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Abstract

Alzheimer’s disease, the most common form of dementia, is an extremely serious health prob-

lem, and one that will become even more so in the coming decades as the global population

ages. This has led to a massive effort to develop both new treatments for the condition and

new methods of diagnosis; in fact the two are intimately linked as future treatments will depend

on earlier diagnosis, which in turn requires the development of biomarkers that can be used to

identify and track the disease. This is made possible by studies such as the Alzheimer’s dis-

ease neuroimaging initiative which provides previously unimaginable quantities of imaging and

other data freely to researchers.

It is the task of early diagnosis that this thesis focuses on. We do so by borrowing modern

machine learning techniques, and applying them to image data. In particular, we use Gaussian

processes (GPs), a previously neglected tool, and show they can be used in place of the more

widely used support vector machine (SVM). As combinations of complementary biomarkers

have been shown to be more useful than the biomarkers are individually, we go on to show GPs

can also be applied to integrate different types of image and non-image data, and thanks to their

properties this improves results further than it does with SVMs.

In the final two chapters, we also look at different ways to formulate both the prediction of

conversion to Alzheimer’s disease as a machine learning problem and the way image data can

be used to generate features for input as a machine learning algorithm. Both of these show how

unconventional approaches may improve results.

The result is an advance in the state-of-the-art for a very clinically important problem,

which may prove useful in practice and show a direction of future research to further increase

the usefulness of such methods.
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burner, for their guidance and encouragement during the last few years.

I am also very grateful to Ged Ridgway for helping me get started early on and for statisti-

cal help, and to a number of people at the Dementia Research Centre, especially Kelvin Leung

for helping me find my way through huge quantities of data from the ADNI study, and Dave

Cash and Jonathan Schott for providing clinical perspective.

My colleagues at the Centre for Medical Image Computing have been indispensable. In

particular, Marc Modat and Jorge Cardoso have not only provided some excellent software tools

but have been extremely patient with my questions about how they should be used and have

always been helpful in providing advice on my publications. Everyone at the UCL machine

learning for medical imaging reading group has been a great source of ideas and suggestions.

Finally, I must express my deepest gratitude to my parents for supporting me throughout

my education, and to my wife Laura for her companionship and patience in the last four years.



Contents 6

Contents

1 Introduction 15

1.1 Alzheimer’s disease biology and biomarkers . . . . . . . . . . . . . . . . . . . 15

1.2 Diagnosis of Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Neuropathology of Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . 16

1.4 Treatment of Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Alzheimer’s Disease biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.1 The Alzheimer’s Disease Neuroimaging Initiative . . . . . . . . . . . . 20

1.5.2 Imaging biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.3 CSF biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.4 Other biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 My contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Medical imaging and image processing 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Structural MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Positron emission tomography . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Image registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Transformation models . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Interpolation methods . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.3 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.4 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Anatomical segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Manual segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 Automatic segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Tissue segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



Contents 7

2.6.1 Expectation maximisation . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.2 Extensions to the expectation maximisation model . . . . . . . . . . . 41

3 Machine learning 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Machine learning taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Preprocessing of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Performance measurement and validation in machine learning . . . . . . . . . 46

3.4.1 Performance measures for classification . . . . . . . . . . . . . . . . . 46

3.4.2 Performance measures for probabilistic classification . . . . . . . . . . 49

3.4.3 Performance measures for regression . . . . . . . . . . . . . . . . . . 49

3.4.4 Validation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Pitfalls of machine learning experiments . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.2 Double dipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Support vector machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1 Linear SVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.2 Soft-margin SVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.3 Kernels and nonlinear SVMs . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7.1 Gaussian process priors . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7.2 Gaussian process regression - weight space view . . . . . . . . . . . . 59

3.7.3 Gaussian process regression - function space view . . . . . . . . . . . 60

3.7.4 Gaussian process classification . . . . . . . . . . . . . . . . . . . . . . 61

3.7.5 Gaussian process regression and classification in practice . . . . . . . . 63

3.8 Precomputed kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Literature review 67

4.1 Introduction to the existing literature . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Review of the existing literature . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Voxel-based features . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Region-based features . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Cortical thickness features . . . . . . . . . . . . . . . . . . . . . . . . 70



Contents 8

4.2.4 Hippocampal features . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.5 Side-by-side assessment of features . . . . . . . . . . . . . . . . . . . 74

4.2.6 Multi-MRI features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.7 Multimodal classification . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.8 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Classification of Alzheimer’s disease patients and controls with gaussian processes 84

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.2 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.3 Gaussian process regression and classification . . . . . . . . . . . . . . 86

5.2.4 SVM calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Multiple kernel learning for prediction of conversion to AD 90

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 MRI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.2 PET data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.3 ApoE data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.4 CSF data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.5 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.6 MRI image processing . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.7 PET image processing . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.8 Gaussian process classification . . . . . . . . . . . . . . . . . . . . . . 98

6.2.9 Gaussian process classification as a multimodal kernel method . . . . . 98

6.2.10 SVM classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.11 Classification strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.12 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Accuracy of binary classification . . . . . . . . . . . . . . . . . . . . . 103



Contents 9

6.3.2 Accuracy of probabilistic classification . . . . . . . . . . . . . . . . . 105

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Continuous proxies for AD diagnosis and prognosis 112

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.2 MRI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.3 MRI image processing . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.4 PET image data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.5 PET image processing . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.6 CSF data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.7 Boundary shift integral . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.8 MMSE scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.9 Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.10 Classification and validation in BSI experiment . . . . . . . . . . . . . 119

7.2.11 Classification and validation in MMSE experiment . . . . . . . . . . . 120

7.3 Results for BSI experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4 Results for MMSE experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4.1 Effect of MRI field strength on results . . . . . . . . . . . . . . . . . . 122

7.4.2 Accuracy of MMSE predictions . . . . . . . . . . . . . . . . . . . . . 123

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Anatomical regional kernels 128

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 Image and biomarker data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3.1 Groupwise registration . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3.2 Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3.3 Image parcellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3.4 Atlas construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4 Gaussian process classification . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.4.1 Gaussian processes as multimodal kernel methods . . . . . . . . . . . 132



Contents 10

8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.5.1 Binary accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.5.2 Information scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.5.3 Individual predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.5.4 Effects of scanner field strength . . . . . . . . . . . . . . . . . . . . . 135

8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.6.1 Interpretation of hyperparameters . . . . . . . . . . . . . . . . . . . . 136

8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9 Conclusions 139

9.1 Overall conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A Running times and computational complexity 145

A.1 Experiment and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B Lists of subjects in experiments 148

B.1 Subjects in experiment in chapter 5 . . . . . . . . . . . . . . . . . . . . . . . 148

B.2 Subjects in experiment in chapter 6 . . . . . . . . . . . . . . . . . . . . . . . 149

B.3 Subjects in experiments in chapter 7 . . . . . . . . . . . . . . . . . . . . . . . 151

B.4 Subjects in experiment in chapter 8 . . . . . . . . . . . . . . . . . . . . . . . 164



List of Figures 11

List of Figures

1.1 Formation of plaques from APP . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Formation of neurofibrillary tangles and their interaction with neurons . . . . . 18

1.3 Model of biomarker trajectories and ordering . . . . . . . . . . . . . . . . . . 20

2.1 Magnetisation in MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Basic Fourier transform MR sequence . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Molecular structure of glucose and fluorodeoxyglucose . . . . . . . . . . . . . 28

2.4 PET pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Outline of registration algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Rigid transformation for registration . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Affine transformation for registration . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Nonlinear transformation for registration . . . . . . . . . . . . . . . . . . . . . 34

2.9 Manual segmentation of brain structures . . . . . . . . . . . . . . . . . . . . . 37

2.10 Automatic anatomical segmentation by atlas propagation . . . . . . . . . . . . 38

2.11 Multiatlas segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.12 Segmentation of a structural MRI brain image into three tissue types . . . . . . 41

3.1 Clustering unlabelled data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Classification of labelled data . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Receiver operating characteristics (ROC) curves . . . . . . . . . . . . . . . . . 48

3.4 Leave-one-out cross validation (LOOCV) in a set of ten data points . . . . . . . 50

3.5 Overfitting and underfitting of a function to a set of points . . . . . . . . . . . 51

3.6 Divergence of training and testing error curves shows overfitting . . . . . . . . 52

3.7 Many hyperplanes can divide two linearly separable groups of points. . . . . . 53

3.8 The SVM chooses the hyperplane that maximises the margin. . . . . . . . . . . 54

3.9 Use of a kernel to separate data that are not separable in the input space . . . . 56

3.10 Function space view of GP prior and posterior . . . . . . . . . . . . . . . . . . 60

3.11 Sigmoidal link functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



List of Figures 12

3.12 Gaussian process classification with two dimensional toy data . . . . . . . . . 63

3.13 Maximum likelihood selects the model of the appropriate complexity . . . . . . 65

5.1 Pipeline to produce modulated GM images in a common space . . . . . . . . . 86

5.2 AUC curves for classification of 40 AD and control subjects with GP and SVM. 88

6.1 Pipeline for multiple kernel learning with MRI, FDG-PET and ApoE data . . . 100

6.2 Relationship between AD and MCI classification . . . . . . . . . . . . . . . . 101

6.3 Empirical risk vs. corrected predicted risk for the PET group. . . . . . . . . . 107

6.4 Empirical risk vs. corrected predicted risk for the PET-CSF group. . . . . . . . 107

7.1 Measured BAR across groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Predicted BAR across groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 Predicted vs actual MMSE for FDG-PET data in PET. group . . . . . . . . . . 124

7.4 Predicted vs actual MMSE for MRI data in PET. group . . . . . . . . . . . . . 124

7.5 Predicted vs actual MMSE for MRI data in MRI. group . . . . . . . . . . . . . 124

7.6 Measured and predicted MMSE across clinical groups in the PET group . . . . 126

8.1 Pipeline for constructing atlas in groupwise space . . . . . . . . . . . . . . . . 131

8.2 Differences between individual predictions of AD versus control status by the

ARK and voxel methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3 Differences between individual predictions of AD versus control status by the

ARK and regions methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4 Differences between individual predictions of MCI conversion by the ARK and

voxel methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.5 Differences between individual predictions of MCI conversion by the ARK and

regions methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.6 Spectrum of regional weights in AD/HC classification . . . . . . . . . . . . . . 136

8.7 Maps of regions with more than 1% of total weight . . . . . . . . . . . . . . . 137



List of Tables 13

List of Tables

1.1 Biomarkers for AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Confusion matrix for classification . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Demographics of PET group . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Demographics of PET-CSF group . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Times of conversion t, in months, for subjects in the PET group. . . . . . . . . 96

6.4 Regions included in GM segmentations . . . . . . . . . . . . . . . . . . . . . 97

6.5 Accuracy of methods in the PET group with GP classification . . . . . . . . . . 103

6.6 Accuracy of methods on the PET group with SVM classification . . . . . . . . 104

6.7 Accuracy of methods on the PET-CSF group with GP classification . . . . . . . 104

6.8 Accuracy of methods on the PET-CSF group with SVM classification . . . . . 105

6.9 Side-by-side statistical comparison of GP and SVM classification for different

groups and modalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.10 Reported results from a variety of studies for predicting MCI conversion on

ADNI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1 Subject groups and demographics for the BSI experiment. . . . . . . . . . . . 114

7.2 Subject groups and demographics for the PET group in the MMSE experiment. 115

7.3 Subject groups and demographics for the MRI group in the MMSE experiment. 115

7.4 Accuracy of discrimination between MCI-s and MCI-c with predicted brain

atrophy rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5 Accuracy of discrimination between MCI-s and MCI-c with training on binary

diagnostic class labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.6 Accuracies for predicting conversion to AD in MCI subjects in the MMSE ex-

periment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.7 Accuracies for predicting conversion to AD in MCI subjects in the MMSE ex-

periment using the entire MRI group. . . . . . . . . . . . . . . . . . . . . . . . 122



List of Tables 14

7.8 Breakdown of accuracy of predicted MMSE in MCI conversion by MRI field

strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.9 Accuracy of predicted MMSE compared to ground truth . . . . . . . . . . . . 123

8.1 Subject groups and demographics . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2 Demographics of subjects for ARK experiments . . . . . . . . . . . . . . . . . 130

8.3 Accuracy of classification between control and AD subjects with ARK, voxels

and regions methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.4 Accuracy of classification between MCI-s and MCI-c subjects with ARK, vox-

els and regions methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.5 Results for ARK classification of MCI-s and MCI-c, broken down by MRI scan

field strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.1 Best overall classification with MRI data only . . . . . . . . . . . . . . . . . . 139

9.2 Best overall classification with PET or PET and MRI data . . . . . . . . . . . . 141

A.1 Running times for training a model on 50 AD and 50 control subjects . . . . . 145

B.1 List of subjects used in the control/AD classification experiment in chapter 5 . 148

B.2 List of subjects used in the PET group of the MKL experiment in chapter 6 . . 149

B.3 List of subjects used in the BSI experiment in chapter 7 . . . . . . . . . . . . 151

B.4 List of subjects used in the MRI group of the MMSE experiment in chapter 7 . 153

B.5 List of subjects used in the ARK experiments in chapter 8 . . . . . . . . . . . 165



15

Chapter 1

Introduction

1.1 Alzheimer’s disease biology and biomarkers

Alzheimer’s disease (AD) is a condition causing dementia, primarily in the elderly popu-

lation. The condition is named for Alois Alzheimer, a German psychiatrist who was the

first to identify and describe the condition, and link its symptoms and pathology in 1906

[Berchtold and Cotman, 1998]. While a number of other conditions are known to cause de-

mentia, AD remains by far the most common, although it may often occur alongside other

dementia-causing conditions such as vascular dementia, the second most common such disease

[Zekry et al., 2002]. A small minority of AD cases are inherited familial AD, but the vast major-

ity of cases occur sporadically and among these, age is by far the most important risk factor. The

prevalance among people over 84 years old is estimated to be up to 42% [Hebert et al., 2003].

As a consequence of ageing populations worldwide, due to improved healthcare and living

conditions, the number of people living with AD is expected to rise to a global total of more

than 100 million in 2050 [Brookmeyer et al., 2007], which would represent a quadrupling since

2006. This will translate into a huge economic impact; as AD cannot be cured and gradually

progresses, producing increasingly severe symptoms, it results in huge costs from patient care

alongside lost productivity of patients and carers. The consequent costs were estimated at $100

billion annually in the US in 1998 [Meek et al., 1998]. The early stages of AD are marked by

short term memory loss, with the symptoms progressing to loss of longer term memories and

other cognitive domains. AD ultimately leads to death, with no cure currently in existence.

1.2 Diagnosis of Alzheimer’s disease

Typically, in the clinic a diagnosis of probable AD is made based on a set of consensus cri-

teria which are regularly reviewed [McKhann et al., 2011]. Such a diagnosis may be based

on examining the patient and their medical history, and interviewing them and those they are

in regular contact with, as well as cognitive testing such as mini-mental state examination
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(MMSE) [Folstein et al., 1975] or the Alzheimer’s disease assessment scale cognitive subscale

(ADAS-cog) [Rosen et al., 1984], and imaging. This is known as probable AD because the

gold standard for AD diagnosis is based on histology and so can only be made at autopsy

[Kist and Hastie, 1995]. The correspondence between a diagnosis in the clinic and subsequent

confirmation by autopsy has been studied and found to be high [Ranginwala et al., 2008] al-

though this may vary substantially between different AD centres [Beach et al., 2012]. In more

recent years, the emphasis has shifted heavily to diagnosing the condition in its very early stages

[Chong and Sahadevan, 2005], as the disease process is thought to begin long before symptoms

become obvious, and future disease modifying treatments will be of most use to patients at

this stage. This has led to the introduction of the concept of mild cognitive impairment (MCI)

[Petersen et al., 1999], defined as a memory impairment greater than would be expected from

normal ageing, but less than that of AD, and which does not affect a patient’s ability to carry

out routine tasks from day to day. Diagnostic criteria for MCI match this definition. MCI can

be seen as a risk state for AD because the annual rate of conversion from MCI to AD is 10-

15%, as opposed to only 1-2% for the general population. However MCI cannot be seen as

equivalent to actual prodromal AD, as MCI is in fact quite heterogenous and can be the mani-

festation of a variety of different conditions [Dubois and Albert, 2004]. However a subtype of

MCI is recognised as being the early stages of AD, known as MCI due to Alzheimer’s disease

[Albert et al., 2011].

1.3 Neuropathology of Alzheimer’s disease

The effect of AD pathology on the gross scale is characterised by atrophy caused by loss of

neurons, most marked in several structures in the brain’s temporal lobes and in enlargement of

the ventricles. However, such changes are also present in normal ageing [Raz et al., 2005] but

proceed at a much slower pace. A more specific effect of AD is seen in amyloid plaques and

neurofibrillary tangles.

Plaques are dense aggregates of insoluble protein that form around neurons. In AD, their

main constituent is beta amyloid (Aβ); however plaques have also been observed in the brains

of undemented elderly people and it is the specific distribution of plaques, not their mere pres-

ence, that is indicative of AD [Bouras et al., 1994]. Aβ exists in two common forms, Aβ40

and Aβ42. Both are formed from sequential cleavage of the amyloid precursor protein by the

enzymes β- and γ- secretase. The more common Aβ40 form is soluble and is found in cere-

brospinal fluid (CSF) [Ghiso and Frangione, 2002] whereas the insoluble Aβ42 form is pro-

duced when cleavage by γ secretase occurs at the Aβ42 rather than Aβ40 residue [Selkoe, 2004]
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Figure 1.1: Formation of plaques from APP. Courtesy of National Institute on Aging/National

Institutes of Health, http://www.nia.nih.gov/alzheimers/scientific-images.

and is strongly implicated in AD [Yin et al., 2007]. The resulting plaques are toxic to neurons

[Yankner et al., 1990].

Neurofibrillary tangles (NFTs) are bundles of insoluble protein that accumulate inside neu-

rons. Similarly to plaques, different types of NFT are associated with different conditions, and

they are also sometimes found in otherwise healthy brains, so it is the pattern and type of NFT

rather than their presence that is indicative of AD [Bouras et al., 1994]. The primary protein in

NFTs is tau protein. AD disrupts the dephosphorylation of tau protein, leading to hyperphos-

phorylation. This means that the tau can no longer perform its role in assisting the stabilisation

of microtubules within the neuron, causing them to begin to disintegrate. The unbound tau

instead clumps together to form tangles [Lee et al., 2005].

1.4 Treatment of Alzheimer’s disease

Currently available treatments for AD remain entirely targeted at treating the symptoms rather

than interrupting the disease process. Of the five drugs, four are targeted at the reduction in

activity of cholinergic neurons which marks AD [Geula and Mesulam, 1995]. They do this by

acting as acetylcholinesterase inhibitors which slow down the rate at which acetylcholine is

broken down, which partially compensates for the loss of cholinergic neurons [Stahl, 2000].
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Figure 1.2: Formation of neurofibrillary tangles and their interaction with neu-

rons. Courtesy of National Institute on Aging/National Institutes of Health,

http://www.nia.nih.gov/alzheimers/scientific-images.

The fifth drug instead blocks overstimulation of NMDA receptors by glutamate, which can

lead to cell death [Lipton, 2006]. However the effects of both types of treatment are modest

[Birks and Harvey, 1996, Reisberg et al., 2003], offering small benefits in terms of cognitive

function and daily living.

Future treatment will be aimed more at disrupting the underlying disease process, essen-

tially preventing neurodegeneration rather than allowing AD patients to make better use of their

remaining brain tissue. This can be done by targeting the formation of β amyloid plaques

[Lashuel et al., 2002] or aggregation of tau protein [Wischik et al., 2008]. However to max-

imise the effectiveness of these approaches, treatment would have to begin earlier in the disease

process, which is a major motivation for this work.

1.5 Alzheimer’s Disease biomarkers

Biomarkers are measurable quantities that are indicative of the presence or progress of some

underlying disease. A number of these are associated with AD and are summarised in table 1.1.

Based on longitudinal study of a large cohort of elderly subjects, it was hypothesised that

the various biomarkers do not all begin to depart from normal levels simultaneously. Rather,

the level of abnormality in each biomarker follows a sigmoidal trajectory, initially rising steeply

before levelling off, with a distinct ordering [Jack et al., 2010]. An updated version of the model
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Biomarker Measured with

Brain atrophy/volume Structural MRI

Brain metabolism FDG-PET

Aβ and tau protein CSF sampled with spinal tap

Amyloid plaques Amyloid PET

ApoE genotype
ε2

ε4 Genetic testing

Table 1.1: Biomarkers for AD. Images from http://www.esciencenews.com,

http://www.alzforum.org/, www.lymphomajournal.com/, and [Nordberg et al., 2010]
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Figure 1.3: Model of biomarker trajectories and ordering. Courtesy of [Jack et al., 2013].

[Jack et al., 2013] is shown in figure 1.3. In accordance with the notion of amyloid levels being

the cause of AD, levels of Aβ become abnormal long before any other biomarker, possibly many

years before symptoms become apparent. This is closely followed by abnormality in levels of

tau protein. After this come the downstream effects of the AD process, in the form of tissue loss

and reduced metabolism, as measured by structural MRI and FDG-PET respectively. Finally

the effect of AD on cognition becomes apparent when the condition becomes symptomatic.

This has obvious implications in the choice of data used to attempt early diagnosis. Clearly,

symptoms or cognitive scores will be of relatively little help as they will be close to normal

early in the disease process. Aβ, and tau, conversely, will already be abnormal well before any

cognitive decline is noticed. This means that in combination they can distinguish AD subjects

from controls as accurately as clinical examination [Sunderland T et al., 2003]; however they

plateau early which means they may be less effective to track disease progression.

1.5.1 The Alzheimer’s Disease Neuroimaging Initiative

A great deal of research into AD biomarkers during the previous decade has been based on

data from the Alzheimer’s disease neuroimaging initiative (ADNI). This was launched in 2003

by the National Institute on Ageing (NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical

companies and non-profit organisations, as a $60 million, five-year public/private partnership.

The primary goal of ADNI has been to test whether serial MRI, PET, other biological markers,

and clinical and neuropsychological assessment can be combined to measure the progression of

mild MCI and early AD. Data was obtained on subjects from more than 50 centres in the USA

and Canada. All subjects were given structural MRI scans, and partially overlapping subsets of
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the subjects also had FDG-PET scans and samples of cerebrospinal fluid taken with a lumbar

puncture for CSF biomarkers. Initial recruitment for ADNI was for a total of approximately

800 adults in the age range of 55 to 90 years. This comprised 200 cognitively normal older

individuals to be followed for three years, 400 people with MCI to be followed for three years

and 200 people with early AD to be followed for two years.

Due to the great success of ADNI, two extensions to the original initiative were begun

more recently. ADNI-Grand Opportunity (ADNI-GO) enabled extended follow-up of about

500 MCI and healthy subjects from the original ADNI cohort, and enrolled another 200 new

MCI subjects, adding amyloid PET imaging to the protocol for these new subjects. ADNI

2 aimed to recruit a further 550 subjects, with a similar proportion of healthy, MCI and AD

subjects as the original ADNI. Advanced MRI modalities including diffusion tensor imaging

(DTI), resting-state functional MRI (fMRI) and arterial spin labelling (ASL) were added to the

protocol at centres where the scanner permitted, and amyloid PET scans were performed on

all subjects. Imaging protocols for the original modalities of structural MRI and FDG-PET for

both ADNI 2 and ADNI-GO were designed to ensure compatibility with the original ADNI

data.

1.5.2 Imaging biomarkers

The primary imaging modalities used in this thesis are those available for subjects in the initial

ADNI cohort: structural MRI and FDG-PET. Broadly speaking, structural MRI gives informa-

tion about anatomy while PET yields functional information; FDG-PET is used to assess the

uptake of glucose which is seen as an indicator of metabolic activity. Both are described in

detail at the start of chapter 2.

1.5.3 CSF biomarkers

As previously stated, Aβ and tau proteins are heavily implicated in the process of AD and

so their concentration in the body is a promising biomarker for AD. Levels of both can be

measured in blood or CSF. In ADNI, the biomarker levels are calculated from CSF sam-

ples. As these require a lumbar puncture to obtain, CSF testing is more invasive than that

of blood samples. However, it was preferred to blood testing as the CSF is in direct con-

tact with extracellular spaces in the brain and should most directly reflect the brain’s bio-

chemistry [Blennow, 2004] and biomarkers for CSF are better established than those for blood

[Cedazo-Minguez and Winblad, 2010]. In ADNI, levels of Aβ, total tau and phosphorylated

tau are measured. Levels of Aβ fall in AD as it accumulates in the brain, whereas levels of tau

in CSF rise with the onset of disease.
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1.5.4 Other biomarkers

The rare familial form of AD is entirely genetic, but sporadic AD also has a genetic component.

The apolipoprotein E (ApoE) gene has long been known to be involved in AD. In exists in three

alleles, known as ε2, ε3 and ε4. The most common allele is ε3. However, the second most

common allele, ε4 is associated with increased risk of developing AD [Corder et al., 1993]

whereas the rarest allele, ε2, appears to be protective against AD [Corder et al., 1994]. ADNI

tests ApoE genotype for almost all subjects.

A number of newer imaging modalities have also produced promising biomarkers for AD.

As a complement to measuring levels of Aβ in CSF, the radiotracer Pittsburgh compound B

(PiB) was developed specifically to bind to amyloid plaques in the brain. PiB retention has

been shown to be similar in AD and converting MCI patients, and greater in the converting than

the stable MCI patients [Forsberg et al., 2008]. Alternative MR imaging modalities such as DTI

which is sensitive to microstructural changes in white matter, and fMRI which can show which

brain regions are active in specific cognitive tasks have also shown promise in yielding new AD

biomarkers, either individually [Nir et al., 2013, Li et al., 2013] or jointly [Wee et al., 2012].

However most such studies have been small, and amyloid-PET, DTI and fMRI data are currently

available for only a few subjects in the ADNI database.

1.6 My contribution

1.6.1 Motivation

In the previous decade, the AD biomarkers described previously have been combined with au-

tomated medical image processing (chapter 2), and machine learning (chapter 3) to automati-

cally diagnose AD. Such methods can now attain an accuracy as good as experienced clinicians;

however, exceeding this accuracy is difficult as the classifiers are ultimately reliant on ground

truth diagnoses provided by clinicians for training data. While automated methods do not have

a clear advantage over more traditional methods of diagnosis, there is a very clear application

for them in predicting the onset of disease in subjects with less severe (or even no) symptoms.

By definition, prognosis based on test scores will be very difficult as at this stage there will be

little or no difference between subjects who will go on to develop dementia and those who will

not. Moreover, distinguishing between these is a problem that has gained increasing levels of

clinical relevance as the desired time of diagnosis is pushed earlier and earlier.

This is largely due to the development of new types of treatment for AD, which will require

identification of AD while symptoms are still very mild in order to be effective. Early identifi-

cation will also make recruitment for future clinical trials for these treatments much easier and



1.6. My contribution 23

cheaper.

In this thesis, we add to the literature on applying machine learning methods to neuroimag-

ing data to study and classify healthy, MCI and AD subjects. In particular, our focus is on

prediction of AD, rather than simple diagnosis. This is primarily accomplished through classi-

fication of the MCI population into converting and stable subjects.

1.6.2 Outline of the thesis

We begin by giving technical background on the major computational methods of all original

work in the chapters discussing image processing (chapter 2) and machine learning (chapter

3).

Next the literature review (chapter 4) puts the work presented here in the context of re-

search performed by others working to perform early diagnosis of AD. As the first three chap-

ters of this thesis imply, there are three major stages at which choices can be made in building

such a classifier. They are the type(s) of image or other data used, the features extracted and/or

selected from that data, and the choice of classification strategy and algorithm. The literature

review discusses these stages and their interaction further before examining the state-of-the art

in depth.

The thesis contains some material relating to each of these three stages. However, the first

experiment we present, in chapter 5 focuses on the last. In it, a comparison is made of GP

and SVM classification of a small set of subjects from the ADNI study into AD patients and

controls. Exactly the same features are used for both classifiers, as the aim of this study was

purely a proof of concept to show that GPs could produce results with comparable accuracy to

more widely used methods. This was the first application of GP classification to AD although

it had previously been applied for classification of structural MRI data in Huntington’s disease

[Chu et al., 2010].

Chapter 6 is more broad-based. It is a study of the utility of multimodal data in prediction

of conversion in MCI subjects, making use of the multiple-kernel learning (MKL) paradigm

discussed in the literature review (section 4.2.7). The advantages of GPs over SVMs - chiefly, in

this case, automatic parameter setting from training data alone - are more fully exploited. Again,

this is the first use of multimodal GP classification to medical image data. The classification

results obtained from using MRI, FDG-PET, CSF and ApoE data are compared to each other,

and to a combination of all of them. It also compares GPs and SVMs. While there is little to

choose between them on grounds of accuracy for monomodal data, for multimodal data the GP

performs much better as it has a superior mechanism for optimally weighting the types of data.

The next two chapters of research, 7 and 8, attempt to improve results further by taking
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a more unconventional approach to classification strategy and feature extraction. Firstly, the

standard classification approach is compared to using regression to predict a continuous proxy

that is known to relate to AD. This produces vastly superior results to classification when only

a small amount of data is available, although the advantage is much smaller when more data is

available. Secondly, the MKL framework for GPs is applied to combine data from different re-

gions of the brain, rather than data from different image modalities. This combines the strengths

of defining features at the voxel level and at the regional level, offering better classification than

either alone.

Finally chapter 9 briefly summarises the conclusions that can be drawn from the previous

four chapters and suggests some areas of future research.
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Chapter 2

Medical imaging and image processing

2.1 Introduction

The processing of medical image data is an extremely broad topic, and I do not go in to great

depth for every technique in this chapter. In particular, there are a wide variety of specialised

algorithms that can be seen as feature extraction methods. These are described in the articles

referenced in the literature review, and in chapters 5 to 8. However there are also lower level

procedures that are fundamental in the analysis of MR and PET images and are used in virtu-

ally every study using image data to diagnose and predict AD. The first is image registration,

which finds the transformation that optimally aligns one image with another. This is necessary

to establish a correspondence between images so information can be transferred from one to

the other. The second is anatomical parcellation, in which one of a set of labels indexing par-

ticular anatomical structures is assigned to every voxel in an image, dividing it up into regions.

The third is tissue segmentation, where voxels are assigned a label or labels representing the

type of tissue they contain. The first image process topic described is image registration, as

both anatomical parcellation and tissue segmentation rely on it. However before that comes an

introduction to structural MRI and PET, the two primary imaging modalities used in this thesis.

2.2 Structural MRI

MRI is an extremely flexible imaging modality that can be employed to study contrasts between

a very wide variety of tissue types, or measure many physical properties of tissues. Its initial

function, however, was in the study of anatomy and this is what is most widely used in the study

of AD, in what is known as structural MRI.

MRI is dependent on the phenomenon of nuclear magnetic resonance (NMR). The physics

of NMR can only be fully described by quantum mechanics, however for these purposes the

property of nuclear spin can be seen as a physical rotation, with an orientation described by a

vector. In an MRI machine, the nuclei of objects inside the scanner (such as hydrogen nuclei
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Figure 2.1: Magnetisation in MRI.

in the human body) are subjected to a strong, static magnetic field. A field strength (B0) of 1.5

or 3T is typical in scanners available for clinical use; the higher the value of B0, the higher the

image quality. The nuclear spins align parallel or anti-parallel to B0. A small majority of spins

lie in the parallel configuration as it has slightly lower potential energy, resulting in a small net

magnetisation Mz . The atoms also precess around B0 with an angular frequency ωL = γB0,

known as the Larmor frequency, where γ is a property of particular atomic nuclei. This is shown

in figure 2.1.

The phase of the atoms’ precession is random, so the net magnetisation in the xy plane

transverse to B0 is zero. However, according to quantum mechanics, the spins can absorb

photons with an energyE = hν, where h is Planck’s constant and ν is frequency corresponding

to the the Larmor frequency, ν = ωL
2π . For a typical B0 this is in the radio frequency (RF) range,

so the spins can be excited by an RF pulse. If this pulse is applied perpendicular to the z axis,

the spins can be made coherent in phase and the net magnetisation is rotated through 90 degrees

into the xy plane. After the pulse is stopped, the spins resume precession in the xy plane, but as

they are in now in phase and the magnetisation is in the xy plane also, this produces a rotating

net magnetisation. This induces a voltage in the scanner’s receiver coils, which constitutes

the MR signal. The time varying signal is converted into a frequency spectrum via Fourier

transforms. The signal immediately begins to decay, which is a results of two processes: return

of net magnetisation to the z direction, with time constant T1, and decoherence of phase in the

xy plane, with time constant T2. Both time constants are dependent on tissue type, which gives

MRI its excellent contrast between tissues.

A three dimensional image is built up by spatially localising the signal source, using gradi-

ents of static magnetic field B0. A slice along the z axis is chosen by applying a slice selection

gradient Gs that varies the magnitude of B0 along the z axis. This means that the Larmor fre-

quency will vary along z, so only nuclei in one particular slice will be excited by an RF pulse.
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Figure 2.2: Basic Fourier transform MR sequence. From http://www.cis.rit.edu/htbooks/mri.

Two further gradients are applied to localise the signal within the slice in the x and y direc-

tions. A phase encoding gradient Gφ is applied in one of these directions. This means that the

frequency of precession alters along the direction of the phase encoding gradient, meaning that

spins lose phase coherence in the phase encoding direction. When the phase encoding direction

is turned off, the spins will all precess at the same frequency once more, but with phase varying

along the phase encoding direction. Finally, while the signal is being measured, a frequency

encoding gradient Gs is applied in the remaining direction, causing the frequency of precession

to vary in that direction. This is shown in figure 2.2

This means the each location in the xy plane within the selected slice has a unique combi-

nation of signal phase and frequency. As a result, the strength of signals from different locations

in the slice can be identified from the Fourier transform of the signal.

It should be emphasised that this example is probably the simplest possible useful MR

sequence. The versatility of MR imaging, in terms of its ability to show many types of different

tissue contrast or even dynamic processes in the human body, stems from the enormous variety

of RF pulses, gradients, and timings that can be applied.

2.3 Positron emission tomography

Positron emission tomography (PET) is a method of imaging a specific physiological process

within the body. The patient is injected with a radioactive tracer compound, and then when

the patient is inside the scanner, the concentration of the tracer can be mapped by detecting

the effects of its radioactivity. The concentration can then be used to make inferences about

processes such as rate of uptake or total amount of particular compounds.

The tracer molecule is designed to chemically mimic a compound that occurs naturally as
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closely as possible, so that the behaviour of the tracer is as similar as possible to that of the

natural molecule within the body. Different tracers are designed to mimic (be an analogue for)

different compounds, and the one which is chosen depends on what physiological function the

scan is meant to measure. In fluorodeoxyglucose-PET (FDG-PET), the tracer is an analogue for

glucose, which is a primary source of energy for cellular respiration. FDG-PET can therefore

be used to image the metabolism of cells with high glucose uptake, which includes those of

the brain as well as cancer cells. This makes it a common choice in both neurological and

oncological applications. However, the tracer must be radiolabelled by replacing part of the

molecule with a positron emitting radionuclide. This may be done by changing the isotopes of

an atom in the compound, such as substituting a positron emitting 11C carbon atom for a 12C

stable one. This has the desirable property as the altered molecule is chemically identical with

naturally occurring glucose. However the 11C atom has a half life of only about 20 minutes,

making tracers using it impractical in hospitals that do not have an on site cyclotron. Hence, it

is more common to use a radiotracer where one of the hydroxyl groups normally present on a

glucose molecule is replaced by an 18F fluorine atom (figure 2.4).

As the 18F has a half-life of 110 minutes, the resulting fluorodeoxy glucose (FDG) can be

manufactured off site and shipped to where it is needed. This, combined with wide applicability,

makes FDG-PET imaging by far the most common type of PET.

All radionuclides used in PET tracers decay by emitting a positron. The positron travels

a short distance from where it was emitted, losing kinetic energy by interactions with the sur-
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Figure 2.4: PET pipeline. Image courtesy of http://www.sepscience.com

rounding tissue. At this point, having typically travelled a few millimetres, it has a sufficiently

small kinetic energy to interact with an outer shell electron of a nearby atom. The resulting

annihilation reaction produces two 511keV gamma rays which travel in exactly opposite direc-

tions. If these are not absorbed in the body, they will activate a pair of detectors, arranged in

a cylinder of concentric rings around the patient. If a pair of detectors in the same ring both

detect a gamma ray within a short window of time of each other (of the order of a few nanosec-

onds) then the gamma rays are considered to come from a single annihilation (event), which is

assumed to have occurred on the line linking that pair of detectors (line of response). In prac-

tice, neither of these assumptions is always correct, as gamma rays produced from distinct but

almost simultaneous annihilations can be counted as an event, and gamma rays can be deflected

by Compton scattering. Both of these are sources of noise in PET images.

Events on each line of response are counted, and then the counts for parallel lines of re-

sponse grouped together. These can then be used to form a projection image called a sinogram,

which includes information from all projections in a ring.

Image reconstruction techniques are then used to generate a map of the estimated concen-

tration of the tracer in the body from the sinogram. Filtered back projection [Natterer, 1986] is

a frequently used approach. The sinograms are used to create intensity profiles for each projec-

tion angle, which can then be back-projected to reconstruct the original image. More recently,

iterative approaches based on expectation maximisation have emerged as an alternative. These

try to find the distribution of tracer most likely to have produced the observed data. This can

produce images with less severe noise and artefacts, but at much greater computational cost

[Vardi et al., 1985].
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The probability of a gamma ray interacting with an atom in the body before being de-

tected depends on the distance it travels through tissue. Therefore structures deeper inside the

body are assigned an artificially low activity in image reconstruction. This can be addressed

with attenuation correction, based on a map of the attenuation coefficient in tissue across the

body. The map can be obtained from a CT image if the PET image is from a PET/CT scanner.

Alternatively a transmission image from a radioactive source may be used. While visual assess-

ment of PET scans by a radiologist is still widespread, the scan may undergo further processing

steps to produce more objective measures that allow fairer comparison between subjects. The

standardised uptake value (SUV) [Zasadny and Wahl, 1993] normalises uptake by the subject’s

dose and body weight. For specific conditions, normalisation may also be done with reference

to a region where uptake remains relatively unaffected by disease, such as the cerebellum, or to

a customised reference cluster [Yakushev et al., 2009].

2.4 Image registration

Medical image registration is the process of aligning two medical images, so that a one to one

mapping between the coordinate systems exists and shows correspondence between equivalent

locations. This is generally done by defining one image as a target or reference image, which

remains fixed, and the other as a floating image which is allowed to transform. Registration

finds the transformation such that the the transformed floating image is optimally aligned with

the target image. Algorithms for registration therefore consist of three components: a trans-

formation model that defines in what ways the floating image is allowed to move, an objective

function comprising some measure of the quality of the alignment between the images, with

a regularisation term for complex transformations, and an optimiser that determines the best

parameter values for the transformation. The floating image is deformed according to the trans-

formation model, and the resulting image is compared to the target image with the optimiser

iteratively updating the transformation. This is shown schematically in figure 2.5.

Image registration may be between different subjects to compare anatomy, or between

scans taken at different timepoints for a single subject to track anatomical change, or between

scans taken close in time for a single subject but with different imaging modalities to perform

multimodal analysis or assist in further analysis of data such as PET images. These different

applications generally require particular choices for the three components listed above to obtain

the best results.
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Figure 2.5: Outline of registration algorithms.

2.4.1 Transformation models

A transformation model T defines a mapping for a voxel in the reference image to a coordinate

in the floating image.

The simplest transformation model is that of rigid transformations, which allows transla-

tion and rotation of the floating images but no changes of shape. This might be used to provide a

good initialisation for a more flexible registration, or when very little shape difference between

images is expected.

In the two dimensional model shown in figure 2.6, a rotation about the z axis by an angle

θ may be represented by a matrix R(θ):

R(θ) =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 (2.1)

and a translation can be represented by a vector t. The two may be simply combined:

The effect of a rotation R(θ) and a translation t on a point x = (x, y) is given by T(x) =

Rx + t. This can be expressed in homogeneous coordinates as a single matrix, which can be

decomposed into separate rotation and translation matrices:

T(x) =

R t

0 1

x

1

 =

I t

0 1

0 R

0 1

x

1

 (2.2)

In the three dimensional case, common in medical image registration, there are three rota-

tion matrices: A rotation in the yz plane by θ1 about the x axis, a rotation in the xz plane by θ2

about the y axis, and a rotation in the xy plane by θ3 about the z axis:
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(a) (b)
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Figure 2.6: Rigid transformation for registration. (a) shows a target image; (b) shows a floating

image brought into alignment with (a) by a rigid transformation consisting of a translation and

a rotation.

Rx(θ1) =


1 0 0 0

0 cos(θ1) −sin(θ1) 0

0 sin(θ1) cos(θ1) 0

0 0 0 1

Ry(θ2) =


cos(θ2) 0 sin(θ2) 0

0 1 0 0

−sin(θ2) 0 cos(θ2) 0

0 0 0 1

 (2.3)

Rz(θ3) =


cos(θ3) −sin(θ3) 0 0

sin(θ3) cos(θ3) 0 0

0 0 1 0

0 0 0 1

 (2.4)

The three rotations can be combined by multiplying the three separate rotation matrices

together so R = Rx(θ1)Ry(θ2)Rz(θ3). This can then be combined with a three dimensional

translation vector, as shown in the two dimensional case, to represent a general rigid trans-

formation in a single matrix. This will consist of six parameters - rotation angles about and

translations in the x, y and z directions.

The rigid transformation model may be generalised to affine transformations by the addi-

tion of scaling and shearing. This gives a set of transformations that allow changes to shapes

and volumes but preserves colinearity and coplanarity of points.

Affine transformations may also be used to initialise a nonlinear registration, or when

registering a PET image to an MRI image of the same subject, as this may involve some scaling.

A scale factor can be applied independently to each of the x, y and z axes:
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Figure 2.7: Affine transformation for registration. (a) shows a target image; (b) shows a floating

image brought into alignment with (a) by an affine transformation consisting of a scaling and

shear plus rigid transformation.

Tsc =


scx 0 0 0

0 scy 0 0

0 0 scz 0

0 0 0 1

 (2.5)

Shears are parameterised by off diagonal components of a similar matrix. These compo-

nents represent a displacement along a particular axis by an amount proportional to the coor-

dinate in another axis. In the following matrix, for example, the term shxy is the part of shear

along the y axis dependent on the x coordinate and shyz is the displacement parallel to the z

axis that depends on y.

Tsh =


1 shxy shxz 0

shyx 1 shyz 0

shzx shzy 1 0

0 0 0 1

 (2.6)

Rigid, scaling and shearing matrices may be combined to form a general affine transfor-

mation matrix by multiplication, so Taff = TshTscTrigid. The resulting matrix would at first

glance appear to have fifteen components (three translation, three rotation, three scaling, six

shear) but these are not in fact independent and general affine transformations in three dimen-

sions are represented by twelve components. In practice, affine transforms are parameterised

by these twelve components rather than separate rotation, scaling, et cetera transformations.
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Figure 2.8: Nonlinear transformation for registration. (a) shows a target image; (b) shows a

floating image brought into alignment with (a) by an affine, followed by a nonlinear registration.

Nonlinear transformation models are the most flexible used in registration, with far more

parameters than affine transformations. Nonlinear registrations are typically used to accurately

align images of different subjects, or scans of a single subject taken with a large time interval

between so the anatomy has changed substantially.

A wide variety of nonlinear transformation models exist. The transformation model may

be physically inspired, by representing the anatomy as able to deform like a viscous fluid

[Bro-Nielsen and Gramkow, 1996] or an elastic material [Rohr, 2000]. This allows the trans-

formation to be highly nonlinear while hopefully remaining anatomically plausible. How-

ever the approach used in most of our work is based on free-form deformation (FFD)

[Rueckert et al., 1999]. This defines a large set of control points arranged on an axis aligned

grid; the deformation is then a set of three dimensional vectors at each control point, so the

number of parameters is three times the number of control points. To define the deforma-

tion field over the entire image, the control points are convolved with cubic B-splines, and the

bending energy of these is included as a regularisation term to favour smooth solutions. The

updated implementation we use [Modat et al., 2010] is accelerated using graphics processing

units (GPUs) and yields a diffeomorphic transformation [Modat et al., 2012], meaning that the

resulting mapping is one-to-one with no tissue disappearing via folds in the displacement field.

2.4.2 Interpolation methods

When the floating image is resampled to produce a version in the same space as the target

image, in general the positions of voxels in the new image will not correspond exactly to voxels

in the original floating image - instead they will coincide with points arbitrarily between voxel
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centres. So to find the intensities for voxels in the new image, it is necessary to interpolate

between voxels. There are a number of methods for doing so. Cubic spline interpolation offers

the most flexibility; however, the resulting interpolated intensities may go outside the range

of intensities in the original image. This may be undesirable, for example if the image being

resampled is a probabilistic segmentation so intensities should be between zero and one. In this

case trilinear interpolation can be used. If the image being resampled is an anatomical atlas

or parcellation where structures are labelled with integer value intensities, nearest neighbour

interpolation is generally used.

2.4.3 Objective functions

The role of the objective function is to quantify how good the alignment between the trans-

formed floating image and the target image is. If the target image is designated It, the floating

image If and the transformation T, then the objective function is a function of It and If (T).

Each image can be regarded as a set ofN corresponding voxels, (t1 · · · tN ) for the target image

and (f1 · · · fN ) for the floating image. The choice of similarity measure is largely motivated

by the modalities of the images being registered. Simpler measures are less computationally

demanding, but assume a straightforward relationship between voxel intensities which does

not hold for intermodal registration, and are less robust to noisy images or variations in scan

parameters.

The simplest, sum of squared differences (SSD), directly measures the mean-squared dif-

ference between corresponding voxels.

SSD =
1

N

N∑
n=1

(tn − fn)2 (2.7)

It is an appropriate metric only when the intensities of corresponding voxels in properly

aligned images are the same. A rather more robust metric is normalised cross-correlation

(NCC), which is able to register images with a linear relationship between voxel intensities.

If the mean intensities of t and f are given by t̄ and f̄ respectively, NCC is defined as

NCC =

∑N
n=1(ti − t̄)(fi − f̄)√∑N

n=1(ti − t̄)2
√∑N

n=1(fi − f̄)2
(2.8)

To define a similarity metric robust enough for intermodal registration, where the relation-

ship between the intensities of corresponding voxels can be complex, ideas from information

theory are used. This leads to the metric of mutual information (MI) [Wells et al., 1996]. MI

can be seen as a measure of how much information is shared by two variables, or how much
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having one variable reduces uncertainty in the other. If the variables were completely inde-

pendent, MI would be zero, whereas if one is a function of the other MI would be maximised.

More formally, it measures the difference between the joint entropy of two variables and their

conditional entropies.

To compute MI from pairs of images, a joint histogram of the images is usually con-

structed. This is done by putting the intensities of the target image t and the floating image f

into a set of bins, each containing a range of intensity values. The joint histogram H consists

of entries representing pairs of binned intensities (t, f), and each entry counts the number of

times a particular intensity pair (t, f) has co-occurred at voxels in the same location in the two

images. Then the joint probability distribution for intensity pairs p(t, f) may be estimated as

p(t, f) = H(t,f)
N where N is the total number of entries in H. We may then estimate the marginal

probabilities of binned intensity t in t and f in f , p(t) and p(f), and use them to calculate the

Shannon entropies H [Shannon, 1948] of the image intensities:

H(t) = −
∑
t

(p(t) log(p(t))), H(f) = −
∑
f

(p(f) log(p(f))) (2.9)

Similarly, we can define the image pair’s joint entropy:

H(t, f) = −
∑
t

∑
f

(p(t, f) log(p(t, f))) (2.10)

The MI can then be defined as

MI(t, f) = H(t) +H(f)−H(t, f) (2.11)

which is often made more robust by using the normalised mutual information (NMI)

[Studholme et al., 1999].

2.4.4 Optimisation

An optimisation algorithm is required to find the set of transformation parameters giving the

best registration. Typically this is done by finding the maximum of an objective function, which

is a combination of a similarity term derived from one of the metrics described in the previous

section and, for nonlinear registration, a penalty term to stop the transformation from becoming

overly complex. As stated before, the penalty term in FFD is based on the bending energy of

the transformation, whereas in other nonlinear registration methods the transformation is con-

strained by the physical model it is based on. Most optimisation algorithms used in registration

are gradient based, meaning that they require derivatives of the similarity metric and penalty
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Figure 2.9: Manual segmentation of brain structures with ITK-snap software. From

http://www.itksnap.org/docs/viewtutorial.php?chapter=TutorialSectionIntroduction

term, if any, with respect to the transformation parameters. The nonlinear registrations used in

the work in this thesis use conjugate gradient ascent, which is faster than the simple steepest

ascent approach [Modat et al., 2010].

2.5 Anatomical segmentation

To allow detailed analysis of medical images, it is often necessary to apply a label to all voxels

in an image, parcellating it into anatomically defined structures. This can then be used to define

regions used for normalising PET images, mask out regions that we do not wish to include in

further analysis, or define features for classification or regression at a regional (as opposed to

voxel or global) level. A number of methods can be used for anatomical segmentation, which

we present here.

2.5.1 Manual segmentation

Manual segmentation of brain images by a trained human expert can produce high quality

anatomical segmentations that are considered to be the gold standard for this process. Al-

though experience plays a major role in the process, all raters must follow a carefully drafted

protocol that exactly defines how each anatomical structure should be delineated, in order that

intra- and inter- rater variability is kept as low as possible. The term manual segmentation may

be considered something of a misnomer as software is often used to assist the process as shown

in figure 2.9.

However even with the help of specialist segmentation tools, manual anatomical segmen-

tation is a slow process. It is also subject to limited repeatability. To provide an objective,
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Figure 2.10: Segmentation propagation. An atlas structural image is registered to a target struc-

tural image, and the resulting transformation is used to warp the labels into the space of the

target.

repeatable segmentation and to segment large numbers of images in a reasonable time, auto-

mated methods must be employed.

2.5.2 Automatic segmentation

Automatic anatomical segmentation methods are largely based on the concept of an atlas - a

structural brain image, coupled with a set of anatomical labels for the image voxels in the same

space. The labels in the atlas are generally provided by manual segmentation. Hence automatic

segmentation still ultimately relies on the existence of some slow to produce manually labelled

images. However, it provides a way to use a relatively small number of these to rapidly and

accurately segment a much larger number of images.

An example of a widely used brain atlas was produced by the international consortium

for brain mapping (ICBM) [Mazziotta et al., 2001]. To be more representative of the variation

in human brain anatomy, this is based on a template produced by the Montreal Neurological

Institute (MNI) by affinely aligning and averaging a set of 152 healthy brain MR images. The

resulting template is known as MNI space and is also widely used as a standard space for brain

image analysis.

The atlas can be used to accurately segment a new brain image automatically by segme-

nation propagation. First of all, the structural MR image associated with the atlas is accurately

registered to the brain image to be segmented. This will typically be initialised with a rigid and

then affine registration, followed by a nonlinear step to align structures locally. The resulting
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Figure 2.11: Multiatlas segmentation. Anatomical segmentations from a set of N atlases are

propagated to the space of the target image. The resulting N candidate segmentations in the

target image space are then fused to produce a final anatomical segmentation.

final transformation is then applied to the label image, resampling with nearest neighbour in-

terpolation to maintain the correct integer labels. The result is a set of anatomical labels in the

space of the target image. The segmentation has been propagated from the space of the atlas to

the space of the target image. This process is shown in figure 2.10.

Results can be improved by registering a ’library’ consisting of multiple atlases to the

target image. Our work is based on a set of 20 atlases of healthy subjects. These were initially

parcellated into 49 anatomically defined regions. The regions, and the protocols used to define

them for their initial manual segmentation, are described in [Hammers et al., 2003]. A subset

of the regions were further subdivided to create a set totalling 83 regions [Gousias et al., 2008].

This generates multiple anatomical segmentations in the space of the target image. Each

of these can be seen as a classifier, assigning a class to each voxel of the target image based on

the label of its corresponding voxel. To produce a single, final segmentation classifier fusion

methods must be applied. The simplest method is majority voting, where the label of each voxel

in the final segmentation is the most common label in the N corresponding voxels across the N

segmentations being fused. This approach was shown in [Heckemann et al., 2006] to produce a

final segmentation of a higher quality than that made from any single atlas in the library.
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Both the segmentation propagation and label fusion steps may be improved. If many

atlases are available, the final segmentation can be improved by using only a subset of at-

lases, whose anatomy is most similar to the target image by some metric [Aljabar et al., 2009].

The segmentations can also be propagated across a manifold representing the variability of

brain anatomy, using intermediate anatomies between the atlas and target as stepping stones

[Wolz et al., 2010], or the manifold can be used to improve selection of a subset of atlases

[Hoang Duc et al., 2013].

For improved label fusion, the simulated truth and performance level estimation (STAPLE)

algorithm [Warfield et al., 2004] has been used to form a probabilistic estimate of a correct

underlying segmentation from a set of candidate segmentations of the same structure, using

the expectation-maximisation algorithm to update the weight and estimated performance level

of each candidate segmentation. However STAPLE is designed for single label (background

or structure of interest) fusion, and so cannot be used to combine segmentations of multiple

anatomical regions. Multi-label similarity and truth estimation for propagated segmentations

[Cardoso et al., 2012] extends the STAPLE model to multiple labels and adds extra smoothness

constraints and resistance to bias due to structure size, further improving label fusion.

2.6 Tissue segmentation

Whereas anatomical segmentation is intended to parcellate the brain into anatomically mean-

ingful structures, tissue segmentation segments the brain into its major constituent tissue types.

These are normally considered to be grey matter (GM), white matter (WM) and cerebrospinal

fluid (CSF). For applications in AD, atrophy in the cortex means that alterations to the structure

of GM have been the primary object of study. More recently, alterations to WM have become

of increasing interest although these are more usually studied with diffusion imaging.

2.6.1 Expectation maximisation

Tissue segmentation is almost always done by modelling the three tissue types as Gaussian

distributions of voxel intensities, and thus the entire image as a Gaussian mixture model. The

model parameters are thus the mean and standard deviation for each class of tissue. The pa-

rameters are set using the expectation-maximisation (EM) algorithm [Dempster et al., 1977].

This is a probabilistic method that alternates between an expectation step, which calculates a

function giving the expectation for the likelihood of the data based on the current estimated

model parameters, and a maximisation step that updates the parameters by maximising the the

expected likelihood found according to the previous expectation step. This continues until the

change in log likelihood between steps falls below a predefined threshold. As the result of the



2.6. Tissue segmentation 41

Structural MRI

GM WM CSF

Figure 2.12: A structural MR brain image (top) is segmented into three tissue components

shown on the bottom row: GM (left), WM (centre) and CSF (right). As the segmentations are

probabilistic, their voxel intensities range from 0 to 1.

EM algorithm is a Gaussian distribution for the intensities of each tissue class, the resulting

segmentation for a tissue class is often shown as a probability map, where the intensity in each

voxel represents the probability of the voxel belonging to that class. Hence segmentation into

GM, WM and CSF components gives three probability maps as shown in figure 2.12. These are

sometimes combined into a single hard segmentation by assigning each voxel to the tissue type

with the highest probability.

2.6.2 Extensions to the expectation maximisation model

As figure 2.12 shows, pure EM is not sufficient to produce high quality brain tissue segmen-

tations. It is clear that a large amount of non brain material such as the skull, skin, dura and

so forth has been included as brain tissue. This is because the intensity distributions of these

strongly overlap with the tissue type we wish to include, so they cannot be distinguished with

intensity information alone. Non brain material can be removed in a preprocessing step, or alter-

natively it can be excluded from the segmentations, and the overall quality of the segmentations

improved, by introducing spatial information in the form of priors. These are derived from a

brain atlas that contains probabilistic information on the spatial distribution of GM, WM, and

CSF. The prior is applied by multiplying the estimated segmentations for each tissue class by
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the corresponding prior in each iteration of the EM algorithm. This means, for example, that a

voxel containing skull that would be classified as GM by intensity alone would instead be as-

signed a very low GM probability as it is in a location that is very unlikely to be GM according

to the prior. To establish the spatial correspondence in order for this to work, the priors must

be registered to the image being segmented before the algorithm is applied. In cases where the

anatomy is considerably different from the priors, they can be relaxed to prevent them from

having too strong an influence [Cardoso et al., 2011].

An early application of EM to brain image segmentation [Van Leemput et al., 1999b,

Van Leemput et al., 1999a] included two additional enhancements to the EM algorithm along-

side the use of priors. The first of these is the use of a Markov random field (MRF) to promote

smoothness in the segmentations, by incorporating information from the estimated segmenta-

tion of each voxel’s local neighbourhood into the EM model. This reduces the effects of noise

in the image being segmented. The second is correction for a bias field due to EM signal inho-

mogeneities, which can result in voxels containing identical tissue having different intensities

in a manner that varies smoothly across the image. Both of these are introduced fully into the

EM model as an extra step interleaved with the expectation and maximisation steps rather than

post hoc alteration of the segmentations. Additionally, the separate segmentation, registration of

priors to the target image and bias field correction steps can be combined in a single generative

model [Ashburner and Friston, 2005].
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Chapter 3

Machine learning

3.1 Introduction

Machine learning is a branch of artificial intelligence (AI) that deals with algorithms that can

learn from data. Whereas classical AI was concerned with developing general intelligence and

emulating human thought [Turing, 1950], machine learning is largely stripped of any philo-

sophical baggage and is instead focused on solving particular problems [Mitchell, 1997]. Such

problems can be from a very wide variety of areas, such as optical character recognition, face

recognition, and, as in the rest of this document, medical diagnosis. The usual approach is

to have a large body of example items from which the algorithm can learn, referred to as the

training data. Each example consists of a vector of d features, so each example can be seen as

a point in a d dimensional space. If the features consist of the voxels of a large, high resolu-

tion image then d can potentially be in the millions; however in the following toy examples the

dimensionality is two to allow the results of algorithms to be visualised.

3.2 Machine learning taxonomy

There are many types of machine learning algorithm; however, there is a fundamental distinc-

tion between unsupervised and supervised learning. In the former, each training example is

presented to the algorithm without any extra information about it, and the task is to discover

some structure in the training data from its distribution. A classic unsupervised learning task is

clustering - uncovering natural groupings in the data. This is shown in figure 3.1.

In supervised learning, each point in the training data also has an attached value. The

object of the algorithm is to use the training data to learn a function that, when presented with

a hitherto unseen sample, can accurately predict its corresponding value. If the value to be

predicted is continuous, then this is a regression problem, and the attached values are called

targets. Simple least squares is an example of an algorithm that can solve some regression

problems. If the value to be predicted indicates which of a set of discrete groups each example
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Figure 3.1: Clustering unlabelled data
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Figure 3.2: Classification of labelled data

belongs to, this is a classification problem. Most commonly, there are only two such groups, in

which case it is a binary classification problem and the labels are generally {−1, 1}. However

multiclass classification with three or more groups is also possible; although algorithms and

performance measures are more complex in this case. Binary classification is illustrated in

figure 3.2.

It is also possible to use a small quantity of labelled data mixed with a much larger quantity

of unlabelled data to improve classification performance; this is known as semi-supervised

learning and has also been applied to the problems addressed in this thesis.

Finally, a relatively rare approach to some machine learning problems is known as transfer

learning. This is generally defined as applying the knowledge gained in one problem domain,

and applying it to a different but related domain, with the aim of learning representations that

generalise across the problems. This thesis uses the term to describe the application of a clas-

sifier trained on AD and control subjects to MCI subjects, in order to predict conversion from
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MCI to AD.

3.3 Preprocessing of data

A variety of operations can be performed on data to improve classification or regression perfor-

mance, before a machine learning algorithm is used. These generally fall into two categories:

feature extraction, where some transformation is applied to the existing data to generate a new

set of features from the original ones, and feature selection, where a subset of the original fea-

tures are selected to be used in classification or regression. The two types can also be combined

sequentially in either order.

3.3.1 Feature extraction

When the data being used are medical images, the line between image processing and feature

extraction can be very blurry. For example, averaging or summing over voxel intensities within

different anatomical regions could be seen as feature extraction, as could calculating cortical

thickness from a structural MRI scan, although this would normally be seen as part of the

image processing pipeline. More general feature extraction techniques involve changing the

representation of the data. For example, it is common to use a z-transform to standardise all

features to zero mean and a standard deviation of unity, to prevent features with a large range

from dominating others which have a smaller range but may be more informative. Dimension-

ality reduction techniques are frequently used as well. Principal component analysis (PCA)

[Jolliffe, 2005] is the most popular linear technique, seeking to represent the data in a lower di-

mensional linear subspace that retains most of the variance, while hopefully reducing the noise

level. Recently nonlinear techniques such as manifold learning [L J P Van Der Maaten, 2007]

have also become popular. These see the data as lying on a nonlinear manifold of low dimen-

sion, embedded in the higher dimensional original data space. Manifold learning algorithms

(themselves a type of unsupervised learning) attempt to recover the structure of the manifold,

and then data points are represented by a position in the manifold coordinate system.

3.3.2 Feature selection

Feature selection methods come into three broad categories: filters, wrappers and embedded

methods [Guyon and Elisseeff, 2003]. Filters apply a simple criterion to each individual fea-

ture in turn, and reject the features where the resulting test statistic is over a predetermined

threshold. For example, a t-test might be used to check if a feature separates the two groups

to be classified with p0.05. For regression, a feature might be selected if it correlates with the

target variable sufficiently strongly. Wrappers make use of the learning algorithm: a set of

features is used to learn a model, and the results are assessed and compared to other sets of
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features. As the number of possible sets of features is given by 2D, D being the dimensionality,

an exhaustive search rapidly becomes intractable for more than a trivially tiny set of features.

Instead, heuristics are used to progressively add features to an empty set or remove them from

a full set, or a combination of the two. A more complex wrapper method is recursive feature

elimination [Guyon et al., 2002] which uses the weights of a trained linear model to infer and

rank the importance of corresponding features. Both filters and wrappers have the disadvantage

of needing target or label information to select features, which means great care must be taken

to avoid double dipping. This can be avoided by using other types of feature selection. Em-

bedded methods are machine learning algorithms that are designed to drive most of the weights

of a linear classifier to zero. Most frequently, this is done with a sparsity favouring regularisa-

tion term, such as the `1 norm of the weight vector w as in the LASSO [Tibshirani, 1994], or

for Bayesian methods, a sparsity inducing prior can be applied to the weights. Such methods

combine the feature selection and training steps into a single operation. Perhaps the broadest

method, however, is to remove features based on prior knowledge of the problem domain. For

example, for AD classification, we know which regions of the brain are affected by the disease

processes, so features representing other regions may be eliminated. This is probably the most

effective method of feature selection for this type of problem [Chu et al., 20].

3.4 Performance measurement and validation in machine learning

Clearly, when a classification or regression model has been built, it is important to estimate how

well the model will perform in practice. To do this, the model must be applied to a set of data

for which the ground truth is known so it is possible to assess the performance of the model.

This is known as the test set. To minimise any bias, the test set must not contain any subjects

used to train the classifier, as inclusion of these will obviously falsely inflate the performance

of the model. Simply dividing a set of data into training and testing points is easy, and there

are many ways to do this which are discussed in the section on validation strategies. However,

there are subtleties in which this separation can unintentionally be violated in the experimental

design, which we discuss in a later section.

3.4.1 Performance measures for classification

The simplest and most widely used performance measure for classifiers is the accuracy. This

just expresses the fraction of data points in the test set which are correctly classified. In a

typical classification experiment with a medical application, the test subjects will be divided

into patients and controls. Based on this and the classification results, we can further split

the test set into patients who are classified as patients (true positives or TP ), patients who are
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results
Ground truth Prediction

patient control

patient TP FN

control FP TN

Table 3.1: Confusion matrix for classification

incorrectly classified as controls (false negatives or FN ), controls who are classified as controls

(true negatives or TN ), and controls who are wrongly identified as patients (false positives or

FP ). This is summarised in table 3.1.

So the accuracy can be expressed as

accuracy =
TP + TN

TP + FN + FN + TF
(3.1)

This can be broken down into individual accuracies for the ground truth patients and the

ground truth controls. In medical applications, the resulting quantities are known as the sensi-

tivity (proportion of ground truth patients, or more generally proportion of ground truth positive

class subjects, which are correctly classified) and specificity (proportion of ground truth con-

trols, or more generally proportion of ground truth negative class subjects, which are correctly

classified):

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

(3.2)

If we know the sensitivity and specificity, and the proportion of ground truth positive and

negative class subjects in the test set, we can calculate the accuracy:

accuracy =

(
sensitivity ∗ P

N + P

)
+

(
specificity ∗ N

N + P

)
(3.3)

This shows the danger in reporting accuracy alone. If the test data is very unbalanced

(having many more subjects from one class than the other) a very high accuracy may mask

a very high sensitivity and very poor specificity, or vice versa. To take an extreme case, if

a classifier does not classify at all but simply assigns all test data to the positive class, then

a test data comprising 99 points from the positive class and only one from the negative class

would produce an accuracy of 99%, despite having a specificity of zero. Best practice is to

report sensitivity and specificity as well as accuracy. To give a single overall statistic, it is also
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Figure 3.3: ROC curves. The red line shows the tradeoff between sensitivity and specificity for a

hypothetical perfect binary classifier. A random classifier would be represented by the diagonal

line, and most real binary classifiers would have an ROC curve resembling the intermediate

solid black one.

possible to report the balanced accuracy, which is often defined as the mean of sensitivity and

specificity.

Other alternatives are based on the idea of varying thresholds. All classifiers produce a

decision value (DV). This is a scalar which is thresholded to determine to which class a test data

point belongs. For example, support vector machines have a DV which is the signed distance to

the separating hyperplane. Normally the class of a test subject is decided by the sign of this DV,

i.e. it is thresholded at 0. However, we may trade off sensitivity against specificity by changing

this threshold. We make extensive use of this, providing an alternative balanced accuracy as the

accuracy obtained at the threshold value where the difference between sensitivity and specificity

is smallest. The same ideas are used in receiver operating characteristic (ROC) curve. This

summarises the tradeoff between sensitivity and specificity, by calculating them for all possible

thresholds.

The ROC curve may be used where there are particular costs attached to false negatives

and false positive, to find a threshold that minimises the total expected cost. The area under the

ROC curve (AUC) is also widely used as a measure of classifier performance as it is aggregated

over all thresholds. It can be interpreted as the probability that a randomly chosen test subject

from the positive class will have a greater dv than a randomly chosen subject from the negative

class [Fawcett, 2006]. In a perfect classifier, all subjects in the positive class will have a greater

dv than subjects in the negative class so this is equal to one.
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3.4.2 Performance measures for probabilistic classification

All the measures defined in the previous section can be applied to probabilistic classification.

However the probabilistic predictions also enable some more options. In particular, we may

want to know if the probabilities are well calibrated - in other words, are predictions made

with a higher degree of confidence more likely to be correct? This can be measured with the

Brier score [Brier, 1950]. This was originally proposed for assessing the quality of probabilistic

weather forecasts and is given by

BS =
1

N

N∑
i=1

(pi − ci)2 (3.4)

whereN is the number of test subjects, and pi is the predicted probability of the ith subject

belonging to its true class ci, c ∈ {0, 1}. Another method is to plot an error-reject curve. If the

confidence threshold below which we reject a probabilistic prediction is increased, then the

error rate among the retained predictions should smoothly decrease if the predictions are well

calibrated. We also introduce some novel metrics for probabilistic predictions in later sections.

3.4.3 Performance measures for regression

There are two simple and widely applied performance metrics for regression. They are the

Pearson correlation r between the actual target values y and predicted target values ŷ

r =

∑N
i=1(yi − ȳi)(

∑N
i=1(ŷi − ˆ̄yi)√∑N

i=1(yi − ȳi)2
√

(
∑N

i=1(ŷi − ˆ̄yi)2
(3.5)

where ŷ and ˆ̄y are the sample means of the actual and predicted targets values, and N is

the number of data points, and the root mean squared error (RMSE)

RMSE =

∑N
i=1(yi − ŷi)

N
(3.6)

3.4.4 Validation strategies

As previously stated, we must measure the performance of our learning algorithms on a test data

set that is separate from the training data. However, an independent source of test data may not

be available, or the amount of data available may be so small that splitting it into training and

testing sets would results in both being very small. The solution is to adopt cross validation. In

this, the available data points are split into k roughly equally size folds, or groups. Then, each

fold in turn is left out as a test set, and the remaining k−1 folds together form the test set. After

this procedure has been repeated k times, each data point has been used for testing once and

for training k − 1 times. The results on the different test sets may then be averaged together to



3.4. Performance measurement and validation in machine learning 50

fold 1 fold 2 fold 3 fold 10...

...
N N N N

Figure 3.4: LOOCV in a set of ten data points. Each data point in turn is left out as testing data

(red) while the other nine are used for training (blue). The accuracy of an classifier built using

all ten points to train on new data is estimated by the accuracy across the ten left out data points.

form an overall estimate of accuracy. This is known as k-fold cross validation. If k is equal to

the number of data points N this is known as leave-one-out cross validation (LOOCV). As the

training set for each fold is only one smaller than the entire data set, this is a nearly unbiased

estimator for the accuracy of a classifier constructed from the entire data set on unseen data

[Cawley and Talbot, 2004]. However it is subject to greater variance than cross validation with

fewer folds.

For classification, if the data set is unbalanced between classes, the folds may be stratified,

so the proportion of the classes in each fold is roughly reflective of the entire data set, to improve

accuracy estimation [Kohavi, 1995]. Cross validation can also be applied to estimate accuracy

for the purpose of parameter tuning. In this case, tenfold cross validation is preferable due to

its better lower variance than LOOCV. When doing this, however, care must be taken to avoid

double dipping.

An alternative to k-fold cross validation is Monte Carlo cross validation [Xu et al., 2004].

This randomly partitions the data into training and test sets of a size determined by the user,

and can be repeated as many times as desired. This has a lower variance than k-fold cross

validation, but may be more biased as there is no guarantee each data point is used in training

and testing.

Comparing, as opposed to estimating the accuracies of classifiers is still a difficult problem.

McNemar’s test [McNemar, 1947] may be used to calculate a p-value for the difference in

accuracies for two classification methods applied to the same set of test data, by generating a

χ2 statistic from the number of datapoints switching from rightly to wrongly classified and vice

versa between the two methods. Alternatively confidence intervals may be constructed around

the estimated accuracy [Newcombe, 1998].
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Figure 3.5: Levels of fitting of a function f(x) to a sample of points. Plot (a) shows underfitting;

the linear model is insufficiently flexible to capture the variation in the underlying function that

generates the points. Plot (b) shows a correct level of fit. Plot (c) shows overfitting; error on the

sampled points is zero but the model will likely generalise very poorly to new data.

3.5 Pitfalls of machine learning experiments

Two common errors in performing machine learning experiments are discussed here; the first

concerns an error which leads to poor predictive performance and the second to positively bi-

ased predictions of performance. The two are, however, quite closely related. In the neuroimag-

ing domain, which typically has relatively few data points of possibly very large dimensionality,

the potential for both to cause problems is potentially grave.

3.5.1 Overfitting

Overfitting describes a situation in which an overly complex model no longer fits the (unknown)

underlying function that describes the training data, and instead fits the noise characteristics of

the training data. It is illustrated in figure 3.5.

Many successful machine learning techniques are designed around a method to combat

overfitting, such as maximising the margin in support vector machines, or model averaging and

maximum likelihood parameter setting in Gaussian processes. Determining when overfitting is

happening is challenging as it is difficult to detect in training data alone. In fact the hallmark of

overfitting is regime where increasing the model’s flexibility continues to reduce training error,

but error on an independent test set begins to rise.

3.5.2 Double dipping

As previously stated, good estimates of generalisation performance in supervised learning come

from applying a model to a set of test data that were not used in training. While this statement is

self evident and apparently simple, it is possible for it to be violated in surprisingly subtle ways,

as some experimental designs accidentally introduce circularity into the analysis by allowing
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Figure 3.6: As the complexity of a model is increased, the training error (blue curve) may

approach or reach zero. However after initially decreasing, the testing error (red curve) will

begin to rise as an overly complex model begins to overfit the training data. Testing error is

minimised at the appropriate level of complexity (dashed vertical line).

the labels or targets of test data to be used in generating the model, allowing information to

leak from the test set to the training set. Most commonly, this occurs when a method requires

a number of parameters to be set, or when supervised feature selection or extraction methods

are applied. An experimenter may, for example, apply a feature selection method to choose

features based on all data points and their labels. After this is done, the accuracy of the resulting

classifier is assessed in 10-fold CV. This introduces circularity to the data, as the labels of data

points used to evaluate the classifier are also used in constructing the classifier. The result is

inflated accuracy estimates as it results in testing a hypothesis suggested by the data, which

can lead to the detection of spurious effects [Kriegeskorte et al., 2009]. The same effect has

been noticed in a number of papers directly relevant to this thesis, inflating the accuracy of

AD classification [Eskildsen et al., 2013]. Double dipping may be understood by expanding the

definition of training to also include parameter setting feature selection or extraction, or training

data selection (which may be grouped under model selection), as well as model optimisation.

Seen in this way, it clearly violates separation of training and testing data.

In practice, the problem can be avoided by modifying the experimental design. For exam-

ple, an experimenter may use three groups of disjoint data, for training, tuning and testing an

algorithm, rather than training and testing groups alone. If cross validation is being used, then

the situation is a little more complex. A common approach is to perform a separate CV loop

within the training set of each fold of a CV loop. The inner CV loop can be used for parame-
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Figure 3.7: Many hyperplanes can divide two linearly separable groups of points.

ter tuning et cetera and the outer loop for accuracy estimation, a method known as nested CV

loops [Varma and Simon, 2006]. Many different validation strategies may even be combined in

a complex pipeline, as long as separation of model selection and training data from testing data

is maintained.

3.6 Support vector machines

The support vector machine (SVM) is possibly the most widely used algorithm for classifica-

tion. If the training subjects represent points in a d-dimensional space, the SVM constructs a

d − 1 dimensional surface (a hyperplane) that separates the two classes of training points. In

general, as shown in figure 3.7, there will be an infinite set of possible hyperplanes that do this.

SVMs select a separating hyperplane based on the principle of structural risk minimisation

[Cortes and Vapnik, 1995]. This controls the tradeoff between fitting the training data well and

also offering good generalisation behaviour, that is making high quality predictions on samples

outside of the training set. In the framework of SVMs, this translates to a simple geometrical

intuition: the best hyperplane is the one which maximises the distance to the closest points in

each class. This distance is known as the margin; hence SVMs are maximum-margin classifiers.

The hyperplane is a function only of the subset of training points which lie on the margin. These

are known as the support vectors, from which the SVM takes its name. This is illustrated in

figure 3.8.

More formally, a training data point may be seen as vector x = (x1, x2, ..., xd) in a d

dimensional space. The aim of the SVM is to produce a function y(x), so that the sign of y(x)

indicates on which side of the separating hyperplane x lies, and hence its class.
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Figure 3.8: The SVM chooses the hyperplane that maximises the margin.

3.6.1 Linear SVMs

Support vector machines were originally conceived as a purely linear classifier for separable

data [V. Vapnik, 1963]. The equation for the separating hyperplane is y(x) = w>x + b = 0,

where w is a vector normal to the separating hyperplane and b a bias term. The margin is

then defined by the hyperplanes y(x) = 1 and y(x) = −1. We can then see that the distance

between these planes, which is the size of the margin, is given as 2/‖w‖. Hence we want to

minimise ‖w‖without allowing any points to fall inside the margin. IfN training data points of

dimensionality D xi ∈ RD have corresponding labels y = (y1, y2, ..., yN ), yi ∈ {−1,−1}Ni=1

this gives the following optimisation problem:

min
w,b

‖w‖

subject to yi(w
>xi + b) ≥ 1

(3.7)

which is equivalent to

min
w,b

1

2
‖w‖2

subject to yi(w
>xi + b) ≥ 1

(3.8)

By introducing Lagrange multipliers α this can be expressed as

min
w,b

max
α

{
1

2
‖w‖2 −

N∑
i=1

αi

[
yi(w

>x− b)− 1
]}

subject to α ≥ 0

(3.9)

Which can be solved using standard quadratic programming methods, yielding a solution

for w as a linear combination of the training data points, w =
∑N

i=1 αiyixi. This identifies
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which training points are the support vectors, as they are the only ones whose corresponding α

is nonzero. The bias b can be found from a single support vector, but a more reliable method is

to average over all of them:

b =
1

NSV

NSV∑
i=1

(w>xi − yi) (3.10)

By substituting the expression for w back in to equation 3.9 we can write the optimisation

problem in its dual form:

max
α
L̃(α) = max

α

αi − 1

2

N∑
i,j

αiαjyiyjk(xi,xj)


subject to αi ≥ 0 and

N∑
i=1

αiyi = 0

(3.11)

Here the kernel function k is just the dot product so k(xi,xj) = x>i xj .

3.6.2 Soft-margin SVMs

If the distributions of the two classes in training data overlap, then the classes are not linearly

separable and the SVM algorithm will fail. A modified formulation, the soft margin SVM

[Cortes and Vapnik, 1995], was introduced. This was done by adding slack variables ξi which

measure the amount of error in classification of training data. Clearly allowing a greater error in

the training set will allow a larger margin among the training points that are not misclassified,

and this tradeoff between margin size and training error is controlled by a parameter C. The

optimisation then becomes

min
w,ξ,b

{
1

2
‖w‖2 + C

N∑
i=1

ξi

}

subject to yi(w
>xi)− b ≥ 1− ξi and ξi ≥ 0

(3.12)

Applying Lagrange multipliers and converting to dual form as before, the problem is then

expressed as

max
α
L̃(α) = max

α

αi − 1

2

N∑
i,j

αiαjyiyjk(xi,xj)


subject to 0 ≤ αi ≤ C and

N∑
i=1

αiyi = 0

(3.13)

Conveniently, the slack variables ξi disappear from the dual problem and the constant C

appears only in the constraints. C is however a free parameter than can be difficult or costly
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Figure 3.9: Data that are not linearly separable in the input space x become linearly separable

in the feature space φ(x). However we do not have to explicitly calculate φ(x) as only dot

products between transformed feature vectors appear, forming the kernel matrix.

to optimise. Often it is set by a heuristic or a grid search for the value providing the best

performance.

3.6.3 Kernels and nonlinear SVMs

Note that in the dual problems, the data points x only appear in the form of a kernel function

k(xi,xi). This means that an SVM built from N training data points is based on an N by N

kernel matrix of dot products. However the dot product can be replaced with a nonlinear kernel

function φ(x) [Aizerman et al., 1964]. This means that the hyperplane is fit in some higher

dimensional feature space, enabling data which are not linearly separable in their original form

(the input space) space to be easily separated in the transformed space (the feature space) with

a nonlinear SVM [Boser et al., 1992].

As the data only affects the optimisation problem via the kernel matrix, we do not need to

explicitly calculate the feature space, but only the dot product of training samples in the feature

space. Any function k(xi,xi) that produces a valid (symmetric positive definite) kernel matrix

can be used as a kernel function. This also means that any linear combination of valid kernels is

itself a valid kernel, a fact which we make extensive use of. More generally, the kernel can be

seen as a matrix of pairwise similarities between data points. The radial basis function (RBF)

kernel for example, a widely used choice, is based on a function of the Euclidean distance

between points:

k(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
(3.14)

This implicitly makes use of an infinite dimensional feature space. Although it can be very
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powerful, the flexibility of nonlinear classifiers can make them more prone to overfitting when

there is little training data available. In the case of SVMs, the RBF kernel also adds another

parameter to be tuned, the kernel width σ.

3.7 Gaussian processes

Gaussian Processes (GPs) provide an alternative method for machine learning that, like SVMs,

can be used for both classification and regression. GPs have some features in common with

SVMs - they provide similar predictive accuracy, and are also well suited to very high dimen-

sional data. This is because, again like SVMs, they are based on a kernel, making them very

efficient in the domain where the data dimensionality is much greater than the number of sam-

ples (as is very common in neuroimaging applications). SVMs also make use of the principle

of structural risk minimisation [Cortes and Vapnik, 1995], where the criterion of finding the

largest possible margin helps to prevent overfitting.

Furthermore, the interpretation of the kernel matrix is different; rather than summarising

the similarity between points it represents the covariance matrix of a multivariate Gaussian prior

over the classification or regression model parameters. This implies that GPs are a probabilistic

method, which distinguishes them from SVMs. Prevention of overfitting in GPs is done by

probabilistic model averaging, rather than optimisation of a single model as in SVMs.

Bishop [Bishop, 2007] describes probabilistic methods as having four advantages over non

probabilistic ones:

• Easy risk minimisation when the costs of making a mistake (the loss) change;

• Allowing a reject option where a classifier only gives a decision for test data it is can

categorise with confidence;

• Easy compensation for class priors, where one class is much more common than the

other(s);

• Models can be combined in an existing framework - the laws of probability.

To this we can add automatic setting of parameters from training data only, which we make

extensive use of.

What follows is a brief introduction to the application of GPs to machine learning prob-

lems. For a much more rigorous treatment, [Rasmussen and Williams, 2006] is recommended.

We begin by showing how GPs are used in regression, as this is the simplest case, and then

extend the model to binary classification. But first of all we must introduce Bayes’ rule, which
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describes conditional probability. Consider two random variables, A and B. From the laws of

probability, we know that the joint distribution of A and B, p(A,B), can be written as either

p(A,B) = p(A|B)p(B) or p(A,B) = p(B|A)p(A). So we can write

p(A|B)p(B) = p(B|A)p(A) (3.15)

which by dividing through gives us

p(A|B) =
p(B|A)p(A)

p(B)
(3.16)

Which relates the conditional probabilities p(A|B) and p(B|A). p(A|B) is known as

the posterior (as it describes our beliefs about A after having observed B), p(A) the prior (as

it describes our beliefs about A prior to observing B), p(B|A) the likelihood and p(B) the

marginal likelihood.

3.7.1 Gaussian process priors

Formally speaking, a GP is a generalisation of ordinary multivariate Gaussian distributions to

the case of an infinite number of variables, with the condition that any finite subset of the vari-

ables form a multivariate Gaussian. It is this latter property - that any marginal distribution

of the GP is also Gaussian - which is the key to GPs’ applicability to machine learning prob-

lems, given the somewhat abstract definition. Again generalising from familiar multivariate

Gaussians, which are parameterised by a mean vector and a covariance matrix, a GP can be

described only by its mean function m(x) and covariance function k(x,x′). So we can write

GP ∼ N (m,K) (3.17)

where

m =

m(x)

m(x′)

 , K =

k(x,x′) k(x,x′)

k(x′,x) k(x′,x)

 (3.18)

The matrix K is a kernel matrix identical in form to those used in SVMs, and the allowed

kernel functions are the same as can be used with an SVM. A linear (dot product) covariance

function can be used, but we can also apply the kernel trick to use kernel functions such as radial

basis functions (sometimes referred to in GP literature as squared exponentials) to perform

nonlinear regression or classification, again like an SVM. However, the interpretation of the

kernel function is different in SVMs and GPs. In an SVM, the kernel function measures the

similarity between vectors in an inner product space, whereas in a GP it measures a component
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of the covariance of a prior over functions. Hence the terms kernel function and covariance

function are equivalent in the GP literature.

By itself, the GP cannot be used for machine learning. However, it can be applied as a

prior to models of regression and classification. There are two ways of seeing how this can

be done, which are different conceptually but can be shown to be equivalent mathematically

[Rasmussen and Williams, 2006]. These are introduced in sections 3.7.2 and 3.7.3.

3.7.2 Gaussian process regression - weight space view

One way of understanding GP regression is known as the weight space view. This is introduced

first as it involves using the GP as a prior on the weights w of a familiar linear regression model.

In ordinary linear regression, the target vector y is modelled as a linear function1 of data

X with zero mean Gaussian noise of standard deviation σ: y = w>X + ε, with ε ∼ N (0, σ2).

Now consider placing a GP prior (with, for simplicity, zero mean) over the weights w. By

substituting this GP for the prior, and Gaussian noise as the likelihood into Bayes’ rule (equa-

tion 3.16) we obtain the following equation for the posterior for the weights:

p(w|X,y,θ) =
p(w|θ)p(y|X,w)

p(y|X,θ)
(3.19)

where the (GP) prior is p(w|θ), the (Gaussian) likelihood is p(y|X,w) and θ is a set

of hyperparameters that determine the exact form of the prior. The denominator p(y|X,θ)

represents a marginal likelihood equal to
∫
p(w|θ)p(y|X,w). The Gaussian form of the prior

provides a form of regularisation, favouring weights that are not too large. To make predictions,

we do not usually select a single set of weights but instead integrate over the posterior to average

over all possible values for w. If we are presented with a new data point x∗, we make a

prediction for the corresponding y∗ by integrating over 3.19, effectively averaging across all

possible values for w, weighted by their posterior probability.

p(y∗|X,y,x∗,θ) =

∫
p(y∗|w,x∗)p(w|X,y,θ)dw (3.20)

As the prior and likelihood are both Gaussian, the marginal likelihood and posterior

are also Gaussian. This means a closed form solution for equation 3.20 can be found

[Rasmussen and Williams, 2006]:

p(y∗|X,y,x∗,θ) ∼ N
(

1

σ2
x∗>A−1X>y,x∗>A−1x∗

)
(3.21)

1Note that for simplicity, the bias term, b, has been subsumed into the weights, w.
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Figure 3.10: The GP prior (left) is vague and permits a wide range of linear functions admitted

by the prior (blue) and high uncertainty (grey). After introducing data points (red), the posterior

allows a much narrower range of linear functions and reduced uncertainty.

Where A = 1
σ2 X>X + K−1 and K is the kernel matrix representing the covariance of

the GP prior.

3.7.3 Gaussian process regression - function space view

The function space view of GP regression initially seems more unfamiliar as it dispenses with

the entirely use of weights, apparently breaking the link with linear regression. However it

provides a more natural and concise way to describe GP regression, by instead applying the GP

as a prior directly over functions f(x). This means that the mean vector m has infinite length

and the kernel matrix K has infinite size, as it forms a prior over all possible linear functions.

However by introducing a set of training data vectors X and a vector of corresponding target

values y we can calculate a posterior distribution for f(x). This is illustrated for the simple case

of one dimensional, linear regression in figure 3.10. In the left hand diagram, the GP prior is

across the space of all possible linear functions, shown in blue, and is correspondingly broad. In

the right hand figure, some training (one dimensional) data vectors X and target values y have

been introduced, shown as the red dots. Pairs of data vectors and their corresponding target

values (x, y) can be seen as samples from the distribution of f(x). By the properties of GPs,

this finite sample is a (finite sized) multivariate Gaussian. It can therefore be used with Bayes

rule to calculate a posterior for f(x), giving a much tighter distribution which can be used to

make high quality predictions.

For the regression case, as in the weight space view we model the targets y as being a

linear function of the data vectors x plus zero mean Gaussian noise. The difference between

the weight space and function space view is that we apply the prior directly to the value of f(x)

rather than the weight. Again as in the weight space view, for simplicity we assume the GP is
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zero mean. We apply the GP as a prior and and Gaussian noise as the likelihood, so the model

is given by

yi = f(xi) + ε

f ∼ N (µ = 0,K)

ε ∼ N (0, σ2)

(3.22)

As before, we can substitute these terms into equation 3.16 and simplify. The resulting

posterior gives the core predictive equations for GPs. The posterior is, again, also a multivariate

Gaussian. For training data X and training targets y, and an unseen test data vector x∗ the

predictive distribution for the value of f(x∗) is given by

p(f(x∗)|X,y,x∗,θ) ∼ N (µ∗, σ2
∗
)

µ∗ = k∗>C−1y

σ2
∗

= k(x∗,x∗) = k∗>C−1k∗

(3.23)

Where C = K + σ2I. K is the covariance matrix derived from the covariance function k,

training data X and covariance hyperparameters θ, so Ki,j = k(xi,xj,θ), and k∗ is a vector of

covariances between the test data point x∗ and all the training data points.

As previously stated, the weight space and function space views of GP regression can be

shown to be equivalent. However, a subtle difference is that the function space formulation

makes use of the kernel trick. Compare the predictive equations for the weight space and

function space views, equations 3.21 and 3.23 respectively. In the former, predictions are made

by inverting the matrix A which is size d × d where d is the data dimensionality. In the latter,

making predictions involves inverting C, which is size N × N , where N is the number of

subjects. For neuroimaging applications, where very frequently d is much larger than N , this

can be a great advantage, especially if precomputed kernel matrices are used.

3.7.4 Gaussian process classification

In order to perform classification, rather than regression, we must modify the likelihood func-

tion of the GP. If we are given a set of data points x and corresponding vector of labels y:

{(xi, yi)Ni=1} with binary class labels yi ∈ {−1,+1} then we can use a sigmoidal function σ

such as the logistic or probit function as the likelihood, so p(yi = 1|xi) = σ(f(xi)). This then

maps f(xi) to the [0, 1] interval, representing the probability that the label for xi, yi, is equal to

1.

Gaussian process classification could therefore be seen as similar to logistic or probit re-

gression with a GP prior. In binary classification, the class probabilities must sum to unity so
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Figure 3.11: Sigmoidal functions link the value of the latent function f(x) to class membership

probabilities.

p(y = 1|xi) = 1 − p(y = −1|xi), and the sigmoid functions σ are symmetric so σ(x) =

1 − σ(x). This means the likelihood terms can be rewritten as p(yi|f(xi)) = p(yif(xi)).

Plugging this into equation 3.16 we can rewrite Bayes’ rule as

p(f |X,y,θ) =
p(f |θ)

p(y|X,θ)

N∏
i=1

σ(yif(xi) (3.24)

whereas for regression p(f |θ) is the prior over the latent function f and p(y|X,θ) is the

marginal likelihood. The likelihood over training samples is factorised as they can safely be

treated as independent.

Unfortunately, the non-Gaussian likelihood function means that the marginal likelihood

and posterior are also non-Gaussian in the classification case. An exact evaluation of the in-

tegrals of these distributions cannot be obtained analytically. However Monte-Carlo Markov

Chain (MCMC) methods may be used to give an extremely accurate evaluation of them, which

in the limit of an infinite number of samples would be exact. Alternatively, although the re-

sulting posterior distributions are non-Gaussian, they can be shown to be unimodal and can

be reasonably approximated by a Gaussian. A number of methods can be used to fit a Gaus-

sian; these include the Laplace approximation [Williams and Barber, 1998], variational Bayes

[Gibbs and MacKay, 2000] and expectation propagation (EP) [Minka, 2001]. All three of these

were compared against an MCMC ’gold standard’ in [Nickisch and Rasmussen, 2008], and EP

was found to be almost as accurate as MCMC while being much faster to run in practice. We

therefore use EP as the approximation method in all GP classification experiments. Briefly,

it calculates the parameters µ and Σ of the approximating multivariate Gaussian by approxi-
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Figure 3.12: Gaussian process classification with two dimensional toy data, with linear (left)

and squared exponential (right) kernels. Red dots indicates the +1 labelled training data and

blue dots the −1 labelled ones. Contours show the locus of equal p(y∗ = 1|x) as indicated by

the colour bar.

mating the likelihood hood terms with unnormalised Gaussian site functions, and then cycling

between the site function, updating each in turn with moment matching, until a convergence

criteria is met. No formal proof of convergence has been found for EP but it usually terminates

successfully in practice [Nickisch and Rasmussen, 2008].

All methods are explained in more detail in the references above. A very detailed math-

ematical explanation of their application to GPs is given in [Rasmussen and Williams, 2006].

Once the posterior has been found, predictions can be made in a similar manner to GP regres-

sion. GP classification generally gives us similar accuracies to SVMs. However it has a number

of advantages. As well as being easily extended to multiclass classification and offering auto-

matic hyperparameter tuning (described in the next section) it can quantify the predictive un-

certainty by providing a probability of class membership of test subjects. GP classification does

not explicitly calculate a separating boundary between the two classes in the input space. How-

ever as figure 3.12 shows, for a linear kernel, the p(y∗|x∗) = 0.5 contour very much resembles

one. However unlike an SVM the class membership predictions will always be probabilistic.

For a nonlinear kernel, an SVM would nonlinearly divide the input space into two regions, but

GP classification with a nonlinear kernel produces a posterior distribution that tends to the class

prevalance prior far away from training data.

3.7.5 Gaussian process regression and classification in practice

As described above, GPs for regression could be implemented only a few lines of code. How-

ever, we may want to use approximations for classification, use complex covariance and mean
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functions, select different likelihood functions, and choose the best value for hyperparameters.

Because of this, all of our experiments are done using the GPML toolbox 2 for Matlab, which

provides functionality for all of these. While a very simple GP classification might have no

hyperparameters at all, almost all real problems will include some describing the covariance

function (such as kernel width for an SE kernel), the posterior mean, and the noise variance in

regression problems. A fully Bayesian way to deal with these is to define prior distributions on

their values (hyperpriors) and integrate over the hyperpriors in a hierarchical model. However,

the resulting posterior distributions can only be computed using MCMC methods, which can

be very slow.

Fortunately there is a practical and only slightly less effective alternative. We can instead

maximise the marginal log likelihood of the training data and labels with respect to the set of

hyperparameters. The marginal log likelihood is given by

ln(p(y|X,θ) = ln

∫
p(y|X, f)p(f |θ)df (3.25)

where f is a vector of predictive function values for all the training points. The above

expression can be shown to be equal to −1
2y>C−1y − 1

2 ln |C| + const, where C is again

K + σ2nI. This expression can then be differentiated. The resulting derivative can be used with

a standard gradient based optimisation to maximise the log likelihood with respect to the noise

variance σ2 (directly) or covariance and mean hyperparameters (via application of the chain

rule, to the derivatives of the covariance matrix or mean vector elements with respect to the

hyperparameters). The motivation for setting hyperparameters with this method is best under-

stood by viewing it as a model selection problem: which model (set of hyperparameter values)

best explains the observations (data)? The model that maximises the likelihood is the one with

just enough complexity to describe the data, but no more. This is shown in figure 3.13. Three

models are shown - a simple one in green, a complex one in blue, and one of intermediate com-

plexity in red. The simple model can only describe a narrow range of possible data, so assigns

the data we have (the vertical line) a very low likelihood. The most complex one gives a rea-

sonably high likelihood to the data, but also to many other sets of data. The intermediate model

gives the data a higher likelihood than either other model. Hence maximising the marginal like-

lihood gives the most parsimonious model that explains the data, obeying Occam’s razor 3 and

helping to avoid overfitting. This can also be seen in equation 3.25 - the first term measures the

fit to the data, and the second penalises model complexity.

2http://www.gaussianprocess.org/gpml/code/matlab/doc/
3’Plurality must never be posited without necessity’
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Figure 3.13: The most simple model in green is not flexible enough to describe the data and

assigns it a low likelihood. The most flexibile model (blue) can explain many possible data and

so assigns each a low likelihood. The model with the correct degree of complexity (red) assigns

the data a higher likelihood than either of the others.

The likelihood as a function of the hyperparameters is not convex, so there is a danger this

method will find only a local maximum. However, in practice good results are usually obtained.

3.8 Precomputed kernels

As is noted above, both GP classification and regression and SVM classification are kernel

based techniques. In neuroimaging problems, we typically have images for only a few dozen

to at most about a thousand or so subjects. Meanwhile each image may consist over a mil-

lion features, if we are using voxels as features, so d � N . The N by N kernel matrix K is

therefore much easier to work with than the N by d training data matrix X. In an SVM, the

data only appears in the optimisation problem as the kernel matrix. We can therefore greatly

reduce memory requirements and speed up calculation by calculating K once and then throw-

ing X away. If all the images we want to use cannot fit into memory at once, we can also

calculate K element by element, storing only a few images at a time. The SVM library we use,

LIBSVM [Chang and Lin, 2011], allows us to do this as an option. For GPs, things are a little

more difficult. Strictly speaking, the final kernel matrix is likely to be a function of covariance

hyperparameters that must be set as well as of the data. However, in many cases the hyperpa-

rameters can be applied in the kernel space. For example, when the final kernel is defined as

a linear combination of linear subkernels, the covariance hyperparameters represent the weight

of each subkernel in the sum, and so we can precompute each subkernel from data. Then dur-

ing hyperparameter optimisation, the subkernels are multiplied directly by the weights, rather
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than multiplying the data for each subkernel by the weights and then recalculating the subker-

nel. GPML does not include a facility to do this so it was modified to add one. The resulting

representation is very flexible. For example, cross validation or training and test sets can be

performed by selecting the relevant rows and columns of master kernel matrices, rather than

having to reload images and form new kernel matrices from scratch.
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Chapter 4

Literature review

4.1 Introduction to the existing literature

Early diagnosis is often studied by applying classification methods to MCI subjects, trying to

predict which subjects will convert to AD (designated MCI converters, or MCI-c), and which

will remain stable (MCI-s) over some fixed period of time, usually 18 to 36 months. Comparing

results between experiments predicting conversion in MCI subjects is particularly difficult as

this follow up period varies and both a diagnosis of MCI and conversion status may be hard to

verify.

Methods used in automated diagnosis and prediction of AD vary quite widely in the types

of data and learning algorithms used; nevertheless the vast majority can be summarised as

following the same basic pipeline. The starting point is a number of training subjects, usually

of AD patients and healthy controls, together with a set of labels that indicate to which group

each subject belongs. Next comes a feature extraction step, in which the images are processed

so that each subject is represented by a vector of features, which (hopefully) are relevant to

the classification problem. Feature extraction procedures vary greatly, and the features can be

very similar to the original image (where the features are in fact voxel intensities) or quite

abstract and far removed from the images they are derived from if complex transformation and

dimensionality reduction procedures are applied. The training feature vectors and labels are

then fed into a learning algorithm, where again a great deal of variation is possible in the choice

of algorithm, as well as the methods to set parameters. Finally, to assess generalisation ability

the learned model is applied to previously unseen testing subjects, which have been put through

the same feature extraction procedure as the training subjects. The results are then evaluated,

and again a choice of statistics can be used to summarise the performance of the pipeline.

The distinction between features and learning algorithm in the context of brain im-

age classification for a variety of neurological conditions is the focus of a recent study
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[Sabuncu and Konukoglu, 2014]. The authors divide the factors on classification into three.

The first is what the authors call biological footprint, which is the effect size of the difference

between classes. The second and third are the choice of measurements (features) and classifier

algorithm. The authors find that the biological footprint and choice of feature have a much

greater influcence on accuracy than the choice of algorithm. A similiar point, made in refer-

ence to machine learning problems in general, is made in [Domingos, 2012], which stresses the

importance of feature engineering. This is perhaps not surprising in the context of the no free

lunch theorem [Wolpert, 1996].

As this literature review looks only at diagnosis and prediction of AD, the biological foot-

print is fixed. Hence the existing studies discussed in this section are broadly grouped by the

type of data and features used in classification, as this the stage of the pipeline having both the

widest choice of possible options and the greatest effect on results.

4.2 Review of the existing literature

4.2.1 Voxel-based features

Methods using voxel-based features for classification are among the simplest in terms of feature

extraction as the feature vectors can be viewed as a type of image. Such approaches are exem-

plified by [Klöppel et al., 2008]. This study was on three different cohorts, each of which was

scanned at a single centre. Groups I and II each consisted of equal numbers of age and gender

matched AD patients and healthy controls. Significantly, the AD patients in these two groups

had neuropathological confirmation of their disease status. Group III was both larger overall

and had a greater number of controls than AD patients, however the patients were diagnosed

clinically leading them to be described as having probable mild AD. The image data used con-

sisted of T1 weighted structural MRI scans of all subjects. These images were segmented using

SPM5 into grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) components.

The GM segments were used as features in classification. To enable this, it was necessary

to establish correspondence among voxels across subjects, so that those in the same position

represent similar anatomical areas. To do this, a custom template was constructed from the im-

ages of all subjects using the DARTEL [Ashburner, 2007] nonlinear registration algorithm. A

Jacobian-scaling (“modulation”) step was incorporated to ensure the total amount of each tissue

type remained the same after registration [Ashburner and Friston, 2000]. The resulting three di-

mensional grey matter maps were then treated as vectors and classification was performed with

an SVM, using a linear kernel with default parameter settings. Generalisation accuracy was as-

sessed with leave-one-out cross validation (LOOCV) for each experiment. Accuracy on groups
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I and II was similar at 95% and 93% respectively; when the two groups were pooled accuracy

increased to 95.6%, showing that having a larger overall training set overcame differences be-

tween the groups due to different centres and scanners. However accuracy in group III was only

85.6%, probably as a result of misdiagnosis due to lack of post-mortem confirmation.

A much more recent and very different voxel-based approach was introduced in

[Coupé et al., 2012]. This study used all 834 baseline scans from the ADNI dataset. The

images were pre-processed, which involved registration to the ICBM152 template and cross

normalisation of MRI intensity between subjects. The hippocampi and entorhinal cortices

of ten randomly selected AD and ten control subjects were then manually segmented by an

expert. These segmentations were then propagated to the remaining AD and control subjects to

generate a training set. Classification in test subjects was then performed by a grading process,

which simultaneously segmented the structures of interest. For each test subject, the ten closest

subjects in each disease group were selected by a sum of squared differences (SSD) measure. A

nonlocal means filter was then used to assign a weight comparing each voxel in the test subject

to each voxel in each training subject. If the voxels in the training subjects are labelled with 1

for structure and 0 for background, the weights can be used to create a weighted sum to label

each test subject voxel, segmenting it. Following this, a very similar procedure was used to

propagate a new label indicating the disease state of each training subject to each voxel in the

newly segmented structure in the test subject. This label was averaged across the structure to

create an overall score. Using this approach it was possible to distinguish between AD patients

and controls with 91% accuracy, and between MCI-c and MCI-s with 74% accuracy.

4.2.2 Region-based features

As an alternative to using individual voxels as features, they can instead be grouped together

into regions with some anatomical meaning. These regions can be defined adaptively or on

a manually labelled atlas which is propagated onto individual MRI images. Features are de-

fined as the average value of voxel level quantities such as intensities within each region.

For the former approach of adaptive feature extraction, the most commonly used procedure

is COMPARE (Classification Of Morphological Patterns using Adaptive Regional Elements)

[Fan et al., 2007]. This is a complex process consisting of multiple steps. Briefly, the MRI im-

ages are first aligned non-rigidly to a template using HAMMER [Shen and Davatzikos, 2002].

For each voxel, the robust correlation with class label across tissue types is calculated along

with a spatial consistency measure. These are combined to produce a map of the separability

scores across voxels for each tissue type. These are then smoothed and regions are generated

with a watershed algorithm. Within each region, features are generated using a region growing
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method, starting at the most discriminative voxel and adding neighbours until no more can be

added. Even after this, the number of features is still high, so a selection is made using a rank-

ing based on correlation and a method based on SVM-RFE (Recursive Feature Elimination)

[Guyon et al., 2002]. The selected regional features can then be used in SVM classification.

The initial application was to schizophrenia patients, but the method has also been applied to

a number of problems related to AD, including predicting conversion of MCI patients within

15 months [Misra et al., 2009] with about 80% accuracy. For ADNI data with a three year

follow-up period for conversion, it provides a sensitivity of 94.7% but only 37.8% specificity

[Davatzikos et al., 2008].

The atlas based feature extraction procedures are much simpler. The method of

[Magnin et al., 2009] propagates labels obtained from [Tzourio-Mazoyer et al., 2002] to their

subjects. This was done by registering their subjects and the atlas to standard MNI space, and

then inverting the transformations to create a labelled parcellation of 116 anatomical regions

in the native space of each subject. In each region for each subject, the image histogram

was separated into GM, WM and CSF components with the expectation maximisation (EM)

algorithm and the relative weight of GM compared to the other tissue types was chosen as a

feature to summarise each ROI. Classification was then performed using an SVM and bootstrap

to assess generalisation accuracy; the result was an average accuracy of 94.5% for classifying

AD subjects and healthy controls. However, this figure is most likely optimistically biased as

testing data were used to select optimal SVM parameters within the bootstrap.

4.2.3 Cortical thickness features

Cortical thickness is a direct measure of the atrophy that is caused by AD [Dickerson et al., 2008]

and is thus a powerful feature for disease classification that has been used in many stud-

ies. As in the previous section, features can represent the average thickness over anatomical

regions or represent individual vertices of a cortical segmentation. Cortical thickness measure-

ments are frequently derived from the FreeSurfer toolkit [Dale et al., 1999, Fischl et al., 1999a,

Fischl et al., 1999b, Fischl and Dale, 2000]. [Querbes et al., 2009] however used a different

approach, segmenting brain images into GM, WM and CSF. Within the cortical GM ribbon, the

method based on Laplace’s equation [Jones et al., 2000] was used to calculate cortical thickness

in the native space of each subject’s brain. These were then rigidly registered to MNI space.

The cortical thickness maps were then parcellated into 96 areas using a Brodman area 3D map,

which were then grouped into 22 zones. The final features were the mean cortical thickness

in each zone. A normalised thickness index (NTI) was calculated from an optimally discrim-

inative subset of these features as a linear discriminant. The reported AUC for discriminating
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MCI-c and MCI-s subjects from the ADNI study was 0.76, with follow-up of 24 months.

An innovative method of using cortical thickness was employed by [Cho et al., 2012]. This

study used a total of 491 MRI scans from the ADNI database. FreeSurfer was used to extract

meshes, representing the inner and outer boundaries of the cortex, for each subject. To establish

correspondence among subjects, all cortical surfaces were registered to FreeSurfer’s cortical

atlas. The meshes were then made isomorphic to each other, and thickness maps were derived

from distances between corresponding inner and outer points. The resulting cortical maps were

then denoised by removing high frequency components. Mapping onto a frequency domain

was done using the manifold harmonic transform, which represents a signal by a linear com-

bination of eigenfunctions of the Laplace-Beltrami operator. After removing high frequency

components, 2400 frequency components were left for each brain hemisphere. Principal com-

ponent analysis (PCA) was used to further reduce the dimensionality of the data, with compo-

nents representing 70% of the variance retained. Finally, Fisher’s linear discriminant analysis

[Fisher, 1936] was used for classification. This method obtained a sensitivity of 63% and speci-

ficity of 76% for predicting MCI conversion within a follow-up period of 18 months.

[Eskildsen et al., 2013] also made use of cortical thickness features to predict conver-

sion. Scans of converting and nonconverting MCI subjects from the ADNI database were

used, including scans from all follow-up timepoints rather than baseline only. The MCI-c sub-

jects were stratified by the time after baseline scan when they converted (up to 36 months).

All images were corrected for noise and bias field, and then registered to MNI space and

skull stripped. Cortical thickness was calculated with FACE (Fast Accurate Cortex Extrac-

tion) [Eskildsen and Ostergaard, 2006] and mapped to the cortical surface of a custom tem-

plate. 51 scans were then removed for quality control. As each subject was represented by

the cortical thickness at over 100,000 vertices, feature selection was then performed. This

was done by computing t-tests at each vertex for the groups in question (eg MCI-s versus

MCI-c at 12 months), finding local maxima in the resulting t-maps and then using these

as seeds for a region growing procedure. Features were the mean thickness in each result-

ing region. The ten best features as chosen by maximum relevance, minimum redundancy

(MRMR) [Peng et al., 2005] were retained for classification with LDA. Care was taken to per-

form the entire feature extraction and selection procedure independently in each iteration of

an LOOCV loop, to avoid optimistic bias in the resulting estimated generalisation accuracy

[Kriegeskorte et al., 2009, Varma and Simon, 2006]. The overall accuracy for predicting con-

version was 67.3% with well balanced sensitivity and specificity when putting all converting

subjects into a single group regardless of conversion timepoint. However, by constructing sep-
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arate stratified classifiers for MCI-s subjects vs MCI-c for each conversion timepoint, and then

classifying new subjects with the combined maximum posterior probability from all four strat-

ified classifiers, this was increased to 73.5%. This improvement, however, did result in a less

well balanced classifier.

4.2.4 Hippocampal features

As the hippocampus is one of the first brain structures to be affected by atrophy in Alzheimer’s

disease [Braak and Braak, 1995], many studies have focused on features derived from the hip-

pocampus only to do early diagnosis of AD or to predict conversion to AD in MCI subjects.

These studies all begin by segmenting the hippocampi in all subjects. Features as simple as

the volume of the hippocampus, normalised by intracranial volume (ICV) can then be used.

As hippocampal volume results in a feature dimensionality of only one, or two if both left and

right hippocampi are used, advanced classifiers such as the SVM are not necessary. Hence

hippocampal volumetry has been used for a relatively long period in early diagnosis of AD,

with manual segmentation of the hippocampi [Jack et al., 1999]. More recently, automated hip-

pocampal segmentation methods have become more widespread. The SACHA (Segmentation

Automatique Competitive de l’Hippocampe et de l’Amygdale) method [Chupin et al., 2007] is

based on competitive region growing to simultaneously segment the hippocampus and amyg-

dala, constrained by anatomical and probabilistic priors. It was applied to a set of 210 MCI

subjects from the ADNI database, 76 of whom converted to AD within the chosen 18 month

follow-up period, in [Chupin et al., 2009]. Classification between MCI-s and MCI-c based on

hippocampal volume in these subjects had an accuracy of 64%, which is somewhat disappoint-

ing - especially considering the short follow-up period. The authors suggest this may be im-

proved by including shape analysis information rather than only volume. The same idea is

suggested in [Csernansky et al., 2000], noting that in early AD the CA1 subfield of the hip-

pocampus is particularly affected. Differential atrophy rates across the hippocampus mean it

will change in shape as well as gross volume, allowing the authors to find areas of significant

difference between AD patients and controls within the hippocampus; however, they did not test

the diagnostic ability of shape for individual subjects. Parameterisations of hippocampal shape

can, however be used as features for classification. For example, in [Gerardin et al., 2009], the

SPHARM (SPherical HARMonics) toolkit [Gerig et al., 2001] was used to generate such a pa-

rameterisation, representing shapes as a sum of spherical harmonic basis functions in what can

be considered a three dimensional analogue of Fourier analysis. The coefficients of the resulting

series can be used as features themselves, or used to establish correspondence between sets of

points representing the hippocampi, which are then used as features. The study used the coef-
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ficients as the author claimed they offered better discrimination. Univariate t-tests and bagging

were used to rank the coefficients as features, with a variable number of highest ranking fea-

tures retained. Feature rankings and an optimal number of features and SVM parameters were

determined by LOOCV on a cohort of locally scanned subjects, then the resulting optimised

classifier was applied to a group of subjects from the ADNI database. Accuracy was 88% for

classifying AD patients and controls, and 80% for classifying MCI patients and controls, but

their method was not applied to predict conversion in MCIs. Other studies have applied shape

features to predicting MCI conversion.

For example, [Costafreda et al., 2011] trained a classifier using AD and control subjects

from the AddNeuroMed study [Lovestone et al., 2009]. Hippocampi were segmented using the

method described in [Morra et al., 2008], which itself treats segmentation as a classification

problem on a voxel by voxel basis. The segmentations were converted to 3D meshes, then

a common triangulation with correspondence between points was obtained using direct hip-

pocampal mapping (DHM) [Shi et al., 2007]. Radial distances from the hippocampal medial

core to vertices, normalised by the cube root of ICV, were taken as features for training a SVM

using a RBF kernel. The model was then tested on the same features derived from MCI subjects,

also from the AddNeuroMed database. The assumption behind this approach was that MCI-c

subjects will appear more AD-like and MCI-s ones more control-like, so a classifier trained on

AD patients and controls could be applied to predict conversion in MCI subjects. The resulting

accuracy was 80%, but the follow-up period for defining conversion was only one year.

The methods used in [Ferrarini et al., 2009] took a similar approach. The authors used a

set of 50 locally scanned AD subjects and 50 controls, and a set of 15 MCI-c and 50 MCI-

s subjects with a mean follow-up period of 33 months. All subjects’ brain MR images were

rigidly registered to a standard template, and both hippocampi were manually segmented. The

most representative subject from the AD and control subjects was found and designated as

a standard space; all other subjects were then rigidly registered to this and the transforma-

tions applied to the hippocampal surface points. The GAME (Growing and Adaptive MEshes)

method [Ferrarini et al., 2007] was used to model the hippocampal shapes, making use of self-

organising maps [Kohonen, 1990] to adapt the meshes, moving nodes and edges to increase

the similarity to other subjects. Feature selection was done by permutation testing to assess

the significance and consistency of each node in the final set, and then thresholded by p-value.

This step was done using AD and control subjects only. To classify MCI-c and MCI-s, an

LOOCV loop was used, with an RBF SVM. The SVM parameters were tuned with a grid

search and a nested LOOCV loop within each fold. The resulting accuracy was similar to
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[Costafreda et al., 2011] at 80%, although the result here is more impressive given the longer

follow-up time.

4.2.5 Side-by-side assessment of features

Direct comparison between results obtained by the methods described up to this point is dif-

ficult, as they all involve different subjects, from both multicentre studies such as ADNI

and local scanners, different criteria to define MCI convertering and stable subjects, and dif-

ferent statistics used to assess predictive accuracy. To address this problem, Cuingnet et

al [Cuingnet et al., 2010] conducted a large study assessing a number of methods alongside

each other, using the same set of ADNI subjects and the same method of assessing the re-

sults. Furthermore, as the emphasis was on finding the best features, rather than classifi-

cation methods and a linear SVM was used in all experiments except those using a single

measure of hippocampal volume. The work compared the effects of varying preprocessing

steps, such as registration algorithm, and whole brain versus volume of interest analysis. The

methods assessed included variants of ones already discussed, including [Klöppel et al., 2008,

Fan et al., 2007, Magnin et al., 2009, Chupin et al., 2007, Gerardin et al., 2009]. Also used

were the STAND (STructural Abnormality iNDex) score method [Vemuri et al., 2008], which

is similar to [Klöppel et al., 2008] but with an extra image downsampling and features selection

step, and the cortical thickness method described in [Desikan et al., 2009], which is similar to

[Querbes et al., 2009]. Each method was used for three clinically relevant classification prob-

lems: AD versus control, MCI-c versus control, and MCI-converter versus MCI-s, with an 18

month follow-up period defining the conversion. For the first task, all methods performed sta-

tistically significantly better than chance and for the second task all but two did. By contrast,

none at all significantly better than chance for predicting conversion in MCI subjects, although

some did achieve over 50% in both specificity and sensitivity so this was probably a conse-

quence of the small number of test subjects. Many methods offered 0% sensitivity and 100%

specificity, or were almost as unbalanced. This was probably caused by the combination of

the numerically unbalanced training set (39 MCI-c, 67 MCI-s) and highly overlapping feature

distributions of the two classes forcing the classifiers to assign all training subjects to a single

class as this offered the best overall accuracy. Overall, performance of methods in this compar-

ative study was generally much lower than in the original papers where they were introduced.

This may be caused by [Cuingnet et al., 2010] deliberately putting less effort into parameter

tuning, feature selection, et cetera in order to focus on comparing feature extraction methods.

It also may be because the authors were more rigorous in avoiding the type of optimistic bias

described in [Kriegeskorte et al., 2009] than the originators of the methods were. Most likely it
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is a combination of the two, as it is parameter tuning and feature selection steps that offer the

opportunity to introduce this bias.

Because of these complicating factors, it is necessary to be cautious when deriving general

conclusions from the results. However, based on the results from the AD versus control and

MCI-c versus control, it appears that there is some benefit to using a more modern, accurate

registration method. It also seems that whole brain methods are more effective for separating

patients from controls, but for tasks involving MCI subjects, methods using the hippocampus

only remain competitive. This is not unexpected as the hippocampus is one of the structures

affected earliest in the disease process, but when AD is at a more advanced stage, atrophy

is more widespread in the brain [Braak and Braak, 1995]. Methods incorporating data driven

feature selection do not appear to bring any significant advantage and take much longer to run

given the number of extra tunable parameters that they introduce. The authors suggest that

making use of prior knowledge of the disease (such as focusing on a predetermined volume of

interest) is a more robust way to reduce the dimensionality of the features. They also note that

classifiers using combinations with other markers seem to be necessary to detect prodromal AD

with high accuracy.

4.2.6 Multi-MRI features

This is the approach taken in [Westman et al., 2012], using a large set of control, AD and MCI

subjects from the ADNI database. In the MCI subjects, conversion was defined with an 18

month follow-up period. The images were processed using FreeSurfer, rather than registering

them to a template, which parcellated all the images into 68 cortical and 46 subcortical re-

gions. A number of subcortical regions were excluded from the analysis, and the volumes of

the remaining ones were averaged between hemispheres to leave a total of 21 subcortical vol-

ume features. For the cortical regions, FreeSurfer generated a large basket of features: thick-

ness and volume, and also surface area, mean curvature, Gaussian curvature, folding index

and curvature index. All these were averaged between left and right hemisphere parcellations

to leave a total of seven measures for 34 cortical regions, giving 238 cortical features, and

259 features of eight different types in total. Classification was done by orthogonal partial

least squares, also sometimes known as orthogonal projection onto latent structures (OPLS)

[Trygg and Wold, 2002, Bylesjö et al., 2006]. This created a model with one predictive com-

ponent and one or more orthogonal components representing variation in the training data that

is not related to class differences. Before building the models, the data were preprocessed by

centring and then scaling to unit variance. This is a common step, especially in models com-

bining different types of data, as the different types may very well have quite different ranges.
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Without the scaling, data with a large range could dominate even if it is not the most discrim-

inative. Initially eight models were created, using each type of feature alone. Three types of

feature (cortical thickness, cortical volume and subcortical volume) were shown to perform well

for classification. Mean curvature and surface did a little less well, while Gaussian curvature,

folding index and curvature index did not perform significantly better than chance and were

dropped from further analysis. The next step was to assess the effectiveness of different types

of feature in combination, which was done by creating hierarchical models from each possible

pair of remaining types of features (except for the combination of the less well performing pair,

mean curvature and surface area). Finally, a hierarchical model was created using all three of

the best performing feature types (cortical thickness, cortical volume and subcortical volume).

This entire exercise was done twice, once using raw features and the second time using all fea-

tures normalised by the subjects’ ICV. In both cases, all the models using two types of features

outperformed any single feature type, and the model using three feature types outperformed all

the ones using two. AD subjects and healthy controls could be separated with 90.5% accuracy

in this way. This was further increased to 91.5% in a ’mixed model’ when normalised thickness

was used with raw volume features. This model could also predict conversion, when applied to

the MCI subjects, with 68.5% accuracy.

A similar approach was used in [Wolz et al., 2011b]. The authors used all ADNI subjects

that were available at the time their study was conducted, giving a very large group of 231

controls, 238 stable and 167 converting MCI patients (conversion being defined simply up to

the point when the images were obtained in July 2011), and 198 AD patients. Four types of

features were used for each subject. The first feature used was univariate hippocampal volume,

as calculated from segmentations generated by label propagation from a set of atlases selected

from a larger pool and merged [Lötjönen et al., 2010]. The second was cortical thickness mea-

sured by the CLASP (Constrained Laplacian-based Automated Segmentation with Proximities)

algorithm [Kim et al., 2005], with the vertex-wise thickness measures smoothed with a Gaus-

sian filter. The third feature was tensor-based morphometry (TBM) maps. A set of 30 randomly

selected images (10 control, 10 AD, and 10 MCI) were chosen as templates and nonlinearly

registered to all study images. The Jacobian determinants of the resulting deformation fields,

representing local expansion or contraction in each voxel were calculated. To combine multiple

results, all template images were registered to their own anatomical mean, and the resulting

deformations applied to the appropriate Jacobian maps. The maps for each subject were then

averaged to leave one overall Jacobian map per subject. The fourth feature was the coordinates

of each subject image in a (relatively) low dimensional space [Wolz et al., 2011a], making use
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of the Laplacian eigenmaps manifold learning algorithm [Belkin and Niyogi, 2003]. To reduce

the dimensionality of the thickness and TBM data, both were aggregated into ROIs based on

groupwise statistical tests in each vertex or voxel. This was done separately for each exper-

iment, that is different regions were chosen for AD versus controls classification than MCI-s

versus MCI-c. Three classification experiments were done: control versus AD, control versus

MCI-c, and MCI-s versus MCI-c. For all of these, a combination of all features was more accu-

rate than any single feature type when using LDA as a classifier, although this was not always

the case when using an RBF SVM. LDA also tended to produce a better balance of sensitivity

and specificity. The authors did not mention any feature normalisation step, so presumably the

feature types were combined by simply concatenating the non-normalised feature vectors. For

converting versus stable MCI subjects, sensitivity was 67% and specificity 69%.

4.2.7 Multimodal classification

An obvious extension to the idea of using multiple measurements derived from MRI is to com-

bine MRI features with others from different imaging or non-imaging data. The most common

other imaging modality is positron emission tomography (PET). Tracer radionuclides can be

attached to molecules with a specific function in brain chemistry to image different aspects of

brain function. For example, fluoro-deoxyglucose PET (FDG-PET) gives information on brain

metabolism. As the degeneration caused by AD reduces brain metabolism, this can be a useful

biomarker, and can also be used by itself in classification studies very much analogously to the

ones already discussed, such as in [Herholz et al., 2002]. A variety of non-imaging data can

also be used. The results of psychological tests that we have already introduced can be used.

Additionally, there are genetic risk factors for the sporadic form of AD. In particular, it has

been demonstrated that the variants of the apolipoprotein E (APOE) gene affect the chance of

developing AD, with the ε2 allele conferring some degree of protection [Corder et al., 1994]

whereas the ε4 allele increases risk [Corder et al., 1993]. Finally, levels of proteins can be mea-

sured in the cerebrospinal fluid (CSF), a liquid surrounding the brain and spinal cord, from

which a sample can be drawn with a lumbar puncture. In particular, CSF levels of total tau

protein (t-tau) and phosphorylated tau (p-tau) proteins, known to be implicated in the formation

of neurofibrillary tangles that cause atrophy in AD, are elevated in AD patients, while levels of

the amyloid-β42 (aβ42) peptide in CSF fall [Fjell et al., 2010a, Holtzman, 2011].

The simplest method of combining features extracted from different types of data is to just

concatenate the feature vectors for each subject into one long vector, possibly after rescal-

ing all features to zero mean and standard deviation of one. This is the approach used in

[Vemuri et al., 2009]. They compared the utility of the previously developed STAND score,
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based on structural MRI [Vemuri et al., 2008], with that of CSF biomarker levels for predicting

time to conversion of MCI subjects via Cox proportional hazard models. Their conclusion was

that the CSF biomarkers and STAND scores are complementary. The two imaging types of

structural MRI and FDG-PET were combined with CSF biomarkers in [Walhovd et al., 2010].

A large number of subjects from the ADNI database was used. FreeSurfer was used to par-

cellate the MRI images and the hippocampal volume, and the mean thickness in a number of

cortical regions selected for having shown sensitivity to AD in other studies were retained as

features. For the PET features, the same regions of interest were used; PET activity within each

region was averaged, and then normalised by the activity within each subject’s pons. For CSF

features, aβ42, t-tau and p-tau were included in the analysis alongside the ratios p-tau/aβ42

and t-tau/aβ42. Stepwise logistic regression was used to perform classification of AD versus

controls, in three separate experiments using only features of each type. The selected MRI,

PET and CSF features were then used in a multimodal stepwise regression to again classify

AD versus controls. The final multimodal model showed a small improvement in accuracy and

AUC when compared against the unimodal classifiers, although the final classifier did not se-

lect any PET features. The feature concatenation approach is also used in [Nho et al., 2010]

to combine regional volumes and mean cortical thicknesses, mean regional grey matter den-

sities (both derived from structural MRI with FreeSurfer and SPM5 respectively) and APOE

genotype, performing classification with an RBF SVM. Results here were quite good, with an

accuracy in predicting MCI conversion within three years of 72.3%. This was using a classifier

trained on AD and control subjects, using a pool of all FreeSurfer, SPM and APOE features

to which a feature selection procedure was applied. The optimal set of features contained both

APOE ε2 and ε4 status and some regions from both SPM and FreeSurfer. Concatenation was

also used in [Cui et al., 2011] to predict MCI conversion within a 24 month follow-up period.

FreeSurfer was again used to generated features, with the volume of subcortical regions and the

volume, mean and standard deviation of thickness, volume and surface area of cortical regions

used. CSF features were the same protein levels and ratios as [Nho et al., 2010], and a variety

of neuropsychological test scores were also used as features. A separate feature selection step

was done for the CSF and for the MRI features using MRMR [Peng et al., 2005], and for the

test scores using both MRMR and AUC in discriminating between AD and control subjects.

Classification was performed using an RBF SVM, with parameters optimised on a training set

of AD and control subjects. The optimised classifier was then applied to MCI subjects. The

resulting accuracy was a 67.1%, but this masked quite poor balance as sensitivity was over 96%

but specificity only 48%.
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Structural MRI biomarkers were also combined with CSF in [Davatzikos et al., 2008], with

a slightly different method. The COMPARE framework [Fan et al., 2007] was used to generate

a set of regions sensitive to AD, and the result of classifying subjects using these regions was

a score representing the degree to which they had AD-like patterns, called SPARE-AD (Spatial

Pattern of Abnormalities for Recognition of Early AD) by the authors. These SPARE-AD

scores were then combined with CSF biomarkers for the subset of ADNI subjects for which

they were available. This results in a two or three dimensional feature set (SPARE-AD score

and/or one or two CSF biomarkers) to which a second SVM classifier is applied. The results

from the combination of SPARE-AD score and t-tau provide the best accuracy, but this is only

61.7% and again is a very unbalanced result, as sensitivity is much higher than specificity.

Better results have been obtained with a multi-kernel learning (MKL) framework. Many

types of classifiers, including SVMs, make use of a kernel, which is a matrix of pairwise sim-

ilarities between subjects. In a linear SVM, the kernel is made up of the inner products of

pairs of feature vectors. As the sum of valid kernels is itself a valid kernel, this can be used to

integrate multiple types of feature. Separate kernels are formed using the features from each

data modality, and then an optimally weighted sum is used to produce a combined kernel. This

combined kernel is then used to train a classifier. There are several methods to find the op-

timal weighting of the kernels, one of which is to find the weights that maximise the margin

alongside other parameters, in an optimisation that is a modification of a standard SVM. This

specific algorithm [Bach and Lanckriet, 2004] is also sometimes referred to as MKL. This is

the method used in [Hinrichs et al., 2011]. Their study used subjects from the ADNI database

and made use of a wide variety of features. For structural MRI images, SPM was used to

segment all subjects’ baseline and 24 month follow-up scans. A custom template was then

created from all subjects’ baseline scans, and the GM and WM segmentations warped into the

template space and smoothed. Additionally, all subjects’ baseline and 24 month scans were

nonlinearly registered, and the Jacobian maps of the resulting deformations were also warped

into the template space. FDG-PET images were registered to their corresponding structural

MRI images, normalised by the mean activity within the pons, and then warped to the custom

template spaces. CSF biomarker levels, APOE genotype, and cognitive scores were also used in

the analysis. Three kernels were used: One using imaging data, one using biological measures

(APOE and CSF), and one using cognitive scores. A classifier was trained on AD and control

subjects and then applied to MCI subjects to predict conversion. The best result was an AUC

of 0.791, which translates to an accuracy of 72% based on a leave-one-out loop of classifier

scores for the MCI subjects. Interestingly, this was for longitudinal imaging information only.
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The classifier using only baseline imaging performed less well; what is more surprising is that

a classifier based on all modalities also failed to perform as well as longitudinal image data

alone. Furthermore, although the follow-up period for MCI conversion here was three years,

the requirement for 24 month follow-up imaging means that in effect prediction is only up to a

year in advance. This also applies to other studies offering superficially excellent results such

as [Vounou et al., 2012].

A much simpler variant of MKL was used in [Zhang et al., 2011]. Their method also made

use of multiple kernel SVMs, but rather than simultaneously optimising the kernel weights and

other SVM parameters, a (linear) kernel was explicitly generated for each modality. A grid

search was then performed over kernel weights. At each point in the grid a combined ker-

nel was generated, and used with a conventional SVM to assess accuracy in a cross validation

loop. Three kernels were used, representing MRI, FDG-PET and CSF data, and as the kernel

weights were constrained to be positive and sum to one the grid search was two dimensional

only. MRI features consisted of volumes of GM tissue in 93 ROIs. These were generated by

aligning all images rigidly, skull stripping, and registering with [Shen and Davatzikos, 2002] to

a labelled atlas. The labels were then propagated to each subject’s GM segmentation to calcu-

late the features. For FDG-PET data, the images were rigidly aligned to the corresponding MRI

for each subject. The FDG-PET images were then parcellated into the same 93 regions from

the atlas, and the mean intensity within each region was taken as a feature. For the CSF data,

aβ42, t-tau and p-tau levels were used as features. All features were then normalised to zero

mean and unit standard deviation. In addition to the MKL procedure just described, the authors

attempted two other multimodal classification schemes: simple feature concatenating, and an

ensemble approach where separate classifiers were constructed for MRI, FDG-PET and CSF

data and the results were combined by majority voting. Validation was by tenfold cross vali-

dation, with a second tenfold cross validation in each iteration to determine the kernel weights.

For classifying AD and control subjects, the MKL method performed substantially better than

any single modality, and slightly better than feature concatenation or ensemble multimodal

methods. When classifying MCI subjects versus controls, the same pattern was found, albeit

with smaller margins. The authors went on to apply their method to predicting conversion in

the MCI subjects, with 18 months of follow-up. Sensitivity was 91.5% and specificity 73.4%.

However the authors do not state whether this was done in a cross validation using MCI subjects

to train, or training a single classifier on AD and controls subjects and applying it to the MCI

ones. They also do not say how many MCI subjects were converters so we cannot calculate the

overall accuracy. However the MKL approach was successful enough to have been reused by
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the authors in some of their subsequent work, such as integration of structural and functional

connectivity data in [Wee et al., 2012].

4.2.8 Other approaches

A very common result in all the studies is that separating MCI subjects from AD patients or

controls is much more difficult than separating AD patients from controls, and separating con-

verting and stable MCI subjects is more difficult still. This is unsurprising given that we would

expect smaller differences between the groups in disease severity to be reflected in smaller dif-

ferences in image features. However the MCI subjects, and in particular the converters, form

a very heterogeneous group. Many of them will in fact have conditions other than AD, but

which ones these are cannot be ascertained given the general lack of postmortem confirmation

of diagnosis. Meanwhile, the identification of stable MCI subjects is hampered by a limited

follow-up period. Many subjects designated as stable would doubtless convert to AD within a

slightly longer period. The authors of [Aksu et al., 2011] go so far as to say there are no defini-

tively labelled examples of MCI converters. They proposed to circumvent this by constructing

their own ground truth for MCI subjects. This was done by first training an AD versus controls

classifier. This was then applied to subjects who were labelled MCI at baseline, for their MRI

scans at every follow-up timepoint. This enabled a trajectory to be established for each baseline

MCI subject, based on whether their follow-up images were consistently classified as normal or

AD. The trajectories were used to label MCI subjects as MCI-c or MCI-s, which were then used

to build a second classifier for the MCI subjects. Unfortunately the results were validated with

respect to the ’by trajectory’ definition of conversion or nonconversion, introducing a form of

circular logic: MCI subjects were classified as converters because they look more like convert-

ers by trajectory, but converters by trajectory were labelled as such because they resemble each

other. Introducing validation labels based on an actual clinical criterion would have made this

much more valuable, and would still allow training labels to be based on something different

such as conversion by trajectory.

The notion of using different criteria to train and test is taken to a greater extreme in

[Gaser et al., 2013]. This abandons the idea of what the authors call a disease-specific pat-

tern entirely. Instead of using discrete labels representing different disease states in a classi-

fication problem, they made use of their BrainAGE score [Franke et al., 2010] in a regression

framework. This used a sparse Bayesian, kernel based method, the relevance vector machine

(RVM) [Tipping, 2001]. The model was trained on 320 healthy subjects aged 50 or over, taken
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from the IXI 1 and OASIS 2 databases. Test subjects comprised 195 MCI subjects from the

ADNI database. The regression targets were the subjects’ ages. All images were segmented

into GM, WM and CSF and spatially normalised with affine registration. The GM segmenta-

tions were smoothed and retained for training and testing. The trained regression model was

then applied to the test subjects’ GM segmentations, to produce an estimated age for them

based on the distribution of GM in their brain. This estimated age minus their chronologi-

cal age is the subject’s BrainAGE, indicating the degree to which they are aging abnormally.

This has already been shown to correlate with disease severity and poorer cognitive function

[Franke and Gaser, 2012]. By varying the threshold of BrainAGE scores for the MCI subjects, a

classification accuracy of 75% was obtained for predicting conversion with a three year follow-

up period. This was significantly more accurate than CSF, cognitive scores or hippocampal

volumes for the same subjects. This may however include some optimistic bias as it appears

that the threshold setting was not done inside an LOOCV loop.

4.3 Summary

As is made clear from the great variety of approaches discussed in the previous sections, the

problem of predicting conversion of MCI patients to AD is one that has attracted wide in-

terest due to both its challenging nature and clinical relevance. A major side-by-side com-

parison of some of these methods concluded that none could predict conversion with an ac-

curacy significantly greater than chance [Cuingnet et al., 2010]. Nevertheless, a number of

other publications have reported statistically significant accuracies, and while comparison of

results is difficult, it appears that there has been an upward trend in accuracy. Excluding results

from methodologically dubious procedures such as double dipping, it appears that for predict-

ing conversion within three years from MRI data, the maximum accuracy is about 70-75%

[Eskildsen and Ostergaard, 2006, Coupé et al., 2012, Ye et al., 2012]. It is notable that all three

of these are somewhat unconventional in their approach, respectively using multiple classifiers

stratified by conversion time, hippocampal grading, and sparse stability selection of features,

but the classification algorithm used by all is standard or even very simple. This is an accor-

dance with the conclusion in [Sabuncu and Konukoglu, 2014] that the type of classifier itself

is relatively unimportant. Meanwhile, a number of recent publications have introduced much

more sophisticated learning methods such as deep learning [Suk and Shen, 2013] and autoen-

coders [Suk et al., 2013] without noticeably increasing the resulting accuracy. Because of this,

my thesis begins by introducing an application of GP classification to a simple problem as a

1http://www.brain-development.org
2http://www.oasis-brains.org
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proof-of-concept. However rather than applying ever more elaborate variants of the classifier,

we show how we can use the same algorithm - or in the case of GP regression, a slightly simpler

one - to achieve better results by framing the problem of predicting MCI conversion in novel

ways. The following chapters show how GPs can be applied to multimodal classification, learn-

ing a continuous proxy for disease state rather than binary labels, or automatically weighting

the importance of anatomical brain regions in classification. These are shown to advance the

state-of-the art accuracy for predicting MCI conversion.
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Chapter 5

Classification of Alzheimer’s disease patients

and controls with gaussian processes

5.1 Introduction

This chapter presents a comparison of GP and SVM methods for the classification of AD and

control subjects. A variety of different imaging modalities have been used in previous at-

tempts to perform this, including PET [Gray et al., 2012], and more recently both diffusion

weighted and functional MRI [Wee et al., 2012], but the majority have used structural MRI

[Barnes et al., 2004, Lerch et al., 2008, Klöppel et al., 2008]. This is because it is known that

the early stages of AD are characterised by a pattern of atrophy in grey matter that is readily as-

sessed and quantified on such images. For example, the hippocampus is known to be one of the

structures most affected by the disease process so the volume of the segmented hippocampus,

normalised by intracranial volume, can distinguish between AD patients and controls with high

accuracy [Barnes et al., 2004]. Measurements of cortical thickness across the entire brain offer

similar accuracy [Lerch et al., 2008]. This study follows [Klöppel et al., 2008] in using maps of

grey matter density across the entire brain, as this approach includes all known areas of atrophy

associated with AD.

Use of such images implies very high dimensionality in the data, as the dimensionality is

equal to the number of voxels in the images. Various methods have been used to cope with this,

such as using complex feature extraction procedures [Davatzikos et al., 2008] or well known

methods such as principal components analysis to reduce the dimensionality of the images while

attempting to preserve discriminative information, or selecting a subset consisting of the most

discriminative features according to some statistical criterion. The most widely used classifier

in these types of studies, however, is the support vector machine (SVM), which treats all the

training images as points in a (potentially very) high dimensional space and attempts to find a

hyperplane separating two labelled groups in the training data. It selects the hyperplane such
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that the distance to the closest training data on either side is maximised. Such classifiers can

deal directly with images of the entire brain without having to reduce dimensionality.

However, as discriminative classifiers, SVMs produce a simple decision value. Probabilis-

tic predictions have a number of advantages. Firstly, they enable some clinically useful options

such as a reject option for uncertain cases and use of decision theory to optimise classification

rules. Furthermore, the paradigm of evidence based medicine can be viewed as an example of

Bayesian reasoning [Ashby and Smith, 2000]. As a more practical consideration, in a proba-

bilistic setting, classification parameters can be tuned via type-II maximum likelihood rather

than computationally expensive cross-validation. This chapter describes the Gaussian process

(GP) regression and classification method, which is fully Bayesian, and applies it to classifica-

tion of AD from structural MRI images.

5.2 Materials and methods

5.2.1 Images

The data used in this study consisted of 60 T1 weighted structural MRI images of healthy

controls, and 60 T1 weighted scans of subjects diagnosed clinically with probable AD. All

images were obtained from the ADNI database. The two groups were matched for age and

sex. This was done by first randomly selecting 60 subjects from the clinical group with fewer

subjects overall (AD patients). Then for each selected AD patient, a matching control was

selected as a subject from the pool of controls of the same sex and age. If there were multiple

subjects with both sex and age matching, one of these was chosen at random, and if there were

no subjects matching on both sex and age then the nearest age match was selected. Then the

selected 60 subjects in each disease category was further split into 40 subjects for training the

classifiers and 20 images to test them. The age and sex matching was preserved during this split

by maintaining the pairing between AD and control subjects.

5.2.2 Image processing

To enable a classifier to be constructed using the training images, they were first transformed

into the same space. The images were masked to remove non-brain material, the masks gen-

erated from brain MAPS [Leung et al., 2011] and then used to perform groupwise registration.

All images were repeatedly registered to a target image in an iterative procedure. At the end of

each iteration, all registered images were averaged together to create an updated target image,

with a randomly chosen image serving as the target in the first iteration. Initially, all images

were rigidly registered to avoid bias to the target image. This was followed by a round of affine

registrations, and then by 10 rounds of nonrigid registrations. All registrations were performed
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Figure 5.1: Pipeline to produce modulated GM images in a common space. Native T1 images

are warped into a common space via a groupwise registration procedure. Native GM density

maps are also produced from the native T1 images, and are then also warped in to the common

space to generate images whose voxels serve as features in classification.

by NiftyReg [Modat et al., 2010], a registration toolkit that performs fast diffeomorphic non-

rigid registrations. The native space images were probabilistically segmented using the Nifty-

Seg [Cardoso et al., 2011] tool into five tissue types: white matter, cortical grey matter, external

cerebrospinal fluid, deep grey matter and internal cerebrospinal fluid. The transformations from

each image’s native space to the space of the final groupwise template were then applied to the

segmented native space images to warp the segmentations to the template space. Finally, the

segmentations were modulated by multiplying each voxel by the Jacobian determinant of the

deformation field transforming it from its native space to the template space. This step ensures

the total volume of tissue remains constant. Spatial smoothing of the image was not performed

as part of this study.

The pipeline is summarised in figure 5.1.

5.2.3 Gaussian process regression and classification

The primary purpose of this work is to demonstrate that GP classification can provide equivalent

results to an SVM. We make use of the GPML implementation of GP classification (http://

www.gaussianprocess.org/gpml/code/matlab/doc/). A detailed explanation of

GP regression and classification is given in an earlier section ( 3.7), and in the documentation

accompanying the GPML software [Rasmussen and Williams, 2006]. GP classification was

applied in two stages; firstly hyperparameters were learned from the training data, and then the

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/
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log probabilities of the test data having labels equal to 1 (that is, having AD) were calculated

using GPs. These log probabilities were then exponentiated and thresholded at 0.5 to provide a

hard classification.

5.2.4 SVM calculations

To provide a baseline classification accuracy for these data, classification was also performed

with the widely used LIBSVM library (http://www.csie.ntu.edu.tw/˜cjlin/

libsvm) implementation of the support vector machine. These are also explained in more

detail in section 3.6. All analysis was conducted in MATLAB (The MathWorks Inc., Natick,

MA, 2011).

5.3 Results

Two sets of results are presented, those obtained from GP classification and those from SVM

classification. Both sets of results were generated by training a classifier on the 80 designated

training subjects, and then evaluating the accuracy of the resulting model in classifying the 40

subjects set aside for testing. The SVM correctly classified 31 out of the 40 test subjects, giving

an accuracy of 77.5%. The GP model correctly classified 33 out of the 40 test subjects, equal

to an accuracy of 82.5%. However, the difference in absolute classification accuracy is not

statistically significant. Both classifiers appeared to be well balanced, with the SVM having

a sensitivity (assuming AD = positive) of 75% and specificity of 80%, and the GP having a

sensitivity of 80% and specificity of 85%. The results using SVM classification are also in

line with those given in [Cuingnet et al., 2010], a large study comparing various methods of

classifying Alzheimer’s disease that included a procedure very similar to this one. ROC curves

and the associated areas under the curve are given in figure 5.2.

As the figure shows, the ROC curves for the two classification methods are virtually iden-

tical. The areas under the two ROC curves are also very similar, at 0.890 for the SVM and 0.888

for the GP.

5.4 Discussion

This chapter presented the first application of Gaussian process classifiers to distinguish be-

tween healthy elderly controls and subjects with AD. While many previous studies have

achieved similar accuracy on this type of data [Klöppel et al., 2008, Cuingnet et al., 2010], they

have all used classification algorithms that simply produce a binary decision between two

classes, mostly using support vector machines. While the output of SVMs can be converted

to probabilities, the methods for doing so are somewhat ad-hoc due to the SVM’s non proba-

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Figure 5.2: AUC curves for classification of 40 AD and control subjects with GP and SVM.

bilistic objective function [Platt, 2000]. The probabilistic predictions made by the GP classifier

were thresholded at p(y∗ = 1) = 0.5 to produce a binary decision that can be directly compared

to results from an SVM. The results from the two methods are extremely similar, showing that

it is possible to switch to the probabilistic framework without a significant loss of accuracy.

Moreover, all the subjects wrongly classified by the GP were also wrongly classified by the

SVM, suggesting that the decision boundaries applied by the two classifiers are similar. How-

ever, it would be a waste to limit ourselves to the use of probabilistic predictions in this way.

This formulation allows automatic variable selection via maximum likelihood that avoids the

effects of overfitting. The equivalent feature selection must be done via computationally ex-

pensive cross validation or inaccurate filtering for other methods. While it was not possible to

fully apply such techniques in this method, using a labelled atlas to aggregate the grey matter

within anatomical regions as in [Chu et al., 2010] would allow ARD to be used. Alternatively,

the feature dimensionality could be reduced by focusing on a small region of interest such as the

area around the hippocampus as was also done in [Barnes et al., 2004], or by aggregating voxels

into anatomical regions [Chu et al., 2010]. In the context of multikernel learning, a probabilistic

formulation also offers the automatic tuning of the kernel mixing weights. Probabilistic predic-

tions also open up possibilities that cannot be easily done otherwise, such as a reject option in

which more uncertain classifications are passed to a different classifier or human expert, and

tuning of the probability threshold to maximise positive predictive value of the test in a clinical
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context [Ashby and Smith, 2000].

5.5 Conclusions
This experiment achieved its aim of successfully performing GP classification of AD patients

and controls. As the data used for classification were GM density maps across the whole brain,

they were extremely high dimensional. While SVMs have traditionally been used in the result-

ing regime of high dimensionality and low sample size, this study has demonstrated that GP

classification is equally able to cope with this problem and yields a binary accuracy statistically

indistinguishable from an SVM. The following chapter goes on to show how we can further

utilise the advantages of GPs over SVMs using more sophisticated techniques.
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Chapter 6

Multiple kernel learning for prediction of

conversion to AD

6.1 Introduction

This chapter presents a study of early diagnosis of AD with multiple kernel learning. As

in many previous studies, it focuses on patients with mild cognitive impairment (MCI)

[Petersen et al., 1999]. MCI is typically defined as a state where patients have isolated mem-

ory deficits that are not severe enough to affect normal living. Studies have shown that MCI

patients convert to AD at an annual rate of 10-15% per year [Braak and Braak, 1995]. MCI

patients who do not convert to AD either develop other forms of dementia, remain stable, or

in a small minority, revert to a nondemented state. Therefore predicting which MCI patients

will develop AD in the short term (i.e. within a few years) and which will remain stable is ex-

tremely relevant to future treatments. Although a definitive diagnosis of AD can be made only

at autopsy, in practice expert clinicians diagnose AD based on clinical history and batteries of

cognitive tests. However these standard clinical tests are not able to identify the more subtle

patterns of the disease process at this early stage, so more advanced methods are required.

The automated methods used to discriminate between stable (MCI-s) and converter

(MCI-c) patients are similar to those used for diagnosis of AD. These automated tests use

imaging and other biomarker data, and can now diagnose AD with an accuracy of about

90%, as well as expert clinicians can using more traditional methods [Beach et al., 2012].

While a number of different imaging modalities have been proposed for this applica-

tion, the majority have used structural MRI, as atrophy in specific brain regions is one

of the most established hallmarks of AD. The features used in classification derived

from structural MRI can take a number of forms, including voxel level maps of grey

matter density [Nho et al., 2010, Klöppel et al., 2008, Fan et al., 2007], volume or shape

[Barnes et al., 2004, Gerardin et al., 2009, Zhang et al., 2011], or cortical thickness measure-
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ments [Desikan et al., 2009, Eskildsen et al., 2013, Lerch et al., 2008, Querbes et al., 2009].

These features can be calculated over the whole brain or specific structures known to be af-

fected by AD, such as the hippocampus. A comprehensive review and comparison of these

methods, focused mainly on the type of MRI-derived features used rather than which machine

learning algorithm was implemented, is given in [Cuingnet et al., 2010].

Looking beyond structural MRI, FDG-PET is capable of measuring the level of glucose

metabolism in the brain. Studies have shown that glucose metabolism is reduced in some re-

gions in patients before they develop AD [Drzezga et al., 2003, Mosconi et al., 2010] and this

may be used to classify AD patients from controls or predict conversion from MCI to AD

[Gray et al., 2012]. Biomarkers extracted from cerebrospinal fluid (CSF) have shown utility in

the diagnosis of AD or MCI. In particular, CSF levels of total tau protein (t-tau) and phosphory-

lated tau (p-tau) proteins, known to be implicated in the formation of neurofibrillary tangles that

cause atrophy in AD, are elevated in AD patients, while levels of the amyloid-42 (a42) peptide in

CSF fall [Fjell et al., 2010a, Holtzman, 2011]. Measurements of amyloid load in the brain using

amyloid PET have shown similar results [Rowe et al., 2010]. Also, variants of the apolipopro-

tein E (ApoE) gene affect the risk of developing AD [Corder et al., 1993, Corder et al., 1994].

These different types of biomarker data have been shown to be complementary, meaning

that they provide superior classification when used in combination than when either is used in-

dividually, even if they are correlated [Fjell et al., 2010b, Landau et al., 2010]. Thus a number

of studies have sought to make use of multiple biomarker types in classification. Structural MRI

is used in combination with genetic data in [Vemuri et al., 2008] and with CSF biomarkers in

[Vemuri et al., 2009] and [Davatzikos et al., 2008]. Structural MRI data, FDG-PET and CSF

data are used in [Hinrichs et al., 2011, Walhovd et al., 2010, Zhang et al., 2011]. A noteworthy

disadvantage of multimodal methods is that the problem of missing data is multiplied, as a sub-

ject must be discarded entirely or the missing data must be synthesised if it is not present in any

one of the modalities used. An approach to tackle this issue is presented in [Yuan et al., 2012].

The most popular classification method is the support vector machine (SVM), due to its ac-

curacy and ability to cope with very high dimensional data. Another advantage of the SVM is its

ability to use the kernel, a matrix of size N by N that summarises the distances or covariances

amongN training subjects. This can be applied to learn from multimodal data. Rather than sim-

ply concatenating the features from different modalities into a single vector, an individual kernel

can be formed from each modality and then a combined kernel generated as a weighted sum

of the individual ones. Both [Zhang et al., 2011] and [Hinrichs et al., 2011] use this approach,

but find the individual kernel weights in a different fashion. The former chooses them by a grid
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search for the weights giving the best accuracy in a nested cross validation loop. This method

is reused in a number of subsequent publications by the same authors, generally being applied

after a more sophisticated feature selection process. For example, in [Liu et al., 2014], the fea-

ture selection step is used to jointly select a sparse set of features from MRI and FDG-PET data

using a multi-task objective function designed to preserve the inter-modality relationship. The

resulting features are then used to generate separate MRI and FDG-PET kernels, which are op-

timally combined using the existing grid search method. By contrast, in [Hinrichs et al., 2011]

the subkernel weights are set by optimising them alongside the standard SVM parameters and

with the standard SVM objective function. This specific algorithm is sometimes referred to as

multiple kernel learning [Bach and Lanckriet, 2004], but the term is often used more broadly to

refer to all methods that combine multiple subkernels to produce a final kernel.

The study presented in this chapter is a different method using a combination of struc-

tural MRI, FDG-PET, CSF and ApoE data to classify MCI-s and MCI-c patients. Primarily,

this uses Gaussian process (GP) classification, which is a probabilistic classification algorithm.

Bishop [Bishop, 2007] lists four general advantages of a probabilistic framework, however, for

this particular study we would add two more which we feel to be particularly relevant: firstly,

the option to tune free parameters automatically from the training data, avoiding the need for

computationally expensive cross-validation loops, and secondly, that the probabilistic decisions

produced by GP classification allow a great deal of flexibility in their interpretation. Despite

the fact that for convenience, disease is frequently characterised as a binary distinction, such as

healthy or AD patient, each subject in fact occupies a point on a continuous spectrum of disease

severity, as is reflected by the concept of MCI. Probabilistic classification allows us to identify

the position of subjects on this spectrum, enabling disease staging, stratification, or event based

modelling [Fonteijn et al., 2012]. Probabilistic decisions can also be made into a binary classi-

fication simply by thresholding, and our previous work shows that this method offers accuracy

as good as an SVM on voxel level data for the diagnosis of AD [Young et al., 2012]; hence

no diagnostic information is lost by choosing a probabilistic classification algorithm. While

an SVM’s output can be interpreted probabilistically by transforming the decision value with a

sigmoid function, this method is a rather ad hoc modification to a binary classifier, and does not

offer the principled formulation and automatic parameter tuning of GP classification.

This previous work is, to my knowledge, the only previous application of GP classi-

fication to AD. GPs have been used previously in a regression context with fMRI data in

[Marquand et al., 2010], and for classification of structural MRI data in Huntington’s disease

by [Chu et al., 2010]. They have not been previously applied for multimodal medical image
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classification. Here we use four types of data are used, as well as a comparison of two meth-

ods of setting the kernel weight, one very similar to that given by [Zhang et al., 2011] and

the other a probabilistic method that is more natural within the GP paradigm. Finally the re-

sults are compared to those obtained by an SVM on the same data, again using the method of

[Zhang et al., 2011] for setting kernel weights in the multikernel paradigm.

The training population comprises healthy controls and AD patients, allowing us to inter-

pret the results in the MCI population as a risk score for conversion to AD. We introduce a new

method for the validation of probabilistic predictions, which show that the predicted probability

of conversion is a good estimate of the actual chances of conversion. As well as interpreting

the results probabilistically, we also obtained a binary classification into MCI-s and MCI-c by

adaptively thresholding the probabilities, resulting in a highly accurate prediction of conversion.

6.2 Materials and methods

All data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

This is described in detail in section 1.5.1. For up-to-date information, see http://www.

adni-info.org.

6.2.1 MRI data

Images were all T1 weighted structural MRI scans from 1.5T scanners acquired using a 3D

MPRAGE sequence, taken at the baseline time point for each subject. Back-to-back scans were

taken for each subject, and the best scan of the pair for each subject determined by visual inspec-

tion. The images were then post-processed to correct for gradient warping, B1 non-uniformity

and intensity non-uniformity and underwent phantom based scaling correction. Postprocessed

images were downloaded as DICOM files, and were then converted to NIfTI format for further

processing.

6.2.2 PET data

Images were again all taken from the baseline scan for each included subject. Images were

acquired by scanning 30-60 minutes post injection using scanner-specific protocols. Six five

minute frames were acquired for each subject, and then co-registered and averaged. The average

images were then rigidly registered to a standard space, and the individual native space frames

registered to the standard space average and averaged and intensity normalised in the standard

space. Finally, the average images in the standard space were smoothed with a scanner-specific

kernel [Joshi et al., 2009] to a uniform isotropic resolution of 8mm FWHM, which is approxi-

mately the resolution of the lowest resolution scanners used in ADNI. The postprocessed scans

were downloaded as DICOM images.

http://www.adni-info.org
http://www.adni-info.org
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6.2.3 ApoE data

Variants of the Apolipoprotein E (ApoE) genotype are known to affect the risk of developing

sporadic AD in their carriers. Each individual has two copies of this gene, one inherited from

each parent. The most common allele is ApoE ε3, but carriers of the ApoE ε4 variant are

at heightened risk of AD, whereas the ApoE ε2 variant confers some protection on carriers

[Corder et al., 1993, Corder et al., 1994]. The ApoE genotype of each subject was recorded as

a pair of numbers indicating which two alleles were present. ApoE genotype is determined

from a 10 ml blood sample taken at screening time, and sent overnight to the University of

Pennsylvania AD Biomarker Fluid Bank Laboratory for analysis. ApoE genotype was available

for all subjects for which we had imaging data.

6.2.4 CSF data

CSF samples of 20ml volume were obtained from subjects by a lumbar puncture with a 24 or

25 gauge atraumatic needle around the time of their baseline scan. All samples were sent on

dry ice on the same day as they were drawn to the University of Pennsylvania AD Biomarker

Fluid Bank Laboratory, where levels of the proteins (a42, total tau, and phosphorylated tau)

were measured and recorded. By design, only a subset of ADNI subjects had measurement of

CSF levels. All three measured protein levels (t-tau, p-tau, and a42) were used in constructing

a CSF kernel.

6.2.5 Subjects

All ADNI subjects were between 55 and 90 years old, spoke English or Spanish, and had a

study partner able to provide an independent assessment of functioning. All subjects were

willing to undergo neuroimaging and agreed to longitudinal follow up, and a subset was willing

to undergo lumbar punctures. Subjects with specific psychoactive medication were excluded.

Inclusion criteria for healthy controls (HC) are MMSE scores between 24 and 30, a CDR of

0, non-depressed and non-demented. Ages of the HC subjects were roughly matched to those

of the AD and MCI subjects. For MCI subjects, the criteria are an MMSE score between 24

and 30, a memory complaint, objective memory loss measured by education adjusted scores on

the Wechsler Memory Scale Logical Memory II, a CDR of 0.5, absence of significant levels of

impairment in other cognitive domains, essentially preserved activities of daily living, and an

absence of dementia.

For AD subjects, the criteria are an MMSE score between 20 and 26, CDR of 0.5 or 1.0,

and meeting NINCDS/ADRDA criteria for probable AD. Subjects are designated as HC, AD or

MCI at the time of the baseline scan, and for the purposes of this study MCI conversion status
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Disease status n (n female) mean age (sd) mean MMSE (sd)

NC 73 (27) 75.9 (4.6) 28.9 (1.2)

MCI-s 96 (34) 75.6 (7.0) 27.2 (1.7)

MCI-c 47 (17) 74.5 (7.4) 26.9 (1.8)

AD 63 (24) 75.2 (6.6) 23.6 (2.0)

Table 6.1: Demographics of PET group. NC = normal control, MCI-s = stable MCI,MCI-c =

converting MCI, n = number of subjects, sd = standard deviation

Disease status n (n female) mean age (sd) mean MMSE (sd)

NC 36 (12) 74.2 (4.2) 28.8 (1.3)

MCI-s 42 (16) 75.4 (7.0) 27.3 (1.6)

MCI-c 30 (11) 75.5 (7.6) 26.5 (1.8)

AD 35 (12) 75.2 (6.7) 23.9 (2.0)

Table 6.2: Demographics of PET-CSF group. NC = normal control, MCI-s = stable MCI,MCI-c

= converting MCI, n = number of subjects, sd = standard deviation

is decided by whether subjects who were MCI at baseline were subsequently diagnosed as AD

at any stage during the subsequent 36 month follow-up period.

A total of 682 subjects with baseline 1.5T MRI scans were available. Of these, the image

parcellation procedure was run on 679, the manually generated brain masks required for the

parcellation being unavailable for three. Of these 679 subjects, FDG-PET scans were also

available for 286. Seven of these were diagnosed as MCI at baseline but as healthy at follow-

up time points and were excluded as reverters, leaving a total of 279 subjects available for the

study. The demographics of this group (referred to as the PET group) are given in table 6.1.

This experiment also examined the effect of using CSF in the multimodal classification. As

there was relatively little overlap between the groups of patients given CSF biomarker testing

as well as FDG-PET scans, the subset of the PET group for which full CSF data was also

available (referred to as the PET-CSF group) was much smaller at a total of 143 subjects. The

demographics of the PET-CSF group are given in table 6.2

In the PET group, 47 out of 143 (33%) of MCI subjects are converters. As conversion is

defined over a three year follow-up period, this is equivalent to an annualised conversion rate

of 12.5% per year, in line with other studies. Subjects diagnosed as MCI at baseline in ADNI

are reassessed after approximately 6, 12, 18, 24 and 36 months, which allows us to roughly find

the time after which they converted. The conversion times for the 47 MCI-c subjects in the PET
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t n

t <6 5

6 <t <12 15

12 <t <18 9

18 <t <24 14

24 <t <36 4

Table 6.3: Times of conversion t, in months, for subjects in the PET group.

group are listed in 6.3

6.2.6 MRI image processing

To produce GM probability maps in a common space for classification, roughly the same pro-

cedure as [Klöppel et al., 2008] was used. However the processing was done using different

image processing software, and with an additional step of masking the images to include only

regions known to be affected by AD.

Initially the native space, preprocessed scans were probabilistically segmented using the

open source NiftySeg tool [Cardoso et al., 2011]. Based on the expectation maximisation algo-

rithm, this method produces probabilistic maps for five tissue types: white matter, cortical GM,

external cerebrospinal fluid, deep GM and internal cerebrospinal fluid.

The native space, preprocessed scans were also anatomically parcellated into 83 regions.

This was with a multi atlas segmentation propagation algorithm [Cardoso et al., 2012]. A li-

brary of 30 atlases manually labelled with 83 anatomical regions [Gousias et al., 2008] was

used as a basis for the segmentations. In order to segment a new image, all the atlases and

respective manual labels were first nonrigidly registered to this image. After registration, the

manual labels of the locally most similar atlases were fused using a label fusion strategy based

on an extension of the STAPLE algorithm [Warfield et al., 2004] to produce a final parcella-

tion. The regions used in the classification process were chosen according to Braak and Braak

[Braak and Braak, 1995] and are listed in 6.4. These regions were then intersected with the

GM tissue segmentations obtained above.

All images were transformed into the same anatomical space in order to provide consistent

anatomy at each voxel for the classifier. The images were masked to remove non brain mate-

rial, and then used to perform groupwise registration. All images were repeatedly registered to

the same target image in an iterative procedure. At the end of each iteration, all registered im-

ages were averaged together to create an updated target image, with a randomly chosen image

serving as the target in the first iteration. Initially, all images were rigidly registered to avoid
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Label numbers Regions

1, 2 Hippocampus (R and L)

3, 4 Amygdala (R and L)

5, 6 Anterior temporal lobe, medial part (R and L)

7, 8 Anterior temporal lobe, lateral part (R and L)

9, 10 Parahippocampal and ambient gyri (R and L)

11, 12 Superior temporal gyrus, posterior part (R and L)

13, 14 Middle and inferior temporal gyrus (R and L)

15, 16 Fusiform gyrus (R and L)

24, 25 Cingulate gyrus, anterior part (R and L)

26, 27 Cingulate gyrus, posterior part (R and L)

Table 6.4: Regions included in GM segmentations. Label numbers are taken from the atlas

used to perform the parcellation [Gousias et al., 2008]. R and L designated the hemisphere

(Right and Left).

bias towards the chosen target. This was followed by a single round of affine registration, and

then by 10 rounds of nonrigid registrations. All registrations were performed using NiftyReg

[Modat et al., 2010], a registration toolkit that performs fast diffeomorphic nonrigid registra-

tions. When the registrations had all been completed, the resulting deformations from each

image’s native space to the final average image were applied to the anatomically masked na-

tive space segmentations to bring them into the groupwise space. The registered, anatomically

masked segmentations were modulated by the Jacobian determinants of this final deformation.

This ensures the total volume of tissue remains constant [Ashburner and Friston, 2000]. As a

final step, the registered, anatomically masked and Jacobian modulated cortical GM and deep

GM segmentations were summed to produce an overall GM density map for the AD relevant

regions in a common space for all subjects.

6.2.7 PET image processing

The PET images had already been through substantial postprocessing, as discussed above. After

downloading, they were registered to the native space MRI image of the same subject, again

using the NiftyReg software. Then masks generated from the structural MRI parcellations were

overlaid on each subject to calculate the total activity within each region from the PET image.

The mean activity within each region was then used as a feature for classification.
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6.2.8 Gaussian process classification

The resulting high dimensional image and biomarker data were then used to construct a GP

classifier based on HC and AD subjects. For a full explanation of GP classification, we refer

the reader to section 3.7 and [Rasmussen and Williams, 2006]. Here, we give a brief recapit-

ulation of GP classification and give further details on the aspects that pertain to multimodal

classification. All learning of hyperparameters and GP calculations were done using the GPML

toolbox for MATLAB which was also used to analyse results.

Gaussian process classification can be seen as kernelised Bayesian extension of logistic

regression. A Gaussian process, essentially a multivariate Gaussian, forms the prior on the

value of a latent function, which is then mapped to the (0,1) interval through a sigmoid, which

represents the probability of a subject belonging to a particular class. The exact prior is a

function of the training data and labels, and a set of hyperparameters that control the shape of the

prior. During the training phase, the hyperparameters are learnt from the training data and labels

by type-II maximum likelihood. The likelihood of the training data and labels with respect to the

hyperparameters is maximised using a conjugate gradient descent optimisation method. Once

the hyperparameters have been set, predictions on unseen data are made by integrating across

this prior. In the regression case, this is analytically tractable, but for classification it is not,

due to the sigmoidal response function, so an approximation must be made instead. A number

of different approximation schemes can be used, but all our experiments use the expectation

propagation algorithm [Minka, 2001]. This has been shown to offer a good compromise of

accuracy and computation time for GP classification [Nickisch and Rasmussen, 2008].

6.2.9 Gaussian process classification as a multimodal kernel method

Note that the GP classifier is based on a kernel matrix, K, representing the covariance among

training subjects. This is a symmetric positive definite matrix where entry (i, j) is a covariance

or some function of distance between training subjects i and j. As such, this means that GP

classification belongs to the family of kernel methods, as do SVMs, and all the rules for con-

structing valid kernels apply: in particular, a positive sum of valid kernels is a valid kernel, and

a valid kernel multiplied by a positive scalar is also a valid kernel. The covariance between the

ith and jth subject, Kij , is a kernel function of the feature vectors for the ith and jth subject,

xi and xj and a hyperparameter or set of hyperparameters θ, which are learnt from the train-

ing data by type-II maximum likelihood. For multimodal classification, the rules for producing

new kernels mean that we can define our kernel function as the weighted sum of a number of

subkernels, each of which has been calculated from the feature vectors representing a particular

type of data or modality for each subject. Each subkernel is constructed from a linear kernel
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function, which is the scalar product of xi and xj : kij = xi · xj . Each subkernel has a scaling

hyperparameter representing the modality’s weight in the overall kernel, and there is also a sin-

gle bias term. So in the case of multimodal classification using each subject’s MRI, PET and

ApoE data the overall kernel is

Kij = αMRxMR
i · xMR

j + αPETxPETi · xPETj + αApoExApoEi · xApoEj + β (6.1)

where α are hyperparameters representing the weight given to each modality subkernel, and β

is a hyperparameter representing the bias in the combined kernel. Thus θ is now a set of four

hyperparameters which are learnt from the training data by maximum likelihood. In this way

we can automatically set the kernel weights without needing to resort to a grid search with cross

validation. This is possible as the GPML software allows complex covariance functions to be

specified. It allows us to apply masks to include only certain columns of the training data to be

used in a covariance function, so we can learn separate covariance kernels for the MRI, PET

and ApoE data. The ApoE kernel is based on representing each subject as a vector of length

two, encoding each allele as an element of the vector, so for a example a subject with one copy

of the ε3 allele and one of the ε4 would be encoded as (3, 4). More sophisticated kernels have

been developed for genetic data and these may improve results further.

For the PET group, we also do a grid search for the kernel weights to compare the re-

sults of this method of setting the kernel weights to the maximum likelihood method and to

[Zhang et al., 2011]. Each MCI test subject in turn is left out, and a GP classifier is trained on

all AD and control training subjects for each legitimate combination of α. The best values of α

are chosen empirically as the ones offering the most accurate classification on the n−1 remain-

ing MCI test subjects. As accuracy is a coarse measure, any ties are broken with the information

theory based metric of classification quality suggested in [Rasmussen and Williams, 2006]. Fi-

nally the classifier offering the best accuracy was tested on the left out MCI subject, and the

process repeated until all MCI test subjects had been classified. Due to the leave-one-out loop

and the need to do one tuning classification for every combination of parameters within each

iteration of the loop, this method is very time consuming if more than a handful of parameters

have to be tuned. Hence to make the whole classification procedure tractable, values of α are

constrained to be positive and sum to one, with no bias term, as in [Zhang et al., 2011]. The

resulting two-dimensional parameter space is searched with increments of 0.1 for both param-

eters. Figure 6.1 represents the multikernel approach.
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Figure 6.1: Pipeline by which kernels are constructed from features extracted from each type

of data, before being summed to produce a combined kernel.

6.2.10 SVM classification

To put the results obtained by GP classification in context and compare them to a more widely

used method, SVM classification on the same datasets was also performed. This was done with

use of the open source libsvm library, with the C parameter left at its default setting and linear

kernels, but used precomputed kernels both for the sake of speed and to facilitate multikernel

classification. Training and testing kernels were constructed for all three modalities in the

PET group (MRI, PET and ApoE) and all four in the PET-CSF group (MRI, PET, ApoE and

CSF). Kernel weights are again set using the method of [Zhang et al., 2011] as described in

section 6.2.9. The weight setting is done within a leave one out scheme, where the testing (MCI-

s and MCI-c) subjects are repeatedly split into one subject used for testing and the remaining

ones used for tuning the kernel weights until each MCI subject has been left out; in this way it is

possible to tune on the training population and thus avoid introducing optimistic bias. We also

tried to set the kernel weights using the training (NC and AD) subjects for tuning, by performing

a leave-one-out cross validation on the training subjects at each legitimate combination of kernel

weights. To break ties between parameter settings showing equal accuracy, we use the mean

distance from the margin of correctly classified test subjects minus the mean distance from the

margin of incorrectly classified test subjects as a metric of SVM quality. We also experimented

with normalising training and testing data using a z-score to help combine different modalities

on the same scale.
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Figure 6.2: Relationship between AD and MCI classification. As AD, control and MCI subjects

exist on a spectrum of disease severity, MCI-s subjects can be seen as control-like and MCI-c

ones more AD-like. Hence a classifier trained to separate AD and control subjects may also be

applied to separate MCI-c and MCI-s subjects.

6.2.11 Classification strategy

Rather than both training and testing the classifier on MCI-s and MCI-c subjects in a cross-

validation loop, training data consists of AD and healthy subjects, and then results are obtained

by applying the resulting classifier to the MCI population. This approach to classification of

MCI subjects is widely used and was adopted here as it obtained substantially better results

than those obtained by the training on MCI regime in all our preliminary work. The hypothesis

justifying this is that the subpopulation of MCI subjects that are stable are more healthy-like

(although some will go on to convert beyond the follow up period used for defining conversion,

which is probably a factor in the limited accuracy of predictions of MCI conversion), while

those who go on to develop dementia are more AD-like, as is consistent with our contention

that discrete disease states are an approximation to a continuous disease spectrum.

This means a classifier that successfully separates AD and control subjects will also be

able to distinguish between MCI-c and MCI-s to some degree. This notion, illustrated in fig-

ure 6.2 has been used with some success for this problem previously [Ferrarini et al., 2009,

Singh et al., 2012]. As previously mentioned, however, when using a combined kernel with

grid search we can use the MCI subjects not being classified to tune the kernel mixing parame-

ters.
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6.2.12 Validation

The results of GP classification are numbers between 0 and 1 representing the estimated prob-

ability that a test subject belongs to a particular class, in our case the class of MCI-c. A simple

way to binarise these probabilities is to threshold them at 0.5. We do this, and report the result-

ing accuracy, sensitivity and specificity. However this approach has two disadvantages. Firstly,

as the model is trained on one population (AD and control) and tested on another (MCI-s and

MCI-c), this would be the correct threshold value if the test population were in some sense

exactly half way between the two classes of the training population, but there is no reason to

believe this is necessarily the case. Secondly, setting the cut point at 0.5 leads to varying bal-

ances between sensitivity and specificity among the different methods, making them hard to

compare. Because of this, the test probabilities are used to determine the cut point that results

in the closest possible value of sensitivity and specificity. Then the overall correct classifica-

tion rate at this cut point is found and reported, as by definition it will be very close to both

the sensitivity and specificity. This is done in a leave-one-out framework to avoid optimistic

bias in the balanced accuracy. Finally, the probabilities are used to calculate the AUC, for easy

comparison with results from other studies. For both PET and PET-CSF groups we also report

the balanced accuracy for classification using each modality alone, except for the ApoE. This

is left out because ApoE data consists of pairs of alleles labelled 2, 3 or 4. As order does not

matter this means each subject can be at one of only six points in two-dimensional ApoE data

space (in practice five points as one combination does not occur in our data), so an ApoE only

classifier would produce probabilities that could only be one of five discrete values, making

further analysis meaningless. The significance of the difference in balanced accuracy between

multimodal classification and unimodal classification is assessed for both the PET group and

PET-CSF group with McNemar’s test [McNemar, 1947] if there appears to be a substantial dif-

ference. The balanced accuracies are derived from the probabilities before they are corrected for

bias with the procedure described in section 6.3.2. We found that balanced binary accuracies

derived from the corrected probabilities tended to be slightly lower.

However, to only do this would be to neglect the probabilistic information contained in the

output of the GP. The probabilities can also be treated as risk scores for conversion to AD, and

then used to determine how well they function as estimates of the actual chances of conversion.

As each subject either does or does not convert to AD, this cannot be assessed at the individual

level. Instead all MCI subjects are binned into eight equal intervals covering the range (0,1)

by their risk score. For each of the eight intervals, the centre value of the interval is labelled

the predicted risk. Then the empirical risk is calculated for each interval as the proportion of
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Modality acc (%) sens (%) spec (%) bal acc (%) AUC p(M) p(P)

MRI 64.30 53.20 69.8 61.50 0.643 - -

PET 65.00 66.00 64.60 65.70 0.767 - -

All (ML) 69.90 78.70 65.60 74.10 0.795 0.0162 0.0247

All (GS) 67.10 76.60 62.50 70.60 0.751 0.0865 0.2301

Table 6.5: Accuracy of methods in the PET group with GP classification. ’All’ modalities

indicates MKL with MRI, PET and ApoE kernels. ML and GS are, respectively, the maximum

likelihood and grid search methods of setting the subkernel weights α. p values are of difference

in classification vs. indicated single modality, M for MRI and P for PET.

patients in the interval that do in fact convert. Finally, the root mean square error between

predicted and empirical risk is calculated as a measure of how well the risk scores from GP

classification predict the actual risk of conversion. The number of intervals was chosen to

provide the best balance between the demands for good statistics both within and between the

bins.

The decision values obtained from SVM classification represent a signed distance from

the optimal hyperplane determined from the training data, the sign indicating on which side

of the hyperplane a test subject falls and thus to which class it is predicted to belong. We

report the accuracy, sensitivity and specificity from the sign of the decision values (equivalent

to thresholding the decision values at 0). We also perform a procedure to find the threshold

producing the accuracy that best balances sensitivity and specificity in the same manner as we

did for GP posterior probabilities, and finally calculate an AUC from the decision values.

6.3 Results

6.3.1 Accuracy of binary classification

The balanced accuracy, AUC, and p-value for comparison of multimodal methods with uni-

modal ones for the PET group are shown in table 6.5 for the GP results, and in table 6.6 for

the SVM results.

The result in the last row of table 6.6 was obtained by using the MCI subjects as a tuning

set, and normalising training data with a z-score, and then normalising testing data using the

mean and standard deviations from the un-normalised training data. All other combinations of

choices of tuning set and normalisation produced inferior results.

The same accuracy measures for the PET-CSF group are shown in table 6.7 for GP clas-

sification and table 6.8 for SVM. For the GP, we do not perform the grid search method due to
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Modality acc (%) sens (%) spec (%) bal acc (%) AUC

MRI 58.70 53.20 61.50 58.70 0.629

PET 69.90 55.30 77.10 67.10 0.762

All (GS) 65.70 68.10 64.60 67.80 0.731

Table 6.6: Accuracy of methods on the PET group with SVM classification. ’All’ modalities

indicates MKL with MRI, PET and ApoE kernels. Only the grid search (GS) method of setting

the subkernel weights α can be used with SVM.

Modality acc (%) sens (%) spec (%) bal acc (%) AUC p(M) p(P) p(C)

MRI 63.9 76.7 54.8 61.1 0.682 - - -

PET 66.7 80.0 57.1 69.4 0.789 - - -

CSF 55.6 73.3 42.9 56.9 0.575 - - -

Im, ApoE 68.1 83.3 57.1 72.2 0.823 0.186 0.773 0.072

All 68.1 90.0 52.4 72.2 0.763 0.201 0.823 0.015

Table 6.7: Accuracy of methods on the PET-CSF group with GP classification. All modalities

indicates MKL with MRI, PET, CSF and ApoE kernels, Im + ApoE is the image data (MRI

and PET) and ApoE data without CSF. p values are of difference in classification vs. indicated

single modality, M for MRI, P for PET and C for CSF.

the increased computational demands of having to do a three dimensional grid search for four

modalities, rather than a two dimensional grid search for three modalities as in the previous

experiment. However, the results for multimodal classification both with and without the CSF

data are reported so it is possible to see its effect on classification with a consistent set of test

subjects.

Again, the last two rows of table 6.8 present results obtained using MCI subjects for tuning

the kernel weights, and with the data normalised with a z-score as these provided the best

accuracy.

The results show a clear advantage in accuracy for multimodal imaging. In the larger

PET group, both multimodal algorithms are better than any single modality alone. This advan-

tage is statistically significant at the 5% level for the type-II maximum likelihood method with

GP classification, which outperforms the grid search method and outperforms the best single

modality by over 8%. The AUC measure of accuracy shows how results must be interpreted

with caution, as the multimodal grid search method has a higher balanced accuracy than us-

ing PET alone, but offers a slightly lower AUC. In the smaller group for which both PET and
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Modality acc(%) sens(%) spec(%) bal acc(%) AUC

MRI 65.3 76.7 57.1 63.9 0.685

PET 69.4 63.3 73.8 65.3 0.782

CSF 56.9 73.3 45.2 55.6 0.575

Im + ApoE (GS) 68.1 76.7 61.9 68.1 0.745

All (GS) 66.7 76.7 59.5 69.4 0.727

Table 6.8: Accuracy of methods on the PET-CSF group with SVM classification. All modalities

indicates MKL with MRI, PET, CSF and ApoE kernels, Im + ApoE is the image data (MRI and

PET) and ApoE data without CSF.

CSF data were available in all subjects, the same pattern applied in that multimodal methods

outperformed all single modality methods.

To enable a side-by-side comparison, table 6.9 shows the balanced accuracy for GP and

SVM classification together with a p-value for the difference in accuracy. The p-value is gen-

erated by classifying all test subjects with the leave-one-out procedure used to generate the

balanced accuracy figures, and comparing the resulting classifications, again using McNemar’s

test.

6.3.2 Accuracy of probabilistic classification

The predicted risk figures produced in the manner described in section 6.2.12 exhibit some bias,

in that the classifiers tend to overestimate the chances of conversion in general. This appears

to be because of the transfer learning approach we use, where the classifier is trained on the

AD and healthy population, and then applied to the MCI subjects. As the MCI subjects, in

terms of the biomarker data we use, are not midway between the AD and control population

but slightly closer to the AD subjects, this results in the classifier being somewhat biased in

favour of predicting conversion. In order to remove this, we perform a correction procedure on

the GP probabilities similar in approach to the one used to produce a balanced accuracy. We

perform a logistic regression, using a leave-one-out approach again to avoid unduly optimistic

results, on the GP probabilities and the labels indicating converter or stable status for the MCI

subjects, with the label 0 indicating stable and 1 indicating converter. In this way we can learn

the relationship between GP predicted risk and actual risk for the MCI subjects to correct for

the bias. The resulting plots of empirical risk versus adjusted predicted risk for the PET and

PET-CSF groups are shown in figures 6.3 and 6.4. Plotted points are labelled with the number

of subjects in the corresponding bin. As not all the bins contain subjects, some empty bins are
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Group Modality bal acc (% )(GP) bal acc (%)(SVM) p-value

PET MRI 61.5 58.7 0.387

PET PET 65.7 67.1 0.789

PET MRI,PET, ApoE 74.1 67.8 0.151

PET-CSF MRI 61.1 63.9 0.683

PET-CSF PET 69.4 65.3 0.450

PET-CSF CSF 56.9 55.6 1

PET-CSF MRI, PET, ApoE 72.2 68.1 0.450

PET-CSF MRI, PET, ApoE, CSF 72.2 69.4 0.803

Table 6.9: Statistical comparison of GP and SVM classification results for different subjects

groups and combinations of modalities. MKL weights α are set by maximum likelihood for GP

and grid search for PET. p-values are for significance of difference in accuracy between SVM

and GP for a particular set of subjects and modalities used.

not plotted.

In these plots, a classifier producing accurate probabilities should have points plotted close

to the diagonal. By inspection, the multimodal methods appear to perform well by this measure,

and it is important to note that most points lying far away from the diagonal represent bins

containing few subjects, making the empirical risk calculated for them less reliable. More

broadly, the probabilities produced by the GP classification procedure appear to be accurate in

the sense that increased predicted risk of conversion does generally imply an increased chance

of conversion actually taking place. The adjustment appears to be effective, with little bias

exhibited in the predicted risks. Note the only plotted points very far from the diagonal, and

thus showing a large difference between empirical and predicted risk, are of risk bins containing

only one or two subjects and are simply the results of outliers.

6.4 Discussion

As previously stated, a clear advantage can be seen both for multimodal classification, and

for the use of GP classification over the more widely used SVM. This applied to results for

both the PET and PET-CSF groups. Moreover, there appears to be quite a strong interaction

between the utility of multimodal classification and the type of classifier used. Looking at

the balanced accuracy of classification on single modalities of data, there is little to choose

between GP and SVM classification, with differences of one or two per cent in accuracy in either

direction. Thus, it seems reasonable to conclude by this measure that there is little difference in
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dicted risk for the PET group.
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Figure 6.4: Empirical risk vs. corrected pre-

dicted risk for the PET-CSF group.

discriminative ability on identical sets of data. However, the GP framework appears to be able to

take much greater advantage of the availability of multimodal data. GPs offer much larger gains

for multimodal versus unimodal classification, with gains of eight per cent in the PET group

against the best single data (PET) as against only a 0.7 per cent gain for the SVM approach.

Similarly, the head-to-head comparisons between the GP and SVM methods using the same

subjects and modalities, in table 9, show the greatest differences in classification accuracy and

greatest statistical significance are for the multimodal methods. While the difference is not

quite significant at the 0.05 level, due to the relatively small number of subjects in the study, the

advantage for GP against SVM classification is clear and consistent across all three multimodal

classification experiments and we plan to verify it with a larger dataset.

The improvement is most likely because the GP framework is better at finding a set of

kernel weights for optimum classification. With an SVM we are restricted to finding these

through a grid search, which has an inherently limited range and resolution if it is to be tractable,

and is dependent on rather crude measures of accuracy to select an optimal parameter set. GPs

offer tuning via the likelihood function, which seems to be more robust and also allows a wider

search space - however this is not available for SVM classification, highlighting one of the

advantages of a probabilistic framework mentioned in the introduction.

Adding CSF to multimodal classification did not increase the accuracy by any significant

amount and in fact decreased the AUC, which is not surprising as CSF is the poorest single

modality, offering accuracy little better than chance. The poor performance of CSF biomarkers
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alone, and their failure to add diagnostic value when used alongside other biomarkers, is perhaps

explained by the fact that about a third of controls have a high amyloid load, suggesting they

may be in fact at a presymptomatic stage of AD. In this case CSF is still a potentially valuable

biomarker, but our choice of defining AD and control subjects purely by current symptoms

and cognitive test results limits its applicability. This again suggests the need to treat AD as a

spectrum rather than a set of discrete states, or at least to very carefully define such states.

Comparing the results presented here to other attempts to predict conversion in MCI pa-

tients is difficult. This is because, while the problem has been addressed in a large number of

studies, these vary widely in how MCI groups are defined, and the metric by which classifi-

cation accuracy is assessed. However the method presented here certainly offers a high level

of classification accuracy, especially considering studies that use ADNI data and offer higher

accuracy make predictions over a time span of less than three years or make use of longitudinal

data, which our algorithm does not need.

For MRI data, the most comparable methods are in [Cuingnet et al., 2010]. This study

included a wide variety of types of feature, but those which used voxel level GM maps are quite

similar to our work. Even within this definition, a wide range of options in image processing

and feature extraction were used but the closest in methodology to ours is what they label as

the Voxel-Direct-D-GM method. When applied to predicting MCI conversion this was found to

have a specificity of 100% and sensitivity of 0%, i.e. The classifier simply assigned all subjects

to the majority MCI-s class, possibly as a function of having trained on MCI-s and MCI-c

rather than control and AD subjects. This paper did also find that the voxel based method in

[Fan et al., 2007] achieved a sensitivity of 62% and specificity of 67%, although this was found

not to be significantly greater than chance. Our method achieves much greater accuracy than

any in [Cuingnet et al., 2010] for predicting MCI conversion, and moreover our accuracy is

statistically significantly better than chance, which none of the methods assessed in that study

managed to achieve.

Other studies, however, have had much greater success in predicting conversion. For

example, [Coupé et al., 2012] and [Eskildsen et al., 2013] have presented methods capable of

predicting conversion with accuracies similar to ours. The former uses a novel hippocampal

grading biomarker. Using their most rigorous validation method, accuracy was slightly lower at

71% but their method needs no FDG-PET data and less computationally intensive image pro-

cessing than the one presented here. The latter also achieves 74% accuracy by stratifying MCI-c

subjects by conversion time and then combining the results of classifying each MCI-c subgroup

against the MCI-s subjects. The classifier is rather unbalanced, with substantially higher speci-



6.4. Discussion 109

ficity than sensitivity, a common problem with MCI classification, but again only structural

image data is needed. Reported AUC values in [Ye et al., 2012] are up to 0.85 using MRI data,

ApoE genotypes, and a variety of cognitive measures with a sparse logistic regression proce-

dure but the authors do not list classification accuracy. In [Wee et al., 2012] features based

on correlations between mean thicknesses of cortical regions of interest are used with SVM

classification, and obtain 75% accuracy and an AUC of 0.8426. Among multimodal methods,

[Zhang et al., 2011] reports a specificity of 91.5% and specificity of 73.4% for prediction of

MCI conversion. While they do not report the proportions of MCI-s and MCI-c in their subjects

and hence we cannot calculate the overall accuracy, it must be greater than our best result of

74%. However, they define conversion as a subject converting within 18 months rather than

three years. Predicting over a short future timespan is an easier problem than over a longer one

[Eskildsen et al., 2013] and less clinically useful. Moreover, defining conversion over a shorter

time means a smaller proportion of MCI subjects will be converters, reducing the positive pre-

dictive value of even a good classification result. Additionally, their work uses CSF data in

addition to MRI and FDG-PET, whereas our best performing classifier uses genetic data in-

stead of CSF, which is less invasively obtained. We are able to set our kernel weights by type-II

maximum likelihood, avoiding the need for a computationally expensive grid search. The other

previously published multikernel method to predict MCI conversion is [Hinrichs et al., 2011].

Although they do define converters with a three year time span, direct comparison of results

is again difficult, as they report only an AUC rather than accuracy. The best reported AUC

was 0.791, similar to ours but this used longitudinal data, again effectively reducing the time

span to predict conversion. They also found the method using only longitudinal image data was

more effective than including non-imaging data in their multikernel learning approach. Meth-

ods based on features structural imaging alone are also capable of achieving high accuracy.

Table 6.10 summarises these results in comparison with our own.

Table 6.10 clearly show the difficulty in making direct comparisons between results. For

example, the time within which MCI conversion is defined has a strong effect on results. In

[Vounou et al., 2012], tensor based morphometry was used to define a set of voxels that are

highly indicative of MCI conversion, and then applied an SVM to these. This method was

able to predict conversion with an accuracy of 82%. As this method uses both baseline MRI

scans and 24 month follow-up MRI scans to generate Jacobian maps, it is effectively predicting

conversion in only a 12 month period rather than three years as we do, and longitudinal data

may not be available in all cases.

Parameterisations of the shape of the hippocampus have achieved a greater accu-
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Article Data used n (MCI-s,MCI-c) t acc (%) AUC

[Young et al., 2013c] MRI, FDG-

PET, ApoE

143 (96, 47) 36 74.10 0.795

[Eskildsen et al., 2013] MRI 388 (227, 161) 36 73.5 -

[Ye et al., 2012] MRI, ApoE,

cognitive scores

319 (177, 142) 48 - 0.8587

[Wee et al., 2012] MRI 200 (111, 89) 36 75.05 0.8426

[Zhang et al., 2011] MRI, FDG-

PET, CSF

99 (56, 43) 18 sens

91.5,

spec 73.4

-

[Hinrichs et al., 2011] longitudinal

MRI, baseline

MRI, longitudi-

nal FDG-PET,

baseline FDG-

PET, CSF,

ApoE, cognitive

scores

119 36 - 0.7911

[Coupé et al., 2012] MRI 405 (238, 167) 36 73.0 -

[Wolz et al., 2011b] MRI 405 (238, 167) 36 68.00 -

[Nho et al., 2010] MRI, ApoE,

family history

355 (205, 150) 36 71.6 -

[Davatzikos et al., 2008] MRI, CSF 239 (170, 69) 36 61.7 0.734

Table 6.10: Reported results from a variety of studies for predicting MCI conversion on ADNI

data. n = number of subjects, t = number of months over which MCI conversion is defined, acc

= accuracy in predicting conversion, if reported, AUC = area under ROC curve of predictions

of conversion, if reported.
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racy than our approach with conversion defined over three years [Costafreda et al., 2011,

Ferrarini et al., 2009], however these used a small number of subjects scanned at a single

centre, and also had autopsy confirmed AD subjects available, removing any uncertainty in

the training labels. If conversion is defined over a three year period, we believe our method

presented here has obtained an accuracy very competitive with the best methods yet published

for prediction of conversion to date on ADNI data.

Moreover, our method offers the advantages of probabilistic classification listed in 6.1.

The reject option is especially relevant in the case of computer-aided diagnosis. Having a

probabilistic classification means that each diagnosis includes an attached degree of confidence

rather than a simple binary decision. Clinical decision making is frequently hampered by over-

confidence [Berner and Graber, 2008], so an estimate of the certainty of a diagnosis could be of

great help, if only as a supplement to decisions made by more traditional methods.

6.5 Conclusion
We have shown that multimodal Gaussian process classifiers can be successfully applied to the

prediction of conversion to AD in MCI patients. Prediction of conversion is significantly better

for multimodal classification than for any single modality, and also better for GP compared to

SVM classification, largely due to the GP’s superior ability to exploit multimodal data. Accu-

racy is state-of-the-art, and to this we can add the advantages of probabilistic classification. A

number of extensions to this work are possible. The simplest is to take advantage of new sub-

jects with FDG-PET and CSF data being added to the ADNI database and apply these methods

to a larger group of subjects to show greater statistical significance for the advantage of our

methods. We perform more sophisticated feature extraction on FDG-PET data and to make use

of more complex kernel covariance functions, as described in the following two chapters ( 7

and 8). We also examine methods to overcome the problem of misdiagnosis leading to noisy

training labels in ADNI data in chapter 8 and [Young et al., 2013a].
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Chapter 7

Continuous proxies for AD diagnosis and

prognosis

7.1 Introduction
In this chapter, we explore an alternative to the classification approach to predicting conversion

in MCI subjects, described in the previous two chapters. A classifier to predict conversion in

MCI subjects can be trained on labelled examples of MCI-s and MCI-c images, or alternatively

on examples of AD patients and healthy controls, under the assumption that MCI-s subjects are

more control-like and MCI-c subjects are more AD-like. However, either method ultimately

relies on discrete labels designating each subject used for training as being a member of a

particular diagnostic group.

This does bring some disadvantages. The labels for training data are, in the cases above,

assumed to be always correct. However, a limiting factor in the accuracy of classification studies

may be mislabelling of training subjects. The gold standard for diagnosis of AD is autopsy, but

most studies use training subjects whose diagnosis has been determined by standard clinical

diagnosis, which has been shown to have an error rate of at least 10% [Beach et al., 2012] when

compared to retrospective diagnosis when the subjects died and it was consequently possible to

confirm (or disconfirm) their earlier diagnosis by autopsy. Furthermore, the same study found

that the rate of misdiagnosis varies wildly between AD centres in a multicentre setting very

similar to ADNI. This is an issue that has not been widely addressed. The most effective way to

do so would be to use only subjects whose diagnosis is confirmed by autopsy; but these are only

available in much smaller numbers than those diagnosed in the clinic. An alternative method to

estimate the effects of mislabelled data is to use some other classification for which the ground

truth is readily available, such as sex, and perform experiments by deliberately changing the

labels of some subjects [Young et al., 2013a].

Another problem is that labels for MCI-s and MCI-c subjects are also affected by limited
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follow-up time; many subjects deemed as stable may in fact convert after a study has finished.

For a study examining conversion, this is not a problem when assessing the accuracy on the test

set as it is generally limited to subjects who do or do not convert within a fixed length of time,

but may well mean that a training set consisting of MCI-s and MCI-c subjects is suboptimal.

For this reason, MCI-s and MCI-c labels are not used in [Aksu et al., 2011]. Pointing out

that training labels for MCI-s and MCI-c are uncertain, they go on to generate their own MCI

training labels by following the classification of MCI subjects by an HC versus AD classifier

across multiple timepoints. However even this neglects the uncertainty in the HC and AD labels

that this scheme ultimately depends on. BrainAge [Gaser et al., 2013] switches the problem to

one of regression, with a model being built to predict the chronological age of a large cohort of

healthy subjects. This model is then applied to AD and MCI subjects, with the BrainAge defined

as the difference between chronological and predicted age. This can then be thresholded to

classify subjects into groups such as healthy and AD, or MCI-s and MCI-c with high accuracy.

Our proposed method follows [Gaser et al., 2013] in abandoning discrete disease state la-

bels for training altogether. Like them, it involves performing a regression to predict a con-

tinuous proxy for disease status, but instead of age, initially atrophy over a period of one

year as measured by the boundary shift integral (BSI) [Leung et al., 2012] is used. This then

provides a predicted atrophy rate for each test subject. Gaussian process (GP) regression

[Rasmussen and Williams, 2006], with a multiple kernel framework is used to optimally com-

bine MRI, FDG-PET and CSF data. This results in a measure that can predict MCI conversion

within three years with a balanced accuracy of 74.6%, as good as state-of-the-art techniques

having a much larger training set, including our own previous work using multikernel GPs for

classification [Young et al., 2013c]. We refer to this as the BSI experiment, which is previously

published in [Young et al., 2013b].

Encouraged by this, we go on to modify the approach and apply it to a much larger group

of subjects. In this second experiment instead of age, the target variable for regression is cog-

nitive test scores from the mini-mental state examination (MMSE) [Folstein et al., 1975]. This

appears to give better results and is available in a larger number of subjects. This latter point is

also due to incorporating data from the ADNI 2 and ADNI-GO databases as well as the original

ADNI. We find that we can predict conversion within three years with a balanced accuracy rate

of nearly 82% for subjects with FDG-PET scans, and nearly 80% for subjects with structural

MRI scans only. This accuracy is amongst the highest yet seen for this problem. We also show

that it is heavily dependent on the field strength of the subjects’ structural MRI scans, even

if only FDG-PET data was used in the regression problem. This is referred to as the MMSE
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Disease status Number Female Mean age (sd)

HC 28 19 74.1 (4.5)

MCI-s 38 22 75.3 (7.3)

MCI-c 29 18 75.1 (7.4)

AD 34 23 75.1 (6.8)

Table 7.1: Subject groups and demographics for the BSI experiment.

experiment.

7.2 Materials and methods

7.2.1 Subjects

All ADNI subjects are between 55 and 90 years old, speak English or Spanish, and have a study

partner able to provide an independent assessment of functioning. All subjects are willing to

undergo neuroimaging and agree to longitudinal follow up, and a subset are willing to undergo

lumbar punctures. Subjects with specific psychoactive medication are excluded. Inclusion cri-

teria for normal subjects are MMSE scores between 24 and 30, a CDR of 0, non-depressed and

non-demented. Ages are roughly matched to those of AD and MCI subjects. For MCI subjects,

the criteria are an MMSE score between 24 and 30, a memory complaint, objective memory loss

measured by education adjusted scores on the Wechsler Memory Scale Logical Memory II, a

CDR of 0.5, absence of significant levels of impairment in other cognitive domains, essentially

preserved activities of daily living, and an absence of dementia. For AD subjects, the criteria are

an MMSE scores between 20 and 26, CDR of 0.5 or 1.0, and meeting NINCDS/ADRDA crite-

ria for probable AD. Subjects are designated as HC, AD or MCI at the time of the baseline scan,

and for the purposes of this study MCI conversion status is decided by whether subjects who

were MCI at baseline were subsequently diagnosed as AD at any stage during the subsequent

36 month follow-up period.

For the BSI experiment, only subjects from the original ADNI study were used. This

collected baseline structural MRI scans for all subjects. However FDG-PET scanning and col-

lection of CSF data were only done on partially overlapping subsets of these subjects. Fur-

thermore, calculation of BSI requires a 12-month follow-up structural MRI, which were also

missing for some subjects. As our method requires FDG-PET and CSF and a 12-month BSI as

well as structural MRI data, only 129 subjects could be included in the study. The details of

these are shown in table 7.1.

For the MMSE experiment, we also made use of data from the extensions to the original
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Disease status n (n female, n 1.5T) Mean age (SD) Mean MMSE (SD)

Healthy 243 (119, 84) 73.9 (5.9) 29.0 (1.2)

MCI-s 81 (26, 54) 72.0 (7.5) 27.9 (1.6)

MCI-c 91 (37, 57) 72.7 (7.0) 26.9 (1.8)

MCI-other 347 (156, 35) 71.5 (7.4) 28.1 (1.7)

AD 121 (54, 60) 74.7 (7.8) 23.1 (2.0)

Table 7.2: Subject groups and demographics for the PET group in the MMSE experiment.

Disease status n (n female, n 1.5T) Mean age (SD) Mean MMSE (SD)

Healthy 338 (173, 142) 74.4 (5.7) 29.1 (1.1)

MCI-s 133 (46, 84) 72.5 (7.7) 27.8 (1.7)

MCI-c 153 (67, 97) 72.8 (7.3) 26.6 (1.8)

MCI-other 375 (168, 49) 71.8 (7.5) 28.0 (1.8

AD 185 (87, 101) 74.8 (7.8) 23.1 (2.0)

Table 7.3: Subject groups and demographics for the MRI group in the MMSE experiment.

ADNI project, ADNI 2 and ADNI-GO. ADNI 2 aims to recruit an extra 550 subjects, with a

similar proportion of healthy, MCI and AD subjects as the original ADNI. ADNI-GO enables

extended follow-up of nearly 500 of the original ADNI participants, as well as recruiting further

MCI participants. Imaging protocols for both ADNI 2 and ADNI-GO were designed to ensure

compatibility with ADNI data. This mean that the pool of subjects for the MMSE experiment

was much larger. Furthermore, we removed the requirement for the subjects to have CSF data

to use MRI and FDG-PET only, and as we were using MMSE rather than one year BSI as

a regression target, only a small number of subjects for which baseline MMSE scores were

missing had to be excluded. As a result there were a total of 883 subjects. This is referred to as

the PET group, with details given in table 7.2.

We also explored how well MMSE prediction works using MRI data alone, using an even

larger set of 1184 subjects by adding those for which FDG-PET data was not available. This

set of subjects is referred to as the MRI group, with details given in tables 7.3.

Both of these sets contained a mixture of subjects scanned at 1.5T and 3T. Subjects enrolled

in ADNI-GO and ADNI 2 were all scanned at 3T; whereas the majority of ADNI 1 participants

were at 1.5T. As many of the ADNI 2 and GO subjects were recently enrolled at the time of

writing, they had less than 36 months of follow-up. It was not therefore possible to reliably label
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these subjects as MCI-s or MCI-c. Hence they are not included in the MCI subjects for which

accuracy of prediction of conversion is reported. However, unless their corresponding MMSE

score was missing they were included in training the regression model. The same applies to

the small number of MCI subjects that reverted to healthy status during follow-up. Collectively

these subjects are labelled as MCI-other.

7.2.2 MRI data

Images were all T1 weighted structural MRI scans from 1.5T or 3T scanners acquired using the

3D MPRAGE sequence, taken at the baseline time point for each subject. For the subjects in

the BSI group, the 12 month follow up scan was also downloaded and used to calculate the at-

rophy rate. DICOM images were downloaded from the ADNI archive, having been designated

the best of back-to-back scans for each subject, and then post-processed to correct for gradient

warping, B1 non-uniformity and intensity non-uniformity and undergone phantom based scal-

ing correction. Once downloaded, the images were then converted to NIfTI format for further

processing.

7.2.3 MRI image processing

Our MRI features for classification and regression were voxels of whole-brain tissue density

maps. To produce these, we followed a similar procedure to [Klöppel et al., 2008] although

using slightly different software. Also, the groupwise registration procedure was done initially

only for the subjects in the BSI experiment. Once many more subjects’ images had been down-

loaded to make up the group for the MMSE experiment, the groupwise registration procedure

was rerun using all the newly obtained subjects.

The first step was to segment the native space, preprocessed scans to produce a GM den-

sity map. This was done using NiftySeg [Cardoso et al., 2011] for the subjects in the BSI group

and with the ’new segment’ module of SPM12, with the maximum cleanup option set, for all

subjects in the MMSE experiment. A brain mask produced from the original structural image

was then applied to remove any non-brain material. The native space images were also anatom-

ically parcellated into 83 regions with a novel label fusion algorithm [Cardoso et al., 2012] in

a multi-atlas label propagation scheme. The resulting parcellations were used to mask out the

brainstem and cerebellum from the native space GM segmentations.

The groupwise registration was employed to move all the GM images into a common

space. Initially, all T1 weighted images were rigidly registered to a randomly chosen sample,

and then averaged together to produce a new target image. This was then repeated with a single

round of affine registration of all images to the target, which was then followed by ten rounds
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of nonlinear registration, with the updating of the target image also repeated after each round

of registrations. This was all done using tools from NiftyReg [Modat et al., 2010]. After this

procedure was finished, the transformation from each native T1 weighted image to the final

target were applied to the native GM segmentations to resample them into the groupwise space,

using trilinear interpolation to maintain the voxel GM densities in the zero to one range. Finally,

the GM segmentations in the groupwise space were modulated by the Jacobian determinants of

the corresponding final transformations to ensure the total tissue volume remained constant.

The result was all GM segmentations in the groupwise space of the BSI experiment subjects or

MMSE experiment subjects.

7.2.4 PET image data

Images were again all taken from the baseline scan for each included subject. Images were

acquired by scanning 30-60 minutes post injection using scanner-specific protocols. Six five

minute frames were acquired for each subject, and then co-registered and averaged. The average

images were then rigidly registered to a standard space, and the individual native space frames

registered to the standard space average and averaged and intensity normalised in the standard

space. Finally, the average images in the standard space were smoothed with a scanner-specific

kernel (Joshi et al., 2009) to a uniform isotropic resolution of 8mm FWHM, which is approxi-

mately the resolution of the lowest resolution scanners used in ADNI. The postprocessed scans

were downloaded as DICOM images.

7.2.5 PET image processing

As previously mentioned, the PET images had already been through substantial processing

before being downloaded from the ADNI database. Following this, each native PET image

was registered to the corresponding native structural MRI. At this point, the processing used

to generate features from the PET images varied between the BSI and MMSE experiments.

For the BSI experiments, the native space anatomical parcellations were also transferred to

the space of the FDG-PET images for the corresponding subjects. The parcellation was used

to normalise each FDG-PET image by its mean cerebellar activity, and then to calculate the

mean activity within each anatomical region, generating a set of 83 features for each FDG-PET

image. For the MMSE experiment, the PET images were again normalised by the mean activity

within the subject’s cerebellum. However the PET images were then moved into the groupwise

space by again applying the transformations from the native space of each subject to the final

groupwise target image, using the same software. Thus for the MMSE experiment the PET

features comprised voxel level rather than regional level features.
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7.2.6 CSF data

CSF data was only used for subjects in the BSI experiment. CSF samples were obtained from

subjects by a lumbar puncture around the time of their baseline scan. Levels of the proteins

amyloid-β42 (aβ42), tau, and phosphorylated tau were measured and recorded.

7.2.7 Boundary shift integral

The BSI is a method for robustly assessing volume loss of whole brains or brain regions. It

calculates a change in volume by integrating across the longitudinal change in position of the

boundary between CSF and GM surrounding the region of interest. Preprocessing is needed

to extract the region of interest (which in our case is the whole brain) from each image, lin-

early align the baseline and follow-up images, and correct for intensity inhomogeneity between

scans. We use the latest version of BSI [Leung et al., 2012] which uses a symmetric registration

scheme to minimise bias and maximise desirable qualities for an atrophy measurement such as

inverse consistency and transitivity between multiple timepoints.

We normalise the resulting volume changes by the baseline brain volumes and by the actual

interval between baseline and follow-up scans (as the nominal 12 months varies quite widely

in practice), and multiply by 100. This produces a normalised brain atrophy rate (BAR) in

percentage of original brain volume per year for each subject. These are then used as targets

for regression analysis in the BSI experiment. We also experimented with using BSI of the

left hippocampus only as a regression target, but found it produced markedly inferior results,

largely as a result of reducing the size of the training set due to missing data.

7.2.8 MMSE scores

We used the MMSE scores for each subject at baseline as the targets for our regression problem.

MMSE is derived from a questionnaire widely used in screening for dementia and to track cog-

nitive decline, with questions covering a variety of cognitive domains. Scores are given as an

integer score up to a maximum of 30. The scores were obtained along with the corresponding

images from the ADNI database. Additional experiments were performed using both an alter-

native neuropsychological test score, ADAS-Cog, and longitudinal measures based on decline

in MMSE scores from baseline to one and three year follow-up timepoints as alternative targets

for regression. For both of these cases, results were markedly inferior to simply using baseline

MMSE and so are not presented here. In the case of longitudinal MMSE, this is because of a

much smaller training set due to missing follow-up data and increased noise compared to using

baseline MMSE. For baseline ADAS-Cog, the difference is more difficult to explain but possi-

bly it is a noisier measure than MMSE or simply less informative about the underlying disease
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severity.

7.2.9 Gaussian processes

The learning portion of the procedure - both classification and regression - was done using GPs.

These provide a kernelised, Bayesian framework for both these tasks. For a full explanation of

GPs for regression, we refer the reader to [Rasmussen and Williams, 2006] for a much more in

depth treatment.

As in chapter 6, for the subjects in the BSI experiment, we combine the MRI, PET and

CSF data in a multikernel framework to perform multimodal classification and regression. This

means each element of the kernel matrix K is a linear combination of three subkernels repre-

senting the covariance between the MRI, PET and CSF data a pair of subjects, with weights

α. A bias term β is also included in the sum. So in the case of multimodal classification using

information derived from the MRI, PET and CSF data for each subject the overall kernel is

Kij = αMRxMR
i · xMR

j + αPETxPETi · xPETj + αCSFxCSFi · xCSFj + β (7.1)

For a more detailed look at multikernel learning, see section 6.2.9.

7.2.10 Classification and validation in BSI experiment

Predicted BARs for all 129 subjects in the PET experiment were generated regardless of their

disease status. This was done in a leave-one-out (LOO) procedure across the entire set. We then

used the predicted BAR of MCI subjects to classify them as MCI-s or MCI-c by thresholding.

As there was not an a priori reason to threshold at any particular value of the predicted BAR

(unlike probabilistic binary classification, where thresholding at 0.5 may be chosen as a starting

point) we chose the threshold as the value that best balances sensitivity and specificity. This was

done in a second, inner LOO loop nested inside each iteration, to avoid introducing optimistic

bias.

We also compared our method to performing direct binary classification on the conversion

status, again using GPs. There were three different choices of training group here: train on the

MCI-s and MCI-c subjects and labels in an LOO loop, training on AD and control subjects and

applying the resulting classifier to the whole MCI population, and a shared label approach. This

attempted to increase the amount of training data by having one training group comprise both

the control and MCI-s subjects treated as a single class, and another training group comprising

both the AD and MCI-c subjects treated as a separate single class. The shared label approach

was again done inside an LOOCV loop.
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7.2.11 Classification and validation in MMSE experiment

For the regression experiments, predicted MMSE scores were generated for all subjects in a

LOO loop in a manner very similar to that used in the BSI experiment. We report the resulting

balanced accuracy, as well as area under the receiver operating characteristic curve (AUC).

Although this was not the primary focus of our experiments, we also compared predicted to

actual MMSE scores as a measure of how well GP regression modelled the data.

To compare the utility of predicted MMSE scores against the more conventional approach

to predicting conversion, we also again performed GP classification on the same set of subjects

used for the MMSE regression experiment.

To do this, we took the healthy and AD subjects as training data, and then applied the

resulting classifier to the MCI-s and MCI-c subjects. This idea relies on the assumption that

MCI-s subjects are more healthy-like and MCI-c subjects are more AD-like. In our previous

work, we found it produced much better results than training on labelled MCI-s and MCI-c

subjects. It also had the advantage of not requiring cross-validation as the training and testing

subjects were drawn from different populations. Again we report balanced accuracies (gener-

ated with the same LOO thresholding method used with the predicted MMSE scores, applied

to the predicted class membership probabilities) and AUC, as well as accuracy, sensitivity and

specificity obtained by thresholding at 0.5. Finally, we assess the significance of differences in

classification accuracy for the two methods using McNemar’s test [McNemar, 1947].

7.3 Results for BSI experiment

The correlation coefficient between predicted and measured BARs for the subjects is 0.38 (p

< 0.0001) and the root mean squared error is 0.61. However our primary focus is not on the

predicted brain atrophy rates themselves, but on whether they can be used to predict conversion

in MCI subjects. Figures 7.1 and 7.2 show the spread of both measured and predicted BAR

values for all four disease groups (HC, MCI-s, MCI-c, AD).

As shown in figures 7.1 and 7.2, while the mean predicted BARs for each group are

similar to the corresponding means for measured BARs, each clinical group occupies a much

tighter cluster of values, even allowing for a few outliers (marked as a +). This results in

reduced overlap between the clinical groups, which is especially noticeable between the MCI-s

and MCI-c groups. To test this, we classify the MCI-s and MCI-c subjects by finding a threshold

in predicted BAR that best balances sensitivity and specificity. A nested leave-one-out scheme

is used to avoid introducing optimistic bias. The resulting accuracy is 74.6%, which is similar

to the best previously reported results. The balanced accuracy and area under the ROC curve
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Figure 7.1: Measured BAR across groups
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Figure 7.2: Predicted BAR across groups

(AUC) are shown in table 7.4. This also shows results for single modalities, demonstrating the

benefit of combining sources of data with multikernel learning.

To illustrate the advantage of our method of atrophy prediction, we also compare it to

performing direct binary classification on the conversion status again using GPs. This can be

done by training on the MCI subjects only in an LOOCV loop, by training on all subjects, again

with an LOOCV loop and grouping HC subjects with MCI-s and MCI-c subjects with AD, and

finally by training on the HC and AD subjects, and testing on the MCI subjects. The results are

given in table 7.5.

Table 7.4: Accuracy of discrimination be-

tween MCI-s and MCI-c with predicted

brain atrophy rate

Modalities Accuracy (%) AUC

MRI 59.7 0.595

PET 73.1 0.777

CSF 52.2 0.545

MRI, PET 67.2 0.743

MRI, CSF 58.2 0.602

PET, CSF 65.7 0.726

MRI, PET, CSF 74.6 0.725

Table 7.5: Accuracy of discrimination be-

tween MCI-s and MCI-c with training on

binary diagnostic class labels

Training Accuracy (%) AUC

MCI (CV) 40.3 0.401

HC, MCI, AD (CV) 52.2 0.569

HC, AD 55.2 0.661
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7.4 Results for MMSE experiment
Results comparing predicted MMSE to binary classification for both FDG-PET and MRI data

in the PET group are given below in table 7.6.

Data Method acc(%) sens(%) spec(%) bal acc(%) AUC p

MRI pMMSE N/a N/a N/a 67.4 0.735 0.737

MRI classification 58.7 34.1 86.4 66.3 0.714

FDG-PET pMMSE N/a N/a N/a 72.7 0.786 0.814

FDG-PET classification 71.5 55.0 90.1 71.5 0.788

Table 7.6: Accuracies for predicting conversion to AD in MCI subjects in the MMSE experi-

ment. Method = classification paradigm (predicted MMSE or binary classification), acc, sens,

spec = accuracy, sensitivity, specificity of thresholding probabilistic binary classification re-

sults at 0.5, bal acc = accuracy at best balance of sensitivity and specificity, p = significance of

difference in balanced accuracy between different methods for the same data.

As can be seen, the predicted MMSE method outperforms binary classification using both

types of data, although we are unable to show that the small advantage is statistically significant.

To explore the limits of classification accuracy using MRI data only, we also report the results

for the larger MRI group in table 7.7.

Method acc(%) sens(%) 0.5 spec bal acc(%) AUC p-value

pMMSE N/a N/a N/a 68.9 0.761 0.712

classification 65.4 48.4 85.0 68.6 0.743

Table 7.7: Accuracies for predicting conversion to AD in MCI subjects in the MMSE experi-

ment. Method = classification paradigm (predicted MMSE or binary classification), acc, sens,

spec= accuracy, sensitivity, specificity of thresholding probabilistic binary classification results

at 0.5, bal acc = accuracy at best balance of sensitivity and specificity, p-value = significance of

difference in balanced accuracy between different methods.

7.4.1 Effect of MRI field strength on results

As previously stated, the subjects’ structural MRI scans were performed on a mixture of 1.5T

and 3T scanners. To see if this variable has an effect on classification accuracy, we break down

the results for the predicted MMSE method by magnetic field strength, as shown in table 7.8.

The results are produced by taking the previously presented predicted MMSE scores and split-

ting them into two groups based on the relevant field strength, and then doing the LOO thresh-
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olding procedure independently on each group of scores. The results are therefore produced

with a training set consisting of all subjects regardless of field strength.

Group Data bal acc - all(%) bal acc - 1.5T(%) balanced acc - 3T (%)

PET FDG-PET 72.7 64.9 82.0

PET MRI 67.4 65.7 80.3

MRI MRI 68.9 65.2 75.2

Table 7.8: Breakdown of accuracy of predicted MMSE in MCI conversion by MRI field strength

7.4.2 Accuracy of MMSE predictions

The primary purpose of this study was to examine the utility of predicted MMSE scores in fore-

casting conversion from MCI to AD. The accurate prediction of MMSE scores in individuals

was considered secondary and, in fact, completely accurate prediction of MMSE scores would

be undesirable for reasons that are explained in the discussion section. Nevertheless, we do

assess the ability of our regression model to predict MMSE scores, for the same three groups

and types of data as for the prediction of conversion to AD. Results are calculated and presented

for all subjects in each group regardless of diagnostic status, rather than for MCI-s and MCI-c

subjects only, as was done previously. We report the correlation coefficient r and root mean

square error (RMSE) in table 7.9, and present the results as scatter plots in 7.3.

Group Data r RMSE

PET FDG-PET 0.605 1.97

PET MRI 0.596 1.99

MRI MRI 0.574 2.1

Table 7.9: accuracy of predicted MMSE compared to ground truth in, for MRI data in the MRI

group, and for PET and MRI data in the PET group.

7.5 Discussion

The results for the BSI experiment show a clear advantage for our method of training on a

well-characterised proxy for MCI conversion, rather than the diagnostic status itself. Training

on BAR enables us to reach accuracies of up to 74.6%, whereas training on diagnostic labels

struggles to perform better than chance. It therefore appears that the use of BAR bypasses the

problems caused by binary diagnostic labels. This makes better use of data as subjects can be

used for training regardless of diagnostic label, and as parameters are learned automatically
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there is no need to set subjects aside for tuning. We also show an advantage for multimodal

regression. Although direct comparisons between methods are difficult [Young et al., 2013c],

the resulting accuracy in forecasting MCI conversion is competitive with the best yet achieved.

Despite this we were motivated to perform the BSI experiments, different in detail but in-

spired by the same idea, for two reasons. Firstly, the BSI experiment was with a relatively small

number of subjects, especially considering MRI, FDG-PET and CSF data were necessary to get

the best results (although FDG-PET alone does almost as well). In particular, the binary classi-

fication done for the purposes of comparison gave surprisingly poor results when compared to

a previous experiment using very similar data. We hypothesised that this was due to the small

training set and wanted to determine whether continuous proxy methods would maintain such

a large advantage over binary classification with a much larger number of subjects.

The second reason was to see whether a more convenient proxy for conversion than BSI

could be used. Although the BSI gave good results, it has the limitation of requiring a follow-

up image, which makes an alternative where baseline data only is needed attractive (although it

is worth emphasising that, while 12 month follow-up scans are also required to calculate BSI

values for training data, they are not needed for testing data). This also allows us to increase the

training set size even further, as MMSE scores at baseline were available for almost all subjects.

The utility of BSI as a proxy was spoilt by the fact it was often not listed even for subjects where

a follow-up image from the right time was available, and that where it was available, slightly

different BSI methods were used on different subjects, meaning the measured BSI values used

for training lacked consistency.

The use of MMSE as a target for regression raises the question of why it is necessary

at all to do imaging and learning - might measured MMSE itself be able to distinguish MCI-

s and MCI-c subjects at baseline? Unfortunately, as for measured BSI, this is not the case.

Calculating the balanced accuracy of measured MMSE for discriminating MCI-s and MCI-c

subjects in the PET group gives a figure of just 61.5%, compared to the 67.4% and 72.7%

for predicted MMSE depending on which type of image data was used. The reason for this

is obvious in the diagrams of figures. These show the box plots of measured MMSE scores

and both sets of predicted MMSE scores for the subjects in the PET group, broken down by

diagnostic group. The ’MCI-other’ group contains all baseline MCI subjects that could not

be definitely labelled as MCI-s or MCI-c as they lacked sufficient follow-up information or

reverted to normal cognition.

The effect of learning to predict MMSE score is very similar to that of learning to predict

BAR as shown in figure 7.1 and figure 7.2. As can be seen from figure 7.6, there is a
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Figure 7.6: Measured and predicted MMSE across clinical groups in the PET group. (a) is

measured MMSE, (b) is predicted MMSE from MRI data, (c) is predicted MMSE from FDG-

PET data

great deal of overlap between the MCI-s and MCI-c groups in measured MMSE score, which

is reflected in its poor classification accuracy. This is the reason why accurately predicting

the measured MMSE is undesirable for us in this work. The effect of using predicted rather

than measured MMSE is to move all diagnostic groups towards the mean MMSE, but also to

tighten the distribution within each diagnostic group. As can be seen, this reduces the overlap

between the MCI-s and MCI-c groups, enabling them to be distinguished with greater accuracy.

Furthermore, this overlap is smaller in the predictions based on FDG-PET data than those based

on MRI data (figure 7.6), reflecting the greater predictive accuracy of FDG-PET data we have

already seen. Interestingly, the reverse effect is seen in discrimination between healthy and

AD subjects. There is very little overlap between these groups in measured MMSE (largely

because MMSE score is one factor used to make the diagnosis) and the movement towards the

mean produced by using predicted MMSE scores actually increases the overlap between the

two groups.

So, if it does not work by accurately predicting actual cognitive test scores, how does

predicted MMSE predict conversion so well? The actual MMSE scores can be seen as coming

from a latent variable - some underlying, true disease severity - plus a large level of noise due to

individual variability. Fitting a regression model to the MMSE scores may act to partly remove

this noise, producing a measure that much more closely reflects the subjects’ actual level of

cognitive decline. Very similar arguments apply to predicted BAR.

It is therefore unsurprising that either measure would correlate strongly with conversion

to AD in MCI subjects. This is still, however, a rather oblique approach compared to binary

classification. It does hold some advantages over binary classification as well. The modelling

of a continuous measure respects the notion of all subjects being on a spectrum of cognitive
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decline. Labels based on diagnosis do not do this - for example, two subjects may be correctly

diagnosed as having AD, but with one case much more severe than the other. Diagnostic labels

may also be quite unreliable [Beach et al., 2012]. Finally binary classification methods can use

either AD and healthy subjects for training, or MCI subjects. But in either case, only about

half the subjects can be used for training. Moving to a regression approach means all subjects

except a few with missing target variables can be used for training, although this can also apply

to some methods using discrete groups such as ordinal regression [Doyle et al., 2013].

We also notice that there is a very large difference in accuracy in predicting conversion

between those subjects whose MRI was obtained from a 1.5T scanner and those from a 3T

scanner. It is unsurprising that this has some effect, but the magnitude of the resulting difference

is surprising: almost 15 percentage points when using MRI data, and more than 17 percentage

points when FDG-PET is used. This is most likely due to poorer registration in subjects scanned

at the lower field strength. As using PET data introduces a further registration for each subject

to the pipeline, between the native PET and native MRI, this could explain why the effect is

even stronger in PET data. Although the effects of variation due to different scanners at ADNI

centres on classification accuracy has been examined [Abdulkadir et al., 2011], little attention

has been paid to this particular variable, probably because significant numbers of 3T scans have

only entered the database in large numbers recently.

7.6 Conclusion
This chapter has shown that, while traditional classification techniques reliant on discrete la-

belled groups can obtain high accuracy for predicting conversion to AD, even higher accuracies

can be obtained from a simple regression approach using only one type of image data and a

well-chosen continuous proxy. In this way, we can predict conversion to AD within three years

in MCI subjects with up to 82% accuracy using PET data, or 80% accuracy using MRI data.

These accuracies are, we believe, among the highest yet reported for this well-studied and very

clinically important problem (although fair comparison between results is difficult). It is impor-

tant to note that these results were only obtained for test subjects scanned at 3T, irrespective of

whether MRI or FDG-PET data was used. Future plans include studying of the effect of scanner

field more rigorously, as it appears to have such strong effects. Additionally the work presented

here could be extended, by looking at using target variables other than MMSE, such as rate

of change of cognitive scores, and to incorporate multiple targets in a multi-task regression to

further improve results.
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Chapter 8

Anatomical regional kernels

8.1 Introduction

This chapter introduces a new way to define features derived from brain images that can im-

prove classification accuracy. For Alzheimer’s disease (AD), grey matter (GM) density maps

obtained from structural MRI images are typically used as data in the classification. However

the actual features derived from the image can take two forms: at the the level of the MRI voxel

[Klöppel et al., 2008], or as summaries of all GM voxels within different anatomical regions.

The regions can be defined by an atlas [Zhang et al., 2011] or can themselves be generated from

voxel level data [Fan et al., 2007]. There is a trade-off between these methods. Regional level

features reduce the data dimensionality and can introduce prior information relevant to the clas-

sification problem, but also eliminate fine detail that may be informative about disease state.

Voxel level data can introduce noise by including uninformative brain regions and results in

a very high dimensional problem. The different feature extraction methods are compared and

discussed in depth in [Cuingnet et al., 2010].

The proposed method combines the strengths of these two approaches. It uses both voxel

level features and atlas derived regions, and automatically gives less weight to voxels within

less relevant regions. This is done using multiple kernel learning (MKL) as introduced in a

previous chapter ( 6.1). This is usually applied to combine data derived from different imaging

modalities [Young et al., 2013c, Zhang et al., 2011] or kernel functions [Hinrichs et al., 2011].

Conversely, in the approach presented here each kernel represents the voxel level data within

a different anatomical region to produce anatomical regional kernels (ARKs). This takes a

similar approach to [Chu et al., 2010], and [Liu et al., 2013] used a related nested region ap-

proach. Although the work was developed from our previous use of MKL, and is presented

as a specific case of MKL, it is related to other families of methods. Specifically, it can be

seen as a way to incorporate explicit spatial regularisation into the classifier. A number of
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other methods have been developed to do this specifically for three dimensional medical im-

age data. Spatial smoothness and sparsity can be enforced with a joint `1 and total variation

penalty [Gramfort et al., 2013]. Alternative a smoothness penalty is derived from the image

voxel neighbourhood structure, which can be built into a kernel function for use with an SVM

or other kernel method [Cuingnet et al., 2013] or used directly as a term in the objective func-

tion [Sabuncu and Leemput, 2012].

Our method and [Sabuncu and Leemput, 2012] can also both be interpreted as a variant

of automatic relevance determination (ARD) [Neal, 1996, Rasmussen and Williams, 2006], a

Bayesian method of automatic feature selection. Our method, however, operates at the regional

level in the kernel space, rather than at the voxel level in the input space. This is enabled by

the existence of a brain atlas in a custom groupwise template. Sections 8.3.4 and 8.4.1 explain

how this was achieved, and how MKL is performed within a GP framework.

The method is applied to a large population of AD, MCI and control subjects from the

ADNI study. In terms of classification accuracy, for classification of AD and control subjects

our method outperforms a single kernel with voxel level features by a large margin, and a single

kernel with regional features by a smaller amount. It also outperforms both voxel level and

regional level features for prediction of conversion in MCI subjects.

We also introduce two new methods to assess the quality of a classifier that exploits the

probabilistic predictions made by GPs. Finally, we show that the optimal kernel weights in the

MKL formulation are informative about which regions are affected by AD.

8.2 Image and biomarker data

All data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database1. The MRI images were T1 weighted structural scans from a mixture of 1.5T and 3T

scanners. All were subjected to quality control and automatically corrected for spatial distortion

caused by gradient nonlinearity and B1 field inhomogeneity and downloaded from the ADNI

database. Subjects were classified as healthy control (HC), AD or mild cognitive impairment

by neuropsychological and clinical testing at the time of the baseline scan, and only HC and

AD subjects were used. For the classification experiments, a further quality control step was

taken which removed 16 subjects with registration errors, leaving a final total of 627 AD and

control subjects plus 346 MCI-s and MCI-c subjects. Their demographics are given in table 1.

1http://adni.loni.ucla.edu/

http://adni.loni.ucla.edu/
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Table 8.1: Subject groups and demographics

Disease status n 1.5T F Mean age (sd)

HC 376 162 192 74.8 (5.8)

MCI-s 163 109 56 72.5 (7.7)

MCI-c 183 120 78 72.8 (7.3)

AD 251 140 114 75.3 (7.8)

Table 8.2: Demographics of subjects for ARK experiments. n is total number of subjects in

the group, 1.5T is the number of subjects in the group whose MRI scan was at 1.5T, F is the

number of females in the group. sd is the standard deviation of ages in the group

8.3 Image processing

8.3.1 Groupwise registration

As the method defines features at the voxel level, it was necessary to transfer images into a

common space. This was done using the same procedure described in section 7.2.3: all native

space images were rigidly and then affinely registered to a randomly chosen image, coalescing

the registered images to update the template after each round of registrations. This was then

followed by ten rounds of nonrigid registration to produce a final template in the groupwise

space. All registrations were performed using the NiftyReg package [Modat et al., 2010].

8.3.2 Image segmentation

All images were segmented into GM, WM, CSF, and non-brain tissues components using the

new segment module of SPM12 with the cleanup option set to maximum. A brain mask gen-

erated from the original structural image was then applied to the GM segmentations to further

exclude any non-brain material.

8.3.3 Image parcellation

The native space images were also anatomically parcellated into 83 regions. This was done with

a novel label fusion algorithm [Cardoso et al., 2012] in a multi-atlas label propagation scheme.

A library of 30 atlases manually labelled with 83 anatomical regions was used as a basis for the

parcellation [Gousias et al., 2008].

8.3.4 Atlas construction

Unlike in other approaches using anatomical regions, features were defined at the level of the

voxel rather than regions, requiring that all images share a common space. As kernels were

constructed from the voxels within anatomical regions common across subjects, the parcella-

tion defining the region was also required to be in the common space. However, our initial
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Figure 8.1: Pipeline for constructing atlas in groupwise space

parcellations were in the native spaces of each subject. To combine these initial parcellations in

the groupwise space, the following procedure was used. First, all the parcellations were warped

into the groupwise space, using the parameters from the native space of each image to the final

groupwise template. Care was taken to preserve the integer labels in the parcellations during

resampling. Finally to combine the individual parcellations, a consensus atlas was produced by

majority voting among the set of N parcellations X to assign a single label l to each voxel vi

of the groupwise space Ω:

vi, i ∈ Ω = arg max
l

N∑
j=1


1, if Xi,j = l

0, otherwise
(8.1)

The pipeline to construct the atlas is summarised graphically in 8.1.

8.4 Gaussian process classification
Gaussian processes (GPs) provide a Bayesian, kernelised framework for solving both

regression and classification problems. We refer the reader to previous chapters or

[Rasmussen and Williams, 2006] for a more detailed treatment. Briefly, however, a GP (es-

sentially a multivariate Gaussian) forms the prior on the value of a latent function f . For binary

classification, the value of the latent function is linked to class membership probability by a

sigmoidal function. The GP is parameterised by a mean function m(x) and a covariance kernel

function k(x,x′).

p(f(x), f(x′)) ∼ N (m,K) ,where m =

m(x)

m(x′)

 , K =

k(x,x) k(x,x′)

k(x′,x) kx′,x′)

 (8.2)
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8.4.1 Gaussian processes as multimodal kernel methods

As equation 8.2 implies, GP classification belongs to the family of kernel methods. Hence

a positive sum of valid kernels is a valid kernel, and a valid kernel multiplied by a positive

scalar is also a valid kernel. The covariance between the ith and jth subject, Kij , is a kernel

function k of the feature vectors for the ith and jth subject xi and xj and hyperparameters θ.

For ARKs, the final kernelKij is the weighted sum of 83 linear subkernels, each of which is the

dot product between the voxels within a particular anatomical region of the ith and jth image.

These regions are defined using masks for each label derived from the groupwise atlas. The

covariance hyperparameters are the weights of the subkernels α and bias term β, so the final

kernel value Kij is given by

Kij = k(xi,xj) = β +

83∑
r=1

αr(xi,r · xj,r) (8.3)

where r indexes regions 1 to 83 and β is a bias term. There are thus 84 covariance hyper-

parameters: θcov = (α1, α2, ..., α83, β). All the above calculations are carried out within the

GPML toolkit 2, which was modified to take precomputed kernel matrices.

8.5 Results
To generate classification results for the HC and AD subjects, we perform a leave-one-out cross

validation (LOOCV) across the entire set of 627 subjects. For the purposes of comparison to

existing methods, we also deploy two more conventional methods related to those introduced:

using voxel level data for the whole brain, and generating a feature per region, by dividing the

total volume of GM by the total intracranial volume to create a normalised amount of GM. Both

of these methods are then used with a single kernel linear GP formulation. These are referred

to as ’voxels’ and ’regions’ respectively.

The experimental framework for classifying the MCI subjects as MCI-s or MCI-c is a little

different. As we perform transfer learning, by training a classifier on AD and control subjects

and then applying it to the MCI-s and MCI-c ones, no cross validation is necessary as the

training and test sets are already disjoint.

8.5.1 Binary accuracy

We compare the three methods by thresholding predicted probabilities at 0.5 and comparing to

ground truth labels for HC or AD status. The resulting sensitivity, specificity and accuracy are

shown in table 2. We also show the area under the ROC curve (AUC), and a p-value for differ-

ence in accuracy with McNemar’s test. The ARK formulation displays a greater accuracy and
2http://www.gaussianprocess.org/gpml/code/matlab/doc/

http://www.gaussianprocess.org/gpml/code/matlab/doc/
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Method sens (%) spec (%) acc (%) p vs ARK for acc AUC IS (bits)

ARK 80.9 92.6 87.9 - 0.937 0.528

voxels 73.7 93.9 85.8 0.166 0.914 0.395

regions 80.1 91.0 86.6 0.409 0.9275 0.486

Table 8.3: Accuracy of classification between control and AD subjects with ARK, voxels and

regions methods. IS = information score. (section 8.5.2)

Method sens(%) spec(%) bal acc(%) p vs ARK for bal acc AUC IS (bits)

ARK 67.8 70.6 68.5 - 0.741 -0.069

voxels 57.9 75.5 66.7 0.374 0.740 0.105

regions 68.9 63.8 66.7 0.555 0.732 -0.071

Table 8.4: Accuracy of classification between MCI-s and MCI-c subjects with ARK, voxels and

regions methods. IS = information score. (section 8.5.2)

AUC than both competing methods. While the advantage over the voxels method is substantial,

we do not have enough subjects, and thus statistical power, to show that it or the smaller advan-

tage over regions is statistically significant. We can, however, exploit the probabilistic nature

of GP classification predictions to show the superior performance of ARKs with other forms of

validation.

For classifying MCI-c versus MCI-s, we show the same information, plus balanced accu-

racy.

8.5.2 Information scoring

The outputs of GP classification are probabilities of a test subject belonging to a particular class

(AD, in our case). We can therefore calculate the test log predictive probability (log2 p(y
′ |

(~x′, ~X, θ)) and average this across all test subjects. We then subtract this from the mean log

probabilities of a baseline method which does not use the data, but instead simply estimates

the class membership probabilities from the prevalences in the training subjects. This tells us

how much information, in bits, the classifier was able to extract from the data about the identity

of the test subjects [Rasmussen and Williams, 2006]. For perfectly accurate classification with

100% confidence this would be equal to one. Results are also shown in table 8.3 for the HC vs

AD classification and table 8.4 for classification of MCI subjects.

As table 8.4 shows, the information scores (IS) can be negative even in cases where accu-

racy appears high. This is because the score is heavily affected by the more extreme predictions
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(that is, probabilities close to one or zero) meaning the score can be negative even if most pre-

dictions are correct, if the minority of incorrect ones tend to be extreme. We show a way to

visualise the spread of individual predictions in the next section.

8.5.3 Individual predictions

We can also visualise the effects of different methods on individuals for the whole set. Figures

8.2 and 8.3 show the difference in predicted p(AD) for all subjects between ARKs and both

competing methods. Results are colour-coded so AD subjects are shown in red and NC ones

in blue, and sorted by the value of the p(AD) for the competing method. Hence blue (NC)

subjects will be represented by a line extending left from the baseline, and red (AD) subjects

by a line extending right, if ARKs improve the baseline classification. The plots also show how

most subjects are correctly classified: the AD subjects mostly occupied the right hand side of

the plots (p(AD) > 0.5) and the NC ones the left side of the plots. We can also summarise

the differences between individual predictions by again using the information score, using the

voxels or regions as a baseline rather than training label prevalences. This gives an advantage

for ARK of 0.045 bits over voxels and 0.133 bits over regions.

Figure 8.2: Differences between individual pre-

dictions of AD versus control status by the ARK

and voxel methods

Figure 8.3: Differences between individual pre-

dictions of AD versus control status by the ARK

and regions methods

The same visualisation can be done for the effects of ARK features on the voxels and

regions methods for classifying MCI-s vs MCI-c, as is shown in figures 8.4 and 8.5

These plots reveal why the IS can be so misleading. The ARK formulation has a ten-

dency to make predictions more confident as it allows the classifier greater flexibility to fit the

training data than either the voxels or regions method, due to having a much larger number of

hyperparameters. This results in improved classification overall; however a number of subjects

with predictions that are fairly moderate (close to 0.5) are made into very confident, incorrect
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Figure 8.4: Differences between individual pre-

dictions of MCI conversion by the ARK and

voxel methods

Figure 8.5: Differences between individual pre-

dictions of MCI conversion by the ARK and re-

gions methods

predictions. These are not numerous enough to prevent the accuracy of predictions improving

in a binary sense, but do nevertheless affect the IS disproportionately.

8.5.4 Effects of scanner field strength

As we showed in a previous chapter (section 7.4.1), the field strength used to acquire the sub-

jects’ structural MRI scans has a strong effect on the accuracy of predictions based on the

resulting MRI data, or even on PET data for the same subjects if a structural MRI is necessary

to process it. Here we split the MCI-s and MCI-c subjects by the field strength at which they

were scanned. For both groups (1.5T and 3T) we present the specificity, sensitivity and accu-

racy by thresholding at 0.5. We also calculate a balanced accuracy in the usual LOO fashion

separately for each group. The results are shown in table 8.5. As can be seen, the subjects

scanned at 3T have a slightly higher accuracy. More surprisingly perhaps, the balanced accura-

cies for both groups when calculated separately are both better than the balanced accuracy for

the pooled group. This is likely because the distributions of predicted probabilities are different

for the different field strengths, which results in suboptimal selection of a threshold when the

predictions for subjects with the two field strengths are pooled. It should be emphasised that

these results were generated by training on all subjects; the splitting by field strength was done

after all predictions were computed.

8.6 Discussion
ARKs enable improved classification by combining the strengths of low level (voxel) and high

level (regional) features. This results in a classifier that has more flexibility than either voxels or

regions do alone. As a result, ARK classification is able to fit the training data better than either;
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Field strength sens(%) spec(%) acc(%) bal acc(%) AUC

All 67.8 70.6 69.1 68.5 0.741

1.5T 70.0 66.1 68.1 68.6 0.710

3T 63.5 79.6 70.1 72.7 0.788

Table 8.5: Results for ARK classification of MCI-s and MCI-c, broken down by MRI scan field

strength

Figure 8.6: Spectrum of regional weights in AD/HC classification. The weights are sparse, with

the vast majority of the total weight shared among just a small minority of the regions.

however, the introduction of prior anatomical information means that the hyperparameters are

maintained at biologically plausible values which prevents the extra flexibility resulting in too

much overfitting.

8.6.1 Interpretation of hyperparameters

The optimised weights α tell us about the importance of the corresponding regions in the clas-

sification, and hence in AD. For each of the 627 sets of α, we normalise α so they represent a

fraction of the total weight, then average each normalised weight across all folds. The spectrum

of weights is shown in figure 8.6.

This shows that the weights are fairly sparse, with only 14 regions having weights of more

than 1% of the total.

These are shown in figure 8.7. They include temporal lobe regions frequently implicated

in AD in studies such as [Braak and Braak, 1995], as well as the GM tissue adjacent to the

temporal horn of the left lateral ventricle, which will be very sensitive to expansion of the horn.

However, other structures much more widely distributed across the brain are also shown to be
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Figure 8.7: Maps of regions with more than 1% of total weight

important in the classification. For example, the largest weight value is given to the right nucleus

accumbens, and the left nucleus accumbens and right caudate are also given large weights.

This may reflect atrophy due to AD in deep as well as cortical grey matter, as is suggested in

[de Jong et al., 2008, Madsen et al., 2010]. One possible alternative explanation is that there

may be a number of patients who have dementia due to a cause other than AD, which causes

atrophy in a different set of brain regions. It is also possible that the unexpected results may be

caused by registration and/or segmentation errors, meaning a small number of highly weighted

voxels are assigned to the wrong anatomical region and therefore give it a larger weighting than

it would otherwise have.

8.7 Conclusion

Our results show that ARKs successfully combine voxel level data with prior anatomical knowl-

edge, and may offer an accuracy improvement compared to voxel level data alone. The approach

also suggests an improvement over features based on predefined regions, although for classi-

fication of healthy controls and AD patients this is a smaller advantage than for voxel data.

We are also able to visualise both the improvements ARKs bring to individual subjects, and

the final weights on the kernels. This may be able to reveal new regions that were previously

thought not to be involved in AD. It is interesting to note that the resulting pattern of weights is

sparse. This arises naturally from the way the problem is formulated with automatic relevance

determination.

The method is quite general, and could be applied both to other imaging modalities, such as

PET data, or to other features derived from MRI. All that is required is that low level features,

such as voxels, are grouped into regions and can all be transferred into a common space to

provide correspondence. This could be, for example, vertexwise cortical thickness data and a

labelled cortical atlas.

The chief disadvantage of ARKs is speed of classifier training, due to the high dimension-
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ality of the data and the large number of hyperparameters; however this is largely compensated

for by the use of modified software that uses precomputed (sub)kernel matrices.
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Chapter 9

Conclusions

9.1 Overall conclusions
The work presented in this thesis has significantly advanced the state-of-the art for the problem

of predicting progression to AD in MCI subjects. Using the largest cohort of MCI-s and MCI-c

subjects available to us, the MRI group in chapters 7 and 8, we have obtained the following

balanced accuracies, given in table 9.1.

We report the accuracy for MRI data only here as it is the most widely used imaging

modality in dementia, and also the least invasive. However we find that by combining MRI

ARK data with ApoE genotype (with can be obtained noninvasively, in comparison with FDG-

PET and CSF) we can increase the balanced accuracy still further to 71.7% overall.

It is clear, however, that FDG-PET data does offer superior accuracy to MRI. In every

experiment where the same method was applied to the same set of subjects with both PET and

MRI, PET always outperforms MRI alone. The best balanced accuracy we obtained with the

largest possible subset of MCI subjects – again, the PET group from the MMSE experiments

in chapter 7 – gave a balanced accuracy of 75%. Among the PET subjects whose MRI was

Method Field strength Bal acc(%) AUC

ARK 1.5T 68.6 0.710

ARK 3T 72.6 0.788

ARK all 68.5 0.741

MMSE 1.5T 65.2 0.734

MMSE 3T 0.752 0.811

MMSE all 68.9 0.761

Table 9.1: Best overall classification with MRI data only. Balanced accuracies for 1.5T or 3T

subjects obtained from leave-one-out loop over those subjects only; training was on all subjects.
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from a 3T scanner this accuracy rises to 83%, which is the highest yet reported for predicting

conversion within three years. However, for the PET subjects whose MRI scan was at 1.5T

the accuracy is much lower, suggesting that the scanner field strength affects the processing

of PET data even more than it does the MRI itself. This is possibly because processing PET

data requires an additional registration step compared to MRI data. This suggests that it may be

desirable for the decision about which method should be used to predict conversion to AD in any

particular MCI subject to depend on the image quality of the subject’s structural MRI. Scanning

at 3T if at all possible is desirable, as it will enable prediction of conversion to AD within three

years with 75% accuracy if only the MRI is available, and 83% accuracy if FDG-PET is also

available.

In the small groups of subjects described in chapter 6 and for the BSI experiment in chapter

7, multimodal prediction using both MRI and FDG-PET was found to give slightly better results

than FDG-PET alone. However, when the FDG-PET image processing pipeline was improved,

enabling us to use voxel level rather than region level PET features, the advantage of multimodal

classification all but disappeared, as shown in table 9.2. The highest accuracy of just over

83% is obtained from PET data only for subjects scanned at 3T, which is not improved by

adding MRI data. For subjects scanned at 1.5T, however, adding MRI data does give a very

modest improvement. This suggests that multimodal classification may strengthen data that are

suboptimal, but if any single modality is very strongly predictive in its own right then combining

with other data does not offer any statistically significant improvement. Interestingly, we also

found that the best results for subjects scanned at 1.5T or for all subjects together were obtained

by training on all subjects, whereas for subjects scanned at 3T the best accuracy came from

training only on 3T subjects despite the resulting smaller size of the training set. This is the

way the results in table 9.2 were obtained for the 1.5T subjects and all subjects, and for the 3T

subjects respectively.

The experiment with continuous proxies, as described in chapter 7, offered slightly higher

classification accuracies than the conventional approach involving binary labels if only MRI

data is available. Again, however, the advantage appears to be smaller when the number of

subjects is larger (unsurprisingly, as the continuous proxy approach makes more efficient use

of the data) so in the limit there may be little to choose between the two approaches. It is,

however, clear that in the case of binary labels the transfer learning approach of training on AD

and healthy subjects, and then applying the resulting classifier to a population of MCI-s and

MCI-c subjects, is more effective than training directly on the MCI subjects.
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Modality/modalities Field strength Bal acc(%) AUC

PET 1.5T 68.38 0.757

PET 3T 83.08 0.867

PET all 74.13 0.796

PET+MRI 1.5T 69.12 0.750

PET+MRI 3T 83.08 0.882

PET+MRI all 73.13 0.794

Table 9.2: Best overall classification with voxel-level PET data only and voxel level PET and

MRI data combined with MKL.

9.2 Future research

There are a number of different avenues in which the work presented in this thesis could be

extended. As mentioned in the literature review in chapter 4, three primary choices affect

the accuracy of diagnosis and prognosis in studies such as the ones introduced here. The first

and most important is what is referred to in [Sabuncu and Konukoglu, 2014] as the biological

footprint of the condition, which is the magnitude of differences between healthy subjects and

patients. However, this is fixed for any specific condition, which means that to improve the

prediction of development of AD in MCI patients, efforts must instead be focused on the two

other factors affecting accuracy: the choice of classifier or machine learning algorithm, and the

choice of data.

Simply utilising more sophisticated or complex classification algorithms does not appear

to lead to greater accuracy. This is shown experimentally in [Sabuncu and Konukoglu, 2014],

which found that choice of classifier algorithm had a far smaller effect on accuracy than choice

of data or biological footprint size. The same observation can be made for the specific problem

of separating MCI-s and MCI-c subjects with ADNI data, as accuracies (using 1.5T struc-

tural MRI data) appear to have plateaued at around 75% despite a number of researchers

employing newer and more sophisticated types of classifiers such as deep learning methods

[Suk and Shen, 2013]. However, it is possible to improve results by using existing algorithms

in innovative ways to produce novel classification paradigms. This can be done to to make

better use of existing subjects’ data. With binary classification, the training data is normally

made up of one particular group - either MCI-s and MCI-c subjects, or in the transfer learning

setting control and AD subjects. Either way, a large number of potential training subjects are

left unused. However, the unused subjects do contain relevant information and finding a way to

make use of all subjects regardless of their disease status would be very desirable. Using contin-
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uous proxies is one way to do this, and this waste of data was in fact one of the motivations for

introducing them. The continuous proxy approach could itself be improved, by finding better

regression techniques and more relevant proxies. It should also be possible to improve results

by using multiple proxies (such as MMSE, ADAS-COG and BSI) with multi-task learning or

canonical correlation analysis (CCA) [Hotelling, 1936]. This could potentially even be used to

relate multivariate patterns of atrophy to baseline GM maps. However, this is not the only way

to make use of all the data. Ordinal regression retains discrete labels but be able to use all data

regardless of group for training. Initial results for this [Doyle et al., 2014] were unexceptional,

however it remains a conceptually attractive approach. Alternatively, semi-supervised learn-

ing [Chapelle et al., 2010] may prove useful and has already been applied to AD classification

using other techniques [Filipovych and Davatzikos, 2011].

Similarly, we could also make better use of existing data by exploiting multiple timepoints.

While longitudinal features have been widely used on ADNI data, MCI-c subjects are generally

treated as homogeneous when in fact the time of conversion may vary wildly in terms of when

(within the cutoff period) they actually do convert to AD. Survival analysis methods, such as

Cox regression [Cox and Oakes, 1984], are perhaps the best way to model such data, and can

also be used with GP priors [Barrett and Coolen, 2013, Vanhatalo et al., 2013].

Almost all of these methods would likely be improved by using a sparse method for

learning. Sparsity is particularly attractive for AD or MCI classification as it is well known

that the pattern of atrophy in AD is well defined and generally restricted to specific ar-

eas of the brain [Braak and Braak, 1995]. Therefore enforcing a sparse set of weights for

either voxel or region level data should result in a more accurate model as the distribu-

tion of weights is likely to be more biologically plausible and hence more directly reflec-

tive of the underlying disease processes. Furthermore, promotion of sparsity will help to

reduce overfitting which is of particular concern in neuroimaging due to the small num-

ber of subjects and frequently very high dimensionality of the data. A sparse approach

was used in one of the highest performing methods for predicting MCI conversion with-

out use of PET data [Ye et al., 2012]. Off-the-shelf sparse methods such as the elastic net

[Zou and Hastie, 2005] can be applied to neuroimaging data. Alternatively, special methods

combining sparsity and spatial smoothness for neuroimaging data have been successfully devel-

oped [Gramfort et al., 2013, Cuingnet et al., 2013, Sabuncu and Leemput, 2012]. All of these

can be used for direct binary classification or continuous proxy regression, and could also be

adapted for more specialised applications such as time-to-event models as in [Sabuncu, 2013].

An intermediate point between using different learning algorithms and different types
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of image data would be to find superior features from existing data. In particular, we did

not explore the use of cortical thickness measurements in this thesis. Also, scalar momen-

tum features derived from diffeomorphic registrations have been used as features for classi-

fication and regression with some success [Marquand et al., 2013, Singh et al., 2014]. Both

of these have the advantage that they could be used with the ARK framework to further im-

prove results. Other types of feature are based on extracting statistical information from voxel

level data. Hippocampal grading has been shown to yield good results [Coupé et al., 2012],

which suggests that features based on MRI texture feature may also be predictive. The long-

standing grey level cooccurence matrix (GLCM) approach to texture has been applied to

AD classification [Freeborough and Fox, 1998] with promising results. However the more

recent, fully three dimensional and rotation invariant texture features such as local binary

patterns [Fehr and Burkhardt, 2008, Banerjee et al., 2013] and statistical geometric features

[Chen et al., 1995] may perform better. Finally, it is possible to formulate a kernel in a manner

that means the elements of the kernel matrix are not similarities between vectors, but between

clouds of points which can have varying cardinalities [Rahimi and Recht, 2007]. This method

has already been used successfully with fractional anisotropy (FA) data derived from DTI brain

images [Ansari et al., 2014]. It has the advantage of retaining spatial information and thus could

potentially be more discriminating as well as not requiring nonlinear registration. An obvious

application for this would be to voxel level structural MRI data in intensity normalised, affinely

aligned brains or brain ROIs. All these have the advantage of requiring structural MRI data. As

mentioned previously, despite the greater accuracy provided by FDG-PET data it is still desir-

able to improve results based on MRI data alone, due to the lower cost and invasiveness and

greater availability of MRI.

The biggest increases in accuracy are likely to come from entirely different types of data,

especially if these are informed by greater understanding of the AD process and its causes.

It is possible that future biomarkers will be used that are not informed by image data at all,

such as those based on lipid levels in blood which have attracted widespread publicity recently

[Mapstone et al., 2014]. This method, however, recruited at only two centres, rather than the

far greater number used in ADNI, and furthermore it predicted the onset of dementia in healthy

subjects rather than predicting conversion to AD in an MCI population. While this difference

may appear to be minimal, it is possible that the blood test is actually performing an easier

classification due to a greater biological difference between the two groups. Additionally a

test for healthy subjects implies screening, which brings its own problems and has different

requirements to predicting conversion in the MCI population.
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Biomarkers extracted from newer imaging modalities have recently been shown to hold a

great deal of promise. This thesis has only employed structural MRI and FDG-PET, to examine

brain anatomy and metabolism. However AD is a disease which affects the brain in a variety of

ways. In particular, it is known to alter the white matter connectivity between regions, mean-

ing simple measures extracted from DTI such as FA correlate strongly with cognitive measure

[Nir et al., 2013], and have been shown to give very good separation between MCI-s and MCI-c

subjects in inital small scale studies [van Bruggen et al., 2012]. Similarly, AD also affects brain

function, which is detectable in fMRI. This has also shown promise in classifying AD patients

and controls on a small scale [Li et al., 2013]. More recently, arterial spin labelling (ASL), a

method of using MRI to measure cerebral blood flow, has emerged as a potential biomarker for

AD [Wang et al., 2013]. The reason for the low numbers of subjects in all studies involving

these advanced MRI modalities is that they have only recently been added to the ADNI pro-

tocol. As the relevant data becomes available in larger quantities in the ADNI database, they

should enable a great variety of new methods for predicting conversion from MCI to AD to be

developed.
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Appendix A

Running times and computational complexity

A.1 Experiment and results
In order to give estimates of the likely running times of a typical classification, this section

contains the results of a small scale experiment. The experiment was performed on a set

of 100 randomly chosen structural MRI scans of subjects from the ADNI dataset, consisting

of 50 healthy subjects and 50 with probable AD. The time taken to train a classifier from

these data was noted as training time is much greater than the time to make a prediction on

an unseen subject. We present results for GP classification using the original GPML toolkit

(http://www.gaussianprocess.org/gpml/code/matlab/doc/), for our modi-

fied version of GPML using a precomputed kernel, and for comparison an SVM, also both

with and without a precomputed kernel using LIBSVM (http://www.csie.ntu.edu.

tw/˜cjlin/libsvm). For the GP classification, training here refers to optimisation of the

hyperparameters. 200 iterations of the optimiser were used for the GP experiments, the same

number as in all previous experiments. SVM training used default parameters. The experi-

ments were performed in Matlab running on a Linux PC with 3.8GB of RAM and two 2.4GHz

processors. Results are shown below in table A.1.

A final experiment was performed, using the same task of training a classifier on the struc-

tural MRI scans of 50 AD and 50 control subjects. Here, however, the data was in the form of

Classifier Precomputed kernel Running time

SVM no 7.9 seconds

SVM yes 0.005 seconds

GP no 17 minutes, 22 seconds

GP yes 16.8 seconds

Table A.1: Running times for training a model on 50 AD and 50 control subjects

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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83 multiple regional kernels, as described in chapter 8. This implies setting a much larger num-

ber of hyperparameters as one is introduced for each kernel. Correspondingly training time was

greater than for the single precomputed kernel GP form, but still reasonable at four minutes, 24

seconds.

A.2 Discussion

The results here are for an experiment using a much smaller number of training subjects than

would be used in practice (and is smaller than most of the training sets used in other experi-

ments in this thesis). Estimates of running times in a more realistic setting may be made by

extrapolating from these results. GPs do have the disadvantage of scaling relatively poorly. As

the algorithm is dominated by a matrix inversion their computational complexity is O(n3). For

large scale classification, this can, however, be improved on, by the fully independent train-

ing conditional (FITC) approximation [Naish-Guzman and Holden, 2007]. This is included

in the GPML software, however it was not used for any of the experiments in this thesis.

The scaling behaviour of SVMs is slightly better. Although the computational complexity is

data dependent and more diffcult to characterise, it is generally between O(n2) and O(n3)

[Chang and Lin, 2011]. GP classification does have an advantage for the multikernel formu-

lation, due to its ability to learn a large number of hyparameters from training data only.

The method of [Zhang et al., 2011] could not perform the equivalent; grid search and cross-

validation is tractable to set a handful of parameters but not for 83.

The runtimes in table A.1 should be interpreted with caution. Although we would ex-

pect GP classification to be slower than an SVM generally due to the greater computational

complexity, this is likely exaggerated in the results. This is because GPML is written entirely

in native Matlab, whereas LIBSVM is a highly optimised C++ library that can be called from

other environments such as Matlab or Python. Unfortunately to my knowledge there are no

fast C++ implementations of GP classification with the flexbility of GPML. However, there is

considerable scope for making GP classification faster by developing one.

It is quite clear, however, that precomputing a kernel matrix is highly advantageous for both

classifiers. This is because, in applications to medical image data, the dimensionality of the data

is very high so generating the kernel is a slow operation; furthermore in GPML the kernel is

regenerated for each iteration. This is actually necessary as the elements of the kernel matrix

depends on the hyperparameters, so the kernel matrix must be updated as the hyperparameters

are being optimised. However, for some kernel functions (including linear ones), the kernel

matrix is a function of a constant matrix of the same size and the hyperparameters. This constant
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matrix can be calculated directly from the data and it is this that is used in our modified version

of GPML. Although, as previously stated, generating a precomputed kernel matrix is itself a

slow operation, this is not a major problem in practice as it need only be done once. New data

can then be added incrementally. If the original data are retained alongside a kernel matrix, then

the new training and/or testing data can be incorporated into the matrix by computing the new

matrix elements only and inserting them rather than computing the entire matrix from scratch.
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Appendix B

Lists of subjects in experiments

B.1 Subjects in experiment in chapter 5
The subjects used in the AD and normal control classification experiment described in chapter

5 are listed in table B.1.

Table B.1: List of subjects used in the control/AD classification

experiment in chapter 5. ID = ADNI roster ID number, Status =

disease status of subject.

ID Status ID Status ID Status ID Status ID Status ID Status

16 NC 272 NC 672 NC 3 AD 400 AD 803 AD

22 NC 295 NC 717 NC 76 AD 426 AD 850 AD

43 NC 312 NC 726 NC 84 AD 431 AD 891 AD

47 NC 327 NC 731 NC 93 AD 457 AD 1082 AD

55 NC 352 NC 751 NC 94 AD 470 AD 1090 AD

56 NC 433 NC 768 NC 129 AD 517 AD 1137 AD

59 NC 454 NC 779 NC 139 AD 535 AD 1144 AD

89 NC 467 NC 843 NC 147 AD 543 AD 1170 AD

95 NC 488 NC 886 NC 149 AD 547 AD 1171 AD

96 NC 498 NC 923 NC 194 AD 577 AD 1209 AD

97 NC 516 NC 926 NC 213 AD 606 AD 1221 AD

123 NC 519 NC 972 NC 221 AD 619 AD 1262 AD

159 NC 520 NC 981 NC 266 AD 690 AD 1285 AD

172 NC 525 NC 984 NC 286 AD 720 AD 1290 AD

177 NC 533 NC 1002 NC 300 AD 733 AD 1337 AD
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186 NC 534 NC 1016 NC 310 AD 739 AD 1341 AD

210 NC 555 NC 1035 NC 321 AD 753 AD 1371 AD

232 NC 559 NC 1063 NC 341 AD 754 AD 1373 AD

259 NC 602 NC 1200 NC 366 AD 784 AD 1379 AD

260 NC 648 NC 1250 NC 372 AD 790 AD 1402 AD

B.2 Subjects in experiment in chapter 6
The subjects used in the experiments described in chapter 6 are listed in table B.2. This lists

all the subjects in the PET group. For each subject, it is listed whether it was also present in the

PET-CSF group.

Table B.2: List of subjects used in the PET group of the MKL

experiment in chapter 6. ID = ADNI roster ID number, Status =

disease status of subject, CSF = subject has CSF data so is used in

PET-CSF group.

ID Status CSF ID Status CSF ID Status CSF ID Status CSF

5 NC Yes 1202 NC No 200 MCI-s No 1315 MCI-s Yes

14 NC Yes 3 AD Yes 225 MCI-s No 1318 MCI-s No

16 NC Yes 10 AD Yes 227 MCI-s No 1322 MCI-s No

21 NC No 53 AD No 282 MCI-s No 1346 MCI-s No

23 NC Yes 147 AD Yes 292 MCI-s Yes 1351 MCI-s Yes

43 NC Yes 149 AD Yes 314 MCI-s Yes 1378 MCI-s No

48 NC No 167 AD No 354 MCI-s No 1384 MCI-s No

55 NC Yes 183 AD No 361 MCI-s Yes 1406 MCI-s No

67 NC No 216 AD No 378 MCI-s Yes 1407 MCI-s No

74 NC No 221 AD Yes 389 MCI-s No 1408 MCI-s No

95 NC Yes 266 AD Yes 408 MCI-s No 1414 MCI-s Yes

120 NC Yes 286 AD Yes 410 MCI-s Yes 1417 MCI-s No

123 NC Yes 316 AD Yes 414 MCI-s No 1418 MCI-s No

130 NC No 321 AD Yes 424 MCI-s Yes 1419 MCI-s Yes

171 NC No 341 AD Yes 446 MCI-s Yes 1425 MCI-s No

173 NC Yes 343 AD No 461 MCI-s No 1426 MCI-s No
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223 NC Yes 370 AD No 464 MCI-s No 57 MCI-c Yes

230 NC No 374 AD No 481 MCI-s Yes 101 MCI-c Yes

259 NC Yes 400 AD Yes 485 MCI-s No 128 MCI-c No

262 NC No 431 AD Yes 531 MCI-s Yes 141 MCI-c No

272 NC Yes 474 AD Yes 544 MCI-s Yes 155 MCI-c No

283 NC No 497 AD No 546 MCI-s No 204 MCI-c Yes

301 NC No 543 AD Yes 549 MCI-s No 214 MCI-c No

311 NC No 547 AD Yes 598 MCI-s Yes 222 MCI-c Yes

312 NC Yes 554 AD No 608 MCI-s Yes 231 MCI-c Yes

359 NC No 565 AD Yes 621 MCI-s Yes 240 MCI-c Yes

386 NC Yes 577 AD Yes 626 MCI-s Yes 256 MCI-c Yes

416 NC No 642 AD No 634 MCI-s Yes 258 MCI-c Yes

419 NC No 682 AD No 656 MCI-s No 293 MCI-c Yes

459 NC Yes 712 AD No 669 MCI-s No 325 MCI-c No

498 NC Yes 720 AD Yes 673 MCI-s Yes 326 MCI-c Yes

500 NC No 740 AD No 679 MCI-s No 344 MCI-c Yes

502 NC No 754 AD Yes 698 MCI-s No 362 MCI-c Yes

522 NC No 760 AD No 709 MCI-s No 394 MCI-c Yes

526 NC No 786 AD No 715 MCI-s No 511 MCI-c Yes

555 NC Yes 836 AD Yes 718 MCI-s Yes 513 MCI-c No

575 NC No 850 AD Yes 746 MCI-s Yes 567 MCI-c Yes

576 NC No 889 AD No 748 MCI-s Yes 675 MCI-c No

610 NC Yes 891 AD Yes 770 MCI-s No 695 MCI-c No

618 NC Yes 979 AD No 800 MCI-s Yes 708 MCI-c No

637 NC Yes 1001 AD No 865 MCI-s No 723 MCI-c Yes

647 NC No 1041 AD Yes 909 MCI-s No 860 MCI-c No

648 NC Yes 1044 AD Yes 914 MCI-s No 861 MCI-c Yes

657 NC Yes 1056 AD No 919 MCI-s No 904 MCI-c Yes

672 NC Yes 1090 AD Yes 925 MCI-s Yes 906 MCI-c Yes

680 NC Yes 1109 AD Yes 932 MCI-s Yes 941 MCI-c Yes

686 NC Yes 1157 AD No 945 MCI-s No 978 MCI-c Yes

731 NC Yes 1164 AD No 947 MCI-s No 997 MCI-c Yes

734 NC No 1171 AD Yes 950 MCI-s Yes 1007 MCI-c No

741 NC No 1205 AD No 961 MCI-s Yes 1010 MCI-c Yes
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751 NC Yes 1221 AD Yes 973 MCI-s Yes 1033 MCI-c Yes

778 NC Yes 1254 AD No 976 MCI-s No 1130 MCI-c Yes

779 NC Yes 1281 AD Yes 994 MCI-s Yes 1135 MCI-c No

813 NC No 1283 AD No 1030 MCI-s Yes 1217 MCI-c Yes

818 NC Yes 1285 AD Yes 1032 MCI-s No 1240 MCI-c No

842 NC No 1307 AD No 1043 MCI-s Yes 1282 MCI-c No

843 NC Yes 1339 AD No 1073 MCI-s Yes 1311 MCI-c No

845 NC No 1341 AD Yes 1103 MCI-s No 1393 MCI-c Yes

862 NC No 1368 AD No 1106 MCI-s No 1394 MCI-c Yes

863 NC No 1371 AD Yes 1114 MCI-s No 1398 MCI-c Yes

866 NC Yes 1373 AD Yes 1118 MCI-s No 1412 MCI-c No

898 NC No 1379 AD Yes 1120 MCI-s Yes 1423 MCI-c Yes

934 NC No 1382 AD No 1165 MCI-s No 1427 MCI-c No

967 NC No 1402 AD Yes 1186 MCI-s No

972 NC Yes 33 MCI-s Yes 1215 MCI-s No

985 NC No 80 MCI-s No 1218 MCI-s No

1002 NC Yes 112 MCI-s Yes 1224 MCI-s Yes

1023 NC No 135 MCI-s Yes 1246 MCI-s No

1063 NC Yes 142 MCI-s No 1260 MCI-s Yes

1133 NC No 158 MCI-s Yes 1265 MCI-s Yes

1194 NC No 160 MCI-s No 1275 MCI-s No

1197 NC No 188 MCI-s Yes 1314 MCI-s No

B.3 Subjects in experiments in chapter 7
The subjects used in the BSI experiment described in chapter 7 are listed in table B.3.

Table B.3: List of subjects used in the BSI experiment in chapter

7. ID = ADNI roster ID number, Status = disease status of subject.

ID Status ID Status ID Status ID Status ID Status ID Status

5 NC 866 NC 850 AD 424 MCI-s 1265 MCI-s 997 MCI-c

16 NC 972 NC 891 AD 446 MCI-s 1315 MCI-s 1010 MCI-c

23 NC 1002 NC 1041 AD 481 MCI-s 1351 MCI-s 1033 MCI-c
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43 NC 1063 NC 1044 AD 531 MCI-s 1419 MCI-s 1130 MCI-c

55 NC 3 AD 1090 AD 544 MCI-s 57 MCI-c 1217 MCI-c

120 NC 10 AD 1109 AD 598 MCI-s 101 MCI-c 1393 MCI-c

173 NC 147 AD 1171 AD 608 MCI-s 204 MCI-c 1394 MCI-c

272 NC 149 AD 1221 AD 621 MCI-s 222 MCI-c 1398 MCI-c

312 NC 221 AD 1281 AD 626 MCI-s 231 MCI-c 1423 MCI-c

386 NC 266 AD 1341 AD 673 MCI-s 256 MCI-c

459 NC 286 AD 1371 AD 718 MCI-s 258 MCI-c

498 NC 316 AD 1373 AD 746 MCI-s 293 MCI-c

555 NC 321 AD 1379 AD 748 MCI-s 326 MCI-c

610 NC 341 AD 1402 AD 932 MCI-s 344 MCI-c

648 NC 400 AD 33 MCI-s 950 MCI-s 362 MCI-c

657 NC 431 AD 112 MCI-s 961 MCI-s 394 MCI-c

672 NC 474 AD 135 MCI-s 973 MCI-s 511 MCI-c

680 NC 543 AD 158 MCI-s 994 MCI-s 567 MCI-c

686 NC 547 AD 188 MCI-s 1030 MCI-s 723 MCI-c

731 NC 565 AD 292 MCI-s 1043 MCI-s 861 MCI-c

751 NC 577 AD 314 MCI-s 1073 MCI-s 904 MCI-c

779 NC 720 AD 361 MCI-s 1120 MCI-s 906 MCI-c

818 NC 754 AD 378 MCI-s 1224 MCI-s 941 MCI-c

843 NC 836 AD 410 MCI-s 1260 MCI-s 978 MCI-c

The subjects used in the MMSE experiment described in chapter 7 are listed in table B.4.

This table lists all subjects in the MRI group used for this experiment. For each subject, as well

as the disease group, the scanner field strength and whether the subject had an FDG-PET scan

and was therefore also in the PET group is listed. The small number of scans done in 2.9T

scanners are grouped with the 3T scans when examining the effects of different scanner field

strengths. The MCI-u status is for subjects which are MCI at baseline, but due to having been

only recently enrolled in ADNI cannot be assigned to MCI-s or MCI-c. In continuous proxy

experiments these subjects can be used for training as long as they have the appropriate proxy

data, but cannot be used for testing.
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Table B.4: List of subjects used in the MRI group of the MMSE

experiment in chapter 7. ID = ADNI roster ID number, Status =

disease status of subject, T = field strength of structural MRI in

Tesla, PET = subject has PET data so is used in PET group.

ID Status T PET ID Status T PET ID Status T PET

2 NC 1.5 Yes 760 AD 1.5 Yes 4414 MCI-c 3 Yes

5 NC 1.5 Yes 777 AD 1.5 Yes 4432 MCI-c 3 No

8 NC 1.5 Yes 790 AD 1.5 No 4502 MCI-c 3 Yes

14 NC 1.5 Yes 793 AD 1.5 No 4515 MCI-c 3 Yes

16 NC 1.5 Yes 796 AD 1.5 No 4530 MCI-c 3 Yes

19 NC 1.5 No 812 AD 3 No 4595 MCI-c 3 Yes

21 NC 1.5 Yes 828 AD 3 No 4661 MCI-c 3 Yes

22 NC 1.5 No 836 AD 1.5 Yes 4680 MCI-c 3 Yes

23 NC 1.5 Yes 850 AD 1.5 Yes 4689 MCI-c 3 Yes

31 NC 2.9 No 852 AD 1.5 No 4706 MCI-c 3 Yes

40 NC 1.5 No 853 AD 1.5 No 4712 MCI-c 3 Yes

56 NC 1.5 No 889 AD 1.5 Yes 4796 MCI-c 3 Yes

58 NC 2.9 No 891 AD 1.5 Yes 4857 MCI-c 3 Yes

59 NC 1.5 No 916 AD 3 No 4888 MCI-c 3 Yes

61 NC 2.9 No 929 AD 1.5 Yes 4899 MCI-c 3 Yes

67 NC 1.5 Yes 955 AD 1.5 No 4918 MCI-c 3 Yes

68 NC 1.5 No 979 AD 1.5 Yes 4928 MCI-c 3 Yes

70 NC 1.5 No 991 AD 1.5 Yes 38 MCI-u 1.5 No

72 NC 1.5 No 996 AD 2.9 No 60 MCI-u 1.5 No

74 NC 1.5 Yes 1001 AD 1.5 Yes 112 MCI-u 1.5 Yes

81 NC 1.5 No 1018 AD 1.5 No 138 MCI-u 1.5 Yes

86 NC 1.5 No 1024 AD 1.5 No 188 MCI-u 1.5 Yes

89 NC 1.5 No 1041 AD 1.5 Yes 282 MCI-u 1.5 Yes

90 NC 1.5 Yes 1044 AD 1.5 Yes 284 MCI-u 1.5 No

96 NC 1.5 Yes 1055 AD 2.9 No 377 MCI-u 1.5 Yes

97 NC 1.5 Yes 1056 AD 1.5 Yes 384 MCI-u 3 No

106 NC 1.5 No 1059 AD 1.5 Yes 393 MCI-u 3 No
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113 NC 1.5 No 1079 AD 1.5 No 397 MCI-u 3 No

120 NC 1.5 Yes 1082 AD 2.9 No 410 MCI-u 1.5 Yes

123 NC 1.5 Yes 1101 AD 3 No 414 MCI-u 1.5 Yes

125 NC 1.5 No 1102 AD 1.5 No 417 MCI-u 2.9 No

156 NC 1.5 No 1109 AD 1.5 Yes 429 MCI-u 1.5 No

166 NC 1.5 No 1137 AD 1.5 No 443 MCI-u 1.5 Yes

171 NC 1.5 Yes 1144 AD 1.5 Yes 458 MCI-u 1.5 No

172 NC 1.5 No 1152 AD 1.5 No 485 MCI-u 1.5 Yes

173 NC 1.5 Yes 1157 AD 1.5 Yes 544 MCI-u 1.5 Yes

177 NC 1.5 No 1161 AD 1.5 Yes 551 MCI-u 1.5 Yes

184 NC 1.5 No 1164 AD 1.5 Yes 566 MCI-u 1.5 Yes

186 NC 1.5 No 1170 AD 2.9 No 579 MCI-u 1.5 No

223 NC 1.5 Yes 1171 AD 1.5 Yes 669 MCI-u 1.5 Yes

229 NC 1.5 No 1185 AD 3 No 702 MCI-u 1.5 No

230 NC 1.5 Yes 1192 AD 1.5 No 721 MCI-u 1.5 Yes

232 NC 1.5 Yes 1205 AD 1.5 Yes 739 MCI-u 1.5 No

245 NC 1.5 Yes 1221 AD 1.5 Yes 748 MCI-u 1.5 Yes

257 NC 1.5 No 1253 AD 3 No 783 MCI-u 1.5 Yes

259 NC 1.5 Yes 1254 AD 1.5 Yes 821 MCI-u 1.5 No

260 NC 3 No 1257 AD 1.5 Yes 832 MCI-u 1.5 No

262 NC 1.5 Yes 1262 AD 3 No 890 MCI-u 1.5 No

272 NC 1.5 Yes 1263 AD 1.5 Yes 924 MCI-u 1.5 Yes

283 NC 1.5 Yes 1281 AD 1.5 Yes 928 MCI-u 3 No

295 NC 1.5 No 1285 AD 1.5 Yes 957 MCI-u 1.5 Yes

298 NC 1.5 No 1289 AD 3 No 958 MCI-u 1.5 Yes

301 NC 1.5 Yes 1290 AD 1.5 Yes 1028 MCI-u 1.5 Yes

303 NC 2.9 No 1296 AD 1.5 No 1038 MCI-u 1.5 Yes

312 NC 1.5 Yes 1307 AD 1.5 Yes 1051 MCI-u 1.5 No

319 NC 1.5 Yes 1308 AD 1.5 No 1074 MCI-u 1.5 Yes

327 NC 1.5 Yes 1337 AD 1.5 No 1092 MCI-u 1.5 Yes

337 NC 1.5 No 1354 AD 1.5 Yes 1103 MCI-u 1.5 Yes

352 NC 1.5 Yes 1368 AD 1.5 Yes 1104 MCI-u 3 No

359 NC 1.5 Yes 1373 AD 1.5 Yes 1204 MCI-u 1.5 Yes

360 NC 1.5 Yes 1377 AD 1.5 No 1215 MCI-u 1.5 Yes
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363 NC 1.5 Yes 1382 AD 1.5 Yes 1231 MCI-u 1.5 No

382 NC 2.9 No 1385 AD 2.9 No 1245 MCI-u 1.5 Yes

386 NC 1.5 Yes 1397 AD 1.5 Yes 1275 MCI-u 1.5 Yes

403 NC 2.9 No 1435 AD 1.5 No 1277 MCI-u 2.9 No

405 NC 3 No 4024 AD 3 Yes 1279 MCI-u 2.9 No

413 NC 1.5 No 4039 AD 3 Yes 1293 MCI-u 3 No

416 NC 1.5 Yes 4136 AD 3 Yes 1294 MCI-u 1.5 Yes

419 NC 1.5 Yes 4152 AD 3 Yes 1309 MCI-u 2.9 No

436 NC 1.5 No 4153 AD 3 Yes 1343 MCI-u 1.5 Yes

454 NC 1.5 Yes 4172 AD 3 Yes 1366 MCI-u 1.5 No

459 NC 1.5 Yes 4195 AD 3 Yes 1400 MCI-u 1.5 Yes

467 NC 1.5 Yes 4201 AD 3 Yes 1408 MCI-u 1.5 Yes

484 NC 1.5 Yes 4209 AD 3 Yes 1411 MCI-u 1.5 Yes

488 NC 2.9 No 4211 AD 3 Yes 1420 MCI-u 1.5 Yes

489 NC 1.5 Yes 4223 AD 3 Yes 1426 MCI-u 1.5 Yes

493 NC 2.9 No 4252 AD 3 Yes 2007 MCI-u 3 Yes

498 NC 1.5 Yes 4258 AD 3 Yes 2010 MCI-u 3 Yes

500 NC 1.5 Yes 4280 AD 3 Yes 2018 MCI-u 3 Yes

502 NC 1.5 Yes 4282 AD 3 Yes 2022 MCI-u 3 Yes

506 NC 1.5 Yes 4307 AD 3 Yes 2027 MCI-u 3 Yes

516 NC 1.5 No 4353 AD 3 Yes 2036 MCI-u 3 Yes

519 NC 1.5 No 4373 AD 3 Yes 2037 MCI-u 3 Yes

522 NC 1.5 Yes 4494 AD 3 Yes 2042 MCI-u 3 Yes

526 NC 1.5 Yes 4500 AD 3 Yes 2043 MCI-u 3 Yes

534 NC 1.5 Yes 4526 AD 3 Yes 2045 MCI-u 3 Yes

538 NC 1.5 No 4546 AD 3 Yes 2055 MCI-u 3 Yes

545 NC 1.5 No 4549 AD 3 Yes 2058 MCI-u 3 Yes

548 NC 1.5 No 4589 AD 3 Yes 2060 MCI-u 3 Yes

555 NC 1.5 Yes 4591 AD 3 Yes 2061 MCI-u 3 Yes

558 NC 1.5 No 4641 AD 3 Yes 2063 MCI-u 3 Yes

559 NC 1.5 No 4657 AD 3 Yes 2068 MCI-u 3 Yes

575 NC 1.5 Yes 4660 AD 3 Yes 2072 MCI-u 3 Yes

576 NC 1.5 Yes 4672 AD 3 Yes 2073 MCI-u 3 Yes

578 NC 1.5 No 4686 AD 3 Yes 2074 MCI-u 3 Yes
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601 NC 1.5 No 4692 AD 3 Yes 2077 MCI-u 3 No

602 NC 3 No 4696 AD 3 Yes 2079 MCI-u 3 Yes

605 NC 3 No 4707 AD 3 Yes 2083 MCI-u 3 Yes

610 NC 1.5 Yes 4728 AD 3 Yes 2087 MCI-u 3 Yes

618 NC 1.5 Yes 4730 AD 3 Yes 2093 MCI-u 3 Yes

622 NC 3 No 4733 AD 3 Yes 2099 MCI-u 3 Yes

640 NC 2.9 No 4755 AD 3 Yes 2100 MCI-u 3 Yes

643 NC 1.5 No 4756 AD 3 Yes 2106 MCI-u 3 Yes

647 NC 1.5 Yes 4770 AD 3 Yes 2109 MCI-u 3 Yes

657 NC 1.5 Yes 4774 AD 3 Yes 2116 MCI-u 3 Yes

672 NC 1.5 Yes 4802 AD 3 Yes 2119 MCI-u 3 Yes

677 NC 3 No 4827 AD 3 Yes 2121 MCI-u 3 Yes

680 NC 1.5 Yes 4845 AD 3 Yes 2123 MCI-u 3 Yes

681 NC 1.5 No 4853 AD 3 Yes 2125 MCI-u 3 Yes

684 NC 1.5 No 4863 AD 3 Yes 2133 MCI-u 3 Yes

685 NC 1.5 No 4867 AD 3 Yes 2138 MCI-u 3 Yes

686 NC 1.5 Yes 4892 AD 3 Yes 2142 MCI-u 3 Yes

692 NC 1.5 No 4894 AD 3 Yes 2146 MCI-u 3 Yes

717 NC 1.5 No 4905 AD 3 Yes 2148 MCI-u 3 Yes

726 NC 1.5 No 4906 AD 3 Yes 2150 MCI-u 3 Yes

731 NC 1.5 Yes 4910 AD 3 Yes 2151 MCI-u 3 Yes

734 NC 1.5 Yes 4938 AD 3 No 2153 MCI-u 3 Yes

741 NC 1.5 Yes 4940 AD 3 Yes 2155 MCI-u 3 Yes

751 NC 1.5 Yes 4949 AD 3 Yes 2164 MCI-u 3 Yes

761 NC 1.5 No 4954 AD 3 Yes 2168 MCI-u 3 Yes

767 NC 1.5 No 4962 AD 3 Yes 2171 MCI-u 3 Yes

768 NC 1.5 Yes 4971 AD 3 Yes 2180 MCI-u 3 Yes

779 NC 1.5 Yes 5012 AD 3 Yes 2182 MCI-u 3 Yes

810 NC 1.5 No 5015 AD 3 Yes 2183 MCI-u 3 Yes

813 NC 1.5 Yes 5018 AD 3 Yes 2184 MCI-u 3 Yes

818 NC 1.5 Yes 5019 AD 3 Yes 2185 MCI-u 3 Yes

842 NC 1.5 Yes 5028 AD 3 Yes 2187 MCI-u 3 Yes

843 NC 1.5 Yes 4 MCI-s 1.5 No 2190 MCI-u 3 Yes

862 NC 1.5 Yes 51 MCI-s 1.5 Yes 2191 MCI-u 3 Yes



B.3. Subjects in experiments in chapter 7 157

863 NC 1.5 Yes 107 MCI-s 1.5 No 2193 MCI-u 3 Yes

866 NC 1.5 Yes 116 MCI-s 1.5 No 2194 MCI-u 3 Yes

876 NC 1.5 No 150 MCI-s 1.5 Yes 2195 MCI-u 3 Yes

883 NC 1.5 Yes 160 MCI-s 1.5 Yes 2196 MCI-u 3 Yes

886 NC 1.5 No 176 MCI-s 1.5 No 2200 MCI-u 3 Yes

896 NC 1.5 No 178 MCI-s 1.5 Yes 2205 MCI-u 3 Yes

898 NC 1.5 Yes 200 MCI-s 1.5 Yes 2208 MCI-u 3 Yes

899 NC 1.5 No 225 MCI-s 1.5 Yes 2210 MCI-u 3 Yes

920 NC 2.9 No 273 MCI-s 1.5 No 2213 MCI-u 3 Yes

923 NC 1.5 No 276 MCI-s 1.5 No 2219 MCI-u 3 Yes

926 NC 3 No 285 MCI-s 1.5 Yes 2220 MCI-u 3 Yes

931 NC 1.5 No 291 MCI-s 1.5 Yes 2225 MCI-u 3 Yes

934 NC 1.5 Yes 292 MCI-s 1.5 Yes 2233 MCI-u 3 Yes

951 NC 1.5 No 307 MCI-s 2.9 No 2234 MCI-u 3 Yes

963 NC 3 No 324 MCI-s 3 No 2238 MCI-u 3 Yes

967 NC 1.5 Yes 351 MCI-s 1.5 No 2239 MCI-u 3 Yes

969 NC 1.5 No 361 MCI-s 1.5 Yes 2240 MCI-u 3 Yes

972 NC 1.5 Yes 376 MCI-s 2.9 No 2245 MCI-u 3 Yes

1002 NC 1.5 Yes 378 MCI-s 1.5 Yes 2247 MCI-u 3 Yes

1013 NC 1.5 Yes 389 MCI-s 1.5 Yes 2248 MCI-u 3 Yes

1014 NC 1.5 No 407 MCI-s 1.5 Yes 2264 MCI-u 3 Yes

1016 NC 2.9 No 408 MCI-s 1.5 Yes 2274 MCI-u 3 Yes

1023 NC 1.5 Yes 445 MCI-s 1.5 No 2284 MCI-u 3 Yes

1063 NC 1.5 Yes 448 MCI-s 3 No 2301 MCI-u 3 Yes

1086 NC 2.9 No 449 MCI-s 1.5 No 2304 MCI-u 3 Yes

1094 NC 1.5 No 464 MCI-s 1.5 Yes 2307 MCI-u 3 Yes

1098 NC 2.9 No 469 MCI-s 2.9 No 2315 MCI-u 3 Yes

1123 NC 3 No 481 MCI-s 1.5 Yes 2316 MCI-u 3 Yes

1169 NC 3 No 501 MCI-s 2.9 No 2324 MCI-u 3 Yes

1190 NC 3 No 505 MCI-s 1.5 No 2332 MCI-u 3 Yes

1194 NC 1.5 Yes 546 MCI-s 1.5 Yes 2333 MCI-u 3 Yes

1195 NC 1.5 Yes 552 MCI-s 1.5 Yes 2336 MCI-u 3 Yes

1197 NC 1.5 Yes 557 MCI-s 1.5 No 2347 MCI-u 3 Yes

1202 NC 1.5 Yes 590 MCI-s 1.5 Yes 2357 MCI-u 3 Yes
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1203 NC 1.5 Yes 607 MCI-s 3 No 2360 MCI-u 3 Yes

1206 NC 3 No 608 MCI-s 1.5 Yes 2363 MCI-u 3 Yes

1222 NC 3 No 613 MCI-s 3 No 2367 MCI-u 3 Yes

1232 NC 2.9 No 621 MCI-s 1.5 Yes 2373 MCI-u 3 Yes

1242 NC 2.9 No 626 MCI-s 1.5 Yes 2374 MCI-u 3 Yes

1249 NC 2.9 No 641 MCI-s 1.5 Yes 2378 MCI-u 3 Yes

1250 NC 3 No 644 MCI-s 1.5 No 2379 MCI-u 3 Yes

1251 NC 3 No 656 MCI-s 1.5 Yes 2380 MCI-u 3 Yes

1256 NC 3 No 671 MCI-s 1.5 No 2381 MCI-u 3 Yes

1261 NC 1.5 No 673 MCI-s 1.5 Yes 2389 MCI-u 3 Yes

1267 NC 3 No 679 MCI-s 1.5 Yes 2392 MCI-u 3 No

1276 NC 2.9 No 698 MCI-s 1.5 Yes 2394 MCI-u 3 Yes

1280 NC 1.5 No 709 MCI-s 1.5 Yes 2395 MCI-u 3 Yes

1288 NC 3 No 715 MCI-s 1.5 Yes 2405 MCI-u 3 Yes

1301 NC 3 No 746 MCI-s 1.5 Yes 2407 MCI-u 3 Yes

2201 NC 3 Yes 771 MCI-s 2.9 No 4007 MCI-u 3 Yes

4010 NC 3 Yes 782 MCI-s 1.5 No 4029 MCI-u 3 Yes

4018 NC 3 Yes 792 MCI-s 2.9 No 4030 MCI-u 3 Yes

4020 NC 3 Yes 851 MCI-s 1.5 No 4034 MCI-u 3 Yes

4021 NC 3 Yes 867 MCI-s 1.5 No 4036 MCI-u 3 Yes

4026 NC 3 Yes 871 MCI-s 1.5 No 4051 MCI-u 3 Yes

4028 NC 3 Yes 908 MCI-s 1.5 No 4053 MCI-u 3 Yes

4032 NC 3 Yes 912 MCI-s 2.9 No 4054 MCI-u 3 Yes

4037 NC 3 Yes 919 MCI-s 1.5 Yes 4058 MCI-u 3 Yes

4041 NC 3 Yes 950 MCI-s 1.5 Yes 4059 MCI-u 3 Yes

4043 NC 3 Yes 989 MCI-s 1.5 No 4061 MCI-u 3 Yes

4050 NC 3 Yes 994 MCI-s 1.5 Yes 4063 MCI-u 3 Yes

4060 NC 3 Yes 1030 MCI-s 1.5 Yes 4072 MCI-u 3 Yes

4066 NC 3 Yes 1031 MCI-s 2.9 No 4073 MCI-u 3 Yes

4075 NC 3 Yes 1032 MCI-s 1.5 Yes 4077 MCI-u 3 Yes

4076 NC 3 Yes 1034 MCI-s 1.5 Yes 4079 MCI-u 3 Yes

4080 NC 3 Yes 1040 MCI-s 1.5 No 4115 MCI-u 3 Yes

4081 NC 3 Yes 1046 MCI-s 3 No 4122 MCI-u 3 Yes

4082 NC 3 Yes 1052 MCI-s 1.5 No 4127 MCI-u 3 Yes
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4084 NC 3 Yes 1072 MCI-s 3 No 4128 MCI-u 3 Yes

4090 NC 3 Yes 1078 MCI-s 1.5 Yes 4133 MCI-u 3 Yes

4092 NC 3 Yes 1088 MCI-s 2.9 No 4143 MCI-u 3 Yes

4093 NC 3 Yes 1097 MCI-s 1.5 No 4146 MCI-u 3 Yes

4100 NC 3 Yes 1106 MCI-s 1.5 Yes 4149 MCI-u 3 Yes

4104 NC 3 Yes 1118 MCI-s 1.5 Yes 4157 MCI-u 3 Yes

4119 NC 3 Yes 1122 MCI-s 1.5 Yes 4159 MCI-u 3 Yes

4120 NC 3 Yes 1131 MCI-s 3 No 4160 MCI-u 3 Yes

4121 NC 3 Yes 1140 MCI-s 1.5 No 4162 MCI-u 3 Yes

4125 NC 3 Yes 1149 MCI-s 3 No 4168 MCI-u 3 Yes

4139 NC 3 Yes 1182 MCI-s 1.5 No 4169 MCI-u 3 Yes

4148 NC 3 Yes 1186 MCI-s 1.5 Yes 4170 MCI-u 3 Yes

4150 NC 3 Yes 1187 MCI-s 1.5 No 4171 MCI-u 3 Yes

4151 NC 3 Yes 1199 MCI-s 1.5 Yes 4175 MCI-u 3 Yes

4155 NC 3 Yes 1210 MCI-s 1.5 Yes 4184 MCI-u 3 Yes

4158 NC 3 Yes 1227 MCI-s 1.5 No 4187 MCI-u 3 Yes

4164 NC 3 Yes 1246 MCI-s 1.5 Yes 4188 MCI-u 3 Yes

4173 NC 3 Yes 1255 MCI-s 1.5 No 4194 MCI-u 3 Yes

4174 NC 3 Yes 1260 MCI-s 1.5 Yes 4197 MCI-u 3 Yes

4177 NC 3 Yes 1269 MCI-s 1.5 No 4199 MCI-u 3 Yes

4179 NC 3 Yes 1284 MCI-s 1.5 No 4205 MCI-u 3 Yes

4198 NC 3 Yes 1300 MCI-s 1.5 No 4206 MCI-u 3 Yes

4200 NC 3 Yes 1314 MCI-s 1.5 Yes 4210 MCI-u 3 Yes

4208 NC 3 Yes 1338 MCI-s 3 No 4212 MCI-u 3 Yes

4213 NC 3 Yes 1346 MCI-s 1.5 Yes 4214 MCI-u 3 Yes

4218 NC 3 Yes 1357 MCI-s 1.5 Yes 4216 MCI-u 3 Yes

4222 NC 3 Yes 1378 MCI-s 1.5 Yes 4219 MCI-u 3 Yes

4225 NC 3 Yes 1406 MCI-s 1.5 Yes 4220 MCI-u 3 Yes

4255 NC 3 Yes 1414 MCI-s 1.5 Yes 4226 MCI-u 3 Yes

4257 NC 3 No 1418 MCI-s 1.5 Yes 4229 MCI-u 3 Yes

4262 NC 3 Yes 1419 MCI-s 1.5 Yes 4232 MCI-u 3 Yes

4266 NC 3 Yes 1421 MCI-s 1.5 Yes 4235 MCI-u 3 Yes

4269 NC 3 Yes 2002 MCI-s 3 Yes 4237 MCI-u 3 Yes

4270 NC 3 Yes 2003 MCI-s 3 Yes 4241 MCI-u 3 Yes
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4275 NC 3 Yes 2011 MCI-s 3 Yes 4250 MCI-u 3 Yes

4276 NC 3 Yes 2031 MCI-s 3 Yes 4251 MCI-u 3 Yes

4277 NC 3 Yes 2057 MCI-s 3 Yes 4256 MCI-u 3 Yes

4278 NC 3 Yes 2070 MCI-s 3 Yes 4259 MCI-u 3 Yes

4279 NC 3 Yes 2199 MCI-s 3 Yes 4263 MCI-u 3 Yes

4288 NC 3 Yes 2237 MCI-s 3 Yes 4268 MCI-u 3 Yes

4291 NC 3 Yes 2278 MCI-s 3 Yes 4271 MCI-u 3 Yes

4292 NC 3 Yes 4067 MCI-s 3 Yes 4281 MCI-u 3 Yes

4308 NC 3 Yes 4134 MCI-s 3 Yes 4285 MCI-u 3 Yes

4313 NC 3 Yes 4186 MCI-s 3 Yes 4287 MCI-u 3 Yes

4320 NC 3 Yes 4217 MCI-s 3 Yes 4293 MCI-u 3 Yes

4335 NC 3 Yes 4260 MCI-s 3 Yes 4297 MCI-u 3 Yes

4337 NC 3 Yes 4274 MCI-s 3 Yes 4300 MCI-u 3 Yes

4339 NC 3 Yes 4332 MCI-s 3 Yes 4301 MCI-u 3 Yes

4340 NC 3 Yes 4403 MCI-s 3 Yes 4302 MCI-u 3 Yes

4343 NC 3 Yes 4408 MCI-s 3 Yes 4303 MCI-u 3 Yes

4345 NC 3 Yes 4431 MCI-s 3 Yes 4309 MCI-u 3 Yes

4348 NC 3 Yes 4517 MCI-s 3 Yes 4310 MCI-u 3 Yes

4349 NC 3 Yes 4524 MCI-s 3 Yes 4311 MCI-u 3 Yes

4350 NC 3 Yes 4556 MCI-s 3 Yes 4312 MCI-u 3 Yes

4352 NC 3 Yes 4594 MCI-s 3 Yes 4324 MCI-u 3 Yes

4357 NC 3 Yes 4601 MCI-s 3 Yes 4328 MCI-u 3 Yes

4367 NC 3 Yes 4798 MCI-s 3 No 4331 MCI-u 3 Yes

4369 NC 3 Yes 4871 MCI-s 3 Yes 4346 MCI-u 3 Yes

4371 NC 3 Yes 4883 MCI-s 3 Yes 4351 MCI-u 3 Yes

4372 NC 3 Yes 4907 MCI-s 3 Yes 4354 MCI-u 3 Yes

4382 NC 3 Yes 4944 MCI-s 3 No 4356 MCI-u 3 Yes

4384 NC 3 Yes 4945 MCI-s 3 No 4359 MCI-u 3 Yes

4385 NC 3 Yes 5004 MCI-s 3 No 4360 MCI-u 3 Yes

4386 NC 3 Yes 42 MCI-c 1.5 No 4363 MCI-u 3 Yes

4387 NC 3 Yes 45 MCI-c 1.5 No 4377 MCI-u 3 Yes

4388 NC 3 Yes 54 MCI-c 1.5 Yes 4381 MCI-u 3 Yes

4389 NC 3 Yes 77 MCI-c 1.5 No 4383 MCI-u 3 Yes

4391 NC 3 Yes 98 MCI-c 1.5 No 4390 MCI-u 3 Yes
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4393 NC 3 Yes 101 MCI-c 1.5 Yes 4392 MCI-u 3 Yes

4396 NC 3 Yes 108 MCI-c 1.5 No 4394 MCI-u 3 Yes

4399 NC 3 Yes 111 MCI-c 1.5 No 4395 MCI-u 3 Yes

4400 NC 3 Yes 126 MCI-c 1.5 No 4404 MCI-u 3 Yes

4401 NC 3 Yes 128 MCI-c 1.5 Yes 4405 MCI-u 3 Yes

4410 NC 3 Yes 141 MCI-c 1.5 Yes 4406 MCI-u 3 Yes

4421 NC 3 Yes 161 MCI-c 1.5 Yes 4415 MCI-u 3 Yes

4422 NC 3 Yes 179 MCI-c 1.5 No 4417 MCI-u 3 Yes

4424 NC 3 Yes 182 MCI-c 1.5 No 4419 MCI-u 3 Yes

4427 NC 3 Yes 195 MCI-c 1.5 No 4420 MCI-u 3 Yes

4428 NC 3 Yes 204 MCI-c 1.5 Yes 4423 MCI-u 3 Yes

4429 NC 3 Yes 227 MCI-c 1.5 Yes 4426 MCI-u 3 Yes

4441 NC 3 Yes 231 MCI-c 1.5 Yes 4430 MCI-u 3 Yes

4442 NC 3 Yes 240 MCI-c 1.5 Yes 4434 MCI-u 3 Yes

4446 NC 3 Yes 243 MCI-c 1.5 No 4438 MCI-u 3 Yes

4448 NC 3 Yes 249 MCI-c 1.5 No 4443 MCI-u 3 Yes

4449 NC 3 Yes 256 MCI-c 1.5 Yes 4444 MCI-u 3 Yes

4453 NC 3 Yes 258 MCI-c 1.5 Yes 4447 MCI-u 3 Yes

4464 NC 3 Yes 269 MCI-c 1.5 No 4455 MCI-u 3 Yes

4466 NC 3 Yes 289 MCI-c 1.5 Yes 4456 MCI-u 3 Yes

4469 NC 3 Yes 294 MCI-c 1.5 Yes 4462 MCI-u 3 Yes

4474 NC 3 Yes 314 MCI-c 1.5 Yes 4463 MCI-u 3 Yes

4482 NC 3 Yes 325 MCI-c 1.5 Yes 4465 MCI-u 3 Yes

4483 NC 3 Yes 331 MCI-c 2.9 No 4467 MCI-u 3 Yes

4485 NC 3 Yes 336 MCI-c 1.5 No 4468 MCI-u 3 Yes

4488 NC 3 Yes 344 MCI-c 1.5 Yes 4473 MCI-u 3 Yes

4491 NC 3 Yes 362 MCI-c 1.5 Yes 4475 MCI-u 3 Yes

4496 NC 3 Yes 388 MCI-c 2.9 No 4476 MCI-u 3 Yes

4499 NC 3 Yes 434 MCI-c 1.5 No 4480 MCI-u 3 Yes

4503 NC 3 Yes 461 MCI-c 1.5 Yes 4489 MCI-u 3 Yes

4505 NC 3 Yes 507 MCI-c 1.5 No 4498 MCI-u 3 Yes

4516 NC 3 Yes 511 MCI-c 1.5 Yes 4510 MCI-u 3 Yes

4545 NC 3 Yes 513 MCI-c 1.5 Yes 4514 MCI-u 3 Yes

4552 NC 3 Yes 518 MCI-c 1.5 No 4521 MCI-u 3 Yes
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4555 NC 3 Yes 539 MCI-c 1.5 No 4531 MCI-u 3 Yes

4558 NC 3 Yes 549 MCI-c 1.5 Yes 4536 MCI-u 3 Yes

4559 NC 3 Yes 567 MCI-c 1.5 Yes 4538 MCI-u 3 Yes

4560 NC 3 Yes 568 MCI-c 3 No 4539 MCI-u 3 Yes

4566 NC 3 Yes 604 MCI-c 2.9 No 4547 MCI-u 3 Yes

4576 NC 3 Yes 611 MCI-c 1.5 No 4548 MCI-u 3 Yes

4577 NC 3 Yes 625 MCI-c 3 No 4553 MCI-u 3 Yes

4578 NC 3 Yes 631 MCI-c 1.5 No 4557 MCI-u 3 Yes

4579 NC 3 Yes 638 MCI-c 2.9 No 4562 MCI-u 3 Yes

4580 NC 3 Yes 649 MCI-c 2.9 No 4565 MCI-u 3 Yes

4585 NC 3 Yes 675 MCI-c 1.5 Yes 4571 MCI-u 3 Yes

4587 NC 3 Yes 695 MCI-c 1.5 Yes 4582 MCI-u 3 Yes

4604 NC 3 Yes 708 MCI-c 1.5 Yes 4584 MCI-u 3 Yes

4607 NC 3 Yes 723 MCI-c 1.5 Yes 4590 MCI-u 3 Yes

4609 NC 3 Yes 725 MCI-c 2.9 No 4596 MCI-u 3 Yes

4612 NC 3 Yes 727 MCI-c 2.9 No 4597 MCI-u 3 Yes

4620 NC 3 Yes 729 MCI-c 1.5 No 4605 MCI-u 3 Yes

4632 NC 3 Yes 750 MCI-c 1.5 No 4611 MCI-u 3 Yes

4637 NC 3 Yes 769 MCI-c 3 No 4613 MCI-u 3 Yes

4638 NC 3 Yes 834 MCI-c 1.5 No 4614 MCI-u 3 Yes

4643 NC 3 Yes 835 MCI-c 2.9 No 4621 MCI-u 3 Yes

4644 NC 3 Yes 839 MCI-c 1.5 No 4623 MCI-u 3 Yes

4645 NC 3 Yes 856 MCI-c 1.5 No 4624 MCI-u 3 Yes

4649 NC 3 Yes 860 MCI-c 1.5 Yes 4626 MCI-u 3 Yes

4652 NC 3 Yes 865 MCI-c 1.5 Yes 4636 MCI-u 3 Yes

4739 NC 3 Yes 869 MCI-c 1.5 No 4646 MCI-u 3 Yes

4762 NC 3 Yes 873 MCI-c 1.5 No 4654 MCI-u 3 Yes

4795 NC 3 Yes 874 MCI-c 1.5 No 4659 MCI-u 3 Yes

4832 NC 3 Yes 887 MCI-c 1.5 No 4668 MCI-u 3 Yes

4835 NC 3 Yes 906 MCI-c 1.5 Yes 4674 MCI-u 3 Yes

4843 NC 3 Yes 909 MCI-c 1.5 Yes 4675 MCI-u 3 Yes

4855 NC 3 Yes 913 MCI-c 2.9 No 4678 MCI-u 3 Yes

4872 NC 3 Yes 915 MCI-c 1.5 No 4679 MCI-u 3 Yes

4878 NC 3 Yes 922 MCI-c 2.9 No 4711 MCI-u 3 Yes
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4900 NC 3 Yes 941 MCI-c 1.5 Yes 4713 MCI-u 3 Yes

4921 NC 3 Yes 947 MCI-c 1.5 Yes 4715 MCI-u 3 Yes

4951 NC 3 Yes 952 MCI-c 1.5 No 4722 MCI-u 3 Yes

4952 NC 3 Yes 954 MCI-c 1.5 No 4723 MCI-u 3 Yes

5040 NC 3 Yes 973 MCI-c 1.5 Yes 4736 MCI-u 3 Yes

3 AD 1.5 Yes 976 MCI-c 1.5 Yes 4742 MCI-u 3 Yes

7 AD 1.5 No 982 MCI-c 1.5 No 4743 MCI-u 3 Yes

10 AD 1.5 Yes 987 MCI-c 1.5 Yes 4746 MCI-u 3 Yes

29 AD 1.5 No 1004 MCI-c 1.5 No 4750 MCI-u 3 Yes

53 AD 1.5 Yes 1007 MCI-c 1.5 Yes 4757 MCI-u 3 Yes

76 AD 1.5 No 1010 MCI-c 1.5 Yes 4764 MCI-u 3 Yes

83 AD 1.5 No 1015 MCI-c 1.5 No 4765 MCI-u 3 Yes

84 AD 1.5 No 1043 MCI-c 1.5 Yes 4769 MCI-u 3 Yes

88 AD 1.5 No 1054 MCI-c 1.5 No 4777 MCI-u 3 Yes

91 AD 1.5 No 1057 MCI-c 1.5 Yes 4780 MCI-u 3 Yes

93 AD 1.5 No 1070 MCI-c 1.5 No 4782 MCI-u 3 Yes

94 AD 1.5 No 1077 MCI-c 1.5 Yes 4791 MCI-u 3 Yes

110 AD 1.5 No 1117 MCI-c 3 No 4799 MCI-u 3 Yes

129 AD 1.5 No 1121 MCI-c 3 No 4803 MCI-u 3 Yes

139 AD 2.9 No 1126 MCI-c 3 No 4804 MCI-u 3 Yes

162 AD 1.5 No 1130 MCI-c 1.5 Yes 4805 MCI-u 3 Yes

183 AD 1.5 Yes 1135 MCI-c 1.5 Yes 4806 MCI-u 3 Yes

194 AD 1.5 No 1138 MCI-c 3 No 4813 MCI-u 3 Yes

213 AD 1.5 Yes 1148 MCI-c 2.9 No 4814 MCI-u 3 Yes

221 AD 1.5 Yes 1217 MCI-c 1.5 Yes 4815 MCI-u 3 Yes

228 AD 1.5 Yes 1240 MCI-c 1.5 Yes 4816 MCI-u 3 Yes

266 AD 1.5 Yes 1243 MCI-c 1.5 Yes 4817 MCI-u 3 Yes

299 AD 1.5 No 1244 MCI-c 1.5 No 4823 MCI-u 3 Yes

300 AD 1.5 No 1247 MCI-c 3 No 4825 MCI-u 3 Yes

310 AD 1.5 No 1265 MCI-c 1.5 Yes 4838 MCI-u 3 No

321 AD 1.5 Yes 1271 MCI-c 1.5 No 4842 MCI-u 3 Yes

332 AD 2.9 No 1282 MCI-c 1.5 Yes 4849 MCI-u 3 Yes

341 AD 1.5 Yes 1299 MCI-c 1.5 Yes 4852 MCI-u 3 Yes

343 AD 1.5 Yes 1311 MCI-c 1.5 Yes 4869 MCI-u 3 Yes
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366 AD 1.5 No 1315 MCI-c 1.5 Yes 4873 MCI-u 3 Yes

370 AD 1.5 Yes 1331 MCI-c 3 No 4876 MCI-u 3 Yes

374 AD 1.5 Yes 1351 MCI-c 1.5 Yes 4885 MCI-u 3 Yes

392 AD 2.9 No 1363 MCI-c 1.5 No 4889 MCI-u 3 Yes

404 AD 2.9 No 1389 MCI-c 3 No 4891 MCI-u 3 Yes

426 AD 1.5 No 1394 MCI-c 1.5 Yes 4893 MCI-u 3 Yes

431 AD 1.5 Yes 1398 MCI-c 1.5 Yes 4898 MCI-u 3 Yes

438 AD 1.5 Yes 1407 MCI-c 1.5 Yes 4902 MCI-u 3 Yes

457 AD 3 No 1412 MCI-c 1.5 Yes 4904 MCI-u 3 Yes

470 AD 1.5 Yes 1423 MCI-c 1.5 Yes 4909 MCI-u 3 Yes

487 AD 2.9 No 1427 MCI-c 1.5 Yes 4917 MCI-u 3 Yes

492 AD 1.5 Yes 2047 MCI-c 3 Yes 4919 MCI-u 3 Yes

517 AD 1.5 No 2216 MCI-c 3 Yes 4920 MCI-u 3 No

528 AD 1.5 No 2398 MCI-c 3 Yes 4925 MCI-u 3 Yes

535 AD 1.5 Yes 4005 MCI-c 3 Yes 4926 MCI-u 3 Yes

543 AD 1.5 Yes 4035 MCI-c 3 Yes 4929 MCI-u 3 Yes

547 AD 1.5 Yes 4042 MCI-c 3 Yes 4936 MCI-u 3 Yes

554 AD 1.5 Yes 4057 MCI-c 3 Yes 4941 MCI-u 3 Yes

577 AD 1.5 Yes 4094 MCI-c 3 Yes 4955 MCI-u 3 Yes

592 AD 1.5 No 4096 MCI-c 3 Yes 4960 MCI-u 3 Yes

606 AD 3 No 4102 MCI-c 3 Yes 4974 MCI-u 3 Yes

619 AD 1.5 No 4114 MCI-c 3 Yes 4976 MCI-u 3 Yes

642 AD 1.5 Yes 4131 MCI-c 3 Yes 4985 MCI-u 3 Yes

653 AD 1.5 Yes 4167 MCI-c 3 Yes 4989 MCI-u 3 Yes

733 AD 2.9 No 4189 MCI-c 3 Yes 5014 MCI-u 3 Yes

740 AD 1.5 Yes 4203 MCI-c 3 Yes

753 AD 2.9 No 4240 MCI-c 3 Yes

754 AD 1.5 Yes 4366 MCI-c 3 Yes

759 AD 1.5 No 4402 MCI-c 3 Yes

B.4 Subjects in experiment in chapter 8
The subjects used in the experiments described in chapter 8 are listed in table B.5. For each

subject, as well as the disease group, the scanner field strength is listed. The small number
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of scans done in 2.9T scanners are grouped with the 3T scans when examining the effects of

different scanner field strengths.

Table B.5: List of subjects used in the ARK experiments in chapter

8. ID = ADNI roster ID number, Status = disease status of subject,

T = field strength of structural MRI in Tesla.

ID Status T ID Status T ID Status T ID Status T

2 NC 1.5 4179 NC 3 1056 AD 1.5 1187 MCI-s 1.5

5 NC 1.5 4198 NC 3 1059 AD 1.5 1199 MCI-s 1.5

8 NC 1.5 4200 NC 3 1079 AD 1.5 1210 MCI-s 1.5

14 NC 1.5 4208 NC 3 1081 AD 2.9 1227 MCI-s 1.5

16 NC 1.5 4213 NC 3 1082 AD 2.9 1246 MCI-s 1.5

19 NC 1.5 4218 NC 3 1083 AD 2.9 1255 MCI-s 1.5

21 NC 1.5 4222 NC 3 1090 AD 1.5 1260 MCI-s 1.5

22 NC 1.5 4225 NC 3 1095 AD 1.5 1268 MCI-s 1.5

23 NC 1.5 4234 NC 3 1101 AD 3 1269 MCI-s 1.5

31 NC 2.9 4254 NC 3 1102 AD 1.5 1284 MCI-s 1.5

40 NC 1.5 4255 NC 3 1109 AD 1.5 1300 MCI-s 1.5

48 NC 1.5 4257 NC 3 1137 AD 1.5 1314 MCI-s 1.5

56 NC 1.5 4262 NC 3 1144 AD 1.5 1318 MCI-s 1.5

58 NC 2.9 4266 NC 3 1152 AD 1.5 1338 MCI-s 3

59 NC 1.5 4269 NC 3 1157 AD 1.5 1340 MCI-s 3

61 NC 2.9 4270 NC 3 1161 AD 1.5 1346 MCI-s 1.5

66 NC 1.5 4275 NC 3 1164 AD 1.5 1357 MCI-s 1.5

67 NC 1.5 4276 NC 3 1170 AD 2.9 1378 MCI-s 1.5

68 NC 1.5 4277 NC 3 1171 AD 1.5 1384 MCI-s 1.5

70 NC 1.5 4278 NC 3 1184 AD 1.5 1406 MCI-s 1.5

72 NC 1.5 4279 NC 3 1185 AD 3 1414 MCI-s 1.5

74 NC 1.5 4288 NC 3 1192 AD 1.5 1417 MCI-s 1.5

81 NC 1.5 4290 NC 3 1201 AD 1.5 1418 MCI-s 1.5

86 NC 1.5 4291 NC 3 1205 AD 1.5 1419 MCI-s 1.5

89 NC 1.5 4292 NC 3 1209 AD 3 1421 MCI-s 1.5

90 NC 1.5 4308 NC 3 1221 AD 1.5 2002 MCI-s 3
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96 NC 1.5 4313 NC 3 1248 AD 1.5 2003 MCI-s 3

97 NC 1.5 4320 NC 3 1253 AD 3 2011 MCI-s 3

106 NC 1.5 4335 NC 3 1254 AD 1.5 2031 MCI-s 3

113 NC 1.5 4337 NC 3 1257 AD 1.5 2057 MCI-s 3

118 NC 1.5 4339 NC 3 1262 AD 3 2070 MCI-s 3

120 NC 1.5 4340 NC 3 1263 AD 1.5 2199 MCI-s 3

123 NC 1.5 4343 NC 3 1281 AD 1.5 2237 MCI-s 3

125 NC 1.5 4345 NC 3 1283 AD 1.5 2278 MCI-s 3

130 NC 1.5 4348 NC 3 1285 AD 1.5 4067 MCI-s 3

156 NC 1.5 4349 NC 3 1289 AD 3 4134 MCI-s 3

166 NC 1.5 4350 NC 3 1290 AD 1.5 4186 MCI-s 3

171 NC 1.5 4352 NC 3 1296 AD 1.5 4217 MCI-s 3

172 NC 1.5 4357 NC 3 1304 AD 3 4260 MCI-s 3

173 NC 1.5 4367 NC 3 1307 AD 1.5 4274 MCI-s 3

177 NC 1.5 4369 NC 3 1308 AD 1.5 4332 MCI-s 3

184 NC 1.5 4371 NC 3 1334 AD 1.5 4403 MCI-s 3

186 NC 1.5 4372 NC 3 1337 AD 1.5 4408 MCI-s 3

196 NC 1.5 4376 NC 3 1339 AD 1.5 4431 MCI-s 3

223 NC 1.5 4382 NC 3 1341 AD 1.5 4517 MCI-s 3

229 NC 1.5 4384 NC 3 1354 AD 1.5 4524 MCI-s 3

230 NC 1.5 4385 NC 3 1368 AD 1.5 4556 MCI-s 3

232 NC 1.5 4386 NC 3 1371 AD 1.5 4594 MCI-s 3

245 NC 1.5 4387 NC 3 1373 AD 1.5 4601 MCI-s 3

257 NC 1.5 4388 NC 3 1377 AD 1.5 4694 MCI-s 3

259 NC 1.5 4389 NC 3 1379 AD 1.5 4745 MCI-s 3

260 NC 3 4391 NC 3 1382 AD 1.5 4798 MCI-s 3

262 NC 1.5 4393 NC 3 1385 AD 2.9 4871 MCI-s 3

272 NC 1.5 4396 NC 3 1391 AD 1.5 4883 MCI-s 3

283 NC 1.5 4399 NC 3 1397 AD 1.5 4907 MCI-s 3

295 NC 1.5 4400 NC 3 1402 AD 1.5 4944 MCI-s 3

298 NC 1.5 4401 NC 3 1409 AD 1.5 4945 MCI-s 3

301 NC 1.5 4410 NC 3 1430 AD 1.5 5004 MCI-s 3

303 NC 2.9 4421 NC 3 1435 AD 1.5 30 MCI-c 2.9

311 NC 1.5 4422 NC 3 4009 AD 3 41 MCI-c 1.5
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312 NC 1.5 4424 NC 3 4024 AD 3 42 MCI-c 1.5

319 NC 1.5 4427 NC 3 4039 AD 3 45 MCI-c 1.5

327 NC 1.5 4428 NC 3 4136 AD 3 50 MCI-c 1.5

337 NC 1.5 4429 NC 3 4152 AD 3 54 MCI-c 1.5

352 NC 1.5 4433 NC 3 4153 AD 3 77 MCI-c 1.5

359 NC 1.5 4441 NC 3 4172 AD 3 98 MCI-c 1.5

360 NC 1.5 4442 NC 3 4192 AD 3 101 MCI-c 1.5

363 NC 1.5 4446 NC 3 4195 AD 3 108 MCI-c 1.5

382 NC 2.9 4448 NC 3 4201 AD 3 111 MCI-c 1.5

386 NC 1.5 4449 NC 3 4209 AD 3 126 MCI-c 1.5

403 NC 2.9 4453 NC 3 4211 AD 3 128 MCI-c 1.5

405 NC 3 4464 NC 3 4215 AD 3 141 MCI-c 1.5

413 NC 1.5 4466 NC 3 4223 AD 3 161 MCI-c 1.5

416 NC 1.5 4469 NC 3 4252 AD 3 179 MCI-c 1.5

419 NC 1.5 4474 NC 3 4258 AD 3 182 MCI-c 1.5

436 NC 1.5 4482 NC 3 4280 AD 3 195 MCI-c 1.5

441 NC 3 4483 NC 3 4282 AD 3 204 MCI-c 1.5

454 NC 1.5 4485 NC 3 4307 AD 3 217 MCI-c 1.5

459 NC 1.5 4488 NC 3 4338 AD 3 222 MCI-c 1.5

467 NC 1.5 4491 NC 3 4353 AD 3 227 MCI-c 1.5

484 NC 1.5 4496 NC 3 4373 AD 3 231 MCI-c 1.5

488 NC 2.9 4499 NC 3 4379 AD 3 240 MCI-c 1.5

489 NC 1.5 4503 NC 3 4477 AD 3 241 MCI-c 1.5

493 NC 2.9 4505 NC 3 4494 AD 3 243 MCI-c 1.5

498 NC 1.5 4508 NC 3 4500 AD 3 249 MCI-c 1.5

500 NC 1.5 4512 NC 3 4526 AD 3 256 MCI-c 1.5

502 NC 1.5 4516 NC 3 4546 AD 3 258 MCI-c 1.5

506 NC 1.5 4545 NC 3 4549 AD 3 269 MCI-c 1.5

516 NC 1.5 4552 NC 3 4583 AD 3 289 MCI-c 1.5

519 NC 1.5 4555 NC 3 4589 AD 3 293 MCI-c 1.5

520 NC 1.5 4558 NC 3 4591 AD 3 294 MCI-c 1.5

522 NC 1.5 4559 NC 3 4615 AD 3 314 MCI-c 1.5

526 NC 1.5 4560 NC 3 4641 AD 3 325 MCI-c 1.5

533 NC 1.5 4566 NC 3 4657 AD 3 326 MCI-c 1.5
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534 NC 1.5 4576 NC 3 4660 AD 3 331 MCI-c 2.9

538 NC 1.5 4577 NC 3 4672 AD 3 336 MCI-c 1.5

545 NC 1.5 4578 NC 3 4686 AD 3 344 MCI-c 1.5

548 NC 1.5 4579 NC 3 4692 AD 3 362 MCI-c 1.5

553 NC 3 4580 NC 3 4696 AD 3 388 MCI-c 2.9

555 NC 1.5 4585 NC 3 4707 AD 3 390 MCI-c 1.5

558 NC 1.5 4586 NC 3 4728 AD 3 394 MCI-c 1.5

559 NC 1.5 4587 NC 3 4730 AD 3 423 MCI-c 1.5

575 NC 1.5 4599 NC 3 4732 AD 3 434 MCI-c 1.5

576 NC 1.5 4604 NC 3 4733 AD 3 461 MCI-c 1.5

578 NC 1.5 4607 NC 3 4755 AD 3 507 MCI-c 1.5

601 NC 1.5 4609 NC 3 4756 AD 3 511 MCI-c 1.5

602 NC 3 4612 NC 3 4770 AD 3 513 MCI-c 1.5

605 NC 3 4616 NC 3 4774 AD 3 518 MCI-c 1.5

610 NC 1.5 4620 NC 3 4783 AD 3 539 MCI-c 1.5

618 NC 1.5 4632 NC 3 4801 AD 3 549 MCI-c 1.5

622 NC 3 4637 NC 3 4802 AD 3 563 MCI-c 1.5

640 NC 2.9 4638 NC 3 4820 AD 3 567 MCI-c 1.5

643 NC 1.5 4643 NC 3 4827 AD 3 568 MCI-c 3

647 NC 1.5 4644 NC 3 4845 AD 3 572 MCI-c 3

648 NC 1.5 4645 NC 3 4853 AD 3 604 MCI-c 2.9

657 NC 1.5 4649 NC 3 4863 AD 3 611 MCI-c 1.5

672 NC 1.5 4652 NC 3 4867 AD 3 625 MCI-c 3

677 NC 3 4688 NC 3 4887 AD 3 631 MCI-c 1.5

680 NC 1.5 4739 NC 3 4892 AD 3 638 MCI-c 2.9

681 NC 1.5 4762 NC 3 4894 AD 3 649 MCI-c 2.9

684 NC 1.5 4795 NC 3 4905 AD 3 658 MCI-c 1.5

685 NC 1.5 4832 NC 3 4906 AD 3 667 MCI-c 1.5

686 NC 1.5 4835 NC 3 4910 AD 3 675 MCI-c 1.5

692 NC 1.5 4843 NC 3 4911 AD 3 695 MCI-c 1.5

711 NC 1.5 4855 NC 3 4924 AD 3 697 MCI-c 1.5

717 NC 1.5 4872 NC 3 4938 AD 3 708 MCI-c 1.5

726 NC 1.5 4878 NC 3 4940 AD 3 723 MCI-c 1.5

731 NC 1.5 4900 NC 3 4949 AD 3 725 MCI-c 2.9
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734 NC 1.5 4921 NC 3 4954 AD 3 727 MCI-c 2.9

741 NC 1.5 4951 NC 3 4962 AD 3 729 MCI-c 1.5

751 NC 1.5 4952 NC 3 4971 AD 3 750 MCI-c 1.5

761 NC 1.5 5040 NC 3 4992 AD 3 752 MCI-c 2.9

767 NC 1.5 3 AD 1.5 5012 AD 3 769 MCI-c 3

768 NC 1.5 7 AD 1.5 5013 AD 3 834 MCI-c 1.5

778 NC 1.5 10 AD 1.5 5015 AD 3 835 MCI-c 2.9

779 NC 1.5 29 AD 1.5 5017 AD 3 839 MCI-c 1.5

810 NC 1.5 53 AD 1.5 5018 AD 3 856 MCI-c 1.5

813 NC 1.5 76 AD 1.5 5019 AD 3 860 MCI-c 1.5

818 NC 1.5 78 AD 2.9 5028 AD 3 861 MCI-c 1.5

824 NC 1.5 83 AD 1.5 4 MCI-s 1.5 865 MCI-c 1.5

842 NC 1.5 84 AD 1.5 33 MCI-s 1.5 869 MCI-c 1.5

843 NC 1.5 88 AD 1.5 51 MCI-s 1.5 873 MCI-c 1.5

862 NC 1.5 91 AD 1.5 102 MCI-s 1.5 874 MCI-c 1.5

863 NC 1.5 93 AD 1.5 107 MCI-s 1.5 878 MCI-c 1.5

866 NC 1.5 94 AD 1.5 116 MCI-s 1.5 887 MCI-c 1.5

876 NC 1.5 110 AD 1.5 135 MCI-s 1.5 906 MCI-c 1.5

883 NC 1.5 129 AD 1.5 150 MCI-s 1.5 909 MCI-c 1.5

886 NC 1.5 139 AD 2.9 158 MCI-s 1.5 913 MCI-c 2.9

896 NC 1.5 149 AD 1.5 160 MCI-s 1.5 915 MCI-c 1.5

898 NC 1.5 162 AD 1.5 169 MCI-s 1.5 922 MCI-c 2.9

899 NC 1.5 167 AD 1.5 176 MCI-s 1.5 941 MCI-c 1.5

907 NC 1.5 183 AD 1.5 178 MCI-s 1.5 947 MCI-c 1.5

920 NC 2.9 194 AD 1.5 200 MCI-s 1.5 952 MCI-c 1.5

923 NC 1.5 213 AD 1.5 225 MCI-s 1.5 954 MCI-c 1.5

926 NC 3 216 AD 1.5 273 MCI-s 1.5 973 MCI-c 1.5

931 NC 1.5 219 AD 1.5 276 MCI-s 1.5 976 MCI-c 1.5

934 NC 1.5 221 AD 1.5 285 MCI-s 1.5 982 MCI-c 1.5

951 NC 1.5 228 AD 1.5 288 MCI-s 1.5 987 MCI-c 1.5

963 NC 3 266 AD 1.5 290 MCI-s 3 997 MCI-c 1.5

967 NC 1.5 299 AD 1.5 291 MCI-s 1.5 1004 MCI-c 1.5

969 NC 1.5 300 AD 1.5 292 MCI-s 1.5 1007 MCI-c 1.5

972 NC 1.5 310 AD 1.5 307 MCI-s 2.9 1010 MCI-c 1.5
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981 NC 1.5 316 AD 1.5 324 MCI-s 3 1015 MCI-c 1.5

984 NC 1.5 321 AD 1.5 339 MCI-s 1.5 1043 MCI-c 1.5

985 NC 1.5 328 AD 1.5 351 MCI-s 1.5 1054 MCI-c 1.5

1002 NC 1.5 332 AD 2.9 361 MCI-s 1.5 1057 MCI-c 1.5

1013 NC 1.5 341 AD 1.5 376 MCI-s 2.9 1066 MCI-c 3

1014 NC 1.5 343 AD 1.5 378 MCI-s 1.5 1070 MCI-c 1.5

1016 NC 2.9 356 AD 1.5 389 MCI-s 1.5 1073 MCI-c 1.5

1021 NC 1.5 366 AD 1.5 407 MCI-s 1.5 1077 MCI-c 1.5

1023 NC 1.5 370 AD 1.5 408 MCI-s 1.5 1117 MCI-c 3

1035 NC 2.9 372 AD 1.5 424 MCI-s 1.5 1121 MCI-c 3

1063 NC 1.5 374 AD 1.5 445 MCI-s 1.5 1126 MCI-c 3

1086 NC 2.9 392 AD 2.9 448 MCI-s 3 1130 MCI-c 1.5

1094 NC 1.5 404 AD 2.9 449 MCI-s 1.5 1135 MCI-c 1.5

1098 NC 2.9 426 AD 1.5 464 MCI-s 1.5 1138 MCI-c 3

1099 NC 1.5 431 AD 1.5 469 MCI-s 2.9 1148 MCI-c 2.9

1123 NC 3 438 AD 1.5 481 MCI-s 1.5 1213 MCI-c 1.5

1169 NC 3 457 AD 3 501 MCI-s 2.9 1217 MCI-c 1.5

1190 NC 3 470 AD 1.5 505 MCI-s 1.5 1224 MCI-c 1.5

1194 NC 1.5 474 AD 1.5 546 MCI-s 1.5 1240 MCI-c 1.5

1195 NC 1.5 487 AD 2.9 552 MCI-s 1.5 1243 MCI-c 1.5

1197 NC 1.5 492 AD 1.5 557 MCI-s 1.5 1244 MCI-c 1.5

1200 NC 1.5 497 AD 1.5 588 MCI-s 1.5 1247 MCI-c 3

1202 NC 1.5 517 AD 1.5 590 MCI-s 1.5 1265 MCI-c 1.5

1203 NC 1.5 528 AD 1.5 607 MCI-s 3 1271 MCI-c 1.5

1206 NC 3 535 AD 1.5 608 MCI-s 1.5 1282 MCI-c 1.5

1222 NC 3 543 AD 1.5 613 MCI-s 3 1295 MCI-c 1.5

1232 NC 2.9 547 AD 1.5 621 MCI-s 1.5 1299 MCI-c 1.5

1242 NC 2.9 554 AD 1.5 626 MCI-s 1.5 1311 MCI-c 1.5

1249 NC 2.9 565 AD 1.5 641 MCI-s 1.5 1315 MCI-c 1.5

1250 NC 3 577 AD 1.5 644 MCI-s 1.5 1331 MCI-c 3

1251 NC 3 592 AD 1.5 656 MCI-s 1.5 1351 MCI-c 1.5

1256 NC 3 606 AD 3 671 MCI-s 1.5 1363 MCI-c 1.5

1261 NC 1.5 619 AD 1.5 673 MCI-s 1.5 1387 MCI-c 2.9

1267 NC 3 627 AD 1.5 679 MCI-s 1.5 1389 MCI-c 3
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1276 NC 2.9 642 AD 1.5 698 MCI-s 1.5 1393 MCI-c 1.5

1280 NC 1.5 653 AD 1.5 709 MCI-s 1.5 1394 MCI-c 1.5

1288 NC 3 690 AD 1.5 715 MCI-s 1.5 1398 MCI-c 1.5

1301 NC 3 691 AD 3 746 MCI-s 1.5 1407 MCI-c 1.5

1306 NC 1.5 696 AD 1.5 770 MCI-s 1.5 1412 MCI-c 1.5

2201 NC 3 699 AD 1.5 771 MCI-s 2.9 1423 MCI-c 1.5

4003 NC 3 724 AD 2.9 782 MCI-s 1.5 1425 MCI-c 1.5

4010 NC 3 730 AD 1.5 792 MCI-s 2.9 1427 MCI-c 1.5

4014 NC 3 733 AD 2.9 800 MCI-s 1.5 2047 MCI-c 3

4018 NC 3 740 AD 1.5 830 MCI-s 3 2216 MCI-c 3

4020 NC 3 753 AD 2.9 851 MCI-s 1.5 2398 MCI-c 3

4021 NC 3 754 AD 1.5 867 MCI-s 1.5 4005 MCI-c 3

4026 NC 3 759 AD 1.5 871 MCI-s 1.5 4015 MCI-c 3

4028 NC 3 760 AD 1.5 908 MCI-s 1.5 4035 MCI-c 3

4032 NC 3 777 AD 1.5 912 MCI-s 2.9 4042 MCI-c 3

4037 NC 3 784 AD 1.5 914 MCI-s 1.5 4057 MCI-c 3

4041 NC 3 790 AD 1.5 919 MCI-s 1.5 4094 MCI-c 3

4043 NC 3 793 AD 1.5 921 MCI-s 1.5 4096 MCI-c 3

4050 NC 3 796 AD 1.5 925 MCI-s 1.5 4102 MCI-c 3

4060 NC 3 812 AD 3 945 MCI-s 1.5 4114 MCI-c 3

4066 NC 3 814 AD 3 950 MCI-s 1.5 4131 MCI-c 3

4075 NC 3 816 AD 1.5 961 MCI-s 1.5 4167 MCI-c 3

4076 NC 3 828 AD 3 989 MCI-s 1.5 4189 MCI-c 3

4080 NC 3 836 AD 1.5 994 MCI-s 1.5 4203 MCI-c 3

4081 NC 3 841 AD 1.5 1030 MCI-s 1.5 4240 MCI-c 3

4082 NC 3 844 AD 3 1031 MCI-s 2.9 4366 MCI-c 3

4084 NC 3 850 AD 1.5 1032 MCI-s 1.5 4402 MCI-c 3

4086 NC 3 852 AD 1.5 1034 MCI-s 1.5 4414 MCI-c 3

4090 NC 3 853 AD 1.5 1040 MCI-s 1.5 4432 MCI-c 3

4092 NC 3 884 AD 1.5 1045 MCI-s 1.5 4502 MCI-c 3

4093 NC 3 889 AD 1.5 1046 MCI-s 3 4515 MCI-c 3

4100 NC 3 891 AD 1.5 1052 MCI-s 1.5 4530 MCI-c 3

4104 NC 3 916 AD 3 1072 MCI-s 3 4595 MCI-c 3

4119 NC 3 929 AD 1.5 1078 MCI-s 1.5 4661 MCI-c 3
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4120 NC 3 938 AD 1.5 1080 MCI-s 1.5 4680 MCI-c 3

4121 NC 3 955 AD 1.5 1088 MCI-s 2.9 4689 MCI-c 3

4125 NC 3 956 AD 1.5 1097 MCI-s 1.5 4706 MCI-c 3

4139 NC 3 979 AD 1.5 1106 MCI-s 1.5 4712 MCI-c 3

4148 NC 3 991 AD 1.5 1114 MCI-s 1.5 4784 MCI-c 3

4150 NC 3 996 AD 2.9 1118 MCI-s 1.5 4796 MCI-c 3

4151 NC 3 999 AD 1.5 1122 MCI-s 1.5 4857 MCI-c 3

4155 NC 3 1001 AD 1.5 1131 MCI-s 3 4888 MCI-c 3

4158 NC 3 1018 AD 1.5 1140 MCI-s 1.5 4899 MCI-c 3

4164 NC 3 1024 AD 1.5 1149 MCI-s 3 4918 MCI-c 3

4173 NC 3 1027 AD 1.5 1155 MCI-s 1.5 4928 MCI-c 3

4174 NC 3 1041 AD 1.5 1182 MCI-s 1.5

4176 NC 3 1044 AD 1.5 1183 MCI-s 1.5

4177 NC 3 1055 AD 2.9 1186 MCI-s 1.5
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