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Abstract

In the first part of this thesis, we address the problem of separating stars from galaxies

in future large photometric surveys. We derive the science requirements on star/galaxy

separation, for measurement of the cosmological parameters with the Gravitational Weak

Lensing and Large Scale Structure probes, in chapter 2. We formulate the requirements in

terms of the completeness and purity provided by a given star/galaxy classifier. In order

to achieve these requirements, we propose a new method for star/galaxy separation in

chapter 3, combining Principal Component Analysis with an Artificial Neural Network.

When tested on simulations of the Dark Energy Survey (DES), this multi-parameter ap-

proach improves upon purely morphometric classifiers (such as the classifier implemented

in SExtractor), especially at faint magnitudes. Chapter 4 is dedicated to the testing of

this tool on real data, namely the recent internal release of DES Science Verification data.

In the second part and last chapter of this thesis, chapter 5, we develop a method to

detect the modulation by Baryonic Acoustic Oscillations of the density ratio of baryon

to dark matter across large regions of the Universe. Such a detection would provide a

direct measurement of a difference in the large-scale clustering of mass and light and a

confirmation of the standard cosmological paradigm from a different angle than any other

measurement. We measure the number density correlation function and the luminosity

weighted correlation function of the DR10 releases of the Baryon Oscillation Spectroscopic

Survey (BOSS), and fit a model of scale dependent bias to our measurement. Although

our measurement is compatible with previous theoretical predictions, more accurate data

is needed to prove or disprove this effect.
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α = 0. Both σ and ∆ are marginalised over {Ωm, H, σ8, Ωb, ns} and

are computed using the setup described in section 2.4.1. The yellow area

corresponds to the values of fs for which the requirement on the system-

atic errors is achieved, i.e. it does not dominate over the statistical error.

This requirement translates into a threshold on fs, indicated by the green

line. Unlike LSS measurements, WL measurements are not sensitive to the

galaxy bias bg, which is the reason why it does not appear above. . . . . . . 80

2.8 Evolution with the coefficient α of the value of pglim, from the constraint on

the bias of the equation of star parameter wa (left) and wo (right). . . . . . 81

2.9 Marginalised statistical error σ (red line) and systematic parameter shift

∆ (blue curve) from the LSS probe, for different values of the stellar con-

tamination fs allowed by the star/galaxy classifier. Both σ and ∆ are

marginalised over {Ωm, H, σ8, Ωb, ns, bg} and are computed using the

setup described in section 2.4.1, with l ∈ [10, 400], to avoid the non linear

regime. The yellow area corresponds to the values of fs for which the re-

quirement on the systematic errors is achieved, i.e. it does not dominate

over the statistical error. This requirement translates into a threshold on fs,

indicated by the green line. Unlike WL measurements, LSS measurements

are sensitive to the galaxy bias bg, as shown on the last panel. . . . . . . . . 82

2.10 Mean Flux Radius parameter for stars (blue), galaxies (green), and for

all the objects classified as stars (i.e. true stars and misclassified galaxies)

(red). As fg grows, more and more misclassified galaxies contribute to

Flux Radiusstars+galmis , the average size of all the objects classified as stars

grows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.11 Resolution factors, R and R′. As the number of misclassified galaxies grows,

the average size of all the objects classified as stars grows. This explains

why R′ decreases when fg increases. Both R and R′ are larger than 1,

because the average size of galaxies is larger than the average size of stars

and misclassified galaxies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
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2.12 True PSF polarisation χpsftrue (blue), polarisation of the misclassified galaxies

χmis,gal (green) and biased measured PSF polarisation χpsfbiased (red), as a

function of the contamination from galaxies fg. As the contamination from

galaxies grows, the measured PSF polarisation departs from the true PSF

polarisation, and approaches the polarisation of the misclassified galaxies

which contaminate the stellar sample. . . . . . . . . . . . . . . . . . . . . . 88

2.13 The left panel shows the true galaxy polarisation χtruegal (blue) and the biased

measured galaxy polarisation χmeasuredgal (red), as a function of the contam-

ination from galaxies fg. As the contamination from galaxies grows, the

measured galaxy polarisation departs from the true galaxy polarisation.

The right panel shows χmeasuredgal versus χtruegal . . . . . . . . . . . . . . . . . . 89

2.14 Multiplicative bias m (left) and additive biase c, m and c, shown in fig-

ure 2.14. Previous work by the DES collaboration led to the formulation

of requirements on the value of m and c. These requirements translate

into requirements on the contamination from galaxies. In particular, the

requirement m < 0.004 translates into fg < 0.3 and therefore ps > 70%.

We show two example of requirements on c. The “conservative” require-

ment set by the DES collaboration leads to a stringent requirement on the

contamination: fg ∈ [0.03, 0.06], i.e. ps ∈ [94%, 97%] . . . . . . . . . . . . . 89

2.15 Evolution of the dark energy FoM (the reciprocal of the area of the error

ellipse enclosing 95% confidence limit in the wo-wa plane) with the width

of a gaussian prior of fs and σs, for the WL probe (top panel) and the

LSS probe (lower panel). The FoM is normalized to the prior FoM. A

requirement on the FoM can be translated on a requirement on the width

of the gaussian prior on fs, i.e. on the quality of the star/galaxy classifier.

For example, the horizontal lines correspond to a 5% degradation of the
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3.1 Distribution of the output of all the classifiers presented in this chapter. The

two upper histograms show the classification performed by class star and

spread model. The lower histograms show the classification performed by

our new estimator, multi class. On the right one, we incorporateXspread model

in the input parameters of the ANN. The advantages of pluggingXspread model

into our tool are explained in section 3.2.3. This allows an increase of the

purity for a given completeness, as shown in figure 3.6. . . . . . . . . . . . . 95

3.2 Scatter plots for stars (red markers) and galaxies (blue markers), for four

different types of magnitudes in the i band. The magnitudes are strongly

correlated and PCA is therefore well adapted to re-express them in a new

basis of independent variables. . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3 Value of the variance of the principal components as a function of their index

for the fives (per-band) PCAs performed on the six types of magnitudes:

mag auto, mag iso, mag model, mag petro, mag spheroid and mag psf. . . . 104

3.4 Distribution of the three parameters with the highest Fisher discriminant,

for stars and galaxies as indicated in the figure. pc class star 1 (top left)

is the first principal component from a PCA performed on the five bands

of Xclass star. The two other parameters shown, ellipticity (top right) and

photoZ (bottom) have not gone through any PCA. . . . . . . . . . . . . . . 105

3.5 Schematic diagram of neural network as implemented by ANNz from Collis-

ter & Lahav (2004). When used for photometric redshift measurement, the

input layer of ANNz consists of nodes that take magnitudes in the different

filters used for photometry, but we use a different set of input parameters,

carefully defined and selected according to the procedure of section 3.2.2.

A single hidden layer consisting of p nodes is shown here although more

hidden layers could be used. The output layer has a single node that gives

e.g. the photometric redshift. In our case the output property is not the

redshift, but the class of an object (i.e. the object being a star or a galaxy).

Each connecting line between nodes carries a weight, wij . The bias node

allows for an additive constant when optimising weights. . . . . . . . . . . . 106
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3.6 Purity level at the required completeness, for the WL probe, as a function of

magnitude in the i band. The orange and pink curves correspond to different

versions of our method: one case (orange), we ran ANNZ on the set of

parameters selected following the PCA; in the other case (pink), we added

spread model (in 5 bands) to this set of parameters, which increase the

level of purity. It appears that ”plugging” spread model to the ANN inputs

increases the purity level.The blue and green ones show the performance of

the classifiers class star and spread model. The orange curve is obtained

when running the ANN on the 15 parameters selected in section 3.2.2 and

the pink curve, the final version of multi class, is obtained when adding

spread model in five bands to this set of inputs. The dashed horizontal line

shows the science requirement from WL science on pg (97.8%, section 2.5.1

of chapter 2) and ps (97.0%, section 2.6 of chapter 2). The requirement on pg

is achieved by multi class up to magnitudes of 22.9, whereas spread model

only allows us to reach 22.0. The requirement on ps is achieved up to

magnitudes of 23.4 with multi class, versus 21.5 with spread model. . . . . 109

3.7 Level of purity for a sample of galaxies pg, for different magnitudes and

values of the completeness. The 98.5% level requirement from LSS (sec-

tion 2.5.2 of chapter 2) is shown in purple, and the 97.8% limit required

for WL (section 2.5.1 of chapter 2) is shown in black. Spread model does

not allow to achieve the LSS requirement, which multi class can reach.

Multi class also allows us to achieve the requirement from WL at fainter

magnitudes than spread model. . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.8 Level of purity for a sample of stars ps, for different magnitudes and values

of the completeness. The 97% science requirement (from WL, derived in

section 2.6 of chapter 2) is shown in black. Higher purity levels are shown in

purple and light purple. Our new estimator, multi class, allows us to widen

the range of both magnitude and completeness where this requirement is

achieved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.9 Difference of the purity level achieved by multi class and spread model,

pmulti class − pspread model for stars (left) and galaxies. At faint magnitudes

(ranging from 23 to 24), multi class allows us to increase the level of ps

achieved by spread model by up to 20%, and pg by up to 12%. . . . . . . . 112
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4.1 Detail of the fields matched to the SVA1-Gold catalog and included in the

catalog we use to test multi class. Credit: Nacho Sevilla. . . . . . . . . . . . 115

4.2 Footprint of DES (blue) the SVA1-Gold catalog (yellow), and the cross-

matched catalog (red). We also show the SPT area, overlapping with the

SV catalog, and the LMC, which has been willingly removed from it.These

footprint have been created with the BigFoot tool, developed by the author
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4.4 Purity-completeness domain for galaxies, with spread model, class star,

and the {group1; 15w} configuration (left panels) and the {group2; 15w}

configuration (right panels) of multi class, for different magnitude ranges:

[18.0, 21.0], [21.0, 23.0], [23.0, 24.0] and the full range [18.0, 24.5] (from top

to bottom). Each point of a given curve corresponds to a value of the

threshold on the corresponding classifier. The threshold on multi class is in

[0, 1], with bins of 0.01. The threshold on spread model is in [0, 0.02], with

bins of 0.0002. The threshold on class star is in [0,1], with bins of [0.01]. . . 120

4.5 Purity-completeness domain for stars, with spread model, class star and the

{group1; 15w} configuration (left panels) and the {group2; 15w} configura-

tion (right panels) of multi class, for different magnitude ranges: [18.0, 21.0],

[21.0, 23.0], [23.0, 24.0] and the full range [18.0, 24.5] (from top to bottom).

Each point corresponds to a different threshold on the classifier. The

threshold on multi class is in [0, 1], with bins of 0.01. The threshold on

spread model is in [0, 0.02], with bins of 0.0002. The threshold on class star
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4.6 Purity level pg at the required completeness, for the WL and LSS probe, as

a function of magnitude in the i band. The left panel corresponds to the

group1 configuration, with w = 5. The right panel shows the same con-

figuration group1 with w = 15. The red curve corresponds to multi class,

whereas the blue and green ones show the performance of the classifiers

class star and spread model. The magnitude bin size is 0.25. The green

domain corresponds to the stringent limit of the science requirement from

WL, on pg (97.8%, section 2.5.1 of chapter 2), whereas the grey domain

corresponds to the science requirement from LSS science on pg (98.5%, sec-

tion 2.5.2 of chapter 2). The purity is set to zero if a classifier does not allow

to reach the required completeness cg = 96.0%: here, spread model does not

allow to reach the cg = 96.0 beyond a magnitude of 24. The completeness

reached by spread model on [24, 24.25], [24.25, 24.5], [24.5, 24.75], [24.75, 25.0]

are 84.4%,77, 0%, 65.6% and 57.3% respectively. The {group1; 15w} con-

figuration of multi class allows to reach the pg ≥ 98.5 requirement from

LSS up to magnitudes similar to spread model (up to [23.0, 23.25]). But it

allows to increase the magnitude limit below which the most stringent WL

requirement is achieved (pg ≥ 97.8) at least two magnitude bins (0.5). . . . 122

4.7 Purity level ps at the required completeness, for the WL and LSS probe,

as a function of magnitude in the i band. The left panel corresponds to

the group1 configuration, with w = 5. The right panel shows the same

configuration group1 with w = 15. The magnitude bin size is 0.2. The

red curve corresponds to the given configuration of multi class, whereas the

blue and green ones show the performance of the classifiers class star and

spread model. The green domain corresponds to the stringent limit of the

science requirement from WL science on ps (97%, section 2.5.1 of chapter 2).

The {group1; 15w} configuration of multi class allows to reach the WL re-

quirement up to [22.6, 22.8], versus [21.4, 21.6], versus [21.4, 21.6] reached

by spread model. (One should note that the star purity ps is affected by

the high galaxies-to-stars high ratio of our sample). . . . . . . . . . . . . . . 123
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4.8 Histogram of some of the classifiers compared in this chapter. The upper

panels show spread model (left) and class star (right), whereas the two

lower panels show two different configurations of multi class: {group1; 15w}

(left) and {group2; 15w} (right). . . . . . . . . . . . . . . . . . . . . . . . . 125

4.9 Histogram of some of the classifiers compared in this chapter, in loga-

rithmic scale. The upper panels show spread model (left) and class star

(right), whereas the two lower panels show two different configurations of

multi class: {group1; 15w} (left) and {group2; 15w} (right). . . . . . . . . . 126

4.10 Level of purity for a sample of galaxies pg, for different magnitudes and

values of the completeness cg ∈ [80%, 100%], with spread model (top left),

class star (top right) and the {group1; 15w} configuration of multi class

(lower left). Any purity below the 97.8% level requirement from WL (sec-

tion 2.5.1 of chapter 2) is shown in dark blue. At the 88.9% completeness

level, class star does allows us to achieve the required on the purity above

21.9, although not consecutively. Spread model allows to reach 24, and

Multi class allows us to achieve the requirement up 24.2. The lower right

panel shows the improvement by multi class with respect to spread model.

In the red area, the completeness is achieved by multi class and not by

spread model. This constitutes the main asset of multi class. In the do-

main of completenesses which is accessible to both classifiers, multi class

only allows us to increase the purity reached by spread model only by up

to 2%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
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4.11 Level of purity for a sample of stars ps, for different magnitudes and values

of the completeness cs ∈ [0%, 100%], with spread model (top left), class star

(top right) and the {group1; 15w} configuration of multi class (lower panel).

Any purity below the 90% level is shown in dark blue, and the 97% require-

ment from WL (section 2.5.1 of chapter 2) is shown in orange. class star

does not allow to achieve the WL requirement above a magnitude of 20.4,

versus 21.6 for spread model. Multi class allows us to reach 22.8, at the

cs ≥ 25% level required. Multi class widen the range of both complete-

ness and magnitude at which high purity levels (≥ 90%) are achieved. The

lower right panel shows the improvement by multi class with respect to

spread model. At faint magnitude, typically higher than 23, the improve-

ment by multi class reaches 46.2%. . . . . . . . . . . . . . . . . . . . . . . . 128
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5.1 Snapshots of evolution of the radial mass profile vs. comoving radius of

an initially point-like over-density located at the origin. All perturbations

are fractional for that species; moreover, the relativistic species have had

their energy density perturbation divided by 4/3 to put them on the same

scale. The black, blue, red, and green lines are the dark matter, baryons,

photons, and neutrinos, respectively. The redshift and time after the big

bang are given in each panel. The units of the mass profile are arbitrary

but are correctly scaled between the panels for the synchronous gauge. Top

left: Near the initial time, the photons and baryons travel outward as a

pulse. Top right: Approaching recombination, one can see the wake in the

cold dark matter raised by the outward-going pulse of baryons and rela-

tivistic species. Middle left: At recombination, the photons leak away from

the baryonic perturbation. Middle right:With recombination complete, we

are left with a CDM perturbation toward the center and a baryonic per-

turbation in a shell. Bottom left: Gravitational instability now takes over,

and new baryons and dark matter are attracted to the over-densities. Bot-

tom right: At late times, the baryonic fraction of the perturbation is near

the cosmic value, because all of the new material was at the cosmic mean.

These figures were made by suitable transforms of the transfer functions

created by CMBFAST (Seljak & Zaldarriaga 1996; Zaldarriaga & Seljak

2000). Credit: Eisenstein et al. (2007b). . . . . . . . . . . . . . . . . . . . . 131

5.2 The fractional baryon derivation r(k) = (δb/δtot) − 1, as a function of the

scale k, at various redshifts (z = 0,0.5,1,3 and 6 from top to bottom).
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5.4 The three ingredients of the model, ξtot, ξadd and ξcip, shown at the DR9

median redshift (z = 0.546) and the DR10 median redshift (z = 0.57). ξtot

and ξadd are shown for two different values of the damping parameter k∗. . 142
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5.5 Evolution of the BOSS sky coverage from DR9 to DR11. Top panels show

the observations in the North Galactic Cap (NGC) while lower panels show

observations in the South Galactic Cap (SGC). Colors indicate the spec-

troscopic completeness within each sector as indicated in the key in the

lower right panel. Gray areas indicate the BOSS expected footprint upon

completion of the survey. The total sky coverage in DR9, DR10, and DR11

is 3275deg2, 6161deg2, and 8377deg2, respectively. Credit: Anderson et al.

(2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6 Our measurement of ξn compared to the BOSS collaboration measurement,

when using the CMASS DR9 data release (left) and when using the latest

release (right; our measurement, in red, was performed with the published

DR10 positions, and the BOSS measurement, in blue, corresponds to the

published DR11 correlation function, for which the positions are not yet

public). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.7 Distribution of the absolute magnitudes (top panels) and absolute luminos-
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DR11 covariance matrix), and by us (lower pannel) . . . . . . . . . . . . . . 149

5.10 Our measurement of the joint covariance matrix (top panel) and inverse

joint covariance matrix (lower panel), using the CMASS-DR10 sample. It is
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5.11 Effect of the b1 (top panels) and b3 (low panels) parameters on the model.

We show the model for ξn, ξl (left) and ξl − ξn (right). When not varying,

the parameters are fixed at b1 = 2.193, b2 = 0, b3 = 2.269, b4 = 4.300,

bsys = −0.002, k∗ = 1.638, AMC = 2.826, bcip = 0.006.When varying, b1

(b3 respectively) takes ten linearly spaced values from 1.8 to 2.8, the ξn(r)

functions (ξl(r) respectively) with lower values (around r = 100Mpc/h)

corresponding to the lower values of b1 (b3 respectively). As expected from

equations 5.26 and 5.27, b1 only affects the shape of ξn and b3 the shape of ξl.150

5.12 Effect of the b4 parameter on the model. We show the model for ξn, ξl (left)

and ξl − ξn (right). When not varying, the parameters are fixed at b1 =

2.193, b2 = 0.000, b3 = 2.269, bsys = −0.002, k∗ = 1.638, AMC = 2.826,

bcip = 0.006. b4 takes ten linearly spaced values from −2 to 8, the flatter

ξl(r) functions (i.e. with lower values around r = 100Mpc/h) corresponding

to the lower values of b4. As expected from equation 5.27, b4 describes a

discrepancy between ξn and ξl which is scale dependent, and appears at the

BAO’s scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.13 Effect of the bsys parameter on the model. We show the model for ξn, ξl (left)

and ξl−ξn (right). The other parameters are fixed at b1 = 2.193, b2 = 0.000,

b3 = 2.269, b4 = 4.300, k∗ = 1.638, AMC = 2.826, bcip = 0.006. The

parameter bsys takes ten linearly spaced values from −0.002 to 0.001, the

ξl(r) functions with lower values (around r = 100Mpc/H) corresponding to

the lower values of bbsys. As expected from equation 5.27, bsys only affects

the shape the shape of ξl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.14 Effect of the bcip parameter on the model. We show the model for ξn, ξl (left)

and ξl−ξn (right). The other parameters are fixed at b1 = 2.193, b2 = 0.000,

b3 = 2.269, b4 = 4.300, k∗ = 1.638, AMC ,= 2.826, bsys = −0.002. The

parameter bcip takes ten linearly spaced values from 0.005 to 0.015, the

ξl(r) functions with lower values corresponding to the lower values of bcip.

As expected from equation 5.27, bcip only affects the shape of ξl. . . . . . . 152
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5.15 Effect of the k∗ parameter on the model. We show the model for ξn, ξl (left)

and ξl−ξn (right). The other parameters are fixed at b1 = 2.193, b2 = 0.000,

b3 = 2.269, b4 = 4.300, AMC = 2.826, bsys = −0.002, bcip = 0.006. The

parameter k∗ takes ten linearly spaced values from 0 to 9. Lower values of

k∗ corresponds to more peaked functions ξn(r) and ξl(r), whereas higher

values of k∗ damp the peak between r ≈ 70 and r ≈ 120. . . . . . . . . . . . 152

5.16 Effect of the AMC parameter on the model. We show the model for ξn, ξl

(left) and ξl − ξn (right). The other parameters are fixed at b1 = 2.193,

b2 = 0.000, b3 = 2.269, b4 = 4.300, bsys = −0.002, k∗ = 1.638, bcip = 0.006.

The parameter AMC takes ten linearly spaced values from 0 to 6. The way

AMC affects the shape of ξn(r) and ξl(r) is complex. Here, higher values of

AMC correspond to the functions ξl(r) (and ξl(r)− ξn(r)) with lower values
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5.17 The 100 simulated signals ξn(r) (top left) and ξl(r) (top right) are drawn
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5.18 Simulation: The lower panels show the fiducial signal (right) and the

recovered signal (left), corresponding to the maximum likelihood values,

i.e. the maximum a posteriori (m.a.p) values (since the priors are uniform).

The upper panels show the residuals |model− data|(r) (left), and the value

of χ2(r) (right), for the maximum likelihood (in red) and for 100 samples of

the MCMC chain (in blue). Note that the maximum likelihood corresponds

to the minimumχ2(r) value, as expected. . . . . . . . . . . . . . . . . . . . . 159

5.19 Simulation: Marginalised distribution for each parameter. The black

dashed line shows the m.a.p, value of the distribution, whereas the blue

one shows the fiducial value. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.20 Simulation: All the one and two dimensional projections of the posterior

probability distributions of our parameters, {b1, b3, b4, bsys, k∗, AMC , bCIP }.

This quickly demonstrates all of the covariances between parameters. The

fiducial values of the parameter are shown in figure 5.19. . . . . . . . . . . . 161
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5.21 :Fitting ξn. The left panels have been obtained with the published corre-

lation function and covariance matrix measured by the BOSS collaboration

(using the un-published DR11 data), whereas the right panels have been

obtained with our measurement of ξn using the CMASS-DR10 sample. The

figures show, in red, the maximum likelihood fit, i.e. the maximum a pos-

teriori (m.a.p) values (since the priors are uniform) and 100 samples of the

MCMC chain, in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.22 Fitting ξn. All the one and two dimensional projections of the posterior

probability distributions of our parameters, {b1, b3, b4, bsys, k∗, AMC , bCIP , b2}.

This quickly demonstrates all of the covariances between parameters. The

contours correspond to the 1σ, 2σ and 3σ percentiles. The dashed lines

show the 1σ percentile of the marginalized distributions. . . . . . . . . . . . 163

5.23 Joint fit of ξn and ξl. The left panels are for the i band and the right

ones are for the g band. The top panels show the data and the maximum

likelihood fit for r2 · ξn and r2 · ξl, also corresponding to the maximum a

posteriori (m.a.p) fit (since the priors are uniform). The lower panels show

the data and the best fit for ξl−ξn, together with 100 samples of the MCMC

chain (in blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.24 Marginalised distribution for each parameter, i band. The black

dashed line shows the maximum likelihood value of each parameter. . . . . 166
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Chapter 1

Introduction

“There will come a time when our descendants will be amazed that we did not know

things that are so plain to them [...] Many discoveries are reserved for ages still to come,

when memory of us will have been effaced. Our universe is a sorry little affair unless it

has in it something for every age to investigate [...] Nature does not reveal her mysteries

once and for all.”

Seneca, Natural Questions Book 7, c., 1st century

“And although people call this “ the Big Bang”, it was not only “big”, it was

“everywhere”, and it was not really an explosion, it was space stretching out. It’s really

quite unfortunate that “the Everywhere Stretches” is not nearly as catchy as “the Big

Bang”.”

Henry Reich, MinutePhysics, 2013

Cosmology refers to the study of the Universe as a whole. It asks some of the most

audacious questions human beings have ever been able to formulate: what is our world?

what is our Universe made of? How did it start and where is it headed? Is there one

or many Universes? Such audacity has led many, throughout history, to echo Sophocles

thought: “Astronomy? Impossible to understand and madness to investigate.”1, or to

accuse astronomers of pure heresy.

1Sophocles, c. 420 BCE

1
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Cosmology has a long history in the pages of both philosophy and religion. If not the

most ancient science of them all, cosmology is the most ancient motivation for the study

of astronomy, which is practiced in every ancient civilization and is the only practical

branch of natural philosophy to be included in the quadrivium of the medieval universities,

together with arithmetic, geometry and music.

For Plato and, under his influence, medieval philosophers and theologians, the desire

to understand the physical world is an instrumental step that should lead to spiritual

and metaphysical progression of the individual, “for every one, as I think, must see that

astronomy compels the soul to look upwards and leads us from this world to another.”2

Ptolemy, one of the most influential Greek astronomers of antiquity, perhaps best expresses

the mingling of astronomy and mysticism in the ancient world: “Mortal as I am, I know

that I am born for a day, but when I follow the serried multitude of the stars in their

circular course, my feet no longer touch the earth. I ascend to Zeus himself to feast me on

ambrosia, the food of the gods.”3 This close link between theology and astronomy is still

very present in medieval philosophy, notably in the work of Maimonides, the preeminent

Spanish Jewish Thorah scholar, philosopher, astronomer, and physician. Maimonides

considered the study of science a necessary condition to metaphysical elevation. He saw

in it a way to approach and embrace the Devine, to be “near the truth [...] in the palace

in which the king lives” 4 and at the same time, a humbling way to appreciate “how he

[the human being] is a tiny, lowly, and dark creature”5.

Nowadays philosophy and astronomy occupy distinct and separate areas of research,

but cosmology, through the very nature of the questions it asks, remains one of their

meeting points.

In this introductory chapter, I provide some of the theoretical frameworks necessary

to understand the work presented in this thesis.

The first part (section 1.1) presents the observations of the expanding Universe, which

led to our current model: the ΛCDM paradigm. This “concordance cosmology” success-

fully explains all our current observations, while ironically pointing at the fact that we

ignore what most of the Universe is made of. As explained in section 1.1.7, this model can

2Plato’s republic, Book VII, CUP, 529a.
3Ptolemy, Anthol. Palat., ix, 577.
4Maimonides, the Guide for Perplexed, Part III, chapter LI, translated into English by Michael Friedl-

nder.
5Maimonide, Mishne Torah, Sefer Ha-Madda, Hilkhot Yesodey Ha-Torah, chapter II, translated into

English by Eliyahu Touger.
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be decomposed into two different problems: the background problem (section 1.2) and the

inhomogeneity problem (section 1.3).

The 20th century has been extremely fruitful for cosmology. It started with very little

understanding of the expansion of the Universe, before the works by Einstein and Hubble,

and ended with a mind blowing discovery: that not only is the Universe expanding, but it

is doing so in an accelerated way. Explaining this acceleration - either with a new “dark

energy” which would drive it, or by re-thinking our entire model - is one of the biggest

challenges faced by cosmology in the next decades. The last section of this introduction

(section 1.4) is dedicated to the different approaches adopted to probe the accelerated

expansion and uncover the nature of dark energy. The detection of Baryon Acoustic

Oscillations and Weak Gravitational lensing, in the first decade of our century, are only

two examples of how exciting our time is for cosmology.

1.1 It’s an expanding world

1.1.1 The cosmological principle

Our description of the Universe is based on the assumption that the Universe is homoge-

neous and isotropic when smoothed on sufficiently large scales. This central assumption

is called the cosmological principle and has a deep philosophical meaning. At the very

source of it lies a statement about the way we perceive ourselves in the Universe, which

has changed throughout cultures and history. Rudnicki (1995) gives examples of different

cosmological principles which were stated throughout Human history:

• The ancient Indian cosmological principle: The Universe is infinite in space

and time and is infinitely heterogeneous.

• The ancient Greek cosmological principle: Our Earth is the natural center of

the Universe.

• The Copernican cosmological principle: The Universe as observed from any

planet looks much the same.

• The perfect cosmological principle: The Universe is (roughly) homogeneous and

isotropic in both time and space
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• The (generalised) cosmological principle: The Universe is (roughly) homoge-

neous in space and time, and is isotropic in space only, i.e. anisotropic in time.

• The anthropic principle: A human being, as he/she is, can exist only in the

Universe as it is.

Until the middle ages, the Universe was thought to be organized around human kind,

whereas the modern view suggests that there should be nothing special about the area of

the galaxy where we live. This statement can be generalised to any region in space and

formulated as an assumption about the whole Universe. Edward Arthur Milne formulated

it in the following way: the Universe as a whole should be homogeneous, with no privileged

point playing a particular role. The perfect cosmological model, which is more symmetric

than the generalised one since it is isotropic in both time and space, led to the steady

state model, which was rejected on observational grounds in favor of the Big Bang theory

(section 1.1.4).

Like any other model about the physical world, this one cannot be proved, but only

falsified. The methodology adopted by modern cosmology is to assume the cosmological

principle, and to test for consistency with the observations. If the data proves the homo-

geneity hypothesis wrong, then there are other possible inhomogeneous models, which in

turn need to be tested with the observations.

In all this thesis, the cosmological principle we will be referring to is the generalized

one (see the list above).

1.1.2 Early observational cosmology

Two complementary discoveries were made possible at the beginning of the 20th century,

by the progress of observational astronomy: the discovery of the galactic structure - i.e.

the fact that the Universe is populated with galaxies separated by large voids - and the

discovery of the expansion of the Universe. They where both the results of a long process

which started as soon as the 18th century and where both made possible by the observation

of the first spectral lines, at the beginning of the 19th century, and the discovery of the

Doppler Effect in 1842.
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Spectral lines

Elements and their atoms have characteristic energy levels governed by quantum theory.

An emission or absorption of a discrete and specific packet of light energy leads to a

transition between these energy levels. This definite energy has a fixed corresponding

wavelength known for each element and their energy levels in the rest frame. However,

for a moving object, such as a galaxy containing the element, this wavelength or spectral

line will be Doppler shifted, towards one end of the spectrum.

Doppler Effect

In 1842, Johann Christian Doppler argued that if an observer receives a wave emitted by

a body in motion, the wavelength measured will be shifted proportionally to the relative

speed of the emitting body (projected along the line of sight).

∆λ/λ = ~v.~n/c , (1.1)

where c is the celerity of the wave. Doppler suggested that this effect could be observable

for sound waves, and maybe also for light. The later assumption was checked experimen-

tally in 1868 by Sir William Huggins, who found that the spectral lines of some neighboring

stars were slightly shifted toward the red or blue ends of the spectrum. So, it was possible

to know the projection along the line of sight of star velocities, vr, using the redshift z

defined as

z ≡ ∆λ/λ = vr/c , (1.2)

where c is the speed of light.

Early intuitions in favor of expansion

At the beginning of the 20th century, progress in instrumentation allowed to go from

measurements of the redshift of stars, to measurements of the redshift of fainter and

diffuse objects, listed under the name of nebulae, which where to become what we now

call galaxies. The first measurements, performed on the brightest nebulae, indicated some

arbitrary distribution of red and blue shifts, just like for stars. But with more observations,

it appeared that the statistics were biased in favor of red shifts, suggesting that a majority
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of nebulae, unlike stars, were going away from us.

Observations by Leavitt, Shappley and Hubble brought the first confirmation of the

galactic structure of the Universe: the nebulae were likely to be some distant replicas of

the Milky Way, and these galaxies were separated by large voids. In this new picture of

the Universe, the “local” scales, populated by stars where to be distinguished from the

much larger galactic scales.

This new picture of the galactic structure, together with the fact that most distant

galaxies where redshifted, led to the intuition that on the largest observable scales, the

Universe was expanding. At first, this idea was not widely accepted because it seemed to

conflict with the modern version of the cosmological principle. Indeed, in the most general

case, a given dynamic of expansion takes place around a center: observing the Universe

expanding around us seemed to be an evidence for the existence of a center, very close

to our own galaxy, so how could the observed expansion of the Universe be compatible

with the absence of center? The answer to this apparent paradox was to be given by the

Hubble’s law.

1.1.3 The Hubble’s law

In fact, the expansion of the Universe does not imply the existence of a center, and is

not necessarily contradictory with the cosmological principle. The homogeneity of the

Universe is compatible either with a static distribution of galaxies, or with a very specific

velocity field, obeying a linear distribution: ~v = H~r. Along the line of sight, this translates

into what was later called the Hubble’s law:

v = H0d . (1.3)

Vesto Melvin Slipher and then Edwin Hubble - who gave his name to the proportion-

ality constant, H0 - tried to check this idea. In order to measure distances, they used

a particular type of variable stars, cepheids, whose intrinsic luminosity follows a well-

known trend which allows to infer their distance from the observer. Such objects are

called “standard candles”. In 1929, Hubble published a work based on eighteen galaxies.

Although this work later appeared to be quite imprecise and biased (Hubble did not use

regular cepheids), this experiment was reconfirmed by many others (see figure 1.1), and is
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Figure 1.1: Top: The first Hubble diagram, showing the proportionality between distance
and redshift. The solid line and points correspond to an analysis corrected for the suns
movement. This initial diagram used 18 galaxies, and the standard-candles property of
cepheids. Credit: Hubble (1929). Bottom: a recent Hubble diagram, combining a standard
candles method (SNe) with other probes, such as BAOs. Credit: Blake et al. (2013)

considered as the starting point of observational cosmology.

Several comments should be made about Hubble’s law:

• it only applies on large scales: nearby galaxies possess random motions known as

“peculiar velocities”, which do not verify Hubble’s law;

• it assumes that cepheids are standard candles. The idea that supernovae at differ-

ent distances, in different galaxies act in the same way is not obvious. We see in

section 1.4.2 that the nuance between standard candles and standardizable objects

is a complicated one.

The latest results from the Planck collaboration suggest a Hubble constant of H0 =

67.4 ± 1.4km/s/Mpc (Planck Collaboration XVI 2013), which is lower than previous

measurements from the Hubble space telescope H0 = 70.1 ± 1.3kms−1Mpc−1 (Riess
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et al. 2009) where 1pc ≈ 3 · 1016m. Cosmologists often work in terms of h, where

H0 = 100 h kms−1Mpc−1.

This relatively simple relation has far-reaching consequences. It was the first clue

towards some initial conditions of the Universe, known as the “Hot Big Bang” and gave

the beginning of an answer to one of the most audacious questions posed by cosmology:

the age of the Universe (1.1.4). It led cosmologists to define the expansion rate, the scale

factor a(t), and to reformulate both distance and light emission times of the objects we

observe.

1.1.4 The Hot Big Bang picture and the “age” of the Universe

If the Universe is expanding, we can in principle rewind the cosmic history and find some

time at which the Universe was arbitrarily small, hot and dense. In fact, the natural

conclusion of the expansion is that all the observable Universe we can see was at one

point in time, more or less at one point in space. Lemaitre called this initial condition the

“primeval atom”. The commonly used term of “Big Bang” was introduced in 1949 by Fred

Hoyle - who ironically remained a defender of the steady state theory - in a popular radio

broadcast, to describe the origin of the Universe from some hot dense initial condition.

The term “Big Bang” is misleading for several reasons. It seems to imply that the

Universe started at an initial singularity in space. In fact, our current Friedmann descrip-

tion (see section 1.2) of the early evolution of the Universe is not supposed to hold until

a(t) = 0. It starts at the Planck time tp =
√
Gh̄/c5 = 5.39 · 10−44s, which defines the

scale at which current physical theories fail. On this scale, the density reaches a critical

value called the Planck density, the entire geometry of space-time as predicted by general

relativity (see section 1.2.1) breaks down, and as yet an undiscovered theory that com-

bines general relativity and quantum mechanics - where the classical notions of time and

space disappear - is needed to describe the laws of physics. Candidates for such theories

exist, mainly in the framework of “string theories”.

Another common misconception about the Big Bang is the fact it implies that the

whole Universe was confined into a singular point. It is true that the observable Universe,

(the portion of the whole Universe which we can see from Earth, i.e. which is accessible to

us via causality) was shrunk into a very small portion of space with a characteristic size

equal to the planck length (lp =
√
Gh̄/c3 = 1.62 · 10−35m), which was not a single point,

nor was the rest of the Universe confined in the same piece of space. In fact, it is possible
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that the Universe was infinite in space, while the observable Universe was shrunk to the

size of the Planck length.

This being said, Hubbles discovery was the first clue towards some initial conditions of

the Universe we know: the one accurately described by our theory of gravity. These initial

conditions, called “Hot Big Bang”, are a point in time where the whole Universe was much

more dense and hotter than today, and where the observable Universe was shrunk to a

small (yet non-singular) location in space. The age of the Universe is defined as the time

elapsed since the Big Bang i.e. since these initial conditions. Current measurements put

the time to these initial conditions at 13.798± 0.037 billion years (Planck Collaboration I

2013).

1.1.5 The scale factor

To measure the expansion rate of the Universe, cosmologists use the scale factor a(t), which

links any “real”, “physical” distance between two objects, x, with comoving coordinates,

χ, which are carried along with the expansion:

x = a(t)χ . (1.4)

The Hubble’s law (equation 1.3) can then be reformulated as

H(t) =
ȧ(t)

a(t)
, (1.5)

the Hubble constant H0 being the value of the Hubble’s parameter H(t) at present time,

t0.

1.1.6 Distance measures in an expanding Universe

Within the Friedmann-Lemtaitre-Robertson-Walker (FLRW) metric (the simplest solution

for a homogeneous, isotropic, non-stationary Universe, which we present in section 1.2.2),

infinitesimal physical distances dl are given by the scale factor a(t) time the comoving line

element,

dlphys(t) = a(t)dl . (1.6)
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Three-dimensional spaces with constant non-zero curvature fall in two categories: 3-

spheres and 3-hyperboloids. A convenient choice of polar coordinate leads to the following

expression for the line elements in such spaces

dl2 =

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdΦ)

]
, (1.7)

where k is a constant number, related to the spatial curvature, as will be detailed in

section 1.2.2. Distances on macroscopic scales are obtained by integrating the line element

of equation 1.6.

Let us assume that we are sitting in the origin of a spherical coordinate system, at

time t0, and that we observe a comoving object, i.e. an object whose movement is only

determined by the expansion of space. What is our distance to this object? This question

is ambiguous for two reasons. First, do we mean, in units of today (i.e. the distance

between our position today and the position of the object today) or in units of the time

when the object emitted? Secondly, not only has the object moved away from us since it

emitted the light we receive, but what then was one unit of distance has now expanded! To

solve the second question, we distinguish the comoving distance from the physical distance.

Comoving distance and the problem of distance measurement in an expanding Uni-

verse

The comoving coordinates are carried away with the expansion of the Universe, whereas

the physical coordinates are not. By construction, the comoving distance between two

comoving objects does not depend on time, unlike the physical distance between them.

A comoving object emitting light at (te, re, θe,Φe), is now located at (t0, re, θe,Φe).

If by distance we mean the distance computed on the constant-time hyper-surface with

t = t0, i.e. the distance as defined today, then it is given by

d =

∫ re

0
dl = a(t0)

∫ re

0

dr√
1− kr2

. (1.8)

The scale factor a(t0) ≡ a0 is usually defined to be 1, and the distance above coincides

with the comoving distance

χ(re) ≡
∫ re

0

dr√
1− kr2

=

∫ te

t0

cdt

a(t)
, (1.9)
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which can be integrated to

χ(r) =


sin−1(r) if k = +1

r if k = 0

sinh−1(r) if k = −1

(1.10)

Hence, it is useful to define the function fk

fk(x) =


sin(x) if k + 1

x if k = 0

sinh(x) if k − 1

(1.11)

which defines the relation between the comoving distance χ and the comoving coordinate

r, r = fk(χ). We will see an important use of this function in section 1.2.2.

The comoving distance χ to a comoving object emitting light at (te, re, θe,Φe), when

the scale factor was a(te) ≡ ae, can therefore be expressed as a function of time, redshift,

and scale factor as follows:

χ =

∫ t0

te

cdt

a(t)
=

∫ a0

ae

cda

a2H(a)
=

∫ ze

0

cdz

a0H(z)
. (1.12)

The relation between re and te depends on the function a(t) and the curvature k: the

knowledge of k and a(t) would allow to explicitly integrate equation 1.12. The comoving

distance is a well defined notion, up to a choice of marginalization of a(t). But in practice

distances are not directly measurable quantities in cosmology. Astronomers have developed

indirect experimental ways to probe them, each of them leading to a particular definition

of distance.

Distances are usually measured in two ways:

1. from the angular diameter of standard rulers;

2. from the luminosity of standard candles.

Redshift

Because of the expansion of the Universe, light emitted by some source is seen by an

observer to be shifted to a longer, or redder wavelength. This redshift can be related to
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the expansion history, i.e. the scale factors at emission and observation:

1 + z =
λobs

λemitted
=
a(t0)

a(t)
(1.13)

An object “at redshift z” emitted the light we see when the scale factor was equal to the

fraction 1
1+z of its value today, a(t0). If one has previous knowledge of the expansion

history (i.e. the function a(t)), then the redshift gives us an information about the time

te it emitted the light we observe, and subsequently about its comoving distance, by

integrating cdt/a(t) between t0 and te.

This is the method used to infer the spatial distribution if galaxies from galaxy redshift

surveys. It assumes an apriori knowledge of the function a(t) which is often precisely what

one wants to measure.

The relation between the redshift and the time of emission depends on our knowledge

of the expansion history, a(t).

Angular diameter distance

Surprisingly, there exist objects in the Universe of which we know the size in advance,

due to some of their physical properties. Such objects are called standard rulers. This is

the case of the Baryon Acoustic oscillation scale which we will introduce in section 1.4.4.

In an Euclidian space, the distance d to an object on a sphere can be inferred from its

angular diameter dθ and its physical diameter dl: d · dθ = dl. Even if the geometry is

not Euclidian, we can adopt this as one possible definition of the distance: the “angular

diameter distance” dA is defined as

dA =
dl

dθ
. (1.14)

From equation 1.6, we see that the size of an object perpendicular to the line of sight is

related to its angular size dθ via

dlphys(te) = a(te)redθ , (1.15)

where te is the time when the object emitted the light which we observe, and re is the

comoving coordinate of the object along the line of sight. This allows us to infer the
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relation between the angular diameter distance dA and the redshift:

dA =
dl

dθ
= a(te)re =

a(t0)

1 + z
re =

a(t0)

1 + z
fk(χ) , (1.16)

which in turn can be expressed as a function of a, z or t with equation 1.12. The redhsift-

angular diameter distance relation therefore depends on both the expansion history a(t)

and the curvature k.

If we know the physical size of an object (a standard ruler), we can infer information

on the geometry of the Universe by measuring its redshift and its angular diameter.

Luminosity distance

Standard candles are objects of which the absolute luminosity can be physically estimated,

independently to their distance and apparent luminosity (flux density, energy per unit of

time and surface). For an isotropically emitting source, the energy is spread evenly over

the surface of a sphere and so the observed flux f (energy per unit of time) is related to

the distance of the source d, through:

f =
L

4πd2
. (1.17)

This only applies in euclidian space, but one can adopt this relation as one possible

definition of distance, called the luminosity distance:

dL =

√
L

4πf
. (1.18)

In euclidian space, in the absence of expansion and curvature, dL would simply correspond

to the distance to the source. In the FLRW space-time, things are more complex, and the

relation between the absolute flux and the apparent luminosity is rather:

l =
L

4πa2(t0)r2
e(1 + z)2

, (1.19)

leading to

dL = a(t0)re(1 + z) = a(t0)fk(χ)(1 + z) . (1.20)

Let us explain this relation. What is always true is that the apparent luminosity (the
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energy per unit of time and surface) is given by the absolute luminosity (the energy per

unit of time) divided by the surface: l = L/S. Both the numerator and the denominator

take particular forms in the case of a curved expanding space. The surface over which the

photons emitted at re are distributed today, is obtained by integrating over the infinites-

imal surface element dS2 = a2(t0)r2
e sin θdθdΦ, which gives S = 4πa2(t0)r2

e . The energy

carried by each photons is also affected by the expansion, twice. Indeed, the energy carried

by a photon is inversely proportional to its physical wavelength λ, and therefore to a(te):

the energy of each photon has therefore been divided by (1 + z) since it was emitted ( and

multiplied by a(t0)). Moreover, the fact that λ scales like (1 + z) not only implies that

the energy scales like (1 + z)−1, but also that the frequency at which the observer receives

each photon (i.e. the photons per unit of time) scales like (1 + z)−1, which explains the

second factor (1 + z)−1 in equation 1.19.

The knowledge of a(t), the curvature and other cosmological parameters allows to

calculate explicitly re(te(z)), and therefore the redshift-luminosity distance relation. In

section 1.4, we show how this relation allows to constrain dark energy.

Limit of small redshifts

dL = a(t0)re(1 + z) = a(te)(1 + z)2re = dA(1 + z)2 . (1.21)

In the limit of small redshift, the three definitions of distance χ = a(t0)χ, dA and dL

are equivalent and reduce to the definition of distance in Euclidian space, related to the

redshift through d = z/Ho.

1.1.7 Perturbed expansion: the background problem and the inhomo-

geneities problem

In order to describe the observed Universe, cosmologists had to build a model. The two

ingredients of the standard cosmological model are:

• the cosmological principle (which we presented in section 1.1.1 of this introduction);

• a fully viable and working theory describing gravity, General Relativity (GR) (see

section 1.2.1).

Most calculations and predictions in cosmology are obtained taking a perturbation the-

ory approach, i.e. assuming that the exact description of the Universe can be decomposed
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into two distinct problems:

• the background problem, independent and self-consistent. The inhomogeneities

such as stars and galaxies are smoothed, i.e. averaged over a scale bigger than the

largest distance between them. The Universe is assumed to be a smooth distribution

of matter: an idealized “cosmological fluid”. The goal of the background problem is

to compute the evolution of the cosmological fluid (see section 1.2).

• the inhomogeneity problem. It consists in writing first-order (i.e. linear) pertur-

bations within the given smooth background and solve for their evolution. This ap-

proach can be pushed to second order (quadratic) perturbations, but then the equa-

tions become very hard to solve. The goal is to understand e.g. the growth of Large

Scale Structures (LSS) or the Cosmic Microwave Background (CMB) anisotropies.

How good is this description? Figure 1.2 shows the spatial distribution of galaxy

positions to a comoving distance of 600Mpc. The galaxies are far from being randomly

distributed: they are arranged into large voids and dense filaments, forming the delicate

cosmic web. The homogeneous isotropic approach does not describe these large structures,

neither does it work for the description of small scale structures or fully non-linear problems

(such as the merging of two galaxies, which is better described by a newtonian non-linear

approach).

In fact, the perturbed expansion provides an excellent description of the Universe at

present time on large scales (i.e. when we smooth the picture on scales of ≈ 100Mpc)

and on all scales at early times: we know from the Cosmic Microwave Background (CMB)

that the Universe was smooth to around 1 part to 105 at the time of recombination.

1.2 The homogeneous, isotropic Universe and the ΛCDM

paradigm

1.2.1 General Relativity

General Relativity provides a fully viable and working theory describing gravity, the most

pervasive and important force in our observable Universe. The main paradigm shift in-

troduced by GR is that gravitation is not considered a force, or a field, but is rather

formulated as the curvature of space-time, sourced by matter.
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Figure 1.2: Slices through the 3D map of galaxy positions from the 2dF galaxy redshift
survey. Credit: 2dF, (Colless et al. 2001).

General Relativity is partially motivated by the equivalence principle, which was al-

ready suggested by Galileo when he asserted that the inertial and gravitational masses

of an object are identical: the effect of a gravitational field is locally equivalent to the

effect of acceleration in the absence of a gravitational field. Or in other words: within a

gravitational field, in each point of space, one can always find a frame within which the

laws of physics are locally the same as in the absence of a gravitational field.

When Einstein tried to build a theory of gravity compatible with the invariance of

the speed of light, the equivalence principle and the Newtonian limit, he found that the

minimum price to pay was to abandon the principle of a gravitational potential related to

the distribution of matter (and of which the gradient gives the gravitational field in any

point) and to introduce the following key ideas.

1. Our 4 dimensional space-time is curved. In mathematical terms, the GR

space-time is a pseudo-Riemanian variety: the line element ds2 is related to any set

of coordinated xi via the metric gµν(x):

ds2 = gµν(x)dxµdxν . (1.22)

2. Free-falling objects describe geodesics in this space-time, which are bent

by the curvature. In mathematical terms, the trajectory of free-falling particles
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obeys the geodesic equation:

d2xµ

dτ2
= Γµab

dxa

dτ

dxb

dτ
. (1.23)

3. The curvature of space-time in any point (as opposed to the gravitational

potential) is linked to the properties of matter at this point. The relation

between them is given by Einstein’s equation:

Gµν = Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (1.24)

where Rµν is the Ricci curvature tensor, R is the scalar curvature and Tµν is the energy

momentum tensor of the matter field.

In the GR framework, the cosmological principle has two extremely powerful conse-

quences: one purely kinematic, on the metric of the space-time; and one on the shape of

the energy momentum tensor of the matter field.

1.2.2 Kinematic consequences of the cosmological principle

Consequence on the metric : the FLRW metric

The simplest solution for a homogeneous, isotropic, non-stationary Universe is the Friedmann-

Lemtaitre-Robertson-Walker (FLRW) metric, whose line element is

ds2 = −c2dt2 + a2(t)[dr2 + f2
k (r)(dθ2 + sin2 θdΦ2)] , (1.25)

where fk(r) is the function we previously defined in section 1.11 and its possible forms are

fk(r) = sin(r), r, sinh(r) , (1.26)

(depending on the value of k:{+1, 0,−1} respectively), r is the comoving coordinates and

t is cosmic time. Via a simple change of coordinates, we can re-cast the FLRW metric into

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdΦ2)

]
, (1.27)

where k is related to the spatial curvature of the space and governs the geometrical prop-

erties of the 3-space corresponding to the hyper surfaces t = constant. In particular,
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k > 0 corresponds to positive spatial curvature, i.e. a closed Universe where parallel light

paths will converge; k = 0 corresponds to an ordinary flat Euclidian space, and k < 0

corresponds to a negative spatial curvature, i.e. an open Universe where parallel light

paths will diverge.

Consequence on the shape of the energy momentum tensor of the matter field

The other implication of the homogeneous and isotropic assumption is that the energy

momentum tensor of the matter field, Tµν takes the form of an ideal fluid:

Tµν = (ρ+ p)uµuν + pgµν =


−ρc2 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (1.28)

where uµ is the 4-velocity of the matter, ρ is the mean energy density and p is the mean

pressure.

1.2.3 Dynamical consequences of the cosmological principle: from Ein-

stein’s equations to Friedman equations

It is worth reiterating that both the FLRW metric and the shape of Tµν rely only on

the assumptions of homogeneity and isotropy. They are mathematical paraphrase of the

cosmological principle, within a purely kinematic description and do not assume a theory

of gravity. in order to derive the dynamics of our Universe, i.e. the evolution of the scale

factor a(t), we need to apply Einsteins equations - which relate gravitating mass to local

geometry - to the FLRW metric.

Applying equation 1.24 to the FLRW metric gives two independent equations, for the

three independent functions ρ(t), p(t) and a(t). Namely, the first Friedmann equation is

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
, (1.29)

and the second Friedmann equation is

H2 =
ä

a
= −4πG

3
(ρ+

3p

c2
) +

Λc2

3
. (1.30)
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Differentiating equation 1.29 with respect to t and then eliminating ä with equation 1.30,

one can write another equation which can be interpreted as the first law of theremody-

namics in the present context:

ρ̇ = −3
ȧ

a
(ρ+ p) . (1.31)

Hence, the relation between ρ̇ and the scale factor a(t), i.e., the way in which the energy

gets diluted during the expansion history, depends crucially on the pressure p, or, in other

words, on the equation of state of the form p = p(ρ), the additional independent equation

required to solve for a(t). In cosmology, the equation of state is usually assumed to be

linear, i.e. it can be parametrized in the following simple form,

p = wρ , (1.32)

with w taking different values depending on the species. While the value of w may, in

principle, change with redshift, it is often assumed, for simplicity, that z is independent

of time. Then substituting this equation in equation 1.31 immediately gives

ρ ∝ a−3(1+w) . (1.33)

Together with the first Friedmann equation, this gives the time evolution of the scale

factor (assuming a linear equation of state)

a ∝ t2/(3(1+w)) ,∀w 6= −1 . (1.34)

The most important limiting cases are:

• Non-relativistic matter (or dust): w = 0: indeed, for objects with negligible

velocities, p = 0 and equation 1.31 becomes ρ ∝ a−3.

• Radiation or ultra-relativistic matter: w = 1/3: in this case, equation 1.31

becomes ρ ∝ a−4. A ultra-relativistic fluid dilutes faster than a non-relativistic

medium with the Universe expansion.

• The cosmological constant: w = −1.

The scaling of each constituent is summarised in table 1.1. If the Universe is made of
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Component wi ρ(a) a(t) type of expansion

Non-relativistic matter 0 ∝ a−3 ∝ t2/3 decelerated

radiation/relativistic matter 1/3 ∝ a−4 ∝ t1/2 decelerated

curvature −1/3 ∝ a−2 ∝ t linear

cosmological constant −1 ∝ a0 ∝ exp(Ht) exponnentially accelerated

Table 1.1: Scaling of each component in the Universe.

Figure 1.3: Evolution of the square of the Hubble parameter, in a scenario in which all
typical contributions to the Universe expansion (radiation, matter, curvature, cosmological
constant) dominate one after each other. Credit: lecture notes by Julien Lesgourgues
(2009).

different fluid species, equation 1.31 still holds independently for each of the species, as

long as they do not interact with each other. If the Universe consists of different fluid

species with wi, i = 1, 2, ..., N , and if one denotes the energy density of the ith component

at present time ρi,0, the total energy density then satisfies

ρtot =
N∑
i=1

ρi,0a
−3(1+wi) , (1.35)

where the present value of the scale factor a0 is set to unity without loss of generality.
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1.2.4 Various possible scenario for the history of the Universe

The Friedman equation 1.29 including the contribution from matter, radiation, curvature,

and the cosmological constant yields:

H2 =

(
ȧ

a

)2

=
8πG

3
ρR +

8πG

3
ρM −

kc2

a2
+

Λc2

3
, (1.36)

where ρR is the radiation density and ρM is the matter density. Each of these contributions

evolves respectively as a−4, a−3, a−2 and a0. In the particular case where all these species

are present, they will dominate the right hand side term one after the other (see figure 1.3).

This does not mean that all the species have to be present, but any scenario which does not

respect this order of successive dominations is excluded. During each stage, and assuming

that one component strongly dominates over the other, the Universe dynamics is given

by:

1. radiation domination: a(t) ∝ t1/2. Decelerated expansion.

2. matter domination: a(t) ∝ t2/3. Decelerated expansion, slower than during the

radiation domination.

3. negative curvature domination: a(t) ∝ t. Linear expansion.

4. cosmological constant domination a(t) ∝ exp(Λt/3). Exponentially accelerated ex-

pansion.

The Friedmann equation gives partial access to the past of the Universe. In each of

these scenari, there seem to have been a time at which a(t) → 0, leading to the initial

conditions we described in section 1.1.4. The future of the Universe is also dictated by

the Friedmann equation, and in particular, it is highly dependent on the value of the

cosmological constant. If Λ = 0, the future evolution of the Universe is dictated by the

curvature.

1.2.5 Cosmological parameters

It is useful to define a density parameter Ω, which depends on time and counts the energy

density from all form of constituents in the Universe and is a ratio to the critical energy



22 Chapter 1. Introduction

Figure 1.4: The three possible geometries for the Universe and their relation to the total
density Ω = ΩM + ΩR + ΩΛ. For Ω > 1, k > 0, the Universe is closed (top). When
the density is sub-critical Ω < 1, k < 1, which corresponds to hyperbolic (open) space
(middle). Finally, when Ω = 1, k = 0, the Universe is said to be flat, which corresponds
to a Euclidean, geometry (bottom). Also shown is the relation between an apparent angle
and geometry. Credit: http://map.gsfc.nasa.gov/media.

density (i.e the density required for flat space geometry)

Ω =
8πG

3H2
ρ =

ρ

ρcrit
, (1.37)

where both the ρ and ρcrit = 3H2

8πG change with time. The Friedmann equation can then

be rewritten as

Ω(a)− 1 =
kc2

H2a2
(1.38)

So the density parameter determine the curvature: sign(Ω − 1) = sign(k), and in

particular:

ρ < ρcrit ⇔ Ω < 1⇔ k < 0⇔ open

ρ = ρcrit ⇔ Ω = 1⇔ k = 0⇔ flat

ρ > ρcrit ⇔ Ω > 1⇔ k > 0⇔ close

We recognize here one of the key ideas of GR: the curvature of the Universe k =

H2
0 (ΩM + ΩR + ΩΛ − 1) is entirely determined by its energy content. The density param-
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eter tells us which of the three FLRW geometries describe our Universe. Often, Ω(a) is

decomposed into energy density of different species - matter, radiation, and cosmological

constant - Ω(a) =
∑

i Ωi(a), and is referred to as the energy budget. The contribution of

the curvature can be introduced into the energy budget as a fictitious energy density, so

that:

Ωi =
8πG

3H2
ρi =

ρi
ρcrit

, (1.39)

Ωk =
kc2

H2a2
=

ρk
ρcrit

, (1.40)

with ρk = − 3kc2

8πGa2 and

ΩΛ =
Λc2

3H2
, (1.41)

so that,

∑
i

Ωi + Ωk = 1 ∀t , (1.42)

Although this is true at any time, the cosmological parameters usually refer to the values

of Ωi at present time:

Ωi =
8πG

3H2
0

ρi,0 =
ρi,0
ρcrit

, (1.43)

Ωk =
k

H2
0a

2
0

, (1.44)

ΩΛ =
Λ

3H2
0

. (1.45)

The Friedmann equation, describing the expansion history of the Universe, rewrites in

terms of the cosmological parameters at present time

(
H(a)

H0

)2

= ΩM (a)−3 + ΩRa
−4 + Ωka

−2 + ΩΛ ∀a > 0 (1.46)

=
∑
i

Ωi,0a
−3(1+wi) + Ωk,0a

−2 ∀a > 0 .
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or equivalently, in terms of the redshift

(
H(z)

H0

)2

= ΩM (1 + z)3 + ΩR(1 + z)4 + Ωk(1 + z)2 + ΩΛ . (1.47)

We will see in section 1.4 that this form of the Friedmann expansion is very useful to

understand the different strategies adopted to probe dark energy.

The present time value of the energy budget Ω gives access to the entire history of

cosmic expansion. This needs to be slightly nuanced, when we reach epochs where inter-

actions allow interchanges between the densities of the different species, which is believed

to have last happened at neutrino decoupling shortly before nucleosynthesis. So to probe

further back into the Universes history requires assumptions about particle interactions,

and perhaps about the nature of physical laws themselves. But broadly speaking, the

entire cosmic history -past, present and future - can be described in terms of the value of

four parameters at present time, which is extremely fortunate and is the reason why accu-

rate measurement of the cosmological parameters is one of the holy grails of observational

cosmology.

1.2.6 The content of our Universe

We have seen that the evolution of the cosmic expansion depends on the components which

make up Tµν , or equivalently on the cosmological parameters Ωi.

Recent measurements reveal an embarrassing fact: the “known” components, i.e. the

components we have been able to detect so far (namely baryonic matter, radiation and

neutrinos) account for less than 5% of the expanding Universe. Explaining the expan-

sion without questioning the GR framework requires to add two “unknown” components,

namely dark matter and dark energy into the energy budget of the Universe. In the current

“concordance” model Ωk ≈ 0, Ωb,0 ≈ 0.04, Ωcdm,0 ≈ 0.23, and ΩΛ,0 ≈ 0.73 for wΛ ≈ −1,

the Universe is composed of about 4% baryons, 23% cold dark matter, and - within the

framework of a cosmological constant model - 73% of dark energy.

Before looking at the problematic conclusions of such a budget (section 1.2.7), we

detail in this section some properties of each of the components of Tµν . We start with the

“dust” components, made of pressure-less non-relativistic particles (i.e. baryonic matter

and cold dark matter) and continue with the ultra-relativistic contributions: radiation,

and neutrinos, and will end with the dark energy.
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Baryonic Matter

Baryonic matter is often referred to as “ordinary” matter: the matter that constitutes

dust, stars, galaxies, ourselves, and all that surrounds us. Strictly speaking, baryons are

particles made of three bounded quarks, such as neutrons and protons, but cosmologists

use this term more loosely, including in it electrons and other leptons. The primordial

distribution of baryons was produced during a process called Big Bang Nucleosynthesis

and consisted of the following light elements: Hydrogen, Helium, Deuterium and Lithium.

The latest results from the Planck collaboration (Planck Collaboration XVI 2013) give

Ωbh
2 = 0.02207±0.00033, with H0 = 67.4±1.4km ·s−1 ·Mpc−1 meaning that the baryons

account for about 4.9% of the total energy density.

Dark Matter

Dark matter (DM) is the name we give to non-baryonic particles interacting weakly (if

at all) via electromagnetic force, which makes them invisible to our detectors. The bary-

onic candidate for DM, called MACHOs (for MAssive Compact Halos Objects), such as

primordial black holes or brown dwarfs, are too few to account for the observed contri-

bution of DM in the total energy density, which is the reason why DM is referred to as

non-baryonic.

Historically, DM was introduced by Zwicky (1933) to explain the dynamics of galaxies.

Indeed, it has been observed that a large amount of extra-matter was required to explain

their hight rotation velocity. Whereas one would expect their velocity to vary like r−1/2,

where r is the radius from their galactic center, measurements showed that the velocity

remains constant, which could be explained by the existence of a larger, invisible halo

embedding the galaxy.

DM was introduced with a purely gravitational motivation, to explain this phenomenon

which GR cannot explain. Instead of adding an unknown component, another approach

consists of modifying our theory so that it does not require any unknown component. One

of the most famous attempts to modify GR is the Modified Newtonian Dynamics (MOND)

theory (Milgrom 1994), which proposes an acceleration scale a0 below which Newtonian

dynamics are modified in order to explain the rotation curves.

Perhaps the main “MOND killer” today is the data from the bullet cluster (Clowe

et al. 2006), composed of two clusters who collided 150 million years ago. The collision
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Figure 1.5: Chandra 500ks X-ray image of the “Bullet Cluster” 1E0657 − 56. Green
contours show the weak lensing κ mass reconstruction with the outer contour level at
κ = 0.16 and increasing in steps of 0.07. There is definite offset between the X-ray
emitting shocked ICG in the centre and the main mass concentrations which have passed
through each other. Credit: Clowe et al. (2006)

induced a separation between the galaxies in the clusters and the Intra-cluster gas (ICG),

whose cross-section is much higher. When mapping the concentration of mass around

the galaxies (using gravitational lensing), the presence of extra-mass was measured which

could not be baryonic, since the only baryonic candidate: the ICG, was left behind.

The project presented in chapter 5 of this thesis could also constitute a strong argument

against the MOND theory, by detecting a difference between a tracer of baryonic matter

(the luminosity-weighted correlation function) and a tracer of the total matter (the number

density correlation function).

Cosmologists distinguish Cold Dark Matter (CDM) - relativistic particles which be-

come non-relativistic at early times - from Hot and Warm Dark Matter particles (HDM

and WDM) which remain relativistic until late. Neutrinos are an example of HDM and

are basically the only DM detected particle today. However, current observations seem to

point that the major part of DM needs to be on the form of CDM.

The latest results from the Planck collaboration (Planck Collaboration XVI 2013) give
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Ωcdmh
2 = 0.1196± 0.0031, with a low H0 = 67.4± 1.4km · s−1 ·Mpc−1, meaning that the

DM accounts for about 26% of the total energy density. The total matter cosmological

parameter detected by Planck is Ωmh
2 = 0.1423±0.0029, meaning that Ωm = 0.314±0.020.

Neutrinos

Neutrinos interact very weakly with electromagnetic force, making them a form of DM.

In fact, they are the only type of DM which has positively been detected so far in labora-

tory experiments. As opposed to CDM which decouples at early times, neutrinos remain

relativistic until late times, making them a form of HDM.

Neutrinos were first postulated by Pauli, in 1930, to conserve energy and momentum in

β-decay, and were long assumed to be massless in the standard model of particle physics.

The discovery, in the late 90’s, of oscillations between neutrino flavors in the detected

solar neutrinos (Fukuda et al. 1998) indicated that the neutrinos species must have finite

eigenstates, and was the first evidence of physics beyond the standard model. A lot of

effort in modern cosmology is put into quantifying Ων , or equivalently quantifying the

sum of the individual masses
∑

imνi . Current estimates (Thomas et al. 2010; Planck

Collaboration XVI 2013) give
∑

imνi < 0.28eV , corresponding to Ων < 7 · 10−3.

Neutrinos have an astrophysical interest in addition to their cosmological one, as they

are produced in supernovae core-collapse and hugely contribute to the energy released

during such events.

Radiation

It is usually a very sensible approximation to neglect the radiation contribution to the

density of energy, i.e. assume that ΩR � 1. Indeed, we have seen in section 1.2.3 that

radiation evolves as a−4. This can be qualitatively understood as the dilution with volume

experienced by matter, plus an extra factor (1+z) due to the photons being redshifted with

the expansion of the Universe. This strong dilution implies that, except for the very early

stages of the Universe, the contribution of radiation in the overall energy density is very

small.

Dark Energy

After including baryons, CDM, neutrinos, and radiation in the energy budget of equa-

tion 1.42, there is still 75% of energy which is completely unaccounted for. The most
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abundant component of our Universe is this “known unknown”, a type of energy which we

have so little information about, that it casts a shadow on the foundations of the model

which predicts it. Etienne Klein poetically noticed in an interview to the French Revue des

enseignants, that in French, “Dark energy” (“Energy noire”) is the anagram of “un-known

queen” (“reine ignoree”). The next section, 1.2.7, is dedicated to the unknown Queen.

1.2.7 The “known unknown”: Dark Energy and the cosmological con-

stant

History

Einstein did not like the idea of a dynamical space-time. Originally, he introduced the

cosmological constant Λ on the left hand side of the Einstein equations (i.e. as a geometric

component) to produce a static solution,

Rµν − 1

2
gµνR+ Λgµν = 8πGTµν . (1.48)

After the discovery of the Hubble expansion, Einstein abandoned this concept, calling it

the “biggest blunder” of his life. The community regained interest in Λ in the late nineties,

with the emergence of the concept of Dark Energy, as an additional term in the right hand

side of the Einstein equations (i.e. as a constituent of the energy tensor, as opposed to as

geometric component).

Observational evidence

From the 1930s to the 1980s, a cosmological constant seemed unnecessary to explain

cosmological observations, and the “Λ problem” was a theoretical one. In the 1980s and

early 1990s, various indirect evidence started to accumulate in favor of a ΩΛ term in the

energy density budget. In particular, LSS measurements (Efstathiou et al. 1990; Maddox

et al. 1990) suggested a low value for Ωm (≈ 0.15 − 0.4) which gave room to a ΩΛ term.

Another striking observational evidence was that the age of the Universe, when computed

only with CDM is shorter than the age of some stars observed in the Magellanic cloud

(Jaffe 1996).

In this context of a rising concordance model with Λ 6= 0, two different teams, Riess

et al. (1998) and Perlmutter et al. (1999), showed that the Universe is accelerating, rather

than decelerating as expected in a radiation dominated or a matter dominated phase.
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The questions posed by the accelerated expansion

Such an observation that ä > 0 has three different possible implications, from the Fried-

mann equation

H2 =
ä

a
= −4πG

3
(ρ+

3p

c2
) +

Λc2

3
,

1. either the Universe is dominated by “dark energy”, an unknown particle or field with

negative pressure P < −ρ/3; or

2. there is a non-zero cosmological constant Λ; or

3. the theoretical foundations of this equation, i.e. GR, are wrong and need to be

revised.

In other words, the main questions about cosmic expansion are:

1. Is the cosmic acceleration induced by a breakdown of GR on cosmological scales,

i.e. a lack of the theory, or by an unknown entity, within the theory: an energy

component which exerts repulsive gravity?

2. If the answer to this first question is a new energy component, what are the properties

of this energy, and in particular, shall we put the cosmological constant in the r.h.s

of the Einstein equation, as a new entity contributing to the stress-energy tensor

or in the l.h.s, as a property of space? Is the DE energy density constant in space

and time i.e. is it described by a “pure” cosmological constant in the Friedmann

equation, or by a time-dependent contribution?

Dark energy as a “vacuum energy”

One option is to put the cosmological constant on the r.h.s of the Einstein’s equation,

i.e. to consider it as another component of the energy density of the Universe. It is then

included in the stress-energy tensor, with a state equation w = −1, and a contribution to

the energy density which does not dilute with time and is given by

ρΛ = ρΛ,0 =
Λc2

8πG
= cst . (1.49)
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Pure Λ versus dynamical equation of state

An equation of state w = −1 corresponds to a “pure” cosmological constant model. Some

models allow the equation of state to vary with redshift, and much effort is made in

modern cosmology to constrain such models. Since DE only becomes important in the

late Universe, the most common parametrisation of such an equation of state is a first

order Taylor expansion:

w(a) = w0 + (1− a)wa , (1.50)

where a “pure Λ” model corresponds to w0 = −1 and wa = 0. The idea in constraining

such models is that understanding the dynamics of DE would allow us to uncover its

nature.

The two open questions of Dark Energy

Any theory of Dark Energy will have to explain two main problems:

1. The fine tuning problem: the observed value of the cosmological constant is over 100

orders of magnitude higher than the value predicted by quantum field theory for the

vacuum energy (ρobs ≡ 10120ρpredicted). This is not “fine” tuning, and reveals that

we basically have no good theory of dark energy.

2. The coincidence problem: our theory predicts that dark energy is negligible at early

times and dominates in the late Universe. The ratio ΩΛ
Ωm
∝ scales as a3 and there

is only a very brief time when Ωm and ΩΛ are of comparable sizes, which seems to

coincide exactly with our time. Figure 1.6 illustrates the coincidence problem.

Both of these problems are currently explained in the framework of anthropic argu-

ments, which constitutes a still very controversial area of cosmology.

Alternatives to Dark Energy

There exists alternatives to a theory of DE described above, two of which are explained

below:

• One alternative consists of questioning the accelerated expansion, i.e our interpreta-

tion of the observations. If we happened to live in the centre of a large cosmic void,
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Figure 1.6: The “coincidence scandal”, as seen by cosmologist Sean Carrol. Credit: Sean
Carrol : “Dark Energy and the Preposterous Universe”

the very same observations would not imply that the Universe is expanding in an

accelerated way. The price to pay for such an interpretation of the observations is

to abandon the cosmological principle.

• Another alternative consists of accepting the accelerated expansion, but questioning

the theory which requires DE to explain it. Modified gravity theories allow us to

achieve an accelerated expansion in a Universe which contains only CDM.

1.2.8 A “simple but strange Universe”

The recent Planck’s high-precision CMB map gives the most up to date values yet of the

Universe’s ingredients (Planck Collaboration XVI 2013). The Planck results are showing

very good agreement with the ΛCDM model, and at the same time, points at a very

problematic situation: we do not know what 75% of the Universe is made of. This is why

figure 1.7, the cosmic recipe before and after Planck, has been humorously referred to by

cosmologists as “the pizza that no one ordered”. The New York Times paraphrase of Saul

Perlmutter following the Planck results, qualifying the Universe of “simple but strange”

seems more accurate than the “almost perfect Universe” referred to by ESA.

We are faced with two possibilities, both equally unsettling: either 75% of the Universe

exists in an exotic and unknown form, or our theory to describe the Universe breaks down.

Such a dilemma which is a recurrent one in the history of physics: a problem in which
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Figure 1.7: Baryonic matter occupies just 4.9. % of the Universe’s mass/energy inventory.
Dark matter occupies 26.8%, while dark energy accounts for 68.3%. The ’before Planck’
figure is based on the WMAP 9-year data release presented by Hinshaw et al., (2012).
Credit: ESA.

there is either a “legislative” solution6 - rethinking our whole theory - or an “ontological”

one - discovering a new entity that would make the theory hold. Figure 1.8 gives other

examples of such situations in the history of astronomy, reminding us that there is no

systematic recipe to solve such a dilemma. Facing the phenomena listed in the left column

of the table, astronomers had to either come up with a new entity, or a new theory. The

discovery of Neptune allowed to explain the orbit of Uranus within the framework of the

Newtonian theory. In contrast, the unexpected orbit of Mercury led to a paradigm shift

and the replacement of Newtonian gravity by GR. We still have to determine which of

these solutions will allow to explain our current cosmological observations.

1.3 The not so smooth isotropic Universe

On scales smaller than 100Mpc, the Universe is far from being homogeneous (see e.g.

figure 1.2). Large Scale Structures (LSS) in the Universe are believed to have grown

from primordial initial perturbations in a homogeneous Universe, through a process called

gravitational Instability, to form the present structures we observe.

In the next sections, we assume the physics that generates the initial inhomogeneities

and present the Newtonian approach to gravitational instability 1.3.1 without going into

the details of “inflation”, the mechanism which is believed to govern the growth of the

primordial instabilities in the very early Universe. For reasons developed in section 1.3.3,

6in the terminology of Etienne Klein.
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Figure 1.8: Previous versions of the cosmological puzzle. Facing the phenomena listed in
the left column, astronomers had to either come up with a new entity, or a new theory.
The discovery of Neptune allowed to explain the orbit of Uranus within the framework of
the Newtonian theory. In contrast, the unexpected orbit of Mercury led to a paradigm
shift and the replacement of Newtonian gravity by GR. We still have to determine which
of these solutions will allow to explain our current cosmological observations. Credit:
presentation by Ofer Lahav, 2013.

our theories only allow us to predict the statistical properties of the cosmological fields

describing the inhomogeneous Universe. These properties propagate in Fourier space, e.g.

into properties of matter power spectrum.

1.3.1 Dynamics of gravitational instabilities

Validity of the Newtonian approximation

General relativity is well approximated by Newtonian gravity in two cases:

1. on scales inside the Hubble radius, i.e. approximately the size of the observable

Universe.

2. when describing non-relativistic matter, for which the pressure p and the energy

density ρ verify p� ρ.

In particular, the newtonian approximation is valid when describing the sub-Hubble dy-

namics of CDM and baryons (after decoupling). It also underlies the cosmological simu-

lations of non-linear growth of structures.
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Newtonian gravitational instability equations

Within the Newtonian approximation, three equations describe the evolution of an ideal

self-gravitating fluid, with density ρ, pressure P � ρ and velocity ~u. They are:

1. the continuity equation:

∂ρ

∂t
+∇r · (ρ~u) = 0 , (1.51)

2. Euler’s equation:

∂~u

∂t
+ (~u · ∇r)~u = −1

ρ
∇rp−∇rΦ , (1.52)

3. the Poisson equation:

∇2Φ = 4πρG (1.53)

where ~r denote the Newtonian position vector, t the time, and Φ the gravitational poten-

tial, which determines the gravitational acceleration by ~g = −∇rΦ

Recovering background cosmology

The dynamics of the homogeneous background, described by the Friedmann equations,

are recovered by replacing the velocity with the Hubble’s law velocity: ~u = H~r, by con-

sidering a uniform fluid, i.e. ∂rρ = 0, and by fudging the Poisson equation including the

cosmological constant: ∇2Φ = 4πρG− Λ. The Poisson equation 1.53 then satisfies

Φ =
1

6
(4πρG− Λ)r2 , (1.54)

whereas the Euler equation 1.52 becomes

∂H

∂t
+H2 =

1

3
(Λ− 4πρG) , (1.55)

which is the Newtonian limit of one of the Friedmann equations (in the relativistic limit,

ρ is replaced with ρ+ 3P ). The continuity equation 1.51 rewrites

∂tρ+ 3ρH = 0 (1.56)
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which is the usual Friedmann expression of energy conservation for ρ� P .

Perturbation equations in the comoving frame

The goal is now to derive the dynamics of any perturbation to the smooth isotropic fluid.

When perturbing the density ρ and the velocity u of the fluid, as well as the gravitational

potential Φ about their background value, and using comovig spatial coordinate ~x = ~r
a(t) ,

ρ→ ρ(t) + δρ = ρ(t)(1 + δ) , (1.57)

p→ p(t) + δp , (1.58)

~u→ a(t)H(t)~x+ ~v , (1.59)

where the peculiar velocity ~v = ad~xdt describes changes in the comoving coordinate of a

fluid element, i.e. its departure from the Hubble flow,

Φ→ Φ(~x, t) + φ . (1.60)

The three equations describing structure formation, 1.51, 1.53 and 1.52, rewrite

∂tδ +
1

a
∇ · [(1 + δ)~v] = 0 , (1.61)

∂t~v +
1

a
(~v · ∇)~v +

∂ta

a
~v = − 1

ρa
∇p− 1

a
∇φ , (1.62)

∇2φ = 4πGρa2δ , (1.63)

where ∂t is the time derivative for a given ~x, and ∇ is the spatial derivative with respect

to the comoving position ~x at fixed t (which is linked to the gradient with respect to

the physical position through ∇r = 1
a∇, and to the time derivative through

(
∂
∂t

)
x

=(
∂
∂t

)
r

+H(t)~x · ∇).

The linear approximation

A standard picture of the cosmic structure formation assumes that the initial tiny ampli-

tude of fluctuation grow according to equations 1.61 to 1.63. Within the framework of

a perturbation theory, the perturbations (and their spatial derivatives) are assumed to be

small enough so that one can linearize these equations (i.e. ignore the second order part).



36 Chapter 1. Introduction

Moreover, the background equations 1.54 to 1.56 set the zero-th order to zero, so that

the new equations describing the small perturbations in density, pressure, and velocity are

∂tδ +
1

a
∇ · ~v = 0 , (1.64)

∂t~v +H~v = − 1

ρa
∇δP − 1

a
∇φ , (1.65)

∇2φ = 4πGρa2δ . (1.66)

Considering a barotropic fluid, i.e. with a density which is only a function of the pressure,

such as P = P (ρ), equation 1.65 can rewrite

∂t~v +
∂ta

a
~v = −c

2
s

a
∇δ − 1

a
∇φ , (1.67)

where c2
s ≡ (∂p/∂ρ) is the sound velocity.

Taking the time derivative of the perturbed continuity equation 1.64 and combining it

with the perturbed Poisson and Euler’s equations, we find the equation for the growth of

structures in the Newtonian theory:

∂2
t δ + 2H∂tδ − 4πGρδ − 1

a2ρ
∇2δP = 0 . (1.68)

This fundamental equation shows the competition between the infall by gravitational

attraction (the term 4πGρδ), and the pressure support (the term 1
a2ρ
∇2δP ) to which an

initially small fluctuation is subject. Whether such a fluctuation grows or not, depends

on the balance between these two competing forces, and this balance is affected by the

different phases which the Universe goes through.

This last equation also shows that the dynamics of the fluctuation depends on the cos-

mic expansion, through H(z), or equivalently on the present time value of the cosmological

parameters.

Growth of structures in Fourier space

Within the framework of a linear perturbation theory, it is particularly interesting to derive

the dynamics in the Fourier space. Thanks to the linearity, the equations that govern the

evolution of each mode also govern their superposition, i.e. the overall fluctuation, and

reciprocally.
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We can consider the Fourier decomposition of the density fluctuations:

δ~k(t) =
1

(2π)3/2

∫
δ(~x, t)d3~xe−i

~k·~x . (1.69)

The equation for the growth of structures then translates into an equation of the evolution

of the k-mode of the fluctuation,

∂tδ + 2H∂tδ + (
c2
sk

2

a2
− 4πGρ)δ = 0 . (1.70)

In the same way as in the real space, we can derive a criterion for a fluctuation to

grow. Whether a perturbation grows or not depends on the sign of the ( c
2
sk

2

a2 − 4πGρ)δ

term. We define the Jeans wavelength λJ = cs
√
π/(Gρ) and distinguish different cases:

• If (c2
sk

2/a2 − 4πGρ) > 0, i.e. if the wavelength λ = 2πa/k of the mode is smaller

than the Jeans wavelength, λ < λJ , equation 1.70 describes a damped oscillator. The

pressure support counterbalance the gravitational infall, giving rise to oscillations of

the fluctuation amplitude.

• If (c2
sk

2/a2 − 4πGρ) < 0, i.e. if the wavelength of the mode is larger than the Jeans

wavelength, λ > λJ , gravitational collapse dominate, the perturbation is monotoni-

cally increasing and the mode is said to be unstable to gravitational accretion.

The Jeans length characterises the scale that pressure can propagate in the form of a

sound wave within the infall time (i.e. the characteristic time of gravity collapse tff ≈

1/
√

(Gρ)). Modes larger than the Jeans mode do not have time for the pressure to resist

gravitational infall, (since the time to infall is less than the time it takes to propagate

a pressure disturbance across the perturbation). Below this scale, the pressure has time

to counterbalance the gravitational instability, and the mode is stable and oscillates. In

a Universe which is matter dominated (or radiation dominated) w = p/ρ > −1/3, the

proper Jeans length grows faster than a, and faster than the proper wavelength of any

given mode. As a result, Fourier modes that start “outside” of the Jeans length (i.e. with

a higher wavelength), where they evolve by gravitational accretion, later come inside and

undergo acoustic oscillations. This is related to the notion of horizon, which we develop

in the next section.
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1.3.2 Horizons

Within the framework of GR, the comoving distance travelled by a signal (sound, light,

...etc), which is not interacting or being deviated, is given by the equation of geodesics:

d((r1, t1), (r2, t2)) =

∫ t2

t1

vdt′

a(t′)
=

∫ r2

r1

dr√
1− kr2

, (1.71)

where v is the velocity of the signal, and (ri, ti) are the space-time coordinates of the

two points between which the signal is traveling. This distance is also the maximum

possible distance between two points sharing the same signal. This allows us to define the

“horizon”, as the maximal distance between us (the observer) and a point sharing a given

type of signal with us. The different horizons detailed below correspond to different types

of signal.

As shown in section 1.3.1, equation 1.70 determines the time evolution of the modes

of fluctuations. A mode, or scale, is said to “enter the horizon” when its scale length is

becoming comparable to the horizon scale.

Causal horizons

Two points are said to be in causal contact if they can share the same information, or light

signal. The distance between two points in causal contact is therefore given by replacing

v by c, the speed of light, in equation 1.71:

dH((r1, t1), (r2, t2)) =

∫ t2

t1

cdt

a(t)
; . (1.72)

In a flat Universe, the “causal horizon”, i.e. the physical size of the space domain of all

the point in causal contact, is given, at time t, by dH(t) = a(t)
∫ t

0
cdt′

a(t′) .

Evolution of visible scales during radiation and matter domination

During radiation and matter domination, a(t) = tn with n < 1 (n = 1/2 during radiation

domination, and n = 2/3 during matter domination). As a result,

dH =
n

1− n
RH , (1.73)

where RH = cH−1 is the “Hubble radius”. In fact, dH ≈ RH as long as the Universe

expansion is decelerated.
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Figure 1.9: The wavelength of some observable cosmological perturbation compared
with the Hubble radius, during radiation and matter domination. Since all wavelengths
λ(t) = a(t)2π/k grow with negative acceleration during that time, and since the Hubble
radius grows linearly with time, the modes of the perturbation enter the horizon one after
the other. The smaller modes enter during radiation domination (t < teq), whereas the
larger modes enter during matter domination. Credit: lecture notes by Julien Lesgourgues
(2009).

The ”causality” takes a specific meaning when studying random fluctuations (as will be

developed in section 1.3.3): the random properties of two points which are not in causal

contact should be uncorrelated. Therefore, the correlation function ξ(r) (〈δ(~r1), δ(~r2)〉,

with r = |~r1 − ~r2|) vanishes at scales r > dH , and the power spectrum should also vanish

at scales k corresponding to wavelengths λ(t) > dH(t). Although within the inflation

theory, this is not exactly the case, wavelengths smaller or higher than dH(t) correspond

to two different regimes, called respectively “causal” and “acausal”.

Observable Universe

The radius of the observable Universe is the size of the area which today is linked to us

by causality.

Robs = a(t0)

∫ t0

tdec

cdt′

a(t′)
. (1.74)

Since the time tdec at which the Universe became transparent is much smaller than the

age of the Universe (tdec ≈ 380000yrs), the size of the observable Universe is, to a good

approximation, the size of the causal horizon: Robs(t0) ≈ dH(t0).
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Evolution of visible scales during radiation and matter domination

During radiation and matter domination, the scale factor a(t) evolves as tn with n < 1, so

does the wavelength λ(t) of each mode, whereas the causal horizon dH(t) ≈ RH(t) ≈ Robs
evolves as t, as shown in figure 1.9.

As a result, the modes of the fluctuation “enter” the observable Universe one after the

other.

Sound horizon

The sound horizon, i.e. the distance over which the wavefront of acoustic waves can travel

between the early Universe and some later time t is obtained by replacing v by the sound

velocity cs in equation 1.71:

dflats = a(t)

∫ t

0

csdt
′

a(t′)
. (1.75)

The sound horizon also plays a crucial role in the evolution of fluctuations.

1.3.3 A stochastic theory

The need for a stochastic theory

In order to describe the perturbed Universe, cosmologists wish to make predictions on

cosmological fields, such as the matter over-density δρ. For the following reasons, our

theory allows us only to predict the statistical behavior of such fields:

• We do not have direct observational access to the primordial fluctuations, which

would give us definite initial conditions for our deterministic evolution equations.

• The cosmological time scales are much longer than the time scale over which we can

make observations, it is therefore very hard for us to follow the evolution of a single

object.

For these reasons, we do not describe the state of the Universe by a field - in this sense

our theory differs from usual fluid mechanics - but rather by the statistical properties of

the fields (namely, the two points correlation function, the three point correlation function

and higher moments). We consider the initial perturbations as random quantities and our

theory is a theory for the evolution of these random quantities. Our Universe is considered

as one realisation of a statistical ensemble of possibilities.
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There are essentially two types of constraints one can draw on the statistical proper-

ties of the random fluctuations. Some come from the physics that generates the initial

perturbations (e.g. inflation) and the others from the physics that processes them - linear

perturbation theory - while respecting the symmetries of the background cosmology i.e.

homogeneity and isotropy.

In the following, we will consider as an example field δi ≡ δ(xi) = ρ(xi)−ρ̄
ρ̄ , the density

contrast at the comoving position xi.

Correlation function

If we consider a random field δ(~x) (random field means that at each point δ(~x) is some ran-

dom number), with zero mean < δ(~x) >= 0, the probability of realising some configuration

of the field is a functional Pr[δ(~x)].

One way to define the statistical properties of this field is to define correlators, i.e.

expectation values of products of the the field at different spatial (or time) points. In

particular, the two point correlator is given by:

ξ(~x, ~y) = 〈δ(~x)δ(~y)〉 =

∫
Dδ · Pr[δ] · δ(~x)δ(~y) . (1.76)

Combining statistical homogeneity and isotropy ensures that ξ(~x, ~y) only depends on the

absolute value r = |~x− ~y|:

ξ(r) = 〈δ(~x), δ(~x+ ~r)〉 . (1.77)

Power spectrum

We’ve seen in section 1.3.1 the advantage of decomposing δ(~x) into its Fourier components

δ(~k),

δ(~k) =
1

(2π)3/2

∫
d~xδ(~x) exp(−i~k~x) . (1.78)

(Here we adopted the symmetric Fourier convention, so that δ(~x) = 1
(2π)3/2

∫
d~kδ(~x) exp(+i~k~x)).

We can compute the correlator in Fourier space and define the power spectrum P (k) or

P(k) so that

〈
δ(~k)δ∗(~k′)

〉
= P (k)δD(~k − ~k′) =

2π2

k3
(k)PδD(~k − ~k′) . (1.79)
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P(k) is then related to the Hankel transform of the two points correlation function (c.f.)

ξ(r) =
1

2π2

∫
k2P (k)j0(kr)dk =

∫
dk

k
P(k)j0(kr) , (1.80)

where j0(kr) = sin(kr)/kr is a spherical Bessel function of order zero. Another way

to interpret the power spectrum is by going back to the dynamics of the fluctuations

(section 1.3.1). Indeed, since the k-mode of the fluctuation δ(~x, t) is a complex variable,

it can be decomposed by a set of two variables, its amplitude D~k and its phase φ~k. The

power spectrum is then given by

P (t,~k) =
〈
D~k(t)

2
〉
. (1.81)

Therefore P (k) is a measure of the amplitude of the mode of wavelength ~k.

Gaussian random fields

The two points c.f. and power spectrum are well defined quantities for any field. But

they become extremely powerful in the particular case of a gaussian field. These fields

are defined as such: for an arbitrary positive integer m, the m-points joint probability

distribution obeys a multi-variate Gaussian:

P (δ( ~x1), δ( ~x2), δ( ~x3), ..., δ( ~xm)) =
1√

(2π)mdet(C)
exp

− m∑
i,j=1

1

2
δiC
−1δj

 , (1.82)

where δi ≡ δ(~xi), and C is the covariance matrix, defined as Cij ≡ 〈δiδj〉 = ξ(|~xi −

~xj |) = ξij . The m-points joint probability can be seen as the result of the discretisation

of the field in m pixels: the field is then described by an m-dimensional vector ~δ =

[δ( ~x1), δ( ~x2), δ( ~x3), ..., δ( ~xm)], and its probability distribution is a multivariate gaussian,

fully specified by its correlation function. In the very particular case of a gaussian field, the

covariance matrix happens to completely define the probability distribution: the gaussian

field is entirely specified by the two points c.f. ξij and its linear combinations (including

its derivative and integral).

Therefore, in the very particular case of gaussian fields, the correlation function, or

equivalently the power spectrum, are completely defining the field!

There are three reasons to be excited about the properties of Gaussian fields in the
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context of cosmology:

1. The primordial perturbations are believed to be gaussian. This is predicted by most

simple inflation models, and supported by most observations to date.

2. Any linear evolution theory preserves the statistical behavior of a field during time.

So if the field used to be gaussian, it still is at present time and the correlation

function (or the power spectrum) still entirely specifies it.

3. The properties of gaussian fields propagate into interesting properties in Fourier

space. Since the Fourier transform is a linear transformation, the probability distri-

bution for a given mode δ(~k) is also a multivariate gaussian. Since the homogeneity

and isotropy of the Universe impose that different modes are uncorrelated, the modes

of a fluctuation form a set of independent multi-variate gaussians, and similarly as in

Fourier space, the gaussianity is preserved through the linear evolution of the modes.

The whole evolution of the perturbations is not entirely linear throughout time and space:

at late times and small scales (large k’s and small r’s), non-linear structure formation

destroys gaussianity and leads to the filamentary structures of the cosmic web, shown

e.g. in figure 1.2. The correlation function ξ takes the product of two quantities and

averages them over independent realisations of the system in question. In practice we do

not have access to multiple realisations of the Universe. Instead we invoke an assumption

of ergodicity, that is we assume that averaging over a sufficiently large volume is equivalent

to an ensemble average (Pan & Zhang 2010). In general a correlation function is often

calculated as a function of separation. In this case the average is over pairs of galaxies

separated by some fixed distance.

Random fields on the sphere

Astronomers often have to work with 2D maps of the sky, either for reasons inherent to the

studied observable (e.g. in the case of the CMB) or because the distance of the objects is

much more difficult to infer than their position in the sky. In 2D-astronomy, astronomers

consider the objects as projected on a celestial sphere, a modern version of the sky dome

imagined by ancient civilisations. In this context, spherical harmonics are a more natural

decomposition of the cosmic random fields than the Fourier decomposition.
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Spherical harmonics form a basis for square-integrable functions on the sphere:

f(~n) =

∞∑
l=0

l∑
m=−l

flmYlm(~n) , (1.83)

where ~n = (θ, φ). The equivalent to the power spectrum in Fourier space, is the “angular

power spectrum” Cl (which is related to the two point correlator, just as P (k) is in Fourier

space). The homogeneity and isotropy of the Universe, imply that the correlation function

only depends on the separation θ on the sphere:

〈
f(~n, ~n′)

〉
=
∑
l

Cl
2l + 1

4π
Pl(~n · ~n′) = C(θ) , (1.84)

and inversely

Cl = 2π

∫ 1

−1
dcos(θ)C(θ)Pl(cosθ) , (1.85)

where Pl are Legendre polynomials.

1.4 Observational probes of cosmic acceleration

1.4.1 Strategy, observables and methods

The strategy adopted to approach the questions posed by the cosmic accelerated expansion

(see section 1.2.7) is to assume the existence of a dark energy entity, and constrain its

properties with increasing precision, hoping that it will exhibit a failure of GR or a time

dependency of the possible cosmological constant. How do we constrain DE?

As shown in equation 1.47 , the expansion can be written as

H2(z) =

(
ȧ

a

)2

= H2
0

(
Ωm(1 + z)3 + Ωr(1 + z)4 + Ωk(1 + z)2 + Ωφ

uφ
uφ(z = 0)

)
, (1.86)

where Ωm, Ωr and Ωφ are the present day energy densities of matter, radiation, and dark

energy. (Here we have changed the initial writing of equation 1.47 to account for different

models of dark energy). In terms of the scale factor a, this reads

H2(a) = H2
0 [Ωma

−3 + Ωra
−4 + Ωka

−2 + ΩXa
−3(1+w)] . (1.87)
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Measurable Definintion

Proper distance D(z) = a(t0)re = a(t0)fk(χ)

Luminosity distance dL(z) = a(t0)re(1 + z)

Angular diameter distance dA(z) = a(t0)re/(1 + z)

Table 1.2: Measurable consequences of the comoving coordinate r(z).

Each of the terms of the right hand side represents the time history of one kind of energy

density. In particular, the term Ωx represents the cosmological constant if w = −1 and

dark energy if w is constant. For non constant w, the above equations generalise by

replacing a−3(1+w) with exp
(

3
∫ 1
a
da′

a′ [1 + w(a′)]
)

.

We already have very good constraints on two of the terms of this equation: H2
0 Ωm and

H2
0 Ωr from the Cosmic Microwave background (CMB). Therefore, by measuring accurately

the expansion history H(a), one can determine the DE density term, i.e. the time history

of its energy density (modulo uncertainties due to the curvature). Thus, the strategy

adopted by cosmologists to constrain DE is to measure the expansion history H(a) as

accurately as possible.

When observing an astronomical source, it is straightforward to deduce the scale factor

a(te) at the time of its emission, since a = a(t0)/(1 + z). But the measurement of ȧ is

much more tricky. So rather than measuring H(a) = ȧ/a directly (as done with BAOs

for example), cosmologists measure H(a) indirectly, via two different observables: the

distance-redshift relation and the growth-redshift relation.

First observable: the distance-redshift relation

We have shown in section 1.1.6 that all measurable distances (luminosity distance dL(z),

angular diameter distance dA(z), comoving distance D(z) = a(t0)re(z)), depend on H(z)

through re = fk(χ) (see equation 1.12). Therefore, they depend on DE through their

dependence onH(z). Measuring these redshift-distance functions, summarised in table 1.2,

allows an indirect measurement of H(z).

Second observable: the growth of structures

A second observable consequence of DE is its effect on the growth of structures. Indeed,

the competition between gravitational collapse and the accelerated expansion induced by
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dark energy retards the growth of structures. The linear growth factor g is defined within

a linear perturbation theory, as

δ(~x, t) =
ρm(~x, t)− ρ̄m(t)

ρ̄m(t)
= δ(~x, ti) ·

g(t)

g(ti)
, (1.88)

where δ(~x, t) is the density fluctuation of pressureless dark matter, and ti is an arbitrary

initial time. GR provides a relation between g(z) and H(z):

g̈ + 2Hġ = 4πGρmg =
3ΩmH

2
0

2a3
g . (1.89)

Although the exact solution of the above differential equation is not trivial (see Wein-

berg et al. (2013)), to a first approximation

g(z)

g(z = 0)
≈ exp

[
−
∫ z

0

dz′

1 + z′
[Ωm(z′)]γ

]
, (1.90)

where γ depends only weakly on the cosmological parameters (Peebles 1980; Lightman &

Schechter 1990), and where the dependency on H(z) and therefore on the dark energy

term of equation 1.86 is through

Ωm(z) =
ρm(z)

ρcrit(z)
= Ωm(1 + z)3 H2

0

H2(z)
. (1.91)

Since the density fluctuations at z = 1088 are accurately quantified, the amplitude of

matter fluctuations provides another indirect observation of DE (through H(z)), through

the growth-redshift relation g(z).

This relation has another important advantage: it provides a test of the GR theory.

Indeed, GR implies a one-to-one relation between the two observables D(z) and g(z).

Inconsistencies between these two observables would mean that GR is incorrect on the

largest of observable scales, or that DE contributes to the growth of structures in an

unexpected manner.

The two observables we just presented are illustrated in figure 1.10.

Methods

Four complementary methods are used to measure the above observables (H(z), D(z) and

g(z)) with increasing precision:
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Figure 1.10: The two primary observables for DE: the distance-redshift relation D(z) and
the growth-redshift relation g(z) are plotted vs redshift, for three different cosmological
models. The green curve is an open-Universe model with no dark energy at all. The black
curve is the concordance ΛCDM model, which is flat and has a cosmological constant,
i.e., w = 1. This model is consistent with all reliable present-day data. The red curve
is a dark-energy model with w = 0.9, for which other parameters have been adjusted
to match WMAP data. One sees that dark-energy models are easily distinguished from
non-dark-energy models. Credit: DETF report (Albrecht et al. 2006).

1. Large Scale Structures (LSS) and Galaxy Cluster Counts (GC).

2. Baryon Acoustic Oscillations (BAOs).

3. Weak Gravitational Lensing (WL).

4. Type Ia supernovae (SNe).

Whereas BAOs and SNe constrain the expansion of the Universe as a whole (i.e H(a))

and are referred to as ”purely geometric”, WL and GCC give access to both the expansion

history a(t) and the growth of structures. In the following sections, we give a review of

these probes.

1.4.2 Type Ia Supernovae

Supernovae (SNe) are the most straightforward way to study the accelerated expansion. In

fact, they are the tool with which the accelerated expansion was originally discovered (Riess
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Figure 1.11: Cosmological results from the GOODS SNe. The y-axis shows the distance
(µ = 5log10dL + const.) and the x-axis shows the redshift. Credit: Riess et al. (2004).

et al. 1998; Perlmutter et al. 1999). This probe uses the first observable we presented: the

redshift-distance relation. Indeed, Type Ia SNe are believed to be standard candles, i.e.

objects of known absolute luminosity, of which the luminosity distance dL can be inferred

via the relation f = L/4πd2
L. Why are Type Ia SNe believed to be standard candles?

Cosmologists assume that they are the explosions of objects with nearly the same mass:

white dwarfs stars that accrete material until they exceed the stability limit of 1.4 solar

masses derived by Chandrasekhar.

The redshift of the SNe, which is necessary to measure the redshift distance relation

dL(z), is measured either on spectral lines of the SNe explosion light, or with spectral

features of the host galaxy. Figure 1.11 shows the distance-redshift relation obtained with

HST SNe (Riess et al. 2004).

In practice, SNe are not proper standard candles: their absolute luminosity is not

completely uniform (Phillips 1993), but appears to be correlated with other distance-

independent features of the event, such as the rest-frame duration of the event, or some of

its spectral features. In that sense, SNe are standardizable objects (rather than standard

objects), to a degree of precision which has not been entirely uncovered yet.

Other types of SNe, gravitational waves sources or gamma ray bursts, could be used

in the future as standard candles, but the way they would compare to the type Ia SNe for

cosmological measurements is not known yet.
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Figure 1.12: ΛCDM power spectrum, normalised to the local abundance of galaxies, for
a flat Universe, Ωm = 0.25, Ωb = 0.05, σ8 = 0.8 , h = 0.7. Solid line shows the linear
power spectrum, dotted line shows the non-linear power spectrum according to the fitting
function of Smith et al. (2003). Credit: lecture notes by Julien Lesgourgues (2009).

1.4.3 Large scale structures

The growth of large scale structures (LSS) from initial fluctuations is a powerful probe of

cosmology, since it highly depends on the cosmological model. LSS measurements allow

us to constrain DE in various ways:

• The position of the BAOs feature provides a standard ruler to study the expansion

history.

• The shape of the angular power spectrum of the galaxy density fluctuations en-

capsulates precious information about the clustering amplitude and the growth of

structures.

It is possible to compute the theoretical matter power spectrum, for a given cosmology

and to compare it with observations. In practice, the matter power spectrum is not directly

measurable and cosmologists use some specific observable tracers to measure it.
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qualitative explanation of the main features of the power spectrum

Let us explain qualitatively the main features of the linear power spectrum at present time

(figure 1.12).

Most theories of Inflation predict that the initial (post-inflation) power spectrum is

approximately scale invariant, i.e. in the form of a power law:

Pi(k) = kns(k)−1, (1.92)

where ns(k) is a constant (a non constant ns(k) means departure from the scale invariance).

In a log-log space, this means that the post-inflation power spectrum is a diagonal straight

line.

During radiation domination, the Jeans wavelength λJ = cs
√
π/(Gρ) and the size

of the horizon RH scale as t, whereas each mode scales as λ ∝ t1/2. Since the Jeans

wavelength grows faster than the modes, larger and larger modes (i.e. smaller and smaller

k) “enter” the horizon. The net result is for the straight line power law to bend, at the

scale corresponding to λJ , which is the interface between the modes oscillating inside the

horizon (at “small” scales and “large” k), and the growing modes, outside the horizon (at

“large” scales and “small” k). With time, λJ grows, shifting the turnover of P (k) to larger

and larger scales (smaller and smaller k).

After the time of matter-radiation equality, all modes grow. The bend of P (k) freezes

at k = keq, the wave number of the mode entering the horizon at the matter-radiation

transition and corresponding to the size of the horizon at the matter-radiation equality

(which, today, is given by k ≈ 0.01Mpc−1).

Clearly visible in Figure 1.12 are a succession of wiggles at slightly smaller scales

than the turnover. These are baryon acoustic oscillations (BAOs), a consequence of the

photon-baryon fluid set up in the early Universe which we present in section 1.4.4.

At small scales, typically k/h > 10−1Mpc−1, linear theory does not apply anymore.

In chapter 5 of this thesis, we present some corrective terms due to the non-linear halo

collapse and the mode coupling, which both slightly affect the shape of the present days

power spectrum. Such corrections have been applied e.g. in figure 1.12, where both the

linear power spectrum and the non-linear power spectrum are shown.

The present shape of the power spectrum depends on a number of cosmological pa-

rameters. This makes it a powerful cosmological probe. Indeed, the overall normalisation
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depends on the primordial spectrum amplitude, the age of the universe, and the cosmo-

logical constant. The slope depends on the the primordial spectrum index. The scale keq

of the maximum of P (k) depends on the time of the matter-radiation transition, which

depends on the matter density today, i.e. on Ωm. The shape of the spectrum at k > keq

depends on the spectral index, but also on the ratio Ωb/Ωcdm (a high baryon density

implies a lower amplitude for k > keq as well as additional oscillations).

The galaxy bias

Another obstacle to the direct measurement of the power spectrum is the galaxy bias.

The matter over-density has contributions from both baryonic, luminous matter, and dark

matter. We can only observe the luminous matter i.e. the baryonic contribution to the

total underlying matter distribution. The main idea behind galaxy surveys is that galaxies

(i.e. luminous matter) can be treated as tracers of the underlying matter distribution. By

measuring the positions of galaxies (the position of a galaxy in the 3D space is given by

its angular position on the sky and its redshift) and smoothing it on very large scales, one

can construct a smooth 3D map of the distribution of luminous galactic matter (lgm),

δlgm(~x, t) and draw from it the power spectrum of the luminous matter:

〈
|δ
lgmt,~k)2 |

〉
~k/k

= Plgm(k) . (1.93)

In order to test the prediction of the cosmological model, the function we would like to

measure is not Plgm but the total matter power spectrum Ptot(k).

In practice, galaxies are biased tracers of matter: δlgm(t, k) ≈ bgδtot(t, k), where bg is

called the galaxy bias. If galaxies linearly trace the total matter, i.e. if bg is a constant,

then the galaxy power spectrum Plgm(~k, z) relates to the (total) matter power spectrum

Ptot(~k, z) via

Plgm(~k, z) = b2gPtot(
~k, z) . (1.94)

But in general, bg is expected to be a function of scale and redshift, bg(~k, z). Our

ignorance of the form of bg(~k, z), especially at small scales, is one of the main obstacles to

the use of galaxy surveys for cosmology. There are different models for bg(~k, z), including

the Halo model (Cooray et al. 2000), which assumes that the mass is concentrated in DM

Haloes, with a concentration of galaxies defined by the Halo Occupation Distribution.
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In chapter 5 of this thesis, we use the luminosity of galaxies as a biased tracer of the

baryonic matter, and the galaxies number density as a - differently - biased tracer of the

total matter density. We then try to detect a scale-dependent difference between the two

biases induced by BAOs.

1.4.4 Baryon Acoustic Oscillations

Between the end of inflation and the time of recombination, the Universe is filled with

an ionized plasma, hot and dense, in which photons and baryons are coupled. Under

the effect of Thompson scattering, i.e. scattering between the photons and the charged

particles of the plasma, the photons are “trapped” in the plasma. During this time, the

interplay between the plasma pressure and the radiation pressure results in “sound waves”:

spherical perturbations of the density (and pressure) propagating around each initial over-

density of matter, traveling at a speed of cs = c/
√

3 through the baryon-photon fluid.

As the Universe expands, the baryonic matter cools down, eventually allowing the

nuclei and electrons to bind into stable, neutral atoms at the time of recombination (ap-

proximately 370000 years after the Big Bang). The mean free path of photons is then high

enough for the photons to be liberated from the matter. The Universe becomes “trans-

parent” and the baryonic shells propagating in the form of sound waves freeze, leaving an

imprint in the distribution of matter.

This signature, known as Baryon Acoustic Oscillations (BAOs), is visible in the cosmic

microwave background and in the large-scale distribution of galaxies. The distance traveled

by the over-density shell, rs (the sound horizon at the time of recombination), provides a

feature of known physical size and as such, it is a standard ruler which makes it a precious

probe of DE. The identification of the BAOs scale as a transverse angle at different redshifts

determines the distance ratio D(z)/rs and allows us to infer DA(z) (and constrains DE

through the observable D(z)), whereas its identification along the line of sight determines

H(z)rs and provides a direct measure of H(z). In chapter 5 of this thesis, we aim to detect

another kind of imprint left by BAOs on the clustering of galaxies: a modulation of the

density ratio of baryon to dark matter across large regions of the Universe.

Weinberg et al. (2013) give a complete overview of the history of the detection of

BAOs. The first prediction of the BAOs effect, in the CMB and the late-time matter

power spectrum dates back to the late 1960s (Sakharov 1966), at a time when the pure

baryons cosmologies predicted a very strong effect. The BAOs effect was identified as
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a standard ruler in the 1990s (Kamionkowski et al. 1994). Early results form the 2dF

Galaxy Redshift Survey (2dFGRS) (Percival et al. 2001) gave the first hints for the BAOs

feature in the data, followed by convincing detections in the SDSS Data Release 3 and

final 2dFGRS samples (Eisenstein et al. 2005; Cole et al. 2005).

1.4.5 Weak lensing

Gravitational lensing from distant intervening mass fluctuations causes the shapes of ob-

jects to be distorted. Thus, measurement of the distortion of light allows us to get in-

formation about the distribution of mass through which the light has travelled en route

to the observer. It is therefore a powerful tool both for direct mass reconstruction or as

a cosmological tool. Gravitational Weak Lensing (WL) deals with very small distortions

to a source image. While no single object is intrinsically round, if the intrinsic shapes of

galaxies are uncorrelated with one another, one can average the apparent shapes of many

thousands of such objects to extract a distortion attributed to WL. The statistical prop-

erties of this observable pattern put a constraint on the power spectrum and therefore on

the cosmological model and on DE. Weinberg et al. (2013) give a complete overview of the

history of the detection of WL, which was made possible by the use of large format CCDs

in the beginning of our century. The first detection were made from space (Wittman et al.

2000; Bacon et al. 2000), soon followed by ground-based detections (Van Waerbeke et al.

2001). In chapter 2 of this thesis, we derive the requirement on star/galaxy separation, a

problem which needs to be taken into account for use of WL as a cosmic probe. Here we

present some element of the WL formalism, and some of the practicalities of cosmic shear

measurement.

Weak Gravitationnal lensing

Figure 1.13 shows a typical gravitational lens system, where the distances between the

observer, the lens and the source are linked through the General Relativity lens equation:

α =
Dds

DsDd

4πGM

c2θ
, (1.95)
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Figure 1.13: Sketch of a typical gravitational lens system showing source, lens and observer
planes. Credit:Bartelmann & Schneider (2001)

where M is the mass of a point mass, Ds is the source-observer distance and Dd is the

observer-lens distance.

The lensing can be described by the component of the distortion matrix:

Ã =

 1− κ− γ1 −γ2

−γ2 1− κ+ γ1


κ is the convergence and characterizes the magnification of the source. γ1 and γ2 are the

two components of the shear field γ = γ1 + iγ2 = γei2α, which characterizes the stretching

of the source: γ1 describes the stretching and compression along the x-axis and γ2 the

stretching and compression along the y-axis. For non point-mass lenses with surface mass

density Σ, it is useful to define the critical mass density Σcrit = c2

4πG
Ds

DdDds
, since it allows

to define several regimes of gravitational lensing. The case of strong lensing corresponds

to Σ ≥ Σcrit and is characterized by multiple images and elongated arcs, such as those

seen in the Abell 2218 cluster (Kneib et al. 1996). In the case of weak lensing, Σ� Σcrit.

In this regime, the distortion to the shape of the galaxies is very slight.

The convergence along a given line of sight, for a source with a mean redshift distri-
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bution n(zs), writes:

κ =

∫ ∞
0

dzsn(zs)κ(zs) =

∫ χmax

0
dχW (χ)δ(χ) , (1.96)

where κ(zs) '
∫ χs

0 dχw(χ, χs)δ(χ), is the convergence along a given line of sight up to zs,

W (χ) =
∫ zmax
z dzsn(zs)w(χ, χs) and w(χ, χs) =

3ΩmH2
0D(χ)D(χs−χ)
2c2D(χs)

(1 + zs) (where D(χ)

is the comoving angular diameter distance). W is called the lensing weight function, or

lensing efficiency function. The convergence field κ is not directly observable. In practice,

it can be reconstructed from measurement of the ellipticities (shear) of galaxies (see next

section) from survey data. Reconstruction of the convergence field from survey shear data

is still a challenging problem (see Kaiser 1998 and Hu & White 2001 for techniques in the

2D case and Taylor 2001 and Hu & Keeton 2002 for 3D mass reconstruction).

Cosmic Shear

The term “Cosmic shear” is used to describe the measurement of the very small distortions

caused by WL, to study the Universe and more particularly the cosmological parameters.

The two points correlation function (c.f.) and its Hankel transform, the power spectrum,

were already introduced in the context of the matter distribution of galaxies. Cosmic

shear offers an unbiased tracer of the underlying dark matter distribution, which makes it

a powerful cosmological tool.

It is convenient to measure shear and ellipticity, not in terms of their real and imaginary

parts, but as tangential and cross components:

ε+ ≡ −Re(εe−2iφ) ; ε× ≡ −Im(εe−2iφ) , (1.97)

where φ is the polar angle of the galaxy position relative to the lens centre, ε is the galaxy

ellipticity and Re/Im take the real and imaginary parts of an expression respectively. +

denotes a component tangential to the line of sight and × denotes the component at 45

degrees to the line of sight. Similar expressions γ+ and γ× can be defined for the shear γ.

With these definitions we can define the 2 points c.f. ξ which is a measure of the

cosmic shear signal,

ξ±(θ) ≡ 〈γ+γ+〉 ± 〈γ×γ×〉 (1.98)



56 Chapter 1. Introduction

The correlation function ξ takes the product of two quantities (in this case the shear or

ellipticity of a pair of galaxies) and averages them over independent realisations of the

system in question. In practice we do not have access to multiple realisations of the

Universe. Instead we invoke an assumption of ergodicity, that is we assume that averaging

over a sufficiently large volume is equivalent to an ensemble average (Pan & Zhang 2010).

In general a correlation function is often calculated as a function of separation. In this

case the average is over pairs of galaxies separated by some fixed distance.

The shear angular power spectrum writes:

Cl =

∫
dχ

χ2
W 2(χ)P (

l

χ
) , (1.99)

where P is the matter power spectrum, and W is the lensing weight function defined

previously. Note that several approximations have been made in this expression, including

the Limber approximation (i.e we have assumed that the area of the sky we are interested

in is small enough so that we can approximate jl(x) =
√

π
2xJl+1/2(x) and liml→∞ jl(x) =√

π
2l+1δD(l + 1/2− x)) and l ≡ l + 1/2.

Cosmic shear surveys contain information about the shapes of galaxies, but also about

their distance to the observer, through the redshift information. Acquiring spectroscopic

redshift is a costly and time-consuming procedure, and the large number of sources used

in current galaxy surveys makes it more likely for the redshift information to be from

photometric sources than spectroscopic source. The redshift information is used through

shear tomography, which consists in cutting the galaxy sample into slices in redshift and

calculating the 2 points c.f. within each slice (auto-correlation) and between different

slices (cross-correlation). The shear angular power spectrum between two redshift slices i

and j is

Cij(l) =

∫
dχ

χ2
Wi(χ)Wj(χ)P (

l

χ
) . (1.100)

The interest of tomography varies according to the goal of the survey. While it does

not significantly improve the estimation of the matter power spectrum, it is very useful for

constraining the evolution of the equation of state of dark energy, w(a). An alternative

way to use the redshift information is known as 3D weak lensing (Heavens 2003). This

full 3D statistical analysis, using the decomposition of the power spectrum in terms of
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spherical harmonics and spherical Bessel functions, allows to avoid the loss of information

from binning galaxies. It is particularly promising for high-precision measurement of the

dark energy equation of state parameters.

Shear Measurement

Measuring the cosmic shear signal is challenging, for two main reasons. First, extracting

the shear signal from the measurement of the ellipticity of a galaxy is difficult: the in-

duced shear on any galaxy is a small effect (≈ 1%) and since each galaxy is intrinsically

elliptical, it is impossible to separate the shear effect from the intrinsic ellipticity for a

single object. The other challenge is observational: several observational distortions need

to be corrected for, in order to convert images of small, faint galaxies into a measurement

of the cosmic shear. These observational effects include CCD pixelisation and PSF, and

will be summarized in more details in the next paragraph about systematics.

How is the shear extracted from galaxies images? One method is the Kaiser, Squiers

& Broashurst (KSB) method (Kaiser et al. 1995). The idea is to calculate the quadrupole

moments of the surface brightness distribution I(x) for each source galaxy. For a galaxy

with a surface brightness profile I(θ), well-defined for all angular separations θ from the

centre of the image, so that:

θ ≡
∫
d2θw[I(θ)]θ∫
d2θw[I(θ)]

, (1.101)

where w[I(θ)] is a suitably chosen weight function such that the integrals converge. The

tensor of second brightness moments is defined as

Qij =

∫
d2θw[I(θ)](θi − θi)(θj − θj)∫

d2θw[I(θ)]
, i, j ∈ {1, 2} (1.102)

The complex observed ellipticity is linked to Q through

εobs ≡ εobs1 + iεobs2 =
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)1/2

, (1.103)

The observed ellipticity ε is related to the intrinsic ellitpticity εint and the reduced

shear g = γ/(1− κ) via:

εobs =
εint + g

1 + g∗εint
. (1.104)
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When the lensing is “weak” enough, one can do the approximation εobs = εint + γ. In

the case where the ellipticities have been measured on a small enough patch of the sky for

the shear to be constant (because light from all the sources have passed through the same

mass distribution), averaging over this patch gives
〈
εobs
〉

=
〈
εint
〉

+ γ. Assuming that the

intrinsic ellipticities of galaxies are randomly distributed and average to zero, gives

〈
εobs
〉

= γ . (1.105)

Since the random intrinsic ellipticities are correlated neither with the intrinsic elliptic-

ities nor with the shears of other galaxies,

〈
εobsi εobsj

〉
= 〈γiγj〉+

〈
εinti εintj

〉
+
〈
γiε

int
j

〉
+
〈
εinti γj

〉
= 〈γiγj〉 , (1.106)

The latter assumption (of random intrinsic ellipticities) turns out to be inaccurate: in-

trinsic alignment is the main cosmic shear systematic which needs to be corrected for.

Systematics

We briefly list some of the systematics that need to be accounted for in any application

of WL.

• Intrinsic alignment. When aiming at high-precision cosmic shear measurements,

the assumption of random intrinsic ellipticities becomes inaccurate since galaxies

can intrinsically align and therefore have correlated intrinsic ellipticities. Both the

intrinsic ellipticities correlation and the shear-ellipticity correlation must be taken

into account in equation 1.106

• CCD effect. Some systematics result from the properties of the CCD chips, which

collect the light in galaxy surveys. These effects include nonlinear response (Van

Waerbeke et al. 2006) and charge transfer inefficiency in the way electrons are read

out of the CCD pixels, which can both bias the shear measurement (Massey et al.

2010).

• Point Spread Function. The effect of the telescope optics and the atmosphere,

described by the point spread function (PSF), are particularly strong in ground-

based survey, and still present in space-based mission. The distortion of the shape

of the galaxies is corrected for via PSF calibration, which is usually made using star
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Figure 1.14: Timeline of some current observational projects in cosmology. The upper
line shows the project using multi-object spectrograph, whereas the lower line shows the
imagining surveys. Credit: presentation by Ofer Lahav (2013).

images, acting as point sources (Paulin-Henriksson et al. 2008). In chapter 2 of this

thesis, we explore how the need for such calibration propagates into a requirement

on star/galaxy separation.

1.4.6 Current landscape of galaxies surveys

The questions posed by the discovery of the cosmic acceleration inspired a number of am-

bitious ground-based and space-based projects, making this early 21st century particularly

exciting for cosmology.

The work presented in this thesis is based on the simulations and data from two of these

projects: the Dark Energy Survey (DES; http://www.darkenergysurvey.org) and the The

Baryonic Oscillation Spectroscopic Survey (BOSS; http://www.sdss3.org/surveys/boss.php)

of SDSS-III. Together with Pan-STARRS (http://pan-starrs.ifa.hawaii.edu/public/) and

HETDEX(http://hetdex.org/hetdex/), both DES and BOSS are clear examples of the

current generation of stage-III dark energy experiments, as defined in the report from the

Dark Energy Task Force (Albrecht et al. 2006).

The DES is notably the first of these experiments combining all the four DE probes

defined by the DETF on one single facility. It will carry out large area, multi-band imaging

surveys that go a factor of ten or more deeper (in flux) than the SDSS imaging survey.

The BOSS survey will allow to exploit the BAOs probe, by carrying out a nearly cosmic-

variance limited survey (over 104deg2) out to z ≈ 0.7. These experiment are only one part
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of the many ambitious observational efforts which are being carried out. Figure 1.15 uses

a tool called BigFoot, created by the author, Maayane Soumagnac, together with Alex

Merson (UCL) during this PhD. It shows the footprints of some of the galaxy surveys

overlapping with the DES footprint. Figure 1.14 shows the timeline for some of the most

important observational projects of the past and coming decades.
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Figure 1.15: Footprints of the galaxy surveys overlapping with the footprint Dark Energy
Survey. This figure has been made with the BigFoot tool, designed by the author Maayane
Soumagnac and Alex Merson (UCL) during this PhD.
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Chapter 2

Science requirements on

Star/Galaxy separation

“It seems to me that the evidence, other than the admittedly critical tests depending on

the size of the galaxy, is opposed to the view that the spirals are galaxies of stars

comparable with our own. In fact, there appears as yet no reason for modifying the

tentative hypothesis that the spirals are not composed of typical stars at all, but are truly

nebulous objects.”

Harlow Shapley, The Great Debate (May, 1921)

“I hold, therefore, to the belief that the galaxy is probably not more than 30,000 light-years

in diameter; that the spirals are not intra-galactic objects but island universes, like our

own galaxy, and that the spirals, as external galaxies, indicate to us a greater universe

into which we may penetrate to distances of ten million to a hundred million light-years.”

Herber D. Curtis, The Great Debate (May, 1921)

2.1 Introduction

What makes a star look different from a galaxy in a deep image? This seemingly very

simple question hides the much more complicated issue of allocating a size and a scale

to objects observed in the sky, which has concerned observers and theorists throughout

63
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the 20th century. Perhaps the most dramatic illustration of this long-standing issue is

Heber Curtis’s and Harlow Shapley’sx so called great debate in the 1920s, which solved

the question of the size of our Galaxy in relation to cosmic scales; whereas Shapley was

arguing in favor of the Milky Way embracing the entirety of the universe and spiral nebulae

being part of it, Curtis saw our galaxy as one object among many other island universes.

The problem of classifying stars and galaxies in large scale surveys is a long-standing

one. It has been encountered back in the early 1990’s (e.g. the APM survey, Maddox et al.

1990) and poses a major challenge for all recent and large imaging cosmological surveys,

including the Dark Energy Survey (DES) (http://www.darkenergysurvey.org/) and Euclid

(http://sci.esa.int/euclid), which have been designed to uncover the nature of dark energy

(DE). One common denominator of the wide variety of observational probes constraining

DE is the necessity to select pure samples of galaxies. More specifically, all the surveys

must differentiate galaxies at cosmological distances from local objects, to obtain pure, or

at least well-understood, samples.

In the area of “precision cosmology”, any source of systematic error is likely to play

a decisive role and needs to be taken into account in order to refine the standard in-

flationary Big Bang picture. An example of a scientific question for which star/galaxy

separation is a potentially critical systematic is the precision measurement of Primordial

Non-Gaussianities (PNG). These manifest themselves by making the bias of a given type of

tracers of dark matter halos strongly scale-dependent. This effect can easily be mimicked

by any local systematic effect adding power at large scales and correlated with the galax-

ies. As the stellar distribution in the Milky Way is across large angular scales, star/galaxy

separation is likely to introduce systematic errors in the measurement of PNG.

Another example is the effect of occultation of galaxies by stars of comparable magni-

tudes. Ross et al. (2011) showed that this effect constitutes a source of systematic error

in the measurement of angular and photometric distributions of luminous red galaxies.

Photometric effects associated with faint stars could therefore partially account for the

excess power seen in Thomas et al. (2011) for the MegaZ-LRG survey. This work gives

two other examples, in the case of Weak Lensing (WL) and Large Scale Structures (LSS)

measurements, where star/galaxy separation is a key systematic, which needs to be taken

into account in order to properly constrain DE.

The aim of this chapter, which covers the first part of Soumagnac et. al. 2013, is to

study the impact of star/galaxy misclassification on the measurement of the cosmological
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parameters in the Dark Energy Survey, in the case of the WL and LSS probes, and to

show how the requirements on the statistical and systematic errors propagate into new

requirements on the quality of star/galaxy separation.

The outline of this chapter is as follows. In section 2.2, we present the “DES-like”

simulations which we base our analysis on, both in this chapter and in chapter 3. In sec-

tion 2.3, we define the main tools used to formulate the science requirement on star/galaxy

separation. In section 2.4, we derive the science requirements from the need to constrain

the statistical errors, and in section 2.5, we present those derived from the constraint

on the systematic errors. In section 2.6, we present additional requirement, dictated by

calibration. We summarize all the derived requirements and conclude in section 2.8.

2.2 The Dark Energy Survey Simulated Catalog

As part of the process of testing and validation of the DES Data Management (DESDM)

system (Mohr et al. 2012), a series of detailed simulations have been designed to serve as

a test-bench for the development of the pipelines and for verifying the scientific reach of

the experimental channels. Each of these iterations of the simulations are dubbed “Data

Challenges” (DC). The simulation starts with the creation of galaxy catalogs stemming

from an N-body simulation (Busha et al. 2013) and detailed models of the Milky Way

galaxy (Rossetto et al. 2011) for the star component. These are merged and fed to an

image simulator which includes atmospheric and instrumental effects. The resulting images

serve as inputs for DESDM and are processed as the data will be: the code SExtractor

(Bertin & Arnouts 1996) produces a catalogue of more than 300 parameters encapsulating

information about each detected object.

The most relevant features of these simulations for our study are:

• the seeing is introduced as a function of observing time;

• the galaxy shapes have been implemented using a Sersic profile which matches the

observed profile;

• the Point Spread Function (PSF) takes into consideration the seeing for that time,

the optics and the distortion as a function of separation from the optical axis.

The results shown in this chapter and in chapter 3 are based on the latest release

(internal to the DES collaboration) of simulated data, DC6, which covers approximately
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140 square degrees to the full DES depth, corresponding to about 10 nights of observations.

We select from it the objects with a model magnitude in the i band brighter than 24, as

they are the ones most likely to be detected with DES.

2.3 Formalism of the science requirements on star/galaxy

separation

DES will be among the first surveys to combine in a single project the observation of the

four preferred dark energy probes, as identified by the Dark Energy Task Force (DETF)

(Albrecht et al. 2006). SNe and Baryonic Acoustic Oscillation (BAO) constrain the ex-

pansion of the Universe as a whole and are therefore referred to as purely geometric. WL

and GC constrain both the expansion on the Universe and the growth of Large Scale

Structures (LSS) (See Weinberg et al. 2013 for a complete review).

In order to properly constrain DE, the broad variety of measures carried out within

each probe must meet certain requirements defined by DES science teams. While there

is no unique way to specify the constraints on dark energy experiments and probes, the

Figure of Merit (FoM), defined by the DETF, provides a useful metric. If we parameterise

the time evolution of DE by the equation of state w(a) = wo+(1−a)wa, where a(t) = 1
1+z(t)

is the cosmic scale factor and z(t) is the redshift of an object emitting at time t, the FoM

is defined as the reciprocal of the area of the error ellipse enclosing 95% confidence limit

in the wo-wa plane. Larger FoM indicates smaller errors and therefore greater accuracy

on the measurement of the parameters.

In other words, reaching the FoM goals requires to minimise the error on wo and wa.

Since the total error is the sum of the statistical error and the systematic error, we can

derive two types of science requirements. More concretely, the total Mean Square Error

(MSE) on a cosmological parameter pα can be decomposed as

MSE[pα] = σ2[pα] + ∆2[pα] , (2.1)

where σ2[pα] is the statistical error variance and ∆[pα] is the parameter shift due to the

systematic signals. For each probe, both of these terms needs to be controlled in order to

minimise the total error.

Star/galaxy misclassification is an interesting effect because, as illustrated in figure 2.1,
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Figure 2.1: The FoM is defined as the reciprocal of the area of the error ellipse enclosing
95% confidence limit in the wo-wa plane, and is shown in red. The effect of statistical
errors is to increase the area of the forecasted ellipse, whereas the effect of systematic
errors is to shift the ellipse. Star/galaxy misclassification is an interesting effect, because
it contributes to both the statistical and systematic part of the total error, for the WL
and LSS probes

it contributes to both the statistical and systematic part of the total error, for the WL and

LSS probes. This allows us to translate separately the requirement on the statistical term

(section 2.4) and the requirements on the systematic term (section 2.5) into requirements

on the quality of the star/galaxy separation. Additional requirements are specific to each

probe, e.g. PSF calibration for WL (section 2.6).

We outline below a formalism to derive these requirements.

2.3.1 Completeness, contamination and purity

In table 2.1, we define the parameters used to quantify the quality of a star/galaxy classi-

fier. For a given class of objects, X (stars or galaxies), we distinguish the surface density

of well classified objects, NX , and the density of misclassified objects, MX .

The galaxy completeness cg is defined as the ratio of the number of true galaxies



68 Chapter 2. Science requirements on Star/Galaxy separation

True Galaxies True stars

Objects classified as galaxies NG MS

Objects classified as stars MG NS

Table 2.1: Quantities used to define the purity pX and completeness cX of a class of objects
X (stars or galaxies).

classified as galaxies to the total number of true galaxies. The stellar contamination fs is

defined as the ratio of stars classified as galaxies to the total amount of objects classified

as galaxies.

cg =
NG

NG +MG
, (2.2)

fs =
MS

NG +MS
. (2.3)

The purity pg is defined as 1− fs:

pg =
NG

NG +MS
= 1− fs . (2.4)

Similar parameters can be defined for a sample of stars: ps, fg and cs.

We aim to formulate the requirements on the statistical and systematic errors in terms

of constraints on these parameters. This will allow us to quickly compare the performance

of the classifiers presented in chapter 3 and assess whether they allow us to achieve the

goals of the DETF FoM.

One should note that there are some inefficiencies in the image pipeline, which are

studied in DC6 and which we do not deal with in this analysis. Instead, we define the

latter parameters with respect to the mock galaxy samples used to produce the image

simulations. With real DES data, our results could be tested e.g. on HST data in the

same fields.
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2.3.2 Fisher Information Matrix

The Fisher information matrix describes how the errors on the angular power spectrum

C(l) (of the cosmic shear in the case of WL, and the density fluctuations of galaxies in

the case of LSS) propagate into the precision on the cosmological parameters pα . We

employ this formalism (see Tegmark et al. 1997, for a review), to quantify the impact of

star/galaxy misclassification on each of the terms in equation 2.1, i.e. on the statistical

and systematic errors on the cosmological parameters.

The Fisher matrix can be expressed as

Fαβ =
∑
l

∑
(i,j)(m,n)

∂Cij(l)

∂pα
Cov−1[Cij(l), Cmn(l)]

∂Cmn(l)

∂pβ
, (2.5)

where the sum is over multipole values and redshift bins (typically five for WL). Cov[X,Y ]

designates the covariance matrix of X and Y and is given by (Kaiser 1992; Takada & Jain

2004),

Cov[Cij(l), Cmn(l)] =
{Cim(l)Cjn(l) + Cin(l)Cjm(l)}

fsky(2l + 1)∆l
, (2.6)

where fsky is the fraction of the sky covered by the survey (fsky = 0.1212 for DES) and

∆l is the width of the corresponding angular frequency bin.

2.4 Science requirements on the statistical errors

How does the need to control the statistical errors on the cosmological parameters prop-

agate into a requirement on the quality of star/galaxy separation? In the following, we

aim to answer this question in the case of the WL and LSS probes.

2.4.1 WL measurements

Gravitational lensing from distant intervening mass fluctuations causes the shapes of ob-

jects to be distorted such that they appear to be more or less elliptical. While no single

object is intrinsically round, if the intrinsic shapes of galaxies are uncorrelated with one

another, one can average the apparent shapes of many thousands of such objects to extract

a distortion attributed to WL. The statistical properties of this observable pattern put a

constraint on the power spectrum and therefore on the cosmological model and on DE.
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For some concise introductions to cosmic shear, see e.g. Mellier (1999), Bartelmann &

Schneider (2001) and Refregier (2003).

How do star/galaxy misclassifications affect the WL shear measurement? The pre-

dicted shear angular power spectrum Cij(l) depends on Neff , the effective density per

unit area of galaxies with reliable shape measurements,

Cij(l) =

∫ rH

0
drr2Wi(r)Wj(r)P (l/r; r) + δij

σ2
e

Neff
(2.7)

where P (k = l/r) is the 3D matter power spectrum, Wi(r) and Wj(r) are the lensing

efficiencies of the redshift bins (i, j), r is the comoving distance and rH is the Universe

horizon. The angular power spectrum depends on Neff through the last term, i.e. the

“shot noise” due to σe, the intrinsic ellipticity noise for the galaxy sample.

In order study the effect of Neff on the statistical error σ[pα], we compute the Fisher

matrix for different values of Neff . We estimate the Cij(l) and ∂Cgmn(l)
∂pα

terms (see Eq. 2.5)

using the same code as in Laszlo et al. (2012) and Kirk et al. (2011). The setup is as follows:

we use a model with eight free parameters: {wo, wa, Ωm, H, σ8, Ωb, ns}; we assume a

Planck prior (Jochen Weller, personal communication); there are five tomographic bins of

roughly equal number density between z = 0 and 3; the redshift distribution is a Smail-

type distribution (e.g. equation (12) of Amara & Réfrégier 2008, with α = 2, β = 1.5,

z0 = 0.8
1.412); we compute the Cij(l) and ∂Cgmn(l)

∂pα
terms for l ∈ [1, 1024], to avoid the

strongly non linear regime where baryon physics will start being important and following

the l-cuts performed in most recent works by the WL community (Das et al. 2012); and

the photometric redshift error is ∆z = 5 · 10−2(1 + z).

We then compute the marginalized statistical error on the cosmological parameters by

approximating them with their Cramer-Rao lower bound

σ[pα] ≈
√

(F−1)αα (2.8)

We show the results for wo and wa in figure 2.2 and for the other free parameters of our

model in figure 2.3.

Figure 2.2 shows that larger Neff translates into smaller statistical errors on wo and

wa, i.e. larger FoM, which puts a constraint on Neff : it has to be higher than a threshold

value Nthresh which can depend on the bandpass considered,
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Figure 2.2: Marginalised statistical errors on the equation of state parameters wo and
wa from the WL probe, for different values of the density of galaxies with reliable shape
measurement Neff . The errors are marginalised over {Ωm, H, σ8, Ωb, ns} and computed
using the assumptions and setup described in section 2.4.1. The red curve shows the errors
computed with a non-informative prior whereas the blue curve is obtained assuming a
Planck prior.

Neff ≥ Nthresh . (2.9)

Figure 2.2 also shows asymptotes above Nthresh = 10, i.e. the effect of any variation of

Neff on the statistical error decreases at high Neff . In practice, we require the increase

of the statistical error due to star/galaxy misclassification to be smaller than 2%. If this

reasonable but somewhat arbitrary goal is not achieved, it will only increase the statistical

error and will not lead to a bias of the WL results. This translates into a decrease of Neff

smaller than 4%, i.e.

cg ≥ 96.0% (2.10)

Star-galaxy misclassification is only one among many other sources of errors leading true

galaxies to be rejected from the sample of galaxies with reliable shape measurements,

(e.g., shape measurement errors and photo-Z errors). To ensure that the statistical errors

are controlled, this condition on cg should be completed by constraints on the survey

parameters controlling all the other sources of errors.
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Figure 2.3: Marginalised statistical errors on {Ωm, H, σ8, Ωb, ns} from the WL probe,
computed with l ∈ [1, 1024] in the WL case and with l ∈ [10, 400] in the LSS case. The
red curve shows the errors computed with a non-informative prior whereas the blue curve
is obtained assuming a Planck prior.

2.4.2 LSS measurements

LSS measurements allow us to constrain DE in various ways. The position of the BAO

feature provides a standard ruler to study the expansion history. The shape of the angular

power spectrum of the galaxy density fluctuation encapsulates precious information about

the clustering amplitude and the growth of structures.

Star/galaxy misclassification affects the power spectrum measurements and the statis-

tical error on the cosmological parameters in a similar way as in the WL case. Indeed,

we can write the same equation as Eq. 2.7 for the angular power spectrum of the galaxy

density fluctuations. The shot noise term is then given by 1
NG

, where NG is simply the

surface density of detected galaxies. In figure 2.4, we show the evolution of the statisti-

cal errors on wo and wa with the density of detected galaxies, computed using the same

setup as in the WL case. Figure 2.5 shows the marginalised statistical errors on the other

parameters: {Ωm, H, σ8, Ωb, ns, bg} from the LSS probe.
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Figure 2.4: Marginalised statistical errors on the equation of state parameters wo and wa
from the LSS probe, for different values of the density of detected galaxies Ng. The errors
are marginalised over {Ωm, H, σ8, Ωb, ns, bg} and computed using the same assumptions
and setup as in the WL case (see section 3.2.1), with l ∈ [10, 400], to avoid the non linear
regime and following most recent l-cuts work by the LSS community (Rassat et al. 2008).
The red curve shows the errors computed with a non-informative prior whereas the blue
curve is obtained assuming a Planck prior.

In order to achieve the goals of the the LSS FoM, the 5000 sq-degrees DES survey

will need to provide reliable photo-z and position measurement for about 200 millions

galaxies, i.e. the number of galaxies correctly classified NG should be higher than 11.1 per

sq-arcminute (when using combined measurements from the r, i and z bandpasses). When

doing the latter calculation on the truth table of DC6, for which the surface density of

galaxies is Ng
tot ≈ 12.5, this threshold on NG translates into the following requirement on

the galaxy completeness provided by the star/galaxy classifier: cg > 88.9%.

Note that this requirement is a necessary but not sufficient condition, as other sources

of errors, apart from star/galaxy misclassification (e.g. photo-z errors), reduce the number

of galaxies which can be used for LSS measurement.

2.5 Science requirements on the systematic errors

We now explore the contribution of star/galaxy misclassification as a source of system-

atic error, which need to be controlled in order for the FoM objectives to be achieved.

Star/galaxy misclassifications generate a residual signal δCsys(l) in the angular power

spectra (of the cosmic shear in the case of WL, and the density fluctuations of galaxies

in the case of LSS), which propagates into a systematic shift ∆[pα] of the cosmological

parameter pα. We use the same formalism as in Amara & Réfrégier (2008) (see also Kirk
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Figure 2.5: Marginalised statistical errors on {Ωm, H, σ8, Ωb, ns, bg} from the LSS probe.
The errors are marginalised and computed with l ∈ [10, 400]. The red curve shows the
errors computed with a non-informative prior whereas the blue curve is obtained assuming
a Planck prior.

et al. 2012 and Huterer, Takada, Bernstein, & Jain 2006), to derive ∆[pα],

∆[pα] = ∑
β,l,(i,j),(m,n)

(F−1)αβδC
sys
ij (l)Cov−1[Cgalij (l), Cgalmn(l)]

∂Cgalmn(l)

∂pβ
, (2.11)

where F−1 is the inverse Fisher matrix. A criterion usually used to constrain the contri-

bution of the systematic error to the total MSE, is to define a tolerance on the systematics

such that they do not dominate over statistical error. This is satisfied when

|∆[pα]| ≤ σ[pα] , (2.12)

In the following sections, we derive the systematic parameter shift for 7 cosmological
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parameters pα = {wo, wa,Ωm, H, σ8,Ωb, ns} and the galaxy bias bg, in the case of LSS.

This allows us to translate Eq. 2.12 into requirements on the quality of the star/galaxy

separation.

2.5.1 Requirement from WL measurements

In the case of WL, the systematic error δCsys(l) comes from the fact that some stars

are identified as galaxies, and therefore contribute to the measured cosmic shear. We

decompose the measured shear γm into the contribution from the true galaxies and the

contamination from the misclassified stars. The galaxy shear is measured by deconvolving

the observed shear and a PSF model, therefore the contamination from stars in a galaxy

sample appears as a residual deconvolved shear:

γm = (1− fs)γg + fsγs,res . (2.13)

where fs = 1 − pg, is the stellar contamination rate (defined in Eq. 2.3) and γs,res is the

residual PSF shear, after deconvolution of the PSF model from the shape of misclassified

stars. In the following analysis, we make a toy model where the residual deconvolved

shears can be written as

γs,res = aγs , (2.14)

where α ∈ [0, 1] and γs is the stellar shear. The measured two-point shear correlation

function is therefore

< γmγm >= (1− fs)2 < γgγg > +f2
sα < γsγs > , (2.15)

and in terms of measured angular power spectrum, the latter equation reads

Cobs(l) = (1− fs)2Cgal(l) + f2
sαC

s(l) , (2.16)

where α = a2 and where we assumed that γg and γs are uncorrelated. In practice, this

is not necessarily the case. Our toy model introduces into the same term, αCs(l), the

auto-correlation of the residual “deconvolved star shapes” and possible cross-correlation
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between them and the galaxy shear γg. Setting α to zero comes to neglecting both of these

terms, and setting α = 1 comes to overestimating them both. We derive the requirement

on the quality of star/galaxy separation in the two limiting cases α = 1 and α = 0 and

leave the more general case for further analysis. Equation 2.16 gives the residual systematic

signal

δCsys(l) = f2
s (Cgal(l) + αCs(l))− 2fsC

gal(l) . (2.17)

The requirement stated in Eq. 2.12 can be reformulated as a requirement on the stellar

contamination rate fs,

P(fs) ≤ 0 , (2.18)

where P is a second order polynomial. Indeed, when replacing |∆[pα]| in equation 2.12

with its expression from equation 2.11 , and given the fact that fs is positive, the constraint

on fs is: (S)

 −σ[pα] ≤ Tαf2
s − fs · 2Sα ≤ σ[pα]

fs ≥ 0

which comes to solve

(S′)


P1(x) ≤ 0

P2(x) ≥ 0

x ≥ 0

where the two polynomial P1 and P2 are defined as

P1(x) = Tαx
2 − 2Sαx− σ[pα] , (2.19)

and

P2(x) = Tαx
2 − 2Sαx+ σ[pα] . (2.20)

where

Tα =
∑
β

∑
l

∑
(i,j)(m,n)

(Cgij(l) + Cs(l))Cov−1[Cgij(l), C
g
mn(l)](F−1)αβ

∂Cgmn(l)

∂pβ
(2.21)

and
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Sα =
∑
β

∑
l

∑
(i,j)(m,n)

Cgij(l)Cov
−1[Cgij(l), C

g
mn(l)](F−1)αβ

∂Cgmn(l)

∂pβ
(2.22)

and

Rα =
σ[pα]

Tα
(2.23)

Two cases need to be distinguished:

1. If Tα > 0, the solutions of (S′) is

 fs ∈ [fu−, fu+]

fs ≥ 0

where

fu± =
Sα
Tα
±

√(
Sα
Tα

)2

+Rα (2.24)

2. If Tα < 0, the solutions of (S′) is

 fs ∈ [fu−, fu+]

fs ≥ 0

where

fu± =
Sα
Tα
±

√(
Sα
Tα

)2

−Rα (2.25)

As fs = 1−pg, in terms of purity, the constraint reads (S)

 pg ∈ [1− fu+, 1− fu−]

pg ≤ 1

In this analysis, we assumed that fs is constant for all redshift tomographic bins. This

assumption is violated if the redshifts are correctly measured. Indeed, since the observed

stars have low redshift, the amount of true stars labelled as galaxies - and therefore fs-

should quickly drop down as the redshift increases. As a result, only part of the redshift

bins taken into account in the above analysis actually contribute to he true ∆[pα]. The

above analysis would lead to a pessimistic constraint, since it overestimates Tα and Sα

and underestimate fu+, which means the lower threshold on pg is overestimated.

In practice, photometric redshift errors lead stars to be erroneously assigned higher

redshift than their true redshift, sometimes resulting in the presence of several peaks in
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the redshift distribution of stars. Future work including a careful study of the evolution

of fs with redshift, should allow to refine the simplistic assumption of constant fs for all

redshift tomographic bins.

The other assumptions made to solve Eq. 2.18 are detailed below. We use the setup

detailed in section 2.4.1 to compute the Fisher matrix and the marginalised statistical

errors σ[pα] on the cosmological parameters. To estimate Cs(l) in Eq. 2.17, we assume it

is the sum of a “shot noise” term and a term due to the correlation of stellar shapes across

the field of view,

Cs(l) = Csnoise + Cstile(l) (2.26)

We measure Cstile(l), the power spectrum of the shapes of the stars in DC6, using the same

code as in Jarvis et al. (2004). The “shot noise” term is given by

Csnoise =
σ2
s

N s
tot

(2.27)

where N s
tot = Ns +Ms (see section 3.1.1) is the density of stars and the ellipticity of stars,

σs, is taken as the ellipticity of the PSF. To estimate σs, we use the whisker length. Given

Ixx, Iyy and Ixy, the second moment of the light intensity from an object in x, y coordinates,

a measure of the ellipticity of the light distribution is given by e = (Ixx − Iyy)(Ixx + Iyy).

The whisker length is then defined as w ≈
√
e(Ixx + Iyy) =

√
e · rpsf , where r2

psf is given

by (FWHM)/2.35. FWHM designates the full width at half maximum and is given by

FWHM ≈ 0.94 in DES. In addition, the hardware has been designed with a requirement

on the whisker length to be lower than a threshold value of 0.2” in the r, i and z band,

which we take as an estimation of whisk. We get Cs ≈ 1.3187 · 10−8 sr. Equation 2.18

translates into a constraint on the stellar contamination fs < fs,lim.

Here we consider the two limiting cases α = 0 and α = 1 and derive the lower

bounds for fs corresponding to each of these cases, referred to as fs,α=0 and fs,lim,α=1.

The true lower bound is in the interval corresponding to these limiting cases: fs,lim ∈

[fs,lim,α=1, fs,lim,α=0]. In figures 2.6 and figure 2.7, we show the limiting cases α = 0 and

α = 1 respectively. We plot the two terms of the total error MSE[pα] (see equation 2.1),

i.e. the systematic parameter shift ∆[pα] due to star/galaxy misclassification, and the sta-

tistical error σ[pα], for different values of the stellar contamination fs and for each of the

cosmological parameters of our model pα = {wo, wa,Ωm, H, σ8,Ωb, ns}. Within an experi-
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Figure 2.6: Marginalised statistical error σ (red line) and systematic parameter shift ∆
(blue curve) from the WL probe, for different values of the stellar contamination fs allowed
by the star/galaxy classifier and in the limiting case α = 1. Both σ and ∆ are marginalised
over {Ωm, H, σ8, Ωb, ns} and are computed using the setup described in section 2.4.1. The
yellow area corresponds to the values of fs for which the requirement on the systematic
errors is achieved, i.e. it does not dominate over the statistical error. This requirement
translates into a threshold on fs, indicated by the green line. Unlike LSS measurements,
WL measurements are not sensitive to the galaxy bias bg, which is the reason why it does
not appear above.

ment designed to constrain DE such as DES, the constraints on the quality of star/galaxy

separation comes from the need to control the errors on wo and wa. This being said,

one should keep in mind that the contamination from stars affects the precision on the

measurements of other cosmological parameters, as shown in figure 2.6.

For the equation of state parameters wo and wa, we find that we require fs ≤ fs,lim

with fs,lim,α=0 = 0.122 and fs,lim,α=1 = 0.022 (requirement driven by wa). This translates

into the following requirement on pg = 1 − fs, the purity provided by the star/galaxy

classifier: pg ≥ pglim with pglim ∈ [87.7%, 97.8%]. To refine this requirement, we now allow

α to vary. In figure 2.8, we show the evolution of pglim when varying α and when considering
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Figure 2.7: Marginalised statistical error σ (red line) and systematic parameter shift ∆
(blue curve) from the WL probe, for different values of the stellar contamination fs allowed
by the star/galaxy classifier and in the limiting case α = 0. Both σ and ∆ are marginalised
over {Ωm, H, σ8, Ωb, ns} and are computed using the setup described in section 2.4.1. The
yellow area corresponds to the values of fs for which the requirement on the systematic
errors is achieved, i.e. it does not dominate over the statistical error. This requirement
translates into a threshold on fs, indicated by the green line. Unlike LSS measurements,
WL measurements are not sensitive to the galaxy bias bg, which is the reason why it does
not appear above.

the requirement on the parameters wo and wa. The threshold is driven by wa (since the

requirement to constrain the bias on wa leads to a more stringent value of pglim). The value

of pglim quickly grows, from the limiting case α = 1. From α = 0.4, pglim grows slower and

stays above 96%.

2.5.2 Requirement from LSS measurement

Like for the WL probe, achieving the objectives of the LSS FoM requires the systematic

error induced by star/galaxy misclassification to be smaller than the statistical error on

wo and wa, and we can rewrite Eq. 2.12 in the case of LSS measurements. The shape
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Figure 2.8: Evolution with the coefficient α of the value of pglim, from the constraint on
the bias of the equation of star parameter wa (left) and wo (right).

of the residual systematic signal due to star/galaxy misclassification, δCsys, is obtained

following the same methodology as in the WL case, by decomposing the measured density

fluctuation into the contribution from the true galaxies and the contamination from the

stars identified as galaxies,

δm = (1− fs)δg + fsδs . (2.28)

Replacing the shear angular power spectrum with the density fluctuation angular power

spectrum like in Eq. 2.17:

Cobs(l) = (1− fs)2Cgal(l) + f2
sC

s(l) , (2.29)

we get the same requirement on the stellar contamination rate fs as in Eq. 2.18. To

estimate Cs(l), we use the same stellar catalogue as used for the DES simulated sky survey

produced by Busha et al. (2013). We then calculate Cs(l) using the approach from Thomas

et al. (2010) and an adaptation of the HEALPix code (Górski et al. 2005). We estimate

the Cij(l) and ∂Cgmn(l)
∂pα

terms using the same code and setup as for the WL case. Figure 2.9

shows the systematic parameter shift induced by the stellar contamination, for each of the

cosmological parameters of our model pα = {wo, wa,Ωm, H, σ8,Ωb, ns, bg}. In particular,

for the equation of state parameters wo and wa, we find that we require fs ≤ 0.015.

This translates into the following requirement on pg = 1− fs, the purity provided by the

star/galaxy classifier: pg ≥ 98.5%.
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Figure 2.9: Marginalised statistical error σ (red line) and systematic parameter shift ∆
(blue curve) from the LSS probe, for different values of the stellar contamination fs allowed
by the star/galaxy classifier. Both σ and ∆ are marginalised over {Ωm, H, σ8, Ωb, ns,
bg} and are computed using the setup described in section 2.4.1, with l ∈ [10, 400], to
avoid the non linear regime. The yellow area corresponds to the values of fs for which
the requirement on the systematic errors is achieved, i.e. it does not dominate over the
statistical error. This requirement translates into a threshold on fs, indicated by the green
line. Unlike WL measurements, LSS measurements are sensitive to the galaxy bias bg, as
shown on the last panel.

The requirement on star/galaxy separation in a DE experiment is dictated by the need

to accurately measure wo and wa. This being said, figure 2.9 demonstrates that these two

parameters are not the most sensitive to the contamination by stars, which we leave for

further analysis.

2.6 Stellar PSF calibration for WL

In this section, we derive two additional requirements on the quality of the star/galaxy

separation, from calibration constraints specific to the WL probe. The measured shapes

of galaxies include a component due to the PSF of the combined telescope, atmosphere,
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and instrument which is correlated among galaxies. Removing this contribution requires

careful measurement of the PSF, which is done using isolated stars. Therefore, additional

requirements on star/galaxy separation come from PSF calibration for WL.

2.6.1 Requirement on cs

In order to determine the interpolation pattern of the PSF, one needs to find enough

stars to adequately cover the area of the CCD chip. Based on preliminary studies of the

DES science verification data, we believe that between 100 and 200 stars per DES CCD

is enough to adequately cover the area of the CCD chip and determine the interpolation

pattern of the PSF. This requirement can be written as

NCCD >
200

SCCD
, (2.30)

where SCCD is the surface of a CCD. Each DECam CCD contains 2048∗4096 pixels, each

covering 0.27arcsec. Assuming a constant surface density NCCD of stars over the different

CCD (i.e. NCCD = NS), the later equation translates into

cS >
200

SCCD ∗ (NS +MS)
, (2.31)

From the truth tables, we know the number of true stars NS + MS , which allows us

to derive the technical constraint on the completeness of the stars samples: cs ≥ 25%. In

this analysis, we assumed that all stars can be used for PSF estimation. In practice, the

latter lower limit on the completeness could be more stringent because of several reasons:

• Only non-saturated (i.e. I magnitude fainter than 15) stars with a signal-to-noise

higher than 50 are used, in DES, for PSF calibration.

• Detector non-linearities lead to the “blooming” effect, or the “brighter-bigger” effect.

Indeed the voltages induced by the photons reaching the detector, leads brighter

objects to appear larger than faint objects. This effect can lead to variations of the

PSF between bright and faint stars, and therefore affects the PSF calibration.

Both of these constraints reduce the number of stars available for PSF calibration. This

is the reason why we made our calculation assuming the hard constraint of 200 stars per
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CCD, whereas 100 stars is enough, in practice (the cs ≥ 25% requirement allows PSF

calibration, even if only half of the catalog stars have flux and signal-to-noise that make

them usable for PSF calibration).

2.6.2 Requirement on ps

The upper limit on the contamination in a sample of stars comes from the fact that

galaxies misclassified as stars will bias the inferred PSF, which in turn will bias the galaxy

shapes. We use a toy model to estimate the bias on the shear estimate as a function of

fg = Mg/(Ns +Mg), the galaxy contamination rate in the sample of stars.

We first consider the sample of objects classified as stars, used for the calibration of the

PSF. Such a sample contains two types of objects: true stars and true galaxies which have

been misclassified as stars. The PSF model derived from this sample can be approximated

as the weighted average of both types of objects:

χpsfbiased(fg) = fgχ
mis,gal + (1− fg)χpsftrue , (2.32)

where χ is the polarisation, and is related to the observed major and minor axis a and b

of the image produced by a circular source via

|χ| = a2 − b2

a2 + b2
, (2.33)

and to the shear and convergence fields via

χ =
2γ(1− κ)

(1− κ)2 + |γ|2
, (2.34)

so that |χ| ≈ 2|γ|

We now consider a sample of galaxies of which we would like to measure the shear.

The observed polarisation χobs, i.e. the polarisation after convolution with the PSF model,

is linked to the true polarisation of a galaxy through the following relation (Viola et al.

2014):

χobsgal =
χtruegal

1 + 1/R
+
χpsftrue
1 +R

. (2.35)

The resolution R in the above equation is the ratio of the galaxy to PSF size. In the absence
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of misclassified galaxy contaminating the sample used to measure χpsf (and neglecting the

other sources of errors in the PSF calibration), the measured polarisation is:

χtruegal = (1 + 1/R)

(
χobsgal −

χpsftrue
1 +R

)
. (2.36)

However, the contamination from galaxies biases the PSF model, and the measured galaxy

polarisation is rather

χmeasuredgal = (1 + 1/R′)

(
χobsgal −

χpsfbiased
1 +R′

)
, (2.37)

where χpsfbiased is given by equation 2.32

As a result, the measured polarisation ca be written as

χmeasuredgal = (1 +m)χtruegal + c , (2.38)

where

m =
R/R′ − 1

R+ 1
, (2.39)

and

c =

(
1 +

1

R′

)(
χtruepsf

1 +R
−
χbiasedpsf

1 +R′

)
(2.40)

The same relation can be written for the shear:

γmeasuredgal = (1 +m′)γtruegal + c′ , (2.41)

where m′ = m and c′ = 2c.

Here, we use the SExtractor parameters Aimage and Bimage to estimate the typical po-

larisations of the different objects in the DES Science Verification (SV) data. In particular,

we compute χbiasedpsf as

χpsfbiased(fg) = fgχ
mis,gal + (1− fg)χpsftrue , (2.42)
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where

• χpsftrue ≈ 2γpsf and γpsf is estimated as the ellipticity of the PSF,

• χmis,gal =
A2
image−B2

image

A2
image+B

2
image

, for the misclassified galaxies.

In figure 2.12, we show the true and biased PSF polarisation χpsftrue and χpsfbiased, as a function

of the contamination from galaxies fg. As the contamination from galaxies grows, the

measured PSF polarisation departs from the true PSF polarisation, and approaches the

polarisation χmis,gal, of the misclassified galaxies which contaminate the stellar sample.

We use the SExtractor parameter Flux Radius to compute R and R′ as

R =
Flux Radiusgal.

Flux Radiusstars
(2.43)

where Flux Radiusstars is the Flux Radius parameters for the true stars, and

R′ =
Flux Radiusgal.

Flux Radiusstars+galmis
(2.44)

where Flux Radiusstars+galmis is the Flux Radius parameter for all the objects in the

sample labelled as stars (i.e. true stars and misclassified galaxies). The Flux Radius

parameters for the stars, galaxies, and all objects classified as stars (i.e. true stars and

misclassified galaxies) is shown in figure 2.10. As fg grows, more and more misclassified

galaxies contribute to Flux Radiusstars+galmis , the average size of all the objects classified

as stars grows, which explains why Flux Radiusstars+galmis grows. The computed resolu-

tions R and R′ are shown in figure 2.11. R is larger than 1, because the average size of

galaxies is larger than the average size of stars, as shown in figure 2.10. Similarly, R′ is

larger than 1, because the average size of galaxies is larger than the average size of the

objects classified as stars (stars and misclassified galaxies), as shown in figure 2.10. As fg

grows, Flux Radiusstars+galmis grows, which explains why R′ decreases when fg increases.

Using equations 2.36 and 2.42, we can compute χmeasuredgal and χtruegal , shown in fig-

ure 2.13, as well as the multiplicative and additive biases, m and c, shown in figure 2.14.

Previous work by the DES collaboration led to the formulation of requirements on the

value of m and c, which we also show on figure 2.14. These requirements translate

into requirements on the contamination from galaxies. In particular, the requirement

m < 0.004 translates into fg < fg,lim with fg,lim ∈ [0.06, 0.09] and therefore ps > pslim

with pslim ∈ [91%, 94%]. The requirement on the additive bias parameter c < 8 · 10−4
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Figure 2.12: True PSF polarisation χpsftrue (blue), polarisation of the misclassified galaxies

χmis,gal (green) and biased measured PSF polarisation χpsfbiased (red), as a function of the
contamination from galaxies fg. As the contamination from galaxies grows, the measured
PSF polarisation departs from the true PSF polarisation, and approaches the polarisation
of the misclassified galaxies which contaminate the stellar sample.

leads to a more stringent requirement on the contamination: fg,lim ∈ [0.03, 0.06], i.e.

pslim ∈ [94%, 97%].

In practice, shear codes have the ability to sharpen the classification of stars and

galaxies. Indeed, a shear measurement code convolves a model for the galaxy with the

measured PSF function, and then adjusts the parameters of this model to best fit the

observed data. If the best-fit values for the parameters characterising the size of the

model are too small, then it is likely that the observed object is a star (or a very small

galaxy). This allows to perform additional cuts of the sample of objects, using the output

of the shear measurement code as an additional indication about the class of the object.

For this reason, using the derived verbatim as a requirement on the star/galaxy separation

is conservative.

2.7 Alternative approach: fs and σs as nuisance parameters

The previous approach consisted of solving equation 2.18, to derive a constraint on the

stellar contamination fs. An alternative approach consists of considering fs and σs as

nuisance parameters and marginalising over them in the Fisher analysis. Indeed, fs and σs
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Figure 2.14: Multiplicative bias m (left) and additive biase c, m and c, shown in figure 2.14.
Previous work by the DES collaboration led to the formulation of requirements on the value
of m and c. These requirements translate into requirements on the contamination from
galaxies. In particular, the requirement m < 0.004 translates into fg < 0.3 and therefore
ps > 70%. We show two example of requirements on c. The “conservative” requirement
set by the DES collaboration leads to a stringent requirement on the contamination:
fg ∈ [0.03, 0.06], i.e. ps ∈ [94%, 97%]
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enter the Fisher matrix through their contribution to the projected power spectrum Cons(l)

defined in equations 2.17 and 2.29 for the WL probe and the LSS probe respectively. The

dark energy FoM is defined as the reciprocal of the area of the error ellipse enclosing 95%

confidence limit in the wo-wa plane. It is linked to the Fisher Matrix (FM) through the

Cramer-Rao inequality (equation 2.8). The raw FM represents the ability of the probes

in question to constrain cosmology and nuisance parameters. In addition we can include a

prior which encodes our knowledge about those parameters before a particular experiment

is undertaken. A wider prior means we are more ignorant about that parameter.

Here we calculate the degradation of a prior dark energy FoM of 0.1, for several values

of the width of a gaussian prior on fs and σs, for both the LSS probe and the WL

probe. For simplicity, we vary the width of both the prior simultaneously, and set α = 1

in equation 2.17. The results are shown in figure 2.15. The survey requirements set

a threshold on the value of the degradation FoM/FoMprior, (i.e. a horizontal line on

figure 2.15), which in turn translates into a constraint on the width of the gaussian prior

on fs, i.e. a into a requirement on the quality of star/galaxy classification. For example,

for the WL probe, a width of 7.5% of the gaussian prior fs = 10% is the maximum allowed

width, if we tolerate a 5% degradation of the prior FoM.

2.8 Concluding remarks

The requirements on the quality of the star/galaxy separation derived in this section are

summarised in table 2.2.

A dedicated sample of stars is only needed when calibrating the PSF. Therefore, the

two requirements on the samples of stars are only required for WL science. As far as

samples of galaxies are concerned, LSS science requires purer samples than WL science.

This is due to star contamination affecting the corresponding measured “observable” in

different ways. The contribution of misclassified stars to the measured shear is dominated

by the shot noise term (see Eq. 2.26), which is approximately scale independent, whereas

they mimic a l-dependent density fluctuation of galaxies and therefore contribute to the

LSS measurement in a more complicated way. On the other hand, WL requires a more

complete samples of galaxies. This is because a “usable” object means something different

for LSS and WL. In order to be usable for LSS measurement, a galaxy needs to be detected



2.8. Concluding remarks 91

Figure 2.15: Evolution of the dark energy FoM (the reciprocal of the area of the error
ellipse enclosing 95% confidence limit in the wo-wa plane) with the width of a gaussian
prior of fs and σs, for the WL probe (top panel) and the LSS probe (lower panel). The
FoM is normalized to the prior FoM. A requirement on the FoM can be translated on a
requirement on the width of the gaussian prior on fs, i.e. on the quality of the star/galaxy
classifier. For example, the horizontal lines correspond to a 5% degradation of the prior
FoM.

Table 2.2: Summary of the science requirements on the quality of star/galaxy separation.

requirement from LSS from WL

pg ≥ 98.5% (requirement ≥ pglim, with pglim ∈ [87.7%, 97.8%] (requirement

on the systematic error) on the systematic error)

ps - ≥ pslim, with pslim ∈ [94%, 97%] (requirement

on the PSF calibration)

cg > 88.9% (requirement > 96.0%(requirement

on the statistical error) on the statistical error)

cs - ≥ 25% (requirement

on the PSF calibration)
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with a reliable photometric redshift but WL also needs the shape of the galaxy to be

measurable.

In this chapter, we showed that star/galaxy misclassification contributes to both the

statistical and systematic error on the measurement of cosmological parameters. In par-

ticular, it affects the measurement of the DE equation of state parameters, wo and wa,

which future large photometric surveys such as DES aim to measure accurately. In the

case of WL and LSS measurements, we translated the DETF FoM requirements on the

statistical and systematic errors and the constraints from PSF calibration into the corre-

sponding science requirements on the quality of star/galaxy separation. We formulated

these requirements using two parameters: the purity and completeness of classified sam-

ples of stars and galaxy. In the next chapter, we will use these requirements to assess the

performance of a new classifier, multi class, and compare it to other classifiers currently

used in galaxy surveys.



Chapter 3

Desiging a new tool for

Star/Galaxy separation

“Artificial Intelligence is defined as the opposite of natural stupidity.”

Woody Allen.

In this chapter, we aim to achieve the science requirements on star/galaxy separation

defined in chapter 2. We present both the existing tools for star/galaxy separation, and a

new method we designed and tested for the DES. In section 3.1, we summarise the current

methods for star/galaxy classification and the motivations for our multi-parameter ap-

proach. The details of our method are presented in section 3.2. In section 3.3, we compare

our star/galaxy classification tool to the ones provided by other methods and confront

these results to the science requirements derived in chapter 2. Finally, we summarise our

main conclusions in section 3.4. The results shown in this chapter are using the DC6 DES

catalog, which was presented in section 2.2 of chapter 2.

3.1 Current tools for star-galaxy Separation

Different strategies have been adopted to classify stars and galaxies in large sky surveys.

The morphometric approach (e.g. Kron 1980; Yee 1991; Vasconcellos et al. 2011; Sebok

1979; Valdes 1982) relies on the separation of point sources (the ones most likely to be

stars) from resolved sources (presumably galaxies).

93
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This approach is challenged at the faint magnitudes reached by the next generation of

wide-field surveys, including the DES, due to the vast number of poorly resolved galaxies.

Another strategy consists of using training algorithms. Machine learning distinguishes

several types of learning strategies, Artificial Neural Network (ANN) being one success-

fully implemented example of supervised learning. ANN has previously been applied to the

star/galaxy separation problem (e.g. Odewahn et al. 1992, Naim 1995, Bertin & Arnouts

1996, Oyaizu et al. 2008). Indeed, star/galaxy separation shares with many other clas-

sification problems the three criteria which usually make neural computing applications

particularly successful:

• The task is well-defined in that we know precisely what we want, i.e. classify objects

in two distinct classes.

• There is a sufficient amount of data available to train the network to acquire a useful

function based on what it should have done in these past examples.

• No simple parametrization for the output (the class of the object) as a function of

the input (the parameters derived from the images) is known, and we would like to

leave it to the algorythm to determine the optimal classification scheme.

Other supervised classifiers, such as Support Vectors Machine (SVM), have been more

recently used for the star/galaxy separation problem, as well as unsupervised tools such

as Hierarchical Bayesian techniques (e.g. Fadely et al. 2012).

Throughout this section, we will use the following notations to define:

• classification tools - class star; spread model and multi class

• classification output - Xclass star; Xspread model and Xmulti class .

As described below (in sections 3.1.1 and 3.1.2), class star and spread model are two

classifiers currently implemented in SExtractor (Bertin & Arnouts 1996) and in the next

sections we present a new method for star/galaxy separation called “multi class”, designed

to achieve the science requirements derived in chapter 2 at the faint magnitudes reached

by DES.

Both the morphometric and the training approaches are implemented in SExtractor

(Bertin & Arnouts 1996), with two classifiers, class star and spread model.
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Figure 3.1: Distribution of the output of all the classifiers presented in this chapter. The
two upper histograms show the classification performed by class star and spread model.
The lower histograms show the classification performed by our new estimator, multi class.
On the right one, we incorporate Xspread model in the input parameters of the ANN. The
advantages of plugging Xspread model into our tool are explained in section 3.2.3. This
allows an increase of the purity for a given completeness, as shown in figure 3.6.

3.1.1 The training approach - class star

The first classifier to be implemented in SExtractor was class star. Its performance on our

example sub-survey is shown in figure 3.1. It uses a set of features of the objects as the

input space for a built-in previously trained ANN. These parameters are:

1. eight isophotal areas, at regular intervals spanning from the detection threshold to

the intensity peak;

2. the intensity peak;

3. the local value of the seeing.

This specific pre-defined set of inputs, chosen mainly for historical reasons, is the main

weakness of the class star estimator. The choice of training the ANN on isophotal areas
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(normalised to the local PSF footprint area) makes it sensitive to close pairs of objects

(star-star, star-galaxy, galaxy-galaxy) either blended or de-blended. Since star-star pairs

are common on the bright end of the source population, the classifier has a tendency to

miss bright, compact galaxies.

More generally speaking, given the large amount and diversity of information encapsu-

lated in the parameters provided by SExtractor, this specific choice of inputs has become

hard to justify as it is using a very small part of the available information. The photom-

etry, the shape or the size of an object should also be useful indicators of whether it is a

star or a galaxy.

Class star has the advantage of making use of several parameters and combining the

information they contain. In this sense it is a “multi-parameter” estimator. However, it

does not use the most relevant parameters. A more flexible and sensible choice of the

inputs is likely to give much better results. This is the main motivation for the new

approach tested in this chapter.

3.1.2 The morphometric approach - spread model

The morphometric approach was used in several photometric surveys in the past. One

possible implementation of this approach, adopted in the SDSS pipeline and in early

versions of the DES pipeline, consists of comparing a “model magnitude”, i.e. the optimal

measure of the magnitude obtained by fitting a galaxy model to the object, to the “PSF

magnitude” , i.e. the optimal measure of the magnitude determined by fitting a PSF

model to the object. A similar strategy was adopted in the CFHTLS pipeline, where

classes are assigned to objects according to their half-light radius (HLR), i.e. the circular

radius which encloses half the light of an object.

The classifier implemented in recent development versions of SExtractor, spread model

(Desai et al. 2012; Bouy et al. 2013), carries out diverse operations directly on the image

pixels with no use of the parameters generated by SExtractor. The newest version of

spread model is defined as

Xspread model =
φTWx

φTWφ
− GTWx

GTWG
, (3.1)

where x is the image centered on the source, W is the inverse of the covariance matrix

of the pixel noise, which is assumed to be diagonal, φ is the PSF and G is the circular
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exponential model convolved with the PSF. It acts as a linear discriminant in the pixels

space, between the best fitting local PSF model φ and a slightly “fuzzier” version made

from the same PSF model, convolved with a circular exponential model with scale length

given by FWHM/16 (FWHM being the Full-Width at Half-Maximum of the local PSF

model). Spread model is normalized to allow for comparison of sources with different PSFs

throughout the field. By construction, spread model is close to zero for point sources (most

likely to be stars), positive for extended sources (most likely to be galaxies) and negative

for detections smaller than the PSF, such as cosmic ray hits.

The performance of this late version of spread model on our example sub-survey is

shown in figure 3.1. Although this morphometric approach is quite efficient, it is not

entirely satisfying as it does not make use of any of the 300 SExtractor parameters, which

are likely to encapsulate a lot of relevant information for star/galaxy separation.

3.2 The multi class method

3.2.1 Motivation and principle

Our goal is to combine the assets of both the morphometric approach and the training

approach. We adopt the multi-parameter approach allowed by the training method and

focus on making the optimal choice of input parameters. The steps of the method are as

follows:

(1). Optimal choice of input parameters using a Principal Components Analysis (PCA);

(2). Training and running an ANN.

3.2.2 Step 1- optimal choice of input parameters using Principal Com-

ponent Analysis

Principal Component Analysis

Principal Component Analysis (PCA) is a method which comes down to diagonalising

the covariance matrix of the data. It allows to re-express the observed data (i.e. the

values of a set of possibly correlated variables) in a sometimes more meaningful basis

of orthogonal, i.e. linearly uncorrelated variables called principal components. The first

principal component is chosen to have the highest possible variance and thus to account

for most of the data variability. Then each succeeding principal component has the highest
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possible variance under the constraint of being orthogonal - that is uncorrelated - to the

preceding one. In this section, we explain its mathematical implementation.

Let N be the number of parameters in the catalogue DC6, and K the number of

objects. This sample of N random variables can be put in a matrix form:

M =



X1,1 . . . X1,N

. . .

. . .

. . .

XK,1 . . . XK,N


Each parameter Xn = (X1,n, ..., XK,n) has a mean value X̄n and a standard devia-

tion sN = σXn . We assume the realizations have all the same probability. The vector

(X̄1, X̄2, ..., X̄N ) is called g and is such that g = MT ·D · 1, where D = 1
K · Id and 1 is

the vector of RK of which all components are equal to 1.

M̄ is the centered matrix:

M̄ =



X1,1 − X̄1 . . . X1,N − X̄N

. . .

. . .

. . .

XK,1 − X̄1 . . . XK,N − X̄N


= M − 1gT . (3.2)

And M̃ is the rescaled matrix:

M̃ =



X1,1−X̄1

σ(X1) . . .
X1,N−X̄N
σ(XN )

. . .

. . .

. . .

XK,1−X̄1

σ(X1) . . .
XK,N−X̄N
σ(XN )


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M̃ = M̄ ·D1/s ,

where D1/s be the diagonal matrix with the inverse standard deviations

D1/s =



1/s1 . . . 0

. . .

. . .

. . .

0 . . . 1/sN


The variance-covariance matrix V is given by:

V = 1/K · M̄T · M̄ = M ·D ·MT − g · gT = M̄ ·D · M̄T ,

Whereas the correlation matrix is:

C = 1/K · M̃T · M̃ = M̃ ·D · M̃T .

In this work, we chose to use the rescaled matrix M̃ , which allows us to reduce the noise

effects.

Performing a PCA aims at looking for a vector u such that the projection of the data

on this vector has maximal variance. The projection of the data on u is:

πu(M̃) = M̃ · u .

The variance of πu(M̃) is thus:

πu(M̃)T · 1/K · πu(M̃) = uT · M̃T · 1/K · M̃ · u

= uT · C · u .

C is diagonalizable in an orthonormal base. We call P the change of base and ∆ the
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diagonal matrix associated:

πu(M̃)T · 1/K · πu(M̃) = uT · P T ·∆ · P · u

= (Pu)T ·∆ · (Pu)

= vT ·∆ · v ,

where v = P · u. We look for the unitary vector v which maximizes vT · ∆ · v, where

∆ = Diag(λ1, ..., λN ) (the values on the diagonal are ordered in descending order). By

using the Lagrange multiplier α,

L(u, α) = uT · C · u− α(uTu− 1)

we show that:

1. u is the eigenvector of C with the eigenvalue λ1.

2. u has a norm equal to 1.

The eigenvalue λ1 is the variance on the first PCA axis. The next axis v is found in the

same way, under the constraint of being orthogonal to u.

Application to DC6

We make a broad pre-selection of all the parameters likely to be relevant for star/galaxy

classification. These parameters are listed in table 3.1. They include:

1. photometry in 5 bands (g,r,i,z and y);

2. the size of objects;

3. the shape of objects;

4. the surface brightness of objects;

5. qualifiers of the fitting procedure;

6. the output of the class star classifier, Xclass star;

7. additional analysis-dependent information.
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Table 3.1: DC6 pre-selected parameters, grouped as defined in section 3.2.2, by type of
information they provide: (i): photometry; (ii) size; (iii): shape; (iv): surface brightness;
(v): qualifiers of the fitting procedure; (vi): output of the class star classifier; (vii): addi-
tional analysis-dependent information. It should be noted that all of these parameters are
distance-dependent. The need for K-correction to the magnitudes is therefore dealt with
by including the photometric redshift in this pre-selected parameters space.

Parameters Description

(i) mag aper in 5 bands Fixed aperture magni-
-tude with 6
different apertures

mag auto in 5 bands Kron-like elliptical
aperture magnitude

mag iso in 5 bands Isophotal magnitude
mag model in 5 bands Magnitude from model-

fitting
mag petro in 5 bands Petrosian-like elliptical

aperture magnitude
mag psf in 5 bands Magnitude from PSF-

fitting
mag spheroid in 5 bands Spheroid total magn-

-itude
from fitting

(ii) kron radius (from the de- Kron apertures
tection image)

(iii) ellipticity (from the de- 1−Bimage/Aimage
tection image)

(iv) isoarea world in 5 bands Isophotal area above
analysis threshold

FWHM world in 5 bands FWHM assuming a
gaussian core

(v) chi2 model in 5 bands Reduced chi-square
of the fit

chi2 psf in 5 bands Reduced chi-square from
PSF-fitting

niter model in 5 bands Number of iterations for
model-fitting

(vi) Xclass star in 5 bands Output from
class star

(vii) nlowdweight iso Number of pixels with low
detection weight over the
isophotal profile

photoZ photometric redshift
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Figure 3.2: Scatter plots for stars (red markers) and galaxies (blue markers), for four
different types of magnitudes in the i band. The magnitudes are strongly correlated and
PCA is therefore well adapted to re-express them in a new basis of independent variables.

Ideally, we could run an ANN with this full set of relevant inputs. In practice, training

the ANN is a non-linear iterative process, which becomes more time consuming and less

robust as the number of input parameters increases. In fact, defining an optimal set of

input parameters consists of minimising its size while maximising the amount of relevant

information it contains.

Our initial set of parameter is redundant, as many of the parameters within each

sub-group are dependent variables. For example, we show in figure 3.2 the dependencies

between four types of magnitudes parameters measured in a given band. In order to reveal

the redundancies within the data and compress it, we use a PCA. This statistical method,

which, as explained in section 3.2.2 comes down to diagonalising the covariance matrix of

the data, allows us to re-express the pre-selected parameters detailed above in a basis of

principal components.

We run several “well-informed” PCAs on sub-ensembles of parameters, rather than

a “blind” PCA on the full set of initial parameters. We choose to group in these sub-

ensembles parameters which have the same units (or measure) and which are linearly
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dependent on each other (such as the magnitudes in a given band, as shown in figure 3.2).

Indeed, when the parameters are linearly dependent, PCA is successful at finding a new

basis of meaningful independent variables.

Our new set of parameters includes uni-band parameters from the initial set (such as

the photometric redshift or the ellipticity), as well as the principal components from the

PCAs listed below:

• PCA on the five bands of each multi-band parameter;

• PCA on the six fixed-aperture magnitudes in each band;

• PCA on the six other types of magnitudes in each band (i.e. mag auto, mag iso,

mag model, mag petro, mag spheroid and mag psf).

Figure 3.3 shows the variances of the principal components of these six types of mag-

nitudes in each band as a function of their index. Each of these PCAs shows that most of

the variance of the data is encapsulated in a reduced number of principal components.

In many cases, using PCA for data reduction consists of selecting only the principal

components with the highest variance and approximating the data by its projection on this

smaller set of variables. This encompasses the assumption that the important information

is represented by the components with the highest variances. In the case of star/galaxy

separation, this assumption is too simplistic. Indeed, the class of an object is only one

possible source of variance and high variance could also be due to differences between

objects in a given class. Therefore, when looking for the most relevant components for

star/galaxy separation, we need another criterion to quantify their aptitude to separate

between the classes. We calculate the Fisher discriminant (Fisher 1936) for each of the

new parameters, defined as the inter-class variance over the intra-class variance,

Fi =
(XG,i −XS,i)

2

σ2
G,i + σ2

S,i

, (3.3)

where XA,i is the empirical mean value of the ith parameter for class A and σ2
A,i is its

empirical variance. Figure 3.4 shows the classification performed by the three parameters

with the highest Fisher discriminant. The fifteen parameters with the highest Fisher

discriminant form our final set of input parameters for the ANN (more than twenty input

parameters make the ANN less robust, so we limit the basic set to fifteen parameters, in

anticipation of the other five that will be added in section 3.2.3).
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Figure 3.3: Value of the variance of the principal components as a function of their index for
the fives (per-band) PCAs performed on the six types of magnitudes: mag auto, mag iso,
mag model, mag petro, mag spheroid and mag psf.

3.2.3 Step 2 - running an Artificial Neural Network on the optimal

inputs space

Once a set of optimal parameters is defined, the next step consists of mapping these

parameters to the class of the objects. This mapping is performed by training an ANN.

ANN: principle and advantages

In essence, an ANN is a highly-flexible, fully non-linear fitting algorithm. During the

training phase, it receives a set of input patterns and a given property (in our case the

class of the object), which needs to be fitted to them. The training consists of several

iterations during which a number of free parameters known as weights are adjusted so

as to minimise the difference between the outputs of the neural network for each pattern

and the desired property. The algorithm then learns how to link the inputs to the desired

property. After the training phase, the ANN can be used to infer this property from a set

of input objects for which it is unknown. For our analysis, we train an ANN to map the
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Figure 3.4: Distribution of the three parameters with the highest Fisher discriminant,
for stars and galaxies as indicated in the figure. pc class star 1 (top left) is the first
principal component from a PCA performed on the five bands of Xclass star. The two other
parameters shown, ellipticity (top right) and photoZ (bottom) have not gone through any
PCA.
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Figure 3.5: Schematic diagram of neural network as implemented by ANNz from Collister
& Lahav (2004). When used for photometric redshift measurement, the input layer of
ANNz consists of nodes that take magnitudes in the different filters used for photometry,
but we use a different set of input parameters, carefully defined and selected according
to the procedure of section 3.2.2. A single hidden layer consisting of p nodes is shown
here although more hidden layers could be used. The output layer has a single node that
gives e.g. the photometric redshift. In our case the output property is not the redshift,
but the class of an object (i.e. the object being a star or a galaxy). Each connecting line
between nodes carries a weight, wij . The bias node allows for an additive constant when
optimising weights.

set of optimal input parameters selected in section 3.2.2 to the class of the object (star

or galaxy) on a sample of objects for which the answer is known (the training is made on

the DC6 simulations for which we know the true class of each object). The ANN is then

used to deduce the class of a distinct set of objects.

An ANN is made of computing units called neurons, arranged in several layers and

connected by synapses in which the information flows in a single direction. The complexity

of the network depends on the number of layers and neurons in each layer. We chose to use

the ANNz photometric redshift code (Collister & Lahav 2004) , which was originally de-

signed for photometric redshift measurements, but can be effectively and straightforwardly

applied to our classification problem.

Figure 3.5 shows the ANNz setup, when used for photometric redshift measurements.
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The first layer receives the parameters selected in section 3.2.2 as inputs and the last

layer outputs a number between 0 and 1, which represents the probability of the object to

be a star or a galaxy. All the nodes in the hidden layers in between the input layer and

the output are interconnected and connections between nodes i and j have an associated

weight, wij . Each node i is assigned a value ui and an activation function gi(ui)

gi(ui) =
1

1 + exp(−ui)
(3.4)

The value of a subsequent node j is then calculated as the summation of the weighted

values of the activation functions of all nodes i pointing to it:

uj =
∑
i

wijgi(ui) . (3.5)

The ANN requires a training set that is used to minimize the cost function, E, with respect

to the free parameters wij ,

E =
∑
k

(C(wi,j ,mk)− Ctrain,k)2 , (3.6)

where mk is the kth input vector of the training set, C(wi,j ,mk) is the class computed by

the network for this input vector, and Ctrain,k is the known class. To avoid an over-fitting,

every network is tested on a validation set of galaxies, for which the output C are also

known. The network with the lowest value of E as calculated on the validation set is

selected and the sample of unknown classes is run through it for class estimation. This

algorithm is fully implemented within ANNz (Collister & Lahav 2004).

The trade-off between the complexity of the architecture (the number of hidden layers

and nodes in each hidden layer) of the network and its performance has been investigated

by Firth et al. (2003). For the same number of parameters, adding extra hidden layers

is found to give greater gains than widening existing layers. As the network complexity

is increased, the accuracy eventually converges so that no further improvement is gained

by adding additional nodes. We chose a network architecture with an input layer of

fifteen parameters (or twenty, as explained in the next section) and two hidden layers of

twenty (twenty-five, respectively) nodes, which turns out to be sufficiently complex for

such convergence to be achieved.

Training on real data, as opposed to simulations, is preferable, yet more challenging.
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One option would be to use data from space-based surveys, as in space the PSF is not

affected by the seeing. Data from the Hubble Space Telescope could be used to train our

tool for the real DES survey data. This is the aim of chapter 4.

Plugging other classifiers in the method

Using an ANN brings flexibility to the training approach. It allows us not only to choose

which inputs to use, but also in what number. In particular, we can take the output of

other classifiers as inputs to our method.

We run a PCA on the five Xclass stars (in the five bands). Not surprisingly, the first

principal component has a high Fisher discriminant (as shown in figure 3.4) and is therefore

included in the 15 input parameters selected in section 3.2.2. As the the five bands of

Xspread model are less clearly linearly dependent, we choose not to run a PCA on them and

add the five Xspread model to the set of fifteen input parameters, which amounts to twenty

input parameters.

Figure 3.6 presents the purity level at a given completeness for these two different con-

figurations of our method. The performance of our method with fifteen input parameters

(orange curve) can be compared to the performance when plugging in Xspread model (pink

curve). Including Xspread model in the inputs allows an increase in the level of the purity

by 2% at faint magnitudes. Running the ANN on the fifteen preselected parameters (or-

ange curve) already gives better results than spread model (blue curve) for most of the

magnitude range (except for the very faint magnitudes, in the galaxies case). However,

the best results are obtained by combining the two, i.e by running the ANN on a hybrid

input space combining the 15 selected parameters and Xspread model.

3.3 Classification results

We showed that we can optimise our classifier performance by using a “well-informed”

PCA strategy (section 3.2.2), and by incorporating Xspread model into the method (see

above). We now compare our classifier performance to the one of the other classifiers. We

will focus on comparing multi class to spread model, as the performance of class star is

widely surpassed by both spread model and multi class for most of the magnitude range

(as shown in Figure 3.6).

For LSS, our new classifier allows us to achieve requirements which cannot be fulfilled
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Figure 3.6: Purity level at the required completeness, for the WL probe, as a function of
magnitude in the i band. The orange and pink curves correspond to different versions of
our method: one case (orange), we ran ANNZ on the set of parameters selected following
the PCA; in the other case (pink), we added spread model (in 5 bands) to this set of
parameters, which increase the level of purity. It appears that ”plugging” spread model
to the ANN inputs increases the purity level.The blue and green ones show the performance
of the classifiers class star and spread model. The orange curve is obtained when running
the ANN on the 15 parameters selected in section 3.2.2 and the pink curve, the final version
of multi class, is obtained when adding spread model in five bands to this set of inputs.
The dashed horizontal line shows the science requirement from WL science on pg (97.8%,
section 2.5.1 of chapter 2) and ps (97.0%, section 2.6 of chapter 2). The requirement on pg

is achieved by multi class up to magnitudes of 22.9, whereas spread model only allows us
to reach 22.0. The requirement on ps is achieved up to magnitudes of 23.4 with multi class,
versus 21.5 with spread model.



110 Chapter 3. Desiging a new tool for Star/Galaxy separation

by spread model. Figure 3.7 shows that the 98.5% limit on pg (derived in section 2.5.2

of chapter 2 and shown in purple on the figure) cannot be reached by spread model,

whereas multi class allows us to reach it up to magnitudes of 22.9 (at the required 88.9%

completeness level, derived in section 2.4.2 of chapter 2).

For WL, multi class allows us to increase the magnitude limit below which the science

requirements are achieved. Figure 3.6 shows that this magnitude limit increases from

21.5 to 23.4 for the requirement on the stars purity ps, and from 22.0 to 22.9 for the

requirement on the galaxy purity pg. Figure 3.7 and figure 3.8 generalise this to a broad

range of completenesses. In figure 3.9, we consider the improvement in the purity of a

sample of stars and a sample of galaxies, as a function of magnitude, for a large range of

completenesses. At faint magnitudes - typically fainter than 23 - multi class improves the

purity achieved by spread model by up to 12% for galaxies and by up to 20% for stars.

3.4 Conclusions

In order to meet the requirements defined in chapter 2, we built an efficient method

for star/galaxy classification, called multi class, which combines a PCA with a learning

algorithm. Our multi-parameter approach allows us to make use of the huge amount of

information provided by SExtractor. In particular, the use of PCA allows us to better

understand the correlations in the data, and to implement this physical knowledge in the

classifier.

In ground-based surveys such as DES, the image quality is not constant with position

and therefore any purely morphometric method gives limited performance, especially at

faint magnitudes. The flexibility of using an ANN allows us to consider the morphometry

as one input parameters among many others and to integrate the performance of other

classifiers to our new tool. Our new classifier, multi class, significantly improves the

performance of the morphometric classifier implemented in SExtractor (spread model),

which cannot achieve the LSS science requirements on star/galaxy separation. For both the

LSS and WL probes, it allows us to widen the range of both magnitude and completeness

where the derived science requirements are achieved. For magnitudes fainter than 23,

multi class improves the purity achieved by spread model by up to 12% for galaxies and

by up to 20% for stars.

The faint magnitudes reached by this new classifier constitute an important asset,
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Figure 3.7: Level of purity for a sample of galaxies pg, for different magnitudes and values
of the completeness. The 98.5% level requirement from LSS (section 2.5.2 of chapter 2)
is shown in purple, and the 97.8% limit required for WL (section 2.5.1 of chapter 2) is
shown in black. Spread model does not allow to achieve the LSS requirement, which
multi class can reach. Multi class also allows us to achieve the requirement from WL at
fainter magnitudes than spread model.

Figure 3.8: Level of purity for a sample of stars ps, for different magnitudes and values
of the completeness. The 97% science requirement (from WL, derived in section 2.6 of
chapter 2) is shown in black. Higher purity levels are shown in purple and light purple.
Our new estimator, multi class, allows us to widen the range of both magnitude and
completeness where this requirement is achieved.
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Figure 3.9: Difference of the purity level achieved by multi class and spread model,
pmulti class − pspread model for stars (left) and galaxies. At faint magnitudes (ranging from
23 to 24), multi class allows us to increase the level of ps achieved by spread model by up
to 20%, and pg by up to 12%.

which should allow to achieve the science requirements on star/galaxy separation in the

next generation of wide-field photometric surveys. The recent beginning of the DES survey

operations in September, 2013, will allow us to continue the testing and optimisation of

multi class on real data. A first attempt is presented in chapter 4 of this thesis.



Chapter 4

Star/Galaxy separation in the

DES Science Verification data

“To write it, it took three months; to conceive it three minutes; to collect the data in it

all my life.”

F. Scott Fitzgerald

“Errors using inadequate data are much less than those using no data at all.”

Charles Babbage

The classifier we built in chapter 3, multi class, uses a neural network, and therefore

requires to be trained on a set of objects for which the class - i.e. the object being a star

or a galaxy - is known. When using simulations as in chapter 3, the class of the object is

provided by the truth tables used to generate the simulated data. However, when using

real data, obtaining a reliable training set is a more challenging problem. The equivalent

of the truth table can be obtained by cross-matching the available catalog with two types

of data:

1. Data from space-based facilities. In this case, the seeing is good enough so that the

class of the object is not ambiguous.

113
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2. Spectroscopic data. In this case, the spectra of the objects, which are very different

for stars and for galaxies, provide a straightforward answer to the classification

problem.

The recent internal release of the first DES science verification data (section 4.1) and

its cross-matching with data from the Hubble Space Telescope (HST) and the VIMOS

VLT Deep Survey (VVDS), gave us an opportunity to play on both these aspects, and to

perform a first testing of multi class on real data.

4.1 The year one science verification data

The DES first year of operation has been dedicated to “Science verification” (SV), i.e. an

“end-to-end test of all the systems needed to actually conduct the survey, both on the

mountain and elsewhere”1. Successfully passing the formal acceptance requirements has

been a necessary condition for DES to begin taking survey data, in september 2013. In

this chapter, we use the latest release of the DES-SV data: the SVA1 Gold Catalog v1.0

(January 2014), to start testing and optimising our classifier.

4.1.1 The science verification catalog

The idea in the creation of this catalog was to be “as generous as possible” with the cuts

consistent with a “science-ready” galaxy catalog. The footprint selection was made for

coverage with at least one CCD depth in all each of the bands g, r, i and z. A cut was

made with Dec > −61◦ to remove the Large Magellanic Cloud (LMC). Although this does

remove approximately 40deg2 from the SPTE region, tests performed by the DES Data

Management team showed that the LMC cannot be accurately calibrated to the same scale

as the rest of the survey and deblending is hard, which is the reason it has been removed.

However, we are planning to use the LMC to calibrate our classifier in future work. This

cut also has the advantage of removing 5deg2 contaminated by stray light from R Doradus

, the second brightest star in the infrared sky. Additional footprint cuts were made to

remove regions with:

1. very high density of “crazy color” objects (due to satellites, airplanes, and stray

light)

1DES Data Management website definition.
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Figure 4.1: Detail of the fields matched to the SVA1-Gold catalog and included in the
catalog we use to test multi class. Credit: Nacho Sevilla.

2. very low density of galaxies (primarily at the edges and near other masked regions).

In total, the cuts removed 1.5% of the remaining area. Overall, the SVA1 Gold Catalog

v1.0 covers 254.4deg2 with g, r, i, z coverage north of Dec > −61. A total of ≈ 223.6deg2

of area also has Y band. Figure 4.2, created with the BigFoot tool - designed by the author

and Alex Merson (UCL) - shows the footprint of the SVA1 Gold Catalog v1.0, together

with relevant footprints.

4.1.2 The cross-matched catalog

In this work, we do not use all the SVA1 Gold Catalog v1.0, but only the objects of this

catalog which have been cross-matched to objects from spectroscopic data sets and data

taken from space. Figure 4.1 shows the list of fields which have been cross-matched with

the SVA1 Gold Catalog v1.0, to produce the final catalog we used.

Figure 4.2 shows the footprint of these fields, together with DES year-one footprint

and final footprint.

4.1.3 Size of the training set

In the DC6 simulation used in chapter 3, the stars-to-galaxies ratio in the training set

was approximately 46%, with 2405280 stars and 5227909 galaxies. The cross-matching

with spectroscopic data leads to a catalog which is biased in favor of galaxies. Indeed,

the stars-to-galaxies ratio in the cross-matched catalog is approximately 10%. Figure 4.3

shows the number of stars and galaxies per magnitude bin, for both DC6 and the training

part of the cross-matched catalog.

The artificial network implicitly takes the distribution of objects as a prior, therefore

if we believe that the stars-to-galaxies ratio is higher in the survey than in our available
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Figure 4.2: Footprint of DES (blue) the SVA1-Gold catalog (yellow), and the cross-
matched catalog (red). We also show the SPT area, overlapping with the SV catalog,
and the LMC, which has been willingly removed from it.These footprint have been cre-
ated with the BigFoot tool, developed by the author together with Alex Merson (UCL).

catalog, something should be done to increase the neural network prior for the density of

stars. We solve this by “replicating” the stars in the training set, in a way we explain

below. In addition, such replication makes the training more robust by increasing the size

of the training set.

In order to generate random stars in the training set, we use the error bars on the

parameters of each objects and assuming they are gaussian. A widely used method for

drawing a random vector ~x from the N-dimensional multivariate normal distribution with

known mean vector µ and covariance matrix is using the Cholesky decomposition of the

given covariance matrix. Given the Cholesky decomposition AAT = C of the given co-

variance matrix C, and ~z = (z1, z2, ..., zN )T a vector which components are N independent

standard normal variates, then the vector ~x = ~µ+A~z has the desired distribution.

In all the following, we use a catalog with a number of replications of the stars which al-

lows us to reach a ratio of stars-to-galaxies of about 80%. Figure 4.3 shows the distribution

of stars and galaxies in the training set before and after the replication.



4.2. The method 117

19 20 21 22 23 24
Magnitude Magauto in the I band

0

50000

100000

150000

200000

N
u
m

b
e
r 

o
f 

g
a
la

x
ie

s,
 N

ga
la
x
ie
s

Number of objects in the input catalog

19 20 21 22 23 24
Magnitude Magauto in the I band

20000

25000

30000

35000

40000

45000

50000

55000

60000

N
u
m

b
e
r 

o
f 

st
a
rs

, 
N
st
a
rs

19 20 21 22 23 24
Magnitude Magauto in the I band

0

2000

4000

6000

8000

10000

N
u
m

b
e
r 

o
f 

g
a
la

x
ie

s,
 N

ga
la
x
ie
s

Number of objects in the initial catalog

19 20 21 22 23 24
Magnitude Magauto in the I band

150

200

250

300

350

400

450

N
u
m

b
e
r 

o
f 

st
a
rs

, 
N
st
a
rs

19 20 21 22 23 24
Magnitude Magauto in the I band

0

2000

4000

6000

8000

10000

N
u
m

b
e
r 

o
f 

g
a
la

x
ie

s,
 N

ga
la
x
ie
s

Number of objects in the catalog with replicated stars (gaussian)

19 20 21 22 23 24
Magnitude Magauto in the I band

1200

1400

1600

1800

2000

2200

2400

2600

2800

N
u
m

b
e
r 

o
f 

st
a
rs

, 
N
st
a
rs

Figure 4.3: Number of objects in DC6 (top left), in the initial SV catalog (top right), and
in the SV catalogue after replication of the stars (lower panel).

4.2 The method

4.2.1 Summary of the method terminology

Below is a summary of the main steps of the method presented in chapter 3.

• We pre-select a broad set of parameters which are likely to be relevant for star/galaxy

separation;

• We group these parameters into baskets;

• The multi class algorithm performs the following steps

1. PCAs within each basket;

2. selection of a number w of “winners”, i.e. the w principal components with the

highest Fisher discriminant as defined in equation 3.3 of chapter 3;

3. training of a neural network taking as inputs the w “winners” as well as the

five bands of the classifier spread model presented in chapter 3;
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4. projection of a testing set on the w “best” principal components space;

5. testing of the neural network on the projected testing set.

4.2.2 The different configurations of the method

We test different setups of multi class. In particular, we explore the influence of two

aspects of the method on the performance of multi class:

1. the way the parameters are grouped in each “pca basket” (section 4.3.1);

2. the number of “winners” (section 4.3.2).

Other characteristics of the method that could be optimised include the network archi-

tecture, or the optimal combination of spread model bands used as input to the neural

network together with the w “winners”.

We adopt the following notation for a given setting: {groupi;nw}, where groupi is the

name of the grouping strategy (group1 or group2) and n is the number of “winners”.

4.3 Results

Like in chapter 3, the performance of the different configurations of multi class is quanti-

fied by measuring the purity level as a function of magnitude, at fixed completeness (fig-

ures ??, 4.6 and 4.7), as well as for a large range of completnesses (figures 4.10 and 4.11).

We add to this a measurement of the purity-completness domains (figures 4.4, ??, 4.5

and ??).

4.3.1 Effect of varying the grouping strategy

Performing sub-PCAs on groups of parameters, grouped into “baskets”, as opposed to

performing one PCA on the entire set of parameters, gave better results on the DC6

simulations. Here, we try two different ways of grouping the parameters, referred to as

group1 and group2. The first method, group1, consists of making one basket per multiple-

bands parameter, each basket containing the five bands of a given parameter (e.g. one

basket contains a specific magnitude parameter in the five bands). The second method,

group2, is a grouping “per band”, i.e. one basket consists of different types of magnitudes

in the I band.
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In figure 4.4 we show the purity-completeness domain {pg, cg}, obtained with both

the {group1; 15w} and {group2; 15w} configurations of multi class, and we compare them

to the purity-completeness domains obtained with spread model, and class star. The

purity-completeness domain {pg, cg} are shown for different magnitude ranges: [18.0, 21.0],

[21.0, 23.0], [23.0, 24.0] and the full range [18.0, 24.5], and each point of a given curve

corresponds to a value of the cut on the corresponding classifier. For bright objects

with magnitudes in the range [18.0, 21.0], the {group1; 15w} and {group2; 15w} configu-

rations show very similar performances. However, for faint objects in the range of mag-

nitudes [23.0, 24.0], the {group1; 15w} configuration allows to out-perform spread model

(i.e. to achieve points with both higher pg and higher cg, which on the figure means

that the multi class curve is above the spread model one). Similarly, figure 4.5 shows

the purity-completeness domain {ps, cs}. The difference between the performance of the

{group1; 15w} and {group2; 15w} configurations appears to be more important in this

case. For objects in the [21.0, 23.0] magnitude range, the purity-completeness domain

does not overlap the WL science requirement in the case of the {group2; 15w} configura-

tion, whereas it does in the case of the {group2; 15w} configuration. For faint objects, in

the magnitude range [23.0, 24.0], the curve corresponding to the {group1; 15w} configu-

ration is above the curve corresponding to spread model, which means it allow to reach

higher purity and completeness than spread model. However, spread model out-performs

the {group2; 15w} configuration. Overall, the {group1; 15w} configuration seems to lead

to better performances than the {group2; 15w} configuration. However, in the future, a

deeper study of the limiting Fisher discriminant in each case will be necessary to com-

pletely understand and take into account this difference (see section 4.4).

4.3.2 Effect of varying the number of “winners”

We try configurations with different numbers of “winners”. Since group1 is found to give

better results on the purity-completeness domain (see section 4.3.1 above), we focus on

comparing {group1; 5w}, for which the number of “winners” is w = 5 and {group1; 15w},

for which the number of “winners” is w = 15. In Figures 4.6, we show the purity level

pg at a given completeness, as a function of the magnitude in the i band. The group1

configuration, with w = 5 and w = 15 are both compared to the performance of the

classifiers class star and spread model. The figure shows a very slight improvement when

w = 15. In particular, the {group1; 15w} configuration of multi class allows to reach
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Figure 4.4: Purity-completeness domain for galaxies, with spread model, class star, and
the {group1; 15w} configuration (left panels) and the {group2; 15w} configuration (right
panels) of multi class, for different magnitude ranges: [18.0, 21.0], [21.0, 23.0], [23.0, 24.0]
and the full range [18.0, 24.5] (from top to bottom). Each point of a given curve cor-
responds to a value of the threshold on the corresponding classifier. The threshold on
multi class is in [0, 1], with bins of 0.01. The threshold on spread model is in [0, 0.02],
with bins of 0.0002. The threshold on class star is in [0,1], with bins of [0.01].
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Figure 4.5: Purity-completeness domain for stars, with spread model, class star and the
{group1; 15w} configuration (left panels) and the {group2; 15w} configuration (right pan-
els) of multi class, for different magnitude ranges: [18.0, 21.0], [21.0, 23.0], [23.0, 24.0] and
the full range [18.0, 24.5] (from top to bottom). Each point corresponds to a different
threshold on the classifier. The threshold on multi class is in [0, 1], with bins of 0.01. The
threshold on spread model is in [0, 0.02], with bins of 0.0002. The threshold on class star
is in [0,1], with bins of [0.01].
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Figure 4.6: Purity level pg at the required completeness, for the WL and LSS probe, as a
function of magnitude in the i band. The left panel corresponds to the group1 configura-
tion, with w = 5. The right panel shows the same configuration group1 with w = 15. The
red curve corresponds to multi class, whereas the blue and green ones show the perfor-
mance of the classifiers class star and spread model. The magnitude bin size is 0.25. The
green domain corresponds to the stringent limit of the science requirement from WL, on
pg (97.8%, section 2.5.1 of chapter 2), whereas the grey domain corresponds to the science
requirement from LSS science on pg (98.5%, section 2.5.2 of chapter 2). The purity is
set to zero if a classifier does not allow to reach the required completeness cg = 96.0%:
here, spread model does not allow to reach the cg = 96.0 beyond a magnitude of 24. The
completeness reached by spread model on [24, 24.25], [24.25, 24.5], [24.5, 24.75], [24.75, 25.0]
are 84.4%,77, 0%, 65.6% and 57.3% respectively. The {group1; 15w} configuration of
multi class allows to reach the pg ≥ 98.5 requirement from LSS up to magnitudes similar
to spread model (up to [23.0, 23.25]). But it allows to increase the magnitude limit below
which the most stringent WL requirement is achieved (pg ≥ 97.8) at least two magnitude
bins (0.5).

the requirement from LSS, pg ≥ 98.5 up to magnitudes similar to spread model (up to

[23.0, 23.25]), but it allows to increase the magnitude limit below which multi class stays

consecutively in the domain where the WL requirement (its higher limit pg = 97.8%,

section 2.5.1 of chapter 2) is achieved, by at least two magnitude bins (0.5). Given that this

requirement is a higher limit, this improvement is not very significant. Similarly, figure 4.7

shows the purity level ps at a given completeness, as a function of magnitude in the i band.

For bright objects, the case w = 5 and w = 15 show very similar results. However, for

objects fainter than magnitude 22, the case w = 15 seems to reach slightly higher purity

levels than w = 5. Here again, a deeper study of the limiting Fisher discriminant in each

case will be necessary to completely understand and take into account this difference (see

section 4.4).
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Figure 4.7: Purity level ps at the required completeness, for the WL and LSS probe,
as a function of magnitude in the i band. The left panel corresponds to the group1

configuration, with w = 5. The right panel shows the same configuration group1 with w =
15. The magnitude bin size is 0.2. The red curve corresponds to the given configuration
of multi class, whereas the blue and green ones show the performance of the classifiers
class star and spread model. The green domain corresponds to the stringent limit of
the science requirement from WL science on ps (97%, section 2.5.1 of chapter 2). The
{group1; 15w} configuration of multi class allows to reach the WL requirement up to
[22.6, 22.8], versus [21.4, 21.6], versus [21.4, 21.6] reached by spread model. (One should
note that the star purity ps is affected by the high galaxies-to-stars high ratio of our
sample).

4.3.3 Comparision of multi class with other classifiers

Figure 4.8 and 4.9 show the histograms, in linear and logarithmic scale respectively, for

two configurations of multi class, ({group1; 15w} and {group2; 15w}), and the two other

classifiers presented in chapter 3, spread model and class star.

Since all our results show that class star is outperformed by both spread model and

multi class on most of the magnitude range considered, so we focus on comparing multi class

and spread model.

As far as galaxies are concerned, figures ?? and 4.6 show that multi class reaches higher

purity than spread model, on the entire magnitude range. On both these figures, the purity

provided by each classifier is set to zero if the classifier does not allow to reach the fixed

completeness (namely cg = 88.9 in figure ?? and cg = 96% in figure 4.6). Spread model

does not allow to reach the requirement on the completeness up to a magnitude of 24.5,

whereas multi class does. In particular, spread model does not reach the cg = 88.9%

requirement from LSS (derived in chapter 3) in the [23.75, 24.0] bin (see figure ??), and

the cg = 96% requirement from WL beyond the [23, 23.25] bin (see figure 4.6).

At both these levels of completeness, the {group1; 15w} configuration of multi class al-
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lows to reach the pg ≥ 98.5 requirement from LSS up to magnitudes similar to spread model

(it is reached up to [23.5, 23.75] for cg = 88.9%, and up to [23.0, 23.25] for cg = 96%). But

it allows to increase the magnitude limit below which the WL requirement is achieved

(pg ≥ 97.8) by one magnitude bin (0.25 magnitude) in the cg = 88.9% case, and by two

(0.5 magnitude) in the cg = 96% case.

This improvement is more visible in the case of stars: the {group1; 15w} of multi class

allows to reach the WL requirement ps ≥ 97.0) up to [22.6, 22.8], versus [21.4, 21.6] reached

by spread model. (One should note that the star purity ps is affected by the high galaxies-

to-stars ratio of our test sample).

Figures 4.10 and 4.11 are the generalisation of this, to a broad range of completenesses.

The required threshold on pg and ps are shown as the darkest color of the color maps,

showing that multi class allows to widen the range of both completeness and magnitude

at which the requirements are achieved. For galaxies (figure 4.10), the main asset of

multi class is that it allows us to reach completenesses which are inaccessible to spread-

model. In the domain of completenesses which is accessible to both classifiers, multi class

only allows us to increase the purity reached by spread model by up to 2%. For stars,

multi class allows us to increase the purity achieved by spread model at faint magnitudes

(typically higher than 23) by up to 46.2%.

The purity-completeness domains showed in figures 4.4 and 4.5, show that the

{group1; 15w} configuration of multi class outperforms spread model in each of the mag-

nitude ranges [18.0, 21.0], [21.0, 23.0], [23.0, 24.0], as well as on the the full range of the

catalog, [18.0, 24.5].

4.4 Conclusion

The beginning of the testing of multi class on the DES SV data allowed us to find one

configuration of our method which outperforms spread model and class star on the full

range of magnitudes of the catalog. DES began survey operations in September, 2013,

and will be running for five years. Therefore, we should be able to continue the testing

and optimisation of multi class. More cross-matching, and especially the planned addition

of stars from the LMC in the cross-matched catalog, should allow a better training of our

classifier.

Future works should include an optimization of the grouping strategy, through a careful
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Figure 4.8: Histogram of some of the classifiers compared in this chapter. The upper
panels show spread model (left) and class star (right), whereas the two lower panels show
two different configurations of multi class: {group1; 15w} (left) and {group2; 15w} (right).

study of the threshold value of the Fisher discriminant of the principal components which

optimises the performance of multi class. In other words, we should study the way in

which the optimal number of winners w(f) depends on the Fisher discriminant of the

selected principal component, which would allow to make the method even more flexible,

by setting the threshold on the Fisher discriminate, rather than the number of “winners”.
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Figure 4.9: Histogram of some of the classifiers compared in this chapter, in logarithmic
scale. The upper panels show spread model (left) and class star (right), whereas the two
lower panels show two different configurations of multi class: {group1; 15w} (left) and
{group2; 15w} (right).
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Figure 4.10: Level of purity for a sample of galaxies pg, for different magnitudes and values
of the completeness cg ∈ [80%, 100%], with spread model (top left), class star (top right)
and the {group1; 15w} configuration of multi class (lower left). Any purity below the
97.8% level requirement from WL (section 2.5.1 of chapter 2) is shown in dark blue. At
the 88.9% completeness level, class star does allows us to achieve the required on the purity
above 21.9, although not consecutively. Spread model allows to reach 24, and Multi class
allows us to achieve the requirement up 24.2. The lower right panel shows the improvement
by multi class with respect to spread model. In the red area, the completeness is achieved
by multi class and not by spread model. This constitutes the main asset of multi class.
In the domain of completenesses which is accessible to both classifiers, multi class only
allows us to increase the purity reached by spread model only by up to 2%.
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Figure 4.11: Level of purity for a sample of stars ps, for different magnitudes and values
of the completeness cs ∈ [0%, 100%], with spread model (top left), class star (top right)
and the {group1; 15w} configuration of multi class (lower panel). Any purity below the
90% level is shown in dark blue, and the 97% requirement from WL (section 2.5.1 of
chapter 2) is shown in orange. class star does not allow to achieve the WL requirement
above a magnitude of 20.4, versus 21.6 for spread model. Multi class allows us to reach
22.8, at the cs ≥ 25% level required. Multi class widen the range of both completeness
and magnitude at which high purity levels (≥ 90%) are achieved. The lower right panel
shows the improvement by multi class with respect to spread model. At faint magnitude,
typically higher than 23, the improvement by multi class reaches 46.2%.



Chapter 5

Scale Dependent Bias from

Baryon Acoustic oscillation:

detection in the BOSS DR9 and

DR10 data releases

“It remains a miracle (to us) that the optimization of the chi-square objective [...] has a

linear solution. One can attribute this to the magical properties of the Gaussian

distribution, but the Gaussian distribution is also the maximum-entropy distribution [...]

constrained to have zero mean and a known variance; it is the limiting distribution of the

central limit theorem. That this leads to a convex, linear algebra solution is something

for which we all ought to give thanks.”

David Hogg, Jo Bovy, Dustin lang

“The chance which now seems lost may present itself at the last moment.”

Jules Verne, Around the World in Eighty Days

In this chapter we conduct the first observational search for an effect partially modeled

in Barkana & Loeb (2011): the modulation, from Baryon Acoustic Oscillations (BAOs)

of the baryon-to-matter ratio of density fluctuations across large regions of the Universe.

129
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In section 5.1, we present this effect. The specific way in which we choose to formulate

the model for this effect is explained in section 5.2. We then explain our measurement in

section 5.3. In section 5.4, we present our model-fitting strategy. We show the results of

simulations we conducted to test the feasibility of our search in section 5.5. The result of

the model fitting on real data are shown in 5.6. We present our model selection strategy

and its main results in section 5.7. We give concluding remarks in section 5.8.

5.1 Introduction: a model for a scale dependent bias from

BAOs

5.1.1 Predictions from Barkana & Loeb (2011)

The acoustic waves which propagated in the baryon-radiation fluid before the time of

recombination, known as Baryon Acoustic Oscillations (BAOs), where only felt by the

baryonic part of the total matter and not followed by Dark Matter (DM). We cannot

measure directly δb and δtot, but rather observable tracers of these quantities. Comparing

any observable tracing the total matter density fluctuation δtot, with an observable tracing

only the baryons δb should allow us to measure this effect.

The idea of the work conducted here is to use:

• the number density δn of galaxies as a tracer of the total matter density fluctuation

δtot,

• the absolute luminosity density of galaxies as a tracer of the baryonic density fluc-

tuation δb.

We now detail these two assumptions.

Number density δn as a tracer of the matter density fluctuation δtot

Galaxies sample the high peaks of the total matter density. The number density fluctu-

ations δn are driven by the underlying total matter density fluctuation δtot, with a bias

bn, which should be approximately constant on large scales. In the case of flux-limited

surveys, a scale-dependent bias is added, as will be explained later in this section, but for

now we treat the more general case:

δn = bn · δtot (5.1)
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Figure 5.1: Snapshots of evolution of the radial mass profile vs. comoving radius of an
initially point-like over-density located at the origin. All perturbations are fractional for
that species; moreover, the relativistic species have had their energy density perturbation
divided by 4/3 to put them on the same scale. The black, blue, red, and green lines are
the dark matter, baryons, photons, and neutrinos, respectively. The redshift and time
after the big bang are given in each panel. The units of the mass profile are arbitrary
but are correctly scaled between the panels for the synchronous gauge. Top left: Near the
initial time, the photons and baryons travel outward as a pulse. Top right: Approaching
recombination, one can see the wake in the cold dark matter raised by the outward-going
pulse of baryons and relativistic species. Middle left: At recombination, the photons leak
away from the baryonic perturbation. Middle right:With recombination complete, we are
left with a CDM perturbation toward the center and a baryonic perturbation in a shell.
Bottom left: Gravitational instability now takes over, and new baryons and dark matter
are attracted to the over-densities. Bottom right: At late times, the baryonic fraction
of the perturbation is near the cosmic value, because all of the new material was at the
cosmic mean. These figures were made by suitable transforms of the transfer functions
created by CMBFAST (Seljak & Zaldarriaga 1996; Zaldarriaga & Seljak 2000). Credit:
Eisenstein et al. (2007b).
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Absolute luminosity fluctuation δL as a tracer of the baryon density fluctuation δb

An area with a higher baryonic mass fraction δb/δtot than average is expected to produce

more stars per unit total mass, hence more luminous matter, and to result in galaxies

with lower mass-to-light ratio. The scale-dependency of δb/δtot induced by BAOs, should

translate into a scale dependency of δL/δtot, where δL is the absolute luminosity weighted

density fluctuation.

This being said, the mean luminosity of a given galaxy population relates to the bary-

onic content of the surrounding in a non-trivial way. The link between them is a combi-

nation of

1. the way in which the luminosity of a galaxy depends on the baryon fraction of the

host halo,

2. the way in which the baryonic content of the host halo reflects the underlying bary-

onic contribution to the total matter density.

The luminosity density ρL, for a given population of galaxies, is given by

ρL = ngal 〈L〉 , (5.2)

where 〈L〉 is the mean absolute luminosity of the galaxies.

In terms of fluctuations δL = (ρL − ρL)/ρL, this translates into

dρL
ρL

=
dngal
ngal

+
d 〈L〉
〈L〉

(5.3)

We have seen that δn =
dngal
ngal

= bnδtot (when not considering a flux-limited survey). In

fact, the mean luminosity 〈L〉 of a population of galaxies may also depend on δtot, through

its merger history. We model this dependency with a different bias bn + bL;t:

δL = (bn + bL;t) · δtot (5.4)

This would be right if 〈L〉 only depended on the large scale matter density. However,

〈L〉 also depends on the baryon fraction in the host halo, fb. Following Barkana & Loeb

(2011), we assume that 〈L〉 ∝ (fb)
bL;f , where bL;f ≈ 1.4 is the bias factor of the luminosity
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density with respect to the halo baryon fraction. Hence equation 5.4 becomes

δL = (bn + bL;t) · δtot + bL;fδf (5.5)

The link between δf - the baryonic content of the halo - and δb - the baryonic content of

the surrounding - is complex because of the non-linearity of halo collapse. It is derived in

Barkana & Loeb (2011) as,

δf =
Ar
δc

[r(k)− rlss]δtot , (5.6)

We do not re-derive this equation, which was taken as a presupposition in our work, but

explain each term:

• r(k) is the fractional baryon deviation r(k) = δb/δtot − 1, shown in figure 5.2 as a

function of the scale k, and at various redshifts. r(k) approaches a constant rlss

which depends on the redshift, on scales below the BAOs.

• δc is the critical total matter density δtot of the halo at which the critical density of

collapse is independent of mass and is equal to 1, 69 in the Eistein-De Siter limit,

valid over a wide range of redshifts, (Naoz & Barkana 2007).

• Ar is a corrective amplification factor coming from the use of the linear r(k) in the

non-linear halo collapse problem, and is expected to be Ar ≈ 3, from simulations

computed in Barkana & Loeb (2011).

Hence, the final equation for δL is

δL = (bn + bL;t) · δtot + bL,∆(r(k)− rlss) · δtot , (5.7)

where bL,∆ is a bias factor measuring the overall dependence of galaxy luminosity and the

underlying difference between the baryon and total density fluctuations and is predicted

in Barkana & Loeb (2011) to be around bL,∆ ≈ 2.5.

Flux-limited surveys

In Barkana & Loeb (2011), the authors show that, in the case of a flux limited survey,

both equations 5.1 and 5.7 must be slightly rethought. In such surveys, observed samples
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Figure 5.2: The fractional baryon derivation r(k) = (δb/δtot)−1, as a function of the scale
k, at various redshifts (z = 0,0.5,1,3 and 6 from top to bottom). Credit: Barkana & Loeb
(2011).

are limited by flux, or equivalently by luminosity if, for simplicity, we consider samples at

a single redshifts. The number of observable galaxies per unit of volume is given by

F (L) =

∫ ∞
L′=L

φ(L′)dL′ , (5.8)

where φ is the luminosity function. The observed luminosity density of these galaxies

becomes

ρobs = 〈L〉F (L), (5.9)

where the mean luminosity of the sample 〈L〉 is now defined as

〈L〉 =
1

F (L)

∫ ∞
L′=L

L′φ(L′)dL′ . (5.10)

One can then show that equations 5.1 and 5.7 can be rewritten as

δn = (bn + CminbL,t)δtot + CminbL,∆[r(k)− rlss]δtot , (5.11)

δL = (bn + (1 +Dmin)bL,t)δtot + (1 +Dmin)bL,∆[r(k)− rlss]δtot , (5.12)

where Cmin = Lminφ(Lmin)
F (Lmin) and Dmin = Lmin

〈L〉 Cmin with 〈L〉 evaluated for L = Lmin.
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5.1.2 Compensated Isocurvature Perturbations

The measures of the relation between dark matter and baryons, is related to the search

for Compensated Isocurvature Perturbations (CIPs) (see Grin et al. (2014)).

Measurements of primordial density perturbations are consistent with adiabatic initial

conditions, for which the ratios of neutrino, photon, baryon and DM number densities

are initially spatially constant. On the one hand, the simplest inflationary models predict

adiabatic fluctuations (Guth & Pi 1982; Linde 1982). On the other, hand, more com-

plex inflationary scenari (Brandenberger 1994; Linde 1984; Axenides et al. 1983) predict

fluctuations on the relative number densities of different species, known as Isocurvature

Perturbations (IPs). CMB temperature anisotropies limit the contribution of both baryons

and DM to the total IPs amplitude. “Compensated Isocurvature Perturbations” (CIPs)

are perturbations in the baryons density δb which are compensated for by corresponding

fluctuations in the DM δDM , so that the total density is unchanged. Such fluctuations

are very hard to detect, since gravity and all its effects measurable by galaxy surveys,

including galaxy numbers, only depend on the total density. Galaxy clusters gas fractions

observations (Holder et al. 2010) have led to a weak constraint of the CIPs. 21cm absorp-

tion observations would hardly allow a better constraint (Gordon & Pritchard 2009) of

such perturbations.

Under the the standard assumption of a scale-invariant power spectrum for this field,

equations 5.12 and 5.11 are modified to

δn = (bn + CminbL,t)δtot + CminbL,∆[(r(k)− rlss)δtot + δCIP ] , (5.13)

δL = (bn + (1 +Dmin)bL,t)δtot + (1 +Dmin)bL,∆[(r(k)− rlss)δtot + δCIP ] , (5.14)

where δCIP is a separate field that is uncorrelated with δtot. We hope to improve the 10−2

current constraint on the amplitude of a scale invariant CIPs power spectrum (Grin et al.

2014).

Assumptions and limitations of the Barkana & Loeb (2011) model

The model presented in Barkana & Loeb (2011) is based on

1. the standard theoretical understanding of galaxy formation;
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2. a standard observationally-based result for star formation (linking between the lu-

minosity and the gas fraction in haloes 〈L〉 ∝ (fb)
bL;f );

3. a result from numerical simulations (linking between the baryon fraction in the lin-

early extrapolated halo perturbation and the baryon fraction in the actual virialised

halo).

The limitations of this model is that the above ingredients of the model are fairly

complex, and the specific effect predicted is subtle and has not been directly tested in

either simulations or observations.

5.1.3 Three reasons to be excited

Detecting the imprint left by BAOs in the δb/δtot would be important for three reasons:

1. The detection of the effect would provide a direct measurement of a difference in the

large-scale clustering of mass and light and a confirmation of the standard cosmo-

logical paradigm from a different angle than any other measurement. In this sense,

the detection of this effect will help rule out alternative theories of gravity such as

non-DM models such as MOND (Milgrom 1994). This would provide evidence as

significant as the bullet cluster evidence, with the additional advantage that this

effect happens on linear scales.

2. The amplitude of the effect would allow to calibrate the dependence of the charac-

teristic mass-to-light ratio of galaxies on the baryon mass fraction of their large scale

environment.

3. The resulting measurement of ACIP could provide a much better constant on CIPs

than the current limits, (10−2 for the amplitude of a scale-invariant CIPs power

spectrum, Grin et al. (2014)).

5.1.4 Outline of the project

To summarise, we aim to measure the δb/δtot ratio, through a measurement of δn and δL,

the link between them being described by equations 5.11 and 5.12. In order to measure

bL,∆, we proceed in several steps:
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• In section 5.2, we reformulate the whole model in terms of relevant observables: the

two points correlation functions ξL and ξn of the tracers density fluctuations δn and

δL.

• In section 5.3, we measure ξL and ξn

• In section 5.5, we create some simulations of ξL and ξn, to check the feasibility of

such a detection and whether our model fitting procedure allows to recover a fiducial

model.

• We then conclude on the significance of our detection with a model selection calcu-

lation, in section 5.7.

5.2 Model in terms of correlation function

In the previous section we presented our model for the tracers of δb and δtot: the stochastic

fluctuations δn and δL. However, the observable quantities in galaxy surveys are the

two point statistics of such fluctuations, namely the power spectrum or the two-point

correlation functions (2PCF). We take a different approach than in Barkana & Loeb (2011),

where the observational proposal to verify equations 5.11 and 5.12 is formulated in terms

of power spectra, and reformulate them in term of the 2PCF:

The 2PCF is defined as

ξ(x,y) ≡
∫

d3k

(2π)3/2

d3k′

(2π)3/2

〈
δ(k)δ(k′)

〉
eik·xeik·y =

1

2π2

∫
k2P (k)j0(kr)dk , (5.15)

where P (k) is the power spectrum defined by 〈δ(k)δ(k′)〉 ≡ P (k)δD(k − k′). In real

space, and assuming |r(k)− rlss| << 1, equation 5.11 and equation 5.12 translate into the

following,

ξn = b21 · ξtot + 2b1b2 · ξadd + b22 · ξCIP (5.16)

ξL = b23 · ξtot + 2b3b4 · ξadd + b24 · ξCIP , (5.17)

= ξn + (b23 − b21) · ξtot + 2(b3b4 − b1b2) · ξadd + (b24 − b22) · ξCIP ,
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Figure 5.3: P (k) and r(k) computed with CAMB (Lewis et al. 2000), shown at the DR9
median redshift (z = 0.546) and the DR10 median redshift (z = 0.570).

with

b1 = bn + CminbL,t (5.18)

b2 = CminbL,∆ (5.19)

b3 = bn + (1 +Dmin)bL,t (5.20)

b4 = (1 +Dmin)bL,∆ (5.21)

The correlation functions, and the acoustic signatures imprinted in it evolve with time,

and a key issue in order to model them is to understand how. We first adopt a simplistic

approach and model ξtot and ξadd with a linear perturbation theory, in section 5.2.1. We

then correct for the non-linearity of the clustering of galaxies in section 5.2.2.

5.2.1 Linear-regime matter correlation

Power spectrum of δtot

To model ξtot and ξadd in equations 5.16 and 5.17, we first compute a linear power spectrum

P (k) and a linear fractional baryon deviation r(k) using CAMB (Lewis et al. 2000). We

assume the same fiducial ΛCDM+GR, flat cosmological model with Ωm = 0.274, h = 0.7,

Ωbh
2 = 0.0224, ns = 0.95 and σ8 = 0.8, matching that used by the BOSS collaboration in

Anderson et al. (2013). P(k) and r(k) are computed for the median redshifts of the two

samples we use, namely BOSS DR9 and DR10 releases (see section 5.3).The computed

P (k) and r(k) are shown in figure 5.3
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Power spectrum of δCIP

To model ξCIP , we make the standard assumption that the power spectrum of the CIP field

is of the form PCIP (k) = ACIPk
−3 (Grin et al. 2014). Since the corresponding correlation

function

ξCIP (r) =
1

2π2

∫
k2PCIP (k) · j0(kr)dk =

ACIP
2π2

∫
j0(kr)

k
dk

diverges, we start the integral at k = 10−4h/Mpc, which is also the minimum value of the

CAMB linear power spectrum we use to model ξtot.

5.2.2 Corrections to the linear correlation function

The matter correlation ξtot predicted by linear perturbation theory does not exactly de-

scribe the clustering of galaxies. Nonlinear gravitational collapse and redshift distortions

modify galaxy clustering relative to that of the linear-regime matter correlations, chang-

ing the shape of the correlation function. In particular, according to linear perturbation

theory, the acoustic signature increases in amplitude but its spatial pattern remains static,

i.e. the characteristic scale imprinted in the early universe remains unaltered, whereas non

linear growth of structure leads to a shift of the acoustic peak.

These corrections are particularly important when using the BAO peak as a standard

ruler and as a probe of the universe expansion history: a shift in the acoustic scale of

one percent generates systematics in the deduced dark energy equation of state parameter

w of about five percent (Eisenstein et al. 2005), which is not negligible compared to the

expected statistical errors in the next generation of galaxy surveys.

For our work , which consists of looking for a particular signature of the BAOs, these

corrections are likely to be important too. We account for two systematic effects due to

nonlinear clustering: damping of the BAO peak and mode coupling.

Damping

Simulations have shown that nonlinear structure formation and, to a lesser extent, redshift

distortions erase the higher harmonics of the acoustic oscillations. This degrades the

measurement of the acoustic scale. This effect is accounted for by “damping” the linear

theoretical BAO on small scales. The damping term is often approximated by a Gaussian

smoothing (Percival et al. 2010). The corrected correlation function convoluted with the
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damping term, which, in the Fourier space, comes to multiplying the power spectrum by

the damping term transform,

ξtot(r) = ξ(r)⊗ e−(k∗·s)2
=

1

2π2

∫
k2P (k)e−(k∗·k)2

j0(kr)dk , (5.22)

The damping is also applied to ξadd and ξCIP . The effect of the damping on P (k), ξtot and

ξadd is shown in figure 5.4, its effect on our model for ξn and ξL is shown in figure 5.15.

Mode coupling

Mode coupling generates additional oscillations that are out of phase with those in the

linear spectrum, leading to shifts in the scales of oscillation nodes defined with respect

to a smooth spectrum. When Fourier transformed, these out-of-phase oscillations in-

duce percent-level shifts in the acoustic peak of the two-point correlation function. The

corresponding correction to the damped linear correlation function is given in Crocce &

Scoccimarro (2008), as:

ξtot(r) = ξ(r)⊗ e−(k∗·s)2
+AMCξ

′(r)ξ(1)(r) , (5.23)

where ξ(r) denotes the linear correlation function of equation 5.15 and

ξ′(r)ξ(1)(r) =

∫
d3k

k
P (k)j1(kr) , (5.24)

where j1 is the first order Bessel function. The effect of the mode coupling term on our

model is shown in figure 5.16.

5.2.3 Systematics

The systematic effects which have been found in the BOSS data cause changes that are

quite close to constant shifts and there are theoretical systematics (e.g., the integral con-

straint) that cause close to constant shifts. A simple way to account for systematics that

would affect ξL and ξn differently is to add a constant to the model in equation 5.17. Thus,

equation 5.17 becomes

ξL = b23 · ξtot + 2b3b4 · ξadd + b24 · ξcip + bsys , (5.25)
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New model equations

Our final model equations are:

ξn = b21 · ξtot + 2b1b2 · ξadd + b22 · ξCIP (5.26)

ξL = b23 · ξtot + 2b3b4 · ξadd + bsys + bCIP · ξcip , (5.27)

where

ξtot(r) = ξ(r)⊗ e−(k∗·s)2
+AMCξ

′(r)ξ(1)(r) . (5.28)

ξ(r) =
1

2π2

∫
k2P (k)j0(kr)dk (5.29)

ξadd(r) =

(∫
k2(r(k)− rlss)P (k) · j0(kr)dk

)
⊗ e−(k∗·s)2

=
1

2π2

∫
k2(r(k)− rlss)P (k)e−(k∗·k)2

j0(kr)dk , (5.30)

ξCIP (r) =

(
1

2π2ACIP

∫
k2PCIP (k) · j0(kr)dk

)
⊗ e−(k∗·s)2

=
1

2π2

∫
j0(kr)

k
e−(k∗·k)2

dk . (5.31)

where bCIP = (b24ACIP ) and P (k) is the linear matter power spectrum.

In order to compute the oscillatory integral ξtot, ξadd and ξCIP , we wrote a Python

wrapper for the fftlog code from Hamilton (2000).
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Figure 5.4: The three ingredients of the model, ξtot, ξadd and ξcip, shown at the DR9
median redshift (z = 0.546) and the DR10 median redshift (z = 0.57). ξtot and ξadd are
shown for two different values of the damping parameter k∗.

5.3 Measurement

5.3.1 The BOSS DR9 and DR10 samples

In all this analysis, we use the latest data releases from the SDSS-III Baryon Oscillation

Spectroscopic Survey (BOSS), DR9 and DR10 (Ahn et al. 2014). The BOSS collaboration

latest release, DR11, is to be publicly released with the final BOSS data set, but the

covariance matrix and correlation function are already public, and we use them to to

check the consistency of some of our measurements with the BOSS ones.

The Sloan Digital Sky Survey (York et al. 2000), divided into SDSS I, II (Abazajian

et al. 2009), and III (Eisenstein et al. 2011), used a drift-scanning mosaic CCD camera

(Gunn et al. 1998) to image over one third of the sky (14 555 square degrees) in five

photometric bandpasses (Fukugita et al. 1996; Doi et al. 2010) to a limiting magnitude of

r ≈ 22.5 using the dedicated 2.5-m Sloan Telescope located at Apache Point Observatory

in New Mexico.
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Figure 5.5: Evolution of the BOSS sky coverage from DR9 to DR11. Top panels show
the observations in the North Galactic Cap (NGC) while lower panels show observations
in the South Galactic Cap (SGC). Colors indicate the spectroscopic completeness within
each sector as indicated in the key in the lower right panel. Gray areas indicate the BOSS
expected footprint upon completion of the survey. The total sky coverage in DR9, DR10,
and DR11 is 3275deg2, 6161deg2, and 8377deg2, respectively. Credit: Anderson et al.
(2013).

BOSS is primarily a spectroscopic survey, which is designed to obtain spectra and

redshifts for 1.35 million galaxies over an extragalactic footprint covering 10 000 square

degrees. These galaxies are selected from the SDSS DR8 imaging. Together with these

galaxies, 160 000 quasars and approximately 100 000 ancillary targets are being observed.

The method for obtaining the spectra (Smee et al. 2013) ensures a homogeneous data set

with a high redshift completeness of more than 97 per cent over the full survey footprint.

Redshifts are extracted from the spectra using the methods described in Bolton et al.

(2012). A summary of the survey design appears in Eisenstein et al. (2011), and a full

description is provided in Dawson et al. (2013). Figure 5.5 shows the evolution of the sky

coverage between the data releases DR9 and DR11.

Two classes of galaxies were selected by BOSS to be targeted for spectroscopy using

SDSS DR8 imaging. The “LOWZ” algorithm is designed to select red galaxies at z < 0.45

from the SDSS DR8 imaging data. The CMASS sample, which is the one used in this

analysis, is designed to be approximately stellar-mass-limited above z = 0.45.

The CMASS Data Release 9 (DR9) contains 264283 massive galaxies covering 3275

square degrees with a median redshift z = 0.546, whereas DR10 has 501844 galaxies

covering 6161 square degrees, almost three times the coverage of DR9, and a median

redshift z = 0.57.
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A full description of DR9 and DR10 can be found in Anderson et al. (2012) and

Anderson et al. (2013) respectively.

5.3.2 Measurement of the correlation functions

Practical issues

There are many practical problems which inhibit our ability to accurately measure the

statistics of the galaxy distribution, as defined in equation 5.15. In theory we usually

consider smooth density fields, δ(x), however in reality the underlying density field is

discretely sampled by individual galaxies. This leads to shot noise problems on small

scales. Also, the observed galaxies are not contained within a regular shaped contiguous

region of space. It is typical for galaxy redshift surveys to be irregularly shaped in angular

sky coverage due to dust extinction, bright stars, tracking of the telescope, etc. In taking

these issues into account, we must use statistical estimators which can deal with such

problems and are optimised for our purposes (see Percival (2007), for a review of correlation

function practicalities).

Estimator

The correlation functions are based on our ability to compare the distribution of data

(galaxies) to a random sampling. The 2PCF compares the number of pairs of galaxies

(DD) with pairs of random points (RR) at some fixed separation, r, (see Kerscher et al.

2000, for a good review of correlation estimators). In our analysis, the two-point correla-

tion functions ξn and ξL, are computed using the optimal Landy-Salay estimator (Landy

& Szalay 1993) which requires the creation of a catalog of random positions. The compu-

tation then uses pair counts between the galaxy-galaxy samples (DD), the random-random

(RR) and the cross counts between galaxy-random points (DR).

ξ =
DD − 2DR+RR

RR
, (5.32)

In the above expression we have adopted the following definitions:

DD =
1

ND(ND − 1)

ND∑
i

ND∑
j

u(|~xdatai − ~xdataj |) , (5.33)
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DR =
1

ND(NR)

ND∑
i

ND∑
j

u(|~xrandi − ~xdataj |) , (5.34)

RR =
1

NR(NR − 1)

ND∑
i

ND∑
j

u(|~xrandi − ~xrandj |) , (5.35)

where ~xrand and ~xdata are the position vectors of the randoms and data respectively and

u is the rectangular step function defined as,

u(t) =


0 if |t− r| > dr/2

1 if |t− r| < dr/2

(5.36)

This function selects only pairs of points separated by a distance r in a bin of width dr.

Then we can see that in equation 5.32, DD, DR and RR represent the number of pairs

separated by r and normalised by the total number of possible pairs.

Computation

In our analysis, the counts DD, DR and RR are computed using an efficient tree-based,

parallel, search algorithm. The code is based upon the structure known as “kd-trees”

which is a way of organizing a set of data in k-dimensional space in such a way that once

built, any query requesting a list of points in a neighborhood can be answered quickly

without going through every single point.

Measurement of ξn(r)

Our measurement of the number density of galaxies correlation function ξn is compared to

the measurement performed by the BOSS collaboration (pre-reconstruction) in figure 5.6,

using DR9 and DR10 positions, and the published DR11 correlation function.The compu-

tation of the luminosity weighted correlation function ξL required more steps which are

detailed in the next section.

5.3.3 Measurement of ξL(r)

Absolute magnitude and absolute luminosity

We calculate the two-point correlation function of the absolute luminosity density fluctua-

tions, ξL, using the same estimator and algorithms for ξn, and weighting each object with
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Figure 5.6: Our measurement of ξn compared to the BOSS collaboration measurement,
when using the CMASS DR9 data release (left) and when using the latest release (right;
our measurement, in red, was performed with the published DR10 positions, and the BOSS
measurement, in blue, corresponds to the published DR11 correlation function, for which
the positions are not yet public).

its absolute luminosity. The absolute luminosity is calculated using the i and g bands

photometric data, from the CMASS DR10 catalogs. We first compute the absolute mag-

nitudes, using a combination of the “cmodel” magnitude parameter, referred to as mcm,

and the extinction parameter, e:

Mabs = mcm − e− (5log10(DL) + 25) , (5.37)

where the luminosity distance DL (in Mpc) is linked to the comoving distance DM via

DL = (1 + z) · DM . The mcm magnitude is a parameter in the DR10 catalogs derived

from the composite flux Fcomposite = f ·Fdev + (1− f) ·Fexp which is the best fitting linear

combination of the exponential fit and the de Vaucouleurs fit in each band.

The parameter e encapsulates the extinction correction, i.e. the account for the ab-

sorption and scattering of electromagnetic radiation by dust and gas between the observed

galaxies and us. It has been computed following Schlegel et al. (1998). The distribution

of the i and g absolute magnitudes is shown in figure 5.7.

The absolute luminosities are then computed using

Labs/Lsun = 10−(Mabs−Msun)/2.5 , (5.38)

where Msun = 4.83 is the absolute magnitude of the sun. The distribution for the absolute

luminosity in the i and g bands is shown in figure 5.7
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Figure 5.7: Distribution of the absolute magnitudes (top panels) and absolute luminosity
(lower panels) in the North part of CMASS-DR10, using the i band (left panels) and the
g band (right panels).

Measurement of Cmin and Dmin in the i band

Our model equations are simplified when we can do the approximation Cmin = Dmin =

0, where Cmin = Lminφ(Lmin)
F (Lmin) and Dmin = Lmin

〈L〉 Cmin with 〈L〉 = 1
F (L)

∫∞
L′=L L

′φ(L′)dL

evaluated for L = Lmin.

The calculated values for Cmin and Dmin (four the i band) are summarised in the table

below:

〈L〉 Cmin Dmin

DR9 7.680 · 1010 8.689 · 10−4 3.072 · 10−4

DR10 7.660 · 1010 1.694 · 10−3 5.826 · 10−4

In all the following analysis, we allow b2 to vary, but the fact that Cmin and Dmin are

close to zero orient our choice of priors.
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Figure 5.8: ξL, measured on the North part of the CMASS DR9 catalog, with and without
ke-corrections.

k-e corrections

In addition to the galactic extinction, we explore the impact of two types of corrections

due to the fact we observe samples at various redshifts:

• K-corrections, due to redshift effects: Light emitted between λe and ∆λe becomes

light observed between λe(1 + z) and ∆λe(1 + z), both the wavelength and the

bandpass change.

• Evolutionary correction (e): changes in the galaxys luminosity and color between

the time the light was emitted and today

The galactic k-corrections and e-corrections in magnitudes at the position of each

object using are taken from Tojeiro et al. (2012). As shown in figure 5.8, the ke-corrections

do not affect the measurement of the correlation function in a noticeable way, and for

simplicity we ignore them in the rest of this analysis.

Covariance matrix for ξn and ξL

We compute the covariance matrix for ξn and for ξL, using 100 Jackknife samples.Our

covariance and inverse covariance matrix are shown in figure 5.9, and compared to the

covariance and inverse covariance published by the BOSS collaboration (in the case of

ξn). From the comparison with the BOSS-DR10 covariance, it seems like we are slightly

over-estimating our covariance, which is not surprising given that the JK is a rather crude

method considering the accuracy of the measurement. We show, in section 5.6.1, that this
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Figure 5.9: Covariance matrix (left) and inverse covariance matrix (right) for the ξn mea-
surement, measured by the BOSS collaboration (upper panel; published DR11 covariance
matrix), and by us (lower pannel)

our fit for ξn is in good agreement with a fit using the BOSS ξn and covariance matrix,

which indicates that this overestimation does not affect the fit.

Joint covariance matrix for ξn and ξL

Since the uncertainties of the measurements of ξn(r) and ξL(r) at a given point are expected

to be correlated, we need to compute the full covariance matrix for the joint measurement

of ξn(r) and ξL(r). The full covariance matrix is shown in figure 5.10. It is far from being

diagonal, or even block-diagonal, which shows the importance of fitting ξn and ξL jointly.

5.4 Model Fitting

Before we fit the model presented in section 5.1 to our measurement, we show the effect

of each parameter of our model equations, in figures 5.11, 5.12, 5.13, 5.14, 5.15 and 5.16.

We present the model fitting basic formalism in section 5.4.1, and the algorithm we

used to perform Monte Carlo Markov Chains (MCMC) in section 5.4.2. We then show
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Figure 5.10: Our measurement of the joint covariance matrix (top panel) and inverse joint
covariance matrix (lower panel), using the CMASS-DR10 sample. It is not diagonal: the
uncertainties on ξn and ξL are correlated, which underlines the importance of performing
a joint fit of ξn and ξl.
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Figure 5.11: Effect of the b1 (top panels) and b3 (low panels) parameters on the model.
We show the model for ξn, ξl (left) and ξl− ξn (right). When not varying, the parameters
are fixed at b1 = 2.193, b2 = 0, b3 = 2.269, b4 = 4.300, bsys = −0.002, k∗ = 1.638,
AMC = 2.826, bcip = 0.006.When varying, b1 (b3 respectively) takes ten linearly spaced
values from 1.8 to 2.8, the ξn(r) functions (ξl(r) respectively) with lower values (around
r = 100Mpc/h) corresponding to the lower values of b1 (b3 respectively). As expected
from equations 5.26 and 5.27, b1 only affects the shape of ξn and b3 the shape of ξl.
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Figure 5.12: Effect of the b4 parameter on the model. We show the model for ξn, ξl (left)
and ξl− ξn (right). When not varying, the parameters are fixed at b1 = 2.193, b2 = 0.000,
b3 = 2.269, bsys = −0.002, k∗ = 1.638, AMC = 2.826, bcip = 0.006. b4 takes ten linearly
spaced values from −2 to 8, the flatter ξl(r) functions (i.e. with lower values around
r = 100Mpc/h) corresponding to the lower values of b4. As expected from equation 5.27,
b4 describes a discrepancy between ξn and ξl which is scale dependent, and appears at the
BAO’s scales.
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Figure 5.13: Effect of the bsys parameter on the model. We show the model for ξn, ξl
(left) and ξl − ξn (right). The other parameters are fixed at b1 = 2.193, b2 = 0.000,
b3 = 2.269, b4 = 4.300, k∗ = 1.638, AMC = 2.826, bcip = 0.006. The parameter bsys takes
ten linearly spaced values from −0.002 to 0.001, the ξl(r) functions with lower values
(around r = 100Mpc/H) corresponding to the lower values of bbsys. As expected from
equation 5.27, bsys only affects the shape the shape of ξl.
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Figure 5.14: Effect of the bcip parameter on the model. We show the model for ξn, ξl
(left) and ξl − ξn (right). The other parameters are fixed at b1 = 2.193, b2 = 0.000,
b3 = 2.269, b4 = 4.300, k∗ = 1.638, AMC ,= 2.826, bsys = −0.002. The parameter bcip
takes ten linearly spaced values from 0.005 to 0.015, the ξl(r) functions with lower values
corresponding to the lower values of bcip. As expected from equation 5.27, bcip only affects
the shape of ξl.
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Figure 5.15: Effect of the k∗ parameter on the model. We show the model for ξn, ξl (left)
and ξl − ξn (right). The other parameters are fixed at b1 = 2.193, b2 = 0.000, b3 = 2.269,
b4 = 4.300, AMC = 2.826, bsys = −0.002, bcip = 0.006. The parameter k∗ takes ten linearly
spaced values from 0 to 9. Lower values of k∗ corresponds to more peaked functions ξn(r)
and ξl(r), whereas higher values of k∗ damp the peak between r ≈ 70 and r ≈ 120.
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Figure 5.16: Effect of the AMC parameter on the model. We show the model for ξn,
ξl (left) and ξl − ξn (right). The other parameters are fixed at b1 = 2.193, b2 = 0.000,
b3 = 2.269, b4 = 4.300, bsys = −0.002, k∗ = 1.638, bcip = 0.006. The parameter AMC

takes ten linearly spaced values from 0 to 6. The way AMC affects the shape of ξn(r)
and ξl(r) is complex. Here, higher values of AMC correspond to the functions ξl(r) (and
ξl(r)− ξn(r)) with lower values at small r’s.

the results of simulations testing the feasibility of our detection in section 5.5. We show

our results, first when fitting only the DR10 data for ξn, and then when fitting jointly the

DR10 data for ξn and ξL, in sections 5.6.1 and 5.6.2 respectively.

5.4.1 Formalism

We adopt the terminology of Hogg et al. (2010) for our likelihood functions calculations. In

particular, we try to define our “generative model” and an “objective scalar” as carefully

as possible. The steps of our method are as follows:

1. We define the data vectors and model vectors.

2. We define the “generative model” for our data.

3. We compute the “objective scalar” i.e. the likelihood function.

Vectors definition

Equations ?? and ??, which we rewrite below,

ξn = b21 · ξtot ,

ξL = b23 · ξtot + 2b3 · b4 · ξadd + bsys + bCIP · ξcip ,
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can be rewriten in a matrix form as

Y = AX (5.39)

where Y is a 2N × 1 vector (N=31 is the number of bins):

Y =



ξn(r1)

.

.

ξn(rN )

ξl(r1)

.

.

ξl(rN )



(5.40)

A is a 2N × 5 matrix:

A =



ξtot(r1) 0 0 0 0

. . . . .

. . . . .

ξtot(rN ) 0 0 0 0

0 ξtot(r1) ξadd(r1) 1 ξcip(r1)

. . . . .

. . . . .

0 ξtot(rN ) ξadd(rN ) 1 ξcip(rN )



(5.41)

And X is the 5× 1 vector we need to determine:

X =



b21

b23

2 · b3 · b4

bsys

bCIP


(5.42)
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Generative model

In the terminology of Hogg et al. (2010), a generative model is a parametrized quantitative

description of a statistical procedure that could reasonably have generated the data. In

our case, we assume the data really do come from equations ?? and ?? and that the only

reason that our data point deviate from our model is an offset in the ξ direction, drawn

from a gaussian distribution of zero mean and known variances σξ.

Objective scalar

In a model fitting problem, the objective scalar we wish to optimize is the posterior proba-

bility for our model: we wish to get the optimal set of parameters θ = {b1, b3, b4, bsys, bCIP , AMC , k∗}

which maximize the probability of our modelM given the data D, i.e. the posterior prob-

ability Pr(θ|{D,M}). Bayes’ theorem relates the posterior probability distribution to the

likelihood L ≡ Pr(D|θ,M), via the prior π ≡ Pr(D|M, θ):

Pr(θ|{D,M}) =
Pr(D|{θ,M}) · Pr(θ|M)

Pr(D|M)
=
L · π
E

, (5.43)

where the evidence E = Pr(D|M) is the probability of getting the data D, given the model

M. It can be seen as the likelihood averaged over all the possible parameters within a

model. In the model fitting problems, one tries to get the optimal set of parameters θ

within the framework of one specific model. In this case, E is a constant and is ignored,

since it does not change the conclusion of the optimization. We will see in section 5.7 that

this is no longer true when adopting a model selection approach to our problem, but for

now, we aim at optimizing the objective scalar Pr(θ|{D,M}) ∝ Pr(D|{θ,M}) ·Pr(θ|M).

The likelihood of our generative model is :

L ∝ exp
[
−1

2
RT · C−1 ·R

]
(5.44)

where R = Y − AX, and C−1 is the inverse covariance matrix of the data Y, shown

in figure 5.10. We apply the following uniform (not “informative”), priors for the seven

parameters of our model:

• b1 ∈ [0, 5]

• b2 ∈ [0,10]
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• b3 ∈ [0, 5]

• b4 ∈ [−10, 10]

• bsys ∈ [−0.01, 0.01]

• k∗ ∈ [0, 10]

• AMC ∈ [0, 6]

• bCIP ∈ [−1, 1]

We believe this is a conservative choice of priors. The prior on b4 is willingly taken to

be broad, although Barkana & Loeb (2011) forecasted it to be around b4 ≈ 2.6 (in a case

where Cmin = Dmin = 0, bn = 2 and bL;t = 1). The prior on bCIP is taken to be broader

than the upper limit of 10−2 set in Grin et al. (2014) for ACIP = bCIP /b
2
4. The priors

on b1, k∗ and AMC are taken to be consistent with previous works on the BOSS data

(Crocce & Scoccimarro 2008; Anderson et al. 2012, 2013). The prior on b2 is also chosen

to be broad, although preliminary estimations of this parameter that we made, indicate

it should be close to zero in the case of the CMASS DR10 sample.

5.4.2 Computation

We first numerically optimize the likelihood function, which corresponds to the maximum

a posteriori value (m.a.p.) in the case of an uninformative prior. The problem then

becomes to estimate the uncertainties on the m.a.p. values of each parameter. In fact,

rather than the m.a.p. values, we want an estimate of the posterior probability function,

i.e. the distribution of parameters that is consistent with our data, and to be able to

marginalise over it to get the distribution of each parameter. This is made possible by

Monte Carlo Markov Chain (MCMC) sampling.

We used the MCMC emcee algorithm (Foreman-Mackey et al. 2013) to sample from

the posterior probability distribution, and quote the uncertainties based on the 16th, 50th,

and 84th percentiles of the samples in the marginalised distributions, corresponding to

1− σ in the case of a gaussian.
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Figure 5.17: The 100 simulated signals ξn(r) (top left) and ξl(r) (top right) are drawn
from the data covariance matrix.

5.5 Simulations

In order to control the feasibility of our detection, we generate a signal ξfid with the

following fiducial values of the parameters: b1 = 2.1, b3 = 2.5, b4 = 5, bsys = 10−4,

AMC = 1 and k∗ = 5. We then draw noise from our computed covariance matrix (shown

in figure 5.10) and add it to the fiducial signal, in order to obtain a noisy signal. A

widely used method for drawing a random vector ~x from the N-dimensional multivariate

normal distribution with known mean vector µ and covariance matrix is using the Cholesky

decomposition of the given covariance matrix. Given the Cholesky decomposition AAT =

C of the given covariance matrix C, and ~z = (z1, z2, ..., zN )T a vector which components

are N independent standard normal variates, then the vector ~x = ~µ+ A~z has the desired

distribution. In figure 5.17, we show 100 simulated signals generated in this way. We

also control that the covariance matrix from which we draw the signal, and the covariance

matrix of these 100 signals are consistent with each other (see figure 5.17).

The maximum of the likelihood function corresponds to a recovered signal shown in
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Fiducial parameters Maximum Median of the marginalised 1σ Confidence
likelihood distribution limits

b1 2.1 2.111 2.143 +0.064
−0.057

b3 2.5 2.488 2.525 +0.073
−0.067

b4 5 6.874 6.164 +2.236
−2.573

bsys · 103 0.1 −0.317 −0.362 +2.045
−2.024

k∗ 5.0 4.608 4.673 +0.776
−0.827

AMC 1.0 0.911 2.111 +2.045
−1.443

bCIP · 102 1.5 1.689 1.713 +0.876
−0.883

χ2/dof - 1.455 - -

Table 5.1: Simulations: Fiducial values of each parameter (left), and median value of
the marginalised posterior probability distributions computed with the MCMC. The error
bars correspond to the 16th, 50th, and 84th percentiles of the samples in the marginalised
distributions, i.e. the median value and the 1σ values (in the case of a gaussian).

figure 5.18, with the corresponding χ2(r) and residuals |model − data|(r). the value cor-

responding to the 16th, 50th, and 84th percentiles of the samples in the marginalised

distributions, i.e. the median value and the 1σ values (in the case of a gaussian) are

confronted to maximum likelihood values and the fiducial values in the table 5.1. In fig-

ure 5.19, we show the marginalised posterior probability distribution for each parameter,

confronted to the fiducial value. In figure 5.20 we add the two dimensional projections of

the posterior probability distributions of our parameters, to show the correlations between

the parameters.

The fiducial values are recovered within 2σ. In the work presented here, the simulations

are mostly designed to assess that our model fitting procedure is working, but in further

analysis we aim to use simulations in order to check the feasibility of our detection. In

particular, it could be used to evaluate:

1. for a given amount of noise, the minimum value of b4 that would allow a 5σ detection

of b4 6= 0.

2. for a given value of b4, the maximum amount of noise that would allow a 5σ detection

of b4 6= 0.
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Figure 5.18: Simulation: The lower panels show the fiducial signal (right) and the re-
covered signal (left), corresponding to the maximum likelihood values, i.e. the maximum
a posteriori (m.a.p) values (since the priors are uniform). The upper panels show the
residuals |model − data|(r) (left), and the value of χ2(r) (right), for the maximum likeli-
hood (in red) and for 100 samples of the MCMC chain (in blue). Note that the maximum
likelihood corresponds to the minimumχ2(r) value, as expected.

5.6 Fits on real data

5.6.1 Fitting ξn(r) only

In order to assess the quality of our model and check the consistency of our model-fitting

procedure, we fit our model for ξn(r) (equation 5.26) to both our measured ξn and the ξn

measured and published by the BOSS collaboration.

The maximum-likelihood fits are shown in figure 5.21. In figure 5.22, we show the

marginalised posterior probability distribution for each parameter, and the two dimen-

sional projections of the posterior probability distributions. The value corresponding to

the 16th, 50th, and 84th percentiles of the samples in the marginalised distributions, i.e. the

median value and the 1σ values (in the case of a gaussian) values are shown in table 5.2.

When fitting our model to our measurement of ξn and to the BOSS measurement,
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Figure 5.19: Simulation: Marginalised distribution for each parameter. The black dashed
line shows the m.a.p, value of the distribution, whereas the blue one shows the fiducial
value.
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Figure 5.20: Simulation: All the one and two dimensional projections of the posterior
probability distributions of our parameters, {b1, b3, b4, bsys, k∗, AMC , bCIP }. This quickly
demonstrates all of the covariances between parameters. The fiducial values of the param-
eter are shown in figure 5.19.
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Figure 5.21: :Fitting ξn. The left panels have been obtained with the published cor-
relation function and covariance matrix measured by the BOSS collaboration (using the
un-published DR11 data), whereas the right panels have been obtained with our mea-
surement of ξn using the CMASS-DR10 sample. The figures show, in red, the maximum
likelihood fit, i.e. the maximum a posteriori (m.a.p) values (since the priors are uniform)
and 100 samples of the MCMC chain, in blue.

the values of the parameters are generally consistent, apart from AMC and bCIP , which

are prior-driven (see figure 5.22). Apart for these two prior-driven parameters, the value

of the parameters are also consistent, within 1σ, between DR10 and DR11. A deeper

understanding of the difference between them will be possible once the DR11 data is

publicly released. Moreover, the values of χ2/dof (dof is for “degrees of freedom”, and

is obtained by subtracting the number of parameters to the total amount of data points,

i.e. the size of the joint covariance matrix) that we obtain when fitting our model to the

BOSS measurement converge with the range of values published by the BOSS collaboration

(Anderson et al. 2013), where the same data and a different model were used for ξn. This

shows that our model reasonably describes the correlation function ξn measured by BOSS.

The two conclusions of fitting only ξn, are that our measurement is consistent with the

BOSS measurement and that our model for ξn provides a good description of both these

measurements.

5.6.2 Joint fit of ξn(r) and ξl(r)

We now present the results for the joint fit of ξn and ξl, using the CMASS-DR10 sample.

The maximum likelihood fit is shown in figure 5.23.

In figures 5.24, we show the marginalised posterior probability distribution for each

parameter and in figure 5.26 the two dimensional projections of the posterior probability

distributions. Both show results of our analysis in the i band, whereas the same figures
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Figure 5.22: Fitting ξn. All the one and two dimensional projections of the poste-
rior probability distributions of our parameters, {b1, b3, b4, bsys, k∗, AMC , bCIP , b2}. This
quickly demonstrates all of the covariances between parameters. The contours correspond
to the 1σ, 2σ and 3σ percentiles. The dashed lines show the 1σ percentile of the marginal-
ized distributions.

for the g band analysis are shown in figure 5.25 and 5.27. The value corresponding to the

16th, 50th, and 84th percentiles of the samples in the marginalised distributions, i.e. the

median value and the 1σ values (in the case of a gaussian) values are shown in table 5.3

for both the i and g band.

The median and m.a.p values of the marginalised distribution of b4 are consistent with

Barkana & Loeb (2011), in which the authors forecasted b4 ≈ 2.5 with similar b1, and

b2 ≈ 0. This being said, a zero value for b4, which would mean a non-detection of the

effect we are searching for, is within the 2σ limit (for both the i and g band).

In the case of the i band, our model-fitting procedure seems to fail to fit the shape of

our data for ξl − ξn (see figure 5.23) around the BAO peak, i.e. between r = 90Mpc and

r = 140Mpc, which is the area described by b4 (see figure 5.12). One source of a systematic

difference between the model and data in this area is the presence of non-linear effects
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DR10 BOSS (DR10) BOSS (DR11)

b1 2.202+0.069
−0.067 2.082+0.076

−0.074 2.212+0.068
−0.069

k∗ 4.608+1.211
−1.224 4.633+1.331

−1.311 4.587+1.011
−1.008

AMC 3.052+2.001
−1.851 0.000+2.094

−1.661 6.199+1.630
−2.130

bcip · 10−2 1.850+66.26
−70.05 2.980+66.19

−69.52 -0.317+67.10
−66.87

b2 · 10−2 3.918+1.441
−1.905 2.891+1.845

−1.767 5.540+1.173
−1.607

χ2/dof 1.105 1.119 0.993

Table 5.2: Fitting ξn: Maximum likelihood values, when fitting our model for ξn (equa-
tion 5.26) to (from left to right): our measurement of ξn with the CMASS-DR10 sample;
the published BOSS collaboration measurement of ξn with the CMASS-DR10 sample;
the published BOSS collaboration measurement of ξn with the CMASS-DR11 sample.
The error bars correspond to the 16th, 50th, and 84th percentiles of the samples in the
marginalised distributions, i.e. the 1σ values (in the case of a gaussian). The values of
the parameters obtained with our measurements are generally consistent with the values
obtained by fitting our model to the BOSS measurements, apart from AMC and bcip, which
is prior driven (see figure 5.22), and for which we use the same prior as in Sánchez et al.
(2012). The values of χ2/dof are consistent.

i band g band

median max. lik. conf.lim. median max. lik. conf.lim.

b1 2.203 2.274 +0.070
−0.075 2.128 2.140 +0.067

−0.064

b2 · 102 3.408 3.956 +1.290
−1.813 4.392 4.762 +1.110

−1.635

b3 2.241 2.303 +0.081
−0.083 2.377 2.388 +0.103

−0.102

b4 2.575 2.426 +2.545
−2.100 3.100 4.688 +4.103

−4.484

bsys · 103 −8.156 −9.021 +1.839
−1.248 −3.897 −3.823 +4.252

−3.649

k∗ 4.553 5.019 +0.990
−0.970 2.499 2.552 +1.260

−1.453

AMC 3.893 6.000 +1.548
−2.553 2.737 3.168 +2.115

−1.820

bCIP · 102 3.732 4.147 +0.538
−0.795 2.894 2.869 +1.632

−1.893

χ2/dof 1.443 0.990

Table 5.3: Fitting ξn and ξl: Median value of the marginalised posterior probability
distributions computed with the MCMC (left column), maximum likelihood value (mid-
dle column), and confidence limit (right column) for each parameter. The error bars
correspond to the 16th, 50th, and 84th percentiles of the samples in the marginalised dis-
tributions, i.e. the median value and the 1σ values (in the case of a gaussian). The
parameters are obtained using our measurement on the CMASS-DR10 sample.
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Figure 5.23: Joint fit of ξn and ξl. The left panels are for the i band and the right ones
are for the g band. The top panels show the data and the maximum likelihood fit for
r2 · ξn and r2 · ξl, also corresponding to the maximum a posteriori (m.a.p) fit (since the
priors are uniform). The lower panels show the data and the best fit for ξl − ξn, together
with 100 samples of the MCMC chain (in blue).

which, in previous works on BOSS data, are mostly corrected by a procedure known as

reconstruction. Presented in Eisenstein et al. (2007a), reconstruction has been successfully

applied to the BOSS data in Anderson et al. (2013) and Tojeiro et al. (2014) to deal with

the effect of non-linearities on the BAO peak. The idea is to partially reverse the effects

of non-linear growth of structure and large-scale peculiar velocities from the data. Rather

than modifying the model to account for the non-linear effects, reconstruction acts on

the data itself. It reduces the anisotropy in the clustering, reverses the smoothing of

the BAO feature due to second-order effects, and significantly reduces the expected bias

in the BAO distance scale that arises from these same second-order effects. In future

work, reconstruction may allow a better account for the non-linear effects and improve

the goodness of the fit and increase the evidence for a non-zero b4.

Since ACIP = bCIP /b
2
4, the case of b4 = 0 leads to an unconstrained ACIP , and needs

to be treated separately. We leave this for further analysis.
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Figure 5.24: Marginalised distribution for each parameter, i band. The black
dashed line shows the maximum likelihood value of each parameter.
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Figure 5.25: Marginalised distribution for each parameter, g band. The black
dashed line shows the maximum likelihood value of each parameter.
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Figure 5.26: Joint fit of ξn and ξl, i band: all the one and two di-
mensional projections of the posterior probability distributions of our parameters,
{b1, b3, b4, bsys, k∗, AMC , bCIP , b2}. This quickly demonstrates all of the covariances be-
tween parameters. The contours correspond to the 1σ, 2σ and 3σ percentiles. The blue
line corresponds to the maximum likelihood value of each parameter, which is also the
maximum a posteriori value (m.a.p.). The dashed lines show the 1σ percentile of the
marginalized distributions.
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Figure 5.27: Joint fit of ξn and ξl, g band: all the one and two di-
mensional projections of the posterior probability distributions of our parameters,
{b1, b3, b4, bsys, k∗, AMC , bCIP , b2}. This quickly demonstrates all of the covariances be-
tween parameters. The contours correspond to the 1σ, 2σ and 3σ percentiles. The blue
line corresponds to the maximum likelihood value of each parameter, which is also the
maximum a posteriori value (m.a.p.). The dashed lines show the 1σ percentile of the
marginalized distributions.



170 Chapter 5. Scale Dependent Bias from Baryon Acoustic Oscillation

5.6.3 Effect of the errors on the photometry

In order to test the effect of the photometric errors on the final result, we repeat the

above analysis on a catalog with synthetic magnitudes. The synthetic magnitudes are

generated using the error bars on the mcm parameter of each object and assuming it is

gaussian. A widely used method for drawing a random vector ~x from the N-dimensional

multivariate normal distribution with known mean vector µ and covariance matrix is

using the Cholesky decomposition of the given covariance matrix. Given the Cholesky

decomposition AAT = C of the given covariance matrix C, and ~z = (z1, z2, ..., zN )T a

vector which components are N independent standard normal variates, then the vector

~x = ~µ+A~z has the desired distribution.

We also explore the impact of k-corrections and evolutionary corrections (e-corrections),

both due to the fact that we observe samples at various redshifts. K-corrections account

for the change in the wavelength and bandpass: light emitted between λe and ∆λe becomes

light observed between λe(1 + z) and ∆λe(1 + z). Evolutionary corrections account for

the change in the luminosity and color of each galaxy between the time at which the light

was emitted, and the present time. We use k-corrections and e-corrections in magnitudes

at the position of each object from Tojeiro et al. (2012).

In both cases, we find that the best fit value of the parameter of interest, b4, is shifted

by less than 1σ. The overall result is unchanged, i.e. a zero value for b4, which would

mean a non-detection of the effect we are searching for, is still within the 2σ limit. If

future data sets allow to reduce the error bars on b4, care should be taken to account for

the shift of b4 caused by both the error on the photometry and k-e corrections.

5.7 Model selection

5.7.1 Formalism

Nested Models

Answering whether we detect a scale dependent bias of the luminosity correlation func-

tion comes to answering the following question: does the data support the inclusion of a

non-zero extra parameter b4? Rather than a question of parameter estimation (i.e. the

determination of the most probable values for the extra parameters within the context of

a single model) this is a question of model comparison. The models we wish to confront
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are as follows:

• In the first model, M1, there is no scale dependent bias, and therefore b4 = 0.

• In the second model, M2, there is a scale dependent bias, therefore b4 6= 0.

The parameter space Θ = {b1, b3, b4, bsys, AMC , k
∗, bcip} = {φ, ψ} is partitioned into the

common parameters, φ = {b1, b3, bsys, AMC , k
∗, bCIP }, and the extra parameters, ψ =

{b4}, describing the scale dependent bias. The two models are nested, as defined in Verde

et al. (2013).

Bayes Factor

Within a Bayesian framework, the key model comparison quantity is the Bayes factor,

which is the ratio of the Evidence values for two different models and is defined below.

The probability distribution (Pr) for a set of parameters θ, given a model M, and

data D, is the posterior, P = Pr(θ|(D,M)). Bayes’ theorem relates the posterior to the

likelihood L ≡ Pr(D|θ,M), via the prior π ≡ Pr(D|M, θ):

Pr(θ|{D,M}) =
Pr(D|{θ,M}) · Pr(θ|M)

Pr(D|M)
=
L · π
E

, (5.45)

where the evidence E = Pr(D|M) is the probability of getting the data D, given the model

M and can be seen as the likelihood averaged over all the possible parameters within a

model. In the model fitting problems, one tries to get the optimal set of parameters θ within

the framework of one specific model. In this case, E is a constant and is ignored, since it

does not change the conclusion of the optimization. As soon as one leaves the framework

of one specific model for doing model selection, E becomes the value of interest. In that

case, the aim is to confront our degree of belief in two different models in the light of

the data, i.e. to compare Pr(M1|D) and Pr(M2|D). Developing each term with Bayes’

theorem Pr(M|D) = Pr(D|M) · Pr(M)/Pr(D), we can write

Pr(M1|D)

Pr(M2|D)
=
Pr(D|M1) · Pr(M1)

Pr(D)
· Pr(D)

Pr(D|M2) · Pr(M2)
. (5.46)

Since we do not have any prior preference toward one of the models, Pr(M1)
Pr(M2) is typically

set to 1 and the above ratio simplifies to

Pr(M1|D)

Pr(M2|D)
=
E1

E2
. (5.47)
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ln(Eb4 6=0/Eb4=0) interpretation betting odds

< 1 not worth a bare mention < 3 : 1

1− 2.5 substancial 3 : 1

2.5− 5 strong > 12 : 1

> 5 highly significant > 150 : 1

Table 5.4: The slightly modified Jeffrey’s scale we use to interpret the Evidence ratio
ln(Eb4 6=0/Eb4=0).

5.7.2 Computation and results

In order to calculate the evidence for our nested models, we use a multimodal nested

sampling algorithm, MultiNest (Feroz & Hobson 2008). MultiNest provides Evidence for

each model, and the evidence ratio is ln(Eb4 6=0/Eb4=0) = −0.162 for the i band analysis,

and ln(Eb4 6=0/Eb4=0) = +0.165 for the g band analysis.

We use the slightly modified Jeffreys’ scale, shown in table 5.4 (??Verde et al. 2013), to

interpret these value. This scale classifies Evidence ratios from not worth a bare mention

to highly significant. Both values calculated for the Evidence ratios correspond to non-

significant ratio, suggesting that neither the i band data nor g band data privilege one

model over the other. Therefore, the current data do not allow us to conclude on the

detection or non-detection of the scale-dependent bias we search for.

5.8 Conclusion

We have developed a method for the detection of the modulation, from BAOs, of the large

scales ratio of baryonic matter to total matter, with a data set containing 3-D positions

and photometry. We have investigated the sensitivity of the BOSS CMASS DR10 data

to this effect, via the parameter b4, and obtained a null detection consistent with both

b4 = 0 and the theoretical b4 predicted by Barkana & Loeb (2011). This lack of evidence

is reflected by the evidence ratio we measure in section 5.7. We expect more accurate

data to prove or disprove the prediction from Barkana & Loeb (2011), if our error bars

on b4 decrease by a factor of 5. A better account for the non-linear effects, e.g. with

reconstruction, could improve the goodness of the fit and increase the evidence for a

non-zero b4. Future developments of this work should also include a deeper study of the

feasibility of the detection, with current and future data sets, e.g. with simulations.
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An important “sub-product” of the detection of a non zero b4 would be the constraint

on bCIP . However, since ACIP = bCIP /b
2
4, the case of b4 = 0 leads to an unconstrained

ACIP , and needs to be treated separately in order to constrain ACIP . Therefore another

immediate extension to this work would be to compute the distribution of ACIP assuming

|b4| > 0.01.

The method we have explored is for the detection of the scale dependent bias with a

data set containing 3-D positions and photometry. Our method will be ready to use when

the DR11 release will be made public, and we are also planning to adapt it to data set

containing 2-D positions and photometric redshift such a the DES.
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Chapter 6

Concluding remarks and Future

work

One of the most important things I have learnt during this PhD has been to accept and

appreciate that all research is, to some extent, open-ended. In this last section of this

thesis, I summarize the main concluding remarks of each chapter and highlight some of

their planned extensions.

Chapter 2, chapter 3 and chapter 4 addressed the problem of separating stars from

galaxies in future large photometric surveys, and in particular in the Dark Energy Survey.

Chapter 2 established the main requirements on the quality of the star/galaxy separa-

tion, for measurement of the cosmological parameters with the WL and LSS probes. We

translated the DETF FoM requirements on the statistical and systematic errors and the

constraints from PSF calibration into the corresponding science requirements on the qual-

ity of star/galaxy separation. We formulated these requirements using two parameters:

the purity and completeness of classified samples of stars and galaxies.

This formulation served as a basis to assess the performance of multi class, the classifier

we designed in chapter 3. The aim of multi class is to use as much as possible of the

precious information encapsulated in the numerous parameters of the DES catalog. In

this sense, it takes a multi-parameter approach to star/galaxy classification. We first

use PCA to outline the correlations between the objects parameters and extract from it

the most relevant information. We then use the reduced set of parameters which we call

175



176 Chapter 6. Concluding remarks and Future work

the “winners”, as input to an Artificial Neural Network. When tested on simulations

of the Dark Energy Survey (DES), this multi-parameter approach improves upon purely

morphometric classifiers such as the classifier implemented in SExtractor, spread model

and class star. This is a valuable asset, especially at the faint magnitudes reached by the

DES.

The improvement which multi class allows on simulations, was confirmed on real data

in chapter 4, where we used the recent release of DES Science Verification data to test

the performance of our classifier. Testing of multi class on the DES SV data allowed us

to find one configuration of the method which outperforms spread model and class star

on the full range of magnitudes of the catalog. The recent beginning of the DES survey

operations in September, 2013 will allow us to continue the testing and optimisation of

multi class. More cross-matching, and especially the planned addition of stars from the

LMC in the cross-matched catalog, should allow a better training of our classifier. Future

works on multi class should include a careful study of the threshold value of the Fisher

discriminant of the principal components which optimise the performance of multi class.

In other words, we should study the way in which the optimal number of winners w(f)

depends on the Fisher discriminant of the selected principal component, which would allow

to make the method even more flexible, by setting the threshold on the Fisher discriminant,

rather than the number of “winners”. Other aspects of the method, such as the network

architecture, could also be optimised in the future.

In chapter 5, we investigated a completely different topic: the sensitivity of the two

latest releases of the Baryon Oscillation Spectroscopic Survey (BOSS) data to a scale

dependent bias predicted by Barkana & Loeb (2011): the modulation by Baryonic Acoustic

Oscillations of the density ratio of baryon to dark matter across large regions of the

Universe. The detection of this effect would provide a direct measurement of a difference in

the large-scale clustering of mass and light and a confirmation of the standard cosmological

paradigm from a different angle than any other measurement. We measured the number

density correlation function and the luminosity weighted correlation function of the BOSS

DR10 CMASS sample, and fit a model of scale dependent bias to our measurement.

Our current measurement does not allow us to conclude on a detection, in spite of the

fact that the maximum likelihood value we measure for b4 - the parameter characterising

the effect - is consistent with predictions by Barkana & Loeb (2011). We expect more

accurate data to prove or disprove the prediction from Barkana & Loeb (2011), if our
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error bars on b4 decrease by a factor of 5. A better account for the non-linear effects, e.g.

with reconstruction, could increase the evidence for a non-zero b4. Future developments

of this work should also include a deeper study of the feasibility of the detection, with

current and future data sets, e.g. with simulations. Moreover, an immediate extension to

this work would be to add the LOWZ samples to this analysis.

An important “sub-product” of the detection of a non zero b4 would be the constraint

on the Compensated Isocurvature Perturbation amplitude ACIP , characterized in our

model my the bCIP parameter. However, since ACIP = bCIP /b
2
4, the case of b4 = 0 leads

to an unconstrained ACIP , and needs to be treated separately in order to constrain ACIP .

Therefore another immediate extension to this work would be to compute the distribution

of ACIP assuming |b4| > 0.01.

We have developed a method for the detection of the scale dependent bias with a data

set containing 3-D positions and photometry. Our method will be ready to use when

the DR11 release will be made public, and we are also planning to adapt it to data set

containing 2-D positions and photometric redshift such a the DES.
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Bouy, H., Bertin, E., Moraux, E., et al. 2013, A&A, 554, A101

Brandenberger, R. H. 1994, International Journal of Modern Physics A, 9, 2117

Bridle, S., Shawe-Taylor, J., Amara, A., et al. 2009, in Annals of Applied Statistics,

American Astronomical Society Meeting Abstracts

179



180 BIBLIOGRAPHY

Busha, M. T., Wechsler, R. H., Becker, M. R., Erickson, B., & Evrard, A. E. 2013, in

American Astronomical Society Meeting Abstracts, Vol. 221, American Astronomical

Society Meeting Abstracts, 341.07
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“When I see Your heavens, the work of Your fingers, the moon and stars that You
have established, what is man that You should remember him, and the son of man

that You should be mindful of him?”
Psalms, Chapter 8




