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Recent studies reveal a pressure induced transition from a paramagnetic tetragonal phase (T) to a collapsed

tetragonal phase (CT) in CaFe2As2, which was found to be superconducting with non-hydrostatic pressure

at low temperature. We have investigated the effects of electron correlation and local fluctuating moment

in both tetragonal and collapsed tetragonal phases of the paramagnetic CaFe2As2 using self consistent

DFT+DMFT with continuous time quantum Monte Carlo as the impurity solver. From the computed

optical conductivity, we find a gain in the optical kinetic energy due to the loss in Hund’s rule coupling

energy in the CT. We find that the transition from T to CT turns CaFe2As2 from a bad metal into a good

metal. Computed mass enhancement and local moments also show significant decrease in the CT, which

confirms the suppression of the electron correlation in CT phase of CaFe2As2.

PACS numbers: 74.70.Xa, 74.25.Jb, 75.10.Lp

The discovery of superconductivity in Fe-based com-
pounds with Tc in the range from 26 to 56 K has cre-
ated a new paradigm in condensed matter physics [1–3].
The effect of magnetism on the superconducting and nor-
mal state properties of unconventional superconductors
like cuprates and Fe-pnictides has gained wide interest
with the discovery of antiferromagnetic (AFM) ground
state near superconductivity [1, 4, 5]. Suppression of the
AFM or spin density wave state by doping or pressure
was found in various families of Fe-pnictidies [6]. Super-
conductivity in these materials is very sensitive to pres-
sure, and applied pressure has become an important tool
to test different theories and to understand the mecha-
nism of superconductivity, which is still a puzzle. One
of the major questions in high Tc superconductors is the
nature of the magnetism, the strength of the correlation
and its role in superconductivity. Whether magnetism
in Fe-based materials arises from weakly correlated itin-
erant electrons [7] or it requires some degree of electron
correlations [8, 9] and localization of electrons [10, 11] is
presently a subject of debate [11, 12]. Hence it is im-
portant to know whether the nature of magnetism in Fe-
based superconductors requires a description that only
takes into account Fermi surface nesting, the effect of
local moment or a combination of both.

In the Fe-pnictide family, “122” compounds with
AFe2As2 (A=Ca, Sr, Ba) are widely studied systems,
where Tc can reach as high as 38 K [6, 13]. In the “122”
family, CaFe2As2 is found to be unique, where super-
conductivity emerges upon application of modest non-
hydrostatic pressure [14]. With hydrostatic pressure it
undergoes a structural transition from a tetragonal phase
(T) to a collapsed tetragonal phase (CT) [15]. Another
study found that superconductivity develops within the
collapsed tetragonal phase of Ca0.67Sr0.33Fe2As2 under
pressure [16]. The CT phase in CaFe2As2 is charac-

terized by a ∼10 % reduction in the c-axis of the room
temperature tetragonal phase. Magnetic and electronic
structures are found to be strongly influenced by this
transition in both pure and rare-earth doped CaFe2As2.
For example, an increase in As-As hybridization due to
the suppression of magnetic moment [17], a topological
change in the Fermi surface due to Lifshitz transition [18],
and quenching of Fe local moment in the low temperature
CT phase was observed [19]. In addition, disappearance
of the AFM order [16], suppression of spin fluctuations
[20], and recovery of Fermi liquid behavior [21] were also
found in the CT phase. We ask several questions for
Ca122: 1) What is the role of applied pressure in the CT
phase? 2) What is the role of electron correlation for this
transition? 3) What are the sizes of the fluctuating local
moments in both phases of Ca122?

Here we try to address these questions by studying op-
tical, magnetic and electronic properties using the com-
bination of density functional theory (DFT) and Dynam-
ical Mean Field Theory (DMFT).

Methods.- To capture the local moment physics in
paramagnetic material like Fe-pnictides, one needs to go
beyond conventional density functional theory (DFT).
DFT in combination with dynamical mean field theory
(DMFT) (DFT+DMFT) has proved to be a good ap-
proximation to describe fluctuating local moment and
electron correlation [22, 23]. The structures and the atom
positions used here are taken from the neutron scatter-
ing measurement [15]. In the DFT-DMFT method, the
self-energy, sampling all Feynman diagrams local to the
Fe ion, is added to the DFT Kohn-Sham Hamiltonian
[24, 25]. This implementation is fully self-consistent and
all-electron [25, 26]. The computations are converged
with respect to charge density, impurity level, chemical
potential, self-energy, lattice and impurity Green’s func-
tions. The lattice is represented using the full potential
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FIG. 1. (Color online) DFT+DMFT spectral function for
(a) T-phase and (b) CT-phase indicating an incoherence-
coherence crossover for the bands crossing the Fermi energy
due to modest applied pressure.

linear augmented plane wave method, implemented in
the Wien2k [27] package in its generalized gradient ap-
proximation (PBE-GGA). The continuous time quantum
Monte Carlo method is used to solve the quantum impu-
rity problem and to obtain the local self-energy due to
the correlated Fe 3d orbitals. The self-energy is analyti-
cally continued from the imaginary to real axis using an
auxiliary Green’s function. The Coulomb interaction U
and Hund’s coupling J are fixed at 5.0 eV and 0.7 eV,
respectively [28]. A fine k-point mesh of 10 × 10 × 10
and total 80 million Monte Carlo steps for each iteration
are used for the paramagnetic phase of the CaFe2As2 at
room temperature. Here we study electronic and optical
properties of CaFe2As2 in its paramagnetic phase as a
function of compression and specially investigated elec-
tronic correlation and local moment in T and CT phases.

Spectral function.- We describe computed orbital re-
solved spectral function (A(k, ω)) in Fig. 1. We noticed
a significant change in the sharpness of the DMFT spec-
tral function for the bands that are close to the Fermi
energy (EF ). Going from T to CT phases, the DMFT
spectral function becomes more coherent. This indicates
the suppression of correlation in the CT phase. We found
significant changes in the topology of the Fermi surface
in the CT phase, similarly predicted by DFT calculations

[18]. Specially 2D cylindrical hole bands become flat in
the CT phase and the 2D bands that were above the EF
in T-phase are below EF in CT-phase.
Optical properties.- We computed the in-plane (aver-

aged over x and y directions) optical conductivity (σ1(ω))
for standard DFT, DFT+DMFT and compared that with
experiments performed at ambient pressure with a single
crystal of CaFe2As2 [29]. DFT overestimates the spec-
tral weight for the low energy part of the spectra, but
the optical conductivity computed in the DFT+DMFT
method agrees well with the experimental optical conduc-
tivity (Fig. 2a). To investigate the strength of correla-
tions and to quantify the reduction of the Drude response
compared to band theory in pure Ca122, we looked at the
spectral weight from the real part of the optical conduc-
tivity. We use a truncated version of the f-sum rule [30],
similarly to Ref. [31]. The experimental or theoretical
optical kinetic energy K, which is proportional to the
spectral weight of the Drude component of the optical
response, can be determined by integrating the real part
of the optical conductivity up to a cutoff frequency Ω:

K(Ω) =
120

π

∫ Ω

0

σ1(ω)dω (1)

We used the experimental infrared conductivity data
from Ref. [29] to calculate the experimental optical ki-
netic energy at ambient pressure. We took a similar ap-
proach as in Ref. [31], where the cutoff value is con-
sidered in such a way that it should be high enough
to account for all the Drude weight but not so high as
to include significant contributions from the inter-band
transitions. Similarly we computed KDFT and KDMFT ,
where KDFT and KDMFT are the optical kinetic ener-
gies calculated in the DFT and DFT+DMFT methods
respectively. At ambient pressure we then normalize ex-
perimental optical kinetic energy (Kexp) to KDFT . This
ratio is often used to describe the degree of electron cor-
relation. For the extremely correlated case of a fully
localized Mott insulator like the cuprate parent com-
pounds, Kexp/KDFT ∼ 0, whereas in electronically un-
correlated materials such as a fully itinerant metal such
as copper, the ratio of Kexp/KDFT is approximately 1.
The many-body effects beyond band theroy, such as dy-
namical correlationdue to on-site Coulomb repulsion and
Hund’s rule coupling, renormalize the electronic band-
width and consequently reduce the optical kinetic energy.
Hence the ratio Kexp/KDFT characterizes the strength
of the correlation in a material. We first describe this
ratio for P=0 in the inset of Fig. 2a as a function of
the cutoff frequency (Ω). Ω can be determined from the
minima of σ1(ω). Kexp is obtained from the infrared
conductivity data from Ref. [29]. The value of Kexp
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FIG. 2. (Color online). Optical conductivity and density of states (DOS) of CaFe2As2 in the T and CT phase: (a) Comparison
of the real part of the optical conductivity at P=0 between experiment and theory; inset shows the ratio of the experimental
and theoretical optical kinetic energy as a function of integration cut off frequency (Ω), the solid arrow represents the possible
cut off frequency determined from the minima of σ(ω). Experimental conductivity is reproduced from Ref. [29]. Calculated
in plane average of the optical conductivity as a function of compression with (b) DFT+DMFT and (c) DFT methods; insets
show the high energy optical conductivity. (d) DOS calculated in DFT+DMFT for T and CT phases.

is found to be 13830.15, 23512.82, and 33516.87 cm−2

and Ω = 2000, 3000, and 4000 cm−1 respectively; while
KDFT is found to be 76362.16, 80245.7, and 85602.8
cm−2 respectively. We find Kexp/KDFT to be 0.18 - 0.39
in the T-phase. We obtained KDMFT to be 24680.5,
32394.3, and 41094.8 cm−2 and Ω = 2000, 3000, and
4000 cm−1 respectively and the ratio of Kexp/KDMFT is
found to be 0.56-0.81. The Drude weight agrees better
with DFT+DMFT method when we compare with a re-
cent experiment [32] performed at 300K. A similar value
was obtained for Ba122 in paramagnetic sate [31]. The
ratio of the optical kinetic energy becomes larger with
larger Ω as noticed from the inset of Fig. 2a. There-
fore, we reconfirm that DFT+DMFT has the ability to
accurately describe the optical response in the paramag-
netic state. This also indicates the presence of electron
correlation for P=0 in the T-phase of Ca122.

We plot σ1(ω) as a function of pressure (P) in Fig.
2b. We see a large spectral weight transfer in the DFT-
DMFT method going from T to CT phase within the in-

frared region, indicating the increase in electron’s kinetic
energy. Going from T to CT upon application of pres-
sure, Ca122 changes from a bad metal to a good metal.
This transition is not seen in DFT σ1(ω). The σ1(ω)
calculated in DFT as a function of pressure is almost
constant in the infrared region. Only at higher energy
did we notice a peak in the CT-phase (inset Fig. 2c).

To examine in more detail, we compute the spectral
weight or electron kinetic energy by using formula (1) for
the CT-phase. For a cutoff frequency of 2000 cm−1, we
found that optical kinetic energy increases from 24680.57
to 33341.34 (cm−1)2 in the CT phase (at 0.35 GPa),
whereas in DFT it decreases from 76363.43 to 47075.74
(cm−1)2. We then took the ratio of the spectral weight
calculated in the DFT-DMFT and DFT approaches. The
ratio of KDMFT /KDFT is 0.324 at P=0 and 0.708 at
P=0.35 GPa. A similar trend is found when we take the
cut off frequency as 1000 and 3000 cm−1. This indicates
the suppression of correlations in the CT-phase.

We plotted the density of states (DOS) in Fig. 2d.
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FIG. 3. (Color online). DFT+DMFT calculated (a) mass enhancement (m∗/mband), (b) Imaginary part of the local dynamic
magnetic susceptibility, (c) Atomic histogram of Fe 3d shell, and (d) Orbital resolved imaginary part of the self-energy for both
T and CT phases.

The DOS near EF decreases in the CT phase when we
compare it with the T-phase. So, we argue that the in-
crease in KDMFT in CT is not due to the density of states
near EF , but due to Hund’s rule coupling. Comparing
the histograms, which describe the probabilities of differ-
ent Fe configurations in solids, we see that the high-spin
states become more probable in the T phase. Thus, local
Fe moment is larger for the T-phase with the enhanced
Hund’s rule coupling due to their larger lattice constants.

Mass enhancement.- To further investigate the de-
gree of correlation, we computed mass-enhancement
(m∗/mband) = 1/ZA, where ZA=(1− δΣ

δω )−1
ω=0. In a Fermi-

liquid ZA is the quasiparticle weight, which is unity for a
non-interacting system, and is much smaller than unity
for a strongly correlated system. We have calculated
m∗/mband for all the Fe-d orbitals and plotted them as
a function of P in Fig. 3a. Going from T-phase to CT-
phase, we notice a drop in them∗/mband for all d-orbitals.
First, we noticed that the dz2 , dx2−y2 orbitals are less cor-
related and the t2g orbitals (dxz, dyz, and dxy) are more
correlated at P=0. With increasing pressure, electron
correlation becomes weaker for all d-orbitals. Especially
the effect of pressure on m∗/mband is mostly dramatic

on the dxy orbital. For example, calculated m∗/mband

is 2.01 for dxy orbital at P=0 GPa and 1.63 at P=0.47
GPa. In the CT-phase m∗/mband almost remains same
with increasing P.

Local dynamical magnetic susceptibility.- To infer the
effect of pressure on the fluctuating magnetic moments,
we compute the dynamic magnetic susceptibility, which
measures the spatial and temporal distribution of the
magnetic fluctuations. In Fig. 3b we plot Im[χ(ω)] on
real frequency for both T and CT phases. The continuos
time quantum Monte Carlo impurity solver is used to ob-
tain the local dynamic susceptibility χ(ıω) as a function
of Matsubara frequencies. We analytically continued the
data using maximum entropy method to obtain Im[χ(ω)]
on real frequency. We notice a sharp peak in χ(ω) at
low energy (∼ 0.19 eV) indicating large fluctuating mo-
ment [33], which is very pronounced in the T-phase. The
peak height decreases in the CT, reflecting a substantial
reduction in local moment and hence confirms that the
fluctuating local moment is reduced in the CT phase.

Hund’s rule interaction.- The iron pnic-
tides/chalcogenides are considered to be Hund’s
metals [26, 34]. Instead of the Hubbard interaction (U),



5

the Hund’s rule interaction causes the quasiparticle mass
enhancement in these materials [26, 34]. Electrons with
the same spin but different orbital quantum numbers
are aligned by the Hund’s rule interaction when they
find themselves on the same iron atom. DFT+DMFT
method can truly capture the Hund’s rule physics. To
quantify the probability of finding an iron atom in the
solid in one of the atomic states, we present the atomic
histogram for both T and CT in Fig. 3c. The DMFT
atomic basis is constructed from the five 3d orbitals of
an iron atom, that spans a Hilbert space of size 210 =
1024 for 10 different occupancies with N=0, 1,...10. Here
the first (last) few states with a particular N show the
high (low) spin state. In Fig. 3c we clearly see the spikes
in probability for the high spin states at the beginning
of the constant N interval. As a consequence, the low
spin states, at the end of the constant N interval, lose
substantial weight. In the absence of Hund’s coupling,
the high and the low spin states would be equally
probable. From Fig. 3c. we notice that in the CT state
the high-spin states become less probable and the low
spin states become more probable (inset of Fig. 3c).
This shows an overall loss of the Hund’s rule coupling
energy in CT due to reduced lattice constant. As a
consequence, the low-energy part of the self-energy (Fig.
3d) shows a clear change in Im[Σ(ω)] in the CT.

In summary, we have computed the correlated elec-
tronic structure for CaFe2As2 for ambient pressure
tetragonal phase and high pressure collapsed tetragonal
phase. We found a significant gain in the electronic ki-
netic energy in the CT phase due to the loss of the Hund’s
coupling energy. Increasing optical kinetic energy reflects
the suppressions of electron correlation in the CT. Our
results are consistent with a recent NMR study where
suppression of electron correlation was found in the low
temperature CT phase [35]. Computed mass enhance-
ment and the paramagnetic fluctuating moment also re-
flects the suppression of the electron correlation.
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