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Abstract

A new one factor model with a random volatility parameter is presented in this
paper for pricing of electricity futures contracts. It is shown that the model
is more tractable than multi-factor jump diffusion models and yields an ap-
proximate closed-form pricing formula for the electricity futures prices. On real
market data, it is shown that the performance of the new model compares favor-
ably with two existing models in the literature, viz. a two factor jump diffusion
model and its jump free version, i.e., a two factor linear Gaussian model, in
terms of ability to predict one day ahead futures prices. Further, a multi-stage
procedure is suggested and implemented for calibration of the two factor jump
diffusion model, which alleviates the difficulty in calibration due to a large num-
ber of parameters and pricing formulae which involve numerical evaluation of
integrals. We demonstrate the utility of our new model, as well as the utility
of the calibration procedure for the existing two factor jump diffusion model,
by model calibration and price forecasting experiments on three different fu-
tures price data sets from Nord pool electricity data. For the jump diffusion
model, we also investigate empirically whether it performs better in terms of
futures price prediction than a corresponding, jump-free linear Gaussian model.
Finally, we investigate whether an explicit calibration of jump risk premium in
the jump diffusion model adds value to the quality of futures price prediction.
Our experiments do not yield any evidence that modelling jumps leads to a
better price prediction in electricity markets.

Keywords: Electricity derivatives, jump diffusion models

1. Introduction

The modelling of security prices in any de-regulated electricity markets re-
mains a challenge for economists and risk managers due to its specific features.
As a non-storable commodity, the spot electricity is traded one day ahead. The
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spot and forward prices of electricity are quite volatile and their evolution needs
to be modeled accurately in order to price electricity derivatives and to manage
the risk of portfolios of such derivatives. Two interesting characteristics of the
electricity spot price time series are the existence of non-trivial price spikes and a
reversion to the mean around a level which relates to the production costs. Var-
ious modern approaches to model this behaviour have been suggested. Broadly
speaking, there are two different classes of electricity price models. One class
deals with the price formation based on the fundamental components of the
electricity market (see, e.g. [1]) and is relevant in economic planning. The other
class of electricity models treats the prices as exogenous and are relevant in
financial mathematics, principally for pricing financial derivatives and for short
term forecasting of spot and futures prices. The emphasis of this paper is on
such exogenous price models. In these types of models, a common way to model
price spikes is to use a compound Poisson process coupled with an Ornstein-
Ulenbeck process for de-seasonalised spot price, thus giving a jump diffusion

model; see [2], [3], [4], [5] and [6], among others. In contrast, a jump regime
switching model was developed in [7], which uses the hypothesis that log spot
price switches between multiple linear Gaussian processes with a constant one
period transition probability matrix. A regime switching threshold is also used
by Geman and Roncoroni in [8] and [9] to force negative jumps if the price
exceeds the threshold value. The authors in [8] claim that this model structure
captures both trajectorial and statistical properties of US electricity price data
well. More recently, a regime switching model with different regimes for positive
and negative spikes has been proposed in [10] for hourly price forward curves.
A regime swiching model is also used in [11] for pricing energy commodity fu-
tures, where the authors do not use commodity spot price process and model
the evolution of arbitrage-free futures price process directly. A numerical algo-
rithm based on approximating the underlying stochastic process by a continuous
time Markov chain was proposed in [12]. The authors in [12] demonstrate the
utility of this algorithm for pricing electricity options under jump diffusion spot
price process. Different approaches for modelling the electricity prices have been
compared in [13].

While jump diffusion type models mentioned above remain popular in the
commodity price modelling literature due to reasonable level of tractability in
pricing commodity derivatives, a drawback of this class of models is significant
complexity of estimating the large number of model parameters from data. Fur-
ther, the intuitive interpretation of jumps as spikes has been questioned since
a jump represents a switch from one level to another while a spike represents a
jump followed by a rapid reversion to the original level.

As futures contracts in commodity markets are far more liquid than the
spot security, it is common in the literature to use a recursive Bayesian infer-
ence procedure (or a Bayesian filter) to estimate the implied spot price from
futures prices. Filters are used for both calibration as well as forecasting. In the
commodity pricing literature, linear Gaussian filter (or the Kalman filter) has
been employed in spot forecasting in [14], [15] and [16], among others. However,
the classical Kalman filter can be applied only to a linear state space model.
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In [14], [15] and [16], the linear state space model consists of a linear Gaussian
model for log spot price, with the vector of log futures prices being an affine
function of the log spot price. Empirical studies in these papers relate either to
oil or to natural gas, where price spikes are not dominant. [17] uses a particle fil-
ter to estimate a two factor model with jumps and used the maximum likelihood
method to obtain the model parameters. [18] used a convolution particle filter
to estimate parameters for a two factor spot model with jumps on simulated
data.

In the electricity markets, there is far less literature on the use of filtering,
even though the principle of futures contracts being more liquid - and futures
prices providing a lot more information about the future price behaviour - still
applies in these markets. [19] analyzes jump diffusion models for electricity
markets and suggests that one might use filtering for calibration of the model,
although no numerical experiments are presented. We are not aware of empirical
studies in the literature with real electricity market data to illustrate the efficacy
of filtering-based jump diffusion models for forecasting in electricity markets.
This could be attributed to two possible reasons: the difficulty of calibrating
jump diffusion models using vector-valued time series of futures prices and the
relative scarcity of sufficient historical data on futures prices in de-regulated
electricity markets, as compared to the availability of data in other commodity
markets such as oil1.

In this paper, we introduce a new random volatility model for modelling
commodity prices. The volatility term in this model is taken to be a random
variable to explain the non-Gaussian log spot price behaviour. We derive an
approximation to the futures price for this model using the moments of the
random volatility. The main advantage of this model, as compared to competing
non-Gaussian spot models is that it is more parsimonious, easier to calibrate
due to the availability of a closed-form approximation to futures price and is
easier to simulate than jump diffusion models. Our numerical experiments with
real data on electricity futures prices show that the model performs at least as
well as jump diffusion models, which are harder to calibrate and to simulate
than our new model, when the model performance is evaluated based on the
ability to predict futures prices.

Further, we make two methodological contributions to the existing literature
on two factor models of commodity prices. Firstly, we investigate empirically
whether an explicit evaluation of jump risk premium makes a difference to accu-
racy of pricing and short term forecasting for a two factor jump diffusion model.
Secondly, we propose a new multi-step calibration procedure to estimate the
model parameters for two factor jump diffusion models. These models, which
are described in more details in the next section, are difficult to calibrate due
to a large number of parameters. This is further complicated by the fact that
evaluating the price of each futures contract involves computing an integral nu-

1Two of the largest de-regulated markets, Nordpool Spot AS in Europe and PJM-AP in
the USA, became operational only in 2002.
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merically. In the literature, parameter estimation for jump-diffusion models is
usually based on (scalar) spot price time series, see, e.g. [4] which estimates
all the parameters except the risk premia using spot price time series and the
risk premia are then estimated using the prices of traded contracts. Our ap-
proach uses a time series of vector-valued futures contracts and hence (arguably)
uses a lot more information on the views of the market participants about the
behaviour of the underlying spot price. However, this approach complicates
parameter estimation due to multiple local minima for the likelihood function,
extensive computation involved in computing the vector of futures prices at
each time step and for each parameter vector and the difficulty of choosing ap-
propriate initial values for a large number of parameters. We propose to get
around this by using a simplified calibration procedure based on the general-
ized method of moments. We have calibrated the modified two factor model
using the simplified multi-step calibration procedure and compared it with our
new random volatility model on real electricity futures price data, in terms of
accuracy in one step ahead prediction and calibration time. The comparison is
based on predicting the futures prices using a particle filter. This work partially
addresses the gap in the electricity market literature regarding filtering-based
models, as mentioned above.

Our work presented in this paper also makes a contribution to the discus-
sion about risk premia in jump diffusion models, which links futures prices with
the spot price. The existence of risk premia in the electricity futures prices
has been well established empirically in the literature; see, e.g. [20] and [21].
When it comes to a jump risk premium for electricity spot price models, two
ideas exist in the literature. An earlier approach formulated by Merton [22]
and followed by [23], [24] and [25] ignores the jump risk premium in general,
i.e., treats the jump risk as purely idiosyncratic and assumes that it can be
diversified away. The risk premium is applied only to jump size components of
the compound Poisson process. More recently, [26] provides an evidence on an
implicit jump risk premium. Finally, [27] formulates a general framework for
non-Gaussian processes, introduces a risk aversion in non-Gaussian processes
and gives an explicit expression for the risk premium in jump processes. In this
paper, we calibrate the two factor jump diffusion model with a nonlinear mod-
ification of drift by the jump risk premium as in [27] using the aforementioned
multi-step procedure and investigate whether its value being different from zero
significantly affects the quality of forecasts of futures prices.

The rest of the paper is structured as follows. Section 2 outlines the ex-
isting two factor jump diffusion model, while section 3 presents our new ran-
dom volatility model, with a derivation of approximate futures price under this
model. In section 4, the particle filter set-up used in our numerical experiments
is discussed briefly. Section 5 which describes our numerical experiments with
real Nord pool data is split into several subsections. Section 5.1 outlines the
data used for numerical experiments. Sections 5.2 and 5.3 explain the method-
ology used for experiments and the derivation of moments for the method of
moments-based parameter estimation, respectively. Sections 5.4 and 5.5 de-
scribe the parameter estimation procedures for two factor model and our new

4



model, respectively. Section 5.6 outlines the procedure for updating some of
these parameters as new measurement data arrives. Section 5.7 outlines the
measures of comparison used for comparing the forecasting performance of dif-
ferent models. Section 6 discusses the results of these experiments, in terms
of quantitative as well as chart-based comparisons of different models. Finally,
Section 7 summarises the paper.

2. Two factor jump diffusion model

To define a jump diffusion model for spot and futures prices of commodities
including electricity, we start by modelling the behaviour of the commodity spot
price. Assume that in the filtered probability space (Ω, F, P) with P being the
historical measure and F being the natural filtration. The log commodity price
is modelled in this case as:

logSt = f(t) + xt + ζt, (1)

dxt = (ᾱ− κxt)dt+ σ1dW
P
1,t + dJt, (2)

dζt = µ̄dt+ σ2dW
P
2,t, (3)

f(t) = c1 + ς sin(c2t+ c3), (4)

ρdt = dW1,tdW2,t, (5)

The spot price process St consist of thee components: xt represents a short-
term mean-reversion process with price shocks driven by a Compound Poisson
process Jt which has intensity λ and jump sizes Y = {Y1, .., Yt} ∼ N(µJ , σ

2
J );

ζt represents a long-term price process; seasonality f(t) is a deterministic func-
tion of time. We use a simple, single sinusoid plus a level term to model the
seasonality and the trend, which is in keeping with the literature on commodity
price modelling. This form of f(t) is used to de-seasonalise data for all the mod-
els in our experiments, including the random volatility model described in the
next section. The coefficients λ, µJ , σJ , ᾱ, κ, σ1, σ2, ς, µ̄, c1, c2, c3 are constants,
W i

t , i = 1, 2 are Wiener processes with a constant correlation ρ. Note that
we refer to a model with two Wiener processes as a ‘two factor model’. If the
model has a jump component in addition to two Wiener processes, it is specified
separately as a jump diffusion model.

The futures price F (t, T ) (t ∈ [0, T )) of a commodity with spot price St is
F (t, T ) = EQ[elogST |Ft]. Since the spot price process formulae (1)-(5) are given
under a physical measure and the futures price formula is under a risk neutral
measure, it is important to specify the change of measure involved. Let xt be a
risk-neutral mean-reversion process:

dxt = (α− κxt)dt+ σ1dW
Q
1,t + dJt, (6)

where dWQ
1,t is a Wiener process under risk-neutral measure and ᾱ−α = hxσ1+

R(λ, σJ , β) where hx is the risk premium of mean-reversion process and β is a
risk premium of the jump component. In the former approaches (e.g., see [22]
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and [4]) jump risk was treated as an idiosyncratic component, which means that
R(λ, σJ , β) = 0. We modify the formulae from [4] for the log futures price to
account the excess rate of return R(λ, σJ , β):

logF (t, T ) = f(T ) + e−κ(T−t)xt + ζt +A(T − t) +B(T − t) where (7)

A(T − t) = (µ− hζ)(T − t)− hxσ1 +R(λ, σJ , β)

κ
(1 − e−κ(T−t))

+
σ2
1

4κ
(1− e−2κ(T−t)) +

ρσ1σ2

κ
(1 − e−κ(T−t)) +

1

2
σ2
2(T − t), (8)

B(T − t) = λ

∫ T

t

(exp{µJ +
1

2
σ2
Je

−2κ(T−z)} − 1)dz, (9)

where hζ is a market price of risk for the process ζt and α is set to 0, as before.
We use [27] to introduce jump risk effects to the model, as outlined below.

A standard Poisson process Jt with rate λ and {Yt} i.i.d. copies of a random
variable Y has a following property:

φ(a) := E[eaY ] <∞

for a in some connected interval A containing the origin. Lévy exponent2 for
Compound Poisson process is ψ(a) = λ(φ(a) − 1) and the excess rate of return
is then given by:

R(λ, h1, h2) = λ(φ(h1) + φ(−h2)− φ(h1 − h2)− 1), (10)

where h1, h2 > 0. In our case, Y is normally distributed with zero mean and
variance σ2

J :

φ(a) = exp

(

1

2
a2
)

.

In this example, we assume zero mean for the jump size distribution and let
the linear components of the futures price formula take care of the jump size.
Substitution of φ(a) into the (10) yields:

R(λ, σJ , β) = λ(e
1

2
σ2

J + e
1

2
β2 − e

1

2
(σJ−β)2 − 1), (11)

where β is the risk aversion of the jump component.
During calibration, we will assume that the futures price data is observed in

noise. This measurement noise can be looked upon as a proxy for the approxi-
mation error introduced due to truncation of the Taylor series. Specifically, the
measurement equation at each time step tk is written as

vec{z(tk, Ti)} = vec{logF (tk, Ti)}+ vtk , (12)

2If a Lévy process Xt represents the class of general Lévy models and E[eαXt ] < ∞, then
there exists a Lévy exponent ψ(α), such that E[eαXt ] = etψ(α), for more details see [27].
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where logF (tk, Ti) is the log futures price for maturity Ti at time tk, as given
by (19), and vtk ∼ N(0,Σ) is a measurement noise vector with zero mean and
covariance matrix Σ. vec operator is defined as following:

vec(xi) =
[

x1 x2 · · · xN
]⊤
.

As a result, we have a system of equations (1)-(5) as the transition equations for
the log spot price process, which is treated as an unobserved or latent variable.
The measurement equation is given by (12), with logF (t, T ) given by (7), (8),
(9) and (11). We will use this nonlinear state space model for one step ahead
prediction of arbitrage-free futures prices using a particle filter later in numerical
experiments.

3. A new electricity price model

The jump diffusion model described in the previous section can explain many
of the statistical and trajectorial properties of observed spot price time series,
especially in the electricity markets, but also for other commodities. However,
it is quite cumbersome to calibrate from futures prices, due to a large number of
parameters and due to numerical integral evaluation needed for computing the
price of each futures contract. We propose a simple alternative model here which
takes into account the fat tailed nature of the log spot distribution, with fewer
parameters than the jump diffusion model and with an approximate closed-
form pricing formula for the futures contracts. The main idea of the model is
to allow the volatility of the log spot price to be random and then to use it to
model the non-Gaussian price behaviour. This gives a model with two sources
of randomness, with a tractability equivalent to a single factor model.

The notation is similar to the previous section. In the filtered probability
space (Ω, F, Q) with Q being the risk-neutral measure and F being the natural
filtration, we model the evolution of de-seasonalised log commodity price by:

dxt = (α − κxt)dt+ σtdW
Q
1,t, (13)

dσt = f̂1(t, σt)dt+ f̂2(t, σt)dW
Q
2,t, (14)

where α and κ > 0 are scalar constants, σt is a positive process on the real line,
Wi,t (i = 1, 2, t > 0) are Wiener processes such < W1,t,W2,t >= 0 and f̂1, f̂2
are real valued smooth functions.

Recall that the arbitrage-free futures price F (t, T ) at time t with maturity
time T is given by:

F (t, T ) = f(T )EQ(exT |Ft) (15)

where T > t is the maturity time. Assume that all the central moments mi (i =
1..∞) of xt exist ∀t ∈ [0, T ]. This allows us to express futures price formulae
using a Taylor series expansion around point m1 = EQ(xT ), with x = xT for
brevity:
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EQ(ex|Ft) = em1EQ(ex−m1 |Ft) = em1

∞
∑

i=0

EQ(x−m1|Ft)
i

i!
(16)

In the subsequent discussion, we assume that σt is a log-normally distributed
random variable for all t > 0, with a constant mean µ and a constant variance
η2. This stationary probability distribution can be obtained at each time t by
assuming the following simple stochastic process for log σt:

log σt = µ+
ηW

Q
2,t√
t
, t > 0, log(σ0) = µ,

with < WQ
1,t,W

Q
2,t >= 0. This provides a theoretical justification for the choice

of log-normal distribution for σt, although other distributions may be chosen in
practice. Log-normal distribution is suitable from a practical point of view as
well to model random volatility, as it is defined on non-negative support and
has only two parameters. Since we are interested in pricing futures contracts
which are path-independent securities, we can treat σt as a time-independent
random variable and we will henceforth omit the time index from the notation
for σt.

Under the real world (or physical) measure P, let the log spot price process
be given by

dxt = (ᾱ− κxt)dt+ σdW P
1,t, (17)

σ ∼ LN(µ, η2),

where W P
1,t is a Wiener process under a physical measure. Then, assuming

absence of arbitrage, there exists a price of risk process hx such that α− ᾱ = hx,
which we assume to be constant. For de-seasonalised data, we set the mean
reversion level ᾱ in the real world measure to 0, which is in keeping with the
convention (see [15], for example). The random variable σ under risk-neutral
measure has log normal distribution as described above. By using the fact that

logE(ex) = E(x) +
1

2
Var(x)

holds for any Gaussian random variable x and re-arranging the terms in (16),
we can show that the logarithm of the futures price is given by

logF (t, T ) = log(f(T )) + xte
−κ(T−t) +

hx

κ
(1− e−κ(T−t)) +

1

2
m2+

log

(

1 + e−
m

2

2

(

∞
∑

i=2

m2i − γ2im
i
2

(2i)!

))

, (18)

where mi is the ith central moment of xT conditional on xt. Note that m1 =

xte
−κ(T−t) + hx

κ
(1 − e−κ(T−t)). The difference terms

m
2i−γ

2im
i
2

(2i)! depend on the
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size of η, i.e. on the uncertainty in the volatility term. In fact, as η → 0,
(18) coincides with the expression for log futures price when the log spot price
has linear Gaussian dynamics. The first few values of γi are given by γ4 = 3,
γ6 = 15 and γ8 = 105. The contribution of higher order differences in the above
expression tends to be negligible for typical parameter values. One can then use
the first few terms of the expansion based on Taylor series (16) as a closed form
expression for approximate futures price. We performed calibration experiments
on real electricity futures data (described later in section 5.1) to compare the
in-sample and out-of-sample accuracy of the truncated model with i = 2, 3, 4,

i.e. using 4th, 6th and 8th order approximations. Note that odd order moments
are 0, and a second order approximation implies a constant volatility. It was
found that truncation at i = 3 offers the best overall performance in terms
of accurate one step ahead prediction of futures prices. Hence this truncation

(using moments upto 6th order) is used in the numerical experiments in this
paper. The approximate expression with this choice is

logF (t, T ) ≈ log(f(T )) + xte
−κ(T−t) +

hx

κ
(1− e−κ(T−t)) +

1

2
m2+

log

(

1 + e−
m

2

2

(

m4 − 3m2
2

24
+
m6 − 15m3

2

720

))

, (19)

Equation (19) defines the log futures price in terms of our model. The vector
of actual futures prices at any time tk is assumed to be measured in noise,
as in (12). The expressions for the individual terms in (19) are given in the
Appendix. When compared to the two factor jump diffusion model described
in the previous section, the benefits of the new random volatility model are its
parsimony despite having two sources of randomness and its ease of calibration
due to approximate closed-form pricing formula. In numerical experiments, we
will show that the model is at least comparable, if not better, than two factor
models when it comes to one step ahead predictions of electricity futures prices.

For both the models discussed so far (the random volatility model and the
two factor jump diffusion model), we will use a particle filter to infer and predict
the underlying log spot prices from the vector-valued noisy measurements of
futures prices. This is different from the ‘hybrid’ approach advocated in [6]
where only the risk premium is estimated from forward prices. The mechanism
for particle filter is described next, for the sake of completeness.

4. Particle filter

Consider the following state space system:

xk = f(xk−1, vk−1), (20)

yk = h(xk, ǫk), (21)

where f(·, ·) is a vector valued function of the state xk−1 and i.i.d., zero mean
process noise sequence {vk−1}, while h(·, ·) is a vector valued function of the
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state and i.i.d., zero mean measurement noise seqeunce {ǫk}. k ∈ N represents
current time-step. xk is unobservable, and the aim is to construct the estimate
of xk by combining model prediction with the measurement yk, at each time step
k. (20) and (21) are referred to as the transition equation and the measurement
equation, respectively. The aim is to construct the pdf p(xk|y1:k). Assume
that initial pdf, or prior p(x0, y0) is known. Then as each new measurement yk
arrives, p(xk|y1:k) can be constructed recursively within two steps: prediction
and update. The prediction step is based on Chapman-Kolmogorov equation:

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1, (22)

where p(xk−1|y1:k−1) assumed to be known and the transition probability p(xk|xk−1)
is defined by (20). After the measurement yk becomes available, it can be used
to update the prior using Bayes’ rule:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|x1:k−1)
(23)

where

p(yk|x1:k−1) =

∫

p(yk|xk)p(xk|y1:k−1)dxk (24)

In case when the posterior density is not available analytically, we can approxi-
mate it with a set of random samples (or particles) with associated probability
weights. Assume that the underlying process is a Markov process, which will
be the case in all the processes considered in this paper. We will provide a
short description for the recursion to update the probability measure {xik, wi

k}
at time tk to the corresponding probability measure at time tk+1, (See, e.g. [28]
for more details).

• Sample xik+1 from q(x|xk, yk+1). q is called proposal density and serves as
an approximation to posterior density. The choice of q is crucial in terms of
the quality of estimates. A common choice is q(x|xk, yk+1) = p(xk+1|xk),
although other choices are possible (e.g. Gaussian density generated using
the extended Kalman filter is also frequently employed).

• The weight update can be done using the following relation:

ωi
k+1 ∝ ωi

k

p(yk+1|xik+1)p(x
i
k+1|xik)

q(xik+1|xik, yk+1)
, (25)

and the posterior filtered density is given by:

p(xk+1|xk) ≈
Ns
∑

i=1

ωi
kδ(xk+1 − xik+1), (26)

where δ is the Dirac-Delta function.
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An issue which frequently arises in using a particle filter is degeneracy phe-
nomenon, when after few iterations particle weights might start pinning around
one value. However, this can partially be solved by introducing a measure for
degeneracy problem:

Neff =

(

Ns
∑

i=1

(ωi
k)

2

)−1

. (27)

If Neff falls below some pre-defined threshold, we apply a resampling algorithm.
See [28] for more details on resampling algorithms.

In our numerical experiments, the spot price is considered to be unobservable
and an implied spot price is derived using the observed prices of futures contracts
using the particle filter. We used the particle filter for one step ahead prediction
of futures prices for three different models: two factor jump diffusion model as
described in section 2, a jump-free version of the same model with σJ and
the corresponding jump risk premia set to 0 and the random volatility model
described in section 3. The actual numerical experiments performed with these
models are described next.

5. Numerical experiments

5.1. Data

For our empirical study, we focused on the european electricity market. Nord
pool is the largest pool-based market for electrical energy in the world, covers
most of the Northern Europe and is traded at NASDAQ. We used three different
data sets of futures contracts, with six different maturities in each case. Each
data set has 300 daily prices of futures with 22 days, 44 days, 66 days, 88 days,
110 days and 132 days maturity. The dates for the three data sets are as follows:

• Data set 1: 19.11.2007 - 03.02.2009;

• Data set 2: 15.12.2009 - 24.02.2011;

• Data set 3: 09.12.2011 - 19.02.2013.

While the exact choice of data sets is somewhat arbitrary, it is partly mo-
tivated by the need to demonstrate that the performance of our model is not
specific to data sets with specific statistical features. As seen in tables 1-3, the
three data sets (which are well spaced from each other in time and are all within
the last decade) display different types of behaviour when it comes to higher
order moments of prices. To be more specific, data sets 1 and 3 display negative
skewness and excess kurtosis (ExKurtosis in the tables 1-3) for most maturities
while data set 2 displays positive skewness and positive excess kurtosis for most
maturities. In the tables, 0 maturity refers to spot price.

Each data set is further split into two non-overlapping and consecutive sub-
sets:
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• An ‘in-sample’ data subset consisting of first 150 observations of futures
prices and electricity spot price. This is used to estimate the model pa-
rameters apart from the risk premia and the measurement noise covariance
matrix. In a terminology borrowed from engineering literature, we will re-
fer this set of parameters as ‘offline’ parameters and the calibration stage
as the offline stage.

• An ‘out-of-sample’ data subset consisting of subsequent 150 observations
of futures prices and electricity spot price. This is used to to carry out one
step ahead prediction with the calibrated models using a particle filter and
to update the risk premia and the measurement noise covariance. We will
refer to these parameters as ‘online’ model parameters and the calibration
stage as the online stage.

Table 1: Futures statistics (data set 1)

Maturity Mean Variance Skewness ExKurtosis
0 3.7905 0.0657 -0.7634 1.3996
22 3.8411 0.0560 -0.2451 -0.6452
44 3.8695 0.0635 -0.2566 -0.8472
66 3.8910 0.0699 -0.2107 -1.0226
88 3.9099 0.0744 -0.0783 -1.1154
110 3.9244 0.0686 0.0941 -1.2315
132 3.9319 0.0646 0.0111 -1.0914

Table 2: Futures statistics (data set 2)

Maturity Mean Variance Skewness ExKurtosis
0 3.9854 0.0483 0.7969 0.2976
22 3.9603 0.0353 0.9476 -0.0052
44 3.9410 0.0282 0.8436 -0.0849
66 3.9140 0.0205 0.7772 0.5068
88 3.8928 0.0162 0.5106 0.9852
110 3.8739 0.0094 -0.8305 1.2765
132 3.8615 0.0073 -1.0059 1.3228

In our experiments, changing the relative sizes of data subsets, e.g., using
200 observations as in-sample data and 100 as out-of-sample data made no
qualitative difference to the results. Choosing an in-sample data size of 100 or
below causes difficulties in the estimation of two factor jump diffusion model
due to its large number of parameters.

The subsequent sections describe our methodology including the details of
parameter estimation of different models and the error metrics used to compare
the models.
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Table 3: Futures statistics (data set 3)

Maturity Mean Variance Skewness ExKurtosis
0 3.4276 0.1625 -1.1459 2.9799
22 3.4840 0.0582 -0.5222 -0.5599
44 3.5349 0.0325 -0.4721 -1.2244
66 3.5733 0.0195 -0.2635 -1.1708
88 3.5916 0.0149 -0.1332 -0.5779
110 3.6026 0.0106 0.3728 -0.5663
132 3.6082 0.0103 0.2721 -0.4880

5.2. Methodology

Empirical study of the models has the following steps:

• De-seasonalisation: as is common in modeling commodity prices, we use
a parametrised seasonality function (4) to de-seasonalise the data.

• A new multi-step heuristic for parameter estimation in two factor models:
two factor jump diffusion model described in section 2 is highly nonlinear,
includes numerical evaluation of integrals for finding each futures price
and contains a large number of parameters. To alleviate the difficulty of
parameter estimation from futures prices, we introduce a new systematic
multi-step algorithm for calibrating this model. The steps are enumerated
below:

– Note that the de-seasonalised log spot price in the two factor jump
diffusion model described earlier has 9 free parameters, excluding
the three risk premia. Starting from the characteristic function of
the process, we evaluate analytically the first 9 moments of the log
spot price at any time t. We then minimize the sum of squared
errors between theoretical and observed moments to estimate these 9
parameters of the model in historical measure, from time series data.
Note that setting the gradient of this cost function to zero yields 9
equations in 9 unknowns.

– With the acquired parameters, we estimate the covariance matrix for
the moments.

– Using the inverse of the covariance matrix as a weight, we re-estimate
the parameters. This reduces the influence of poorly fitted moments
on the final parameter estimates.

– The above estimation of parameters might be considered as offline es-
timation since it has to be carried out on in-sample data. In contrast,
we estimate the risk premium parameters (assumed to be constant)
and the observation noise covariance matrix Σ using the least squares
method online, i.e. we update these parameters along with the up-
date of the implied spot price in the particle filtering procedure on
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out-of-sample data. This is similar in spirit to the calibration pro-
cedure in [4], except that we are using vector valued time series of
past futures prices (and not simply the spot price data). In practice,
we update risk premia and noise covariance every ten time-steps and
not at every step. This number of steps for risk premium update
is somewhat arbitrary and can be adjusted with trial and error to
yield lower prediction errors over in-sample data. One step ahead
prediction of the implied spot price - and hence the arbitrage-free
futures prices - is achieved through a particle filter. Note that Σ is
needed for updating the probability weights in the particle filter at
each time-step; please refer to equation (25).

We will provide more details on this procedure in section 5.4.

• Testing for in-sample and out-of-sample prediction ability for all the mod-
els (two factor models with and without jumps as well as our new random
volatility model): We calibrate different models on three different data sets
mentioned earlier. For each model and on each data set, we use a particle
filter to track the latent spot price and get one step ahead forecasts for the
futures prices, using the transition density as the proposal density. Two
factor jump diffusion model, two factor diffusion model without jumps and
random volatility model are then compared on the basis of the one step
ahead prediction errors in futures prices. The exact metrics to compare
the errors are described in section 5.7.

The next section outlines how to obtain the moments for the jump diffusion
process.

5.3. Characteristic function and the moments for two factor models

To derive the characteristic function for the jump diffusion two factor model
defined in (1)-(3), a de-seasonalised log price process S∗

t = logSt − f(t) is
considered. Assume that the jump process is uncorrelated with the Brownian
motion. First, we want a characteristic function of the following form:

g(x, ζ, t) = E{eiu(xT+ζT )|Xt = x, ζt = ζ}.

Applying Ito’s formula to the Mt = g(x, ζ, t), and assuming that dMt is a
martingale, we get a characteristic function of the following form ( see, e.g.
[29]):

φS∗

t
(u) = φxT+ζT (u)φJ (u), (28)

φxC
T
+ζT

(u) = exp{(−u2(ρσ1σ2
κ

(1− e−κT ) +
σ2
1

4κ
(1− e−2κT ) +

1

2
σ2
2)+

iu(x0e
−κT + ζ0 + µT )}, (29)

φJ (u) = exp{λJ t(eiuµJe
−κt

−
1

2
σ2

Je
−2κtu2 − 1)}. (30)
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From the definition of the characteristic function, one can evaluate moments of
the desired process using following formula:

mn =
1

in
∂n

∂un
φS∗

t
(u). (31)

These moments can be calculated analytically using any symbolic computation
software such as Mathematica, Matcad, Matlab, etc. The exact (and lengthy)
expressions for moments are omitted for brevity. The method of moments is
used to estimate the parameters of the model (1) from sample moments based
on data. However, this will not allow us to find the parameters for the risk
premium. As mentioned in the previous subsection, we use a simple multi-
step heuristic, where most of the parameters are estimated offline (or on the
in-sample data subset) in the historical measure using the method of moments
and then the risk premia (which are assumed to be constant) are estimated
online by least squares. This is explained in more details in the next section.

5.4. Parameter estimation for the jump diffusion model

For parameter estimation, we use analytically derived first n moments us-
ing (31), where n is equal to the number of unknown parameters after de-
seasonalisation. Let Θ be a vector of unknown parameters. Let mn(Θ) be the
parameterised nth central moment of the in-sample, or offline electricity spot
price data set and let mo

n be the sample nth central moment computed from the
observed data. Then we minimise the following cost function:

min
Θ

(mo
n −mn(Θ))TΛ−1(mo

n −mn(Θ)), (32)

where Λ is a weighting matrix. We do optimisation in three steps:

• Firstly, we assume that Λ is identity matrix and minimize the cost function
over parameter vector Θ. Let Θ = Θ⋆ be the parameter vector which
achieves this optimum.

• Next, we set the diagonal entries of Λ as free variables, with a condition
that |Λ| ≥ 0 and minimize the cost function with fixed Θ = Θ⋆. Let Λ⋆

be the matrix which achieves this optimum.

• Finally, we solve (32) over Θ again, with the weighting matrix set to Λ⋆.

After we obtain the vector of optimal parameters offline using the above proce-
dure, we can set up the particle filter. At each time (or each day) ti, The one
day ahead prediction of the price of each futures contract is based on the arith-
metical average of the the predicted prices of the corresponding contract over
all the particles generated. The risk premia viz. {hx, hζ , β} as well as the noise
covariance matrix Σ can be updated online, along with the price predictions
made by the particle filter. See section 5.6 for more details on this filtering and
online calibration stage.
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5.5. Parameter estimation for random volatility model

For de-seasonalised spot price and including the risk premia, the random
volatility model described in section 2 has far fewer parameters in comparison
to the jump diffusion model (4 instead of 9) and a closed-form (approximate)
measurement equation which does not include numerical evaluation of integral.
This allows us to use the maximum likelihood method directly. We estimate the
parameter vector Θ̂ = {κ, µ, η, hx} and a diagonal covariance matrix Σ of the
measurement noise. From the assumption that log futures price observations
are available under additive Gaussian noise, we can minimize the log likelihood
function of measurements which is given by

L(Θ) =−N log |Σ|−

1

2

N
∑

i=0

(yi − vec(logF (ti, Tk)))
⊤
Σ−1 (yi − vec(logF (ti, Tk))), (33)

where yi are observed futures price vectors at time ti and the vec operator is as
defined in section 2, with respect to the futures maturities Tk, k = 1, 2, . . . , n. Σ
is assumed to be identity matrix in the absence of more information, although
a different choice can be made relative to uncertainty about the futures prices.
Once the parameters are obtained, we can use a particle filter for prediction of
futures prices, as we do for the two factor models.

The next section describes an online calibration procedure for risk premium
parameters and the measurement noise covariance matrix. This procedure is
common for our random volatility model as well as for the two factor models
with and without jumps.

5.6. Online calibration stage

Here, ‘online’ calibration refers to updating some of the parameters period-
ically as new data arrives. Along with the latent spot price itself, two different
quantities are estimated online: the covariance matrix of measurement noise
and the parameters reflecting the risk premia.

To estimate the covariance matrix of measurement noise, we initialise Σ0 as
an identity matrix and use the following update for each time step k:

Σk
i,i = (v̂ki )

2, k = 1, . . . , N,

where

v̂ki = (logF (market)(Tk, ti)− log F̂ (theoretical)(Tk, ti)), k = 1, . . . , n (34)

and F̂ (theoretical)(Tk, ti)) represents the average theoretical price using the the
particle filter iteration.

To estimate the risk premia, we define a vector ri, whose entries are the risk

premia for the relevant model (e.g. ri =
[

hx hζ β
]⊤

for the two factor model
with jumps).
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We set r0 = 0 (here 0 is a zero vector with dim(r) rows). After obtaining
Σi at step i, we can solve a non-linear least squares problem:

min
ri

(logF (market)(Tk, ti)− log F̂ (theoretical)(Tk, ti))
2.

As mentioned in section 5.1, this problem is solved after each ten time-steps to
update the risk premia.

5.7. Choice of measures for comparison

For comparison of the performance of models in terms of forecasting, we
consider the sample mean of the relative absolute error (MRAE) and root mean
square error (RMSE) as our measures of prediction error for the futures price
data. For a futures contract with maturity T , these are defined as follows:

MRAET =
1

N

N
∑

i=1

|Fi,T − F̂i,T |
Fi,T

,

RMSET =

√

√

√

√

N
∑

i=1

(Fi,T − F̂i,T )2

N
,

where F̂i,T is the average values of one step ahead predicted futures prices

evaluated for each particle drawn on the ith time step of a particle filter with a
corresponding maturity T , and Fi,T is the observed futures price with maturity

T , at ith time step. These measures are evaluated for each of the six futures
contracts, for each of the three data sets and for both in-sample and out-of-
sample data.

Besides computing the above error metrics, an alternative comparison of the
three models can be based on computing similar measures of error on cross-
sectional data, i.e. computing the average prediction errors over the prices of
six futures contracts:

MRAE⋆
i :=

1

6

6
∑

j=1

|Fi,Tj
− F̂i,Tj

|
Fi,Tj

,

RMSE⋆
i :=

√

√

√

√

6
∑

i=1

(Fi,Tj
− F̂i,Tj

)2

6
,

at each time ti, i.e., on each day. This is relevant, for example, when we are
forecasting the value at risk of a portfolio of futures contracts. These errors are
computed and plotted over both in-sample and out-of-sample data.
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6. Results and discussion

We compare the two factor model without jumps (TF), the two factor model
with jumps (TFJ) and our new random volatility model (RVM) using the above
two error metrics, over in-sample and out-of-sample data subsets for each of the
three data sets.

Since there are two different error metrics over six data sets (three in-sample
and three out-of-sample), and since each data set has six futures contracts, we
have a total of 72 columns of errors to compare the three models with. In our
tables of results, we have indicated by bold font the worst (or the highest) error
metric in each column (i.e. for each data set + futures contract + error metric).

Tables 4 and 5 present the in-sample errors (MRAE and RMSE) for all the
three models. As one can see, RVM has the worst performance (i.e., yields
the worst value for an error metric) among the three models 2 out of 18 times
according to MRAE and 4 out of 18 times according to RMSE, while TFJ has
the worst performance 12 out of 18 times for both the error metrics. TF has
the worst error 4 out of 18 times according to MRAE and 2 out of 18 according
to RMSE. Tables 6 and 7 present out-of-sample error metrics. When it comes
to MRAE, RVM has the worst performance error only 2 out of 18 times, while
TFJ and TF have the worst errors 9 times and 7 times respectively. For RMSE,
RVM is the worst model out-of-sample only once, while TFJ gives the worst
RMSE error 8 times and TF gives the worst error 4 times. The out-of-sample
RMSE errors given by at least two of three models are almost indistinguishable
in five cases.

In summary, out of a total of 72 error comparisons, RVM is the worst model
only in 9 cases, with ‘ties’ declared in five cases and one of the other two models
being the worst model in the remaining 58 cases.

As mentioned in the previous section, we also carried out a comparison of
cross-sectional forecasting errors, where the errors are computed over all the
predicted and actual futures prices, each day. These error metrics are plotted
in figures 1-4 for data set 1. Again, we can see that RVM is performs better
than the two competing models on majority of days, both in-sample and out-
of-sample. The results for the other two data sets are qualitatively similar and
are omitted for brevity.

These results support our modest claim that our newly proposed RVM (with
a single, scalar stochastic process and one random variable) performs at least
equally well as more involved models discussed in the literature (with two or
more scalar stochastic processes), when the comparison involves predictive abil-
ity in terms of one step ahead prediction of the prices of futures contracts. The
advantage of RVM over the other two models is its simplicity of calibration
and parsimony in terms of parameters. To be more specific, TFJ model has
9 parameters which are calibrated offline and 3 parameters (risk premia) are
calibrated or updated online. RVM has only 4 parameters calibrated offline and
a single risk premium parameter is updated online. These numbers exclude 4
seasonality parameters and the measurement noise variances, which have to be
calibrated for both the types of models. Further, pricing using TFJ involves
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a numerical evaluation of an integral while RVM gives an approximate closed-
form pricing formula, which seems to work well in practice as illustrated by our
results.

It is also interesting to compare the prediction results between TF model
and TFJ model, in order to see whether jumps add any value when it comes
to prediction. The answer seems to be negative for these particular data sets,
since TF model is the worst model out of 72 error columns only 17 times, while
TFJ model is the worst model 41 times.

When it comes to pricing European style securities, RVM contains a sin-
gle random variable σ and one stochastic process. Hence it is easier to simulate
from, than the two other models considered here (TF has two correlated random
processes, while TFJ has two correlated random processes and one compound
Poisson process). This indicates that pricing of any exotic, European style op-
tions or their hedging parameters via Monte Carlo simulation is computationally
cheaper with RVM, when compared to TF or TFJ.

In addition to the above analysis on predictive ability of models, we have
carried out an empirical analysis of two cases for two factor model with jumps:
when the jump risk premium is set to zero and when jump risk premium is
given with formulae (11). Tables 8- 9 show this comparison for out-of-sample
data sets for MRAE and RMSE errors. We provide a comparison only for out-
of-sample data since the risk premium was updated online using particle filter
in our experiments, as outlined earlier. It can be seen that using explicitly
parameterized jump risk premium doesn’t improve the predictive ability, at
least for the data sets used, with an improvement in one of the error metrics
observed only 17 out of 36 times. This modest set of numerical experiments
does not provide any evidence of practical utility of assuming the jump risk
to be non-idiosyncratic in electricity markets. However, it is quite conceivable
that contrary empirical evidence may be found with pricing other securities with
jump diffusion models.

More details about these numerical experiments, including further graphical
comparisons and analytical expressions for the moments of the jump diffusion
model can be found in [30].

7. Conclusion

To summarise, the paper makes three main contributions:

• We have proposed a new random volatility model for log spot price in the
electricity market, which might be useful in modelling other commodi-
ties as well. The model is easier to calibrate and to simulate from, as
compared to the two factor jump diffusion model, due to a simple approx-
imate pricing formula and fewer model parameters. Further, it performs
at least as well as these models in our comprehensive numerical experi-
ments from real electricity market data when it comes to predicting the
futures prices. This model has potential to be practically useful in pricing
and risk measurement applications for the electricity market.
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Table 4: In-Sample MRAE results

T(days) 22 44 66 88 110 132
Data set 1

TFJ 3.90 2.05 2.29 2.60 1.65 3.14
TF 3.74 1.99 2.39 2.78 1.75 2.92
RVM 2.22 1.99 2.34 2.65 3.29 3.97

Data set 2
TFJ 6.12 3.56 5.48 7.05 5.89 5.44

TF 5.97 4.53 5.01 5.21 4.00 4.28
RVM 1.39 1.33 1.28 1.24 1.57 2.13

Data set 3
TFJ 5.54 5.95 9.77 11.74 12.68 14.40

TF 5.70 4.57 3.42 2.86 3.11 3.37
RVM 1.93 1.76 1.65 1.53 1.60 2.38

Table 5: In-Sample RMSE results

T(days) 22 44 66 88 110 132

Data set 1
TFJ 0.17 0.10 0.11 0.12 0.08 0.14
TF 0.16 0.09 0.11 0.12 0.09 0.13
RVM 0.11 0.09 0.12 0.14 0.17 0.20

Data set 2
TFJ 0.25 0.15 0.26 0.35 0.34 0.32

TF 0.23 0.18 0.20 0.21 0.17 0.18
RVM 0.06 0.06 0.06 0.06 0.08 0.10

Data set 3
TFJ 0.26 0.42 0.75 1.01 1.21 1.37

TF 0.28 0.21 0.15 0.14 0.14 0.15
RVM 0.09 0.10 0.11 0.10 0.12 0.15

Table 6: Out-of-Sample MRAE results

T(days) 22 44 66 88 110 132

Data set 1
TFJ 2.93 2.51 1.89 1.92 2.87 4.28

TF 2.89 2.63 1.98 2.03 2.63 3.88
RVM 2.32 1.25 1.22 2.26 2.92 3.39

Data set 2
TFJ 6.08 4.13 3.41 4.64 3.91 4.35

TF 7.65 5.74 4.51 4.46 4.08 3.94
RVM 2.09 1.72 1.17 1.15 1.32 1.98

Data set 3
TFJ 4.60 4.38 3.67 4.77 4.09 4.88

TF 5.61 3.13 2.76 3.34 2.99 3.06
RVM 1.87 1.56 1.03 1.19 1.35 2.21
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Table 7: Out-of-Sample RMSE results

T(days) 22 44 66 88 110 132

Data set 1
TFJ 0.16 0.12 0.09 0.10 0.14 0.20

TF 0.15 0.12 0.09 0.10 0.12 0.18
RVM 0.10 0.06 0.06 0.11 0.14 0.16

Data set 2
TFJ 0.31 0.21 0.15 0.19 0.17 0.19

TF 0.39 0.29 0.20 0.19 0.17 0.17
RVM 0.11 0.09 0.06 0.06 0.06 0.09

Data set 3
TFJ 0.23 0.21 0.17 0.19 0.18 0.21

TF 0.29 0.15 0.13 0.17 0.14 0.14
RVM 0.09 0.07 0.06 0.08 0.08 0.11

Table 8: Out-Of-Sample MRAE results - with and without jump risk premium

T(days) 22 44 66 88 110 132
Data set 1

TFJ (R(λ, σJ , β) = 0) 3.06 2.27 1.71 2.07 2.67 3.84
TFJ 2.93 2.51 1.89 1.92 2.87 4.28

Data set 2
TFJ (R(λ, σJ , β) = 0) 6.14 4.09 3.66 4.84 4.00 4.37

TFJ 6.08 4.13 3.41 4.64 3.91 4.35
Data set 3

TFJ (R(λ, σJ , β) = 0) 4.56 4.40 4.11 5.03 4.36 4.59
TFJ 4.60 4.38 3.67 4.77 4.09 4.88

Table 9: Out-Of-Sample RMSE results - with and without jump risk premium

T(days) 22 44 66 88 110 132
Data set 1

TFJ(R(λ, σJ , β) = 0) 0.15 0.11 0.08 0.10 0.13 0.18
TFJ 0.16 0.12 0.09 0.10 0.14 0.20

Data set 2
TFJ(R(λ, σJ , β) = 0) 0.32 0.22 0.16 0.20 0.17 0.19
TFJ 0.31 0.21 0.15 0.19 0.17 0.19

Data set 3
TFJ(R(λ, σJ , β) = 0) 0.23 0.22 0.19 0.21 0.19 0.19
TFJ 0.23 0.21 0.17 0.19 0.18 0.21

21



Figure 1: In-Sample daily errors (MRAE⋆i )
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• We have proposed a new systematic multi-step procedure for calibrating
two factor models with jumps, which alleviates some of the difficulty in
calibrating models with a large number of parameters and numerically
involved measurement equations. The use of this new procedure has also
been tested through numerical experiments.

• We have provided empirical evidence on the use of jump diffusion models
in electricity markets. Our empirical results, using three data sets and
two error metrics, provide no conclusive evidence that the use of jumps
in modelling adds value in terms of prediction, especially in out-of-sample
prediction. Further, we found no evidence that modelling explicitly pa-
rameterised jump risk premium adds value in terms of out-of-sample pre-
diction.

An investigation into the use of the new random volatility model for pricing
commodity derivatives other than vanilla futures contracts is a topic of current
research.
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Figure 2: In-sample daily errors (RMSE⋆i )
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Appendix

The equations for the first few terms based on mi = EQ(xT − EQ(xT |xt))i,
i > 1, in the random volatility model in section 3 are given in terms of the
model parameters as follows:

m2 = ν
(1− e−2κ∆)

2κ
,

m4 − 3m2
2

24
=

(e4η
2 − 1)ν2

8

(1 − e−2κ∆)2

4κ2
,

m6 − 15m3
2 =

(e12η
2 − 1)ν3

48

(1 − e−2κ∆)3

8κ3
,

where ∆ = T − t and ν = e2(µ+η2).
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