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ABSTRACT 
Recent observations on the reduced susceptibility of HIV-1 cell-to-cell 

infection to inhibition by Reverse Transcriptase Inhibitors (RTIs) have raised 

questions on the bearing this mode of spread may have on the successful 

treatment of HIV-1, the maintenance of viral reservoirs and viral pathogenesis. 

This thesis presents a detailed assessment of the individual drug classes, which 

constitute first-line and second-line antiretroviral therapy, with regard to their 

ability to inhibit HIV-1 cell-to-cell infection in comparison to cell-free infection. 

Special emphases is given to the study of Protease Inhibitors (PIs), which have 

a mechanism of action different from RTIs, present a higher barrier to the 

selection of drug-resistant viruses, are highly potent and very important in 

both first-line and second-line treatment of HIV-1 infection.  Also, PIs have not 

been studied before in the context of cell-to-cell spread of HIV-1. The results 

obtained show that different classes of antiretroviral drugs have different 

potencies against cell-to-cell spread of HIV-1. While PIs are equally effective 

at inhibiting cell-to-cell and cell-free spread of HIV-1, RTIs especially those of 

the Nucleoside Reverse Transcriptase Inhibitor (NRTI) class are ineffective 

inhibitors of cell-to-cell spread of the virus. This thesis also assesses the impact 

of combination antiretroviral therapy on these two modes of viral infection, 

using drug synergy analysis by the median effect principle. We show that 

combination antiretroviral therapy is effective against both cell-to-cell and 

cell-free HIV-1 infection. However in the context of antiretroviral drug 

resistance, cell-to-cell spread may contribute to a reduced efficiency of 

combination antiretroviral therapy in blocking the spread of infection. Overall, 

the study provides a better understanding of the impact of antiretroviral 

therapy on cell-to-cell spread of HIV-1 and within reason, bearing in mind the 

limitations of in vitro models, gives some insight on the possible clinical 

implications of these observations for current HIV-1 therapy. 
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Min -minutes 

MLV – Murine Leukemia Virus 

MOI – Multiplicity of Infection 

MTOC – Microtubule organizing centre 

MVC – Maraviroc 

Nef – Negative factor 

NIBSC – National Institute of Biological Standards and Control 

NIH – National Institutes for Health 

NNRTI – Non nucleoside reverse transcrptase inhibitor 

NRTI- Nucleos(t)ide reverse transcriptase inhibitors 

NUP – Nucleoporin 

NVP- Nevirapine 

P-TEFb – Positive transcription elongation factor b 

PBMC – Peripheral blood mononuclear cells 
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PCR- Polymerase Chain Reaction 

PEP – Post exposure prophylaxes 
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PI – Protease Inhibitor 
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Pol - Polymerase 
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SAQ – Saquinavir 

SDM – Site directed mutagenesis 

SIV – Simian Immunodeficiency virus 

Sp  - Spacer 

T-20 – Enfurvitide 

TAE – Tris acetate EDTA 

Tat - Transactivator 

TBS- Tris buffered saline 

TCR – T cell receptor 

TFV - Tenofovir 

TRIM5α – Tripartite motif 5 alpha 

Vif- viral infectivity factor 

Vpr – viral protein R 

Vpu- viral protein U 

VS – Virological synapse 
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1 Introduction and Background 

1.1 Introduction 

The Human Immunodeficiency Virus (HIV) was first identified as the 

causative agent of the Acquired Immunodefiency Syndrome (AIDS) at 

the Pasteur Institute in Paris in 1983 (Barré-Sinoussi et al., 1983). Two 

related human retroviruses can cause AIDS in humans; HIV type-1 (HIV-

1) (Barré-Sinoussi et al., 1983) has a worldwide distribution and is 

responsible for the global pandemic while HIV type-2 (HIV-2) (Clavel et 

al., 1986) which is primarily confined to West Africa, is responsible for a 

much smaller proportion of infections (Schim van der Loeff and Aaby, 

1999). The discussions in this thesis will focus on HIV-1.  

 

In the three decades that have followed its discovery, HIV/AIDS has 

caused over 36 million deaths and an estimated 65 million people 

have become infected with the virus worldwide (UNAIDS, 2013). In 2013 

there were an estimated 35.3 million people living with HIV-1 infection 

globally (UNAIDS, 2013).  These elements make HIV/AIDS one of the 

biggest epidemics of the last century and have spurred intense 

scientific research towards finding effective treatments for HIV/AIDS. 

There has been significant progress in the treatment of HIV/AIDS and 

the therapeutic options currently available have transformed what was 

once a death sentence for those infected, into a chronic and 

manageable condition. The current arsenal of antiretroviral agents 

allows infected individuals receiving treatment to live normal lives and 

have the same life expectancy as healthy uninfected individuals. With 

more people receiving life-saving antiretroviral therapy (ART) and 

widespread public health campaigns aimed at reducing transmission, 
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there has been a steady decline in the number of new infections from 

3.4 million in 2011 to 2.3 million in 2013 (UNAIDS, 2013). 

 

Despite the success of existing ART in controlling viral replication, 

treatment is not curative and remains a life-long commitment for 

infected individuals. HIV-1 also has the ability to persist in reservoirs 

within the body and to re-emerge if there are therapeutic lapses. This 

feature and the development of drug-resistant variants, continue to 

frustrate the efforts directed towards finding a definitive cure and an 

effective vaccine.  

 

Furthermore, the roll out of antiretroviral therapy has not been without 

its challenges. In 2013, under the current WHO treatment guidelines, 

coverage of antiretroviral treatment remained low with only 34% of the 

28.6 million people eligible for treatment having access to therapy 

(UNAIDS, 2013). Also, rising drug resistance to the available antiretroviral 

drugs poses a serious challenge for clinicians and patients (Gupta et 

al., 2012, WHO, July 2012) especially in resource poor settings where 

second and third-line treatment options are often limited or non-

existent. Patients receiving ART do not necessarily always achieve full 

immune recovery and remain at a high risk of developing HIV-related 

malignancies as well as exhibiting increased levels of immune 

activation and persistent inflammation (Long et al., 2008, Hasse et al., 

2011). A small subset of treated patients, termed CD4+ immunologic 

non-responders, have suppression of viral replication but their CD4+ T 

cell levels fail to rebound to normal on ART (Aiuti and Mezzaroma, 2006, 

Lewden et al., 2007, Gazzola et al., 2009, Valdez et al., 2002). In 

addition to the emergence of drug resistance and the ability of the 

virus to persist in reservoirs within the body, recent studies suggest that 

cell-to-cell spread of HIV-1 across a virological synapse (VS) may serve 
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as an additional mechanism of antiretroviral escape for the virus (Sigal 

et al., 2011).  

 

Cell-to-cell spread is a very efficient mode of retroviral dissemination, 

which allows for directed virus transfer across a virological synapse, 

obviating the need for prolonged fluid-phase diffusion (Jolly and 

Sattentau, 2004, Jolly et al., 2004, Igakura et al., 2003, Sattentau, 2008, 

Sattentau, 2010, Martin et al., 2010). This mode of viral spread is more 

efficient than the classical mode of cell-free diffusion (Mazurov et al., 

2010, Dimitrov et al., 1993, Johnson and Huber, 2002, Jolly et al., 2007, 

Sourisseau et al., 2007, Martin et al., 2010) and may be less sensitive to 

neutralisation by antibodies (Abela et al., 2012, Sourisseau et al., 2007, 

Sattentau, 2008, Sattentau, 2010, Piguet and Sattentau, 2004, Malbec 

et al., 2013). Cell-to-cell spread confers a replicative advantage for the 

virus. This is mediated by direct physical interaction between effector 

cells and target cells, and may be especially important in lymphoid 

tissues where densely packed CD4+ T lymphocytes increase the 

likelihood of frequent contacts. This could potentially contribute to the 

maintenance of the virus reservoir (Sewald et al., 2012, Sigal and 

Baltimore, 2012).  

 

Indeed, BLT (bone-marrow, liver and thymus) humanised mice based 

studies using the technique of intravital imaging have recently 

validated the concept of the virological synapse in vivo, highlighting its 

putative relevance in the spread of retroviruses (Sewald et al., 2012, 

Murooka et al., 2012). Sigal et al. were the first group to suggest that 

cell-to-cell virus transfer may be a mechanism by which HIV-1 evades 

the effects of antiretroviral drugs and thus continues to replicate at low 

levels in treated patients (Sigal et al., 2011). In their study, they 

proposed that the large number of viral particles that are transmitted 

to an uninfected target cell during cell-to-cell transfer, increases the 
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probability that at least one virus particle will stochastically escape 

inhibition by drugs and proceed to infect the cell (Sigal et al., 2011). 

They tested this hypothesis by assessing the effects of Reverse 

Transcriptase Inhibitors (RTIs) on virus dissemination in an in vitro 

experimental model and found that cell-to-cell spread was less 

sensitive to inhibition by RTIs than cell-free transmission (Sigal et al., 

2011). While interesting, these findings raise significant questions 

regarding the impact of other antiretroviral drug classes that constitute 

conventional cART, notably Protease Inhibitors (PIs) and Integrase 

Inhibitors (INIs), on HIV-1 cell-to-cell infection. Also the relevance of this 

observation in the context of cART has been brought to debate, given 

that triple therapy as currently prescribed is generally effective in 

patients treated for HIV-1 infection. In this thesis, in vitro co-culture 

systems are used to study the impact of antiretroviral drugs on HIV-1 

cell-to-cell spread, with the aim of better defining the role and possible 

implications of cell-to-cell spread of HIV-1 in the context of antiretroviral 

therapy. 

 

The data presented in this thesis provide a detailed assessment of the 

impact of the different components of ART on HIV-1 cell-to-cell spread 

in comparison to cell-free spread, with a focus on PIs and INIs, which 

have not been previously studied in the published literature. It also 

explores the effects of clinically relevant drug combinations on cell-to-

cell spread of HIV-1 and provides an assessment of antiretroviral drug 

interactions in the context of cell-to-cell infection with wild type and 

drug-resistant variants of HIV-1. The HIV/AIDS pandemic is now thirty 

years old and there is a growing realisation that we may not be able to 

treat ourselves out of this pandemic. The untenable cost of lifelong 

therapy has shifted the focus towards a push for HIV-1 eradication. An 

understanding of the mechanisms of viral persistence and the 

establishment of viral reservoirs is crucial for developing novel 
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eradication strategies. In the present study, in vitro cell-to-cell assay 

systems are employed to address these specific questions in relation to 

antiretroviral therapy, cell-to-cell spread and antiretroviral drug 

resistance. 

 

1.2 The origins, diversity and global 
distribution of HIV-1 

Studies of primate lentiviruses using phylogenetic tools have enabled 

the origins of HIV-1 to be unravelled in recent years. Lentiviruses have 

been detected in more that 30 non-human primate species found in 

sub-saharan Africa (Sharp et al., 1995, Sharp and Hahn, 2011). These 

Simian Immunodeficiency Viruses (SIVs) appear to be for the most part 

non-pathogenic in their natural hosts (Sharp and Hahn, 2011). It is now 

generally accepted that the 4 distinct groups of HIV-1 that have so far 

been identified, came about as a result of at least four separate cross-

species transmission events of SIVs from primates to humans (Sharp and 

Hahn, 2011). Pandemic HIV-1 group M is most closely related to SIVcpz, 

whose primary host is the chimpanzee (Pan troglodytes). Group M 

(Main), was the first to be identified and is responsible for almost the 

entire human pandemic of HIV-1. It is responsible for millions of 

infections worldwide and has been identified in virtually every location 

across the globe (Sharp and Hahn, 2011). Group N (New), has only be 

isolated from 13 individuals (Simon et al., 1998), all from Cameroon and 

like group M HIV-1 is most closely related to SIVcpz from chimpanzees. 

Group O (Outlier) is less prevalent, representing <1% of infections 

worldwide and is mainly restricted to small pockets in some central 

African countries like Cameroon and Gabon (De Leys et al., 1990, 

Gurtler et al., 1994, Peeters et al., 1997). Very recently the origin of HIV-1 

group O has been traced to SIVgor, a SIV found in western low land 

gorillas in Cameroon (D'Arc, 2014). Group P HIV-1 is also closely related 

to SIVgor from gorillas. It is very rare and only two cases have so far 
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been reported in patients from Cameroon (Plantier et al., 2009, Vallari 

et al., 2011). A lot of what is known about HIV-1 with regard to 

transmission, pathogenesis, and treatment is based on studies of group 

M viruses. This group can be further sub-divided into 9 subtypes or 

clades (A-D, F-H, J, K) as well as over 40 circulating recombinant forms, 

which arise when infection of the same population by multiple sub-

types occurs (Sharp and Hahn, 2011). The distribution of group M 

clades is illustrated in Figure 1.1. Subtype C is predominant in southern 

and eastern Africa, India, Nepal and China (Wainberg, 2004). A and 

A/G recombinants are mainly found in West and Central Africa 

(Wainberg, 2004). Clade B viruses are predominant in North America, 

Western Europe and Australia and most studies on drugs and resistance 

studies have been based on this subtype (Wainberg, 2004). The 

subtype classification is centred on the alignment of env sequences 

where 20-50% differences are seen between subtypes. More recent 

classifications also take into consideration protease and reverse 

transcriptase sequences, which show 10-12% variation at the 

nucleotide level or 5-6% variation at the amino acid level (Wainberg, 

2004).  

 

Some studies have suggested that the different sub-types of HIV-1 may 

possess unique biological properties and these could have implications 

for the rates of transmission, pathogenesis, disease progression and 

response to treatment. For example, infections with subtype D viruses 

have been associated with greater pathogenicity and more rapid 

disease progression in some east African studies (Kiwanuka et al., 2010). 

One study from Thailand suggested that subtype E viruses might be 

better transmitted through heterosexual contact than sub-type B 

viruses, explaining the predominance of sub-type E infections in this 

region (Kunanusont et al., 1995). Sub-type C viruses have spread very 

rapidly throughout southern Africa and the Indian sub-continent and 
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are now responsible for 50% of HIV-1 infections worldwide (Taylor and 

Hammer, 2008). This suggests that sub-type C viruses are inherently 

more transmissible in heterosexual populations than other subtypes. In 

a Kenyan study, the genital tract viral loads were found to be higher for 

women infected with subtype C viruses when compared to women 

infected with subtype A or D viruses, supporting the hypothesis of the 

better transmissibility of subtype C viruses (John-Stewart et al., 2005). 

Also in another study, Tanzanian mothers infected with sub-type A and 

C viruses where found to have an increased risk for mother-child 

transmission in comparison to mothers infected with subtype D virus 

(Renjifo et al., 2001, Renjifo et al., 2004). Another study found no 

differences in the mother-to-child transmissibility of the different sub-

types of group M viruses, highlighting the controversy that still exists in 

the studies in this area (Eshleman et al., 2005).  

 

Concerning antiretroviral therapy, several studies suggest that the 

response to antiretroviral therapy is similar among patients infected 

with different clades of group M virus (Alexander et al., 2002, Pillay et 

al., 2002, Bannister et al., 2006, Gatell, 2011, Scherrer et al., 2011). Some 

studies however have shown that differences exist in the frequency 

and pathways leading to the selection of drug-resistant variants in non-

B clade viruses. Subtype D viruses appear to possess a natural 

resistance to non-nucleoside reverse transcriptase inhibitors, based on 

a single nucleotide substitution (Gao et al., 2004) and non-subtype B 

viruses appear to more frequently select for minor drug resistance 

mutations in protease (Pieniazek et al., 2000). The specific effects of 

subtype variability in relation to cell-to-cell spread of HIV-1 have not 

been investigated. Given the afore mentioned observations and the 

putative relevance of HIV-1 cell-to-cell spread for treatment and 

vaccine development, it would be interesting to find out whether all 
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HIV-1 subtypes exhibit comparable efficiencies in their ability to form 

virological synapses and spread efficiently from cell-to-cell.  

 
Figure 1-1: Current Global distribution of HIV-1 subtypes and recombinant forms (Taylor and 
Hammer, 2008) 

 

1.3 HIV-1: Structure, Function and Replication 

1.3.1 HIV-1 Structure and function 

HIV-1 is a virus that belongs to the family of Retroviridae, the subfamily 

lentivirinae and the genus lentiviridae. The HIV-1 virion is spherical in 

shape and has an average diameter of 110nm. The viral genome 

consists of two copies of single stranded positive sense ribonucleic acid 

(RNA) in complex with viral enzymes, surrounded by a lipid-based 

envelope that is derived from the host cell membrane. The surface 

glycoprotein envelope (Env) of HIV-1 is initially synthesised as a 

precursor polypeptide gp160. This precursor polypeptide is 

subsequently cleaved by the cellular protease furin to generate the 

receptor glycoprotein or “spike” gp120 and the transmembrane and 

fusion-peptide containing component gp41 that remain non-
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covalently associated (Freed, 2003, Sundquist and Krausslich, 2012). 

Gp120 projects from the surface of the viral envelope and mediates 

the attachment to target cell receptors (CD4) and co-receptors (CCR5 

and CXCR4). The transmembrane glycoprotein gp41 facilitates fusion 

of the viral envelope with the target cell membrane and also contains 

essential trafficking determinants within its cytoplasmic tail (Checkley et 

al., 2011). The viral lipid envelope surrounds an internal protein layer 

called the matrix (p17), which is derived from the Gag polyprotein 

(p55) following proteolytic processing and is anchored to the internal 

surface of the virus envelope. The HIV-1 genome is approximately 9.7 

kilobases and encodes major structural and non-structural proteins 

common to all replication competent retroviruses. The viral genome 

and proteins are held in a cone-shaped protein core/capsid Gag 

(p24) that is also the result of Gag p55 processing. 

 
Figure 1-2: HIV-1 Structure (http://upload.wikimedia.org/wikipedia/commons/3/31/800px-
HIV_Viron_es.png) 
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From the 5’- 3’ ends, the HIV-1 genome is made up of 9 genes that 

code for 15 viral proteins. The three main virus genes are gag (group-

specific antigen), pol (polymerase), and env (envelope). In addition to 

these, are 4 accessory genes; vif, vpr, vpu, and nef that generally 

modulate host responses to the virus and two regulatory genes tat and 

rev, which regulate steps in the replication cycle of the virus. 

 

Gag - Encodes the polyprotein precursor Pr55Gag that is cleaved by 

the viral protease to mature structural proteins; matrix (p17), capsid 

(p24), nucleocapsid (NC or p7), p6 as well as the two spacer proteins 

p2 and p1 (Freed, 2003, Wiegers et al., 1998). 

 

Pol - Codes for the polyprotein precursor Pr160GagPol that is processed 

by the viral protease into individual virus enzymes Protease (PR), 

Reverse Transcriptase (RT) and Integrase (IN)(Freed, 2003). 

 

Env - Codes for a polyprotein precursor gp160 that is processed by host 

cell proteases during the trafficking of the virus envelope to the surface 

of the cell. Gp160 is cleaved into the surface glycoprotein gp120 and 

the transmembrane glycoprotein gp41. These two surface 

glycoproteins remain non-covalently associated and are collectively 

referred to as Env (Freed, 2003, Sundquist and Krausslich, 2012). 

 

Vif - Codes for the virion infectivity factor (Vif). Vif plays a role in 

suppressing the viral restriction factors APOBEC3G and APOBEC3F by 

binding and targeting these proteins for degradation via an ubiquitin 

pathway (Schrofelbauer et al., 2004, Sheehy AM, 2002). 

 

Vpr - Codes for viral protein R, which is a moderate enhancer of virus 

infectivity and through its interaction with host cellular proteins has 

been implicated in post-entry nuclear import and cell cycle arrest.  The 
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precise role of Vpr in the viral life cycle remains to be clearly defined 

(Kogan and Rappaport, 2011, Popov et al., 1998a, Popov et al., 1998b, 

Strebel, 2013). 

Rev- Codes for the regulator of expression of viral proteins (Rev). Rev 

binds to a Rev responsive element (RRE) and plays an essential role in 

the nuclear export of unspliced viral mRNAs from the nucleus to the 

cytoplasm (Freed, 2003, Karn and Stoltzfus, 2012). 

 

Vpu - Encodes for viral protein U (vpu).  Vpu downregulates the 

expression of CD4 and MHC on the surface of infected host cells. It also 

counteracts the restriction factor tetherin by targeting it for 

degradation and by so doing induces virion release from the host cell 

surface (Dube et al., 2010, Neil et al., 2008a, Guo and Liang, 2012). 

 

Nef - Codes for negative factor (Nef). Nef downregulates CD4 and 

MHC expression on the surface of infected host cells. It also modulates 

virus infectivity, blocks apoptosis and plays a role in determining 

pathogenicity of the virus (Foster and Garcia, 2007, Strebel, 2013). 

 

Tat - Encodes for the transactivator of transcription (Tat) protein. Tat 

binds to the transacting response element (TAR) and acts as a potent 

activator of viral gene expression (Freed, 2003, Karn and Stoltzfus, 2012, 

Romani et al., 2010, Debaisieux et al., 2012, Van Lint et al., 2013). 

 

Two untranslated repeat regions flank the HIV-1 RNA genome. At the 5’ 

end of the repeat region internally is a unique 5’ region (U5) and at the 

3’ end internally is a unique 3’ region (U3) (Freed, 2003). At the end of 

reverse transcription of the viral RNA into proviral DNA, longer repeat 

regions are generated and the proviral DNA is flanked by 2 identical 

long terminal repeats (LTRs) containing the U3, R and U5 regions. The 

HIV-1 LTR is 630-640bp long and plays a vital role in initiating the 
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transcription of viral genes (Starcich et al., 1985, Karn and Stoltzfus, 

2012). The U3 region contains the viral promoter and enhancer 

sequences, while the R regions contain the polyadenylation signal and 

the transactivation response element (TAR), to which the viral Tat 

protein binds (Starcich et al., 1985, Karn and Stoltzfus, 2012). 

 
Figure 1-3: Organisation of the HIV-1 genome (Suzuki, 2011) 

 

Targeting viral proteins and enzymes important for HIV-1 replication is 

the main strategy that has been adopted for the development of 

antiretroviral therapies currently used to treat HIV-1 infection. The steps 

in the replication cycle of HIV-1 are briefly described below. 

 

1.3.2  HIV-1 Replication 

1.3.2.1   Cell binding and entry 
HIV-1 typically infects immune cells carrying the CD4 cell surface 

receptor and one or both of the co-receptors CCR5 and CXCR4. These 

cells include mainly helper T cells (CD4+ T cells) and macrophages, as 

well as some subsets of dendritic cells and langerhans cells. The viral 
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Env is a heavily glycosylated trimer of gp120 and gp41 heterodimers. 

The infection of a cell with HIV-1 begins when the virus surface 

glycoprotein gp120 binds to the CD4 receptor on the surface of the 

host cell. Gp120 has five relatively conserved domains (C1-C5) and five 

variable loops (V1-V5)(Wilen et al., 2012, Kwong et al., 1998). The 

variable loops are located predominantly on the surface of gp120 and 

are important for immune evasion and co-receptor binding. When 

gp120 binds to CD4 this triggers a reorganisation of the V1/V2 and 

subsequently V3 loops and also induces the formation of a bridging 

sheet facilitating co-receptor engagement (Wilen et al., 2012, Kwong 

et al., 1998). Engagement of the co-receptor triggers the exposure of 

the hydrophobic fusion peptide of gp41, which inserts into the host cell 

membrane and tethers the virus and host cell membranes (Chan et al., 

1997, Weissenhorn et al., 1997, Wilen et al., 2012). The fusion peptide of 

each gp41 in the trimer folds at a hinge region, and this folding brings 

an amino terminal helical region and a carboxy terminal region from 

each gp41 subunit together to form a six-helix bundle (6HB) (Wilen et 

al., 2012, Chan et al., 1997, Weissenhorn et al., 1997). The formation of 

the 6HB drives the formation of the fusion pore and enables the fusion 

of the virus and host cell membrane. Membrane fusion is central to the 

infection process as it enables the introduction of the virus core into the 

cytoplasm of the host cell (Freed, 2003, Wilen et al., 2012). 

 

1.3.2.2  Reverse transcription 
Following fusion, the core, which contains the genomic RNA, is 

released into the cytoplasm. The viral core uncoats and is converted to 

a reverse transcription complex (RTC) and then to a pre-integration 

complex (PIC). Reverse transcription of the viral RNA into double 

stranded DNA is performed by the viral reverse transcriptase protein 

(RT) in the RTC and is one of the defining steps in the life cycle of all 

retroviruses. The precise location and timing of uncoating remains a 
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matter of debate, and whether uncoating occurs before or during the 

process of RT remains unclear. Retroviruses generally use host cell tRNAs 

as primers to initiate the process of reverse transcription (Hu and 

Hughes, 2012). The 3’ end of the tRNALys3 in host cells is base paired to a 

complementary sequence at the 5’ end of the HIV-1 RNA called the 

primer-binding site (pbs) and serves as the primer for initiating reverse 

transcription of the HIV-1 genome (Freed, 2003, Hu and Hughes, 2012). 

The pbs is 180 nucleotides from the 5’ end of the viral genomic RNA. 

After binding of the tRNALys3 primer to the pbs, RT synthesises a 

DNA/RNA hybrid and the RNA portion is degraded by RNaseH which is 

an inherent part of the RT holoenzyme, generating a fragment of DNA 

known as the minus strand strong stop. The ends of the viral RNA 

contain the R regions which serve as a bridge allowing the newly 

synthesised minus-strand DNA to be transferred or “jump” from the 5’ to 

the 3’ end of the genome in a process referred to as first-strand 

transfer. The 3’ end of the strong stop DNA serves as a primer for the 

continuing synthesis of the minus strand. A purine–rich sequence (ppt) 

of RNA, resistant to RNaseH digestion at the 3’ terminus (3’ppt) and the 

center of (central-ppt), remaining from minus strand synthesis, primes 

the synthesis of the plus strand (Hu and Hughes, 2012). The synthesis of 

the plus strand continues until the tRNA has been copied, allowing its 

removal by RNaseH and the second strand transfer to occur. Extension 

of the minus and plus strands completes the synthesis of the double-

stranded linear viral DNA. The newly synthesised viral DNA remains 

associated with viral and cellular proteins in a large complex called the 

pre-integration complex (PIC) (Hu and Hughes, 2012).  HIV-1 RT lacks 

the proofreading ability of cellular DNA polymerases and as such is 

highly error prone introducing an estimated 3.4×105 errors per base pair 

per cycle (Hu and Hughes, 2012). Also, the RT binds to its template with 

a very low affinity and is able to jump between the two strands of 

genomic RNA, potentially adding to RT-mediated sequence diversity 
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(Hu and Hughes, 2012). These characteristics of RT account for the 

sequence variability that is seen among HIV-1 isolates and the 

existence of a pool of viruses or quasi-species within an infected host. 

 

1.3.2.3  Nuclear import and Integration 
The PIC enters the nucleus through nuclear pore complexes (NPCs). 

The NPCs are specialised nuclear membrane channels, that are 

comprised of proteins called nucleoporins (Matreyek and Engelman, 

2013). The precise mechanism by which the PIC is imported into the 

nucleus has been intensely studied but remains highly controversial.  

Based on recently reported findings, a popular model suggests that the 

PIC docks at the NPC by engaging the nucleoporin NUP358 through 

interactions with remaining CA proteins (Matreyek and Engelman, 

2013, Schaller et al., 2011). Once docked, the PIC further engages with 

the cellular protein cleavage and polyadenylation specificity factor 

subunit 6 (CPSF6) and NUP153, an essential step in facilitating nuclear 

import of the PIC (Matreyek and Engelman, 2013). Transportin 3 

(TNPO3) is a nuclear transport protein that also plays an important role 

in the nuclear import of the PIC and possibly nuclear trafficking and 

integration(Brass et al., 2008, Matreyek and Engelman, 2013, Diaz-

Griffero, 2012). TPNO3 is required for proper nuclear localisation of 

CPSF6 and depletion of TPNO3 in human cells leads to a dramatic 

reduction in HIV-1 infection. Several viral factors associated with the 

PIC are also important for nuclear import, these include; MA, IN and 

Vpr, which all possess nuclear localisation signals (Popov et al., 1998b, 

Haffar et al., 2000, Bouyac-Bertoia et al., 2001, Matreyek and 

Engelman, 2013). These factors recruit nuclear transport proteins 

facilitating nuclear import of the PIC. The reverse transcribed genome 

also contains an important determinant of PIC nuclear import, a triple 

stranded DNA flap element generated through the action of the 

central polypurine tract (cPPT) and central termination signal 
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(CTS)(Matreyek and Engelman, 2013, Ao et al., 2004, Riviere et al., 

2010). This DNA flap enhances the efficiency of both viral replication 

and nuclear import (Ao et al., 2004, Riviere et al., 2010). The process of 

integration mediated by the viral integrase is initiated in the PIC in the 

cytoplasm. Integrase binds to specific sequences in the LTR regions of 

the viral cDNA and is part of the PIC. Integrase cleaves the viral DNA at 

the 3’ ends in a process known as 3’ processing leading to the 

exposure of conserved CA dinucleotides at the 3’ ends of the viral DNA 

(Craigie and Bushman, 2012). 

 

Once the PIC is imported into the nucleus, the integration process 

proceeds by a strand transfer reaction in which the viral DNA is ligated 

to the host chromosomal DNA completing the process of integration. 

The viral DNA also undergoes several circularisation reactions leading 

to the generation of forms, which are unable to support replication 

and represent dead ends for the virus (Craigie and Bushman, 2012). 2 

LTR circles are formed by ligation of the two ends of the viral DNA to 

each other (Craigie and Bushman, 2012). 1 LTR circles are also 

detected. HIV-1 exploits host cellular factors to enhance integration 

and integration site selection. The viral cDNA preferentially integrates 

into sites of active transcription within the host genome (Craigie and 

Bushman, 2012). LEDGF/p75 (Lens epithelium derived growth factor) is 

an important host derived co-factor required for integration of the viral 

DNA (Cherepanov et al., 2003). It tethers HIV-1 integrase and 

chromatin at the sites of active transcription, targeting integration to 

these locations (Cherepanov et al., 2003, Craigie and Bushman, 2012). 

The interaction between integrase and LEDGF/p75 is a promising target 

for the therapeutic inhibition of HIV-1 replication. Small molecules 

called LEDGINs, which are potent inhibitors of the LEDGF/p75-IN 

protein-protein interaction and allosteric inhibitors of the catalytic 
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function of integrase, are currently in the early stages of drug 

development (Christ and Debyser, 2013).  

 

1.3.2.4  Transcription and post-transcriptional regulation of 
HIV-1 gene expression 

Once integrated into the host genome, the proviral DNA can remain 

silent or be transcribed by the cellular machinery if the infected CD4+ T 

cell is activated. Although the mechanisms by which HIV-1 establishes 

latency are not fully understood, the widely held view is that a small 

fraction of activated CD4+ T cells which are infected with the virus 

survive long enough to revert to a resting memory state in which 

transcription of viral genes is silent (Shan and Siliciano, 2013). It is also 

possible that HIV-1 is capable of directly infecting resting CD4+ T cells 

despite the very low efficiency of reverse transcription and integration 

in these cells (Agosto et al., 2007, Vatakis et al., 2009, Pace et al., 2012). 

These infected resting CD4+ T cells are believed to constitute an 

important component of the viral reservoir and can resume active 

production of infectious virions once they become re-activated. The 

integrated proviral DNA serves as a template for the synthesis of viral 

mRNAs that are translated into viral structural, regulatory and 

accessory proteins. 

 

Transcription of the proviral DNA is initiated at the HIV-1 LTR and is 

greatly enhanced by the binding of Tat to the transactivation response 

element (TAR) (Romani et al., 2010, Karn and Stoltzfus, 2012). The HIV-1 

promoter is located in the 5’ LTR and bears important regulatory 

components needed for transcription. Transcription is initiated from the 

U3/R junction and is mediated by the cellular RNA polymerase II (Van 

Lint et al., 2013). Upstream of the promoter is a TATA box and binding 

sites for additional host transcriptional factors such as Sp1, NFkB and 

others (Van Lint et al., 2013). The viral genes, which encode for Tat, Rev 

and Nef are the first to be transcribed. Prior to the generation of Tat, 
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cellular transcription factors are solely responsible for activating the LTR. 

Once present, Tat strongly increases the activation of transcription and 

elongation via a positive feedback loop (Romani et al., 2010, Karn and 

Stoltzfus, 2012). When Tat binds to TAR, it recruits the cellular co-factor 

positive transcription elongation factor b (P-TEFb) complex to the 

promoter (Karn and Stoltzfus, 2012). The P-TEFb complex in turn 

phosphorylates the C-terminal domain of the RNA polymerase II and by 

so doing enhances its processivity and elongation function. 

Transcription produces a large number of viral RNAs; unspliced RNAs 

which are the mRNA for Gag and Gag-Pol precursor polyproteins 

(about 9kb), partially spliced mRNAs coding for Env, Vif, Vpu and Vpr 

proteins (about 4kb) and multiply spliced mRNAs which are translated 

into Rev, Tat and Nef proteins (about 2kb). Unspliced and partially 

spliced viral mRNAs are transported out of the nucleus with the help of 

the Rev protein.  Rev binds to a Rev responsive element (RRE) to form a 

complex capable of interacting with the nuclear export machinery of 

the cell (Romani et al., 2010, Karn and Stoltzfus, 2012). This complex 

enables the transport of the unspliced and partially spliced mRNAs 

from the nucleus into the cytoplasm for translation, and because Rev 

possesses a nuclear localisation signal it is able to shuttle between the 

nucleus and the cytoplasm (Karn and Stoltzfus, 2012). Following the 

nuclear export of HIV-1 mRNAs, Gag and Gag-Pro-Pol polyproteins and 

most viral accessory proteins are translated in the cytosolic polysomes. 

The two viral membrane proteins Env and Vpu are encoded for by the 

same mRNA and are translated on the rough ER. Newly synthesised 

viral proteins are trafficked from their site of synthesis in the cytoplasm 

to the plasma membrane for assembly. 

 

1.3.2.5  Assembly, binding and release 
All the necessary viral components needed for infectivity are 

packaged during assembly. These include two copies of the virus 



Exploring the Impact of Antiretroviral Drugs on the Cell-to-Cell Spread of HIV-1 
 

Chapter One – Introduction and background 

 
37 

genomic RNA, cellular tRNALys3 required to prime cDNA synthesis during 

reverse transcription of the virus RNA, the viral envelope protein (Env) 

and the three viral enzymes RT, Protease and Integrase (Sundquist and 

Krausslich, 2012). Assembly of virions occurs at the plasma membrane 

and is coordinated by the HIV-1 Gag (and Gag-Pro-Pol) polyproteins. 

Gag domains play specific roles in the assembly process. Its amino 

terminal MA functions to bind the plasma membrane and possibly 

recruit the viral envelope protein, although the precise mechanism of 

Env incorporation and its interactions with Gag during virus assembly 

remain unresolved. Gag is targeted to the plasma membrane by a 

combination of viral and cellular factors, including the basic patch in 

MA, Gag myristoylation and also a plasma membrane specific lipid 

known as phosphatidylinositol (4,5) bisphosphate (PI (4,5) P2) that are 

collectively essential for targeting Gag to the plasma membrane. 

When MA binds to PI(4,5)P2 this causes the exposure of the amino 

terminal myristoyl group (myristoyl switch) enabling Gag to be stably 

anchored to the inner leaflet of the plasma membrane (Saad et al., 

2006, Sundquist and Krausslich, 2012). The central domain of Gag 

known as CA is responsible for protein-protein interactions required for 

the assembly of immature virions and creates the core of the mature 

virus called the capsid. The nucleocapsid domain captures the viral 

RNA genome during assembly and is also believed to play a role in 

plasma membrane targeting. The carboxy terminal of Gag known as 

the p6 region possesses binding sites for the viral accessory protein Vpr 

and for cellular proteins involved in the ESCRT (endosomal cell sorting 

complex required for transport) pathway (Sundquist and Krausslich, 

2012) that help mediate the process of budding.  The spacer peptides 

in Gag Sp1 and Sp2 regulate conformational changes that are 

induced by the maturation process. Assembled virions acquire their 

lipid envelope and envelope proteins during the budding process. The 

virus envelope, an integral membrane protein, is inserted co-
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translationally into the endoplasmic reticulum and goes through 

secretory pathways in the cell where it is glycosylated, assembled into 

trimeric complexes and processed into the transmembrane (gp41) and 

surface (gp120) subunits by the cellular protease furin (Sundquist and 

Krausslich, 2012). Gp120 and gp41 remain non-covalently linked and 

are delivered to the plasma membrane by the vesicular transport 

pathway. Although the viral Gag protein coordinates the packaging of 

co-factors and virus assembly, the virus hijacks the host cell ESCRT 

pathway for the final stages of budding and membrane pinching to 

release viral particles from the plasma membrane. Virus maturation 

occurs simultaneously during budding or immediately after budding. 

The viral protease is responsible for cleaving Gag and Gag-Pro-Pol 

polyproteins into fully functional sub-units MA, CA, NC, p6, PR, RT and 

IN. During the process of maturation the cleaved proteins are 

rearranged to produce the infectious virion, which is characterised by 

its cone-shaped core and electron dense morphology under the 

electron microscope. MA remains closely associated to the inner 

surface of the viral membrane and capsid surrounds the nucleocapsid. 

These mature virions are now fully capable of replicating in new target 

cells. 
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Figure 1-4: HIV-1 life-Cycle (Suzuki, 2011) 

1.4  The course of HIV-1 infection 
Once an effective person-to-person transmission event has occurred, 

HIV-1 infection follows a well-described course in infected individuals 

who are not treated.  

 

Eclipse phase: The 7-21 days following a transmission event are known 

as the eclipse phase (Cohen et al., 2011, Keele et al., 2008, Lee et al., 

2009). During this phase the virus freely replicates and spreads from the 

initial site of infection to other tissues. During this asymptomatic phase, 

HIV-1 RNA levels in the plasma are undetectable. Studies using plasma 

samples obtained from acutely infected donors collected before 

infection; at peak viraemia and during sero-conversion suggest that an 

early innate immune response occurs during this eclipse phase. This 

response is characterised by increase production of pro-inflammatory 
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cytokines and acute phase proteins (McMichael et al., 2010, Stacey et 

al., 2009). A recent study of SIV infection in macaques provides 

evidence that the viral reservoir is probably seeded during this eclipse 

phase of infection, before detectable viraemia (Whitney et al., 2014, 

Deng and Siliciano, 2014), a proposition which has important 

implications for virus eradication strategies (Deng and Siliciano, 2014, 

Whitney et al., 2014),  

 

Acute phase: Occurring 2-4 weeks after infection, the phase of acute 

or primary infection is characterised by high levels of viral replication 

and HIV-1 RNA levels of up 107 copies/ml of blood (Coffin and 

Swanstrom, 2013, Lee et al., 2009). Some individuals experience “flu-

like” symptoms, fever and lymph node enlargement during this phase 

that is attributed to the inflammatory response in early HIV-1 infection 

also commonly referred to as a “cytokine storm”. Around the time 

viraemia peaks, adaptive immune responses begin to appear. 

Antibodies against viral envelope proteins can be detected as well as 

cytotoxic CD8+ T cell responses targeting HIV-1 antigens. These HIV-1 

antigens are coupled with MHC class I molecules and presented on 

the surface of infected CD4+ T cells which are then destroyed by 

cytotoxic CD8+ T cells. The initial antibody response is non-neutralising 

and doesn’t lead to the selection of escape mutants (McMichael et 

al., 2010, Cohen et al., 2011). Antibodies capable of neutralising 

autologous virus only develop slowly about 12 weeks or more after the 

initial transmission event. 20% of patients are capable of generating 

broadly neutralising antibodies after several years of infection 

(McMichael et al., 2010). By the end of the acute phase of infection, 

the viral set point is established (Cohen et al., 2011). This set point 

represents a relatively steady plasma viral load turnover in a given 

patient. Infected individuals with a higher viral set point, progress more 

rapidly to AIDS and death. There is strong evidence to support that very 
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early treatment lowers this viral set point and reduces the size of the 

viral reservoir, slowing progression from clinical latency to full-blown 

disease (AIDS) (Mellors et al., 1997, Hogan et al., 2012, Fidler et al., 2013, 

Persaud et al., 2013, Strain et al., 2005, Whitney et al., 2014). 

 

Latent phase: A phase of clinical latency follows the acute infection 

phase. During this phase patients remain asymptomatic and largely 

unaware of their infection. The duration of this clinical latency is 

variable from one individual to another but current estimates suggest 

that the average time from infection to the development of clinical 

symptoms is 8 -12 years (Bacchetti and Moss, 1989, Coffin and 

Swanstrom, 2013). The term “latency” to describe this phase of HIV-1 

infection is misleading because there is strong evidence that virus 

replication and progressive decline of CD4+ T cells continues 

throughout this phase leading to progressive destruction of the immune 

system (Coffin and Swanstrom, 2013).  In a small subset of individuals 

known as long-term non-progressors, CD4+ T cell decline is not 

observed and viral replication seems to be controlled by a range of 

genetic, virologic and immunologic mechanisms (Lambotte et al., 

2005, Madec et al., 2005). In children infected at birth the latent phase 

may be shorter or entirely absent with progression to AIDS occurring 

very rapidly (De Rossi et al., 1996). 

 

AIDS: After years of continuous CD4+ T cell decline, the level of these 

cells eventually falls below a tipping point <500 cells/µl of plasma 

(normal range: 600-1200cells/µl). Below this point, the first clinical signs 

of immune compromise begin to appear. The patient becomes more 

susceptible to opportunistic infections and malignancies. The control of 

infection is lost and the viral load rises (Coffin and Swanstrom, 2013). 

The viral set point established at the end of the acute phase of 

infection is an important determinant of the rate of progression to AIDS 
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(Cohen et al., 2011). The decline of CD4+ T cells typically continues until 

virtually all of these cells are lost. Severe immune compromise and the 

inability to fight common infections, as well an increased susceptibility 

to AIDS-related malignancies, eventually culminates in death of the 

patient. 

 
Figure 1-5: Time-course of typical HIV-1 Infection (Pantaleo et al., 1993) 

1.5 Modes of HIV-1 transmission and spread 
between and within the host 

1.5.1 HIV-1 Transmission 

HIV-1 transmission from person-to-person occurs through the exchange 

of bodily fluids containing infectious virus particles via three main 

routes. These include: unprotected sexual intercourse, parenteral 

transmission (infected blood and tissue products and intravenous drug 

use) or mother-to-child transmission during pregnancy, delivery or 

breastfeeding. Transmission occurring across mucosal surfaces 

(vaginally or rectally) is the predominant mode of transmission and 

represents 80% of all adult infections while percutaneous and 

intravenous routes represent 20% of infections (UNAIDS, 2013). In order 

to gain a foothold within the host and establish infection, cell-free or 

cell-associated infectious virus particles must disseminate within the 
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host and infect target cells. Substantial evidence suggests that 

activated CD4+ T cells and Langerhans’ cells are the initial target cells 

for HIV-1 during mucosal transmission (Cohen et al., 2011). Other 

dendritic cells play an important accessory role in facilitating spread of 

the virus from the site of initial entry, while macrophages can support 

productive infection and may serve as important long-lived reservoirs 

of the virus. 

 

1.5.2  Modes of virus spread within the host 

 Three mechanisms of dissemination have been described for HIV-1 

within the host (Piguet and Sattentau, 2004): In the “classical” mode of 

spread by diffusion of cell-free virions in bodily fluids, virions bind to CD4 

receptors and coreceptors on permissive host cells  and trigger the 

steps leading to viral entry and replication (Pierson and Doms, 2003, 

Piguet and Sattentau, 2004). In the second mode of spread, cells such 

as dendritic cells capture virus particles using cellular receptors notably 

DC-SIGN, without necessarily themselves becoming infected, and re-

present the infectious virus particles to permissive target cells, in a 

mode of infection known as  in trans (Geijtenbeek et al., 2000, Hu et al., 

2004, Piguet and Sattentau, 2004, Cameron et al., 1992, Pope et al., 

1994). The third mechanism of virus spread is through direct cell-to-cell 

transmission in which an HIV-1 infected cell is able to directly infect a 

target cell without the requirement for prolonged fluid-phase diffusion 

of cell-free virus in the extracellular milieu. It is important to highlight 

that in this mode of transmission, virus budding from an infected 

effector cell is polarised towards the target cell at the synaptic cleft 

and this does not involve fusion of donor and target cells. Rather the 

released virions have a short distance to travel before they can 

engage receptors on the target cell that is involved in the cell-to-cell 

contact (Jolly and Sattentau, 2004, Jolly et al., 2004, Sattentau, 2008, 

Piguet and Sattentau, 2004). 
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1.5.2.1  Cell-free spread of HIV-1 

 The classical paradigm of HIV-1 dissemination by diffusion of cell-free 

virions probably represents the best means of long distance 

dissemination for the virus. Following fluid phase diffusion, the virus 

particle attaches to the target cell bearing the required cellular 

receptors. The engagement of the CD4 receptor and co-receptors 

(CXCR4 and CCR5) by the virus drives the fusion of the virus envelope 

with the cellular membrane, leading to entry of the virion into the 

cytoplasm and its subsequent replication within the cell. HIV-1 can be 

found both in cell-free and cell-associated forms in semen (Van Voorhis 

et al., 1991, Miller et al., 1992, Quayle et al., 1997, Xu et al., 1997, Tachet 

et al., 1999, Ghosn et al., 2004, Anderson et al., 2010) and in breast milk 

(Koulinska et al., 2006, Ndirangu et al., 2012). A few studies have looked 

into the relative contributions of cell-free and cell-associated virus to 

transmission but so far no clear consensus has been reached as to 

which form of virus is predominantly responsible for person to person 

transmission (Sodora et al., 1998, Weiler et al., 2008, Salle et al., 2010). 

Cell-free spread allows for transmission of the virus from one host to 

another where the virus needs to exit the infected host and remain 

viable for a sufficient period of time to allow it to infect a new host. It 

also may enable long distance spread of the virus from the point of 

initial entry to distant tissues through diffusion in the bloodstream, 

although as discussed latterly, virus captured or infected migrating cells 

may also contribute to viral dissemination from the initial infection site. 

Despite these advantages, cell-free spread imposes a penalty to the 

virus by increasing its exposure to physical, kinetic and immunological 

barriers. HIV-1 has a fragile envelope and is prone to the decay of its 

infectivity over time, making it more challenging for the virus to remain 

infectious in the time required to cross mucosal membranes during 

sexual transmission. Also random diffusion in the blood stream increases 

the time it takes for the virus to encounter a target cell with the right 
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receptors (CD4, CCR5, CXCR4). These disadvantages highlight the 

benefits for a virus to have the ability to use alternative methods for 

dissemination in order to overcome these obstacles and effectively 

spread within the host. 

 
Figure 1-6: Cell-free spread of HIV-1 from T cell-to-T cell. 

1.5.2.2  The virological synapse and T cell-to-T cell spread 
of HIV-1 

Direct virus spread from cell-to-cell was first demonstrated for the 

herpes virus varicella zoster (Weller, 1953). Since then several other virus 

families including rhabdoviruses, poxviruses, paramyxoviruses and 

retroviruses have been shown to use this mechanism of propagation 

(Sattentau, 2010, Sattentau, 2008). HIV-1 is an enveloped retrovirus, 

which is fragile and extremely prone to infectivity decay when located 

outside its host cell. This singular fragility is largely due to the fact that its 

envelope glycoprotein spike is non-covalently assembled and highly 

prone to degeneration over time (McKeating et al., 1991, Layne et al., 

1992). It is therefore primordial for its survival that the virus quickly finds 

and infects new host cells. About 10 years ago, seminal papers 

describing direct transfer of HIV-1 and HTLV-1 across a supramolecular 

structure termed a virological synapse, provided a mechanism for a 

highly efficient and rapid mode of retroviral dissemination through 

direct spread from T cell-to-T cell (Igakura et al., 2003, Jolly et al., 2004, 

Jolly and Sattentau, 2004), these findings were subsequently confirmed 
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by other groups (Sourisseau et al., 2007, Chen et al., 2007, Hubner et al., 

2009). 

 

A synapse has been defined as “a stable adhesive junction across 

which information is relayed by directed secretion” (Dustin and 

Colman, 2002). In vivo, HIV-1 predominantly infects and replicates in 

CD4+ T cells. T cells do not normally form stable contacts with other T 

cells and when these do occur, they are typically transient lasting less 

than 10 minutes (Sabatos et al., 2008). However during direct spread of 

HIV-1 from T cell-to-T cell, an HIV-1 infected T cell (effector cell) is 

capable of forming a stable intercellular junction with an uninfected 

cell (target) (Jolly and Sattentau, 2004). These stable junctions, which 

form when T cells are infected with HIV-1 are longer lasting, persisting 

for about 60 minutes before the cells come apart, (Jolly et al., 2004, 

Chen et al., 2007, Hubner et al., 2009, Martin and Sattentau, 2009) 

however some conjugates can last for several hours . At the point of 

contact, polarised virus assembly and budding occurs towards the 

engaged target cell (Jolly et al., 2004, Chen et al., 2007, Hubner et al., 

2009, Rudnicka et al., 2009). 

 

The virological synapse can be defined by the co-polarisation of HIV-1 

Env and Gag on the infected cell and HIV-1 entry receptors (CD4 and 

co-receptor) on the target cell (Jolly et al., 2004). The initial event that 

leads to the formation of the virological synapse between an infected 

T cell and an uninfected T cell is the binding of the virus gp120 to the 

CD4 receptor. This interaction between the virus envelope proteins on 

the surface of the effector cell and the CD4 receptor and co-receptor 

(CXCR4 or CCR5) on the surface of the target cell is therefore an 

important factor that drives the co-polarisation of the viral Env and 

cellular receptors (Jolly et al., 2004). Drug inhibitors and antibodies, 

which disrupt the interaction between the CD4 receptor and Env, 
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impede formation of the virological synapse and this is substantiated 

by reduced clustering of Env, Gag, CD4 and co-receptors in the 

presence of these agents (Abela et al., 2012, Schiffner et al., 2013, 

Massanella et al., 2009, Sattentau, 2010, Durham et al., 2012, Su et al., 

2012, Malbec et al., 2013). The stability of the synaptic junction is likely 

enhanced by the interaction between integrins such as lymphocyte 

function associated antigen-1 (LFA-1) and its cognate ligands 

intercellular adhesion molecules-1 and 3 (ICAM-1 and ICAM-3)(Jolly et 

al., 2007, Jolly et al., 2004) although this role of cellular adhesion 

molecules is not unanimously accepted (Puigdomenech et al., 2008, 

Rudnicka et al., 2009). However, when antibodies, inhibitory peptides or 

using T cells with mutated conformations of LFA-1, perturb LFA-1-ICAM 

binding the stability of the VS is reduced as well as cell-to-cell spread of 

HIV-1 (Jolly et al., 2007, Rudnicka et al., 2009).  Moreover, both LFA-1 

and ICAM are enriched at the VS (Jolly et al., 2004, Jolly et al., 2007) 

providing further evidence for their contribution to VS formation. The 

interaction between Env and CD4 triggers the recruitment of actin, 

more CD4, HIV-1 co-receptors (CXCR4 or CCR5) and adhesion 

molecules to the synaptic zone (Jolly et al., 2004, Jolly et al., 2007). The 

polarisation of HIV-1 proteins and cellular receptors at the synaptic 

junction creates a focal point for directed assembly and release of 

newly formed virus particles allowing the efficient infection of the 

engaged target cells. Thus the kinetic advantage offered by cell-to-

cell spread can be explained by a combination of factors including 

1)the localised recruitment of viral proteins and polarised budding, 

2)the increased concentration of HIV-1 entry receptors at the contact 

zone and 3) the polarised release of virions that can rapidly engage 

the target cell that is in close physical contact. 
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Figure 1-7: The virological (T cell) synapse. This schematic is based on the HIV-1 and HTLV-1 T 
cell virological synapses. 

The microtubule organising centre (MTOC), mitochondria and other 

components of the cellular secretory apparatus are also polarised 

towards the virological synapse (Jolly and Sattentau, 2007, Jolly et al., 

2011, Sol-Foulon et al., 2007) and it is likely that the recruitment of these 

organelles plays some role in VS formation and subsequent cell-to-cell 

spread. Besides cell-to-cell spread across VS, HIV-1 has also been 

observed to travel along long-tubular structures connecting infected T 

cells to uninfected cells (Rudnicka et al., 2009, Sowinski et al., 2008), 

these membrane nanotubes and filopodia however seem to be less 

frequently observed than virolological synapses. Simultaneous 
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transmission of HIV-1 from effector cells to multiple targets via 

polysynapses has also been observed in vitro (Rudnicka et al., 2009). 

Murine leukemia virus (MLV) a retrovirus that predominantly infects non-

immune cells, notably fibroblasts has been shown to spread between 

cells by surfing on projections arising on the surface of infected cells 

termed filopodia (Sherer et al., 2007, Sherer et al., 2010). Similarly HIV-1 

can move across filopodial bridges towards CD4/CXCR4-expressing 

cells (Sherer et al., 2007). It has now been unequivocally shown that 

HIV-1 spreads from cell-to-cell and recent studies applying intravital 

microscopy to humanised mouse models have allowed visualisation of 

the VS in vivo (Murooka et al., 2012, Sewald et al., 2012). Although the 

relative individual contribution of cell-to-cell spread at VS, via 

membrane nanotubes and through cell-free spread is difficult to 

quantify, cell-to-cell spread has been established as the predominant 

mode of HIV-1 dissemination in in vitro cell cultures (Sourisseau et al., 

2007). 
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Figure 1-8: Cell-to-cell spread between T cell also occurs via membrane nanotubes (A) and 
filopodial bridges (B). 

Cell-to-cell spread provides many advantages to HIV-1 over the 

classical mode of cell-free spread (Sattentau, 2010, Sattentau, 2008). It 

has been shown to be up to three orders of magnitude quicker and 

more efficient than cell-free spread (Dimitrov et al., 1993, Johnson and 

Huber, 2002, Mazurov et al., 2010, Jolly et al., 2007, Sourisseau et al., 

2007, Chen et al., 2007, Martin et al., 2010); it obviates the need for the 

rate limiting step of virus diffusion prior to attachment, and reduces the 

exposure of the virus to the neutralising effects of antibodies and 

complement, an observation that has been confirmed by several 

investigators (Sattentau, 2008, Sattentau, 2010, Sourisseau et al., 2007, 

Abela et al., 2012, Malbec et al., 2013, Martin et al., 2010). More 

recently it has been shown that cell-to-cell spread is less sensitive to 

inhibition by some reverse transcriptase inhibitors and as such may 

serve as a mechanism for antiretroviral escape for HIV-1 in the context 
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of ongoing antiretroviral therapy (Sigal et al., 2011). The impact of 

antiretroviral therapy on cell-to-cell spread of HIV-1 is of particular 

interest because of the possible implications for viral pathogenesis, the 

evolution of drug resistance and maintenance of viral reservoirs in the 

context of therapy.  

 

1.5.2.3  Macrophages and cell-to-cell spread of HIV-1 
Macrophages are a terminally differentiated, non-dividing subset of 

immune cells, which play an important role in the pathogenesis of HIV-

1 infection (Waki and Freed, 2010). Unlike T cells, macrophages 

infected with HIV-1 survive for a long period post infection and the 

ability of these cells to traverse the blood-brain barrier enables the 

spread of HIV-1 infection into the central nervous system (Sharova et 

al., 2005, Gartner et al., 1986). Their inherent ability to resist virus-

induced cytopathic effects also allows them to serve as long-term 

reservoirs of infection. Macrophages infected with HIV-1, like T cells and 

DCs are also capable of forming virological synapses to efficiently 

transfer HIV-1 to uninfected macrophages and T cells (Gousset et al., 

2008, Groot et al., 2008). In comparison to the T cell and DC VS, cell-to-

cell transfer across the VS in macrophages is less well described. Studies 

however suggest that the much of what has been elucidated on the 

VS in T cells and DCs will apply at least to a certain extent to 

macrophage induced VS. Cell-to-cell spread of HIV-1 from 

macrophages-to-T cells have also been shown to be less sensitive to 

inhibition by antiretroviral drugs in much the same way as T cell-to-T cell 

spread of HIV-1 (Duncan et.al, 2013). 
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Figure 1-9: Macrophage to T cell spread of HIV-1 

1.5.2.4 Dendritic cells to T cell HIV-1 trans-infection 

Dendritic cells are a diverse family of cells, which play an important role 

in coordinating innate and adaptive immune responses. These cells 

bind, internalise and degrade antigens picked up from the peripheral 

tissues and subsequently present these antigens in complex with HLA 

class II molecules to CD4+ T cells, triggering an adaptive immune 

response to the specific antigen (Banchereau et al., 2000). When a 

CD4+ T cell encounters a dendritic cell, cellular adhesion molecules like 

LFA-1 and ICAM arrest the movement of the T cell allowing it to probe 

the surface of the dendritic cell (Monks et al., 1998, Grakoui et al., 

1999). If the correct Ag peptide/MHC-II complexes are presented to 

the T cell, it responds by concentrating T cell CD4 receptors and 

signalling molecules to the point of interaction, inducing the formation 

of an immunological synapse (Grakoui et al., 1999). HIV-1 is capable of 

exploiting the dendritic cell mediated immune function to allow for 

effective trans-infection of the virus through dendritic cells to T cells 

(McDonald, 2010). Dendritic cells are thought to be one of the first cell 

types that encounter HIV-1 following sexual transmission, due to their 

abundance in sub-mucosal tissue (McDonald, 2010). DCs were first 
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implicated in the pathogenesis of HIV-1 when it was observed that DCs 

exposed to HIV-1 could greatly amplify infection of T cells without 

themselves becoming infected (Cameron et al., 1992, Pope et al., 

1994).  The identification of DC-specific ICAM-3 grabbing non-integrin 

CD209 (DC-SIGN), a C-type lectin capable of binding the HIV-1 Env 

glycoprotein gp120, was pivotal in elucidating the mechanism of this 

trans-infection (Geijtenbeek et al., 2000, McDonald, 2010). DC-SIGN is 

an adhesion receptor with an important role in DC trafficking and in 

the formation of the immunological synapse (McDonald, 2010, 

Geijtenbeek et al., 2000). Interestingly, it was observed that when HIV-1 

bound to DC-SIGN, it remained infectious and could be transferred to 

target cells without prior replication in the DC (Geijtenbeek et al., 

2000). McDonald et.al confirmed this “Trojan horse” hypothesis by 

directly visualising trans-infection of GFP-tagged HIV-1 from DC to T 

cells (McDonald et al., 2003). They showed that DCs trans-infected T 

cells with HIV-1 by binding and concentrating the intact virus at the 

cellular interface and at the same time inducing the recruitment of 

HIV-1 receptors CD4, CCR5 and CXCR4 on the T cell, forming a 

structure similar to the immunological synapse, called the infectious 

synapse (McDonald et al., 2003, McDonald, 2010). The important 

distinction between the DC-T cell synapse (infectious synapse) and the 

T cell to T cell synapse (virological synapse) previously described is that 

formation of the latter requires interaction between the HIV-1 Env 

gp120 on the effector cell surface with CD4 on the target cell whereas 

the former relies on adhesion molecules employed during natural 

immune exchanges (McDonald, 2010).  

 

There is no doubt that DCs play an important role in the establishment 

of HIV-1 infection and research efforts are currently aimed at 

developing therapeutic strategies which specifically target the 

interactions leading to trans-infection. Such agents will have the 
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potential to be used as topical treatments at the mucosa to block the 

initial DC mediated HIV-1 transmission events. The impact of currently 

existing antiretroviral drugs on specifically blocking trans-infection from 

DC to T cells has not been assessed. However a recent study, which 

aimed to determine whether the activity of antiretroviral drugs was 

limited by the mode of HIV-1 spread and the type of immune cell 

involved in transmission or was independent of these two variables, 

found that the high multiplicity characteristic of cell-to-cell transmission 

limited the efficacy of ARVs in HIV-1 cell-to-cell transmission from 

macrophages to T cells (Duncan et.al, 2013). It is reasonable to suggest 

that this may also apply to trans-infection from DC-T cells given that the 

reduced sensitivity to ARVs appears to be independent of the type of 

cell involved in cell-to-cell spread. 

 
Figure 1-10: Dendritic cell to T cell spread of HIV-1 

1.5.3  Inhibiting cell-to-cell spread of HIV-1 

The ability of neutralising antibodies and drug inhibitors to block HIV-1 

dissemination has typically been assessed by assays using cell-free virus 

infection systems. With increasing evidence that cell-to-cell infection of 

HIV-1 probably plays an important role in viral pathogenesis in vivo, 

several studies have assessed the role of neutralising antibodies, 
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interferon induced restriction factors and antiretroviral drugs on their 

ability to block infection mediated by this mechanism of virus 

transmission.  

 

1.5.3.1  Cell-to-cell infection and neutralising antibodies 
The effects of neutralising antibodies on cell-to-cell spread of HIV-1 

have been extensively studied with results that sometimes appear 

paradoxical. These differences are likely due to the diverse 

experimental methods used (Schiffner et al., 2013). About 20% of HIV-1 

infected individuals produce broadly neutralising antibodies (bNAbs) 2-

4 years after infection (Kwong and Mascola, 2012). These naturally 

acquired bNAbs are insufficient to control or eliminate established 

infection. They have however been reproducibly shown to protect 

macaques against SIV and SHIV challenge (Moldt et al., 2012, Burton et 

al., 2011, Hessell et al., 2009, Parren et al., 2001) and to delay virologic 

rebound when infused in patients who have undergone a structured 

interruption of their antiretroviral treatment (Trkola et al., 2005). This 

makes them attractive targets for the development of prophylactic 

HIV-1 vaccines and immune based treatment strategies. Several 

factors are implicated in the inability of bNAbs to clear HIV-1 infection. 

These include: the high rates of escape mutations in Env allowing 

escape from the effects of antibodies (Wu et al., 2012, Bar et al., 2012), 

the existence of a latent virus reservoir established very early in 

infection (Eisele and Siliciano, 2012) and immune evasion mechanisms 

linked to the conformational flexibility of the viral Env  and the masking 

effects of the glycan protein shield (Kwong and Mascola, 2012). 

Several studies have suggested that cell-to-cell HIV-1 infection serves as 

an additional explanation for the inability of bNAbs to clear HIV-1 

infection in the host. This hypothesis was initially proposed by an early 

study which demonstrated that patient derived sera which effectively 

neutralised cell-free virus infection was ineffective in neutralising 
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infection in co-cultures of patient and donor peripheral blood 

mononuclear cells (PBMCs), over multiple rounds of infection (Gupta et 

al., 1989). With a better understanding of the mechanisms by which 

synaptic HIV-1 infection occurs, recent studies bearing in mind the 

differences in methodological approach, have convincingly shown 

that bNAbs are indeed able to inhibit infection by cell-to-cell spread 

albeit with a reduced efficiency in comparison to cell-free infection 

(Massanella et al., 2009, Durham et al., 2012, Abela et al., 2012, Su et 

al., 2012, Sagar et al., 2012, Malbec et al., 2013)(McCoy, 2014). This 

observation could have a significant bearing on the efficacy of 

prophylactic vaccines, underlining the need to assess the efficacy of 

vaccine candidates on their ability to effectively inhibit both cell-to-cell 

and cell-free modes of infection. There are several possible 

explanations for the relatively reduced sensitivity of synaptic infection 

to inhibition by bNAbs. These include the high multiplicity of infection 

and kinetic advantages characteristic of cell-to-cell infection, the steric 

barriers associated with cell-to-cell viral infection and the 

conformational changes in Env occurring during this mode of infection 

(Schiffner et al., 2013). 

 

The increased multiplicity of infection of target cells, which 

characterises infection across the VS and the kinetic advantage of 

cell-to-cell infection, which is the result of clustering of receptors (CD4 

and co-receptors) and viral Env proteins and Gag at the synapse 

(McDonald et al., 2003, Jolly et al., 2004, Schiffner et al., 2013), have 

been proposed to be at least partly responsible for the reduced in vitro 

efficiency of some bNAbs on cell-to-cell infection. The large number of 

virons which are transmitted during this mode of infection and the 

limited time of exposure to neutralising antibodies before virus 

attachment and infection of target cells, may limit the ability of bNAbs 

to fully inhibit HIV-1 cell-to-cell infections (Schiffner et al., 2013, Martin 
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and Sattentau, 2009, Massanella et al., 2009, Abela et al., 2012, 

Durham et al., 2012, Sagar et al., 2012, Malbec et al., 2013). This 

proposition however has been challenged by one study in which the 

effect of bNAbs were assessed for a DC-T cell mediated infection, and 

showed that even after equalising the infectivity of the virus for both 

cell-free and cell-to-cell modes of infection, some bNAbs directed 

against gp120 still displayed a reduced ability to neutralise cell-to-cell 

infection (Sagar et al., 2012). 

 

In order to exert their neutralising effects NAbs must have access to the 

synapse or the compartment in which virions are held prior to synaptic 

release (in the case of DCs and macrophages).  Steric hindrance is 

therefore a possible mechanism accounting for the reduced 

neutralisation efficiency observed with cell-to-cell HIV-1 infection. A 

study of the DC-T cell synapse using the 3D ion abrasion electron 

microscopy technique has provided a structural basis for steric 

hindrance (Felts et al., 2010). This study shows that T cells are enveloped 

by sheet-like membrane extensions from mature dendritic cells 

providing a shielded region for the formation of the VS. This 

compartment may be less accessible to some bNAbs, explaining their 

reduced efficiency (Felts et al., 2010). In contrast to this, a 3D 

reconstruction of the T cell-to-T cell VS reveals a more open structure, 

which remains accessible to NAbs that bind CD4 e.g. b12. This supports 

why such antibodies remain effective inhibitors of HIV-1 T cell-to-T cell 

infection . 

 

 Durham et.al showed that donor cells acutely transduced with HIV-1 

appeared to transfer virions that expressed Env in conformations that 

were less susceptible to neutralisation by gp120 and gp41 antibodies. 

They also further demonstrated that truncating the cytoplasmic tail of 

gp41 significantly enhanced neutralisation of synaptic infection with 
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little or no effect on cell-free infection depending on the antibody 

assessed (Durham et al., 2012). Based on these results, they proposed 

that the cytoplasmic tail of gp41 regulates the exposure of key 

epitopes required for effective neutralisation during cell-to-cell spread 

and therefore plays an important role in the mechanism of immune 

evasion observed with this mode of infection (Durham et al., 2012). 

Seemingly contradicting these observations, synaptic infection 

mediated by chronically infected donor cells is equally sensitive to 

inhibition by gp120 and gp41 antibodies as cell-free infection. This 

dissimilarity may be attributed to observed differences in where viral 

fusion occurs depending on whether the effector cells are acutely 

transduced or chronically infected with HIV-1 (Schiffner et al., 2013). 

Some groups have suggested that infection with acutely transduced 

donor cells may involve endocytosis of immature virions following virus 

transfer and delayed CD4-dependent fusion from within endosomal 

compartments (Dale et al., 2011), while chronically infected cells  

produce mature viral particles which can immediately fuse following 

interaction with cell surface receptors on the target cell. However viral 

entry by endocytosis as an explanation for the reduced susceptibility to 

some NAbs is highly unlikely as this is now largely disproved. A recent 

study shows that viral fusion and entry occur predominantly at the 

plasma membrane during infection of T cell lines and CD4+ primary T 

cells (Herold et al., 2014).  

 

1.5.3.2  Cell-to-cell infection and interferon inducible 
restriction factors 

Several interferon inducible host factors capable of inhibiting HIV-1 

replication have been identified in recent years. These restriction 

factors constitute part of the innate immune response to virus 

challenge and present an interesting potential usefulness for immune 

modulation and gene therapy strategies, targeting HIV-1. Although the 

ability of restriction factors to inhibit cell-free infection has been 
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extensively studied, their role in inhibiting cell-to-cell spread of HIV-1 

across the VS is less well defined. Studies are however emerging 

specifically addressing this question and so far the roles of some of 

these factors including: Tetherin, Trim5α (tripartite motif-containing 

protein 5α), APOBEC3G (Apolipoprotein B mRNA editing enzyme 

catalytic polypeptide-like 3) proteins, and SAMHD1 (sterile alpha motif 

and HD domain-containing protein-1) in inhibiting cell-to-cell infections 

have been considered. 

 

TRIM5α (Tripartite motif-containing protein 5α): Although human TRIM5α 

does not restrict HIV-1 infection, rhesus TRIM5α (rhTRIM5α) the Old World 

monkey orthologue of human TRIM5α, is a potent restriction factor of 

HIV-1 infection (Neil et al., 2008b, Stremlau et al., 2004, Malim and 

Bieniasz, 2012).  There is interest in exploiting this property of rhTRIM5α in 

gene therapies by genetically modifying human cells to express 

rhTRIM5α as a strategy for treating HIV-1 infection (Malim and Bieniasz, 

2012, Pertel et al., 2011). The mechanisms of HIV-1 restriction by 

rhTRIM5α are not fully understood but it is thought to affect several post 

entry steps in the viral replication cycle (Malim and Bieniasz, 2012). 

These include effects on the rate of capsid disassembly, disruption of 

the reverse transcription and integration steps (Malim and Bieniasz, 

2012, Pertel et al., 2011). Richardson et.al studied the impact of 

rhTRIM5α on cell-to-cell spread of HIV-1 and found that cell associated 

infections were less susceptible to restriction than cell-free infection 

(Richardson et al., 2008). Given that the inhibitory effects of rhTRIM5α 

occur post-entry, it is possible that the high multiplicity in cell-to-cell 

infection increases the pool of incoming virus capsids capable of 

binding and saturating the intracellular rhTRIM5α and as such results in a 

reduced sensitivity of this mode of spread to rhTRIM5α mediated 

restriction (Richardson et al., 2008, Jolly, 2011). In fact this saturation of 

rhTRIM5α has been demonstrated for cell-free virus challenge in cell-
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culture systems engineered to express rhTRIM5α (Stremlau et al., 2004, 

Anderson and Akkina, 2005).  

 

Tetherin: The story is less clear-cut when the impact of tetherin on cell-

to-cell spread of HIV-1 is considered. The studies that have addressed 

this question so far have generated conflicting results that seem at 

least in part, to be the result of the different experimental approaches 

used. Tetherin is a membrane protein which when expressed in the 

absence of the viral protein Vpu traps mature virions to the surface of 

the infected cells from which they are derived, thus preventing virus 

release. Kuhl et al. and Casartelli et al. suggested in their studies that 

tetherin was able to restrict HIV-1 cell-to-cell infection (Kuhl et al., 2010, 

Casartelli et al., 2010) while Jolly et al. showed a reduced susceptibility 

of cell-to-cell infections to the inhibitory effects of tetherin (Jolly et al., 

2010). In the latter study Δvpu HIV-1 was also found to spread faster in T 

cell co-cultures in comparison to wild type HIV-1, under conditions in 

which tetherin inhibited cell-free virus spread (Klimkait et al., 1990, Yao 

et al., 1993, Schubert et al., 1995, Jolly et al., 2010). This finding bolsters 

the evidence supporting the putative importance of Vpu and cell-to-

cell spread of HIV-1 in vivo. Vpu is highly conserved in transmitted 

founder viruses (Salazar-Gonzalez et al., 2009); and it has been 

demonstrated that tetherin can act as an innate immune sensor and 

thus may be important for Vpu conservation regardless of the mode of 

virus spread (Galao et al., 2012). The fact that cell-to-cell spread of HIV-

1 remains efficient in the presence of tetherin may also be an 

indication that this mode of spread may be capable of bypassing the 

effects of an interferon induced virus restriction factor as has also been 

suggested for TRIM5α discussed above. All three studies on the effect 

of tetherin on cell-to-cell spread of HIV-1 though with different 

conclusions, demonstrated the presence of tetherin at the T cell 

virological synapse and showed that tetherin did not disrupt its 
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formation when expressed on the effector cells (Jolly et al., 2010, 

Casartelli et al., 2010, Kuhl et al., 2010). The apparent differences in 

results may be explained by; the different cell types used, the 

chronicity of infection of the effector cells and also the varying levels of 

tetherin expression in the cells, depending on the experimental 

approach. Future studies aiming to clarify the role of tetherin in cell-to-

cell spread are needed and would have to consider potential 

confounding factors in the choice of experimental method. 

 

APOBECs: APOBEC3G proteins are incorporated into newly assembled 

virions and restrict HIV-1 infection by their cytidine deaminase activity. 

They mediate post-synthetic editing of cytidine residues to uridine, 

causing a G to A hypermutation in the newly synthesised viral cDNA, 

thereby inhibiting reverse transcription and integration. They also 

appear to block the tRNALys3 priming that is required for initiating 

reverse transcription. The viral infectivity protein (Vif) specifically 

counteracts the effect of APOBECs by binding and targeting these 

proteins for degradation and preventing their incorporation into newly 

formed virions. A recent study by Mohanram et al. has shown that using 

interferon-α to induce the expression of APOBEC3G, F, and A in 

immature dendritic cells limits the spread of HIV-1 to CD4+ T cells 

(Mohanram et al., 2013). Although this has not been specifically 

investigated for T cell-to-T cell infection, it is possible this cell-to-cell 

spread mechanism could also be sensitive to APOBEC restriction of viral 

replication like DC-to-T cell and cell-free infections. 

 

SAMHD1 is a restriction factor that is expressed in DCs and other cells. It 

has a phosphohydrolase activity, which allows it to convert nucleotide 

triphosphates to a nucleoside and a triphosphate, and by so doing 

depletes the pool of intracellular dNTPs, thus preventing viral replication 

and infection in non-cycling cells (Laguette et al., 2011, Hrecka et al., 
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2011, Lahouassa et al., 2012). The viral protein Vpx, an accessory 

protein encoded by HIV-2 and some SIVs, counteracts the effects of 

SAMHD1 by specifically binding to and targeting this protein for 

proteosomal degradation. Puigdomenech et al. have recently 

investigated the ability of SAMHD1 to inhibit cell-to-cell transmission 

from infected T cells to immature DCs and found that SAMHD1 

significantly inhibits the productive cell-to-cell infection of target DCs 

(Puigdomenech et al., 2013). They also showed that through its ability 

to modulate the susceptibility of DCs to HIV-1 infection, SAMHD1 

impacts on the ability of DCs to sense the virus and trigger an effective 

innate immune response. Although it is possible to hypothesise that 

during cell-to-cell infection dNTPs could be carried over from effector 

cells to target cells and as such counter the effects of SAMHD1 through 

a saturation mechanism, this study indicates that this is not the case at 

least for T cell to DC HIV-1 infection. It is therefore highly likely that 

SAMHD1 remains operative during HIV-1 intercellular spread and its 

activity in restricting virus replication is probably not saturable. 

 

1.5.3.3  Cell-to-cell infection and antiretroviral therapy 

Clinically available drug inhibitors have also been assessed for their 

ability to efficiently inhibit cell-to-cell spread of HIV-1. The fusion inhibitor 

Enfurvitide (T-20) and the attachment inhibitor Maraviroc (MVC) are 

equally efficient in blocking both cell-free and cell-to-cell infections 

(Abela et al., 2012, Agosto et al., 2014). Their efficiency is likely 

accounted for by their ability to block the functional interactions 

between Env and entry receptors during HIV-1 infection that is 

common to both cell-free and cell-to-cell spread. However, why these 

inhibitors that target attachment and entry should not show reduced 

efficacy during cell-to-cell spread, whereas NAbs that also target 

attachment and entry have been reported to do so remains unclear at 

present. Reverse transcriptase inhibitors have recently been shown to 
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have a reduced efficiency in inhibiting both T cell-to-T cell and 

macrophage-to-T cell mediated infection (Duncan et.al, 2013, Sigal et 

al., 2011, Sigal and Baltimore, 2012). The high multiplicity of infection 

that defines cell-to-cell infection has been proposed as the mechanism 

explaining this reduced sensitivity to RTIs. Sigal et al. proposed in a 

mathematical model confirmed using an in vitro system of T cell-to-T 

cell infection, that the high multiplicity in cell-to-cell infection 

stochastically increases the chance of a single virion escaping the 

effect of RTIs within the cell and going on to infect the cell (Sigal et al., 

2011) .This has been confirmed for macrophage -to- T cell spread in the 

presence of RTIs (Duncan et.al, 2013). Permanyer et al. reported 

conflicting findings, stating that RTIs were equally effective against both 

cell-to-cell and cell-to-cell infection (Permanyer et al., 2012a). They 

explained their findings by proposing that the reporter gene assays 

used by Sigal et al. may have led to an overestimation of the level of 

target cell infection occurring during cell-to-cell spread in the presence 

of RTIs (Permanyer et al., 2012a). These discrepancies raise questions on 

the true effect of RTIs on cell-to-cell HIV-1 infections. Notably the effects 

of PIs, which are an important component of triple combination 

therapy and INIs, have not been considered for this mode of spread. 

These questions are specifically investigated in this thesis. 

 

1.6 Antiretroviral therapy and drug resistance 
In 1985-1986 3’-azido-2’,3-dideoxythymidine, Zidouvidine (AZT), a 

nucleoside reverse transcriptase inhibitor, was the first molecule proven 

to effectively inhibit HIV-1 replication in cell culture (Furman et al., 

1986). Over the course of the last 25 years several drugs have been 

developed for the treatment of HIV-1. In current clinical practice, 

physicians now have access to over 30 antiretroviral agents formulated 

either as single drugs or combinations to treat patients infected with 

HIV-1(Arts and Hazuda, 2012). These drugs target steps in the life-cycle 
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of the virus including; binding and entry of the virus into a target cell, 

reverse transcription of the viral RNA to form proviral DNA, integration 

of viral DNA into the host cell DNA and maturation of newly formed 

virions into fully formed infectious virus particles. Antiretroviral agents 

when administered in combination dramatically suppress the 

replication of the virus and reduce the HIV-1 viral load level in the 

plasma below the limits of detection by highly sensitive clinical assays. 

This leads to a significant recovery of the immune system as evidenced 

by an increase in CD4+ T cells with improved clinical outcomes and 

increased life expectancy for treated HIV-1 infected patients (Autran 

et al., 1997, Komanduri et al., 1998, Lederman et al., 1998). Since 2010, 

the HIV-1 treatment guidelines in the United States and the European 

Union recommend that antiretroviral therapy be initiated with three 

antiretroviral agents from at least two different drug classes (combined 

antiretroviral therapy = cART) when the peripheral CD4+ T cell counts 

fall to 350/mm3 (DHHS, 2014). Despite the many successes attributed to 

the introduction and widespread use of cART, these drugs are not 

capable of eliminating the HIV-1 infection and require strict adherence 

to a life-long treatment regimen for continued viral suppression (Arts 

and Hazuda, 2012). This presents major challenges as poor tolerance to 

drugs, drug interactions of antiretroviral agents with other medications 

and non-adherence can all lead to suboptimal levels of circulating 

drug, driving the evolution of drug resistance (Arts and Hazuda, 2012). 

In fact, drug resistance has been documented for all existing drug 

classes currently used in the treatment of HIV-1. This emphasises the 

need for developing new molecules that target HIV-1. A notable 

exception appears to be Dolutegravir (DTG), the most recent Integrase 

Inhibitor to be approved by the FDA. DTG is the only drug that has not 

selected for resistance mutations in the clinic (Mesplede and 

Wainberg, 2014). This is likely attributed to the long binding time of the 

drug to the integrase enzyme as well as the greatly reduced 
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replication capacity of the viruses that might become resistant to DTG 

(Bastarache et al., 2014, Mesplede and Wainberg, 2014). 

 

 
Figure 1-11: Antiretroviral agents targeting steps in the HIV-1 replication cycle (Suzuki, 2011) 

1.6.1 Reverse Transcriptase Inhibitors 

1.6.1.1 HIV-1 Reverse Transcriptase 

HIV-1 RT is an asymmetric heterodimer composed of two related sub-

units p66 and p51 (di Marzo Veronese et al., 1986, Lowe et al., 1988, 

Sarafianos et al., 2009). These sub-units come from the Gag-Pol 

polyprotein synthesised from unspliced virus mRNA and cleaved by the 

viral Protease (PR) following viral assembly and budding. RT possesses 

two enzymatic functions essential for copying the single stranded virus 

RNA into double stranded DNA that can be integrated into the host 

cell genome (Sarafianos et al., 2009, di Marzo Veronese et al., 1986, 

Lowe et al., 1988). The p66 sub-unit of RT contains the active sites for 

both enzymatic activities of the enzyme while the p51 sub-unit plays 

mainly a structural role. The crystal structure of unliganded RT has been 

solved and the three-dimensional structure of p66 is often compared to 

a right hand, with four domains (Kohlstaedt et al., 1992, Jacobo-Molina 
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et al., 1993): fingers (residues 1-85 and 118-155), palm (residues 86-117 

and 156-236), thumb (237-318) and connection (319-426). The p51 sub-

unit folds into the same four domains as the polymerase domain of p66, 

however the positioning of the sub-domains relative to each other is 

different in p66 and p51. The structural analyses of RT with various 

templates indicate that despite the sequence homology, p66 assumes 

a flexible structure while p51 is more compact playing a purely 

structural role devoid of any catalytic activity. This has led to the 

elucidation of the mechanism of action for the RT in which the “fingers” 

close around the primer-template and dNTP unit, allowing the precise 

alignment of the 3’-OH of the primer, the α -phosphate and the 

polymerase active site, before the phosphodiester bond is formed 

(Huang et al., 1998, Kati et al., 1992, Sarafianos et al., 2009). The 

lengthening of the growing chain causes a relaxation of the “fingers”, 

which open and allow the pyrophosphate to leave the active site 

(Sarafianos et al., 2009, Meyer et al., 2007, Kati et al., 1992). The nucleic 

acid substrate then translocates relative to RT to free the nucleotide-

binding site so that the enzyme can bind to the incoming dNTPs 

(Sarafianos et al., 2009). The well recognised pivotal role of RT in the life-

cycle of HIV-1 which has been discussed earlier, has led to the 

development of antiviral therapies specifically targeting RT. Nearly half 

of the drugs currently licensed for treating HIV-1 infection are reverse 

transcriptase inhibitors RTIs. Though some specific inhibitors of RNase H 

activity have been identified and tested in vitro, none have so far been 

approved for antiretroviral therapy (Sarafianos et al., 2009). 
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Figure 1-12: Ribbon representation of the active domain of HIV-1 RT illustrating the hand-like 
structure, showing fingers (blue), palm (pink) and thumb (green) the active site (red atoms) 
where DNA is elongated, is in the palm region. Also shown in yellow is an RT inhibitor drug in the 
pocket where it binds (Sarafianos et al., 2009). 

1.6.1.2 Nucleoside and Nucleotide Reverse Transcriptase 
Inhibitors (NRTIs) 

NRTIs were the first established class of antiretroviral agents approved 

by the FDA and now constitute the backbone of cART. They are 

analogues of naturally occurring 2’-deoxy-nucleosides and nucleotides 

within the host cell. NRTIs are administered as pro-drugs and require 

phosphorylation by host cell kinases and phosphotransferases (Furman 

et al., 1986, Mitsuya et al., 1985, St Clair et al., 1987, Hart et al., 1992) to 

form the deoxynucleotide triphosphate analogues capable of 

inhibiting viral replication (Cihlar and Ray, 2010, Arts and Hazuda, 

2012). Once converted to their triphosphate forms NRTIs compete with 

the natural dNTPs and become incorporated into the nascent proviral 

DNA chain. For some NRTIs the addition of the first phosphate is rate 

limiting and this has led to the development of NRTI pro-drugs, which 

already contain the first phosphate. An example of this is Tenofovir 

(TFV), which is administered as a pro-drug Tenofovir Disoproxil Fumarate 

(TDF) that only requires addition of the second and third phosphate 
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groups once in the cell. NRTIs lack a 3’-OH group on their 2’-

deoxyribosyl moiety and this prevents the formation of a 3’-5’-

phosphodiester bond between the NRTIs and incoming 5’-nucleoside 

triphosphate thus resulting in termination of the growing DNA chain 

(Mitsuya et al., 1985, Furman et al., 1986, St Clair et al., 1987, Hart et al., 

1992). RT incorporates NRTI triphosphates with differing efficiencies, 

which may have some bearing on the relative potencies of the 

different existing NRTIs. Currently there are eight NRTIs approved by the 

FDA: Abacavir (ABC), Didanosine (ddI), Emtricitabine (3TC), Stavudine 

(d4T), Zidovudine (AZT) and Tenofovir disoproxil fumarate (TDF), the 

latter a nucleotide reverse transcriptase inhibitor (Cihlar and Ray, 2010, 

Arts and Hazuda, 2012). 

 

Treatment with NRTIs as with all antiretroviral agents leads to the 

selection of drug-resistant HIV-1 variants, with a reduced susceptibility 

to these drugs. Drug resistance to NRTIs occurs by two well-elucidated 

mechanisms (Arts and Hazuda, 2012, Cihlar and Ray, 2010). The first 

mechanism of resistance affects the binding and rate of incorporation 

of the incoming nucleotide analogue and primarily implicates residues 

that are in direct contact with the incoming NRTI-triphosphate. 

Mutations in these residues enhance discrimination of the NRTI-

triphosphate from naturally occurring triphosphates and as such 

prevent incorporation of NRTIs into the nascent chain. The classical 

example of such a mutation is M184V/I, a mutation that causes steric 

interference to the proper binding of 3TC and FTC in the HIV-1 RT 

binding site (Schinazi et al., 1993, Sarafianos et al., 1999). The second 

mechanism of drug resistance is through ATP-dependent removal of 

the NRTI-Triphosphate from the 3’ end of the nascent chain after it has 

been incorporated, and the reversal of chain termination in a process 

known as pyrophosphorylysis. This mechanism of excision has been 

extensively studied and mutations linked to it are collectively known as 
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thymidine analogue mutations (TAMs). They promote 

pyrophosphorolysis and are implicated in resistance to AZT and 

d4T(Arion et al., 1998, Meyer et al., 1999, Boyer et al., 2001). Resistance 

mutations to NRTIs have been shown to reduce the fitness and 

replicative capacity of the virus to varying degrees when compared to 

wild-type virus (Arts and Hazuda, 2012, Cihlar and Ray, 2010).  

 
Figure 1-13: Chemical structure of approved NRTIs (Cihlar and Ray, 2010) 

1.6.1.3 Non-Nucleoside Reverse Transcriptase Inhibitors  
(NNRTIs) 

NNRTIs are a class of chemically diverse molecules with over 50 families 

(de Bethune, 2010, Jochmans, 2008). These non-competitive inhibitors 

of HIV-1 RT exert their inhibitory function by binding to the enzyme in a 

hydrophobic pocket located near the catalytic site of the enzyme at a 

distance of approximately 10Å. NNRTIs interact with this hydrophobic 

pocket, inducing a change in the spatial conformation of the binding 

site of RT that reduces its polymerase activity (Kohlstaedt et al., 1992, 
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Spence et al., 1995, Rodgers et al., 1995, Hsiou et al., 1996). The 

hydrophobic pocket is only created when the NNRTI binds to the 

enzyme and in the crystal structures of unliganded RT, the NNRTI 

binding pocket is not observed (Hsiou et al., 1996, Rodgers et al., 1995). 

Aromatic residues (Y181, Y188, F227, W229 and Y232), hydrophilic 

residues (K101, K103, S105, D132 and E224) and hydrophobic residues 

(Y181, Y188, F227, W229 and Y232) of the p66 subunit and two residues 

(I135 and E138) of the p51 subunit of RT line the hydrophobic 

pocket(de Bethune, 2010, Arts and Hazuda, 2012). It is worth noting 

that the shape of the pocket does not change significantly even 

though the NNRTI compounds are structurally very different (Spence et 

al., 1995, de Bethune, 2010). NNRTIs are highly specific to HIV-1 RT and 

do not inhibit the RT of other lentiviruses such as HIV-2 and SIVs 

(Kohlstaedt et al., 1992). There are currently four NNRTIs compounds 

approved for use in the treatment of HIV-1 and these include; 

Nevirapine (NVP), Efavirenz (EFV), Etravirine (ETV) and Delaviridine 

(DLV). Rilpivirine is in phase III clinical trials and there are several more in 

development. 

 

Resistance to NNRTIs is generally the result of amino acid substitutions in 

the NNRTI binding pocket. These single nucleotide substitutions though 

capable of inducing high levels of resistance only cause a slight loss of 

replicative fitness for the virus (Dykes et al., 2001). The patterns of NNRTI 

resistance mutations are complex and alternative pathways to 

resistance have been described in individuals infected with non-

subtype B viruses (Tantillo et al., 1994, Bacheler et al., 2000, Bacheler et 

al., 2001). K103N and Y181C are the most common NNRTI drug 

resistance mutations in subtype B viruses (Bacheler et al., 2000, de 

Bethune, 2010, Arts and Hazuda, 2012), however these mutations are 

also frequently selected in non-subtype B viruses (Akinsete et al., 2004) 

although the pathways to the development of resistance may be 
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slightly different (Lai et al., 2010). Most NNRTI drug resistance mutations 

engender varying degrees of cross resistance among the different 

NNRTIs and the selection of drug resistance to one member of the class 

generally limits the use of other members of the class in salvage 

second-line therapies following treatment failure (de Bethune, 2010). 

This is especially true for the first-generation NNRTIs (Nevirapine and 

Efavirenz), which are cornerstones of many first-line treatment regimens 

(Delaviridine is no longer used in clinical practice). The low barrier to 

development of drug resistance has confined these drugs to first-line 

treatments. This has driven the development of second generation 

NNRTIs with an improved resistance profile, with the aim of offering 

treatment experienced patients the chance to benefit from the 

convenient dosing and good tolerance profile of NNRTIs (de Bethune, 

2010). Etravirine is the first of the new generation NNRTIs approved by 

the FDA and has been shown to be effective in the treatment of drug 

experienced adult patients with drug resistance to first generation 

NNRTIs and other antiretroviral agents (Madruga et al., 2007, Lazzarin et 

al., 2007). Rilpivirine is currently being assessed in phase III clinical trials 

for the same purpose. 

 
Figure 1-14: Chemical structure of first generation and next generation NNRTIs (de Bethune, 
2010) 
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1.6.2  Protease Inhibitors (PIs) 

1.6.2.1  HIV-1 Protease - Structure and Function 

HIV-1 protease belongs to the family of aspartic proteases and exists as 

a homodimer consisting of two identical sub-units of 99 amino acids 

(Navia et al., 1989, Wlodawer et al., 1989). The active site is at the 

interface of the two sub-units and has three residues from each 

monomer Aspartic acid 25, Threonine 26 and Glycine 27. Residues 49-

52 of each monomer form a flexible flap-like structure that extends 

over the substrate binding cleft (Wlodawer et al., 1989, Navia et al., 

1989). The three important regions in the structure of the enzyme are 

therefore the active site cavity, the flexible flaps and the dimer 

interface. The flexibility of the flap region appears to be essential for the 

enzymatic activity of protease (Kräusslich et al., 1989, Weber and 

Agniswamy, 2009). The opening and closing of the flaps allow the 

movement of the substrate into and out of the active site. When 

inhibitors bind to the catalytic site with the flaps closed, the enzyme is 

essentially locked down preventing the processing of the substrates 

(Weber and Agniswamy, 2009).  

 

HIV-1 protease cleaves precursor viral proteins, Gag and Gag-Pol, 

which accumulate at the plasma membrane during or shortly after the 

release of virus particles from infected cells (Park and Morrow, 1993, 

Miller, 2001). The viral protease therefore plays an essential role in the 

maturation of the virus, leading to the production of infectious virus 

particles. The HIV-1 protease recognises the asymmetric shape of the 

peptide substrates rather than specific amino acid sequences and all 

the cleavage sites on which the protease acts have a superimposable 

structure (Erickson-Viitanen et al., 1989, Wensing et al., 2010). Cleavage 

is an ordered and highly regulated process occurring at different rates 

for the various cleavage sites in Gag and following a set sequence 

(Wensing et al., 2010, Kräusslich et al., 1989, Pettit et al., 1994, Wiegers 
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et al., 1998, Erickson-Viitanen et al., 1989). The first cleavage event 

occurs at the C-terminal portion of p2 (MA-CA-p2/NC-p1-p6), this is 

followed by the cleavage of MA from CA-p2 (MA/CA-p2) and NC-p1 

from p6 (NC-p1/p6), the two spacer proteins are the last to be cleaved 

p2 from CA (CA/p2) and p1 from NC (NC/p1). This processing of 

polyproteins by protease occurs during accumulation of the precursor 

polyproteins at the plasma membrane during or shortly after the 

assembled virions are released from the cell. Thus protease is not 

required for the production and release of virions but rather for the 

maturation of newly assembled virions into infectious particles. 

 

1.6.2.2  Protease Inhibitor drugs 
 Solving the structure of the HIV-1 protease and its substrate led to the 

development of specific inhibitors of the viral protease (Craig et al., 

1991, Kempf et al., 1995, Wensing et al., 2010, Arts and Hazuda, 2012). 

These molecules are designed to bind to the viral protease with a high 

affinity and by so doing prevent the enzyme from binding to and 

acting on its natural substrate. This leads to the production of immature 

non-infectious virions. In addition to its direct effect on HIV-1 protease, 

PIs have recently been shown to have multiple effects targeting other 

steps in the HIV-1 life cycle, with an inhibitory effect on viral entry, 

reverse transcription and post reverse transcription steps of viral 

replication (Rabi et al., 2013). In fact at therapeutic doses, 

approximately half of the inhibitory potential of PIs can be attributed to 

a block to viral entry, likely reflecting interactions between uncleaved 

Gag and the cytoplasmic tail (CT) of the envelope protein (Rabi et al., 

2013). 

 

The advent of PIs in the mid-nineties was a key moment in the 

development of antiretroviral therapy, which made possible the 

introduction of Highly Active Antiretroviral Therapy (HAART) combining 
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three active drugs from two different classes for the treatment of HIV-1 

infection. Ten PIs are currently approved: Amprenavir (APV), Atazanavir 

(ATZ), Darunavir (DRV) Fosamprenavir, Indinavir (IDV), Lopinavir (LPV), 

Nelfinavir (NFV), Ritonavir (RTV), Saquinavir (SQV) and Tipranavir 

(TPV)(Arts and Hazuda, 2012, Wensing et al., 2010). Due to extensive 

toxicity and high pill-burden associated with therapeutic doses of 

Ritonavir, it is no longer used as an antiretroviral in its own right. 

However its ability to reduce the metabolism of concomitantly 

administered PIs through inhibition of intestinal and hepatic 

cytochrome P450 3A4 enzyme, has led to its use as a pharmacokinetic 

enhancer for other PIs (Kempf et al., 1997). “Boosting” with Ritonavir 

enabled enhanced pharmacokinetics and more convenient twice-

daily dosing schedules of other PIs (Kempf et al., 1997), except 

Nelfinavir which failed to show enhanced bioavailability when 

boosted, leaving this drug with a limited role as a relatively safe PI for 

use during pregnancy (Wensing et al., 2010). Boosting of Indinavir led to 

high peak plasma levels causing nephrotoxicity and as such has not 

been widely implemented (Voigt et al., 2002). 

 

When they were initially developed, it was expected that resistance to 

PIs would be rare due to the small size of the viral protease (11kDa) and 

its vital role in the life cycle of the virus (Arts and Hazuda, 2012). 

However the protease gene has great plasticity and resistance has 

been described for all approved PIs, with polymorphisms observed in 

49 of the 99 codons which constitute the protease gene and more 

than 20 substitutions shown to be associated with drug resistance (Arts 

and Hazuda, 2012, Wensing et al., 2010). Resistance to PIs develops in a 

step-wise manner and a mutation in the substrate-binding cleft is 

usually the first observed change (Molla et al., 1996). Resistance 

mutation in the binding site of the enzyme leads to its overall 

enlargement and reduces the ability of the inhibitor to bind, thus 
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leading to a decrease in the susceptibility of the drug (Wensing et al., 

2010). This is generally accompanied by a decrease in the binding of 

the natural substrate and imposes a replicative and fitness cost to the 

mutated virus (Croteau et al., 1997, Mammano et al., 2000, Nijhuis et 

al., 1999). These mutations, which are first selected, and directly impact 

susceptibility to the PIs, are called primary or “major” resistance 

mutations. Secondary mutations or “minor” mutations do not by 

themselves confer resistance to PIs but emerge later to compensate for 

the loss in replicative fitness caused by the primary mutations (Nijhuis et 

al., 1999, Wensing et al., 2010). In addition to resistance mutations in the 

viral protease, several studies have also identified that mutations within 

the Gag protein, a substrate of protease, can also lead to PI drug 

resistance (Dam et al., 2009, Clavel et al., 2000, Gupta et al., 2010). 

These changes, which can occur within the eight major protease 

cleavage sites, improve the affinity of the substrate for the mutated 

protease and thus at least partially compensate for loss of viral fitness 

caused by primary protease resistance mutations (Doyon et al., 1996, 

Mammano et al., 1998, Miller, 2001, Nijhuis et al., 2001).  All PIs share 

relatively similar chemical structures and as a result cross-resistance is 

commonly observed within this drug class. 
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Figure 1-15: Structure of FDA approved Protease inhibitors (Wensing et al., 2010) 

1.6.3  HIV-1 Entry Inhibitors 

HIV-1 entry is a process that occurs through multiple steps mediated by 

interactions between the viral envelope proteins and cellular surface 

receptors and co-receptors as discussed earlier. Entry inhibitors have 

been developed to target specific steps including attachment of the 

virus particles to receptors on the target cell and fusion and entry into 

the cell. The drugs in this class can be divided into two main sub-

groups: the fusion inhibitors and CCR5 small molecule antagonists. 

 

1.6.3.1  Fusion Inhibitors 

Fusion inhibitors disrupt gp41-mediated membrane fusion of the viral 

cellular membranes during entry (Tilton and Doms, 2010). Enfurvitide (T-

20) was the first entry inhibitor approved for the treatment of HIV-1 in 

2003 (Kilby et al., 1998, Lalezari et al., 2003). These drugs are synthetic 

peptides, which correspond to the HR1 and HR2 domains of gp41 

(Tilton and Doms, 2010, Arts and Hazuda, 2012). These two domains 
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must interact with each other to promote fusion. The presence of a 

heterologous protein that is able to mimic these domains disrupts the 

interactions of these viral protein domains and as such prevents fusion 

from occurring. T-20 is a synthetic peptide with a sequence identical to 

part of the HR2 domain of gp41 and competes for binding to HR1 (Arts 

and Hazuda, 2012, Kilby et al., 1998). It has demonstrable potency 

against HIV-1 in clinical trials (Lalezari et al., 2003, Arts and Hazuda, 

2012) and is currently used in salvage therapies for highly treatment-

experienced patients (DHHS, 2014). However peptidic fusion inhibitors 

are not orally bioavailable and have to administered via parenteral 

routes. This has further limited their wider use in clinical practice. 

 

Development of drug resistance to T-20 is mediated by mutations, 

which cluster within the HR1 domain of gp41 to which the drug binds 

(Wei et al., 2002, Tilton and Doms, 2010). While these mutations reduce 

the susceptibility of gp41 to T-20 they also reduce the efficiency of the 

six-helix bundle formation and the overall rate of fusion (Tilton and 

Doms, 2010). 

 

1.6.3.2  CCR5 Antagonists 

CCR5 antagonists are small molecules, which bind to the 

transmembrane helices of CCR5 (Dragic et al., 2000, Tsamis et al., 

2003). They induce a conformational change of the receptor that 

causes it not to be recognised by the HIV-1 envelope (Tsamis et al., 

2003, Tilton and Doms, 2010). Three CCR5 receptor antagonists 

Vicriviroc, Aplaviroc and Maraviroc, have so far shown inhibitory 

activity against HIV-1 in humans. Of these, Maraviroc (MVC) is currently 

the only one approved by the FDA since 2007 (Tilton and Doms, 2010, 

Arts and Hazuda, 2012). MVC binds a hydrophobic trans-membrane 

cavity of CCR5 causing a change in the conformation of the 

chemokine receptor that prevents interaction with the V3 loop of 
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gp120 (Dragic et al., 2000, Tilton and Doms, 2010, Arts and Hazuda, 

2012).  

 

The development of drug resistance to MVC follows a different pattern 

from other antiretroviral agents because MVC targets a host cell 

protein.  Possible resistance mechanisms include; tropism switching i.e. 

the virus uses the CXCR4 co-receptor instead of CCR5 for entry, 

increased affinity for the co-receptor, using the inhibitor bound co-

receptor and a faster rate of entry (Arts and Hazuda, 2012, Tilton and 

Doms, 2010). During the early stages of HIV-1 infection, most patients 

carry viruses that exclusively use CCR5 as co-receptor for infection 

(Lobritz et al., 2010). As infection progresses, variants, which use the 

CXCR4 co-receptor as well as dual tropic viruses begin to appear 

(Schuitemaker et al., 1992). In patients with a mixed population of 

circulating viruses i.e. CCR5-tropic and CXCR4-tropic viruses, 

administering CCR5 inhibitors can lead to outgrowth of CXCR4 viruses 

and treatment failure (Lobritz et al., 2010). Genotypic or phenotypic 

tropism testing is therefore a prerequisite for treatment with CCR5 

inhibitors and only patients in whom no CXCR4 tropic viruses are 

detected are eligible for treatment with these drugs. 

 

1.6.4  Integrase Inhibitors 

Integrase inhibitors are the latest addition to the armamentarium of 

antiretroviral agents (Espeseth et al., 2000, Hazuda et al., 2004a, 

Hazuda et al., 2004b). The integrase enzyme catalyses two important 

reactions during the replication of HIV-1, notably the 3’ processing of 

the double-stranded viral DNA ends and the transfer reaction which 

incorporates the viral DNA into the host chromosomal DNA forming a 

functional integrated viral DNA (Sherman and Fyfe, 1990, LaFemina et 

al., 1991, McColl and Chen, 2010). Integrase inhibitors are small 

molecules, which specifically target the strand transfer reaction 
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(McColl and Chen, 2010, Arts and Hazuda, 2012), and thus are more 

specifically referred to as Integrase strand transfer inhibitors (InSTIs). The 

FDA licensed Raltegravir (RAL) in 2007 and more recently Elvitegravir 

(2012) and Dolutegravir (2013). Elvitegravir like some PIs described 

above is co-formulated with the pharmacological enhancer 

Cobicistat, a CYP3A4 enzyme inhibitor, to improve the bioavailabilty of 

the drug. InSTIs bind to the specific complex between integrase and 

the viral DNA. These drugs interact with the essential Mg2+ ion cofactor 

in the active site of the enzyme and the DNA (McColl and Chen, 2010). 

InSTIs are comprised of 2 essential components, a phamacophore, 

which binds the Mg2+ cofactor, and a hydrophobic group which 

interacts with the viral DNA and with the enzyme (McColl and Chen, 

2010, Arts and Hazuda, 2012). This characteristic makes InSTIs the only 

antiretroviral drug class that interacts with two essential components 

explaining at least in part their broad efficacy against a wide variety of 

HIV-1 variants (Arts and Hazuda, 2012). 

 

Mutations that cause drug resistance to InSTIs, are selected in the 

integrase-binding site, near the amino acid residues that are essential 

for the proper functioning of the Mg2+ cofactors (Arts and Hazuda, 

2012, Hazuda et al., 2004a, Hare et al., 2010).  Resistance mutations in 

integrase affect the replicative capacity of the virus as well as the 

functioning of the integrase enzyme (Marinello et al., 2008, Quercia et 

al., 2009). Three independent pathways have been identified for the 

development of drug resistance to Raltegravir, defined by primary 

signature mutations in residues Y143, N155 or Q148 of the integrase 

gene (Fransen et al., 2009, McColl and Chen, 2010, Arts and Hazuda, 

2012).  Cross-resistance is commonly observed with the drugs in this 

class, though low levels of clinical experience limits the understanding 

of the true impact of these resistance mutations in patients treated with 

InSTIs. In current clinical practice InSTIs are mostly used in second and 
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third-line therapies for highly treatment-experienced patients although 

rarely they can be used as part of first-line regimens for treatment naïve 

patients (DHHS, 2014). 

 

1.7 Development and use of combination 
antiretroviral therapy 

Before 1996, HIV-1 infection was a fatal disease with very few available 

therapeutic options. Treatment relied mainly on prophylaxes against 

opportunistic pathogens and treating AIDS-related conditions. This 

changed dramatically in the mid-nineties following a series of seminal 

studies that clearly described the viral dynamics and brought into 

sharp focus the fact that this was a viral infection requiring treatment. 

Ho et al., Perelson et al. and Wei et al. demonstrated the high turnover 

rate of HIV-1 and estimated that in an untreated individual there were 

104-105 or more particles per ml of plasma with a turnover rate of 10 

billion virions per day (Ho et al., 1995, Wei et al., 1995, Perelson et al., 

1996). Owing to its highly error-prone reverse transcription process, it 

was also estimated that a new mutation was introduced for every 

1000-10000 nucleotides synthesised (Mansky and Temin, 1995, O'Neil et 

al., 2002, Abram et al., 2010). This high diversity leads to virus quasi-

species within the host increasing the probability that HIV-1 variants 

with a reduced susceptibility to one or two antiretroviral drugs will exist 

even before treatment is initiated (Coffin, 1995, Frost and McLean, 

1994). Using this knowledge on HIV-1 replication dynamics, 

mathematical modelling studies suggested that combinations of at 

least three drugs would be capable of providing durable inhibition of 

viral replication and would be better than combinations of two drugs 

(Frost and McLean, 1994, Coffin, 1995, Nowak et al., 1997, Stengel, 

2008). These models were quickly verified in several randomised clinical 

trials (Staszewski et al., 1999, Walmsley et al., 2002, Robbins et al., 2003, 

Gallant et al., 2004, van Leth et al., 2004, Gulick et al., 2004) leading to 
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the birth of triple combination drug therapy initially popularised as 

Highly Active Antiretroviral Therapy (HAART)(Arts and Hazuda, 2012). 

 

1.7.1  Antiretroviral drugs in current clinical practice 

The antiretroviral drugs currently used in the treatment of HIV-1 

infection cannot eradicate the virus from the body even when potent 

drugs are added to treatment regimens that already fully suppress viral 

replication below detection thresholds (Arts and Hazuda, 2012).  This is 

a direct consequence of the existence of a virus reservoir consisting of 

a pool of latently infected CD4+ T cells, which is established in the very 

early stages of HIV-1 infection (Whitney et al., 2014). Antiretroviral 

therapy as currently prescribed therefore has the following aims: 

 

• To reduce the morbidity and mortality associated with HIV-1 

infection. 

• To restore and preserve immune function. 

• To suppress viral replication and reduce the plasma viral load. 

• To prevent transmission from one person to another. 

 

The World Health Organization (WHO) currently recommends initiating 

antiretroviral therapy with at least three drugs from two different drug 

classes in all patients with a confirmed diagnosis of HIV-1 infection, who 

have a CD4+ T cell count <500 cells/mm3, with priority given to 

initiating therapy among those with severe or advanced disease and 

CD4+ T cell counts of 350 cells/mm3 or less (WHO, July 2012). It also 

recommends that treatment be started regardless of the CD4+ T cell 

count in all infected patients with active Tuberculosis, Hepatitis B co-

infection with chronic liver disease, all pregnant and breastfeeding 

women with HIV-1, children younger than 5 years infected with HIV-1 

and all HIV-1 infected individuals in sero-discordant relationships (WHO, 

July 2012).  
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1.7.2  First-line antiretroviral therapy 

The optimal antiretroviral treatment for a treatment-naïve patient 

consists of two NRTIs in combination with a third antiretroviral drug from 

one of three drug classes; an NNRTI, a PI boosted with ritonavir or an 

InSTIs. Below are listed preferred recommended first-line triple drug 

combinations (WHO, July 2012, DHHS, 2014, WHO, 2013). 

 

NNRTI based treatment 

EFV + 3TC(or FTC) +TDF 

EFV + 3TC + AZT 

NVP+3TC(or FTC) + TDF 

NVP + 3TC (or FTC) + TDF 

 

PI based treatment 

LPV/r + 3TC(or FTC) + AZT 

ATV/r + 3TC(or FTC) + AZT 

ATV/r (or LPV/r) + 3TC (or FTC) + TDF 

DRV/r + TDF + FTC 

 

INSTI based treatment 

DTG + ABC + 3TC (or FTC) 

DTG + TDF + 3TC (or FTC) 

ELV/cobi + TDF + 3TC (or FTC) 

RAL + TDF + 3TC (or FTC) 

 

It is worth mentioning that the treatment options available to patients 

in resource limited settings especially sub-Saharan Africa, the region 

most affected by the HIV-1 pandemic and home to an estimated 27 

million HIV-1 infected individuals, are not the same as for patients in 

developed countries. Here NNRTI based treatments are the mainstay of 

first-line therapy with a limited pool of boosted PI-based regimens 
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mostly reserved for second-line treatment when first-line therapeutic 

options fail. This inequality in resources and treatment options is mainly 

due to existing patents on more recently approved drug classes and 

the overall cost of providing free anti-retroviral therapy to those who 

need treatment (WHO, 2013). 

 

1.7.3  Monitoring antiretroviral therapy 

Regular monitoring of patients who receive cART is essential to ensure 

successful treatment, promptly identify and correct adherence issues 

and to determine when to switch to second-line therapy in the event 

of treatment failure. The measurement of HIV-1 RNA (viral load) and the 

CD4+ T cell count are the two surrogate markers used to assess 

response to cART and disease progression in HIV-1 infected patients. 

Viral load is the most important indicator of an initial and sustained 

response to ART and is recommended as the preferred approach to 

diagnose and confirm treatment failure (DHHS, 2014, WHO, 2013). Viral 

load measurement not only provides an early and more accurate 

indication of treatment but also helps distinguish between treatment 

and non-adherence and can serve as an indicator for the transmission 

risk within a given population (Murnane et al., 2012, Das et al., 2010). 

With effective cART in a patient not harbouring any drug-resistant 

viruses, virological suppression is expected in 8-24 weeks following the 

initiation of cART (Thaker and Snow, 2003). The WHO recommends 

routine viral load monitoring every 6-12 months (WHO, 2013). In 

resource limited settings virological monitoring is challenging and not 

always available.  CD4+ T cell counts, coupled with clinical monitoring 

are the main tools available for defining treatment failure and deciding 

when to switch to second-line therapy in this context. The CD4+ T cell 

count is the most important means of assessing immune function in HIV-

1 infected patients. For most treated patients an adequate response to 

therapy is defined by a rise in the CD4+ T cell count of 50-150/mm3 
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during the first year of treatment (WHO, 2013, DHHS, 2014). The WHO 

recommends CD4+ T cell count monitoring every 6-12 months (WHO, 

2013). 

 

1.7.4  Treatment failure, drug resistance testing and 
salvage therapy 

Failure of antiretroviral therapy can be defined by clinical, 

immunological and virological criteria: 

 

• Clinical failure is determined by a new or recurrent event 

indicating severe immunodeficiency after 6 months of effective 

cART (WHO, 2013, DHHS, 2014). 

• Immunological failure: A fall in CD4+ T cell counts below baseline 

levels or a CD4 count persistently <100cells/mm3 in a patient 

receiving effective cART (WHO, 2013, DHHS, 2014). 

• Virological failure: A plasma viral load above 1000 copies/ml on 

2 consecutive viral load measures after 3 months following 

initiation of cART with adherence support (WHO, 2013, DHHS, 

2014). 

 

Drug resistance mutations have been described for all antiretroviral 

drugs currently used as part of cART and remain the main cause of 

treatment failure in patients receiving treatment. Poor adherence to 

therapy, drug interactions between antiretroviral drugs and other 

medications as well as the side effects of treatment are also factors 

contributing to treatment failure. Drug resistance testing is 

recommended for patients presenting with virological failure after 

receiving adequate active triple combination therapy and at baseline 

for all HIV-1 infected patients entering care, to guide the choice of 

initial and second line therapies (DHHS, 2014). 
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Genotyping and phenotyping assays are currently available to test for 

drug resistance. Standard genotyping assays for drug resistance 

involve testing for mutations in HIV-1 genes (usually RT and PR), which 

can confer resistance to RTIs and PIs. These assays involve amplifying 

HIV-1 sequences from plasma samples with detectable viral load and 

identifying drug resistance mutations through sequencing. The main 

limitation with genotyping is that most commercially available assays 

do not assess determinants of drug resistance outside the virus RT and 

PR genes (such as Gag for PIs and Integrase for InSTIs) and could fail to 

identify the cause of drug resistance in some patients failing on 

regimens containing drugs from these classes (Hirsch et al., 2008).  

 

Phenotyping assays measure the ability of clinically derived HIV-1 

isolates to grow in the presence of drugs. They enable the assessment 

of virus replication at different drug concentrations and the results are 

used to calculate 50% and 90% inhibitory concentrations (IC50 and 

IC90) of a given drug for the isolate under investigation. Commercially 

available phenotyping assays amplify HIV-1 PR and RT as a unit from 

the plasma virus and generate a recombinant virus with other genes 

from a laboratory construct. Using reporter gene based systems the 

drug susceptibility of the construct carrying clinically derived RT and PR 

is assessed.  With both standard genotyping and phenotyping assays 

only the predominant circulating viruses in the circulating pool of 

viruses are sampled, and as such minority drug-resistant species which 

can cause treatment failure or transmitted resistance are often missed 

(Hirsch et al., 2008). Ideally drug resistance testing should be performed 

while the patient is still taking the failing ARV regimen or within four 

weeks of discontinuing treatment (DHHS, 2014). Identifying treatment 

failure and making a decision to switch to second-line therapies relies 

mainly on clinical assessment in resource-limited settings, where the 
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cost and availability of technical capacities render wider use of drug 

resistance testing difficult (WHO, 2013). 

Once treatment failure has been established, treatment guidelines 

currently recommend that the failing regimen be replaced with 

second-line therapies. Second-line treatments usually comprise of three 

drugs from at least two different drug classes which were not part of 

the initial treatment regimen and to which the patient doesn’t have 

resistance mutations based on phenotyping or genotyping resistance 

assays (DHHS, 2014). In highly treatment-experienced patients with 

complicated drug resistance profiles the entry inhibitors Enfurvitide and 

Maraviroc as well as second generation NNRTIs that are currently not 

part of initial treatment options may be considered as part salvage 

therapy (DHHS, 2014). 

 

1.7.5  Antiretroviral therapy for prevention of HIV-1 
infection 

Besides their use in treating patients infected with HIV-1, antiretroviral 

drugs have also been successfully used in strategies aimed at 

preventing infection. Currently there are four scenarios for which 

antiretroviral prophylaxes has proven successful and these have now 

been implemented to varying degrees globally in public health 

programs aimed at HIV-1 prevention. 

 

1.7.5.1 Prevention of mother to-child-transmission (PMTCT) 
of HIV-1 

In the absence of any intervention the natural history of HIV-1 

transmission during pregnancy carries a risk of 25-45%. In the mid-

nineties following the FDA approval of increasing numbers of drugs for 

the treatment of HIV-1, the usefulness of antiretroviral therapy as a 

strategy to prevent mother-to-child transmission was demonstrated in 

several clinical trials (Connor et al., 1994, Shaffer et al., 1999, Wiktor et 
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al., 1999, Guay et al., 1999, Lallemant et al., 2004).  These studies found 

that using AZT or NVP in monotherapy and dual therapy combinations 

antepartum, intrapartum and for the newborn, led to a reduction in 

the risk of mother-to-child transmission to 5-8% (Lallemant et al., 2004, 

Guay et al., 1999, Wiktor et al., 1999, Shaffer et al., 1999, Connor et al., 

1994). These initial interventions where recommended by the WHO and 

other leading public health agencies and very quickly led to a 

significant reductions in the incidence of vertical transmission of HIV-1.  

Following the advent of HAART in the early 2000s, triple therapy 

combinations where assessed for PMTCT and found to be even more 

effective, cutting the transmission risk down to 1-2% (Marazzi et al., 

2007, Marazzi et al., 2009, Marazzi et al., 2010).  

 

The WHO now recommends cART for all pregnant and breastfeeding 

women with the option of discontinuing cART once the MTCT risk period 

has ceased for women not meeting the treatment eligibility criteria or 

lifelong cART for all pregnant women (WHO, 2013). ARVs as PMTCT 

reduce the circulating maternal viral load considerably and by so 

doing, reduce the likelihood that the baby will be exposed to infectious 

virus during pregnancy, at delivery and through breastfeeding. It is 

worth noting that due to limitations in resources, monotherapy and 

dual therapy interventions for PMTCT are still used in many middle and 

low-income countries despite the current recommendations. PMTCT 

has been associated with the development of drug resistance in the 

mother and transmitted drug resistance in babies born to infected 

mothers (Eshleman et al., 2001, Jourdain et al., 2004). Drug resistance 

associated to PMTCT may compromise future cART options and should 

be considered when choosing cART regimens for women who have 

previously received single or dual therapy ARVs for prophylaxes. 
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1.7.5.2 Pre-exposure prophylaxes (PreP) 

PreP is a fairly recent intervention for prevention aimed at individuals 

who are not infected with HIV-1 but have a substantial risk of becoming 

infected.  The efficacy of oral PreP, a combination of two NRTIs 

Tenofovir and Emtricitabine in a single pill (Truvada®), has been 

demonstrated in several clinical trials assessing the impact of this 

intervention in different risk groups. In men who have sex with men 

(MSM), PreP reduced the risk of acquiring HIV-1 infection by as much as 

92% (iPrex study)(Grant et al., 2010); among heterosexually active men 

and women the risk of transmission was reduced by 62% (TDF2 study) 

(Thigpen et al., 2012); in HIV-1 discordant couples PreP reduced 

transmission by up to 90% (Partners PreP study) (Baeten et al., 2012) and 

among injecting drug users a single dose of Tenofovir, one of the 

components of Truvada® used in the  other three studies, reduced the 

risk of getting HIV-1 infection by 49% (Bangkok Tenofovir 

study)(Choopanya et al., 2013). The use of topical agents for PreP has 

also been assessed and the CAPRISA study showed 2% Tenofovir gel 

applied before and after sexual intercourse vaginally, reduced the risk 

of HIV-1 transmission by 54% for the women who used the intervention 

effectively (Abdool Karim et al., 2010).  

 

Macaque models of vaginal infection with SIVs have given some insight 

into the early events around the mucosal transmission of HIV-1 (Heneine 

and Kashuba, 2012). These studies suggest that with mucosal 

transmission, there is an initial phase during which HIV-1 replicates at 

low levels at the point of entry (Heneine and Kashuba, 2012). PreP is 

designed to target this brief window period of vulnerability to block the 

virus infection from taking hold and establishing reservoirs within the 

host (Heneine and Kashuba, 2012). Despite the success seen in the 

PreP trials cited above, there remains considerable controversy in this 

area due to the failure of some trials to show any benefit in reducing 
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the risk of HIV-1 transmission with this intervention. The FEM-PreP (Van 

Damme et al., 2012) and VOICE trials were discontinued before 

completion because of futility. Also the variation in the degree of 

protection observed in the studies where PreP was found to be 

beneficial remains for the most part unexplained (Van Damme et al., 

2012). Several factors could possibly account for the observed 

differences in results including; the different study populations enrolled 

in these trials, the degree of adherence to the prophylactic regimen 

and the route of transmission (rectal, vaginal or parenteral) for the 

population under study (Cohen and Baden, 2012). 

 

 With the recent observations on the reduced sensitivity of cell-to-cell 

viral spread to inhibition by antiretroviral drugs (Sigal et al., 2011, 

Duncan et.al, 2013), it is reasonable to contemplate whether this 

reduced sensitivity to drugs could confer an advantage to the virus 

allowing it to spread from the initial site of introduction and establish 

infection in the presence of PreP. This is especially important given that 

there is substantial evidence, albeit mainly derived from primate based 

transmission studies (Anderson et al., 2010), that cell-to-cell spread 

plays a role in the early steps of HIV-1 transmission at the mucosa. Cell-

associated infection was demonstrated in SIV vaginal challenge of 

macaques and the concentration of infected cells needed for 

transmission in this model were shown to be within the physiological 

range, while cell-free infections required supra-physiological doses to 

establish infection (Salle et al., 2010, Weiler et al., 2008). The impact of 

antiretroviral drugs on cell-free and cell-to-cell modes of HIV-1 infection 

could have implications for the choice of ARVs used in PreP strategies. 

 

The CDC and the WHO now recommend the use of oral PreP as a 

single daily dose of Truvada® for individuals who fit well-defined risk 

criteria for acquiring HIV-1 infection (Prevention, 2014, WHO, 2013). In 
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sub-Saharan Africa PreP is currently not widely used outside the context 

of clinical trials although mathematical modelling studies suggest that 

over a period of 10 years an effective PreP program could prevent 2.7-

3.2 million new HIV-1 infections in this region (Heneine and Kashuba, 

2012). Preliminary data on the risk of developing drug resistance 

following the implementation of PreP indicate that the benefits of PreP 

by far outweigh the risk associated with developing drug resistance in 

individuals who become infected despite receiving prophylaxis (van 

de Vijver and Boucher, 2010). Tenofovir and Emtricitabine, the 

components of Truvada®, are recommended as first-line choices for 

cART and as such monitoring for drug resistance in populations where 

PreP is being rolled out is important and recommended (Prevention, 

2014). 

 

1.7.5.3 Post-exposure prophylaxis (PEP) 

PEP is short-term antiretroviral treatment to reduce the likelihood of HIV-

1 infection after potential risky exposure to the virus which can be 

either occupational or through sexual intercourse. Data from simian 

infection models suggests that the post-exposure window during which 

infection can be cured ranges from 24 hours for IV injection (Tsai et al., 

1998) to 48-72 hours for vaginal challenge (Otten et al., 2000). After the 

first few days elapse this curative window closes as HIV-1 drug 

insensitive reservoirs become established within the host (Sigal and 

Baltimore, 2012).  PEP targets this window of opportunity to limit and 

possibly eliminate viral replication at the site of entry and prevent 

seeding of the virus in the lymphoid tissues and established infection. 

The WHO currently recommends using any of the first-line cART 

regimens for 28 days with the first dose being offered as soon as 

possible within 72 hours of the exposure (WHO, 2013). 
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1.8  Thesis Overview and Scope 
Recent observations on the reduced susceptibility of HIV-1 cell-to-cell 

infection to inhibition by RTIs have raised questions on the bearing this 

mode of spread may have for the successful treatment of HIV-1, the 

maintenance of viral reservoirs and viral pathogenesis. RTIs are major 

components of first-line and second-line cART as previously discussed. 

This thesis presents a detailed assessment of the individual drug classes 

(PIs, RTIs and INIs), which constitute first-line and second-line 

antiretroviral therapies with regards to their ability to inhibit cell-to-cell 

HIV-1 infection in comparison to cell-free infection. Special emphasis is 

given to the study of PIs, which have a mechanism of action different 

from RTIs, present a higher barrier to the development of drug-resistant 

mutants, are highly potent and are very important for first-line and 

second-line treatment options. The results obtained from this study are 

presented in three sections as briefly summarised below: 

 

In chapter 3, two assay systems, one with an indirect output measure 

(Tat-driven luciferase expression) and another with a direct output 

measure (HIV-1 pol DNA transcripts) of HIV-1 infection, are assessed for 

their use in studying the effect of inhibitors on HIV-1 cell-to-cell 

infection. The results presented in this section highlight specific 

limitations of using indirect output measures of infection when studying 

cell-to-cell spread of HIV-1, especially in the context of some types of 

inhibitors. It also justifies the use of the assay with a direct output 

measure of infection for the drug studies in my thesis. PI and RTI resistant 

mutants used in this thesis are also constructed, characterised and 

assessed for their ability to spread efficiently by a cell-to-cell 

mechanism in this section. 

 

In chapter 4, a detailed study of the impact of PIs on cell-to-cell spread 

of wild type and drug-resistant HIV-1 is presented and compared to RTIs 
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already studied by other groups. This section highlights the variable 

effects of the different drug classes used in cART on cell-to-cell spread 

of HIV-1 and clearly demonstrates that PIs are equally effective at 

blocking all modes of virus infection, whereas RTIs show reduced 

efficacy, with NRTIs being a lot less effective than NNRTIs. The effect of 

INIs on cell-to-cell spread of HIV-1 between T cells is also studied and 

Raltegravir is shown to be effective against this mode of virus 

dissemination. 

 

Chapter 5 addresses the question of drug combinations and cell-to-cell 

spread of HIV-1. Here cell-to-cell spread of HIV-1 is studied in the 

presence of clinically relevant PI and RTI-based combinations and 

compared to cell-free spread of the virus.  The median effect principle 

is applied to assess the impact of the mode of virus transmission and 

drug resistance on drug interactions in the combinations tested.  

 

Overall the study aims to provide a better understanding of the impact 

of antiretroviral therapy on cell-to-cell spread of HIV-1 and within 

reason, bearing in mind the limitations of in vitro models, gives some 

insight on the possible clinical implications of these observations for 

current HIV-1 treatment and prophylaxis. 
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2 Materials and Methods 
This section contains a detailed listing of the reagents, organisms and 

description of the general methods used for this research project. 

2.1 Materials 

2.1.1 Enzymes 

DNA polymerase 

Taq DNA polymerase was purchased from Invitrogen® (Life 

Technologies Ltd, Paisley, UK). Hot Gold Star DNA polymerase used for 

real-time PCR was supplied in a RT-PCR Master mix plus low ROX from 

Eurogentec ® (Seraing, Belgium). Proofreading Pfx DNA polymerase 

was obtained from Invitrogen® (Life technologies Ltd, Paisley, UK). 

 

Restriction endonucleases 

Restriction enzymes and their 10x concentrated reaction buffers were 

obtained from New England Biolabs (NEB) (Ipswich, UK) Ltd and from 

Promega® UK Ltd (Southampton, UK). 

 

Alkaline Phosphatase 

Recombinant Alkaline phosphatase from bovine intestine was 

purchased from Roche® Diagnostics (Mannheim, Germany). 

T4 DNA Ligase 

T4 DNA ligase was obtained from Roche® Diagnostics (Mannheim, 

Germany). 

 

2.1.2  Molecular weight markers (DNA and Protein) 

1Kb plus DNA Ladder (Life Technologies Ltd, Paisley, UK) 

DNA fragment sizes (base pairs): 12216, 11198, 10180, 9162, 8144, 7126, 

6108, 5090, 4072, 3054, 2036, 1636, 1018, 517, 369, 344, 298, 220,201, 154, 

134, and 75. 
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Protein molecular weight marker 

Pre-stained Amersham® SDS molecular weight standard mixture was 

obtained from GE healthcare Life Sciences (Uppsala, Sweden).  

 

2.1.3  Deoxyribonucleotides (dNTPs) 

dNTPs were supplied  by Invitrogen®  (Life Technologies Ltd  Paisley, 

UK). 

2.1.4  Oligonucleotide primers 

Primers for PCR and DNA sequencing were designed using the 

computer software Sequencher® Gene Codes Corporation (Ann 

Arbor, Michigan, USA). All oligonucleotides were ordered from 

Eurogentec® (Seraing, Belgium). A list of oligonucleotide names and 

sequences is provided in the methods section. 

2.1.5  Plasmids and molecular clones 

pNL4.3 

The HIV-1 clone was obtained from the NIH AIDS Research and 

Reference Reagent Program (ARRP). It is a plasmid that contains the 

full-length replication, and infection competent chimeric HIV-1 DNA 

derived from subtype B clinical isolates. Upon transfection, this clone 

directs the production of infectious virions in a wide variety of cells 

(Adachi et al., 1986). 

 

pCR®2.1TOPO 

This cloning vector was supplied in the TOPO® TA Cloning Kit from 

Invitrogen® (Life Technologies, Paisley, UK) and used for cloning to 

design drug-resistant HIV-1 molecular clones created by site directed 

mutagenesis of pNL4.3. 
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2.1.6  Bacteria strains 

Escherichia coli 

One Shot® TOP10 chemically competent Escherichia coli from 

Invitrogen® (Life Technologies Ltd, Paisley, UK) was used for plasmid 

propagation through out this thesis. The genotype of this strain is: F- 

mcrAΔ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 

Δ(ara-leu)7697 galUgalKrpsL (StrR) endA1 nupG. 

 

2.1.7  Cells 

Human embryonic kidney (HEK) 293T cells 

HEK293T cells were originally from ATCC® (American Type Culture 

Collection, Virginia, USA). The 293T cell line, originally referred to as 

293tsA1609neo, is a highly transfectable derivative of human 

embryonic kidney 293 cells, and contains the SV40 T-antigen. 

 

HeLa TZM-bl cells 

HeLa (Henrietta Lacks) TZM-bl cells were obtained from the Center for 

AIDS reagents, National Institutes of Biological Standard and Control, 

UK (CFAR, NIBSC) and donated by J.Kappes, X.Wu and Tranzyme Inc. 

This cell-line is an engineered HeLa cell clone that expresses human 

CD4, CCR5 and CXCR4 and contains HIV-Tat regulated genes for firefly 

luciferase and β-galactosidase. HeLa TZM-bl is highly sensitive to 

infection with diverse isolates of HIV and SIV. 

 

Jurkat CE6.1 

This is a CD4+/CXCR4+ T cell line obtained through the AIDS Research 

and reference reagent program, Division of AIDS, NIAID, NIH (ARRP). 

The cell line was cloned from cells obtained from Dr. Kendall Smith and 

donated by Dr. Arthur Weiss. 

1G5  
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This is a Jurkat derivative containing a stably integrated HIV-LTR 

luciferase construct. It was obtained from the AIDS Research and 

reference reagent program (ARRP), Division of AIDS, NIAID, NIH, 

donated by Dr. Estuardo Aguilar-Cordova and Dr. John Belmont. 

 

ACH-2 

This is a HIV-1 latent T cell clone with one integrated proviral copy. 

These cells are CD4-, CD5+, transferrin receptor +, Leu-1+ and HIV-1+. 

They are derived from A3.01 cells infected with LAV and cloned by 

limiting dilution. ACH-2 is a clone that survived infection and constantly 

produces low levels of RT and p24. The subclone A.3.01 is derived from 

CEM, a human T cell line originally isolated from a four year old 

caucasian female with acute lymphoblastic leukemia. This cell line is 

obtained from the NIH AIDS reagent program ARRP), division of AIDS, 

USA. Donated by Dr. Thomas Folks. 

 

2.1.8  Antibodies 

Coating anti-HIV-1 p24 antibody (D7320) 

 D7320 is a sheep polyclonal antibody, which was used for the p24 

ELISA. Supplied by Aalto® Bioreagents (Dublin, Ireland). 

 

Biotinylatedα-p24 (BC1071-BIOT) 

BC1071-BIOT is a mouse monoclonal antibody, which was used for the 

p24 ELISA. Supplied by Aalto® Bioreagents (Dublin, Ireland). 

 

HIV-1 anti-Tat antibody (02-002) 

Mouse raised monoclonal antibody against recombinant Tat protein 

Tat protein of HIV-1 (BH10) origin with epitope mapping to amino acids 

6-12. Supplied in a vial containing 100µg IgG1 in 1ml of PBS with < 0.1% 

sodium azide from Santa Cruz Biotechnology (Heidelberg, Germany). 
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Normal Mouse IgG1 (purified) 

Mouse IgG1 isotype control antibody (supplied by Life Technologies 

Ltd, Paisley, UK). Supplied in a vial containing 100μg IgG1 in 1ml of PBS 

with <0.1% sodium azide. 

 

Anti-HIV-1 Gag p55 and p24 antibody  

This is a rabbit raised polyclonal IgG antibody that recognises p55Gag 

and p24CA it was obtained from the Center for AIDS research (CFAR) 

NIH, ARRP, and donated by Dr. G. Reid. This antibody was used for 

western blotting. 

 

Anti-HIV-1 p24 antibody-FITC 

This is an IgG goat polyclonal antibody to HIV-1 p24 which is 

conjugated to FITC (Fluorescein isothiocynate) obtained from Abcam® 

plc (Cambridge, United Kingdom). 

 

2.1.9  General laboratory chemicals 

General chemical reagents such as salts, alcohols, organic 

compounds and detergents were obtained from a range of suppliers 

including Fisher Scientific (Loughborough, UK), Sigma-Aldrich Company 

Ltd (Poole,UK), Life Technologies (Paisley, UK). 

These include: agarose powder, acrylamide solution, sodium dodecyl 

sulphate (SDS), Tris, Ethylenediaminetetraacetic acid (EDTA), Dimethyl 

sulphoxide (DMSO), Tetramethylethylenediamine (TEMED), Ammonium 

Persulphate (APS), Acrylamide solution, NaOH (sodium hydroxide), 

NaCl (sodium chloride), HCl (hydrochloric acid), H2SO4 (sulphuric acid) 

, glacial acetic acid. Methanol, Ethanol, Ethidium Bromide, glycerol, X-

gal. Tetramethylbenzidine (TMB), NaHCO3 (Sodium hydrogen 

carbonate). 
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2.1.10 Electrophoresis gels 

 1% Agarose gel 

1g of agarose powder (Sigma-Aldrich) + 100ml of 1x TAE buffer. 

Microwaved for 2min or until the agarose dissolved and the solution 

became clear. Allowed to cool before pouring into cast. 

 

10% acrylamide gel (resolving gel) for SDS-PAGE 

 The formula for two gels: 2.64ml 40% Acrylamide solution (Sigma-

Aldrich Ltd, Poole,UK) + 2.96ml 1M Tris (Sigma-Aldrich) pH 8.8 + 

79.2µl10% SDS + 2.3ml dH2O, 26.5µl Ammonium persulphate (APS) 

(Sigma-Aldrich Ltd, Poole, UK)+ 5.3µl TEMED (Sigma-Aldrich Ltd, Poole, 

UK ). 

 

Stacking gel for SDS-PAGE 

The formula for two gels: 1.66ml 40% Acrylamide solution  + 1.24ml 1M 

Tris pH 6.8 + 99.2µl 10%SDS + 9.94ml dH2O + 49.6µl APS  + TEMED. 

 

2.1.11 Buffers and other solutions 

DMEM maintenance medium 

Dulbecco’s Modified Eagle’s Medium (DMEM) (with L-glutamine, 

4500mg/l D-glucose and without sodium pyruvate) before use 

supplemented with 1% antibiotic solution and 10% fetal calf serum 

(FCS) and stored at 2°-8°C. Purchased from Life technologies Ltd, 

(Paisley, UK). 

 

RPMI-1640 maintenance medium 

Roswell Park Memorial Institute (RPMI)-1640 medium (with L-glutamine, 

without sodium pyruvate) before use supplemented with 1% antibiotic 

solution and 10% FCS and stored at 2°-8°C. Purchased from Life 

technologies Ltd (Paisley, UK). 
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Luria Bertani (LB) medium 

To make 1L of LB broth 10mg of Bacto-tryptone, 5g-yeast extract and 

5g NaCl were dissolved in one liter of water, and the pH was adjusted 

to 7.5 with 5M NaOH. 

 

Luria Bertani (LB) plates 

10g of agar powder (Sigma-Aldrich) was added to 1L of LB broth. The 

solution was autoclaved and allowed to cool to approximately 50°C 

before antibiotics were added and plates poured. Ampicillin was 

added to a final concentration of 100µg/ml. 

 

S.O.C Medium 

Composition: 2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 

10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose. Supplied by 

Invitrogen® Life Technologies Ltd (Paisley, UK). 

 

Trypsin solution 

Composed of 0.025% trypsin and 0.01% EDTA in Phosphate Buffered 

Saline (PBS) purchased from Invitrogen® Life Technologies Ltd (Paisley, 

UK). 

 

Antibiotic stock solutions 

Ampicillin 100mg/ml in sterile water and stored at -20°C. 

Penicillin/Streptomycin solution from Invitrogen® Life Technologies Ltd 

(Paisley, UK) , 5000U/ml stored at -20°C. 

 

6x DNA loading buffer 

Bromophenol blue 0.25%(v/v), 0.25% xylene cyanol and 30% (v/v) 

glycerol in water, from Invitrogen® Life Technologies Ltd (Paisley, UK). 
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10x PBS 

Obtained from Invitrogen®, Life technologies Ltd (Paisley, UK). Without 

magnesium and calcium, pH=7.4. 

 

10x Dulbecco’s Phosphate buffered saline (DPBS) 

Obtained from Invitrogen, Life technologies Ltd (Paisley, UK). With 

magnesium and calcium, pH=7.4. 

 

10x Tris buffered saline (TBS) 

168.32g NaCl, 60.6g Tris (Sigma-Aldrich), 2L distilled H20.  30ml 

concentrated HCL was added to 2L TBS solution to adjust pH to 7.5. 

 

TBS/E/S (TBS with Empigen and serum) 

 For 10ml of TBS/E/S: 1ml FCS (Life technologies Ltd, Paisley, UK), 1ml 10x 

TBS, 333µl Empigen® (Sigma-Aldrich Ltd. Poole, UK), 8.667µl distilled H20. 

 

TMT/SS 

Composition: 1xTBS, 2% Bovine serum albumin (Sigma-Aldrich), 20% FCS 

(Life Technologies Ltd, Paisley, UK). 

 

Streptavidin Horse Radish Peroxidase (HRP) 

Enzyme purified from Streptomyces avidii and supplied in PBS from Life 

Technologies Ltd (Paisley, UK). 

 

Coating Buffer (for p24 ELISA) 

100mM NaHCO3. For 20ml of coating buffer solution 168mg of NAHCO3 

(Sigma-Aldrich Ltd, Poole, UK) in 20ml of dH2O. 

 

10x running buffer (Western blotting) 

30g Trizma base® (Sigma-Aldrich, Ltd, Poole, UK) + 144g glycine (Sigma-

Aldrich Ltd, Poole, UK) + 1l dH20. 
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1x running buffer (Western blotting) 

100ml of 10x running buffer + 10ml 10% SDS (Sigma-Aldrich Ltd, Poole, 

UK) + 1l H2O. 

 

Transfer buffer (Western blotting) 

100ml 10x running buffer + 700ml dH2O + 200ml methanol (Sigma-

Aldrich Ltd, Poole, UK). 

 

50x TAE buffer stock solution (1l) 

100ml 0.5M EDTA solution (Sigma-Aldrich Ltd, Poole, UK) + 57.1ml glacial 

acetic acid (Sigma-Aldrich) + 242g Tris base (Sigma-Aldrich Ltd, Poole, 

UK) + 750ml H2O. Solutions were mixed thoroughly to dissolve the salts 

then the  volume was adjusted to 1;. The stock solution was diluted as 

required with dH2O to obtain 10x and 1x TAE. 
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2.2 Methods 

2.2.1  Transfecting plasmid DNA into chemically 
competent Escherichia coli (E.coli) 

OneShot® TOP10 chemically competent E.coli  (Invitrogen®) was used 

for all transformation procedures. 10pg-100ng of plasmid DNA was 

gently mixed with a vial of OneShot® cells thawed on ice according to 

manufacturer’s instructions. The mixture was incubated on ice for 30min 

and then heat-shocked at 42°C for 30sec without shaking. The vials 

were placed on ice for 2min after heat shock and 250µl of pre-warmed 

S.O.C® medium added to each vial. The vials were placed for 1hour in 

a shaking incubator at 250rpm. 20-200µl of each transformation was 

spread unto a pre-warmed selective LB agar plate and incubated 

overnight at 37°C. The plates with colonies were stored at 4°C for a 

maximum of two weeks. 

 

2.2.2  Glycerol stocks of plasmids 

Bacterial glycerol stocks were made for long-term storage of all the 

plasmids used in the experiments. The addition of glycerol stabilises the 

frozen bacteria, preventing damage to the cells and keeping them 

alive. 0.5ml of overnight culture was added to 0.5ml 50% glycerol 

(Sigma-Aldrich Ltd, Poole, UK) in a 2ml cryovial and mixed thoroughly 

by gently pipetting.  The cryovials were stored at -80°C. 

 

2.2.3  Purification of plasmid DNA 

 DNA was extracted from a single transformed E.coli colony grown in 

4ml of LB broth containing 100µg/ml of Ampicillin, overnight at 37°C in a 

shaking incubator at 250rpm. Mini-preps of the plasmid DNA were 

prepared using the QIAprep® spin miniprep kit (QIAGEN, Venlo 

Netherlands) according to manufacturer’s instructions. Briefly, bacterial 

cells grown overnight were harvested by centrifugation at 3000rpm for 
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10min. All traces of supernatant were removed from the pelleted 

bacterial cells. The bacterial cells were re-suspended in 250µl P1 buffer 

and transferred to a microcentrifuge tube. 250µl of P2 buffer was 

added and mixed thoroughly by inverting the tube 4-6 times. 350µl 

buffer N3 was added and mixed thoroughly by inverting the tubes 4-6 

times. The tubes were centrifuged for 10min at 13000rpm in a 

microcentrifuge. The supernatants were applied to the QIAprep® spin 

column by decanting and the columns centrifuged for 1min at 

13000rpm and flow-through was discarded. To wash the QIAprep®, 

0.5ml PB buffer was added to the column, centrifuged at 13000×g for 

1minute and flow through discarded, this was followed by a wash with 

0.75ml PE buffer. To elute DNA, 50µl elution buffer was added to the 

center of the column and columns centrifuged for 1minute.  All DNA 

was stored at -20°C until use. 

 

2.2.4  Extraction of DNA from cells 

Total DNA from cells was purified using the DNeasy® blood and tissue 

kit (QIAGEN, Venlo, Netherlands) according to manufacturer’s 

instructions. The cells from which DNA was to be extracted were re-

suspended in 200µl PBS. 20µl proteinase K and 200µl buffer AL were 

added to cell suspension and mixed thoroughly by vortexing. The 

mixture was incubated at 56°C for 10min. After the incubation 200µl 

ethanol (100%) was added to the sample and mixed thoroughly by 

vortexing. The mixture was transferred to the DNeasy® mini spin column 

and placed in a 2ml collection tube and centrifuged at 8000rpm for 

1min and the flow-through discarded. The column was washed first by 

adding 0.5ml buffer AW1 and centrifuging for 1min at 8000rpm, then 

adding 0.5ml buffer AW2 and centrifuging for 14000rpm for 3min to dry 

the DNeasy® membrane. The flow-through was discarded after each 

of the washes. The DNeasy® mini spin column was transferred to a 

clean 1.5ml microcentrifuge tube and 200µl buffer AE was added to 
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the DNeasy® membrane to elute the DNA and the columns 

centrifuged at 8000rpm for 1min. DNA was stored at -20°C. 

 

2.2.5  Gel extraction of DNA 

Gel extraction of DNA was performed using the QIAquick® gel 

extraction kit (QIAGEN, Venlo, Netherlands). Briefly, the PCR product 

was excised from the agarose gel and 3x the volume of QG buffer 

added to the gel (e.g. 300µl QG buffer to every 100µg of gel weight). 

The gel+QG buffer was incubated at 50°C until the gel had completely 

dissolved. The sample was then applied to a QIAquick® column and 

centrifuged at 10000g for 1minute to bind DNA to the column. 500µl 

buffer QG was added to the column and the column was centrifuged 

at 10000×g for 1minute to ensure the removal of all traces of agarose. 

750µl buffer PE was added to wash the column and centrifuged at 

10000×g for 1minute.  Finally the DNA was eluted in 30µl DNAse/RNAse 

free elution buffer followed by one final 1min centrifugation at 

10000×g. DNA was stored at -20°C. 

 

2.2.6  DNA quantification 

DNA was quantified in 1µl of purified DNA sample on a Nanodrop® ND-

1000 UV-vis spectrophotometer (Nanodrop®, ThermoScientific, 

Wilmington, USA). Ethidium Bromide (Sigma-Aldrich Ltd, Poole, UK) 

staining and agarose gel electrophoresis were also used to quantify 

DNA by running a 5µl aliquot of purified DNA along with a DNA 

molecular marker (Invitrogen® Life technologies Ltd, Paisley, UK). 

 

2.2.7  Agarose gel electrophoresis 

Electrophoresis on a 1% agarose gel was used to separate and visualise 

DNA fragments. 5µl of Ethidium Bromide (Sigma-Aldrich Ltd, Poole, UK) 

was added to the pre-prepared gel before pouring it into a sealed gel 
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plate to a depth of 4-8mm.  An appropriate sized comb was inserted 

into the gel and the gel was allowed to cool. Once cooled and 

solidified, the comb was removed and the gel submerged in 1× TAE 

buffer in the electrophoresis chamber. 1/5 sample volume of 6× 

loading dye (Invitrogen® Life Technologies Ltd, Paisley, UK) was added 

to each sample and loaded in the wells and DNA separated by 

electrophoresis at 120V for 1hour. 

 

2.2.8  Restriction enzyme digestion of DNA 

A typical digest reaction was set-up as detailed below using the 

recommended buffer. 

DNA digest reaction: 

2µg DNA 

1U/µg of DNA restriction enzyme  

5µl of 10× restriction enzyme buffer 

Sterile deionised water up to 50µl  

The reaction was incubated on a thermocycler for 1hour at the 

recommended temperature for the enzyme according to 

manufacturer’s instructions. 

 

2.2.9  Molecular cloning using TOPO pCR®2.1 and 
site-directed mutagenesis (SDM) 

In order to create the full-length HIV-1NL4.3 drug-resistant mutants used 

in experiments in this thesis, the desired HIV-1NL4.3 fragment for SDM, 

from nucleotide position 740-2940, was amplified by PCR using a high 

fidelity polymerase enzyme, Platinum® Taq (Invitrogen®, Life 

Technologies Ltd, Paisley, UK) and target specific primers RT-forward 

and RT-reverse (Table 2-2: Sequencing and PCR primers). The DNA was 

then digested using the restriction enzymes SpeI and AgeI (New 

England Biolabs) according to manufacturer’s instructions. The 

digested DNA fragments were visualised alongside a molecular ladder 
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marker using Ethidium Bromide (Sigma-Aldrich Ltd, Poole, UK) staining 

and agarose gel electrophoresis to check the fragment size. PCR 

products were purified using QIAquick® PCR purification kit  (QIAGEN, 

Venlo, Netherlands) according to manufacturer’s instructions.  

 

PCR reaction mixture: 

10x High Fidelity Buffer: 5µl 

10mM dNTP mix: 1µl 

50mM MgSO4: 2µl 

Platinum® Taq: 0.2µl 

10µM forward primer (RT forward): 2µl 

10µM forward primer (RT reverse): 2µl 

DNA template: 10ng 

PCR-grade H2O: up to total reaction volume of 50µl 

 

PCR program 

94°C for 2min 

94°C for 15s 

55°C for 30s 

68°C for 2min 

Steps 2-4 repeated 30 times 

72°C for 3min 

4°C hold 

 

2.2.10 Cloning of PCR products 

To facilitate the cloning of products generated by the high fidelity 

polymerase into the TOPO® TA cloning vector pCR®2.1, 100ng of the 

PCR product with 15µl of 2mM dATP and 5 units of GoTaq® (Promega 

Ltd, Southampton UK) in a total reaction volume of 20µl was heated at 

72°C for 30mins. 2µl of the freshly poly-A tailed PCR product was used 

for the TOPO® cloning reaction according to manufacturer’s 
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instructions by mixing it with 1µl salt solution, 4µl of sterile water and 1µl 

of TOPO® vector in a total reaction volume of 6µl. The mixture was 

incubated for 5-20min and a2µl aliquot of this mixture was used to 

transform chemically competent OneShot® TOP10 cells (Invitrogen®, 

Life Technologies, Paisley UK), as previously described. The 

transformation reaction mixture was spread unto pre-warmed selective 

plates enriched with X-gal (Promega Ltd, Southampton, UK) and 

incubated overnight at 37°C. To analyse the transformants 6-10 white 

colonies where picked for DNA purification. The plasmid DNA 

wasdigested with the appropriate restriction enzymes and visualised by 

Ethidium Bromide staining and agarose gel electrophoresis to confirm 

the presence and orientation of the DNA insert in the cloning vector. 

 

2.2.11 Site-directed mutagenesis (SDM) 

Mutagenesis PCR was performed with Accuprime® pfx polymerase 

(Invitrogen® Life Technologies Ltd, Paisley, UK) according to the 

manufacturer’s protocol.   

PCR reaction mixture: 

Accuprime® pfx supermix: 22.5µl 

 Forward and reverse mutagenesis primers (5µM): 0.5µl each 

Plasmid DNA (20ng): 1µl 

PCR-grade water: up to 25µl 

 

SDM PCR-program: 

95°C for 15min 

95°C for 15s 

60°C for 30s 

68°C for 2min 

Steps 2-4 30 times 

68°C for 15min 

4°C hold 
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The SDM PCR product was digested with DpnI restriction enzyme at 

37°C for 1 hour. A 2µl aliquot of the DpnI digested PCR product was 

then used to transform TOP10 chemically competent cells. The 

transformations were plated on selective X-gal enriched agar plates as 

previously described. 6 white colonies were picked for DNA purification 

and subsequent sequencing to check for the presence of the desired 

mutation and any errors introduced by PCR. 

 

Table 2-1: Mutagenesis Primers 

Primer name  Sequence (5’-3’)  Function 

M184V-

forward 

TCTATCAATACGTGGATGATTTGTATGTAGGATCTGACTTAG M184V 

mutagenesis 

M184V-

reverse 

AATCATCCACGTATTGATAGATGACTATGTCTGGATTTTG M184V 

mutagenesis 

K103N-

forward 

GCAGGGTTAAAACAGAACAAATCAGTAACAGTACTGG K103N 

mutagenesis 

K103N-

reverse 

ACATCCAGTACTGTTACTGATTTGTTCTGTTTTAAC K103N 

mutagenesis 

V82A-forward GTAGGACCTACACCTGCCAACATAATTGGAAG V82A mutagenesis 

V82A-reverse CAGATTTCTTCCAATTATGTTGGCAGGTGTAGG V82A mutagenesis 

A431V-

forward 

GAAAGATTGTACTGAGAGACAGGTTAATTTTTTAGG A431V 

mutagenesis 

A431V-

reverse 

GGCCAGATCTTCCCTAAAAATTAACCTGTCTCTCAGT A431V 

mutagenesis 

 

2.2.12 DNA sequencing 

DNA sequencing was carried out by COGENICS® (Beckman Coulter 

Genomics, Essex, UK). Typically, 100ng of plasmid DNA or gel purified 

PCR DNA was sent for DNA sequencing with the relevant primers at 

5µM concentration. Sequencing was performed with BigDye® 

terminator chemistry and a 3730×1 analyser (Applied Biosystems®, Life 

Technologies Ltd, UK). 
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Table 2-2: Sequencing and PCR primers 

Primer/Probe name             Sequence (5’-3’)              Function 

HXB2 forward GTGCTGGAATCAGGAAAGTACTA  HIV-1 pol qPCR (primer) 

HXB2 reverse ATCACTAGCCATTGCTCTCCAATT  HIV-1 pol qPCR (primer) 

HXB2 probe TGTGATATTTCTCATGTTCATCTTGGGCCTTATCT  HIV-1 pol qPCR (probe) 

Albumin forward GCTGTCATCTCTTGTGGGCTGT  HIV-1 pol qPCR (primer) 

Albumin reverse AAACTCATGGGAGCTGCTGGTT  HIV-1 pol qPCR (primer) 

Albumin probe CCTGTCATGCCCACACAAATCTCTCC  HIV-1 pol qPCR (probe) 

2-LTR forward AACTAGAGATCCCTCAGACCCTTTT HIV-1 2-ltr qPCR (primer) 

2-LTR-reverse CTTGTCTTCGTTGGGAGTGAATT HIV-1 2-ltrqPCR (primer) 

2-LTR-junction  TTCCAGTACTGCTAGAGATTTTCCACACT HIV-1 2-ltrqPCR (probe) 

Seq1-forward CATAGCAGGAACTACTAGTACC            Sequencing 

Seq2-reverse GCATTAGTAGAAATTTGTACAG            Sequencing 

Seq3-forward GTATGGTAAATGCAGTATACTTC            Sequencing 

Seq4-reverse AGAATCTCCCTGTTTTCTGCCA            Sequencing 

RT-forward GGAGGTTTTATCAAAGTAAGAC                PCR 

RT-reverse TCTTTTGATGGGTCATAATACACTCC                PCR 

 

2.2.13 Sub-cloning into HIV-1NL4.3 backbone 

The DNA insert with the desired mutation (confirmed by sequencing) 

was extracted from the gel following electrophoresis of the double 

digest with AgeI and SpeI restriction enzymes of the TOPO® clone 

containing the insert. The DNA band corresponding to the HIV-1NL4.3 

backbone was extracted from the agarose gel, following 

electrophoresis of the double digest of HIV-1NL4.3 with AgeI and SpeI. 

The DNA was stored at -20°C if not used immediately in ligation 

reactions. All ligation reactions were set-up using the Roche® Rapid 

DNA Dephos and ligation kit (Roche Diagnostics, Mannheim, 

Germany). The purified DNA of the vector backbone was first 

dephosphorylated prior to ligation to prevent vector re-ligation.  

 

Dephosphorylation reaction 

Vector DNA =x µl (up to 1µg) 

10× Rapid Alkaline Phosphatase Buffer (Roche®) = 2µl 

Rapid Alkaline Phosphatase (Roche®) = 1µl (1U) 
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Sterile water:  added to make up a total volume of 20µl 

The reaction was incubated at 37 °C for 30min and at 72°C for 5min to 

inactivate the alkaline phosphatase (Roche).  The dephosphorylated 

vector DNA was used immediately in the ligation reaction or stored at -

20°C. 

 

Ligation reaction (molar ratio of vector DNA: insert DNA = 1:3) 

Vector DNA = x µl (50ng) 

Insert DNA = x µl (150ng) 

5× DNA dilution buffer (Roche): 2µl 

Sterile water: added to make up to a volume of 10µl and mixed 

thoroughly 

2× T4 DNA ligase (Roche) added = 10µl 

T4 DNA ligase (Roche) = 1µl (5U) 

 

The ligation reaction was incubated at room temperature for 30min 

and 1/10 of the ligation reaction was used to transform competent 

E.coli as previously described. 

 

2.2.14  Tissue culture techniques 

All the cell and virus cultures described in this thesis were maintained in 

humidified incubators at 37°C with 10% CO2 for human embryonic 

kidney (HEK) 293T cells and 5% CO2 for all other cell lines. 

 

2.2.14.1 Thawing cells 

For long-term storage, frozen cell aliquots were stored in liquid nitrogen. 

The cells were removed from liquid nitrogen and rapidly thawed in a 

water bath at 37°C. Once thawed the cells were pelleted by spinning 

them at 1400rpm for 5min after which they were re-suspended in 15ml 

of culture media in a T25 tissue culture flask. The media were changed 

the next day and replaced with fresh pre-warmed media. HEK 293T 
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and HeLa TZM-bl cells were grown and maintained in DMEM 

(Invitrogen®, Life Technologies, Paisley UK). Jurkat cells and ACH-2 cells 

were grown and maintained in RPMI-1640 medium (Invitrogen® Life 

Technologies Ltd, Paisley, UK). The culture media were enriched with 

10% FCS (Invitrogen® Life technologies Ltd, Paisley, UK) for cell lines and 

20% FCS for primary T cells. 100U/ml penicillin and 100µg/ml 

streptomycin (Invitrogen®, Life Technologies, Paisley, UK) were added 

to the media used for growing and maintaining cell lines. 

 

2.2.14.2 Passaging cells 
Adherent cells HEK 293T and HeLa TZM-bl cells were passaged when 

the cells were 90-100% confluent, as judged by inspecting cell cultures 

under a microscope. Under sterile conditions, 10ml of PBS was added 

to the T75-flask containing the cells and then aspirated in order to wash 

away the medium. 4ml of trypsin was added to the cells and left to 

incubate for 5min at 37°C. The flask was tapped several times to ensure 

the detachment of the cells and 6ml of culture medium added to 

dilute the trypsin (Invitrogen® Life Technologies Ltd, Paisley, UK). 

Depending on the desired density, an appropriate volume of the cell 

suspension was transferred into a new T75-flask and topped up with 

fresh medium. Suspension T cell lines (Jurkat and ACH-2 cells) were 

passaged when cultures reached a density of 1×106 cell/ml. This was 

usually every 4-5 days for cultures split to 1:10 (e.g. 3ml aliquot of cell 

suspension re-suspended in 27ml RPMI).  

 

2.2.14.3 Freezing cells 

Freezing media consisted of 60% culture medium, 20% FCS and 20% 

Dimethyl sulphoxide (DMSO) (Sigma-Aldrich, Poole, UK). Cells were 

pelleted by centrifuging at 1400rpm for 5min and re-suspended to a 

density of 1×107cells/ml. The suspension was aliquoted into sterile 

cryovials and placed into a Styrofoam container. The cells were initially 
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frozen overnight at -80°C and subsequently transferred to liquid 

nitrogen for long-term storage. 

 

2.2.15 Isolating PBMCs from buffy coat 

Buffy coat in blood bags was obtained from the national blood service 

(London, UK). The buffy coats from different donors were kept separate 

at all times. The blood was drained under standard sterile tissue culture 

conditions into a T75 flask. A Ficoll-Paque® (Sigma-Aldrich, Poole, UK) 

gradient was used to separate the white blood cells (WBCs) and serum 

from the red blood cells (RBCs). 10ml of Ficoll® was placed in a clean 

50ml falcon tube and 25ml of blood transferred from the T75 flask was 

slowly layered on the Ficoll®. The falcon tubes containing blood 

layered on Ficoll® were centrifuged at 2000rpm for 20min at room 

temperature without brake. After the spin, a transfer pipette was used 

to carefully transfer the white layer containing PBMCs into a new falcon 

tube and topped up with 40ml of PBS. The PBMCs were centrifuged at 

2000rpm for 10min to pellet the cells and the liquid was aspirated off. 

The cells were washed twice more by re-suspending them in 20ml PBS 

and spinning at 1500rpm for 5min at room temperature. After the 

washes, the cells were counted and re-suspended at a density of 

1×106/ml in a T75 flask. PBMCs were maintained in RPMI-1640 medium 

with 20% FCS, 1µg/ml of phytohaemagglutinin (PHA), (Sigma-Aldrich, 

Poole, UK) and 10U/ml of interleukin-2 (IL-2), (NIBSC). PHA was removed 

after 2-3 days and cells were maintained thereafter in RPMI-1640 

medium with 10U/ml of IL-2.  

 

2.2.16 Isolating CD4+ T cells from activated 
PBMCs-Magnetic activated cell sorting 
(MACS®) depletion of non-CD4+ T cells 

CD4+ T cells were sorted from activated PBMCs by negative selection, 

3 days after isolation using the MACS® cell separation technology 
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(Miltenyi, Biotec®, Cologne, Germany) according to manufacturer’s 

instructions of the CD4+ T cell isolation kit (Miltenyi, Biotec, Cologne, 

Germany). Briefly, PBMCs were washed in PBS and re-suspended in 

sterile and filtered MACS buffer (MACS buffer: PBS+0.5% FCS+2mM 

EDTA) - 40µl MACS® buffer/107 cells. 10µl/107 cells of biotin antibody 

cocktail was added to the cells, mixed thoroughly and incubated for 

10min at 4°C. 30µl MACS® buffer and 20µl anti-biotin micro-beads/107 

cells, mixed thoroughly and incubated for 15min at 4°C. Ten times the 

labelling volume of MACS® buffer was then added to the labelled cells 

suspension and centrifuged at 2000rpm for 5min (twice) after which the 

cells were re-suspended in 500µl of MACS buffer in preparation for 

magnetic separation (a maximum of 108 cells per column).Pre-chilled 

magnetic columns were equilibrated with 3ml of MACS buffer. The 

labelled cell suspension was then applied to the separation column 

and the flow-through collected in a cold 15ml falcon tubes. The flow-

through was passed through the column a second time and 6ml of 

MACS buffer run through the column and collected into the same 

falcon tube. The cells were then pelleted and re-suspended at a 

density of 106 cells/ml in RPMI-1640 + 20% FCS (Invitrogen® Life 

Technologies Ltd, Paisley, UK). 

 

2.2.17  Transfection of HEK 293T-cells with full-
length HIV-1 molecular clones 

Full-length HIV-1 was produced by transfecting HEK 293T cells with 

molecular clone DNA.  For transfection in a 6 well plate, 5×105 cells per 

well were plated 18-24h prior to transfection so that the monolayer cell 

density was optimally confluent (95% confluent) at the time of 

transfection. Complete culture medium supplemented with 10% FCS 

and 1% Penicillin/Streptomycin was freshly added to each well 30-

60min before transfection. Fugene®HD (Promega® Ltd, Southampton, 

UK) transfection reagent was used for all transfection reactions. For 
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each well the complex was prepared by adding 9.9µl of Fugene®HD 

to 155µl of 0.020µg/l plasmid DNA solution in Opti-MEM® (Invitrogen®, 

Life Technologies Ltd, Paisley,UK). The complex was mixed by pipetting 

(15 times) then incubated at room temperature for 5-10min. 150µl of 

complex was added in a drop-wise manner to each well of cells and 

incubated at 37°C for 48h. After 48h the virus containing supernatant 

was collected, centrifuged to remove any cell debris carried over and 

aliquoted into cryovials for storage in liquid nitrogen. All transfections 

with full-length HIV-1 DNA and replication competent infectious virus 

were carried out in the containment level 3 facility following standard 

procedures as defined by the University College London (UCL) risk 

assessment guidelines.   

 

2.2.18  Titration of virus stocks in HeLa TZM-bl cells 

To assess the infectivity of the virus stocks, the tissue culture infectious 

dose was estimated using a HeLa TZM-bl based TCID50 assay adapted 

from the Duke University laboratory protocol for the titration of HIV-1 

pseudotyped viruses and the TCID50 values were calculated using the 

method of Reed and Muench (Reed, 1938) and a TCID50 excel macro 

available from: http://www.hiv.lanl.gov/content/nab-reference-

strains/html/TCID501.xls.  A 5-fold dilution series of the virus stock was 

titrated on a white 96-well flat-bottomed tissue culture plate. 100µl of 

DMEM was placed in all wells on the plate. 25µl of neat thawed virus 

was added to the first 4 wells of a dilution series and a 5-fold dilution 

series was done. The 12th column wells were reserved as negative 

control wells. 1×104 HeLa TZM-bl in a volume of 100µl was added to 

each well. The plate was placed in an incubator at 37°C. After 48h, 

100ul of medium was removed and 75µl SteadyGlo® luciferase added 

to lyse the cells for 5min. The plate was read using the SteadyGlo® 

protocol on a GloMax® 96 MicroplateLuminometer (Promega® Ltd, 
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Southampton, UK). The data was exported into Microsoft®Excel to 

calculate the TCID50. 

 

2.2.19  HEK 293T drug susceptibility assay 

An in-house assay designed by Dr. Chris Parry was used to determine 

the drug susceptibility of the drug-resistant mutant viruses compared to 

the wild-type virus (Gupta et al., 2010). HEK293T cells were transfected 

as described above, 16h after transfection the cells were seeded in the 

presence of a serial dilution of Protease Inhibitors. Virus supernatant 

was harvested 24h later and used to infect fresh target HeLa TZM-bl 

cells. For Reverse Transcriptase Inhibitors, the HeLa TZM-bl cells were 

infected in the presence of a serial dilution of the drug being tested. 

Replication was determined by measuring luciferase expression in 

infected target cells at 48h post-infection using SteadyGlo® Luciferase 

Assay system (Promega® Ltd, Southampton, UK) and expressed relative 

to that of a no-drug control. Fifty percent inhibitory concentrations 

(IC50s) were determined using Prism6® software (GraphPad, California, 

USA). The IC50 values were calculated as the mean of at least two 

independent experiments. 

 

 
Figure 2-1: Drug susceptibility assay. For RTIs the HeLa TZM-bl cells were infected in the presence 
of a serial dilution of the drug. 
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2.2.20  Cell-to-cell and cell-free infection assays 

2.2.20.1  Infection of donor cells 

Jurkat T cells and Primary CD4+ T cells were used as donor cells in the 

experiments described. The cells were infected by adding 0.5-1 MOI of 

thawed virus stock to 3×106 cells re-suspended in a total volume of 

500µl of culture medium in 15ml falcon tubes. The cells were 

spinoculated by centrifuging the tubes at 2000×g for 2h. After 

spinoculation the cells were re-suspended in 10ml of culture medium in 

a T25 flask and incubated at 37°C. 

 

2.2.20.2 Gag p24 staining and FACS analysis of infected 
cells 

Infected Jurkat cells were fixed with 3% paraformaldehyde (PFA) 

(Sigma-Aldrich Ltd, Poole, UK). The fixed cells were permeabilised by 

incubating for 30min with 1X BD™ Perm Buffer (Beckman Dickson 

Biosciences, Oxford, UK) and stained with anti-HIV-1 p24 monoclonal 

antibody conjugated to fluorescein isothiocyanate (HIV-1 p24 (24-4) 

FITC, monoclonal antibody). Ten thousand events were collected using 

a FACS Calibur® flow cytometer with Cellquest® software (Beckman 

Dickinson, Plymouth, UK). Data were analysed using FlowJo® software 

(with appropriate gating) to determine the percentage of Gag-

positive cells. 

 

2.2.20.3  RT-PCR based infection assays 

To measure cell-to-cell transfer from an infected donor cell to an 

uninfected target cell, RT-PCR was used to detect de novo pol-

transcripts as described in previous studies using this assay, (Jolly et al., 

2007) with modifications to accommodate for the use of inhibitors 

(neutralising antibody, RTI and PIs). Donor cells were infected with 

either HIV-1NL4.3 (wild-type) or drug-resistant mutant virus. Three days 

after infection, the donor cells were stained for Gag and analysed by 
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flow cytometry. Only donor-cell cultures that were >80% infected were 

used for experiments. This minimised the background from spreading 

infection between donor cells after target cells were added to the 

culture.  The virus input for infecting donor cells was standardised using 

the multiplicity of infection (MOI) for the different viruses tested (i.e. 

wild-type and drug-resistant mutants). 72h after infection by 

spinoculation, cultures infected with either wild type or drug-resistant 

viruses were similarly 85-90% infected. The donor cells were washed 

three times with 10ml of culture medium to remove all cell-free virus 

particles. After the washes the cells were counted, 2x105 infected 

Jurkat cells (donors) per well on a 96 well plate were mixed with 8x105 

1G5 cells/well in the presence of the maximum plasma concentration 

(Cmax) of the inhibitor for time-course experiments or in the presence of 

a serial dilution of the inhibitor for IC50 determination. For time-course 

experiments, the co-cultures were incubated for 0h, 1h, 3h, 6h, 12h or 

24h at 37°C before the cells for each time-point were pelleted and 

stored at -80°C until DNA extraction. For experiments to calculate the 

IC50 of the inhibitor, co-cultures in the presence of a serial dilution of 

the inhibitor under study were incubated for 24h before DNA extraction 

and RT-PCR. Total DNA extraction was performed using the DNeasy® 

Blood and Tissue kit according to manufacturer’s instructions 

(QIAGEN®, Venlo, Netherlands) as previously described. Extracted DNA 

was stored at -20°C if RT-PCR was not performed on the same day.  
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Figure 2-2: qPCR based cell-to-cell assay 

 

For cell-free experiments, pre-washed 2x105 donor cells/well were 

allowed to produce virus over 24h.  100µl of the virus supernatant was 

used to infect 1x106 target cells/ well by spinoculation at 2000×g for 2h, 

in the presence of the maximum plasma concentration of the inhibitor 

under investigation for time-course experiments or in the presence of a 

serial dilution of the inhibitor for IC50 determination.  Following infection 

by spinoculation, the target cells were incubated for 24h after which 

they were pelleted for total DNA extraction and subsequent RT-PCR. 

 

 
Figure 2-3: Cell-free qPCR based assay 

2.2.21  RT-PCR  

RT-PCR was used for the detection of HIV-1 pol transcripts using primers 

and probes specific for HIV-1 pol DNA and the housekeeping gene 
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Albumin (Jolly et al., 2007) and for the detection of 2LTR circles using 

primers and probes specific for HIV-1 2LTR circles (Apolonia et al., 2007). 

All RT-PCRs were carried out using a TaqMan® probe based assay (Jolly 

et al., 2007, Apolonia et al., 2007) with custom made probes and 

primers (Eurogenetec® Seraing, Belgium). Reactions were set-up in 

triplicate with 2× qPCRMastermix (Eurogentec®, Seraing, Belgium) and 

run on the Applied Biosystems® 7500 RT-PCR machine (Life 

Technologies Ltd, Paisley, UK).  

 

2.2.21.1 HIV-1 pol RT-PCR   
HXB2 and Albumin master mixes were prepared separately. One 

master mix prepared with HXB2 pol primers and the other prepared 

with Albumin primers (see Table 2-1 for primer names and sequences)  

 

Master mix for 110 wells: 

Sterile deionised water: 528µl 

Eurogentec® 2x master mix: 657µl 

Probe (50µM): 2.75µl 

Forward primer (100µM): 4.2µl 

Reverse primer (100µM): 4.2µl 

 

DNA samples were diluted before use 1/10 with sterile deionised water 

(so that the unknowns fell within the range of the standards). The 

standards were prepared in duplicate. DNA extracted from ACH-2 cells 

was used as the standard. In a 96-well PCR plate 2.5µl of either HxB2 or 

Albumin master mix (without DNA) was pipetted into each well.  2.5ul 

of each standard in duplicate from the standard dilution plate was 

transferred to the qPCR plate. A no template control was included in 

duplicate in the final two wells. 2.5µl of sample was transferred into the 

qPCR plate. Standards were run in duplicate and samples in triplicate. 

The plate was sealed and centrifuged for 1min. The qPCR plate was run 
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on the Applied Biosystems® 7500 real-time PCR system (Life 

Technologies Ltd, Paisley, UK). 

 

2.2.21.2 HIV-1 2LTR circles RT-PCR 
Mastermix for 100 wells 

- Eurogentec® 2x Mastermix: 625µl 

- Forward Primer (100µM): 3.75µl 

- Reverse Primer (100µM): 3.75µl 

- Probe (50µM): 2.5µl 

- Sterile water: 365µl 

In a 96-well PCR plate 20µl of the master mix was pipetted into each 

well. 5µl DNA template was added to each well. Standards were run in 

duplicate and samples in triplicate. The plate was sealed and 

centrifuged for 1min, then run on the Applied Biosystems® 7500 real-

time PCR system. 

 

RT-PCR program: 

 The RT-PCRs were run on the Applied Biosystems® 7500 using the 

program detailed below: 

50°C for 2min 

95°C for 10min 

90°C for 15s 

60°C for 1min 

Steps 3-4 repeated 40 times 

50°C Hold 

 

2.2.22  Transwell based infection assays 

To assess the impact of the inhibitor Raltegravir on cell-to-cell and cell-

free spread, 2x105/well pre-washed infected donor cells were cultured 

directly together with 8x105/well target cells on a 24-well plate in the 

presence or absence of the Cmax of Raltegravir. Co-cultured cells were 
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pelleted and stored at -80°C for DNA extraction and 2LTR qPCR and 

the supernatants stored for p24 ELISA. For cell-free experiments donor 

cells were separated from target cells by a 3µM transwells to allow for 

full diffusion of virus but not migration of the cells. 2x105/well infected 

donor cells were suspended in 100µl of culture medium and placed in 

the top well and 8x105/well uninfected target cells were suspended in 

500µl and placed in the bottom well. Supernatant from untreated and 

drug treated targets were collected at 4, 7 and 10 days of culture. The 

target cells were pelleted and frozen down for subsequent DNA 

extraction and 2 LTR qPCR and the supernatants were stored at -80°C 

for measurement of p24 by ELISA. 

 

2.2.23 p24 ELISA 

p24 antigen detection was done using a twin site sandwich ELISA. 100-

150µl of sample was inactivated by adding 5µl of 21% Empigen®BB 

detergent (Sigma-Aldrich Ltd, Poole, UK) to obtain a final 

concentration of 1%, and incubated for 30min at 56°C. Briefly, in this 

assay, the p24 antigen is captured from a detergent lysate of virions 

onto a polyclonal antibody adsorbed onto a solid phase. Bound p24 is 

detected with a biotinylated conjugated anti-p24 monoclonal 

antibody. In detail, a 96-well clear flat bottomed ELISA plate (Nunc®) 

was coated with 100µl/well of 10µg/ml capture antibody D7320, Aalto® 

overnight at room temperature. On the 2nd day the plates were 

washed 3x with wash buffer using a TECAN® plate washer (Tecan, 

Reading, UK). 200µl/well blocking buffer was added to the wells for 

30min at room temperature. The wells were washed in 200µl of wash 

buffer 3x before transferring 100µl of diluted supernatant. A standard 

was prepared using a 2-fold serial dilution starting at 200ng/µl and 100µl 

transferred to the plate. Samples and standards were diluted in TBS/E/S. 

The plate was covered and incubated for 2h at 37°C. After this 

incubation the plate was washed 6x with 200µl/ well wash buffer. 100µl/ 



Exploring the Impact of Antiretroviral Drugs on the Cell-to-Cell Spread of HIV-1 
 

Chapter Two  - Materials and methods 

 
122 

well of 1/1000 diluted stock biotynylated α-p24 antibody in TMT/SS was 

added to the wells and incubated at room temperature for 2h. The 

plate was washed 6x with 200µl wash buffer per well. 100µl/ml 

Streptavidin–Horse Radish Peroxidase (Serotec® Bio-Rad Laboratories, 

California, USA) in TMT/SS was added to the wells and the plate 

incubated for 1hour. The plate was washed 6x as described above 

and 100µl/well of TetraMethylBenzidine (TMB) (Sigma-Aldrich.Poole, UK) 

added to the plate. The reaction was stopped with 100µl/well of 0.5M 

Sulphuric acid (H2SO4). The plate was read on a multiscan FC 

absorbance plate reader (Thermo Scientific, Massachusetts, USA) at 

450nm and the data were analysed using Prism® Software (GraphPad, 

California, USA). 

 

2.2.24  Luciferase based infection assays 

For cell-to-cell infection: 

The experiment was set-up on a 96-well plate. 2x105 donor cells/well 

were pre-incubated with a serial dilution of the inhibitor (PIs and NAb) 

under investigation (4h and 24h pre-incubation times were tested), in 

duplicate. No drug control wells were included on each plate. For 

experiments in which RTIs were used as inhibitors, donor and target cells 

were mixed in the presence of drug at the same time without prior pre-

incubation of donor cells with the drug. 8x105/well of 1G5/LTR-luciferase 

cells (target cells) were added to the donor cells and mixed 

thoroughly. When donor cells were pre-incubated with an inhibitor for 

24h, the cells were centrifuged down, supernatant discarded and re-

suspended in fresh inhibitor prior to the addition of target cells. This was 

to ensure that there was fresh non-degraded drug throughout the 48h 

of the assay. The co-culture (donor cells + target cells) was incubated 

for 24h to limit replication to a single cycle and minimise any cell-free 

infection.  The infection of target cells was quantified by a SteadyGlo® 

(Promega, Southampton, UK) luciferase system. The cells were 
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centrifuged at 2000rpm for 3min and the supernatant removed. 75µl of 

SteadyGlo® luciferase (Promega, Southampton, UK) was added to 

each well to lyse the cells and the luciferase activity was measured 

using a Glomax® Luminometer (Promega, Southampton, UK). It is worth 

noting that for experiments with PIs and RTIs the highest concentration 

of drug tested was the maximum plasma concentration. In order to 

plot dose-response curves and calculate IC50s for the inhibitors tested, 

the average luciferase signal in the target cells in the absence of drug 

was considered to represent 100% infection. The luciferase signal in 

target cells for each drug concentration was expressed as a fraction of 

the “no-drug” positive controls and plotted against the drug 

concentrations on a logarithmic scale. 

 

For cell-free infection: 

2x105 cells/well of pre-washed infected donor cells were incubated in 

the presence of a serial dilution of the PI drug on a 96 well plate for 24h. 

After 24h, the cells were pelleted and 100µl of the virus supernatant 

was used to infect 8x105/ml 1G5 cells (target cells) per well on a 96 well 

plate by spinoculating for 2h at 1200g.  The infected target cells were 

incubated for 24h after which they were lysed with SteadyGlo® 

luciferase (Promega, Southampton, UK) and luciferase activity 

measured as described above. 
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Figure 2-4:  Luciferase based cell-to-cell assay 

2.2.25  Drug combination studies 

The RT-PCR based infection assays described above were used for the 

drug combination studies. Antiretroviral agents from the RTI and PI 

classes were tested in clinically relevant combinations. The drugs were 

combined in a ratio based on the IC50s of the individual drugs for cell-

free infection. For example if the IC50 of drug A=50nM and the IC50 of 

drug B=100nM, to test these drugs in combination, A+B were combined 

in a ratio of 1:2 (Irene V. Bijnsdorp, 2011).  Cell-to-cell and cell-free 

infection was assessed in the presence of a serial dilution of the 

combination and infection determined by qPCR as described above.  

The percentage inhibition at each concentration was determined and 

expressed as a fraction of the “no-drug” positive control. These values 

were used to determine the combination indices for the drug 

combination using the drug synergy analysis software Compusyn® 

(Paramus, New Jersey, USA). 
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Figure 2-5: Scheme of drug combination experiments 

 

2.2.26  SDS-PAGE and Western blotting 

Cell-free virus supernatant collected from HIV-1 infected cell cultures 

treated with PIs was purified through a 25% sucrose gradient. 400µl of 

virus supernatant was carefully layered on 800µl of 25% sucrose solution 

in a 1.5ml micro centrifuge tube, followed by centrifugation at 10000×g 

for 90min at a temperature of 4°C. The sucrose was carefully poured off 

at the end of the centrifugation and the pelleted virus re-suspended in 

40µl of PBS and stored at -80°C for SDS-PAGE. Sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate 

the purified virus prior to detection of virus proteins by western blotting. 

20µl of purified virus was loaded on the gel (see materials for 

composition of gel) along with 10µl of pre-stained protein marker 

(Invtrogen® Life Technologies Ltd, Paisley, UK) and proteins were 

separated by electrophoresis in 1x running buffer at 120V for 2h. 

Proteins were transferred unto a nitrocellulose membrane 

(Amersham®, Bioscience, Uppsala, Sweden) by electrophoresis at 4°C 
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overnight (18h) in transfer buffer. The membranes were blocked for 2h 

at in blocking buffer at room temperature and incubated for 1h on a 

rocker with the primary antibody (HIV-1 Gag antibody from CFAR, 

NIBSC), diluted in blocking buffer. Membranes were then washed 4 

times for 15min in wash buffer and incubated with HRP coupled 

secondary antibody (goat anti-rabbit HRP, from DAKO), diluted in 

blocking buffer for 30min, on a rocker at room temperature. The 

membranes were washed as above and proteins were visualised by 

enhanced chemiluminescence (ECL) (Amersham®, Uppsala, Sweden). 

 

2.2.27 Statistical methods 

A two-tailed student t-test was performed to compare the mean IC50s 

for cell-free and cell-to-cell spread for PIs and RTIs. For comparisons of 

data with more than two groups a two-way ANOVA with Bonferroni 

post-test for multiple comparisons was used. All statistical analysis was 

done using GraphPad Prism® Software (California, USA.
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3 Assessing two assay systems for 
studying the impact of drug inhibitors 
on cell-to-cell spread of HIV-1 

 

3.1 Introduction 
In studying the effects of antiretroviral drugs on cell-to-cell spread of 

HIV-1, in vitro co-culture systems using direct and indirect markers of 

infection have been used in the published literature, with conflicting 

results (Sigal et al., 2011, Permanyer et al., 2012b). Sigal et al. were the 

first group to report that HIV-1 cell-to-cell infection may be less 

susceptible to inhibition by RTIs than cell-free infection. In their 

experiments they used in vitro co-culture systems with surrogate 

markers of HIV-1 infection (p24 antigen staining and Tat-driven reporter 

gene expression) to test their hypothesis. Following the publication of 

these observations, Pemanyer et al. challenged the results by using in 

vitro co-culture systems with a direct marker of HIV-1 infection (qPCR 

detection of HIV-1 DNA transcripts) and obtained a different result 

finding that RTIs were effective inhibitors of cell-to-cell HIV-1 infection. 

They proposed that the use of surrogate markers for measuring target 

cell infection in co-culture assays, as used by Sigal et al., may be 

misleading due to the possibility of detecting these surrogate markers in 

the absence of true HIV-1 infection in target cells. These seemingly 

conflicting results led to some controversy with regards to the true 

impact of antiretroviral agents on HIV-1 cell-to-cell infection.  

 

The primary objective of the studies presented in this thesis is to define 

the role of antiretroviral agents on HIV-1 cell-to-cell spread. It was 

therefore desirable to re-evaluate the co-culture assays available in 

our laboratory that use both surrogate and direct markers of HIV-1 
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infection, in order to establish the best method to use in answering my 

research questions.  In this chapter, two co-culture assay systems, one 

using a surrogate marker of HIV-1 infection (Tat-driven reporter gene 

expression) and another using a direct marker of HIV-1 infection (qPCR-

based detection of HIV-1 pol DNA copies), are used to study cell-to-cell 

and cell free spread of HIV-1 in the presence and in the absence of 

drug inhibitors. The results obtained suggest that assays with an indirect 

infection read-out such as reporter gene expression, are high 

throughput and useful for screening some inhibitors (attachment and 

entry inhibitors). However HIV-1 Tat protein derived from infected donor 

cells in co-culture may lead to reporter gene activation in the absence 

of true infection in target cells, even in the presence of inhibitors (PIs 

and RTIs). These findings provide the rationale for using a direct 

measure of HIV-1 infection (qPCR-based detection of HIV-1 pol DNA 

copies), to answer the research questions posed in this thesis. In 

addition to comparing the assay systems for testing the effect of drug 

inhibitors on HIV-1 cell-to-cell spread, the drug-resistant and wild type 

viruses used through out this thesis are also characterised in this 

chapter. The resistant phenotype of the viruses is confirmed in a drug 

susceptibility assay and their ability to spread efficiently via a cell-to-

cell mechanism verified. 

 

3.1.1  Specific Objectives 

 

- To compare a reporter gene based assay and a qPCR-based assay 

for studying the effects of drug inhibitors on HIV-1 cell-to-cell spread. 

- To construct PI and RTI drug-resistant viruses and validate their 

phenotypes in a drug susceptibility assay. 

 - To assess cell-to-cell spread of PI and RTI drug-resistant viruses 

compared to wild-type virus. 
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3.2  Results 

3.2.1  Comparing direct and surrogate markers of 
infection for studying HIV-1 cell-to-cell spread 

Due to conflicting reports on the impact of antiretroviral drugs on HIV-1 

cell-to-cell spread, two assay systems with different output measures 

were compared for use in testing the effect of inhibitors on HIV-1 cell-

to-cell spread. This was in order to determine the best method to use 

for the subsequent studies presented in this thesis and to clear the 

controversy stemming from previous studies by other groups. The qPCR-

based assay directly quantifies infection of target cells by measuring 

HIV-1 pol DNA while the luciferase assay uses a surrogate marker of 

infection measuring Tat-driven reporter gene expression in target cells. 

Both assays have been used and validated in other studies of HIV-1 

cell-to-cell infection (Jolly et al., 2007, Jolly et al., 2011, Martin et al., 

2010). HIV-1 cell-to-cell spread was measured in the presence of drug 

inhibitors (PIs and RTIs) using these two assay systems.  

 

A Jurkat CD4/CXCR4+ T cell line was used as donor cells in the two 

assays. Donor cells were infected with an MOI = 0.3-0.5 of CXCR4 tropic 

NL4.3 wild-type virus (HIV-1WT), by spinoculating for 2h at 2000g. 72 hours 

after infection, an aliquot of the donor cell culture was fixed and 

stained for Gag and analysed by flow cytometry. Donor cell cultures 

were typically >80-90% infected by 72h. The use of a donor cell 

population in which >80% of cells are infected minimises background 

spreading infection between donor cells. A derivative of the Jurkat cell 

line (1G5) was used as target cells in both assays. 1G5 cells contain a 

stably integrated HIV-LTR-luciferase construct in which expression of the 

reporter gene is driven by HIV-Tat. The infected donor cells were 

washed three times with culture medium to remove as much cell-free 

virus as possible and co-cultured with the target cells in a ratio of 1:4 

(2×105 donor cells mixed with 8×105 target cells), in the presence of the 
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inhibitor. When PIs were tested, the donor cells were pre-incubated 

with the drug for 24h before co-culturing with target cells. With RTIs, the 

drugs were added at the time of mixing donor cells with target cells. 

The co-cultures were incubated for 24h for experiments with a single 

time-point and for variable durations: 1h, 3h, 6h, 12h and 24h for time-

course experiments.   

 

In the luciferase assay cell-to-cell infection was quantified by lysing the 

cells with SteadyGlo® luciferase and measuring luciferase expression 

on a GLOMAX® Luminometer. In the qPCR-based assay, pre-treated 

donor cells were co-cultured with target cells in the presence of the 

inhibitor as described above. Cell-to-cell spread of HIV-1 was 

measured by qPCR, to quantify de novo HIV-1 DNA pol copies arising 

from reverse transcription in the newly infected T cell population. The 

data were expressed as fold increase in HIV-1 pol DNA relative to the 

housekeeping gene Albumin. In this assay a synchronous population of 

HIV-1 infected donor cells, allows for reliable measurement of virus 

infection in target cells mediated by cell-to-cell dissemination with little 

or no contribution from the less efficient cell-free mode of infection  

(Jolly et al., 2007) (see methods for detailed description of assays).  

 

The effect of inhibitors on cell-free infections was also tested for 

comparison. For cell-free assays, pre-washed infected donor cells were 

left to produce virus in the presence of PIs over 24h. The virus 

supernatant was collected and used to infect target cells by 

spinoculating for 2h. Infection of the target cell was measured by 

luciferase gene expression and by qPCR detection of HIV-1 pol DNA as 

described above. 

 

As expected HIV-1 cell-free infection was potently blocked by LPV over 

a range of concentrations in both the luciferase assay system 
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(Figure3.1A) and the qPCR assay system (Figure 3.1B)). In contrast LPV 

appeared to be completely ineffective against cell-to-cell spread of 

HIV-1 over a wide range of concentrations when tested using the 

luciferase based assay (Figure 3.1C). RTIs also failed to inhibit cell-to-cell 

infection in this assay system (Figure 3.1D). To confirm these results the 

effect of LPV on HIV-1 cell-to-cell spread was tested in the qPCR-based 

assay system, which uses a direct output measure of infection, HIV-1 

pol DNA copies as described earlier. Co-cultures where either left 

untreated or treated with Cmax LPV (12µM), and HIV-1 pol DNA copies 

detected by qPCR at different time-points (1h, 3h, 6h, and 12h). 

Surprisingly LPV potently blocked HIV-1 cell-to-cell infection in the 

qPCR-based assay system, indicating that these drugs were in fact 

effective against this mode of virus spread. This was evidenced by the 

absence of HIV-1 pol DNA transcripts in co-cultures treated with Cmax 

LPV (12µM) compared to a ready detection and a time dependent 

increase in HIV-1 pol DNA transcripts in untreated co-cultures (Figure 

3.1E). These results seem paradoxical with LPV blocking HIV-1 cell-to-

cell infection in one assay system and being completely ineffective in 

another assay system and reflect the conflicting results reported by 

other studies (Sigal et al., 2011, Permanyer et al., 2012b).  
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Figure 3-1: Comparing a reporter gene assay system and a qPCR-based assay system for 
studying the effect of drug inhibitors on HIV-1 cell-to-cell spread- LPV potently blocks cell-free 
spread of HIV-1 in (A) a Luciferase–based assay system and in (B) a qPCR-based assay system. 
Infected donor cells were allowed to produce virus in the presence of LPV, and this virus 
supernatant was used to infect target cells by spinoculation. Following 24h incubation, 
infection of target cells was quantified either by measuring luciferase activity (A) or qPCR 
detection of pol DNA (B). One representative experiment is shown and error bars represent the 
standard deviation (SD) of the mean of triplicates. (C) Protease inhibitors (LPV) (D) and Reverse 
Transcriptase Inhibitors appear ineffective against cell-to-cell spread of HIV-1 in a luciferase 
assay system. Infected donor cells treated with a serial dilution of PI or RTI were co-cultured with 
target cells and cell-to-cell infection measured by quantifying luciferase expression in target 
cells. A representative experiment of two independent repeats is shown. (E) LPV potently 
blocks cell-to-cell spread of HIV-1 in a qPCR based assay system. Donor cells pre-treated with 
LPV or untreated were co-cultured with target cells and HIV-1 pol DNA detected by qPCR at 
several time-points post mixing. A representative experiment of two independent repeats is 
shown. Error bars represent the SD of the mean. 
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To explore this further, I decided to test the effect of a Llama derived 

HIV-1 neutralising VHH J3 on cell-to-cell infection in both assay systems. 

J3 binds to the viral envelope and prevents its interaction with the CD4 

receptor. By so doing J3 blocks the key interaction required for the 

formation of the virological synapse and hence should block HIV-1 cell-

to-cell spread (McCoy et al., 2012, McCoy, 2014). Also this mechanism 

of inhibition differs from that of PIs and RTIs, which do not disrupt 

formation of the VS but rather affect later steps in the virus replication 

cycle notably entry and post entry steps for PIs (Craig et al., 1991, 

Wensing et al., 2010, Rabi et al., 2013) and reverse transcription for RTIs 

(Cihlar and Ray, 2010, de Bethune, 2010). For the experiments with J3, 

the donor cells were incubated with VHH for 1h before co-culturing 

with target cells. Surprisingly, in contrast to the PIs and the RTIs, VHH J3 

potently blocked cell-to-cell infection across a range of concentrations 

in the luciferase assay system (Figure 2A) and qPCR assay system 

(Figure 2B and C). This suggests that in the luciferase-based assay Tat-

driven reporter gene expression that is observed in PI and RTI-treated 

co-cultures may be occurring in the absence of true cell-to-cell 

infection of these cells.  
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Figure 3-2: A Llama derived VHH J3 potently inhibits cell-to-cell spread of HIV-1 in a Luciferase 
based assay system and a qPCR-based assay system. Infected donor cells were co-cultured 
with target cells in the presence of the VHH J3. Following a 24h incubation, cell-to-cell infection 
was quantified by measuring luciferase expression and also by qPCR detection of HIV-1 pol 
DNA copies (A) J3 potently blocks cell-to-cell HIV-1 spread across a range of concentrations. A 
representative experiment is shown. Dotted line represents actual data points while bold line 
represents the non-linear regression curve fit, (B) and (C) J3 potently inhibits cell-to-cell spread 
of HIV-1 across a range of concentrations in the qPCR-based assay system. In (B) co-cultures 
were done in the presence of a titration of J3 VHH and in (C) co-cultures where treated with 
8µg/ml of J3 and cell-to-cell infection measured by qPCR detection of HIV-1 pol transcripts at 
different time-points and compared to untreated co-cultures. A representative experiment is 
shown. Error bars represent the standard deviation of the mean of triplicates. Two-way ANOVA 
with Bonferonni post-test was applied for comparisons. ****p<0.0001, ***p<0.001, ns=not 
significant. UT= untreated.  
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Based on these results, I hypothesised that HIV-1 Tat protein secreted 

from infected donor cells into the co-culture could drive reporter gene 

expression in target cells.  To test this hypothesis, donor cells were co-

cultured with target cells in the presence of a Cmax of LPV and a serial 

dilution of an anti-HIV-1 Tat specific monoclonal antibody. This anti-Tat 

antibody specifically binds HIV-1 Tat protein, and should bind to free 

Tat protein secreted by the donor cells into the co-culture medium. I 

anticipated that if free Tat secreted by donor cells was causing 

reporter gene expression in the target cells in the absence of infection, 

then the presence of an anti-Tat antibody in the culture medium would 

reduce free Tat and hence the luciferase signal. After 24h incubation 

the cells were lysed and luciferase expression measured as previously 

described. There was a significant reduction (but not complete 

suppression) of luciferase expression in the co-cultures treated with the 

highest concentration (50µg/ml) of the anti-Tat antibody possible in our 

assay (Figure 3.3). Treating co-cultures with either LPV, the antibody 

diluent (PBS) or an irrelevant antibody isotype control, had no effect on 

the luciferase signal measured (Figure 3.3). 
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Figure 3-3:An Anti-tat antibody reduces the luciferase signal in co-cultures treated with Cmax 

LPV in the Luciferase assay system. Co-cultures of donor cells and target cells were treated with 
Cmax of LPV (12µM) and a titration of an HIV-1 anti-Tat antibody. In the presence of 50µg/ml of 
anti-Tat antibody, the luciferase signal detected in the co-cultures was significantly reduced.  
In co-cultures treated with Cmax LPV, PBS or a titration of IgG Isotype control + LPV Cmax or left 
untreated the levels of luciferase activity detected in the co-cultures was not affected. A 
representative experiment is shown. Error bars represent the SD of the mean of duplicates. 
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3.2.2  Drug susceptibility of wild type and drug-
resistant viruses 

PI and RTI drug-resistant viruses are used for the experiments presented 

in the subsequent chapters of my thesis. These viruses were generated 

by site-directed mutagenesis of wild type NL4.3 HIV-1 gag and pol 

(protease and reverse transcriptase) (Figure3.4). After mutagenesis, the 

mutated fragments were sequenced to confirm that the desired 

mutation had been introduced (Figure 3.4). Three drug-resistant viruses 

were designed; the PI drug-resistant virus HIVDM has the V82A mutation 

in protease and the A431V mutation in gag, the NRTI resistant virus HIV-

1M184V that has the M184V mutation in reverse transcriptase and the 

NNRTI drug-resistant virus HIV-1K103N that has the K103N mutation in 

reverse transcriptase.  

 
Figure 3-4 Schematic of PI and RTI mutants showing point mutations introduced in Gag and Pol 
by site-directed mutagenesis. 
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Figure 3-5 Sequence alignments showing resistance mutations introduced by site-directed 
mutagenesis (SDM) compared to wild-type NL4.3 virus.  After SDM, the sequences of the 
mutated DNA fragments were aligned and compared to wild-type sequences to check for the 
presence of the desired mutation. All sequences were aligned using Sequencher®. The 
alignments show the RT drug-resistant mutants HIV-1M184V, and HIV-1K103N and the PI resistant 
mutant HIV-1DM. 
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The resistant phenotypes of these viruses compared to wild-type virus 

were verified in a drug susceptibility assay (Gupta et al., 2010) prior to 

testing these viruses in cell-to-cell infection assays. Briefly HEK293T were 

transfected with virus DNA and allowed to produce virus in the 

presence of a serial dilution of drug (PIs). The virus supernatant was 

harvested after 48 hours and used to infect HeLa TZM-bl cells. For 

susceptibility to RTIs the virus produced by transfection of HEK293T cells 

was used to infect HeLa TZM-bl cells in the presence of a serial dilution 

of the RTI drug. The infected HeLa TZM-bl were incubated for 48h then 

lysed with SteadyGlo® luciferase and luciferase activity measured on a 

GLOMAX® luminometer (a detailed description of the drug 

susceptibility assay is provided in the methods section).  

 

The PI drug-resistant virus HIV-1DM with a V82A mutation in protease and 

an A431V mutation in gag was 8.4 fold less susceptible to inhibition by 

LPV than HIV-1WT (Figure 3.6A and Table 3.1) but remained susceptible 

to DRV as expected (Figure 3.6B and Table 3.1). The NRTI drug-resistant 

mutant with an M184V mutation in reverse transcriptase (HIV-1M184V) 

remained susceptible to AZT as expected (Figure 3.6C and Table 3.1) 

and was 120 fold more resistant to 3TC compared to HIV-1WT (Figure 

3.6D and Table 3.1). The NNRTI drug-resistant mutant with a K103N 

mutation in reverse transcriptase (HIV-1K103N) was 28-fold less 

susceptible to inhibition by NVP (Figure 3.6E and Table 3.1) and 650-fold 

less susceptible to inhibition by EFV as expected (Figure 3.6F and Table 

3.1). 
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Figure 3-6: Drug susceptibility of drug-resistant viruses compared to wild-type virus: The drug 
susceptibility of the drug-resistant viruses was tested in a cell-free based HeLa TZM-bl drug 
susceptibility assay. The data were used to plot dose-response curves for the determination of 
IC50. The phenotypes of the viruses was confirmed in this assay and compared to wild-type 
virus  (A) HIV-1DM was 8.4 fold more resistant to LPV than HIV-1WT but was (B) equally susceptible 
to DRV as HIV-1WT. (C) HIV-1M184V was as expected susceptible to AZT but (D) 120 fold more 
resistant to 3TC than HIV-1WT. (E) HIV-1K103N was 28 fold more resistant to NVP than HIV-1WT, and 
was (F) 650 fold more resistant to EFV that HIV-1WT. The dotted lines represent actual data points 
while the bold lines represent the non-linear regression curve fit of the data in Prism® GraphPad 
software. The error bars represent the standard deviation of the mean and a representative 
experiment of two independent repeats is shown. 
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Table 3-1: Summary Table of IC50s of drug-resistant viruses compared to wild-type virus 

                           

             Drugs 

          

              IC50 (nM) 

 

   Fold-change in IC50 

      

       (p-value) 

PIs HIV-1WT HIV-1DM 

Lopinavir (LPV)         0.85     6.92                8.4      < 0.001 

Darunavir (DRV)         3.0     2.8                0.9        0.34 

NRTIs HIV-1WT HIV-1M184V   

Lamivudine (3TC)       84.6    10113              119.5      < 0.0001 

Zidovudine (AZT)       41.9     29.4                0.7         0.12 

NNRTIs HIV-1WT HIV-1K103N   

Nevirapine (NVP)      92.4     2605               28.2       < 0.0001 

EfavirenzEFV)        0.3    194.6               649      <  0.0001 

 

The IC50s were obtained from dose-response curves plotted using the drug susceptibility data.  
The IC50s of drug-resistant viruses were compared to the IC50 of wild-type virus using a paired 
student’s t-test in Prism® GraphPad software. 
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3.2.3  Wild-type and drug-resistant HIV-1 viruses 
spread efficiently from cell-to-cell 

After verifying and confirming the phenotype of the drug-resistant and 

wild type viruses, the qPCR assay described previously was used to 

assess the ability of these viruses to spread effectively by a cell-to-cell 

mechanism compared to a cell-free mechanism. Donor cells were 

infected with a standardised input of the virus being tested as 

previously described (MOI= 0.3-0.5).  The infected pre-washed donor 

cells were then co-cultured with uninfected target cells and incubated 

for 24h. Infection was quantified following incubation by qPCR 

detection of HIV-1 pol DNA. 

 

For HIV-1WT, cell-to-cell spread was 6 fold more efficient than its cell-free 

spread both using the luciferase based assay system (Figure 3.7A) and 

the qPCR-based assay system (Figure 3.7B). The same differences were 

observed with the drug-resistant viruses tested; cell-to-cell spread of 

HIV-1DM, HIV-1K103N and HIV-1M184V was 4-8 fold more efficient than their 

spread by a cell-free mechanism (Figure 3.7 C, D and E). Directly 

comparing cell-to-cell spread of the drug-resistant viruses to that of 

HIV-1WT showed that these viruses spread with a similar efficiency 

although subtle differences were noted for HIV-1M184V and HIV-1K103N, 

which were statistically more efficient spreading by a cell-to-cell 

mechanism when compared to HIV-1WT (Figure 3.7F). 
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Figure 3-7: Comparing cell-to-cell spread vs. cell-free spread of wild type and drug-resistant 
HIV-1 viruses.  Cell-to-cell spread of HIV-1WT was orders of magnitude more efficient than cell-
free spread of this virus both in a luciferase assay system (A) and in the qPCR-based assay 
system (B). Cell-to-cell spread of the PI and RTI resistant viruses HIV-1DM (C), HIV-1K103N (D) and 
(E) HIV-1M184V was orders of magnitude more efficient than cell-free spread of these viruses. (F) 
cell-to-cell spread of the drug-resistant viruses was broadly similar in efficiency compared to 
cell-to-cell spread of wild-type virus with  cell-to-cell spread of HIV-1K103N and HIV-1M184V being 
statistically more efficient when compared to cell-to-cell spread of HIV-1WT. A representative 
experiment of two independent repeats is shown. Error bars represent the standard deviation 
of the mean. Statistical comparison were done using a paired student t-est. **** p<0.0001, *** 
p<0.001, **p<0.01, ns= not significant 
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3.3  Discussion 
In this chapter, I compare two assay systems for studying the impact of 

drug inhibitors on HIV-1 cell-to-cell infection; a reporter gene assay 

using luciferase expression as a surrogate marker for HIV-1 infection 

and a qPCR based assay directly quantifying HIV-1 infection by 

detection of HIV-1 pol DNA. The aim of this comparison is to address 

existing controversy in the field brought about by conflicting results 

reported by two independent groups (Permanyer et al., 2012b, Sigal et 

al., 2011) and also, to determine the best and most accurate assay 

system to use in subsequent experiments presented in this thesis. Two 

groups have studied the effects of RTIs on cell-to-cell spread of HIV-1 

using direct and indirect methods to measure target cell infection and 

come to different conclusions on the effects of RTIs on this mode of 

virus spread. In the present study, my results show that in a luciferase 

expression assay, Tat-driven reporter gene expression in target cells can 

occur in the absence of true infection. Direct measures of infection 

such as qPCR detection of HIV-1 DNA transcripts are less ambiguous 

and thus preferable when assessing the effects of inhibitors on this 

mode of virus spread. 

 

 Tat-driven expression of reporter genes can occur in 
the absence of HIV-1 infection 

The HIV-1 tat gene is an important regulatory gene in the HIV-1 

genome. It encodes for the viral protein Tat. Tat is a potent 

transactivator protein, which greatly enhances the expression of virus 

genes through its interaction with the HIV-1 promoter regions contained 

within the HIV-1-LTR at the 5’ end of the integrated provirus (detailed in 

the background). This property of Tat has been exploited to produce 

cell-lines containing stably integrated reporter genes under the control 

of the HIV-1-LTR promoter.  When infected with HIV-1, Tat drives 

expression of the reporter gene contained in these cell-lines and their 
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expression provides a surrogate marker for productive HIV-1 infection. 

Assays based on this model are very useful in the field of HIV-1 research 

as they are usually high throughput, easy to perform and provide a 

quick way for measuring HIV-1 infection in target cells.  The conflicting 

results obtained when using this system to assess the effects of drug 

inhibitors on cell-to-cell spread of HIV-1 suggests that there are factors, 

which may limit the usefulness of reporter gene assays when studying 

HIV-1 cell-to-cell spread in the context of some inhibitors.  

 

While PIs and RTIs failed to inhibit reporter gene expression in the target 

cells of drug treated co-cultures (Figure 3.1 C and D), a Llama derived 

VHH HIV-1 neutralising antibody (J3) effectively suppressed luciferase 

expression in target cells in a dose dependent manner (Figure 3.2 A). J3 

achieves its potent and broad neutralisation effect by directly 

interacting with the CD4 binding site on the HIV-1 envelope and 

preventing viral attachment to the target cell (McCoy et al., 2012, 

McCoy, 2014). This antibody is able to inhibit cell-to-cell spread both in 

the luciferase based assay and in the qPCR based assay (Figure 3.2 B 

and C) and also efficiently blocks cell-free infection (McCoy et al., 

2012, McCoy, 2014). Several groups have shown that monoclonal 

antibodies that block CD4-Env interaction can block both cell-to-cell 

and cell-free HIV-1 infection (Chen et al., 2007, Jolly et al., 2004, Hubner 

et al., 2009, Jolly et al., 2007, Malbec et al., 2013, McCoy, 2014). The 

CD4-Env interaction is an important event in the formation of the 

virological synapse, which precedes actual cell-to-cell transfer of 

virions from the effector cell to a target cell. Blocking the attachment 

of viral Env to the CD4 receptor inhibits the formation of the VS and 

subsequent events leading to infection. The disruption of this interaction 

explains the potent inhibition of HIV-1 cell-to-cell infection by J3.  
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We hypothesised that Tat-driven reporter gene expression in target 

cells that occurred in the absence of infection, was the result of Tat 

secreted from infected donor cells into the co-culture, driving reporter 

gene expression in the target cells. To test this hypothesis, co-cultures 

were performed in the presence of the drug inhibitor (Cmax LPV) and a 

serial dilution of an anti-Tat antibody (Figure 3.3). The presence of the 

anti-Tat antibody significantly reduced the luciferase signal detected in 

co-cultures in a dose-dependent manner but did not abolish the signal. 

Several studies have previously shown that the extracellular form of HIV-

1 Tat released from infected cells is able to enter nearby target cells 

and induce its effect of gene transactivation (Ensoli et al., 1990, Ensoli 

et al., 1993, Zauli et al., 1995, Ferrari et al., 2003, Zheng et al., 2005, 

Romani et al., 2010, Debaisieux et al., 2012). This extracellular secretion 

of Tat may play an important role in sustaining a paracrine loop 

required for optimal HIV-1 LTR transactivation (Zauli et al., 1995, Romani 

et al., 2010). It is reasonable to suggest that the presence of an anti-Tat 

mAb in the co-culture may interfere with the paracrine activation loop 

by binding free extracellular Tat and as such reduce luciferase 

expression in target cells.   

 

Free extracellular Tat is probably not the only factor driving the 

expression of luciferase in the target cells in the absence of infection. 

We think this because in the presence of the highest concentration of 

anti-Tat antibody (50µg/ml) possible with the assay set-up, a luciferase 

signal is still detected in the target cells, treated with PI (LPV). This 

suggests that active secretion of Tat protein could also be occurring 

across the virological synapse (VS) from infected donor cells into the 

target cells. Virus transfer across the VS from donor cells to target cells is 

characteristically rapid and delivers a large dose of infectious virions 

into the target cells. If Tat secretion does occur across the VS, this may 

like virion transfer be very rapid and efficient and as such effectively 
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reduce the window available for complete neutralisation by an anti-

Tat specific antibody as observed in this study. Before the first 

descriptions of the retrovirus induced virological synapse (Jolly and 

Sattentau, 2004, Igakura et al., 2003), an early study by Helland et al. 

suggested that direct cell-to-cell contact between an infected Tat 

producing effector cell (Jurkat-tat) and a target cell encoding a 

reporter gene under the control of the HIV-LTR promoter greatly 

enhanced  transactivation  of the reporter gene in the target cells 

(Helland et al., 1991). Was this early report a possible hint at Tat 

secretion across the VS? In the formation of the virological synapse, 

viral proteins such as Gag have been shown to co-localise   to the 

point of contact between cells (Jolly and Sattentau, 2004, Jolly and 

Sattentau, 2005). It is conceivable that a viral protein like HIV-1 Tat will 

be able to hijack the synapse in a similar manner to mediate its 

function of inducing transactivation of gene expression in neighbouring 

target cells, although this has not been specifically investigated. This 

would explain why even though the anti-Tat mAb significantly reduced 

the luciferase signal probably by binding free extracellular Tat in the 

culture medium, it did not completely block transactivation of the 

reporter gene in the target cells.  

 

The potent inhibition of Tat-driven luciferase gene expression in the 

target cells of co-cultures treated with the NAb J3 strengthens the case 

for possible Tat secretion across the VS as a source of HIV-1 LTR 

transactivation in target cells. J3 blocks the interaction between CD4 

and Env and as such prevents formation of the VS. In the luciferase 

assay 2µg/ml of VHH NAb only suppresses luciferase expression by 50% 

(IC50) in target cells (Figure 3.2A). However this same dose of NAb 

completely suppresses the formation of de novo HIV-1 DNA in target 

cells measured by qPCR (Figure 3.2B).  This supports the reasoning that 

the luciferase signal that is measured in the reporter gene based assay 
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system is very likely a combination of activation from extracellular free 

Tat from donor cells, Tat secreted across the synapse and possibly 

productive infection of target cells. It is difficult to say which of these 

modes of Tat driven expression predominates in a given co-culture 

system but this would likely depend on other variables such as the cell 

type used in the assay, the percentage of infected donor cells in 

culture, chronicity of donor cell infection etc. Another possible source 

of Tat induced reporter gene expression in the absence of target cell 

infection could be from the fusion of donor cells with target cells in co-

culture. This is however unlikely as syncytium formation and cell-cell 

fusion are not commonly observed in T cell co-cultures of infected 

donor cells and target cells (Jolly et al., 2004) and it has been shown 

that the tetraspanin CD9 inhibits cell-cell fusion and syncytium 

formation at the VS  (Weng et al., 2009). 

 

In their work investigating the effects of RTIs on cell-cell spread of HIV-1, 

Permanyer et al. made similar observations on the occurrence of 

reporter gene expression in the absence of true infection of target cells 

in co-cultures (Permanyer et al., 2012b). They however did not propose 

a mechanism to explain these observations as we have done. My data 

show that high-level Tat-driven reporter gene expression can occur in 

the absence of true infection of target cells. Using Tat driven reporter 

gene expression as a measure of infection when studying cell-to-cell 

spread of HIV-1 would tend to overestimate true infection in target cells 

due to confounding sources of Tat driven reporter gene expression not 

related to target cell infection. This was probably the case in the study 

by Sigal et al. that found cell-to-cell spread of HIV-1 to be two orders of 

magnitude more resistant (>200 fold) to inhibition by RTIs than cell-free 

spread when using a Tat driven reporter gene expression assay system 

(Sigal et al., 2011). Their findings however are still noteworthy and 

relevant as they were also able to show this reduced susceptibility of 
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HIV-1 cell-to-cell infection to RTIs, using another surrogate marker of 

HIV-1 infection, which is independent of Tat (staining target cells for p24 

antigen). This suggests that the reduced susceptibility though possibly 

over estimated when measured using a Tat driven reporter gene assay 

system is still genuinely present. Although Permanyer et al. contested 

this by using direct qPCR detection of HIV-1 DNA when assessing the 

impact of RTIs on HIV-1 cell-to-cell infection, in their study they adjusted 

the virus input so that cell-free and cell-to-cell spread resulted in a 

similar percentage of GFP+ infected cells in the untreated condition 

(Permanyer et al., 2012b). Under these conditions, the RTIs were found 

to be equally potent at inhibiting both cell-to-cell and cell-free 

infection. Normalising the virus input in this way removes the 

quantitative effects of high-multiplicity infection mediated by cell-to-

cell spread and as such does not offer a true assessment of the effects 

of the inhibitor being studied on this mode of virus infection in 

comparison to cell-free infection.  

 

Reporter gene assays remain useful for rapid screening of some 

inhibitors when studying the mechanisms of HIV-1 infection. However, 

their use warrants caution due to the existence of confounding factors, 

which may cause an overestimation of productive infection in target 

cells. In the subsequent chapters of my thesis, I use the qPCR based 

cell-to-cell assay for all other studies presented. 

 

Drug susceptibility and cell-to-cell spread of HIV-1 
drug-resistant mutants 

The PI and RTI drug-resistant HIV-1 viruses that are used in the 

experiments presented in this thesis were all tested in a drug 

susceptibility assay (Gupta et al., 2010) to confirm that they displayed 

the expected phenotype. The PI resistant mutant HIV-1DM has a V82A 

mutation in protease and an A431V mutation in gag (at the NC/p1 
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cleavage site). The V82A mutation is a common major PI resistance 

mutation, which is rapidly selected in patients who receive antiretroviral 

therapy containing Indinavir or Lopinavir (Luca, 2006). The presence of 

V82A reduces the ability of the viral protease to bind to its substrate 

and imposes a fitness cost on the virus (Zhang et al., 1997, Kantor et al., 

2005). It decreases the susceptibility of the virus to inhibition by all PIs to 

variable degrees (low to high levels of resistance) except Darunavir 

(Clavel and Hance, 2004).  In the evolution of PI resistance the 

selection of the V82A mutation is rapidly followed by the selection of 

the A431V mutation in gag. A431V is located at the NC/p1 cleavage 

site and its presence causes a conformational change that allows the 

binding and effective cleavage of the substrate  (cleavage site) by the 

mutated protease containing the V82A (Dam et al., 2009). This gag 

mutation by itself is also capable of inducing a reduced susceptibility 

to PIs in vitro (Dam et al., 2009). In the drug susceptibility assay HIV-1DM 

was resistant to LPV but remained susceptible to DRV as expected 

(Figure 3.5 A and B).  

 

The NRTI resistant virus HIV-1M184V has the M184V mutation in reverse 

transcriptase. M184V emerges very rapidly in all patients receiving non-

suppressive therapy with Lamivudine (3TC) or Emtricitabine (FTC), 

reducing the virus susceptibility to these drugs by >100-fold (Eron et al., 

1995, Marcelin, 2006). The changes in RT induced by M184V increase 

the fidelity of RT for the natural dNTP substrate but reduces the 

processivity of the enzyme thus leading to a reduction of viral fitness 

(Marcelin, 2006).  In contrast the selection of this mutation increases the 

susceptibility of the virus to Stavudine, Tenofovir and Zidovudine. This 

phenotype was verified and confirmed in the drug susceptibility assay 

for Zidovudine and Lamivudine (Figure 3.3 C and D).  
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The NNRTI resistant mutant HIV-1K103N has the K103N mutation in reverse 

transcriptase. K103N is rapidly selected in 30-50% patients who receive 

non-suppressive antiretroviral therapy containing Nevirapine (NVP) or 

Efavirenz (EFV). This mutation is located in the hydrophobic NNRTI 

binding pocket of RT and reduces the affinity of the viral enzyme to 

these drugs (de Bethune, 2010). This mutation leads to high levels of 

resistance >50-fold to NVP and EFV (de Bethune, 2010) and this was 

confirmed in the drug susceptibility assay (Figure 3.3 E and F). The 

presence of this mutation does not negatively affect the replicative 

fitness of the virus. 

 

The PI and RTI drug-resistant HIV-1 viruses were all able to spread 

efficiently from cell-to-cell similarly to wild type virus (Figure 3.7 C, D, E). 

The ability of HIV-1 to mutate its genome into resistant variants capable 

of circumventing the effect of drugs provides one of the biggest 

challenges to the success of HAART. Drug-resistant mutant viruses have 

a replicative advantage over wild-type variants in the presence of 

antiretroviral drugs. They achieve this through diverse mechanisms, 

discussed in detail in the background section of this thesis. Whether 

these drug-resistant variants are also better or less well adapted to 

spread from cell-to-cell when compared to wild-type variants is an 

interesting question that warrants further investigation. For example if 

these viruses are inherently fitter during cell-to-cell spread, this could be 

a contributing factor for the selection of resistant viruses in infected 

patients. This could be tested by directly comparing cell-to-cell and 

cell-free spread of these resistant viruses in the absence of inhibitors 

using a direct output measure like the qPCR assay described in this 

chapter. Given the apparent benefits of a cell-to-cell mode of viral 

dissemination over cell-free spread, it is reasonable to imagine that 

some drug-resistant viruses could evolve to be spread more efficiently 

by this means, providing them with an additional mechanism by which 
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to persist in the presence of therapy. Although our results hint at the 

existence of possible differences in the efficiency of cell-to-cell spread 

of some resistant viruses (Figure 3.7 F), we have only assessed three 

drug-resistant variants, which considerably limits our ability to make any 

meaningful conclusions. It is however interesting that a resistance 

mutation such as HIV-1M184V which has been shown to have a reduced 

replicative capacity in cell-free assays (Diallo et al., 2003) spreads 

efficiently in our in-vitro cell-to-cell assay system. A similar observation 

has been recently made with the drug resistant virus K263R selected by 

the integrase inhibitor Dolutegravir, which though unfit in the context of 

cell-free is not compromised in cell-to-cell transmission (Bastarache et 

al., 2014). Additional work with a larger panel of drug-resistant mutants 

is needed to explore the mechanisms underlying the apparent 

differences in the efficiency of spread of drug resistant virus by cell-free 

and cell-to-cell mechanisms.  This however is not the focus of the work 

presented in this thesis. 
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4  Protease inhibitors effectively inhibit 
cell-to-cell spread of HIV-1 between T 
cells 

 

4.1 Introduction 
Despite advances in the clinical management of HIV-1 infection, 

finding an effective vaccine or a definitive cure for the disease 

continues to elude researchers. One of the main reasons for this is the 

ability of the virus to persist within the host in reservoirs and re-emerge 

when treatment is interrupted. It has been suggested that ongoing viral 

replication in patients receiving antiretroviral therapy may be a 

contributing factor to the maintenance of cellular reservoirs of the virus. 

This is however debated in the field, with evidence both in support of 

and against ongoing viral replication in the presence of antiretroviral 

agents. In favour of complete inhibition of viral replication with cART, 

patients who fully adhere to effective cART regimens do not show 

evidence of continuing viral evolution or treatment failure (Frenkel et 

al., 2003, Kieffer et al., 2004, Bailey et al., 2006, Kearney et al., 2014, 

Dinoso et al., 2009, McMahon et al., 2010, Gandhi et al., 2010). 

Nevertheless, some (but not all) treatment intensification studies with 

Raltegravir have demonstrated that there is an increase in episomal 

DNA and a reduction in the size of the viral reservoir when this agent is 

added to a triple therapy combination (Buzon et al., 2010, Yukl et al., 

2010, Vallejo et al., 2012, Llibre et al., 2012). Also, several studies have 

demonstrated that low level viral replication may occur in specific 

anatomical compartments despite suppression of plasma HIV-1 RNA 

(Gunthard et al., 1998, Ruiz et al., 1999, Martinez et al., 1999, Martinez et 

al., 2001, Benito et al., 2004, Chun et al., 2008, Shiu et al., 2009). These 
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studies suggest that there may be a degree of ongoing residual viral 

replication with cART. 

 

A study by Sigal et al. was the first to propose that cell-to-cell spread of 

HIV-1 may be a mechanism for such ongoing virus replication in the 

presence of antiretroviral therapy (Sigal et al., 2011). In this study the 

authors hypothesised that the high multiplicity of infection that typifies 

HIV-1 cell-to-cell dissemination, would increase the chance of at least 

one virus particle being able to stochastically escape inhibition by 

antiretroviral drugs and establish infection in target cells. They tested 

this hypothesis by assessing the impact of RTIs on cell-to-cell spread of 

HIV-1 in an in vitro assay system and showed that this mode of virus 

infection was less susceptible to inhibition by RTIs when compared to 

cell-free infection (Sigal et al., 2011). This report was challenged by 

another study in which the use of similar in vitro cell-to-cell assays 

showed RTIs to be equally effective against both cell-to-cell and cell-

free modes of virus dissemination (Permanyer et al., 2012b).  

 

The discrepancies between these two studies raise questions on the 

true impact that antiretroviral drugs have on HIV-1 cell-to-cell 

dissemination. Furthermore, because both studies restricted their 

analyses to RTIs, it remains unclear whether other classes of 

antiretroviral drugs vary in their ability to inhibit viral dissemination by a 

cell-to-cell mechanism. In this chapter the impact of Protease Inhibitors 

on cell-to-cell spread of HIV-1 in comparison to cell-free spread is 

studied using the qPCR-based in vitro assay evaluated in the previous 

chapter. This system is also used to reassess RTIs tested in afore 

mentioned studies for their relative efficacy against cell-to-cell vs. cell-

free HIV-1 infection and comparing their effects to that of PIs. The 

reasons for focusing on PIs are manifold; PIs are important components 

of cART regimens by virtue of their potency in inhibiting viral replication 
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and the high barrier that they present against the selection of drug-

resistant viruses (Wensing et al., 2010, Arts and Hazuda, 2012). This has 

led to PIs being the only class of antiretroviral drugs to be considered in 

clinical trials for use as monotherapy in the treatment of HIV-1 infection 

(Bierman et al., 2009, Perez-Valero and Arribas, 2011, Perez-Valero et 

al., 2011, Katlama et al., 2010, Arribas et al., 2010, Clumeck et al., 2011). 

Also, PIs are part of recommended first-line treatment options for HIV-1 

infected patients, and constitute the mainstay of second-line regimens 

for patients who fail first-line therapies (WHO, 2013, DHHS, 2014). In 

resource challenged settings PIs are mainly reserved for use in second-

line therapies when first-line RTI-based options fail. However in recent 

years, increasing prevalence of baseline drug resistance to RTIs in 

treatment naïve patients has led to wider use of PI-based therapies for 

initial treatments (Gupta et al., 2012, WHO, July 2012). This further 

highlights the importance of this drug class for the future of cART.  

 

While the exact mechanisms by which PIs exert their potent inhibitory 

effects in vivo are not completely understood, recent studies suggest 

that in addition to preventing cleavage of viral polyproteins into 

functional sub-units leading to the production of immature non-

infectious virions (Wensing et al., 2010), PIs also affect viral entry and 

post-entry steps in the replication cycle (Rabi et al., 2013).  Cell-to-cell 

spread of HIV-1 is characterised by the polarisation of virus assembly 

and budding towards the point of contact between the donor cell 

and the target cell (Jolly et al., 2004, Jolly and Sattentau, 2004, Jolly et 

al., 2007, Jolly and Sattentau, 2007). It is therefore plausible that the 

assembly and maturation of newly formed virions at the virological 

synapse, coupled with more rapid virus transfer could limit the 

efficiency of PIs in blocking cell-to-cell dissemination of the virus. The 

impact of PIs on this mode of virus dissemination however has not been 

investigated prior to the present study. 
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In order to complete the panel of drugs tested, the impact of integrase 

inhibitors on T cell-to-T cell spread of HIV-1 was also tested. Integrase 

inhibitors are the latest addition to the arsenal of FDA approved 

antiretroviral agents and now constitute a part of first-line therapies as 

well as salvage therapy regimens for treatment-experienced patients 

who fail on first-line and second-line treatment options. For this reason it 

is interesting to assess their effect on T cell -to-T cell spread of HIV-1. 

 

The results show that PIs are equally effective against both cell-to-cell 

and cell-free modes of HIV-1 dissemination. Also a PI-resistant mutant 

retains its resistant profile during cell-to-cell spread. By contrast, cell-to-

cell spread is less susceptible to inhibition by RTIs. We also note existing 

intra-class variability in the ability of RTIs to effectively block this mode 

of virus dissemination, with NRTIs having much reduced potencies in 

comparison to NNRTIs against cell-to-cell infection. Lastly the results 

provide evidence that INIs are effective inhibitors of both cell-to-cell 

and cell-free spread of HIV-1 in T cells. These data suggest that if HIV-1 

cell-to-cell dissemination does indeed contribute to ongoing viral 

replication and the maintenance of reservoirs in treated patients, this 

will likely be drug class dependent.  

 

4.1.1 Specific objectives 

- To assess the impact of Protease Inhibitors on cell-to-cell vs. cell-free 

spread of HIV-1. 

- To assess the impact of Reverse Transcriptase Inhibitors on cell-to-cell 

vs. cell-free spread of HIV-1 and in comparison to PIs. 

- To assess cell-to-cell spread of PI and RTI drug-resistant mutants in the 

presence of these respective drug classes. 

- To assess the impact of Integrase Inhibitors on cell-to-cell spread of 

HIV-1. 
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4.2 Results 

4.2.1  Protease inhibitors effectively inhibit cell-to-
cell transfer of HIV-1 

To investigate the effect of PIs on cell-to-cell spread, the qPCR cell-to-

cell in vitro assay system that was assessed in the previous chapter was 

used. This assay has also been used and extensively validated in other 

studies of HIV-1 cell-to-cell spread (Jolly et al., 2007, Jolly et al., 2010, 

Casartelli et al., 2010). Briefly, infected donor cells (Jurkat T cells) 

untreated or pre-incubated with the PIs; Lopinavir (LPV) or Darunavir 

(DRV) for a maximum of 24h, were co-cultured with uninfected target T 

cells (Jurkat-1G5). The co-culture was incubated for 24h for 

experiments with a single time-point or for different durations (1h, 3h, 

6h, 12h), for time-course experiments. Cell-to-cell spread of HIV-1 was 

measured by qPCR, to quantify de novo HIV-1 DNA pol copies arising 

from reverse transcription in the newly infected T cell population. The 

data were expressed as a fold increase in HIV-1 pol DNA relative to the 

housekeeping gene Albumin. In this assay a synchronous population of 

HIV-1 infected donor cells, allows for the reliable measurement of virus 

infection in target cells mediated by cell-to-cell dissemination with little 

or no contribution from the less efficient cell-free mode of infection 

(Jolly et al., 2007). Furthermore, subtracting the pol signal at t = 0h 

(baseline) from all subsequent time points removes the HIV-1 pol DNA 

signal arising from integrated proviral DNA within the donor cell 

population.  

 

As expected, a time-dependent increase in the generation of HIV-1 pol 

DNA, indicative of cell-to-cell spread in the positive control (untreated 

co-cultures) was observed. In the co-cultures treated with the 

maximum plasma concentrations (Cmax) achievable in vivo of LPV 

(Figure 4.1A) or DRV (Figure 4.1B) (14µM and 12µM respectively), cell-to-
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cell spread was potently inhibited as evidenced by the absence of an 

increase in HIV-1pol DNA in these drug treated co-cultures.  

 

It is expected that inhibiting the synthesis of new HIV-1 pol transcripts by 

blocking cell-to-cell infection will have an effect on the appearance of 

episomal DNA forms such as 2 LTR circles.  This form of episomal DNA is 

frequently used as a marker for nuclear import, a step that precedes 

integration of proviral DNA into the host cell genome (Kalpana, 2008, 

Hazuda et al., 2000, Butler et al., 2001). After 24h incubation, 2 LTR 

circles were readily detected (635copies/100ng of DNA at 24h) in 

untreated co-cultures, however significantly fewer 2 LTR copies (p<0.05) 

were detected in co-cultures treated with PIs (<50 copies/100ng of 

DNA) (Figure 4.1C). Collectively, these results provide evidence that PIs 

are effective inhibitors of HIV-1 cell-to-cell infection between CD4+ T 

cells. 

 

To confirm the activity of the PIs tested on Gag maturation and to 

verify that there was no overall defect in virus budding affecting cell-

to-cell spread, a Western blot analysis of purified virus collected from 

PI–treated HIV-1 infected T cells was performed. Donor cells, which 

were treated with a Cmax of LPV or DRV displayed as expected a 

predominance of uncleaved p55Gag protein in virions, while in 

contrast untreated cell cultures or cell cultures treated with RTIs (Cmax of 

TFV=2µM or NVP=10µM) mainly generated virions with p24CA, 

indicating proper Protease mediated cleavage of Gag (Figure 4.1D). 
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Figure 4-1: Protease Inhibitors effectively block cell-to-cell spread of HIV-1.(A) Quantification of 
cell-to-cell spread of HIV-1 in the presence of Cmax LPV (14µM) and (B) Cmax of DRV (12µM). HIV-
1 infected Jurkat cells (donors) were pre-incubated with PI for 24h prior to co-culturing with 
target cells or co-cultured without pre-treatment with drugs. After co-culture, HIV-1 pol DNA 
was detected by qPCR. The data were normalised to the housekeeping gene Albumin and 
expressed as the fold increase in HIV DNA copy number over time relative to the baseline 
value at t=0h. Data show the mean of triplicates, error bars represent the standard deviation of 
the mean (SD). **** p<0.0001, ***p<0.001, ns: not significant, two-way ANOVA plus Bonferoni 
post-test applied for comparisons. (C) Reduced detection of 2 LTR circles following cell-to-cell 
spread of HIV-1 in the presence of LPV (14µM). After 24h co-culture of donor cells and target 
with or without LPV, 2 LTR circles were detected by qPCR. **p<0.05, unpaired student t-test. (D) 
Confirmation of PR Gag maturation defect in HIV-1. HIV-1+ donor cells incubated with PIs, RTIs 
or left untreated for 24 hours. Virus-containing supernatants were harvested, purified and equal 
volumes of virus were analysed by SDS-PAGE and Western blotting for HIV-1 Gag. 
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4.2.2  Protease inhibitors are equally effective at 
blocking both cell-free and cell-to-cell spread 
of HIV-1 

In order to determine the efficacy of PIs over a range of 

concentrations at inhibiting both cell-to-cell and cell-free modes of 

HIV-1 dissemination infected donor cells mixed with target cells were 

co-cultured in the presence of serial dilutions of LPV or DRV. Cell-to-cell 

spread was measured by qPCR detection of HIV-1 pol DNA after a 24h 

incubation period as previously described, and these data were used 

to plot dose-response curves from which 50% inhibitory concentrations 

(IC50s) for the drugs tested were calculated. For cell-free infections, 

HIV-1 infected donor cells were incubated alone and allowed to 

produce virus in the presence of a serial dilution of PIs. Culture 

supernatants containing cell-free virus were subsequently harvested 

and used to infect target cells. Following 24h incubation, infection of 

target cells was measured by qPCR detection of HIV-1 pol DNA as 

previously described.  

 

There were no significant differences in the IC50 of LPV (Figure 4.2A, 

Table 4.1) or DRV (Figure 4.2B, Table 4.1) for either cell-free infection 

(3.0nM and 2.5nM respectively) or cell-to-cell infection (2.9nM and 

2.8nM respectively), demonstrating that PIs are equally effective 

against these two modes of virus dissemination. In the original study by 

Sigal et al., which showed that cell-to-cell spread of HIV-1 had a 

reduced susceptibility to inhibition by RTIs, the high MOI associated with 

cell-to-cell HIV-1 dissemination was proposed as the reason for this 

reduced susceptibility (Sigal et al., 2011). High multiplicity of infection 

has also been linked to the reduced susceptibility of cell-to-cell 

infection to inhibition by some neutralising antibodies (Martin and 

Sattentau, 2009, Abela et al., 2012, Durham et al., 2012, Massanella et 

al., 2009, Chen et al., 2007). Based on this, the effect of varying the 
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multiplicity of infection on the ability of PIs to remain effective at 

blocking HIV-1 cell-to-cell infection was assessed. This was done by 

modifying the donor cell to target cell ratio in the co-cultures to 5:1 

compared to 1:5 that was used for the experiments previously 

described. Increasing the number of HIV-1 infected donor cells in the 

co-cultures led to a reduced ability of LPV to inhibit cell-to-cell infection 

when testing a drug concentration close to the IC50 (8nM). Increasing 

the concentration of LPV three-fold (24nM) restored the ability of the 

drug to effectively block cell-to-cell spread in the co-cultures with 

higher donor cell to target cell ratios (Figure 4.2C). It is worth noting that 

the concentration of LPV which effectively inhibited cell-to-cell spread 

in the co-cultures with increased number of donor cells and therefore 

effectively higher MOI, is still well below the minimum plasma 

concentration of the drug achievable in vivo in patients treated with 

LPV (Cmin=3µM).  This suggests that PIs likely remain potent against cell-

to-cell infections over a wide range of physiologically relevant drug 

concentrations. 

 

The PI resistant mutant HIV-1DM was assessed for its ability to spread 

from cell-to-cell in comparison to HIV-1WT virus in the presence of LPV 

(Figure 4.2D) and DRV (Figure 4.2E). This drug-resistant virus carries the 

V82A mutation in protease and the A431V mutation in gag. In the drug 

susceptibility assay HIV-1DM is 14-fold more resistant to inhibition by LPV 

and is susceptible to DRV (see Chapter 3). This virus maintained its 

resistant phenotype to LPV (Figure 4.2D) and remained susceptible to 

DRV as expected (Figure 4.2E) when spreading by a cell-to-cell 

mechanism. These data indicate that the observations on the effects 

of PIs on cell-to-cell spread of HIV-1 are not a function of the viruses 

tested but really a reflection of the effect of the drugs assessed in our 

assays. 
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Figure 4-2: Protease Inhibitors are equally effective at inhibiting both cell-to-cell and cell-free 
spread of HIV-1. (A) LPV and (B) DRV equally block both cell-free and cell-to-cell spread of HIV-
1. Infected donor cells were incubated with a serial dilution of the PIs for 24h prior to co-
culturing with uninfected target cells. HIV-1 pol DNA was measured by qPCR following co-
culture. For cell-free infections, virus supernatant collected from infected donor cells pre-
incubated with PIs was used to infect target cells. 24h after infection, qPCR was performed to 
detect HIV-1 pol DNA and expressed as a fold increase relative to the Albumin housekeeping 
gene. The error bars represent the standard deviation of the mean of triplicates and a 
representative experiment is shown. (C) Increasing the donor: target cell ratio in co-culture 
reduces the efficacy of LPV in blocking cell-to-cell infection. **** p<0.0001, *** p<0.001, ns: not 
significant, two-way ANOVA with Bonferoni post-test applied for comparisons. (D) A PI drug-
resistant mutant HIV-1DM maintains its resistant phenotype when spreading by a cell-to-cell 
mechanism, being less susceptible to inhibition by LPV than HIV-1wt and remains as expected 
(E) susceptible to inhibition by DRV as wild-type virus. 
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Table 4-1: Summary table showing IC50 of Protease Inhibitors; Lopinavir and Darunavir with cell-
to-cell and cell-free spread of HIV-1. 

                                   Protease Inhibitors 

                 Drugs                     Lopinavir                   Darunavir 

        Mode of Spread       C-C    C-F      C-C    C-F 

        Mean IC50 (nM)         2.9     3.0        2.8      2.5 

                  SEM         0.2     0.2        0.4      0.1 

                p-value                   0.7                   0.5 
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4.2.3  PIs effectively inhibit cell-to-cell spread of 
HIV-1 mediated by infected primary T cells 

The potency of PIs against cell-to-cell infection mediated by HIV-1 

infected primary T cells was also tested. For this, CD4+ T cells were 

purified from PBMCs obtained from healthy donors. These CD4+ T cells 

were then stimulated with PHA and IL2 and infected with HIV-1. The 

infected donor cells (CD4+ T cells) were pre-incubated with Cmax of LPV 

(14µM) and then co-cultured with uninfected target cells (Jurkat T 

cells). The co-culture was incubated for 24h after which cell-to-cell 

infection was measured by qPCR as previously described. With primary 

CD4+ T cells as donor cells, it was not possible to obtain the same level 

of infection as with T cell lines (i.e. >90% Gag positivity by flow 

cytometry), only 60% HIV-1 Gag positivity was achieved in infected 

primary CD4+ T cell cultures. For this reason an additional control of 

infected primary CD4+ cells alone without addition of target cells was 

included in the experiment set-up, to control for spreading infection in 

this donor cell population. No increase in HIV-1 pol DNA overtime was 

observed in the donors cells cultured alone, indicating that there is 

minimal spreading infection in the primary CD4+ T cell population 

(Figure 4.3). The PI LPV effectively inhibited cell-to-cell spread from 

infected CD4+ T cells to Jurkat T cells as shown by the absence of a 

time dependent increase in the number of HIV-1 pol DNA copies 

detected in the drug treated co-cultures when compared to the 

untreated co-cultures (Figure 4.3). 
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Figure 4-3: Protease Inhibitors block cell-to-cell transfer from HIV-1 infected primary T cells: HIV-1 
infected primary CD4+ T cells (donor cells) were incubated with LPV (14µM) for 24h and mixed 
with uninfected Jurkat cells (target cells). Cell-to-cell infection was measured by qPCR 
detection of HIV-1 pol DNA. A representative of two independent experiments performed with 
primary cells isolated from two different donors is shown. The data are the mean of triplicates 
and error bars represent the standard deviation of the mean. **** p<0.0001, *** p<0.001, a two-
way ANOVA with Bonferroni post-test was applied for comparisons. 
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4.2.4  Reverse Transcriptase Inhibitors are less 
effective inhibitors of HIV-1 cell-to-cell 
infection compared to cell-free infection 

In light of the conflicting reports on the impact of RTIs on cell-to-cell 

spread of HIV-1, the potency of RTIs against cell-to-cell spread was re-

assessed in this in vitro system and compared to the effects of PIs. To do 

this, co-cultures (infected donor cells mixed with uninfected target 

cells) and cell-free infection assays were performed in the presence of 

a serial dilution of RTIs; Zidovudine (AZT), Tenofovir (TFV), Lamivudine 

(3TC), Nevirapine (NVP), and Efavirenz (EFV). Infection was measured 

by qPCR detection of HIV-1 pol DNA as described earlier.  

 

These data were used to plot dose-response curves and determine the 

IC50s for both modes of virus spread with these drugs. The results 

showed that most of the RTIs tested though effective against cell-free 

infections displayed reduced potencies against cell-to-cell infection. 

AZT (Figure 4.4 A) and TFV (Figure 4.4 B) were the least effective of 

these drugs with cell-to-cell infection being >20-fold less susceptible to 

inhibition by AZT (Figure 4.4A) or >10-fold less susceptible to inhibition by 

TFV (Figure 4.4B) when compared to cell-free spread. 3TC had a 6-fold 

reduced potency (Figure 4.4C) and NVP a 4-fold reduced potency 

against cell-to-cell spread in comparison to cell-free spread (Figure 4.4 

D). The IC50s for cell-to-cell and cell-free infections are summarised on 

Table 4.2. Notably, EFV stood out in this drug class behaving in a similar 

fashion to PIs and displayed the same potency against both cell-to-cell 

and cell-free spread of HIV-1 (Figure 4.5E). 

 

The effect of varying the multiplicity of infection on the potency of the 

RTIs that showed a reduced effectiveness against cell-to-cell infection 

was also investigated. Reducing the virus input 10-fold by decreasing 

the number of infected donor cells used in the co-cultures significantly 
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improved the ability of TFV and AZT to inhibit cell-to-cell infection 

(Figure 4.4F), suggesting that high MOI associated with cell-to-cell 

spread may contribute to the poor inhibitory potential of RTIs. 

 

An NNRTI drug-resistant mutant HIV-1K103N (Figure 4.4G), which is 

resistant to inhibition by EFV and NVP and an NRTI drug-resistant mutant 

HIV-1M184V (Figure 4.4H), which is resistant to 3TC, maintained their 

resistant phenotypes when spreading by a cell-to-cell mechanism 

(Figure 4.4G and H). This indicates that the observations on the impact 

of the RTIs tested, on cell-to-cell spread of HIV-1, reflect the true effects 

of the drugs tested and are not a function of the viruses. 
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Figure 4-4:  Reverse Transcriptase Inhibitors are less effective inhibitors of cell-to-cell spread of 
HIV-1 compared to cell-free spread: Infected donor cells were co-cultured with uninfected 
target cells in the presence of a serial dilution of RTIs. (A) TFV, (B) AZT, (C) 3TC and (D) NVP 
displayed reduced potency in their ability to inhibit cell-to-cell infection in comparison to cell-
free infection. (E) EFV was equally effective at inhibiting both modes of virus spread. (F) 
Reducing the MOI by reducing the number of donor cells in the co-culture 10-fold restored the 
ability of an ineffective RTI, TFV to inhibit cell-to-cell spread of HIV-1. RTI mutants HIV-1K103N (G) 
and HIV-1M184V (H) maintain their resistance profile when spreading by a cell-to-cell mechanism. 
The data shown are a representative experiment from at least two independent repeats. Error 
bars represent the SD of the mean of triplicates. A two-way ANOVA with Bonferroni post-test 
was applied for group comparisons. **** p< 0.0001, *** p<0.001, ns = not significant 
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Table 4-2: Summary Table showing IC50s of Reverse transcriptase inhibitors for cell-to-cell and 
cell-free infection 

                                                         Reverse Transcriptase Inhibitors 

Drugs      AZT      TFV      3TC     NVP             EFV 

Mode of 

infection 

 C-C C-F  C-C C-F C-C C-F C-C  C-F C-C C-F 

IC50 >80µM 3.4µM >80µM 7.5µM 428nM 73nM 360nM 86nM 0.23nM 0.21nM 

SEM UD   0.3 UD   0.7      34   6.3    89.5 9.2    0.04  0.017 

p-value              UD             UD            0.001           0.03              0.62 

IC50s for NRTIs AZT, TFV, 3TC and NNRTIs NVP, EFV for cell-to-cell and cell-free infection are 
shown. UD= undetermined, SEM= standard error of the mean. C-F= cell-free, C-C = cell-cell. 
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4.2.5  Time of drug addition does not modify the 
effects of PIs and RTIs on HIV-1 cell-to-cell 
spread 

The effect of the time of drug addition in the assays on the potency of 

the drugs tested was also investigated. To test this for PIs, HIV-1 infected 

donor cells were mixed with uninfected target cells in the presence of 

LPV or DRV without prior pre-incubation of donors with the drug (time of 

addition, t=0h). We noted that the PIs LPV (Figure 4.5A) and DRV (Figure 

4.5B) remained effective against cell-to-cell infection regardless of the 

time of addition of the drugs i.e. either added at t=0h or with HIV-1 

infected donor cells pre-incubated with drug for 24h prior to co-

culturing with target cells as in the experiments previously described. A 

similar assessment was made for the RTIs with uninfected target cells 

pre-incubated with TFV (Figure 4.5C) or AZT (Figure 4.5D) for 24h prior to 

mixing with HIV-1 infected donor cells as opposed to adding the drug 

at t=0h. Infection was quantified by qPCR as previously described. 

Under these conditions we found that pre-incubating target cells with 

the RTIs as opposed to adding the drugs at the time of mixing the 

infected donor cells with the target cells, did not improve the ability of 

TFV (Figure 4.5C) and AZT (Figure 4.5D) to inhibit HIV-1 cell-to-cell 

spread. These data indicate that the effects of the tested antiretroviral 

agents on cell-to-cell spread of HIV-1 do not depend on the time of 

drug addition. 
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Figure 4-5: Time of drug addition does not modify the effects of PIs and RTIs on HIV-1 cell-to-cell 
spread. Infected donor cells were co-cultured with uninfected target cells in the presence of 
(A) LPV (14µM) and (B) DRV (12µM) without pre-incubation of the donor cells with the drug 
(time of drug addition t=0h). HIV-1 pol DNA was directed by qPCR for different time-points 
following co-culture. The data shown represent the mean of triplicates and the error bars are 
the standard deviation of the mean. For RTIs, uninfected target cells were pre-incubated with 
(C) TFV (2µM) or (D) AZT (10µM) for 24h prior to co-culture with infected donor cells. HIV-1 pol 
DNA was detected as previously described for different time-points following co-culture of 
donor and target cells and expressed as a fold increase relative to the Albumin housekeeping 
gene. Data show the mean of triplicates, error bars represent the SD of the mean. Comparisons 
were made using a two-way ANOVA with a Bonferroni post-test  **** p< 0.0001, ***p<0.001, ns: 
not significant. 



Exploring the Impact of Antiretroviral Drugs on the Cell-to-Cell Spread of HIV-1 
 

Chapter Four – Protease inhibitors effectively inhibit cell-to-cell spread of HIV-1 between T 
cells 173 

4.2.6  Integrase inhibitors effectively inhibit cell-to-
cell spread of HIV-1 between T cells 

Although the main focus of the work presented in this chapter is the 

impact of Protease Inhibitors on cell-to-cell spread of HIV-1, while 

completing this thesis Duncan et al. published a study assessing the 

impact of antiretroviral drugs on macrophage-to-T cell spread of HIV-1 

(Duncan et.al, 2013). They studied the effects of RTIs and also Integrase 

Inhibitors (INIs) on this mode of virus dissemination. Given that the 

impact of INIs on T cell-to-T cell spread of HIV-1 has not been previously 

studied, to complete the panel of the drugs classes tested (RTIs and 

PIs); the impact of Raltegravir on cell-to-cell spread was tested. In the 

absence of a sufficiently accurate integrated DNA qPCR assay in our 

lab, a rapid assay using the quantification of p24 antigen in culture 

supernatants as a measure of infection was designed to explore the 

effects of the INI, Raltegravir (RAL) on T cell-to- T cell spread of HIV-1. 

 

For cell-to-cell infections, 2x105 infected donor cells (Jurkat T cells) were 

mixed with 8x105 target cells in the presence of the Cmax of Raltegravir 

(6µM). Co-cultures without Raltegravir and cultures of donor cells alone 

were included in control wells.  Culture supernatants were collected at 

4, 7 and 10 days after co-culture, for the detection of p24 antigen by 

ELISA. For cell-free infections, cultures were performed on 24well plates 

with 3µM transwells to separate donor cell and target cell populations. 

The transwells allow full diffusion of virus but not migration of cells. The 

infected donor cells were suspended in the culture medium and 

placed in the top well, while the uninfected cells were placed in the 

bottom well. Target cells were treated with Raltegravir Cmax (6µM), or 

left untreated. Supernatants were collected from the target cells at 4, 7 

and 10 days, for detection of p24 antigen by ELISA.  
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In the presence of INIs we expected to see an increase in non-

integrated forms of viral DNA resulting from the block to integration. 

Detection of 2 LTR circles can be used as an indirect measure for 

assessing the effect of INIs (Hazuda et al., 2000, Butler et al., 2001). It is 

expected that 2 LTR circles would increase in the presence of INIs 

relative to untreated controls because blocking integration provides 

more substrate for the ligation to form 2 LTR circles (Hazuda et al., 

2000). Cell-free and cell-to-cell infections in the presence of a serial 

dilution of Raltegravir were performed and generation of 2 LTR circles 

after 24h incubation detected by qPCR. More 2 LTR circles were 

generated in cell-to-cell co-cultures (Figure 4.6A) treated with 

Raltegravir, compared to cell-free infected cultures after 24h (Figure 

4.6B) indicating that Raltegravir is indeed blocking integration in both 

modes virus infection. In addition, the increased absolute number of 2 

LTRs detected in the cell-cell condition compared to cell-free likely 

represents the increase in viral transmission associated with cell-cell 

spread. In the p24 ELISA based assay, there was an increase in the 

amount of p24 antigen in untreated co-cultures over time, whereas in 

the Raltegravir treated co-cultures there was no increase in p24 

antigen over time (Figure 4.6D). This was also true for cell-free infections 

(Figure 4.6E). This shows that Raltegravir effectively blocks both cell-free 

infection as well as cell-to-cell infection in co-cultures. This rapid assay 

was less adaptable for testing drug titrations needed to determine 

IC50s of Raltegravir for cell-to-cell and cell-free modes of infection 

compared to the qPCR-based assay used for testing RTIs and PIs. For 

this reason the IC50s of Raltegravir with the two modes of infection was 

not determined. 
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Figure 4-6: Integrase Inhibitors effectively inhibit cell-to-cell and cell-free spread of HIV-1 (A) 
More 2 LTR circles are generated in co-cultures of donor cells and target cells in the presence 
of a serial dilution of Raltegravir (RAL) in comparison to (B) target cells infected with cell-free 
virus in the presence of a serial dilution of RAL. 2 LTR circles were detected by qPCR. A 
representative experiment is shown, data represent the mean of triplicates and error bars are 
the SD of the mean.  Graphs (A) and (B) are combined on one figure in (C), directly comparing 
cell-cell and cell-free infection.  Raltegravir effectively inhibits cell-to-cell (D) and cell-free 
spread (E) of HIV-1. For cell-to-cell infections, infected donor cells were co-cultured with 
uninfected donors cells in the presence of a Cmax of RAL, including untreated co-culture and 
donor cells only controls.  p24 antigen in the culture supernatant was detected at 4, 7 and 10 
days following co-culture. For cell-free infection donor and target cell population were 
separated by a 3µM transwell, which allows free diffusion of virus but prevents migration of cells.  
Untreated controls and donor cell only controls were included and p24 antigen detected in 
the target cell supernatant at 4, 7 and 10 days. One representative experiment is shown. The 
data represent the mean of duplicates and the error bars are the SD of the mean. A two-way 
ANOVA with Bonferroni post- test was applied for comparisons. **** p<0.0001, ***p<0.001 
,**p<0.01. 
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4.3 Discussion 
In this chapter, the impact of PIs and to a lesser extent INIs on T cell-to-T 

cell spread of HIV-1 is investigated. The results presented demonstrate 

for the first time that PIs and INIs are potent inhibitors of HIV-1 cell-to-cell 

infection between T cells. In contrast we show that RTIs (AZT, TFV, 3TC 

and NVP) are less effective inhibitors of HIV-1 cell-to-cell spread in 

comparison to cell-free spread, with the exception of EFV, which like 

the PIs is equally potent against both modes of virus dissemination. 

Among the RTIs tested, AZT and TFV exhibit the greatest reduction in 

potency against cell-to-cell infection. In fact, for these drugs, doses 

exceeding the Cmax 20-fold fail to inhibit cell-to-cell infection below 50% 

levels in co-culture. PI and RTI drug-resistant viruses maintain their 

resistant phenotypes when spreading by a cell-to-cell mechanism, 

indicating that the observations are not a function of the viruses tested 

but rather provide a true reflection of the effects of PIs and RTIs on the 

modes of virus dissemination studied.  

 

The difference in the potency of PIs and RTIs against cell-to-cell spread 

of HIV-1 is likely linked to the time window during which these drugs 

have to act, their biological functions and the multiplicity of infection 

that is a function of the mode of virus dissemination. PIs exert a wide 

range of biological effects, which likely account for their potency 

against HIV-1 dissemination. These drugs inhibit the cleavage of virus 

polyproteins into functional sub-units, an essential step required for the 

production of mature infectious virus (Wensing et al., 2010). Exposure to 

PIs therefore results in the generation of a pool of immature non-

infectious virions and essentially reduces the multiplicity of infection 

regardless of whether these immature non-infectious virions spread 

from cell-to-cell across a virological synapse or by a cell-free diffusion. 

This may explain why PIs are equally effective against both cell-to-cell 

and cell-free modes of virus dissemination. This is supported by the 
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similar IC50 values for these drugs obtained with either mode of virus 

dissemination (Table 4.1). 

 

One of the defining features of HIV-1 cell-to-cell spread is its high 

multiplicity of infection. This is the result of polarised virus budding at the 

VS, co-clustering of viral proteins and cellular receptors required for 

virus entry, and the close proximity between the infected donor cell 

and the target cell, all contributing to eliminate the need for prolonged 

virus diffusion (Jolly et al., 2004, Sourisseau et al., 2007, Hubner et al., 

2009, Martin and Sattentau, 2009, Jolly et al., 2011, Duncan et.al, 2013). 

RTIs exert their inhibitory effects by blocking reverse transcription, a 

post-entry step in the replication cycle of the virus. When HIV-1 cell-to-

cell infection is considered in the presence of RTIs, these drugs are 

faced with inhibiting a larger pool on incoming infectious virus particles. 

This may lead to RTIs becoming more easily saturated and tipping the 

scale in favour of the virus. As a result, infection of the target cell is 

more likely to occur, even in the presence of the RTI drug. This may 

explain why RTIs are less effective inhibitors of cell-to-cell spread 

compared to cell-free spread of the virus, which has a lower multiplicity 

of infection. In support of this proposition, when the multiplicity of 

infection in the assay was reduced by decreasing the number of 

infected donor cells in RTI treated co-cultures 10-fold, TFV regained 

potency to some degree against cell-to-cell spread of HIV-1 (Figure 

4.4F). The reverse was also true, with the highly efficient PIs losing some 

of their potency when the multiplicity of infection was increased by 

raising the number of infected donor cells in the co-cultures treated 

with LPV (Figure 4.2C). The results confirm reports by other groups on 

the impact of RTIs on cell-to-cell spread of HIV-1 and role of MOI as a 

factor affecting drug potency (Sigal et al., 2011, Duncan et.al, 2013). 

Sigal et al. found greater fold differences in the reduced potency of 

RTIs against cell-to-cell infection compared to cell-free infection than 
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this study. However in their assays they used indirect measures of viral 

infection to quantify cell-to-cell and cell-free infection (p24 antigen 

detection and Tat-driven luciferase expression), likely leading to an 

overestimation of the effect. In this study infection has been measured 

by direct quantification of HIV-1 pol DNA, a better reflection of true 

infection than indirect methods. A detailed comparison of the methods 

for studying the effects of antiretroviral drugs on the modes of HIV-1 

infection is provided in Chapter 3 of this thesis. In addition to their 

effects on blocking virus maturation, PIs also affect effective virus entry 

as well as post-entry steps in the virus replication cycle, notably reverse 

transcription and integration (Rabi et al., 2013). The ability of PIs to 

target multiple steps in the replication cycle of the virus probably also 

contributes to their superior potency against cell-to-cell infection in 

comparison to RTIs, which only target a single step in the virus 

replication cycle. 

 

To confirm the potency of PIs in blocking cell-to-cell spread, nuclear 

entry in the presence of PIs was indirectly assessed by quantifying 2 LTR 

circles in co-cultures treated with PIs. Following 24h of co-culture in the 

presence of PIs, virtually no 2 LTR circles were detected compared to 

the untreated co-cultures in which 2 LTR circles were readily detected 

(Figure 4.1C). 2 LTR circles are non-functional forms of intracellular HIV-1 

DNA, however they can serve as surrogate markers for the nuclear 

import of viral DNA as well as indicators for the completion of reverse 

transcription (Kalpana, 2008). In the presence of PIs, the earlier steps of 

HIV-1 replication leading to the formation of proviral DNA are blocked 

hence effectively reducing the substrate needed for the formation of 2 

LTR circles. The potency of PIs in blocking cell-to-cell spread of HIV-1 

was unchanged when primary CD4+ T cells were used as donor cells in 

the co-culture assay (Figure 4.3C) indicating that the observations are 

not affected by or dependent on the cell types mediating cell-to-cell 
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spread of HIV-1. This also shows that T cell lines provide a reliable model 

for studying the effect of inhibitors on cell-to-cell infection between T 

cells. 

 

As mentioned earlier it was interesting to observe that unlike the other 

members of the RTI class tested, EFV, like the PIs, was equally potent 

against both cell-to-cell and cell-free spread of HIV-1 (Figure 4.4E). EFV 

is a member of the NNRTI sub-class and exerts its inhibitory effect by 

binding to a hydrophobic pocket near the active site of RT, thus 

preventing the efficient movement of the enzyme in carrying out its 

function of reverse transcription (de Bethune, 2010). This drug has the 

pharmacologic property of being an effective inhibitor of HIV-1 

replication at very low drug concentrations its in vitro IC90 ranging 

between 1.7-25nM (www.hiv-druginteractions.org, 2011a). This is well 

below the minimum plasma concentrations of the drug achieved in 

vivo (Cmin= 5.6µM). This suggests that EFV might be inherently less easily 

saturated when compared to other members of the RTI drug class 

since a very small dose of the drug is capable of exerting a very potent 

inhibitory effect against virus dissemination. It is worth noting that 

potency in blocking HIV-1 infection at relatively lower drug 

concentrations is a feature EFV shares with the highly effective PIs 

discussed above and with INIs as well (www.hiv-druginteractions.org, 

2011b, www.hiv-druginteractions.org, 2011c). Furthermore compared 

to the first generation NNRTIs Nevirapine and Delaviridine, the greater 

potency of EFV has been attributed to its much greater binding affinity 

for HIV-1 RT (Kd EFV= 0.63+/- 0.34, Kd NVP= 1550 +/- 441), this may also 

explain the effectiveness of this drug against HIV-1 cell-to-cell infection 

(Geitmann et al., 2006, Sluis-Cremer and Tachedjian, 2008). 

 

Permanyer et.al reported contrasting findings to our observations and 

those of Sigal et al., reporting that RTIs were equally effective against 
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both modes of virus infection (Permanyer et al., 2012b). However in 

their study they adjusted the virus input such that both cell-to-cell and 

cell-free spread gave rise to a similar percentage of infected cells 

(GFP+ cells) in the untreated state. Normalising the input of virus in this 

manner removes the higher multiplicity of infection mediated by cell-

to-cell spread as a factor affecting the potency of the drugs tested. 

This as a consequence does not provide a true comparison of cell-to-

cell and cell-free modes of virus dissemination. Mechanistically the 

steps of viral infection are the same for both modes of infection i.e. 

virus budding, attachment and entry. The main difference however is 

that cell-to-cell infection compared to cell-free infection occurs over a 

shorter distance with virus budding and attachment occurring in the 

synaptic space where virus proteins and cellular receptors are 

concentrated. This allows rapid and efficient transfer of more virions (a 

high MOI) from the effector cell to the target cell. In the present study, 

the virus input was not adjusted to achieve the same level of infection 

for both cell-to-cell and cell-free mode of virus infection. Therefore the 

quantitative properties of cell-to-cell spread were fully considered in 

comparing the effect of antiretroviral drugs on the two modes of virus 

dissemination.   

 

The effect of Raltegravir on cell-to-cell and cell-free spread of HIV-1 

was also investigated to complete the panel of drug tested. The results 

show that this drug is effective against both modes of infection and 

suppresses the production of p24 antigen in cultures infected by either 

a cell-to-cell or a cell-free mechanism. The experimental approach, 

using quantification of p24 antigen in culture supernatants to measure 

infection limits determination of IC50s. This assay is more difficult to 

adapt for the drug titrations needed for the calculation of IC50s, 

compared to the qPCR-based assay applied for testing PIs and RTIs. It is 

therefore impossible to comment with certainty on the relative potency 



Exploring the Impact of Antiretroviral Drugs on the Cell-to-Cell Spread of HIV-1 
 

Chapter Four – Protease inhibitors effectively inhibit cell-to-cell spread of HIV-1 between T 
cells 181 

of INIs against to cell-to-cell infection when compared to cell-free 

infection based on my results. 

 

INIs specifically target the viral integrase enzyme and prevent the 

integration of the proviral DNA into the host cell genome (Hazuda et 

al., 2000). The qPCR assay used to assess the effects of PIs and RTIs on 

cell-to-cell spread specifically detects HIV-1 pol DNA, because INIs act 

downstream of reverse transcription, HIV-1 pol DNA will still be detected 

in co-cultures treated with INIs regardless of a block to integration. This 

assay is consequently not appropriate for assessing the effect of INIs. 

Measuring 2 LTR circles is an indirect way of assessing the effect of INIs 

because an accumulation of episomal DNA is expected when nuclear 

entry and integration are blocked (Butler et al., 2001, Hazuda et al., 

2000). This was verified by performing cell-to-cell and cell-free infections 

in the presence of a serial dilution of Raltegravir. As expected, more 2 

LTR circles were detected in drug treated cultures regardless of the 

mode of infection, in comparison to untreated cultures (Figure 4.6A 

and Figure 4.6B). Significantly more 2 LTR circles were generated for 

cell-to-cell infections compared to cell-free infection in the presence of 

Raltegravir, probably reflecting the greater efficiency and higher 

multiplicity of the former mode of infection (Figure 4.6C). This indirect 

measure could however not be used to plot dose-response curves to 

calculate IC50s because of its limited accuracy.  

 

Alternatively, the ideal direct parameter for assessing the effect of INIs 

is measuring integrated DNA by qPCR assays such as Alu-PCR. Such an 

assay could provide a yes or no answer with regards to the potency of 

INIs against cell-to-cell spread of HIV-1 (which we had already 

obtained through the p24 ELISA based assay). Nevertheless due to the 

heterogenous nature of HIV-1 integration sites within the host genome, 

the available assays for measuring DNA integration lack the precision 
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required for generating reliable dose-response curves for INIs to 

estimate IC50s. A possible approach to overcome this challenge could 

be using a luciferase reporter infectious molecular clone of HIV-1 for 

infection assays and separating pre-labelled donor cell and target cell 

populations by FACS following infection. With this set-up, target cell 

infection could be determined by measuring luciferase activity and 

these data used to plot dose-response curves. Unfortunately the 

biosafety level three laboratories where this study was carried out did 

not have a FACS sorting facility within it, limiting our ability to use this 

approach. The results obtained with the p24 ELISA based assay 

nonetheless agree with the findings of Duncan et al. They found that 

Raltegravir was effective against Macrophage-to-T cell HIV-1 infection 

as well as cell-free infection, with a similar potency for both modes of 

infection (Duncan et.al, 2013). The effects of drugs on the different 

modes of virus dissemination so far appear to be mainly dependent on 

the multiplicity of infection and independent of the cell-type used or 

type of virus tested. This allows us to speculate that INIs, which like PIs 

and EFV potently inhibit HIV-1 infection at very low concentrations of 

the drugs (www.hiv-druginteractions.org, 2011c), are likely to be less 

easily saturated even with high virus multiplicity. As such they should be 

expected to exhibit similar potencies against both cell-to-cell and cell-

free spread of HIV-1, but this remains to be formally tested. 

 

Cell-to-cell transmission takes advantage of interactions between 

immune cells allowing for effective delivery of virus from an infected 

cell to a target cell. Such interactions are likely to occur predominantly 

in lymphoid tissues where there is an abundance of target T cells and in 

anatomical sanctuary sites where close physical contact between cells 

is more likely (Sewald et al., 2012, Murooka et al., 2012).  These sites 

have also been shown to have low penetration of antiretroviral drugs 

(Fletcher et al., 2014). Under these conditions it is feasible to speculate 
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that the high multiplicity of cell-to-cell spread combined with its 

reduced susceptibility to some antiretroviral drugs could indeed 

contribute to viral replication during ART (Fletcher et al., 2014, Sigal et 

al., 2011, Sigal and Baltimore, 2012). Although the studies assessing viral 

replication in treated patients have provided conflicting results till date, 

these studies have mainly relied on measuring plasma viraemia to 

assess ongoing infection (Frenkel et al., 2003, Kieffer et al., 2004, Bailey 

et al., 2006, Dinoso et al., 2009, McMahon et al., 2010, Buzon et al., 

2010, Vallejo et al., 2012, Yilmaz et al., 2010). With the development of 

new techniques enabling intravital imaging of cell-to-cell contacts 

(Sewald et al., 2012, Murooka et al., 2012) and in light of the data 

presented in this thesis, it would be interesting to revisit the question in 

future clinical studies, this time sampling sanctuary sites in treated 

patients. This could help provide a clearer answer for the role of cell-to-

cell spread of HIV-1 in the context of antiretroviral therapy in vivo. 

 

Here were have assessed the effect of single drugs on cell-to-cell 

spread of HIV-1. However for the treatment of HIV infection 

antiretroviral drugs are administered in combination and are effective 

in stopping disease progression. It is therefore interesting to expand this 

study by exploring the impact of ART combinations on both cell-to-cell 

and cell-free spread of HIV-1, a question that is addressed in the next 

chapter of this thesis.  
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5 Impact of combination ART on cell-to-
cell spread of wild-type and drug-
resistant HIV-1 

 

5.1 Introduction 
The results presented in the previous chapter show that commonly 

used antiretroviral agents (PIs, INIs and RTIs) have variable effects on 

their ability to inhibit cell-to-cell spread of HIV-1 (Titanji et al., 2013). 

While PIs are equally effective at inhibiting both cell-to-cell and cell-

free spread of the virus (Titanji et al., 2013), RTIs especially those of the 

NRTIs class, have a significantly reduced efficiency against HIV-1 cell-

to-cell spread in comparison to cell-free spread (Sigal et al., 2011, 

Duncan et.al, 2013, Titanji et al., 2013). The data also suggest that the 

reduced efficiency of RTIs is likely a consequence of the high 

multiplicity of infection, characteristic of cell-to-cell infection, 

confirming the findings of other groups (Duncan et.al, 2013, Sigal et al., 

2011).  

 

The significance of the variable effects of single agents (monotherapy) 

on cell-to-cell spread of HIV-1 in vitro may appear paradoxical when 

considered in a clinical context.  This is because antiretroviral drugs are 

prescribed in combination and these effectively suppress viral 

replication in treated patients in vivo, improving their survival and 

clinical outcomes (Perelson et al., 1997, Gulick et al., 1997, Walensky et 

al., 2006, Hammer et al., 1997, Arts and Hazuda, 2012). The success of 

cART is mainly attributed to the fact that combining drugs directed at 

two or more distinct molecular targets inhibits viral replication more 

effectively. Also it allows for beneficial interactions (addition and 

synergism) between the single agents in the combination, increasing 
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the overall potency of the drugs (Arts and Hazuda, 2012). This 

enhanced potency raises the barrier for the selection of drug-resistant 

forms of the virus capable of causing treatment failure (Perelson et al., 

1997, Gulick et al., 1997, Arts and Hazuda, 2012).  

 

The concept of drug synergy is complex but generally refers to the 

combination of multiple drugs producing a much greater effect than 

the simple arithmetic summation of the effects of the individual agents 

in the combination (Chou, 2006). Synergy has been clearly 

demonstrated in vitro between the two sub-classes of RTIs (NRTIs and 

NNRTIs) (Feng et al., 2009, Kulkarni et al., 2014, King et al., 2002), within 

the NRTI class (King et al., 2002, Feng et al., 2009), within the NNRTI class 

(Kollmann et al., 2001), and between PIs and RTIs (King et al., 2002, 

Beale and Robinson, 2000, Drusano et al., 1998, Deminie et al., 1996).  

Among the approved antiretroviral drug combinations, RTI-based 

combinations consisting of 2NRTIs + 1NNRTI are the oldest and most 

extensively studied. Clinical trials that have directly compared RTI- 

based combinations to PI-based combinations have reported that 

these combinations are equally effective at suppressing virus 

replication (Daar et al., 2011, DHHS, 2014, WHO, 2013). However, 

regimens that contain PIs although associated with a higher pill 

burden, present a higher barrier to the selection of drug resistance 

mutations (Lathouwers et al., 2011, Soriano et al., 2011).  

 

RTI and PI based combinations therefore constitute the mainstay of first-

line and second-line therapies for HIV-1 infection in current treatment 

guidelines (DHHS, 2014, WHO, 2013). These combinations have been 

assessed for their ability to inhibit HIV-1 cell-free infection. Since most 

RTIs as single agents have reduced potencies against HIV-1 cell-to-cell 

infection, it is interesting to study the effect of RTIs and PIs in 

combination against this mode of infection. In this chapter, the 
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question is specifically addressed using the in vitro qPCR-based cell-to-

cell assay and the median effect principle of Chou and Talalay (Chou 

and Talalay, 1984, Chou, 2006, Chou, 2010) for drug interaction 

analyses. In addition, the effect of drug resistance to PIs and RTIs on 

combination antiretroviral therapy, in the context of cell-to-cell spread 

of HIV-1 is also explored. 

 

During the early years of developing cART, drug interaction studies 

played an important role in identifying synergistic and additive drug 

combinations, most likely to provide the greatest combined inhibitory 

effect on viral replication. These studies were informative in guiding 

early ART clinical trials and also allowed the identification of 

antagonistic non-beneficial combinations to avoid, notably the 

combination of the two NRTIs Zidovudine (AZT) and Stavudine (d4T) (Ho 

and Hitchcock, 1989, Havlir et al., 2000, King et al., 2002). In recent 

years antiretroviral agents have found new uses in the prevention of 

HIV-1 transmission through PreP and recent antiretroviral drug 

interaction studies have been directed at assessing the beneficial 

interactions between potential new drug candidates for use in PreP 

(Gantlett et al., 2007, Schader et al., 2011, Chaowanachan et al., 

2013). This further highlights the value of drug interaction studies in the 

process of drug development. There are several methods for analysing 

interactions (synergy, addition or antagonism) between drugs used in 

combination. One of the most widely used methods is the median 

effect principle of Chou-Talalay (Chou, 2010, Chou and Talalay, 1984). 

This method has been used and validated in several studies of 

antiretroviral drug combinations (Feng et al., 2009, Kulkarni et al., 2014, 

Beale and Robinson, 2000, Kollmann et al., 2001, King et al., 2002, 

Drusano et al., 1998, Deminie et al., 1996). We have adapted this 

method to assess antiretroviral drug combinations for synergy, addition, 
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or antagonism, in the context of cell-to-cell HIV-1 infection and 

antiretroviral drug resistance in this thesis. 

 

The median effect principle is a mathematical modelling system 

derived from the Michaelis-Menten, Hill, Henderson-Hassellbach and 

Scatchard equations in biophysics and biochemistry with basic mass-

action law considerations (Chou, 2010, Chou and Talalay, 1984). A full 

description of the mathematical derivations is beyond the scope of this 

thesis but I will briefly summarise its application in assessing the 

interactions between drugs in a combination. Applying the median 

effect principle to the study of drug combinations, Chou and Talalay 

introduced the combination index, which provides a numerical value 

to assess the combined effect of the drugs under study with regards to 

additive, synergistic or antagonistic interactions (Chou and Talalay, 

1984, Chou, 2006). The computer software Compusyn® allows a simple 

determination of synergy using data derived from in vitro assays. The 

median effect principle is based on the assumption that two or more 

drugs alone or in combination will result in a sigmoidal shaped dose-

response curve. Based on the slope of the curve (m), the 50% inhibitory 

concentration (Dm) can be estimated by transforming the dose-effect 

data to a logarithmic scale. A linear regression of the log-transformed 

data is then fitted to an equation in which the dose inhibitory effect of 

each drug (fa), the slopes of the curves (m) and the IC50s are 

incorporated, to calculate the combination index for each dose 

inhibitory effect (fa). The derived CI for two drugs is calculated using 

the following formula: 

 CI = [(D)1/(D1-fa)1] + [ (D)2/(D1-fa)2] + [α(D)1 (D)2/ (D1-fa)1 (D1-fa)2] 

 

Where (D)1 and (D)2 are the doses of the drugs in  a fixed ratio while 

(D1-fa)1 and (D1-fa)2  are the doses of the individual drugs resulting in 
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the effect  1-fa.andα=1 for mutually non-exclusive drugs (drugs with 

different mechanisms of action). 

 

The combination indices obtained can then be interpreted to 

determine if the interaction between the drugs under study is 

synergistic, additive or antagonistic. Table 5-1 below summarises the 

interpretation of combination index values. To simplify the presentation 

of the results, the following cut-offs for CI values will be applied:  

 CI<0.9 =synergy, CI 0.9-1.2= addition, CI > 1.2= antagonism. 

 

Table 5-1: Combination indices and their interpretation based on those described by Chou-
Talalay (Chou and Talalay, 1984). 

Range of combination index Description Graded symbols 

        <0.1 Very strong synergism         +++++ 

         0.1-0.3 Strong synergism          ++++ 

         0.3-0.7 Synergism           +++ 

         0.7-0.85 Moderate synergism            ++ 

         0.85-0.9 Slight synergism             + 

         0.9-1.2  Additive effect            +/- 

         1.2-1.45 Moderate antagonism            -- 

         1.45-3.3 Antagonism           --- 

         3.3-10 Strong antagonism           ---- 

        >10 Very strong antagonism          ----- 

   

 

In this chapter a panel of PI and RTI-based combinations commonly 

used in current clinical practice, have been tested for their ability to 

inhibit cell-to-cell spread of HIV-1. The results show that members of the 

RTI class, which are ineffective as single agents against this mode of 

spread, regain their potency upon combination with other members of 

this drug class or when combined with the highly effective PIs. Using the 

combination index as a measure of synergy, consistently stronger 

synergies are observed when RTI or PI-based combinations are tested 

on HIV-1 cell-free infection in comparison to cell-to-cell infection. 

Furthermore the results suggest that in the presence of a drug-resistant 
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mutation a virus spreading by a cell-to-cell mechanism can reduce the 

overall synergistic effects of a combination therapy.  

 

 

5.1.1  Specific Objectives 

• To assess the impact of RTI-based drug combinations on cell-to-

cell spread of HIV-1. 

• To assess the impact of PI-based drug combinations on cell-to-

cell spread of HIV-1. 

• To determine the impact of the mode of HIV-1 virus spread (cell-

to-cell vs. cell-free) on the interaction between antiretroviral 

agents in combination. 

• To determine the impact of antiretroviral drug resistance on 

combination antiretroviral therapy, in the context of cell-to-cell 

spread of HIV-1.  
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5.2 Results 

5.2.1  RTI-based combination therapies effectively 
block cell-to-cell spread of HIV-1 

The data presented in chapter 4 show that the RTIs; Tenofovir (TFV), 

Zidovudine (AZT), Lamivudine (3TC) and Nevirapine (NVP) have 

significantly reduced potencies against HIV-1 cell-to-cell infection 

when compared to cell-free infection, with TFV and AZT being the least 

effective drugs. These drugs are not used as monotherapy for the 

treatment of HIV-1 infected patients due to the high risk of selecting for 

drug-resistant variants (Larder et al., 1989, Rooke et al., 1989). When 

administered in combination, RTIs are effective in the treatment of HIV-

1 (Gulick et al., 1997, Hammer et al., 1997, Perelson et al., 1997, 

Walensky et al., 2006). This appears paradoxical given observations on 

their inability to suppress cell-to-cell HIV-1 infection when administered 

as single agents. It was therefore interesting to assess the effect of RTIs 

in combination against HIV-1 cell-to-cell infection. 

 

The median effect analysis based on the median effect principle of 

Chou and Talalay was applied to calculate the combination index (CI) 

and determine whether the interactions between the drugs in the 

combinations tested were; additive, synergistic or antagonistic and to 

compare this between HIV-1 cell-to-cell and cell-free infection. The 

qPCR-based cell-to-cell and cell-free infection assays validated and 

used in the two preceding chapters were applied for the drug 

combination studies. Three dual RTI combinations: AZT+TFV, TFV+EFV 

and AZT+NVP were tested. The drugs were combined in ratios based 

on their individual IC50s, determined in a cell-free infection assay as 

previously described in Chapters 3 and 4. Briefly, virus supernatant 

collected from HIV-1 infected donor cells was used to infect target cells 

in the presence of a serial dilution of the drug being considered. 

Following a 24h incubation, target cell infection was quantified by 
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qPCR detection of HIV-1 pol DNA as previously described and 

expressed as a fold increase relative to the Albumin housekeeping 

gene. These data were used to plot dose-response curves and 

calculate the IC50s in GraphPad Prism® software. Once the IC50s of 

the individual drugs had been determined, the drugs where then 

combined in a fixed dose ratio based on their individual IC50s. Cell-to-

cell and cell-free infections were assessed in the presence of a serial 

dilution of this fixed dose combination by qPCR as previously described 

(see methods section). The inhibitory effect (fa) of each drug alone 

and as part of a combination was calculated and expressed as a 

fraction, representing inhibition of infection in the presence of the drug 

relative to the “no drug” control.  These fa values were inputted in 

Compusyn® to determine CIs for each drug combination tested. Each 

fixed-dose combination experiment was repeated twice the mean CI 

values for 50%, 75%, 90% and 95% inhibition levels obtained from two 

independent experiments and the standard error of the mean (SEM) 

are presented. The steps in the drug combination studies are 

summarised in the schematic below: 

 

 
Figure 5-1: Steps in drug combination studies 
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Combining AZT and TFV, potently inhibited both cell-to-cell and cell-

free HIV-1 infections (Figure 5.2A), however cell-to-cell spread still 

maintained an advantage over cell-free spread. This was striking 

because individually, AZT and TFV are >10-20 fold less effective against 

HIV-1 cell-to-cell infection compared to cell-free infection. The potency 

of this combination against both modes of HIV-1 infection was 

reflected in the combination index values, which were in the range of 

additive to synergistic effects against cell-to-cell infection and 

moderately synergistic effects against cell-free infection (Table 5.2).  

 

AZT and TFV were then combined respectively with non-nucleoside 

reverse transcriptase inhibitors NVP and EFV. NVP as a single agent has 

a 4-fold reduced potency against cell-to-cell spread of HIV-1. 

Combining AZT+NVP potently inhibited both HIV-1 cell-to-cell and cell-

free infections although cell-to-cell infection maintained a replicative 

advantage (Figure 5.2B). This was reflected by combination index 

values indicating an additive effect on cell-to-cell infection and a 

synergistic effect on cell-free infection (Table 5.3). EFV as a single agent 

was the only RTI that showed the same potency against both cell-free 

and cell-to-cell modes of viral infection. When combined with the less 

effective TFV, the combination effectively inhibited both cell-to-cell 

and cell-free infection (Figure 5.1C) with combined moderate to 

strongly synergistic effects against both modes of viral infection (Table 

5.4). 
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Figure 5-2: RTI-based combinations effectively inhibit both cell-to-cell and cell-free spread of 
HIV-1. Cell-to-cell and cell-free infections were assessed in the presence of a serial dilution of a 
dual RTI combination (A) AZT+TFV, (B) AZT+NVP and (C) TFV+EFV. The drugs were combined in a 
ratio based on their IC50s determined from a cell-free infection assay. Infection was measured 
by the number of HIV-1 pol DNA transcripts generated at each dilution of the combination and 
expressed as a fraction of the no drug control. The data were used to plot the dose-response 
curves, which are displayed on the graphs above; one representative from 2 independent 
experiments is shown. The error bars represent the standard deviation of the mean. The bold 
lines represent the non-linear regression curve-fit and dotted lines represent actual data points. 
The curves were fitted using GraphPad Prism curve fitting software. 
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Table 5-2: Combination indices for the combination of Zidovudine (AZT)+Tenofovir (TFV). The 
mean and standard error  (SEM) (in parenthesis) obtained from two independent experiments 
are shown . 

Mode of Infection Combination 

(ratio=1:1) 

                   Combination index (CI)  Effect 

 50  75  90  95 

Cell-Cell AZT+TFV 0.9(0.1) 0.85(0.1) 0.82(0.05) 0.74(0.12) Additive/ 

synergistic 

Cell-Free AZT+TFV 0.41(0.06) 0.39(0.03) 0.42(0.1) 0.45(0.04) Synergistic 

 

 

Table 5-3: Combination indices for the combination of Zidovudine (AZT) + Nevirapine (NVP). 
The mean and standard error of the mean (in parenthesis) obtained from two independent 
experiments are shown. 

Mode of 

Infection 

Combination 

(ratio= 40:1) 

                             Combination index (CI)          Effect 

50  75 90 95 

Cell-Cell AZT+NVP 0.95(0.05) 1.05(0.05) 1.1(0.13) 1.1(0.1) Additive 

Cell-Free AZT+NVP 0.97(0.06) 0.89(0.04) 0.79(0.06) 0.76(0.1) Additive/ 

Synergistic 

 

 

Table 5-4:  Combination indices for the combination of Tenofovir (TFV) + Efavirenz (EFV). The 
mean and standard error of the mean (in parenthesis) obtained from two independent 
experiments are shown. 

Mode of 

Infection 

Combination 

(ratio=1000:1) 

                               Combination index (CI)          Effect 

50 75 90 95 

Cell-Cell TFV+EFV 0.59(0.05) 0.46(0.07) 0.36(0.05) 0.35(0.02) Synergistic 

Cell-Free TFV+EFV 0.1(0.02) 0.13(0.01) 0.22(0.05) 0.39(0.1) Synergistic 
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5.2.2 PI-based combinations effectively block cell-to-
cell spread of HIV-1 

The results of chapter 4 showed that in contrast to RTIs, PIs are equally 

potent against HIV-1 cell-to-cell and cell-free infection. In the present 

study it was therefore interesting to explore the effects of combining PIs 

with less effective RTIs against cell-free and cell-to-cell modes of virus 

infection. Also, PIs are important components of second-line therapies, 

which are commonly recommended when first-line RTI-based 

combinations fail. The PI LPV was tested in combination with the NRTI 

TFV and in combination with the NNRTI NVP.  Both combinations 

(LPV+TFV and LPV+NVP) potently inhibited HIV-1 cell-to-cell and cell-

free infection (Figure 5.3). The combination of LPV+TFV was strongly 

synergistic for both modes of virus infection (Table 5.5) while the 

combination of LPV+NVP showed additive to synergistic effects for cell-

to-cell infection and moderate synergy for cell-free infection (Table 

5.6). 
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Figure 5-3: PI-based combinations effectively inhibit both cell-to-cell and cell-free spread of 
HIV-1. Cell-to-cell and cell-free infections were assessed in the presence of a serial dilution of a 
dual combination of a PI+RTI combination (A) LPV+TFV and (B) LPV+NVP. The drugs were 
combined in a ratio based on their IC50s determined from a cell-free infection assay. Infection 
was measured by the number of HIV-1 pol DNA transcripts generated at each dilution of the 
combination and expressed as a fraction of the no drug control. The data were used to plot 
the dose-response curves, which are displayed on the graphs above; a representative from 2 
independent experiments is shown. The error bars represent the standard deviation of the 
mean. The bold lines represent the non-linear regression curve-fit and dotted lines represent 
actual data points. The curves were fitted using GraphPad Prism curve fitting software. 
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Table 5-5: Combination indices for the combination of Lopinavir (LPV) + Tenofovir (TFV). The 
mean and standard error of the mean (in parenthesis) obtained from two independent 
experiments are shown. 

Mode of 

Infection 

Combination 

(ratio= 1:1000) 

                              Combination index (CI)     Effect 

50 75 90 95 

Cell-Cell LPV+TFV 0.03(0.06) 0.1(0.01) 0.12(0.04) 0.36(0.2) Synergistic 

Cell-Free LPV+TFV 0.02(0.01) 0.06(0.01) 0.15(0.02) 0.4(0.13) Synergistic 

 

 

Table 5-6: Combination indices for the combination of Lopinavir (LPV) + Nevirapine (NVP). The 
mean and standard error of the mean (in parenthesis) obtained from two independent 
experiments are shown. 

Mode of 

Infection 

Combination 

(ratio=1:25) 

                              Combination index (CI) Effect 

50 75 90 95 

Cell-Cell LPV+NVP 1.1(0.07) 0.92(0.2) 0.74(0.24) 0.71(0.26) Additive/ 

Synergistic 

Cell-Free LPV+NVP 0.86(0.03) 0.72(0.03) 0.6(0.04) 0.46(0.04) Additive/ 

Synergistic 
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5.2.3 Cell-to-cell spread of drug-resistant HIV-1 may 
compromise combination ART 

The results presented so far show that PI and RTI-based combinations 

effectively inhibit HIV-1 cell-to-cell and cell-free infection, albeit with 

relatively weaker synergistic interactions against cell-to-cell infection 

compared to cell-free infection. The next question posed was whether 

drug-resistant viruses spreading by a cell-to-cell mechanism would 

affect the potency of combination therapies in fully suppressing HIV-1 

replication. To answer this question, cell-to-cell spread of a PI drug-

resistant virus HIV-1DM was tested in the presence of PI-based 

combinations and cell-to-cell spread of RTI mutants HIV-1K103N and HIV-

1M184V tested in the presence of RTI-based combinations. This was 

compared to cell-to-cell spread of HIV-1WT in the presence of the same 

drug combinations. The combination indices for the different 

combinations tested with these viruses were determined using 

Compusyn® as previously described for HIV-1DM and HIV-1K103N. The co-

culture assays were set-up in the presence of a serial dilution of the 

fixed-dose combination of the drugs being tested as described earlier. 

 

 Cell-to-cell spread of HIV-1DM was assessed in the presence of LPV+TFV. 

The HIV-1DM mutant has an A431V mutation in Gag and a V82A 

mutation in Protease, making it 14-fold less susceptible to inhibition by 

LPV when compared to wild-type HIV-1 (HIV-1WT). The results showed a 

replicative advantage of HIV-1DM over HIV-1WT in the presence of 

LPV+TFV (Figure 5.4A). This was reflected by an increase in CI values, 

shifting the combined effect of the drugs from strongly synergistic 

(observed with HIV-1WT (CI<0.3) to a moderately synergistic range 

(Table 5.7). Cell-to-cell spread of HIV-1DM was then tested in the 

presence of a triple combination of drugs, by adding EFV to the dual 

combination (LPV+TFV+EFV). In the presence of this triple combination, 

cell-to-cell spread of HIV-1DM was effectively suppressed to the same 
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extent as cell-to-cell spread of HIV-1WT (Figure 5.4C and D). 

Unfortunately, it was not possible to determine CIs for the triple 

combination because the dose-effect curves did not meet the criteria 

required for reliable CI estimates in Compusyn®. Due to nearly 

complete suppression of viral replication by the triple combination, the 

curves generated had R-squared values (goodness of fit, following 

non-linear regression) that were lower than the 0.9 which is required for 

accurate determination of combination indices. 
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Figure 5-4: Cell-to-cell spread of a PI resistance mutant compared to wild-type virus in the 
presence of combination antiretroviral therapy (A) and (B) cell-to-cell spread of HIV-1DM was 
assessed in the presence of a serial dilution of a fixed dose combination of LPV+TFV and 
compared to cell-to-cell spread of HIV-1WT with the same combination. The error bars represent 
the standard deviation of the mean. HIV-1DM has a replicative advantage over HIV-1WT in the 
presence of this dual combination. In (C) and (D) a triple combination of LPV+ 3TC+ TFV 
potently inhibits both cell-to-cell spread of HIV-1DM and HIV-1WT. The error bars represent the 
standard deviation and a representative of two independent experiments is shown. The bold 
lines represent the non-linear regression curve-fit and dotted lines represent actual data points. 
The curves were fitted using GraphPad Prism curve fitting software. UT=untreated control. 
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Table 5-7: Combination indices for the combination of Lopinavir (LPV) + Tenofovir (TFV) tested 
against cell-to-cell spread of a PI resistant mutant compared to wild-type virus. The mean and 
standard error of the mean (in parenthesis) obtained from two independent experiments are 
shown. 

Virus 
Combination 

(ratio=1:1000) 

                      Combination index (CI) 
   Effect 

50 75 90 95 

HIV-1WT LPV+TFV 0.03(0.06) 0.1(0.01) 0.12(0.04) 0.36(0.2) Synergistic 

HIV-1DM LPV+TFV 0.14(0.01) 0.21(0.01) 0.29(0.04) 0.49(0.1) Synergistic 
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The NNRTI drug-resistant mutant HIV-1K103N was also tested in a similar 

fashion.  Cell-to-cell spread of this virus was assessed in the presence of 

TFV+EFV. The K103N mutation in RT renders the virus >650-fold more 

resistant to inhibition by EFV in comparison to HIV-1WT. This combination, 

which efficiently suppressed cell-to-cell spread of HIV-1WT, was less 

effective at suppressing cell-to-cell spread of HIV-1K103N (Figure 5.5A 

and B). The reduced efficiency of the combination on the drug-

resistant virus was again reflected by an increase in the combination 

index, shifting the effect from a moderately synergistic range for HIV-1WT 

to a mildly synergistic to additive range for the HIV-1K103N (Table 5.8).   

 

A third drug; 3TC was then added to TFV+EFV and cell-to-cell spread of 

HIV-1K103N and HIV-1WT tested in the presence of this triple combination 

(TFV+EFV+3TC). The triple combination effectively suppressed cell-to-

cell spread of both the wild type and mutant virus (Figure 5.5 C and D), 

although HIV-1K103N appeared to maintain a small replicative 

advantage over the wild-type virus. The efficiency of the triple 

combination was reflected by a combined strongly synergistic 

interaction between the drugs in the combination against cell-to-cell 

spread of both HIV-1WT and HIV-1K103N (Table 5.9).  
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Figure 5-5: Cell-to-cell spread of a NNRTI resistance mutant compared to wild-type virus in the 
presence of combination antiretroviral therapy- (A) and (B) cell-to-cell spread of HIV-1K103N was 
assessed in the presence of a serial dilution of a fixed dose combination of EFV+TFV and 
compared to cell-to-cell spread of HIV-1WT with the same combination. The error bars represent 
the standard deviation of the mean. HIV-1K103N had a replicative advantage over HIV-1WT in the 
presence of this dual combination. In (C) and (D) a triple combination of EFV+ 3TC+ TFV 
potently inhibits both cell-to-cell spread of HIV-1K103N and HIV-1WT., though HIV-1K103N retains a 
small replicative advantage over HIV-1WT. The error bars represent the standard deviation of 
the mean and a representative from two independent experiments is shown. The bold lines 
represent the non-linear regression curve-fit and dotted lines represent actual data points. The 
curves were fitted using GraphPad Prism curve fitting software. UT=Untreated controls. 
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Table 5-8: Combination indices for the combination of Tenofovir (TFV) + Efavirenz (EFV). The 
mean and standard error of the mean (in parenthesis) obtained from two independent 
experiments are shown. 

Virus 
Combination 

(ratio=1000:1) 

                        Combination index (CI) 
Effect 

50 75 90 95 

HIV-1WT TFV+EFV 0.69(0.05) 0.46(0.07) 0.36(0.05) 0.35(0.02) Synergistic 

HIV-1K103N TFV+EFV 1.1(0.02) 0.93(0.01) 0.82(0.05) 0.79(0.1) 
Synergistic/

Additive 

 

 

Table 5-9: Combination indices for the combination of Tenofovir (TFV) + Efavirenz (EFV) + 
Lamivudine (3TC). The mean and standard error of the mean (in parenthesis) obtained from 
two independent experiments are shown. 

Virus 
Combination   

(1000:10:1) 

                           Combination index (CI) 
Effect 

50 75 90 95 

HIV-1WT TFV+3TC+EFV 0.08(0.03) 0.09(0.01) 0.12(0.04) 0.18(0.01) Synergistic 

HIV-1K103N TFV+3TC+EFV 0.35(0.02) 0.39(0.01) 0.44(0.02) 0.48(0.13) Synergistic 
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Finally, cell-to-cell spread of the NRTI drug-resistant virus HIV-1M184V was 

tested. The M184V mutation in RT mutation was particularly interesting 

for this study because while it confers a 120-fold resistance to inhibition 

by 3TC compared to wild-type virus in the drug susceptibility assay (see 

Chapter 3), this mutation is also well described for increasing the 

susceptibility of the virus to other NRTIs, notably TFV and AZT (Naeger et 

al., 2001, White et al., 2002, Diallo et al., 2003, Wolf et al., 2003). This 

feature was confirmed in the cell-free drug susceptibility assay (see 

Chapter 3). It was interesting to contemplate whether the increased 

susceptibility of HIV-1M184V to AZT would remain evident when infection 

was mediated by cell-to-cell mechanism of dissemination. This was 

even more interesting considering that cell-to-cell spread HIV-1WT is 

highly impervious to inhibition by AZT. To answer this question, cell-to-

cell spread of the mutant virus was directly compared to that of the 

wild-type virus in the presence of AZT. While AZT was unable to fully 

suppress cell-to-cell spread of HIV-1WT, the drug effectively inhibited 

cell-to-cell spread of HIV-1M184V, (Figure 5.6A). Cell-to-cell spread of this 

resistant mutant was then tested with drug combinations. With the 

combination of 3TC+AZT, both HIV-1WT and HIV-1M184V cell-to-cell 

infections were effectively inhibited although HIV-1M184V showed a 

replication advantage albeit a modest one in the presence of this 

combination in comparison to HIV-1WT (Figure 5.6B). The triple RTI 

combination of 3TC+AZT+EFV potently blocked cell-to-cell spread of 

both viruses. 
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Figure 5-6: Cell-to-cell spread of NRTI mutant HIV-1M184V compared to cell-to-cell spread of HIV-
1WT in the presence of RTI mono (A), dual (B), and triple therapy(C). (A) AZT effectively inhibits 
cell-to-cell spread of HIV-1M184V, though it is ineffective against cell-to-cell spread of HIV-1WT. (B) 
In the presence of a serial dilution of a fixed dose combination of AZT+3TC cell-to-cell spread of 
HIV-1WT and HIV-1M184V are effectively blocked though HIV-1M184V has a replicative advantage 
over wild-type virus. (C) Triple combination of AZT+3TC+ EFV potently inhibits cell-to-cell spread 
of both HIV-1WT and HIV-1M184V. The error bars represent the standard deviation of the mean 
and a representative from two independent experiments is shown. The bold lines represent the 
non-linear regression curve-fit and dotted lines represent actual data points. The curves were 
fitted using GraphPad Prism curve fitting software. 
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5.3 Discussion 
The observations from this thesis and other studies on the variable 

potencies of commonly used antiretroviral drugs against HIV-1 cell-to-

cell infection (Sigal et al., 2011, Duncan et.al, 2013, Titanji et al., 2013), 

have sparked an interesting debate on the true role of this mode of 

infection in viral pathogenesis and disease progression in vivo. We have 

shown that while PIs and INIs are equally effective at suppressing both 

cell-free and cell-to-cell modes of infection (Chapter 4), members of 

the widely used RTI class, which make up the backbone for most 

combination ART, have greatly reduced abilities to inhibit the latter 

mode of HIV-1 infection (Sigal et al., 2011, Duncan et.al, 2013, Titanji et 

al., 2013) This presents an interesting conundrum because, treating HIV-

1 infected patients in the clinic with combinations of these seemingly 

“ineffective” drugs results in full suppression of virus replication and 

arrest of disease progression (Eron et al., 1995, Autran et al., 1997, 

Gulick et al., 1997, Lederman et al., 1998, Arts and Hazuda, 2012).  

 

Some in the field have interpreted this as an indication that HIV-1 cell-

to-cell infection may not be an important phenomenon in vivo, with 

cell-free infection which is susceptible to suppression by all currently 

approved RTIs, being likely predominant. In the present chapter this 

question is specifically addressed by testing RTI and PI-based 

combinations commonly prescribed in the clinic, on their ability to 

inhibit cell-to-cell spread of HIV-1 in comparison to cell-free spread. The 

role of drug resistance on the efficacy of cART in the context of cell-to-

cell virus infection is also explored. The results show that cART  potently 

inhibits both cell-to-cell and cell-free spread of HIV-1. This is most likely 

the result of the additive to synergistic interactions between 

antiretroviral drugs in combination being able to overcome the high 

multiplicity of infection that is a characteristic feature of cell-to-cell 

infection. Furthermore, consistently stronger combined synergistic or 
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additive effects are observed with the combinations tested when cell-

free infection is compared to cell-to-cell infection. Finally, drug-resistant 

viruses are shown to have a replicative advantage over wild-type virus 

when spreading by a cell-to-cell mechanism, in the presence of 

“inadequate” combination therapies. While completing the 

experiments for my thesis, Agosto et al. published a similar study looking 

at the impact of NRTI-based combination therapies on cell-to-cell 

spread of HIV-1 (Agosto et al., 2014). Although they applied a different 

method to assess the inhibitory potential of drugs in combination on 

the different modes of HIV-1 infection, their results are similar to the 

findings presented here. The present study has however been 

expanded by testing more combinations including PIs and NNRTIs and 

also testing a panel of PI and RTI drug-resistant mutants, in order to 

provide a more complete picture. 

 

 TFV and AZT are the two members of the RTI drug class, which have 

consistently demonstrated significantly reduced potency against HIV-1 

cell-to-cell infection in vitro when compared to cell-free infection 

(Agosto et al., 2014, Titanji et al., 2013, Duncan et.al, 2013, Sigal et al., 

2011). The studies published so far have reported between 20 to 1000-

fold decrease in susceptibility of this mode of virus infection to inhibition 

by TFV or AZT (Sigal et al., 2011, Duncan et.al, 2013, Titanji et al., 2013, 

Agosto et al., 2014). The effect of combining these two agents against 

HIV-1 cell-to-cell infection was investigated. Remarkably, when 

combined, both drugs were capable of potently inhibiting HIV-1 cell-

to-cell infection almost as effectively as cell-free infection (Figure 5.2A). 

High MOI of infection is a key feature of cell-to-cell spread of HIV-1, 

which has been clearly demonstrated in vitro (Del Portillo et al., 2011, 

Russell et al., 2013, Zhong et al., 2013) and supported by some in vivo 

observations (Gratton et al., 2000, Jung et al., 2002). This attribute of 

cell-to-cell HIV-1 infection has been implicated as the primary driver of 
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ongoing cell-to-cell infection observed with some antiretroviral drugs in 

vitro, notably RTIs (Sigal et al., 2011, Duncan et.al, 2013, Titanji et al., 

2013, Agosto et al., 2014). The synergistic interaction between TFV and 

AZT in combination, as determined by CI values (Table 5.2) explains the 

potency of this combination in blocking HIV-1 cell-to-cell spread. If we 

consider that cell-to-cell spread is 20 to 1000-fold less susceptible to TFV 

and AZT when these drugs are used as single agents (Duncan et.al, 

2013, Titanji et al., 2013, Agosto et al., 2014, Sigal et al., 2011), an 

additive effect from combining both drugs will only double their effect 

and as such be likely insufficient to overcome cell-to-cell infection. 

Synergy however by definition produces an effect much greater than 

the simple arithmetic sum of the effect of the agents in combination 

and in this case, this combined effect is strong enough to overcome 

cell-to-cell spread of HIV-1. It is important to note nevertheless that cell-

to-cell infection still maintains a slight advantage over cell-free 

infection, even in the presence of the combination, with stronger 

synergistic/additive effects observed between AZT and TFV for cell-free 

infection compared to cell-to-cell infection (Table 5.2).  

 

AZT and TFV were also tested in combination with NNRTIs. As single 

agents, cell-to-cell spread of HIV-1WT was 4-fold less susceptible to 

inhibition by NVP, however EFV like the PIs and INIs was equally potent 

against both cell-to-cell and cell-free spread of the virus. A 

combination of AZT+NVP and TFV+EFV strongly inhibited both cell-to-

cell and cell-free modes of infection (Figure 5.2B and C) with 

combined additive to synergistic effects (Table 5.3 and 5.4). Again, as 

observed with the AZT+TFV combination, the combined effect of the 

drugs was greater when the combinations were tested against cell-free 

infection in comparison to cell-to-cell infection. These observations 

show for the first time the effects of combining NRTIs + NNRTIs on HIV-1 

cell-to-cell infection. They also confirm the findings by Agosto et al. 
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who showed that combining NRTIs leads to increased inhibitory 

potentials and enhanced potencies sufficient to overcome the high 

multiplicity of cell-to-cell infection (Agosto et al., 2014). They used the 

instantaneous inhibitory potential (IIP) as a parameter to assess the 

ability of drugs as single agents or in combination to inhibit virus 

dissemination. Shen et al. first defined this parameter as a measure of 

antiviral activity (Shen et al., 2008, Shen et al., 2009). The IIP directly 

measures the degree of inhibition by a given antiviral drug by taking 

into consideration the slope of its dose-response curve (Shen et al., 

2008, Shen et al., 2009). Although it has been purported as a more 

accurate measure of antiviral activity, and in general correlates with 

clinical outcomes, its advantage over older methods is still debated 

(Henrich et al., 2010). Also there is limited experience with using this 

parameter as a method for assessing drug interactions in combination 

studies (Agosto et al., 2014). It is for this reason that the more extensively 

used median effect analysis and combination indices, validated in 

several combination studies of antiretroviral drugs was preferred (Chou 

and Talalay, 1984, Chou, 2006, Chou, 2010, Feng et al., 2009, Kulkarni et 

al., 2014, Kollmann et al., 2001, Beale and Robinson, 2000, Drusano et 

al., 1998, Deminie et al., 1996).  

 

Synergy between drugs of the NRTI class and between NRTIs and 

NNRTIs has been extensively studied and well described in cell-free 

infection models in vitro (Feng et al., 2009, Kulkarni et al., 2014, King et 

al., 2002). This is verified in vivo by the efficiency of RTI-based 

combinations for the treatment of HIV-1 infected patients (Perelson et 

al., 1997, Gulick et al., 1997, Gulick et al., 2004, Staszewski et al., 1999, 

van Leth et al., 2004, Arts and Hazuda, 2012). NRTIs are synthetic 

analogues of naturally occurring dNTPs but they lack a 3’-Hydroxyl 

group. Their incorporation into the nascent viral DNA during the process 

of reverse transcription, leads to premature chain termination and as 
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such inhibits viral replication. Several mechanisms have been proposed 

to account for the synergy observed with combinations of RTIs. The 

combination of TFV+3TC, a popular backbone for many first-line cART 

regimens, increases the intracellular phosphorylation of both drugs and 

the available active metabolite of the drugs, enhancing the ability of 

the combination to out compete naturally occurring nucleotides 

(Borroto-Esoda et al., 2006). Although this enhanced phosphorylation 

has not been specifically investigated for other NRTI combination pairs, 

it is possible that this mechanism could be a contributing factor to the 

synergistic effects observed in this study with the combination of 

AZT+TFV. In the context of cell-to-cell spread, having more active 

metabolite to counter the incoming flux of infectious virions tips the 

scale in favour of the drug, allowing effective inhibition of cell-to-cell 

infection.  

 

NNRTIs are non-competitive inhibitors, which bind to a hydrophobic 

pocket near the RT binding site and prevent movement of the protein 

domains of RT, which are required for effective reverse transcription, 

hence blocking viral replication (de Bethune, 2010). When NNRTIs are 

combined with NRTIs, the effects of the combination are additive to 

synergistic.  In these combinations, the presence of NNRTIs has been 

shown to diminish the binding of ATP (Odriozola et al., 2003, Radzio and 

Sluis-Cremer, 2008), which is essential for pyrophosphorylysis, a process 

by which incorporated NRTIs are excised from the newly synthesised 

virus DNA by the HIV-1 RT, reversing chain termination and allowing 

reverse transcription to proceed (Arion et al., 1998, Meyer et al., 1998, 

Meyer et al., 1999, Ray et al., 2003). By so doing, NNRTIs enhance chain 

termination by the NRTI, bolstering its inhibitory potential (Odriozola et 

al., 2003, Radzio and Sluis-Cremer, 2008). Also RNAse H activity is 

enhanced in the presence of NNRTIs, effectively reducing the window 

of opportunity for NRTI excision by pyrophosphorylysis (Radzio and Sluis-
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Cremer, 2008). Furthermore the formation of a stable complex 

mediated by NNRTI binding prolongs and promotes NRTI chain 

termination (Feng et al., 2009). All of these mechanisms collectively, 

likely account for the synergistic interactions between NRTIs and NNRTIs 

observed for both cell-to-cell and cell-free HIV-1 infection. It is worth 

noting that while the combination of the NRTI with EFV was strongly to 

moderately synergistic, combination of the NRTI with NVP only showed 

weakly synergistic to additive effects on both modes of virus infection. 

EFV has been shown in a large US and European cohort study of 

>20,000 patients to be a better NNRTI option than NVP for first-line 

treatment, in patients initiating cART for the first time (Collaboration, 

2012). These findings have been confirmed in smaller cohort studies 

and clinical trials in sub-Saharan Africa and Asia (Nachega et al., 2008, 

Bock et al., 2013, Bonnet et al., 2013, Pillay et al., 2013). Regimens 

containing EFV were found to be associated with fewer AIDS–related 

opportunistic infections, improved survival and lower rates of treatment 

failure than NVP containing regimens (Collaboration, 2012). The 

reasons for this are not fully understood, however in light of our 

observations it is tempting to cautiously suggest that the stronger 

synergies seen when EFV is combined with NRTIs in comparison to NVP 

against both cell-to-cell and cell-free HIV-1 infection, may be a 

contributing factor to its superiority in a clinical context. This will of 

course be in addition to other factors such as the higher toxicities 

associated with NVP regimens, which make interruptions of such 

regimens and hence decreased efficiency more likely. 

 

In chapter 4 we presented a detailed study of the impact of PIs on cell-

to-cell spread of HIV-1. This antiretroviral drug class is highly effective 

against both cell-to-cell and cell-free modes of infection even with 

high virus MOIs. The FDA approval of highly potent PIs in the mid-

nineties completely revolutionised antiretroviral therapy (Craig et al., 
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1991, Kempf et al., 1995, Deeks et al., 1997, Wensing et al., 2010). 

Today, PIs in combination with RTIs are part of recommended initial 

treatments for patients starting cART and more importantly, these drugs 

are the mainstay of salvage therapies used for patients who fail 

treatment on first-line therapies (WHO, 2013, DHHS, 2014). Also, this is the 

only drug class, which to date has been used successfully as 

monotherapy for the treatment of HIV-1 in clinical trials (Arribas et al., 

2009, Arribas et al., 2010, Clumeck et al., 2011, Valantin et al., 2012, 

Katlama et al., 2010). Despite the importance and great success of PIs, 

the precise steps in the virus life cycle affected by these agents under 

clinical conditions are yet to be clearly defined. In vitro studies have 

now identified that PIs target multiple steps in the virus replication cycle 

and this may explain their potency against HIV-1 infection and the high 

barrier that they present to the selection of drug-resistant viruses (Rabi 

et al., 2013). PIs inhibit the cleavage of virus precursor polyproteins into 

functional subunits required for maturation of the virus (Craig et al., 

1991, Kempf et al., 1995, Deeks et al., 1997, Muller et al., 2009, Wensing 

et al., 2010). Virus maturation is important for early post entry steps of 

the virus replication cycle, including uncoating and reverse 

transcription (Lori et al., 1988, Kawamura et al., 1997, Muller et al., 

2009). In the presence of PIs, recent findings show that interactions 

between uncleaved Gag and the cytoplasmic tail of Env present a 

barrier to effective viral entry. PIs therefore exert their inhibitory effects 

in vitro by inhibiting viral entry as well as post-entry steps of viral 

replication to varying degrees.  

 

When the effect of combining PIs to RTIs was assessed, these 

combinations displayed additive to synergistic effects on both cell-free 

and cell-to-cell virus infection. Strong synergy was observed for 

combinations of PIs + NRTIs (LPV+TFV) (Table 5.5) and additive to mildly 

synergistic effects were observed with PI+NNRTI combinations 



Exploring the Impact of Antiretroviral Drugs on the Cell-to-Cell Spread of HIV-1 
 

Chapter Five  – Impact of combination ART on cell-to-cell spread of wild type and drug-
resistant HIV-1 
 

214 

(LPV+NVP) (Table 5.6). These results confirm findings from previous 

studies, which have demonstrated synergy between PIs and NRTIs for 

cell-free infections (Drusano et al., 1998, King et al., 2002, De Meyer et 

al., 2005) and show for the first time this effect on HIV-1 cell-to-cell 

infection. PI and NNRTI are not usually combined in cART regimens and 

were only tested here for the sake of completeness. It is however 

interesting to observe that again weaker synergies are seen between 

NVP and PIs, as is the case when NVP is combined with NRTIs, discussed 

earlier. The multiple effects of PIs on several steps of viral replication 

probably explain the strong synergy observed when these drugs are 

combined with NRTIs. 

 

It is tempting to speculate on a molecular mechanism for the reduced 

potency of NVP compared to EFV based combinations against cell-to-

cell infection noted in this study. Especially since this is a feature not 

seen with in vitro cell-free infection systems. Efavirenz is a second 

generation NNRTI well recognised for its improved potency against HIV-

1 RT compared to the first generation NNRTIs (Nevirapine and 

Delaviridine). Several studies on the interaction between NNRTIs and 

HIV-1 RT have shown that EFV has a greater affinity for HIV-1-RT 

compared to NVP and DLV (Kd NVP= 1550 +/- 441, Kd EFV= 0.63+/-0.34) 

(Geitmann et al., 2006, Sluis-Cremer and Tachedjian, 2008). The 

presence of hydrogen bonding between domains of the EFV molecule 

and HIV-1RT not seen with the HIV-1RT/NVP and HIV-1RT/DLV 

complexes contribute to the enhanced binding affinity of EFV (Nunrium 

et al., 2005). The effect of these differences in binding affinity on 

potency and ability to block RT may not be immediately obvious when 

these drugs are tested against cell-free HIV-1 infection. However when 

cell-to-cell infection is considered, the greater efficiency of EFV 

compared to NVP becomes more apparent due to the high MOI of this 

mode of infection. Combinations with EFV would likely be better at 
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binding and inhibiting HIV-1RT from a pool of incoming infectious virions 

compared to combinations containing NVP that binds RT with a lower 

affinity. The observations made with drug combinations are in line with 

the results presented in chapter 4, which show that while NVP is 4-fold 

less efficient against cell-to-cell infection compared to cell-free 

infection, EFV like PIs and INIs is equally potent against both cell-to-cell 

and cell-free HIV-1 infection. In addition to its high affinity for HIV-1 RT, 

EFV has the unique attribute within the NNRTI class of enhancing the 

processing of Gag and Gag-Pol polyproteins (Tachedjian et al., 2005, 

Figueiredo et al., 2006).  This enhanced processing of viral polyproteins 

by EFV is associated with a decrease in the production of infectious 

virus particles (Tachedjian et al., 2005, Figueiredo et al., 2006).  The 

binding of EFV to HIV-1 RT that is embedded in Gag-Pol is thought to 

promote the interaction between individual Gag-Pol polyproteins 

inducing the premature activation of the viral Protease and 

subsequent cleavage of the precursor polyproteins.  This effectively 

reduces the amount of full-length viral proteins available for virus 

assembly and as a consequence the number of infectious virions 

produced (Tachedjian et al., 2005, Figueiredo et al., 2006).  This 

additional function of EFV possibly contributes to reducing the MOI and 

this may provide an additional explanation for its superior effects over 

NVP in the context of HIV-1 cell-to-cell infection. 

 

Having established the efficacy of RTI and PI-based combinations 

against cell-to-cell and cell-free infection, we proceeded to 

investigate the impact of cell-to-cell spread of HIV-1 drug-resistant 

viruses on combination therapy. The development of drug resistance is 

one of the most common causes of treatment failure in HIV-1 infected 

patients. As antiretroviral coverage becomes more widespread, 

clinicians have to contend with rising levels of drug resistance in 

treated populations and the threat of transmitted drug resistance 
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continues to grow. Cell-to-cell spread of a PI drug-resistant mutant HIV-

1DM, as well as two RTI resistance mutants HIV-1K103N andHIV-1M184V was 

tested in the presence of PI and RTI-based combinations. The PI mutant 

HIV-1DM displayed a replicative advantage over the wild-type virus HIV-

1WT when spreading by a cell-to-cell mechanism in the presence of a 

combination of LPV+TFV.  We had already shown that this combination 

was strongly synergistic and effective at inhibiting cell-to-cell spread of 

HIV-1WT, however this synergy was reduced to moderate levels against 

HIV-1DM, evidenced by an increase in CI values (Table 5.7). This was 

expected because the virus is resistant to LPV, which is potent against 

cell-to-cell spread of HIV-1, leaving only TFV that is a poor inhibitor of 

cell-to-cell infection to counter the effective spread of the virus. When 

a third drug EFV was added to the combination, the triple combination 

effectively inhibited both HIV-1WT and HIV-1DM cell-to-cell spread to the 

same degree. The HIV-1DM confers a 14-fold resistance to LPV in the 

drug susceptibility assay (see Chapter 3).  

 

These results suggest that when combined with a drug such as TFV, 

which is ineffective in monotherapy against cell-to-cell spread, the 

drug-resistant virus is able to overcome the combined effects of the 

two drugs and still replicate efficiently when using a cell-to-cell mode 

of infection. EFV is very potent against cell-to-cell spread of HIV-1 unlike 

TFV, also the accumulation of multiple major and minor resistance 

mutations in Protease is usually required in a clinical context to 

compromise PI-based regimens (Molla et al., 1996). The PI mutant that 

has been tested in this thesis only carries two resistance mutations and 

therefore likely doesn’t exhibit a resistance phenotype strong enough 

to compromise a triple combination regimen even with the virus 

spreading by the highly efficient cell-to-cell mechanism. 
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Similar observations were made for the RTI resistant mutants. HIV-1K103N 

had a replicative advantage over HIV-1WT in the presence of RTI-based 

dual and triple combinations TFV+EFV and TFV+EFV+3TC respectively. 

HIV-1K103N is 650-fold less susceptible to EFV when compared to wild 

type virus. The presence of this single point mutation is sufficient to 

compromise NNRTI-regimens containing EFV (Bacheler et al., 2001). 

Both TFV and 3TC have reduced potencies in their ability to inhibit cell-

to-cell infections as has been previously demonstrated. A resistant virus 

such as HIV-1K103N with a strong resistance phenotype, gains an added 

advantage in its ability to compromise an antiretroviral combination by 

spreading through a cell-to-cell mechanism, especially when a priori 

some of the components of the combination have known reduced 

potencies against cell-to-cell infection.  

 

Mutations conferring resistance to one drug can sometimes cause 

hyper susceptibility to a different compound or re-sensitise strains that 

were resistant to that drug. The HIV-1 M184V mutation in RT is an 

example of such a mutation. This mutation is usually selected in 

patients following treatment with 3TC (Diallo et al., 2003) and the 

presence of this mutation increases the susceptibility of the virus to  

other NRTIs including AZT and TFV (Boucher et al., 1993, Tisdale et al., 

1993, Larder et al., 1995, Wainberg et al., 1999, Hertogs et al., 2000, 

Shulman et al., 2001). We hypothesised that this increased susceptibility 

to AZT and TFV, two drugs which when applied as monotherapy are 

highly inefficient against cell-to-cell infection, would restore the ability 

of these drugs to inhibit cell-to-cell spread of HIV-1M184V. To test this 

hypothesis cell-to-cell spread of HIV-1M184V was tested in the presence 

of the AZT alone (Figure 5.6A) and in the presence of two 

combinations: 3TC+AZT and 3TC+AZT+EFV in comparison to cell-to-cell 

spread of HIV-1WT. The results show that while the potency of AZT 

against cell-to-cell spread was restored for HIV-1M184V, cell-to-cell 
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spread of HIV-1WT was not fully inhibited by this same drug. This confirms 

that the increased susceptibility to AZT mediated by the presence of 

the M184V mutation remains operational during highly efficient cell-to-

cell mode of infection. The M184V mutation has been shown to reduce 

the selective excision of Zidovudine 5’ monophosphate (AZTMP) by the 

RT of HIV-1 (Boyer et al., 2001). This mutation alters the polymerase 

active site in a way that specifically interferes with ATP mediated 

excision of the nucleoside analogue from the end of the primer strand 

(Boyer et al., 2001).  In the presence of AZT and in the context of cell-to-

cell spread this increased incorporation of AZTMP may allow more 

efficient inhibition of HIV-1M184V compared to HIV-1WT by tipping the 

scale in favour of the drug.  

 

When AZT was tested in combination with 3TC, HIV-1M184V displayed a 

slight replicative advantage over HIV-1WT during cell-to-cell spread. 

Both viruses were however effectively suppressed by the triple 

combination of 3TC+AZT+EFV. HIV-1M184V is 120-fold less susceptible to 

inhibition by 3TC in the drug susceptibility assay; the combined effect 

of 3TC+AZT was not sufficient to allow inhibition of cell-to-cell spread of 

this virus to the same degree as HIV-1WT   even considering its increased 

susceptibility to AZT. This may suggest that the ability of a given 

combination to inhibit viral replication in the context of drug resistance 

may be a balance between the potency of individual drugs in the 

combination against cell-to-cell infection, the strength of the synergistic 

interactions between drugs in the combination and the magnitude of 

the drug resistance phenotype of the virus in question. Cell-to-cell 

spread of both viruses was effectively blocked by the triple 

combination of 3TC+AZT+EFV. In vivo hyper susceptibility to NNRTIs, 

specifically EFV has been associated with the M184V mutation 

(Shulman et al., 2001)and may contribute to the enhanced potency 
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observed with the triple combination against both the wild type and 

drug-resistant virus.  

 

Although the selection of drug resistance mutations to any drug in a 

cART regimen is an undesirable feature, usually leading to the drug in 

question being replaced, the M184V mutation is one of the rare 

mutations for which this rule may not always apply. In addition to 

increasing the sensitivity of the mutated virus to other NRTIs notably 

thymidine analogues, M184V leads to a reduction in the viral 

replication capacity (Diallo et al., 2003) and also raises the barrier for 

the selection of resistance mutations to other NRTIs (Naeger et al., 2001, 

Wolf et al., 2003). For this reason some clinicians favour maintaining 

patients on 3TC regimens even when this mutation is present. This 

strategy, although not part of the current WHO treatment guidelines, is 

supported by evidence from clinical studies showing that the ability of 

3TC regimens to suppress viral replication is maintained in the presence 

of this mutation (Campbell et al., 2005, Castagna et al., 2006, Dunn et 

al., 2011). Such conservative strategies have the potential to be very 

useful in settings where scarce resources limit the pool of antiretroviral 

drugs to choose from when composing a salvage treatment regimen 

for patients with drug resistance. The findings that even when 

spreading in a cell-to-cell mechanism, HIV-1M184V remains susceptible to 

drug combinations containing 3TC offers an additional possible 

explanation as to why the presence of this mutation does not render a 

3TC containing regimen useless for the treatment of HIV infected 

patients. 
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6 Conclusions and future directions 
6.1 Conclusions 

Three decades since the start of the HIV-1 pandemic, the pathogenesis 

of the disease is still not fully understood. Access to effective 

antiretroviral therapy has led to a rapid decline in disease-associated 

mortality and new infections. However, with the development of drug 

resistance coupled with the cost and toxicity of long-term antiretroviral 

therapy it seems evident that alternative strategies are needed in the 

fight against HIV-1 infection. In recent years the focus of HIV-1 research 

has shifted towards strategies aimed at eradicating the virus reservoir, 

alongside long-standing efforts to develop an effective vaccine to 

prevent new infections. These strategies are however far from being 

realised and antiretroviral drugs remain the best weapon to treat and 

potentially protect from HIV-1 infection. As the role of HIV-1 cell-to-cell 

spread across a virological synapse becomes more clearly defined, its 

putative importance in viral pathogenesis makes it an important 

element to consider in the context of antiviral therapy, ongoing viral 

replication in treated patients and the maintenance of the viral 

reservoir. In this thesis, I set out to explore and clearly define the impact 

of antiretroviral drugs on the unique mode of HIV-1 dissemination 

across a virological synapse. After identifying the best in vitro 

experimental approach to use to answer this question, I went on to 

assess the effects of PIs, INIs and RTIs alone and in clinically relevant 

combinations on HIV-1 cell-to-cell infection. My results provide insight 

into how antiretroviral drugs may affect HIV-1 cell-to-cell infection and 

allow us to speculate on what this could mean for their clinical use. 

 

In my thesis I have assessed and validated an in vitro assay system for 

studying the impact of antiretroviral drugs on HIV-1 cell-to-cell infection. 

The findings presented help to resolve some of the methodological 

controversies that existed in the field prior to the start of this project. The 
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quantitative T cell line assay that directly measures the early steps of 

HIV-1 infection provides a suitable unambiguous approach for studying 

the impact of antiretroviral drugs on cell-to-cell spread of HIV-1. On the 

other hand a Tat-driven reporter gene expression assay though useful 

for screening is less accurate for studying the effects of some drug 

inhibitors on HIV-1 cell-to-cell infection. Applying the qPCR-based 

quantitative T cell line assay, I have explored for the first time the 

impact of PIs, and INIs on their ability to inhibit HIV-1 T cell-to-T cell 

infection as well as reassessed RTIs that were previously studied by 

other groups but with conflicting results (Sigal et al., 2011, Permanyer et 

al., 2012b). I have also for the first time assessed the impact of PI-based 

and RTI-based combination therapies on cell-to-cell spread of both 

wild type and drug-resistant HIV-1. The finding that PIs, INIs and RTIs 

have variable effects on their ability to inhibit HIV-1 cell-to-cell infection 

raises interesting questions on the implications for both prophylactic 

and therapeutic uses of these antiretroviral drugs. 

 

Based on their work with RTIs Sigal et al.  suggested that HIV-1 cell-to-

cell infection could be a mechanism for antiviral escape in treated 

patients (Sigal et al., 2011). Their results are difficult to reconcile with the 

well-described effectiveness of antiretroviral therapy in suppressing viral 

replication in patients (Arts and Hazuda, 2012). This has generated 

considerable debate in the field on the true implications of cell-to-cell 

spread for treatment and driving ongoing replication to maintain viral 

reservoirs. My results show that different antiretroviral drug classes 

exhibit variable potencies against cell-to-cell spread of HIV-1. However 

when these drugs are used in combination they are effective against 

both cell-to-cell and cell-free HIV-1 infections. I also clearly 

demonstrate that drug-resistant variants of the virus gain an 

advantage when spreading by a cell-to-cell mechanism in the 

presence of cART. The potential for escape by a cell-to-cell 
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mechanism of spread is likely to be greater than with a cell-free 

mechanism of spread considering the higher multiplicity of infection 

and efficiency of the former. My results therefore suggest that cell-to-

cell spread could play a role as a mechanism of escape during 

monotherapy or inadequate treatment regimens, thus driving the 

selection and replication of drug-resistant variants. Antiretroviral 

therapy is required life-long and the side effects associated with 

treatment have serious implications for effective adherence in patient 

populations. This is particularly relevant in resource-constrained settings 

where uninterrupted supply of cART is not always guaranteed. Under 

such conditions, cell-to-cell spread of the virus could play a significant 

role in fostering drug resistance and therapeutic failure.  

 

The impact of cell-to-cell spread on ongoing replication and the 

maintenance of reservoirs with effective cART is less clear-cut. Using 

highly sensitive single copy assays, trace levels of viraemia can still be 

detected in effectively treated, fully adherent patients (Palmer et al., 

2008). Whether this trace viraemia represents ongoing viral replication 

with cART or release of virus particles from the latent reservoir (Chun et 

al., 1997), is a subject of intense debate. In vivo HIV-1 cell-to-cell spread 

most likely occurs predominantly in lymphoid tissues where there is an 

abundance of CD4+ T cells and effective antiviral drug penetration 

may be sub-optimal (Fletcher et al., 2014). Also in other anatomic 

sanctuary sites with reduced drug penetration(Cu-Uvin et al., 2010, 

Trono et al., 2010, Deleage et al., 2011, Fletcher et al., 2014); niches 

with cells in close proximity and the absence of sheer flow are likely to 

favour cell-to-cell spread. It is plausible to suggest that some degree of 

ongoing replication mediated by cell-to-cell spread is possible in these 

sites where drug penetration may be suboptimal, even during 

seemingly “fully suppressive” cART. Some studies have failed to detect 

evidence of viral evolution in patients receiving fully suppressive cART 
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arguing against ongoing viral replication in treated patients (Kieffer et 

al., 2004, Bailey et al., 2006, Evering et al., 2012, Josefsson et al., 2013). It 

is however important to note that due to the difficulty in sampling 

sanctuary sites where cell-to-cell spread is most likely to occur, these 

studies have mostly relied on the detection of HIV-1 in blood samples 

and thus may not be a reflection of what happens in other 

compartments. A few studies have shown viral evolution during cART, 

however in these studies concomitant drug measurements were 

absent making it impossible to exclude poor adherence as the driving 

force behind the observed viral evolution (Frenkel et al., 2003, Tobin et 

al., 2005). Treatment intensification studies with Raltegravir have been 

shown to reduce immune activation, inflammation and induce a 

transient increase in 2 LTR circle copies detected (Buzon et al., 2010, 

Llibre et al., 2012, Hatano et al., 2013). 2 LTR circles are episomal forms 

of viral DNA, which do not replicate and are generated during new 

infections suggesting that their detection in some Raltegravir 

intensification studies may indicate viral replication during therapy. It is 

nevertheless difficult to reconcile these results with findings from other 

intensification studies that fail to find evidence of ongoing replication 

(Dinoso et al., 2009, Yukl et al., 2010, Gandhi et al., 2010). It is interesting 

to note that in the Raltegravir intensification studies showing increased 

detection of 2 LTR circles, this effect was mainly observed in patients 

receiving PIs (Buzon et al., 2010, Llibre et al., 2012, Hatano et al., 2013). 

This could possibly be a reflection of the unique pharmacokinetic and 

pharmacodynamic properties of PIs, as opposed to a sign of ongoing 

replication during cART (Rabi et al., 2013, Laskey and Siliciano, 2014).  

At the moment it is impossible to say with certainty whether or not 

ongoing viral replication occurs during effective cART as there is 

substantial evidence both in support of and against this phenomenon. 

With the advent of intravital imaging techniques and humanised mice 

models, allowing the visualisation of cell-to-cell spread in vivo (Sewald 
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et al., 2012, Murooka et al., 2012), it would be interesting to revisit this 

question using these new techniques and sampling multiple sanctuary 

sites, to hopefully put the controversy to rest. 

 

Besides their use for treating HIV-1 infection, antiretroviral drugs have 

gained a lot of traction as prophylactic approaches  (PreP and PEP), to 

prevent HIV-1 infection pre-exposure and post-exposure. Prophylactic 

antiretroviral therapy targets very early infection with the aim of 

clearing infections before the formation of drug insensitive latent 

reservoirs. PreP is now a strategy that is recommended for well-defined 

risk groups as a way of preventing the spread of HIV-1 infections (WHO, 

2013, DHHS, 2014). The effectiveness of this strategy has been assessed 

in several clinical trials with encouraging but variable results. The 

CAPRISA 004 and VOICE trials tested the application of Tenofovir gel by 

women before sexual intercourse (Abdool Karim et al., 2010, Hankins 

and Dybul, 2013), while five studies tested oral Tenofovir in combination 

with Emtricitabine or as monotherapy for PreP (Baeten et al., 2012, 

Grant et al., 2010, Thigpen et al., 2012, Van Damme et al., 2012). The 

CAPRISA 004 trial showed a 39% reduction in HIV-1 transmission (Abdool 

Karim et al., 2010) but the VOICE trial was discontinued due to futility. 

Three of the five trials of oral PreP showed the effectiveness of this 

intervention ranging from 44-73% protection (Baeten et al., 2012, Grant 

et al., 2010, Thigpen et al., 2012) but two trials failed to show a 

demonstrable protective effect (Van Damme et al., 2012). It is worth 

noting that besides the CAPRISA 004 study, the other three trials that 

did show effectiveness of the intervention were of the oral combination 

of Tenofovir and Emtricitabine, two NRTIs. Although the explanations for 

why some trials failed to show a protective effect of the intervention 

are likely multifactorial including adherence, the type of sexual 

exposure, and choice of study populations. It is nonetheless attractive 

to speculate that biological factors such as the mechanism of 
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transmission and drug insensitivity could also contribute to infection 

breakthrough even with PreP, explaining some of the variability 

observed in these studies. 

 

 If cell-to-cell transmission is a significant mechanism of virus spread 

during early transmission events, this may cause a reduced sensitivity to 

some of the drugs, which have been assessed for PreP. This would 

increase the potential for infection to spread from the site of entry and 

establish distant foci of productive infection. There is considerable 

evidence from in vitro and primate based studies in support of cell-to-

cell transmission during initial exposure to HIV-1 (Kingsley et al., 2009, 

Weiler et al., 2008, John et al., 2001, Salle et al., 2010, Rousseau et al., 

2004). The studies on PreP to date have shown that this intervention is 

not 100% effective in preventing transmission of HIV-1. RTIs such as TFV, 

which is a key component of PreP, have up to 1000-fold reduced 

potencies against HIV-1 cell-to-cell infection (Sigal et al., 2011, Titanji et 

al., 2013, Duncan et.al, 2013, Agosto et al., 2014). We can therefore 

suggest that even a small decrease in susceptibility to antiretroviral 

PreP may lead to an increase in the number of people infected while 

receiving PreP. It would consequently be important to include 

interventions that effectively target cell-to-cell spread when assessing 

future microbicidal and oral PreP options. My data show that PIs and 

INIs are highly effective against cell-to-cell spread of HIV-1. These drug 

classes have not been assessed for their usefulness in PreP interventions 

and may be worth considering with the caveat that other factors such 

as drug penetration of mucosal tissue, pill burden and cost would need 

to be considered as well. 

 

We can also speculate on what the variable effects of antiretroviral 

drugs on HIV-1 cell-to-cell infection means for post-exposure 

prophylaxis (PEP). The window during which HIV-1 infection can be 



Exploring the Impact of Antiretroviral Drugs on the Cell-to-Cell Spread of HIV-1 
 

Chapter Six – Conclusions and future directions 
226 

cleared following exposure has been defined using non-human 

primate infection models as 24h (for intravenous injection)(Tsai et al., 

1998) and 48h (for vaginal challenge)(Otten et al., 2000). A recent 

study has shown that the latent virus reservoir is likely seeded much 

earlier in the course of infection than previously thought (within 72h) 

(Whitney et al., 2014). It is reasonable to suggest based on existing 

evidence that the reservoir requires an acute phase of infection and 

viral replication in order to seed sufficient numbers of cells (Chun et al., 

1998). Hence although the viral reservoir may be present within 72h it is 

likely not to be fully formed. This is supported by the fact that early 

treatment of HIV-1 infection within a month of exposure reduces the 

viral set point during established infection (Steingrover et al., 2008, 

Ananworanich et al., 2012, Wyl et al., 2011, Hocqueloux et al., 2013, 

Saez-Cirion et al., 2013, Fidler et al., 2013). In the study by Whitney et al. 

macaques exposed to SIV were initiated on suppressive cART 3, 7, 10 

and 14 days after infection and viral rebound was observed in all 

animals following treatment interruption (Whitney et al., 2014). It is 

valuable to work out whether the formation of early reservoirs 

established in the presence of cART involves drug insensitive cycles of 

infection possibly mediated by HIV-1 cell-to-cell spread. This question is 

made more compelling in light of rebound viraemia in the “Mississippi 

baby” who was treated with suppressive cART within thirty hours of life 

(NIH, 2014). The existence of such drug-insensitive cycles of infection 

remains to be proven. However if they do exist, this could provide the 

missing link between a curable infection and an established infection 

with a drug insensitive reservoir. 

 

As the AIDS epidemic has evolved through the decades, the growing 

realisation that antiretroviral drugs offer only a temporary solution to 

controlling the infection has shifted the focus more towards the search 

for a cure. One of the more popular cure strategies involves the use of 
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histone deacetylase inhibitors to reactivate the virus in latent reservoirs 

with the hope that these activated cells would be eliminated by the 

immune system, the cytotoxic effects of the virus and concomitant 

administration of antiretroviral drugs to prevent actively infected cells 

from infecting new cells (Siliciano et al., 2007, Sagot-Lerolle et al., 2008, 

Lehrman et al., 2005, Archin et al., 2012). It would be important to bear 

in mind the reduced sensitivity of HIV-1 cell-to-cell infection to inhibition 

by some antiretroviral drugs in the optimisation and testing of such cure 

strategies. 

 

6.2 Future Directions 
For this thesis a laboratory-adapted molecular clone of HIV-1 (NL4.3) 

was used to study cell-to-cell spread of the virus between T cells.  

Laboratory-adapted strains of HIV-1 can infect and replicate better in 

cultured T cell lines compared to most primary clinical isolates. It would 

be informative to expand this study by assessing the impact of 

antiretroviral drugs on cell-to-cell spread of different HIV-1 strains and 

clinical isolates. Although to date several studies have demonstrated 

that cART is equally efficient against HIV-1 infection with different 

clades of group M virus (Alexander et al., 2002, Pillay et al., 2002, 

Bannister et al., 2006, Bouchaud et al., 2011, Gatell, 2011, Scherrer et 

al., 2011), differences have been identified in the frequency and  

pathways to the selection of drug resistance viruses (Gao et al., 2004, 

Pieniazek et al., 2000). For instance one report suggests that some 

subtype D viruses may possess a natural resistance to non-nucleoside 

reverse transcriptase inhibitors, based on a single nucleotide 

substitution (Gao et al., 2004) and non-subtype B viruses appear to 

more frequently select for minor drug resistance mutations in protease 

(Pieniazek et al., 2000). My results show that drug-resistant variants of 

HIV-1 gain a replicative advantage when spreading from cell-to-cell in 

the context of cART. It would therefore be interesting to consider the 
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efficiency of cART on cell-to-cell spread of different HIV-1 clades 

especially in the context of drug resistance. This could be further 

extended to include non-group M viruses, which though responsible for 

only a small proportion of HIV-1 infections, may possess natural 

polymorphisms that make them intrinsically resistant or less susceptible 

to some components of cART.  

 

I have focused my study on T cell-to-T cell spread of HIV-1, however 

other cell types notably macrophages and dendritic cells also mediate 

HIV-1 cell-to-cell spread. Duncan et al. assessed the impact of RTIs and 

INIs on macrophage-to-T cell spread of HIV-1. They found that while RTIs 

were less effective against this mode of spread in an MOI dependent 

manner, INIs were effective against this mode of infection (Duncan 

et.al, 2013). Macrophages are long-lived cells, and their ability to 

traverse the blood brain barrier enables the spread of HIV-1 infection 

into sanctuary sites in the central nervous system (Sharova et al., 2005, 

Gartner et al., 1986). It would be attractive to expand the work I have 

done with drug combinations and drug-resistant viruses to 

macrophage-to-T cell spread of HIV-1 in order to complete the picture.  

 

Dendritic cells do not become productively infected with HIV-1, 

however they mediate infection of T cells by capturing HIV-1 and re-

presenting virus particles to T cells in a process known as trans-infection 

(Pope et al., 1994, Geijtenbeek et al., 2000, McDonald, 2010). This 

mode of spread between DC and T cells is thought to play a role in the 

initial phases of infection following the transmission event, allowing the 

virus to rapidly seed lymphoid tissues. To date only one study has 

assessed the impact of antiretroviral drugs on DC-to-T cell spread of 

HIV-1 (Muratori et al., 2009). Muratori et al. assessed the impact of PIs 

on cell-to-cell spread between DCs and T cell and found PIs to be 

effective inhibitors of this mechanism of spread.  It will be informative to 
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explore the impact of other antiretroviral drug classes notably RTIs and 

INIs on DC-to-T cell trans-infection.  

 

The results obtained with RTIs confirm the previous suggestion that high 

MOI can drive viral escape during cell-to-cell infection. It is difficult to 

evaluate whether the high MOI required for RTI escape can be 

achieved in vivo. This is however feasible in sanctuary sites such as 

lymphoid tissues where cell-to-cell infection predominates and antiviral 

diffusion can be reduced (Fletcher et al., 2014).  With the advent of 

intravital imaging techniques that can visualise cell-to-cell spread in 

vivo (Murooka et al., 2012, Sewald et al., 2012), it would be to 

interesting to apply these tools to study the effect of antiretroviral drugs 

on synaptic spread of HIV-1 in vivo. This would provide a better 

understanding of what likely happens in HIV-1 infected patients who 

receive cART. 

 

Protease inhibitors are one of the main foci of the work presented in this 

thesis. They stand out from the RTIs by being equally potent against 

both cell-to-cell and cell-free modes of HIV-1 infection (Titanji et al., 

2013). The unique pharmacology of this antiretroviral drug class 

continues to be unraveled (Rabi et al., 2013, Laskey and Siliciano, 

2014). Recent findings show that PIs inhibit multiple steps in the virus 

replication cycle with the block to entry being the most significant 

(Rabi et al., 2013). This block to entry has been attributed to the 

interactions between the uncleaved Gag and the cytoplasmic tail of 

Env, which inhibit entry until Gag is cleaved by Protease (Rabi et al., 

2013).  Some env mutations appear to confer resistance to PIs by 

allowing entry when Gag is not fully cleaved (Rabi et al., 2013). While 

we have explored cell-to-cell spread of wild type HIV-1 and a PI 

resistant virus carrying mutations in protease and gag, it would be 

interesting to assess env mutants conferring resistance to PIs in the 
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same manner. One of the enduring questions associated with PI-based 

treatments is failure in the absence of any discernable drug resistance 

mutations.  Exploring the interplay between env mutations associated 

with PI failure and the mode of virus dissemination may provide some 

insight into why some patients fail on PI-based therapy without 

apparent protease or gag mutations. 

 

A brief study of Raltegravir in this thesis has demonstrated its 

effectiveness against cell-to-cell spread of HIV-1 between T cells for the 

first time. It will be useful to extend this study to clarify its relative 

efficacy against cell-to-cell compared cell-free spread of HIV-1, which 

has not been assessed. Also I have not explored the impact of INI-

based combinations on cell-to-cell spread of HIV-1 in my work. INIs are 

not yet widely used in first-line and second-line treatment regimens but 

INI-containing salvage regimens are emerging as highly potent options 

for treatment-experienced patients. Understanding their combined 

effects with other drugs against the different modes of virus 

dissemination will provide useful information on this drug class, which is 

a fairly recent addition to the arsenal of antiretroviral agents. 

 

It now seems unequivocal that cell-to-cell spread of HIV-1 occurs in 

vivo and likely plays a role in viral pathogenesis. In view of our findings 

and bearing in mind the limitations of in vitro studies, the variable 

effects of antiretroviral drugs on cell-to-cell spread of HIV-1 would need 

to be considered for future prophylactic, therapeutic and eradication 

strategies in the fight against HIV-1 infection. The results presented in 

this thesis show that both PI and RTI-based combination therapies are 

potent against HIV-1 cell-free infection and highly efficient cell-to-cell 

infection. The variable potency of PIs and RTIs as single agents against 

cell-to-cell infection can therefore not be taken as an indication that 

this mode of virus dissemination is not relevant in vivo. Instead these 
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results suggest that both cell-to-cell and cell-free spread likely play a 

role in driving viral escape and treatment failure in the context of 

inadequate combination therapies. Predicting the outcomes of 

antiretroviral therapy in patients, though highly desirable, remains very 

difficult in current clinical practice. As new therapies are developed for 

the treatment of HIV, being able to assess the efficacy of novel 

combinations against all modes of virus dissemination will serve as a 

valuable tool for predicting their efficacy, prior to clinical testing. 

Employing a simple in vitro assay like the one used for this study 

provides a straightforward way of doing this. 
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