
1

Precision–Energy–Throughput Scaling Of Generic
Matrix Multiplication and Convolution Kernels Via

Linear Projections
Mohammad Ashraful Anam, Paul N. Whatmough and Yiannis Andreopoulos∗

Abstract—Generic matrix multiplication (GEMM) and one-
dimensional convolution/cross-correlation (CONV) kernels often
constitute the bulk of the compute- and memory-intensive pro-
cessing within image/audio recognition and matching systems.
We propose a novel method to scale the energy and process-
ing throughput of GEMM and CONV kernels for such error-
tolerant multimedia applications by adjusting the precision of
computation. Our technique employs linear projections to the
input matrix or signal data during the top-level GEMM and
CONV blocking and reordering. The GEMM and CONV kernel
processing then uses the projected inputs and the results are
accumulated to form the final outputs. Throughput and energy
scaling takes place by changing the number of projections
computed by each kernel, which in turn produces approximate
results, i.e. changes the precision of the performed computation.
Results derived from a voltage- and frequency-scaled ARM Cor-
tex A15 processor running face recognition and music matching
algorithms demonstrate that the proposed approach allows for
280% ∼ 440% increase of processing throughput and 75% ∼ 80%
decrease of energy consumption against optimized GEMM and
CONV kernels without any impact in the obtained recognition
or matching accuracy. Even higher gains can be obtained if
one is willing to tolerate some reduction in the accuracy of the
recognition and matching applications.

Index Terms—generic matrix multiplication, convolution, mul-
timedia recognition and matching, energy and throughput scal-
ing, embedded systems

I. INTRODUCTION

ERROR-TOLERANT multimedia processing [1] com-
prises any system that: (i) processes large volumes of in-

put data (image pixels, sensor measurements, database entries,
etc.) with performance-critical digital signal processing (DSP)
or linear algebra kernels (filtering, decomposition, factor-
ization, feature extraction, principal components, probability
mixtures, Monte-Carlo methods, etc.) and (ii) the quality of its
results is evaluated in terms of minimum mean-squared error
(MSE) or maximum learning, recognition or matching rate
against ground-truth or training data, rather than performance
bounds for individual inputs. Examples of such error-tolerant
(ET) systems include: lossy image/video/audio compression
[2], [3], computer graphics [4], [5], webpage indexing and
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retrieval [6], object and face recognition in video [7], [8],
image/video/music matching [9]–[12], etc. For instance, all
face recognition and webpage ranking algorithms optimize for
the expected recall percentage against ground-truth results and
not for the worst-case. This is also because typical input data
streams comprise noisy entries originating from audio/visual
sensors, web-crawlers, field-measurement microsensors, etc.
Therefore, ET applications have to tolerate approximations in
their results, and can use this fact to reduce computation time
or energy consumption [1].

Two of the most critical linear algebra and DSP kernels
used in ET applications are the generic matrix multiplication
(GEMM) and one-dimensional convolution/cross-correlation
(CONV) kernels. This paper proposes a new approach to
systematically scale the computation time and energy con-
sumption of optimized GEMM and CONV kernels within ET
applications with minimal or no effect in their results.

A. Previous Work

Several papers have studied techniques to trade-off ap-
proximation versus implementation complexity in GEMM and
CONV computations within special-purpose systems. Starting
with theory-inspired approaches for approximate GEMM and
CONV kernel realization, Monte-Carlo algorithms have been
proposed for fast approximate matrix multiplication suitable
for massive dataset processing on networked computing sys-
tems (aka “Big Data” systems) [13], such as Google MapRe-
duce and Microsoft Dryad. The concepts of approximate and
stochastic computation in custom hardware were proposed
as a means to achieve complexity-distortion scaling in sum-
of-products computations [14]. Approximate convolution op-
erations in conjunction with voltage overscaling in custom
hardware was proposed recently within the framework of
stochastic computation [15].

Other works focus on performance vs. precision tradeoffs
of GEMM and CONV kernels within specific algorithms. For
example, Merhav and Kresch [16] presented a novel method
of approximate convolution using discrete cosine transform
(DCT) coefficients, which is appropriate only for DCT-domain
processing. Chen and Sundaram [17] proposed a polynomial
approximation of the input signal for accelerated approximate
Fast Fourier Transform (FFT) computations. Di Stefano and
Mattoccia [18] presented an accelerated normalized spatial-
domain cross-correlation mechanism, with partial check ac-
cording to an upper bound. Finally, Kadyrov and Petrou [19]

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/29410625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

and Anastasia and Andreopoulos [20] showed that it is pos-
sible to perform accelerated 2D convolution/cross-correlation
by piecewise packing of the input image data into a compact
representation when the algorithm utilizes integer inputs.

A third category of research advances on GEMM and
CONV energy and processing throughput adaptation is fo-
cusing on specific error-tolerant applications, such as video
codecs, image processing and signal processing operations
in custom hardware designs [21]–[30]. Beyond their reliance
to specialized hardware or circuit design for complexity–
precision scalability of GEMM and CONV kernels, many such
approaches also tend to be algorithm-specific. That is, they
use predetermined “quality levels” or “profiles” of algorithmic
or system adjustment, e.g.: switching to simpler transforms
or simplifying algebraic operations [4] [31] [32], limiting the
operating precision of the algorithm implementation in a static
manner in order to satisfy hardware or processing constraints
[33], or exploiting the structure of matrices in sparse matrix
problems [34]. Previous research efforts by our group in
image processing systems [20], [35] were also algorithm-
specific and, importantly, no precision-controlled acceleration
of linear operations was proposed. For these reasons, many
existing proposals of this category [13], [15], [17], [36]–[38]
are either based on complexity models or custom VLSI designs
and cannot be easily generalized to mainstream digital signal
processors or high-performance computing clusters.

Overall, all current approaches for precision–energy–
throughput scaling of GEMM and CONV kernels appear to
be limited by one or more of the following: (i) adaptation is
only done at the process level (e.g. results of entire tasks are
dropped); (ii) the proposed methods are tailored to specific
algorithms (e.g. image filtering or specific signal transforms);
(iii) special-purpose hardware is required and optimized de-
ployment via mainstream processors with streaming single-
instruction multiple-data (SIMD) extensions is not possible.

B. Contribution

This paper proposes an approach to scale precision, energy
and throughput (PET) scaling in GEMM and CONV kernels
that form the dominant compute and memory-intensive pro-
cessing within broad classes of image/audio recognition or
matching systems. Our proposal is applicable to GEMM and
CONV kernels running on commercial off-the-shelf processors
and, via PET scaling, it is shown to significantly outperform
state-of-the-art deployments on such processors. Importantly,
PET scaling in our approach is done with straightforward
selection of a few parameters that are software-adjustable.
Finally, our approach is not limited to a specific algorithm
or application; rather it is applicable to a large range of ET
applications based on GEMM and CONV kernels.

To illustrate how these important advantages are achieved by
our proposal, Figure 1 presents a schematic layering of the ex-
ecution of typical compute and memory-intensive ET multime-
dia applications on high-performance and embedded systems.
As shown in the figure, between L2 and L3, a partitioning [39]
(or reordering [40], [41]) of the input data takes place and each
data block is assigned to a kernel-processing core (or thread)

for memory-efficient (and, possibly, concurrent) realization of
subsets of GEMM and CONV computations. Each core returns
its output block of results to the top-level processing of L2 and
all blocks are assembled together to be returned to the high-
level algorithm. Parallelism and data movement to and from
cores tend to increase drastically between L2 and L3.

When aiming for high-throughput/low-energy performance,
the critical issues of the execution environment of Figure
1 are [1], [40], [41]: (i) the data movement to/from cores;
(ii) the processing time and energy consumption per core;
(iii) the limited concurrency when the top-level processing
allows for only a few blocks. These issues are addressed
in our proposal by viewing the process between L2 and
L3 as a computation channel [39] that returns approximate
results. All current approaches correspond to the least-efficient,
“lossless”, mode (i.e. typically 32-bit floating-point accuracy),
which will typically be unable to accommodate timing and/or
energy constraints imposed by the application. It is proposed
to create highly-efficient, “lossy”, modes for pre- and post-
processing of streams via projection techniques (L2.5 of Figure
1). This is achieved by: (i) partitioning and reordering inputs
in L2 to move them to each core for kernel processing;
(ii) converting them into multiple, compact, representations
allowing for reduced data movement, increased concurrency
and fast recovery of approximate results from only a few cores.

C. Paper Organization

In Section II, we review the top-level processing of
GEMM and CONV kernels considered in this paper. Sec-
tion III presents the proposed projections-based data com-
paction method within GEMM and CONV kernels. Section
IV presents performance benchmarks for the proposed method
in terms of precision, energy consumption and processing
throughput attained on the recently-introduced ARM Cortex
A15 processor. In addition, comparisons against both the
original (i.e. non projections-based) kernels, as well as state-
of-the-art GEMM and CONV kernels from third parties, are
carried out. Section V demonstrates the ability of the proposed
approach to achieve substantial resource–precision adaptation
within two error-tolerant multimedia recognition and matching
applications. Finally, Section VI concludes the paper.
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Figure 1. Proposed work positioned within the execution environment of ET
multimedia applications.
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II. OVERVIEW OF TOP-LEVEL PROCESSING OF GEMM
AND CONV KERNELS

This section outlines the key aspects of data partitioning and
reordering within the GEMM and CONV kernels under con-
sideration. Specifically, the accessing and partitioning order of
the input data streams is shown, in order to provide the context
under which the proposed projections-based mechanisms are
deployed. The nomenclature summary of this paper is given
in Table I.

Table I
NOMENCLATURE TABLE.

Symbol Definition

M , K,
W

Input matrix or signal size parameters

N Kernel size (e.g. N ×N subblock in GEMM or
N -sample convolution kernel)

L Total number of projections used

Ai, a,
AT Boldface uppercase and lowercase letters indicate

matrices and vectors, respectively; superscript T
denotes transposition

r̂sub Reconstruction of result r using subset “sub” of
projections

a [0,0] Italicized lowercase letters indicate elements of
corresponding matrices or vectors (with the
enumeration starting from zero)

∥A∥F Frobenius norm

a←instr(b,c) Indicates assignment of result to variable a after
performing instruction instr using b and c (the
meaning of the instruction is identifiable from the
context) in pseudocode listings

A. Brief Review of Block Processing within GEMM

Consider the standard GEMM design depicted in Figure 2,
following the general flow found in optimized MKL designs
[40], [41]. The application invokes GEMM for an M ×K by
K ×W matrix multiplication that is further subdivided into
N ×N “inner-kernel” matrix products. For our approach, N
is specified by (k ∈ N⋆):

N = 2k × SIMDbits

brepr
(1)

with: SIMDbits the number of bits of each SIMD register
(SIMDbits = 128 in this work); brepr = 32 the number of bits
for floating-point or integer (fixed-point) representations. The
inner-kernel result, R2,1, of the example shown in Figure
2 comprises the sum of multiple subblock multiplications
A2,nBn,1, and is given by:

R2,1 =
K
N −1

∑
n=0

A2,nBn,1. (2)

If the matrices’ dimensions are not multiples of N , some
“cleanup” code [40], [41] is applied at the borders to complete
the inner-kernel results of the overall matrix multiplication.
This separation into top-level processing and subblock-level
processing is done for efficient cache utilization [41], [42].

W

M

R2,1

K

M

A2,0 A2,1

A

K

W

B0,1

B1,1

B R× �

Figure 2. Top-level processing of GEMM highlighting the input subblocks
involved in the example subblock result R2,1.

Specifically, during the initial data access of GEMM for
top-level processing, data in matrix A and B is reordered
into block major format: for each N × N pair of subblocks
Ai,n and Bn,j multiplied to produce inner-kernel result Ri,j ,
0 ≤ n < K

N
, 0 ≤ i < M

N
, 0 ≤ j < W

N
, the input data

within Ai,n and Bn,j is reordered in rowwise and columnwise
raster manner, respectively. Thus, sequential data accesses are
performed during each subblock matrix multiplication and
this enables the use of SIMD instructions, thereby leading to
significant acceleration. The appropriate value for the subblock
dimension, N , can be established for each architecture follow-
ing an automated process at compile time (e.g. via test runs
[69]).

Our approach intercepts the subblock-based rowwise and
columnwise raster ordering (exploiting the fact that the input
data subblock is accessed anyway) in order to perform low-
complexity linear projections to the input rows and columns
prior to the performance of individual GEMMs within the
projected data. In conjunction with the fact that the proposed
approach does not alter the top-level processing of the standard
GEMM, in the remainder of the paper we only refer to a single
subblock product. For notational simplicity, we remove the
indices from subblock product Ai,nBn,j .

B. Brief Review of Overlap-save Processing within CONV

Consider the discrete convolution of two 1D signals, sin and
k, producing the output signal, rout:

rout = sin ⋆ k⇐⇒ ∀m ∶ rout [m] =
N−1

∑
n=0

sin [n]k [m − n] . (3)

The signal with the smallest time-domain support is considered
to be the kernel, k, and the other signal, sin, is the input.
Assuming sin is periodic with period N , circular convolution
of period N can be expressed by:

rout = (sin ⊛ k)N ⇐⇒

∀m ∶ rout [m] =
N−1

∑
n=0

⎛
⎝

∞

∑
p=−∞

sin [n + pN]⎞⎠k [m − n] (4)

Finally, discrete cross-correlation and circular cross-
correlation can be obtained by replacing k [m − n] with
k [m + n] in (3) and (4).

As shown in Figure 3, practical implementations of con-
volution of a long input signal with an N -sample kernel
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k will subdivide the input into several partially-overlapping
blocks—of W samples each (vector s)—prior to the actual
convolution. Each individual signal block s is independently
convolved with the kernel and the resulting blocks (r) are
assembled together to give the result of the convolution. This
is the well-known overlap-save method [43], performed for
efficient cache utilization and increased concurrency, with the
degree of concurrency and the processing delay depending on
W . The optimal value of W for the utilized architecture can
be derived based on offline experimentation, e.g., during the
routine compilation or via offline experiments with the target
processor [44].

Our approach exploits the fact that overlap-save CONV
accesses blocks of data (in order to subdivide the input)
and applies low-complexity projection operations during this
process. Similarly, as for the case of GEMM, in the next
section we shall only be presenting the proposed method for
one block of W samples and, for notational simplicity, we
shall not retain the block index but rather consider it to be the
entire input signal sin.

-1N-1N -1N

-1N

-1N

-1N

-1N

W
W

W
W

����� �̅	�� � 0� ����� �̅	�� � 1� ����� �̅	�� � 2� ����� �̅	�� � 3�

������ �	�� � 0�

������ �	�� � 1�

������ �	�� � 2�

������ �	�� � 3�

Figure 3. Top-level processing of CONV highlighting the overlap-save
method.

III. PET SCALING OF NUMERICAL KERNELS VIA LINEAR
PROJECTIONS

We first present an example of how projections in numer-
ical kernels produce a hierarchical representation of inner-
product computations, which comprise the core operation
within both kernels. In Subsection III-B we elaborate on
the deployment of the proposed projections-based resource–
precision scaling within high-performance GEMM and CONV
kernels. Finally, in Subsection III-C we quantify its multiply–
accumulate (MAC) operations and required data transfers
between top-level and kernel processing against the standard
kernel realization that does not use projections.

A. Illustration of the Basic Concept

Consider the calculation of an inner product r = ab, such
as the one illustrated in the example of the top half of Figure
4. We can apply projection matrices C and D to the inputs
by:

ac = aC, bd =Db (5)

8×11×8

�

1×1

=

�

�

=

=

�

1×1

=

Conventional inner product

Proposed projection-based inner-product

Step 2: Inner product 
computation

⋯

⋮

1×8

8×1

⋱

8×8

⋮

8×1

1×8

⋮

⋱

8×8

⋮ ⋮

Step 1: Application of projection matrices

a[0] a[7]

b[0]

b[7]

⋯a[0] a[7]

⋯c[0,0] c[0,7]

⋯c[7,0] c[7,7]

⋯d[0,0] d[0,7]

⋯d[7,0] d[7,7]

⋮

b[0]

b[7]

⋯a
c
[0] a

c
[7]

⋮

b
d
[0]

b
d
[7]

a b r

r

bD

a C

r

a
c

b
d

Figure 4. Eight-sample inner product computation using 8 × 8 projection
matrices C and D. Top half: inner product computation. Bottom half:
projections-based inner product.

If C is an invertible square matrix and we set D = C−1,
the inner product can take place using the projected vectors,
since:

acbd = (aC) (Db) = a(CD)b = ab = r (6)

which is illustrated in the bottom half of Figure 4. If one
ignores the cost of performing the projections of (5), the
inner product of (6) incurs the same computational effort
as the original inner product1. Importantly, the projection
matrices can prioritize the computation of the result since, if
appropriately selected, they can concentrate the energy of the
inputs in the first few elements. For example, considering that
the input vectors a and b comprise image or signal data with
energy concentrated in low frequencies and C is chosen as
the L-point discrete cosine transform (DCT) transform (L = 8,
∀i, j ∶ 0 ≤ i, j < 8):

c [i, j] = cos [π
L

(i + 1

2
) j] , (7)

if we only perform r̂DC = ac [0] bd [0], this corresponds to
reconstructing the “DC component” of the entire inner product
of (6). In addition, this can optionally be incremented up to the
eighth harmonic (i.e., reconstructing r up to—and including—
the eighth harmonic) by:

1The implementation cost of (5) is certainly non-negligible in this example.
However, in the next subsection we illustrate that one can find an appropriate
balance between the number of projections performed and the subblock size
in GEMM, or kernel size in CONV, N , in order for this cost to be reasonably
small.
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r̂full =
7

∑
l=0

ac [l] bd [l] . (8)

with r̂full = r barring numerical approximation error. The
computation of each harmonic ac [l] bd [l] can be assigned to
a different processor and the accumulation of (8) is optional: if
less than all eight harmonics are accumulated, the precision of
the result is expected to degrade gracefully. This reduces the
energy consumption and data transfers to and from processors,
or increases processing throughput if a single processor is
used.

For a population of N results (0 ≤ n < N ), e.g.,
r [n] = ab [n], the signal-to-noise ratio (SNR) between
r [0] , . . . , r [N − 1] and r̂sub [0] , . . . , r̂sub [N − 1] (results
computed in single-precision floating point vs. results recon-
structed from subset “sub” of projections), is given by:

SNR = 10 log10 ( ∑N−1
n=0 r

2 [n]
∑N−1

n=0 (r [n] − r̂sub [n])2
) . (9)

If the projection matrices concentrate the energy of the input
data in these projections, then the SNR of (9) can be ade-
quately high for an error-tolerant multimedia application.

The extension of this simple example to inner products
performed within matrix product computations is relatively
straightforward to envisage. However, in the case of
convolution/cross-correlation, due to the translations
performed during the calculation of the results, we first
need to define the cyclic permutation matrix comprising
N ×N elements [43]:

Pn = [ 0 In
IN−n 0

] (10)

with: 0 ≤ n < N , Ik the k × k identity matrix and 0 the zero
matrix whose dimensions are identifiable from the context.

We can then define the projections-based circular cross-
correlation operation for the example of Figure 4 based on
the following steps:

1) For all translations n, 0 ≤ n < 8, derive the translated-
and-projected inputs:

ac [n] = aPnC, (11)

with ac [n] the 1×8 vector corresponding to the projec-
tion of the nth cyclic translation (permutation) of a.

2) Derive the projected input bd by:

bd =Db. (12)

3) Reconstruct the (7 − n)th sample of the output by
(0 ≤ n < 8):

r̂full [7 − n] = ac [n]bd =
7

∑
l=0

ac [n, l] bd [l] . (13)

Circular convolution can be defined following the same steps
if we reverse the order of either a or b. Moreover, discrete
convolution and cross-correlation are defined by these steps

if extension with zeros is performed in (11) instead of cyclic
permutations. Notice that well-known acceleration techniques
like the FFT can be applied in (13) since, when considering all
translations n, (13) comprises a variant of cross-correlation.

In the case of convolution, we have two options to scale
performance. Firstly, we can opt to omit the calculation of
some of the results of (13) and instead interpolate them
from neighboring results, e.g. compute every other result and
replace the missing ones by averaging the neighboring results.
Secondly, we can opt to omit the calculation of some of
the higher-numbered products within the summation of (13),
which correspond to the higher harmonics of the translated-
and-projected inputs. Both options will lead to approximate
results, with the resulting error being quantified by the SNR
calculation of (9). For instance, for the case of C being the
8 × 8 DCT transform, we can reconstruct the DC component
of the (7 − n)th sample of the output by (0 ≤ n < 8):

r̂DC [7 − n] = ac [n,0] bd [0] . (14)

B. Application of the Concept within the Top-level Data
Partitioning and Reordering of GEMM and CONV

For efficient deployment of projections-based processing
within the blocked GEMM or CONV kernels, we must: (i)
align the projection matrix size to the block size of each
kernel and (ii) ensure the entire process is performed without
breaking the access pattern of the data blocking (and possibly
reordering) of the top-level processing of each kernel. The
latter is important because this means the entire reordering and
projections approach can be performed in a streaming manner,
i.e. with high-performance SIMD instructions.

Assuming that the inner-kernel size comprises N samples
and the projection matrix comprises L×L coefficients, the first
condition is satisfied if N is divisable by L. For example, the
values used in our experiments are: N ∈ {144,600,1200} and
L ∈ {2,8}.

Concerning the second condition, we first define the math-
ematical process of consecutive application of the projection
kernels within each N×N GEMM subblock or each N -sample
convolution kernel. This is achieved by defining the N × N
block-diagonal matrices:

CN =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

C 0 ⋯ 0
0 C 0
⋮ ⋱ ⋮
0 0 ⋯ C

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, DN =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D 0 ⋯ 0
0 D 0
⋮ ⋱ ⋮
0 0 ⋯ D

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

with: C and D the L × L projection matrices, C comprising
any invertible matrix and D = C−1. The mathematical appli-
cation of the projection process then follows the exposition
of the previous subsection, albeit ignoring all elements of the
projection operations that contain zero coefficients.

In order to illustrate how this can be done following the
access pattern of the input data partitioning and reordering
(and, more specifically, using with SIMD instructions), Figure
5 demonstrates one projection operation during the block-
major reordering performed in GEMM. The figure illustrates
the application of the first projection vector (first row of CT
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a0,0

A

144 144×

a0,35⋯

⋮
⋯

a143,35

⋮
⋯

1 4×

c0,0

CT

8 8×

c0,1

1 4×

c1,0 c1,1
c2,0 c2,1
c3,0 c3,1

For row i = 0 to 143 of A:
For j = 0 to 17
r_a0�load(ai,2j)    // 2 SIMD registers with 4
r_a1�load(ai,2j+1) // 32-bit inputs each
r_c0�load(c0,0)    // 1st group of 4 coeffs
r_c1�load(c0,1)    // 2nd group of 4 coeffs
r_proj1�mul_vect(r_a0, r_c0)
r_proj2�mul_vect(r_a1, r_c1)
r_ac0�horiz_add_vect(r_proj1,r_proj2)
ac i,j�r_ac0

End
End

c4,0 c4,1

c5,0 c5,1
c6,0 c6,1
c7,0 c7,1

a
c 0,0

144 18×

a
c 0,17

⋯

⋮
⋯

a
c 143,17

⋮
⋯

A
c

b0,0

B

144 144×

⋮
⋯

⋮
⋯

4 1×

d0,0

D

8 8×1 4×

d1,0

d2,0

d3,0

For col i = 0 to 143 of B:
For j = 0 to 17
r_b0�load(b2j,i)    // 2 SIMD registers with 4
r_b1�load(b2j+1,i) // 32-bit inputs each
r_d0�load(d0,0)   // 1st group of 4 coeffs
r_d1�load(d0,1)   // 2nd group of 4 coeffs
r_proj1�mul_vect(r_d0, r_b0)
r_proj2�mul_vect(r_d1, r_b1)
r_db0�horiz_add_vect(r_proj1,r_proj2)
bd i,j�r_db0

End
End

d4,0

d5,0

d6,0

d7,0

b
d 0,0

144 18×

b
d 0,17

⋯

⋮
⋯

b
d 143,17

⋮
⋯

B
d

⋮

b35,0 b35,143

d0,1

d1,1

d2,1

d3,1

d4,1

d5,1

d6,1

d7,1

(1st projection of B, reordered
in column-major format)(transpose of C)

1 1× 1 1×

(1st projection of A)

Figure 5. Application of first projection of 8 × 8 projection matrices C and D during block-major reordering in GEMM under SIMD registers storing four
32-bit elements. Left half: right multiplication of blocks within the rows of A by all elements of the first row of CT (which is equivalent to left-multiplying
with the first column of C). Right half: left multiplication of blocks within the columns of B by the first row of D. The grayed-out rows of CT and D
correspond to the subsequent projections.

and first row of D) within a pair of subblocks of size N ×N .
In this example, we selected N = 144 and L = 8 (i.e. eight
projections, comprising eight coefficients each), which are the
values used in our experiments. In addition, we left-multiply
each row of A with each row of CT, which is equivalent to
right-multiplying the rows of A with the columns of C but it is
more efficient as all input elements are contiguous in memory
(thereby allowing for the use of SIMD instructions). This is
illustrated in the pseudocode of Figure 5, where we present
simplified SIMD instructions used in the inner loop of the
projection operation performed: mult_vect(r1,r2) multiplies
two SIMD registers r1 and r2 and horiz_add_vect(r1,r2) adds
all eight elements within r1 and r2 (each SIMD register2 has
four 32-bit elements). Specifically, the realization of the first
projection of the jth group of eight values in the ith row of
A is performed via the following (pseudocode of the left part
of Figure 5):

● the first two load instructions of the inner For loop load
two pairs of four consecutive values of A into registers
r_a0 and r_a1;

● the next two instructions load the two pairs of four
consecutive projection coefficients of the first row of CT

into registers r_c0 and r_c1;
● two vector multiplications are then carried out (r_a0 ×

r_c0 and r_a1 × r_c1) and the results are stored in
registers r_proj1 and r_proj2;

● the contents of these two registers are all added together
to create the (i, j)th element of Ac.

The equivalent process is carried out for the realization of
the first projection of the jth group of eight values in the ith

2known as “q-registers” in the ARM Neon architecture

column of B (shown in the pseudocode of the right part of
Figure 5).

As shown in Figure 5, this process results in a smaller
GEMM product of dimensions 144 × 18 by 18 × 144. All
eight projections can be derived by using the subsequent
(grayed-out) rows of CT and D and they can be performed
independently in eight different processing cores. This results
in: (i) eight-fold increase of concurrency/data-level parallelism
within each subblock product, (ii) reduced data transfers to
each core. Moreover, by computing only a small number of
projections, e.g. just one to three, this approach allows for
graceful degradation of the SNR of (9) under energy and
throughput scaling.

Concerning the signal block partitioning during the top-
level processing of CONV, in Figure 6 we demonstrate a
single projection operation applied to the input signal s and
kernel k. Here, we utilize the following sizes for the signal,
kernel and projections: W = 20000, N = 600 and L = 2,
which correspond to the values used in our experiments. In
the pseudocode of Figure 6, load_dup(c0) loads the two
elements of c0 and duplicates them within one SIMD register
and horiz_pairadd_vect(r) performs two pairwise additions
within the four elements of r. Specifically, the realization of
the projection of the ith group of four values in s is performed
via the following:

● the first load instruction of the For loop loads four
consecutive values of s into register r_s;

● the second load instruction loads and duplicates the two
values of the first row of C into register r_c0;

● a vector multiplication is then carried out (r_s × r_c0)
and the results are stored in register r_proj;

● the contents of this register are all added together to create
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the ith element of sc.
The equivalent process is carried out for the realization of the
first projection of the ith group of four values in kernel k.

Figure 5 shows that the projection leads to a convolution
operation with half the number of samples in both the input
signal and the kernel (sc and kd, respectively), thereby asymp-
totically decreasing the arithmetic complexity by a factor of
four. This can be extended to higher gains if higher values of
L are used.

s
0

s

1 20000×

s
4999⋯

1 4×

c
0

C

1 2×

c
1

For i = 0 to 4999
r_s�load(si)
r_c0�load_dup(c0)  // load-and-duplicate c0
r_proj�mul_vect(r_s, r_c0)
r_s�horiz_pairadd_vect(r_proj) // pairwise add the 4-element register
sc i�store(r_s)

End

s
c

2 2×

k
0

k

1 600×

k
299⋯

1 2×

d
0

D

1 2×

d
1

For i = 0 to 299
r_k�load(ki)
r_d0�load_dup(d0) // load-and-duplicate d0
r_proj�mul_vect(r_k, r_d0)
r_kd0�horiz_pairadd_vect(r_proj) // pairwise add the 4-element register
kd i�store(r_kd0)

End

k
d 0

1 300×

k
d149

⋯

k
d

2 2×

s
c 0

s
c 4999

⋯

1 10000×1 2×

1 2×

Figure 6. Application of projection operations during blocking of CONV.
Top half: projection of input signal s. Bottom half: projection of kernel k.

C. Computational and Memory Aspects of Projections-based
GEMM and CONV

The conventional (or “plain”) GEMM kernel (i.e., without
projections) requires

CGEMM,plain (N) = N3 (16)

MAC operations for each pair of N × N subblocks A and
B. On the other hand, for deriving (l + 1) projections out
of the L possible ones (0 ≤ l < L), 2 (l + 1)N2 MAC
operations are performed in the input subblocks, followed
by l+1

L
N3 MAC operations for the (l + 1) smaller matrix

products, AcBd (shown in Figure 5 for the first projection),
and lN2 accumulation operations to produce the final results.
Thus, in total,

CGEMM,proj (N, l,L) = N2 [ l + 1

L
N + 3l + 2] (17)

MAC operations are required for the proposed approach when
performing (l + 1) projections of L coefficients each. In terms
of data transfer and storage requirements, the conventional
GEMM requires MGEMM,plain = 2N2brepr bits to be transferred
to each GEMM subblock kernel [with brepr the number of bits
of the utilized numerical representation, defined as for (1)]
and the proposed approach requires MGEMM,proj = 2 l+1

L
N2brepr

bits to be transferred to the (l + 1) GEMM subblock kernels.
Thus, if l < L−1, the proposed approach reduces the memory
transfer and storage requirements by (1 − l+1

L
) × 100%.

Concerning the CONV kernel, under the assumption of
minimum-size signal blocking for overlap-save operation [44]
(larger input signal block sizes will have proportionally-
higher requirements for all methods), i.e. W = 3N + 1, the
conventional CONV kernel (i.e. without projections) requires
[44]:

CCONV,plain,time (N) = 2N2 (18)

MAC operations for time-domain convolution/cross-
correlation realization and, approximately:

CCONV,plain,freq (N) = (45N + 15) log2 (3N + 1)+3N +1 (19)

MAC operations under a frequency-domain (FFT-based) re-
alization. The approximation of (19) stems from the FFT
approximation formula of Franchetti et al [45]. Concerning
the proposed approach, the application of (l + 1) projections
(0 ≤ l < L, each projection comprising L coefficients) to
both the signal and kernel requires (l + 1) (4N + 1) MAC
operations, followed by (l + 1) CONV kernels applied to
the downsampled signals. Thus, the overall number of MAC
operations for time-domain and frequency-domain processing
under the proposed approach is:

CCONV,proj,time (N, l,L) = (l + 1) (4N + 1) + 2 (l + 1) ⌈N
L

⌉
2

(20)
and

CCONV,proj,freq (N, l,L) = (l + 1) (4N + 1) + (l + 1)
⋅ [(45 ⌈N

L
⌉ + 15) (21)

⋅ log2 (3 ⌈
N

L
⌉ + 1) + 3 ⌈N

L
⌉ + 1] .

Finally, in terms of data transfer and storage require-
ments, the conventional CONV kernel requires MCONV,plain =
(4N + 1) brepr bits to be transferred to the CONV ker-
nel, while the proposed approach requires MCONV,proj =
⌈ l+1

L
(4N + 1)⌉ brepr bits to be transferred to the (l + 1) CONV

kernels, thereby leading to a reduction by (1 − l+1
L

)×100% if
l < L − 1.

Based on (16)–(21), Figure 7 presents the ratios CGEMM,proj

CGEMM,plain
×

100% and CCONV,proj,freq

CCONV,plain,freq
× 100% for various values of N and L

when performing only one projection (l = 0). Evidently, the
proposed approach is expected to lead to substantial savings in
arithmetic complexity, which in turn will translate to increased
throughput and energy efficiency in a real deployment. This is
experimentally verified in the next two sections, in conjunction
with the obtained precision within error-tolerant applications.

IV. EXPERIMENTAL RESULTS

We present results using the dual-core ARM Cortex A15
out-of-order superscalar processor (ARM v7 instruction set,
bare metal, only one core was used and the other was powered
down) with 32 KB L1 cache (for instructions and data) and
4 MB L2 cache. This processor has recently been integrated
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Figure 7. Arithmetic complexity percentile ratios (proposed versus conven-
tional) for GEMM and CONV (frequency-domain) kernels of size N using
projection size L and performing a single projection.

in popular System-on-Chip products marketed for multimedia
applications in smartphone and home entertainment environ-
ments, such as Samsung’s Exynox 5, Exynox 5 Octa, Apple
TV and the Google Chromebook portable computer. Similar
results using our method were also obtained in an Intel Core
i7-4700MQ 2.40GHz processor, but are omitted for brevity of
exposition and also because energy consumption could not be
measured as accurately as for the ARM processor based on
the hardware available to us at the time of this writing.

The GEMM and CONV kernels were deployed on the
ARM Cortex A15 using C code with 32-bit floating-point
Neon instructions (ARM SIMD extensions utilizing the q
registers of the processor) for accelerated processing. All codes
were compiled by the ARM Development Studio 5 (DS5)
C compiler under full optimization. Results were obtained
using the ARM Versatile Express board with the V2P-CA15
(ASIC A15 chip) daughter-board and the ARM RealView ICE
debugger unit. Dynamic and static power consumption was
measured directly in hardware by the ARM energy probe3. The
board allows for dynamic voltage/frequency scaling (DVFS)
between Vdd = 0.6 V at 0.6 GHz and Vdd = 0.85 V at
1.2 GHz at room temperature. In order to increase the re-
liability of our results, each experiment was performed 100
times using representative input data from image and audio
streams normalized between [−1,1]; the presented precision–
energy–throughput results stem from averages over all runs.
Precision is measured in terms of SNR (dB) against the result
computed by the conventional GEMM and CONV kernels in
single-precision floating point. Energy is measured in milli-
Joules (mJ) required for the completion of each task. Finally,
throughput is measured in Mega-samples of results produced
per second (MSamples/sec) by each kernel.

A. Resource–Precision Performance of GEMM and CONV
kernels

Considering GEMM, out of several sets of experiments per-
formed, we present results for subblocks with outer dimension

3For further information on the utilized tools, please see:
http://goo.gl/FVwrg (ARM versatile express); http://goo.gl/M3Crk (ARM
Neon architecture); http://www.arm.com/products/tools/software-tools/ds-
5/index.php (ARM Development Studio 5); http://goo.gl/YXYFB (ARM
Energy Probe).

of N = 144, which corresponds to (or is a multiple of) the
setting of other GEMM subblock kernels (e.g., Eigen4, Goto
BLAS [40] and throughput–precision GEMM scaling based
on companding and packing [39]). We then selected two sizes
for the inner dimension of GEMM: 40 (leading to 144 × 40
by 40×144 GEMM subblocks) and 144 (leading to 144×144
by 144 × 144 GEMM subblocks), which represent different
operational complexities for the GEMM subblock realization.
Finally, we utilized L = 8 projections with coefficients derived
via the DCT-II coefficient matrix of (7).

Figure 8–Figure 12 present results for precision–energy–
throughput scaling against the conventional GEMM kernel
realization, i.e. our SIMD-based GEMM kernel without pro-
jections. Two voltage and frequency levels are used and, as
an external benchmark, we also present results with the Eigen
GEMM kernel5.

When using six projections (out of eight), the average
SNR is 70dB against the conventional GEMM kernel. Under
the utilized input range and GEMM inner dimension, this
corresponds to mean square error less than 7 × 10−4 in the
GEMM results, which is deemed acceptable by all multimedia
signal processing applications. This comes at no overhead in
both throughput (in MSamples/sec) and energy consumption
in comparison to the conventional GEMM kernel.

By reducing the number of projections, our approach
achieves up to 85% reduction in energy consumption against
the conventional GEMM kernel (Figure 9 and Figure 10). This
substantial reduction is energy comes from the reduction of
execution time while maintaining the same level of power
usage. More specifically, the power usage is identical during
the GEMM inner-kenel computation and only increases by
about 5% during the short time interval required to perform
the projection. However, the projection process allows for the
processing throughput to increase by 315% ∼ 533% (Figure
11 and Figure 12, marginally less improvement is obtained
against Eigen GEMM). These very substantial performance
improvements come at the cost of decreasing the SNR to ap-
proximately 46 ∼ 65 dB in comparison to the result computed
under the conventional realization6. We shall show in the next
section that such SNR values offer sufficient accuracy for real-
world multimedia recognition and matching systems utilizing
GEMM computations.

As a final comparison, we evaluated these performance re-
sults against results obtained via throughput–precision GEMM
based on our prior work on companding and packing [39]. On
the same hardware platform, benchmarking the proposed ap-

4http://eigen.tuxfamily.org/ (Eigen C++ template library)
5Comparing the energy and throughput efficiency of our own conventional

GEMM realization with the figures obtained with Eigen GEMM shows that
our conventional GEMM kernel is a reasonably high-performing kernel to
benchmark our approach with.

6However, SNR values above 40 dB can be regarded as adequate for many
signal processing applications [1]. We remark that these SNR numbers depend
on the dataset and the projection coefficients used. If projection coefficients
are derived specifically for the data via offline training, e.g. based on principal
component analysis [9], then it is possible to get even higher SNR values using
an even smaller subset of projection coefficients. However, unlike a general
transform like the DCT, such an approach requires offline training and is
biased towards the dataset selected for the training. For these reasons, such
an exploration is beyond the scope of the current paper.

http://goo.gl/FVwrg
http://goo.gl/M3Crk
http://www.arm.com/products/tools/software-tools/ds-5/index.php
http://www.arm.com/products/tools/software-tools/ds-5/index.php
http://goo.gl/YXYFB
http://eigen.tuxfamily.org/
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proach under one projection against companding and packing
GEMM led to: (i) more than 8 dB gain in SNR; (ii) more
than 60% reduction of energy consumption; and (iii) more
than 400% increase of throughput. In conjunction with the
fact that any number of projections can be deployed and that
one is free to select projection coefficients suitable to the input
data characteristics, this makes the proposed approach attain
significantly broader resource–precision scalability in com-
parison to our previously-proposed companding-and-packing
based GEMM.

Concerning the CONV kernel, we experimented with: block
size of W = 20000 samples, several kernel sizes between
N ∈ [600,1200] samples, L = 2 projections using the Haar
decomposition coefficients [43] and producing one projection
at half sampling rate (and interpolating the missing samples) or
one projection at full sampling rate. Representative precision–
energy–throughput results with two settings for the kernel
size are given in Tables II. We also present comparisons with
convolution based on packed processing [44], as well as the
equivalent results obtained by the conventional realization of
our own SIMD-based CONV kernel (i.e. without projections)
and the CONV kernel of the Cortex-A DSP library commer-
cialized for ARM Neon by DSP Concepts LLC7. The high
energy consumption and low throughput reported in Table II
for all approaches is due to the large block size used (20000
samples). The results demonstrate that the proposed approach
substantially outperforms packed processing in terms of energy
and throughput efficiency, while allowing for significantly
higher SNR. Moreover, it allows for 82% ∼ 84% reduction
of energy consumption and 360% ∼ 400% increase of pro-
cessing throughput against the conventional CONV realization.
Finally, while the SNR values of the proposed PET scaling
within CONV remain significantly smaller than the ones of
the conventional CONV kernel, it will be shown in the next
section that this does not affect the accuracy of a real-
world application performing audio matching based on cross-
correlation.

V. RESOURCE–PRECISION RESULTS WITHIN
ERROR-TOLERANT MULTIMEDIA RECOGNITION AND

MATCHING APPLICATIONS

The proposed approach can bring important benefits to high-
performance multimedia signal processing systems when the
precision of computation is not of critical importance (error-
tolerant systems), or when the input dataset is intrinsically
noisy. This is quite common in image, video or audio analysis,
recognition or matching applications, where the multimedia
samples are contaminated with noise stemming from camera
or microphone sensors or lossy coding systems [1]. Here,
we present two representative applications for the proposed
framework within two well-known image and audio recogni-
tion and matching systems proposed in the literature. While
each of the two systems is deployed for a specific task
(i.e. face recognition and music identification), the underlying
algorithms are generic and can be applied to a wide variety
of object recognition and audio matching tasks.

7http://www.dspconcepts.com/

A. Resource–Precision Trade-off in Face Recognition based
on Principal Component Analysis (PCA)

State-of-the-art techniques for object recognition systems
derive feature matrices and use 2D decomposition schemes
via matrix multiplication in order to match features between
a new image and an existing database of images (e.g. for
automatic identification of human faces [9]). When such
deployments run on embedded devices such as smartphones
or smart visual sensors for image analysis and recognition
[46], it is expected that thousands of training and recognition
tasks should be computed with the highest-possible resource–
precision capability of each core in order to minimize the
required energy consumption and maximize the processing
throughput.

Using the proposed approach, one can accelerate the real-
time training and matching process for such applications.
Specifically, the accelerated GEMM via projections can be
used for the image covariance scatter matrix calculation during
the training stage, as well as for the feature extraction from test
input images [9]. In the following, we provide details of such
a deployment for the prominent 2D-PCA system of Yang et
al [9], which is widely regarded as one of the best-performing
object recognition algorithms based on principal components.

The 2D-PCA algorithm for face recognition comprises three
stages: training, feature extraction and matching. The training
stage uses a number of training input images of human
subjects and first calculates the image covariance scatter matrix
from Jset zero-mean input images, Aj , by:

Gj =
Jset−1

∑
j=0

AjA
T
j . (22)

Based on this input training set, it then calculates the projec-
tion matrix comprising a series of projection axes (eigenvec-
tors),

X = [x0∣ . . .∣xD−1] , (23)

with xi, 0 ≤ i < D the orthonormal eigenvectors of Gj

corresponding to its D largest eigenvalues [9]. Each training-
set image is mapped to X via:

Yset,j =AjX. (24)

For the feature extraction stage, each new input image, Bi

(test image), is mapped to X via:

Ytest,i = BiX, (25)

with Ytest,i comprising the feature matrix of test image Bi.
Finally, the matching stage determines for each test image the
training-set image, Aj∗

Bi
, with the smallest distance in their

feature matrices:

j∗Bi
= argmin

∀j
∥Ytest,i −Yset,j∥F . (26)

The complexity of 2D-PCA is predominantly in the matrix
multiplications required for the construction of GJ of (22)
during the training stage and the mapping during the feature
extraction, i.e. Ytest,i of (25), as the eigenvalue decomposition
required for the creation of X is only performed once every
Jset training images and very fast algorithms exist for the quick

http://www.dspconcepts.com/
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Figure 8. Precision for small and medium-size GEMM inner-dimension (left and right, respectively).
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Figure 9. Energy-throughput results for small and medium-size GEMM inner-dimension (left and right, respectively) under high voltage and high frequency
settings. “Conventional” refers to our conventional GEMM realization that does not utilize projections and it is used as a benchmark.
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Figure 10. Energy-throughput results for small and medium-size GEMM inner-dimension (left and right, respectively) under low voltage and low frequency
settings. “Conventional” refers to our conventional GEMM realization that does not utilize projections and it is used as a benchmark.

estimation of j∗Bi
of (26), such as the matching error measures

of Lin and Tai [47].
To examine the impact of projections-based resource–

precision scaling of GEMM, we utilize the proposed approach
for all the matrix multiplication operations of (22), (24) and
(25) of 2D-PCA. The Yale-A and Yale-B databases of face
images (http://www.face-rec.org/databases/) were used for our
experiments and, following prior work [9], each image was
cropped to 288 × 288 pixels (that includes the face portion)
and the mean value was subtracted prior to processing.

Results from performing all matrix multiplication operations
of (22), (24) and (25) with just one out of L ∈ {8,12,16}
projections [via the DCT-II coefficients of (7)] are presented
in Table III for both Yale databases. Following [9], the first

five images of each of the persons in each database were used
for the training set and the remaining images per person were
used as test images and we set D = 10.

Starting with the case of L = 8 projections, the table demon-
strates that, for all GEMM computations, and under the same
recognition accuracy as the conventional (non projections-
based) GEMM, the proposed approach offers 440% increase
in the processing throughput and more than 80% decrease in
energy consumption. If we consider all the other operations
and overheads of the entire face recognition application, the
proposed approach still offers 350% increase in the processing
throughput and 79% decrease in overall energy consumption.
Importantly, we obtain the results of Table III based on two
standard test image libraries (Yale-A and Yale-B databases

http://www.face-rec.org/databases/
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Figure 11. Throughput results for small and medium-size GEMM inner-dimension (left and right, respectively) under high voltage and high frequency settings.
“Conventional” refers to our conventional GEMM realization that does not utilize projections and it is used as a benchmark.
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Figure 12. Throughput results for small and medium-size GEMM inner-dimension (left and right, respectively) under low voltage and low frequency settings.
“Conventional” refers to our conventional GEMM realization that does not utilize projections and it is used as a benchmark.

Table II
PRECISION, ENERGY AND THROUGHPUT SCALING FOR CONV FOR TWO VOLTAGE AND FREQUENCY LEVELS. THE RESULTS CORRESPOND TO AVERAGE
SNR (IN DB) OVER SEVERAL INPUTS, WITH EACH SNR VALUE MEASURED AGAINST THE EQUIVALENT RESULT COMPUTED VIA THE CONVENTIONAL

CONV KERNEL.

Method Precision Energy (mJ) Throughput (MSamples/sec)
(dB) 0.85V@1.2GHz 0.6V@0.6GHz 0.85V@1.2GHz 0.6V@0.6GHz

Kernel size 600 1200 600 1200 600 1200 600 1200 600 1200

1 projection, half samples 19.82 22.87 596 1315 429 771 0.058 0.027 0.027 0.014
1 projection, all samples 20.07 23.41 1258 2366 826 1580 0.027 0.014 0.014 0.007
Packed processing [44] 17.65 13.60 1235 2556 850 1615 0.044 0.013 0.021 0.011
Conventional CONV ∞ ∞ 2476 4884 1654 3243 0.013 0.007 0.007 0.003

Cortex-A DSP CONV 141.47 143.33 2142 4005 1455 2692 0.016 0.008 0.008 0.004

of face images) and without any algorithmic modification.
Instead, only a simple adjustment of the number of re-
tained projections in the GEMM computations is required.
This is a remarkably straightforward process compared to
the previously-proposed packed processing [39] that requires
resource–precision optimization amongst the subblock matrix
products in order to provide for sufficient precision within the
GEMM operations.

Furthermore, for L = 12 and L = 16 projections, Table III
demonstrates that the energy and throughput scaling becomes
even more substantial. Namely, between 672% ∼ 850% of
increase in throughput and 88% ∼ 91% decrease in energy
consumption is obtained against the conventional GEMM
realization, with similar scaling when considering the entire
application. However, these cases incur loss of recognition
accuracy in the application in comparison to the conventional
(non projections-based) GEMM. While this loss of recognition

rate appears to be relatively limited, it can be undesirable
in cases where maximizing the expected recognition rate is
of paramount importance. We therefore conclude that the
case of L = 8 comprises an agreeable operational point,
where substantial performance scaling is offered without any
discernible impact in the application results.

Given the large performance increase, the lack of appar-
ent degradation in the average recognition accuracy on both
databases can be viewed as a non-intuitive result. However,
this can be explained by the energy compaction performed
by the algorithm itself. Essentially, the projection compacts
the vast majority of the energy of the input images into one
eighth of the data samples (using DCT coefficients) before
performing the matrix product. Since all feature extraction
and feature matching algorithms perform energy compaction
anyway (from a large set of pixels to a few eigenvectors
using PCA) in order to remove noise and retain only the
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principal components of each image covariance scatter matrix,
the projections-based compaction during the GEMM kernel
execution has limited or no effect on the average recognition
accuracy of the system.

More broadly, the usage of energy compaction techniques
is one of the primary reasons that error-tolerant multimedia
signal analysis, matching and retrieval systems are known to
be robust to noise in their inputs or intermediate computations
[1], [39], [48], [49]. For instance, concerning multimedia
retrieval systems in particular, the survey of Datta et al [48]
points to various high-level analysis and retrieval systems that
are robust to noise in the input data or in the calculated
low-level feature points used for matching and retrieval pro-
cesses (e.g. corner and edge points in images). Furthermore,
well known studies have already analyzed the resilience of
low-level feature extraction to noise [50] and recent work
[11], [51], [52] has indicated significant complexity-precision
tradeoffs in feature extraction algorithms by incremental or
approximate computation of their computationally-intensive
kernels (transforms, distance metric calculations, matrix-vector
products) in space or frequency domain. Finally, learning
algorithms for large data sets have traditionally been known
to be robust to noise in the input or processed data [49].
However, as explained in the introduction section, exploiting
the inherent energy compaction properties of error-tolerant
multimedia signal processing and analysis algorithms has only
achieved limited performance scaling in programmable proces-
sors [1], [35], [44] because, until now, only hardware-oriented
approaches [15], [25], [29], [30], [37], [53]–[56] could scale
the precision of computations and achieve significant energy
or throughput scaling.

B. Resource–Precision Trade-off in Feature Vector Cross-
correlation within a Music Matching System

We selected as the second test case a recently-proposed
music matching system that matches cover songs [12] with
the songs available in an existing database. For each input
song to be identified, the system works by extracting beat and
tempo data and then matching it to the (precalculated) beat and
tempo database via cross correlation. Matlab code for this and
the sample data were collected from the authors’ site [12].
Given that this implementation is dominated by the cross-
correlation operations [12], the only modification performed
was the replacement of the Matlab xcorr() function call
with our CONV kernel running on the ARM test-bed. Thus, in
this case each input block of the cross-correlation corresponds
to a song’s beat and tempo data and each convolution kernel
comprises the beat and tempo data of a song of the database.
The settings used for our experiments were: average beat
rate 120 beats-per-minute, chroma element central frequency
200Hz [12].

Concerning our implementation, we utilized one out of
L ∈ {2,4} projections and used the Haar decomposition
(and synthesis) coefficients. Table IV demonstrates that these
settings yielded the same matching accuracy for all methods
for L = 2 projections (53.75% match), while providing up
to 286% increase in throughput (and 75% decrease in energy

consumption) in comparison to the conventional CONV im-
plementation. The overall throughput increase for the entire
music-matching application (i.e., including I/O overhead and
the feature extraction from the original audio) is 273% (and
72% decrease in energy consumption). The competing accel-
eration mechanism, i.e., asymmetric companding-and-packing
from our previous work [44], turns out to be significantly
slower and less energy-efficient than the proposed approach.

Furthermore, for L = 4 projections, the matching accuracy
of the proposed approaches decreases (47.21% match), while
providing for even more substantial throughput and energy
scaling in comparison to the conventional CONV implemen-
tation, i.e., 569% and 86% respectively. Nevertheless, the
small reduction of the matching accuracy may make this case
undesirable to use in a practical deployment.

Similarly as for the case of face recognition, the proposed
approach incurs no side effects in the matching accuracy of
the system for L = 2 projections as the utilized beat and
tempo features are inherently noisy and the retained energy
in the feature datasets after the projection suffices for equally-
accurate matching over the test dataset.

Table IV
MATCHING ACCURACY VS. ENERGY-THROUGHPUT SCALING FOR CONV

(CROSS-CORRELATION) COMPUTATIONS PER MATCHING OPERATION
WITHIN A MUSIC IDENTIFICATION APPLICATION USING BEAT AND TEMPO
FEATURES. ALL RESULTS WERE PRODUCED WITH VDD = 0.6V AT 0.6GHZ.

Method Matching (%) Energy (mJ) Throughput
(MSamples/sec)

Proposed
53.75 2122 0.027projections-based

CONV, L = 2
Proposed

47.21 1123 0.046projections-based
CONV, L = 4
Conventional 53.75 8254 0.007CONV
Packing-based 53.75 4284 0.021CONV [44]
Cortex-A DSP 53.75 7264 0.008CONV

VI. CONCLUSION

We propose an approach to systematically trade-off pre-
cision for substantial energy and throughput scaling in
generic matrix multiplication (GEMM) and discrete convolu-
tion (CONV) kernels. Given that our approach applies linear
projections within the top-level processing of these kernels,
it allows for seamless scaling of resources versus the accu-
racy of the performed computations without cumbersome and
algorithm- or application-specific customization. Experiments
with the recently-introduced ARM Cortex A15 processor on a
dedicated test-bed supporting different voltage and frequency
levels and accurate energy measurement, demonstrate that our
proposal leads to more than five-fold reduction of energy
consumption and more than five-fold increase of processing
throughput against the conventional (i.e., non projections-
based) realization of GEMM and CONV kernels. Experimental
results within multimedia recognition and matching applica-
tions show that the precision loss incurred by the proposed
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Table III
RECOGNITION PERCENTAGE VS. ENERGY–THROUGHPUT RESULTS FOR GEMM COMPUTATIONS WITHIN THE 2D-PCA ALGORITHM FOR FACE

RECOGNITION. ALL RESULTS WERE PRODUCED WITH VDD = 0.6V AT 0.6GHZ.

Method Recognition rate (%) Recognition rate (%) Energy per match Throughput per match
for Yale-A database for Yale-B database (mJ) (MSamples/sec)

Proposed
78.40 86.59 29.99 1.24projections-based

GEMM, L = 8
Proposed

76.81 83.16 21.42 1.75projections-based
GEMM, L = 12

Proposed
74.22 80.31 16.44 2.15projections-based

GEMM, L = 16
Conventional GEMM 78.40 86.59 174.79 0.23

Packing-based 78.81 86.59 99.58 0.39GEMM [39]
Eigen GEMM 78.40 86.59 141.96 0.27

projections-based GEMM and CONV kernels can be tolerated
with limited or no noticeable effect on the recognition and
matching accuracy of applications and that our proposal allows
for truly dynamic adaptation without incurring reconfiguration
overheads.

The proposed approach opens up a new avenue for dynamic
precision–energy–throughput scaling within high-performance
GEMM and CONV kernel designs. For the first time, linear
transforms can be used towards dynamic resource scaling of
such kernels with graceful precision degradation. Even though
in this paper we used well-known non-adaptive transforms
for the projection coefficients, such as the discrete cosine
transform and the Haar transform, if training input datasets are
available a-priori, projections based on principal component
analysis could be employed (with their coefficients derived
offline) for optimized precision–energy–throughput scaling
within each error-tolerant multimedia application. Alterna-
tively, if feedback on the incurred imprecision in the results
is available via the application, the projection mechanism of
the GEMM and CONV kernels can be tuned to learn the best
projection parameters. These are aspects that can be explored
in future work.
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