and low values of sediments principal components which correspond

to the dominance of fine and medium sand in the grain size distribution. This cluster group

largely represents most parts of the Hayle and Camel Estuaries and the beach-estuarine

sedimentary environment in Gannel Estuary, respectively.

Clusters 4 and 5 refers specifically to low values of sediment principal components and represent

the samples containing a mix of fine material (silt and very fine sand) and limited or no coarser

components. The clusters 4 and 5 relates almost entirely to estuarine samples although scattered

representation of the group are found in at Crantock Beach of Gannel Estuary indicating a direct

sedimentary exchange between the beach and estuary (see Figures 6.23, 6.25 and 6.27).

Stratigraphically, there appears to be a high degree of consistency in the principal component-

based sample clustering from surface through the 15cm depth. Despite the lack of overall

significance difference, there are minor occurrences of clay-silt peaks sub-surface in several

cores. This observation does support the inference that both the compartmentalisation and partial

exchange between the beach/coastal sediments and estuarine sub-environments can be attributed

to the contemporary processes in the region. These findings also suggest that sediment

characterisation in this physical context is relatively insensitive to the sampling depth within the

near-surface zone.
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Figure 6.22 Stratigraphical sediment size distribution analysis for the St Ives Bay - Hayle estuary system from the sampling sites. Sites are A –
Lelant/Carrack Gladden, B – Carbis Bay/Barrepta Cove, C – Black Cliff and D – Godrevy Towans (see Figure 6.1 for location).
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Figure 6.23 Depth variation in the distribution of sediment sub-populations clusters within the St Ives Bay - Hayle estuary system.
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Figure 6.24 Stratigraphical sediment size distribution analysis for the Crantock-Gannel system
from the sampling sites. Site A – Crantock beach; Site b – Gannel estuary.

Figure 6.25 Depth variation in the distribution of sediment sub-populations clusters within the

Gannel estuary and the beach.
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Figure 6.26 Stratigraphical sediment size distribution analysis for the Padstow/Camel system from the sampling sites. Sites are outer estuary/open coast (A
– Harbour Cove/Hawker’s Cove, B – Daymer Bay), mid-estuary (C – Porthilly Cove, D – near Padstow, E, F) and inner estuary (G). See Figure 6.15 for
location.
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Figure 6.26 cont. Stratigraphical sediment size distribution analysis for the Padstow/Camel system.
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Figure 6.27 Depth variation in the distribution of sediment sub-populations within the Camel
estuary.

6.1.6 Regional comparison of intertidal sedimentary environments

The comparative examination of the down-core grain size distributions across the beach sites

studied in the region are presented in Figure 6.28 as ‘heat maps’, which illustrate changes in the

percent frequency distribution through variance in colour intensity. An equivalent comparison of

estuarine tidal flat sites is presented in Figure 6.29. Across the open-coast sites, the beach and

outer-estuary sediments comprise a mix of fine, medium, coarse and very coarse sands, and the

distributions are broadly consistent through the stratigraphy (Figure 6.28). The estuarine

environment sediment size distributions are also relatively coherent throughout the 15cm

sampling depth, with no evidence of specific trends from surface to depth (Figure 6.29). A clay

population is notably present within the inner Camel estuary, and to a lesser extent in the Hayle

and Gannel. Apart from this, the estuarine sediment size distribution is centred on FS, MS and to

a lesser extent, CS.
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The spatial sedimentology presented here concurs with many previous studies of sediments in

beach and estuary environments. The energy regime within the open-coast - estuary systems

considered here shifts from high energy (wave-dominated) within the open-coast, beach

environment, to high energy (tide-dominated) within the constricted inlet regions, to low energy

within the inner estuarine environment. Here, sediments across the region are generally

characterised by medium sands. The sediment of open-coast, beach environments tends to skew

the distribution to coarser, with the presence of coarse sand. This reflects the higher energy of

these environments. Energy levels decrease within the estuarine environment: although the

system is macrotidal, the tidal prism here is limited by the narrow accommodation space, and

open coast waves are unable to propagate into the estuary. This leads to a shift in the distribution

to finer sediments, with a prevalence of fine sand and the presence of small populations of very

fine material.
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Figure 6.28 Grain size distributions, represented as heat maps, for all the beach sites. Colour scale within the heat map represents the percent frequency
(%) of the grain size distribution down-core. Note: VFSilt – Very fine silt, FSilt – Fine silt, MSilt – Medium silt, VCSilt – Very coarse silt, VFS – Very fine
sand, FS – Fine sand, MS – Medium sand, CS – Coarse sand, VCS – Very coarse sand).
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Figure 6.29 Grain size distributions, represented as heat maps, for all tidal flat sites. Colour scale within the heat map represents the percent frequency
(%) of the grain size distribution down-core. Note: VFSilt – Very fine silt, FSilt – Fine silt, MSilt – Medium silt, VCSilt – Very coarse silt, VFS – Very fine
sand, FS – Fine sand, MS – Medium sand, CS – Coarse sand, VCS – Very coarse sand).
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6.2 Geochemistry of southwest coastal and estuarine sediments

Previous research on the estuaries in the North Cornwall have primarily focused on the impact of

mining on sediments and sedimentation (for example, Reid and Scrivenor, 1906; Bryan et al.,

1980., Pirrie et al., 1999; Pirrie et al., 2000a, b; Rollinson et al., 2007; Pirrie et al., 2009, etc).

The historical siltation of the estuaries’ mouth has been attributed to a combination of sediments

released from mine works in the catchments supplemented with marine-derived shell-rich sand

(Reid & Scrivenor, 1906), implying that sediments throughout the estuarine mouth comprise a

mixed population of sediments from these two sources. Heavy metal contamination research in

estuaries in southwest England has confirmed the strong sedimentary link to mining wastes. The

present section complements these previous works by exploring the sedimentary connectivity of

the system through the evaluation of the geochemical composition of the intertidal sediments

within the various sedimentary environments in all of the estuaries.

6.2.1 Elemental composition of intertidal sediments

The major and minor/trace elemental analysis of a selection of some few samples from the field

samples in each of the three systems is presented in Figures 6.31 – 33 and 6.36 – 6.38

respectively. The major elements are determined as a percentage composition (Norrish and

Chappell, 1977) while the minor/trace elements analysis are undertaken to obtain data in

concentrations of one to several tons and parts per million (microgram-mg or a gram g). Sample

sediments from Sites A, C, and D of Hayle Estuary (Sample sites in Figure 6.1), Sites A and B of

Gannel Estuary (Sample site in Figure 6.8) and Sites A, B, C, E and F of Camel Estuary (Sample

sites in Figure 6.15) respectively are analysed for elemental composition and the results of the

XRF analysis are presented in this section.

Major geochemical element analysed (XRF) here are: Ca (Calcium), Si (Silicon), Al

(Aluminium), Fe (Iron), Cl (Chlorine), Mg (Magnesium), Na (Sodium), K (Potasium), Ti

(Titanium), S (Sulphur), P (Phosphorus), Mn (Manganese), V (Vanadium), and Cr (Chromium).

The comparison of total base cation content (Si, Mn, P, CI and Fe) of the Hayle estuaries is high

compared to total content analysed for other estuaries while Mg, Al, S, and K of the major

elements considered are, however, higher in Camel Estuaries (Figures 6.30). The total base

cation content (Na, Mg and K) is low (<5% in total) in all of the sites with the exception of Ca

which is much higher (~>= 20%). Patterns in Ca distribution at the systems are broadly similar

across the sites. Shell material was clearly present in the sediments sampled, and fragments were

noted to contribute to the medium and coarse sand size populationsHowever, in all of the

estuaries, Na, Mg, Si, S, and K have relative lower percentage (0.1 – 6%) of composition in all

of the system.



6. Sedimentology and Sediment Processes

Temitope Oyedotun 166

Figure 6.30 Statistical comparison of major element (XRF) composition (%) of intertidal sediments

The summary comparisons of major elemental composition between the estuarine sediments and

the beach/coastal sediments can be observed from the figures 6.31 – 6.33 and the first five

samples of the major elements is spatially represented in figure 6.34. The beach sediments in

Hayle have higher content of Si, Al and Fe (~13%, ~2% and ~2%) than estuarine (~8%, ~1.5%

and ~1.5%) sediments respectively, while there is no significant difference in the elemental

compositions of these major elements between the coastal and estuarine sediments in Gannel. In

another comparison, the beach sediments in Hayle have lower content of Ca (~20%) than its

composition in the estuarine (~34%) sediments. Similarly in Gannel, there is no significant

difference in the percentage elemental dimensions of Ca in both estuarine (~20 - ~28%) and

beach (~25%) sediments. In Camel estuary, however, the seaward sites (A - B) have lower

content of Al, Si and Fe (~2%, ~8% and ~2%) compared to the mid-estuarine samples (Sites C &

D, which are ~4%, ~12% and ~2%) and inner-estuarine samples (Site F, which are ~3%, ~13%

and ~2%) respectively.
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Figure 6.31 Major element (XRF) composition (%) of intertidal sediments at sampling sites in
Hayle estuary.

Figure 6.32 Major element (XRF) composition (%) of intertidal sediments at Gannel system.
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Figure 6.33 Major element (XRF) composition (%) of intertidal sediments at the Camel system.

Comparatively, in Hayle, the estuarine and inlet samples (Site A and C) exhibit a higher content

(23 – 33%) of Ca than the open coast/beach sample (Site D) (16 – 19%). In the Gannel, both the

estuarine and beach samples exhibit the similar proportions of Ca (19 – 28%). Calcium in the

Camel varies spatially: the outer estuary has a high percentage (sites A-C between 25 - 28%), the

mid- and far inner estuary slightly less (~20% at sites D & F). Site E in the inner estuary though

has the highest concentration of Ca at around 30%. This is the opposite trends observed for Al,

Fe and other related major elements. The Al and Fe content across all sites are around 1 - 3%

except in Camel sites C, D & F where the Al is around 3.5 - 4% (See figures 6.31 -6.33).
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Figure 6.34 Comparative sample of some major elemental composition in the estuaries (A – Hayle;
B – Gannel; C – Camel estuaries respectively)
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The geochemical profile of the trace elements sampled for analysis for the estuaries show Ti

(Titanium), Cr (Chromium), Co (Cobalt), Sr (Strontium), Se (Selenium), Sb (Antimony), and U

(Uranium) are abundantly registered in Camel compared to Hayle and Gannel while V

(Vanadium), Zn (Zinc), Br (Bromine), Zr (Zirconium), Ba (Barium), Ce (Cerium), Hg, and Pb

(Lead) are higher in Gannel Estuary and Cu (Copper), Ga (Galium), Ce (Cerium), As (Arsenic),

Rb (Rubidium), Y (Yttrium), Mo (Molybdenum), Ag (Silver), Sn (Tin), Te (Tellurium), I

(Iodine), Cs (Caesium), La (Lanthanum), Hf (Hafnium), Ta (Tantalum), W (Tungsten), TI

(Thallium), Bi (Bismuth), and Th (Thorium) in Hayle respectively. Trace elemental

compositions of the sample sediments from the sampling sites are presented in Figures 6.35 –

6.38 with the comparison of some few selected trace elements spatially compared in Figure 6.39.

Trace elements such as Zn, Rb, Sn, Sr, Zr, Ba, Pb, Ce, La, have high concentrations in all of the

samples when compared with other elemental dimensions. There is over 55% concentration of

Zn in all of the samples in Hayle and Gannel (> 70 µg/g) (Figures 6.35, 6.36 and 6.37), which

are higher than the concentrations in the outer-estuarine samples of Camel estuary (Sites A – B,

(~ 25 - 28 µg/g), Figure 6.38). It is only the mid-inner estuarine samples in Camel (Sites C - F)

which exhibit a significant composition of these elements (~70 - > 170 µg/g). The coastal/beach

sediments of Hayle Estuary have higher composition of Rb (> 100 µg/g), than estuarine samples

(~75 µg/g), while they are of low content in Gannel (< 60 µg/g) and Camel (< 50 µg/g) estuaries

respectively (except at site F, the inner estuary in Camel). The composition at the coastal

sediments of site D in Hayle is a bit lower than that of other concentration in the samples. The Zr

composition in Gannel and Camel estuaries are higher (> 35 µg/g), than sediments’ composition

of this element in the Hayle Estuary (< ~35 µg/g), while it is a different scenario for the Sn

concentration as there are higher concentration of this element in Hayle (> 400 µg/g), than in the

Gannel (< ~107 µg/g) and Camel (< 30 µg/g) estuaries. Ba and Pb are also of notable

composition (> 50 and > 10 µg/g respectively) in all of the sites with the significant dimension of

concentration recorded in Camel’s inner estuarine samples at site F (> 106 and 84 µg/g

respectively).

Sr (Strontium) is strongly associated with Ca (Calcium) and it is therefore strongly present where

Ca is apparent in all of the three systems. Sr content in sediments are highly controlled by

combination of parent rock materials and climate, and therefore its concentration is higher with a

range of 50 – 1000 mg kg-1 (Taylor, 1964). Here, the composition of Sr is higher in all of the

sample sites (> 1000 µg/g) except at Hayle Beach Site D where it is less than (<) 1000 µg/g.

Although Sr is easily mobilised and derived during weathering processes, notably in oxidising

acidic environments, it can also be incorporated in clay materials and fixation of organic

materials (Salminen, et al., 2005). The anthropogenic sources from industrial waste, especially

from Zn refineries, incineration ash and disposal of coal ash are other possible derivation of Sr in

sediments (Reimann and Caritas, 1998). History of mining wastes in the system are thought to
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contribute to the high content of Sr observed at the study sites in figures 6.35 and 6.39 (also See

section 6.2.2.).

The majority of the samples in all of the sites exhibit a reasonable high percentage of Si

dimension with Si being prominent at samples across the seaward/coastal zones, reflecting the

importance of the quartz component. The proportions associated with the other major elements,

for these samples, are minimal (Figures 6.35 and 40).

The result of the Principal Component Analysis (PCA), using the correlation-type in

Paleontological Statistics (PAST) software is presented in Figure 6.41. The first three main

eigenvalues (12.09, 8.9, 3.79) of the nineteen values in the analysis correspond to 35.6%, 26.2%

and 11.2% of the total variance respectively. Thus the first two principal components (PC),

presented as Biplot in Figure 6.41, provides the basic information about the differences in the

elemental composition. The x axis presents the PC1 while the y axis indicates the PC2 of the

elemental composition. Quite a lot of the minor elements are at/just above detection level and

therefore are ignored in the detailed analysis. Here, the difference between the Hayle and the

other two estuaries are obvious. Specifically, the Hayle is much higher in metal pollutants than

the other estuaries, and much lower marine carbonates (Ca, Sr) (See also Figure 6.40). The

inclusion of the grain size statistics did not really change the pattern of results (in the cluster or

PCA analyses), but it shows that coarser grain sizes in the Hayle are rather more strongly

associated with the metals Cu and Sn, but not associated with the metals Pb and Fe in the PCA

result presented here. This is a result of the Hayle system being contaminated by mining in the

19th century.
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Figure 6.35 Statistical comparison of minor element (XRF) composition (%) of intertidal sediments.
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Figure 6.36 Minor/Trace element (XRF) composition (ug/g) of intertidal sediments at sampling sites in St Ives Bay (B – D) and the Hayle Estuary (A).
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Figure 6.37 Minor/Trace element (XRF) composition (ug/g) of intertidal sediments at sampling sites in Crantock beach (A) and the Gannel Estuary (B).
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Figure 6.38 Minor/Trace element (XRF) composition (ug/g) of intertidal sediments at sampling sites in Camel Estuary.
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Figure 6.39 Comparative sampling of some minor elemental composition in the systems (A – St
Ives-Hayle; B – Crantock-Gannel and C – Padstow-Camel systems respectively).
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Figure 6.40 Comparison of major (Na to Fe) and minor/trace (Co to U) element composition across
the three sites (H - Hayle; C - Camel; G - Gannel). Elements Na to Fe are measured in %; elements
Co to U are measured in µg/g.
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Figure 6.41 Principal Component Analysis (PCA, using correlation-type in PAST) of the elemental (XRF) composition (%) of intertidal sediments and the
grain-size (represented as D50). (Note: colour representation: Hayle – light green dot, Gannel – Red dot , and Camel - Dark brown dot).
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6.2.2 Evidence for sediment sources

The current coastal and estuarine sediment build-up is as a function of either onshore or

offshore supply of natural sediments coupled with supplies arising from human activities

(Pirrie et al., 2000a). Cornish estuaries have received considerable attention regarding

sediment geochemistry - principally as a result of past mining activities in the region. The

distribution of Sn and other heavy materials in the superficial portion of the sediments in

Hayle Beach and Gwithiam area was attributed to the transportation of mine waste by the

River in the documented work of Hosking and Ong (1963-64). Although the River Hayle is

very active in the estuary and drains a significant part of the mining area, Pirrie et al.

(1999) observed that River Hayle alone could not have supplied much of such sediment to

Hayle’s beach as the estuary acts as an “efficient sediment trap”. Other studies have

recognised the sizeable depositions of Sn in the Hayle estuary, including the works of Yim

(1976), Merefield (1993), Healy (1995), Healy (1996), Pirrie et al (1999), Rollinson et al.

(2007) and Pirrie et al. (2009). Rollinson et al. (2007: 328) using Figure 6.42C to highlight

over 60 hard-rock mines operations which contribute discharge of large volumes of fine

grained tailings into the Hayle Estuary. The major mining operation areas (as black circles

in the figure), numerous smelting/mineral processing plants (as open circles in the figure)

and tin processing plants (location represented as grey circles) contributed the discharge of

large volumes of fine sediments enriched in Sn, Cu, As and Zn. Hayle was important sites

for Cu, Sn and large scale tin smelting and iron foundry in the eighteen and nineteen

century, the cessation of which contributed to the release of particulate mine waste to the

estuary (Firth and Smith, 1999; Buckley, 1999; Rollinson et al., 2007).

Pirrie et al. (2000b) suggests the Camel estuary is significantly enriched in Sn, W and Zr,

sourced from the release of particulate mine wastes directly from the hard-rock mining

activities at Mulberry and Lanivet region. Figure 6.42 (after Jenkin, 1963, 1964 in/from

Pirrie et al., 2000: 26) shows that tin mine waste in the Camel was likely sourced from

around Mulberry and Lavinet, where large quantities of cassiterite were discharged into the

estuary through local streams. The geochemical elemental profile of the estuarine

sediments shows the composition of mining related sediment supplied to the estuarine

system (Pirrie, et al. 2000b). Based on findings by Pirrie, et al. (2000b) and as indicated in

Figure 6.42B, “the Pb-Zn-Ag mine waste in the Gannel Estuary was derived from the

mines in the Newlyn Downs area such as East Wheal Rose” (2000b:26). This is also in line

with the findings of Bryan, et al. (1980) which also recognised the significant presence of

Pb in Gannel Estuarine sediments. The source could be attributed to the “cross-course”

mineralisation and mining activities at the estuary.

From the results presented in the previous section and the introduction in this section, it

can be stated that the elemental composition of the geochemical of both the estuarine and

beach/open coast sediment samples show that the build-up of the inter-tidal sediments in

the estuaries are as a result of offshore sources combined with the onshore sediments
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transported into the estuaries (which have been impacted as a result of human activities,

notably mining). The almost equal concentration of the major biogenic elements in all of

the estuaries supports the view that the valleys of the estuaries, with the infilling of

sediments of similar geochemical content at almost equal proportion, are derived as a result

of flood of the early Holocene. Pirrie et al. (2000a) stated that “in Cornwall, the Coastal

valleys or ria systems were flooded as a result of sea level rise in the early Holocene to

form the modern estuary system” (2000a:21). The almost homogenous concentration of the

major geochemical elements in the three estuaries suggest that bulk of the sediments which

in-filled the estuaries are derived from offshore as a result of the flooding of the valley

during the early Holocene.

Aluminium, potassium, manganese and iron (Al, K, Mn, and Fe) are the dominant signals

for the terrestrial/onshore inputs into the sediments in the region. The sedimentary

concentrations of these elements follow similar pattern in all of the estuaries. This indicates

here that both onshore and offshore contributions (evidenced by the concentration of

marine elements such as Mg, Sr, and so on) also interplay in supplying sediments to the

estuaries. In addition, one of the most important contributors to the siltation of the estuaries

in the 19th and 20th century is “the release of particulate waste from upstream mining”

(Pirrie et al., 2000b). The previous studies/works in the region (examples listed earlier)

have clearly indicated the significant role of previous mining industries in the region on

sediment supply to the coastal zones as evidenced in the concentration of some elements

(e.g, Sn, Sb, Pb, Zn, Ag, Cu and so on) which were the principal elements in the mining

industry.

The previous studies on Hayle Estuary (For example, Hosking and Obial, 1966; Yim,

1976; Merefield, 1993; Brown, 1977; Pirrier, et al., 1999b; Rolinson, et al.,2007) show

significant signature of metallic mine waste release into the estuary with record high values

of Sn, Cu, W, Pb and As in sediments sampled analysed for this study. Also, as stated by

Pirrie, et al. (2000b), the geochemical data for Camel estuary clearly indicated a pulse of

sediments which are significantly rich in Sn, W and Zr which “corresponds

mineraologically with abundant cassiterite, wolframite, zircon (Zr), monazite (Ce and La)

and xenotime (Y)” (Page 26). This suggests that the sediments is “clearly sourced from the

release of particulate mine waste derived from hard-rock mining activity centred around

high temperature sn-rich main stage mineralisation” (Pirrie, et al., 2000b:26). Of all the

estuaries, the Gannel is recognised to contain the highest Pb contamination of any estuary

in the South-West Engalnd (Bryan, et al., 1980; Pirrie, et al., 2000b). The geochemical

parameters of the sediments indicate that the sediment might have been “sourced from

particulate waste from mining activity centred on cross-course mineralisation” (Pirrie, et

al., 2000:27). Previous work in the estuary (Reid and Scrivenor, 1906; Bryan, et al., 1980;

Thorne, 1983; Pirrie, et al., 1999b; Pirrie, et al., 2000b) clearly suggest that Gannel

Estuary received “significant mine waste from mines working Pb-Ag-Zn lodes” (Pirrie, et

al., 2000b: 27).
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Figure 6.42 Summary diagram showing the main mining operations in the catchments of (A)
the Camel Estuary, (B) the Gannel Estuary, and (C) the Hayle Estuary, (A and B after
Jenkin, 1963, 1964 and Pirrie, et al., 2000b: 26 and C from Rollinson, et al., 2007:328).
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7 REGIONAL BATHYMETRIC CHANGE

___________________________________________________________________________

The previous chapters have focused on shoreline morphodynamics and sedimentology of the

study sites. Of importance, also, to the overall concept of morphological dynamics and

adjustments in coastal environment is the seabed behaviour. Nearshore bathymetric changes are

widely recognised as a potential force and control on coastal dynamics with wave energy

dissipation and modification of propagating waves, thereby resulting in longshore variations of

wave energy distribution and sediment transportation (MacDonal and O’Connor, 1996; Maa, et

al. 2001; Bender and Dean, 2003; Brooks, 2010; Hequette and Aernouts, 2010). This chapter

focuses on the morphological history of the seabed adjacent to the St Ives to Padstow Bay

coastlines, southwest England. SWAN wave modelling is undertaken to investigate how the

bathymetry influences nearshore wave climate, and bathymetric change analysis between 1931

and 2008 is undertaken to assess what impact changes in seabed morphology might have on this

wave climate.

7.1 Bathymetric change analysis

The seabed off the north coast of Cornwall comprises a steadily deepening shoreface. Unlike

other parts of the shoreface around England and Wales, there are no significant offshore sand

banks or ridge features (Figure 7.1). Numerous shipwrecks scatter the seabed in this region

owing to the presence of rocky outcrops and submerged rocky reefs. Even those features named

as shoals or banks (e.g. Bann Shoal and Cape Cornwall Bank) are indeed rocky ridges or

outcrops. Bathymetric contours broadly follow the coastline configuration except for around St

Ives and Padstow bays. At the former, contours extend some distance offshore and the shoreface

to the north and northwest of St Ives Bay is considerably shallower than the neighbouring

coastlines. In contrast, seabed contours move landwards at Padstow Bay, where the immediate

shoreface is considerably deeper than elsewhere on this coastline. Within 10km of Padstow Bay

however, lie multiple rocky outcrops. Based on annotations on the most recent Admiralty chart

for the region, the seabed comprises sand, broken shell and bare rock outcrops. It is clear from

the bathymetry that the mobile sediments are not organised into large-scale deposits, but instead

form discrete patches across a bedrock surface.

The analysis of historical change of the seabed in the region of interest between 1931 and 2008 is

presented in Figure 7.2. Sea-level change has not been adjusted for in these analyses, but as the

comparison of bathymetric surfaces, derived from digitised depth soundings shows some degree

of stability through the 77 year period. Scales of change are relatively small, but with only

discrete locations showing larger scale changes. The overall picture of change however is one of

shallowing -broad areas of the seabed unit show a positive signature of change, indicating that
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Figure 7.1 Current bathymetry of the north Cornwall shoreface.

Figure 7.2 The pattern of change in the seabed at Southwest England (1931 to 2008).
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the shoreface surfaced as accreted. Negative change (downwearing) is found in narrow patches

primarily closer to, and associated with, the rocky shorelines. The most significant region of

accretion is c. 15km to the north of St Ives Bay. The seabed here is covered in medium sand and

broken shell suggesting that it might be quite dynamic.

An estimate of the volume associated with this historical change was computed based on the

volume across the region of interest (kept constant) in 1931 and 2008 (Table 7.1). Based on this

analysis, the volume of seabed sediment increased by c. 8.3 x 108 m3, equating to an average

vertical change of +3.6 m between 1931 and 2008 across the entire shoreface analysed. As a

constant rate of change between 1931 and 2008, this is equivalent to 0.05 myr-1. Errors

associated with bathymetric surveying, datum conversions and interpolation procedures are

usually of the order 0.5± m. van der Wal and Pye (2003) reported a confidence interval of ±0.58

m), so this suggests that the changes observed here are well beyond the error margin.

Table 7.1 Area and volumetric seabed change in the region between 1931 and 2008.

Year Volume above

OD datum (m
3
)

2D Area covered

m
2

Volumetric

Change (m
3
)

Average vertical

change (m)

1931 67,695,288,575 2,306,017,499 8,313,542,205 3.61

2008 76,008,830,780 2,306,017,499

The depth of closure is an empirically-based measure that represents the seaward extent of

significant cross-shore sand transport by waves. Based on the work of Hallermeier (1981), it can

be calculated from wave metrics using the equation:

d = 2.28H - 68.5(H2/gT2)

where d = depth of closure; H = significant wave height, and T = wave period. Using this

equation, and the median wave height/period (1.67 m, 5.62 s) for westerly waves in this region

gives a depth of closure of 3.19 m. This implies that under normal conditions, one might expect

the morphological change and sediment movement across the seabed to a depth of c. 3 m (i.e. the

nearshore zone). Sediment movement in water depths beyond this would be attributed to storm

waves or tidal currents. Using the equation again, but based on the 90th percentile wave statistics

(which might represent higher energy, perhaps storm conditions) gives a depth of 7.4 m. Given

that seabed changes appear to cover the entire shoreface, morphological changes are taking place

beyond the depth of closure (even for high energy waves), and therefore a combination of

sediment transport processes must be taking place.

Shore-normal transects extending from the study sites for this research in north Cornwall coast

(Figure 7.3) reveal more about the changes shown (Figure 7.4). The transects are quite similar in

large-scale structure, with a more steeply dipping upper shoreface (around 0.36°) and a more
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gradual sloping lower foreshore (around 0.035°). Transect A extends from Padstow Bay to 12

km offshore, and it is around 10-12 km where the slope angle decreases. Gains and losses are

present along the full profile. Close to the shore, a nearshore feature present in the 1931

bathymetry has been removed, or possibly moved offshore as the same region in 2008 shows

accretion seaward of this 1931 feature. Accretion is evident along most of the profile to a

distance of about 10-12km, where erosion takes place. Sand and gravel cover much of the seabed

offshore from Padstow Bay, so the dynamics shown here are entirely possible.

Figure 7.3 The recent Admiralty chart for north Cornwall (no. 1178), and shore-normal transects
used in the bathymetric change analysis.

The transect offshore from Crantock is similar in structure to that from Padstow, and here the

upper to lower shoreface profile slope changes around 10 km. Relatively smaller changes are

found in the upper shoreface, erosion in the nearshore zone suggests steepening has occurred.

Offshore from 5 km, accretion dominates the change in profile, with 1-4 m deposition across the

seabed. The modern bathymetric chart shows that the upper shoreface comprises patches of

bedrock and sand, while an almost continuous coverage of sand and gravel is present across the

rest of the transect.
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Figure 7.4 Cross-estuary seabed profile (shore-normal transects) to the estuaries near Southwest England from 1931 to 2008 extracted from the
bathymetric gridded surfaces (A - Padstow Bay; B - Crantock Beach, C - St Ives Bay - from Gwithiam Towans; and D - St Ives Bay- from Hayle Bar).
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St Ives Bay contains two transects, the first extending northeastward from Gwithian Towans and

the second northward from the Hayle inlet. Behaviour of the immediate nearshore is comparable

across both transects where almost no change has taken place down to around 12m water depth.

Beyond this, the upper shoreface seaward of Gwithian Towans shows accretion, while the seabed

north of the Hayle inlet continues to exhibit no significant change, out to a depth of around 20m

(3.5km offshore). It is around this point that the profile slope decreases significantly. From here

to seaward, both profiles display evidence of erosion and accretion. Accretion dominates rather

more in the Hayle transect, and in places up to 10m of material has been moved, but in both

transects there are patches where no significant change has taken place. St Ives Bay is

predominantly sandy, but offshore from here, the seabed is a mix of bedrock and sandy/shelly

deposits. In places the bedrock can be quite continuous which might explain the presence of

significantly stable areas amongst more changeable areas.

The results of this analysis have shown that the seabed topography in the region is not static,

with patterns of erosion and accretion, and hence net sediment movement (1931-2008), varying

spatially across the seabed.

7.2 Regional wave modelling

Nearshore wave climate reflects the nature of the nearshore and offshore seabed, in addition to

both the regional and distant wind climate. As waves propagate toward the shore, they start to

interact with the seabed when the water depth is less than half the wavelength. Long waves

(swell waves, generated in the open ocean) will first interact with the seabed at deeper depths

than short waves (sea waves, generated locally). Interaction with the seabed causes slowing of

the wave (due to friction), and where the seabed shallows variably, waves will refract in response

to variable slowing. Changes in seabed bathymetry are therefore expected to influence nearshore

and coastal wave climates through modifications to patterns of wave refraction. The SWAN

spectral wave model is used here to assess wave propagation in the region of study and to

evaluate the role of bathymetry controls on the nearshore wave climate.

7.2.1 Climate controls on nearshore wave climate

The wind and wave climate of southwest England is driven primarily by the northeast Atlantic

Ocean. Three-month averages for significant wave height (Hs) and wind speed show a strong

seasonality (Figures 7.5). Nearshore wave heights (Hs) on the north coast of Cornwall are c. 1 -

1.4 m during the summer, but reach 1.8 - 2.2 m during winter months. Wind speed drops

significantly at the shoreline, and is similarly reduced during summer months. The maritime

climate of the British Isles is largely influenced by the eastward sweep of depressions from the

Atlantic Ocean (Thomas, 1960; Palutikof et al., 1985; Cook and Prior, 1987; Allen and Duffy,
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Figure 7.5 The average seasonal wave (top) and wind speed (bottom) pattern in Southwest England (Data source from ABPmer).
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1998). It is thought that the local wind - wave climate strongly influences the morphodynamics

of the north Cornwall coast (Allen and Duffy, 1998). In the study area, the wind speeds are

generally and comparatively high with frequent western gales (according to Hardman et al.,

1973; Cook and Prior, 1987; Allen and Duffy, 1998). Apart from the seasonal variation in the

wind speed in the region, the wind speed also varies locally on a seasonal (Smith, 1983), diurnal

(Shellard, 1976), annual - decade (Hulme and Jones, 1991) and longer trend (Palutikof et al.,

1987) scales.

7.2.2 Bathymetric controls on nearshore and offshore wave climate

SWAN was used to model wave climate response to changes in bathymetry. Simulations were

undertaken twice, using first the 1931 bathymetry and second the 2008 bathymetry; input wave

climate scenarios were consistent between the 1931 and 2008 runs. Two representative offshore

wave climates were used in the simulation of influence of bathymetric controls on the nearshore

and offshore wave climate. The first simulations make use of the significant wave energy

offshore (the West point) of the ABPmer hindcast model with Hs 6.52m; wave period of 9.3s

(Table 7.2). The results of this simulation is presented in Figure 7.6. The second scenario is

based on the wave parameters recorded at a the wave buoy off the southwest coast (Wave bouy

data from 26 February, 2013 at Sevenstones Lightship, downloaded from National Data Buoy

Centre- www.ndbc.noaa.gov, accessed on 26/02/2013). The significant wave height of 4.5m

having a period of 10.0s is simulated on the two bathymetries (1931 and 2008) and the results of

the wave climate (direction, wave height, wave height average by wave depth and wave height

average by direction) is presented in Figure 7.7.

Table 7.2 Wave climate scenarios for use in SWAN wave modelling.

Run Bathymetry Scenario Direction

(°N)

Hs

(m)

T0

(s)

Spread

(°)

1 1931 Extreme conditions: 99th percentile of the

westerly wave climate (ABPmer hindcast)

270 6.52 9.3 28.5

4 2008

2 1931 Winter conditions: Sevenstones Lightship -

26-Feb-13

270 4.5 10 28.5

3 2008

SWAN modelling of wave propagation across the 1931 and 2008 bathymetries reveals no

significant change (between the bathymetries) in wave direction, and only minimal

changes/variations in the spatial pattern of wave heights. The bathymetric influence on

significant wave heights using the first wave climate scenario (extreme conditions) is around 1 m

(Figure 7.6), where the range of wave heights modelled on the modern bathymetry are less than

for the 1931 bathymetry. This reduction in maximum wave heights across the region of interest

is most likely a consequence of shallowing across most of the lower shoreface. Although the

water is relatively deep (>50 m) here, swell waves propagating in from the North Atlantic
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Figure 7.6 Simulation of changes in significant wave height for westerly waves propagating over 1931 and 2008 bathymetries using SWAN model. The
diagrams show results (input bathymetry, output wave height (Hs), the ratio between wave height and depth, and wave direction) obtained for waves with
Hs of 6.52, period of 9.3s. The upper diagram is for 1931 while the lower diagram is for 2008 bathymetries.
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Figure 7.7 Simulation of changes in significant wave height for westerly waves propagating over 1931 and 2008 bathymetries using SWAN model. The
diagrams shows results (input bathymetry, output wave height (Hs), the ratio between wave height and depth, and wave direction) obtained for waves with
Hs of 4.5, period of 10.0s. The upper diagram is for 1931 while the lower diagram is for 2008 bathymetries.
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typically have wavelengths greater than 100m, meaning that wave base for these waves

would be further offshore from the region of interest. In this case then, any significant

change in bathymetry will have a consequence for wave heights and energy in the region.

Wave heights decrease quite rapidly across the upper shoreface, and there is clear evidence

of refraction around, and wave-shadowing in the lee of some headlands. The nearshore is

characterised by local differences in wave height, and these are much more pronounced at

St Ives Bay, where the offshore platform promotes significant attenuation. Spatial patterns

are not significantly different when comparing results from the second scenario (winter

conditions), but again broad wave heights are lower on the 2008 bathymetry than the 1931

bathymetry (Figure 7.7).

In depth-limited conditions (i.e the nearshore), the ratio between height and depth (H/d) is

frequently used to determine the depth of wave breaking. Many authors continue to use the

threshold of 0.78 to define wave breaking (as determined by McCowan (1894)), but in

reality local seabed slope and the wave steepness can influence this, and the threshold is

often considered to lie between 0.72 and 1.18. Wave breaking here is limited to the

shoreline, and over offshore rocky outcrops and submerged reefs, but it is clear that the

subtidal platform that extends north of St Ives Bay significantly attenuates wave energy.

Wave conditions related to the second scenario (February conditions) for the 2008

bathymetry show a broadly similar pattern to the first scenario, but with a reduction in

wave heights and H/d ratios. This is as expected given the change from an extreme to a

normal winter wave climate. There appear to be minimal differences in patterns of wave

refraction though.

The shore-normal transects highlight the transformation in wave climate from offshore to

the nearshore zone. Figures 7.8-7.11 present the wave climate results along each transect,

comparing bathymetries (1931 and 2008) and wave climate scenarios (extremes, and

winter (2013)). In St Ives Bay, the north-extending, central transect shows how significant

the wave attenuation is relatively close to the shoreline (Figure 7.8). Offshore wave heights

are significantly different between the two bathymetries due to seabed accretion in the

lower shoreface (captured in a coarser resolution coastal area model run). But the nature of

wave height and period reduction in the nearshore zone is similar between bathymetries. A

similar pattern is exhibited in the easterly transect in St Ives Bay (Figure 7.9), though here,

the role of the offshore platform to the northwest of St Ives Bay is more apparent. Here,

wave heights are reduced in the immediate interaction with the platform, but as the

platform is relatively level, continued attenuation does not take place and wave heights

stay relatively similar until the nearshore zone.
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Figure 7.8 Shore-normal transects of the SWAN simulation at Hayle Bar of St Ives Bay
extracted from the SWAN simulation results (A - Depth; B - Hs, C – Wave Period; and D -
Direction).
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Figure 7.9 Shore-normal transects of the SWAN simulation at East of St Ives Bay extracted
from the SWAN simulation results (A - Depth; B - Hs, C – Wave Period; and D - Direction).
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Further north, the transects from Crantock (Figure 7.10) show that in areas where the upper

shoreface is steeper, wave attenuation is less pronounced. Here, wave heights are

maintained closer to the coastline than in St Ives Bay, but then also go through the same

decrease as observed elsewhere. At Padstow Bay (Figure 7.11) the short transects reveal

little about offshore to nearshore transformation, but alongwith Crantock, these transects

do suggest that these bays can experience wave heights of 4m in the context of high energy

conditions. This is important as, under the same conditions, St Ives Bay does not

experience waves of this order.

The results from this wave modelling analysis has shown that offshore waves are

significantly attenuated as they approach the north Cornwall coastline, but that the degree

of attenuation is dependent on the rate of shallowing. The broad offshore ledge to the north

of St Ives Bay is responsible for enhanced attenuation here in comparison to what is

observable at the Crantock and Padstow Bay sites. Furthermore, the lower shoreface

accretion evident in the comparison between 1931 and 2008 bathymetries is responsible for

a broad-scale reduction in wave heights across the region of interest.
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Figure 7.10 Shore-normal transects of the SWAN simulation at Crantock Beach extracted
from the SWAN simulation results (A - Depth; B - Hs, C – Wave Period; and D - Direction).
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Figure 7.11 Shore-normal transects of the SWAN simulation at East of St Ives Bay extracted

from the SWAN simulation results (A - Depth; B - Hs, C – Wave Period).
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