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Abstract

The basic definitions of micropore diffusivities and the experimental techniques applied 

for their measurement are reviewed. Through a historical perspective, the techniques are 

briefly described, with an emphasis on the measured property, the theoretical and 

practical limitations. As a result the need for a novel experimental technique has been 

identified. The extension of the frequency response (FR) method to frequencies in the 

audible sound range is proposed.

A detailed mathematical model is presented to describe the propagation of sound 

between two parallel adsorbing plates. The main body of the thesis is the description 

and derivation of a model that relates an acoustic quantity (i.e. propagation constant) to 

adsorption parameters (i.e. diflusivity and equilibrium constant) in microporous solids. 

The theoretical analysis describes the ranges of physical parameters where the complete 

model reduces to simplified versions: classical absorption; isothermal limit; equilibrium 

control; temperature control.

Based on the theoretical study a prototype apparatus has been designed and constructed. 

The system allows for flexibility in the loading of adsorbent material, geometrical 

properties and gas used. Preliminary experimental results are reported and interpreted 

based upon the theory of acoustics described above.
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Measurement of Diffusivity in Zeolites:
Fundamentals and Experimental techniques

Chapter 1 
Measurement of Diffusivity in Zeolites:
Fundamentals and Experimental techniques

1.1 Introduction: Micropore Diffusion

Porous materials have a fundamental role in the chemical and petroleum process 

industries for reaction (i.e. catalysis) and separation (i.e. adsorption) purposes. The 

diffusion of sorbates in such catalyst or adsorbent can be the rate determining step of the 

overall reaction or adsorption process (Ruthven, 1984). The type of forces controlling 

the diffusion through the porous material depends strongly on the ratio pore diameter 

sorbate molecular diameter (Karger and Ruthven, 1992).

The IUPAC classification that refers to small gaseous molecules as sorbates, establishes 

the following ranges for defining porous structures:

Micropores d<20 A 

Mesopores 20A <d<500A 

Macropores d>500A

Thereby micropore diffusion is the molecular mass transfer process in porous solids 

with pore sizes < 20  A and the diffusing molecule never escapes from the force field of 

the pore wall, the effects of steric hindrance become important and often dominant and 

the diffusion is an activated process. The wide range [10'8 m2/s: 10"20 m2/s] of micropore 

diffusivities is due to the strong dependence of the micropore diffusivity on the sorbate- 

zeolite structures and interactions, so that no general theories are available as for the 

diffusion in isotropic media, or molecular and Knudsen diffusion.
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Industrial applications based on micropore diffusional effects are zeolite catalysts 

(catalytic cracking, xylene isomerization, selective disproportionation of toluene, MTG 

reaction) and diffusion controlled separation processes (separation of linear/branched 

hydrocarbons, air separation by pressure swing adsorption). The micropore diffusion is 

the key datum for the appropriate design of reaction and separation units of these 

processes.

1.2 Micropore Diffusion Measurement
The experimental measurement of micropore diffusion is a standard approach for 

understanding the diffusional mechanism in a zeolite-sorbate system and for obtaining 

data for the design of industrial processes. The experimental techniques are usually 

classified as macroscopic and microscopic methods depending on whether the measured 

quantity is the mass flux at the surface of a crystal or the mean squared displacement of 

molecules inside the crystals. As a result macroscopic techniques typically yield Fickian 

diffusivities, while microscopic techniques yield self-diffusivities. An excellent review 

of both approaches and the results up to 1992 is available in the reference book by 

Karger and Ruthven (1992), and additional reviews of macroscopic methods are also 

available (Rees, 1994; Ruthven and Brandani, 1997; Ruthven, 1997).

Fig. 1.1 shows the historical development of these experimental techniques. From the 

first recorded experimental measurement (Tiselius, 1934) to the early 70s the uptake 

rate measurement (Barrer, 1978) has been the most widely applied technique. The 

introduction of the PFG-NMR (Karger, 1971) has clearly introduced a dramatic change, 

since in many cases the new measurements resulted in diffusivities that were orders of
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magnitude higher than those previously reported in the literature. This has led to an 

increased effort in the development of new techniques over the past thirty years and also 

to a careful reanalysis of the assumptions used in the previous measurements.
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Fig. 1.1 Historical development of diffusion in microporous solids (Karger, 2003).

When comparing the different techniques it is useful to consider that different

approaches lead to different diffusivities. Figure 1.2 shows a schematic representation

of the conditions that lead to transport, tracer and self diffusion. In this contest it is

important to underline also that time (i.e. >s) and length scales (i.e. > pm) involved in
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the macroscopic techniques are generally longer than the microscopic ones (i.e. ms; nm 

to pm).

+  o +o °+ o +

o + o + o  + y -°  +  + °

^ 0 + 0 + ° + 0 + ° +
(a)Transport Diffusion

°.+#o0 + o# +  > +  *+o 
+ >* ^ < + °

°+*o+* + .°+ o + V °
(b)Traccr Diffusion

lE^VFWT
0- ,̂6 *j-o j 6 |

(c)Self Diffusion

Fig. 1.2 Transport Diffusion (a), Tracer Diffusion (b) and Self-Diffusion (c) (Karger 

and Ruthven, 1992)

It is useful at this point to include a brief definition of the various diffusivities that can 

be measured in microporous solids (Ruthven, 2003), which will be followed by an 

overview of the most common experimental techniques.

1.2.1 Micropore Diffusivities
Irreversible thermodynamic considerations (Prigogine, 1971) and experimental proof 

(Haase and Siry, 1968) show that the driving force for the diffusive flux is the chemical 

potential.

^ +
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For the diffusion of a single component in a porous adsorbent, under isothermal 

conditions:

] ' - l %  0 1

where L is the Onsanger phenomenological coefficient in the presence of a

concentration gradient and p is the chemical potential of the adsorbate.

Analogously for the self-diffusion of a single component in a porous adsorbent

y  = _ L ^ £ _ 4 ^ l  (2)
dz dz

Where L and Lx are the straight and cross Onsanger phenomenological coefficients in 

the absence of a gradient of concentration, p and p* are the chemical potentials of the 

adsorbate and of the “marked” adsorbate .

1.2.2 Transport Diffusivity
Mass transfer due to a concentration gradient in a microporous solid (Fig. 1.2. a) is 

governed by transport diffusion and the diffusive flux is traditionally expressed in terms 

of Fick’s equation:

N  = - D —  (3)
dz

where D is the transport diffusivity and q is the concentration of the adsorbate. This 

diffusion and the diffusivity coefficient associated are conceptually similar to the more 

familiar situation of diffusion of two components in a fluid phase. Diffusion in a porous 

solid can be regarded as a special case of binary diffusion in which the diffusivity of one 

component (the solid) is zero. The possibility of a concentration gradient for a pure
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component diffusing in a microporous solid under isothermal and isobaric conditions is 

determined by the framework of the solid.

Consequently the constitutive equation for the mass flux (Eq.3) has been derived from 

the constitutive equation for the mass flux of two components in a homogeneous phase 

(Karger and Ruthven, 1992).

The molar flux relative to stationary coordinates of a component A in a mixture of A 

and B is given by:

N a = xa{Na + N b)+ J a (4)

Where J A represent the diffusive flux relative to the plane of no net molar flux:

J a = - D abc ^  (5)

It can be noted that DAB is in principle a function of concentration and that Eq.(5)

implies only that it is not a function of concentration gradient.

In extending Eq. (5) to the diffusion of a sorbates (q) in to a microporous solid (s),

because of the rigid framework = 0, and eqs (4) and (5) become respectively:

N = xN + J  (6)

J  = -D(q + s ) ~  (6B)
OZ

Observing that x = ■■■? — and introducing Eq. (6B) in Eq. (6), after differentiation 
q + s

respect the spatial coordinate with s constant we obtain Eq. (3).

It is therefore clear that the diffusivity (D) defined according to Eq. (3) is consistent 

with Dab defined according to Eq. (5).
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Comparing Eq.(l) with Eq.(3) and assuming p equal to the one of the ideal gas phase in 

equilibrium: jn = //(T) + RT\n(P), we have

D = L R T - in(P  ̂ (7)
8q K ’

Eq. (7) relates the transport diffusivity D to the Onsanger phenomenological coefficient 

L.

1.2.3 Corrected Diffusivity

To clarify the physical meaning of the transport diffusivity, Eq. (7) is usually rewritten 

as

d ln /^
D = D0

dlnqJr (8)

J t

(  a InD0 = LRT is referred to as corrected diffusivity and is a mobility coefficient. -------
^d ln#

is a thermodynamic correction called the Darken correction factor (Darken, 1948) and is 

related to the driving force of diffusion. The Darken factor typically shows a strong 

concentration dependence, and as a result D0 has a smaller variation with concentration

than D . In many practical applications the transport diffusivity is determined using the 

assumption that the corrected diffusivity is constant and the knowledge of the 

equilibrium isotherm allows the calculation of the concentration dependence of D. 

Considering for instance the Langmuir Isotherm:

D = d 1 ^ ^ 1 = — ^2—  (9)
^ 51n^Jr l - q / q ,
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shows that approaching the saturation limit (q -> q s), the Darken factor and the 

resulting transport diffusivity go to infinity.

Eq. (9) also shows that in the dilute region where Henry’s law is valid, 'd in
v dln q jT

-> 1

and D D0.

The temperature dependence of D is generally expressed in terms of the Eyring equation 

(1935),

D = Dje~EIRT (10)

where E is the activation energy. However because of the concentration dependence of

the diffusivity implicit in Eq. (8), it is appropriate (Ruthven and Loughlin, 1971) to

correlate Do and the Darken factor independently with T, i.e.

D0 =D„e-EIRT (11)

1.2.4 Stefan Maxwell Diffusivity

The Stefan-Maxwell diffusion model is based on hydrodynamical phenomenological 

equations, the coefficient Dij are evaluated in terms of a molecular model. The validity 

of Stefan assumption regarding the relations between the coefficients (Dy=Dji) hold to 

first approximation in the gas kinetic theory. (Hirschfelder et al., 1954; Truesdell, 

1962). Krishna (1990) has extended this model to microporous diffusion considering the 

vacancies as an additional component and neglecting the transfer of momentum to the 

adsorbent. The resulting set of parameters (Dy) has a microdynamic significance and is 

equivalent to the phenomenological coefficient (L) of irreversible thermodynamics:
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Dy' : reflects the rate of direct exchange between two sorbates i and j

Div' : reflects the rate at which sorbate i exchanges positions with adjacent vacancies v.

For the diffusion of a sorbate (q) in a zeolite (s):

D ' = L RT d ln p  =D  (12)
q din q

R T
Dqv'= L —  = Do (13)q

and the diffusive flux is given by:

y ] = _ n  . ^  = _D (14)
1 qq dz din q dz K

The Stefan-Maxwell model allows the correlation of a wide range of patterns of 

concentration dependence of self and transport diffusivity.

1.2.5 Self-Diffusivity.

The random walk of molecules under equilibrium conditions (Brownian motion in the 

absence of a concentration gradient, Fig. 1.2c) can be expressed terms of the self- 

diffusivity (Einstein, 1905). In one-dimensional form:

<is )

Where is the mean square displacement and equivalently:

dq
J  Dself dz qt=q+q =const

Where the apex (*) indicates labelled molecules.

(16)
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The significance of D self can be clarified considering the situation in which there is a

non-uniform distribution of marked molecules (*) (Karger, 1973) within a uniform total 

concentration (See Fig.l.2.b, tracer experiment).

The fluxes of q and q* (tracer) are given by Eq. (2) and:

j '  = - C  — — 4 ^  (17)
dz dz

Introducing —  = ^  ^  in eqs (2) and (17) and comparing these with Eq. (15) it 
dz q dz

possible to verify:

(is)

1.2.6 Self-Diffusivity and Transport Diffusivity
The relationship between D and Dseif is obtained considering again the situation in 

which there is a non-uniform distribution of marked molecules (*) (Karger, 1973) but in 

the presence of a concentration (qt = q+q*) gradient (See Fig. 1.2.a, transport diffusion).

D seir d\n qt
D d In p t qq L

(19)

Comparing Eq. (19) with Eq. (8) (Darken equation) it follows that in the limit of low 

concentration:

D  ~* D0 —> Dself;

While at finite loading the corrected and the self diffusivities coincide if the cross 

coefficient Lx can be neglected.
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The analogue relation of Eq. (19) in terms of the Stefan-Maxwell model is given by:

Dself d In qt
D  din p t

1 - 0 A'  
d  :

V <?<?

-1

(20)

Where 0 is the total occupancy of the zeolites matrix, '=D^ '=Dv'=D0 the 

mobility and D ^.' the interchange coefficient.

On the basis of Stefan-Maxwell theory, Pasheck and Krishna (2001) have suggested at 

finite loadings the practical assumption D^, '= D0 and obtained the following relation:

=self f (21)

yD0 D oy

Eq. (21) has been validated using kinetic Monte Carlo simulations for the systems, 

methane, perfluoromethane and 2-methilhexane in silicalite.

This relation implies that at finite loading the corrected diffusivity is larger than the self 

diffusivity, which is a useful result when comparing results from macroscopic and 

microscopic techniques.

1.3 Experimental Techniques

In the measurement of Tiselius (1934) the variation of water profile in a sample of 

natural huelandite was monitored on the basis of the double refraction of light. The 

transport diffusivity was obtained indirectly using the appropriate mathematical model 

for the diffusion problem (Karger and Ruthven, 1992).
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In the Uptake Measurement (Barrer, 1938) the average concentration over a particle is 

monitored gravimetrically or volumetrically, after having subjected the sample under 

study to a pressure step in the surrounding atmosphere.

The transport difftisivity is extracted from the uptake curves (mt/moo) comparing the 

experimental results with the mathematical model; the amplitude of the pressure step is 

generally small so that the diffusivity can be assumed constant (differential diffusivity). 

The main problem with this technique is that the measurement has to be performed in 

conditions so that the microporous diffusivity is the rate controlling step; for large 

crystals (long diffusional time) it is generally possible to achieve these conditions, but 

when sorption rates are rapid the uptake may be controlled by extracrystalline diffusion 

and/or heat transfer. Extracrystalline diffusion is due to the diffusion in the macropores 

of an adsorbent pellet and/or the diffusion trough the bed of particles. The heat transfer 

resistances are the conduction and radiation from the solid to the fluid, and the 

conduction in bed of particles and in the fluid. From the analysis of the shape of the 

uptake curve it is not always obvious how to detect the intrusion of such effects. 

Changing the sample quantity or the sample configuration is a common way to verify if 

intracrystalline diffusion is the controlling process (Karger and Ruthven, 1992).

The indirect approach is generally simpler than measurements where the concentration 

gradient and the flux are directly measured and the diffusivity obtained from Eq. (3). 

Membrane Permeation (Hayhurst and Weemick, 1983) is a direct measurement of the 

transport diffusivity. Problems arise in the preparation of the zeolite membrane and in 

ensuring a perfect seal.
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Fig. 1.3 Membrane Permeation (adapted from Karger and Ruthven, 1992)



Measurement of Diffusivity in Zeolites:
Fundamentals and Experimental techniques

In 1971 the introduction of the pulsed field gradient technique of NMR spectroscopy 

(PFG NMR) (Karger and Caro, 1974) allowed the measurement of the self-diffusivity in 

microporous solids.

In this technique, by recording the time dependence of the Larmor frequency of NMR- 

active nuclei, one is able to determine the propagator of the diffiisants or, more 

accurately, of the nuclei under study. The propagator is the probability density function 

that represents the probability of finding at time t a random walker in the volume dr, at a 

distance r from the starting point. This technique has essentially no upper limit, but the 

smallest diffusivities still accessible are on the order of 10'14 m2 s'1.

The quasi-elastic neutron scattering (QENS) has been introduced more recently (Cohen 

de Lara et al., 1983). This technique is based on the analysis of the quasi-elastic 

broadening in the energy of the scattered neutron beam and variants of this technique 

allow the direct measurement of the transport diffusivity (Jobic et al., 1999).

Although a strict comparison between the uptake rate measurement and the microscopic 

techniques is possible only in the region of low concentration or between D0 and Dself

with the uncertainty associated with the estimation of the correction factor (See 1.2.5), 

the reanalysis of the uptake measurements obtained before the introduction of the PFG- 

NMR technique has shown that in many cases they were controlled by processes 

different from intracrystalline diffusion (Karger, 2003).

For fast diffusing systems the limitations imposed by extracrystalline resistances to

mass and heat transfer make it a challenge to derive reliable intracrystalline diffusivity

values from direct sorption rate measurements, regardless of the technique used to

follow the uptake. Based on the consideration that in flow systems both mass and heat
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transfers are enhanced, in the early 70s the chromatographic method was introduced 

(Haynes and Sarma, 1973; Shah and Ruthven, 1977).

In the usual chromatographic experiment a steady flow of an inert (no adsorbing) carrier 

is passed through a small column packed with the adsorbent under study. At time zero a 

small pulse of sorbates is injected at the column inlet and the effluent concentration is 

monitored continuously.

However, the analysis of the chromatographic experiment has two additional problems 

compared to the uptake experiment: 1) the time domain solution is complex 2) The 

presence of the axial dispersion introduces an additional parameter.

To avoid the need to use the full time solution, the experimental curves are typically 

analysed based on the moments of the breakthrough or pulse response. The retention 

volume or mean retention time (first moment) is a measure of the adsorption 

equilibrium:

/
tm= ~v

i + f — V (Biporous adsorbent) (22)

K  = e ,+ {\ + (23)

Kcis the dimensionless equilibrium constant, expressed on a solid volume basis and K is

the corresponding value on a particle volume basis.

The dispersion of the response peak (second moment about the mean) is determined by 

the combined effects of mass transfer resistance and axial mixing in the column and in 

dimensionless form is given by (Ruthven, 1984):

. r i . r2(K ~ ^ ya 2 D, sv
-  - L~  + -------  P | P \ ____________

3k f  15 spDp 15 K 2D
1 +

-2

(24)
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To separate the axial dispersion (Dl) and mass transfer contributions (kf: external mass 

transfer rate Dp: macroporous diffusion) the experiments have to be carried out at 

different fluid velocity (v) and different particle size (Rp). This imposes an upper limit 

on the diffusional time constant r2/D that can be measured since, if intraparticle 

diffusion is too rapid the contribution from axial dispersion becomes dominant and it is 

then impossible to extract reliable kinetic data.

The Zero Length Column (ZLC) (Eic and Ruthven, 1988) method is a chromatographic 

technique that eliminates the uncertainty due to axial dispersion, because the length of 

the column is short enough that the assumption of a uniform axial concentration is 

generally valid. A small sample of the adsorbent is equilibrated at a uniform sorbate 

concentration, preferably within the Henry’s Law range, and then desorbed by purging 

with an inert gas at a flow rate high enough to maintain essentially zero sorbate 

concentration at the external surface of the particles or crystals. The desorption rate is 

measured by following the composition of the effluent gas.

A further advantage of the ZLC technique compare the traditional chromatographic 

method is that analysis is carried out directly in the time domain:

(25)

Where L =
1 PurgeFlow rate r] 
3 Crystal volume D

and pn is given by the roots of the transcendental

equation,

A  cot#, + 1 - 1  = 0
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Fig. 1.4 ZLC experimental setup

The diffusional time constant can be extracted from the desorption curves in several 

different ways (Brandani and Ruthven, 1996; Brandani, 1998).

The versatility of the ZLC technique has been confirmed by various experimental 

studies (see for example Hufton et al., 1994; Brandani et al., 1996; Brandani et al., 

1997; Brandani et al., 2000).

The Frequency Response (FR) (Yasuda, 1976) differs from the uptake rate and the 

chromatographic measurements because it is a pseudo-stationary method. It is one of 

the best macroscopic techniques and since the main aim of this study is the extension of 

this approach to higher frequencies a detailed review of this method is presented in 

Chapter 2.
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1.4 Summary

The experimental results obtained with macroscopic and microscopic techniques are 

compared typically on the basis of Eq. (8) (Karger and Ruthven, 1989). For several 

systems the results obtained by macroscopic and microscopic techniques are in 

agreement (e.g. Zeolite A) for a comparable number of systems there are discrepancies 

(e.g. NaX- benzene). For instance the NMR self-diffusivity for aromatics in NaX are 

two order of magnitude larger than the corrected diffusivity obtained with macroscopic 

techniques. These discrepancies have been attributed usually to different effects: Heat 

effects, External diffusional resistance, errors in analysis of macro rate data, Surface 

barrier resistance, Mobile-Immobile phase behaviour, Structural defects (Karger and 

Ruthven, 1992), but no explanation seems completely convincing.

Obstacles in the comparison between macroscopic and microscopic techniques are also 

due to the fact that there is only a limited overlap where both approaches yield reliable 

results. The microscopic techniques have a limit on the slowest process that can be 

followed, while macroscopic methods have an upper limit of the diffusional time 

constant that can be determined, especially for strongly adsorbed components. This also 

implies that experimental investigations are limited to the use of large crystals and there 

is a clear need to extend macroscopic measurement to faster time constants in order to 

allow a better comparison with microscopic techniques and also to allow the detailed 

study of diffusion in small commercial crystals. The aim of this study is to extend the 

frequency response technique by considering the interaction between sound and an 

adsorbent material, which should allow the development of novel macroscopic
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techniques which will result in an increase by several orders of magnitude of the range 

of diffusional time constants that can be investigated.
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Chapter 2

Frequency Response Method to Study Diffusion in 

Microporous Solids

2.1 Introduction: Relaxation Techniques for Measuring Microporous 

Diffusivity

When a system at equilibrium is perturbed, self-adjustment to a new equilibrium state 

usually occurs (Bernasconi, 1976). The adjustment of the system to the new equilibrium 

conditions is a consequence of the dynamic nature of the equilibrium.

Figure 2.1 Principle of relaxation method (adapted from Yasuda, 1994).

The rate of this adjustment or the rate of “physicochemical relaxation” is the rate of the 

many processes that make up the equilibrium. Thus, by measuring the rate of 

physicochemical relaxation one can obtain the necessary information for an evaluation 

of the kinetic parameters.

Relaxation kineticists have used two different types of experimental approaches in 

studying physicochemical relaxation. The first involves a single perturbation of a 

physicochemical system at equilibrium, brought about by a sudden change of an 

external parameter such as temperature, pressure, or concentration (pulse or step-

P E R T U R B A T I O N S Y S T E M R E L A X A T I O N
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method). The second class of techniques is known as stationary methods and the

frequency response (FR) method falls in this class of techniques. Here the

physicochemical system is subjected to an oscillating forcing function or oscillating

perturbation interaction between the forcing function and the chemical system. This can

lead to an oscillation in the position of the equilibrium, with a phase lag that depends on

the relation between the physicochemical relaxation time and the frequency of the

forcing function. At the same time energy is absorbed by the system. The relaxation

time can be determined by an analysis of the absorbed energy or the phase lag.

The transient macroscopic techniques considered in Chapter 1 are in fact relaxation 

techniques (See Fig. 2.2.):

BatchOpen

Input
Perturbation

Output
self-adjustement

Jump

Cromatographic 
Method (e.g ZLC)

Frequency Response

Uptake
Rate
Measurement

System at Equilibrium

Figure 2.2 Relaxation Techniques applied to measure microporous diffusivity.

Although the choice of the appropriate technique depends on the specific characteristic 

of the sorbate-adsorbent system, Naphtali and Polinski (1963) and Yasuda (1994) have
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underlined that increasing the complexity of the system the FR is more advantageous 

due to the higher sensitivity of the response compared to step or pulse methods.

2.2 Frequency Response: Open and Batch systems

The frequency response techniques (Yasuda, 1994), which have been applied to study 

mass transfer kinetics in a gas/surface system, may be divided into two groups. See 

Fig.2.3

ACout

(b)

Figure 2.3 Frequency response techniques: (a) flow system (b) batch system. Adapted 

from Yasuda (1994).

In one group (a), the concentration at the inlet of a packed bed, ACin(t) is varied 

sinusoidally in a flow system and the response is obtained from the data of ACout(t) at
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the exit. In the other group, (b), the gas space of a batch system is varied sinusoidally 

and the response is obtained from the pressure signal, AP(i) , in the chamber.

The study of Boniface and Ruthven (1985) proposed an open system FR where the input 

sinusoidal concentration signal was obtained de-tuning an electronic flow control valve. 

Mass transfer kinetics and the adsorption equilibrium constant for bi-porous adsorbent 

systems were obtained. This study confirmed the capability of the FR to discriminate 

among different mass transfer resistances.

The theoretical analysis of Park et al. (1998), has considered different continuous and 

semi-batch configurations. Recently Sward and LeVan (2003a; 2003b) proposed an FR 

technique in which analogously with the batch techniques the controlled variable is the 

pressure instead of the concentration. However the difficulty in setting up an 

experimental system which will provide a sufficiently pure sinusoidal concentration or 

pressure at the adsorption column inlet has generally limited the interest in group (a) 

techniques. For instance the range of frequencies investigated by Boniface and Ruthven 

is (0.01-0.6 Hz) and in the system of Sward and LeVan (2003a), the upper frequency 

limit is 1.25 Hz.

The batch FR (group b) to study gas-solid dynamics was introduced by Naphtali and 

Polinski (1963). They presented a frequency spectrum for the nickel-hydrogen system 

where the pulse method failed to separate the complex adsorption phenomena occurring 

simultaneously but with different settling times on the catalyst surface.

Evnochides and Henley (1970) considered the FR to study diffusion of ethane in 

Polyethylene. In their system the adsorbed quantity was measured gravimetrically using 

a microbalance. Yasuda (1976) has reconsidered the theoretical analysis of Naphtali and 

Polinski (1963) introducing the characteristic functions for the determination of 

adsorption kinetic parameters for the Ethylene-Zinc Oxide system.
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Applying the solution of Evnochides and Henley, Yasuda (1982) extended the method 

to the determination of vapour diffusion coefficients in Zeolites, monitoring the pressure 

in the system by a membrane gauge (See Fig. 2.4).

2.3 Basics of the batch FR

When a linear system is subjected to a harmonically varying input, the system output 

response, after a long time also exhibits harmonic behaviour with the same frequency. 

The response has, however, smaller amplitude and a phase lag due to finite internal 

transport/reaction rates. The FR method to study mass transfer kinetics measures the 

pressure response or the temperature (PFR or TFR (Bourdin et al. (1998)) of a closed 

sorption system to a periodic volume change.

Pyrex
Flask

Adsorbent Material

WV

Figure 2 .4 Schematic diagram of the original frequency response apparatus.

A comparison of the theoretical and the experimental amplitudes and phase lags allows 

the identification of the controlling transport mechanisms.

Fig.2.4 shows the apparatus of Yasuda (1976). The adsorbent is inserted in a Pyrex flask 

and equilibrated with the gas-phase. Pressure variation is followed using a Pirani gauge.
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The pairs of pistons and cranks FI and F2 generate a sinusoidal wave. Gearbox G 

reduces the speed of revolution. A variable-speed 40-W motor H drives this 

arrangement. The sinusoidal wave produced could be regarded as practically harmonic. 

Although this basic arrangement is common to all the FR apparatus (See table 2 .1), the 

main effort of the investigators has been mainly to reduce the response time of the 

system in order to increase the frequency of the input signal.

Table 2 .1 Characteristics of the FR Apparatus.

Apparatus Volume1 

chamber dm3

Modulation 

(% and 

shape)

Pressure gauge Frequency 

Range (Hz)

Yasuda

(1982)

- 1.120 2.2

sinusoidal

membrane2 0.003-0.27

Van-Den- 

Begin and 

Rees 

(1989)

0.78 1 square- 

wave

differential^

ms)

0 .01-10

Bourdin 

et al. 

(1998)

0.6 1-24

square-

wave

sinusoidal

Fast Baratron 

gauge (1ms)

0.001-30

Conner et 

al. (2001)

0.584 1.5

sinusoidal

Capitance5-type 0.005-5

1 The mean volume of sorption chamber ( and the modulation) is not strictly the same at different 
temperatures
2 MKS-Baratron, Type 210
3 differential Baratron pressure transducer
4 the chamber volume may vary up to 10% by compression of bellows
5 MKS model 122A
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2.4 Mathematical Modelling

An outline of the procedure for obtaining the characteristic functions for the diffusion in 

a plane sheet (Yasuda, 1982) will be presented.

Consider a sorption system initially at equilibrium:

<le=f<Je,Pe)  ( 1)

If this system is perturbed by a sinusoidal change in volume, Eq.(2), the pressure of the 

adsorbate diffusing into and out of the zeolite will reach a periodic steady state, Eq.(3):

V = Ve [l -  V cos(© t)] (2)

p = pe[l + pcos(©t + q>)] (3)

In eqs (1-3) the subscript e denotes the equilibrium value of the variable, the lower case 

variable preceding the transcendental function, either p  or v , is the amplitude ratio, co 

is the angular frequency of the perturbation, and (p is the phase lag of the pressure 

response to the variation in volume. Expressing the perturbations in complex notation: 

5V = VeVe1C0t and 5p = pepel(c0t+9\  the in-phase (5^) and out-of-phase (5out)

characteristic functions for a plane sheet are derived (Yasuda, (1982)) by combining the 

Fickian diffusion model, the mass balance, and the locally linear adsorption isotherm of 

the adsorbate/adsorbent system on the basis of the following assumptions :

1) The system is isothermal

2) The diffusional processes under consideration are Fickian

46



Frequency R e s p o n s e  M e th o d  to Stuck Diffusion, in M ic rop or ous  Sol ids

3) The diffusion coefficients are time and position invariant, and are constant 

over the induced concentration range.

4) The adsorption at the pore mouth of the micropore follows the Langmuir 

kinetics with constant adsorption and desorption rate constants.

5) Each sorbent particle is exposed to the same bulk-phase environment, (the 

pressure is homogeneous throughout the gas space).

6) The sorbent particles are identical to one another.

Yasuda (1994) underlined that assumption 5 is the fundamental assumption in this 

method, since this assumption allows writing the overall mass balance in the gas phase 

as:

d_
dt

r - f r \pV_

V ^o j + x = °  <4>dt

where B represents the adsorbed molecules,

v»

B = J q d V s = Be(l +A e'c“,+'t>f'l')) (5)
0

A and \|/ are obtained from the solution of the diffusive problem of a slab whose surface

concentrations are in equilibrium with a periodically varying pressure (Carslaw and

Jaeger, 1959).

5V
Substituting eqs (2), (3) and (5) and defining 5 =  ---- 1, Eq. (4) becomes:

5p

KS = - - \  (6)
Sp

KSm =~cos<p- 1 (7)
P
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V
K ° m, = —  sm<p (8)

P

The functional forms are derived in Appendix A and the resulting solution is given by:

s  = 1 f sinh It] + sin 2r/ j
2rj [cosh2rj + cos277J

_  1 J sinh 2T] -  sin 2rj 1
~ 2rj [cosh2 /; + cos2^J (10)

where the reduced angular frequency 7  is a function of the angular frequency co, the 

thickness of the plane sheet L, and the diffusion coefficient D:

/  o \  1/2 
f  CO.1 }^
v 2  D j

and K is related to the local slope of the adsorption isotherm at p e and Te :

RT, (

(11)

K  =
V. \ d p j

(12)

Assumption 4 is not critical, since the batch frequency response technique is a 

differential technique, the intensity of the frequency spectrum under set experimental 

conditions is dependent on the local gradient of the isotherm, and 

not on the global nature of the isotherm. However the range of pressure that can be 

studied is limited by the isotherm behaviour.
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5t„
bout 0.6

0.4

0.2

2 4 6 8 10

*1
Figure 2.5 Characteristic functions for a slab as function of the reduced angular 

frequency.

The characteristic functions are an useful way of analysing FR data because from the

L2out-phase, eq. (8), the characteristic time— may be determined distinctly from the

position where the maximum appears ( / 0.4* D 
L2

for a slab of thickness 2L). From

the in-phase, eq. (7), the equilibrium constant K can be determined for<u —» 0 For high 

frequencies both functions converge asymptotically to zero.

2.5 Extension of the model

The extension to other geometries, mass and thermal resistances follows the same 

methodology. Jordi and Do (1993) and Sun et al. (1993) presented detailed models for

4 9
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non-isothermal adsorption-diffusion process in presence of extra crystalline resistances. 

In Table 2.2 various characteristic functions are summarized.

Table 2.2 Characteristic Functions

Model Characteristic functions Reference

Microporous

diffusion

Sphere
8out 

11 =

3 J sir 
77 jc o

- - ! 1t}{2

r2coR2

D

ih rj -  sin 77 

sh /7 -  cos 77 J

sinh tj + sin 77 1 1 
cosh/7- c o s /7 77 J

N 1 / 2

I f  . . 1 8 *D
J  comer „ 2

y ^

Yasuda (1982)

Parallelepiped

anisotropic ' - ■ ( f )\7l J

- f  8 'out 2

_ 2  ( 7Z
a imn ~ A4 I

2

i,m,n=\,3,5 l 2rn2n 2{afmn +co2)

y ' Ctlmn(0
3,5 l 2m 2n 2(afmn + e>2) 

/ 2Z>. m2D , n 2D, ^-----L + ------ £. + ----- —
a 2 b2 c2 ,

Oprescu et al. (1992)

Infinite

cylinder
f>inc

A  =

i^outc

(a>Rl\
[ i d )

_ 2 7,1(1 + / p l  
(l + /)A 70[(l + /)/l]

/  2
^ 1 * Z)

comer ~  ^ > 2  

K c

Jordi and Do (1994), 

Sun et al. (1993)
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Table 2.2  cont.

CO
><73
<L>

<+HCO

Vh

H
CO
CO
cd

B

Surface

Barrier
'SR

t. =

♦SR
l+ft>nY20 s

R p a p
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2.5.1 Effect of particle shape

The solution for the spherical geometry (Yasuda, 1982) is shown in Fig. 2.6.

0.6

0.4

0.2

Fig. 2.6 Characteristic functions for a slab as function of the reduced angular 

frequency r\ = ^2coRs2/ d

Here the in-phase function is well separated from the out-phase function compared to 

the slab geometry (see Fig.2.5).

The solution for a cylinder of infinite length has been given by Jordi and Do (1994) 

and Sun et al. (1993). Because the solution involves Bessel function of complex 

argument, it can be useful to note that 

1* D
fc o m e r  ~  2 ^ s p h e r e - e q u i v a l e n t '

K

The solution (Oprescu et al., 1992) has been extended also to parallelepiped geometry 

with anisotropic diffusion (see table 2.2.) and applied to the study of the diffusion of 

Xenon in silicalite-1 (coffin shape) and of p-xylene in parallelepiped silicalite-2 (Shen 

and Rees, 1993).
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In all the cases the characteristic functions trend is similar, while the presence of a 

crystals size distribution make the diffusion peak less pronounced (Sun et al., 1994).

2.5.2 Series and  para lle l m ass tran s fe r  resistances

The presence of a surface resistance(1 lk_A) introduces an additional mass transfer 

resistance to the adsorption process, in series with respect to the microporous diffusion 

(D).

This modification, Yasuda et al. (1991), incorporates a rate constant for the surface 

resistance which is formally similar to the Langmuir kinetics (Yasuda, 1976) and the 

relative in-phase and out-of-phase components are given in Table 2.2 and shown in the 

following figure:

0.6

0.4

0.2

100o.io.oi
2

Fig.2.7 Theoretical in-phase and out-of-phase functions for surface resistance to 

diffusion. The parameterC, = ak_AL2/D is 100(-----), 1 ( —  ),0.01 ( .......)
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The parameter C  ---- -—  is the ratio of the diffusion and surface resistance time

D

constants. The presence of a surface barrier can be easily detected because the 

characteristic functions intersect each other.

If the surface barrier completely controls the kinetics, the in-phase and out-of-phase 

functions intersect at the maximum point of the latter. The corresponding resonant 

angular frequency is the inverse of the characteristic time for the surface barrier. When 

both the diffusion and the surface barrier exist, the intersection occurs at higher 

frequency. Sun et al (1993) underlined that because the unusual behaviour pattern 

predicted by a surface barrier model, the LDF model is clearly not suitable for studying 

diffusion by the frequency response technique.

Sun et al. (1994) have extended the model to zeolite pellets (or loosely packed pile of 

zeolite crystals). Their analysis showed that when both macropore diffusion and 

micropore diffusion resistances are comparable, macropore diffusion behaves like a 

surface barrier and leads to an intersection of the in-phase and out-phase response 

functions. When either micropore diffusion or macropore diffusion is alone dominant, 

the frequency response is essentially the same.

The linearity of the system (Yasuda, 1994) implies that the ultimate response of the 

system will be the sum of the individual responses present in the system.

(13)

(14)
3

(15)

54



Frequency R esp onse M ethod to Study D iffusion  in M icroporous Solids

This is valid provided that the interactions among them are negligible.

For a process in which the local Henry’s law constants are the same but the 

characteristics time constants differ by 2 orders of magnitude, an ultimate response is 

represented in Fig.2.8:

©

Fig. 2.8 Theoretical in-phase and out-of-phase functions for two indipendent diffusion 

processes.

The out-phase function shows a bimodal behaviour pattern. The first peak corresponds 

to the slower of the two independent diffusion processes. The zero frequency limit is the 

sum of the equilibrium constants defined according Eq. (11).

2.5.3 Heat effects

Because of the batch nature of the technique, the release of heat during the adsorption 

can cause strong deviations from the isothermal case. Sun et al. (1993), underlining that 

the use of a very small pressure changes cannot eliminate the heat effect since in a linear

2

10
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closed system any effect is independent of the step size, developed a model including: 

heat transfer resistance, mass surface resistance and microporous diffusion;

The characteristic functions show two main differences with respect to the isothermal 

case:

1) the high frequency asymptote for the in-phase characteristic function does not go to 

zero but to a finite value depending on the magnitude of the non-isothermal effect;

2) the possibility of a bimodal behaviour for the out-phase characteristic function , one 

due to heat transfer, one to mass transfer;

Jordi and Do (1994) (monodisperse pore structure) and Sun et al. (1994) -  (bidispersed 

pore structure) included in the non-isothermal models the solids-adsorbate conduction. 

Sun et al. (1994) defined the following parameter in the case of a non-isothermal 

system:

* CST. RT. ,

The possibility of a bimodal response due to thermal effects shows that even in the case 

of the FR, similar behaviour can be obtained from two very different physical 

mechanisms.

Shen and Rees (1991) observed that the out-of-phase curves for several systems were 

bimodal and this could not be explained by a single-diffusion model. The systems 

investigated were diffusion of n-butane and 2 -butyne in “coffin-shaped” silicalite-1 and 

diffusion of p-xylene in nearly spherical silicalite-1. In order to describe this bimodal 

behaviour, Shen and Rees (1991) suggested that there are two independent diffusion 

processes occurring in the straight and sinusoidal channels of silicalite-1, respectively, 

each process having its own phase with its own equilibrium constant and diffusion rate.
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Sun and Meunier (1993) do not agree with this interpretation and have argued that the 

bimodal behaviour o f the frequency response curves for the molecule of n-butane that 

are more flexible than the p-xylene and 2-butyne and therefore have less difficulty in 

turning at the intersections, the relatively high coverage for the experiments make 

unlikely that the interaction between the two diffusion fluxes is negligible.

They explained the bimodal behaviour in terms of thermal effects. The bimodal 

behaviour can be obtained when the diffusion time constant is sufficiently smaller than 

the time constant for heat transfer, i.e. when diffusion is sufficiently faster than heat 

transfer. The good agreement and the consistency of the equilibrium data used in their 

model suggest that the heat effect is in fact a possible explanation of the bimodal 

behaviour. However to confirm the assumption of two independent processes Shen and 

Ress (1993) made a comparative study with the diffusion data of p-xylene in silicalite-2 , 

which contains only one set of straight channels. The frequency response of this system 

was found to exhibit only a single peak, indicating that only one diffusion process was 

involved.

2.6 Advantages and Limits of the FR

The most theoretically promising feature of the FR technique is its ability to 

discriminate between different rate-limiting mechanisms, which is due to the high 

sensitivity o f the frequency response to the nature of the governing equations (Naphtali 

and Polinski (1963)). On the other hand the high sensitivity means that it is imperative 

to take into account all the physically possible limiting effects in the theoretical analysis 

(e.g. thermal effects).

Following Bourdin et al. (1998) the advantages for the FR are:
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1) The possibility to measure relatively fast kinetics.

2) The high accuracy. The FR is a pseudostationary method and thus the accuracy 

increases with the measurement duration. (The method transforms a transient 

system into a quasi-stationary one, allowing precise measurements that are 

insensitive to small changes in experimental conditions (e.g., drifts).)

3) The direct dependence between the phase lag (in fact a time at a given 

frequency) and the characteristic times involved in the process.

4) The sensitivity to the mass transfer mode: Fickian diffusion or surface barrier.

It is important to recognize also the limitations of the FR technique. Broadly, the main 

limitations relate to the limited range of angular frequencies obtainable experimentally, 

the accuracy with which measurements may be obtained, and the inaccuracies in 

correcting for apparatus effects. Also inherent in the technique is the requirement to 

perform measurements under periodic steady-state conditions over a range of angular 

frequencies, which may be very time consuming for systems with slow dynamic 

characteristics. Furthermore, only two parameters, namely, the phase angle and 

amplitude ratio, are extracted from a large body of measured data.

Clearly, in order to discern all of the dynamic processes active in a given system, one 

needs to perform measurements covering the complete range of dynamic time scales. 

The range of frequency covered in the reported literature ranges from 0.001 to 30 Hz, 

corresponding to a dynamic process timescale range of about 0.03-1000 s. (Shen and 

Rees (1994)).

Another important limitation of the FR technique is the limited pressure range that may 

be covered before the accuracy of the experimental data is significantly degraded. Since 

the intensity o f the frequency spectrum is proportional to the gradient of the adsorption
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isotherm at equilibrium (see Eq. 12), systems with isotherms exhibiting a plateau or 

asymptotic features may only be investigated over a limited range of pressure.

Following Park et al. (1998) the main limitations can be summarised as.

- Relatively low experimental frequencies resulting from mechanical limitations 

of volume modulators.

A demand for small amplitudes of the volume perturbations in order to satisfy 

assumptions of linearity.

- Non-isothermality, influencing the FR results considerably (Sun et al., 1993)

In the present study the main aim is to determine the possibility of generalizing the 

Frequency Response method to sonic frequencies (10 Hz - 20 kHz, see Chapter 3), and 

the linearity o f the signal and thermal effects are object of a parametric analysis in 

Chapter 4.
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Chapter 3 

A Model for Sound Propagation in presence of Microporous 

Solids

3.1 Introduction

The extension of the frequency response technique to higher frequencies (>20 Hz) 

implies the need to consider a pressure wave in the sonic range (sound propagation). 

While in an open medium classical dissipative effects on the pressure wave can be 

generally neglected (See 3.2), in a confined medium the variation of amplitude 

(absorption) and the change of phase (dispersion) of the wave affects significantly the 

sound wave.

The absorption of sound is due to (Hirschfelder et al., 1954):

1) viscosity

2) thermal conductivity

3) diffusion

4) chemical reactions and phase change

5) time lag in the transfer of energy among the various degrees of freedom of the 

molecules.

(1) and (2) are indicated as classical mechanisms in ultrasonic literature, in order to 

distinguish them from the “molecular” absorption and dispersion.

Assuming that the amplitudes of the sound waves are sufficiently small, their 

propagation with absorption can be described by a set of linear differential equations, in 

terms of small perturbations about an average (Markham et al., 1951).
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3.2 Ideal Sound Propagation

The sound equation for an ideal fluid (Crandall, 1927) in terms of pressure is given by:

d2p  1 d2p  _
dx2 a 2 dt2 2 *.2 =0 0 )

where a0 is the ideal sound velocity.

Eq. 1 is hyperbolic and represents the equation for the propagation of waves. The 

general solution must include waves travelling with positive and negative velocities and 

will be of the type:

p  = A' f ( a 0t -x )+ B -  F(a0t + x) (2)

The values of A and B, and the particular forms of f ( c t - x )  and F(ct + x) must be 

determined from the boundary conditions assigned in a particular problem.

In the following treatment we concentrate on sinusoidal functions1 and only on the 

progressive wave, i.e. we will consider solutions of the form f ( c t  - x )  = eia*~x .

In agreement with the following analysis we introduce the dimensionless time r = cat

coxand the dimensionless space coordinate £ = — . Therefore the solution that we will seek

will be of the form: f ( c t - x )  = e”~T* (3)

It will be shown that a solution of this form verifies the equation for the propagation of 

a sound wave with absorption, but in this case the propagation constant T is a complex 

value:

1 The reason the sine function occupies a key position in wave theory is fundamentally that linear 
mathematical operations applied to sinusoidal functions of a definite period generate other sinusoidal 
functions of the same period,differing at most in amplitude and phase. Nonsinusoidal waves are found to 
change their shape as they progress, it is only sinusoidal waves that preserve their functional form in 
passing through the medium.
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T = PS + iAC (4)

The real part of T is the Phase Shift (PS) or the reciprocal of the wavelength A, 

multiplied by 2 n  that is related to the propagation velocity and the imaginary part is the 

absorption coefficient AC.

3.3 Sound Propagation in Confined Spaces.
The problem of the propagation of sound waves in gas contained in confined spaces was 

considered by Kirchhoff (1868) for a cylindrical geometry. The analytical solutions 

given in the literature can be divided roughly into two groups (Tijdeman, 1975). The 

first group comprises solutions obtained by analytical approximations of the full 

Kirchhoff solution, which is given in the form of a very complicated transcendental 

equation. The solutions of the second group have been derived directly from the basic 

equations governing the problem, by the introduction of one or more simplifying 

assumptions.

Kirchoff4 s solution is a function of the following parameters:

Zwikker and Kosten (1949) have derived an analytical approximation (Low Reduced 

Frequency Approximation: LRFA). Because of its simplicity this approximation of the 

full solution has been applied recently to the description of sound propagation in 

presence of vapour-liquid equilibrium (Raspet et al ., 1999).

shear wave number

square root of the Prandtl number

reduced frequency
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In Tijdeman’s analysis (1975) it is demonstrated that most of the analytical solutions are 

dependent only on the shear wave number, s, and that they are adequately represented 

by the LRFA. In the same analysis Tijdeman shows that the exact solution has a strong 

dependence on the reduced frequency, k, for relatively small values of the shear wave 

number (s < 4).

4 4Ajow rvcfciad foqunty solution" 
- *40-19*

4 O 4-0

5 6
Low raducetf itHutAty solution

Z-9

u
i
8£ 2-0

2-6

a

I
r z

t o

0-4 0 4

U-

Fig.3.1 Exact solution of the Attenuation and Phase Shift as functions of shear wave 
number and reduced frequency. From [Tijdeman, 1975]

From Fig. 3.1 it is possible to see that the Phase Shift is more sensitive to the reduced 

frequency, but for s > 2 and k > 0.1 n the LRFA yields a sufficiently accurate 

approximation to the solution of sound propagation.

Given this general result and the analogy of phase change due to adsorption to that of 

vapour-liquid equilibrium we have applied the Low Reduced Frequency Approximation 

(LRFA) in order to obtain a theoretical solution for a sound wave propagating between 

two adsorbing walls.
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3.3.1 General Model

x£,U

Fig.3.2 Model geometry: Two layers of a microporous solid of hs depth.

We consider the simple geometry of two layers of an adsorbent microporous solid of 

infinite width separated by a gas that adsorbs on the solid’s surface.

A planar sound wave propagates in the x direction (Fig. 3.2). The assumptions made 

allow us to consider the 2-D problem and sound propagation can be described (Landau 

and Liftshitz, 1997) using the Navier-Stokes equations in vertical and horizontal 

directions,

3u -  du -d u + V hU----
dt dz dx

_ _ 3 p  Id^u d 2u ( 1 d
dx H Ok 2 dz2 3 dx

du dv 
dx dz

=  0 (5)

dv - d v  - d v
 h V  YU---
dt dz dx

d p  I d 2v d 2v 1 d
dz \ dx2 dz2 3 dz

du dv 
dx dz

=  0 (6)

the continuity equation,

d p  - d p  - 5 / j  
—— + u — ~Y-v—— I- p\
dt dx dz

du dv 
dx dz

-  0 (7)

the equation of state.

p  = p K t (8)
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and the energy balance
dT - d T  -d T—— + u ----- 1-v —
dt dx dz

= x d 2T dl T
O 1--dx dz

dp - d p  - d p  + -*- + u -J-  + v - I-+  u® 
dt dx dz

(9)

where

®,
2

+
f  —  \ 2

E l +
dx dz

du dv^ (----
dx dz j

(10)

Because of the adsorption-desorption process at the interface, the concentration of the 

adsorbate phase and the temperature of the solid change. As a result the diffusion of the 

sorbate and thermal conduction in the solid have to be considered.

Eqs (5)-(10) have to be coupled to the solid phase mass and energy balances

^  = z>
dt dz2 dx‘ J

dTh
P ^ C p ^  —  = 2

dt hm

V
dz' dx'

01 )

( 12)

Eqs (5)-(12) suffice to obtain the solution for the seven unknown quantities: namely, the 

velocities in the horizontal and vertical directions, the density, the temperature, the 

pressure, the concentration of the sorbate and the temperature of the solid.

Eqs (5)-(12) can be linearized according to the acoustic approximation (i.e. only first 

order terms are considered) and made dimensionless following Tijdeman’s notation 

(1975). A general procedure is available to solve this set of equations if they are 

formulated in terms of gas pressure (Tijdeman, 1975). To achieve this one has to 

eliminate the solid phase variables. Consider the dimensionless mass and energy 

balances of the solid which can be written as

dq _ 1 d2q 
T x '  kd'd c 2

i d 2r,hm

dr 3<r2

(13)

(14)
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where q and Thm are the relative variations of the sorbate concentration with respect to 

the average value (i.e. q = q,(\ + q(x,z,t)) andThm = Thms(l + 7 ^ (x,z, /))), T = cot,

kd'= diffusive reduced frequency, k x'= ^  Pĥ ' P ’m conductive reduced

frequency and the dimensionless vertical coordinate^ = —, and the corresponding set of
h

boundary conditions:

(a) At the solid surfaces the vertical mass flux must be equal to the diffusive flux 

and the horizontal velocity must be zero:

Dqs dq£  -  1,-1 u -  0 and v =
e M p . a 0h  d i

  dq
Before linearization the continuity of the vertical flux is written as p  • v = —D—

&

(b) At the solid surfaces the following condition on the heat flux must be verified:

-A HDqs dq _ XhmThms dThm = _ dT 
 ̂ ’ h d£ h d (  h d (

Before linearization the heat flux condition is written

- A H D ^ - - X hm^  = - X ^a nm ^dz dz dz

(c) At the solid surface the sorbate concentration is at equilibrium (Sun et al., 1993) 

with the fluid phase:

q = q, (i+4 x - \  t))=q,+ -  p. ) + -  ts )

£  = 1,-1 q = K p peiM+K T -TeM

(d) At the solid surface there is thermal equilibrium between the solid and fluid: i.e., 

f = l , - l  Thm=Tei0*

(e) At the base of the solid layer the diffusive and conductive fluxes must be zero:

h + + Sq_ = Q and = 0
^ h ’ h ’ d z  d t
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To recast the model equations in a form that allows the application of the solution 

procedure of Tijdeman (1975) in the case of sound propagation in a tube it is therefore

necessary to express the surface concentration and temperature gradients as

function of the external concentration and temperature respectively. This corresponds to 

finding the transfer function

a? = {Kpp  + K rT)iG q{&) (15)
c=-i

SThm
s c

= dOT (&)f (16)
C=~l

where 0 is the Laplace domain variable.

From the solution of the diffusion and energy equations in the Laplace domain, one can 

find the transfer function to be

dG„(&) = 4k7&  tan h ^ V V ^  (17)

(  h \
dGT (S) = j k A'$  tanh - f  (18)

V "  J
Finally the equations are inverted to the time domain following the inversion theorem 

for periodic input (Stephanopoulos, 1984). Following the procedure of Tijdeman (1975) 

(see Appendix B) the solution for the pressure is given by:

p  = AeT* + B e Tt (19)

where A and B can be determined by the boundary conditions on the £ coordinate.

T is the propagation constant given by
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where s is shear wave number and n is the polytropic equivalent coefficient given by

n=^ 1- y -1  „tanh(>^as)
^  F +Ap f c i - s T

Y Vi a s - I Y )_
• Gq(il-e iaraGJi) (21)

The real part of T is the Attenuation Coefficient (AC), a measure of the decrease of the 

sound amplitude while the imaginary part is the phase shift (PS).

Ap = —————— is the ratio solid-gas phases hold-ups.
P s £

tanhU kdi j
G (i) = ----- 7= —- is a complex function of the characteristic time of microporous

Vkdi

diffusion trough the layer of the microporus material kd =
<oh;

D

S is the non-isothermal adsorption factor.

AT /
ad

VLe
1 + AH y - 1

dim
V

y (k d,Le)+ y - 1

-s/Le

(22)

Le as

As it is possible to see from the expression for the polytropic constant (Eq.21) the heat 

of adsorption affects T in two ways:

1) the gas thermal conduction modifying the surface temperature

2) the adsorption equilibrium.

Here A Tad =
(pCp)hmTs

and represents the adiabatic temperature fluctuation.

AHAH a =  is the dimensionless heat of adsorption.dm, R T
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Le is the Lewis number Le = — and represents the ratio between thermal and

mass diffusivity.

Cpr ~ ----- ““  represents the ratio between the gas and solid phase thermal
ypCphm 1- *

capacities.

^ (k ^ L e) = ^ ( k d,k  J  = and 0>(as,kd,Le) = <b(as,kJ = tanh^ os| are
tanh^/k^i) ’ d’ tanh^/k^i

complex functions of the characteristic frequencies associated with molecular transport

coh2
processes: microporous diffusion k d = , thermal conduction through the solid layer

^ 00 h s (pCp)^ an(j dermal conduction through the gas phase (a s)2 = 00 ̂  .
'hm

The solution for the other acoustic variables becomes: 

iT
u =

cosh(yr^s)
cosh(>/is)

[Aert -B e  r']

v = -ik [Ae1̂  +Be c -
_  s in h ^ as^ ) | Y ~ ^

Yi5/2as cosh(Vi as)

+
r 2[Aer  ̂+ Be ^  ] sinh(Vi fo)

i1/2scoshl(Vi s)

p -[A e R +Be ■r$

-rs,

1 -
„ cosh(yias<^)  ̂ y - 1  

cosh(VT as) Y

„  coshUi asC; y - 1  

cosh(\[i as) Y
T = [Aer4 + Be

Eqs (23)-(26) represent the set of solutions to the LRFA with solid adsorption.

(23)

(24)

(25)

(26)
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3.3.2 Simplified Models

While it is useful to have derived this analytical solution, in order to understand the 

ranges in which adsorption kinetics may be investigated it is necessary to identify also 

the limiting solutions that can be obtained from this general one. Figure 3 .3 shows the 

tree of the models that can be derived.

Model

(s, Ap, Le, Kd, AT ad, AH dim, Cpj)

Uniform Temperature 1 

(s, Ap, Kd, AT ad, AHdim, Cp,)
Temperature Resistance Control 

(s, Ap, Kd, AT ad, AHdim, Cp,)

Uniform Temperature 2 

(s, Ap, Kd, ATad, AHdim, Cp )̂
Temperature Resistance Control 2 

(s, Ap, Kd, AT ad, AHdim)

AHdim—>0
Isothermal Adsorption 

(s, Ap, Kd)

Classical Absorption

<o

Ideal Sound Propagation 

T-i

Fig.3.3 Models Tree.

This tree shows how, by setting specific values to the model parameters, it is possible to 

obtain a number of solutions. In particular one can see that by setting all the parameters
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to their limiting values one recovers the solution n = y, hence the name polytropic 

equivalent constant, and T = i corresponding to ideal sound propagation.

It is important to note is that by comparing the full solution to the simplified cases, it 

will be possible to carry out a parametric study which will be presented in Chapter 4 .

Table 3 .1 reports the solutions for all the models presented in Fig. 3 .3.

Table 3.1 : Propagation Constants (and n, “polytropic equivalent”)
Model T Propagation Constant and n Polytropic Constant

General

a 
-1

II 
ll_

y 
aT

Fn

/  - 1 _ tanh ( 1/2ers) 
y i ' 12 ers

Uniform Solid 

Temperature
L e  -» go

i

n = jl -

i - J r  , i _

Y -  1 „ tanh (/1/2 os)
Y I1/2CT5

anh(i1/2s,)'| 
i'n s j

+ A p \\  + A H ^  l y —  S2'7

Isothermal Adsorption 

(Full model)

» = 1 [i - “"h -ft ' + Ap .|G ,(>](.«<■-
7 |_ i a  s J 1 1 j

Ideal Fluid-Isothermal 

(Adsorption only)

S - >  00
Classical Absorption 

(Viscous Dissipation only)
A p - > 0

r  r - l f  _< an h |^ Y
|_ Y  V 1 os )

~1

Table 3.2 shows the corresponding values of the non-isothermal factor.
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Table 3.2 Non-isothermal Factor
Model E Non-isothermal Factor

General

_ yjLev r )

jL e  1 Le os

Uniform Solid 

temperature(ut) ~ u r _  I  y )

Isothermal Adsorption 1

 ̂
1

Ideal Fluid-Isothermal r  = i

Classical Absorption i
 ̂

i

Finally it is useful to summarise briefly the results that are obtained in the case of 

classical absorption.

1.3

as

Fig. 3 .4 Polytropic constant as function of as

In this case the polytropic constant is a function of the product a s , which means that the 

constant does not depend on the viscosity and only accounts for the effect of heat
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conduction. The dependence of the polytropic constant with o s  is shown in Fig. 3 .4 . 

The asymptotic values are n = 1 for s = 0 , and n = y for s —» oo, corresponding to 

isothermal and isentropic conditions, respectively.

3.4 Case study: C02-Silicalite System
The attenuation coefficient for the system CO2 -  Silicalite is analysed in the pressure 

range [2 Torr-3 bar] at T = 304.55 K using the equilibrium parameters reported by 

Golden and Sircar (1994).

For this system we consider first the solution obtained in the case of an ideal gas phase 

with isothermal adsorption in the solid phase. This would correspond to the ideal 

conditions to investigate adsorption kinetics. Fig. 3.5 shows the results as function of the 

natural frequency. This shows a maximum that, similarly to the FR in a slab geometry

0 42D
(Yasuda. and Sugasawa, 1982), corresponds to f = —-----

0.2

Ads AC 0 1

0 ' ------------- --------------------------- -------------
0 10 20 30 40 50

f[Hz]

Figure 3.5 Ads AC as function of the natural frequency (h = 1mm, hs = 10pm)
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Figure 3.6 shows the effect of non-idealities in the gas phase, and the comparison 

between the AC for classical absorption and the effect of isothermal adsorption.

0.5 atm 
1 atm 
3 atm

AC

0.5

20 ffHz] 30

Figure 3.6 AC with adsorption (heavy line) and classic AC (thin line) as function of the
natural frequency (h = 1mm, hs = 10pm)

From this figure it is possible to see the effect of the adsorption isotherm. As the 

pressure increases, the slope of the isotherm decreases and the effect on sound 

propagation is reduced.

20 Hz 
100 Hz 
1000 Hz0.03

Ads AC o.02

0.01

0 500 f[Hz] 1000

Figure 3.7 AdsAC as function of the natural frequency at P = latm.

1500
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Below atmospheric conditions, even for this relatively weakly adsorbed system, the 

effect of adsorption on sound propagation can be distinguished clearly.

Fig. 3.7 shows the AC for 3 different characteristic times corresponding to a solid 

fraction ( h s / h )  of: 0.01, 4.5-1CF3, 1.5-1CT3. The reduction of the crystal size

determines a reduction in spectrum amplitude due to the reduction of adsorbent mass for 

the same half slab distance (i.e. same classic absorption).

3.6 Summary

The solution to the modelling equations that has been derived suggests that adsorption 

affects the propagation of sound and this effect can be interpreted in a straightforward 

analogy with the FR technique, which corresponds to the limiting case of wavelength 

»  dimensions of the FR batch volume. The technique should be applicable to fast 

diffusing strongly adsorbed systems, which are difficult to measure using current 

macroscopic techniques. Classical effects and the effect of the temperature need to be 

carefully considered in order to specify the experimental conditions suitable for the 

determination of micropore diffusivities.
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Chapter 4 

Parametric study of the Model

4.1 Introduction
The model described accounts for the effect of adsorption and diffusion in porous solids 

on the propagation of a sound wave. The model is based on KirchhofiPs theory for 

sound propagation (1868) in a tube and an analytical solution has been obtained in the 

limit of the Low Reduced Frequency Approximation (LRFA) (Tijdeman,1975). While 

the parameters affecting the sound propagation in a non-adsorbent rigid porous solid are 

the porosity, the resistance constant (viscosity) and the structure factor (Zwikker and 

Kosten, 1949) in the presence of a porous adsorbent the effect of adsorption and mass 

transfer according to a diffusion model have been included.

The following parametric study aims to identify the key parameters of the model and 

to clarify the dependence of the solution on these parameters.

4.2 General Solution

As seen in Chapter 3 the solution to the general model is expressed in terms of the 

propagation constant T.

H i

i i
~ tanh(VT s)

Vis

(i)

n =< 1 -
y—1 _tanh(Vi as) +Ap

'y -1  ^* M
y Vi a s - I Y JJ

• Gq(il-e ianaG.li)
(2)
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including c  ( the square root of the Prandtl number) and y (ratio of molar heats), T is a 

function of 7 dimensionless parameters: s the shear wave number, Ap and ka related to 

adsorption and diffusion in the solid phase, AHdim, ATad ,Cpr and Le related to thermal 

effects.

s - h is the shear wave number, the equivalent of the Reynolds number for the

acoustic problem.

Ap -  ——— ——— is the ratio solid-gas phases hold-ups.
Ps £

kd = ~~~  is diffusion characteristic frequency.

\M*\qsK p
ATad = j -----r— — represents the adiabatic temperature fluctuation.

(pCPJhm Ts

AHA H =  is dimensionless heat of adsorption.
RTS

A. k .

Le is the Lewis number Le = —/ x— = —  and represents the ratio between mass
D ifC p)^  kx

and thermal diflfusivities, i.e. kx = Q^sifiCp)
A'hm

Qp -  P^P  £ _  represents the ratio between the gas and solid phase thermal
{fCp)hml - e

capacities.

4.3 Criteria for Limiting Solutions

To determine the numerical values for the parameters so that simplified versions of the 

general model should be applied, there is the need to define a quantitative criterion. This 

approach will identify the regions in which experiments should be carried out in order
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to obtain meaningful information on mass transfer kinetics. In the sections that will 

follow the boundaries between models of increasing complexity will be defined using:

1) Re(r)<l% and <10% to determine the range of the Classic Absorption and Ideal 

Sound Propagation models as functions of the shear wave number.

Re(r) — Re(r')
2) -----— j — <1% and <10% to determine range of validity of the Classic

Absorption and Isothermal Adsorption models as functions of the Shear wave Number 

and Ap.

R e(sOT) - ^ 1
Y3) ------- —---------<1% and <10% to determine the range of validity of the Uniform

r

Temperature and Isothermal Adsorption models as functions of the AHdim.

Re( s ) — R e(S ^  )
4) — — ---- =r -<1%  and < 10% to determine the range of validity of the General

Re(E )

Model and Uniform Temperature Models as function of the AHdim and Le.

4.4 Classic Absorption -Ideal Sound Propagation

In the absence of adsorption (i.e. sound propagation between two slabs of non adsorbent 

material) the propagation of a sound wave is affected only by the shear stress and the 

thermal conduction of the gas phase. In Ultrasonic literature these effects are indicated 

as classical effects (Herzfeld, K. F, 1959). In this case the propagation constant T is
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where

L r - i tanl(Vi as) )
Y Vias

The solution differs from the LRFA solution (Tidjeman, 1975) only for different 

geometries. According the LRFA the propagation of a planar wave between two slabs, 

is then a function only of the shear wave number s, assuming a  and y constants. In the 

limit of 5 —» oo (high frequency, low viscosity, large mean density or large tube radii) 

the propagation constant T reduces to the imaginary unit (i) (ideal isentropic sound 

propagation), no attenuation and Phase Shift = 1. In the limit of s —» 0 the propagation 

constant T = (ideal isothermal sound propagation). In Fig. 4.1 the value of the 

polytropic constant is shown as a function of the frequency.

250K
300K
350K

1.3

1.2

1.1

1
1500 20005000

Fig.4.1 n for CO2 as function of frequency in the temperature range [250K-350K]

At high frequency \nc\ approaches the adiabatic limit y, while at low frequency the 

isothermal limit |wc|=l.
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8

6

4

2

0
0 500 1000 1500 2000

f  [Hz]

Fig.4.2 as (CO2 , T = 300K) as a function of the frequency in the range of pressure 1 

Torr-3 bars, for a half slab distance h = 0.1mm.

The following diagrams show the Attenuation Coefficient and the Phase Shift as a 

function of the shear wave number.

0.9

0.7

0.6

AC 0.5

0.4

0.3

0.2

Fig.4.3 AC as function of s

3

2.5

PS
2

1.5

1
2 4 6 8 10S

Fig.4.4 PS as function of s

From Figs 4.2-4.4 it is possible to verify that increasing the pressure, the dissipation due 

to classical effects decreases.
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Figs 4.3 and 4.4 show that for s > 5.6 Re(r)-Re(r')< 0.1. This result is very close to 

the one found for the cylindrical geometry (Tidjeman, 1975). For simplicity it seems 

reasonable assume that for s >10, sound propagation can be considered ideal.

Fig.4.5 shows the reduced frequency k as a function of the shear wave number, for CO2 

at room temperature, showing that the LRFA assumption k «  1 is valid in the range of 

interest. ( k « l ,  and k / s « l )

0.3

0.2

0.1

0
80 2 4 6 10

S

Fig.4.5 Reduced Frequency as function of the shear wave number (s).

4.5 Isothermal Adsorption - Classic
Because of the pressure dependence of the adsorption equilibrium, if a planar wave 

propagates between two slabs of adsorbent material, initially saturated with the gas, the 

fluctuations of the pressure determines fluctuations of the adsorbate concentration.

The fluctuations in the adsorbate concentration determine a spatial distribution of the 

concentration in the microporous solid and a relative diffusion problem.

In this case the polytropic coefficient is given by:
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n = <•1 tanl{Vi as)

y Vios
+Ap- G (il-e iaudG. i

(5)

In the limit o f high frequencies or long diffusion time (k d » l), G9(/)—>0 and the

adsorption accordingly with the physical intuition has no effect on the sound wave and 

the Propagation Constant reduces to the classical one (Eq. 4).

In the limit of the low frequencies or short diffusion time (i.e. k a « l)  G (i)—>1,

and the polytropic coefficient reduces to n=< I- 7 " 1
1 tanl^Vi as)
* r

Y Vias

-i

+Apj

implying that at low frequency the adsorption has only an effect on the phase shift.

To clarify the analysis it is useful to consider the limiting case of a fluid with no 

viscosity:

F = i

7I =  | l 4 v 4 / ? *

(6)

(7)

F o rk d « l, n=y+Ap-} 1

We can observe that the modulus of the transfer function for the concentration gradient 

varies from 1 to 0 for ka varying from 0 to oo and that AC shows a maximum related to a 

characteristic diffusional time kd,
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0.2

Ap = 1AC ads

0.5 0.1

Ap = 0.1

100

Fig.4 .6 Module of Gq as function of kd Fig.4.7 ACads as function of kd

The maximum in ACads suggests the possibility of identifying the diffusional 

characteristic time by an attenuation measurement.

Consequently it is worth to consider the effect of Ap and s on the maximum attenuation. 

The following diagram shows the regions of the validity of the criterion

Re(r)-Re(r) < 1% and < 10%

Ap

10 1 1 F I i

1 Isothermal Adsorption -

0.1 — —

0.01 -

io" 3
Classic

“4 i i ______ i----------- —
ISP

1 10 0.01 o.i 10 100

Fig.4.8 Region of validity of Isothermal Adsorption, Classic and Ideal Sound 

Propagation (ISP).
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4.6 Uniform Temperature of the Solid

If the heat o f adsorption cannot be neglected but conduction trough the solid is much 

faster than the mass resistance (Le oo), the propagation constant is given by:

r=iJi ~ tanh(vT s)^
Vis  J

n =<;1- y -1  tanl(Vi as)

y Vi a s
+Ap 1+AHdim

y - i  - UT ■GqUI-e
(iarg(Gq

and Em  is the non-isothermal factor due to adsorption and it is given by:
r

ATad l + AH y - 1
dim

V
G ,(0  +

y - 1

ATadAHdlmG q
/.\ Cpr tanhU/Tas) ,
(0  + - it ------ '  + 1Vias

and the corresponding gas temperature profile is:

y - 1  „ uy cosh(VTos^) 

y cosh(Vi a s)

At the surface ( f  = + ,- l) ,

T -  P

T = p

where

t-— ~ e ut 
r

(8)

(9)

(10)

(11)

(12)

(13)

is the transfer function between acoustic pressure and “acoustic” temperature of the 

solid.

Assuming that the gas thermal capacity is much smaller than that of the solid (i.e. 

Cpr —> 0 )
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A r J  i + A //dim
- U T ' _

r - i
r  )

Gq(i) +
r (14)

A ^ A ^ dimo ; 0j + i

„UT' •a  is a complex number, implying that there will be a phase shift between pressure 

and solid temperature.

In the limit o f the low frequencies or short diffusion time (i.e. k d « l)  1, the

non-isothermal factor reduces to

ATad
— UT'

1 + AH dim
y - 1

r  )
L z l

r
A TadAHdim +1

(15)

and because it is a real number there is no PS between acoustic pressure and 

temperature.

In the limit of high frequencies or long diffusion time (kd» l), G?(/)—>0 and the

adsorption according to physical intuition has no effect on the sound wave.

In the limit of a very high heat of adsorption:

r

y  —UT'lim a  =
Â dim- *00

ipCp)hm
l + AH dim

7 - 1  
Y )

Gq(?)+ r ~  i 
r

A^dim
W e J } .  (i)+i

r - 1  
r

(16)

and the polytropic coefficient reduces to the classical one 

-1  tanl{\/i as)
Vias

1-
Y

(17)

In the limit of very high heat of adsorption no adsorption occurs.

The following figures show non-isothermal factor as function of the reduced frequency,

for different value of the dimensionless heat of adsorption.
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1.005

1.004

1.003

1.002r - 1

AHdim “0.11.001

0.999

AHdim ^ aild AHdim ^

Fig.4.9 Real Part of the Non Isothermal factor as function of the reduced diffusive 

frequency. Isothermal Adsorption. ------

l.i

l

r - i
19

0.8

0.7 80 100604020
kA

Fig.4.10 Real Part of the non isothermal factor as function of the reduced diffusive 

frequency .
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In the limit of ATad = AHqsK
p >0 s , the isothermal adsorption model is

( fC p \mT s7

obtained. Accordingly a criterion for neglecting thermal effects can be defined in terms

of:
Re(EOT') - Y - 1

Y
Y - 1 

Y

<1% and <10% in the limit of kd—>0.

Because the main parameter is the heat of adsorption, for AHdim< 2 and AHdim< 20, the 

criteria are verified.

Fig.4.1

4.7 Temperature Resistance Control

If the mass diffusivity trough the solid is much faster than the thermal conduction (i.e.

Le-> 0 ) the non-isothermal factor E reduces to E

ATad
— TC

and

1 + AH y -1
dim G,(i )

Y j
T Cpr tanh(vTos)

(18)

AT^AHj^G  (i)n
Vios

0 0.5 1 1.5 2 2.5 3

I AHdim I
1 Real Part of the Non Isothermal tactor as function of the AHdim for kd—>0.

ReCS^)
Y ~  1   1.005

Kd —pO
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n = « l - nl̂ Vi os)

Vi o s
+Af 1+AHdim

Li_HTC
Y

•Gq(ii-e(iais(Gq(0))

in the limit of AI ldim->0 . A TaJ =
AH ^ R q .K ,

ifiCp)hm

it—<i - L l +Ap . ] p ^ J
r  1 1

-1

implying that also the gas temperature is uniform along £.

If the gas thermal capacity is much smaller of the solid one (i.e. Cpr —» 0 )

- i c  _ Y - \  , 1
Y Atfdim

and according to physical intuition it is independent of kd and Kp.

In the limit o f a very high heat of adsorption:

|AH sJtfl ,K pR r

lim E rc' = (fiCp)hm
1 + A // dim

V
r_zl 

r  J
l ^ d i m  \<lsK p R AH

r - i
r

dim
{fCpXm

and the polytropic coefficient reduces to the classical one

y -1  tanl^/i os)

Y Vi os
n-< 1-

-1

(19)

(20)

(21)

(22)

(23)

In the limit o f very small heat of adsorption E diverges.

The following figure shows the non-isothermal factor as function of the dimensionless 

heat of adsorption.

88



Parametric Study o f the Model

Refe7̂ )

r - 1

40 60 80

AHdim

Fig.4.12 Non Isothermal factor as function of the AHdi,

4.8 General Model

r  = i j l
n ~ tanh(vis)

Vis .

n=< 1 -
y — 1 „ t a n l { V i a s )

+ A f

f
1 + A H ^

~y - i  ~ T )• w

Y  v i  a s V L Y  JJ

(24)

(25)

and

AT.ad

VZ7
AT.ad

j L e

(26)

Assuming the gas thermal capacity is much smaller of the solid one (i.e. Cpr -* 0 )
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A7!ad

_ V ie
1 + A//dim

y-_1

r  .
V fa .L e ) + r - 1 

r

V ie

(27)

in the limit of AHdim-*0 , we obtain the isothermal adsorption limit

-  y - 1M = I____
Y

R e (s)-  Re(Hr 7)
The criterion function — — -----------    has been evaluated for k d « l  where the

Re(Hm )

deviation from the isothermal case shows a maximum (Figs 9 and 10). The following 

figures show the real part of the non-isothermal adsorption factor ratio as function of the 

dimensionless heat of adsorption for different values of Le.

Le = 10
1.05

Le= 10

0.95

Fig.4.13 Real part ratio of the non-isothermal adsorption factor as function of the AHdim.

Independently of the AHdim, for Le>0.1 the Uniform Temperature model can be applied. 

The deviation can be positive or negative.
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1.005

Re(E) Le=10

0.995 Le=10

0.99

Fig.4.14 Real part ratio of the non-isothermal adsorption factor as function of the AHdim. 

4.9 Summary
The developed model predicts two fundamental aspects: 1) the presence of an 

adsorbent microporous material increases the effect of absorption and dispersion of the 

sound wave 2) AC presents a maximum related to the characteristic time of diffusion. 

The parametric analysis of the model indicates that the important parameters are s, Ap, 

kd , AHdim and Le. On the basis of these dimensionless parameters the following 

numerical relations are proposed for the applicability of the different models:

1) Le>10 Uniform Temperature Model

2) Le<0.1 Temperature Resistance Control

3) |AHdim|<2 Isothermal Adsorption

4) Ap<0.01 Classic Absorption

For ordinary heat of adsorption the thermal effects have not significative effect. The 

analysis suggest that optimal experimental conditions for determining the microporous 

diffusivity from an AC measurement correspond to kd range [1-10] and for Ap>0.01, 

“independently” of the shear wave number.
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Chapter 5

A Prototype Experimental Apparatus and Preliminary Experimental 

Results

5.1 Introduction

In order to obtain a proof of concept of the experimental technique a prototype 

apparatus was designed and constructed. The simplicity of the design and the flexibility 

of the apparatus are the basic criteria considered. The techniques applied for measuring 

acoustic impedance in porous materials are classified (Zwikker and Konsten, 1949):

a) constant length method, measuring maximum and minimum pressure in the tube

b) variable length method, measuring maximum and minimum pressure at the 

sound source

c) variable length method, measuring curve width of pressure at the source

d) variable length method, measuring the electrical impedance of the sound source

e) short length tube, measurement of pressure and velocity

In our apparatus the pressure is measured at the end of the tube, and the adsorbent 

material is located between the source of sound and the microphone (See Fig. 5 .1).

92



A Prototype Experimental Apparatus and Preliminary Experimental Results

5.2 Experimental Apparatus

FMMA tube

1,8

( E a r -P h o n e  \

100
110

Fig. 5.1 Sketch of the experimental apparatus.

A sketch of the apparatus is shown in Fig. 5.1. It consists of a microphone and a 

loudspeaker (head-phone) connected through a tube (10 cm length, 3 cm internal 

diameter). The adsorbent material is introduced in a cylindrical chamber obtained using 

glass rings. The size of the chamber length and area can be modified changing the 

number of disks (1-3) and the internal diameter of the disks (0.5, 1, 2 cm: diameter) of 

the disks (See Fig. 5.2). The position of the microphone and the position of the 

loudspeaker can be varied. The sealing is made by using o-rings (See Fig. 5.2). The 

temperature of the chamber can be controlled using an external bath and a thermocouple 

(See Fig. 5.3), but all the current tests were run at room temperature.
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PMMA Rings of Variable Internal Diameter

0  20

Hi l 8

w !J Q

J S  5 10

Optional Thermocouple Arrangement Inflow Connection

UNIVERSITY COLLEGE LONDON

Fig. 5.2 Details of the experimental apparatus

Signals
Generation

Cell

im
Water Bath

Fitting
—  fimra topper tube   V8indi rawer Itfie

[> 3 < ] Flow Controller 
POO On-Off 

^  Three-W ays

Fig. 5.3 Layout of the experimental setup
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The microphone and loud-speaker are connected to a computer. The pressure is 

monitored using a pressure gauge. During the experiments the pressure of the system is 

maintained slightly above atmospheric (1.1 bar) in order to avoid any contamination 

from the external air. For the same reason, the system is maintained under a small flow 

of gas (typically 20 cc/min) in order to maintain the positive pressure difference. The 

flow is controlled using a micrometric valve and monitored using a soap-bubble flow 

meter.

5.3 Data generation and acquisition

The sound signals were generated and recorded digitally using the software SND PC 

toolbox Version 1.2 (See Appendix D) for Matlab 5.0 or higher, written by Torsten 

Marquard. The toolbox allows the generation of sound signals of a determined 

frequency. The volume was fixed using the sound control interface available in the 

Windows operating system.

The frequencies were fixed between 50 and 2000 Hz at intervals of 50 Hz. At each 

frequency the sound wave was activated for more than 40000 cycles in order to achieve 

cyclic steady state. The last 10 cycles were used to obtain an average of the amplitude 

of the signal at any given frequency. Figures 5.4 to 5.8 show examples of the data 

generated for two gases at two different frequencies.

The Windows operating system does not activate the loudspeaker in a reproducible way, 

and as a result it is not possible to know exactly the starting time of the experiments. 

This uncertainty makes it impossible to determine with reliable accuracy phase shifts in 

the case of a pulse measurement, because of the time dependence of the signal. Two
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microphones are usually applied in order to overcome this limitation. The configuration 

of the present apparatus allows recording the output normalized sound amplitudes in the 

case of standing wave measurements and makes comparative analysis of the systems 

signals possible. The position of the peaks and the high and width under the peaks 

depends on the PS and AC of the sound wave (Landau and Lifsits, 1976).

Empty Glass

2 4 (

Silicalite x ^ 3 Noise

x 10 x 10

Fig. 5.4 Signals as function of the sample number for Air 100Hz
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Empty

Silicalite

Glass

x 10x 10' Noise10

9

8

7

6

50 0.5 1 1.5 2

x 10 x 10

Fig. 5.5 Signals as function of the sample number for CO2 100Hz

Empty

Silicalite

Glass

Noise

x 10

Fig. 5.6 Signals as a function of the
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Glass

Silicalite

k 104 x 104

Fig. 5.7 Signals as a function of the sample number for CO2 1000Hz
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5.4 Analysis of Preliminary Experimental Data

In the frequency range 50Hz-2000 Hz, acoustic signals for air, helium, nitrogen and 

CO2 are investigated in relation their interaction with packed beds of glass beads and 

silicalite pellets (HISIV 3000). The packed beds have a void fraction of approximately s 

« 0.4. The main aim of the analysis is the identification and evaluation of “adsorption 

effects” on the propagation of the sound wave.1 The following figures show the 

amplitudes as a function of the frequency for the empty system:

Empty System
0.4

—  Air (no flux) 
  Air0.35

0.3

0.25

0.2

0.15

0.1

0.05

0 200 400 600 800 1000 1200 1400 1600 1800 20000
f[Hz]

Fig. 5.8a Amplitudes as a function of the frequency for the empty system.

1 Linearity of the signals respect the amplitude has been ascertained for air.
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Empty System
0.4

C02

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0 200 400 600 800 1000 1200 1400 1600 1800 20000
f[Hz]

Fig. 5.8b Amplitudes as a function of the frequency for the empty system.

Figure 5 .8a shows that in the case of air the low velocities used in the system do not 

have a significant effect on the amplitude of the sound wave.

Based on these results, it is clear that resonant frequencies are present in the empty 

system and a simplified analysis2 of the experimental data collected with the acoustic 

prototype experimental apparatus is reported in the following section.

2 Frequency Analysis based on linearity and on pseudo-stationary dynamics of the system.
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The trend of the amplitudes for the different gases (CO2 > air > N2 > He) is mainly due 

to the different densities of the gases. Table 5.1 shows the characteristic ideal 

impedance (R = pc).

Table 5.1 Ideal Sound Properties

Gas C[m/s] X(at 100Hz, 1000Hz,2000Hz)[cm] R [kg/(m2s)J
Air 343 343, 34.3, 17.15 415.03
C02 258 258, 25.8, 12.9 468.27
He 1008 1008, 108, 54 165.312
N2 349 349, 34.9, 17.45 401.35

In the Low frequency region (i.e. 0-500Hz for Air, N2 and CO2) the system behaves as a 

spatially discrete system.

5.4.1 An acoustic model of the apparatus

This analysis aims to clarify the peaks obtained in the experimental measurements. As 

in “organ pipes”, a resonances mechanism (i.e. standing waves) is proposed to explain 

the peaks.

Figure 5.9 shows a simplified acoustic scheme of the apparatus. It is possible to identify 

three acoustic regions characterized by the specific acoustic impedances. Z2, Z3, and 

Z4. Z1 is the input or driven impedance of the loudspeaker and Z5 is the load 

impedance of the microphone.
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L2=40mm L3=30mm L4=40mm

Speaker

L=100mm 

d1=20mm 
d2=30mm

Fig. 5.9 An acoustic scheme of the apparatus

To obtain an estimate of the order of magnitude of the resonant effects, we neglect in 

the first instance the effect of the constriction. The model reduces to the one for a driven 

tube (Z1 = input impedance at x = 0, Z2 = Z3 = Z4 = Z and Z5 = load impedance at x = 

L = 10 cm).

Assuming ideal propagation and planar waves (A,>d2, see Table 5.1) the acoustic 

pressure is given by:

p  = p,(Aer i +Be-rf)e“* (1)

102



A Prototype Experimental Apparatus and Preliminary Experimental Results

At ^ =£l, the continuities of force and particle speed require that the mechanical 

impedance of the wave equals the mechanical impedance of the microphone, Z5.

AeT4l + B e r L̂Z5 = W0S  n  =5-  (3)
AeT4l-B ~ T*1

The loudspeaker mechanical impedance Z l3 at £=0 is correspondingly given by 

A +  / ?
Zl = W0S ^ — ^~ (4)

0 A - B  V }

Combining these equations to eliminate A and B, we obtain

Z5
Zl _ W0S

-tanh(r^)

^  l - Z L t a n h ^ )
wns  x

(5)

Rewriting the load impedance in terms of resistance (r) and reactance (xr) components: 

Z5
W0S

= r + jx r (6)

The frequency of resonance and antiresonance are determined by the vanishing of the 

input reactance4:

x tanh2( r | J - i ( r 2 + x ,: -  l)tanh(rg)+xr = Q 
(r2 + xr2)tanh(r4L)~  2 j x r tan(r£ .)  +1

The determination of the resonance and antiresonance frequency reduces to the 

determination of r and x for the microphone.

As a first approximation (i.e.dm/d2« l/3), we assume Z5 = qo and the solution reduces to 

the one for the closed end tube:

3 Here we assume a light and “flexible” loudspeaker
4 Fundamentals of Acoustics, Kinsler et al (1980)
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Zl
WnS

= -  coth(r £l ) (8)

In the case of an ideal sound wave the reactance is zero when coth(r^L) =0 

& ,= (2 « - l> r /2  n = 1,2,3,.....

f  _ 2 n - \ a 0
J n

(9)

( 10)
4 L

The resonance frequencies are the odd harmonics of the fundamental (n=l).

The driven closed pipe has a pressure antinode at £ = and a pressure node at % = 0 . 

Notice that this requires that the driver presents vanishing mechanical impedance to the 

tube. The following table (table 1) shows fundamental and 1st resonant frequency for 4 

gases.

Table 5.2 -  Fundamental and 1st resonant frequencies (n=2).

Gas Fundamental (n = 1) 

(Hz)

Experimental first 

main peak

First Resonant (n = 2) 

(Hz)

Air 857 1000 2572

C 02 645 800 1935

He 2520 - 7560

n 2 872 1020 2618

The trend qualitatively coincides with that obtained in the experimental tests: CO2 

lowest resonant frequency, Air and N2 almost the same, Helium has a small peak at the 

beginning that has to be clarified but doesn’t show main peaks in the range (0-2000Hz).
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The presence of more peaks for the empty system compared to the driven tube is due to 

higher modes of resonances and reflected waves associated with the constriction 

between 2, 3 and 4 as showed in Fig. 5.10.

5.5 Silicalite-Glass signals: A Qualitative Analysis

The following figures show the amplitude signals for the system filled with glass and 

with silicalite.

Amplitude Glass
0.2

Air
0020.18

- N20.16

0.14

0.12

0.08

0.06

0.04

0.02

flHz]

Fig. 5.10 Amplitudes as a function of the frequency for the glass system.
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Amplitude Silicalite
0.18

Air
0020.16

- N2
0.14

0.12

0.08

0.06

0.04

0.02

200 400 600 800 1000 1200 1400 1600 1800 2000
f[Hz]

Fig. 5.11 Amplitudes as a function of the frequency for the silicalite system.

Table 5.3 -  Main Peaks Frequencies (bold main peak)

Gas Empty Glass Silicalite
Air 1000Hz, 

1400Hz
100Hz,600Hz, 
1050Hz, 1750Hz

100Hz, 600Hz, 
1100Hz, 1800Hz

Air in flux 1000Hz, 1400Hz 600Hz, 1050Hz, 
1750Hz

600Hz, 1100Hz, 
1800Hz

Helium 200Hz 250Hz, 1700Hz 250Hz, 1600Hz
Nitrogen 1000Hz, 

1400Hz
400Hz, 700Hz, 
1100Hz, 1850Hz

600Hz, llOOz, 
1800Hz

C02 800Hz, 1050Hz 580Hz,900Hz, 1400Hz, 
2000Hz

550Hz, 900Hz, 
1400Hz, 1950Hz

As in the empty case for each gas the system shows different peaks. The position of the 

peaks for the system filled with glass and silicalite are very close. This observation
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implies that the positions of the peaks are related mainly to geometrical factors, that we 

verified being in the order of the resonant frequencies; however comparing the mean 

peaks (See Table) for CO2 (550-580 Hz) and Nitrogen (700Hz) in the glass and silicalite 

systems it is possible to note a reduction of amplitude in the main resonance frequencies 

between the two systems for both the gases (see 5.6); These experimental results are in 

agreement with the model as the reduction in the phase velocity implies a lower 

frequency peak position (Eq.10) and an increase of attenuation (Eq. 20) implies a 

reduction on the peak high. This last effect is maximum at the frequency corresponding 

to the micropore diffusion characteristic time.

A m p litu de vs frequency C 0 2
0.2

—  glass  
  silicalite0.18

0.16

0.14

0.12

0.08

0.06

0.04

0.02

200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 5.12 Amplitudes as function of the frequency for CO2
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Amplitude vs frequency Air
0.12

  silicalite
—  glass

0.08

0.06

0.04

0.02

200 400

Fig. 5 .13 Amplitudes as function of the frequency for air

A m plitude vs frequency: Helium
0.03

  silicalite
—  glass

0.025

0.02

0.015

0.01

0.005
200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 5.14 Amplitudes as function of the frequency for Helium
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Amplitude vs frequency Nitrogen
0.12

  silicalite
—  g l a s s

0.08

0.06

0.04

0.02

200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 5.15 Amplitudes as function of the frequency for N2

To have a comparison between the glass and silicalite systems, we considered the 

normalized amplitudes and selected a range of Number of Samples [31500-31600], 

from the values and the positions of maximum and minimum Amplitude and Phase 

Shift have been evaluated for the 3 cases: empty, silicalite, glass. The signals are then 

normalized with respect to the empty case.
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C 0 2 ,1 0 0 0 H z , 3 Big Discs

  empty
glass 

  silicalite
0.8

0.6

0.4

0.2

-02

-0.4

-0 6

- 0.8

100

Fig. 5.16 Normalised Amplitudes as function of the number of samples for CO2

1000Hz, Helium, 3 big discs

  Empty
  Glass

-  Silicalite
0.8

0.6

0.4

0.2

- 0.2

-0.4

-0 6

100

Fig 5.17 Normalised Amplitudes as function of the number of sample for Helium 

In Fig. 5.16 and 5.17 experimental data showing approximately two sound cycles have 

been reported. It is possible to verify that the amplitude in the case of CCVsilicalite
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system is slightly lower than in the case of the CC^-glass system; assuming the same 

classical effects this suggests that the micropore diffusion affects the sound propagation.

5.6 Attenuation Coefficient from resonance in a tube

If absorptive processes within the fluid and at the walls of the pipe are considered, the 

solution for the pipe driven at £ = 0 is found by substituting the complex propagation 

constant

T = AC + iPS ( 1 1 )

into the solutions obtained in the previous sections.

As an example, for a rigid termination at £ = £l the pressure is

/■(».<)■ < « )c o s h (n y

and the input impedance is (Eq. 8)

Zl _ /• coth(r4L) _ i coth(AC4l + iPS4, )
W0S  r  AC + iPS

With the help of the expansions of sines and cosines of complex argument, the above 

expression becomes

Zl iA C -P S  |tanh ) -  i tan(PS%L)+ i tan(PS£L )tanh2 (ZC^L )+tanh(^C^L )tan2 (PS^L )| ( 1 4 )

WqS " A C 2 + P S 2 tanh2(4C£L)+tan(PS£L)

if we assume that the pipe is of reasonable length so that (v4C£L) «  1, then the input

impedance assumes a simpler form

Zl _ 1 i tan(PS^L) -  tan2(PS%L)tanh(ZC^L)
W J S - P S  tanh2 [ZC£. ] + tan2 (PS^L )
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The major effects of absorption are to introduce a small resistance which is maximized

when knL = m r and to alter the behaviour of the reactance in this same region so that it

no longer becomes infinite in magnitude but rather remains bounded and changes from 

positive to negative very rapidly.

It can be shown that the frequencies of resonance and antiresonace are close to the 

natural frequencies of the undamped open, rigid and rigid, rigid pipes, respectively.

Let us assume that the termination at § = §l is rigid. Then at §= the amplitude p L of 

the reflected wave will equal that of the incident wave (pressure antinode). The resulting 

pressure amplitude p  at any position along the pipe may be shown from 

co sh [r(£ -£ L)]
p  = P« J r e \  (16)c o s h ( T £ J

The nodes occur at

P S ( Z - 4 L ) = ( 2 n - \ ) n n  n  = 1,2,3,.... (17)

and have relative amplitudes

p ^ / p L = 2  s in h [R e(rX &  -<?)]* 2  R e (rX &  ~ 4 )  (18)

The antinodes occur

P S ( 4 - 4 L )  = n x  n  = 1,2,3,.... (19)

and have relative amplitudes

P - ' P l = 2  cosh[R e(rX &  -  4 ) ] »  2 +  [R e (rX &  -  4 ) \  (20)

At resonance the input pressure is approximately a node.
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5.7 Conclusions and Future Work

The experimental apparatus has been constructed and the preliminary experimental 

investigation has highlighted the need to interpret the results in terms of a resonance 

model. The amplitudes in the case of the system filled with silicalite are for CO2 and air 

lower than for the system filled with glass. This is a preliminary indication that 

adsorption does have an effect, which in the current configuration is not quantifiable to 

a sufficient accuracy.

According the ASTM E1050-98 (Standard Test Method for Impedance and Absorption 

of Acoustical Materials Using a Tube, Two Microphones, and a Digital Frequency 

Analysis System, the apparatus configuration is the same of the TC384) a new 

configuration for the experimental apparatus is proposed. These tests are applied to 

measure sound absorption coefficients of absorptive materials at normal incidence. 

Because the apparatus are mostly designed for air and atmospheric conditions, some 

additional care to isolation must be considered in order to make experiment at low 

pressure.

These techniques are refinement of the Kundt Tube. By measuring the pressure of the 

standing waves in two locations it is possible to determine the reflection coefficient that 

is related to the propagation constant (Zwikker and Kosten, 1949) in the material:

Z - WR =-------2_. (21)
Z - W 0

where Z is the material surface impedance and Wo, the gas wave impedance 

Z = W coth(r ). (22)

where W according the model is given by:
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W - Wn
” tanh(/'1/2s)

/1/25

(23)
iT

h i ~ tanh(i1/2s)
(24)

i1/2s

This model corresponds to a slit geometry and the possibility of an experimental 

analysis reproducing this geometry could be considered in order to have a simplified, 

ductile and direct interpretation of the experimental results.

The acoustic pressure between the two layers is given by:

P(g.t)= P0(Aer! (25)

the average acoustic velocity:

«(£, t) = ao ~
r

tanh(\//.v)
(.4er i -Be~r()iiM » a 0 y ( A e r( - B e  rf)sia (26)

The impedance of the infinite medium:

W = K  _ W0(P S -iA C )  
iT A C 2 + P S2

showing also that the Propagation constant represent the ratio of gas characteristic 

impedance and the impedance in the medium.

These are the equations to analyse the system in the case of a pulse measurement, or in 

the case of a load impedance that exactly matches the impedance of the medium (no 

reflection).

The impedance of the standing wave medium:
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(Aer* + B e T*
W *  - B e  ^

u r  _  n r W *  + Be r4)
iT J s  (27)

at % -  0

Z - W  ^  + roR'i
■" (a ~ b ) (28)

at 4 = 4iL

\Aer*1 + Be r*L)
M ~ \AeTiL - B e ^ )  (29)

From (27) and (28)

W  = J K z --------------- <30>w l - ^ t a n h T ^
W L

If we suppose to apply a rigid boundary as (it can be in first approximation a 

microphone):

jjs- = co th r&  (3i)

^  = c o th ( r4 )=  coth^C ^, + ,P S Q  (32)

Considering the standing wave pressure :

_ = _ cosh[rfe- ^ ) ]  
c o sh (r^ )

p  = 2p, cosh[r(^ -  £ j ]

Main difficulty related to the production of layers of microporous material that the 

system has to satisfy the following conditions:

1) long enough for the formation of a planar wave and mechanically robust

2) relatively smooth surface so turbulence can be neglected
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3) To clarify the appropriate lateral dimension 

The two layers provided of loudspeaker and with a rigid termination, with two lateral 

microphone can be inserted in a box, in order to easy control pressure and temperature. 

Traditional techniques are based on the measurement of surface impedance of a 

sample, so quantity of material and surface condition should not be problems.

The apparatus is a hollow cylinder, or tube, with a test sample holder at one end and a 

sound source at the other end. Microphones ports are mounted at two or more locations 

along the wall of the tube.

DIGITAL
FREQUENCY

ANALYSIS
SYSTEM

CH 1 O  O C H  2

SIGNAL
..... .......  | —  1 

POWER 1
GENERATOR EQUALIZER "..... . “ *

i AMPLIFIER

SIGNAL
CONDITIONER

(O ptionoQ

MIC 2

IMPEDANCE SOUND 
TUBE SOURCE

MIC 1 /  /

^  ++++4%++++++

/  \ JIG \
STANDARD CONFIGURATION -  BACKING TEST ABSORPTIVE

PLATE SPECIMEN MEDIA
SWITCHED CONFIGURATION

MIC 2MIC 1

flj-L - j=L — ■sssj'

Fig. 5.18 Improved Apparatus (Taken from ASTM E l050-98)

In the test method ASTM E l050-98 plane waves are generated in the tube using a broad 

band signal from a noise source while in the TC384 by a discrete sinusoid from an 

oscillator. The ASTM E l050-86 is faster than the simpler Test Method C384.
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The test methods describe in details the construction and design procedure for the 

apparatus, and the following points are underlined:

1) Working frequency range: fi<f<fu

The lower limit depends on the spacing of the microphones: (the microphone spacing 

exceed one percent of the wavelength is indicated).

(for a microphone nominal diameter of 1 inch the maximum frequency is 3000 Hz).

2) Diameter of the tube to avoid higher modes of resonance, this is also related to 1): 

fu=(Kc )/d, where K=0.586;

3) Length of the tube: the tube should be sufficiently long that planar waves are fully 

developed before reaching the microphones and test specimen, (a minimum of three 

tube diameters is indicated)

4) Backing plate (Eq. 20): A metal plate having a minimum thickness of 20 mm is 

recommended.

5) Location microphones: it is suggested 3 tube diameters from sound source and from 

the specimen.

6) Test specimen: with porous materials of low bulk density, it may be useful to define 

the front surface by a thin, non vibrating wire grid with wide mesh

7) In the section of the Analysis of the signals are given the relation between R to the 

microphones measurement

In order to extend the model to the outlined configuration it is possible to follow

Attenborough capillary tube approach, (Attenborough 1993). His analysis considered

the influence of pore shape in rigid porous material consisting of identical tortuous

pores of arbitrary shape. The geometrical factor is generally negligible while a

correction can arise due to the pores distribution (or equivalently grain size
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distribution). The propagation constant of the pore (or capillary tube) to the bulk 

material according the following relation for the density and the compressibility:

where in Eq.(31) and (32) x and e represent tortuosity and porosity of the sample: 

and related to the propagation constant:

Because tortuosity, porosity and eventually pore distribution can be determined 

independently of the acoustic measurements, the model should not require any 

adjustable parameters.

The quantification of adsorption parameters from the analysis of sound attenuation in 

the present prototype system is limited by the complex reflections and resonances in the 

apparatus.

(33)

Q  =(jP0T  r - ( r - i ) —
Pt,

(34)

(35)
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Appendix A 

In and out characteristic functions for micropore diffusion

V =Fc(l-ve"”‘) Volume modulation

p  = p e{\ + pe l(M̂ ) Pressure

q = qe{\ + concentration in the pores

B = B ^  + A e^***^) amount of adorbate in the sample

d ( p V \  dB „ + — 0 
dt {RT0 J dt

mass balance

It should be noted that this equation is valid only if the pressure is homogeneous 
throughout the gas space; this the very fundamental assumption in this method.1

1 ( - dV dBdV ^ d pp ------b V —
RT0 ^ dt dt j

RT0

PeVe
RT0a

Equalling real and imaginary parts

p y ■e e

RT0A

RT0A

A and y/ are obtained from the solution of Eq. (A8) (Crank, 1959)

S . =D(q { ^
dt yq' \ d x 2,

with boundary conditions that the concentration is proportional to a sinusoidally 
varying vapor pressure at the boundaries

(2)

(3) 

(Al) 

(A2)

(4)

+ —  = 0 (A3)
dt

+ v^ p e ‘f> + pvc'(‘“+,'))=  Ae'(v+¥,) (A4)

Cancelling the pv terms (disappear the time dependence)

(v e i<p -  p ) - A e iv (A5)

(v cos <p- p ) -  cos y/ (A6)

P V
sin (p-  sin yr (A7)

(A8)
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q = Kp

K  can be related to the gradient of a sorption isotherm at P = Pe, i.e.

I  y. k & . ,

A = ( V  RT<>
V Pr  e x e J

Y  v!
V2\sin 2 rj + sinh2 rj)2 /[//(cos 7 + cosh 7)]

y/ = tan -1 sin 7  -  sinh 7  
sin 7  + sinh 7

Using cos^  =
4 l+ ts '

and sin y/ -
¥ 1 +

tg2V

Introducing A. 11 and A. 12 in (A6) and (A7) eqs (9) and (10) are obtained.

(A9)

(A10)

(A ll)

(A12)
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Appendix B

Sound Propagation between two slabs of non-adsorbent solid.

Fig.A.l LRFA in rectangular geometry.

Eqs (5-10) in Chapter 3 describe the motion of a fluid between two slabs of infinite 

width. From these equations it is possible to obtain the solution to the LRFA in the 

absence of adsorption.

If the following assumptions are introduced:

(a) homogeneous medium, which means that the wave length and the distance 

between the two slabs must be large in comparison with the mean free path; for 

air of normal atmospheric temperature and pressure, this condition breaks down 

for f  > 108 Hz and h < 10"5 cm;

(b) no steady flow;

(c) small amplitude, sinusoidal perturbations ( no circulation and no turbulence);

(d) slab long enough, so that end effects are negligible.

Upon assuming



P  = p M  + p (x’z )e“*)

T = T ^  + T{x,z)e'M)

with u,v,p,p and T being small sinusoidal perturbations, and by introduction of the

dimensionless co-ordinates

f, cox „ z
4 = — , £  = ta 0 h

the Eqs (5)-(9) can be rewritten as
1 dp 1

1U  ------------- —  +  —

y d% s 2
k 2 d2u d2u+ 1 / d + - k —  

3 d£
, du dvk —  + — (Bl)

ivk =

ikp =

1 dp k

. du dvk —  + —
. dc

2 d2v d2v+ 1JL
+ 3 dC

f du dvk —  + —
H  dC

p  = p  + T

iT = 2 2 a s
d2T  . 2 d2T
d C

+ k ‘ . y - 1+ i L— p

where s = h \ ^ ^ ~  , the shear wave number,
V M

a  = MC,— —, the square root of the Prandtl number,

(B2)

(B3)

(B4)

(B5)

k  = — , the reduced frequency, being proportional to the ratio of half distance
a0

slabs to wave length,

y  = ——, specific heats ratio.

As for a given gas a  and y often can be considered as constants, the two main 

parameters are the shear wave number and the reduced frequency.
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When the slabs distance is small in comparison with the wave length and the vertical

cohvelocity component, v, is small with respect to the horizontal velocity, u ( i.e., —  « 1

v
and — « 1 ) ,  the basic Eqs (A1)-(A5) can be reduced to 

u

1 dP 1 d2u
 + — (B6)

r  dC 

p  = p  + T

(B7)

(B8)

(B9)

(BIO)

To obtain the solution for the two slabs geometry, eqs (B6)-(B10) have to satisfy the 

following boundary conditions and assumptions:

(a) at the rigid slabs wall the horizontal and vertical velocity must be zero: i.e.,

at £  -  1,-1 v = 0 and u = 0

(b) the vertical velocity must be zero at the centre due to the symmetry of the 
problem: i.e.,

at C = 0, v = 0

(c) the heat conductivity of the slab wall is large in comparison with the heat 
conductivity o f the fluid: i.e.,

at £  = 1,-1 T  = 0 
(isothermal walls)

B .l Derivation of the LRFA solution

FromEq. (B 7):P = P ©

Assuming u = f{£)h(y)  with y  = i3l2̂ s 

The Eq. (B6) becomes:
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d2h(y) / x i dp

Solution is given by:

h(y) = Aeiy +Be~‘y + - — A - ^
r  d t  f i t )

A and B can be determined from the boundary conditions:

(u(t,l)= 0
!«(<?,-o=o

>(/3,20 = 0 

h ( - i3ns)=0

A = B= Xdp 1
y  d t  / ( | ) 2 cosh(/5/2s)

u = i dp
r d f

cosJ
COS

h

Following the previous procedure we can determine the temperature: 

Assuming T  = g{£)j{w)

Eq. (BIO) becomes: 

d 2j(w) . / x  y - 1 1

^ A w ) - —  W ) p

the solution is given by:

j(w)=Ce'w + D e m +r r - ^  
r  ) g i f )

C and D can be determined from the boundary conditions:

'T it,l)  = 0 
T i t -  0 = 0

'j{i3,2os)= 0 
l / ( - / 3/2css)=0

y - 1 1
^  y  ^g(tfi.cosh{iin os)

(B ll)

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)
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T r - i  t  = — p
r

cosh(/1/2^bs)
1 — W ^ fcost

Substituting Eq. (B18) in Eq. (B9): 

r - 1p = p - T = p 1 -
r

cosh(/1/2^bs)
1 cost

using Eqs (A15) and (A19), the continuity equation can be rewritten as

dv - k ip+
du

%
=ik\p 1- r -1

r

cosh(/1/2<£cs)

w
• 1/2COStl/ os\

+
1 d2p

r d 4 J
_ cosl^ 'V )*)

w W .cost

By integration:

v = iki p y - 1

r
C — .

smh(rl/2£bs)

4 ‘z1 2oscosh(/1/2as:
+

1 d2p
C -

inh(/12^ )
iV2s cos

From the boundary condition £  -  1 v = 0 

- F { g ) = p \ \ ~ r—r - i tanh(/1/2OT) 1 , 1 3 V tanh(/'1/2s)

r
•1/2 __ 
7 OS J r 8 4 2 L 7-1/25 J

From the symmetry condition £  —» 0 v = 0, it follows F(£) = 0

y - 1 tanh(/1/2oy) 1- tanh(71/2s)

7 71/2os J r d e 71/25 J =  0

The solution of this second order homogeneous linear equation is given by:

p  = Aer* +Be~T4

where

r  = i j -
n

1

'  ta n h ( /l 2.v)
, 'n s

n 1- I z l
7

 ̂ tanh(/1/2os)
-i

/ os

(B18)

(B19)

(B20)

(B21)

(B22)

(B23)

(B24)

(B25A)

(B25B)
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The real part of T corresponds to the attenuation coefficient (AC), the imaginary part to 

the phase shift (PS). The constants A and B can be determined by specifying additional 

boundary conditions at both ends of the slabs.

The solution for the other acoustic variables becomes

iTu =
r

l - cos
COS

h(z1/2£s) [Ae,f -B e  r i] (B26)

v = ik\ [Aer  ̂+Be r<r y -  i f  sinh(/1/2̂ qy) 
y \  z1/2as cosh(7 as)

+

—  [ieT4 +Be
r

-T € inh(/1/2fi)r  si:
Z1/25COSh(/1/25)_

p  =

T =

1- Y - 1
r

1- cosl
cosl

y - \

Y

h{ill2£os)
U r ^ f \

cosh(/1/2̂ bs) 
n(z os Jcost

[Aer4 +Be r<r] 

\Aer*+Be-T*]

(B27)

(B28)

(B29)

From the solution for the vertical velocity, v, it can be verified that the condition 

v /u  «  1 is fulfilled if k « l  and k /s « l .

As a solution identical to Eq. (B25) can be obtained if the equation of state, Eq.(4), and

the energy Eq. (9) together are replaced by the polytropic relation = const.
P 1

B.2 Derivation General Solution

^ U - L i f a .  (B30)
dx k d' d C

j ? ’hm_ _  1 8 T h »  ( g j j )
dx k , '  d C
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We start solving the diffusive and the conductive problem in the microporous solid1. 

Assuming q{4,Z,z) = n A i s Y f a )  and Th,(£ , f , r )  = ya(C,T)~y(f)

We refer to the lower microporous layer (note 6).

Eqs (A30) and (A31) become respectively 

1 S 2f t a

dv k d' d £ 2

d v _ 1 d 2v.
dr k x ' d£

In the Laplace domain Eqs (B32) and (B33) become

1 d2?a$T‘a ~ Ma (0 ) =
V  dC:

1 d 2v .

V  8Z 2

Introducing the initial conditions: //„(0) = 0

va(o) = 0

1
■9/', =

-

V  d t 2 

*x dZ

fia = Aev + Be,-Vv5

~ = Ce^ + De

(B32)

(B33)

(B34)

(B35)

(B36)

(B37)

(B38)

(B39)

Applying the boundary conditions (c) and (e) in Eq. (B38) and the boundary conditions

(d) and (e) in Eq. (B39)

M a  =

21 l+C
+ e

-y
h+2h.

+ e

(B40)

1 B ecause o f  th e sym m etry respect to  the £ a x i s , the concentration and the temperature in the upper and low er m icroporous layers

are even  functions respect £ ( ThnJ g )  =  T h m l{~  Z) =  T hm <1hmu (Z) =  Qhml (“  Z) =  <lhm ^Consequently the
/  _   \

derivatives respect C, are odd  functions .
dLhmu

dC
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V =

21
+ e

h+2hs
h J v{4) (B41)

From Eqs (B40) and (B41) it follows respectively:

2| ^  \+C
+ e

h+2hs

+e^
(k pp +k tt ) (B42)

T  =1 hm

21 ^  |+£

h+2hs
h J _|_ ^ kx'&

T (B43)

where p  -  LT\p- eUiJ{} and T = LT {r -exo* }.

To simplify the notation, we rewrite Eqs (B42) and (B43) as: 

q= Q (& iK pp  + KTf )

= &(&)f

where Q{s)

(B44)

(B45)

e L J
\

+ e- ^ ( and ©($) =

^  /-----------r  ( k +h, ^

e^ [ i ~ r \ +e-4i7i<

{ J
Because of the linearity of the Laplace operator, and making use of the inversion 

theorem of the Laplace trasform for a transfer function subjected to a periodic input, we 

have respectively from Eqs (B40) and (B41):

q = {Kpp  + K TT ] Q ( , y M̂ iQU'n (B46)

Tnm = r|©(/]|e'(“ +*,*<e(''))) (B47)

Because for the boundary conditions (b) and (d) we need only the gradient of q and Thm 

calculated at the interface gas-microporous solid:

dq_ = ( K p p  + K TT)lGqO)
< r= -i

dTthm

dC
= T ■ dGT (<9)

(B48)

(B49)
C=-1
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Because of the linearity of the Laplace operator, and making use of the inversion 

theorem of the Laplace transform for a transfer function subjected to a periodic input, 

we have respectively from Eqs (B46) and (B47): 

dq

<r=-i
= {k  p  + K tt )-IdGq(j)| • e '^ K O )))  (B50)

£=-1

-A H D q ,dq A.hmThms 8Thm XTs dT_iM
h d£ h 8C h d (  ’

r  — —\ ~ A'hnJ'hms ^hm  _ ^Ts 3T ^ l0Jt TB53)
h d£ h d<Z ”  h DC

Introducing the Eqs (B52) and (B53), Eqs (B50) and (B51) become respectively:

f  =1

AH D q

^hm Thm

Y ^ \ dGM  • eiaig{dGM{KpP + K TT)}+ 

T\dGT (/)| • = - ^ L - ^ L
(B54)

\ iG q( i \ e ,^ {,)\ K pp  + KTT %W - D - q ,
h

K m T hm ^iarg (dGT(i)) _  s & T

h
T\dGT(i)

h d t

(B55)

Introducing the new variables in Eq. (B53), we obtain:
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bH-D-q.
h

dGq (/)| • e,^ )]{Kpp+KI \ ^ : e ,m" + D t a )+ ^
|\

r P„
+

+ # " ) + — p W l - e 1* 1'® =

»1/2as -ZV” ")

Because of the symmetry C=D, then solving for C:

(B56)

C =

bH-D-q,
h

k +k t r  1Lg
y  J 1 h y

bH-D-q,
h

k t r  1 
r  _

T { i ,4 )= P
„  cosh(/1/2o5^ ) y -  1

cost
(B57)

The expression for 3  is reported in Appendix C. 

Substituting Eq. (B65) in Eq. (B19):

P - p —T - p 1- cosher1 /2os£)  [ y - 1 
cosh(/12os) y

(B58)

using Eqs (B57) and ( B66  ) the continuity equation (B8) can be rewritten as

dv -  —k ip + du = - ik \p __ cosh(/12as'4") y — 1
4 ,,2<w) ~cost

+
1 d2p
r d f

cosh((/lf24-)s)

w ' 2*)cost

(B59)

By integration:

V = - /A:j p

1 d2p

c -
_ sinh(/1/2as'^') y -177.--------i— , '— r

ih(/,,20s) y ^

+
~  SI
 ̂ -1/2 / s

/1/2oscost

inh(/1/2ft) 
cosh(/1/2s)_

(B60)

+
r % 2

From the boundary conditions a)
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a  i  Dq* dq •/1f  = l  v = - - ---- ^ L- 7 ^rz = -ik\p\

+

hpsa0el dC 

\ d 2p \ ^  tanh(/1/2̂ )

1- „ tanh(/1/2os)  ̂ y - 1
,•1/2 _  
I O S 7

r s ? i ' ,2s

4' = -! , v = ~ , Dq' ,,, = lk\ P

+

hpsa0e d t  

1 d2 p\  tanh(/1/2£s)

1- p  tanh(/1/2gy)  ̂ y - 1

r
• 1 / 2 ____

I O S

r d f

Noting that

i l/2s

dqt
d f

- H t ) \

dqu

<r=-i dC
it follows:

f=i

F(g) = 0

Introducing Eqs (B61) and (B63) in Eq. (B60):

1 d2p
r d f

l -  -

. t a 4 '  24
iU2s

+  i
D-q.

K VP + K ,
-  y -1

- H + - ----
r

„tanl(r1/2cB) p - l
•1 / 2 I OS

0
r

(B61)

(B62)

B63)

(B64)
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Description of the SND-PC TOOLBOX

Appendix C
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Copyright:

The SND PC toolbox is written by Torsten Marquardt (torsten.marquardt@gmx.net) 
and is subject to the GNU GENERAL PUBLIC LICENCE (see COPYING GPL.TXT).
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