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ABSTRACT 

The presence of human pharmaceuticals in the environment has raised concerns 

regarding their potential adverse effects on non-target aquatic organisms. 

Pharmaceuticals are designed to target specific molecular pathways in humans in 

order to produce known pharmacological and physiological responses, before 

toxicological effects are seen. The “Read-Across Hypothesis” stipulates that 

pharmaceuticals can produce similar biological effects in fish, as in humans, if the 

molecular target is conserved, and the internal (blood plasma) concentrations are 

similar. The read-across hypothesis was tested using ibuprofen, a non-steroidal anti-

inflammatory drug, and the model fish test species, the fathead minnow (Pimephales 

promelas), to determine if ibuprofen can cause similar target-mediated effects in 

teleost fish and humans, at comparable blood plasma concentrations. Fathead 

minnows were exposed, using continuous flow-through systems, for ≤96 hours to a 

range of ibuprofen water concentrations (100, 270, 370 and 500 µg/L) to determine if 

plasma concentrations similar to human therapeutic plasma concentrations (HTPCs, 

or Cmax) could be established in fish blood plasma. The mode of action of ibuprofen 

was used to identify relevant endpoints (i.e. cyclooxygenase (COX) enzyme) in order 

to examine target-mediated effects following drug exposure. The water and plasma 

ibuprofen concentrations were determined using LC-MS/MS. The measured 

ibuprofen plasma concentrations in individual fish were linked to target-mediated 

effects on COX gene expression, COX enzyme activity and prostaglandin E2 (PGE2) 

synthesis (products of COX activity), which were quantified using molecular 

(QPCR) and biochemical (colourimetric and enzyme immunoassay) assays, and 

linked with the Cmax of ibuprofen. It was demonstrated that in fish with a mean 

ibuprofen plasma concentration 1.8-fold below the Cmax, PGE2 concentrations (the 

most robust endpoint) was significantly inhibited following ibuprofen exposure. 

However, in fish exposed to an ibuprofen concentration closer to (2 to 3-fold above) 

environmentally relevant water concentrations (i.e. 9 µg/L), when the mean plasma 

concentration was 224-fold below the Cmax, fish did not respond to ibuprofen 

exposure. This study provides qualitative and quantitative evidence for the 

applicability of the “read-across hypothesis”, and highlights its potential utility for 

prioritising pharmaceuticals for environmental risk assessment. 
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1.1 PHARMACEUTICALS IN THE ENVIRONMENT 

Pharmaceuticals are a large and diverse group of compounds designed to cure, treat and 

prevent disease. The importance of pharmaceuticals to modern society is reflected by 

their widespread usage in human and veterinary medicine, agriculture and aquaculture 

(Boxall, 2004; Fent et al., 2006). According to Intercontinental Medical Statistics (IMS) 

Health (Market Prognosis, 2013), expenditure on global pharmaceutical sales is 

expected to reach US $1 trillion in 2014 and exceed US $1.2 trillion by 2017, 

forecasting increased spending on worldwide health care. A growing total population 

and an ageing demographic are contributory factors to the increasing global use of 

human pharmaceuticals. Within the European Union (EU) alone, there are over 3,000 

different active pharmaceutical ingredients (APIs) licensed for use in human medicines 

(Fent et al., 2006). An inevitable consequence of the extensive use of pharmaceuticals is 

their increased discharge into the environment. Around 160 pharmaceuticals have now 

been detected in sewage effluents, surface and ground waters, and even some drinking 

waters worldwide, and many of them are reported to be present at low concentrations, in 

the ng/L to µg/L range (Daughton and Ternes, 1999; Halling-Sorensen et al., 1998; 

Heberer, 2002; Kümmerer, 2010; Santos et al., 2010). Human pharmaceuticals have 

highly specific biological activities within the body, they are designed to resistant 

degradation and they can exert their intended therapeutic effects at concentrations much 

lower than the ones of other environmental pollutants (such as pesticides) (Kümmerer, 

2009). The presence of pharmaceuticals in the environment has become an issue of 

scientific and political concern, because of their potential impact on aquatic and 

terrestrial wildlife, and human health. 

1.1.1 Pharmaceutical consumption 

The consumption of human pharmaceuticals in the UK is substantial. In 2013, over 1 

billion prescription items were dispensed within the community (England and Wales 

only), costing a reported GDP £8.6 billion (NHS, 2013). This figure, however, only 

represents prescription medications and does not include those that are purchased over-

the-counter, and so actual usage would be considerably higher. Consumption patterns 

can vary between different countries and over time, depending on regulations and 

approvals, prescribing practices and health care systems (Watts et al., 2007). IMS holds 
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data on all APIs sold in the UK, which can provide a better estimation of prescription 

and over-the-counter usage. Table 1, shows that the active ingredient sold in the highest 

quantities was paracetamol, at nearly three and a half thousand tonnes. Metformin, an 

antidiabetic drug used to treat type 2 diabetes, was ranked second at almost one 

thousand tonnes. Ibuprofen, amoxicillin and aspirin were also sold in high quantities, all 

of which exceeded more than one hundred tonnes. The large-scale consumption of 

pharmaceuticals, particularly of over-the-counter medicines, can contribute to their 

increased release into the environment, through patient use, and influence their presence 

in the aquatic environment. 

Table 1. The amount (tonnes) of the top five active pharmaceutical ingredients (APIs) sold in the 

UK in 2011 (based on IMS data obtained by AstraZeneca). 

Compound Therapeutic class 
Amount of active 

ingredient (tonnes) 

Paracetamol 
(acetaminophen) 

Analgesic 3,472 

Metformin Antidiabetic 967 

Ibuprofen 
Non-steroidal anti-

inflammatory 
258 

Amoxicillin Antibiotic 198 

Aspirin 
(Acetylsalicylic acid) 

Analgesic 130 

 

1.1.2 Sources and fate of human pharmaceuticals in the environment 

Human pharmaceuticals are discharged into the aquatic environment through a number 

of different routes (Figure 1). The principal route is following patient consumption and 

excretion. After ingestion, pharmaceuticals can undergo incomplete or extensive 

metabolism, before they are excreted from the body in an unchanged form, as 

conjugates, and/or as metabolites. The degree to which pharmaceuticals are metabolised 

is highly variable; the antibiotic amoxicillin is largely unmetabolised and 60% of the 

drug is excreted in the parent form (Gordon et al., 1972), whereas only 1-2% of the 

antiepileptic drug carbamazepine is excreted unaltered (Houeto et al., 2012). Hepatic 

metabolism changes the physicochemical properties of the compound through Phase I 

reactions, which involve oxidation, reduction or hydrolysis of the drug, and Phase II 

which involves conjugation (for example the addition of glucuronic acid, sulphate, 
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acetic acid or amino acid) to produce more polar, water-soluble metabolites that can be 

more easily excreted in the urine and faeces (Daughton and Ternes, 1999). However, 

after undergoing metabolism, some APIs including aspirin, diclofenac, carbamazepine 

and sulphonamides produce bioactive metabolites which can persist in the environment 

(Celiz et al., 2009).  

After excretion, the APIs are transported through the wastewater system to treatment 

plants, where they undergo a series of biological and chemical sewage treatment 

processes. The majority of APIs are removed from wastewater through biodegradation 

by microorganisms, and abiotic removal by adsorption to suspended solid sludge 

particles (Jelic et al., 2011). The removal of pharmaceuticals with suspended particulate 

material is dependent upon their hydrophobic and electrostatic interactions. Compounds 

with low adsorption coefficients, for example a low octanol-water partition coefficient 

(Log Kow), are less likely to adsorb to organic matter and will tend to stay in the 

aqueous phase (Carballa et al., 2004). However, wastewater treatment plants (WWTPs) 

are not specifically designed to eliminate APIs and therefore the removal rates can vary 

depending on the nature of the pharmaceutical, the technology and performance of the 

treatment plant (for example the retention time or the length of time it takes influent 

waters to pass through the treatment stages), temperature and loading differences due to 

seasonal variations (Fent et al., 2006). Many pharmaceuticals are insufficiently 

removed, particularly hydrophilic APIs, and these will be discharged into the surface 

waters through the treated wastewater effluents. It is not surprising that many 

pharmaceuticals resist degradation, considering that most of these drugs are designed to 

be persistent, so that they can be retained for long enough within the body in order to 

exert their therapeutic effects. 

Active pharmaceutical substances can also be discharged into the environment through 

improper disposal of unused or expired medicines, and through discharges from 

pharmaceutical manufacturing plants (which can include accidental spills during 

production or distribution) (Figure 1) (Monteiro and Boxall, 2010). The manufacture of 

pharmaceuticals is a controlled process in the UK adhering to Good Manufacturing 

Practice regulations, and therefore the release of APIs from these sites into the 

environment should be minimal (Kümmerer, 2009). However, these strict regulatory 
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practices may be lacking in developing countries, and where pharmaceutical 

manufacturing has been moved in order to reduce costs, the discharge of APIs into the 

environment presents more of an issue. For example, in India concentrations of up to 

several mg/L for single compounds have been reported in the effluents of WWTPs 

serving manufacturing sites (Larsson et al., 2007). The improper disposal of 

pharmaceuticals in household waste is another contributory source of the release of 

APIs into the environment. Pharmaceuticals that are available over-the-counter can be 

purchased in large quantities, which can make them prone to becoming expired and 

disposed of improperly. These activities can result in the deposition of large amounts of 

pharmaceutical substances at the WWTP. Similarly, disposal through household refuse 

can lead to contamination of landfill sites and leachate could contaminate the 

surrounding groundwater. The environmental impact of improper disposal could be 

significantly reduced by improving patient education (Kümmerer, 2009). 

Once pharmaceuticals have been released into the surface waters, their fate and 

transport largely depend on their physiochemical properties and the environmental 

conditions (Pal et al., 2010). For example, the acid dissociation constant (pKa) can be 

used to estimate how much a pharmaceutical will dissociate at different environmental 

pH levels, and the Log Kow, which is a measure of lipophilicity, can be used to estimate 

how likely a compound is to accumulate in organic matter. Pharmaceuticals with a Log 

Kow greater than 5 can more readily adsorb to organic particles and settle in soil or 

sediment (Mompelat et al., 2009), or they may be taken up in the fatty tissue of animals 

and plants, where they may cause biological effects. Some APIs undergo natural 

attenuation through dilution or further structural changes through a variety of biotic and 

non-biotic processes. For example, biodegradation is an important elimination 

mechanism for ibuprofen in surface waters (Buser et al., 1999) and many 

pharmaceuticals, including diclofenac, are abiotically removed through 

photodegradation (Andreozzi et al., 2003). Despite degradation processes in the 

environment, many APIs are classed as being “pseudo-persistent”, meaning that while 

they are not intrinsically persistent (i.e. they can be degraded to various extents), they 

are continuously being introduced into the aquatic ecosystem, thereby increasing their 

potential for adverse effects in exposed organisms (Daughton and Ternes, 1999).  
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Figure 1. Routes of entry of human pharmaceuticals into the aquatic environment. The most 

common route of entry is via consumption (image adapted and redrawn from Monteiro and Boxall, 

2010).   
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1.1.3 Concentrations of human pharmaceuticals in the aquatic environment 

The subtle connection between anthropogenic activities and the release of 

pharmaceuticals into the natural environment was made over three decades ago, when 

the prescription drug clofibric acid (the active metabolite of blood lipid regulators) and 

salicylic acid (a metabolite of aspirin) were reported in treated wastewater effluents 

(Garrison et al., 1976; Hignite and Azarnoff, 1977). However, following this initial 

documentation, relatively few studies were published until the 1990’s, and since then, 

there has been a proliferation in studies reporting trace levels of pharmaceuticals in 

sewage effluents, surface and ground waters and drinking waters (Daughton and Ternes, 

1999; Halling-Sorensen et al., 1998; Heberer, 2002; Kolpin et al., 2002; Kümmerer, 

2009; Ternes, 1998). Undoubtedly, one of the main reasons for this apparent increased 

detection is through the development of highly sensitive analytical methods that have 

enabled more accurate and reliable quantification of pharmaceuticals in different 

environmental matrices at low concentrations (ng to µg/L). Most analytical methods 

used for determination of APIs are mainly based on solid phase extraction (SPE), 

followed by liquid or gas chromatography (LC or GC), combined with mass 

spectrometry (MS), or for increased sensitivity and specificity, tandem mass 

spectrometry (MS/MS) (Richardson and Ternes, 2011). Due to their polarity, low 

volatility and labile thermal stability, LC-MS/MS has become the most common 

method for API determination in environmental water samples (Fatta-Kassinos et al., 

2011). Furthermore, instrumental developments have enabled lower limits of 

quantification (LOQ) to be achieved using LC-MS/MS, which can be in the low ng/L 

range. 

The measured environmental concentrations of some pharmaceuticals, covering a range 

of therapeutic classes, are shown in Table 2. This, however, is not a comprehensive list 

of all the pharmaceuticals identified, and is simply a representation of some of the 

pharmaceuticals that have been measured in parts of Europe, North America and Asia, 

highlighting their widespread occurrence. Limited information is available regarding the 

concentrations and occurrence of APIs in other parts of the world (Hughes et al., 2013). 

In most cases, the highest concentrations of pharmaceuticals are found in effluent, 

which were in the high ng/L to µg/L range. A very high concentration of ibuprofen 
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(between 1.27-55 μg/L) was detected in water effluents in Spain, which could be 

attributed to the number (four) of WWTPs that serve this particular river. The estimated 

discharge of ibuprofen into this river was between 40 to 2,236 g/day (Santos et al., 

2009), which is the equivalent to 5,590 therapeutic (400 mg) doses of ibuprofen. 

Paracetamol was also reported at very high concentrations in the UK and China (25 and 

37 μg/L, respectively). This is not surprising considering its high over-the-counter sales 

and consumption rate, which is in excess of 3,000 tonnes per year (Table 1).  

The concentrations of pharmaceuticals in surface waters were lower (low ng/L range) 

than in effluents. The river and surface water concentrations of pharmaceuticals can 

vary greatly, depending on the amount of dilution of effluent in receiving waters, 

regional usage of APIs and the efficiency of the wastewater treatment processes (Pal et 

al., 2010). However, consistent with the reported concentrations of paracetamol in 

effluents, the surface water concentrations were found to be the highest in the UK (1.5 

μg/L). Other pharmaceuticals with high ng/L surface water concentrations were 

bezafibrate (lipid regulator) which had the second highest reported concentration (667 

ng/L in the UK), and carbamazepine (antiepileptic) (647 ng/L in the UK), the third 

highest concentration. Both of these pharmaceuticals were reported at concentrations 

around 10-fold higher in the UK, than in Europe (Spain), whereas other pharmaceuticals 

such as paracetamol was reported at concentrations between 10-21-fold higher in UK, 

than in Spain and Asia (South Korea), respectively. Naproxen was reported at similar 

concentrations in the UK and North America, but higher than in Spain. These apparent 

differences between countries may reflect the prescribing practices in individual 

countries, the population density within a region, or the varying efficiencies of WWTPs, 

and therefore making comparisons between the reported concentrations in different 

regions can be challenging. 
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Table 2. Pharmaceuticals measured in wastewater effluents and surface waters in the UK and worldwide. * 

denotes unusually high concentration found in effluent. (a) Kasprzyk-Hordern et al., 2009; (b) Santos et al., 

2009; (c) López-Serna et al., 2010; (d) Comeau et al., 2008; (e) Zhang et al., 2007; (f) Kim et al., 2007; (g) Lin 

et al., 2008. ND means non-detected. – denotes not measured. 

 

 

 

Therapeutic 
Class 

Mode of Action 
(MoA) 

Pharmaceutical Location 

Concentration (ng/L) 

Effluent 
Surface 
Water 

Anti-
inflammatory 

drugs 

Cyclooxygenase 
enzyme 
inhibitors 

Ibuprofen 

UK 491 (a) 74 (a) 

Spain 
1,270-

55,000* (b) 
134 (c) 

North 
America 

220 (d) 34 (e) 

Diclofenac 

UK 496 (a) 261 (a) 

Spain ND (b) 176 (c) 

South 
Korea 

9-127 (f) 1-7 (f) 

Naproxen 

UK 703 (a) 146 (a) 

Spain 2,100 (b) 67 (c) 

North 
America 

5,100 (d) 135 (e) 

Aspirin UK 13 (a) 85 (a) 

Ketoprofen 
 

UK 37 (a) 12 (a) 

Spain 840 (b) 4 (c) 

Mefenamic acid UK 222 (a) 31 (a) 

Paracetamol 

UK 24,525* (a) 1,534 (a) 

Spain - 146 (c) 

China, 
South 
Korea 

36,950* (g) 73 (f) 

Antibiotics 

Inhibitors of 
enzymes 

involved in 
bacterial cell wall 

synthesis 

Trimethoprim 

UK 3,052 (a) 183 (a) 

China, 
South 
Korea 

321 (g) 58 (f) 

Erythromycin 
UK 2,841 (a) 121 (a) 

Spain 677 (c) 174 (c) 
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Table 2. Continued… 

 

 

 

 

Therapeutic 
Class 

Mode of Action 
(MoA) 

Pharmaceutical Location 

Concentration (ng/L) 

Effluent 
Surface 
Water 

β-blockers 
β-adrenergic 

receptor 
inhibitors 

Propranolol 

UK 523 (a) 74 (a) 

Spain 51 (c) 14 (c) 

China 132 (g) 50 (g) 

Atenolol 
UK 7,602 (a) 560 (a) 

China 1,607 (g) - 

Lipid 
regulators 

Activation of 
nuclear 

receptors 

Bezafibrate 
UK 90 (a) 667 (a) 

Spain 217 (c) 67 (c) 

Clofibric acid 
UK 75 (a) 8 (a) 

Spain 22 (c) 24 (c) 

Psychoactive 
compounds 

Blockage of 
voltage-

dependent 
sodium ion 
channels 

Carbamazepine 

North 
America 

33 (d) - 

UK 4,596 (a) 647 (a) 

Spain 560 (b) 58 (c) 

Diazepam 

South 
Korea 

226 (f) 25 (f) 

Spain 18 (c) 7 (c) 
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1.1.4 Effects of human pharmaceuticals in the environment 

The presence of human pharmaceuticals in the environment has led to concerns 

regarding their potential impact on aquatic and terrestrial organisms. In order to 

determine the type of effects that may be elicited, an understanding of how these 

contaminants are designed to work is required. For a chemical to exert 

pharmacological or biological activity as an orally active drug in humans, it must be 

relatively small and lipophilic enough to effectively penetrate biological membranes 

within the body in order to reach it’s intended pharmacological target, according to 

“Lipinski’s rule of five” (Lipinski et al., 1997) which evaluates the “drug-likeness” 

of a chemical. 

1.1.4.1 Mode of action of human pharmaceuticals  

Pharmaceuticals achieve their therapeutic effects by binding to a molecular drug 

target, which initiates a specific physiological response within an organism. The 

majority of drug targets are proteins, which are classed into four major groups: 

receptors, ion channels, enzymes and transporters (Figure 2) (Rang et al., 2003). 

Pharmaceuticals are designed to have high-specificity, high-affinity interactions with 

their intended molecular drugs targets in humans in order to alter specific 

biochemical processes and biological pathways at low concentrations, through their 

specific modes of action (MoA). The realisation that many human pharmaceuticals 

are present in the environment has highlighted the potential for unwanted effects on 

aquatic and terrestrial wildlife, as many human drug targets have been conserved 

throughout evolution (Gunnarsson et al., 2008; Seiler, 2002) and therefore, they may 

be able to alter biological pathways or physiological responses in non-target 

organisms, by interacting with the same or similar molecular drug targets, as they do 

in humans (Christen et al., 2010). The characterisation of the MoAs of different 

pharmaceuticals that are found in the environment could prove useful in determining 

the risks posed by these contaminants, as the potential effects they may elicit (at 

environmentally relevant concentrations) are related to the MoA of individual or 

classes of pharmaceuticals. 
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Figure 2. The four major drug targets of pharmaceuticals (image adapted from Rang et al., 

2003). 

 

1.1.4.2 Evidence for the effects of pharmaceuticals on wildlife 

To date, there have been two clear cases documenting the causal link between 

exposure and adverse effects of human pharmaceuticals on wildlife. These are the 

“feminisation” of wild fish through exposure to endocrine-disrupting chemicals, such 

as the synthetic oestrogen 17-α-ethinyloestradiol (EE2), a component of the female 

contraceptive pill (Jobling et al., 1998; Sumpter, 1995), and the dramatic crash of a 

population of vultures through ingestion of the non-steroidal anti-inflammatory drug 

(NSAID) diclofenac (Oaks et al., 2004). The impact of both of these pharmaceuticals 

has been widely studied, and there are considerable data linking them to measurable 

effects in the environment. 
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1.1.4.2.1 Feminisation of male fish 

Endocrine-disrupting chemicals (EDCs) can mimic natural hormones by binding to 

and activating oestrogen receptors, which can induce physiological effects on 

reproduction and development. Evidence for endocrine disruption was first reported 

in the early 1990’s in the UK, when caged male fish located downstream from a 

sewage treatment plant (STP) were found with elevated plasma concentrations of the 

female specific egg-yolk protein precursor vitellogenin, indicating exposure to 

oestrogenic compounds present in effluents (Purdom et al., 1994). Further field 

studies confirmed that there was a high incidence of “intersex” fish (characterised by 

the presence of oocytes and/or oviducts in the testes of otherwise male fish) in wild 

populations living downstream from STPs (Jobling et al., 1998). Sewage effluents 

were found to contain several compounds with oestrogenic activities, including 

natural steroid hormones such as 17-β-oestradiol (E2) and synthetic oral 

contraceptive hormones such as EE2 (Desbrow et al., 1998), as well as industrial 

phenols such as nonylphenol and bisphenol A (Harries et al., 1997; Jobling et al., 

1996). The exact causative agent of feminisation was not identified; however 

laboratory studies have since provided convincing evidence for causality between 

exposure to steroidal oestrogens, especially EE2, and reproductive disruption in fish 

(Tyler and Routledge, 1998). EE2 can cause effects on fish reproduction at 

concentrations as low as 1 ng/L (Parrott and Blunt, 2005) and population-level 

effects at concentrations only slightly higher (~5 ng/L) (Kidd et al., 2007; Länge et 

al., 2001; Nash et al., 2004), indicating the potential for EE2 to cause dramatic effects 

on fish, at environmentally relevant concentrations. However, whether there is a 

long-term population-level impact in wild populations as a result of intersexuality 

through feminisation of males is still uncertain (Harris et al., 2011). Although 

intersexuality in aquatic organisms was not foreseen, it is important to highlight that 

the MoA for EE2 is through the oestrogen receptor, which is highly conserved 

between human and other vertebrate species, including fish (Christen et al., 2010). 

1.1.4.2.2 Acute poisoning of vultures 

The most well-documented example of a pharmaceutical causing acute, population-

level effects through the food chain is exemplified by diclofenac, which has been 
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implicated in the catastrophic decline of over 99% of the Gyps species of vultures in 

India and Pakistan (Green et al., 2004). Diclofenac was once widely used as a 

veterinary drug for the treatment of inflammatory diseases in domestic cattle. 

Exposure to diclofenac was found to be the principal cause of death in a large 

number of scavenging birds that had been feeding on the carcasses of cattle treated 

with a normal veterinary dose of the drug. The Gyps vultures were found to be highly 

sensitive to diclofenac, and exposure to the drug induced acute kidney failure and 

abdominal gout in these birds (Oaks et al., 2004). The median lethal dose (LC50) of 

diclofenac in this species is low (0.1-0.2 mg/kg) (Green et al., 2004), and therefore 

exposure to lethal doses could be easily attained through ingestion of the tissues of 

cattle that were treated with the drug, consistent with diclofenac poisoning. 

Diclofenac is an inhibitor of the cyclooxygenase (COX) enzyme, which is involved 

in the synthesis of prostanoids (Vane, 1971). It has been postulated that diclofenac 

may have induced renal failure, which is a known side effect of diclofenac overdose 

in humans (Hickey et al., 2001), in these vultures through the inhibition of the 

modulating effects of prostanoids in the kidneys (Meteyer et al., 2005). It is 

estimated that somewhere between 10 and 40 million vultures were poisoned, and as 

a consequence the Gyps species of vultures have now been listed as critically 

endangered across the Indian subcontinent (Sumpter, 2010). The manufacture of 

diclofenac for veterinary use has since been banned in some countries (Pain et al., 

2008). This unprecedented decline of vulture populations due to diclofenac poisoning 

has highlighted a major issue in our current knowledge concerning the potential 

effects of pharmaceuticals present in the environment and in non-target organisms. 

1.1.4.3 Laboratory evidence for the effects of pharmaceuticals 

It is often very difficult to identify the causal link between pharmaceutical exposure 

and adverse effects in the wildlife. This is particularly true for aquatic wildlife, which 

are exposed to a highly complex mixture of chemicals in the water, and therefore 

identifying the specific chemical(s) of concern, and linking them to the measurable 

effects reported (for example, intersexuality in fish) is challenging. Nevertheless, the 

link is much easier to establish in laboratory (in vivo exposures) studies, and 

numerous studies have documented the effects of individual chemicals on aquatic 
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species at low concentrations, including anti-inflammatories and analgesics, 

antibiotics, β-blockers, steroidal hormones and psychoactive compounds (reviewed 

in Corcoran et al., 2010; Fent et al., 2006; Santos et al., 2010). These studies have 

demonstrated that human pharmaceuticals can affect a wide range of non-target 

aquatic species, and fish in particular, appear to be more sensitive to human drugs 

than other (non-vertebrate) organisms. This is most likely due to the high level of 

evolutionary conservation between human drug targets in fish (Gunnarsson et al., 

2008; Seiler, 2002) (discussed further in Section 1.3.1.1). Some of the reported 

effects of pharmaceuticals seen in fish are comparable to the effects that would be 

expected in humans based on the MoA (Christen et al., 2010). For example, the 

synthetic oestrogen EE2, induces oestrogenic effects in fish, such as vitellogenin 

synthesis (see earlier, Section 1.1.4.2.1), the synthetic glucocorticoid 

beclomethasone, used for the treatment of asthma and allergies in patients, can 

produce anti-inflammatory effects in fish, through an increase in plasma glucose 

concentration (Kugathas and Sumpter, 2011) and the antidepressant, fluoxetine 

(generic name “Prozac”) used to modulate behaviours in humans, can also affect the 

behaviour of fish (Dzieweczynski and Hebert, 2012; Weinberger II and Klaper, 

2014). Although the extrapolation of effects observed in laboratory studies to the 

field, and wild fish, are not always directly comparable, these studies form a 

fundamental component of the environmental risk assessment of pharmaceuticals, as 

discussed below. 

1.2 ENVIRONMENTAL RISK ASSESSMENT (ERA) 

In both the EU and North America, there are regulations governing the 

environmental risk assessment (ERA) of human pharmaceuticals (Holm et al., 2013). 

The ERA procedure outlined in the EU by the European Medicines Agency is 

mandatory for all new pharmaceutical products prior to their approval for entry onto 

the market (EMEA, 2006). In addition, the EU has policies on water quality and 

sustainability that are enforced through legislation under the Water Framework 

Directive (WFD) (2000/60/EC). A recent proposal was made during the revision of 

the WFD (2000/60/EC) to include, for the first time, three human pharmaceuticals 

(EE2, E2 and diclofenac) as “priority substances” due to their widespread use and 
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detection in surface waters. However, it was decided that these substances would 

instead be included on an environmental monitoring “watch list” under the WFD. 

These substances will be monitored in the surface waters of EU member states using 

established environmental quality standards to ensure adequate protection of the 

aquatic environment and human health (European Union, 2000). 

1.2.1 ERA within the EU 

The ERA is a tiered stepwise process consisting of two phases: the first phase (Phase 

I) estimates the maximal concentration of the pharmaceutical expected to occur in 

the environment, and the second phase (Phase II) assesses their potential fate and 

effects in the environment (Bound and Voulvoulis, 2004). During Phase I the 

predicted environmental concentration (PEC) in surface water (PECsurface water) is 

calculated using information based on usage data, and a worst-case scenario is 

assumed regarding exposure, for example, no metabolism occurred in the patient and 

there was no removal of the API during sewage treatment processes (Holm et al., 

2013). If the estimated PECsurface water value exceeds the environmental threshold limit 

of 0.01 µg/L, the environmental fate and effects of the API is evaluated in Phase II. 

In general, if the threshold limit is not exceeded, this implies that the API is present 

at such low concentrations that an environmental risk is unlikely. However, in some 

cases the action limit is not applicable, and further testing is carried out in Phase II, 

irrespective of whether the threshold limit is exceeded or not. For example, if the 

API is known to bioaccumulate, or if it is a suspected EDC, then it may be able to 

adversely affect reproduction of lower vertebrates at concentrations lower than 0.01 

µg/L (for example, Länge et al., 2001). In such cases, a tailored risk assessment 

strategy that addresses the specific mechanism or MoA of the API is performed.  

Phase II screening is split into tier A and B. Phase II tier A involves evaluating the 

risk quotient, the ratio between the PECsurface water and a predicted no-effect 

concentration (PNEC) (Winter et al., 2010). The PNEC value is used to determine 

the environmental concentration of a substance that is unlikely to have any adverse 

effect on the environment. The PNEC is derived from experimental studies generated 

through a set of recommended standard toxicity tests issued by the European 

Commission, the Organisation for Economic Co-operation and Development 
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(OECD) or the International Organisation for Standardisation (ISO), using aquatic 

test-species from three trophic levels; one plant (the 72-hour algal growth inhibition 

test [OECD test guideline 201]), one invertebrate (the 21-day Daphnia reproduction 

test [OECD test guideline 211]) and one vertebrate (the fish early-life stage toxicity 

test [OECD test guideline 210]). An “assessment factor” (generally of 1000 to the 

lowest toxicity value) is applied when deriving the PNEC, which accounts for the 

uncertainty of the data that may arise when extrapolating toxicity test datasets, such 

as inter-species variability (Holm et al., 2013). If the PEC:PNEC ratio is greater than 

1, further refinement using additional testing is carried out in Phase II Tier B, as an 

ecological risk may be suspected in the aquatic environment.  

1.2.1.1 General limitations of ERA 

Since the introduction of the ERA, its usefulness and applicability for the assessment 

of pharmaceuticals has been challenged, particularly in terms of the characterisation 

of their effects in the species tested (Schmitt et al., 2010). Some of the general 

limitations of the current ERA approach for human pharmaceuticals are discussed 

below. 

The standard toxicity tests used to derive the PNEC usually involve using apical 

endpoints such as survival, growth and reproduction, at concentrations that can be 

several orders of magnitude higher than reported environmental concentrations. 

Pharmaceuticals present in the environment are not expected to produce acute toxic 

effects because their concentrations are generally considered to be low. However, 

because they are highly potent, they can elicit biological effects at concentrations 

much lower than those causing acute toxicity. For most APIs, the PNEC is generated 

through endpoints that do not reflect the mechanism, or MoA of the chemical, nor do 

they address the effects mediated through chronic, low-level exposure, which may 

result in long-term effects (Crane et al., 2006). For example, the antidepressant 

fluoxetine, can alter feeding and mating behaviours (Weinberger II and Klaper, 

2014), resulting in subtle changes that can potentially lead to changes in the 

population or community structure (Gaworecki and Klaine, 2008).  
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Secondly, current risk assessments examine individual pharmaceutical toxicity on 

test-organisms under standard laboratory conditions to determine their ecotoxicity. 

However, APIs present in the environment are one component of a complex mixture 

of chemicals and therefore this is not environmentally realistic (Arnold et al., 2013). 

Aquatic organisms may be exposed to mixture of APIs and other chemicals, which 

can have synergistic, additive or antagonistic effects, yet such mixture effects are not 

currently taken into account. Several pharmaceuticals with the same or similar modes 

of action, which can affect comparable metabolic pathways or biochemical processes 

in non-target organisms may be present in the environment at the same time 

(Christen et al., 2010). 

Thirdly, the standard toxicity tests incorporate a limited number of test-species 

(usually one plant, one invertebrate and one vertebrate), and relies upon the 

extrapolation of toxicological responses in these species, to the responses that may, 

or may not, be seen in a vast number of other aquatic species that are present in the 

environment. A more mechanistic approach to identifying the molecular responses 

using MoA approaches can provide the basis for more accurate extrapolation of 

effects in the same species, and across species. For example, cross-species 

extrapolation of some endpoints, such as reproduction-related data obtained in 

invertebrates, may not be as informative for fish species, as the number and 

similarity of conserved human drug targets in invertebrates is much lower than in 

fish (Gunnarsson et al., 2008). This is the likely explanation for why fish are much 

more sensitive to effects of EE2 than invertebrates (Caldwell et al., 2008).  

As a final point, current ERA requirements only apply to medicines that were 

authorised after 2006 and therefore those that were registered before this time have 

not undergone the same risk assessment process. There are currently over 3,000 

active substances licenced for use in human medicines (Fent et al., 2006) and many 

were authorised long before this was a requirement, which has resulted in a lack of 

ecotoxicity data, from which robust PNECs can be derived. However, with so many 

pharmaceuticals in common use, performing a full battery of tests for all new and old 

APIs is not practical (Caldwell et al., 2014). This has led scientists to seek alternative 

methods for the retrospective risk assessment of APIs in the environment, and 
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strategies for the prioritisation of pharmaceuticals for further ecotoxicity testing 

(Boxall et al., 2012). A number of prioritisation schemes have already been explored 

for individual or groups of pharmaceuticals, based on their therapeutic class or MoA, 

physiochemical properties or prescription sales/usage data (Roos et al., 2012; 

Berninger and Brooks, 2010; Caldwell et al., 2014); however, the latter will not take 

account of pharmaceuticals that are sold over-the-counter or on the internet. 

Prioritisation using MoA approaches could help to identify the species of aquatic 

wildlife that may be more susceptible to effects of particular pharmaceuticals. In 

view of this, one way to utilise the MoA to more accurately determine the risks 

posed by human pharmaceuticals in the current ERA process, could be to extrapolate 

information based on their pharmacology and toxicity in humans and mammals 

(generated during drug discovery and development) in order to predict their potential 

pharmacological or toxicological effects in environmentally relevant non-target 

species (Winter et al., 2010). Special consideration should be given to those species 

showing conserved molecular drug targets and biological pathways, as a means to 

link potential pharmaceutical MoA-related effects to physiological responses 

(Ankley et al., 2007). 

1.3 THE “READ-ACROSS” APPROACH 

The extrapolation of biological and toxicological responses to chemicals between 

species is often referred to as “read-across”. The powers of cross-species predictive 

extrapolation are well established, primarily through the use of animal models (for 

example, rodent models) in the drug development process. During the pre-clinical 

safety assessment of a pharmaceutical candidate, numerous in vitro and animal 

studies are performed, from which data may be extrapolated to humans (implying 

“read-up”), using appropriate scaling factors that take into consideration known 

differences and “uncertainties” in physiology, genetics and biochemistry (Berninger 

and Brooks, 2010; Winter et al., 2010). Advances in DNA sequencing and 

bioinformatics have led to the elucidation of several genomes, increasing our 

understanding of the conservation of molecular drug targets among species (Perkins 

et al., 2013), including humans and aquatic species. 
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The reliable and accurate extrapolation of toxicity data is also a fundamental aspect 

in the ERA of chemicals to wildlife. Human pharmaceuticals represent one class of 

environmental contaminants where vast amounts of data on their pharmacology and 

toxicology have been generated during drug discovery and development (Berninger 

and Brooks, 2010; Winter et al., 2010). The potential use of this data (generated in 

animal models and humans), to predict the environmental impact of human 

pharmaceuticals on aquatic species (which would presumably imply cross-species 

extrapolation in the form of “read-down” from higher vertebrates to lower 

vertebrates and invertebrates) has provided the basis for the “Read-Across 

Hypothesis” (Huggett et al., 2003; Rand-Weaver et al., 2013). The read-across 

hypothesis encompasses the MoA of pharmaceuticals (assuming that there has been 

the evolutionary conservation of molecular targets) in aquatic organisms (fish), and 

uses the internal concentrations in fish and in humans, to predict the risk of a 

pharmacological (or toxicological) effect occurring in that particular organism. 

Therefore the risk assessment process could be made more powerful by incorporating 

the internal concentrations of pharmaceuticals. 

1.3.1  “Read-Across Hypothesis” 

The read-across hypothesis stipulates that human pharmaceuticals will elicit the same 

target-mediated pharmacological response(s) in fish, as in humans, and that these 

effects will occur at comparable internal concentrations (Rand-Weaver et al., 2013). 

The formulation of the so-called read-across hypothesis was first articulated by 

Huggett et al., (2003), who proposed the link between the external (exposure) and 

internal concentrations of a pharmaceutical in fish, through the development of the 

theoretical “Fish Plasma Model” (FPM) (Huggett et al., 2003). Determining the 

concentration of a given pharmaceutical inside the fish (i.e. the “internal” 

concentration) from the environmental water concentration (i.e. the “exposure” 

concentration), is fundamental to the read-across hypothesis, since a direct 

extrapolation between the environmental (exposure) concentration of a 

pharmaceutical to the molecular drugs targets it may interact with in a particular 

organism is not appropriate or strictly correct. Indeed, it is the internal 

concentration(s) of a pharmaceutical (for example, the concentration(s) in the blood 
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plasma), and not the environmental water concentration, that can result in, if any, 

target-mediated pharmacological (or toxicological) responses in the exposed aquatic 

organism (Rand-Weaver et al., 2013).  

According to the read-across hypothesis, the relationship between the internal 

concentration (estimated or experimentally measured) in the exposed aquatic species 

(i.e. fish) and in humans, can be used to determine the likihood of an adverse effect 

occurring. In humans, the effective internal concentration of a given pharmaceutical 

is referred to as the “human therapeutic plasma concentration” (HTPC) i.e. the 

concentration(s) found in the blood plasma of patients taking the drug. The HTPC 

value(s) are determined during the drug development process, and can also be 

expressed as the “maximum concentration” (Cmax) or “area under the curve” 

(AUC). These values describe the presence of a drug in the systemic circulatory 

system at either a single point in time (Cmax) or as a function of time (AUC) 

(Huggett et al., 2003). The closer the internal concentration(s) of a given 

pharmaceutical are between fish and humans, the greater the likelihood that a 

pharmacological response will occur. If the read-across hypothesis is correct, then its 

application could be used to guide future risk assessments of human pharmaceuticals, 

for example through the identification of more robust endpoints or effective 

concentrations required for target activation (or inhibition), where there may be pre-

existing gaps of knowledge through a lack of relevant ecotoxicity data (Ankley et al., 

2007; Gunnarsson et al., 2008). 

Both the conservation of molecular targets and the internal concentration(s) of a 

pharmaceutical underpin the “read-across hypothesis”, and will be discussed in 

further detail below. 

1.3.1.1 Target conservation 

It is widely accepted that the presence of a specific molecular drug target (for 

example, a receptor or enzyme) within an organism suggests that there is the 

potential for a specific drug-target interaction to occur, which may result in a 

pharmacological (or toxicological) effect in that particular organism. The 

evolutionary (and functional) conservation of human targets in a given species can 



Chapter 1 General Introduction 

 

22 

potentially increase the risk of eco-toxicological effects (Ankley et al., 2007; 

Christen et al., 2010; Gunnarsson et al., 2008; Huggett et al., 2003). Huggett et al. 

(2003) first reported the conservation of enzymes and receptors between humans and 

teleosts. Further work by Gunnarsson et al., (2008) assessed the degree of 

conservation of 1,318 human drug targets across sixteen species, including some 

species that are used in current ecotoxicity testing (Figure 3), as a means to identify 

orthologs (common ancestral proteins derived at the time of speciation) and prioritise 

those species potentially sensitive to human pharmaceuticals. Human drugs targets 

were found to be conserved by up to 86% in zebrafish (Danio rerio), while only 61% 

of targets were conserved in Daphnia magna and 35% in green algae, indicating that 

targets were most conserved in aquatic vertebrates and less so in invertebrates and 

plants (Gunnarsson et al., 2008). 

 

Figure 3. The predicted conservation (%) of human drug targets in vertebrate and invertebrate 

species. Targets were classified according to the gene ontology in five categories (enzyme, 

receptor, ion cannel, transporter, or other) (image taken from Gunnarsson et al., 2008). 
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The degree of conservation suggests that vertebrates may show greater sensitivity to 

the effects of certain human pharmaceuticals than invertebrates. Nevertheless, human 

molecular targets have been identified in invertebrates, for example the rotifer 

Brachionus manjavacas contains a proposed progesterone receptor in its 

reproductive organs (Stout et al., 2010) and Daphnia magna contain a putative 

pathway for eicosanoid biosynthesis (Heckmann et al., 2008), the target for NSAIDs. 

These findings suggest that these phyla may still be susceptible to the effects elicited 

by human pharmaceuticals. Enzymes were the most conserved molecular drug target 

across all phyla investigated (Figure 3), implying that pharmaceuticals that interact 

with these drug targets may have more widespread effects than those that interact 

with receptors, which were less well conserved (Gunnarsson et al., 2008).  

The conservation of human molecular targets has enabled MoA-related specific 

effects to be identified in fish (as outlined in Section 1.1.4.3). However, the 

complexity of predicting biological effects based on cross-species target conservation 

should not be underestimated. The presence of a conserved drug target alone does 

not guarantee that a functional interaction will occur. This is because a 

pharmaceutical that is designed to act efficaciously on a specific target in humans 

may interact with a different target in another species (Rand-Weaver et al., 2013; 

LaLone et al., 2013). For example, some secondary sexual effects observed in fish 

exposed to synthetic progestins (Runnalls et al., 2013) have been linked to their 

interaction with the androgen receptor, an off-target, rather than the progesterone 

receptor (the intended target) (Caldwell et al., 2014). Similarly, caution must also be 

applied when deducing functions, or effects, based on the interaction between a 

human drug and targets present in other species (Perkins et al., 2013). For example, 

some species, such as the zebrafish have undergone genome duplications, resulting in 

multiple orthologs for 15% of human genes (Howe et al., 2013). These duplicated 

genes are potentially free to gain new, or lose their existing functionalities. This is 

the case for the cyclooxygenase genes, of which there are three isoforms present in 

some teleost fish (Ishikawa et al., 2007), but only two isoforms in humans. In some 

cases, a pharmaceutical may interact with an unclassified drug target if the correct 

target has not been conserved, or it may interact with a drug target that fulfils the role 

of several others in that particular species. In any of these scenarios, the possibility 
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that the MoA is not conserved cannot be discounted (Rand-Weaver et al., 2013). 

Furthermore, the conservation of secondary targets in the biological pathway 

downstream of the primary molecular target must be given some consideration, 

although the lack of the primary target itself would indicate the biological pathway 

has not been conserved.  

1.3.1.2 Internal concentrations and theoretical Fish Plasma Model (FPM) 

Currently, the ERA relies upon the surface (or river) water concentration of 

pharmaceuticals to predict their toxicity in aquatic species. One of the fundamental 

aspects that the read-across hypothesis addresses is whether or not the internal 

concentrations inside aquatic organisms (fish) are likely to be sufficient to induce 

biological (or toxicological) responses. A reliable measure of the internal 

concentration is imperative in predicting the risk of an effect in fish, since some 

pharmaceuticals can bioconcentrate, thereby producing concentrations inside the 

exposed organism that are much higher than the exposure concentrations. For 

example, some pharmaceuticals present in sewage effluents were found to 

bioconcentrate more than 50-fold in fish blood plasma (Fick et al., 2010). A number 

of studies have analytically determined the internal (blood plasma) concentrations of 

pharmaceuticals in fish exposed in the laboratory (Bartram et al., 2012; Cuklev et al., 

2011, 2012; Garcia et al., 2012; Giltrow et al., 2009; Lahti et al., 2011; Mimeault et 

al., 2005; Nallani et al., 2011, 2012; Owen et al., 2009, 2010; Valenti et al., 2012; 

Winter et al., 2008), and in the field (Brown et al., 2007; Fick et al., 2010; Lahti et 

al., 2012). However, in some cases, where the internal blood plasma concentrations 

cannot be analytically determined, the theoretical Fish Plasma Model (FPM) 

(Huggett et al., 2003) provides an alternative framework for predicting the uptake of 

drugs into fish blood plasma. This model can be used to estimate the stabilised fish 

blood plasma concentration i.e. the “fish steady-state plasma concentration” (FSSPC) 

of a compound from the surrounding water, based on its pharmacokinetic properties 

and a given predicted or measured environmental concentration (PEC or MEC) 

(Huggett et al., 2003). Based on the model’s prediction of uptake, the closer the 

internal concentration(s) of a given pharmaceutical are between fish and humans, the 
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greater the likelihood of a pharmacological response to occur in that particular 

organism.  

The lipophilicity (Log Kow) of a compound is used as the main indicator of uptake 

into the blood of fish from the surrounding water (Huggett et al., 2003). The Log Kow 

is used to estimate the partitioning of a compound between the aqueous phase and 

the arterial blood (Log Pblood:water) in fish (Fitzsimmons et al., 2001) (Equation 21): 

  blood:water ow   Log P   =  0.73  x  Log K -  0.88  

Equation 1. The Log Pblood:water in fish (Fitzsimmons et al., 2001). 

Using this relationship, the FSSPC can be estimated (Huggett et al., 2003) (Equation 

2): 

SS blood:waterF PC  =  PEC (or MEC)  x  (P )  

Equation 2. The “Fish steady-state Plasma Concentration” (FSSPC) (Huggett et al., 2003). 

The FSSPC is usually determined using the Log Kow (Fitzsimmons et al., 2001). 

However, as pharmaceuticals are amenable to ionisation at different pH’s, including 

the pH of blood plasma, the distribution coefficient Log D, measured at 

physiological pH (7.4), has also been identified as another, potentially more realistic, 

predictor of uptake in fish (Owen et al., 2009). The FSSPC is compared with HTPC 

and if the model predicts that a pharmaceutical present in the water can 

bioconcentrate in fish plasma, and reach concentrations that are similar to the HTPC 

(HTPC = FSSPC), there is a risk that the drug could exert a pharmacological response 

(Figure 4). The FPM has been proposed as one method for prioritising 

pharmaceuticals for further environmental risk assessment (Roos et al., 2012; 

Schreiber et al., 2011). However, experimental validation of the FPM is required 

before the model can be widely used to assess the risks posed by pharmaceuticals in 

the environment, by evaluating how well the concentration of a pharmaceutical in 

fish blood plasma can be theoretically modelled for a given water concentration. 
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Figure 4. Application of the Fish Plasma Model (FPM) proposed by Huggett et al., (2003) to two 

pharmaceuticals, 17-α-ethinyloestradiol (EE2) and atenolol. The FPM compares the “human 

therapeutic plasma concentration” (HTPC) and the predicted “fish steady-state plasma 

concentration” (FSSPC). If HTPC = FSSPC, the risk of a pharmaceutical having a 

pharmacological effect in fish is high. EE2 using the predicted environmental concentrations 

(PEC) will produce FSSPC >HTPC, indicating a high risk of pharmacological effects occurring. 

Atenolol, which is highly hydrophilic, does not bioconcentrate to a significant extent, resulting in 

FSSPC <HTPC and therefore no biological effect is expected (image taken from Rand-Weaver et 

al., 2013). 

1.3.2 Current evidence for the “Read-Across Hypothesis” 

The read-across hypothesis takes into account the measurement of the exposure and 

internal concentrations of a pharmaceutical, relevant MoA endpoints (based on the 

conservation of human drug targets) and relates target-mediated (pharmacological) 

effects to the HTPC (hereafter also referred to as the Cmax), in order to predict 

likelihood of an adverse effect occurring in aquatic organisms (Rand-Weaver et al., 

2013). A number of studies assessing the impact of pharmaceuticals present in the 

environment have addressed aspects of the read-across hypothesis, and Table 3, 
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proposes a classification of these studies according to how well they utilise the 

hypothesis.  

Table 3. Classification of studies according to how well they utilise the “Read-Across 

Hypothesis” (taken from Rand-Weaver et al., 2013). 
a
Mode of action (MoA)-related effects and 

b
HTPC denotes the human therapeutic plasma concentration. 

Level 
Exposure 

concentration 
Endpoints 

Internal 
concentration 

Specific 
pharmacological 

effects 
Comments 

4 Measured 
MoA- 

relateda 
Measured 

Seen only at 
HTPCb 

Integration 
of 

mammalian 
data 3 Measured 

MoA-
related 

x 
Cannot be 

related to HTPC 

2 Measured x x x Independent 
of 

mammalian 
data 1 X x x x 

 

The strongest support for the read-across hypothesis is represented by a level 4 study. 

In order for a study to be ranked as a level 4; the administered dose of a 

pharmaceutical must be confirmed by measuring the water concentration(s), the 

internal concentration(s) must be obtained by measuring the blood plasma 

concentration(s), the exposure must be linked to a specific biological effect by 

measuring MoA-relevant endpoints, these effects must be comparable with those 

expected at the HTPC (or Cmax), and it must be demonstrated that these effects were 

seen only at concentrations similar to those in a human taking the drug (Rand-

Weaver et al., 2013). Currently, there is no published study that has addressed all 

aspects of the read-across hypothesis. Therefore, evidence for the applicability of the 

read-across hypothesis for the assessment of human pharmaceuticals is 

fundamentally lacking. 

The highest level of support for the read-across hypothesis has been demonstrated in 

a study where behavioural effects were observed in fathead minnows, exposed to 

sertraline, a selective serotonin reuptake inhibitor (SSRI), used to modify behaviour 

in human, which resulted in measured plasma concentrations that were similar, or 

above, the HTPC (Valenti et al., 2012). However, as none of the exposure water 
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concentrations tested produced plasma concentrations that were below the human 

therapeutic range, which is a requirement necessary to fully validate the read-across 

hypothesis, the study cannot be classified as a level 4 study. In another study, two-

week exposure of rainbow trout (Oncorhynchus mykiss) to (measured) water 

concentrations of diclofenac resulted in plasma concentrations that were 

approximately 1.5-88% of the Cmax, which affected molecular endpoints (hepatic 

gene expression) associated with inflammation and the immune response (Cuklev et 

al., 2011), which appear to be consistent with the MoA of NSAIDs. 

In other studies (classed as level 3), the read-across hypothesis has been used to 

confirm that MoA-related effects similar to those seen in humans occur in aquatic 

organisms, however, a measure of the internal blood plasma (actual) concentration is 

not present. For example, EE2 and levonorgestrel present in oral contraceptives, have 

been shown to inhibit reproduction in fathead minnows (Pimephales promelas) at 

exposure concentrations in the ng/L range (Länge et al., 2001; Runnalls et al., 2013), 

psychiatric drugs used to modulate behaviours in humans, can alter the behaviour of 

fish (Gaworecki and Klaine, 2008; Weinberger II and Klaper, 2014), and ibuprofen 

an anti-inflammatory, can inhibit prostanoid (PGE2) synthesis involved in pain 

perception in zebrafish (Morthorst et al., 2013). In these studies, exposure water 

concentrations were measured, however plasma concentrations were not determined 

and therefore it is difficult to determine the extent of uptake into fish, or if the drug 

was able to bioconcentrate and so it is not possible to correlate these effects to the 

HTPC. In such studies, it is possible to estimate the steady state plasma 

concentrations (FSSPC) of pharmaceuticals based on the measured exposure 

concentrations using the FPM (Huggett et al., 2003) which may strengthen the 

support for the read-across hypothesis. In some cases, the observed effects are 

difficult to interpret because tissue concentrations, instead of the plasma 

concentration have been measured, for example, for antidepressants in the brain of 

fathead minnows (Schultz et al., 2011) and the NSAID diclofenac in the gill, kidney, 

liver and muscle tissues of rainbow trout (Schwaiger et al., 2004). In other studies, 

the exposure water and plasma concentrations of the pharmaceutical have been 

measured, but the endpoints measured do not reflect the MoA in humans. For 

example, whole fish growth effects (length and weight) were observed in rainbow 
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trout exposed to the β-blocker, propranolol, at plasma concentrations above the 

Cmax, however cardiac effects were not measured (Owen et al., 2009).  

The studies that are ranked as levels 1 and 2 provide no support for the read-across 

hypothesis, or contain very little relevant information. In these studies, generally, 

there is no measure of the exposure water or plasma concentration, or any specific 

effect relevant to the MoA. For example, the potential for ibuprofen to change 

behavioural responses (decreased activity from 65% in control to 30% in treated 

groups) in the invertebrate amphipod, Gammarus pulex, following exposure to 

environmentally relevant concentrations of 1 and 10 ng/L (De Lange et al., 2006) is 

questionable at best. In other studies, the tested exposure concentrations were very 

high (mg/L) for an effect to be elicited, and therefore cannot be related to the MoA. 

For example, in one study examining chronic effects on population dynamics in 

Daphnia magna exposed for 14-days to (measured) ibuprofen concentrations of 0-80 

mg/L, reproduction was affected at 13.4 mg/L and was completely inhibited at 80 

mg/L (Heckmann et al., 2007). Considering the concentrations used, it is most likely 

that the observed effects are related to non-specific narcosis, or toxicity, rather than 

the MoA of the drug. However, no plasma concentrations were measured to confirm 

this, and a clear lack of reference to the mammalian data indicates that the design of 

the study was independent of this information. 

There are, of course, some studies that appear to not support, or disprove, the read-

across hypothesis. The best case example is diclofenac poisoning in Gyps vultures 

that had been scavenging on the carcasses of cattle treated with the drug, that resulted 

in renal failure and subsequent death in these birds (Oaks et al., 2004) (Section 

1.1.4.2.2). It seemed on initial reflection that these birds were highly sensitive to 

diclofenac, however renal failure is a known side effect of this drug in humans 

(Hickey et al., 2001). The read-across hypothesis assumes that potential toxicological 

effects, will occur when the internal blood plasma concentration inside the exposed 

organism exceeds the Cmax. Upon closer examination, and interpretation of the 

results, a comparison of body-weight, plasma volume, and ingested diclofenac dose 

between humans and vultures (assuming no metabolism) indicated that the ingested 

diclofenac dose in these vultures was very close to the human toxic dose (Rand-
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Weaver et al., 2013), and therefore, is in fact in some level of agreement with the 

hypothesis that pharmacological effects are likely to precede toxicological effects.  

These findings demonstrate that there is a large number of studies that are in 

agreement, or show some level of support for the read-across hypothesis. However, 

the data from different exposure studies is highly variable, from study to study, due 

to differences in species selection, exposure length or study duration, and 

inconsistencies in exposure water or internal blood plasma concentration 

measurements. Therefore, more standardised exposure studies may help to strengthen 

the support (or lack of) for the read-across hypothesis. For those studies that show an 

apparent lack of support for the hypothesis, in general, the design of these studies has 

not taken into consideration any available human/mammalian data.  

In this study, the applicability of the read-across hypothesis will be tested using a 

(level 4) designed study with the non-steroidal anti-inflammatory drug, ibuprofen, 

and the ecologically relevant fish species, the fathead minnow. 
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1.4 NON-STEROIDAL ANTI-INFLAMMATORY DRUGS  

The NSAIDs are a structurally diverse group of compounds (Figure 5) with a similar 

MoA; the inhibition of cyclooxygenase (COX), and therefore they are also known as 

COX inhibitors. NSAIDs are commonly prescribed for the treatment of inflammatory 

conditions, such as rheumatoid arthritis and osteoarthritis, and to alleviate the 

symptoms of low to moderate pain conditions such as back pain and migraine (Vane 

and Botting, 1995). Many NSAIDs can be purchased over-the-counter, including 

aspirin, ibuprofen, diclofenac and naproxen. NSAIDs are amongst the most widely 

produced and used pharmaceuticals in the world, and the overall production is 

around 50,000 tonnes per year (Dannhardt and Kiefer, 2001). Due to their prevalent 

use, many NSAIDs have been detected in the aquatic environment, raising concerns 

over their potential impacts on non-target aquatic species, such as fish. 

 

Figure 5. Classification and structure of some representative NSAIDs (image taken from 

Pereira-Leite et al., 2013). 
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Some of the NSAIDs that have been measured in surface waters (and in effluents) in 

the UK and globally are shown in Table 2, and most are in the ng/L to µg/L range. 

Field studies have shown that aquatic organisms can readily uptake NSAIDs from 

the environment. Brown et al., (2007) found that several NSAIDs, including 

ibuprofen, diclofenac and naproxen, could be detected in the blood plasma of caged 

rainbow trout exposed to sewage effluents. Following a two-day exposure (at one 

effluent site), FSSPCs of up to 84 µg/L (18,667-fold higher), 14 µg/L (56-fold higher) 

and 12 µg/L (5-fold higher) were reported in fish exposed to measured effluent 

concentrations of 0.0045 µg/L ibuprofen, 0.25 µg/L naproxen and 2.32 µg/L 

diclofenac, respectively. However ketoprofen, which was also present in the effluent 

(0.28 µg/L) was not detected in blood plasma (Brown et al., 2007), which was 

attributed to its lower capacity to bioconcentrate. Similarly, in another field study, 

Fick et al., (2010) demonstrated that out of 25 examined pharmaceuticals, ibuprofen, 

diclofenac, naproxen, as well as ketoprofen and tramadol, could be detected in the 

blood plasmas of rainbow trout exposed to effluents (Fick et al., 2010). In this study, 

the NSAIDs had the highest concentrations in fish blood plasmas compared to any of 

the other pharmaceuticals measured. This was a direct result of the high 

concentrations in the effluent (for example, ibuprofen, ketoprofen and naproxen were 

detected at a concentration 103 times higher than Levonorgestrel). Since several 

NSAIDs exhibit the same or a similar MoA it is plausible that the internal 

concentrations required to elicit pharmacological effects may be more easily reached. 

1.4.1 Evidence for the effects of NSAIDs in aquatic organisms 

A number of studies have documented the effects produced by NSAIDs in aquatic 

organisms. Exposure to diclofenac has resulted in histopathological changes in the 

gills and kidney of fish (Hoeger et al., 2005; Schwaiger et al., 2004; Triebskorn et al., 

2004), at concentrations as low as 1 µg/L (Schwaiger et al., 2004), which could be 

explained by the significant bioconcentration of diclofenac in some fish tissues. 

Ibuprofen can induce haematological changes (Saravanan et al., 2012), alter 

spawning behaviours (Flippin et al., 2007), delay hatching (Han et al., 2010), and 

affect ion regulation and stress responses (Gravel and Vijayan, 2007; Gravel et al., 

2009) in fish. Fewer studies have examined the effects of naproxen and ketoprofen, 
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which is most likely due to their less frequent use. However, in all the reported 

studies, the internal concentrations (except Schwaiger et al., 2004) were not 

measured, indicating that the amount of drug required to elicit the reported observed 

effects is unknown. Nevertheless, these findings demonstrate that NSAIDs may 

disrupt several physiological systems in aquatic organisms. 

1.5 IBUPROFEN 

Ibuprofen was first introduced in the UK in 1969 as a prescription-only medicine for 

the treatment of rheumatoid arthritis (Davies and Avery, 1971). It belongs to the 

propionic acid derivative subgroup of NSAIDs (Figure 5). The chemical structure of 

ibuprofen contains an asymmetric (chiral) α-carbon (Figure 6) that produces S or R 

enantiomers and therefore ibuprofen is marketed as a racemic mixture (Davies, 

1998). The pharmacological activity of ibuprofen is almost exclusively through the S 

enantiomer, which is about 160 times more potent than the R enantiomer (Adams et 

al., 1976).  

 

 

 

 

Figure 6. Chemical structure of ibuprofen. The structure of ibuprofen contains a benzene ring, 

attached to a propionic acid side-chain with a chiral α-carbon (highlighted with a blue spot) 

which is adjoined to the carboxylic acid (COOH) functional group (image adapted from Davies, 

1998). 

 

Ibuprofen is manufactured as “normal” (400 mg three times a day) or “sustained” 

release (800-1,600 mg once a day) preparations which are available over-the-counter 

or on prescription, respectively (Wood et al., 2006). The effects of ibuprofen are 

dose- and duration dependent, and following a therapeutic dose of 400 mg, the peak 

plasma concentrations (Cmax) range between 15,000-30,000 µg/L (Schulz et al., 

2012). Ibuprofen is readily absorbed in the gastrointestinal tract and pharmacokinetic 

studies have shown that maximal analgesic efficacy can be achieved within 1-2 hours 



Chapter 1 General Introduction 

 

34 

after oral administration (Bienert et al., 2006; Laska et al., 1986). Ibuprofen is 

metabolised in the liver (over 70-80%) and is excreted in the urine, in the form of 

metabolites conjugated with glucuronic acid i.e. glucuronide-conjugated hydroxy-

ibuprofen and carboxy-ibuprofen (Davies, 1998). The physicochemical properties of 

ibuprofen are indicated in Table 4. Ibuprofen is largely insoluble in water (21 mg/L 

at 25°C), weakly acidic (pKa of 4.91) and has a relatively high Low Kow (3.80) and 

therefore has the potential to accumulate within aquatic organisms. 

Table 4. Physicochemical properties of ibuprofen 
(a)

 Brown et al., 2007; 
(b)

 Advanced Chemistry 

Development/PhysChem Suite (ACD, 2006); 
(c)

 EPISUITE (US EPA, 2009). 

Property Description 

Molecular Formula C13H18O2  

Molecular Weight 206.28 

Partition Coefficient (Octanol-Water) (Log Kow) 3.80 (a) 

Distribution-coefficient (Log D) at pH 7.4 0.8 (b) 

Acid dissociation constant (pKa) 4.91 

Water Solubility at 25°C (mg/L) 21.0 (c) 

1.5.1 Ibuprofen Mode of Action  

In 1971, Sir John Vane demonstrated that the primary action of NSAIDs was the 

inhibition of the COX enzyme, officially known as prostaglandin-endoperoxide 

synthase (PGHS) (EC 1.14.99.1) (Vane, 1971). COX is involved in the biosynthesis 

of prostanoids, which exhibit a wide range of physiological functions within the 

body, including mediation of pain, swelling, inflammation, blood coagulation, 

vasodilation, regulation of vascular permeability, maintaining the gastric mucosa and 

kidney function, as well as various reproductive functions (Vane and Botting, 1995). 

The therapeutic and adverse effects of NSAIDs are due to their inhibition of 

prostanoids via the COX enzyme.  

1.5.2 Cyclooxygenase (COX) and prostanoid synthesis 

The COX enzyme, catalyses the rate-limiting step in the conversion of arachidonic 

acid to prostanoids, a subclass of the eicosanoid group of biologically active lipid 

http://en.wikipedia.org/wiki/Enzyme_Commission_number
http://enzyme.expasy.org/EC/1.14.99.1


Chapter 1 General Introduction 

 

35 

mediators (Vane et al., 1998). There are two isoforms of the COX enzyme; COX 1 

and COX 2 that are encoded by different genes, prostaglandin-endoperoxide 

synthase 1 (PTGS1) and prostaglandin-endoperoxide synthase 2 (PTGS2), 

respectively (colloquially known, and hereafter referred to, as the COX 1 and COX 2 

genes). COX 1 was first characterised and isolated from sheep seminal vesicles in the 

late 1980’s (DeWitt and Smith, 1988; Merlie et al., 1988; Yokoyama and Tanabe, 

1989). The second isoform (COX 2) was later isolated from mouse and chicken 

fibroblast cell cultures in the early 1990’s (Xie et al., 1991; Kujubu et al., 1991). 

Both enzymes are involved in the conversion of arachidonic acid to prostaglandin H2 

(PGH2), a common intermediate for the prostanoids, which include prostaglandins, 

prostacyclin and thromboxane (Simmons et al., 2004). Arachidonic acid, a 20-carbon 

fatty acid, is a basic constituent of all cell types, which is liberated from the 

phospholipid membrane by the action of phospholipase enzymes, primarily 

phospholipase A2 (PLA2), in response to physiological stimuli, such as acute injury, 

phagocytic particles or tissue damage (Vane et al., 1998). In addition to the 

eicosanoids generated through COX, arachidonic acid can also serve as substrate for 

lipooxygenase enzymes to form to lipoxins, and cytochrome P450 (CYP) mono-

oxygenase enzymes that generate epoxyeicosatrienic acids (Stables and Gilroy, 

2011).  

The COX enzymes are membrane-bound proteins located on the lumenal surfaces of 

the endoplasmic reticulum (ER) and the nuclear membrane. The COX 1 and COX 2 

enzymes are homodimers of 599 and 604 amino acids respectively, with a molecular 

mass of 70 kDa (Rouzer and Marnett, 2009). Both proteins share 60% identity 

between their amino acid sequences, similar three-dimensional structures, and 

identical reactions in prostanoid synthesis (Xie et al., 1991; Kujubu et al., 1991; 

O’Banion et al., 1991). Each monomer of the dimer consists of three structural 

domains: an N-terminal epidermal growth factor-like domain, a membrane binding 

domain, and a C-terminal catalytic domain which contains two adjacent, but spatially 

distinct catalytic sites; the cyclooxygenase and the peroxidase active sites, on either 

side of a haem prosthetic group (Figure 7) (Knights et al., 2010). The catalytic 

domain constitutes the majority of the COX monomer, and contains several 

functionally important residues required for catalysis. The COX monomers dimerise 
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through their epidermal growth factor-like domains, and are held together by 

hydrophobic interactions, hydrogen bonding, and salt bridges, which is necessary for 

their structural integrity and catalytic functions (Simmons et al., 2004).  

 

Figure 7. Structure of the COX 1 homodimer. The functional domains of COX include; an 

epidermal growth factor-like (EGF-like) domain (blue), a membrane binding domain (red), a 

globular catalytic domain (grey). The catalytic domain contains the cyclooxygenase and the 

haem group (brown) of the peroxidase active site (not shown). The binding site for the primary 

substrate of COX, arachidonic acid is also highlighted (yellow). This is the site for NSAID 

binding, including ibuprofen (image adapted from Theoretical and Computational Biophysics 

Group, 2012).  

 

COX is a bifunctional protein that sequentially catalyses two reactions. In the first 

reaction, the cyclooxygenase activity of the COX enzyme, oxygenates arachidonic 

acid to form the unstable hydroperoxy endoperoxide, prostaglandin G2 (PGG2). In 

the second reaction, the peroxidase activity reduces the hydroperoxy group of PGG2 

to produce prostaglandin H2 (PGH2). PGH2 diffuses from COX and is further 

transformed by different cell-specific prostaglandin synthases to five primary 

prostanoids, which include the prostaglandins PGE2, PGD2, PGF2α; prostacyclin; 

PGI2, and thromboxane A2; TxA2 (Figure 8) (Rouzer and Marnett, 2009). 
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Prostanoids are biologically active lipid mediators that act locally in an autocrine or 

paracrine manner by binding to membrane receptors that belong to the G protein-

coupled receptor (GPCR) family, or in some cases, nuclear receptors (Simmons et al, 

2004). The receptors for the ligand PGE2 (termed EP1, EP2, EP3, and EP4, see 

Figure 8), can directly modulate intracellular levels of cyclic adenosine 

monophosphate (cAMP) and inositol phosphate, which are secondary messengers 

involved in signal transduction pathways. The effects mediated by prostanoids within 

the body are widespread, and some of the processes they regulate are shown in Table 

5.  

The main therapeutic effects of NSAIDs are through their inhibition of COX 2-

derived prostanoids (Vane et al., 1998). The mechanism of NSAID inhibition can 

vary, for example, aspirin is the only clinically used NSAID that can irreversibly 

bind to the COX enzymes, whereas all others act non-covalently, but most NSAIDs 

are competitive reversible active site inhibitors that compete with arachidonic acid 

(substrate). Tissue injury and inflammation are associated with increased local PGE2 

and PGI2, prostanoid synthesis and pain hypersensitivity. NSAIDs are weak organic 

acids with hydrophobic properties, which facilitates their ability to reach the 

inflamed tissues where the pH is lower (due to local acidosis) to produce anti-

inflammatory effects. Inhibition of PGE2 and PGI2 increases the activation threshold 

of nociceptors, thereby resulting in a decrease in their terminal membrane 

excitability, thus reducing pain signals (Ricciotti and FitzGerald, 2011). The adverse 

effects associated with NSAID therapy is due to their suppression of COX 1-

mediated prostanoid production, which exhibit cytoprotective effects on the gastric 

mucosa, for example, by stimulating mucus production and inhibiting gastric acid 

secretion (Cha et al., 2006), thereby causing a predisposition to gastric ulceration and 

bleeding. Therefore, it has been suggested that side effects caused by NSAIDs are 

from the inhibition of COX 1, while the anti-inflammatory actions are a result of 

COX 2 inhibition (Mitchell et al., 1993). 
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Figure 8. Pathway for prostanoid synthesis mediated by the COX enzymes (image adapted from 

Rahnamai et al., 2012). Arachidonic acid is released from the cell membrane in resting cells by 

phospholipase A2 (PLA2) and is catalysed by the COX enzymes (COX 1 or COX 2), to the highly 

unstable endoperoxides PGG2 (not shown) and PGH2. PGH2 is the intermediate for all prostanoids and 

is further transformed by prostaglandin synthases to prostaglandins PGE2, PGD2, and PGF2α, 

prostacyclin (PGI2) and thromboxane A2 (TxA2). The prostanoids bind to membrane receptors, which 

include the PGE2 receptors (EP1-4), PGD2 receptors (DP1 and DP2) and PGF2a receptors (FP2), 

prostacyclin (IP) and thromboxane (TP) receptors, to mediate widespread effects within the body. 

NSAIDs such as ibuprofen, aspirin and diclofenac exert their anti-inflammatory, analgesic and 

antipyretic effects by inhibiting the COX 1 and COX 2 enzymes leading to a peripheral inhibition of 

prostanoids. 
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Table 5: Prostanoids and their effects within the body (Cha et al., 2006). 

 

1.5.3 Regulation of COX  

The mammalian COX enzymes are encoded by the COX 1 (PTGS1) and COX 2 

(PTGS2) genes which are mapped to chromosomes 9(q32–q33.3) and 1(q25.2–

q25.3), respectively. The COX 1 gene is approximately 22 kb in length with 11 exons 

and is transcribed as a 2.8 kb mRNA product, which is relatively stable. In contrast, 

the COX 2 gene is smaller, and is 8 kb in length with 10 exons and is transcribed as a 

4.5 kb mRNA product. The COX 2 gene is an immediate early gene that is activated 

by a wide variety of inflammatory and proliferative stimuli (Rouzer and Marnett, 

2009). COX 1 is constitutively expressed in many tissues and cells, including the 

vascular endothelia, monocytes, platelets and renal collecting tubules, and is 

involved in maintaining basal prostanoid levels required for “housekeeping” 

functions, particularly in the kidney and gastric mucosa (Vane and Botting, 1995). A 

third COX enzyme, termed “COX 3”, which is a splice variant of a retained intron 

(intron 1) in the COX 1 gene, has been identified in canines as an acetaminophen-

sensitive isoform (Chandrasekharan et al., 2002). COX 3 (also termed COX 1b) has 

Biological System Prostanoid Effects mediated 

Reproductive PGE2, PGF2a 
Induction of labour; uterine 
contraction, oxytocic action 

Cardiovascular 
TXA2, PGI2, 

PGE2, PGF2a 

Platelet aggregation, vascular 
permeability, arterial vasodilation & 

vasoconstriction 

Respiratory 
PGE2, PGF2a, 

TXA2 
Bronchodilation & constriction 

Renal PGE2, PGI2 
Regulation of renal blood flow, 

glomerular filtration, renin release 

Gastrointestinal PGE2, PGI2 
Cytoprotection; maintenance of the 

gastric muscoa 

Immune PGE2, PGI2 
Leukocyte activation and 

proliferation, local vasodilation at 
sites of inflammation 

Central nervous system 
(CNS) 

PGE2, PGD2, 

PGE2, PGI2 
Fever, sleep regulation, pain 

sensitisation, thermoregulation 
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been identified in the rat (Snipes et al., 2005; Kis et al., 2003) and in humans 

(Reinauer et al., 2013) although a functional protein is not produced.  

COX 2 is expressed in fewer cell types, and is mostly undetectable in the tissues 

under physiological conditions, but its expression can be rapidly and transiently 

induced during pain and inflammation. Under physiological states, COX 2 gene 

regulation is controlled at various levels including gene transcription and post-

transcriptional events (Harper et al., 2008). The transcriptional activation of COX 2 

can be stimulated by the binding of growth factors, mitogens and cytokines to the 

numerous regulatory transcription factors located within its 5’-untranslated region, 

including; activating protein-1 (AP-1), nuclear factor κB (NFκB), nuclear factor 

interleukin-6 (NF-IL-6) and response elements, such as cyclic AMP-response 

elements (CREs), and as a consequence up-regulate COX 2 gene expression. 

Therefore, COX 2 is considered to be an “inducible” enzyme (Morita, 2002). The 

expression of COX 2 is also regulated at the post-transcriptional level through 

changes in its mRNA stability. The mRNA of COX 2 contains several AU-rich 

elements (AREs) and several mRNA instability sequences (i.e. ‘AUUUA’ motifs) 

(Shaw and Kamen, 1986) located in the 3′-untranslated region (Chandrasekharan and 

Simmons, 2004), which is characteristic of immediate-early genes (genes that are 

transiently activated and rapidly degraded). The COX 2 response to pro-

inflammatory stimuli usually leads to a large sustained increase in prostanoids at the 

sites of inflammation (Samad et al., 2001). However, there are some exceptions to 

the original “constitutive” versus “inducible” paradigm of COX; for example, COX 1 

expression can be induced in some pathological conditions, such as spinal cord injury 

(Schwab et al., 2000), and COX 2 has been found to be constitutively expressed in 

the brain (Breder et al., 1995), and in the kidneys (Harris and Breyer, 2001) of some 

mammals. 

At present, it is unclear whether or not NSAIDs can directly modulate COX gene 

transcription. In some cells that express COX 2, NSAIDs (naproxen) can inhibit both 

enzymatic activity and gene expression (Zyglewska et al., 1992). However, in 

another study, in macrophages pre-treated with acetylsalicylic acid, indomethacin 

and naproxen, and stimulated with lipopolysaccharide, there was a marked inhibition 
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in PGE2 production, but not on COX 1 or COX 2 mRNA and protein expression 

(Barrios-Rodiles et al., 1996). The latter findings suggest that the action of NSAIDs 

on human macrophages is not directed towards the transcription (or translation) of 

the COX genes, but only to the enzymatic activity of the proteins. Perplexing the 

issue further, in one study investigating mitogen-induced changes in COX gene 

transcription, COX mRNA and COX enzyme expression in mouse embryonic 

fibroblast (3T3) cells, serum stimulation led to a sequential increase in COX 2 gene 

transcription, COX 2 mRNA, and COX 2 enzyme levels. Subsequent treatment with 

an anti-inflammatory steroid, dexamethasone (glucocorticoid), resulted in a 

concomitant reduction in COX 2 transcription, COX 2 mRNA, and enzyme level, 

providing support for the notion that the control of transcription is one primary 

mechanism for regulating COX 2 expression (DeWitt and Meade, 1993). However, 

in the same study, although an increase in COX 1 gene transcription occurred 

following serum stimulation, coincident with an increase in COX 1 mRNA, 

subsequent treatment with dexamethasone reduced the serum-stimulated increases in 

COX 1, however, changes in COX 1 mRNA were not accompanied by detectable 

changes in COX 1 protein (DeWitt and Meade, 1993), suggesting that the COX 1 and 

COX 2 genes are differentially regulated. 

1.6 COX AND PROSTANOIDS IN AQUATIC VERTEBRATES  

 The COX proteins and genes have been identified in many aquatic vertebrates, and 

cloned in several fish species such as the zebrafish (Danio rerio) (Grosser et al., 

2002; Ishikawa et al., 2007), rainbow trout (Oncorhynchus mykiss) (Zou et al., 1999; 

Ishikawa and Herschman, 2007), brook trout (Salvelinus fontinalis) (Roberts et al., 

2000), spiny dogfish (Squalus acanthias) (Yang et al., 2002) and sea bass 

(Dicentrarchus labrax) (Buonocore et al., 2005). There are many indications that 

COX in fish are functionally homologous to their mammalian counterparts. COX 1 is 

the predominant platelet isoform in both zebrafish and humans (Grosser et al., 2002) 

indicating it may have a similar role in platelet aggregation, thereby supporting the 

role that COX 1 is involved in maintaining homeostasis in fish. Similarly, as in 

mammals, COX 2 is an inducible enzyme that can be stimulated by mitogens and 

cytokines in fish (Zou et al., 1999; Roberts et al., 2000; Buonocore et al., 2005), 
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indicating it may play similar roles during pathological conditions. These studies 

provide evidence that COX is evolutionarily and functionally conserved in fish.  

A number of prostanoids have also been identified in fish tissues and cells, including 

red blood cells, macrophages, and oocytes (Busby et al., 2002). Prostanoids have 

been implicated in several roles in fish reproduction, such as stimulating ovulation 

(Fujimori et al., 2011; Sorbera et al., 2001) and modulating sexual behaviours 

(Gonçalves et al., 2014; Laberge and Hara, 2003). These findings suggest that 

prostanoids could play a crucial role in fish reproduction. Prostanoids have also been 

linked to cortisol synthesis in fish, which can be disrupted by NSAIDs (Gravel and 

Vijayan, 2007). The occurrence of prostanoids and other eicosanoids has also been 

reported in invertebrates, such as corals and crustaceans (Heckmann et al., 2008), 

suggesting that COX is conserved across several phyla, although their roles in these 

species are not fully understood.  

1.7 AIMS AND OBJECTIVES 

The read-across hypothesis stipulates that a pharmaceutical will elicit the same 

pharmacological response(s) in fish, as in humans, only if there has been 

conservation of the molecular targets, and the internal (blood plasma) concentrations 

are similar. Despite the general acceptance of the hypothesis, experimental evidence 

for the applicability of the read-across hypothesis for the assessment of human 

pharmaceuticals is fundamentally lacking. This is primarily due to the limited 

number of studies that have measured exposure water and internal (blood plasma) 

concentrations, and linked specific pharmacological effects using relevant endpoints 

with human therapeutic plasma concentrations (classified as a level 4 study design). 

The read-across hypothesis was tested using ibuprofen, a COX inhibitor and the 

model fish test-species; the fathead minnow. In order to test the core hypothesis, the 

following objectives were proposed: 

1. To determine whether internal (blood plasma) concentrations of ibuprofen similar 

to human therapeutic plasma concentrations (Cmax) could be established in 

fathead minnows. 
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2. To identify whether COX, the target of ibuprofen in humans, is present in the 

fathead minnow. 

 

3. To investigate the pharmacological effects of ibuprofen exposure on fathead 

minnows, using molecular and biochemical endpoints, relevant to the mode of 

action. 

 

4. To link the effects of ibuprofen in fathead minnows to the blood plasma 

concentrations of the drug, and in relation to human therapeutic concentrations. 

 

This thesis consists of seven additional chapters, a brief outline of each chapter is 

provided below. 

Chapter 2: details the general experimental methods, including the fish exposure 

studies conducted at AstraZeneca’s Brixham Environmental Laboratory (BEL) 

(Freshwater Quarry, Brixham, Devon, UK), and describes some of the main 

molecular techniques used for the analysis of fish tissues.  

Chapter 3: evaluates the concentrations of ibuprofen in the exposure water and 

fathead minnows, and establishes the exposure water concentration(s) of ibuprofen 

required to reach internal (blood plasma) concentrations in fish similar to human 

therapeutic plasma concentrations (Cmax). The accuracy of the theoretical FPM as a 

means to estimate the uptake of ibuprofen into fish is also examined. 

Chapter 4: addresses whether or not the mode of action of ibuprofen is conserved in 

fish, by establishing if the target of ibuprofen, COX, is present in the fathead 

minnow. Molecular techniques were used to identify the genes that encode for the 

COX enzymes in fathead minnow tissues. 

Chapter 5: investigates the effects of ibuprofen exposure on a molecular endpoint 

(gene expression) relevant to the mode of action, in fathead minnow tissues.  

Chapter 6: examines the effects of ibuprofen exposure on biochemical endpoints 

relevant to the mode of action, in fathead minnow tissues.  
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Chapter 7: links the molecular and biochemical effects of ibuprofen, to the blood 

plasma concentrations in fathead minnows, and in relation to the human therapeutic 

plasma concentration (Cmax). 

Chapter 8: summarises the major findings and discusses the broader implications of 

the reported findings in terms of using the read-across hypothesis to assess the 

impact of human pharmaceuticals present in the environment to aquatic systems. 

Limitations of the study and recommendations for further research in the area are 

also proposed. 

The work presented in this thesis forms part of a larger study that investigated the 

read-across hypothesis using four different classes of human pharmaceuticals, 

including a selective serotonin reuptake inhibitor (SSRI) (fluoxetine), an angiotensin 

converting enzyme (ACE) inhibitor and a synthetic glucocorticoid (beclomethasone), 

in addition to the COX inhibitor used in this study. Collectively, these findings may 

be used to evaluate the read-across approach as a potential tool for the environmental 

risk assessment of human pharmaceuticals. 
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This chapter covers the experimental methods and is divided into two main sections. 

The first covers the fish exposure studies, including the analytical method used for 

quantification of ibuprofen in exposure waters and fish blood plasmas at 

AstraZeneca’s BEL (Freshwater Quarry, Brixham, Devon, UK) and the second 

section describes some of the main molecular techniques used for the analysis of 

fathead minnow tissues.  

2.1 FISH EXPOSURE STUDIES 

All exposure studies were conducted at AstraZeneca’s BEL between March 2011 and 

January 2014. This study was carried out under project and personal licences granted 

by the Home Office under the UK Animals (Scientific Procedures) Act 1986, and in 

accordance with AstraZeneca's local and global ethical policies. Although the 

exposure studies were not conducted under strict OECD guidelines, the studies did 

follow the test acceptance criteria in OECD test guidelines for fish, such as those 

used in the “fish acute toxicity test” [203] (OECD, 1992) and the “fish early-life 

stage toxicity test” [210] (OECD, 2013). These criteria included <10% mortality in 

the controls, maintenance of water quality (for example, air saturation and 

temperature maintained to more than 60% dissolved oxygen (DO) and acceptable 

deviations (± 1.5 ºC) of the stated temperature during exposures, respectively), and 

analytical determinations of the test concentrations. Appropriate measures were 

undertaken to monitor and maintain stable conditions during fish exposures, 

including alarmed systems for the mains power to the exposure laboratory, the 

automated water flow system and the water trough levels (in the event of power 

failure). The water temperature in the test vessels was also continuously monitored 

(using a probe positioned in at least one test vessel per study) using a “parameter 

monitoring system”. 

2.1.1 Test-species: the fathead minnow (Pimephales promelas) 

The fathead minnow (Pimephales promelas) is a commonly used small fish test-

species used in eco-toxicological research (Ankley and Johnson, 2004). The fathead 

minnow is representative of the ubiquitous and ecologically important Cyprinidae 

family of freshwater fish, which is widely distributed across North America (Ankley 
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and Villeneuve, 2006). The term fathead minnow is compounded together through 

the Greek derivatives of word Pimephales, meaning “fat head;” and promelas, 

meaning pro, as in “before or in front”, and melas, meaning “black”, in reference to 

the black head of breeding males. Characteristically, fathead minnows are small, ray-

finned bony fish (average length of 50 mm), and males and females are easily 

distinguishable. Typically, males exhibit nuptial tubercles on the snout and an 

elongated, prominent fleshy fatpad on top of the head which extends in a narrow line 

from the nape to the dorsal fin, which are not normally seen in females. They are also 

larger in size (3-5 g) and have a darker body colouration except for two wide, light-

coloured vertical bands. In contrast, females are smaller (2-3 g) with a dull 

olive/silver body colouration (Figure 9) (Ankley and Villeneuve, 2006).  

The fathead minnow is routinely used in short-term 48-96 hour tests evaluating 

lethality as an endpoint, through to complex partial and full life-cycle tests involving 

a battery of apical endpoints and mechanistic endpoints (Ankley and Villeneuve, 

2006). The only shortcoming of using the fathead minnow as a model species, is that 

the whole genome sequence is not publically available. However, the fathead 

minnow was selected in this study due to its slightly larger size than the zebrafish, 

which facilitated individual blood plasma and tissue sampling.  

 

 

 

 

 

 

 

Figure 9. Male and female fathead minnow, Pimephales promelas (image taken from 

http://aquaticpath.phhp.ufl.edu/fhm/intro.html). 

http://aquaticpath.phhp.ufl.edu/fhm/intro.html
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2.1.2 Fish husbandry 

Adult fathead minnows were bred and kept in communal holding tanks under a flow-

through system. The water temperature was maintained at 25 ± 1 ºC, pH 7.4 and DO 

at ≥80% air saturation. Fish were subject to a 16:8 hour (light:dark) photoperiod with 

a 30 minute transition period between dawn and dusk. Fish were fed twice daily with 

a combination of food pellet (Biomar, Brande, Denmark) and frozen adult brine 

shrimp (Artemia sp.). 

2.1.3 Test substance and preparation of stock solutions 

The test substance, ibuprofen (CAS No.15687-27-1) (MW 206.3), was purchased 

from Sigma-Aldrich (Dorset, UK) with ≥98% purity and stored at room temperature. 

Ibuprofen has low water solubility and therefore all stock solutions were prepared in 

solvent, acetone (CAS No. 67-64-1, ≥99% purity) (Fisher Scientific, Loughborough, 

UK). The solvent concentration was maintained at 0.016 mL/L (0.0016%) in all 

stock test solutions, which was well below the recommended OECD guideline of 

≤0.1 mL/L (0.01%). Ibuprofen stock solutions were prepared in acetone for each of 

the following nominal test concentrations; 5, 10, 32, 100, 270, 350, 370 and 500 

µg/L. 

2.1.4  Dilution water 

The dilution water was mains tap water, which had been coarsely filtered to remove 

particulate material, passed through activated carbon and dechlorinated using a 

sodium thiosulphate solution. Mineral salts were added, as required, to maintain 

hardness levels of ≥140 mg/L as calcium carbonate (CaCO3) (Länge et al., 2001). 

The treated water was passed through an ultraviolet steriliser and was filtered to 10 

μm and then fed into a holding tank where it was thermostatically heated to 25 ± 1 

°C. The water was finally filtered to 5.0 μm before distribution into the test vessels. 

2.1.5 Static and continuous flow-through systems 

Fish were exposed to ibuprofen using either a static or continuous flow-through 

system (Table 6). In the static exposures, ibuprofen test solutions were administered 
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directly into the test vessel containing dilution water at the beginning of the exposure 

period, and remained unchanged throughout the duration of the study. The water was 

gently aerated at the surface using a glass pipette if there was depletion of DO below 

the recommended limit. The static system was simpler in design than the flow-

through and therefore was adopted for the preliminary and final exposures (Table 6, 

‘Exposures 1 and 6’) where time constraints had applied. The majority of exposure 

studies were however, conducted using the flow-through system (Table 6, 

‘Exposures 2-5’). In these studies, ibuprofen test solutions were replenished in the 

test vessel by the flow of incoming dilution water and through removal of metabolic 

waste products in the outflow water. This system permitted the water temperature 

and DO concentrations to be maintained more easily, and allowed a more stable test 

concentration to be achieved in the vessel. Section 2.1.6 (below) describes the flow-

through system in further detail. 
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Table 6. Summary of fathead minnow exposure studies to ibuprofen. Exposure studies (total of 6) were conducted using either a static or a continuous flow-through system to 

nominal ibuprofen concentrations ranging from 5, 10, 32, 100, 270, 350, 370, 500 µg/L. The duration of, fish sampling occasions (hours), number (n) of fish used in total and per 

treatment (including dilution water control (DWC) (not present in ‘Exposure 6’), solvent control (SC) (x 2 tanks in ‘Exposure 4’) and ibuprofen exposure treatments, fish sex; male 

(M) or female (F) and the tissues sampled for each study are specified. Further details on the endpoints measured or analysis carried out can be found in the individual chapters (3-

6).  

Study No. 
Exposure 

type 

Nominal 
ibuprofen 

(µg/L) 

Duration 
(hours) 

Sampling 
points 
(hours) 

No. of 
fish (n) 

No. of fish per 
treatment (n) 

Sex 
(M/F) 

Tissues 
sampled 

Further 
details 

provided in 
chapter(s): 

Comments 

Exposure 1 Static 10, 32 & 100 ≤24 24 only n = 25 

DWC 

SC 

10 µg/L 

32 µg/L 

100 µg/L  

5 

5 

5 

5 

5 

21 M 

& 

4 F 

Brain, gill, gonad 

(ovary), gut, 

heart, liver, 

muscle 

4 
Preliminary 

study 

Exposure 2 Continuous 100, 500 ≤96 3, 24, 48, 96 n = 64 

DWC 

SC 

100 µg/L 

500 µg/L 

16 

16 

16 

16 

M 

Brain, gill, gonad 

(testis), gut, 

heart, liver 

3 & 5  

Exposure 3 Continuous 270, 370 

≤144 

(≤96 exposure + 

≤72 depuration) 

24, 48, 72, 96 

(exposure) + 

24, 72 

(depuration) 

n = 100 

DWC 

SC 

270 µg/L 

370 µg/L 

25 

25 

25 

25 

M Brain, gill, liver 3 & 5  

Exposure 4 Continuous 270 ≤120 72, 96, 120 n = 60 

DWC 

SC (x 2) 

270 µg/L 

15 

30 

15 

38 M 

& 

46 F 

Gill, liver, 

muscle 
6 

Tail-fin 

clipping 

procedure 

Exposure 5 Continuous 350 72 72 only n = 60 

DWC 

SC 

350 µg/L 

10 

10 

40 

58 M 

& 

2 F 

Gill 6  

Exposure 6 Static 5, 350 ≤72 24, 48, 72 n = 45 

SC 

5 µg/L 

350 µg/L 

9 

18 

18 
M Gill 6  
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2.1.6 Flow-through system 

2.1.6.1 Test apparatus  

The flow-through system was comprised of a dilution water supply, test vessels and 

dosing apparatus (syringe pump). All test apparatus was constructed of glass where 

possible. Test vessels consisted of glass tanks (L 610 x W 305 x H 310 mm), with a 

working water volume of 45 L and each one was connected to a 2 L glass mixing 

vessel that was positioned on top of a magnetic stirrer, as shown in Figure 10.  

 

Figure 10. A continuous flow-through system used to expose fish to ibuprofen. Water flowed 

from an overhead trough into a 45 L glass tank (a) through a 2 L glass mixing vessel with an 

outlet (b). The mixing vessel was positioned on top of a magnetic stirrer (c) to ensure continuous 

mixing of test solutions before delivery into the respective tank. Water flowing through the 

tanks went to waste. 
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The dilution water flowed (via water flow control devices) from an overhead water 

trough into each tank from the mixing vessel outlet at an overall rate of 250 

mL/minute, allowing the water in the tank to be renewed approximately every three 

hours (eight tank changes in 24 hours). Water flowing through the tank (controlled 

by outlet devices at the back of the vessel) went to waste. The tanks were randomly 

distributed to receive dilution water only (dilution water control, DWC), acetone 

only (solvent control, SC) or ibuprofen test solution. 

2.1.6.2 Dosing of test solutions to tanks  

Each ibuprofen stock test solution was dosed using a syringe pump dosing system, 

into its respective glass mixing vessel (prior to delivery into its adjoining tank) using 

a 50 mL glass syringe (SGE Analytical Science, Milton Keynes, UK) connected via a 

“toxin” line (teflon tubing), as shown in Figure 11. Each syringe (and plunger) was 

used to withdraw and hold one test solution over the exposure period; this was 

secured on to a multiple syringe infusion motor pump (Harvard Apparatus, Kent, 

UK) which drove the plunger of the syringe in, causing the test solution to be 

dispensed through the toxin line at a constant rate. All ibuprofen stock test solutions 

were dosed at 0.004 mL/minute (4 µL/minute) in order to achieve the nominal 

concentration in the exposure tanks. Test solutions were dosed into the mixing vessel 

to ensure complete mixing between the concentrated ibuprofen stock solution (dosed 

at 0.004 mL/minute, equivalent to 5.76 mL per 24 hours) and the dilution water (flow 

rate of 250 mL/minute, equivalent to 360 L per 24 hours) before delivery to exposure 

tanks (to obtain a nominal dilution ratio of ibuprofen in the tank equivalent to 

62,500). To account for possible solvent effects, acetone was dosed into the SC tank 

at the same rate as the ibuprofen test solutions (0.004 mL/minute), such that the 

solvent concentration in the water and test solutions was the same (0.0016%). 

Dosing to tanks was initiated at least 48 hours prior to the introduction of fish in 

order to allow the exposure tanks to equilibrate with the nominal ibuprofen test 

concentrations and to monitor the function of the dosing system. Calibration of the 

dosing system was made by recording the volume of the test solutions in the syringe 

over known periods of time, and the dilution water flow rates (maintained to ± 10%) 
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were taken daily throughout the exposure period to ensure correct operation of the 

dosing system. 

 

Figure 11. Dosing system used for ibuprofen in a continuous flow-through system. Ibuprofen test 

solutions were dosed from syringes into their respective glass mixing vessels via “toxin" lines (i) to 

allow mixing with dilution water before delivery into the adjoining exposure tank. A close up of the 

dosing system (ii) showing the 50 ml syringe/plungers used to hold the test solution over the 

exposure period. The syringe/plungers were secured onto an infusion motor pump, which drove the 

syringes in, causing the test solution to be continually expelled into the mixing vessel at a constant 

rate of 4 µl/minute. 
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2.1.6.3 Exposure conditions 

On Day 0, prior to the fish being introduced into the tanks, the dosing system was 

checked to ensure normal operation and the water temperature, pH, DO, alkalinity, 

hardness and conductivity was measured (in an aliquot of water taken from each of 

the tanks) to assess the water quality. Fish were collected from the holding tanks in 

the husbandry unit and randomly distributed into the tanks. The health of the fish was 

recorded after three hours for any signs of stress, and thereafter on each exposure 

day. The duration and the number (n) of fish used for each exposure study and each 

treatment are shown in Table 6. During exposures, the water temperature was 

maintained at 25 ± 1 °C, pH 7.4 (± 1) and DO ≥80% air saturation (equivalent to 6.4 

mg/L at 25 °C). These parameters were measured at least twice (in an aliquot of 

water taken from each tank) over the exposure period. Fish were subjected to a 16:8 

hour (light:dark) photoperiod with a 20 minute transition period between dawn and 

dusk. The fish were not fed during exposure periods except in ‘Exposure 3’, when 

the study period exceeded 96 hours. These fish were fed once with a combination of 

pellet and brine shrimp (Artemia sp.). 

2.1.7 Fish blood plasma and tissue sampling 

After the exposure period, fish were terminally anaesthetised using 500 mg/L of MS-

222 (ethyl 3-aminobenzoate methanesulfonate, Sigma-Aldrich, Dorset, UK) buffered 

with 1 M sodium bicarbonate (NaHCO3) (pH 7.4) (Sigma-Aldrich, Dorset, UK). The 

operculum was carefully monitored until movement had ceased. Once unconscious, 

the fish was wet weighed (to the nearest 0.01 g) and measured in length (standard 

length to the nearest 0.1 mm). Each fish was terminated by removal or destruction of 

the brain using a seeker, followed by removal of the tail-fin using a scalpel and 

collection of the blood into a 75 µL heparinised micro-capillary tube (Fisher 

Scientific, Loughborough, UK). The micro-capillary tubes were sealed at one end 

using soft plasticine and centrifuged at 10,000 rpm for 4 minutes at room 

temperature (210 Haematocrit Microcentrifuge, Hettich, NC, USA) to separate the 

plasma from the red blood cells. The plasma volume was recorded and then 

transferred into a 0.5 mL micro-centrifuge tube, using a 20 µL pipette and a fine tip 

(Microloader™ tip, Eppendorf, Stevenage, UK). Analysis of ibuprofen 



Chapter 2 Materials and Methods 

55 

concentrations in the plasma samples was performed immediately; otherwise, the 

samples were stored at -20 ºC. 

After blood sampling, fish were dissected and tissues were collected. Each tissue was 

split into two samples and each sample was weighed (to the nearest 0.01 g) and 

placed into a pre-labelled 2.0 mL micro-centrifuge tube and flash frozen using liquid 

nitrogen. Tissues were stored at -80 °C and subsequently transported to Brunel 

University London (on dry ice) for molecular and biochemical analysis. 

2.1.8 Exposure water sampling 

Water samples (5 mL) were collected once per day from each treatment tank before 

and subsequently, on the same day as the fish were sampled during the exposure 

study. The waters were sampled using a 5 mL pipette (Eppendorf, Stevenage, UK) 

from the centre of each tank to allow determination of actual ibuprofen exposure 

concentrations. The samples were analysed immediately or stored at -20 ºC until 

required. 

2.1.9 Quantification of ibuprofen in exposure waters and blood plasma 

The quantification of ibuprofen in exposure waters and fish blood plasmas was 

conducted by Mr. Henry Trollope at AstraZeneca’s BEL. The analytical method was 

previously optimised for the detection and quantification of ibuprofen in water and 

fish blood plasma samples. Quantification of ibuprofen was performed using 

reversed-phase Liquid Chromatography coupled with tandem Mass Spectrometry 

(LC-MS/MS). The parameters used for the LC-MS/MS method are shown in Table 

7. Initial chromatographic separation was achieved using a Dionex Ultimate 3000 

instrument at 50 °C using a Gemini® NX C18 (50 × 2.0 mm) analytical column 

(Phenomenex, CA, USA). The mobile phase consisted of 0.1% ammonia in water 

(solvent A) and 0.1% ammonia in methanol (solvent B) at a flow rate of 500 

µL/minute. The gradient conditions were 90% solvent A followed by a linear 

gradient to 100% solvent B over 3 minutes, held at 100% (solvent B) for 1 minute 

and re-equilibrium to the initial conditions (90% solvent A and 10% solvent B) over 

1 minute (total of 5 minutes). An injection volume of 10 µL was used. Ibuprofen was 
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detected using an Ion Trap mass spectrometer (LTQ, Thermo Scientific, UK) with 

heated electrospray ionisation in the negative ionisation mode. For increased MS/MS 

sensitivity, selected reaction monitoring (SRM) was used for the detection of 

deprotonated ibuprofen (m/z 205>161 [loss of carbon dioxide]). Data were acquired 

and processed using Xcalibur
TM

 software (Thermo Scientific, UK). An internal 

standard, ibuprofen-d3 (CAS No. 121662-14-4, ≥98.0% purity) (Sigma-Aldrich, 

Dorset, UK) was used for the detection of ibuprofen in blood plasma samples in 

SRM mode (m/z 208>164). Due to time restraints, it was not possible to measure 

ibuprofen metabolites in the exposure waters or in plasmas. An example of an ion 

chromatogram of ibuprofen and ibuprofen-d3 in fish blood plasma is shown in Figure 

12. 

Table 7. Parameters used for LC-MS/MS analysis of ibuprofen in water and blood plasma 

samples. 

Parameter Specification 

HPLC instrument Dionex Ultimate 3000 

Analytical column 
Gemini® NX C18 (50 × 2.0 mm internal diameter ) 

(Phenomenex, CA , USA) (3.0 μm particle size) 

Column Pre-filter 0.5 μm (Supelco, USA) 

Column temperature 50 °C 

Flow rate 500 µL/min 

Injection volume 10 µL 

Detection system 
Quadrupole Ion Trap (LTQ, Thermo) mass 

spectrometer 

Ionisation mode Negative 

Sheath gas flow Nitrogen at 60 arbitrary units 

Auxiliary gas flow Nitrogen at 20 arbitrary units 

Sweep gas flow Nitrogen at 0 arbitrary units 

Ion spray voltage 2.5 kV 

Vaporiser temperature 350 °C 

Capillary temperature 350 °C 

Data acquisition and processing XcaliburTM software 
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Figure 12. Example of an ion chromatogram of ibuprofen (A) and internal standard, ibuprofen-

d3 (B) in blood plasma of a fish exposed to 370 µg/L for 72 hours. 

 

2.1.9.1 Preparation of standards & samples 

For quantification of ibuprofen in water samples, a set of standards was prepared 

from a stock solution of ibuprofen test material (100 mg/L) in HPLC-grade 

acetonitrile (ACN) by serial dilution using HPLC-grade water (Sigma-Aldrich, 

Dorset, UK). Water samples (5 mL) from the exposure tanks were diluted (1:4) with 

HPLC-grade water and an aliquot (~1 mL) was transferred to an autosampler vial for 

analysis. Water samples (5 mL) collected from the DWC and SC tanks required no 

dilution and an aliquot (~ 1 mL) was directly transferred to a vial for analysis. An 8-

point calibration curve was constructed by plotting the ibuprofen peak area, against 

standard concentrations ranging from 0.625-160 µg/L (see Appendix). The 

calibration curve was used to determine the ibuprofen concentration in the exposure 

tanks.  

For quantification of ibuprofen in blood plasma samples, a second set of standards 

was prepared from the stock solution (100 mg/L) by serial dilution using HPLC-

grade water and HPLC-grade ACN containing an internal standard, ibuprofen-d3 
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(500 µg/L) (Sigma-Aldrich, Dorset, UK). A dilution ratio of (84:16) HPLC-grade 

water:ibuprofen-d3 was used to provide an internal standard concentration of 80 

µg/L. An 8-point calibration curve was constructed by plotting the ratio of ibuprofen 

to internal standard peak area, against standard concentrations ranging from 0.625-

160 µg/L (see Appendix). Plasma samples (µL) from control and exposed fish were 

spiked (1:4) with HPLC-grade ACN containing ibuprofen-d3 (80 µg/L). The samples 

were transferred to a 96-well plate and thoroughly mixed using a plate shaker for 15 

minutes at room temperature to facilitate protein precipitation. The plate was 

centrifuged at 3,220 x g for 30 minutes at 20 ºC to pellet the proteins. The maximum 

allowable volume of supernatant (up to 100 µL) was transferred to a fresh well and 

diluted (1:5) with HPLC-grade water to produce an overall dilution x 25 of the 

plasma sample. The calibration curve was used to determine the ibuprofen 

concentration in the plasma samples. Plasma sample readings that were outside of the 

calibration range were diluted and re-analysed. 

2.1.9.2 Method validation 

The limit of detection (LOD) and limit of quantification (LOQ) are two important 

performance characteristics used in the method validation of analytical 

measurements. The LOD is the lowest concentration of an analyte in a sample that 

can be detected, but not necessarily quantified, and the LOQ is the lowest 

concentration of an analyte in a sample that can be determined with acceptable 

precision and accuracy. In this study, the sensitivity of the method was determined 

by the concentration of the lowest (acceptable) calibration standard. Each sample 

was analysed in two replicates. 
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2.2 MOLECULAR TECHNIQUES 

2.2.1 Total RNA isolation 

Total RNA was isolated from fish tissues using the GenElute™ Mammalian Total 

RNA Miniprep kit (Sigma-Aldrich, Dorset, UK), according to the manufacturer’s 

protocol. Briefly, fish tissues (up to 40 mg) were promptly disrupted in lysis solution 

containing 2-mercaptoethanol (2-ME) to denature proteins, using a tissue lyser 

(Tissue Lyser II, QIAGEN, Manchester UK). The tissue/lysis solution mixture was 

pipetted onto a filtration column and centrifuged at 16,000 x g for 2 minutes at room 

temperature to shear the DNA. Ethanol (70%) was added to filtrated lysate to 

facilitate RNA binding to the silica membrane in the binding column. The membrane 

containing bound RNA was washed twice with wash solution and centrifuged at 

16,000 x g for 15 seconds at room temperature to remove any remaining DNA, 

proteins and salts. The membrane was centrifuged one final time at 16,000 x g for 2 

minutes at room temperature to allow it to dry and to remove residual ethanol. The 

RNA was eluted with 50 µL of elution solution into a clean micro-centrifuge tube. 

The quantity of the isolated RNA was determined by spectrophotometry at an 

absorbance of 260 nm (NanoDrop 1000, Thermo Scientific, LabTech, East Sussex, 

UK). The ratio of absorbance at 260/280 nm was used to assess the purity of the 

RNA. A ratio of ~2.0 was acceptable for RNA purity. The RNA integrity was 

assessed on an agarose gel stained with ethidium bromide and visualised under 

ultraviolet (UV) light. RNA samples were immediately treated with 

deoxyribonuclease I (DNase I) or stored at -80 °C. 

2.2.2 Deoxyribonuclease I (DNase I) treatment of RNA 

Isolated RNA samples were treated with Deoxyribonuclease I (DNase I) (DNase I, 

Amplification Grade, Sigma-Aldrich, Dorset, UK) to minimise genomic DNA 

contamination. One unit of DNAse I completely digests 1 μg of plasmid DNA to 

oligonucleotides in 10 minutes at 37 °C. RNA (2 µg) was diluted with nuclease-free 

water (8 µL) and incubated with 1 µL of 10 x Reaction Buffer (200 mM Tris-HCl 

[pH 8.3] and 20 mM MgCl2) and 1 µL of DNase I (1 U/µL) for 15 minutes at room 

temperature. The enzyme was inactivated by adding 1 µL of Stop Solution (50 mM 
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EDTA) and denatured by heating to 70 °C for 10 minutes. The treated RNA samples 

were prepared for reverse transcription or stored at -80 °C. 

2.2.3 Reverse transcription complementary DNA (cDNA) synthesis 

Total RNA was reverse transcribed to complementary DNA (cDNA) using the 

SuperScript® III First-Strand Synthesis System for RT-PCR (Invitrogen Life 

Technologies, Paisley, UK). cDNA synthesis was primed using oligo(dT)20 primers 

that utilise the poly-A tails found at the end of eukaryotic mRNAs. RNA (2 µg) was 

diluted with nuclease-free water (up to 8 µL) and mixed with 1 μL of 50 μM 

oligo(dT)20 primers and 1 μL of 10 mM deoxyribonucleotide triphosphate (dNTP) 

mix (10 mM each of dATP, dGTP, dCTP, dTTP) in a 0.5 mL micro-centrifuge tube. 

The mixture was incubated at 65 ºC for 5 minutes to allow the RNA, primers and 

dNTPs to denature, and then placed on ice for 1 minute. A subsequent mixture 

containing 2 μL of 10 x RT buffer, 4 μL of 25 mM MgCl2, 2 μL of 0.1 M DTT, 1 μL 

of RNaseOUT (40 U/μL) and 1 μL of SuperScript III RT (200 U/μL) were combined 

in a separate 0.5 ml micro-centrifuge tube. A volume of 10 μL of this second mixture 

was added to each RNA sample. The mixture was incubated at 50 ºC for 50 minutes 

using a heat block to create the cDNA product. The reactions were terminated by 

heating at 85 ºC for 5 minutes and then chilled on ice for 2 minutes. Residual RNA 

was removed by adding 1 μL of RNase H (2 U/μL) to the sample and incubating at 

37 ºC for 20 minutes.  

For quantitative real-time PCR (qPCR) analysis (see Chapter 5) treated RNA was 

reverse-transcribed to cDNA using the iScript™ cDNA Synthesis Kit (Bio-Rad, 

Hertfordshire, UK). This kit utilises a mixture of both oligo(dT) and random 

hexamer primers, that can allow greater coverage of a transcript pool since random 

primers can prime from anywhere across the length of long transcripts. RNA (1 µg) 

was diluted with nuclease-free water (up to 15 µL) and mixed with 4 µL of 5 x 

iScript Reaction Mix and 1 µL of iScript Reverse Transcriptase (1 U/μL) in a 0.5 ml 

micro-centrifuge tube. The cDNA mixture (20 µL) was incubated at 25 ºC for 5 

minutes, 42 ºC for 30 minutes to allow annealing between the primers and RNA 

template, 85 ºC for 5 minutes to terminate the reactions and held at 4 ºC for 5 
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minutes. The newly synthesised cDNA samples were used immediately in a PCR 

reaction or stored at -20 ºC. 

2.2.4 Polymerase Chain Reaction (PCR) 

Polymerase Chain Reaction (PCR) is an in vitro technique that is used for the 

amplification of a specific DNA sequence within a heterogeneous mixture of DNA 

sequences, within a micro-centrifuge tube. During PCR, double-stranded DNA 

containing the target sequence is separated and specific primers, which have been 

designed to complement either end of the target sequence, anneal to the DNA 

flanking the sequence to be amplified. Under optimal conditions, DNA polymerase 

extends the complementary sequence in the presence of dNTPs allowing a new 

complementary DNA strand to be synthesised. This newly synthesised strand serves 

as a template for subsequent cycles of DNA synthesis, and with every cycle the 

amount of DNA is exponentially amplified (Figure 13) (Alberts et al., 2008). 

Figure 13. Diagrammatic image of the amplification of a specific region of DNA by polymerase chain 

reaction (PCR) (image adapted from Alberts et al., (2008). Double-stranded DNA is separated into 

single stands by thermal denaturation. Once the DNA has cooled, primers can anneal to the target 

regions (at a temperature specific to the primers). A DNA polymerase enzyme is used to extend the 

primers in the presence of other components including dNTPs and buffer, and the target strands re-

anneal. The newly formed double-stranded DNA serves as a template for subsequent PCR cycles. 
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2.2.4.1 Factors affecting PCR  

Several factors can affect the PCR process and the resultant success of amplification 

including the design of primers, the DNA polymerase enzyme used, and the cycling 

conditions employed which are discussed further. 

2.2.4.1.1 Primer design 

The National Centre for Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nih.gov/) database, the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (http://www.genome.jp/kegg/), and ENSEMBL 

(http://www.ensembl.org/index.html) were used to search for the prostaglandin-

endoperoxide synthase 1 (PTGS 1) and prostaglandin-endoperoxide synthase 2 

(PTGS 2) genes (colloquially referred to as the cyclooxygenase (COX 1 and COX 2) 

genes) in human and teleost fish, and in particular in the fathead minnow. However, 

no mRNA sequences for the COX genes were available in the fathead minnow. 

Therefore, published data on COX gene sequences in zebrafish (Grosser et al., 2002; 

Ishikawa et al., 2007) and rainbow trout (Zou et al., 1999; Ishikawa and Herschman, 

2007) were used to search for homologues in other teleost fish. The NCBI database 

was screened using the “Basic Local Alignment Search Tool” (BLAST) 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) which retrieved both full length and partial 

mRNA sequences for up to six COX gene isoform sequences in zebrafish, rainbow 

trout, Atlantic salmon (Salmo salar), mummichog (Fundulus heteroclitus) and one 

frog species (Xenopus laevis). These gene sequences were used as templates for 

designing generic primers to isolate the COX 1 and COX 2 genes in the fathead 

minnow. The accession numbers for the template sequences from the NCBI database 

are shown in Table 8.   

http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/index.html
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 8. Accession numbers for COX (PTGS) gene sequences from the NCBI database used in 

the multiple alignment analysis. 

 

Template sequences for the COX 1 and COX 2 sequences were aligned using the 

Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) multiple sequence 

alignment tool, to examine regions of highly conserved nucleotide bases between the 

template sequences for each of the genes. Primers were designed to target the COX 1 

and COX 2 genes in the fathead minnow based on the highly conserved regions 

identified in the template sequences, according to the primer conditions outlined 

below. Two pairs of generic primers (one ‘external’ and one ‘internal’ set) were 

designed to isolate the COX 1 gene, as shown in Figure 14 (highlighted in blue and 

green boxes, respectively) and the COX 2 gene, as shown in Figure 15 (highlighted 

in purple and pink boxes, respectively).  

All primers were 20-22 nucleotides in length, with a guanine and cytosine (G and C) 

content of 40-60%. This is because guanine and cytosine bind to each other using 

three covalent bonds, whereas adenine and thymine (A and T) bind to each other 

using only two covalent bonds, and therefore a higher G and C content was 

preferable for stronger bonds to be formed between the DNA template and primer. 

Both the length and G and C content of the primer sequences influence the primer 

melting temperature (Tm) which affects the stability of DNA template-primer duplex 

and therefore both primers (for each primer set) were designed to have the same, or a 

Species Latin name 
COX gene 
isoform 

Accession numbers 

Human Homo sapiens 
COX 1 
COX 2 

NM_000962.3 
NM_000963.3 

Zebrafish Danio rerio 
COX 1 
COX 2a 
COX 2b 

NM_153656.1 
NM_153657.1 
NM_001025504.2 

Rainbow trout Oncorhynchus mykiss 
COX 1 
COX 2 
COX 2b 

NM_001124361.1 
NM_001124348.1 
NM_001124667.1 

Atlantic salmon Salmo salar COX 1 NM_001140374.1 

Mummichog Fundulus heteroclitus 
COX 1a 
COX 1b 

EU703782.1 
EU703781.1 

African clawed 
frog 

Xenopus laevis COX 1 NM_001097920.1 
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similar Tm (between 58-60 °C). The Tm of the primers was calculated using the 

following formula: Tm = 2 x [A + T] + 4 x [G + C]. The Tm was used to calculate 

the annealing temperature for each primer pair, which was generally 2-5 °C below 

the lowest Tm of the two primers. The characteristics of each primer including the 

Tm, likelihood of secondary structure formations such as heterodimers, self-dimers 

and hairpins were assessed using primer analysis tools such as ‘Primer 3 Plus’ 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/). Primers for the 

fathead minnow COX genes were synthesised from Sigma Genosys Ltd (Suffolk, 

UK) and reconstituted with nuclease-free water to a concentration of 100 μM. Primer 

stocks were diluted with nuclease-free water to a working concentration of 10 μM 

and stored at -20 °C until required. 

 

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/
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Clustal Omega multiple sequence alignment (Page 1 of 3) 

 

Rainbow trout COX 1           GCCTCACCATGTATGCCACCCTGTGGCTGAGAGAACACAACCGCGTTTGT 1177 

Atlantic salmon COX 1         GCCTCACCATGTACGCCACCCTGTGGCTGAGAGAACACAACCGCGTCTGT 990 

Zebrafish COX 1               GGCTCGGCATGTACGCTACCTTGTGGCTTCGTGAGCACAACCGTGTGTGT 1065 

Mummichog COX 1a              GCCTCACCGTGTATGCCACCATCTGGCTGAGGGAGCACAACAGAGTGTGT 510 

Mummichog COX 1b              GTTTGAGTTTGTACGCCACGCTGTGGCTCAGGGAGCATAACAGAGTCTGT 1048 

Human COX 1                   GGCTCATGCTGTATGCCACGCTCTGGCTACGTGAGCACAACCGTGTGTGT 1071 

African clawed frog COX 1     GATTGATGATGTATGCAACCCTTTGGCTCCGCGAACACAATAGGGTTTGT 964 

                              *  *     **** ** **  * *****  * ** ** **  * ** *** 

         ‘External’ COX 1 F  

Rainbow trout COX 1           GACATCCTGAAGGCAGAGCACCCCACCTGGGGGGACGAGCAGCTCTTCCA 1227 

Atlantic salmon COX 1         GACATCCTGAAGGCAGAGCACCCCACCTGGGGGGATGAGCAGCTCTTTCA 1040 

Zebrafish COX 1               GAAATCCTGAAACAAGAACATCCAACCTGGGGTGATGAGCAGCTCTTCCA 1115 

Mummichog COX 1a              GACATCCTGAAGGGGGAGCATCCAACCTGGGATGATGAGCAGCTTTTCCA 560 

Mummichog COX 1b              GACATCCTGAAAGCAGAGCATCCCACCTGGGACGATGAGCAGCTTTTCCA 1098 

Human COX 1                   GACCTGCTGAAGGCTGAGCACCCCACCTGGGGCGATGAGCAGCTTTTCCA 1121 

African clawed frog COX 1     GATGTTCTGAAGAAGGAGCACCCTACTTGGGATGATGAGCAGCTGTTTCA 1014 

                              **  * *****    ** ** ** ** ****  ** ******** ** ** 

 

Rainbow trout COX 1           GACCGCCAGGCTCATCGTAATAGGTGAGACCATCCGGATAGTGATCGAGG 1277 

Atlantic salmon COX 1         GACCGCCAGGCTCATCGTAATAGGTGAGACCATCCGGATAGTGATCGAGG 1090 

Zebrafish COX 1               GACCGCCAGGCTCATCATTATAGGTGAGACCATTCGTATCGTAATCGAGG 1165 

Mummichog COX 1a              GACCGCCAGACTTATCATCATTGGTGAGATCATCAACATCATAATAGAGG 610 

Mummichog COX 1b              GACCACCCGCCTCATCATCATCGGTGAGACCATACGAATCGTGATTGAGG 1148 

Human COX 1                   GACGACCCGCCTCATCCTCATAGGGGAGACCATCAAGATTGTCATCGAGG 1171 

African clawed frog COX 1     AACTACAAGACTAATTCTTATAGGGGAGACTATAAAGATCGTCATTGAAG 1064 

                               **  *  * ** **  * ** ** ****  **    **  * ** ** * 

 

Rainbow trout COX 1           AGTACGTGCAGCACCTGAGTGGCTACCTGTTGGATCTGAAGTTTGACCCA 1327 

Atlantic salmon COX 1         AGTATGTGCAGCACCTGAGTGGCTACCTGTTGGATCTGAAGTTTGACCCA 1140 

Zebrafish COX 1               AGTATGTGCAGCATCTGAGCGGTTACCGGCTGAAGCTGCATTTTGACCCC 1215 

Mummichog COX 1a              AGTACGTGCAGCACCTGAGCGGCTACTACCTGAAGCTCAAGTACGACCCC 660 

Mummichog COX 1b              AATACGTGCAGCACCTGAGCGGCTACCTGCTGCAGCTGAAGTTCGATCCC 1198 

Human COX 1                   AGTACGTGCAGCAGCTGAGTGGCTATTTCCTGCAGCTGAAATTTGACCCA 1221 

African clawed frog COX 1     ACTATGTTCAGCATCTAAGTGGATATTATTTGAAACTAAAATTTGATCCA 1114 

                                ** ** ***** ** ** ** **     ** * **  * *  ** **  

 

Rainbow trout COX 1           GTCCTGCTCTTCAAGTCCACGTTCCAGTACAGGAACCGCATCGCTGTGGA 1377 

Atlantic salmon COX 1         GTCCTGCTCTTCAAGTCCACGTTCCAGTACAGGAACCGCATCGCTGTGGA 1190 

Zebrafish COX 1               ACGCTGCTCTTCAACTCACAGTTCCAGTACCAGAACCGCATTTCAGTGGA 1265 

Mummichog COX 1a              TCCCTGCTCTTCGGTGTGCGTTTCCAGTACACCAATCGCATCGCCCTGGA 710 

Mummichog COX 1b              ACCCTGCTGTTCAACTCCAACTTCCAGTACGGGAACCGCATCGCGCTGGA 1248 

Human COX 1                   GAGCTGCTGTTCGGTGTCCAGTTCCAATACCGCAACCGCATTGCCATGGA 1271 

African clawed frog COX 1     GAATTACTGTTTGGCGTGCAGTTCCAGTACAGGAATCGGATTGCTGTTGA 1164 

                                  * ** **          ***** ***   ** ** **  *  * ** 

         ‘Internal’COX 1 F 

Rainbow trout COX 1           GTTCAAACAGCTGTACCACTGGCACCCCCTGATGCCAGACAGCTTCCACA 1427 

Atlantic salmon COX 1         GTTTAAACAGCTGTACCACTGGCACCCCCTGATGCCAGACAGCTTCCACA 1240 

Zebrafish COX 1               GTTCAATCAACTTTACCACTGGCACCCACTCATGCCTGACAGCTTCTACA 1315 

Mummichog COX 1a              GTTCTGCTACCTCTACCACTGGCACCCTCTCATGCCGGACAGCTTCCTCA 760 

Mummichog COX 1b              GTTCAGCCAGCTCTATCACTGGCACCCTCTGATGCCCGACAGCTTCCACA 1298 

Human COX 1                   GTTCAACCATCTCTACCACTGGCACCCCCTCATGCCTGACTCCTTCAAGG 1321 

African clawed frog COX 1     GTTCAACCAGTTATATCACTGGCATCCTCTTATGCCGGAGAAATTTAAAA 1214 

                              ***     *  * ** ******** ** ** ***** **    **      

 

Rainbow trout COX 1           TAGATGGAGACGAAGTGCCC-TACTCCCAG-TTCATCTTCAACACCTCCA 1475 

Atlantic salmon COX 1         TAGACGGAGACGTGGTGCCC-TACTCCCAG-TTCATGTTCAACACCTCCA 1288 

Zebrafish COX 1               TCGACGGAGACCACATTCAG-TACTCAAAG-TTCATATTTAACACATCGA 1363 

Mummichog COX 1a              TCGATGGAGATGAACTCCCG-TACTCCCAG-TTCTTATACAACACCTCCA 808 

Mummichog COX 1b              TCAGCGGAGACGAGCTGTCG-TACTCGCAG-TTCCTCTTCAACACGTCCG 1346 

Human COX 1                   TGGGCTCCCAGGAG-TACAGCTACGAGCAG-TTCTTGTTCAACACCTCCA 1369 

African clawed frog COX 1     TTATCGAAGATGAA-TTCGGCTA-TAGCAGCTTCATCTACAATACTTCCA 1262 

                              *        *     *     **     ** *** * *  ** ** **   

 



Chapter 2 Materials and Methods 

 

66 

Continued (Page 2 of 3) 

 

Rainbow trout COX 1           TCGTCACACACTACGGGGTGGAGAAACTGGTGGACGCCTTCTCCCGCCAG 1525 

Atlantic salmon COX 1         TCGTCACACACTACGGGGTGGAGAAACTGGTAGACGCTTTCTCACGCCAG 1338 

Zebrafish COX 1               TCCTCACACATTATGGCTTGGAGAAGCTGGTGGAGGCCTTCTCAATACAA 1413 

Mummichog COX 1a              TCCTGATGCATTACGGCGTGGAGAAGCTGGTGGACGCTTTCTCTCGGCAG 858 

Mummichog COX 1b              TCCTCACACACTACGGCGTGGAGAAGCTGGTGGACGCCTTCTCTCGACAA 1396 

Human COX 1                   TGTTGGTGGACTATGGGGTTGAGGCCCTGGTGGATGCCTTCTCTCGCCAG 1419 

African clawed frog COX 1     TTATTTTAGACTATGGCGTTGAGGCTCTGGTGGAATCCTTCACAAAACAA 1312 

                              *  *     * ** **  * ***   ***** **  * *** *    **  

 

Rainbow trout COX 1           TGTGCTGGACAGATAGGAGGAGGTCGGAA-CATCCACCCAGTGGTGACCA 1574 

Atlantic salmon COX 1         TATGCCGGACAGATAGGAGGAGGTCGAAA-CATCCACCCAGTGGTGACCA 1387 

Zebrafish COX 1               CCCGCAGGACAGATCGGAGGGGGTCATAA-CATTCACCCAGTGGTGTCCG 1462 

Mummichog COX 1a              CCTGCAGGACAGATAGGCGGCGGCCGCAA-CATTCACCAGGCGGTGCTCA 907 

Mummichog COX 1b              GCTGCTGGCCAGATTGGTGGGGGCCACAA-CATAAACGCCGTTATCACCA 1445 

Human COX 1                   ATTGCTGGCCGGATCGGTGGGGGCAGGAA-CATGGACCACCACATCCTGC 1468 

African clawed frog COX 1     ATTGCTGGCAAGATTGGTGGCGGAAAGAATCATCCACCTAGTC-TGTTGA 1361 

                                 ** **   *** ** ** **    ** ***  **       *      

 

Rainbow trout COX 1           ATGTG---GCCGAGGGGGTTATTGAAGAGTCCAGGAC-TCTGCGTCTCCA 1620 

Atlantic salmon COX 1         ATGTG---GCCGAGGGAGTTATTGAAGAGTCCAGGAC-TCTGCGTCTCCA 1433 

Zebrafish COX 1               GAGTT---GCTGAGAGGGTCATCGTTGAATCGAGGGA-GCTTCGACTTCA 1508 

Mummichog COX 1a              GAGTG---GCAGAAATGGTCATCAGAGATTCCAGGGCTGCAC-GCTTGCA 953 

Mummichog COX 1b              AGGTCATCGTGGGAACGATAG--AGGAGTCCC--GTCAGCTCCGGATCCA 1491 

Human COX 1                   ATGTG---GCTGTGGATGTCATCAGGGAGTCTCGGGA-GATGCGGCTGCA 1514 

African clawed frog COX 1     AGGTG---GCTGCAGGTGTTATTGAAGAATCCCGAAA-CCTCAGACTACA 1407 

                                **    *  *      *           *            *  * ** 

 

Rainbow trout COX 1           ACCCTTCAACGAGTACAGGAAGAGGTTCAACCTGAAGCCCTACACATCTT 1670 

Atlantic salmon COX 1         ACCCTTCAACGAGTACAGGAAGAGGTTCAACCTGAAGCCCTACACTTCTT 1483 

Zebrafish COX 1               GCCGTTCAATGAATATCGCAAGAGATTCAATCTGAAACCCTACACATCCT 1558 

Mummichog COX 1a              GCCTTTCAATCAATACAGAAAAAGGTTTAACCTTAAGCCCTACTCATCCT 1003 

Mummichog COX 1b              GCCTTTTAACGAATACAGGAAGCGCTTTAACCTCGAGCCGTACACTTCGT 1541 

Human COX 1                   GCCCTTCAATGAGTACCGCAAGAGGTTTGGCATGAAACCCTACACCTCCT 1564 

African clawed frog COX 1     ACCTTTCAACGAATATCGAAAGAGATTTGGATTGAAGGCTTATAAATCAT 1457 

                               ** ** **  * **  * **  * **     *  *  * **    ** * 

 

Rainbow trout COX 1           TCTCTGACTTCACTGGTGAGGAGGAGATGGCCAGGGAGCTGGAGGAGCTC 1720 

Atlantic salmon COX 1         TCTCTGACTTCACTGGTGAGGAGGAGATAGCCAGGGAGCTGGAGGAGCTC 1533 

Zebrafish COX 1               TCGCAGAATTGACAGGAGAGCAGGAGATGTCTAAAGAGCTGGAGGAACTA 1608 

Mummichog COX 1a              TTTATGAATTAACTGGTGATGAAGAAATGGCTCGGGGTTTAGAGGAGCTC 1053 

Mummichog COX 1b              TCAGAGACTTCACCGATAGCGAGGAGATAGCCAGCACTCTTGAAGAGCTC 1591 

Human COX 1                   TCCAGGAGCTCGTAGGAGAGAAGGAGATGGCAGCAGAGTTGGAGGAATTG 1614 

African clawed frog COX 1     TCAGAGATTTAACAGGAGAAGAAAAAATGGCAGCACAATTGGAAGAGTTT 1507 

                              *    **  *    *      *  * **  *        * ** **  *  

 

Rainbow trout COX 1           TATGGGGACATCGATGCGCTGGAGTTCTACCCCGCCATCATGCTGGAGAA 1770 

Atlantic salmon COX 1         TATGGTGACATTGATGCGCTGGAGTTCTACCCTGCCATCATGCTGGAGAA 1583 

Zebrafish COX 1               TACGGACATATTGATGCTATGGAGTTCTACCCAGCTCTTCTGCTAGAGAA 1658 

Mummichog COX 1a              TATGGAGACATAGACGCCCTGGAGTTTTATCCCGGCCTCCTGCTGGAGAA 1103 

Mummichog COX 1b              TACGGTGACATCGACACTCTCGAATTTTACCCCGGGTTGTTGTTGGAGAA 1641 

Human COX 1                   TATGGAGACATTGATGCGTTGGAGTTCTACCCTGGACTGCTTCTTGAAAA 1664 

African clawed frog COX 1     TATGGAGACATAGATGCACTTGAATTTTACGTGGGGTTACTTTTGGAAAA 1557 

                              ** **  * ** **  *  * ** ** **    *   *  *  * ** ** 

 

Rainbow trout COX 1           GACACGCCCCAACGCCATATTTGGTGAGAGCATGGTGGAGATGGGGGCTC 1820 

Atlantic salmon COX 1         GACACGCCCCAACGCCATATTTGGTGAGAGCATGGTGGAGATGGGGGCTC 1633 

Zebrafish COX 1               AACACGACCTGGTGCGGTATTTGGTGAAAGCATGGTGGAAATGGGGGCCC 1708 

Mummichog COX 1a              AACCCGACCCAGCTCTATATTTGGAGAGAGCATGGTGGAGATGGGAGCCC 1153 

Mummichog COX 1b              GACACGGCCGGGGGCGATATTCGGAGAAAGCATGGTGGAAATGGGGGCCC 1691 

Human COX 1                   GTGCCATCCAAACTCTATCTTTGGGGAGAGTATGATAGAGATTGGGGCTC 1714 

African clawed frog COX 1     ACCCAATCCAAATTCAATATTTGGAGAAAGTATGGTGGAAATAGGTGCAC 1607 

                                     **     *  * ** ** ** ** *** * ** ** ** ** * 
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Rainbow trout COX 1           CGTTCTCCCTGAAAGGCCTTCTGGGTAACCCCATCTGTTCCCCTGAGTAC 1870 

Atlantic salmon COX 1         CATTCTCCCTGAAAGGCCTTCTGGGTAACCCCATCTGTTCCCCTGAGTAC 1683 

Zebrafish COX 1               CTTTTTCCCTAAAAGGCCTCATGGGAAATCCTATCTGCTCCCCAGACTAC 1758 

Mummichog COX 1a              CCTTCTCCCTAAAAGGCCTGCTTGGGAACCCCATCAACTCCCCTGAATAC 1203 

Mummichog COX 1b              CCTTTTCCCTCAAAGGCCTCCTGGGTAACCCCATATGTTCTCCACAATAC 1741 

Human COX 1                   CCTTTTCCCTCAAGGGTCTCCTAGGGAATCCCATCTGTTCTCCGGAGTAC 1764 

African clawed frog COX 1     CGTTCCCTCTTAAAGGACTACTGGGGAACCCAATTTGCTCTCCAGAATAC 1657 

                              * **  * ** ** ** **  * ** ** ** **    ** **  * *** 

                            ‘Internal’COX 1 R 

Rainbow trout COX 1           TGGAAGCCCAGCACATTTGGAGGCCAGACAGGCTTTGATATAGTCAACTC 1920 

Atlantic salmon COX 1         TGGAAGCCCAGCACATTTGGAGGCCAGACAGGCTTTGATATAGTCAACTC 1733 

Zebrafish COX 1               TGGAAGCCCAGCACATTTGGAGGCAAGACAGGCTTCGATATAGTAAACTC 1808 

Mummichog COX 1a              TGGAAGCCCAGCACCTTTGGGGGCGAGACGGGCTTCAACATCATCAAAAC 1253 

Mummichog COX 1b              TGGAAGCCCAGCACGTTCGGGGGCAAAGTGGGCTTTGACATCGTAAACTC 1791 

Human COX 1                   TGGAAGCCGAGCACATTTGGCGGCGAGGTGGGCTTTAACATTGTCAAGAC 1814 

African clawed frog COX 1     TGGAAGCCCAGTACCTTTGGGGGAGAAACTGGGTTTAATATTGTAAAGAC 1707 

                              ******** ** ** ** ** **  *    ** **  * **  * **  * 

       ‘External’ COX 1 R 

 

 

Figure 14. Clustal Omega (partial) alignment of template COX 1 gene sequences (5’-3’) used to design COX 1 

primers in the fathead minnow. Identical nucleotide bases between sequences are indicated by an asterisk (*). 

The ‘external’ and ‘internal’ forward (F) and reverse (R) primers used to isolate COX 1 in the fathead 

minnow are shown in blue and green boxes, respectively. 
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Clustal Omega multiple sequence alignment (Page 1 of 2) 

 

                          ‘External’ COX 2 F  

Human COX 2           GCCCAACATTTTACTCACCAGTTCTTCAAATCTGACATGAAGAAAGGTCC 655 

Zebrafish COX 2a      GCCCAACACTTCACCCACCAGTTCTTCAAATCTGACCAGAAGATGGGGCC 626 

Zebrafish COX 2b      GCCCAGCATTTCTCTCACCAGTTCTTCAAGTCGGACTTTAAAAAGGGACC 667 

Rainbow trout COX 2   GCCCAGCACTTCACCCACCAGTTCTTCAAATCAGACTTCATGAAAGGACC 681 

Rainbow trout COX 2b  GCCCAGCACTTCACGCATCAGTTTTTCAAGACAGATCATAAGCGAGGGCC 748 

                      ***** ** **  * ** ***** *****  * **    *     ** ** 

 

Human COX 2           AGCTTTCACAACAGCCCTGAACCATGGGGTTGATTTAGCTCATATATATG 705 

Zebrafish COX 2a      GGCATTTACTAAAGCCAAGGGCCACGGGGTGGACCTTGGTCACATCTACG 676 

Zebrafish COX 2b      AGCCTTCACCAAAGCCCTGGGTCATGGAGTGGATCTGGGGCACATTTATG 717 

Rainbow trout COX 2   AGCTTTCACCAAAGCCTTGGGCCATGGCGTGGACTTAAACCATGTTTACG 731 

Rainbow trout COX 2b  AGCTTTCACCAACGGGCTGGGCCATGGGGTGGACTTAAATCATATTTACG 798 

                       ** ** ** *  *    *   ** ** ** **  *    **  * ** * 

 

Human COX 2           GACAAAACCTTGATCGACAACACAAGTTGAGACTTTTCAAGGATGGCAAG 755 

Zebrafish COX 2a      GGGAAAACCTTGAGAGGCAACATAAACTGAGGCTCTTCAAGGATGGCAAG 726 

Zebrafish COX 2b      GAGAGACGCTGGAGGTTCAACACAAACTTCGTCTGTTTAAAGATGGAAAG 767 

Rainbow trout COX 2   GAGACACTCTGGAGAGACAGCACAAGCTGAGGCTGTTCAAGGATGGCAAA 781 

Rainbow trout COX 2b  GTGAAACTCTGGCTAGACAGCGTAAACTGCGCCTTTTCAAGGATGGAAAA 848 

                         * *  ** *     ** *  **  *  * ** ** ** ***** **  

 

Human COX 2           TTGAGATATCAGATTCTGGATGGTGAGGTTTACCCTCCAACAGTCAGTGA 805 

Zebrafish COX 2a      CTGAAGTTTCAGGTGCTGGATGGAGAGGTGTACCCACCTACAGTGAAAGA 776 

Zebrafish COX 2b      CTTAAATACCAGGTTGTGGATGGTGAGGTGTACCCTCCGCTTGTGAAGGA 817 

Rainbow trout COX 2   CTGAAGTATCGGGTTTTGAACGGCGAGGTCTACCCCCCATTGGTAAGGGA 831 

Rainbow trout COX 2b  ATGAAATATCAGATAATTGATGGAGAGATGTATCCTCCCACAGTCAAAGA 898 

                       * *  *  * * *  *  * ** *** * ** ** **    ** *  ** 

 

Human COX 2           GGTTCAAGTAGACATGCATTACCCTCCTCATGTACCTGAATCTCGTCGAT 855 

Zebrafish COX 2a      GGTTGGGGCTGATATGCACTACCCTCCCCATGTCCCTGAGTCTCACCGCT 826 

Zebrafish COX 2b      CGTCCAGGTGGAGATGCATTACCCTCCTCATATCCCGGAAGAGCAGAAAT 867 

Rainbow trout COX 2   GGTTGGGGCCGAGATGCATTACCCACCCCAAGTGCCCGAGGAGCACCGTT 881 

Rainbow trout COX 2b  TACTCAGGCAGAGATGATCTACCCTCCTCAAGTCCCTGAGCATCTACGGT 948 

                             *  ** ***   ***** ** **  * ** **    *     * 

 

Human COX 2           TTGCTGTGGGTCATGAGGCCTTTGGGCTGGTTCCCGGACTTATGATGTAC 905 

Zebrafish COX 2a      TTGCTGTGGGCCATGAGGCGTTCGGCCTGGTGCCTGGTCTCATGATGTAC 876 

Zebrafish COX 2b      TTGCTGTGGGCCATGAGGCCTTTGGTCTGGTTCCAGGTTTGATGATGTAT 917 

Rainbow trout COX 2   TCGCTGTGGGCCACGAGCATTTTGGCTTGGTCCCCGGGCTCATGATGTAT 931 

Rainbow trout COX 2b  TTGCTGTGGGGCAGGAGGTCTTTGGTCTGGTGCCTGGTCTGATGATGTAT 998 

                        ******** ** ***   ** **  **** ** **  * ********  

                          ‘Internal’ COX 2 F 

Human COX 2           GCCACCATCTGGCTGCGTGAACATAACCGAGTGTGCGACATACTAAAGCA 955 

Zebrafish COX 2a      GCTACTATCTGGCTGAGAGAACACAACCGCGTCTGTGATGTCCTGAAGGA 926 

Zebrafish COX 2b      GCTACCATTTGGCTCCGTGAGCACAACCGTGTCTGTGACATCATGAAGCA 967 

Rainbow trout COX 2   GCCACCATATGGCTGCGCGAGCACAACCGTGTCTGTGACGTCCTGAGGCA 981 

Rainbow trout COX 2b  GCCACAATCTGGCTGCGGGAACACAACAGAGTATGCGATGTGCTTAAACA 1048 

                      ** ** ** *****  * ** ** *** * ** ** **  *  * *   * 

 

Human COX 2           GGAGCATCCTGACTGGGATGATGAGAGGCTGTTTCAGACCTCAAGGCTCA 1005 

Zebrafish COX 2a      GGTCCATCCGGACTGGGATGATGATAGGCTCTTCCAGACATCACGCCTCA 976 

Zebrafish COX 2b      GGAACATCCTGACTGGGATGATGAGAGAATCTTCCAAACCACTCGTCTCA 1017 

Rainbow trout COX 2   GGAGCATCCCGAATGGGACGACGAACGCATCTTCCAGACCACACGCCTCA 1031 

Rainbow trout COX 2b  GGAGCATCCTGAATGGGGTGATGAGCAGTTGTTCCAGACAAGCAGGCTAA 1098 

                      **  ***** ** ****  ** **     * ** ** **     * ** * 

 

Human COX 2           TCCTTATTGGTGAGACTATTAAGATCGTGATCGAAGATTACGTCCAGCAC 1055 

Zebrafish COX 2a      TTCTCATTGGTGAGACCATCAAGATTGTGATTGAGGACTACGTGCAGCAC 1026 

Zebrafish COX 2b      TCCTGATTGGTGAGACCATCAAAATTGTGATCGAGGACTATGTTCAGCAC 1067 

Rainbow trout COX 2   TCCTAATTGGCGAGACCATTAAGATCGTGATTGAGGACTATGTCCAGCAC 1081 

Rainbow trout COX 2b  TACTGATAGGAGAGACTATTAAGATTGTGATTGAAGATTATGTGCAACAC 1148 

                      * ** ** ** ***** ** ** ** ***** ** ** ** ** ** *** 
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Continued (Page 2 of 2) 

 

Human COX 2           CTTAGTGGATACTATTTTAAGCTCAAGTTTGATCCCGAACTACTCTTCAA 1105 

Zebrafish COX 2a      CTGAGCGGCTACAACTTCAAGCTGAAGTTCGACCCGGAGCTTCTCTTCAA 1076 

Zebrafish COX 2b      TTGAGTGGATACAACTTCAAGCTCAAGTTTGACCCAGAGCTCATCTTCAG 1117 

Rainbow trout COX 2   CTGAGTGGCTACCACTTCCAGCTCAAGTTCGACCCGGAGCTCCTCTTCAA 1131 

Rainbow trout COX 2b  TTGAGTGGCTATCACTTCAAACTGAAATTTGACCCAGAACTACTTTTCAA 1198 

                       * ** ** **  * **  * ** ** ** ** ** ** **  * ****  

 

       ‘Internal’ COX 2 R 

Human COX 2           TGAGCGTTTCCAATACCAGAACAGGATCTCCTCTGAGTTCAACACACTTT 1155 

Zebrafish COX 2a      AGAGCGTTTCCAGTATCAGAACCGCATCTCGTCAGAGTTCAACACCCTGT 1126 

Zebrafish COX 2b      TGAGCGTTTCCAGTACCAGAACCGTATTGCGGCCGAATTCAATACCCTGT 1167 

Rainbow trout COX 2   CCAGCGTTTCCAGTACCAGAACCGTATCGCAGCTGAGTTCAATACCCTCT 1181 

Rainbow trout COX 2b  CAAACAATTCCAGTACCAAAATCGTATTGCTGCTGAATTTAACACCCTCT 1248 

                        * *  ***** ** ** **  * **  *  * ** ** ** ** ** * 

                     ‘External’ COX 2 R  

Human COX 2           ACCATTGGCACCCCCTCATGCCTGATGATTTTCAC-ATCCAGGATGAAGT 1204 

Zebrafish COX 2a      ACCACTGGCACCCACTGATGCCTGATGCCTTCCAC-ATACAGGAGCAGGT 1175 

Zebrafish COX 2b      ATCACTGGCATCCACTGTTGCCGGACAACTTTCAG-ATCCAGGATCAGAT 1216 

Rainbow trout COX 2   ACCACTGGCACCCGCTGATGCCTGA-AACCTTCAGCATTGAGGACCGCGC 1230 

Rainbow trout COX 2b  ATCACTGGCATCCCCTTCTGCCTGACACCTTTCAA-ATTCATGACCAGAA 1297 

                      * ** ***** ** **  **** **     * **  **  * **       

 

 

Figure 15. Clustal Omega (partial) alignment of template COX 2 gene sequences (5’-3’) used to design 

COX 2 primers in the fathead minnow. Identical nucleotide bases between sequences are indicated by 

an asterisk (*). The ‘external’ and internal’ forward (F) and reverse (R) primers used to isolate COX 2 

in the fathead minnow are shown in purple and pink boxes, respectively. 

 



Chapter 2 Materials and Methods 

 

70 

The exact sequences for the forward and reverse primers used to amplify the COX 

genes in the fathead minnow are shown in Table 9. Both of the COX 1 primer sets 

contained a degenerate (forward) primer. Degenerate primers contain positions 

within the sequence that can be substituted with one or more different nucleotide 

bases. These primers are useful when template sequences from related species have 

been used to design the primers for genes of interest.  

 Table 9. Primers sets used to isolate the COX 1 and COX 2 genes in the fathead minnow. An 

‘external’ and ‘internal’ primer set was designed to isolate each of the COX 1 and COX 2 genes. 

Degenerate primers were used to isolate COX 1, these primers contain base positions 

(underlined) that can be substituted for other known nucleotide bases. R positions can be 

substituted with A or G, B with G or T or C and H with A or T or C bases. 

 

To increase the specificity of the primers during COX gene amplification, ‘nested 

PCR’ was also used. The ‘external’ COX gene primers were used in the first round of 

amplification, to flank a larger region of the target COX gene sequence and then the 

‘internal’ (nested) primers (located within the external primers) were used in a 

subsequent round of amplification, to further amplify the product obtained from the 

first round of PCR (Figure 16), to reduce the amplification of non-specific products.  

Gene Primer ID Primer Sequence 5’- 3’ 

COX 1 

External COX 1 F ACCTGGGRBGATGAGCAGCT 

External COX 1 R CCAAATGTGCTGGGCTTCCA 

Internal COX 1 F CACTGGCACCCHCTBATGCC 

Internal COX 1 R AATGTGCTGGGCTTCCAGTA 

COX 2 

External COX 2 F ACTTCACCCACCAGTTCTTC 

External COX 2 R ATCAGTGGGTGCCAGTGGTA 

Internal COX 2 F TCTGGCTGAGAGAACACAAC 

Internal COX 2 R ATGCGGTTCTGATACTGGAA 
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Figure 16. Schematic representation of nested PCR using the ‘external’ and ‘internal (nested) 

COX gene primers. 

 

2.2.4.1.2 DNA polymerase enzyme 

Several different Taq DNA polymerase enzymes, such as REDTaq® DNA 

Polymerase (Sigma-Aldrich, Dorset, UK), AmpliTaq Gold® (Applied Biosystems, 

Life Technologies, Paisley, UK) and the Taq DNA polymerase (Invitrogen Life 

Technologies, Paisley, UK) were tested in PCR reactions during this study, with 

varying levels of success. The Taq DNA polymerase (Invitrogen Life Technologies, 

Paisley, UK) performed most consistently yielding a greater number of PCR 

products when compared to the other polymerases, and therefore was selected for all 

subsequent PCR reactions used for the isolation of the COX genes. 

2.2.4.1.3 Cycling conditions 

The PCR process is achieved through several cycles of repeated heating and cooling 

to allow DNA melting and enzymatic DNA replication. The annealing temperature 

of the primer to the DNA strand is particularly important and specific to each primer 

set. The annealing temperature and number of cycles used for the primers varied 

according to the ‘conventional’ or ‘touch-down’ PCR programmes employed as 
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shown in Figure 17. During ‘conventional’ PCR, amplification was achieved using 

one specific primer annealing temperature only, which was generally 2-5 °C below 

the lowest Tm of the primer pair. This programme consisted of 25-30 cycles with one 

annealing temperature between 55-60 °C (Figure 17 A). A modified ‘touch-down’ 

PCR programme was also used to increase the specificity of the primers during 

amplification. During touch-down PCR, the initial cycles of amplification were 

performed using an annealing temperature that was equal to or above the Tm of the 

primers used (between 58-60 °C). The temperature was subsequently lowered in 

decrements of 0.5 °C with every cycle (for 30 cycles) until the desired ‘touch-down’ 

annealing temperature (45 °C) was reached. Amplification was then continued at this 

temperature for the remaining cycles (15 cycles) (Figure 17 B). The cycling range of 

temperatures changes the stringency of the primers; the high temperatures at the 

earlier cycles ensure increased stringency of the primers allowing for greater primer 

specificity however, at the lower temperatures the risk of non-specific products being 

amplified is increased. Following thermal cycling, PCR reactions were visualised on 

an agarose gel and the resultant PCR products were examined under UV light.  
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Figure 17. Conventional (A) and touch-down (B) PCR cycling parameters used for the 

amplification of COX genes in the fathead minnow. 
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2.2.5 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to visualise the PCR reactions and determine 

whether the product(s) of interest had been amplified. This simple and effective 

technique is used for the separation of RNA and DNA based on their size. Separation 

is achieved by the migration of such molecules through a highly cross-linked agarose 

gel matrix in response to an electrical current. As RNA and DNA are negatively 

charged, they will migrate from the negative cathode toward the positive anode 

separating products by size in a series of bands. The PCR products were visualised 

on an agarose gel made with 1.5 g of certified biological agarose and 100 mL of TBE 

buffer (1 x) (90 mM Tris, 90 mM Boric acid, 2 mM EDTA). The solution was heated 

in a microwave until the agarose powder had completely dissolved, cooled to 60 °C 

and then 5 µL of ethidium bromide (10 mg/mL) was added to the gel solution. EtBr 

forms fluorescent complexes with nucleic acids and is used to stain the PCR products 

so that they can be visualised under UV light. The solution was decanted into a 

plastic mould with a comb inserted, in order to create empty wells. The gel was left 

to cool and solidify for approximately 30–45 minutes. The colourless PCR reactions 

were mixed with 2 µL of 10 x gel-loading buffer (0.3% (w/v) bromophenol blue, 

65% (w/v) sucrose, 10 mM Tris-HCl [pH 7.5] and 10 mM EDTA) to add density and 

to allow tracking of the samples. A 1 Kb
+
 DNA ladder (Invitrogen Life 

Technologies, Paisley, UK) was used for size determination in base pairs (bp) of the 

PCR products. The samples were run at 80 V for 45 minutes and visualised under 

UV light using a gel documentation system (Gel Doc XR, Bio-Rad, Hertfordshire, 

UK). 

2.2.6 Extraction and purification of PCR products (DNA) from gel 

Following examination under UV light, PCR products of the correct expected size (in 

bp) were extracted from the agarose gel and the DNA was recovered using the 

MinElute™ Gel Extraction kit (QIAGEN, Manchester, UK), according to the 

manufacturer’s protocol. Briefly, the PCR product was carefully excised from the gel 

using a sharp scalpel, weighed and mixed with three volumes of digestion buffer and 

incubated at 50 °C for 10 minutes to ensure that the gel had been completely 

dissolved. One gel volume of isopropanol was added to the sample to facilitate DNA 
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binding to the silica membrane in the MinElute column. The membrane containing 

bound DNA was washed twice with an ethanol-containing wash buffer. After the 

second wash buffer had been added the column was left to stand for 3 minutes and 

centrifuged at 10,000 x g for 1 minute at room temperature one final time to remove 

any residual ethanol. The column was transferred into a clean 1.5 mL micro-

centrifuge tube and the DNA was eluted with 10 µL of DEPC-treated water. DNA 

samples were collected, quantified by spectrophotometry (NanoDrop 1000, Thermo 

Scientific, LabTech, East Sussex, UK) and stored at -20 ºC until required for 

recombinant cloning. 

2.2.7 Recombinant DNA cloning 

PCR is a simple and effective technique used to produce millions of copies of a DNA 

sequence that can be subsequently visualised as a DNA band by gel electrophoresis. 

However, a DNA band of the correct expected size may contain several DNA 

sequences, all of which have the same size. This can be particularly problematic if 

the primers have not been optimised or when examining for an unknown DNA 

sequence with primers that are not specific to the sequence, such as the generic 

primers that were designed in this study. Recombinant DNA cloning presents an 

additional method of separating and identifying all potential DNA sequences that 

may be found within a single DNA band of interest and subsequently amplifying the 

desired DNA product. This multi-step procedure fundamentally involves inserting 

the (gel-extracted and purified) DNA product into a bacterial plasmid vector, through 

a process of “ligation”. The plasmid is then introduced into a suitable bacterial host 

cell through a process of “transformation” and the host cells are subsequently grown 

on agar plates to amplify the desired DNA product. 

2.2.7.1 Ligation 

Ligation of extracted PCR (DNA) products was carried out using the QIAGEN PCR 

Cloning Kit (Manchester, UK), which utilises the pDrive cloning vector (3.85 Kb in 

size), according to the manufacturer’s protocol. DNA products generated by Taq 

DNA polymerases contain a single adenine (A) overhang at each end referred to as a 

“sticky end” which can hybridise with high specificity to the uracil (U) overhang 
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found at either side of the linearised cloning vector, as shown in Figure 18. Only one 

single DNA product can be inserted into a plasmid vector, thus separating different 

DNA products of the same size. Up to 4 µL (26 ng) of the purified DNA product was 

mixed with 1 µL of pDrive cloning vector (50 ng/µL) (using a 10:1 DNA product to 

vector molar ratio) and 5 µL of 2 x Ligation Master Mix. The solution was made up 

to 10 µL using distilled water, gently mixed and incubated for two hours at 4 °C. 

During this incubation time, the adenine (5’ end) and uracil (3’ end) residues in the 

DNA product and cloning vector, respectively, hybridised together to produce a 

complete plasmid (Figure 18). The plasmid also contains a multiple cloning site 

located within the lacZ gene, and a drug-resistant gene marker (AmpR), which 

confers resistance to the antibacterial compound ampicillin, therefore allowing 

screening of the bacterial cells (with an inserted plasmid) during “transformation” 

(see next section). 

 

Figure 18. Schematic diagram of ligation of a PCR (DNA) product into a plasmid vector to form 

a “recombinant DNA” molecule. An adenine (A) residue from the PCR product hybridises with 

high specificity to the uracil (U) in the cloning vector. The plasmid contains a multiple cloning 

site located within the lacZ gene where the exogenous DNA is inserted and an ampicillin-

resistant gene marker (AmpR), which allows selective screening of cells during 

“transformation”. 
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2.2.7.2 Transformation 

Immediately following the ligation incubation period, 2 µL of ligation mix was 

added to quickly thawed QIAGEN EZ Competent (E.coli) cells (provided in the 

QIAGEN PCR Cloning Kit) and incubated on ice for 5 minutes. The cell mixtures 

were subsequently heat-shocked at 42 ºC for 30 seconds and then immediately 

returned to the ice, allowing the permeated cells to take up the plasmid vectors. Only 

one plasmid vector is usually taken up by one cell. The transformed cells were 

incubated on ice for 2 minutes; this was followed by the addition of 250 µL of room 

temperature nutrient-rich SOC medium, used to stabilise the cells and maximise 

uptake into the competent cells. The transformed cell mixtures were grown on agar 

medium (1.5% (w/v) agar, 1% (w/v) tryptone, 0.5% (w/v) yeast extract and 1% (w/v) 

NaCl, autoclaved and cooled to 50 °C) with the following added antibiotics; 

ampicillin (100 µg/mL), X-gal (5-Bromo-4-Chloro-3-Indolyl-beta-

galactopyranoside) (50 mg/mL) and IPTG (isopropyl-beta-D-thiogalactopyranoside) 

(0.1 M stock). The cell mixtures were spread on to agar-containing plates using a 

sterilised glass spreader and incubated overnight at 37 ºC.  

X-gal is used as a differentiation marker, which allows selective screening of 

transformed bacterial cells using the blue/white screening method. Bacterial cells 

transformed with plasmids containing the DNA insert will produce white colonies 

(i.e. recombinant plasmids), whereas cells transformed with the plasmid only 

(without the DNA insert) will result in blue colonies (i.e. non-recombinant). The 

ampicillin allows screening of transformed bacterial cells (i.e. an inserted plasmid 

with ampicillin resistance), as only these cells can colonise the ampicillin-containing 

agar. 

After overnight incubation, the plates were incubated at 4 ºC for 2 hours to facilitate 

colour development (i.e. blue and white colonies) which was further enhanced by 

IPTG, allowing easier determination of the white-coloured recombinant colonies and 

blue-coloured non-recombinant colonies. The white colonies were selected for 

further assessment using PCR. 
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2.2.7.3 Assessment of colonies using PCR  

White colonies were amplified using PCR with M13 primers (Forward 5' 

GTAAAACGACGGCCAGT 3') and (Reverse 5' AACAGCTATGACCATG 3') to 

identify which colonies contained the correct-sized DNA inserts of interest. These 

primers amplify the region in between the T7 and SP6 promoter sites (located on the 

cloning vector) which contains the exogenous PCR (DNA) product insert. A total of 

20 colonies were selected and placed into individual PCR reactions and visualised on 

a 1.5% agarose gel. Positive colonies containing the correctly-sized DNA inserts 

were subsequently cultured in Luria Broth (LB) medium supplemented with 

ampicillin (100 µg/mL) and incubated overnight at 37 ºC with vigorous shaking to 

increase bacterial growth. After incubation, the cultures were mini-prepped to purify 

the plasmid DNA. 

2.2.7.4 Plasmid DNA purification 

Plasmids were isolated from bacterial cell cultures using the QIAprep Miniprep Kit 

(QIAGEN, Manchester, UK) according to the manufacturer’s protocol. All steps 

were carried out at room temperature. Bacterial cells were centrifuged at 6,000 x g 

for 15 minutes to produce a cell pellet. The supernatant was disposed of into 

previously prepared multi-purpose (Virkon) disinfectant solution. The pellet was 

firstly lysed in 250 µL of an alkaline solution containing RNase A, followed by 250 

µL of a second lysis buffer containing an optimised salt concentration for DNA 

binding. 350 µL of neutralisation buffer was then added and the tube was thoroughly 

mixed by inverting several times to promote the precipitation of proteins and 

genomic DNA. The mixture was centrifuged at 17,900 x g for 10 minutes which 

produced a white pellet and the supernatant (containing the plasmid) was pipetted 

onto a QIA prep spin column and centrifuged at 17,900 x g for 1 minute. The spin 

column was washed with 750 µL of ethanol-containing wash buffer and centrifuged 

to allow the plasmid DNA to adsorb onto the silica membrane. The column was 

centrifuged one final time to remove any residual ethanol. The DNA was eluted with 

50 µL of elution buffer and the DNA yield was quantified using the NanoDrop 

spectrophotometer. The plasmid DNA samples were stored at -20 ºC. 
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2.2.7.5 Restriction digestion 

The purified plasmids were examined using a restriction digestion to identify which 

colonies contained the correct-sized DNA inserts, before they were sent for DNA 

sequencing. Restriction enzymes recognise short, specific nucleotide sequences on 

double-stranded DNA molecules (“restriction sites”) that can be cleaved into smaller 

fragments, allowing determination of the size of the inserted DNA fragments. 

Plasmid DNA samples were digested using the EcoRI restriction enzyme that cleaves 

DNA in a staggered manner to produce “sticky ends”. A restriction digestion was 

performed using 1 µg of plasmid DNA, 2 µL of 10 X restriction buffer (10 U/µL), 

1.5 µL of EcoRI enzyme and an adjustable volume of distilled water to make a 20 µL 

sample mixture. Samples were incubated at 37 °C for one hour and the digested 

products were separated on a 1% agarose gel and visualised under UV light. 

2.2.8 DNA sequencing 

The purified DNA products of the correct size were diluted to a concentration of 600 

ng in 30 µL using distilled water. The forward and reverse primers used during 

amplification (or alternately if plasmid DNA was used, the M13 primers) were also 

prepared at a concentration of 32 picomoles in 10 µL using distilled water. The 

samples were sequenced using the DNA Sequencing Service, University of Dundee, 

Scotland (www.dnaseq.co.uk). The results from the sequencing were provided as a 

chromas plot indicating the nucleotide sequence of the DNA product, as shown in 

Figure 19. The quality of the sequencing was indicated by the height and definition 

of the peaks. The beginning of the sequencing reaction generally produced low 

quality peaks. A sequence was considered reliable only when the nucleotide peaks 

had become sharp and well defined.  

http://www.dnaseq.co.uk/
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Figure 19. Example of a chromatogram file showing the nucleotide sequence of a partial COX 2 

gene fragment expressed in fathead minnow gill tissue (analysed without cloning). The quality of 

the peaks was indicated by the histograms (grey bars) above each DNA sequence peak and the 

quality ‘threshold’ (blue line). Generally, the first 20-50 sequenced bases showed low quality 

peaks. The arrow indicates where the quality of sequence peaks was deemed to be reliable. The 

direct sequencing method was used to confirm that the amplified DNA was the target. 

 

2.2.9 Computational analysis of sequences 

Nucleotide sequences were analysed for similarity to other COX gene sequences and 

annotation using the NCBI database. The nucleotide sequences were analysed in 

their sense (5’-3’) direction, and where the sequence product was in the anti-sense 

direction, the nucleotide sequence was reverse-complemented using an automated 

online tool (http://www.bioinformatics.org/sms/rev_comp.htmL).  

The sequenced DNA products were queried against the sequences listed within the 

NCBI database using the BLAST tool to ensure the correct sequences had been 

amplified, and to help identify regions of similarity between the proposed fathead 

minnow COX gene sequences. Sequences were listed as significantly similar to the 

query sequence (proposed fathead minnow COX sequence); somewhat similar or 

dissimilar in rank order, starting with the most similar. Alongside each listed 

sequence, a ‘score (max and total)’ value was provided, that is the numerical value of 

the overall ‘quality’ of the alignment between the query sequence and the matched 

database sequence segment, a ‘query cover’ value, that is the query sequence length 

http://www.bioinformatics.org/sms/rev_comp.html
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that is included in the aligned segments, an ‘expect (E)’ value, which is the threshold 

for the number of matches (or ‘hits’) in the database that occur by chance (the lower 

the E value, or the closer it was to zero, the more significant the match) and an 

‘identity’ value, that is the extent to which two or more sequences are related by 

comparison. All obtained sequences were aligned using the Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/) pairwise or multiple sequence alignment 

tool. The nucleotide sequences were subsequently translated into their amino acid 

sequences using the ExPASy proteomics server of the Swiss Institute of 

Bioinformatics (www.expasy.ch/tools/dna.htmL) and searched in protein databases. 

The nucleotide sequence was translated into six possible reading frames; frame 1 was 

obtained the first translated nucleotide, frame 2 from the second and frame 3 from 

the third. Frames 4 to 6 were the same as frames 1 to 3, but in the reverse direction. 

The longest reading frame containing no stop codons was selected for further 

analysis. Protein sequences were analysed using BLAST and ‘InterPro’ (EMBL-EBI) 

(https://www.ebi.ac.uk/interpro/), an online bioinformatics tool used for the 

classification and annotation of proteins (Hunter et al., 2012). The protein sequences 

were also aligned against other COX protein sequences using Clustal Omega to 

identify regions of similarity and conserved sites.  

2.2.10 Statistical analyses 

The results are presented as mean ± standard deviation (mean ± SD) unless otherwise 

stated. Statistical analysis and graphs were created using GraphPad Prism 6 

(GraphPad Software, Inc). Data were analysed for normality and variance of 

homogeneity (D'Agostino-Pearson normality test). Where assumptions of normality 

and homogeneity were met, statistical significance was tested using t-tests or one-

way analysis of variance (ANOVA). If equal variance was not met, then a non-

parametric test (Mann-Whitney test) was carried out (comparing the median). 

Statistical significance was set at a level of p < 0.05, unless otherwise indicated. Any 

variations in the statistical analyses conducted are covered in individual chapters. 

  

http://www.expasy.ch/tools/dna.html
https://www.ebi.ac.uk/interpro/
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3.1 INTRODUCTION 

The widespread detection of human pharmaceuticals in the aquatic environment has 

raised concerns over their potential impact on aquatic organisms. There is now a 

growing interest in the use of mammalian pharmacological (and toxicological) data 

to assess the effects of pharmaceuticals present in the environment in exposed non-

target organisms (Huggett et al., 2003; Winter et al., 2010; Berninger and Brooks, 

2010). The read-across hypothesis stipulates that it is possible to use the relationship 

between internal (blood plasma) concentrations of a given pharmaceutical in the 

intended target (i.e. human) and non-target (i.e. fish) to determine the risk of a 

pharmacological effect occurring in that organism (Huggett et al., 2003; Rand-

Weaver et al., 2013). The human therapeutic plasma concentration (Cmax) is utilised 

as an anchor to establish the relationship between the internal concentrations in the 

exposed non-target organism. In humans, the therapeutic concentrations of ibuprofen 

in the blood plasma (following a normal therapeutic dose of 400 mg) can range 

between 15,000-30,000 µg/L (Schulz et al., 2012), and therefore this range will be 

used as the reference range in this study. 

There are a limited number of studies where the exposure water, and internal 

concentrations of ibuprofen (Brown et al., 2007; Fick et al., 2010; Nallani et al., 

2011) and other pharmaceuticals (for example, Cuklev et al., 2011, 2012, Giltrow et 

al., 2009; Lahti et al., 2011; Owen et al., 2009; Valenti et al., 2012), have been 

analytically measured in aquatic organisms. However, as it is not feasible to measure 

the internal concentrations of every single one of the 3,000 pharmaceuticals that are 

licenced for use (Fent et al., 2006), predictive modelling may provide an alternative 

approach. The theoretical FPM (Huggett et al., 2003) may be used to estimate the 

“fish steady-state plasma concentration” (FSSPC) of a pharmaceutical from a given 

exposure water concentration (Huggett et al., 2003) (refer to Chapter 1, Section 

1.3.1.2 for further details). The FPM was used to predict the uptake of ibuprofen into 

fish blood, and the accuracy of the model was evaluated by comparing the estimated 

and experimental values, in order to validate the use of the FPM as a potential tool 

for estimating internal concentrations of pharmaceuticals in fish. The factors that can 

influence the uptake of a drug from the surrounding water into the blood plasma 
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compartment are largely determined by its pharmacokinetic properties, such as the 

lipophilicity (Log Kow). Ibuprofen has a relatively high Log Kow of 3.80 (Brown et 

al., 2007) and in field studies, ibuprofen has been shown to bioconcentrate into 

rainbow trout blood plasma by up to 18,667-fold from environmentally relevant 

effluent concentrations (0.0045 μg/L)  (Brown et al., 2007). However, in one 

laboratory exposure study, conducted using higher exposure concentrations (i.e. 250 

μg/L), ibuprofen was found to only weakly bioconcentrate (by 1.4 fold) into the 

blood plasma of channel catfish (Ictalurus punctatus) (Nallani et al., 2011). The 

results from these reported studies suggest that variation exists in the uptake of 

ibuprofen.  

The first aim of this study was to determine whether or not ibuprofen could 

bioconcentrate into fathead minnow blood plasma and reach human therapeutic 

plasma concentrations (Cmax), and to establish the exposure water concentration of 

ibuprofen at which the Cmax is reached (if possible) in fish blood plasma. The 

second aim is to evaluate the accuracy of the FPM. 

3.2 METHODS 

A brief overview of the exposure details used in this chapter are provided below, full 

details of the materials and methods can be found in Chapter 2. 

3.2.1 ≤96 hour flow-through exposure 

To determine whether or not therapeutic concentrations of ibuprofen could be 

established in fathead minnow blood plasma, fish were exposed (in a range-finder 

study) to four exposure concentrations of ibuprofen; 100, 270, 370 and 500 µg/L for 

≤96 hours, using continuous flow-through systems (Chapter 2, Section 2.1.5, Table 

6; ‘Exposure 2’ and ‘Exposure 3’). In the first study, adult male fathead minnows 

(n=64) were exposed to DWC, SC (acetone) and nominal ibuprofen exposure water 

concentrations of 100 and 500 µg/L (n=16 per treatment) (Chapter 2, Section 2.1.5, 

Table 6; ‘Exposure 2’). In a subsequent follow-up study, adult male fathead minnows 

(n=100) were exposed to DWC, SC and nominal ibuprofen exposure water 

concentrations of 270 and 370 µg/L (n=25 per treatment, including depuration) 

(Chapter 2, Section 2.1.5, Table 6; ‘Exposure 3’). Prior to the exposure period, fish 
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were randomly distributed into 45 L tanks. All exposure conditions were maintained 

as described in Chapter 2, Section 2.1.6.3. The fish were not fed throughout the 

exposure period (except in ‘Exposure 3’ see below).  

3.2.2 Depuration in clean water (‘Exposure 3’ only) 

Following the 96 hour exposure period, the remaining fish that had been exposed to 

DWC, SC, 270 and 370 µg/L (n=9 per treatment) were fed once with food pellet and 

brine shrimp (Artemia sp.). Two hours after feeding, the fish were transferred into 

tanks containing dilution water only for ≤72 hours to allow clearance of the test 

substance/depuration. 

3.2.3 Fish blood plasma & tissue sampling 

After the exposure and depuration period, all fish were terminated and blood plasma 

and tissues (gill, liver and brain) were collected and stored according to the method 

described in Chapter 2, Section 2.1.7. Fish exposed to DWC, SC and ibuprofen 

concentrations of 100 and 500 µg/L were sampled after 3, 24, 48 and 96 hours (n=4 

fish at each time point) and fish exposed to DWC, SC and ibuprofen concentrations 

of 270 and 370 µg/L were sampled after 24, 48, 72 and 96 hours (n=4 fish at each 

time point). Depurated fish were sampled after 24 (n=4) and 72 hours (n=5). The 

weight and length measurements were used to calculate the condition factor (K) 

(Equation 3). The liver (and body) weights were used to calculate the hepatosomatic 

index (HSI) (Equation 4).  

3.2.3.1 Condition factor (K) 

Fulton's condition factor (K) is indicative of the overall well-being of fish. K was 

calculated using the fish body weight (W) (in g) and standard length (L) (in cm) and 

a factor of 100 to bring K closer to unity, using Equation 3 (Froese, 2006): 

 

Equation 3. Fulton's condition factor (K).

 

3

W
K =  x 100

L
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 

 

Liver weight g
HSI  =   x 100

Fish weight g

           

3.2.3.2 Hepatosomatic Index (HSI) 

The hepatosomatic index (HSI) was calculated based on the relationship between the 

liver weight (in g) to whole body wet weight (in g) using Equation 4: 

 

 

 

Equation 4. Hepatosomatic index (HSI).

 

3.2.4 Exposure water sampling 

Water samples (5 mL) were collected from the DWC, SC and 100, 270, 370 and 500 

µg/L ibuprofen exposure tanks prior to Day 0 (-72 hours) and subsequently after 3, 

24, 48, 96 hours (100 and 500 µg/L) and 24, 48, 72, 96 hours (270 and 370 µg/L) 

following exposure. Water samples were collected from the depuration tanks 

containing dilution water before fish were introduced. The exposure waters were 

collected at the same time each day, or just before fish were sampled. 

3.2.5 Quantification of ibuprofen in exposure waters and blood plasma 

The concentration of ibuprofen in exposure waters and control and ibuprofen-treated 

fish blood plasmas were analysed (two analytical measurements per sample) using 

the LC-MS/MS method, as described in Chapter 2, Section 2.1.9. 

3.2.6 Estimating plasma ibuprofen concentrations using the Fish Plasma 

Model (FPM) 

The FPM model can be used to predict the FSSPC of a pharmaceutical compound 

from the surrounding water. To evaluate the accuracy of the model, the uptake of 

ibuprofen into fathead minnow blood plasma was modelled using the FPM and 

compared to the experimentally measured values. The partitioning of ibuprofen 

between the aqueous phase and the arterial blood (Log Pblood:water) in fathead 

minnows was estimated using Equation 1 (see Chapter 1, Section 1.3.1.2). The Log 

Pblood:water is usually determined using the Log Kow (Fitzsimmons et al., 2001), 

however, as pharmaceuticals are amenable to ionisation at different pH’s, including 
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the pH of blood plasma, the FPM was also used to estimate uptake using the 

distribution coefficient Log D, measured at physiological pH (7.4). The Log 

Pblood:water was used to derive the FSSPC using Equation 2 (see Chapter 1, Section 

1.3.1.2). MEC refers to the measured environmental (exposure water) concentration 

of ibuprofen i.e. 100, 270, 370 and 500 µg/L. 

3.2.7 Statistical analysis 

The results are presented as mean ± SD unless otherwise stated. Data collected were 

analysed for normality and variance of homogeneity (D'Agostino-Pearson normality 

test). Where assumptions of normality and homogeneity were met, statistical 

significance of treatment effects on standard length (mm), body weight (g), K and 

HSI between control and ibuprofen-treated groups over 96 hours was tested using 

one-way analysis of variance (ANOVA) followed by a multiple comparison test 

(Holm-Sidak or Tukey’s test). Statistical significance was set at a level of p < 0.05.   
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3.3 RESULTS 

3.3.1 Water concentrations of ibuprofen 

To determine the actual exposure concentrations, in the continuous flow-through 

system, the water concentration of ibuprofen in each exposure tank was quantified 

over 96 hours and compared to the nominal test concentrations (Table 10).  

Table 10. Measured ibuprofen (μg/L) in tank waters over the 96 hour exposure period. 

Ibuprofen measurements in the waters of the DWC and SC tanks were below the LOD (<2.5 

µg/L). 

 

The mean measured (± SD) water concentrations of ibuprofen over 96 hours were 

105 ± 2, 278 ± 70, 409 ± 26 and 502 ± 56 µg/L in the 100, 270, 370 and 500 µg/L 

exposure tanks, respectively. The mean measured ibuprofen concentration (over 96 

hours) was significantly different in each exposure tank (p < 0.05, using one-way 

Nominal exposure 
concentration µg/L 

No. of exposure 
hours 

Measured water 
concentration µg/L 

% Nominal 

100 3 107 107 

100 24 107 107 

100 48 105 105 

100 96 102 102 

Mean ± SD  105 ± 2 103 

270 24 285 105 

270 48 179 66 

270 72 343 127 

270 96 307 114 

Mean ± SD  278 ± 70 103 

370 24 422 114 

370 48 416 113 

370 72 428 116 

370 96 371 100 

Mean ± SD  409 ± 26 111 

500 3 539 108 

500 24 419 84 

500 72 518 104 

500 96 532 106 

Mean ± SD  502 ± 56 103 
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ANOVA). Overall, the time-weighted average ibuprofen concentration in water 

samples were 103, 103, 111 and 103% of the nominal exposure concentrations, 

respectively. The concentrations of ibuprofen in water across all exposure hours were 

within an acceptable range (± 20% of the expected ‘nominal’ concentration), with the 

exception of the 270 µg/L exposure tank. The measured concentrations at 48 and 72 

hours were outside the expected range, and were 66% and 127% of the nominal, 

respectively. This fluctuation in the measured concentrations was accounted for by a 

build-up of test substance at the end of dosing line. After the issue had been rectified, 

normal dosing was resumed and the ibuprofen concentration in the tank was within 

the expected range by 96 hours. During the exposure period, ibuprofen 

measurements in the water samples collected from the DWC and SC tanks were 

below the LOD of 2.5 µg/L, which was determined to be the lowest acceptable 

standard concentration for which ibuprofen could be reliably measured in water with 

the analytical method used. This was therefore interpreted as no ibuprofen being 

present in these tanks. After the exposure period, fish that had been exposed to 

nominal concentrations of 270 and 370 µg/L for 96 hours were placed into 

depuration tanks, containing dilution water only, for either 24 or 72 hours. In order to 

confirm that no ibuprofen was present in these tanks, water samples were measured 

prior to the introduction of fish, and these measurements were also found to be below 

the LOD of 2.5 µg/L, indicating that there was no contamination of the depuration 

tanks with ibuprofen. 

For simplicity, the nominal concentrations were used for the presentations of results 

in this chapter, unless otherwise stated. Graphical representation of the measured 

water concentrations before (-72 hours) and during the 96 hour exposure period 

following exposure to water concentrations of 100, 270, 370 and 500 µg/L are shown 

in Figure 20. Measured water concentrations were stable at 100 and 370 µg/L over 

the exposure period, whereas fluctuations were seen at 270 and 500 µg/L. However, 

only two measurements reported in the 270 µg/L exposure tank were outside of the 

expected range (± 20% of the nominal). Ibuprofen measurements were taken daily 

over the exposure period, or just before fish were sampled, to ensure that fish were 

exposed to consistent water concentrations of the drug throughout the exposure.  
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Figure 20. Measured ibuprofen concentrations (µg/L) in exposure waters before (-72 hours) and 

during the 96 hour exposure period. Water in the exposure tanks were sampled after 3 (100 and 

500 µg/L only), 24, 48, 72 (270 and 370 µg/L only) and 96 hours of exposure. Ibuprofen 

measurements in the waters of the control (DWC and SC) tanks were below the LOD (<2.5 

µg/L). The asterisks highlight the exposure concentrations outside of the ‘acceptable’ range (± 

20% of the nominal). 

 

3.3.2 Fish plasma concentrations of ibuprofen  

3.3.2.1 Fish plasma ibuprofen and human therapeutic concentrations 

Ibuprofen concentrations were quantified in blood plasmas to allow assessment of 

the uptake of ibuprofen from the exposure waters into fathead minnows, and to 

determine whether internal concentrations in fish similar to human therapeutic 

plasma concentrations (Cmax) of 15,000-30,000 µg/L could be established. Fish 

were exposed to water concentrations of 100, 270, 370 and 500 µg/L ibuprofen for 

≤96 hours. Fish were firstly exposed to DWC, SC, 100 and 500 µg/L for 3-96 hours, 

and in a follow-up study, fish were exposed to DWC, SC, 270 and 370 µg/L for 24-

96 hours. Blood plasma samples collected from fish exposed to 100 µg/L (3-96 

hours) and 500 µg/L (3-72 hours) were pooled (4 fish at each time point for each 

concentration) for ibuprofen measurement, in order to establish whether the plasma 

ibuprofen concentrations were in the human therapeutic range. The 96 hour samples 

from the fish in the 500 µg/L exposure tank were used to determine whether it was 
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possible to measure ibuprofen in individual plasma samples, and subsequently, all 

samples from the 270 and 370 µg/L exposure tanks (24-96 hours) were analysed 

individually. Plasma samples collected from fish in control (DWC and SC) tanks 

were pooled as ibuprofen was not expected in these fish. 

The mean plasma ibuprofen concentration in fish exposed to 100, 270, 370 and 500 

μg/L ibuprofen over 3-96 hours is shown in Figure 21. The uptake of ibuprofen into 

fish was rapid, and following three hours of exposure (the earliest time point 

examined) to the lowest and highest water concentrations (i.e. 100 and 500 μg/L, 

respectively) the measured plasma ibuprofen concentrations were 8 and 111-fold 

higher than their measured water concentrations (Table 11). The increasing plasma 

concentration in fish exposed to 270 μg/L ibuprofen between 72-96 hours suggests 

that the plasma concentrations had not stabilised, and therefore it is possible that 

beyond the 96 hours of exposure, the plasma ibuprofen concentrations in these fish 

may have continued to increase. However, due to Home Office regulations, it was 

not possible to continue the exposure after 96 hours, without feeding the fish (this 

was avoided to facilitate fish tissue sampling). In relation to the human therapeutic 

range (i.e. 15,000-30,000 µg/L), the mean blood plasma concentration in fish 

exposed to 100 and 500 µg/L (over 96 hours) was 660 (±180) µg/L and 106,000 

(±71,290) µg/L, respectively. Therefore, these two water concentrations resulted in 

plasma ibuprofen concentrations that were either too low (23-fold below the lowest 

Cmax value of 15,000 µg/L) or too high (3.5-fold above the highest Cmax value of 

30,000 µg/L) to attain human therapeutic concentrations (Figure 21 and Figure 22 A 

& D). The mean blood plasma concentration in fish exposed to 270 and 370 µg/L 

(over 96 hours) was 14,409 (±22,084) µg/L and 40,504 (±36,100) µg/L, respectively. 

Therefore, these intermediate water concentrations produced plasma concentrations 

in fish that were within, or similar to, the Cmax (Figure 21 and Figure 22 B & C), 

indicating that human therapeutic concentrations can be established in fathead 

minnows. Ibuprofen concentration in the control fish were below the LOD of 62.5 

µg/L (Figure 21 and Figure 22), which was determined to be the lowest acceptable 

standard concentration for which ibuprofen could be reliably measured in blood 

plasmas with the analytical method used. This indicated that there was no 

contamination of the control tanks with ibuprofen. 
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Figure 21. Plasma ibuprofen (µg/L) in fathead minnows exposed to 100, 270, 370 and 

500 µg/L over 96 hours. Blood plasmas were sampled after 3 (100 and 500 µg/L only), 

24, 48, 72 (270 and 370 µg/L only) and 96 hours of exposure. Plasma samples collected 

from fish exposed to 100 µg/L (3-96 hours) and 500 µg/L (3-72 hours) were pooled 

(n=1). The mean (±SD) of individual fish (n=3-4 at each time point) exposed to 270, 370 

and 500 µg/L (at 96 hours only) is shown. Ibuprofen measurements in the plasmas of 

fish in the control (DWC and SC) tanks were below the LOD (<62.5 µg/L). Cmax 

denotes the human therapeutic plasma concentrations of ibuprofen.  
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Figure 22. Plasma ibuprofen (µg/L) in fathead minnows after 3-96 hours of exposure to nominal water concentrations of 100 (A), 270 (B), 370 (C) and 500 (D) µg/L. Plasma 

samples collected from fish exposed to 100 µg/L (A) after 3-96 hours and 500 µg/L (D) after 3-72 hours were pooled (n=1). The mean (±SD) is shown for plasma collected from 

individual fish (n=3-4 at each time point) exposed to 270 (B) and 370 (C) µg/L after 24-96 hours and 500 µg/L (D) at 96 hours only. Cmax denotes the human therapeutic plasma 

concentrations of ibuprofen. Ibuprofen measurements in the plasmas of control fish were below the LOD (<62.5 µg/L).
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3.3.2.2 Inter-individual variability in plasma ibuprofen concentrations and 

depuration 

As previously stated, ibuprofen was successfully quantified in individual fish (n=4) 

exposed to 500 µg/L at 96 hours, and in fish exposed to 270 and 370 µg/L for 24-96 

hours (n=3-4 at each time point), to allow assessment of the inter-individual variation 

in drug plasma concentrations, and its relationship with biological effects (see 

Chapter 7).  

The mean plasma ibuprofen concentrations in fish exposed to 500 µg/L at 96 hours 

was 179,739 (± 126,138) µg/L but the lowest and highest measured plasma 

concentrations ranged between 60,940 and 352,903 µg/L, demonstrating the 

variability in plasma ibuprofen concentrations in fish, exposed to the same tank, for 

the same length of time. To further dissect the observed variation in plasma 

concentrations, ibuprofen was measured in individual fish after 24, 48, 72 and 96 

hours (n=3-4 at each time point) of exposure to 270 and 370 µg/L (Figure 23). The 

difference between the lowest and highest measured plasma concentrations in fish 

exposed to 270 µg/L after 48 and 72 hours was below 10-fold, indicating similar 

plasma concentrations in fish at these two time points. However, there was a 275-

fold difference between the lowest and highest measured plasma concentrations in 

fish in the 270 µg/L exposure tank after 96 hours, suggesting greater variability in 

uptake, metabolism or excretion with increasing exposure length. Surprisingly, only 

one fish in this exposure tank (at 96 hours) had a plasma concentration that was 

within the Cmax, suggesting that the mean plasma concentration can be misleading. 

This is clearly exemplified by the plasma concentrations measured in individual fish 

in the 370 µg/L exposure tank after 96 hours, as none of these exposed fish had a 

plasma concentration within the therapeutic range. At this exposure time point, n=3 

fish had a plasma concentration that was determined to be ≤12,500 µg/L. It was not 

possible to accurately determine the plasma concentrations due to over-dilution of 

the samples; and therefore a value of 6,250 µg/L, representing 50% of the calculated 

value was assigned as a conservative estimate of ibuprofen in these samples. 

To determine the removal rate of ibuprofen, fish were placed into depuration tanks 

containing dilution water only for 24 (n=4) or 72 (n=5) hours. Ibuprofen was rapidly 
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eliminated from fish and within 24 hours, blood plasma concentrations were at, or 

close to the LOD (<62.5 µg/L) (Figure 23) although one fish in the 370 µg/L 

exposure tank had a plasma concentration 4-fold higher than the LOD, indicating 

variability in fish metabolism and/or excretion.  
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Figure 23. Variation in plasma ibuprofen (µg/L) in individual fish (n=3-4) exposed to 270 and 

370 µg/L over 24-96 hours. After 96 hours of exposure, fish were fed and after two hours were 

placed into depuration tanks containing dilution water for 24 (n=4) or 72 (n=5) hours. 

Ibuprofen measurements in the plasmas of control fish were below the LOD (<62.5 µg/L). Cmax 

denotes the human therapeutic plasma concentrations. Brackets denote number of fish with the 

same concentration.  
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3.3.2.3 Bioconcentration of ibuprofen  

The plasma concentrations of ibuprofen exceeded the exposure water concentrations, 

demonstrating that ibuprofen is able to bioconcentrate in fish. The proportional 

bioconcentration factor (BCF) of ibuprofen was determined using the measured 

blood plasma concentrations (at each exposure hour) over the measured water 

concentration. Measured plasma concentrations were between 5-8, 7-158, 7-325 and 

76-338-fold higher than the measured water concentrations in the 100, 270, 370 and 

500 µg/L exposure tanks, respectively, over 96 hours (Table 11). The BCF values 

indicate that ibuprofen can strongly bioconcentrate in fathead minnow blood plasma. 

Table 11. Ibuprofen plasma concentrations in fathead minnows exposed to water concentrations 

of 100, 270, 370 and 500 μg/L over 3-96 hours. The bioconcentration factor (BCF) was 

calculated using the mean measured water concentration in the exposure tanks and mean 

measured (mean ± SD) blood plasma concentrations in individual exposed fish (n=3-4), except at 

100 µg/L after 3-96 hours and 500 µg/L after 3-72 hours where plasma samples were pooled 

(n=1).   

Nominal 
Conc. 
µg/L 

No. of 
exposure 

hours 

Measured water 
concentration µg/L 

Measured plasma 
concentration µg/L 

(n) 
BCF 

100 

3 107 897 8 

24 107 550 5 

48 105 697 7 

96 102 485 5 

Mean ± SD                 105 ± 2 

270 

24 285 2000 ± 1732 (3) 7 

48 179 2620 ± 1170 (3) 15 

72 343 4429 ± 2555 (4) `13 

96 307 48,590 ± 82,880(4) 158 

Mean ± SD                 278 ± 70 

370 

24 422 2944 ±1386 (4) 7 

48 416 2942 ± 1594 (4) 7 

72 428 139,104 ± 121,065 (4) 325 

96 371 17,170 ± 20,362 (4) 46 

Mean ± SD                 409 ± 26 

500 

3 539 59,935 111 

24 419 31,800 76 

72 518 152,714 295 

96 532 179,739 ± 126,138 (4) 338 

Mean ± SD                   502 ± 56   



Chapter 3 Results 

 

98 

3.3.3 Accuracy of the Fish Plasma Model (FPM) 

The accuracy of the FPM for estimating the FSSPC of ibuprofen in fathead minnow 

blood plasma was evaluated. The FSSPC was calculated using Log Kow of 3.80 

(Brown et al., 2007) and Log D7.4 of 0.8 as predicted using the Advanced Chemistry 

Development/PhysChem Suite (ACD, 2006) to enable comparison of the most 

suitable constant for estimating ibuprofen uptake. The FPM (calculated using Log 

Kow) over-estimated the FSSPC of ibuprofen by 12-fold in fish exposed to 100 µg/L 

and under-estimated the FSSPC by 3-fold in fish exposed to 500 µg/L over 96 hours, 

compared to the measured concentrations (Figure 24). The FPM accurately estimated 

the FSSPC in fish exposed to 270 and 370 µg/L (after 96 hours). The FSSPC 

calculated using the Log D (pH 7.4) severely under-estimated the uptake of 

ibuprofen across all water concentrations, suggesting that this was not a suitable 

constant. These results suggest that the FPM can be used to accurately determine 

ibuprofen concentrations in fathead blood plasma, and identify the exposure water 

concentration required to establish the Cmax of ibuprofen in blood plasma. 
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Figure 24. Relationship between measured plasma concentration and predicted FSSPC of 

ibuprofen in fathead minnows exposed to mean measured (±SD) water concentrations of 105 (± 

2), 278 (± 70), 409 (± 26) and 502 (± 56) µg/L over 96 hours. The FSSPC was calculated using Log 

Kow and Log D(7.4). The predicted FSSPC values were based on the equation described by 

Fitzsimmons et al., (2001) and the FPM proposed by Huggett et al., (2003). FSSPC = ‘fish steady-

state plasma concentration. Cmax denotes the human therapeutic plasma concentrations of 

ibuprofen. 
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3.3.4 Physiological responses to ibuprofen exposure 

3.3.4.1 Fish mortality 

During both 96 hour exposure studies, there were no fish mortalities. It was expected 

that the highest exposure concentration used (500 µg/L) would not adversely affect 

fish, based on the 96-hour LC50 of ibuprofen reported in bluegill sunfish (Lepomis 

macrochirus) (173 mg/L) (Halling-Sorensen et al., 1998).  

3.3.4.2 Condition factor (K) and Hepatosomatic index (HSI) 

The mean standard length (mm), body weight (g), K and HSI in fish in the control 

(DWC and SC) tanks and fish exposed to 100, 270, 370 and 500 µg/L of ibuprofen 

over 96 hours is shown in Figure 25. The standard length, body weight and K, which 

is an indicator of the overall well-being of fish, did not differ significantly (p > 0.05, 

using one-way ANOVA) between the fish in the exposure tanks and the fish in the 

control (DWC or SC) tanks (n=16 per treatment) (Figure 25 A-F) or the depurated 

fish (n=9 per treatment) (data not shown). The K value can highlight a fish’s ability 

to adapt to drug exposure, and the lack of response in exposed fish indicates that the 

exposure levels and duration did not induce obvious chemical stress in the fish. The 

physiological status was also assessed using somatic indices, such as the HSI, which 

also did not differ significantly (p > 0.05, using one-way ANOVA) between the fish 

in the exposure tanks and the fish in the control (DWC or SC) tanks (n=16 per 

treatment) (Figure 25 G-H) or the depurated fish (n=9 per treatment) (data not 

shown). No solvent effects were observed. 
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Figure 25. Standard length (mm), weight (g), condition factor (K) and hepatosomatic 

index (HSI) in control (DWC and SC) fish and ibuprofen-treated fathead minnows. 

Fish were exposed to water ibuprofen concentrations of 100 and 500 µg/L (A, C, E and 

G, respectively) and 270 and 370 µg/L (B, D, F and H, respectively) over 96 hours. 

Boxes represent mean (full line) with 25th and 75th percentile. The bars extend to the 

10th and 90th percentiles, with outliers represented as dots. The sample size per 

treatment group (n=16). 
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3.3.4.3 Blood haematocrit 

The major side effects of ibuprofen use and NSAID therapy in patients are related to 

common haematological disorders, such as anaemia. To examine whether there were 

any changes in blood parameters in fathead minnows following ibuprofen exposure 

the haematocrit was assessed, which is a measure of the amount of total blood (mm) 

that is occupied by red blood cells. In this study, the haematocrit (%) did not differ 

significantly (p > 0.05, using one-way ANOVA) between fish in the ibuprofen 

exposure tanks, and the fish in the control (DWC or SC) tanks (n=14-16 per 

treatment) (Figure 26). These findings suggest that the exposure water concentrations 

used in this study did not induce haematological changes in fathead minnows.  

 

Figure 26. Haematocrit (%) values for fathead minnow in control (DWC and SC) tanks and in 

fish exposed to 270 and 370 µg ibuprofen/L over 96 hours. Boxes represent mean (full line) with 

25th and 75th percentile. The bars extend to the 10th and 90th percentiles, with outliers 

represented as dots. The sample size per treatment group (n=14-16). 
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3.4 DISCUSSION 

The aim of this chapter was to establish if human therapeutic concentrations of 

ibuprofen could be reached in fathead minnow blood plasma, and to identify the 

exposure water concentration (and duration of exposure) required to reach these 

concentrations. Mean ibuprofen concentrations in fathead minnow blood plasmas 

similar to the human therapeutic range (Cmax) (15,000-30,000 µg/L) (Schulz et al., 

2012) were established in fish that had been exposed to water concentrations of 270 

and 370 µg/L for 96 hours. 

3.4.1 Blood plasma concentrations of ibuprofen in fathead minnows 

Measurements of the ibuprofen concentration in the exposure tanks confirmed that 

fish were exposed to water concentrations close to the nominal, therefore validating 

the flow-through drug delivery system used in this study. A measure of the exposure 

water concentration, over regular intervals, is imperative in order to determine 

whether stable concentrations of a drug can be maintained, since fluctuations, for 

example from drug solubility (Hutchinson et al., 2006), can potentially result in the 

inaccurate assessment of drug bioconcentration, and/or the potential risk to aquatic 

organisms. However, there are many difficulties in both measuring, and maintaining 

stable exposure concentrations using dosing systems, highlighting the complexity of 

recreating realistic exposure scenarios for fish.  

The uptake of ibuprofen into fish was rapid, and ibuprofen accumulated in fathead 

minnows at all tested water concentrations. The pharmacokinetic properties of a 

pharmaceutical can facilitate its partitioning into the plasma compartment of blood, 

and ibuprofen has a relatively high Log Kow (3.80) (Brown et al., 2007) indicating 

that it is lipophilic enough to bioconcentrate. There was a high level of variability in 

the reported BCF values in this study. The measured ibuprofen concentrations in fish 

plasmas ranged between 5-8, 7-158, 7-325 and 76-338-fold higher than the measured 

water concentrations in the 100, 270, 370 and 500 µg/L exposure tanks, respectively, 

over 96 hours. These findings demonstrate that the plasma concentrations of 

ibuprofen were highly variable, and at higher exposure concentrations, there was 

more variability in plasma concentrations, which could have been attributed to 

changes in ibuprofen uptake (absorption through the gills and/or skin), metabolism 
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and/or elimination of the drug within fish. The BCF values reported for ibuprofen in 

channel catfish plasma after 7-day exposure to similar measured water 

concentrations (314 ±55 µg/L) (Nallani et al., 2011) was much lower (1.4-fold), 

indicating that, in contrast to the findings in this study, ibuprofen did not 

bioconcentrate above the exposure water concentrations. However, physiological 

differences between the species may have been a reason for the low bioconcentration 

values, as catfish have a higher lipid content possibly resulting in wider distribution 

of drug than in fathead minnows. 

Fathead minnows that had been exposed to ibuprofen water concentrations of 270 

(n=4) and 370 (n=4) µg/L over 96 hours had mean blood plasma concentrations that 

were within or similar to the human therapeutic range. However, upon closer 

examination, it was apparent that only one fish in the 270 µg/L exposure tank had a 

plasma concentration within the Cmax, and in the 370 µg/L tank, none of the fish 

had a plasma concentration within the Cmax. These findings demonstrate the high 

level of variability in ibuprofen plasma concentrations, and its potential implication 

in the risk assessment of pharmaceuticals to fish.  

Fathead minnows exposed to 100 and 500 µg/L ibuprofen had plasma concentrations 

that were below or above the Cmax, respectively. Fish in the 500 µg/L exposure tank 

had plasma concentrations that consistently exceeded the Cmax over the exposure 

period and the mean plasma concentration in these fish (106,000 µg/L) was 

determined to be half of the reported plasma concentration defined as being ‘toxic’ in 

humans (200,000 µg/L) (Schulz et al., 2012). The exposure concentrations used in 

this study reflect those that are used to produce pharmacological or MoA-related 

effects in fish, rather than those associated with toxicity. Hence, there were no 

adverse symptoms or signs of toxicity observed in fish with these plasma 

concentrations (or any other tested water concentration), which was confirmed by the 

lack of physiological effects, indicative of chemical stress (as assessed by K and HSI 

in fish), in ibuprofen-exposed fish compared to the control groups (using one-way 

ANOVA).  

The human therapeutic plasma concentrations (Cmax) range is fundamental to the 

read-across hypothesis, as the risk for a pharmacological (or toxicological) effect to 
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occur in the non-target species (i.e. fish) is predicted based on the relationship 

between internal blood plasma concentrations in the intended target, humans, and in 

fish. For most pharmaceuticals, the Cmax values are determined during the drug 

development phase (Huggett et al., 2003). The Cmax range of ibuprofen, 15,000-

30,000 µg/L reported by Schulz et al., (2012) (following a normal 400 mg dose) has 

been compiled from clinical trials and toxicology reports (Forsyth et al., 1988; 

Dewland et al., 2009), however, other reported ibuprofen Cmax values range 

between 6,800-10,000 µg/L (Mehlisch and Sykes, 2013) and 10,000-50,000 µg/L 

(Regenthal et al., 1999). These findings suggest that the “therapeutic window” for 

ibuprofen is relatively high in patients, and the difference between the minimum and 

maximum plasma concentrations at which analgesic effects occur in humans, is most 

likely due to individual sensitivity.  

The quantification of ibuprofen in individual fish revealed that there was a high level 

of inter-individual variability in plasma ibuprofen concentrations in fish. However, 

the results from the depuration phase showed that some fish that had been in dilution 

water for 72 hours, had plasma ibuprofen concentrations that were above the LOD, 

which suggests variability in fish metabolism and/or excretion, as well as uptake. In 

humans and mammals, ibuprofen is primarily metabolised in the liver by the 

cytochrome P450 (CYP) CYP2C8 and CYP2C9 enzymes, which contribute to the 

formation of hydroxy metabolites (Rainsford, 2009). Although no orthologs to these 

CYP isoforms have been identified in fish, 2-hydroxy ibuprofen has been identified 

as a major metabolite in fish (Jones et al., 2012; Gomez et al., 2011), suggesting that 

fish may also be able to metabolise ibuprofen in a similar manner to mammals. The 

variability in drug plasma concentrations and differences in drug responses between 

individuals has been linked to genetic polymorphisms in the genes coding for 

CYP2C8 and CYP2C9 enzymes (García-Martín et al., 2004), which may also be a 

contributing factor to the variability in drug (ibuprofen) metabolism in fish.  
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3.4.2 Validation of the Fish Plasma Model (FPM) 

The second aim of this chapter was to evaluate the predictive FPM. Variations in 

analytical methods, instrumentation and cost implications can result in non-

standardised quantification of pharmaceuticals, and therefore predictive modelling 

can provide an alternative method for estimating internal concentrations of 

compounds. The FPM has been proposed as one method for estimating the FSSPC of 

a pharmaceutical from the surrounding water, which is a prerequisite for determining 

the risk for a pharmacological (or toxicological response) to occur within an 

organism. We compared the predicted FSSPC and measured plasma concentration for 

ibuprofen in fathead minnows. The estimated FSSPCs were similar to the measured 

plasma concentration after 96 hour exposure to water concentrations of 270 and 370 

µg/L. Therefore the FPM was highly accurate at predicting the plasma concentration 

of ibuprofen at these concentrations. These data suggest that it is possible to use the 

FPM to identify water concentrations of pharmaceuticals that are able to produce 

plasma concentrations of a drug similar to the Cmax range, which is a requirement of 

the read-across hypothesis. These findings are in agreement with other studies that 

have used the FPM to accurately (within an order of magnitude) predict the plasma 

concentrations of human pharmaceuticals in fish (Fick et al., 2010; Valenti et al., 

2012).  

The main parameters that drive the uptake of a pharmaceutical compound into fish 

are the Log Kow, which is a measure of lipophilicity and Log D7.4 at physiological pH. 

The FSSPC calculated using Log Kow was more accurate at predicting ibuprofen 

plasma concentrations than Log D7.4, which under-estimated the plasma 

concentrations at all exposure concentrations. However, the accuracy of the FPM is 

linked to the input of the constant data used. Therefore misinterpretation of, or 

potential inaccuracies of the model will be reflected by the input data, for example 

the Log Kow of ibuprofen can range between 3.80 (Brown et al., 2007) and 3.97 

(Avdeef et al., 1998). The experimental value for the Log D7.4, of ibuprofen is not 

available in the literature and therefore a predicted value (0.8) (ACD, 2006) has been 

used, however, this value has not been experimentally verified.  
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Furthermore, the FPM does not take into account active excretion, metabolism, or 

drug plasma protein binding kinetics in fish, and therefore other possible sources of 

misinterpretation of the model may arise from differences in these pharmacokinetic 

properties. For example, the presence of steroid hormone binding globulins (plasma 

glycoproteins) in teleost fish gills (Miguel-Queralt and Hammond, 2008), may 

increase the uptake rate of steroid pharmaceuticals, suggesting that further 

experimental studies that consider all factors are required. 

In summary, human therapeutic concentrations of ibuprofen can be reached in 

fathead minnow blood plasma after 96 hours of exposure to water concentrations of 

270 and 370 µg/L. However, large inter-individual variation in plasma 

concentrations were observed.  
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4.1 INTRODUCTION 

Pharmaceuticals have highly specific modes of action (MoA) that arise from their 

interactions with specific proteins (i.e. enzymes/receptors) (Christen et al., 2010). 

Advances in molecular biology, including DNA sequencing, has enabled the 

genomes of several different organisms to be characterised, and online 

bioinformatics resources such as the NCBI database, which contains thousands of 

nucleotide and protein sequences, has allowed human orthologs and conserved 

proteins in other species to be identified. The powers of cross-species sequence (in 

silico) analysis has already been demonstrated in one study by Gunnarsson et al., 

(2008), where a number of conserved human proteins were identified across sixteen 

different species including aquatic vertebrates, suggesting that aquatic organisms 

may also be potentially affected by pharmaceuticals present in the environment 

(Ankley et al., 2007; Huggett et al., 2003; Seiler, 2002). As pharmaceuticals mediate 

targeted effects based on their MoA (rather than non-specific effects), the presence of 

a conserved target in a species could be used as a first step in identifying whether the 

MoA is conserved. MoA-specific biological effects similar to those seen in humans 

have been identified in fish. For example, synthetic oestrogens (such as EE2) can 

interact with the oestrogen receptor (Jobling et al., 1996) and progestins (such as 

Levonorgestrel) can interact with the progesterone receptor (Runnalls et al., 2013) to 

regulate reproductive functions in fish, and β-blockers, such propranolol may act 

through beta-adrenergic receptors to alter cardiovascular functions (Owen et al., 

2007, 2009). These findings suggest that the effects elicited by human drugs are most 

likely to be mediated through specific proteins (Owen et al., 2007). The evolutionary 

conservation of specific human proteins in a given species could be used to link the 

MoA of a particular pharmaceutical to the potential physiological or biological 

effects that are likely to be seen, and identify those organisms that are most sensitive 

to their effects following drug exposure (Ankley et al., 2007).  

In all studied mammals (including human, sheep, mouse) there are two isoforms of 

the COX enzyme (1 and 2) that are encoded by the prostaglandin-endoperoxide 

synthase 1 and 2 (PTGS1 and PTGS2) genes (referred to as the COX 1 and COX 2 

genes). A third isoform, referred to as COX 3 or COX 1b (Chandrasekharan et al., 
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2002; Snipes et al., 2005) has also been identified in some mammals, although a 

functional COX 1b protein is not produced (Reinauer et al., 2013).  

In humans, COX 1 and COX 2 mRNA is expressed in several tissues including lung, 

uterus, testis, brain, pancreas, kidney, liver, thymus, prostate, mammary gland, 

stomach and small intestine, with the highest levels of COX transcripts being found 

in the prostate (O’Neill and Ford-Hutchinson, 1993). Both enzymes are differentially 

regulated and have different physiological functions, despite the fact that they 

catalyse identical reactions in prostanoid biosynthesis (Rouzer and Marnett, 2009). It 

is not fully understood why there are two isoforms of COX in mammals and in 

higher vertebrates, or when the duplication of the COX gene occurred (Järving et al., 

2004). It is hypothesised that gene duplications arise from evolutionary whole-

genome duplication events (Ohno et al., 1968). Evidence suggests that two 

successive rounds of whole-genome duplication occurred early in vertebrate 

evolution (Meyer and Schartl, 1999), and a third genome duplication event occurred 

in the stem lineage of teleost fishes (teleost-specific genome duplication), that 

resulted in the diversification of teleosts and their divergence from ray-finned fish 

(Jaillon et al., 2004; Meyer and Van de Peer, 2005). Therefore, the last common 

ancestor of fish and mammals is likely to be the origin of the vertebrate lineage. 

4.1.1 COX in Fish 

COX proteins have been identified in several fish species using bioinformatics 

databases (Table 12). However, the COX genes that code for these proteins have only 

been cloned and characterised in zebrafish (Grosser et al., 2002; Ishikawa et al., 

2007), rainbow trout (Ishikawa and Herschman, 2007), brook trout (Roberts et al., 

2000), spiny dogfish (Yang et al., 2002) and sea bass (COX 2 only) (Buonocore et 

al., 2005). Database screening revealed that the zebrafish and rainbow trout contain 

one COX 1 and two COX 2 enzyme isoforms, whereas some other species, such as 

the mummichog, possess two COX 1 (named COX 1a and 1b) and one COX 2 

isoform. Other species, such as brook trout contain one COX 1 and one COX 2 

(Table 12), similar to the mammalian isoforms. This suggests alternate duplication of 

chromosomal regions and differential retention of the COX genes during teleost 
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evolution (Havird et al., 2008). The identification of COX proteins and COX genes in 

several fish species suggest that COX is evolutionarily conserved in fish.  

The evolutionary (and functional) conservation of molecular drug targets in fish is a 

pre-requisite of the read-across hypothesis, and one that is required to link the MoA 

of ibuprofen in humans, with fish. Therefore, the aim of this chapter was to identify 

whether the gene(s) coding for the target of ibuprofen in humans (i.e. COX 

enzymes), was present in the fathead minnow, to establish if the MoA is also 

conserved.  
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Table 12. Summary of COX proteins present in fish. Sources include the NCBI (accession 

numbers provided) and Ensemble databases (protein IDs provided). * denotes fish species where 

the COX genes have been cloned and characterised in the laboratory.  

 

  

Fish species Latin name 
COX 

Isoform 
Source 

Zebrafish* Danio rerio 
COX 1, 
COX 2a,  
COX 2b 

NP_705942  
NP_705943 
NP_001020675.1 

Rainbow 
trout* 

Oncorhynchus mykiss 
COX 1,  
COX 2a,  
COX 2b 

NP_001117833.1 
NP_001117820.1 
NP_001118139.1 

Brook trout* Salvelinus fontinalis 
COX 1,  
COX 2 

AAF14529.1  
AAD45896.1 

European 
Seabass* 

Dicentrarchus labrax COX 2 AAQ22672.1 

Spiny 
dogfish* 

Squalus acanthias sCOX AAL37727.1 

Mummichog Fundulus heteroclitus 
COX 1a,  
COX 1b,  
COX 2 

ACH73266.1  
ACH73265.1  
AAS21313.2 

Japanese 
medaka 

Oryzias latipes 
COX 1a,  
COX 1b,  
COX 2 

ENSORLP00000000625 
ENSORLP00000006426 
ENSORLP00000011863 

Three-spined 
stickleback 

Gasterosteus 
aculeatus 

COX 1a,  
COX 1b,  
COX 2 

ENSGACP00000018397 
ENSGACP00000021267 
ENSGACP00000009851 

Longhorn 
sculpin 

Myoxocephalus 
octodecemspinosus 

COX 1a,  
COX 1b,  
COX 2 

ACO34913.1  
ACH73272.1  
ACH73267.1 

Spotted 
green puffer 

Tetraodon nigroviridis 
COX 1a,  
COX 1b,  
COX 2 

ENSTNIP00000009226 
ENSTNIP00000002081 
ENSTNIP00000021290 

Pufferfish Takifugu rubripes 
COX 1a,  
COX 1b,  
COX 2 

http://ensembl.fugu-sg.org 
ENSTRUP00000042693 
ENSTRUP00000046266 
ENSTRUP00000010041 

Atlantic 
croaker 

Micropogonias 
undulates 

COX 1,  
COX 2 

BAF52621.1  
BAF52620.1 

Coelacanth Latimeria chalumnae 
COX 1,  
COX 2 

ENSLACP00000001481 
ENSLACP00000021975 
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4.2 METHODS 

A brief overview of the methods used is provided below, full details can be found in 

Chapter 2.  

4.2.1 Tissue acquisition  

Fathead minnow tissues including the brain, gill, gonad (ovary), gut, heart, liver and 

muscle were collected from control (DWC) fish only (n=5) from the ≤24 hour static 

exposure (preliminary study, Chapter 2, Section 2.1.5, Table 6; ‘Exposure 1’) to 

examine the expression of the COX genes in tissues at basal levels (exposed fish 

tissue samples were not used).  

4.2.2 Total RNA isolation, DNase I treatment and cDNA synthesis 

Briefly, total RNA was extracted from each tissue (up to 40 mg) using the 

GenElute™ Mammalian Total RNA Miniprep Kit (Sigma-Aldrich, Dorset, UK) and 

RNA preparations were treated with Deoxyribonuclease I (DNase I, Amplification 

Grade, Sigma-Aldrich, Dorset, UK) to minimise genomic DNA contamination. 

Treated RNA (2 µg) was reverse-transcribed to cDNA using the SuperScript® III 

First-Strand Synthesis System for RT-PCR (Invitrogen Life Technologies, Paisley, 

UK) and stored at -20 °C, as described in Chapter 2, Sections 2.2.1-2.2.3.  

4.2.3 Polymerase Chain Reaction (PCR), recombinant DNA cloning and 

sequencing analysis 

PCR was carried out using the primers used to isolate COX genes in the fathead 

minnow (Table 9), as identified in Chapter 2, Section 2.2.4.1.1. Primers were used in 

different combinations and in nested reactions to increase the probability of isolating 

one (or both) isoforms of the COX genes. The primer combinations used to 

successfully isolate the COX 1 and COX 2 genes in the fathead minnow, and 

expected product size in bp for each primer set, are summarised in Table 13.  

PCR reaction mixtures were combined in a 0.2 mL micro-centrifuge tube. Each 20 

µL PCR reaction consisted of 1 µL of cDNA (250 ng/µL), 2 µL of 10 x PCR buffer 

(200 mM Tris-HCl, pH 8.4, 500 mM KCl), 0.1 µL of Taq DNA polymerase (5 U/µL) 

(Invitrogen Life Technologies, Paisley, UK), 0.4 µL of 10 mM dNTP mix (10 mM 
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each of dATP, dCTP, dGTP, dTTP), 1 µL of MgCl2 (25 mM), 1 µL of forward and 

reverse COX primers (0.5 µM each) and 14.5 µL of nuclease-free water. For nested 

PCR reactions, 0.5 µL of the amplified DNA (from the first round of PCR) was used, 

as the target DNA had already been exponentially amplified in the first round. PCR 

reaction mixtures were incubated on a thermal cycler (Tetrad 2 Thermal Cycler, Bio-

Rad, Hertfordshire, UK) and were amplified using ‘touch-down’ cycling conditions. 

These conditions included; one cycle at 94 °C for 5 minutes (initial denaturation), 30 

cycles of touch-down PCR with denaturation at 94 °C for 30 seconds, annealing 

starting at 60 °C for 30 seconds, and extension at 72 °C for 30 seconds. The 

annealing temperature was subsequently reduced in decrements of 0.5 °C per cycle 

until the touch-down annealing temperature was reached (45 °C). Amplification was 

then performed at this temperature over 15 cycles, with denaturation at 94 °C for 30 

seconds, annealing at 45 °C for 30 seconds, and extension at 72 °C for 30 seconds. A 

final extension step was performed at 72 °C for 10 minutes and the reactions were 

held at 4 °C.  

PCR reactions were visualised on a 1.5% agarose gel. Product bands of the correct 

expected size (in bp) were then excised from the agarose gel and purified using the 

MinElute
TM

 gel extraction kit (QIAGEN, Manchester, UK). The DNA samples were 

stored at -20 ºC until required for direct sequencing, or recombinant cloning, which 

was carried out according to the method described in Chapter 2, Section 2.2.7. DNA 

products were sequenced using the DNA Sequencing Service, University of Dundee, 

Scotland (www.dnaseq.co.uk) and analysed using online nucleotide and protein 

sequences bioinformatics tools such as BLAST and InterPro databases, as described 

in Chapter 2, Sections 2.2.8-2.2.9. 

 

 

 

 

 

http://www.dnaseq.co.uk/
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 Table 13. Forward (F) and Reverse (R) primer combinations used to isolate COX 1 and COX 2 

in the fathead minnow and their expected product size (bp). 

  

Gene Primer ID 
Primer combinations used to 

isolate COX 

Expected 
product size 

(bp) 

COX 1 

External COX 1 F 
External COX 1 F & R 

 
 
 

Internal COX 1 F & R 

653 
External COX 1 R 

Internal COX 1 F 
454 

Internal COX 1 R 

COX 2 

External COX 2 F 
External COX 2 F & R 

 
Internal COX 2 F & R 

 
Internal COX 2 F & External COX 2 R 

522 
 

180 
 

222 

External COX 2 R 

Internal COX 2 F 

Internal COX 2 R 
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4.3 RESULTS 

4.3.1 Assessment of RNA quality 

RNA isolated from fathead minnow gill, liver and brain tissues was visually assessed 

on a 1.5% agarose gel to give an indication of RNA quality. Intact RNA is 

characterised by two distinct bands (28S and 18S), the 28S band should be 

approximately twice as strong as the 18S, as shown in the gill and liver samples 

(Figure 27). The RNA extracted from the brain produced weak bands, indicating low 

RNA quantity. Therefore, the brain was not selected for further analysis. There was 

no indication of DNA contamination or RNA degradation (smeared bands). 

 

 

 

 

 

 

 

Figure 27. Assessment of RNA integrity by agarose gel electrophoresis. RNA isolated from 

fathead minnow gill and liver showed clean, distinct bands corresponding to the 28S (upper 

bands) and 18S (lower bands) ribosomal RNA indicating intact RNA. Samples were separated 

on a 1.5% agarose gel. A 1kb+ DNA ladder (Invitrogen) was used for size determination. 

 

4.3.2 Identifiying a putative fathead minnow COX 1 transcript 

To examine whether the COX 1 gene was expressed in the fathead minnow, a first 

round of PCR (using the COX 1 external primers) was conducted with cDNA 

obtained from gill, gut, heart and muscle tissues. A subsequent nested round of 

amplification (using the COX 1 internal primers) was performed to increase the 

specificity of the reaction. The expected product size for the external and internal 

primers was 653 bp and 454 bp, respectively (Figure 28). 
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Figure 28. PCR products generated using COX 1 primers in fathead minnow tissues. Two 

rounds of PCR amplification were performed using external and internal primers sets. No 

products were observed from the first round of PCR, however the nested reaction resulted in a 

~450 bp band in the gill, gut and muscle tissues, similar to the expected size (454 bp). Samples 

were separated on a 1.5% agarose gel. A 1kb+ DNA ladder (Invitrogen) was used for size 

determination of product bands. 

 

Amplification using the external COX 1 primers resulted in no visible products, 

indicating that these primers were not specific enough or did not generate sufficient 

products to be visualised. The internal COX 1 primers used in the nested round 

yielded one product in the gill, gut and muscle tissues, all corresponding to the 

expected size of 454 bp (no PCR product was generated in the heart). The product 

bands were excised from the gel, ligated into the pDrive cloning vector method and 

transformed into E.coli competent cells. Several colonies were assessed using PCR 

with M13 primers to determine if the resulting colonies contained the correct-sized 

inserts (data not shown). Nine positive colonies were cultured in LB medium 

followed by plasmid purification. The plasmid DNA samples were digested using the 

EcoRI restriction enzyme to confirm the size of the insert (Figure 29). 
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Figure 29. Restriction digest of purified plasmid containing PCR product inserts. Digested 

fragments of ~ 380 bp were observed in the gill and muscle tissues. Two additional weak 

fragments at 500 bp were also seen in the gill (indicated by arrow). No digested fragments were 

seen in the gut. Samples were separated on a 1.5% agarose gel. A 1kb+ DNA ladder (Invitrogen) 

was used for size determination. 

 

One large fragment of approximately 4,000 bp was observed, indicative of the 

cleavage of the pDrive cloning vector (3.85 Kb). Cleaved fragments of around 380 

bp were seen in the gill and muscle, and a further weak fragment at 500 bp was also 

seen in the gill. The 380 bp fragments were smaller than the expected product size of 

454 bp, whereas the 500 bp fragment was near to the expected size when the location 

of the EcoR1 restriction site was considered. However, all six plasmid samples were 

sent for DNA sequencing. No fragments were observed in the gut, but one high 

molecular weight band was seen indicating that the enzyme had not cleaved the 

sample properly. 

The sequencing analysis revealed that a restriction site was located within the 

amplified products (shown for gill, in Figure 30), which resulted in fragments of 360 

bp and 150 bp. The 360 bp product was observed on the gel, whereas the 150 bp 

product was too small to be seen. The fragment at 500 bp was from the cleavage site 
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just outside of the DNA insert, and therefore was slightly larger than the PCR 

product size.  

The nucleotide sequences were determined for both sense and anti-sense strands of 

the plasmid inserts, and the identity of the DNA sequences was confirmed using 

BLAST. The sequenced products generated in the gill and muscle tissues were all 

identified as being putative COX 1 fragments, indicating that these primers were 

successful in isolating fathead minnow COX 1 gene sequences.  

 
Figure 30. 5’-3’ nucleotide sequence of a putative fathead minnow COX 1 gene fragment from a 

cloned PCR product generated from gill RNA. The PCR product (454 bp in size, shown in red) 

was generated using the COX 1 forward and reverse primers (bold and highlighted in yellow). 

The boxes represent the EcoRI restriction sites (GAATTC), including the one site that was 

located within the sequence. The double-underlined sequence indicates the (reverse-

complemented) M13 reverse primer used to amply the plasmid. 

 

The BLAST analysis and pairwise alignment confirmed that the putative COX 1 

transcript obtained in the fathead minnow shared 85% identity to zebrafish COX 1 

(Figure 31).  

 

10 20 30 40 50 60 

TCGAGAAGCT TGTCGACGAA TTCAGATTCA CTGGCACCCT CTCATGCCTG ACAGCCTCCA 
70 80 90 100 110 120 

CATCGATGGA GATGATATTC AGTACTCTCA GTTTCTTTTC AACACCTCTA TCCTCATGCA 
130 140 150 160 170 180 

CTACGGGGTG GAGAAGTTGG TCGAGGCCTT CTCAACCCAA CCTGCAGGAC AGATCGGAGG 
190 200 210 220 230 240 

TGGTCATAAT ATTCACCCAG TGGTGTGCAA AGTAGCTGAG GGGGCCATCA CTGAATCGAG 
250 260 270 280 290 300 

GGAGCTTCGA CTTCAGCCCT TCAATGAGTA TCGCAAGAGA TTCAATCTGA AACCCTATAC 
310 320 330 340 350 360 

ATCATTCTCT GAATTTACAG GAGATGAAGA AATGGCTAAA GAACTAGATG AACTCTACGG 
370 380 390 400 410 420 

CGATATTGAT TCACTAGAAT TCTACCCAGC TCTTCTTCTA GAGAAGACAC GACCTGGTGC 
430 440 450 460 470 480 

GATATTTGGC GAAAGTATGG TGGAAATGGG AGCCCCATTT TCCCTAAAAG GCCTGATGGG 
490 500 510 520 530 540 

AAATCCCATT TGCTCCCCTG ACTACTGGAA GCCCAGCACA TTAATCACGA ATTCTGGATC 
550 560 570 580 590 600 

CGATACGTAA CGCGTCTGCA GCATGCGTGG TACCGAGCTT TCCCTATAGT GAGTCGTATT 
610 620 630 640   

AGAGCTTGGC GTAATCATGG TCATAGCTGT TTCC    
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Figure 31. Clustal Omega alignment of the putative fathead minnow (FHM) COX 1 (454 bp) and 

partial zebrafish (Zf) COX 1 nucleotide sequences. Identical residues are indicated by *. 

  

FHM COX 1      -----------------------------------------TGACAGCCTCCACATCGAT 19 

Zf COX 1       GTGGAGTTCAATCAACTTTACCACTGGCACCCACTCATGCCTGACAGCTTCTACATCGAC 1320 

                                                        ******* ** *******  

 

FHM COX 1      GGAGATGATATTCAGTACTCTCAGTTTCTTTTCAACACCTCTATCCTCATGCACTACGGG 79 

Zf COX 1       GGAGACCACATTCAGTACTCAAAGTTCATATTTAACACATCGATCCTCACACATTATGGC 1380 

               *****  * ***********  ****  * ** ***** ** *******  ** ** **  

 

FHM COX 1      GTGGAGAAGTTGGTCGAGGCCTTCTCAACCCAACCTGCAGGACAGATCGGAGGTGGTCAT 139 

Zf COX 1       TTGGAGAAGCTGGTGGAGGCCTTCTCAATACAACCCGCAGGACAGATCGGAGGGGGTCAT 1440 

                ******** **** *************  ***** ***************** ****** 

 

FHM COX 1      AATATTCACCCAGTGGTGTGCAAAGTAGCTGAGGGGGCCATCACTGAATCGAGGGAGCTT 199 

Zf COX 1       AACATTCACCCAGTGGTGTCCGGAGTTGCTGAGAGGGTCATCGTTGAATCGAGGGAGCTT 1500 

               ** **************** *  *** ****** *** ****  **************** 

 

FHM COX 1      CGACTTCAGCCCTTCAATGAGTATCGCAAGAGATTCAATCTGAAACCCTATACATCATTC 259 

Zf COX 1       CGACTTCAGCCGTTCAATGAATATCGCAAGAGATTCAATCTGAAACCCTACACATCCTTC 1560 

               *********** ******** ***************************** ***** *** 

 

FHM COX 1      TCTGAATTTACAGGAGATGAAGAAATGGCTAAAGAACTAGATGAACTCTACGGCGATATT 319 

Zf COX 1       GCAGAATTGACAGGAGAGCAGGAGATGTCTAAAGAGCTGGAGGAACTATACGGACATATT 1620 

                * ***** ********  * ** *** ******* ** ** ***** *****  ***** 

 

FHM COX 1      GATTCACTAGAATTCTACCCAGCTCTTCTTCTAGAGAAGACACGACCTGGTGCGATATTT 379 

Zf COX 1       GATGCTATGGAGTTCTACCCAGCTCTTCTGCTAGAGAAAACACGACCTGGTGCGGTATTT 1680 

               *** *  * ** ***************** ******** *************** ***** 

 

FHM COX 1      GGCGAAAGTATGGTGGAAATGGGAGCCCCATTTTCCCTAAAAGGCCTGATGGGAAATCCC 439 

Zf COX 1       GGTGAAAGCATGGTGGAAATGGGGGCCCCTTTTTCCCTAAAAGGCCTCATGGGAAATCCT 1740 

               ** ***** ************** ***** ***************** ***********  

 

FHM COX 1      ATTTGCTCCCCTGAC--------------------------------------------- 454 

Zf COX 1       ATCTGCTCCCCAGACTACTGGAAGCCCAGCACATTTGGAGGCAAGACAGGCTTCGATATA 1800 

               ** ******** ***                                              

Identity score = 85% 
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4.3.3 Identifying putative fathead minnow COX 2 transcripts 

To examine whether the COX 2 gene(s) were expressed in the fathead minnow, a 

first round of PCR amplification (using the external, internal and a combination of 

the internal forward and external reverse COX 2 primers) was performed using 

cDNA obtained from liver, ovary and gill tissues (Figure 32). The expected product 

size for the external primers was 522 bp, for internal primers 180 bp, and the 

combination internal forward and external reverse primers was 222 bp. Figure 32 

shows the results following the first round of PCR amplification using the various 

COX 2 primers. 

Figure 32. PCR products generated in the first round of PCR using primers designed to isolate a 

COX 2 gene in fathead minnow tissues. Three different primer set combinations (external, 

internal and external/internal) were used to isolate COX 2 in the fathead minnow, which yielded 

PCR products (numbered in the boxes) of approximately 250 bp (2&3), 300 bp (4), 350 bp (1) 

and 650 bp (5) in the tissues. Samples were separated on a 1.5% agarose gel. A 1kb+ DNA 

ladder (Invitrogen) was used for size determination. Excess primers resulted in primer dimers 

(indicated by arrow). 
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Amplification using the external COX 2 primers resulted in one weak product band 

in the gill corresponding to a size of approximately 650 bp (product 5), which was 

slightly larger than the expected size (522 bp) for this primer pair. Amplification 

using the internal primer set showed two product bands in each tissue, one at 350 bp 

(product 1) and one at 250 bp (product 2), both of which were larger than the 

expected size of 180 bp. The presence of additional product bands was anticipated 

considering that these generic primers were designed against template COX gene 

sequences from human, zebrafish and rainbow trout species and the lower stringency 

cycling conditions could have encouraged non-specific amplification. Finally, the 

internal forward and external reverse combination primer set yielded one weak 

product in the liver at 300 bp, one weak product in ovary at 250 bp (product 3) and 

one clear product band in the gill at 300 bp (product 4), all of which were larger than 

the expected product of 222 bp for this primer pair.  

Product bands 1-5 (Figure 32) were extracted from the gel and purified. The purified 

DNA products 1-4 were further amplified in a second round of PCR, using the same 

respective COX 2 primer sets and cycling conditions to increase the amount of DNA 

for direct sequencing (Figure 33). The second round of amplification yielded a new 

smaller product of 250 bp in the liver in addition to original 350 bp product, which 

was closer to the expected product of 180 bp. The purified products from the ovary 

and gill samples, yielded the same sized products as the first round of PCR 

amplification. The product bands (indicated by the arrows) were extracted from the 

gel, purified and sent for direct sequencing. 
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Figure 33. PCR products generated in the second round of PCR amplification using COX 2 

primers with purified DNA products from fathead minnow tissues. DNA products were 

originally generated in fathead minnow liver, ovary and gill. Note that the PCR mixtures were 

divided and each loaded onto two wells. Product bands (indicated by the arrows of the 

numbered boxes) were extracted from the gel and purified for direct DNA sequencing. Samples 

were separated on a 1.5% agarose gel. A 1kb+ DNA ladder (Invitrogen) was used for size 

determination. 

 

The sequenced DNA products were analysed using BLAST and the results are shown 

in Table 14. The amplified product obtained in the liver (product 1) showed sequence 

similarity with guinea pig (78%) and human (76%) COX 1 nucleotide sequences. 

Conversely, the second product generated in the liver (product 2) showed sequence 

similarity with COX 2 in the Japanese medaka (85%), rainbow trout COX 2 and COX 

2b (81% and 82%) and brook trout COX 2 (82%) nucleotide sequences. Although 

these results suggest there was some identity between the fathead minnow sequences 

with COX sequences in human and fish species, there was a low sequence coverage 

overall, indicating that only small fragments of the fathead minnow sequences and 

the COX sequences listed in the NCBI database were similar. The sequenced product 

generated in the ovary (product 3) did not show any similarity with COX sequences. 

The sequenced product generated in the gill (product 4) however, showed the 

greatest identity to zebrafish COX 2b (Table 14) confirmed by BLAST analysis, with 

78% identity between the nucleotide sequences (Figure 34).  



Chapter 4 Results 

 

124 

Table 14. Nucleotide BLAST analysis of amplified DNA sequences obtained in the fathead 

minnow using COX 2 primers. 

 

 

 

 

 

 

 

 

 

Figure 34. Clustal Omega alignment of the putative fathead minnow (FHM) COX 2b (237 bp) 

and partial zebrafish (Zf) COX 2b nucleotide sequences. Identical residues are indicated by *. 

  

PCR product Nucleotide database results 
% Identity and 
sequence coverage 

1 
Guinea pig COX 1 78% (43/55) 

Homo sapiens COX 1 76% (45/59) 

2 

Japanese Medaka COX 2 85% (70/82) 

Rainbow trout COX 2 81% (79/98) 

Rainbow trout COX 2b 82% (67/82) 

Brook trout COX 2 82% (72/88) 

3 Zebrafish T1R taste receptor gene 81% (125/154) 

4 

Zebrafish COX 2b 88% (192/218) 

Zebrafish COX 2a 81% (172/212) 

Zebrafish COX 1 71% (146/207) 

FHM COX 2b     -----------------------------------------GGGGGTTTTCTAAGCAGAG 19 

Zf COX 2b      TGTACGCCACCATCTGGCTGCGTGAACATAACCGAGTGTGCGACATACTAAAGCAGGAGC 960 

                                                        *      *            

 

FHM COX 2b     CTCCAGACTGGGATGACGAGAGGCTGTTTCAAACCGTACGGCTCATCCTTATTGGTGAGA 79 

Zf COX 2b      ATCCTGACTGGGATGATGAGAGGCTGTTTCAGACCTCAAGGCTCATCCTTATTGGTGAGA 1020 

                *** *********** ************** ***  * ********************* 

 

FHM COX 2b     CAATCAAAATTGTGATTGAAGATTATGTCCAGCACCTTAGTGGATACAACTTCAAGCTCA 139 

Zf COX 2b      CTATTAAGATCGTGATCGAAGATTACGTCCAGCACCTTAGTGGATACTATTTTAAGCTCA 1080 

               * ** ** ** ***** ******** ********************* * ** ******* 

 

FHM COX 2b     AATTTGATCCTGAACTTCTCTTCAACGACCGTTTCCAGTACCAGAACAGGATCTCCTCTG 199 

Zf COX 2b      AGTTTGATCCCGAACTACTCTTCAATGAGCGTTTCCAATACCAGAACAGGATCTCCTCTG 1140 

               * ******** ***** ******** ** ******** ********************** 

 

FHM COX 2b     ATTTCAACACCCTTTACACTGGCACCCCACTGATCAAA---------------------- 237 

Zf COX 2b      AGTTCAACACACTTTACCATTGGCACCCCCTCATGCCTGATGATTTTCACATCCAGGATG 1200 

               * ******** ******  * *   *** ** **                           

Identity score = 78% 
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The purified DNA product obtained from the gill sample (product 5) using the 

external COX 2 primer set was re-amplified using nested PCR (with the internal COX 

2 primers) (Figure 35). Three bands were observed including one strong product 

band at 400 bp and two weaker products at around 750 bp, and 200 bp. The product 

band at 200 bp was similar to the expected size (180 bp) for this primer pair, 

however all three product bands were extracted from the gel, purified and sent for 

direct sequencing. 

 

 

 

 

 

 

 

 

Figure 35. PCR products generated from the nested round of PCR amplification using COX 2 

primers with purified fathead minnow gill DNA. All three bands were extracted from the gel 

and purified for direct DNA sequencing. One strong product band was observed at 400 bp and 

two weaker products were observed at around 750 bp, and 200 bp. Samples were separated on a 

1.5% agarose gel. A 1kb+ DNA ladder (Invitrogen) was used for size determination. 

 

The amplified DNA product that was similar to the expected size (180 bp) was 

analysed using BLAST and pairwise alignment, which showed 89% identity with the 

zebrafish COX 2a sequence (Figure 36).  
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Figure 36. Clustal Omega alignment of the putative fathead minnow (FHM) COX 2a (381 bp) 

and partial zebrafish (Zf) COX 2a nucleotide sequences. Identical residues are indicated by *. 

 

To confirm the identity of two putative COX 2 gene transcripts in fathead minnows, 

pairwise alignment was performed. The identity between fathead minnow COX 2a 

and COX 2b sequences was 73% (Figure 37), suggesting that the two gene isoforms 

are similar, but not the same. In zebrafish, the COX 2a and COX 2b isoforms share 

68% identity (Table 15). However due to the limited amount of sequencing data 

obtained in this study, the sequence coverage was much lower in the fathead minnow 

than the zebrafish COX 2a and COX 2b sequences.  

 

 

 

 

FHM COX 2a     -----------------------CTTCGTCTATTTAAAGATGGGAAGCCAAAGTATCAGG 37 

Zf COX 2a      AGACGCTGGAGGTTCAACACAAACTTCGTCTGTTTAAAGATGGAAAGCTTAAATACCAGG 780 

                                      ******** *********** ****  ** ** **** 

 

FHM COX 2a     TTGTGGGTGGTGAGGTGTACCCTCCGCTGGTGAAAGATGTCCAGGTGGAGATGCACTATC 97 

Zf COX 2a      TTGTGGATGGTGAGGTGTACCCTCCGCTTGTGAAGGACGTCCAGGTGGAGATGCATTACC 840 

               ****** ********************* ***** ** ***************** ** * 

 

FHM COX 2a     CTCCACATGTCCCGGAGGAACATAAATTTGCTGTGGGTCATGAGGCCTTCGGTCTGGTCC 157 

Zf COX 2a      CTCCTCATATCCCGGAAGAGCAGAAATTTGCTGTGGGCCATGAGGCCTTTGGTCTGGTTC 900 

               **** *** ******* ** ** ************** *********** ******** * 

 

FHM COX 2a     CAGGTTTGATGATGTATGCAACCATTTGGCTCCGTGAACACAACTGTGTATGTGTTATCA 217 

Zf COX 2a      CAGGTTTGATGATGTATGCTACCATTTGGCTCCGTGAGCACAACCGTGTCTGTGACATCA 960 

               ******************* ***************** ****** **** ****  **** 

 

FHM COX 2a     TGAAGCAAGAGCATCCCGACTGGGATGACGAAAGAATCTTCCAAACCACTCGTCTCATCC 277 

Zf COX 2a      TGAAGCAGGAACATCCTGACTGGGATGATGAGAGAATCTTCCAAACCACTCGTCTCATCC 1020 

               ******* ** ***** *********** ** **************************** 

 

FHM COX 2a     TGATTGGTGAGACCATCAAAATCGTGATTGAGGACTACGTTCAGCATCTGAGTGGCTACA 337 

Zf COX 2a      TGATTGGTGAGACCATCAAAATTGTGATCGAGGACTATGTTCAGCACTTGAGTGGATACA 1080 

               ********************** ***** ******** ********  ******* **** 

 

FHM COX 2a     ACTTCAAGCTCAAGTTTGACCCAGAGCTTCTCTTCAATCAACGC---------------- 381 

Zf COX 2a      ACTTCAAGCTCAAGTTTGACCCAGAGCTCATCTTCAGTGAGCGTTTCCAGTACCAGAACC 1140 

               ****************************  ****** * * **                  

Identity score = 89% 
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Figure 37. Clustal Omega alignment of the putative fathead minnow (FHM) COX 2a (381 bp) 

and COX 2b (237 bp) nucleotide sequences. Identical residues are indicated by *. 

 

A summary of the pairwise nucleotide sequence identities between the putative 

fathead minnow COX gene sequences and the zebrafish, rainbow trout and human 

COX genes is shown in Table 15. The putative fathead minnow COX 1 transcript 

shared greater identity with zebrafish and rainbow trout COX 1 sequences, compared 

to the COX 2 sequences in these species. Likewise, the putative fathead minnow 

COX 2 transcripts shared greater identity with COX 2 sequences in the zebrafish and 

rainbow trout, compared to the COX 1 sequences. The putative fathead minnow COX 

1 trancsript was similar to both human COX 1 and COX 2 gene sequences, whereas 

the putative fathead minnow COX 2 transcipts were more similar to the human COX 

2 gene. However, it is difficult to confirm this due to the limited transcript 

information that was obtained from the fathead minnow. 

FHM COX 2a     CTTCGTCTATTTAAAGATGGGAAGCCAAAGTATCAGGTTGTGGGTGGTGAGGTGTACCCT 60 

FHM COX 2b     ------------------------------------------------------------ 0 

                                                                     

 

FHM COX 2a     CCGCTGGTGAAAGATGTCCAGGTGGAGATGCACTATCCTCCACATGTCCCGGAGGAACAT 120 

FHM COX 2b     ------------------------------------------------------------ 0 

                                                                     

 

FHM COX 2a     AAATTTGCTGTGGGTCATGAGGCCTTCGGTCTGGTCCCAGGTTTGATGATGTATGCAACC 180 

FHM COX 2b     ------------------------------------------------------------ 0 

                                                                     

 

FHM COX 2a     ATTTGGCTCCGTGAACACAACTGTGTATGTGTTATCATGAAGCAAGAGCATCCCGACTGG 240 

FHM COX 2b     ------------------------------GGGGGTTTTCTAAGCAGAGCTCCAGACTGG 30 

                                             *      *            *** ****** 

 

FHM COX 2a     GATGACGAAAGAATCTTCCAAACCACTCGTCTCATCCTGATTGGTGAGACCATCAAAATC 300 

FHM COX 2b     GATGACGAGAGGCTGTTTCAAACCGTACGGCTCATCCTTATTGGTGAGACAATCAAAATT 90 

               ******** **  * ** ******   ** ******** *********** ********  

 

FHM COX 2a     GTGATTGAGGACTACGTTCAGCATCTGAGTGGCTACAACTTCAAGCTCAAGTTTGACCCA 360 

FHM COX 2b     GTGATTGAAGATTATGTCCAGCACCTTAGTGGATACAACTTCAAGCTCAAATTTGATCCT 150 

               ******** ** ** ** ***** ** ***** ***************** ***** **  

 

FHM COX 2a     GAGCTTCTCTTCAATCAACGC--------------------------------------- 381 

FHM COX 2b     GAACTTCTCTTCAACGACCGTTTCCAGTACCAGAACAGGATCTCCTCTGATTTCAACACC 210 

               ** ***********  * **                                         

 

FHM COX 2a     --------------------------- 381 

FHM COX 2b     CTTTACACTGGCACCCCACTGATCAAA 237 

Identity score = 73% 
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Table 15. Pairwise nucleotide (bp) sequence aligment (%) between the putative fathead minnow (FHM) COX gene sequences with zebrafish (Zf), rainbow 

trout (Rt) and human COX gene sequences (NCBI accession numbers are provided) using Clustal Omega alignment. The putative FHM COX sequences had 

the greatest identity to their homologues in the zebrafish (shown in red). 

Gene sequence 
FHM 

COX 1 
FHM 

COX 2a 
FHM 

COX 2b 
Zf 

COX 1 
Zf 

COX 2a 
Zf 

COX 2b 
Rt  

COX 1 
Rt  

COX 2 
Rt 

COX 2b 
Human 
COX 1 

Human 
COX 2 

FHM COX 1 
(454bp) 

 47 45 85 59 61 75 59 62 64 63 

FHM COX 2a 
(381bp) 

  73 68 89 75 68 77 78 69 72 

FHM COX 2b 
(237bp) 

   63 71 78 61 70 73 60 66 

Zf COX 1 
NM_153656.1 

    62 61 68 61 62 62 60 

Zf COX 2a 
NM_153657.1 

     68 62 69 69 60 64 

Zf COX 2b 
NM_001025504.2 

      60 64 70 57 64 

Rt COX 1 
NM_001124361.1 

       61 62 64 59 

Rt COX 2 
NM_001124348.1 

        69 57 62 

Rt COX 2b 
NM_001124667.1 

         60 65 

Human COX 1 
NM_000962.3 

          53 

Human COX 2 
NM_000963.3 
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4.3.4 Analysis of the putative COX transcripts 

To determine if the COX protein sequences were encoded by the COX gene 

transcripts, the nucleotide sequences were translated into their amino acid (aa) 

sequences using ExPASy (www.expasy.ch/tools/dna.htmL) and analysed using 

InterPro and BLAST. The translation predicted a 129 amino acid of the fathead 

minnow COX 1 gene fragment, a 98 amino acid sequence of the fathead minnow 

COX 2a gene fragment and a 79 amino acid sequence of the fathead minnow COX 2b 

gene fragment.  

The ‘InterPro’ database is an online bioinformatics tool (that consists of 14 different 

protein databases) that uses “protein signatures” to allow the functional 

characterisation of proteins by classifying sequences at superfamily, family and 

subfamily levels, predicting the occurrence of functional domains, repeats and 

important sites from different protein databases (Hunter et al., 2012). The putative 

fathead minnow COX amino acid sequences were characterised by the presence of a 

functional domain typical of an “animal haem peroxidase” (using PFAM database), 

and a “haem-dependent peroxidase” superfamily, and the PANTHER (Protein 

ANalysis THrough Evolutionary Relationships) classification system recognised 

specifically the domains typical of “prostaglandin G/H synthases/cyclooxygenases” 

(Figure 38). These results confirm the presence of the functional domains of COX in 

the fathead minnow, suggesting that the gene products encode for functional proteins 

that can potentially be targeted by NSAIDs like ibuprofen.   

http://www.expasy.ch/tools/dna.html
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Figure 38. DNA fragments amplified in the fathead minnow using the COX gene primers were translated into their amino acid sequences and analysed using the ‘InterPro’ 

bioinformatics database, which uses “protein signatures" to search for functional domains from 14 member protein databases. The putative fathead minnow COX 1 

fragment (shown as an example) was characterised by the presence of a functional domain typical of an “animal haem peroxidase” (using PFAM database), and a “haem-

dependent peroxidase” superfamily, and the PANTHER (Protein ANalysis THrough Evolutionary Relationships) database revealed similarity to the cyclooxygenase 

enzyme.  
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The pairwise sequence alignment of the putative fathead minnow COX amino acid 

sequences with zebrafish, rainbow trout and human COX sequences is shown in Table 

16. The  putative fathead minnow COX 1 amino acid sequence showed greater identity 

with the zebrafish (86%), rainbow trout (85%) and human (70%) COX 1 amino acid 

sequences, compared to the COX 2 sequences. Similarly, the putative fathead minnow 

COX 2a and COX 2b amino acid sequences also shared greater identity with zebrafish, 

rainbow trout and human COX 2 sequences, compared to COX 1. The sequence identity 

between the putative fathead minnow COX 1, COX 2a and COX 2b proteins with the 

zebrafish COX sequences were 86%, 93% and 80%, respectively. 

The putative fathead minnow COX amino acid sequence were aligned with the human 

COX 1 (599 aa) (Figure 39) and COX 2 (604 aa) sequences (Figure 40). The sequence 

identity between the proposed fathead minnow COX 1 with the human COX 1 was 

70%, and the proposed fathead minnow COX 2a and COX 2b with the human COX 2 

was 81% and 72%, respectively (Table 16). Some conserved structural and functional 

amino acids were identified in the putative fathead minnow COX-like proteins, for 

example, the putative fathead minnow COX 1 protein contained an aspirin acetylation 

site (Ser-530), which is functionally conserved in mammalian COX (Figure 39). Two 

amino acids similar to those found in the substrate-binding domain of COX in humans 

(His-513 and Ile-523) were also identified in the proposed COX 1 protein sequence 

(Figure 39). In mammals, His-513 and Ile-523 determine conformational differences in 

the substrate binding channel between mammalian COX 1 and COX 2 enzymes (Wong 

et al., 1997; Gierse et al., 1996). In zebrafish COX enzymes, the His-513 and Ile-523 

positions are substituted with Arg-513 and Val-523 (Grosser et al., 2002), and 

substitutions at these positions were confirmed in fathead minnow COX 1.  

The putative fathead minnow COX 2a and COX 2b protein sequences contained an 

active site tyrosine (Tyr-355) which is required for enzyme catalysis and a nine amino 

acid haem-coordination binding motif (Figure 40), which is present in human COX 2 

protein sequences. These findings suggest that the fathead minnow may contain 

functionally active COX proteins.  
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Table 16. Pairwise amino acid (aa) alignment (%) between the putative fathead minnow (FHM) COX amino acid sequences with zebrafish (Zf), rainbow trout (Rt) and 

human COX amino acid sequences using Clustal Omega alignment. The putative FHM COX sequences had the greatest identity to their homologues in the zebrafish 

(shown in red). 

 

 

 

 

 

Protein sequence 
FHM 

COX 1 
FHM 

COX 2a 
FHM 

COX 2b 
Zf 

COX 1 
Zf 

COX 2a 
ZF 

COX 2b 
Rt  

COX 1 
Rt  

COX 2 
Rt  

COX 2b 
Human 
COX 1 

Human 
COX 2 

FHM COX 1  
(129 aa) 

 24 20 86 54 61 85 56 57 70 61 

FHM COX 2a  
(98 aa) 

  82 70 93 90 63 89 86 69 81 

FHM COX 2b 
(79 aa) 

   65 75 80 60 73 78 63 72 
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Figure 39. Alignment of the putative fathead minnow (FHM) COX 1 (129 amino acid) with the 

human COX 1 (599 amino acids) protein sequence. Identical residues are indicated by * and 

similar residues are represented by the dots. One critical residue for aspirin acetylation (Ser-

530) (highlighted in red) was identified in the sequence. Amino acids at positions 513 and 523 

(His-513 and Ile-523) are postulated to determine conformational differences in the substrate 

binding domain between mammalian COX 1 and COX 2 enzymes (highlighted in blue). In 

zebrafish, positions at 513 and 523 are substituted by Arg and Val (Grosser et al., 2002) changes 

which are also evident in the fathead minnow. 

 

 

 

 

Human COX 1  MSRSLLLWFLLFLLLLPPLPVLLADPGAPTPVNPCCYYPCQHQGICVRFGLDRYQCDCTR 60 

FHM COX 1    ------------------------------------------------------------ 0 

                                                                        

 

Human COX 1  TGYSGPNCTIPGLWTWLRNSLRPSPSFTHFLLTHGRWFWEFVNATFIREMLMRLVLTVRS 120 

FHM COX 1    ------------------------------------------------------------ 0 

                                                                        

 

Human COX 1  NLIPSPPTYNSAHDYISWESFSNVSYYTRILPSVPKDCPTPMGTKGKKQLPDAQLLARRF 180 

FHM COX 1    ------------------------------------------------------------ 0 

                                                                        

 

Human COX 1  LLRRKFIPDPQGTNLMFAFFAQHFTHQFFKTSGKMGPGFTKALGHGVDLGHIYGDNLERQ 240 

FHM COX 1    ------------------------------------------------------------ 0 

                                                                        

 

Human COX 1  YQLRLFKDGKLKYQVLDGEMYPPSVEEAPVLMHYPRGIPPQSQMAVGQEVFGLLPGLMLY 300 

FHM COX 1    ------------------------------------------------------------ 0 

                                                                        

 

Human COX 1  ATLWLREHNRVCDLLKAEHPTWGDEQLFQTTRLILIGETIKIVIEEYVQQLSGYFLQLKF 360 

FHM COX 1    ------------------------------------------------------------ 0 

                                                                        

 

Human COX 1  DPELLFGVQFQYRNRIAMEFNHLYHWHPLMPDSFKVGSQEYSYEQFLFNTSMLVDYGVEA 420 

FHM COX 1    -----------------------------------------------------MHYGVEK 7 

                                                                  :.****  

 

Human COX 1  LVDAFSRQIAGRIGGGRNMDHHILHVAVDVIRESREMRLQPFNEYRKRFGMKPYTSFQEL 480 

FHM COX 1    LVEAFSTQPAGQIGGGHNIHPVVCKVAEGAITESRELRLQPFNEYRKRFNLKPYTSFSEF 67 

             **:*** * **:****:*:.  : :**  .* ****:************ :******.*: 

                     513      523     530 

Human COX 1  VGEKEMAAELEELYGDIDALEFYPGLLLEKCHPNSIFGESMIEIGAPFSLKGLLGNPICS 540 

FHM COX 1    TGDEEMAKELDELYGDIDSLEFYPALLLEKTRPGAIFGESMVEMGAPFSLKGLMGNPICS 127 

             .*::*** **:*******:*****.***** :* :******:*:*********:****** 

 

Human COX 1  PEYWKPSTFGGEVGFNIVKTATLKKLVCLNTKTCPYVSFRVPDASQDDGPAVERPSTEL 599 

FHM COX 1    PD--------------------------------------------------------- 129 

             *:                                                          

Identity score = 70% 
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Figure 40. Alignment of the putative fathead minnow (FHM) COX 2a (98 amino acids) and COX 

2b (79 amino acid) with the human COX 2 (604 amino acids) protein sequences. Identical 

residues are indicated by *and similar residues are represented by the dots. One critical residue 

for catalysis (Tyr-355) (highlighted in red) was identified in the sequence. Residues involved in 

haem-coordination are identified in the box. 

Human COX 2     MLARALLLCAVLALSHTANPCCSHPCQNRGVCMSVGFDQYKCDCTRTGFYGENCSTPEFL 60 

FHM COX 2a      ------------------------------------------------------------ 

FHM COX 2b      ------------------------------------------------------------ 

                                                                             

 

Human COX 2     TRIKLFLKPTPNTVHYILTHFKGFWNVVNNIPFLRNAIMSYVLTSRSHLIDSPPTYNADY 120 

FHM COX 2a      ------------------------------------------------------------ 

FHM COX 2b      ------------------------------------------------------------ 

                                                                             

 

Human COX 2     GYKSWEAFSNLSYYTRALPPVPDDCPTPLGVKGKKQLPDSNEIVEKLLLRRKFIPDPQGS 180 

FHM COX 2a      ------------------------------------------------------------ 

FHM COX 2b      ------------------------------------------------------------ 

                                                                             

 

Human COX 2     NMMFAFFAQHFTHQFFKTDHKRGPAFTNGLGHGVDLNHIYGETLARQRKLRLFKDGKMKY 240 

FHM COX 2a      ------------------------------------------------------------ 

FHM COX 2b      ------------------------------------------------------------ 

                                                                             

 

Human COX 2     QIIDGEMYPPTVKDTQAEMIYPPQVPEHLRFAVGQEVFGLVPGLMMYATIWLREHNRVCD 300 

FHM COX 2a      ------------------MHYPPHVPEEHKFAVGHEAFGLVPGLMMYATIWLREHNCVCV 42 

FHM COX 2b      -----------------------------------------GGFLSRA------------ 7 

                                                          *::  *             

          355 

Human COX 2     VLKQEHPEWGDEQLFQTSRLILIGETIKIVIEDYVQHLSGYHFKLKFDPELLFNKQFQYQ 360 

FHM COX 2a      IMKQEHPDWDDERIFQTTRLILIGETIKIVIEDYVQHLSGYNFKLKFDPELLFNQR---- 98 

FHM COX 2b      ------PDWDDERLFQTVRLILIGETIKIVIEDYVQHLSGYNFKLKFDPELLFNDRFQYQ 61 

                      *:*.**::*** ***********************:************.:     

 

Human COX 2     NRIAAEFNTLYHWHPLLPDTFQIHDQKYNYQQFIYNNSILLEHGITQFVESFTRQIAGRV 420 

FHM COX 2a      ------------------------------------------------------------ 

FHM COX 2b      NRISSDFNTLYTGTPLIK------------------------------------------ 79 

                                                                             

 

Human COX 2     AGGRNVPPAVQKVSQASIDQSRQMKYQSFNEYRKRFMLKPYESFEELTGEKEMSAELEAL 480 

FHM COX 2a      ------------------------------------------------------------ 

FHM COX 2b      ------------------------------------------------------------ 

                                                                             

 

Human COX 2     YGDIDAVELYPALLVEKPRPDAIFGETMVEVGAPFSLKGLMGNVICSPAYWKPSTFGGEV 540 

FHM COX 2a      ------------------------------------------------------------ 

FHM COX 2b      ------------------------------------------------------------ 

                                                                             

 

Human COX 2     GFQIINTASIQSLICNNVKGCPFTSFSVPDPELIKTVTINASSSRSGLDDINPTVLLKER 600 

FHM COX 2a      ------------------------------------------------------------ 

FHM COX 2b      ------------------------------------------------------------ 

                                                                             

 

Human COX 2     STEL 604 

FHM COX 2a      ---- 

FHM COX 2b      ---- 

Identity score: Human COX 2/ FHM COX 2a = 81%/ Human COX 2/ FHM COX 2b = 72% 
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4.4 DISCUSSION 

The purpose of this chapter was to establish whether the genes coding for the target 

of ibuprofen in humans (COX enzymes) were present in the fathead minnow. The 

expression of three putative COX gene transcripts were identified in the fathead 

minnow, and the translated sequences contained some functionally conserved amino 

acid residues, such as Ser-530, the site for aspirin acetylation, and Tyr-355 required 

for enzyme catalysis suggesting that the fathead minnow COX proteins may be 

functionally active. Therefore, ibuprofen (or other NSAIDs that act through COX 

inhibition) may bind to, and cause inactivation of COX, suggesting that MoA-related 

effects may also be seen in fish (see Chapters 5 and 6 for target-mediated effects 

following ibuprofen exposure). 

4.4.1 COX gene expression in the fathead minnow 

The expression of COX transcripts was examined in different fathead minnow tissues 

including gill, muscle, gut, liver, ovary and heart, using PCR, and generic primers 

used to isolate and amplify COX 1 and COX 2 genes in the fathead minnow 

(designed from template COX gene sequences from zebrafish, rainbow trout, human, 

Atlantic salmon, mummichog and clawed frog). Due to time restraints, the 

expression of the COX genes was examined in a selection of tissues only, as the 

purpose of this work was not to determine the expression of the COX genes in all the 

sampled tissues. COX 1 gene fragments were amplified in the gill and muscle tissues, 

whereas COX 2 gene fragments were amplified in the gill only. Putative transcripts 

for two isoforms of the COX 2 gene were identified in the fathead minnow, 

indicating  that this species contains three putative COX genes (which we have 

termed as FHM COX 1, FHM COX 2a and FHM COX 2b), based on their similarity 

to the zebrafish genes (Ishikawa et al., 2007). The fathead minnow and zebrafish are 

both members of the Cyprinidae family and therefore share a high degree of 

evolutionary conservation, which support the findings of one putative COX 1 and 

two COX 2 sequences that we have identified in fathead minnow tissues. The 

expression of two COX 2 genes in some fish species corresponding to one COX 2 

ortholog in higher vertebrates indicates that genome duplication occurred in the 

teleost lineage after its divergence from the vertebrate lineage (Meyer and Van de 
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Peer, 2005). Both the zebrafish and rainbow trout genomes contain two functional, 

inducible COX 2 genes (Ishikawa et al., 2007; Ishikawa and Herschman, 2007), that 

are coded for by different gene products, suggesting that paralogs within a species 

can be functionally equivalent, or in some cases, they may evolve to gain or lose 

functionality. In mammals, COX 1 is constitutively expressed and is relatively stable 

under basal conditions, whereas COX 2 is rapidly inducible and contains several 

instability sequences, or ‘AUUUA’ motifs (Shaw and Kamen, 1986) located within 

its 3′ un-translated (3’UTR) region which is characteristic of immediate-early genes 

(genes that are transiently activated and rapidly degraded) (Chandrasekharan and 

Simmons, 2004). In zebrafish, the proximal 3’UTR regions of COX 2a and COX 2b 

possess AUUUA repeats, which suggest that these are both inducible genes, whereas 

in contrast, these repeats are not present in mammalian or zebrafish COX 1 (Ishikawa 

et al., 2007), indicating functional conservation of human orthologs in fish.  

In this study, the expression of the putative COX 1 gene was identified in the gill and 

muscle fathead minnow tissues , whereas the expression of the putative COX 2a and 

COX 2b genes were identified in the gill only. Grosser et al., (2002) found that COX 

1 and COX 2 transcripts were expressed in a range of zebrafish tissues, but COX 2 

was more highly expressed in the gill, when compared with the gut, testes, heart, 

skeletal muscle and brain (Grosser et al., 2002). Confounding this, Ishikawa et al., 

(2007) reported that COX 1, COX 2a and COX 2b transcripts were all highly, but 

equally expressed in the zebrafish gill (Ishikawa et al., 2007). Nevertheless, these 

findings suggest that the COX genes are most robustly expressed in the zebrafish gill, 

which most likely explains why the putative COX transcripts were identified in this 

tissue in the fathead minnow too. The expression of COX 1 (at basal levels) in the 

muscle could be linked to prostanoid functions in fish, such as smooth muscle 

contraction (Coleman and Sheldrick, 1989), whereas COX 2 expression in the gills 

has been linked to osmoregulation and ion transport in killifish (Choe et al., 2006). 

In the other examined tissues, there was no amplification in the heart (using the COX 

1 gene primers) (Figure 28), which may have been due to the smaller tissue weight 

and/or lower COX transcript levels in this tissue and therefore a sufficient amount of 

product may not have been generated for visualisation on the gel. Amplification in 
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the ovary (using the COX 2 gene primers) (Figure 32) did not result in the isolation 

of a COX gene fragment, but unexpectedly, showed most similarity to a zebrafish 

taste receptor (Taste receptor, type 1, member 3) (81% identity). Furthermore, both 

Grosser et al., (2002) and Ishikawa et al., (2007) reported that COX 1, but not COX 2 

was expressed in zebrafish liver, and although a PCR product was generated in the 

liver, it was not possible to confirm the identity of the COX gene isoform from the 

initial sequence results. This was not pursued any further given that a putative COX 

transcript was confirmed in products generated from the gill.  

4.4.2 Conservation of COX between human and fish species  

Bioinformatics analysis confirmed that the putative fathead minnow COX transcripts 

coded for COX proteins that were characterised by a functional domain typical of a 

“haem peroxidase”. The haem peroxidases are a group of enzymes that use various 

peroxides as electron acceptors to catalyse a number of oxidative reactions and it 

includes the myeloperoxidases, eosinophil peroxidases, lactoperoxidases, thyroid 

peroxidase; and prostaglandin H synthases (COX). Therefore, the integration of a 

bioinformatics approach was effectively applied to identify the targets based on the 

MoA of ibuprofen. It is plausible that this functional domain was identified in the 

fathead minnow because of the conserved amino acid residues that were present in 

the COX protein sequences, such as an active site tyrosine (Tyr-355) (Figure 40) 

which is required for enzyme catalysis, an aspirin acetylation site (Ser-530) (Figure 

39), and haem-coordination binding motif. Collectively, these findings indicate that 

NSAIDs like ibuprofen can potentially bind to fathead minnow COX, and cause 

inactivation of the protein, since the binding sites for ibuprofen in humans have been 

conserved in the fathead minnow. This implies that the MoA of ibuprofen may also 

be conserved in fish. 

The putative COX 1 amino acid sequence in the fathead minnow shared 70% identity 

to human COX 1, and the COX 2a and COX 2b sequences shared 81% and 72% 

identities to human COX 2, covering highly conserved regions of the sequence. 

However, the isolated putative COX transcripts in the fathead minnow represent only 

22%, 16% and 13% respectively, of the entire COX 1 and COX 2 human protein 

sequences, and therefore overall the sequence coverage is very low. Therefore, the 

http://en.wikipedia.org/wiki/Myeloperoxidase
http://en.wikipedia.org/wiki/Lactoperoxidase
http://en.wikipedia.org/wiki/Cyclooxygenase
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degree of similarity between humans and fathead minnows can only be determined 

for a relatively small part of the COX gene, and as a result the degree of similarity 

between these two species, outside of the most highly conserved region is unclear.  

In summary, the expression of three putative COX transcripts was identified in 

fathead minnow tissues (at basal levels), indicating that the target for ibuprofen in 

humans, is present in fish. The presence of some functionally conserved residues in 

the translated nucleotide sequences suggests that the MoA of ibuprofen may be 

conserved, and through the identification of the putative COX transcripts, further 

investigation on the effects of ibuprofen exposure mediated through the primary (or 

secondary) targets can be conducted. 

 

 

 

 

 

 



 

 

  THE EFFECT OF IBUPROFEN CHAPTER 5:

EXPOSURE ON CYCLOOXYGENASE (COX) GENE 

EXPRESSION 

 



Chapter 5 Results 

 

140 

5.1 INTRODUCTION 

The application of ‘-omic’ technologies, including genomics, proteomics and 

metabolomics in ecotoxicology provides important opportunities to improve our 

understanding of the molecular mechanisms (and modes) of action of environmental 

stressors (Snape et al., 2004). Chemical-induced molecular changes may involve a 

cascade of gene interactions, a change in a single gene or a few genes (Hook et al., 

2006), and advances in functional genomics have enabled the simultaneous global 

expression profiles of thousands of genes to be examined at one time (Nuwaysir et 

al., 1999).  

The current ERA procedures are heavily dependent upon changes in apical endpoints 

such as growth, survival and reproduction. However, gene expression changes are 

more reflective of the initial responses, and therefore could be more useful as 

“biomarkers” of toxicant exposure and/or effects (Van Der Oost et al., 2003). For 

example, the vitellogenin genes have been used as a biomarker for exposure to 

oestrogen or oestrogen-like chemicals (Bowman et al., 2000; Celius et al., 2000; 

Denslow et al., 2001), which is indicative of reproductive and endocrine disruption in 

fish (Sumpter and Jobling, 1995) and the metallothionin gene has been used as a 

biomarker for heavy metal exposure (Knapen et al., 2007). Therefore, gene 

expression endpoints could potentially allow for increased sensitivity, earlier 

detection and measurement of toxicant effects at more environmentally relevant 

concentrations. Furthermore, chemicals that act through distinct MoAs can induce 

unique gene expression profiles or “fingerprints” which in some cases can be linked 

to phenotypic effects (Hamadeh et al., 2002). For example, the anti-androgen 

flutamide, and oestrogens such as EE2 can induce phenotypic effects indicative of 

feminisation in fish (i.e. induction of plasma vitellogenin, reduced gonadosomatic 

index, and reduced secondary sex characteristics) through distinct (and common) 

gene pathways, thereby allowing differentiation of the two contaminants (Filby et al., 

2007). However, further experimental validation is required before genomic 

approaches can be fully implemented into the ERA process (Hook et al., 2006). The 

use of genomic approaches for predictive risk assessment has already been well-

established in species such as human and mouse. However, from an eco-
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toxicological perspective, very few genomes have been characterised for aquatic 

species, and therefore gene expression biomarkers are currently of limited use for 

ERA (Hogstrand et al., 2002). Nevertheless, despite there being a lack of whole 

genome datasets, the expression of individual genes that have been identified and 

characterised in aquatic species have been examined using genomic approaches, such 

as quantitative real-time PCR (qPCR). This technique allows the simultaneous 

detection and quantification of DNA, where the amount of DNA is measured after 

each cycle of PCR amplification and the products (amplicons) are visualised by 

fluorescence.  

Ibuprofen is a non-selective inhibitor of the COX 1 and 2 enzymes, that are coded for 

by the mammalian COX 1 and COX 2 genes. We have identified putative COX 

transcripts in fathead minnow tissues (as described in Chapter 4), and therefore the 

purpose of this chapter was to investigate the effect of ibuprofen exposure on COX 

gene expression (as a potential “biomarker” indicative of MoA effects).  

There are currently limited data of the effects of NSAIDs on COX gene expression in 

fish; with some studies reporting no transcriptional changes in COX genes (using 

qPCR), following ibuprofen exposure to 21, 201 and 506 μg/L (for 7 days) 

(Morthorst et al., 2013) or at more environmentally relevant concentrations of 

ibuprofen (0.1 and 1 μg/L) (Ji et al., 2013), indicating that in the present literature, 

there is no clear evidence for transcriptional-level effects of NSAIDs (ibuprofen) on 

fish. In molecular biology, DNA (gene) is transcribed into messenger RNA (mRNA), 

which is the template from which proteins are synthesised, and has long been 

referred to as the “Central Dogma of Molecular Biology” (Crick, 1970). According 

to this hypothesis, gene expression is directly correlated to the amount of mRNA that 

is translated into functional protein. Therefore, it could be hypothesised that 

(transient) inactivation of the COX enzyme (following ibuprofen exposure) may 

result in a concomitant down-regulation of COX transcripts at the gene expression 

level. However, as ibuprofen inhibits the COX enzymes by substrate competition, a 

potential response to overcome this inhibition could also be increased COX enzyme 

synthesis and altered (up-regulated) gene expression, through a compensatory 

feedback mechanism.  
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5.2 METHODS 

The full details of the materials and methods used are provided in Chapter 2, and the 

following contains details relevant to this chapter that are not covered elsewhere. 

5.2.1 Tissue acquisition  

Adult fathead minnows (n=16 per treatment) were exposed to nominal ibuprofen 

concentrations of 100, 270, 370 and 500 µg/L (mean measured ± SD, 105 ± 2, 278 ± 

70, 409 ± 26 and 502 ± 56 µg/L, respectively) for ≤96 hours, using continuous flow-

through systems (Chapter 2, Section 2.1.5, Table 6; ‘Exposure 2’ and ‘Exposure 3). 

Tissues (including brain, gill, testis, gut, heart, liver) were sampled from fish exposed 

to DWC, SC (acetone), 100 and 500 µg/L ibuprofen after 3, 24, 48 and 96 hours, and 

fish exposed to DWC, SC, 270 µg/L ibuprofen after 24, 48, 72 and 96 hours (tissues 

collected from fish exposed to 370 µg/L were not analysed in this chapter). Four fish 

were sampled at each time point.  

5.2.2 Quantitative real-time PCR (qPCR ) 

5.2.2.1 Primer design for putative fathead minnow COX transcripts and house-

keeping genes 

Primers for qPCR were designed using the putative fathead minnow COX 1, COX 2a 

and COX 2b gene sequences that were identified in Chapter 4. Primers were designed 

to be 18-30 nucleotides in length (to minimise non-specific binding), with a 40-60% 

GC content and a Tm of 60 °C. The Tm was calculated using the following formula: 

Tm = 2 x [A + T] + 4 x [G + C]. The primers sets were designed to amplify 

amplicons of 100-200 bp in length. The primer sequences, expected amplicon sizes 

and Tm of the primers, termed FHM COX primers are shown in Table 17. Primers 

for the putative fathead minnow COX transcripts were synthesised by Sigma 

Genosys Ltd (Suffolk, UK) and reconstituted with nuclease-free water to a 

concentration of 100 μM. Primer stocks were diluted with nuclease-free water to a 

working concentration of 10 μM and stored at -20°C until required. The specificity 

of the primers was confirmed by PCR (to determine the size of the amplicons) and 

the generated amplicons were cloned and sequenced using the recombinant cloning 

method as described in Chapter 2, Section 2.2.7. 
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Table 17. Forward (F) and reverse (R) primer sequences for putative fathead minnow (FHM) 

COX 1, COX 2a and COX 2b gene transcripts, melting temperatures (Tm) (°C) and expected 

amplicon size (bp). 

Primer Primer sequence: 5' -3' Tm (°C) 
Amplicon size 

(bp) 

FHM COX 1 F TCACTGAATCGAGGGAGCTT 60 
159 

FHM COX 1 R ACACGACCTGGTGCGATATT 60 

FHM COX 2a  F CGAAAGAATCTTCCAAACCACT 62 
107 

FHM COX 2a R TCAACGCTTCCAGTATCAGAA 60 

FHM COX 2b  F GAGAGGCTGTTTCAAACCGTA 62 
107 

FHM COX 2b R CGACCGTTTCCAGTACCAGA 60 

 

The putative fathead minnow COX genes (target genes) were normalised to a house-

keeping (reference) gene, which was quantified in parallel to the target gene, to 

account for template DNA variation in the qPCR reaction. These genes are usually 

cellular maintenance genes that regulate the basic and ubiquitous functions of the 

cell. β-actin has been widely used as a house-keeping gene in several vertebrate 

studies, as it is highly conserved. Partial sequences for β-actin (GenBank: 

EU195887) and 18S RNA genes (GenBank: AY855349.1) have been characterised 

in the fathead minnow (Filby and Tyler, 2005, 2007). The suitability of three 

housekeeping genes, β-actin and two 18S ribosomal RNA genes; C18S (no exon 

boundary) and 3R18 (exon/intron boundary) were tested in this study. The primer 

sequences and expected amplicon size (bp) are shown in Table 18. 

.  
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Table 18. Forward (F) and reverse (R) primer sequences for β-actin, C18S and 318S house-

keeping genes and expected amplicon size (bp). 

 

5.2.3  Performing the Quantitative real-time PCR (qPCR) assay 

Quantitative real-time PCR (qPCR) was carried out using the (2 x) QuantiFast SYBR 

Green PCR kit (QIAGEN, Manchester, UK). Each 25 µL reaction contained 1 µL 

cDNA (50 ng/µL), 12.5 µL of SYBR Green master mix (containing Taq DNA 

polymerase, PCR Buffer, dNTP mix and a passive reference dye), 1 µL (0.4 µM) of 

forward and reverse primers and 9.5 µL nuclease-free water. The reactions were 

assayed in duplicates (unless otherwise stated) in a 96-well plate (MicroAmp™ Fast 

optical 96-well reaction plate, Applied Biosystems). As a negative control, nuclease 

free-water was added to the no-template control (NTC) wells. The plate was sealed 

using an adhesive film (MicroAmp® Optical adhesive film, Applied Biosystems, 

UK) and centrifuged at 1,000 x g for 30 seconds at room temperature to collect the 

components at the bottom of the wells. The plate was then loaded onto an ABI 

Prism® 7900 HT real-time PCR instrument (Applied Biosystems) and amplification 

and was carried out using the cycling conditions shown in Figure 41. After the PCR 

run had been completed, the data were analysed using the configured SDS 2.1 

Software (Applied Biosystems). During real-time PCR, the SYBR Green emits 

fluorescence when bound to double-stranded DNA, which increases with each cycle 

of amplification. The cycle where the fluorescence (Rn) signal meets a set arbitrary 

threshold, is known as the ‘cycle threshold’ (Ct) value. Each Ct value is inversely 

Primer Primer sequence: 5' -3' 
Tm 
(°C) 

Amplicon  
size (bp) 

Source 

β-actin 
F 

GAATCCCAAAGCCAACAG 60 
148 

Filby and Tyler, 2007 
(GenBank: EU195887) β-actin 

R 
AACACCATCACCAGAGTC 60 

C18S F AATGTCTGCCCTATCAACTTTC 60 
117 

Filby and Tyler, 2007 
(GenBank:AY855349) 

 C18S R TGGATGTGGTAGCCGTTTC 60 

318S F CGTCGCCGCTGAATACCGCA 60 
160 

Primer 3 software 
(GenBank: AY855349) 

318S R CTCTCGTCCGTCTTGCGCCG 60 
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correlated to the amount of DNA; therefore a high Ct value corresponds to a lower 

proportion of nucleic acid in the sample. 

 

Figure 41. Quantitative real-time PCR cycle conditions. The Taq polymerase is heat-activated 

during an initial PCR activation step and template DNA is separated in subsequent cycles of 

denaturation, followed by combined cycles of primer annealing and extension. A 

dissociation/melting curve was also performed to determine product specificity. 

 

The SYBR Green dye can generate fluorescence signals when bound to any type of 

double-stranded DNA, including primer dimers or non-specific products, which can 

distort the resultant fluorescence readings. A dissociation/melting curve analysis was 

therefore performed after each PCR run (Figure 41) to determine if the desired 

product had been amplified. The dissociation/melting curve measures the 

fluorescence in each well as the temperature is slowly increased from 60-95 °C, 

allowing the laser of the machine to detect the loss of fluorescence signal as SYBR 

Green detaches from the denatured DNA. When the temperature reaches the Tm of a 

DNA product (which is dependent on its length, sequence and GC content), this 

indicates where there is 50% denaturing of the DNA product and is indicated by a 

peak. If several peaks are present, this denotes the presence of non-specific products 

in the sample, as each product has a specific Tm. Therefore, the dissociation/melting 

curve was used to differentiate between contaminant and product amplification.  
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5.2.3.1 Data analysis  

There are two analytical methods that can be used for the quantification of gene 

expression in samples: absolute quantification and relative quantification. Both allow 

quantification of low quantities of input RNA and are equally sensitive. The 

difference between the two is how the measurements are quantified. In absolute 

quantification the exact copy number per cell is determined and therefore the 

expression level is in absolute numbers. In relative quantification, a comparison is 

made between the expression level of a target gene between two samples, for 

example a treated sample and an untreated control (Livak and Schmittgen, 2001). 

These quantitative differences require normalisation with a standard curve (of known 

mRNA concentration) or another reference (housekeeping) gene, respectively. The 

latter method was used in this study. 

To allow comparison between COX expression in control and exposed fish tissues, 

relative quantification using the comparative (2
-ΔΔCt

) (Livak and Schmittgen, 2001) 

method was employed. Using this method, firstly the difference between the Ct 

values (ΔCt) of the gene of interest (COX) and the house-keeping gene was 

calculated for each control and exposed tissue sample (A) (‘nomalised’ values). The 

difference between the normalised ΔCt values between the exposed and the control 

(average of) samples was then used to calculate ΔΔCt (B). Normalised values were 

then used to calculate the degree of induction or inhibition in gene expression 

between the exposed and control samples, expressed as “fold change” (2
-ΔΔCt

) (C) 

using Equation 5: 

     

     

  - ΔΔCt

A   ΔCt = Ct gene of interest  – Ct house-keeping gene

B   ΔΔCt = ΔCt exposed sample  – ΔCt control sample

C   Fold change = 2

 

Equation 5. Calculation used for relative gene quantification using 2
-ΔΔCt  

method. 
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5.2.3.2 Amplification efficiency (E) 

The amplification efficiency (E) of the COX genes and house-keeping gene (β-actin) 

was determined using the Ct slope method. A 10-fold dilution series (0.1 to 100 ng) 

of cDNA obtained from fathead minnow gill tissues of SC and ibuprofen-exposed 

fish were amplified in qPCR reactions using each of the gene primer sets. The Ct 

values obtained were plotted against the log cDNA concentration (ng). The slope of 

the linear regression was used to calculate E (expressed as %) using Equation 6: 

 -1/slope
Amplification efficiency (E) (%) = 10  - 1 (x 100) 

   

Equation 6. Amplification efficiency (E). 

5.2.3.3 Statistical Analysis 

The results are presented as mean ± SD unless otherwise stated. Data for COX gene 

expression between ibuprofen treatments were analysed for normality and variance 

of homogeneity (D'Agostino-Pearson normality test). Where assumptions of 

normality and homogeneity were met, statistical significance was tested using t-tests 

or one-way analysis of variance (ANOVA). If equal variance was not met, then a 

non-parametric test (Mann-Whitney test) was carried out (comparing the median). 

Statistical significance was set at a level of p < 0.05, unless otherwise indicated.   
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5.3 RESULTS 

5.3.1 qPCR assay optimisation 

5.3.1.1 House-keeping gene expression in fathead minnow tissues 

In order to identify a suitable house-keeping gene that was unaffected by treatment, 

three house-keeping genes, β-actin and two ribosomal 18S RNAs (C18S and 318S) 

genes were examined in a panel of tissues collected from one control and ibuprofen-

treated (500 µg/L for 96 hours) fathead minnow (Figure 42).  

Figure 42. Expression of C18S (A), 318S (B) and β-actin (C) house-keeping genes in fathead 

minnow tissue cDNA (50 ng/µL). Tissues were sampled from one SC and one ibuprofen-exposed 

(500 µg/L for 96 hours) fish. Ct denotes threshold cycle. Mean (±SD) of two replicates. 
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The Ct values, for C18S, 318S and β-actin did not differ significantly (p > 0.05, 

using unpaired t test) between control and exposed tissues, demonstrating that these 

genes were not affected by ibuprofen treatment. As expected, the Ct values for the 

two ribosomal 18S RNAs genes were much lower than those for β-actin, indicating 

that these genes are abundantly expressed in fathead minnow tissues. However, as 

the expected Ct values for the target genes were more similar to those of β-actin (Ct 

values ≥20), this gene was selected as the most appropriate house-keeping gene for 

this study. Therefore, COX gene expression in control and ibuprofen-treated tissues 

were normalised to β-actin expression. 

5.3.1.2 Selection of tissues for qPCR analysis 

Due to time constraints and cost-implications of analysing all the sampled tissues, it 

was decided to select the gill, liver and brain tissues for gene expression analysis 

only. The reasons for selecting these tissues were: the gill is the primary site for drug 

uptake from the water; the liver is the main site of metabolism and detoxification of 

contaminants; and the role of the COX isoforms in brain has not been clearly 

established, with the recent suggestion that COX 1 is inducible and COX 2 is 

constitutively expressed in the brain (Breder et al., 1995).  

5.3.1.3 COX gene primer optimisation and validation 

Before proceeding with the gene expression analysis, it was necessary to ensure that 

the newly designed fathead minnow COX gene primer pairs amplified the correct 

targets of interest. Firstly, the generated amplicons were analysed by agarose gel 

electrophoresis to ensure that the size corresponded to the product of interest (as 

described in Section 5.3.1.3.1); a dissociation/melting curve analysis was performed 

to ensure that a single product was formed (as described in Section 5.3.1.3.2); the 

identity of the amplicon was assessed by cloning and sequencing (as described in 

Section 5.3.1.3.3) and the target (and house-keeping) gene primer efficiencies were 

determined (as described in Section 5.3.1.3.4). 

5.3.1.3.1 Determination of amplicon size  

To determine if the COX primers amplified the correct-sized amplicons in fathead 

minnow tissues, the qPCR reactions were run on a 1.5% agarose gel and visualised 
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under UV light. One amplicon was generated in the gill, liver and brain tissues with 

each of the FHM COX primers sets, corresponding to the correct expected size of 

159 bp for FHM COX 1 primers and 107 bp for FHM COX 2a and COX 2b primers 

(Figure 43).  

 

Figure 43. Amplicons generated from fathead minnow gill, liver and brain tissue cDNA using 

FHM COX primers. One product was amplified in the cDNA from all three tissues, of the 

correct expected sized of 159 bp using the FHM COX 1 primers and 107bp for the FHM COX 2a 

and COX 2b primers. Samples were separated on a 1.5% agarose gel. A 1kb+ DNA ladder 

(Invitrogen) was used for size determination. 

 

5.3.1.3.2 Dissociation/melting curve analysis of amplicons 

To confirm that one product had been amplified with each of the FHM primers, a 

dissociation/melting curve analysis was performed. The analysis revealed, as 

expected, the amplification of one DNA product with each of the primer sets, as 

shown in Figure 44. One distinct well-resolved peak was obtained for each of the 

primers sets, corresponding to a Tm of 80.5 °C for the FHM COX 1 and COX 2b 

primers, and 82 °C for FHM COX 2a primers. The Tm indicated that the 107 bp 

products generated by the COX 2a and COX 2b primers were different. 
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Figure 44. Dissociation/melting curve analysis of the amplified products (in the gill) using the 

FHM COX 1, COX 2a and COX 2b gene primers. The Tm (°C) of the amplified products were 

determined to be 80.5 using the COX 1 and COX 2b primers and 82.0 using COX 2a primers 

(red arrows) as indicated by each distinct peak. There was no indication of non-specific 

amplification, including primers dimers or secondary structures.  

 

5.3.1.3.3 Confirmation of amplicon identity  

To confirm that the primers had amplified the COX genes in the FHM, the amplicon 

product bands were extracted, cloned and sequenced. The sequenced amplicon 

products were analysed using BLAST on the NCBI database. The amplicons showed 

99%, 100% and 98% identity, respectively with the putative fathead minnow COX 1, 

COX 2a and COX 2b transcripts (as identified in Chapter 4) as shown in Figure 45. 

These results demonstrate that the primers had amplified the correct fathead minnow 

target sequences. 
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Figure 45. Clustal Omega alignment of generated amplicon sequences obtained using the 

fathead minnow (FHM) COX gene primers against the putative fathead minnow COX 1, COX 2a 

and COX 2b gene frgament sequences. Identical residues are indicated by the lines. 

 

5.3.1.3.4 Amplification Efficiency (E) of target and house-keeping gene primers 

When using relative gene quantification methods, it is necessary to ensure that the 

primer efficiencies of the target genes and house-keeping gene are similar. The 

primer E for each of the target genes and house-keeping gene was determined by 

plotting the Ct value for each gene against a 10-fold dilution series of fathead 

minnow gill cDNA (0.1-100 ng) obtained from SC (n=4) and ibuprofen-exposed fish 

FHM COX 1 Amplicon 
 

Amplicon    CTTCTCTAGAAGAAGAGCTGGGTAGAATTCTAGTGAATCAATATCGCCGTAGAGTTCCTC  60 

            ||||||||||||||||||||||||||||||||||||||||||||||||||||||||| || 

FHM COX 1   CTTCTCTAGAAGAAGAGCTGGGTAGAATTCTAGTGAATCAATATCGCCGTAGAGTTCATC  209 

 

Amplicon    TAGTTCTTTAGCCATTTCTTCATCTCCTGTAAATTCAGAGAATGATGTATAGGGTTTCAG  120 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

FHM COX 1   TAGTTCTTTAGCCATTTCTTCATCTCCTGTAAATTCAGAGAATGATGTATAGGGTTTCAG  269 

 

Amplicon    ATTGAATCTCTTGCGATACTCATTGAAGGGCTGAAGTCG  159 

            ||||||||||||||||||||||||||||||||||||||| 

FHM COX 1   ATTGAATCTCTTGCGATACTCATTGAAGGGCTGAAGTCG  308 

Identity score = 99 % 

FHM COX 2a Amplicon 
 

Amplicon    TTGAAGAGAAGCTCTGGGTCAAACTTGAGCTTGAAGTTGTAGCCACTCAGATGCTGAACG  60 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

FHM COX 2a  TTGAAGAGAAGCTCTGGGTCAAACTTGAGCTTGAAGTTGTAGCCACTCAGATGCTGAACG  271 

 

Amplicon    TAGTCCTCAATCACGATTTTGATGGTCTCACCAATCAGGATGAG  107 

            |||||||||||||||||||||||||||||||||||||||||||| 

FHM COX 2a  TAGTCCTCAATCACGATTTTGATGGTCTCACCAATCAGGATGAG  315 

Identity score = 100 % 

FHM COX 2b Amplicon 
 

 

Amplicon    TTGAAGAGAAGTTCAGGATCAAATTTGAGCTTAAAGTTGTATCCACTAAGGTGCTGGACA  60 

            |||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||| 

FHM COX 2b  TTGAAGAGAAGTTCAGGATCAAATTTGAGCTTGAAGTTGTATCCACTAAGGTGCTGGACA  105 

 

Amplicon    TAATCTTCAATCACAATTTTGATCGTCTCACCAATAAGGATGAGCCG  107 

            ||||||||||||||||||||||| ||||||||||||||||||||||| 

FHM COX 2b  TAATCTTCAATCACAATTTTGATTGTCTCACCAATAAGGATGAGCCG  152 

Identity score = 98 % 
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(n=4) (Figure 46). Ideally, the expected slope for a 10-fold dilution series of template 

DNA is -3.32 when the efficiency of the primers is 100%, indicating a doubling of 

the target DNA with each cycle of PCR. However, in reality, primers are not 100% 

efficient. The primer efficiencies for the fathead minnow COX genes and β-actin 

ranged between 83-99% in the control samples (Figure 46. A) and between 88-98% 

in the exposed samples (Figure 46. B) indicating that there was similar efficiency 

between the target genes and house-keeping gene, albeit not at 100%. Nevertheless, 

these findings show that there was very little interference from inhibitors or limiting 

reaction substrates in the cDNA obtained from fathead minnow tissues. 
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Figure 46. Linear regression curves and amplification efficiencies (E) of fathead minnow (FHM) 

COX genes and β-actin primers in gill cDNA from control (A) and ibuprofen-exposed (B) 

fathead minnow. The Ct value (mean±SD of duplicates) for each primer set were plotted against 

the log concentration of cDNA (0.1-100 ng). The slope of the curve was used to calculate the E 

(%) for each gene.   
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5.3.2 COX gene expression in fathead minnow tissues 

5.3.2.1 Ibuprofen exposure to 100, 270 and 500 µg/L for 96 hours 

COX gene expression was examined in the tissues of fathead minnows that had been 

exposed to SC and ibuprofen water concentrations of 100, 270 and 500 µg/L (for 96 

hours). These exposure concentrations were examined because they resulted in mean 

fish blood plasma concentrations that were below (100 µg/L), above (500 µg/L) or 

similar to the human therapeutic plasma concentration (Cmax) (270 µg/L) after 96 

hours as identified in Chapter 3. Therefore, from the ibuprofen MoA perspective, it 

was interesting to establish the effects on gene expression at these concentrations.  

The mean gene expression level (compared to the SC) for COX 1 was significantly 

up-regulated (p < 0.05) in the gill at 100 µg/L, in the liver at 270 µg/L and in gill, 

liver and brain at 500 µg/L. COX 2a was significantly up-regulated (p < 0.05) in the 

gill at 270 µg/L and in gill, liver and brain at 500 µg/L, whereas COX 2b was 

significantly up-regulated (p < 0.05) in gill and liver at 100 µg/L, in the gill at 270 

µg/L and in gill, liver and brain at 500 µg/L. (Figure 47). Overall, there was a 

general trend of COX gene up-regulation in exposed tissues; however this was 

statistically significant (p < 0.05, using one tailed non-parametric test) in all three 

tissues in fish exposed to 500 µg/L ibuprofen. These findings demonstrate that at the 

highest exposure water concentration tested, COX gene expression was consistently 

elevated above the levels seen in SC fish. To ensure there were no solvent (acetone) 

effects, the gene expression dataset (of the exposed fish) was also analysed using the 

DWC fish (data not shown), which also showed a similar pattern of COX gene up-

regulation (although the absolute Ct values were not the same). 

Although COX gene expression in the tissues of exposed fish appeared to be largely 

up-regulated (compared to the control group) following ibuprofen exposure, large 

inter-individual variation was observed (Figure 48). There was down-regulation of 

COX 1 in the gill at 270 µg/L, COX 2a in the gill and brain at 100 µg/L, in liver and 

brain at 270 µg/L and COX 2b in the liver at 100 µg/L. The variation in gene 

expression levels was more apparent in the tissues of fish that had been exposed to 

100 and 270 µg/L ibuprofen, compared to 500 µg/L, perhaps explaining why a 

statistically significant up-regulation was observed at this concentration. Due to the 
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observed variation it was difficult to establish if there was a concentration-dependent 

effect following exposure. Therefore, to determine if there was a time-dependent 

effect, COX gene expression was examined in fish (gill tissue only) exposed to 270 

µg/L ibuprofen for 24 and 96 hours. Exposure for 24 hours (at 270 µg/L) did not 

result in human therapeutic concentrations (Cmax) of ibuprofen (refer to Chapter 3) 

in fathead minnow blood plasma, however as gene expression may be a sensitive 

biomarker of exposure, it was interesting to establish if the effects seen at 96 hours 

were also seen at 24 hours. 
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Figure 47. COX expression levels (mean ±SD) in the Gill (A), Liver (B) and Brain (C) of fathead 

minnows (n=4) exposed to 100, 270 and 500 µg/L ibuprofen for 96 hours. Expression levels of 

the target genes in control and exposed samples were normalised to β-actin, and the exposed 

samples (n=4) were expressed as fold change relative to the average of the (normalised) SC 

samples (n=4) (represented as 1). Asterisks indicate a significant difference between exposed 

samples and control group (p < 0.05 using one tailed non-parametric test).  
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Figure 48. COX expression levels in the Gill (A), Liver (B) and Brain (C) of individual fish (n=4) 

exposed to 100, 270 and 500 µg/L ibuprofen for 96 hours. Expression levels of the target genes in 

control and exposed samples were normalised to β-actin,, and the exposed samples were 

expressed as fold change relative to the average of the (normalised) SC samples (n=4) 

(represented as 1). The black line within each group indicates the mean. 
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5.3.2.2 Ibuprofen exposure to 270 µg/L for 24 and 96 hours 

COX gene expression in the gill tissues of fish (n=4) exposed to 270 µg/L ibuprofen 

was up-regulated (except COX 1) compared to the SC group, after 24 hours (Figure 

49). COX 1 was significantly down-regulated, whereas COX 2b was significantly up-

regulated (both p < 0.05 using one tailed non-parametric test) from the SC fish 

following exposure. COX 2a was up-regulated at 24 hours, but was not statistically 

different from the SC group. COX expression levels were also elevated in the gills of 

fish exposed to 270 µg/L ibuprofen after 96 hours, although statistically significant 

only for COX 2a and COX 2b genes (both p < 0.05). A clear time-dependent effect 

was observed between gene expression levels at 24 and 96 hours (Figure 49). 

However, only COX 2b was statistically significantly up-regulated (p < 0.05) in the 

gill between 24 and 96 hours. These results suggest that the length of exposure has 

an effect on COX gene expression levels. 

Figure 49. COX expression levels (mean ±SD) in the gill of fathead minnows (n=4) exposed to 

270 µg/L ibuprofen for 24 and 96 hours. Expression levels of the target genes in control and 

exposed samples were normalised to β-actin, and the exposed samples (n=4) were expressed as 

fold change relative to the average of the (normalised) SC samples (n=4) (represented as 1). The 

letter a) indicates a significant difference between exposed samples and control group and b) 

indicates a significant difference between exposed samples at 24 and 96 hours (p < 0.05 using one 

tailed non-parametric test).  
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5.4 DISCUSSION 

In this chapter, the effect of ibuprofen exposure on putative COX transcripts was 

examined using quantitative real-time PCR (qPCR). The main finding from this 

study was that ibuprofen could alter the transcriptional level of the putative COX 

genes (identified in Chapter) in fathead minnow tissues following exposure to 100, 

270 and 500 µg/L (after 96 hours).  

5.4.1 COX gene expression 

The COX genes code for the COX enzymes which are competitively inhibited by 

ibuprofen. The mean gene expression level of three putative COX genes were up-

regulated in fathead minnow tissues following exposure to 100, 270 and 500 µg/L 

(Figure 47), however, the expression levels were highly variable in individuals 

within the same exposure group (Figure 48). The putative COX genes were 

significantly elevated (p < 0.05) in the gill, liver and brain tissues of fish exposed to 

500 µg/L ibuprofen, compared to SC group (after 96 hours). In contrast to the 

findings in this study, no transcriptional changes in COX gene expression levels were 

reported in zebrafish exposed to comparable water ibuprofen concentrations of 21, 

201 and 506 μg/L (after 7 days) (Morthorst et al., 2013) and COX gene expression 

levels were not altered in fish exposed to environmentally relevant concentrations 

(0.1 and 1 μg/L) of ibuprofen (Ji et al., 2013), indicating that the data in the present 

study are contrary to the findings in the literature. As a possible explanation for the 

elevated transcriptional levels of the putative COX genes in the fathead minnow, we 

therefore propose that a compensatory feedback mechanism (gene up-regulation) 

may be occurring as a response to COX enzyme inhibition, following ibuprofen 

exposure to 100, 270 and 500 µg/L (after 96 hours). This proposed explanation is 

rather speculative, however at a recent SETAC Europe 24th Annual Meeting (Basel, 

Switerland) there were reports of elevated COX gene expression levels in inland 

silversides (Menidia beryllina) exposed to ibuprofen concentrations of 0.025 mg/L, 

0.25 mg/L and 2.5 mg/L (after 14 days) (personal communication). 

In the studies conducted by Morthorst et al., (2013) and Ji et al., (2013), the gene 

expression analysis was conducted in the sex (ovary) tissues, which may have 

differential COX expression to the tissues (gill, liver and brain) examined in this 
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study. The primary site of drug uptake into fish is via the gills (Owen et al., 2007), 

and in this study the COX genes were significantly up-regulated in this tissue at all 

three tested exposure concentrations, indicating that the metabolic activity in the gills 

may be different to that in the liver and brain tissues (Gomez et al., 2010). Whitehead 

and Crawford (2005) found that over 48% of 192 metabolic genes examined in brain, 

heart and liver in three populations of the teleost fish mummichog were differentially 

expressed (Whitehead and Crawford, 2005) suggesting that tissue-specific patterns of 

gene expression can be highly variable within the same species. 

There was no clear concentration-dependent effect between ibuprofen exposure and 

elevated COX gene expression levels in exposed fish, due to the large inter-

individual variation observed. Gene expression is a highly sensitive response 

biomarker, and therefore a variety of factors can influence transcriptional levels 

among individuals raised under controlled laboratory conditions. Possible 

explanations for the observed variability in this study could have been due to genetic 

variation, for example, variations in drug-metabolising (CYP) enzymes and changes 

in stress responses (i.e. cortisol synthesis) may also affect drug metabolism in fish 

(Gravel et al., 2009; Gravel and Vijayan, 2007; Heckmann et al., 2008). The gene 

expression levels were more variable in the fish that had been exposed to 100 and 

270 µg/L ibuprofen (for 96 hours), compared to 500 µg/L. One possible explanation 

for this could be that at lower ibuprofen concentrations the fish may be able to 

metabolise the drug, whereas at 500 µg/L the fish may have been “overcome” by the 

high exposure concentration. Therefore, the compensatory up-regulation would most 

likely be dependent on individual sensitivity to ibuprofen and/or ability to metabolise 

the drug. Furthermore, the relatively small sample size (n=4 for each tissue) could 

also have contributed to the variation, which could be reduced by increasing the 

sample size.  

Another factor that can contribute to variation is the time point at which expression 

levels are examined. A time-dependent effect was seen in the gill tissues of fish 

exposed to 270 µg/L after 24 and 96 hours. COX 2b expression levels were 

significantly up-regulated in the gills of exposed fish between 24 and 96 hours. In 

Atlantic salmon, high levels of COX 2b gene expression has been reported in the gill 
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after acute stress (Olsen et al., 2012). Considering that in this study, the fish were not 

fed during the exposure period, it is possible that by 96 hours the fish were under a 

substantial amount of stress, and the elevated COX 2b expression following 

ibuprofen exposure could be related to a potential role for COX 2b in stress 

mechanisms following toxicant exposure, although this has not been confirmed.  

Transcriptomic changes identified using microarray datasets have shown that the 

hepatic expression of the COX 1 and COX 2 genes were also significantly down-

regulated in the rainbow trout exposed 1.6 µg/L diclofenac (after 14 days) (Cuklev et 

al., 2011). Genes can be differentially regulated after the onset of continuous drug 

exposure and down-regulation of the COX genes reported by Cuklev et al., 2011 may 

have been due to a stabilised long-term response, whereas in this study, gene 

expression levels after 4-days of drug exposure may be more indicative of an early 

phase response. Similairly, a down-regulation of the COX genes was also reported in 

rainbow trout exposed to (0, 0.5, 1, 5, and 25 μg/L) diclofenac (after 21 days) 

(Mehinto et al., 2010), however, the findings from this study could not be verified as 

the primers used in the study, when analysed using BLAST, did not show any 

similarity to the cyclooxygenase genes, but instead showed a high level of similarity 

to cytochrome c oxidase gene sequences, also abbreviated as “cox”. However, it is 

unknown if the primer sequences were incorrectly printed in the supplementary 

information provided. Nevertheless, this issue could have been avoided if the identity 

of the amplicons generated had been confirmed by cloning and sequencing methods. 

This highlights a serious issue with the use of highly sensitive gene expression 

analysis studies and the potential for misinterpretation of the results.  

These findings suggest that gene expression, of individual genes at least, may not be 

the most appropriate endpoint for elucidating the molecular mechanisms of toxicant 

exposure in fish, due to the difficulties in interpreting gene expression data. 

Nevertheless, the potential for genomic approaches in predictive ecotoxicology has 

already been demonstrated, primarily through the identification of gene targets and 

regulatory pathway representing mode of action-specific patterns for endocrine 

disruptors in fish (Schiller et al., 2013; Scholz and Mayer, 2008; Wang et al., 2010). 

However, often chemicals may display multiple modes of action, or they can have 
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several interactions at the gene level, which can produce differential effects that can 

vary even from tissue to tissue (Wang et al., 2012). Therefore, further knowledge is 

required to understand the full extent of xenobiotic exposures and their impact on the 

aquatic fauna and flora. 

5.4.2 qPCR Validation 

A fundamental element in the interpretation of gene expression data is the validation 

of the assay. Aside from biological variability, technical variability can also 

contribute to highly variable results, for example, through inadequate sample 

preparation, poor selection of the target gene and house-keeping (reference) gene 

primers leading to inefficient and sub-optimal assay performance; and inappropriate 

analysis of the data leading to misinterpretation of the findings, as addressed by the 

MIQE guidelines, that provides the ‘minimum information for publication of 

quantitative real-time PCR experiments’ (Bustin et al., 2009). In this study, the 

primers used for amplification of the COX target genes in fathead minnows were 

designed using the nucleotide sequences of the putative fathead minnow COX gene 

fragments that were identified as described in Chapter 4 (as the genome sequence for 

this species has not been published). To ensure that these primers had amplified the 

correct targets, the amplicons were cloned and sequenced, to verify the identity of the 

product, which is one method that could have been used by Mehinto et al., (2010) to 

confirm that the target COX genes had been differentially regulated in rainbow trout 

following diclofenac exposure (as opposed to the cytochrome c oxidase genes, based 

on the primer sequences provided in the study). There was no significant difference 

(p > 0.05, using unpaired t test) between the expression levels of the three house-

keeping genes (β-actin, C18S and 318S) in the control and ibuprofen-treated tissues. 

β-actin is highly conserved protein involved in cell motility, structure and integrity in 

vertebrates and aquatic species, and the suitability of this gene as a house-keeping 

gene for normalisation (following ibuprofen exposure) has been demonstrated 

elsewhere (Gravel et al., 2009; Gravel and Vijayan, 2007; Heckmann et al., 2006; Ji 

et al., 2013). However, there are several conflicting studies on the suitability of 

different house-keeping genes in gene expression studies using fish (McCurley and 

Callard, 2008; Filby and Tyler, 2007; Jorgensen et al., 2006; Olsvik et al., 2005; 
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Tang et al., 2007), and therefore some caution must be applied when using reference 

genes that have not been correctly validated. 

In summary, the transcription of the COX genes in fathead minnow tissues was 

elevated following ibuprofen exposure, however, the gene expression levels in 

exposed fish tissues were highly variable. This was most likely due to the sensitivity 

of this endpoint, and therefore more biological replicates are required to allow further 

interpretation of these data.  
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6.1 INTRODUCTION 

The MoA of ibuprofen is through the inhibition of the COX 1 and 2 enzymes, which 

are the key enzymes involved in the conversion of arachidonic acid to prostanoids 

(Vane, 1971). COX 1 is constitutively expressed in a variety of cell types and is 

involved in maintaining “homeostatic” functions, whereas COX 2 can be induced in 

response to mitogenic stimuli, such as phorbol esters, lipopolysaccharides, and 

cytokines (Simmons et al., 2004; Xie et al., 1991). During pain and inflammation, 

COX 2 can be rapidly induced which increases the biosynthesis of prostanoids, 

primarily, prostaglandin E2 (PGE2). PGE2 has been identified as a major prostanoid 

subtype in a number of teleost fish including zebrafish (Grosser et al., 2002; 

Ishikawa et al., 2007), rainbow trout (Knight et al., 1995) and bluntnose minnows 

(Bhandari and Venables, 2011), suggesting that human drug targets are conserved in 

aquatic species. Prostanoids and their receptors have been implicated in several 

physiological functions in fish, such as reproduction (Fujimori et al., 2011; Sorbera 

et al., 2001), stress responses and cortisol synthesis (Gravel and Vijayan, 2007), 

osmoregulation and ion transport (Choe et al., 2006; Gravel et al., 2009;), suggesting 

that changes in prostanoid levels may have widespread effects in fish. Prostanoid 

inhibitors, such as ibuprofen and indomethacin can inhibit the PGE2 concentrations 

in zebrafish (Lister and Van Der Kraak, 2008; Morthorst et al., 2013).  

Ibuprofen is frequently detected (typically ng to low µg/L range) in rivers and 

surface waters, suggesting that there is potential for COX inhibitors to perturb 

physiological processes in aquatic vertebrates, presumably through the inhibition of 

COX and prostanoids. According to the read-across hypothesis, target-mediated 

pharmacological responses similar to those seen in humans, may occur in non-target 

organisms, provided that there has been sufficient drug exposure and similar blood 

plasma concentrations are reached. The purpose of this chapter was to examine the 

effect of ibuprofen exposure on fathead minnows using endpoints that are relevant to 

the MoA of ibuprofen in humans i.e. COX enzyme activity and prostanoids, to 

determine if these are sensitive endpoints for ibuprofen exposure in fish. 

COX enzyme activity was previously measured in a preliminary study (data not 

shown) in the tissues of fathead minnow that had been exposed to SC and ibuprofen. 
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The outcome of this work showed that it was difficult to determine COX enzyme 

activity in “healthy” fish, because COX activity under normal physiological 

conditions is generally low (at basal levels, assuming no underlying disease) in fish. 

However, COX (2) is an inducible enzyme, which can be rapidly up-regulated in 

response to pain stimulus and local inflammation (Simmons et al., 2004), and is 

believed to be the target enzyme for the anti-inflammatory activity of NSAIDs 

(Vane, 1971). Therefore, the first aim of this chapter was to design an exposure study 

whereby COX enzyme activity in fish could be elevated above a basal level, and 

changes in enzyme activity could then be more easily quantified in SC or ibuprofen-

treated fish. This exposure study incorporated a “tail-fin clipping” procedure as a 

means to induce COX activity above basal levels, and the fish were then treated with 

SC or ibuprofen to determine the effect of exposure on fish tissues. Fathead minnows 

were exposed to a water concentration of 270 µg/L as this exposure concentration 

resulted in a mean plasma concentration in fish that was similar to the Cmax (as 

identified in Chapter 3).  

The second aim of this chapter was to examine the effect of ibuprofen exposure on 

the products of COX enzyme activity, primarily prostaglandin E2. In order to address 

this aim, one larger exposure study was designed (n=60) where fathead minnows 

were exposed to one exposure water concentration of 350 µg/L (instead of 370 µg/L, 

as identified in Chapter 3), as it was expected that plasma ibuprofen concentrations 

in fish closer to the Cmax would be reached, and is a requirement in order to test the 

read-across hypothesis. As any potential effects elicited in fish are expected to occur 

only at drug (ibuprofen) plasma concentrations similar to human therapeutic 

concentrations, a smaller follow-up (preliminary) exposure study was also conducted 

where fish were exposed to 5 and 350 µg/L ibuprofen, in order to determine if the 

read-across hypothesis could be validated by using a more environmentally-relevant 

exposure water concentration. A maximal ibuprofen surface water concentration of 5 

µg/L has been previously reported in the UK (Ashton et al., 2004) and therefore this 

concentration was used as a guide in this study. At 5 µg/L, it was not expected that 

human therapeutic plasma concentrations of ibuprofen could be reached in fish and 

therefore, no effects were expected at this water concentration.  
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6.2 METHODS 

The full details of the materials and methods used are provided in Chapter 2, and the 

following contains details not covered elsewhere. This section is divided into three 

main subsections; firstly covering the fish exposure studies conducted, including the 

design of experiment used to “induce” COX enzyme activity in tissues, and the two 

exposure studies used to determine the effect of ibuprofen exposure on 

prostaglandins (see Section 6.2.1). The second and third sections cover assays used 

for the measurement of COX enzyme activity (Section 6.2.2) and measurement of 

prostaglandin metabolites in fathead minnow tissues (Section 6.2.3). 

6.2.1 Fish exposures 

6.2.1.1 “Tail-fin clipping” and continuous ≤120 flow-through exposure to 270 

µg/L ibuprofen 

Adult fathead minnows (n=60) were exposed for ≤120 hours, using a continuous 

flow-through system to (DWC, n=15) SC (x 2) (acetone) (n=30) and a nominal 

ibuprofen water concentration of 270 µg/L (n=15) (Chapter 2, Section 2.1.5, Table 6; 

‘Exposure 4’). Fathead minnows were exposed for 72 hours to two SC treatments 

(depicted as SC-tank 1 and SC-tank 2 in Figure 50) or 270 µg/L ibuprofen (depicted 

as 270 µg/L-tank 1 in Figure 50). After 72 hours of exposure, n=5 fish from SC-tank 

1, SC-tank 2 and 270 µg/L-tank 1 were terminated and tissues (gill, liver and muscle) 

were collected and stored according to the method described in Chapter 2, Section 

2.1.7. Exposure water samples were collected from each tank, just before the fish 

were sampled. The blood plasmas of control and treated fish were also collected 

before and after tail-clipping, but measured plasma concentrations are not presented 

in this chapter (see Chapter 7).  
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Figure 50. Experimental design of the 120 hour continuous flow-through study for analysing the 

effect of “tail-fin clipping” on COX enzyme activity in fathead minnows. Fish (n=15) were 

exposed for 72 hours to solvent control tanks (SC-tank 1 and SC-tank 2) or ibuprofen (270 µg/L-

tank 1). After 72 hours n=5 fish were sampled (red markers). After 92 hours of exposure, n=10 

fish were removed, anesthetised and a small surgical incision was made to upper tail-fin of each 

fish (green markers). The fish in SC-tank 1 and 270 µg/L-tank 1 were placed back into their 

respective tanks. However, the fish in SC-tank 2 were transferred into a fresh ibuprofen tank 

(270 µg/L-tank 2). After tail-clipping, fish n=5 were sampled at 96 and 120 hours from SC-tank 

1, 270 µg/L-tank 1 and 270 µg/L-tank 2 (black markers). 

 

After 92 hours of exposure, the remaining fish (n=10) from SC-tank 1, SC-tank 2 and 

270 µg/L-tank 1 were removed one at a time, and transferred into a large beaker 

containing a non-lethal dose of MS-222 (250 mg/L, buffered with NaHCO3 to pH 

7.4) and each fish was carefully monitored until loss of balance was seen. Each fish 

was then removed one at a time, placed on a dissection board and a small section 

(<1/3
rd

) of the upper caudal fin was surgically removed using a scalpel in order to 

cause injury and subsequently induce COX activity in the fish (without impairing 

complete movement). Each fish was then placed into a bucket of aerated dilution 

water and monitored until balance was regained. Fish from the SC-tank 1 and 270 

µg/L-tank 1 treatments were subsequently returned to their respective tanks. 

However, the fish in the SC-tank 2 were transferred to fresh tank also containing a 

nominal water concentration of 270 µg/L ibuprofen (depicted as 270 µg/L-tank 2 in 
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Figure 50). After tail-clipping had been performed, fish were further exposed to SC 

or 270 µg/L ibuprofen, and n=5 were subsequently terminated after 4 and 24 hours 

(depicted as 96 and 120 hours, respectively in Figure 50), and the blood plasmas and 

gill, liver and muscle tissues were collected, as described in Chapter 2, Section 2.1.7. 

Water samples from the SC and ibuprofen tanks were collected and analysed after 

72, 96 and 120 hours of exposure, as described in Chapter 2, Sections 2.1.8-2.1.9. 

6.2.1.2 Continuous 72 hour exposure to 350 µg/L ibuprofen 

Adult fathead minnows (n=60) were exposed for 72 hours, using a continuous flow-

through system, to (DWC, n=10), SC (n=10) and a nominal ibuprofen water 

concentration of 350 µg/L (n=40) (Chapter 2, Section 2.1.5, Table 6; ‘Exposure 5’). 

After 72 hours exposure all fish were terminated and the gill tissues were collected 

according to the method described in Chapter 2, Section 2.1.7. Exposure water 

samples were collected from each tank, just before the fish were sampled. The blood 

plasmas of control and treated fish were also collected (after 72 hours), but the 

measured plasma concentrations are not presented in this chapter (see Chapter 7, for 

plasma ibuprofen concentrations and target-mediated effects). 

6.2.1.3 Static ≤72 hour exposure to 5 and 350 µg/L ibuprofen 

In a smaller static exposure, adult male fathead minnows (n=45) were exposed for 

≤72 hours to SC (n=9) and nominal ibuprofen water concentrations of 5 (n=18) and 

350 µg/L (n=18) (Chapter 2, Section 2.1.5, Table 6; ‘Exposure 6’). After 24, 48 and 

72 hours of exposure, fish (n=3 from SC, and n=6 from 5 and 350 µg/L treatments) 

were terminated and the gill tissues were collected according to the method described 

in Chapter 2, Section 2.1.7. Exposure water samples were collected from each tank, 

just before the fish were sampled. The blood plasmas of control and treated fish were 

also collected (after 24 and 72 hours), but the measured plasma concentrations are 

not presented in this chapter (see Chapter 7, for plasma ibuprofen concentrations and 

target-mediated effects). 

6.2.2 Measurement of cyclooxygenase (COX) enzyme activity in fathead 

minnow tissues 

COX is a bifunctional enzyme that exhibits both cyclooxygenase and peroxidase 

activities. Enzyme activity was measured in fish tissues using the COX Activity 
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Assay Kit (Cayman Chemical Company, Ann Arbor, MI, USA), according to the 

manufacturer’s protocol. This assays utilises the peroxidase activity of COX, which 

can be easily quantified through an oxidation reaction of a colourimetric substrate, 

N,N,N’,N’-tetramethyl-p-phenylenediamine (TMPD). TMPD produces a yellow 

chromophore when oxidised that can be measured by spectrophotometry at 590 nm 

(Kulmacz and Lands, 1983). 

6.2.2.1 Sample preparation 

Fish tissues (up to 20 mg of each) were placed into pre-labelled 2.0 mL micro-

centrifuge tubes and were promptly disrupted in cold buffer (0.1 M Tris-HCl, pH 7.8, 

1 mM EDTA) using a tissue lyser (Tissue Lyser II, QIAGEN, Manchester, UK). The 

lysed samples were centrifuged at 10,000 x g for 15 minutes at 4 °C and the 

supernatants were transferred into clean 1.5 mL micro-centrifuge tubes and kept on 

ice. The supernatant from each tissue was divided into two aliquots. One aliquot was 

used as the ‘active’ sample, whilst the other was boiled in water for 5 minutes to 

destroy all enzyme activity, to produce an ‘inactive’ sample. After boiling, the 

samples were centrifuged at 8,000 x g for 1 minute at room temperature and the 

supernatant was used to generate a background value for each sample. The 

background value generated from the ‘inactive’ sample was used as a corresponding 

control for the ‘active’ tissue sample. 

6.2.2.2 Performing the colourimetric assay 

All reagents were either supplied in a ready-to-use format or were diluted according 

to the protocol on the day of the assay. All reactions were assayed in triplicate using 

the supplied 96-well plate. Firstly, 120 µL of assay buffer (100 mM Tris-HCl, pH 

8.0) used as a dilution buffer and 10 µL heme (prepared by diluting 88 μL of the 

provided heme solution with 1912 μL of assay buffer) were added to each well. This 

was followed by the addition of 40 µL of the ‘active’ sample and 40 µL of the 

‘inactive’ sample (for each tissue) to their respective wells. The plate was carefully 

shaken and incubated at 25 ºC for 5 minutes. After incubation, 20 μL of TMPD 

(colourimetric substrate) was added to each sample and the reactions were initiated 

by the addition of 20 μL of arachidonic acid solution (primary substrate). The final 

volume in each well was 210 µL. The plate was carefully shaken and then incubated 
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at 25 ºC for 5 minutes. The optical density (OD) was determined by 

spectrophotometry at 590 nm (xMark Microplate Absorbance Spectrophotometer, 

Bio-Rad, Hertfordshire, UK). Ovine COX 1 was supplied in the assay as a positive 

control, which produces an absorbance of 0.28 (at 590 nm) under standard assay 

conditions. The LOD of total COX activity was specified to be between 13-63 

Units/mL (U/mL) using this assay. Wild-type mouse lung tissue obtained from Dr 

Pook’s group, Brunel University, was used as an additional positive control to ensure 

that the sample preparation and assay had been correctly performed. 

6.2.2.3 Data analysis 

Total COX activity for each tissue was initially calculated in Units/mL (U/mL) based 

on the reaction rate at 590 nm, as determined by the extinction coefficient of TMPD 

(0.00826 µM
-1

). However, these units were normalised to the protein content (mg) in 

the homogenised tissue supernatants, as described in Section 6.2.4, and the results 

were presented in U/mg of protein. One unit of COX activity was defined as the 

amount of enzyme required to oxidise 1 nmole of TMPD per minute at 25 ºC, 

assuming a stoichiometry 2 molecules of TMPD oxidised per every molecule of 

PGG2 reduced to PGH2 (common intermediate formed from arachidonic acid, and 

the precursor for prostanoids). Total COX activity was calculated using Equation 7: 

 

Equation 7. Total COX Activity. 

  

 
-1

                           

590Total COX Activity =      x  0.21 mL       ÷ 2*     =   nmol/min/mL U/mL

                                        0.00826 μM 0.04 mL

*     

/ 5 minutes A  

It takes two molecules

 

2

-1

2

590                 

      

Where:

 = Corrected ('inactive' - 'active' sample) absorbance nm for the oxidised substrate (TMPD)

5 minutes         = Incubation period

0.00826 μM   = E

A

of TMPD to reduce PGG to PGH

 

 

xtinction coefficient of TMPD 

0.21 mL          = Total volume in well 210 µL

0.04 mL          = Sample volume 40 µL
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6.2.3 Measurement of Prostaglandin E2 (PGE2) metabolites (PGEM) in 

fathead minnow tissue 

Prostanoids are highly unstable biological mediators, and often human and animal 

tissues contain low amounts of circulating PGE2, as this prostanoid is rapidly 

converted in vivo to its 13,14-dihydro-15-keto PGE2 metabolite (Ferreira and Vane, 

1967), which can further undergo variable amounts of degradation to form other 

metabolites such as 13,14-dihydro-15-keto PGA2. Therefore, the determination of 

PGE2 metabolites in a sample is potentially a more reliable method than measuring 

actual circulating PGE2 (Figure 51). In this study, PGE2 metabolites (PGEM) were 

quantified by enzyme immunoassay (EIA) using the Prostaglandin E Metabolite EIA 

Kit (Cayman Chemical Company, Ann Arbor, MI, USA). This assay converts both 

13,14-dihydro-15-keto PGE2 and 13,14-dihydro-15-keto PGA2 metabolites into a 

single, stable derivative (bicyclo PGE2) that can be more easily quantified, to provide 

an estimate of the PGE2 present in the sample. This assay has 100% cross-reactivity 

with 13,14-dihydro-15-keto PGE products and 38% with bicyclo prostaglandin E. 

The PGEM enzyme immunoassay utilises the enzyme acetylcholinesterase (AChE). 

PGEM is covalently attached to a molecule of AChE to form a PGEM-AChE 

conjugate, which serves as the tracer (PGEM tracer) in the EIA. Briefly, the principle 

of this assay is based on the competition between the amount of PGEM in a sample 

and the PGEM tracer, for a limited number of PGEM-specific rabbit antiserum 

binding sites. The concentration of the PGEM tracer is constant, whilst the 

concentration of PGEM varies, and therefore the amount of PGEM tracer that is able 

to bind to the rabbit antiserum is inversely proportional to the concentration of 

PGEM in the sample. This rabbit antiserum-PGEM (either free or tracer) complex 

binds to the mouse monoclonal anti-rabbit IgG antibody that has been attached to 

each well of the 96-well plate. Finally, Ellman’s reagent that contains the substrate to 

AChE is added to each well, which can be measured by spectrophotometry at 415 nm 

(Cayman Chemical Company, Ann Arbor, MI, USA). 
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Figure 51. Schematic diagram of the metabolism of PGE2 to a single stable derivative that can be 

quantified using the Prostaglandin E2 (PGE2) metabolite (PGEM) enzyme immunoassay (EIA) 

assay (adapted and redrawn from the protocol provided by Cayman Chemical Company, Ann 

Arbor, MI, USA). 
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6.2.3.1 Sample preparation 

Gill tissues (20 mg) were placed into pre-labelled 2.0 mL micro-centrifuge tubes and 

were promptly lysed in buffer (0.1 M phosphate, pH 7.4, 1 mM EDTA containing 10 

μM indomethacinto prevent ex vivo formation of prostaglandins) using a tissue lyser 

(Tissue Lyser II, QIAGEN, Manchester, UK). The lysed samples were centrifuged at 

8,000 x g for 10 minutes at 4 °C. The supernatants were transferred into clean 1.5 

mL micro-centrifuge tubes and were purified by acetone precipitation. Four volumes 

of ice-cold acetone (Sigma-Aldrich, Dorset, UK) were added to each sample, which 

were then incubated at -20 ºC for 60 minutes. The mixtures were centrifuged at 400 x 

g for 5 minutes at room temperature to pellet the proteins and the supernatants were 

subsequently transferred to clean 2.0 mL micro-centrifuge tubes. The acetone was 

evaporated under a stream of nitrogen to concentrate the sample. The samples were 

re-suspended in the supplied EIA buffer (1 x) (0.1 M phosphate solution, 0.1% 

bovine serum albumin [BSA], 0.4 M NaCl2, 1 mM EDTA and 0.01% sodium azide). 

The samples were then prepared for derivatisation. 

6.2.3.2 Derivatisation to yield metabolites 

The PGEM standard solution (supplied in the assay), and tissues samples were mixed 

with 1 M carbonate buffer and incubated at 37 ºC overnight, to allow PGE2 

metabolites to be converted to one single stable derivative that could be more easily 

measured. After incubation, 1 M phosphate buffer and EIA buffer was added to the 

samples and the standard (1000 pg/mL). 

6.2.3.3 Performing the enzyme immunoassay 

Prior to the start of the assay, an 8-point standard curve was prepared by serial 

dilution of the standard using EIA buffer to provide a calibration curve ranging from 

0.39-50 pg/mL. The average curve regression coefficient (r
2
) was 0.9559. From a 

preliminary assay with different dilutions of samples, it was decided that the SC 

tissue samples would be diluted 10-fold and the ibuprofen-treated samples diluted by 

5-fold, using an appropriate amount of PGEM assay buffer (prepared by adding 13 

mL of EIA buffer, 3 mL carbonate buffer [1 M] and 4 mL phosphate buffer [1 M]) in 

order to keep the absorbance values within the working range of the assay. 
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All standards and samples were assayed in duplicate. For each plate, wells were 

assigned for non-specific binding (NSB) (used to determine the binding of the tracer 

to the well), total activity (TA) (used to determine the total enzymatic activity of the 

AChE-linked tracer), maximum binding (B0) (used to determine the maximum 

amount of the tracer that the antibody can bind with) and blanks (used to determine 

the absorbance caused by Ellman’s reagent alone). 50 μL of the prepared standards 

(1-8) and diluted samples were pipetted into the designated wells (except for NSB, 

TA, B0 and blank wells). 50 µL of EIA buffer was pipetted into the NSB wells only 

and then 50 μL of PGEM assay buffer was pipetted into NSB and B0 wells. This was 

followed by the addition of 50 μL of PGEM tracer to each well except the TA and 

blank wells and then 50 μL of antiserum was pipetted into each well, except the TA, 

NSB and blank wells. The plate was sealed with an adhesive film and incubated for 

18 hours at room temperature. After the incubation period, the contents of the wells 

were emptied, and the plate was washed five times with wash buffer (5 mL of 400 x 

concentrate, diluted to 2 L with water and 1 mL of Polysorbate-20 was added). After 

the final wash, the wells were emptied, and the plate was firmly tapped on a lint-free 

paper towel to remove any remaining wash buffer. 200 µL of the substrate Ellmans’ 

reagent was added to each well and 5 µL of PGEM tracer was added to the TA well. 

The plate was sealed and placed on an orbital shaker (in the dark) for 90 minutes at 

room temperature to facilitate colour development. The OD was determined by 

spectrophotometry at 415 nm (xMark Microplate Absorbance Spectrophotometer, 

Bio-Rad, Hertfordshire, UK). 

6.2.3.4 Data analysis 

The average absorbance value of the blank wells was subtracted from the average 

absorbance values (of duplicate) samples and standards to account for background 

values caused by the Ellmans’ reagent. The average NSB value (amount of tracer 

bound to the well) was subtracted from the B0 (maximum amount of the tracer 

available) to obtain the corrected B0. For the standard wells and sample wells, the 

standard bound or sample bound tracer, over the maximum amount of tracer 

available (B/B0) was calculated. A standard curve was prepared using a logit 

transformation of B/B0 versus log concentration of the PGEM standard (pg/mL). A 

linear regression was performed through the calibration points, and the PGEM 
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concentration in the samples was determined from the standard curve. These units 

were normalised to the protein content (mg) in the homogenised tissue supernatants, 

as described in Section 6.2.4, and the results were presented in pg/mg of protein. 

6.2.4 Protein determination in tissues 

Total protein concentration in tissue samples was determined using the QuantiPro™ 

bicinchoninic acid (BCA) assay (Sigma-Aldrich, Poole, UK), according to the 

manufacturer’s protocol. This assay depends on the reduction of Cu
2+

 to Cu
1+

 by 

proteins under alkaline conditions, and the subsequent formation of a stable 

bicinchoninic acid and Cu
1+

 colourimetric complex that can be measured using a 

spectrophotometer. For protein quantification, a standard curve was prepared using 

bovine serum albumin (BSA) standard (1.0 mg/mL) by serial dilution using 

nuclease-free water to produce a calibration range between 0.5-30 μg/mL. BCA 

assay working reagent sufficient for a 96-well plate were prepared. Tissues samples 

were diluted (1:20 using nuclease-free water) and assayed in duplicate using a 1:1 

ratio of protein solution to BCA assay working reagent. The plate was incubated at 

37 °C for 2 hours and the OD was determined by spectrophotometry at 562 nm 

(xMark Microplate Absorbance Spectrophotometer, Bio-Rad, Hertfordshire, UK). A 

linear regression was performed through the calibration points, and protein 

concentration (mg/mL) in the tissue samples were determined from the standard 

curve. 

6.2.5 Statistical analysis 

The results are presented as mean ± SD, unless otherwise stated. Data for COX 

activity and PGEM were analysed for normality and variance of homogeneity 

(D'Agostino-Pearson normality test). Where assumptions of normality and 

homogeneity were met, statistical significance was tested using t-tests or one-way 

ANOVA followed by a multiple comparison test (Holm-Sidak or Tukey’s test). 

Statistical significance was set at a level of p < 0.05, unless otherwise indicated. 
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6.3 RESULTS 

6.3.1 Water concentrations of ibuprofen 

Fathead minnows were exposed to ibuprofen in three separate exposure studies, two 

were conducted using continuous flow-through systems to 270 µg/L (over 120 hours) 

and 350 µg/L ibuprofen (over 72 hours), and one smaller static exposure study was 

conducted for 5 and 350 µg/L ibuprofen (over 72 hours). To compare the dosing 

systems used, the actual water concentrations of ibuprofen was quantified and 

compared to the nominal test concentrations (Table 19).  

The mean measured (± SD) water concentrations of ibuprofen (over 120 hours) in 

270 µg/L-tank 1 was 214 ± 102 µg/L and in tank 2 (that received fish after the tail-

clipping procedure) was 227 ± 57 µg/L. In the 350 µg/L exposure tank (over 72 

hours), the mean measured concentration was 368 ± 4 µg/L. The time-weighted 

average ibuprofen concentration in water samples in these tanks were 80, 84 and 

105% of the nominal exposure concentrations, respectively, indicating that overall 

the exposure concentrations achieved using the continuous flow-through systems 

were within an acceptable range (± 20% of the expected ‘nominal’ concentration). 

However, the measured concentration in 270 µg/L- tank 1 at 120 hours was much 

lower than expected i.e. 36% of nominal, and in the 270 µg/L- tank 2 at 72 hours the 

measured concentrations was 66% of nominal. This very low measured concentration 

at 120 hours was due to a blockage at the end of dosing line, caused by build-up of 

test substance toward the end of the exposure period. The mean measured water 

concentrations following static exposures to 5 and 350 µg/L (over 72 hours) were 9 ± 

1 µg/L and 473 ± 9 µg/L, and these concentrations were 181 and 135% of the 

nominal exposure concentrations, respectively. The measured concentrations at 5 

µg/L were consistently high and were approximately double the concentration of the 

nominal. These findings show that ibuprofen dosed using continuous flow-through 

systems were closer to the nominal than those achieved using the static system, 

although it is unclear why this is the case. The measured concentrations in the 350 

µg/L exposure tanks were 368 ± 4 µg/L and 473 ± 9 µg/L over 72 hours, using the 

continuous flow-through and static systems, respectively. For these reasons, in this 

chapter, the measured water concentrations of ibuprofen of 220 µg/L (average of 
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tank 1 and tank 2), 370 µg/L, 9 µg/L and 470 µg/L will be used (instead of the 

nominal concentrations). 

Table 19. Measured concentrations of ibuprofen (μg/L) in exposure tank waters in three 

different exposure studies, using continuous flow-through (270 and 350 μg/L) and static systems 

(5 and 350 μg/L). Ibuprofen measurements in the waters of the DWC and SC tanks were below 

the LOD (<2.5 µg/L). 

 

During the exposure period, ibuprofen measurements in the water samples collected 

from the DWC and SC tanks were below the LOD of 2.5 µg/L, which was 

determined to the lowest acceptable standard concentration for which ibuprofen 

Nominal exposure 
concentration µg/L 

No. of exposure 
hours 

Measured water 
concentration µg/L 

% Nominal 

Continuous ≤120 flow-through exposure to 270 µg/L ibuprofen 

270 (tank 1) 72 276 102 

270 (tank 1) 96 271 100 

270 (tank 1) 120 96 36 

Mean ± SD  214 ± 102 80 

270 (tank 2) 72 178 66 

270 (tank 2) 96 290 107 

270 (tank 2) 120 214 79 

Mean ± SD  227 ± 57 84 

Continuous 72 hour exposure to 350 µg/L ibuprofen 

350 24 363 104 

350 48 370 106 

350 72 370 106 

Mean ± SD  368 ± 4 105 

Static ≤72 hour exposure to 5 and 350 µg/L ibuprofen 

5 24 10 200 

5 48 9 180 

5 72 8 165 

Mean ± SD  9 ± 1 181 

350 24 467 134 

350 48 484 138 

350 72 469 133 

Mean ± SD  473 ± 9 135 
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could be reliably measured in water with the analytical method used. This was 

therefore interpreted as no ibuprofen being present in these tanks. 

6.3.2 Effect of “tail-fin clipping” on COX activity in fish tissues 

The total COX activity (normalised to mg of tissue protein) was measured in the gill, 

muscle and liver (pooled, the reason for which is explained later in this section) 

tissues of fish. In the muscle, total COX activity was low and ranged between 0-2 

U/mg (equivalent to 0-5 U/mL) in fish exposed to SC (before tail-clipping). After 4 

and 24 hours post tail-clipping, COX activity was mostly non-detectable, in both SC 

and ibuprofen-treated groups, indicating that tail-clipping had no measurable effect 

on altering COX activity levels (Figure 52. A). The LOD specified in this assay was 

13-63 U/mL, which was over 2-fold higher than the total activity calculated in this 

study, suggesting that the measured activity was outside of the detection range.  

In the gill, total COX activity was mostly non-detectable in exposed fish (Figure 52. 

B). Some activity was observed in fish exposed to ibuprofen, after 4 and 24 hours 

post tail-clipping, however, the measured levels were below the detection range 

specified in the assay. Therefore, it was not possible to make any further conclusions 

from the data obtained. The lack of measurable COX activity in the gill may have 

been due to this tissue being located further away from the site of injury, compared 

to the muscle tissue, that was sampled in closer proximity to the site where the 

trauma was inflicted.  

Overall, these findings show that tail-fin clipping had no measurable effect on 

inducing COX activity above basal levels in the muscle or gill, at the time points 

examined (i.e. 4 and 24 hours), suggesting that either COX was not induced (to a 

measurable level) or that the amount of time that had elapsed following tail-clipping 

was inappropriate to see any observable effect. As the COX levels were non-

measurable or very low before tail-clipping, it was not possible to determine if 

ibuprofen exposure had any effect on modulating COX activity, after injury to fish. 

To ensure that the assay was in correct working order, mouse (muscle and lung) 

tissues were used as an additional positive control when the assays were performed. 

The measured COX activity levels for the mouse tissues ranged between 42-58 

U/mL in the muscle, and 70-88 U/mL in the lung (above the specified LOD for the 
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assay), suggesting that the assay may be more sensitive to mammalian COX, and less 

sensitive to fish COX enzymes. However, another possibility for the higher measured 

COX levels could have been the amount of starting tissue mouse (~40 mg) material 

used in the assay. It was speculated that the limited tissue material available from 

individual fish (~20 mg) might have contributed to the low measured levels; 

therefore, liver tissues from five fish were pooled. COX activity was detected 

between 1.5-5.5 U/mg (ranging from 32-42 U/mL, which was within the LOD for the 

assay) in pooled liver samples in all treatments (Figure 52. C). Tail-clipping 

appeared to induce COX activity in fish exposed to ibuprofen, 4 hours after tail-

clipping, which then fell at 24 hours in the ibuprofen tank only, suggesting that this 

may have been an effect of ibuprofen exposure (in fish exposed to ibuprofen only). 

However, it was not possible to make any firm conclusions based on one pooled 

tissue sample.  
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Figure 52. Total cyclooxygenase (COX) activity (normalised to the mg of sample protein) in 

fathead minnow muscle (A) (n=5), gill (B) (n=5) (individual data points are shown, along with 

the mean ±SD) and liver (C) (pooled sample) tissues before and (4 and 24 hours) after tail-

clipping. COX activity was measured in fish exposed to solvent control (SC) before and after 

tail-clipping, SC (before) and 220 µg/L ibuprofen (after tail-clipping) and fish exposed to 

ibuprofen (before and after tail-clipping). N.D denotes non-detectable.   
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6.3.3 Effect of ibuprofen exposure on prostaglandin E metabolite (PGEM) 

concentration 

As we were unsuccessful in quantifying COX activity at basal levels in fathead 

minnows tissues (exposed to SC only), it was not possible to determine if ibuprofen 

exposure had any effect on altering COX enzyme activity. The MoA of ibuprofen is 

through its inhibition of prostanoid synthesis, via the inhibition of the COX enzymes. 

To examine if ibuprofen exposure could modulate prostanoids synthesis, 

prostaglandin E metabolite (PGEM) concentrations were measured in gill tissues. 

Fish were exposed to SC (n=10) or a measured ibuprofen water concentration of 370 

μg/L (n=40) over 72 hours. A larger sample size of 40 fish was used as high inter-

individual variability had previously been observed in both ibuprofen uptake (see 

Chapter 3) and gene expression (Chapter 5). PGEM concentrations in the gill tissues 

of fathead minnows exposed to 370 μg/L ibuprofen were significantly decreased (p < 

0.001, unpaired t test) compared to the SC group (Figure 53), indicating that 

ibuprofen can alter PGEM concentrations in fish at this exposure concentration.  
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Figure 53. Prostaglandin E metabolite (PGEM) concentration in gill tissues of fathead minnows 

exposed to solvent control (SC) (n=10) and ibuprofen (n=40) (mean measured concentration 

(±SD) of 368 ± 4 μg/L) after 72 hours. Individual data points are shown, along with the mean 

±SD. Asterisks (***) indicate a significant difference between SC group and exposed samples   

(p < 0.001 using unpaired t test). 
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exposure group was significantly decreased (p < 0.001, one-way ANOVA followed 

by Tukey’s comparison test), when compared to the fish in the 9 μg/L exposure 

group. To examine if the results observed at 470 μg/L were comparable to the 

previous results (i.e. at 370 μg/L), the PGEM concentrations in fish at both 

concentrations were compared (data not shown). There was no significant difference 

in PGEM concentrations in fish between these two exposure concentrations, possibly 

due to these being more similar concentrations, and the large inter-individual 

variation in both groups.  

To determine if there was a time-dependent effect on PGEM inhibition following 

ibuprofen exposure at 9 and 470 μg/L, PGEM concentrations were measured in fish 

after 24 and 72 hours of exposure (Figure 55). PGEM concentrations in fish exposed 

to 9 μg/L after 24 and 72 hours were not significantly different (p > 0.05, using 

unpaired t test). PGEM concentrations in fish exposed to 470 μg/L after 24 and 72 

hours were significantly different (p < 0.001, using unpaired t test). PGEM 

concentrations were also significantly different (p < 0.05) between the 9 and 470 

μg/L ibuprofen exposure groups at 24 and 72 hours. 
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Figure 54. Prostaglandin E metabolite (PGEM) concentration in gill tissues of fathead minnows 

exposed to solvent control (SC) (n=9) and ibuprofen concentrations of 9 (± 1) μg/L (n=12) and 

470 (473 ± 9) μg/L (n=12) after 72 hours. Individual data points are shown, along with the mean 

±SD. The letter a) indicates no significant difference between SC group and exposed group, b) 

indicates a significant difference (p < 0.05) between SC group and exposed group and c) 

indicates a significant difference (p < 0.001) between exposed groups (using one-way ANOVA 

followed by Tukey’s comparison test). 
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Figure 55. Prostaglandin E metabolite (PGEM) concentration in gill tissues of fathead minnows 

exposed to 9 (± 1) μg/L and 470 (473 ± 9) μg/L after 24 (n=6) and 72 (n=6) hours. Individual data 

points are shown, along with the mean ±SD. The letter a) indicates no significant difference, b) 

indicates a significant difference at p < 0.05 and c) at p < 0.001, between 24 and 72 hours (using 

unpaired t test).  
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6.4 DISCUSSION 

In this chapter, the effect of ibuprofen exposure on COX enzyme activity, and one of 

its downstream products, prostaglandin E2, was examined. The main finding from 

this study was that ibuprofen can significantly decrease prostaglandin E2 

concentrations in fathead minnows after 72 hours of exposure to 370 and 470 μg/L, 

but not at exposure concentrations more similar to environmentally relevant 

ibuprofen concentrations (i.e. 9 μg/L). (Note that the plasma ibuprofen 

concentrations in fish exposed to 9, 370, and 470 µg/L confirmed that ibuprofen was 

taken up into fish, however the relationship between plasma concentrations (in 

individual fish) and target-mediated effects will be discussed in Chapter 7). 

6.4.1 COX enzyme activity 

From the preliminary work, it was shown that COX enzyme activity at basal levels 

were too low to be accurately quantified in fish that were considered to be “healthy” 

(data not shown). However, similar to our previous findings, in this study COX 

activity in muscle and gill tissues were low in both SC and ibuprofen-treated fish (at 

basal levels i.e. before tail-clipping), and in most instances, the measured COX 

activity levels were below the LOD specified in the assay (Figure 52 A & B). In 

tissue-injury models, basal expression of COX 1 is constitutive, whereas an up-

regulation of COX 2 is seen during the acute tissue injury phase (Dupouy et al., 

2006). In an attempt to elevate COX activity in fathead minnows, injury was inflicted 

on fish through removal of a section of the tail-fin. Subsequently, the effect of this 

injury was examined by measuring COX activity in tissues after 4 and 24 hours, in 

fish exposed to SC only, and in fish exposed to 220 µg/L ibuprofen to investigate if 

ibuprofen treatment could alter (decrease) COX activity in fish (following tissue 

injury). However, after injury, COX activity in tissues were mostly non-detectable, 

therefore it was not possible to determine if a) injury had measureable effect on 

inducing COX activity in fish (after for 4 and 24 hours) and b) whether ibuprofen 

exposure could subsequently alter the induction that was expected (after injury). 

COX activity was detected in mouse muscle and lung tissues (which were used as an 

additional positive control in the assay), and some activity (within the LOD range) 

was observed in the pooled liver samples (Figure 52 C). This suggests that either the 
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assay was not sensitive enough for fish COX enzymes, or more likely, that the 

amount of (gill and muscle) tissue from individual fish was a limiting factor. 

To date, only one study has demonstrated the inhibition (although not significantly) 

of total COX activity in fish following ibuprofen exposure (Flippin et al., 2007). 

Total COX activity was measured in Japanese medaka that had been exposed for 6-

weeks to ibuprofen concentrations of 0, 1, 10 and 100 µg/L. The measured COX 

activity in liver tissues (1.5-4.5 U/mg) in Japanese medaka was comparable to those 

measured in pooled liver tissues in fathead minnows from this study (0.5-5.5 U/mg), 

when normalised to tissue protein content. Following the 6-week exposure, a 

reduction in the variability of COX activity between control and exposed groups was 

reported, which the authors concluded was a primary effect of ibuprofen (Flippin et 

al., 2007). Considering that only weak inhibition of COX activity was observed after 

6-weeks of ibuprofen exposure, suggests that it may not have been possible to detect 

any changes in COX activity in this study, where fish had been exposed to ibuprofen 

for a maximal duration of 120 hours. Furthermore, with longer exposures, the 

potential for there to be a carry-over of ibuprofen in exposed fish tissues may be 

increased, which could influence COX activity levels. Therefore, in some instances, 

it may be useful to have a measure of the tissue ibuprofen concentration. 

Another explanation could be that ibuprofen and other NSAIDs may lack the 

capacity to effectively inhibit COX enzyme activity in fish. For example, no changes 

in COX enzyme activity were reported following ibuprofen exposure in either the 

gill or kidney tissues of rainbow trout (Robichaud, 2011). However, these findings 

may also indicate that COX activity in the liver (as reported in Japanese medaka) 

may be differentially expressed to that in the gill (or muscle) tissue. Similarly, in 

green sunfish (Lepomis cyanellus) that had been treated with a number of COX 

inhibitors, including ibuprofen, drug treatment had no effect on inhibiting COX 

enzyme activity (Cavallaro and Burnside, 1988). In all of these instances, it cannot 

be ruled out that the assay was not sensitive or specific enough for fish COX 

enzymes, as in all cases mammalian total COX activity assays were used. For these 

reasons, the products of COX activity, prostaglandins were also examined in this 
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study to determine if this endpoint was more sensitive than COX enzyme activity in 

fish. 

6.4.2 Prostaglandin E2 metabolite (PGEM) concentrations 

The PGEM concentrations in the gill tissues of fathead minnows exposed to 

ibuprofen water concentrations of 370 and 470 μg/L (after 72 hours) were 

significantly decreased, compared to their respective SC groups. Large inter-

individual variation was observed in the SC group (24-fold) and in fish exposed to 

370 μg/L (155-fold) (Figure 53), and in the follow-up exposure study, in the SC 

group (13-fold), and in fish exposed to 470 μg/L (49-fold). Interestingly, less 

variation was observed in fish exposed to 9 μg/L (6-fold) (Figure 54). The variation 

observed in the SC groups indicates that factors other than drug exposure can 

modulate PGEM concentrations in “healthy” fish. In mammals, the conversion of 

PGH2 to PGE2 in the COX pathway is partially regulated by microsomal (mPGES-1 

and mPGES-2) and cytosolic (cPGES) prostaglandin E2 synthases (Jakobsson et al., 

1999; Tanioka et al., 2000; Watanabe et al., 1999). The orthologues of two human 

microsomal synthases have now been characterised in zebrafish (Pini et al., 2005) 

suggesting a similar mechanism of PGE2 regulation may also be present in fish. 

However, whether the variation in PGEM concentrations in SC fish can be explained 

by differences in the presence and activities of microsomal and cytosolic synthases, 

remains to be confirmed.  

Despite the larger sample size in the 370 μg/L exposure group (n=40), compared to 

470 μg/L exposure group (n=12), the PGEM concentrations in fish in these exposure 

groups (over 72 hours) was not significantly differently (data not shown). This 

suggests that the propensity for ibuprofen to inhibit PGE2 at these two concentrations 

is comparable. The potency of NSAIDs against COX 1 and COX 2 can be compared 

using the IC50 values. The estimated reported IC50 values for ibuprofen in humans 

range between 3.3-4.75 μM for COX 1, and over 30 μM for COX 2 based on whole 

blood assays of endotoxin-induced PGE2 production (Brideau et al., 1996; Gierse et 

al., 1995). The IC50 for ibuprofen inhibition of PGE2 production in the gill tissue of 

bluntnose minnow has been estimated to be 0.4 μM (Bhandari and Venables, 2011) 

suggesting that PGE2 in fish is approximately 10-75-fold more sensitive to ibuprofen 



Chapter 6 Results 

 

191 

inhibition than in humans (based on IC50 estimates). This indicates that the potency 

of ibuprofen in fish is greater than in humans, as a lower ibuprofen concentration can 

lead to greater magnitude of effect in fish. Therefore, some caution must be applied 

when using mammalian data to predict target-mediated pharmacological effects in 

aquatic species.  

Ibuprofen and other NSAIDs are non-selective inhibitors of COX, which can result 

in the non-specific inhibition of prostanoids, and the disruption of several 

physiological functions in fish. NSAID inhibition of prostanoids can affect 

reproduction, for example in zebrafish indomethacin exposure (100 μg/L for 16 days) 

significantly inhibited PGE2 which resulted in disruption of oocyte maturation and 

ovulation (Lister and Van Der Kraak, 2008) and ibuprofen exposure has been shown 

to alter the pattern of spawning in Japanese medaka (Flippin et al., 2007). In the 

former study, COX activity was not altered in the ovary and whole body 

homogenates following indomethacin exposure, confirming that PGE2 is more 

sensitive to NSAID inhibition than COX enzyme activities. 

Ibuprofen exposure did not affect PGEM concentrations in fish exposed to 9 µg/L 

(compared to the SC group) which was, respectively, 41-fold and 52-fold below the 

370 and 470 µg/L ibuprofen exposure concentrations. Therefore, in this study the “no 

observed effect concentration” (NOEC) was determined to be 9 µg/L ibuprofen. 

In summary, ibuprofen exposure can produce target-mediated effects in fathead 

minnows based on the MoA of ibuprofen in humans. However, COX enzyme 

activity was not suitable as an endpoint for MoA-relevant effects. Contrary to 

expectation, tissue injury did not elevate COX enzyme activity to measurable levels, 

and this was mostly likely due to a lack of assay sensitivity. The PGEM 

concentration was a sensitive terminal endpoint of the COX pathway, reflective of 

the MoA in humans. Ibuprofen exposure did not affect PGEM concentration in fish 

at 9 µg/L (the NOEC), but only at 370 and 470 µg/L ibuprofen, indicating that in this 

study, exposure concentrations approximately 2 to 3-fold above environmentally 

relevant concentrations did not adversely affect adult fathead minnows. 
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7.1 INTRODUCTION 

The read-across hypothesis assumes that similar target-mediated effects will occur in 

fish, as in humans, if the molecular targets have been conserved and only if the 

plasma concentrations in fish are similar to the human therapeutic concentrations. In 

this study so far, it has been demonstrated that therapeutic concentrations of 

ibuprofen can be reached in fathead minnow blood plasma, and that an exposure 

water concentration of 270-370 µg/L ibuprofen (for 96 hours) is required to achieve 

the Cmax range of 15,000-30,000 µg/L (Schulz et al., 2012) in fathead minnows (as 

described in Chapter 3). It has been shown that the primary molecular target for 

ibuprofen, the COX enzymes, that are encoded for by the COX genes, are present in 

fathead minnows (as identified in Chapter 4) (albeit variations of the isoforms), 

demonstrating the MoA of ibuprofen may be conserved in fish. Ibuprofen exposure 

can alter COX gene expression in fathead minnows (as shown in Chapter 5). The 

downstream products of COX enzyme activity, prostaglandins (as determined by 

PGEM) are also affected by ibuprofen following exposure to water concentrations of 

370 (and 470) µg/L, but not at concentrations similar (2 to 3 times higher i.e. 9 µg/L) 

to environmentally-relevant concentrations (as shown in Chapter 6). However, large 

inter-individual variation was observed in ibuprofen uptake, COX gene expression 

levels and PGEM concentrations. Therefore, the purpose of this chapter was to 

correlate the measured ibuprofen blood plasma concentrations with the observed 

target-mediated biological effects (on COX gene expression and PGEM) in fathead 

minnows, in order to determine the relationship between effective internal 

concentrations in fish with therapeutic concentrations in humans (Cmax).  

7.2 METHODS 

The measured plasma ibuprofen concentrations were correlated with the target-

mediated effects on COX gene expression (refer to Chapter 5) and PGEM 

concentrations (refer to Chapter 6). Data on the measured plasma ibuprofen 

concentrations were previously collected from fathead minnows that had been 

exposed to 270 µg/L (n=4) (mean ± SD, 278 ± 70 µg/L) and 500 µg/L (n=4) (502 ± 

56 µg/L) after 96 hours (refer to Chapter 3), and to 370 µg/L (n=40) (368 ± 4 µg/L), 

9 µg/L (n=9) (9 ± 1 µg/L ) and 470 µg/L (n=11) (473 ± 9 µg/L) after 72 hours (refer 

to Chapter 6). The relationship between plasma ibuprofen concentrations and COX 



Chapter 7 Results 

 

194 

gene expression and PGEM was examined using linear regression analysis, using 

GraphPad Prism 6 (GraphPad Software, Inc). 

7.3 RESULTS 

7.3.1 COX gene expression levels and plasma ibuprofen concentrations 

COX gene expression was previously examined in gill, liver and brain tissues of 

fathead minnows (Chapter 5), and the fold change in gene expression level 

(compared to the SC group) was correlated with the plasma ibuprofen concentration 

of the exposed (n=4) fish. The blood plasma concentrations of the fish (n=4) exposed 

to 270 µg/L were 625, 4,400, 16,800 and 172,500 µg/L ibuprofen (mean of 48,590 ± 

82,880 µg/L, see Chapter 3, Table 11), indicating that the plasma concentrations 

were below or within the Cmax, except for one fish that was above the Cmax. The 

blood plasma concentrations of the fish (n=4) exposed to 500 µg/L were 60,940, 

352,900, 84,530 and 220,580 µg/L ibuprofen (mean of 179,739 ± 126,138 µg/L, see 

Chapter 3, Table 11), indicating that the plasma concentrations in these fish were all 

above the Cmax.  

COX 1 gene expression was up-regulated in the tissues of fathead minnows with 

plasma concentrations below, within and above the Cmax. Down-regulation of COX 

1 was observed in the gill, liver and brain tissues of one fish exposed to 270 µg/L, 

which had the highest plasma ibuprofen concentration in this group (Figure 56. A). 

However, up-regulation was observed in all the tissues of fish exposed to 500 µg/L, 

all of which had a plasma ibuprofen concentration above the Cmax. COX 2a was up-

regulated in the tissues of fathead minnows with plasma concentrations below, 

within and above the Cmax, except in the liver of one fish (that a had a plasma 

concentration below the Cmax), and in the brain and liver tissues of another fish (that 

had a plasma concentration above the Cmax), and in all tissues of fish exposed to 

500 µg/L (Figure 56. B). COX 2b was up-regulated in the tissues of fathead minnow 

exposed to 270 and 500 µg/L, except in the liver one fish that had a plasma 

concentrations below the Cmax, and in another fish that had a plasma concentration 

above the Cmax (Figure 56. C). These findings demonstrate that there was no clear 

trend between COX gene expression levels and increasing plasma ibuprofen 

concentration as up-regulation was seen in fish with plasma concentrations below 
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(24-fold below the lower Cmax value i.e. 15,000 µg/L), similar to, and above (12-

fold above the upper Cmax value i.e. 30,000 µg/L) the Cmax. 

Closer examination of gene expression in the gill, liver and brain tissues confirmed 

that there was no clear correlation between plasma ibuprofen concentration and COX 

gene expression in fathead minnows (Figure 57). 
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Figure 56. COX 1 (A), COX 2a (B) and COX 2b (C) gene expression in gill, liver and brain tissues 

and plasma ibuprofen concentrations in fathead minnows exposed to 270 µg/L (mean ± SD, 278 

± 70) (n=4) (black) and 500 µg/L (mean ± SD, 502 ± 56) (n=4) (red) (for 96 hours). Expression 

levels of the COX genes in control and exposed tissue samples were normalised to β-actin, and 

the exposed samples (for each ibuprofen exposure group) were expressed as fold change relative 

to the average of the SC samples (n=4 in each group) (represented as 1). Shaded area denotes 

the human therapeutic plasma concentrations of ibuprofen (Cmax). N.D denotes non-detectable.  
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Figure 57. COX gene expression in gill (A, D & G), liver (B, E & H) and brain (C, F & I) tissues and 

plasma ibuprofen concentrations in fathead minnows (n=8) exposed to 270 µg/L (mean ± SD, 278 ± 70) 

and 500 µg/L (mean ± SD, 502 ± 56) ibuprofen for 96 hours. Expression levels of the COX genes in 

control and exposed tissue samples were normalised to β-actin, and the exposed samples (for each 

ibuprofen exposure group) were expressed as fold change relative to the average of the SC samples 

(n=4 in each group) (represented as 1). Shaded area denotes the human therapeutic plasma 

concentrations of ibuprofen (Cmax). r
2
 values denote the linear regression values, however there was 

no significant (p < 0.05) correlation between plasma ibuprofen concentration and gene expression. N.D 

denotes non-detectable. 
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To determine if there was a time-dependent effect between COX gene expression and 

plasma ibuprofen concentrations, gene expression was examined in the gills of fish 

exposed to 270 µg/L after 24 (n=3) and 96 hours (n=4) (Figure 58). The plasma 

concentrations in fish exposed for 24 hours were determined to be 62.5, 3,396 and 

2,543 µg/L (mean of 2,000 ± 1,732 µg/L), which were all below the Cmax. The fold 

change in COX gene expression was less evident at 24 hours, compared to 96 hours 

(Figure 58). COX 1 levels after 24 hours were down-regulated compared to the 

solvent control group, there was no change in COX 2a expression levels between 

control and ibuprofen-exposed fish, however COX 2b was up-regulated after 24 

hours. However, due to the small sample size at 24 and 96 hours, no further 

conclusions can be made. 

Figure 58. COX gene expression in gill tissues, and plasma ibuprofen concentrations in fathead minnows 

exposed to 270 µg/L (mean ± SD, 278 ± 70) after 24 (n=3) and 96 (n=4) hours. Expression levels of the 

COX genes in control and exposed samples were normalised to β-actin (house-keeping gene), and the 

exposed samples (n=4) were expressed as fold change relative to the average of the (normalised) solvent 

control samples (n=4) (represented as 1). Shaded area denotes the human therapeutic plasma 

concentrations of ibuprofen (Cmax). N.D denotes non-detectable. 
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7.3.2 Prostaglandin E2 Metabolite (PGEM) and drug plasma concentrations of 

ibuprofen 

Prostaglandin E2 metabolite (PGEM) concentrations in the gill tissues was correlated 

with plasma ibuprofen concentrations (Figure 59). Fish were exposed to SC (n=8-10) 

and ibuprofen water concentrations of 370 (n=40), 9 (n=9) and 470 (n=11) µg/L 

ibuprofen, respectively. The mean measured (± SD) plasma ibuprofen concentration 

in these fish was 8,370 (± 5,456), 67 (± 22) and 2,680 (± 1,605) µg/L, respectively, 

indicating that the mean concentrations were 1.8-fold, 224-fold and 5.6-fold below 

the lowest Cmax value (i.e. 15,000 µg/L). There were no plasma concentrations that 

exceeded the Cmax range. 

PGEM concentrations were significantly inhibited in fish exposed to 370 µg/L. 

However, there was no clear correlation between PGEM concentrations and blood 

plasma concentrations (Figure 59. A). Large inter-individual variability was observed 

between PGEM concentrations and plasma ibuprofen concentrations in both the 

control  and exposed fish groups. In the exposed group, only 18% of the sample 

population had a plasma concentration within the Cmax range, and the rest were 

below the Cmax, demonstrating that ibuprofen can elicit effects over a wide range of 

concentrations in fish. PGEM inhibition was seen in fish with plasma concentrations 

up to 21-fold below (lowest measured plasma concentration was 710 µg/L in this 

group) the Cmax (15,000 µg/L), highlighting that PGEM is a highly sensitive 

endpoint. There was a weak trend between PGEM inhibition and plasma 

concentration in fish exposed to 470 µg/L (Figure 59. B), although the plasma 

concentrations in these fish were below the Cmax only. However, PGEM 

concentrations and plasma ibuprofen concentrations in fish exposed to 9 µg/L were 

similar to the SC group, indicating that there was no inhibition of PGEM in fish at 

this exposure concentration. The mean plasma concentration (67 µg/L) in this group 

was found to be 224-fold below the Cmax (15,000 µg/L), clearly demonstrating that 

PGEM inhibition only occurred at plasma concentrations similar to the Cmax range. 

Therefore, in this study, the NOEC for PGEM in fathead minnows was deduced as 

being 9 µg/L ibuprofen, which was 42-fold below 370 µg/L ibuprofen, which 

represents the lowest-observed effect concentration (LOEC).  
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However, the mean measured plasma concentration of fish in the 9 µg/L exposure 

group (67 µg/L, n=9) was only the 10-fold below the lowest measured plasma 

concentration (710 µg/L) in the 370 µg/L exposure group, suggesting that there was 

a relatively narrow margin between the plasma concentrations at which no PGEM 

inhibition was observed, and at which significant (p < 0.001 using unpaired t test, see 

Chapter 6) PGEM inhibition was observed (compared to their respective SC groups). 

PGEM concentrations and plasma ibuprofen concentration in fish exposed to 9, 370 

and 470 µg/L were collated, as shown in Figure 59. C. There was some overlap 

observed between the PGEM and plasma concentrations in fish exposed to 370 and 

470 µg/L ibuprofen. The variability in PGEM concentrations in the SC groups (fish 

with plasma ibuprofen concentrations below the LOD of 62.5 µg/L), was more 

evident when these datasets were combined (from ~12-fold to 20-fold), suggesting 

that PGEM at basal levels may be influenced by other factors.   
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Figure 59. Prostaglandin E metabolite (PGEM) concentration in gill tissues, and plasma 

ibuprofen concentrations in fathead minnows exposed to SC (n=8-10) and 370 µg/L (n=40) (A), 

and 9 (n=9) and 470 (n=11) (B) µg/L ibuprofen after 72 hours, along with the combined datasets 

(C). Cmax denotes the human therapeutic plasma concentrations of ibuprofen. 
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To determine if there was a time-dependent effect, PGEM concentration in the gill 

was correlated with plasma ibuprofen concentrations in fish exposed to 9 and 470 

µg/L after 24 and 72 hours. At 9 µg/L, there was no discernable difference between 

PGEM and plasma ibuprofen concentration in exposed fish after 24 and 72 hours 

(mean plasma ibuprofen concentrations of 66 and 71 µg/L, respectively) (Figure 60). 

At 470 µg/L, PGEM was significantly inhibited (see Figure 54), however there was 

no significant correlation between PGEM and plasma ibuprofen concentration with 

increasing exposure hours in exposed fish, after 24 and 72 hours (mean plasma 

ibuprofen concentrations of 1,765 and 2,680 µg/L) (Figure 60). These findings show 

that at 470 µg/L when the mean plasma ibuprofen concentration in fish exposed for 

24 and 72 hours was similar, the level of PGEM inhibition was variable.  
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Figure 60. Prostaglandin E metabolite (PGEM) concentration in gill tissues, and plasma 

ibuprofen concentrations in fathead minnows following exposure to 9 (n=9) and 470 (n=11) µg/L 

ibuprofen for 24 and 72 hours. Shaded area denotes the human therapeutic plasma 

concentrations of ibuprofen (Cmax). 
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7.4 DISCUSSION 

The purpose of this chapter was to correlate the measured blood plasma 

concentrations of ibuprofen with target-mediated biological effects observed in 

fathead minnows, as large inter-individual variation was observed in both plasma 

ibuprofen uptake, and the MoA-relevant endpoints examined in fish tissues (i.e. COX 

gene expression and PGEM; the surrogate marker of PGE2 concentrations). The 

internal (blood plasma) concentration of a drug determines whether or not 

pharmacological response(s) will occur in an exposed organism, and according to the 

read-across hypothesis, it is possible to use the relationship between the internal 

blood plasma concentrations in fish and the effective concentrations in humans i.e. 

the human therapeutic plasma concentration (Cmax), in order to predict the 

likelihood of an effect (Huggett et al., 2003; Rand-Weaver et al., 2013). In this study, 

PGEM inhibition was observed in the gills of fish exposed to 370 µg/L ibuprofen 

(after 72 hours), when the mean blood plasma concentration (8,370 µg/L) was 1.8-

fold below the lowest Cmax value for ibuprofen (15,000 µg/L) (Schulz et al., 2012), 

however PGEM inhibition was not observed in fish exposed to 9 µg/L, when the 

mean plasma concentration was 224-fold below the lowest Cmax value, clearly 

demonstrating that these effects only occur at plasma concentrations similar to the 

Cmax range. The Cmax range was not exceeded in fish exposed to 370 (or 470) µg/L 

therefore it was not possible to determine whether or not PGEM inhibition would 

have also occurred at higher concentrations, although it is likely.  

Large inter-individual variation (by 15-fold) was observed in plasma ibuprofen 

concentration and PGEM inhibition in fish exposed to 370 µg/L (after 72 hours) and 

therefore, there was no clear correlation between the level of PGEM inhibition and 

plasma ibuprofen concentrations. The variability in a drug response in individuals at 

a specific dose (or exposure) is largely influenced by the pharmacokinetics of a drug, 

for example, variations in plasma protein binding can alter the distribution of bound 

and unbound (free) fractions in the body (Lin et al., 1987), and the 

pharmacodynamics (for example, enzyme/receptor binding and chemical 

interactions) (Derendorf et al., 2000; Reigner et al., 1997; Sheiner and Steimer, 2000) 

thus contributing to variable plasma concentrations and magnitude of effect(s) in 

humans. In fish, the drug-binding kinetics to plasma proteins is relatively unknown 
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(Owen et al., 2007); however, differences in drug distribution may result in higher 

fractions of the unbound drug in some fish, that can inhibit PGEM at lower 

concentrations than others. Another possible explanation that may account for the 

variation in response in exposed fish is the differential saturation of the COX protein 

active sites following NSAID treatment, which has been observed in rat models 

(Satterwhite and Boudinot, 1991). Ibuprofen is weak, competitive non-selective 

inhibitor of the COX enzymes (Gierse et al., 1999) and therefore after 72 hours of 

continuous exposure, an increase in the plasma ibuprofen concentration beyond a 

certain level of exposure (i.e. where all available active sites have been occupied) 

would have no further effect on PGEM inhibition. There was a time-dependent effect 

observed between PGEM inhibition and plasma concentrations in fish exposed to 

470 µg/L (compared to 9 µg/L), after 24 and 72 hours, indicating that the effects of 

ibuprofen in fish may also be duration-dependent, as in humans.  

PGEM inhibition was observed in exposed fish over a range of plasma ibuprofen 

concentrations (from 710-22,000 µg/L, the lowest and highest measured plasma 

concentrations). In humans, variability between individuals in their response to drugs 

is well recognised (Wood, 2001), and therefore drugs are designed to exert their 

therapeutic effects over a range of concentrations (before adverse drug reactions 

occur) (Brune et al., 2010). The wide therapeutic index of ibuprofen ranges between 

10,000-50,000 µg/L (following a normal therapeutic dose) (Mehlisch and Sykes, 

2013; Regenthal et al., 1999; Schulz et al., 2012). However, the Cmax reference 

range used in this study was between 15,000-30,000 µg/L as reported by Schulz et 

al., (2012). High inter-individual variability in patients has been observed between 

ibuprofen plasma concentrations and the onset of analgesia (by 7-fold in patients 

who had taken a normal 400 mg therapeutic dose) (Mehlisch and Sykes, 2013). 

Although a direct extrapolation between PGEM in fish with PGEM in humans 

cannot be made, perceptible pain relief (using a dental pain model) in patients, could 

be interpreted as COX-mediated inhibition of prostaglandin E2.  

The relationship between plasma ibuprofen concentrations and COX gene expression 

in fathead minnows exposed to 270 and 500 µg/L ibuprofen after 96 hours was 

examined. There was no clear dose-response between plasma concentration and the 
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up-regulation of the COX genes in exposed fish tissues. In a similar study, examining 

the correlation between blood plasma concentrations of diclofenac and molecular 

effects, Cuklev et al., (2011) demonstrated that following a two-week exposure of 

rainbow trout to 1.6−81.5 μg/L diclofenac (when the plasma concentration was 

approximately 1.5-88% of the Cmax of diclofenac), global hepatic gene expression 

changes were observed. At plasma concentrations close to the Cmax, a number of 

genes functionally associated with inflammation and the immune response were 

differentially regulated in the liver, which is consistent with the MoA of diclofenac, 

however the expression of the COX 1 and COX 2 genes were found to be down-

regulated (Cuklev et al., 2011). In contrast, the findings in the present study showed 

that the COX genes were up-regulated in fish tissues at concentrations, below (24-

fold below the lowest Cmax value), within, and above (12-fold above the highest 

Cmax value) the Cmax. However the exposure concentrations used in this study were 

higher (270 and 500 μg/L), and the length of exposure at which these effects were 

observed (96 hours) was considerably shorter.  

There are relatively few studies that have examined the internal blood plasma 

concentrations of human pharmaceuticals in fish, and related them to target-mediated 

effects at concentrations below, and similar, to human therapeutic plasma 

concentrations. However, Valenti et al., (2012) did demonstrate that behavioural 

effects could be observed in fathead minnows exposed to (2.8-28.1 μg/L) sertraline, a 

SSRI used to modify behaviour in humans, at fish plasma concentrations of 305 μg/L 

(at the lowest exposure concentration) (Valenti et al., 2012), which resulted in 

plasma concentrations similar to the human therapeutic range of 50-250 μg/L (Schulz 

et al., 2012). However, the exposure water concentrations tested produced plasma 

concentrations that were similar, or above the human therapeutic range, and in order 

to fully validate the read-across hypothesis, biological effects in relation to plasma 

concentrations below, and similar to the human therapeutic range are required. At the 

highest exposure concentration of sertraline tested (28.1 μg/L), the mean measured 

plasma concentration was reported to be 1,927 μg/L, which was in the reported toxic 

range (1,680-3,000 μg/L) in humans (Schulz et al., 2012), however, no (further) 

adverse effects were reported in fish (Valenti et al., 2012).  
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In summary, there was no clear correlation between plasma ibuprofen concentration 

and PGEM or COX gene expression in fathead minnows. This was largely due large 

inter-individual variation observed in both ibuprofen uptake and the endpoints 

examined. Unfortunately in this study, the scope for examining both parameters (i.e. 

PGEM concentrations and COX gene expression levels) in the tissues of the same 

individual fish was not possible, although it would have been interesting to see the 

level of variation in both parameters analysed in the same fish tissues. Ibuprofen 

exposure did not affect PGEM concentrations in the fish that were exposed to the 

lowest tested exposure concentration (9 μg/L), which had a mean plasma 

concentration 224-fold below the Cmax of ibuprofen in humans (lower value of 

range). However, in the fish that were exposed to 370 μg/L, when the mean plasma 

concentration was 1.8-fold below the Cmax (and more similar to the human 

therapeutic range), PGEM concentrations were decreased, therefore providing 

support (and validation) for the read-across hypothesis. Most importantly, these 

findings demonstrate that the present environmental concentrations (typically within 

the ng to low μg/L range) of ibuprofen (alone) are unlikely to pose an immediate risk 

to wild (adult) fish. However, further work to investigate the potential effects of 

ibuprofen exposure on PGEM concentrations (at 9 µg/L) in fish over a range of 

developmental stages, for example larvae, embryos and sexually immature fish is 

still required as the NOEC and LOEC may be lower at these stages. 
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8.1 CONCLUSIONS 

In this study, we have demonstrated the validity of the “Read-Across Hypothesis” by 

providing, for the first time, both qualitative and quantitative evidence for its 

applicability, using ibuprofen and the model fish species, the fathead minnow. We 

also highlight the potential use of the FPM as a viable tool for estimating the internal 

concentration(s) of pharmaceutical drugs in fish, thereby strengthening the utility of 

the read-across hypothesis for ERA. 

The major findings were that MoA-relevant pharmacological effects, on PGE2 

synthesis (the terminal endpoint of COX enzyme activity), were observed in 

“healthy” fish exposed to ibuprofen, when the mean blood plasma concentration was 

close to (1.8-fold below) the human therapeutic range (Cmax). At exposure 

concentrations closer to (2 to 3-fold above) environmentally relevant ibuprofen 

concentrations (i.e. 9 μg/L), when the mean plasma concentration was 224-fold 

below the Cmax, fish did not respond to ibuprofen exposure. These findings provide 

support for the read-across hypothesis and demonstrate that pharmaceuticals can 

exert the same target-mediated pharmacological effects in fish, as in humans, at 

similar blood plasma concentrations. These findings are consistent with the only one 

other published study by Valenti et al., (2012) where plasma concentrations of 

sertraline similar to the Cmax resulted in MoA-relevant behavioural effects in 

fathead minnows. However, all the water concentrations tested produced plasma 

concentrations that were above the Cmax, whereas this study provides experimental 

evidence for the read-across hypothesis using water concentrations that resulted in 

plasma concentrations within fish that were below (i.e. 9 μg/L) and similar (i.e. 370 

μg/L) to the Cmax. As such, in fish exposed to 9 μg/L, there were no measurable 

target-mediated effects on PGE2, therefore, the NOEC for PGE2 inhibition in fathead 

minnows was deduced as being 9 µg/L ibuprofen, which was 42-fold below 370 

µg/L ibuprofen, which represents the LOEC in this study. 

The findings in this study indicate that ibuprofen (by itself, at least) is unlikely to 

pose an immediate threat to wild (adult) teleost fish at environmental exposure 

concentrations. However, in realistic environmental scenarios, pharmaceuticals exist 

as a complex mixture (Sumpter, 2009), and there may be several COX inhibitors 
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present in the ng to µg/L range, that can exert similar MoAs (or even multiple MoA). 

Therefore, the potential for additive or synergistic effects to occur may result in the 

threshold required for MoA (target) effects (i.e. PGE2 inhibition) to be easily reached 

or surpassed in wild fish. Table 20. shows the measured environmental concentraton 

(MEC) of some COX inhibitors in UK surface waters (data obtained from Kasprzyk-

Hordern et al., 2009) and the reported NOEC and LOEC values obtained in this 

study. The total measured concentrations of the COX inhibitors (2,143 ng/L) is 4-

fold below the NOEC (9 μg/L) and 126-fold below the LOEC (270 μg/L). However, 

this is not a comprehensive list of all COX inhibitors, the impact of these compounds 

of different life-stages may produce lower NOEC or LOEC values. 

Table 20. Measured surface water concentrations of COX inhibitors in UK surface water (ng/L) 

and the NOEC (9 μg/L) and LOEC (270 μg/L) values (for PGEM). 

 

8.2 IMPLICATIONS OF THE “READ-ACROSS HYPOTHESIS” IN THE 

ENVIRONMENTAL RISK ASSESSMENT (ERA) OF 

PHARMACEUTICALS  

There have been two clear examples of the causal link between exposure and adverse 

effects of human pharmaceuticals on wildlife; which are the “feminisation” of wild 

fish through exposure to the synthetic oestrogen EE2 (Jobling et al., 1998; Sumpter, 

1995), and the dramatic crash of a population of vultures through accidental 

ingestion of diclofenac (Oaks et al., 2004). Although the extrapolation of effects 

COX inhibitor Surface Water (ng/L) 

Ibuprofen 74  

Diclofenac 261 

Naproxen 146 

Ketoprofen 12 

Aspirin 85 

Paracetamol 1,534 

Mefenamic acid 31 

Total 2,143 

MEC vs. NOEC/LOEC 

NOEC (9 μg/L) Total MEC= 4-fold below NOEC 

LOEC (270 μg/L) Total MEC= 126-fold below LOEC 
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observed in laboratory studies to the field, and wild fish, are not always directly 

comparable, these studies form a fundamental component of the ERA of 

pharmaceuticals. The read-across hypothesis provides an “intelligent testing 

approach” that incorporates mammalian pharmacology and toxicity data, to predict 

the likelihood of pharmacological (or toxicological) responses in exposed species. In 

both of the scenarios where adverse effects have occurred, no or little consideration 

was given to the mammalian data. Although it was not known at the time, the 

oestrogenic effects of EE2 observed in fish (Jobling et al., 1998; Parrott and Blunt, 

2005; Purdom et al., 1994; Tyler and Routledge, 1998) may well have been predicted 

using mammalian data, based on the high degree of conservation of the oestrogen 

receptor between humans and fish (Gunnarsson et al., 2008; Huggett et al., 2003). 

Furthermore, although the conservation of the target alone could not have predicted 

the population-level effects seen in vultures as a result of diclofenac poisoning, 

certainly an understanding of the toxicity of diclofenac in humans would have 

highlighted that the ingested dose in these vultures (assuming no metabolism) was 

very close to the human toxic range (Rand-Weaver et al., 2013).  

8.2.1 Biomarker selection 

The criteria for the read-across hypothesis was used to guide the experimental design 

of this study, and the MoA of ibuprofen was used to identify relevant molecular and 

biochemical endpoints, such as COX gene expression and PGEM (surrogate marker 

for PGE2) as potential “biomarkers” to examine the effects of drug (ibuprofen) 

exposure on fish. Pharmaceuticals are designed to target specific proteins/biological 

pathways, which may be conserved in non-target species, and a higher level of 

evolutionary conservation between human and a given species may potentially 

increase the risk for eco-toxicological effects (Ankley et al., 2007; Christen et al., 

2010; Gunnarsson et al., 2008; Huggett et al., 2003). The use of bioinformatics 

resources can greatly enhance our knowledge of cross-species target sequence 

conservation, and possibly species sensitivity, which could be utilised in the risk 

assessment of human pharmaceuticals. Traditional ERA is based on in vivo toxicity 

testing using apical endpoints that measure survival, reproductive failure, or 

developmental dysfunction (Villeneuve and Garcia-Reyero, 2011), however, 
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biomarkers can be more indicative of pharmacological or sub-chronic effects and are 

therefore more likely to precede toxicological effects (Rand-Weaver et al., 2013). 

The response to biomarkers can be variable, and therefore challenges relating to the 

interepretation of the data can present as a major issue. In this study, COX gene 

expression was up-regulated in exposed fish (compared to the SC group) and 

therefore a feedback mechanism was proposed to account for COX enzyme 

inhibition following ibuprofen treatment. However, due to the complexity of COX 

gene regulation in humans, and the sensitivity of gene expression as an endpoint, this 

study highlights the difficulty in extrapolating drug effects in fish, based on their 

potential effects in humans. A clearer understanding of the expected findings on 

pharmacological targets following drug exposure (in humans) are required, before 

the mammalian data can be reliably used to predict pharmaceutical effects in fish. It 

is known, for example, that some secondary sexual effects observed in fish exposed 

synthetic progestins (Runnalls et al., 2013) have been linked to their interaction with 

the androgen receptor, an off-target, rather than the progesterone receptor (the 

intended target) (Caldwell et al., 2014) therefore, highlighting the complexity of 

cross-species extrapolation, as well as identifying the need for a wider understanding 

of fish physiology before molecular endpoints (alone) can be used to assess the 

impact of ibuprofen (or any other pharmaceuticals) on fish. Nevertheless, PGEM was 

found to be a relatively robust marker in this study, consistent with the MoA of 

ibuprofen in humans, although large inter-individual variation was observed (as 

discussed later). This demonstrates that there is potential for MoA biomarkers to be 

used alongside apical endpoints to prioritise those species that are potentially 

sensitive to human pharmaceuticals, and to predict the type of effects that they may 

elicit in exposed species. A lower degree of target conservation between humans and 

aquatic species indicates that generally, there is a lack of the biochemical 

“machinery” required to produce an effect in that particular species. This potentially 

explains why fish are much more sensitive to the effects of EE2 than invertebrates 

(Caldwell et al., 2008) which lack, or are not responsive, to oestrogens (Puinean et 

al., 2006). Therefore, if the MoA of a drug is known, this could be used to more 

informatively guide toxicological studies, as well as potentially reducing the number 
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of vertebrate (fish) studies, which are more complex, expensive and time-consuming 

and replace them with invertebrate studies (Winter et al., 2010).  

8.2.2 Internal concentrations 

The current ERA process relies heavily upon the exposure water concentration of 

pharmaceuticals, however, ultimately it is the internal (blood plasma) concentration 

of a drug at the target that can induce pharmacological or toxicological responses in 

the exposed organism. The read-across hypothesis is fundamentally driven by the 

internal exposure concentration(s) of a drug and therefore ibuprofen concentrations 

were experimentally determined in fish blood plasmas. Although a number of studies 

have successfully determined the internal (blood plasma) concentrations of 

pharmaceuticals in fish studies (Bartram et al., 2012; Brown et al., 2007; Cuklev et 

al., 2011, 2012; Fick et al., 2010; Garcia et al., 2012; Giltrow et al., 2009; Lahti et 

al., 2011; Mimeault et al., 2005; Nallani et al., 2011, 2012; Owen et al., 2009, 2010; 

Valenti et al., 2012; Winter et al., 2008), the high cost implications, and lack of 

instrumentation and technical resources for quantifying pharmaceuticals in aquatic 

organisms can be a major disadvantage in the applicability of the read-across 

hypothesis as viable tool for risk assessment. Therefore, an alternative approach for 

estimating the internal plasma concentrations in fish is the conceptual FPM (Huggett 

et al., 2003). 

8.2.2.1 Applicability of the Fish Plasma Model (FPM) 

The FPM can be used to estimate the uptake of a given pharmaceutical into fish, 

from the surrounding water. A comparison of the modelled and measured plasma 

ibuprofen concentrations showed that the FPM was most accurate at estimating the 

FSSPC following exposure to 270 and 370 μg/L ibuprofen (using the Log Kow) 

(Fitzsimmons et al., 2001; Huggett et al., 2003) which resulted in mean plasma 

concentrations that were similar to the Cmax. Therefore, highlighting the potential 

for the FPM to guide future studies where it is necessary to identify the exposure 

water concentrations required to produce human therapeutic concentrations of a drug 

in fish, therefore allowing mammalian pharmacological data to be more easily 

integrated into ERA. Certainly, studies have already demonstrated that there is merit 

in using the FPM as a potential tool to prioritise pharmaceuticals for further risk 
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assessment (Roos et al., 2012; Schreiber et al., 2011). However, as observed in this 

study, different parameters (i.e. Log Kow and Log D7.4) may cause dramatic 

differences in the estimated FSSPCs, and therefore further experimental validation of 

the FPM is required, which takes into consideration all potential factors that can 

influence drug plasma concentrations (i.e. ionisation state, plasma protein binding, 

sex differences, metabolism and/or excretion of the parent compound and its 

metabolites). More work is required to overcome the “uncertainties” of Huggett’s 

theoretical model such as the inter-individual variation in plasma drug (ibuprofen) 

concentrations observed (discussed below), and the potential role of genetic 

variability in wild fish, for example, through polymorphisms in the enzymes (e.g. 

CYP) involved in drug metabolism, which may influence steady-state drug plasma 

concentrations The applicability of the FPM may also be limited to estimating the 

steady-state concentrations of single chemicals from “clean” water (Owen et al., 

2007), as variations can exist in the uptake of pharmaceuticals in mixtures, 

particularly in the environment, as demonstrated in field studies (Brown et al., 2007; 

Fick et al., 2010; Lahti et al., 2012.).  

8.3 LIMITATIONS OF THE STUDY  

8.3.1 Inter-individual variation 

A high level of inter-individual variation was observed in both ibuprofen plasma 

concentrations, and the molecular and biochemical (COX gene expression and 

PGEM) endpoints examined in healthy fish. In particular, considerable variation was 

observed in ibuprofen plasma concentrations, which made it more difficult to relate 

drug plasma concentrations with target-mediated effects. Therefore, it was not easy 

to establish what the effective plasma concentrations in fish were, nor the 

relationship between these effective concentrations with the range of concentrations 

defined as being effective in humans. Certainly, ibuprofen has a high therapeutic 

index, ranging from 10,000-50,000 μg/L (following a 400 mg therapeutic dose) 

(Mehlisch and Sykes, 2013; Regenthal et al., 1999; Schulz et al., 2012), although the 

Cmax range used for reference in this study was between 15,000-30,000 μg/L 

(Schulz et al., 2012).  
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COX gene expression was highly variable in the examined gill, liver and brain 

tissues, both within and between exposure groups (100, 270 and 500 μg/L) in fish. 

Gene expression levels can vary considerably between individuals (Whitehead & 

Crawford, 2005), which must be taken into consideration when performing and 

interpreting the data from gene expression studies. However, a relatively small 

sample size (n=4 at each examined concentration) may have contributed to the 

biological variability observed. In contrast, PGEM was found to be more robust as an 

endpoint, but despite the larger sample size (n=40 at 370 μg/L), large inter-individual 

variation was still observed in fish in both the SC (15-fold) and exposure (20-fold) 

groups. Although it is difficult to pinpoint the exact cause of such variation, it is most 

likely to be genetic, because even though the fish used in this study were bred from 

the same genetic strain, they are not identical clones, and therefore, variation may 

exist between individuals within the same population. To minimise variability from 

controllable factors, the fish used in exposure studies were of the same age, fish were 

not fed during any treatment (except in the depuration study, ‘Exposure 3’), the same 

handling and anaesthetisation procedures were used, and males were used (where 

possible) to avoid sex being a confounding factor. In further work, it would be useful 

to gain insight into the role (if any) of sex differences following exposure to 

ibuprofen (or other NSAIDs), particularly on PGEM concentrations following 

exposure, as prostanoid functions may vary between male and female fish. A deeper 

understanding of drug-specific pharmacological effects and fish physiology may help 

to elucidate where such variation arises from. In humans, both pharmacokinetic and 

pharmacodynamic factors are sources of inter- and intra-individual variability 

(Derendorf et al., 2000; Reigner et al., 1997; Sheiner and Steimer, 2000, as well as 

genetic polymorphisms (García-Martín et al., 2004). 

8.3.2 Test-species 

The fathead minnow, Pimephales promelas, has been used extensively as a model 

test-species by several different regulatory agencies, including the US Environmental 

Protection Agency (US EPA), the Environment Agency (EA) and the Organisation 

for Economic Cooperation and Development (OECD), and more recently to 

investigate the effects of EDCs (Ankley et al., 2003; Harries et al., 2000; Länge and 

Dietrich, 2002; Leino et al., 2005; Tyler et al., 1999). Much of the body of literature 
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has focused on the impact of the environmental oestrogens on reproductive 

functions, mediated through the oestrogen receptor and, the development of risk 

assessment geared toward reproduction-related endpoints (Segner et al., 2013). 

However, the diverse signalling pathways that can be activated through the oestrogen 

receptor suggest that these chemicals may have much broader functions in fish, other 

than just reproductive functions (Filby et al., 2006). So far, our knowledge of the 

impact of even the most-well studied pharmaceuticals (i.e. natural and synthetic 

oestrogens) is probably one-dimensional, because retrospectively, rather little is 

known about the physiology of fish species (or any other aquatic species). For 

example, further information is required about the metabolism of human drugs in fish 

i.e. do fish possess similar drug-binding plasma proteins to those found in mammals, 

and do these proteins have similar or different binding kinetics for human drugs? 

Secondly, a broader understanding of the inter-individual variation observed in fish 

sample populations in response to humans drugs is required, for example, what level 

of genetic variation is present in fish populations bred from the same genetic strain 

i.e. are genetic polymorphisms present between and within fish species, and is such 

variation only observed at certain levels of exposure, for example, at non-lethal doses 

only?  

Another potential issue with using the selected test-species is that, in some cases, 

translating the effects of drugs designed to act in humans, to fish (and other aquatic 

species) is not straightforward. For example, in this study, we have demonstrated 

PGE2 inhibition in fish exposed to ibuprofen, which consistent with its MoA in 

humans. Ibuprofen is widely used to treat pain and inflammation, which in patients is 

usually measured by analgesic dose-responses and pain perception, which can be 

highly subjective. However, our knowledge of pain perception in fish, and even 

“healthy” fish is rather limited, and therefore the expected outcome may not be as 

obvious as, for instance, behavioural responses in fish that have been exposed to 

psychoactive compounds (Valenti et al., 2012), or to changes in reproductive 

functions in fish that have been exposed to endocrine disruptors (Jobling et al., 

1998). Until further information about the physiology of the test-species is acquired, 

it may not be possible to understand the full extent and diversity of the potential 

effects that may be elicited by human pharmaceuticals in fish.  
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Another limitation of using the fathead minnow species, specifically, is the lack of 

genomic sequencing information available, as the genome has not been published as 

of yet. This made it more difficult to identify the functionally conserved regions of 

the putative COX gene sequence in the fathead minnow. Nevertheless, for the 

purpose of this study (and due to time restraints), it was not necessary to amplify the 

whole of the COX gene in the fathead minnow, as the amount of sequence obtained 

was justified in order to design primers to perform qPCR, of which the amplicons 

were cloned and sequenced to verify their identity. 

8.3.3 Experimental design 

All fish exposure studies were conducted at AstraZeneca’s BEL (Industry) and 

therefore there were a number of practical limitations due to time and resource 

availability. For instance, more time points were examined (at regular intervals) 

versus fewer individuals (n=4 or 5 at each time point) in ‘Exposures 2, 3 and 4’ 

whereas in ‘Exposure 5’ more fish (n=40) were used in the treatment tank at one time 

point, but no replicate tanks were included, and none of the exposure studies were 

repeated more than once (usually included to account for inter- and intra-population 

variation).  

8.4 RECOMMENDATIONS FOR FUTURE WORK 

Ibuprofen can inhibit PGE2 synthesis in fathead minnows, and therefore, one 

recommendation for further work would be to explore the wider implications of 

PGE2 inhibition in fish. Indeed, as in humans, PGE2 has been implicated in several 

“homeostatic” functions in fish, including reproduction (Fujimori et al., 2011; 

Sorbera et al., 2001), stress responses (Gravel and Vijayan, 2007) and ion transport 

(Gravel, et al., 2009; Choe et al., 2006), and therefore, further work is required to 

demonstrate the consequences (if any) of PGE2 inhibition in both male and female 

fish. 

When assessing the potential effects of drug exposure on aquatic organisms, an 

understanding of the “expected level” of the biological variation within a sample 

population could be useful in guiding the experimental design (i.e. sample size, n), in 

order to reduce the uncertainty in the data. Therefore, the experimental design of the 

study is fundamental to the process of obtaining robust, reliable and reproducible 
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data that can be used by the ERA to more accurately ascertain the effects of human 

pharmaceuticals on fish. As such, another recommendation for future work, is to 

propose a systematic and consortium based approach for research groups conducting 

drug-exposure studies, whereby the experimental conditions, such as the exposure 

length, test-species are consistent, relevant endpoints based on the MoA of the drug, 

and information on the exposure and internal (blood plasma) concentrations are 

included, to allow easier interpretation of the data when elucidating the potential 

effects of human pharmaceuticals on exposed aquatic organisms.  

The read-across hypothesis was tested in this study using ibuprofen, although a larger 

study was undertaken to test the applicability of the read-across hypothesis, using 

other drugs such as fluoxetine and beclomethasone. The outcome from this wider 

study has shown that these pharmaceuticals provide at least qualitative support for 

the read-across hypothesis. However, further work would be to confirm the validity 

of the read-across approach with other human pharmaceuticals that utilise different 

MoA. 
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APPENDIX 

 

Calibration curves used to quantify ibuprofen in exposure water and blood plasma samples 

using LC-MS/MS. The calibration curves were constructed using 1/concentration (1/x) 

weighting of the area of ibuprofen (1) (r
2
= 0.9980) or area ratio (ibuprofen/internal standard 

ibuprofen-d3) (2) (r
2
 = 0.9982) against the concentration of ibuprofen standard. The nominal 

internal standard concentrations was 80 µg/L ibuprofen. 


