
Incomplete Distinguishing Sequences
for Finite State Machines

Robert M. Hierons1 and Uraz Cengiz Türker2

1Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UK
2Sabanci University, Orhanli, Tuzla, 34956 Istanbul-Turkey

Email: urazc@sabanciuniv.edu

Given a Finite State Machine (FSM) M , a Distinguishing Sequence (DS) is a test
that identifies the state of M . While there are two types of DSs, preset DSs
(PDSs) and adaptive DSs (ADSs), not all FSMs possess a DS. In this paper, we
examine the problem of finding incomplete PDSs and ADSs, exploring associated
optimisation problems: finding a largest set of states that has a DS and finding
a smallest set of DSs that, between them, distinguish all of the states. We
also propose a greedy algorithm to produce a small set of incomplete ADSs
and use experiments to compare this with two previously published algorithms
for generating state identifiers. We show that the optimisation problems
related to incomplete ADSs and PDSs are PSPACE-complete as are corresponding
approximation problems. In the experiments we found that incomplete ADSs
produced by the proposed greedy algorithm led to relatively compact state

identifiers.

Keywords: Model Based Testing, Finite State Machines, Testing, Checking Experiments,
Adaptive Distinguishing Sequences

Received 00 January 2009; revised 00 Month 2009

1. INTRODUCTION

Software testing is an important part of the software
development process but is often manual, expensive
and error prone. This has led to much interest in
test automation, including work on model based testing
(MBT) where testing is automated on the basis of a
model. Most MBT techniques and tools use behavioural
models and typically operate on either a finite state
machine (FSM) or a labelled transition system (LTS)
that defines the semantics of the model used. There
has thus been significant interest in automating testing
based on an FSM or LTS model in areas such as
sequential circuits [1], lexical analysis [2], software
design [3], communication protocols [4], object-oriented
systems [5], and web services [6] (see, in addition,
[7, 8, 9, 10]). Such techniques have been shown to
be effective when used in significant industrial projects
[11]. We focus on testing from an FSM that is
deterministic, minimal and completely-specified.

Most approaches to generating tests from an FSM
can be seen as processes that test the transitions of
the system under test (SUT), and a crucial part of
testing a transition τ is identifying the starting and
ending states of τ . This problem is known as the
State Identification Problem. Many techniques for
constructing tests use distinguishing sequences (DSs) to
resolve the state identification problem for two reasons:

There are polynomial time algorithms that generate
tests when there is a known DS and the length of
the test is relatively short when designed with a DS
[12, 13, 14, 15, 16].

In this paper we use the term complete DS to denote
the usual notion of a DS; one that distinguishes all of the
states of the FSM from which tests are being derived.
Although complete DSs have a number of advantages
over other approaches used to distinguish states, not all
FSMs possess a complete DS. In this paper we consider
the case where the FSM M does not have a complete DS
and thus we would like to form a collection of incomplete
DSs that, between them, distinguish all of the states of
M .

Interest in the state identification problem has largely
been motivated by checking experiment generation and
fault localisation. A checking experiment is a test that
is guaranteed to distinguish between the specification
and the SUT if the SUT is faulty and satisfies certain
well-defined conditions (typically an upper bound on
the number of states of the SUT). Most techniques
that generate checking experiments use strategies for
solving the state identification problem: they typically
either use a DS [17], a characterisation set (W-set)
[3, 18], or harmonised state identifiers (HSIs) [19].
However, approaches that do not use DSs typically lead
to significantly longer tests [20]. In fault localisation
the problem is to determine the fault in the SUT

The Computer Journal, Vol. ??, No. ??, ????

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/29410041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 R.M. Hierons, U.C. Türker

that caused an observed failure and, again, there are
efficient solutions when there is a known DS [21]. The
motivation for the work reported in this paper comes
primarily from the desire to obtain some of the benefits
of complete DSs when a specification FSM does not
have a complete DS.

A distinguishing sequence can be preset or adaptive:
if the input sequence is fixed then it is a Preset
Distinguishing Sequence (PDS) and otherwise, when
the next input to be applied is determined based
on the response to the previous input, it is an
Adaptive Distinguishing Sequence3 (ADS). Throughout
the paper we refer to PDS or ADS when we write DS.

In Section 5 we consider problems associated with
PDSs, where an input sequence is a PDS for a set S̄
of states if it distinguishes the states in S̄. The work
in this section is motivated by the fact that sometimes
we require tests that are not adaptive. We study the
following question.

Definition 1.1 (MaxSubSetPDS problem). Given
deterministic, minimal and completely-specified FSM
M with state set S and S̄ ⊆ S, find a subset S̄′ of
S̄ that has a PDS such that |S̄′| is maximised.

One way of expressing the problem of looking for a
set of PDSs to distinguish all of the states of an FSM
M with state set S is to look for a set PS of subsets of
S such that the following hold.

• For every pair of states s, s′ ∈ S with s 6= s′ there
is some S̄ ∈ PS such that s, s′ ∈ S̄; and

• for every S̄ ∈ PS there is some PDS that
distinguishes all of the states of S̄.

This leads to the following definition of the
MinSetPDS problem.

Definition 1.2 (MinSetPDS problem). Given
deterministic, minimal and completely-specified FSM
M with state set S, find a set PS of subsets of S such
that each set in PS has a PDS, for all s, s′ ∈ S with
s 6= s′ we have that there exists S̄ ∈ PS such that
s, s′ ∈ S̄, and this choice of PS minimises |PS |.

The MaxSubSetPDS problem is motivated by the
situation in which we have an expected current state s
but we believe that the state is from some set S̄: we
want to distinguish the expected state from as many
states in S̄ as possible. The MinSetPDS problem
is motivated by the desire to use as few incomplete
DSs as possible to identify the state of M . When
we require more than one incomplete DS to identify
a state we have to run multiple tests, separated by
resets. It has been observed that resets can be hard to
realise and expensive to apply since they may require
a complex system to be reinitialised or may require
manual involvement [23, 24]. This has led to work that
aims to minimise the number of input sequences (and

3ADSs are also called Distinguishing Sets [12, 22].

so resets) used [25, 26, 27]. A tester might thus be
particularly interest in the MinSetPDS problem.

We show that the MaxSubSetPDS and MinSet-
PDS problems are PSPACE-complete. Moreover, we
show that the MaxSubSetPDS problem is inapprox-
imable. In Section 6 we adapt the problems introduced
so far to ADSs.

Definition 1.3 (MaxSubSetADS problem).
Given deterministic, minimal and completely-specified
FSM M with state set S and S̄ ⊆ S, find a subset S̄′

of S̄ that has an ADS such that |S̄′| is maximised.

Definition 1.4 (MinSetADS problem). Given
deterministic, minimal and completely-specified FSM
M with state set S, find a set PS of subsets of S such
that each set in PS has an ADS, for all s, s′ ∈ S with
s 6= s′ we have that there exists S̄ ∈ PS such that
s, s′ ∈ S̄, and this choice of PS minimises |PS |.

We show that the MaxSubSetADS and MinSe-
tADS problems are PSPACE-complete. We also show
that the MaxSubSetADS problem is inapproximable.
This contrasts with looking for a complete ADS, a prob-
lem that can be solved in polynomial time.

Having determined the complexity of these problems,
we propose a greedy algorithm for the MinSetADS
problem and report on the results of experiments. The
experiments used a set of FSMs and compared the state
identification sequences computed by three approaches:
a method for generating a characterisation set (W-
generation method) [28]; a method for generating
harmonised state identifiers (HSI-generation method)
[19]; and state identification sequences derived from
incomplete ADSs generated using the greedy algorithm
(ADS-method). Note that the state identification
sequences derived from incomplete ADSs define a set
of harmonised state identifiers and so the comparison
with the HSI-generation method [19] is a comparison
between two approaches for generating an HSI-set. The
experimental subjects included randomly generated
FSMs and FSMs drawn from a benchmark and
suggest that the ADS-method produces compact state
identification sequences.

The paper is organised as follows. In the next section
we review related work and in Section 3 we define the
terminology and notation used throughout the paper.
In Section 4 we introduce a motivating example in which
we demonstrate what we can gain by using incomplete
ADSs for state identification. In Section 5 we present
results related to PDSs and subsequently, in Section 6,
we present results related to ADSs. In Section 7 we
report on the results of experiments. In Section 8, we
conclude the paper and discuss some possible lines of
future work.

2. RELATED WORK

This section reviews previous work on state identifi-
cation sequences, starting with DSs. There are many

The Computer Journal, Vol. ??, No. ??, ????

3

computational complexity results regarding DSs. It
was show that checking the existence of a PDS is
a PSPACE-complete problem [16]. Although earlier
bounds for ADSs are exponential in the number of
states [29], Sokolovskii proved that if an FSM M with n
states has an ADS then it has an ADS with height no
greater than π2n2/12 [30]. Moreover, Kogan claimed
that for a given n state FSM, the length of an ADS
is bounded above by n(n− 1)/2 [31] and later Rystsov
proved this claim [32]. More than twenty years later,
Lee and Yannakakis proposed an algorithm that con-
structs an ADS with upper bound of n(n− 1)/2 in the
worst case [16]. Kushik et al. present an algorithm
for constructing ADSs for nondeterministic observable
FSMs [33]. Since the class of deterministic FSMs is a
subclass of nondeterministic observable FSMs, the algo-
rithm can also be used to construct ADSs for a given
FSM M . Recently Türker et al. presented a lookahead
based algorithm to construct compact ADSs [34].

Unfortunately, not all FSMs possess a DS. For such
cases, Kohavi et al. [35] suggested that the states of
the FSM should be partitioned in such a way that a DS
exists for each set of states. Lee and Yannakakis showed
that checking the existence of an ADS for a set of states
is PSPACE-complete [16]. However, as far as we know
there has been no previous work on other problems
related to generating a set of DSs that distinguishes
every state of the FSM. In addition, we are not aware
of methods that generate a set of DSs that distinguishes
every state of the FSM.

For FSMs that do not have a DS, the state
identification problem can sometimes be solved by using
unique input output sequences (UIOs) [36]. A UIO for
a state s of FSM M distinguishes s from all other states
of M but need not distinguish other states. When an
FSM does not have a UIO, a partial UIO (pUIO) can be
constructed [37], where a pUIO for state s distinguishes
state s from a subset of states. Some FSMs do not have
either a DS or a UIO for each state. However, every
minimal FSM with n states and m inputs does have a
characterisation set (W-set) which can be computed in
time of O(n2m)[3, 18, 29].

It has long been known that FSM specifications
are sometimes partial (partial FSMs): that some
state-input combinations do not have corresponding
transitions [38, 39, 40, 41]. Recently, it was shown that
for partial FSMs, checking the existence of an ADS can
be done in polynomial time and checking the existence
of a PDS is PSPACE-complete [42].

As in the case of complete FSMs, a partial FSM
need not have an ADS or a PDS. In addition, a
partial FSM need not have a W-set. In this case, the
state identification problem can be resolved by using
harmonised state identifiers [19]. A set of harmonised
state identifiers is actually a partial characterisation set
where for any two states s and s′, the corresponding sets
have sequences w and w′ that have a common prefix
that distinguishes s and s′. For a completely specified

FSM with n states and m inputs, harmonised state
identifiers can be computed in time of O(n4m) [19].
However, for partially specified FSMs, harmonised state
identifiers can be computed in time of O(n5m).

DSs, UIOs, W-sets and HSIs are interesting in their
own right in offering a solution to the state identification
problem. However, it has been shown that these
sequences are building blocks for solutions to another
important problem: fault detection.

In the fault detection problem we are given a
specification FSM M , and an unknown (black-box)
implementation FSM N , and we want to check whether
N is a correct implementation ofM . The fault detection
problem was first posed in Moore’s seminal work [43].
In fault detection, we usually want to construct a test
that can detect faulty transitions in the implementation
machine. To obtain good fault coverage, we want to
identify the ending state of a transition during a test.
Hennie showed that a PDS can be used to construct
a fault detection sequence [44]. Later, it was shown
that instead of a PDS an ADS can be used in the
same method [45]. Later, methods for constructing a
fault detection sequence using UIOs and W-sets were
proposed [3, 18, 46].

As the length of the fault detection sequence
determines the duration and hence the cost of testing,
in the literature there exists a line of work that aims to
reduce the length (number of inputs) of fault detection
sequences. These approaches identify a set of sequences
that need to be included and aim to generate a short
fault detection sequence that contains these sequences.
Important methods include the DS [44, 47], W [3, 18],
Wp [24], UIO [36], UIOv [48], HSI [19], SPY [49],
H [50] and P [27] test derivation methods. As these
methods rely on heuristics, they produce different
results for different types of FSMs and it is difficult to
compare them analytically. Consequently, experimental
evaluation has been conducted to identify trade-offs
among these methods [51, 52].

3. PRELIMINARIES

An FSM has a finite set of states and transitions
between the states, with transitions being labelled with
input/output pairs.

Definition 3.1. An FSM (or Mealy machine) M
is defined by a tuple (S,X, Y, δ, λ, s0) where S =
{s1, s2, . . . sn} is the finite set of states, X =
{a, b, . . . , p} and Y = {1, 2, . . . , q} are the finite sets of
inputs and outputs, δ : S×X → S is the state transition
function, λ : S × X → Y is the output function, and
s0 ∈ S is the initial state.

If FSM M is in state s ∈ S and input x ∈ X is
applied then M moves to the state s′ = δ(s, x) and
produces output y = λ(s, x). Such a transition will
be denoted τ = (s, x/y, s′) and we say that x/y is the
label of τ (label(τ)), s is the start state of τ (start(τ)),

The Computer Journal, Vol. ??, No. ??, ????

4 R.M. Hierons, U.C. Türker

and s′ is the end state of τ (end(τ)). An FSM M
can be represented by a directed graph G, where the
states of M are represented by corresponding vertices
of G and the transitions of M are represented by edges
of G. An edge is labelled by the input/output pair
of the corresponding transition and so if δ(s, x) =
s′ and λ(s, x) = y, then the edge corresponding to
this transition has label x/y and ends at the vertex
corresponding to s′. Figure 1 represents an FSM in
which S = {s1, s2, s3}, X = {a, b}, Y = {0, 1}, and the
initial state is s1 (highlighted with a dashed circle).

s1

s2

s3a/0

b/1

a/1

b/0

a/1
b/0

FIGURE 1: An example FSM M0 with initial state s1.

We use juxtaposition to denote concatenation: if x1,
x2, and x3 are inputs, x1x2x3 is an input sequence.
Given a set X we let X∗ denote the set of sequences
of elements of X and let Xk denote the sequences
in X∗ that have length k. The symbol ε is used to
denote the empty sequence. The transition function
and the output function can be extended to sequences
of inputs. In an abuse of notation, we use δ and λ for
the extended functions. These extensions are defined
as follows in which x ∈ X and w ∈ X?: δ(s, ε) = s
and δ(xw) = δ(δ(s, x), w); λ(s, ε) = ε and λ(s, xw) =
λ(s, x)λ(δ(s, x), w). Moreover, we use δ and λ when we
consider transitions from a set of states: given S̄ ⊆ S
and w ∈ X?, we define δ(S̄, w) = ∪s∈S̄{δ(s, w)} and
λ(S̄, w) = ∪s∈S̄{λ(s, w)}. Two states s, s′ ∈ S are
said to be equivalent if for all input sequences α ∈
X?, λ(s, α) = λ(s′, α). If there exists an input sequence
α ∈ X? such that λ(s, α) 6= λ(s′, α), then s and s′

are said to be distinguishable. An FSM M is minimal
if the states of M are pairwise distinguishable. M is
completely-specified if both δ and λ are total functions
(they are defined on all state/input pairs). Since δ and
λ are functions (rather than relations), there can be at
most one transition defined for each state/input pair.
Such machines are said to be deterministic.

An input/output sequence consists of a sequence of
input/output pairs of the form x1/y1x2/y2 . . . xm/ym.
We will also write x1x2 . . . xm/y1y2 . . . ym to denote
the same input/output sequence, where x1x2 . . . xm is
called the input portion and y1y2 . . . ym is called the

output portion of the input/output sequence. A path
in M is a sequence of transitions τ̄ = τ1τ2 . . . τm such
that start(τi) = end(τi−1), for all 1 < i ≤ m. The
label of a path is an input/output sequence which is
the concatenation of the labels (input/output pairs)
of the transitions in that path. For τ̄ = τ1τ2 . . . τm,
we define label(τ̄) = label(τ1)label(τ2) . . . label(τm).
An example of a path in M0 of Figure 1 is τ̄ =
(s1, b/1, s2)(s2, a/1, s2), and we have label(τ̄) = b/1a/1.

In this work, we consider only deterministic,
completely-specified, minimal FSMs. An FSM can be
minimised in polynomial time [53]. Further, an FSM
that is not completely-specified can often be completed
by adding either an error state or transitions with null
output4. For example, in Harel statecharts if input x is
received in state s and there is no specified transition
then x leads to no change in state and no output (a
null transition). The requirement that the specification
and implementation are deterministic is one made by
many FSM based testing methods and one that holds
in important application domains such as protocols and
(many) embedded systems5. Given two states s 6= s′,
an input sequence w is said to be a separating sequence
for s and s′, if λ(s, w) 6= λ(s′, w). A characterisation
set is a set of input sequences (W) such that for any
pair of states s, s′ ∈ S there exists an input sequence
w ∈ W such that λ(s, w) 6= λ(s′, w). The set Ws ⊆ W
is said to be a state identifier for s if for all s′ ∈ S \ {s}
there exists an input sequence w ∈ Ws such that
λ(s, w) 6= λ(s′, w). Note that a separating sequence
that distinguishes states s and s′ is also a PDS for the
state set {s, s′}.

Given deterministic, minimal, completely-specified
FSM M with state set S = {s1, s2, . . . , sn}, the sets
H1, H2, . . . ,Hn of input sequences are harmonised state
identifiers if and only if for all 1 ≤ i, j ≤ n with i 6= j
there exist input sequences wi ∈ Hi and wj ∈ Hj such
that a common prefix w of wi and wj distinguishes si
and sj (λ(si, w) 6= λ(sj , w)).

We now define Preset and Adaptive Distinguishing
Sequences.

Definition 3.2. Given deterministic, minimal and
completely-specified FSM M = (S,X, Y, δ, λ) and S̄ ⊆
S, input sequence w is a Preset Distinguishing Sequence
(PDS) for S̄ if for all s, s′ ∈ S̄ with s 6= s′ we have that
λ(s, w) 6= λ(s′, w).

If w is a PDS for state set S then we say that it is a
complete PDS. Otherwise, w is an incomplete PDS for
S̄.

Adaptive distinguishing sequences are finite trees

4As has been previously noted, it is not always possible to
complete an FSM since, for example, unspecified input may
correspond to input that should not occur [54].

5Most FSM based test methods apply to deterministic FSMs
but there are situations in which a specification will be non-
deterministic and here we require different test generation
methods [55, 24, 56, 19, 57, 58, 59].

The Computer Journal, Vol. ??, No. ??, ????

5

rather than sequences. An ADSA for state set S̄ has an
initial node, which corresponds to the situation before
the ADS has been applied. All edges from the initial
node v1 are labelled with the same input x1 and when A
is used the input x1 is applied first. If the response to x1

is output y1 then Amoves to the node v2 that is reached
from v1 by an edge with label x1/y1. If v2 is a leaf then
the application of A is complete but otherwise the input
x2 that is on edges from v2 is applied to the SUT next,
the output y2 produced is recorded, and the edge of
A from v2 with label x2/y2 is followed. This process
continues until a leaf is reached. An ADS for state set
S̄ of FSM M leads to different input/output sequences
from distinct states of S̄ and so it distinguishes these
states. More formally, we define ADSs as follows.

Definition 3.3. An Adaptive Distinguishing Se-
quence (ADS) for a state set S̄ with m states is a rooted
tree A with exactly m leaves; the edges are labeled with
an input/output pair and the leaves are labeled with a
single state such that: 1) input labels of edges leaving a
common node are the same and output labels of edges
leaving a common node are different. 2) for every leaf
of A, if x̄, ȳ are the input output sequences respectively
formed by the edge labels on the path from the root node
to the leaf and if the leaf is labeled by a single state s,
then λ(s, x̄) = ȳ.

If A is an ADS for state set S then we say that it is a
complete ADS. Otherwise, A is an incomplete ADS for
S̄.

An ADS for S̄ defines an experiment where the next
input to be applied depends on the previously observed
input/output sequence (and so the node reached). If
we apply A in a state s ∈ S̄ then the resultant
input/output sequence is that which labels the path of
A from the root of A to a leaf and is also the label of a
path of M that has starting state s. By the definition
of an ADS the input/output sequences for two distinct
states from S̄ must differ and so A distinguishes the
states from S̄. Throughout the paper we refer to the
depth of ADS tree A when we write the length of A.

Note that when we set S̄ = S, Definitions 3.2 and
3.3 correspond to the classical notions of Preset and
Adaptive Distinguishing sequences.

We present an example FSM, which will be used
throughout the paper, in Figure 2. We also present
a manually computed incomplete ADS for states s1, s2

and s4 in Figure 3.

s1 s2

s3s4

b/0, c/0

a/0

a/1, b/0, c/0

c/0

a/0

b/
1

a/0, c/1

b/
0

FIGURE 2: An example FSM M1 with initial
state s1.

(s1, s2, s4)

s1

b/1

s4

b/0

a/0

s2

a/1

FIGURE 3: An incomplete ADS for machine
M1 presented in Figure 2 where S̄ =
{s1, s2, s4}.

The adaptive experiment starts with input a: if
the underlying FSM produces 1 then the adaptive
experiment ends and the tester deduces that the FSM
was in state s2, otherwise the tester will apply an input
b and if it observes output 0 then it decides that the
FSM was in state s4 and otherwise it deduces that the
FSM was in state s1.

Let us suppose that we have a set A =
{A1,A2, . . . ,Ak} of incomplete ADSs such that every
pair of distinct states of M is distinguished by some
ADS from A; such a set will be said to be fully
distinguishing. Every pair of states s, s′ ∈ S̄ with
s 6= s′ is distinguished by at least one ADS in A =
{A1,A2, . . . ,Ak}. As noted earlier, we can represent
this as there being a set PS = {S̄1, S̄2, . . . , S̄k} of subsets
of S̄ such that for all s, s′ ∈ S̄ there exists 1 ≤ j ≤ k
such that s, s′ ∈ S̄j and there is an ADS Aj for S̄j . In
this situation, in order to distinguish a state s ∈ S̄ from
other states in S̄ we use every Aj such that s ∈ S̄j .

Given state si ∈ S̄ we will let A(si) denote the set
of ADSs that are to be used to distinguish si from
other states in S̄: the set of Aj such that si ∈ S̄j .
Note that S̄j need not be the largest subset of S̄ that
contains states that are distinguished from si by Aj
since some pairs of states may be distinguished by more

The Computer Journal, Vol. ??, No. ??, ????

6 R.M. Hierons, U.C. Türker

than one ADS to be used but we only require this pair of
states to be in one S̄j . We will also let H(si,Aj) ∈ X∗
denote the input portion of the input/output sequence
produced when Aj is applied in state si. Given state
si, we will let Hi(A) be the set of maximal sequences in
{H(si,Aj)|Aj ∈ A(si)} (by maximal we mean that if
H(si,Aj) = x̄ and H(si,Aj′) = x̄′ for Aj ,Aj′ ∈ A(si)
and x̄′ is a proper prefix of x̄ then we do not include
x̄′). Then Hi(A) is the set of input sequences applied
when using ADSs from A(si) in state si. We obtain the
following result that shows how ADSs and harmonised
state identifiers relate.

Proposition 3.1. Given deterministic, minimal and
completely-specified FSM M and fully distinguishing
set A = {A1,A2, . . . ,Ak} for M , the Hi(A) are
harmonised state identifiers for M .

Proof. It is sufficient to prove that if si, sj are distinct
states of M then there are input sequences wi ∈ Hi(A)
and wj ∈ Hj(A) such that there is a common prefix
w of wi and wj that distinguishes si and sj . First
observe that since A is fully distinguishing there is some
Al ∈ A that distinguishes si and sj . But by definition
this means that the application of Al from si and sj
leads to different input/output sequences. However, the
input sequence can only differ once a different output
has been observed. Thus, Al has a node v such that the
following hold:

1. The path from the root of Al to v has a label α/β
that labels paths from both si and sj ; and

2. There are edges with labels x/yi and x/yj from
v with yi 6= yj such that αx/βyi labels a path from
si and αx/βyj labels a path from sj .

However, this means that w = αx is a prefix of input
sequences in Hi and Hj and also that w distinguishes
si and sj . The result therefore follows.

4. MOTIVATING EXAMPLE

We manually computed the fully distinguishing set
A = {A1,A2,A3,A4} for FSM M1 given in Figure 2.
The incomplete ADSs are given in Figure 4. The
resulting harmonised state identifiers are given as
follows: H1(A) = {ab, b}, H2(A) = {a, b}, H3(A) = {b}
and H4(A) = {ab, b}.

For the FSM presented in Figure 2 the characterisa-
tion sets (according to the algorithm presented in [29])
are given as W = {a, b, c} and so the state identifiers
for M are W1 = {a, b, c}, W2 = {a, b, c}, W3 = {a, b, c},
and W4 = {a, b, c}. According to the algorithm given
in [19], if we use the characterisation sets W for M1 then
the harmonised state identifiers for the FSM presented
in Figure 2 are: H1 = {a, b, c}, H2 = {a}, H3 = {a, b},
and H4 = {a, b, c}.

From now on for a given FSM M , SI refers
to the average number of sequences in the state
identifiers/harmonised state identifiers and LI depicts

ADS HSI W

SI 1.75 2.33 3

LI 1.7 1 1

TABLE 1: SI and LS results with respect to ADS, HSI
and W-set for FSM M1.

the average length of the state identifiers/harmonised
state identifiers. Given K ∈ {H,W}, the following
define SI and LI.

SI =

∑
1≤i≤n |Ki|

n
(1)

LI =

∑
1≤i≤n

∑
1≤j≤|Ki| |wj |∑

1≤i≤n |Ki|
(2)

where n is the number of states of FSM. For the FSM
given in Figure 2 the SI and LI values are computed
and the results are given in Table 1.

In this simple example, the results suggest that
the use of incomplete ADSs can reduce the average
number of state identifiers by 25% compared to the
HSI-generation method and by 42% compared to the
W-generation method. We also notice that the average
length of distinguishing sequences is relatively high
when incomplete ADSs are used. In Section 7 we show
that this is not generally the case.

5. INCOMPLETE PRESET DISTINGUISH-
ING SEQUENCES

We first introduce some basic terminology that we use
throughout this section.

Definition 5.1. A Finite Automaton (FA) is
defined by a tuple A = (Q,Σ, δ, 0, F) where Q is the
finite set of states, Σ is the finite alphabet, δ is the
transition function of type Q × Σ → Q, 0 is the initial
state and F ⊆ Q is the set of accepting states.

Since δ is a function we implicitly refer to
deterministic finite automata; whenever we use the term
finite automaton we will be referring to a deterministic
finite automaton. A word is accepted by finite
automaton A, if and only if it takes A from 0 to an
accepting state (a state in F). The set of all words
accepted by a finite automaton A defines the (regular)
language denoted L(A). We assume that an FA A
considered is minimal in the sense that there is no FA
A′ with fewer states than A such that L(A′) = L(A).

We show that the MaxSubSetPDS problem is
PSPACE-complete through relating it to the Finite Au-
tomata Intersection Problem, which was intro-
duced by Dexter Kozen and is PSPACE-complete [60].

Definition 5.2 (Finite Automata Intersection
Problem (FA-INT)). Let A = {A1, A2, . . . , Az} be z
finite automata with a common alphabet Σ. The FA-
INT problem is to determine whether the Ai accept a

The Computer Journal, Vol. ??, No. ??, ????

7

s1, s3

s1

b/0

s3

b/1

(a)

s2, s3

s2

b/0

s3

b/1

(b)

s4, s3

s4

b/0

s3

b/1

(c)

(s1, s2, s4)

s1

b/1

s4

b/0

a/0

s2

a/1

(d)

FIGURE 4: Incomplete ADSs for machine M1 presented in Figure 2. Incomplete ADS A1 that distinguishes pair
of states (s1, s3) (Figure 4a). Incomplete ADS A2 that distinguishes pair of states (s2, s3) (Figure 4b). Incomplete
ADS A3 that distinguishes pair of states (s4, s3) (Figure 4c). Incomplete ADS A4 that distinguishes pair of states
(s1, s2), (s1, s4), and (s2, s4) (Figure 4d).

common element of Σ?, i.e. whether there is a word w
such that w ∈ L(Ai) for all 1 ≤ i ≤ z.

It is straightforward to see that the complexity of the
FA-INT problem is not altered if we restrict attention to
non-empty words since we can decide whether all of the
Ai accept ε in polynomial time. In addition, since a FA
can be minimised in polynomial time, the complexity of
the FA-INT problem is not affected by only considering
minimal FA.

Without loss of generality we assume that the finite
automata in A have disjoint sets of states. Given
an instance of the FA-INT problem, with a finite set
A = {A1, A2, . . . , Az} of finite automata on a common
finite alphabet Σ (Ai = (Qi,Σ, δi, 0i, Fi)), we construct
an FSM M1(A) = (S,X, Y, δ, λ, s0) as follows (this
construction is similar to one in [16]).

We introduce a new state Sink. Then we take two
copies A1

i = (Q1
i ,Σ, δ

1
i , 0

1
i , F

1
i), A2

i = (Q2
i ,Σ, δ

2
i , 0

2
i , F

2
i)

of each finite automaton Ai and call them pair
automata. Given q ∈ Qi we let q1 and q2 denote the
corresponding states in Q1

i and Q2
i respectively. We

let S̄ = {01
1, 0

2
1, . . . , 0

1
z, 0

2
z}, which is the set of initial

states of the copies of the finite automata. The set
of states of the FSM to be constructed is given by
S = Q1

1 ∪Q2
1 ∪Q1

2 ∪Q2
2 ∪ . . . ∪Q2

z ∪ {Sink}, where the
initial state is selected as 01

1. The input alphabet of the
FSM is given by X = Σ∪{D} for an additional input D
whose use will be explained below. The output alphabet
of the FSM is given by Y = Q1∪Q2∪ . . .∪Qz∪{0, 1, 2}.

The state transitions of the finite automata in A are
inherited: if a ∈ Σ and qji ∈ Qji for 1 ≤ i ≤ z and

1 ≤ j ≤ 2 then δ(qji , a) = rji for the state ri of Ai such
that δi(qi, a) = ri. Input D takes all states to Sink.

The output function λ ofM1(A) is defined as follows,

in which 1 ≤ i ≤ z.

λ(s, x) =

qi, If x 6= D and s = qji for some

qji ∈ Q1
i ∪Q2

i ,

qi, If x = D and s = qji for some

qji ∈ (Q1
i ∪Q2

i) \ (F 1
i ∪ F 2

i),
0, If s = Sink,
1, If x = D and s ∈ F 1

i ,
2, If x = D and s ∈ F 2

i .

There are states of this FSM that cannot be reached
from the initial state. This does not affect the proof but
we could choose to extend this FSM by, for example, for
1 ≤ i ≤ z and j ∈ {1, 2} adding an input xji that takes

all states to state 0ji with output y for some fixed y.
We illustrate the construction in Figure 5 in which we
include two copies of the state Sink to aid readability.

The basic idea is that until D is received the
transitions from a state in Q1

i ∪ Q2
i simulate the state

transitions of Ai but also tell us which states of Ai
are being traversed and so the value of i (the Ai have
disjoint state sets). If D is received in a state qji from

Qji then the output tells us the value of j if and only if

the state qji is such that qi is an accepting state of Ai.
We now explore properties of M1(A), proving results
that will be brought together in Theorem 5.1.

Lemma 5.1. Let us suppose that set A =
{A1, A2, . . . , Az} of finite automata have a common al-
phabet Σ. The FSM M1(A) = (S,X, Y, δ, λ, s0) has a
PDS for S̄ = {01

1, 0
2
1, . . . , 0

1
z, 0

2
z} if and only if there is

a non-empty word ω ∈ Σ? that is accepted by all of the
finite automata (in which case ωD is such a PDS).

Proof. First, let us suppose that ω 6= ε is in the
intersections of the languages of the Ai and consider
w = ωD. By construction, ω distinguishes any two 0αi
and 0βj with i 6= j since ω ∈ Σ? is non-empty, the output
in response to an element of Σ identifies the state of
the corresponding Ai, and the state sets of the Ai are
pairwise disjoint. Further, if we consider states 01

i and

The Computer Journal, Vol. ??, No. ??, ????

8 R.M. Hierons, U.C. Türker

A1
1 A2

1 A1
2

. . . A2
z

01
1 02

1 01
2

. . . 02
z

...
...

...

q1 q2 x . . . y

...
...

...

m1 m2 t1 . . . f 2

SinkSink

D/g

D/g
D/a

D/h

Σ/g Σ/g Σ/a Σ/h

D/1

D/2
D/1

D/2

Σ/q Σ/q Σ/x Σ/y

D/q
D/q

D/x

D/y

Σ/m Σ/m Σ/t Σ/f

Σ ∪D/0Σ ∪D/0

FIGURE 5: An FSM M1(A) constructed from an FA-INT problem instance with S̄ = {01
1, 0

2
1, . . . , 0

1
z, 0

2
z}, with

initial state 01
1.

02
i we find that ω takes them to accepting states from Fi

and then D leads to different outputs (1 and 2). Thus,
if there is some non-empty ω ∈ Σ? in the intersections
of the languages of the Ai then M1(A) has a PDS ωD
for S̄.

We now prove that if M1(A) has a PDS for S̄ then
there is some non-empty ω ∈ Σ? in the intersection of
the languages of the Ai. We can observe that in order
to distinguish states 01

i and 02
i it is necessary to apply

input D but also that after D has been applied the state
must be Sink and further input cannot distinguish the
states. Thus there is a PDS for S̄ if and only if there is
a PDS for S̄ that has the form w = ωD where ω ∈ Σ?

and we now consider such a PDS.
Now let us suppose that δ(01

i , ω) /∈ F 1
i for some

1 ≤ i ≤ z. Then δ(δ(01
i , ω), D) = Sink and similarly

δ(δ(02
i , ω), D) = Sink and it is clear that λ(01

i , ωD) =
λ(02

i , ωD). This contradicts ωD being a PDS for S̄.
Therefore w must be in the form w = ωD such that ω is
non-empty and brings all the initial states to accepting
states. Thus, if M1(A) has a PDS for S̄ then there
is some non-empty ω ∈ Σ? in the intersections of the
languages of the Ai.

We now consider how a non-deterministic Turing
Machine can decide whether there is a PDS for a given
state set S̄ of FSM M . In this process it guesses inputs
one at a time and maintains a current set π of pairs of
states such that (s, s′) is in π if and only if s ∈ S̄ and

the sequences of inputs received takes M from s to s′. It
also maintains an equivalence relation r between states
from S̄: two states s, s′′ are related under r if they have
not been distinguished by the input sequence w that has
been chosen (λ(s, w) = λ(s′′, w)). It is straightforward
to see that these two pieces of information can be
updated when a new input is received; we do not need to
know the previous inputs received. Further, the input
sequence received defines a PDS for S̄ if and only if no
two different states from S̄ are related under r.

Lemma 5.2. The problem of deciding whether a set
S̄ of states of deterministic, minimal and completely-
specified FSM M has a PDS is in PSPACE.

Proof. We will show that a non-deterministic Turing
Machine can solve this using polynomial space. Such
a machine will guess inputs one at a time. It will
maintain the set π of pairs of states and equivalence
relation r as described above and this uses polynomial
space. After guessing a new input x and updating π
and r the machine checks whether the input sequence
received defines a PDS for S̄: this is the case if and
only if r relates no two different states of S̄. Thus, if
M has a PDS for S̄ then this non-deterministic Turing
Machine will find such a PDS using polynomial space.

We now have to consider the case where M does not
have a PDS for S̄: we require that the non-deterministic
Turing Machine terminates. In order to ensure this

The Computer Journal, Vol. ??, No. ??, ????

9

we use the result that if M has n states and S̄ has
m states then M has a PDS for S̄ if and only if it
has such a PDS with length at most B = (m − 1)nm

[29]6. The non-deterministic Turing Machine therefore
includes a counter that counts how many inputs have
been received: the machine terminates with failure if
the counter exceeds the upper bound. We require
additional O(log2B) = O(log2(m − 1) + m log2(n)) =
O(m log2(n)) space for the counter and so the space
required is still polynomial.

We have defined a non-deterministic Turing Machine
that requires only polynomial space in order to solve
the problem and so the problem is in non-deterministic
PSPACE. We can now use Savitch’s Theorem [61],
which tells us that a problem is in PSPACE if and only
if it is in non-deterministic PSPACE, and the result
follows.

Condon et al. introduced the maximisation version
of the FA-INT problem [62].

Definition 5.3 (Maximisation of FA-INT Problem
(MAX FA-INT)). Let us suppose that A = {A1, A2, . . . ,
Am} is a set of finite automata with input alphabet Σ.
The MAX FA-INT problem is: What is the largest k
such that there are k finite automata from A that accept
a common word w ∈ Σ?.

They also proved that it is PSPACE-hard to
approximate the MAX FA-INT problem. We claim that
based on the approach used to prove Lemma 5.1, we can
give a similar result for the MaxSubSetPDS problem
but before this we explore the relationship between the
optimum solutions of the MaxSubSetPDS and MAX
FA-INT problems.

Below, given a property P (such as distinguishing k
states of an FSM) a word w is said to be a minimal
word satisfying P if w satisfies P and no proper prefix
of w satisfies P . The following is clear from the proof
of Lemma 5.1.

Lemma 5.3. Given set A of finite automata, let
OPTA be the set of minimal words that are accepted
by the maximum number of finite automata from A.
Further, given M1(A) let OPTM1(A) be the set of
minimal words that maximise the size of the subset
of S̄ whose states are pairwise distinguished. Then
w ∈ OPTA if and only if wD ∈ OPTM1(A).

We can now show that the MaxSubSetPDS
problem, of finding a PDS that distinguishes the
most states from some set S̄, is PSPACE-complete and
inapproximable. This is important since it shows that
the problem of finding a good approximation to the
optimisation problem is also PSPACE-complete.

The following concerns approximating the MaxSub-
SetPDS problem. Here the approximation is with re-

6In [29], Gill presents this result on pg: 104, Theorem 4.3.
Note that Gill named the set S̄ as the Admissible Set i.e. the
initial states of the underlying FSM.

spect to the size of the set of states distinguished by the
PDS returned by an algorithm (when compared to an
optimal solution).

Theorem 5.1. The MaxSubSetPDS problem is
PSPACE-complete and there exists a constant ε > 0 such
approximating the MaxSubSetPDS problem within
ratio nε is PSPACE-hard.

Proof. The problem being PSPACE-hard follows from
Lemma 5.3 and the MAX FA-INT problems being
PSPACE-hard. To see that this problem is in PSPACE,
first observe that it is sufficient to prove that the
following problem is in PSPACE: for 1 ≤ k ≤ n decide
whether there is a PDS that distinguishes k states of
the FSM M . We can show that this is in PSPACE in
a similar manner to Lemma 5.2, the only differences
being that in a first step the non-deterministic Turing
Machine guesses the set S̄′ of k states.

To prove that the problem of approximating the
MaxSubSetPDS is PSPACE-hard, let us assume that
we have an algorithm P that belongs to a complexity
class C < PSPACE and returns an nε approximation
for the MaxSubSetPDS Problem. In such a case,
given an instance A of the MAX FA-INT problem, we
can construct FSM M1(A) and using P we can obtain
a solution w = ωD. But then Lemma 5.3 implies that ω
defines an approximation for A and hence P defines an
nε approximation for the MAX FA-INT problem. Thus
the result follows.

Finally, we consider the problem of finding a smallest
set PS of sets of states such that each set has a PDS
(MinSetPDS).

Theorem 5.2. The MinSetPDS problem is
PSPACE-complete.

Proof. We first prove that the problem is in PSPACE.
Observe that in PS we require at most one set for each
pair of states of M and so if M has state set S then
the set PS of subsets has size at most |S|(|S| − 1).
It is therefore sufficient to show that we can solve the
problem of trying to find a set k of subsets where each
subset corresponds to a PDS (1 ≤ k ≤ |S|(|S| − 1)); if
we can do this then a Turing Machine could start with
k = |S|(|S|−1) and then reduce k step by step until a set
is found. Given k, a non-deterministic Turing Machine
can thus initially guess such a set PS of k subsets and
for each such set S̄ ∈ PS the Turing Machine tries to
build a PDS that distinguishes all of the states in S̄. As
before, for a given set S̄ the process terminates when
the upper bound on PDS length is exceeded or the PDS
being built is sufficient. Since this can be performed in
polynomial space we have that the result follows from
Savitch’s Theorem [61].

To see that the problem is PSPACE-hard it is sufficient
to observe that M has a complete PDS if and only
if it has a set PS that satisfies the conditions of the
MinSetPDS problem and contains only one set. The

The Computer Journal, Vol. ??, No. ??, ????

10 R.M. Hierons, U.C. Türker

result therefore follows from the complete PDS problem
being PSPACE-hard [16].

6. INCOMPLETE ADAPTIVE DISTIN-
GUISHING SEQUENCES

In some situations we want to use preset input
sequences in testing and fault localisation since this
requires a relatively simple test infrastructure: one that
simply applies a sequence of inputs and observes the
resultant outputs. However, efficiency can be improved
if we use adaptive tests, where the next input to be
applied is chosen on the basis of the observations made.
In addition, it is known that the problem of deciding
whether an FSM has a (complete) ADS can be solved
in polynomial time and there is a polynomial upper
bound on the size of such an ADS [16]. That is, we can
decide in polynomial time whether the underlying FSM
possesses a complete ADS and then decide whether to
construct incomplete ADSs. Note that this flexibility
exists for ADSs but not PDSs. In other words, in
order to use incomplete PDSs, one may wish to first
check the existence of a complete PDS. However we
know that for both problems checking existence is
PSPACE-complete [16]. These results, together with the
complexity results in Section 5, provide the motivation
for considering incomplete ADSs. In this section we
therefore explore incomplete ADSs and report that the
complexity results given for problems related to PDSs
hold when we consider ADSs.

We assume that we are given a set A =
{A1, A2, . . . , Az} of (minimal) finite automata with
alphabet Σ and now describe the FSM M2(A) that
we construct. We mark the initial states of the finite
automata so that the initial state of Ai is called 0i
and will let S̄ = {01, 02, . . . , 0z, Sink} for a state Sink
described below and set 01 to be the initial state. We
introduce a set D = {d1, d2, . . . , dz} of new inputs and
so there exists one such input di for each Ai ∈ A. The
transitions of the finite automata from A with input
alphabet Σ are inherited (and given output 0) and the
remaining transitions are as follows

• δ(Sink, x) = Sink for all x ∈ Σ ∪ D.
• If x ∈ D then:

– If s ∈ Fi then δ(s, x) = s; and
– δ(s, x) = Sink otherwise.

The output function λ ofM2(A) is defined as follows
in which 1 ≤ i ≤ z.

λ(s, x) =

{
i, If s ∈ Fi and x = di,
0 For all other cases,

Unlike the previous reduction the output function
does not enable us to recognise the states of finite
automaton Ai while we are visiting the states in Qi\Fi.
Instead, we can only distinguish states through applying
an input from D, possibly after a sequence of previous

inputs. Further, we can only distinguish a state 0i from
Sink through applying an input sequence w that takes
Ai to an accepting state and then apply di. We now
prove that we can construct an ADS for S̄ if and only
if the finite automata in A accept a common word.

In the following we represent an incomplete ADS for
S̄ by a set of input/output sequences: the input/output
sequences produced from the states from S̄.

Lemma 6.1. Let us suppose that set A =
{A1, A2, . . . , Az} of finite automata have a common al-
phabet Σ. The FSM M2(A) = (S,X, Y, δ, λ, s0) has an
ADS for S̄ = {01, 02, . . . , 0z, Sink} if and only if there
is a word w ∈ Σ? that is accepted by all of the finite
automata (in which case input sequences wd1, wd1d2,
wd1d2d3, . . . , wd1d2d3 . . . dz define an ADS).

Proof. We first show that if w is accepted by all
the finite automata then input sequences wd1, wd1d2,
wd1d2d3, . . . , wd1d2d3 . . . dz define an ADS for S̄. Since
w is accepted by all the finite automata, input sequence
w will take any initial state 0i to an accepting state.
We show that wd1d2 . . . dj distinguishes states 0i, 0j for
any 1 ≤ i 6= j ≤ z. This follows from the fact that
at state δ(0j , w) the FSM will not change its state, will
produce 0 when any input from set D \ {dj} is applied,
and will produce j as output if input dj is applied. It
is clear also that this word distinguishes any 0j from
Sink since it will lead to the output j being produced
from 0j but not from Sink. Therefore, if there exists
a word w that is accepted by all the finite automata,
then FSM M2(A) has an ADS for set S̄ in the form of
wd1, wd1d2, wd1d2d3, . . . , wd1d2d3 . . . dz.

Now assume that machineM2(A) has an ADS for S̄
and we are required to prove that there is some w ∈ Σ in
the intersections of the languages of the finite automata.
Let us suppose that from S̄ the ADS applies input
sequence w and then input x such that the response
to w does not distinguish any two elements of S̄ but
the response to wx distinguishes two or more states of
S̄. Then the input of x after w must lead to different
outputs for two or more states in S̄ and so we must have
that x ∈ D. If w does not take some 0j to a final state
then wx takes 0j to state Sink producing only zeros as
output and so the ADS does not distinguish 0j from
Sink ∈ S̄. Thus, w must take each Ai to a final state
and so by definition we have that w ∈ Σ? and w is in
the languages defined by all of the Ai and so the result
holds.

We now show that we can check in PSPACE whether
a set of states has an ADS.

Lemma 6.2. Given deterministic, minimal and
completely-specified FSM M and state set S̄, the
problem of deciding whether S̄ has an ADS is in
PSPACE.

Proof. We will show that a non-deterministic Turing
Machine can solve this using polynomial space. Such

The Computer Journal, Vol. ??, No. ??, ????

11

a machine will operate through a sequence of steps,
extending the depth of the ADS by one in each step. It
will maintain a set π of pairs of states and equivalence
relation r as in the proof of Lemma 5.2 and again
this uses polynomial space. As before, we start with
π = {(s, s)|s ∈ S̄}. In each step, if (s, s′) ∈ π then the
current ‘guess’ takes s to s′ and (s, s′) ∈ r if and only if
the current ‘guess’ does not distinguish s and s′. A step
involves the non-deterministic Turing Machine guessing
a next input for each equivalence class of r and updating
π and r accordingly. The machine also checks whether
an ADS has been defined for S̄: this is the case if and
only if r relates no two different states of S̄. Thus, if M
has an ADS for S̄ then this non-deterministic Turing
Machine will find such an ADS using polynomial space.

Similar to before, we now have to consider the case
where M does not have an ADS for S̄ and require that
the non-deterministic Turing Machine terminates. This
is achieved by using the result that ifM has n states and
S̄ has m states then M has an ADS for S̄ if and only if it
has such an ADS with length at most Σi=mi=2 C

(
n
i

)
< 2n,

where C
(
n
i

)
is the number of ways of choosing a subset

of size i of a set of size n [30]7. The non-deterministic
Turing Machine thus has a counter that gives the length
of the current ‘guess’ and terminates with failure if
the counter exceeds the upper bound. We require
additional O(log2(2n)) = O(n) space for the counter
and so the space required is polynomial.

The non-deterministic Turing Machine requires
polynomial space in order to solve the problem and so
the problem is in non-deterministic PSPACE; the result
again follows from Savitch’s Theorem [61].

The structure ofM2(A) ensures that when trying to
distinguish states in S̄ we gain nothing from adaptivity:
once we have observed a non-zero output from one of
the states we have distinguished this state from all other
states in S̄ (we must only observe zeros when starting
in Sink ∈ S̄). Thus, when exploring ADSs for S̄ it is
sufficient to consider input sequences.

We now show that the MaxSubSetADS problem,
of finding an ADS that distinguishes the most states
from some S̄, is PSPACE-complete.

Theorem 6.1. The MaxSubSetADS problem is
PSPACE-complete.

Proof. The problem being PSPACE-hard follows from
Lemma 6.1 and the MAX FA-INT problem being
PSPACE-hard. In order to see that the problem is in
PSPACE, we prove that the following problem is in
PSPACE: “for a minimal, deterministic and completely-
specified FSM with n states and 1 ≤ k ≤ n, decide
whether there is an ADS that distinguishes k states”.
We can deduce that this problem is in PSPACE, by
considering the algorithm presented in Lemma 6.2. This
time as a preprocessing step the Turing Machine will
guess a set of states S̄ with cardinality k then the

7Theorem 1, bound (2).

Turing Machine continues to implement the procedure
that we describe in the proof of Lemma 6.2. Therefore
the MaxSubSetADS problem is in PSPACE.

Lemma 6.1 implies that the optimum solution to the
MAX FA-INT problem constitutes an optimum solution
to the MaxSubSetADS problem and hence we can
reach the following conclusion.

Lemma 6.3. Given a set A of finite automata, let
OPTA be the set of minimal words accepted by the
maximum number of finite automata from A. Further,
let M2(A) be the FSM constructed from A and also let
OPTM2(A) be the set of minimal ADSs that maximise
the size of the subset of S̄ whose states are pairwise
distinguished by ADSs. Then w ∈ OPTA if and only if
ADS wd1, wd1d2, . . . , wd1 . . . dz is in OPTM.

Theorem 6.2. There exists a constant ε > 0
such that approximating the MaxSubSetADS problem
within ratio nε is PSPACE-hard.

Proof. To prove that the problem of approximating
MaxSubSetADS is PSPACE-hard, we consider an
algorithm P that belongs to a complexity class C <
PSPACE and returns an nε approximation for the
MaxSubSetADS Problem. In such a case, given a
MAX FA-INT problem instance A, we can construct
FSM M2(A) and using P we can obtain a solution
wd1, wd1d2, . . . , wd1d2 . . . dz. But then Lemma 6.3
implies that w defines an approximation for A and
hence P is also an approximation for the MAX FA-INT
problem. The result thus follows.

As with PDSs, in testing we might want a smallest
set of ADSs that, between them, distinguish all states
of M (MinSetADS).

Lemma 6.4. The MinSetADS problem is in
PSPACE.

Proof. We can show that this problem is in PSPACE
by following a procedure that is similar to the one
we present in the proof of Theorem 6.1. As before,
if the FSM M has state set S then PS requires at
most |S|(|S| − 1) sets. As a result, it is sufficient to
prove that given k the following problem can be solved
in PSPACE: is there a collection PS = {S̄1, S̄2 . . . S̄k}
of subsets of S such that for every pair s, s′ of states
there is some S̄i such that s, s′ ∈ S̄i and for each S̄i
(1 ≤ i ≤ k) there is an ADS that distinguishes the
states of S̄i. The Turing Machine guesses such a PS
and then performs the remaining steps for each of the
S̄i separately. Clearly, this procedure takes polynomial
space. The Turing Machine will return failure when it
exceeds the bound given for the maximum depth, while
if suitable ADSs are found then the Turing Machine
returns success.

In the proof of the following, given an instance of FA-
INT problem A = {A1, A2, . . . , Az}, we will define an

The Computer Journal, Vol. ??, No. ??, ????

12 R.M. Hierons, U.C. Türker

FSM M3(A) that is the same as M2(A) except for the
following:

• For all 1 ≤ i ≤ z we add a state 0′i;
• We set S̄ = {0′1, 0′2, . . . , 0′z, Sink};
• We introduce new input st; and
• We add the following transitions: from state 0′i

there is a transition to 0i with label st/0 and all
other inputs take 0′i to Sink with output 0. From
all states other than the 0′i the input of st leads to
state Sink and output 0.

The essential idea is that in order to distinguish two
states from S̄ an ADS must start with input st but
this ensures that this ADS does not distinguish any
two states from S \ S̄ (and also does not distinguish
any state in S \ S̄ from Sink). Thus, any set of
ADSs that distinguishes all of the states of M3(A)
can be partitioned into a subset that distinguishes the
states of S̄ and a subset that distinguish the states in
(S \ S̄) ∪ {Sink} and so there is an ADS for S̄ if and
only if a smallest set of ADSs for M3(A) defines such
an ADS.

Lemma 6.5. The MinSetADS problem is
PSPACE-hard.

Proof. We again consider an instance A =
{A1, A2, . . . , Az} of the FA-INT problem with a
common alphabet Σ and we construct M3(A).
From Lemma 6.1 and the FA-INT problem being
PSPACE-hard we know that the problem of deciding
whether there is an ADS for {01, 02, . . . , 0z, Sink}
is PSPACE-hard. We will prove that any solution to
the MinSetADS problem for M3(A) also determines
whether there is an ADS for {01, 02, . . . , 0z, Sink}.

Let us suppose that PS is a smallest set of subsets of S
such that for every pair of states s, s′ with s 6= s′ there
is some S̄′ ∈ PS that contains both s and s′ and for
every set S̄′ ∈ PS there is an ADS that distinguishes
the states in S̄′. By construction, any set S̄′ ∈ PS
that contains Sink and a state s ∈ S̄ \ {Sink} must
correspond to ADSs that start with st. Similarly, if
S̄′ ∈ PS contains Sink and some s ∈ S \ S̄ then it must
correspond to ADSs that do not start with st.

We will let P ′S denote the set of subsets of PS that
contain Sink and at least one state s ∈ S̄ \ {Sink}. We
will prove that there is an ADS that distinguishes all of
the states of S̄ if and only if P ′S contains only one set.

First assume that P ′S contains only one set. Thus,
the one set in P ′S contains all states from S̄ and this
implies that there is an ADS for S̄ as required.

Now assume that S̄ has an ADS. By definition, no set
in P ′S contains a state s 6∈ S̄ and for all s 6∈ S̄ we have
that PS \ P ′S contain a set that has both s and Sink.
Thus, for each s, s′ ∈ (S \ S̄) ∪ {Sink} with s 6= s′ we
have that PS \P ′S has a set that contains both s and s′.
As a result, it is sufficient for the sets in P ′S to contain
all pairs s, s′ from S̄ with s 6= s′. Since there is an ADS
that achieves this, by the minimality of PS we must

have that P ′S contains only one set.
We now know that S̄ has an ADS if and only if

P ′S contains only one set and so if we can solve the
MinSetADS problem for M3(A) then we can decide
whether S̄ has an ADS. We can now note that S̄ has an
ADS if and only if the state set {01, 02, . . . , 0z, Sink}
of M3(A) has an ADS: the ADS for S̄ in M3(A)
starts with st and then applies an ADS for state
set {01, 02, . . . , 0z, Sink} of M3(A). The result thus
follows from Lemma 6.1 and the FA-INT problem being
PSPACE-hard.

We therefore have the following result.

Theorem 6.3. The MinSetADS problem is
PSPACE-complete.

We saw that a fully distinguishing set
A = {A1,A2, . . . ,Ak} of ADSs defines the set
{A(s1), A(s2), . . . , A(sn)} of harmonised state iden-
tifiers. We also have the converse, that harmonised
state identifiers can be used to construct a fully dis-
tinguishing set of ADSs, since each sequence in a
state identifier defines an ADS (in which there is no
adaptivity). Thus, the complexity results in this pa-
per regarding ADSs correspond to equivalent results
regarding harmonised state identifiers.

Given a set S̄ ⊆ S and harmonised state identifiers
{H1, H2, . . . ,Hn}, we can identify alternative subsets of
the Hi that are sufficient to distinguish the states of S̄.
Let us suppose that H ′i ⊆ Hi for all si ∈ S̄. Then we
will say that the H ′i form harmonised state identifiers
for S̄ if for all distinct si, sj ∈ S̄ we have sequences
wi ∈ H ′i and wj ∈ H ′j such that a common prefix of
wi and wj distinguishes si and sj . The following shows
how the MaxSubSetADS problem relates to problems
regarding harmonised state identifiers.

Proposition 6.1. Let us suppose that S̄ is a set
of states of deterministic, minimal and completely-
specified FSM M . Then the states in S̄ can be
distinguished by a single ADS if and only if there exist
harmonised state identifiers H ′1, . . . ,H

′
n for S̄ where

each H ′i contains only one input sequence.

Proof. First assume that the states in S̄ can be
distinguished by a single ADS A. Given state si ∈ S̄ let
H ′i denote the set containing one input sequence: the
input portion of the input/output sequence produced
when A is applied in state si. It is straightforward
to check that the argument used in the proof of
Proposition 3.1 applies and so the H ′i are state
identifiers for S̄ as required.

Now let us suppose that we have state identifiers
{H ′i|si ∈ S̄} for S̄ such that each H ′i contains only
one input sequence, which we call wi. Form a finite
automaton A that is a tree with |S̄| leaves such that
for each state si ∈ S̄ the tree A has a path from the
root to a leaf such that this path has label wi/λ(si, wi).
Since the H ′i define identifying sets for S̄, for distinct

The Computer Journal, Vol. ??, No. ??, ????

13

states si, sj ∈ S̄ we have that a common prefix w of
wi, wj distinguishes si and sj . This ensures that the tree
satisfies the required condition that from two distinct
states si, sj an ADS applies the same input sequence
until these states are distinguished. Thus, A is an ADS
for S̄ as required.

The following gives a relationship between an HSI
problem and MinSetADS.

Proposition 6.2. If the states in S can be
distinguished by k ADSs then there are harmonised
state identifiers {H1, H2, . . . ,Hn} such that for all si ∈
S we have that Hi has at most k input sequences.

Proof. We will assume that the states in S can be
distinguished by a set A of k ADSs. Given state si ∈ S̄
let Hi denote the set containing the input portion of the
input/output sequence produced when A ∈ A is applied
in state si. By Proposition 3.1 the Hi are harmonised
state identifiers for S as required.

The last two results in this section give relationships
between the results regarding ADSs and corresponding
problems regarding harmonised state identifiers. While
the focus of this paper is on PDSs and ADSs, the
results given here (and techniques used to prove them)
might provide additional insights into optimisation
problems for harmonised state identifiers.

7. EMPIRICAL STUDY

In this section, we first present a greedy algorithm
that aims to compute a fully distinguishing set with
minimum cardinality. Later we present the results of
experiments using randomly generated FSMs and some
benchmark FSMs.

The aim of the experiments was to compare the state
identifiers constructed using the following approaches:

1. Using the standard approach for generating a
characterisation set [28]: we call this the W-
generation method (W).

2. Using the standard approach for generating
harmonised state identifiers [19, Algorithm 2 in
Appendix 2]: we call this the HSI-generation
method.

3. Using a proposed greedy algorithm to generate a
fully distinguishing set of ADSs and deriving state
identifiers from these: we call this the ADS-method.

In the experiments we compared: 1) the number of
input sequences per state; and 2) the mean length of
state identifiers. We also report on the results of an
experiment that investigated the time taken by the
greedy algorithm.

7.1. Greedy Algorithm

Before the algorithm is presented, we first define
notation used. We present the list of symbols with their

Symbol Description

T A set of tree structures.
T A tree structure.

N,E Set of nodes, set of edges.
I(v),C(v) Initial and Current sets for

node v.
i(v), o(v) Input sequence, output se-

quence for node v.
M A set of current sets.
N Set of set of nodes used by the

Greedy algorithm.
` ∈ Z≥1 Upper bound on the tree

height.
Q A set of pairs of states.

Φx(Q,Nx) ∈ R≥0 Heuristic function 1.
Θx(M,Nx) ∈ Z≥0 Heuristic function 2.
F : S × S →∈ {0, 1} A function used by the Heuris-

tic function 2.
argmax{··· } f(.) A function that returns values

for a set of variables {· · · }
such that f is maximised.

argmin{··· } f(.) A function that returns values
for a set of variables {· · · }
such that f is minimised.

TABLE 2: Nomenclature for the greedy algorithm.

definitions in Table 2. The greedy algorithm receives
an FSM M and integer ` and it returns a set of trees
T = {T1, T2, . . . } such that all trees in this set have
depth at most ` and set T defines a fully distinguishing
set (if such a T exists).

The following provides a brief summary of the
algorithm (the details are given later). The greedy
algorithm starts with an empty tree and adds new leaves
in an iterative manner. Given a leaf v the algorithm has
a heuristic regarding how to choose an input to apply
in v and this essentially operates by maximising the
number of states distinguished. This process continues
until either all states have been distinguished or the
preset maximum depth ` has been reached. In the
former case the algorithm terminates and in the latter
the set of states distinguished is updated and the
process is repeated.

7.1.1. Basic Notation
Given set B of states, Bx/y will denote the subset of B
such that each state in Bx/y produces output y when
input x is applied. Thus, Bx/y = {s ∈ B|y = λ(s, x)}.
Similarly, we let B̂x/y denote the states reached from
states in set Bx/y when input symbol x is applied. Thus,

B̂x/y = {δ(s, x)|s ∈ Bx/y}.
A tree T (E,N) ∈ T consists of a set of edges (E)

and nodes (N). An edge e ∈ E is labeled with an input
output pair x/y where x ∈ X and y ∈ Y . A node
v ∈ N captures the following information: Strings i(v)
and o(v) that give the input and output sequences that
label the path from the root of T (E,N) to the node v,
the initial set I(v), and the current set C(v). The initial

The Computer Journal, Vol. ??, No. ??, ????

14 R.M. Hierons, U.C. Türker

and the current sets are defined as follows: I(v) = {s ∈
S|o(v) = λ(s, i(v))} and C(v) = {δ(s, i(v))|s ∈ I(v)}.
We say that input x refines a node v if the states in the
current set of node v do not produce the same output
symbol when input x is applied i.e. x refines v if there
exist s, s′ ∈ C(v) such that λ(s, x) 6= λ(s′, x).

For the root node v1 we have that i(v1) = o(v1) = ε
and I(v1) = C(v1) = S. Input sequence i(v′) is defined
as i(v′) = i(v)x where v is the parent node of the
current node v′ and x is the input retrieved from the
edge between v and v′. Further, o(v′) = o(v)y where v
is the parent node of the current node v′ and y is the
output retrieved from the edge between v and v′. In T
there are two types of nodes: a node is a leaf node if
and only if it has no outgoing edges; otherwise it is an
internal node.

7.1.2. The Algorithm

The greedy algorithm receives an FSM M and positive
integer `. The summary of the Greedy Algorithm is
given in Algorithm 1. Initially Q contains the set
of all pairs of distinct states. The algorithm iterates
until the set Q becomes empty (Line 3). At each
iteration, the greedy algorithm forms a tree structure
T by introducing a root node v1 (Lines 4–5). The
root node has the following information: I(v1) = S,
C(v1) = S, i(v1) = ε, o(v1) = ε.

The greedy algorithm constructs a tree T iteratively
and at each iteration a single node var is handled.

For a given node var for each input x ∈ X and for
each C(var)x/y in set {C(var)x/y|y ∈ λ(C(var), x)} it

introduces a new node v such that C(v) = Ĉ(var)x/y,
I(v) = {s ∈ I(var)|λ(δ(s, i(var), x)) = y}, i(v) =
i(var)x and o(v) = o(var)y (Lines 10 – 15)

The proposed algorithm uses a set of sets of nodes
N = {N1, N2, . . . , N|X|} for inspecting the suitability
of input symbol x as follows: After forming new nodes
(i.e. v’s) the algorithm forms set Nx and adds these
nodes to the set N (Line 16). Afterwards it checks
whether N is a subset of M. The set M holds the
set of current sets that belong to nodes which cannot
be refined. Therefore, if the current sets of all possible
children of the current node are in set M, there is no
point in investigating this node any more, consequently,
we also add the current set of such a node toM as well
(Lines 17 – 18).

Otherwise the greedy algorithm evaluates the
“goodness” of inputs by calling (Lines 19 – 20) a
heuristic function which is defined as follows:

Φx(Q, Nx) =
∑

v 6=v′∈Nx

|Q ∩ I(v)× I(v′)| (3)

Algorithm 1: Greedy Algorithm.

Data: FSM M , `
Result: A set of trees T
begin

1 Let Q ← {(s1, s2), (s1, s3), . . . (sn−1, sn)} be a
set of distinct pairs of states.

2 Set T← ∅ and M← ∅.
3 while Q 6= ∅ do
4 v1 ← (S, S, ε, ε), N ← ∅,a← 0, h← 0
5 Add v1 to tree T (N,E), var ← v1
6 while var 6= NULL do
7 max← 0, index← −1
8 if |x(var)| < ` then
9 for x ∈ X do

10 foreach y ∈ λ(C(var), x) do
11 Generate new node v
12 I(v)← {s ∈

I(var)|λ(δ(s, i(var), x)) = y}
13 C(v)← Ĉ(var)x/y
14 i(v)← i(var)x
15 o(v)← o(var)y
16 Add v to Nx

17 if N ⊆M then
18 Add C(var) to M
19 else if ∀x ∈ X,Φx(Q, Nx) = 0 then
20 index← argminx∈X Θx(M, Nx)

21 else
22 index← argmaxx∈X Φx(Q, Nx)

23 if index = −1 then
24 Add C(var) to M
25 else
26 for v ∈ Nindex do
27 if No proper ancestor of node

var have a current set C(v)
then

28 Add node v to N and add
edge to E.

29 var ← next unvisited node

30 for All pair of leaf nodes v, v′ where v 6= v′

do
31 if s ∈ I(v) ∧ s′ ∈ I(v′) then
32 Pop pair of states (s, s′) from Q and

push T onto T once.

33 Return T

For any pair of nodes Heuristic 3 forms a set of pairs
of states and counts the number of occurrences of pairs
in set Q. That is to say Heuristic 3 will return the
number of pairs of states in Q distinguished. Intuitively
a “good” input x maximises this mass function: for all
x′ ∈ X,x 6= x′ we have that Φx′ ≤ Φx.

Now consider the machine M2 in Figure 6. According
to Heuristic 3, the greedy algorithm will initially select
input a to distinguish state s3 from other states.
Afterwards, the algorithm will try to distinguish states
s1, s2 and s4. However, according to Heuristic 3, there
is no difference between inputs a and b and thus, the

The Computer Journal, Vol. ??, No. ??, ????

15

s1

s2

s4

s3

b/0

b/0

a/0

a/1, b/0

a/0

b/0

a/0

FIGURE 6: An FSM M2 with initial state s1.

greedy algorithm can try input a repeatedly and fall into
a loop. To prevent this, in such cases, (i.e. if Heuristic
function 3 cannot differentiate between inputs), the
greedy algorithm decides the next input by the usage
of the following greedy function (Lines 19 – 20): Let
M = {C(1), C(2), . . . , C(|M|)},

Θx(M, Nx) =
∑

v∈Nx,C(i)∈M
F(C(i), C(v)) (4)

where F is a binary function which returns 1 if and
only if the parameters C(i) and C(v) are identical sets.
Otherwise it returns 0. Function F is defined as follows:

F(C(v), C(v′)) =

{
1 if C(v) = C(v′)
0 Otherwise

(5)

If the node cannot be refined by an input, the greedy
algorithm declares a failure and adds the current set of
this node to set M. Otherwise, the greedy algorithm
adds the nodes and edges that are obtained by the
corresponding input to the current tree T . While doing
this the greedy algorithm checks whether the current
set of the new node exists in one of its proper ancestor
v′ i.e. ∃v′ ∈ N such that C(v) = C(v′) and there exists
a simple path from v′ to v (Lines 25 – 27).

Afterwards the greedy algorithm selects another
unvisited node and repeats the procedure (Line 29).
The greedy algorithm repeatedly executes this scheme
until each node is processed or the depth of the tree T
becomes larger than `.

The greedy algorithm removes a pair of states (s, s′)
from Q if s, s′ are members of initial sets of different
leaf nodes i.e. s ∈ I(v) ∧ s′ ∈ I(v′) for v 6= v′ and the
tree is pushed onto T (Lines 30 – 32). Finally, if |Q| = 0
the algorithm terminates and returns set Q (Line 33).
Since the greedy algorithm is a heuristic the resultant
tree T need not be optimal; later we report the results
of experiments used to explore the effectiveness of this
approach.

We now need to show that at each iteration the
greedy algorithm computes an incomplete ADS. In
order to achieve this we first need to emphasise some
properties of tree T . First recall that the greedy
algorithm selects a single set of nodes Nx while
constructing a tree T and since Nx is constructed by
a single input x, the outgoing edges are labeled by
identical inputs and are labeled with different outputs.
Therefore the following immediately follows from the
construction of tree T .

Corollary 7.1. Let v be an internal node of tree T
with children v1, v2, . . . , vp and let x be the input portion
of the labels of the edges from node v. The following
hold:

1. δ(C(v), x) = ∪pi=1C(vi).
2. For all 1 ≤ i ≤ p we have that |λ(I(vi), x(vi))| =
1.

3. For all 1 ≤ i < j ≤ p we have
that λ(I(vi), x(v)) = λ(I(vj), x(v)) and
λ(I(vi), x(v)x) 6= λ(I(vj), x(v)x).

Moreover, consider distinct leaf nodes (v, v′) then
using Corollary 7.1 we know that the output observed
from any pair of states s ∈ I(v) and s′ ∈ I(v′) are
different.

Corollary 7.2. Let v, v′ be distinct leaf nodes of
tree T . If s ∈ I(v) and s′ ∈ I(v′) then λ(s, x(v)) 6=
λ(s′, x(v)) and λ(s, x(v′)) 6= λ(s′, x(v′)).

Now we show that a tree T returned by the greedy
algorithm defines an incomplete ADS.

Lemma 7.1. Let T be a tree returned by the greedy
algorithm such that N̄ = {v1, v2, . . . , vp} is the set of
leaf nodes of T . Let S̄ be a set of states such that for all
1 ≤ i ≤ p we have that |I(vi) ∩ S̄| ≤ 1. Then T defines
an incomplete ADS for set S̄.

Proof. We will show that T can be used to construct
an incomplete ADS A for S̄. Take a copy of tree T and
for every node v remove from I(v) all states not in S̄.
Now remove all nodes with empty initial sets to form
A.

Now we need to show that A is an incomplete ADS
for S̄. By the construction of A, each leaf node must
be labeled by a singleton set. To see this, assume that
an initial set of a leaf node contains two or more states.
Since we drop states that are not in S̄ this implies that
there exist distinct s, s′ ∈ S̄ such that s, s′ ∈ I(va) for
some a, providing a contradiction.

Moreover, it is easy to see that each internal node is
labeled by a set of states, and each edge is labeled by
an input output pair. Further, for an internal node in
A there are at most |Y | outgoing edges such that edges
from a common node have identical input labels and
different output labels. Thus, using Corollary 7.1 and
Corollary 7.2 we can deduce that conditions of being
an incomplete ADS given in Definition 3.3 are satisfied.

The Computer Journal, Vol. ??, No. ??, ????

16 R.M. Hierons, U.C. Türker

Therefore T defines an incomplete ADS for S̄.

Although the algorithm is easy to implement, it may
not compute a fully distinguishing set for a given FSM.
This will happen if the upper bound on ADS length is
too short. Note that for an FSM M with n states, every
pair of states is distinguished by a sequence of length
at most n − 1 and it is sufficient to use at most n − 1
such sequences in order to distinguish all of the states of
M . Thus, the algorithm is guaranteed to return a fully
distinguishing set if we use a value of ` that is n− 1 or
larger.

Now consider the complexity of the greedy algorithm.
First we can observe that the algorithm may introduce
2n − 1 (excluding the empty set) nodes to the set M
therefore in the worst case the loop controlled by Line
3 can executes exponentially many times. However, if
we assume that the algorithm manages to introduce
an incomplete ADS on each iteration then, due to the
cardinality of set Q, the loop will iterate at most n2

times. In fact, we can improve on this analysis as
follows. Let us suppose that we have added k ADSs
and consider the equivalence relation ∼k on the set
S of states defined by two states being equivalent if
and only if none of these k ADSs distinguish them.
Then, ∼k must have at least k + 1 equivalence classes
since each time we add another ADS, this ADS must
increase the number of equivalence classes by at least 1.
Thus, since a fully distinguishing set of ADSs defines
an equivalence relation with n equivalence classes, there
can be at most n − 1 iterations of the outer loop. The
loop on Line 6 iterates at most ` times and the loop on
Line 9 iterates |X| times and in the worst case at each
iteration it applies input x to n states (Line 10). The
loop on Line 26 iterates n times and at each iteration
it requires n steps of computation. The last loop on
Line 30 iterates n2 times therefore the complexity is
O(n`(mn+n2)) if each iteration is successful in finding
an ADS that distinguishes two or more states not
previously distinguished. Later we report on the results
of experiments that explored the time taken to generate
a set of incomplete ADSs.

Now let us consider the FSM given in Figure 2.
The algorithm initialises Q = {(s1, s2), (s1, s3), (s1, s4),
(s2, s3), (s2, s4), (s3, s4)} and node var where I(var) =
C(var) = {s1, s2, s3, s4}. Then, the algorithm produces
a set of nodes from node var with input symbols
X = {a, b, c}. Since (Φa(Q,Na) = Φb(Q,Nb) =
Φc(Q,Nc)) > 1, the algorithm executes the instruction
given at Line 19 of Algorithm 1 and selects the input
a. Thus, new nodes v1 and v2 are added to N where
C(v1) = {s1}, I(v1) = {s2} and C(v2) = {s3, s4, s4},
I(v2) = {s1, s3, s4} and corresponding edges are added.
In the second iteration node v2 is selected (we omit v1)
and again the new nodes are retrieved and since for
inputs b, c we have that Φb(Q,Nb) = Φc(Q,Nc)) > 0
the algorithm selects input b in Line 19. With input b
new nodes v3 and v4 are generated where C(v3) = {s2},

I(v3) = {s1} and C(v4) = {s1, s1}, I(v4) = {s3, s4}.
With the remaining node (v4), the algorithm cannot
proceed further. The algorithm therefore removes
pairs (s1, s2), (s1, s3), (s1, s4), (s2, s3), (s2, s4) from Q
and loops. Note that the remaining pair in set Q is
(s3, s4) and the algorithm selects input b and processes
the selection. Therefore the state identifiers given by
the algorithm are as follows: H1(A) = {ab}, H2(A) =
{a}, H3(A) = {ab, b}, and H4(A) = {ab, b}.

Note that Lines 20 and 22 introduce nondeterminism,
that is when the cardinalities of sets returned by argmin
or argmax are greater than one, the algorithm selects
an input according to some order dictated by the
implementation (e.g. in lexicographic order). Therefore
the proposed algorithm may also compute the following
harmonised state identifiers: H1(A) = {a, cb}, H2(A) =
{a, cb}, H3(A) = {cb}, and H4(A) = {c}.

In the next subsection we present results of
experiments that evaluated the use of incomplete
ADSs.

7.2. Experimental evaluation

7.2.1. DS Generation and Evaluation
This section describes experiments used to explore the
performance of the greedy algorithm by evaluating the
state identifiers derived from the resultant ADSs. We
randomly generated FSMs with 4, 6, and 8 inputs and
outputs using the tool utilised in [14, 63].

The FSMs were constructed as follows: First, for each
input x and state si we randomly assigned the values of
δ(si, x) and λ(si, x). After an FSM M was generated we
checked its suitability as follows. We checked whether
M is strongly connected8. Afterwards we checked that
M is minimal and then used the LY-algorithm [16] to
check that M does not have a complete ADS. If the
FSM failed one or more of these tests then we omitted
this FSM and produced another. Consequently, all
FSMs were strongly connected and minimal, and had
no complete ADS.

By following this procedure we constructed 200 FSMs
with 5 states, 200 FSMs with 10 states, . . . , 200 FSMs
with 100 states. This was done for each size of the input
and output alphabets so in total we used 1.2∗104 FSMs.
We used an Intel Xeon E5-1650 CPU at 3.20GHz with
16 GB RAM to carry out these tests. We implemented
the three methods, for generating state identifiers,
using C++ and compiled on Visual Studio .Net 2013.
The W-generation and HSI-generation methods were
implemented according to the descriptions presented
in references [28, 19]. As explained earlier, for each
FSM we also used the greedy algorithm to construct a
fully distinguishing set of ADSs and generated state
identifiers from these.

Since the outputs are uniformly distributed during
the generation of FSMs, one would expect the average

8M is strongly connected if for any pair (s, s′) of states of M
there is some input sequence that takes M from s to s′.

The Computer Journal, Vol. ??, No. ??, ????

17

depth of the ADSs to be around dlogq ne, where n and
q are the number of states and the number of outputs,
respectively. For our experiments with 4, 6 and 8
outputs and the number of states ranging between 5
and 100, the length of ` is expected to be 2–4 for 4
outputs (dlog4 5e = 2 and dlog4 100e = 4), 1–3 for 6
outputs (dlog6 5e = 1 and dlog6 100e = 3), and 1–3
for 8 outputs (dlog8 5e = 1 and dlog8 100e = 3). For
each FSM, we set the upper bound on ADS depth to be
twice this value dlogq ne i.e. ` = 2∗dlogq ne. With these
values, we were able to produce fully distinguishing sets.

We present the results using boxplot diagrams
generated by the ggplot2 library of the tool R [64,
65, 66]. For each box the first quartile corresponds
to the lowest 25% of data, the second quartile gives
the median, and the third quartile corresponds to the
highest 25%. For each boxplot we added the smoothing
line computed with the LOESS [67] method, and the
semi-transparent ribbon surrounding the solid line is the
95% confidence interval. We used functions SI and LI
described in Section 4 to evaluate experiment results.

7.2.2. Number of Input Sequences per State
We summarise this study in Figures 7, 8 and 9, where
p/q = 4/4, 6/6 and 8/8 respectively.

In Figure 7, we observe that the boxplot indicates
that the average number of input sequences per state
are comparable for HSI and ADS. Besides, as
expected, the number of input sequences per state is
high when W is used. Moreover, we observe that the
results of the SI metric increase with the number of
states. In Figure 8 we see that when n ≥ 30 the
results of SI are lower when ADSs are used. Similar
observation can be made in Figure 9 when n ≥ 25.

To support our observations, we used R to perform a
non-parametric Kruskal-Wallis Significance [68] test on
the HSI and ADS results. For each method (HSI, ADS),
for each state number (n) and for each input/output
value (p/q), we constructed two sets of samples such
that one set holds the SI results for ADS and the other
set holds the SI results for HSI. Afterwards, we ran the
Kruskal-Wallis difference test on these sets of samples.
The null hypothesis (H0) assumes that these two sets
of samples have identical distributions. We selected the
α value to be 0.05 and df = 19. Therefore according to
the table given for the Chi-Squared values in [69], if the
null-hypothesis is correct then the Chi-Squared values
(X 2) of these measurements should be smaller than
3.841. Otherwise, we should reject the null-hypothesis
and suggest that there is a significant difference.

The results are given in Table 3. We observe that
in all cases we reject the null–hypothesis. Furthermore,
it seems that the cardinalities of the sets of inputs and
outputs have an impact on the sizes of the harmonised
state identifiers constructed by HSI and ADS. Based

9Here df stands for the Degree of Freedom, which is given by
k − 1 where k is the number of samples supplied to the Kruskal-
Wallis test and in our case k = 2.

on the experimental studies, it appears that using a
fully distinguishing set of ADSs can reduce the number
of state identifiers. We did not use statistical tests to
compare W and ADS since the HSI-generation method
outperformed the W-generation method.

7.2.3. Length of Input Sequences
The results of the experiment are given in Figures 10, 11
and 12 where input output numbers are 4, 6 and 8
respectively.

Overall, the results suggest that the use of a fully
distinguishing set reduces the length of the state
identifiers and the difference between the results of ADS
and the HSI increases with the number of states.

Furthermore we observe that the average length of
the state identifiers constructed by the W-generation
and the HSI-generation methods are comparable.

We again applied the Kruskal Wallis test on the
results. For each method (HSI, ADS), for each state
number (n) and for each input/output value (p/q), we
constructed two sets of samples such that one set holds
the LI results for the ADS and the other set holds
the LI results for the HSI. Afterwards, we ran the
Kruskal-Wallis difference test on these sets of samples.
The results are given in Table 4. The results suggest
that average lengths of state identifiers are statistically
different as the results reject the null hypothesis.

7.2.4. The effect of the size of input output symbols
In this section we investigate the effect of the size
of input output symbols on the quality of the state
identification sequences. Figure 13 shows how the SI
values varies as a function of the number of inputs.

We observed that the SI values reduce as the number
of inputs increases. This is as expected since with
more input symbols there are more opportunities to
construct sequences that are capable of distinguishing
more states. This is validated with the relation
between the reduction ratio and the number of states;
the reduction ration increase as the number of states
increases.

We also investigate the variation of LI values with
respect to the number of input and output symbols.
The results are given in Figure 14. We can make a
similar observation for the length of the state identifiers.
That is as the number of input output symbols increase,
the LI values reduces.

7.2.5. Case Studies
While using randomly generated FSMs allowed us to
perform experiments with many subjects and so apply
statistical tests, it is possible that FSMs used in practice
differ from these randomly generated FSMs. We
therefore decided to complement the experiments with
some case studies. In this subsection we present the
results of experiments conducted on FSM specifications
retrieved from the ACM/SIGDA benchmarks, a set

The Computer Journal, Vol. ??, No. ??, ????

18 R.M. Hierons, U.C. Türker

FIGURE 7: Comparison of average number of input sequences per state. Each boxplot summarises the distributions
of 200 FSMs where p = 4, q = 4.

FIGURE 8: Comparison of average number of input sequences per state. Each boxplot summarises the distributions
of 200 FSMs where p = 6, q = 6.

of test suites (FSMs) used in workshops between
1989-1993 [70]. The benchmark suite has 59 FSM
specifications ranging from simple circuits to more
advanced circuits obtained from industry. The FSM
specifications are presented in the kiss2 format. In
order to process FSMs, we converted the kiss2 file
format to our FSM specification format. We only
used FSMs from the benchmark that were minimal,
deterministic, had no complete ADS, and had fewer
than 10 input bits10. 19% of the FSMs had more

10Since the circuits receive inputs in bits, and since n bits
correspond to 2n inputs, we do not consider FSMs with n ≥ 10
bits

than 10 input bits, 15% of the FSMs had complete
ADS, and 38% were not minimal. 31% of the FSM
specifications passed all of the tests. We computed state
identifiers using the W-generation, HSI-generation and
ADS methods and in Table 5 we present the results.
We observe that the results, except for the FSM s386,
are similar to those obtained in the experiments carried
out with randomly generated FSMs.

7.2.6. Time Comparison
The average time required to compute state identifiers
for randomly generated FSMs with different methods
are provided in Figure 15. The results have

The Computer Journal, Vol. ??, No. ??, ????

19

FIGURE 9: Comparison of average number of input sequences per state. Each boxplot summarises the distributions
of 200 FSMs where p = 8, q = 8.

[t]

Input/output
(p/q) values

Corresponding X 2–values for different number of states (n). Reject H0 when X 2 > 3.841

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

4/4 29.56 57.87 58.2 54.83 43.47 45.58 38.41 69.97 33.02 48.72 80.35 25.36 49.53 78.7 33.66 67.73 60.85 86.54 78.46 82.07

6/6 68.28 69.96 40.26 61.57 25.39 49.71 50.26 95 40.97 39.59 72.45 91.33 54.15 56.04 27.71 24.09 78.14 31.12 94.48 52.35

8/8 68.16 87.28 52.21 83.74 71.85 43.54 68.69 88.82 58.12 64.03 36.7 64.4 48.98 83.11 65.31 49.45 64.52 62.51 22.02 21.59

TABLE 3: The results of a Kruskal-Wallis Significance Tests performed on average length of the state identifiers per
state.

important implications. Although the W-generation
method, HSI-generation method and ADS-method have
different ways of computing a state identifiers, with
these settings, the times required to construct state
identification sequences were comparable. Moreover as
expected, the time grew slowly with the number of
states and with the number of inputs. This suggests
that all three methods will scale well as the number of
states of an FSM increases.

The results for the case studies are presented in
figure 16. These results are similar to those for
randomly generated FSMs except for specifications sand
and nucpwr. The specifications sand and nucpwr have
relatively high numbers of inputs and this may well have
affected the computation time. Interestingly, the ADS
method took slightly longer than the other methods for
these two case studies.

8. CONCLUSIONS

Software testing is typically performed manually and
is an expensive, error prone process. This has led
to interest in automated test generation, including
significant interest in model based testing (MBT). Most
MBT techniques generate tests from either finite state

FIGURE 16: Comparison of average time to construct
state identification sequences for case studies.

machines (FSMs) or labelled transition systems. Many
automated FSM based test techniques use complete
distinguishing sequences (DSs) to check the state of the
system under test after a transition. While complete
DSs have many desirable properties, an FSM M need
not have a complete DS. However, we might still have

The Computer Journal, Vol. ??, No. ??, ????

20 R.M. Hierons, U.C. Türker

FIGURE 10: Comparison of average length of input sequences per state. Each boxplot summarises the distributions
of 200 FSMs where p = 4, q = 4.

FIGURE 11: Comparison of average length of input sequences per state. Each boxplot summarises the distributions
of 200 FSMs where p = 6, q = 6.

(incomplete) DSs that distinguish some of the states
of M and such DSs might be used in automated test
generation or fault localisation.

In this paper we explored the problem of constructing
DSs for subsets of states of FSMs. We showed that it
is PSPACE-complete to find a preset DS (PDS) that
maximises the number of states distinguished and it
is PSPACE-hard to approximate this problem. It is
also PSPACE-complete to find a smallest set of sets
of states that correspond to PDSs that distinguish
all of the states of the FSM. We then explored the
corresponding problems for Adaptive DSs (ADSs).
It is known that we can decide in polynomial time

whether an FSM has a complete ADS. However, the
results for ADSs were similar to those for such PDSs:
the problems considered were PSPACE-complete and
it is PSPACE-hard to approximate the corresponding
optimisation problem.

We then used experiments to explore the effect
of optimisation by randomly generating FSMs and
comparing the state identifiers produced using three
methods: an algorithm for producing a characterisation
set (W-generation method), a method for generating
HSI sets (HSI-generation method), and ADSs returned
by the greedy algorithm. The results of the experiments
were promising: the greedy algorithm typically returned

The Computer Journal, Vol. ??, No. ??, ????

21

FIGURE 12: Comparison of average length of state input sequences per state. Each boxplot summarises the
distributions of 200 FSMs where p = 8, q = 8.

Input/output
(p/q) values

Corresponding X 2–values for different number of states (n)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

4/4 25 92.57 36.15 56.57 95.29 85.16 31.4 63.33 46.93 90.2 37.06 20.57 81.56 55.63 70.67 40.04 53.1 89.15 63.91 31.89

6/6 42.06 61 28.85 52.06 98.96 35.71 29.66 85.6 56.05 43.18 38.41 47.85 53.5 42.92 20.12 33.38 97.56 96.95 79.95 22.68

8/8 77.21 92.92 60.28 70.79 89.92 81.46 51.35 41.89 63.29 93.1 65.79 92.15 72.19 99.48 94.05 61.92 66.64 25.12 21.28 57.1

TABLE 4: The results of a Kruskal-Wallis Significance Tests performed on the average number of state identifiers
per state.

fewer sequences in the state identifier sets and also
had smaller mean sequence length. We extended these
experiments to consider 18 FSMs from a benchmark
and obtained similar results. Note that a set of ADSs
also defines harmonised state identifiers and we found
that the results say something about the corresponding
optimisation problems for harmonised state identifiers.
There may well be potential to further develop this
connection between the problems of generating ADSs
and harmonised state identifiers.

The results have potential implications for test
generation. Many techniques that generate test suites
from FSMs use state identification sequences and there
is the potential to use incomplete ADSs in such
techniques. When we use a set H of input sequences
to identify a state, the tester will typically have to
separately follow an initial input sequence with each
sequence from H, separating these tests with resets.
Thus, typically one is interested in state identifiers that
contain only a small number of input sequences. Some
recently developed test generation techniques such as
P [27] and H [50] are much more adaptive and it is less
clear what the results in this paper tell us about such
techniques.

We now outline the main contributions of this
paper beyond previous work. Previous work has

considered complete PDSs and ADSs, showing that
existence is PSPACE-complete for PDSs and polynomial
time decidable for ADSs [16]. It has also been
shown that deciding whether a given set of states
has an ADS is PSPACE-complete [16]. We extended
the consideration of incomplete PDSs and ADSs by
exploring corresponding optimisation problems. We
showed that the problem of finding a maximal subset,
of a given set of states, that has a PDS/ADS is
PSPACE-complete. In addition, approximating these
optimisation problems is PSPACE-hard. We also
considered the problem of finding a smallest set of DSs
that pairwise distinguish all of the states, finding that
this problem is PSPACE-complete for both PDSs and
ADSs. We proposed a greedy algorithm for generating
a set of ADSs that pairwise distinguish the states of
the specification FSM M and explored the effectiveness
by generating state identifiers with the W-generation
method, HSI-generation method and the incomplete
ADS method.

There are several lines of future work. First, it
would be interesting to explore realistic conditions
under which the decision and optimisation problems can
be solved in polynomial time. Such conditions might
lead to new notions of testability. There is also the
question as to how effective is the greedy approach to

The Computer Journal, Vol. ??, No. ??, ????

22 R.M. Hierons, U.C. Türker

FIGURE 13: Average number of state identification sequences.

TABLE 5: Results of Case Studies.

FSM Properties W method HSI method ADS method

Name |X| |Y | |Q| |Q| ∗ |X| Length Number of state identifiers Length Number of state identifiers Length Number of state identifiers

dk27 2 3 7 14 2.84 2.34 2.73 2.01 2.41 1.97

bbtas 4 4 6 24 5.31 3.25 4.95 2.99 4.55 2.46

dk17 4 5 8 32 5.72 2.15 5.16 1.67 5.01 1.49

dk15 8 3 4 32 2.34 3.64 1.98 3.41 1.40 2.43

ex7 11 5 5 55 1.97 4.28 1.66 3.91 1.25 3.13

mc 5 5 15 75 8.20 3.12 8.02 2.52 7.35 1.89

bbara 11 11 9 99 2.49 3.18 1.94 2.62 1.62 2.42

dk512 15 3 7 105 1.60 4.50 1.23 3.56 0.68 2.93

dk16 4 3 27 108 1.72 3.89 1.45 3.71 0.51 3.10

donfile 6 30 18 180 7.98 17.47 7.67 17.04 6.45 13.76

cse 10 5 47 470 9.63 9.44 9.23 9.30 8.52 8.50

s386 128 11 13 1664 7.45 7.01 6.85 6.54 6.98 6.77

bbsse 128 15 13 1664 6.34 6.01 6.02 5.32 5.61 4.91

s1 256 20 18 5210 9.34 4.74 8.56 4.51 7.88 3.49

planet 128 70 48 6144 14.53 3.31 13.75 3.15 11.23 2.78

ex1 512 18 20 10240 9.61 3.68 8.67 3.03 8.35 2.26

sand 2048 20 32 65536 17.93 13.79 17.63 13.63 15.32 12.06

nucpwr 8192 7 29 237568 10.86 18.15 10.11 17.97 8.63 15.70

generating incomplete ADSs: while the state identifiers
returned were smaller than those produced using the
W-generation and HSI-generation methods there may
be approaches that return smaller sets of ADSs. It
may be possible to improve on the greedy approach by

adding a final stage in which the sets of states associated
with ADSs are reduced (if these sets overlap). Finally,
it would be interesting to extend this work to non-
deterministic FSMs and also explore the effect of using
ADSs in test generation.

The Computer Journal, Vol. ??, No. ??, ????

23

FIGURE 14: Average length of state identification sequences.

REFERENCES

[1] Friedman, A. and Menon, P. (1971) Fault detection
in digital circuits Computer Applications in
Electrical Engineering Series.

[2] Aho, A., Sethi, R., and Ullman, J. Compilers,
principles, techniques, and tools Addison-Wesley
series in computer science.

[3] Chow, T. S. (1978) Testing software design
modelled by finite state machines. IEEE
Transactions on Software Engineering, 4, 178–187.

[4] Holzmann, G. J. Design and validation of computer
protocols Prentice-Hall software series.

[5] Binder, R. V. (1999) Testing Object-Oriented
Systems: Models, Patterns, and Tools. Addison-
Wesley.

[6] Haydar, M., Petrenko, A., and Sahraoui, H. (2004)
Formal verification of web applications modeled
by communicating automata. Formal Techniques
for Networked and Distributed Systems (FORTE
2004), Madrid, September, Springer Lecture Notes

in Computer Science, 3235, 115–132. Springer-
Verlag.

[7] Aho, A. V., Dahbura, A. T., Lee, D., and Uyar,
M. U. (1988) An optimization technique for
protocol conformance test generation based on
UIO sequences and rural chinese postman tours.
Protocol Specification, Testing, and Verification
VIII, Atlantic City, New Jersey, USA, June 7-10,
75–86, Elsevier, Amsterdam, The Netherlands.

[8] Betin-Can, A. and Bultan, T. (2004) Verifiable
concurrent programming using concurrency con-
trollers. Proceedings of the 19th IEEE interna-
tional conference on Automated software engineer-
ing, 248–257. IEEE Computer Society.

[9] Pomeranz, I. and Reddy, S. M. (1997) Test
generation for multiple state-table faults in finite-
state machines. IEEE Transactions on Computers,
46, 783–794.

[10] Utting, M., Pretschner, A., and Legeard, B. (2012)
A taxonomy of model-based testing approaches.
Software Testing, Verification and Reliability, 22,
297–312.

The Computer Journal, Vol. ??, No. ??, ????

24 R.M. Hierons, U.C. Türker

[11] Grieskamp, W., Kicillof, N., Stobie, K., and
Braberman, V. A. (2011) Model-based quality
assurance of protocol documentation: tools and
methodology. Software Testing, Verification and
Reliability, 21, 55–71.

[12] Boute, R. T. (1974) Distinguishing sets for optimal
state identification in checking experiments. IEEE
Trans. Comput., 23, 874–877.

[13] Hierons, R. M. and Ural, H. (2006) Optimizing
the length of checking sequences. IEEE Trans.
Comput., 55, 618–629.

[14] Hierons, R. M., Jourdan, G.-V., Ural, H., and Yeni-
gun, H. (2009) Checking sequence construction us-
ing adaptive and preset distinguishing sequences, .
157–166. IEEE Computer Society.

[15] Jourdan, G.-V., Ural, H., Yenigun, H., and Zhang,
J. (2010) Lower bounds on lengths of checking
sequences. Formal Aspects of Computing, 22, 667–
679.

[16] Lee, D. and Yannakakis, M. (1994) Testing
finite-state machines: State identification and
verification. IEEE Transactions on Computers, 43,
306–320.

[17] Hierons, R. M. and Ural, H. (2006) Optimizing the
length of checking sequences. IEEE Transactions
on Computers, 55, 618–629.

[18] Vasilevskii, M. P. Failure diagnosis of automata.
Cybernetics and Systems Analysis, 9, 653–665.

[19] Luo, G., Petrenko, A., and Bochmann, G. V.
(1995) Selecting test sequences for partially-
specified nondeterministic finite state machines. In
Mizuno, T., Higashino, T., and Shiratori, N. (eds.),
Protocol Test Systems IFIP The International
Federation for Information Processing, 95–110.
Springer US.

[20] Ural, H. (1992) Formal methods for test sequence
generation. Computer Communications, 15, 311–
325.

[21] Hierons, R. M. (1999) Minimizing the cost of fault
location when testing from a finite state machine.
Computer Communications, 22, 120–127.

[22] da Silva Simão, A. and Petrenko, A. (2008)
Generating checking sequences for partial reduced
finite state machines. TestCom/FATES, 153–168.

[23] Yao, M., Petrenko, A., and v. Bochmann, G.
(1993) Conformance testing of protocol machines
without reset. Protocol Specification, Testing
and Verification, XIII (C-16), 241–256., Elsevier,
Amsterdam, The Netherlands.

[24] Fujiwara, S. and v. Bochmann, G. (1991)
Testing non-deterministic state machines with
fault coverage. Proceedings of Protocol Test
Systems, IV, 267–280.

[25] Hierons, R. M. (2004) Minimizing the number of
resets when testing from a finite state machine.
Information Processing Letters, 90, 287–292.

[26] Hierons, R. M. and Ural, H. (2010) Generating a
checking sequence with a minimum number of reset
transitions. Automated Software Engineering, 17,
217–250.

[27] da Silva Simão, A. and Petrenko, A. (2010) Fault
coverage-driven incremental test generation. The
Computer Journal, 53, 1508–1522.

[28] Kohavi, Z. (1978) Switching and Finite State
Automata Theory. McGraw-Hill, New York.

[29] Gill, A. (1962) Introduction to The Theory of
Finite State Machines. McGraw-Hill, New York.

[30] Sokolovskii, M. N. (1971) Diagnostic experiments
with automata. Cybernetics and Systems Analysis,
7, 988–994.

[31] Kogan, I.V. (1973) A bound on the length of the
minimal simple conditional diagnostic experiment.
Avtomatika i Telemekhanika, 2, 162–166.

[32] Rystsov, I.K. (1976) Proof of an achievable
bound on the length of a conditional diagnostic
experiment for a finite automaton. Kibernetica, 3,
354–356.

[33] Natalia Kushik, N., El-Fakih, K. and Yevtushenko
(2013) Adaptive homing and distinguishing
experiments for nondeterministic finite state
machines. Testing Software and Systems, Istanbul,
Turkey, November 13-15, 33–48, Springer, Berlin,
Heidelberg.

[34] Türker, U.C., Ünlüyurt, T. and Yenigün, H. (2014)
Lookahead-based approaches for minimizing adap-
tive distinguishing sequences. In Testing Software
and Systems - 26th IFIP WG 6.1 International
Conference, ICTSS, Madrid, Spain, September 23-
25, 32–47, Springer, Berlin, Heidelberg.

[35] Kohavi Z. and Rivierre J.A. and Kohavi, I. (1974)
Checking experiments for sequential machines.
Information Sciences, 7(0), 11–78.

[36] Sabnani, K., Dahbura, A. T. (1985) A new
technique for generating protocol tests. ACM
Computer. Communication Review, 15(4), 36–43.

[37] Chun, W. and Amer, P. D. (1992) Improvements
on UIO Sequence Generation and Partial UIO
Sequences. Proceedings of the IFIP TC6/WG6.1

The Computer Journal, Vol. ??, No. ??, ????

25

Twelth International Symposium on Protocol
Specification, Testing and Verification XII, Lake
Buena Vista, Florida, U.S.A., 2225 June, 245–260
, Elsevier, Amsterdam, The Netherlands.

[38] Tsai, P.C. and Wang S.J. and Chang F.M. (2005)
FSM-based programmable memory BIST with
macro command. Memory Technology, Design,
and Testing 13th IEEE International Workshop
on, Taipei, Taiwan, August 3-5, 72–77, IEEE, New
Jersey, USA.

[39] Zarrineh, K. and Upadhyaya, S.J. (1999) Pro-
grammable memory BIST and a new synthesis
framework. Fault-Tolerant Computing, Digest of
Papers. Twenty-Ninth Annual International Sym-
posium on, Madison, Wisconsin, USA, June 15-18,
352-355, IEEE, New Jersey, USA.

[40] Xie, L. and Wei, J. and Zhu, G. (2008) An
improved FSM-based method for BGP protocol
conformance testing. International Conference on
Communications, Circuits and Systems, Xiamen,
China, May 25-27, 557-561, IEEE, New Jersey,
USA.

[41] Drumea, A. and Popescu, C. (2004) Finite
state machines and their applications in software
for industrial control. 27th Int. Spring
Seminar on Electronics Technology: Meeting the
Challenges of Electronics Technology Progress,
Bankya, Bulgaria, May 13-16, 25-29, IEEE, New
Jersey, USA.

[42] Hierons, R. M. and Türker, U. C. (2014)
Distinguishing Sequences for Partially Specified
FSMs. NASA Formal Methods - 6th International
Symposium, NFM 2014, Houston, TX, USA, April
29-May 1, 62–76, Springer, Berlin, Heidelberg.

[43] Moore, E.F. (2014) Distinguishing Sequences for
Partially Specified FSMs. Automata Studies, 129-
153, Princeton University Press.

[44] Hennie, F.C. (1964) Fault detecting experiments
for sequential circuits. Proceedings of the IEEE
5th Ann. Symp. on Switching Circuits Theory and
Logical Design, Princenton, USA, November 11–
13, 95-110, IEEE, New Jersey, USA.

[45] Kohavi, I. and Kohavi, Z. (1968) Variable-Length
Distinguishing Sequences and Their Application to
the Design of Fault-Detection Experiments. IEEE
Transactions on Computers, 17, 792–795.

[46] Sabnani, K. and Dahbura, A. (1988) A Protocol
Test Generation Procedure. Computer Networks,
15, 285–297.

[47] Gönenç, G., (1970) A Method for the Design of
Fault Detection Experiments. IEEE Transactions
on Computers, 19, 551–558.

[48] Vuong, S. T. and Chan, W. W. L. and Ito,
M. R. (1989), The uiov–method for protocol test
sequence generation. In The 2nd International
Workshop on Protocol Test Systems, Berlin ,
Germany.

[49] Simo, A. and Petrenko, A. and Yevtushenko, N.
(2012) On reducing test length for FSMs with
extra states. Software Testing, Verification and
Reliability, 22(6), 435–454.

[50] Dorofeeva, R. and El-Fakih, K. and Yevtushenko,
N. (2005) An Improved Conformance Testing
Method, 25th IFIP WG 6.1 International Confer-
ence, Taipei, Taiwan, October 2-5,204–218.

[51] Endo, A.T. and da Silva Simão, A. (2013) Evalu-
ating test suite characteristics, cost, and effective-
ness of FSM-based testing methods. Information
& Software Technology, 55(6), 1045–1062.

[52] Dorofeeva, R. and El-Fakih, K. Cavalli, A.R., and
Yevtushenko, N. (2010) FSM-based conformance
testing methods: A survey annotated with
experimental evaluation, Information & Software
Technology, 52(12), 1286–1297.

[53] Hopcroft, J. E. (1971) An n log n algorithm for
minimizing the states in a finite automaton. In
Kohavi, Z. (ed.), The theory of Machines and
Computation, 189–196. Academic Press.

[54] Petrenko, A. and Yevtushenko, N. (2005) Testing
from partial deterministic FSM specifications.
IEEE Transactions on Computers, 54, 1154–1165.

[55] Boroday, S. Y. (1998) Distinguishing tests for non-
deterministic finite state machines. Testing of
Communicating Systems, IFIP TC6 11th Inter-
national Workshop on Testing of Communicating
Systems, Tomsk, Russia, August 31 – September
2, 101–107. Kluwer Academic Press.

[56] Hierons, R. M. (2004) Testing from a non-
deterministic finite state machine using adaptive
state counting. IEEE Transactions on Computers,
53, 1330–1342.

[57] Luo, G. L., v. Bochmann, G., and Petrenko,
A. (1994) Test selection based on communicating
nondeterministic finite-state machines using a
generalized Wp-method. IEEE Transactions on
Software Engineering, 20, 149–161.

[58] Petrenko, A., Yevtushenko, N., Lebedev, A., and
Das, A. (1994) Nondeterministic state machines
in protocol conformance testing. Proceedings of
Protocol Test Systems, VI (C-19), Pau, France,
28-30 September, 363–378., Elsevier, Amsterdam,
The Netherlands.

The Computer Journal, Vol. ??, No. ??, ????

26 R.M. Hierons, U.C. Türker

[59] Tripathy, P. and Naik, K. (1992) Generation of
adaptive test cases from non-deterministic finite
state models. Proceedings of the 5th International
Workshop on Protocol Test Systems, Montreal,
September, 309–320.

[60] Kozen, D. (1977) Lower bounds for natural
proof systems. Proceedings of the 18th Annual
Symposium on Foundations of Computer Science,
Washington, DC, USA SFCS ’77, 254–266. IEEE
Computer Society.

[61] Savitch, W. J. (1970) Relationships between non-
deterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4, 177
– 192.

[62] Condon, A., Feigenbaum, J., Lund, C., and
Shor, P. (1995) Probabilistically checkable debate
systems and nonapproximability of PSPACE-
hard functions. Chicago Journal of Theoretical
Computer Science, 19.

[63] Günicen, C., Türker, U. C., Ural, H., and Yenigün,
H. (2012) Generating preset distinguishing se-
quences using sat. In Gelenbe, E., Lent, R.,
and Sakellari, G. (eds.), Computer and Infor-
mation Sciences II, 487–493. Springer London.
10.1007/978-1-4471-2155-8 62.

[64] Wickham, H. (2009) ggplot2: Elegant Graphics for
Data Analysis (Use R!), 1st ed. 2009. corr. 3rd
printing 2010 edition. Springer.

[65] Stowell, S. (2012) Instant R: An Introduction to R
for Statistical Analysis. Jotunheim Publishing.

[66] Teetor, P. (2011) R Cookbook, first edition.
O’Reilly.

[67] Cleveland, W. S. (1979) Robust Locally Weighted
Regression and Smoothing Scatterplots. Journal of
the American Statistical Association, 74, 829–836.

[68] Kruskal, W. H. and Wallis, W. A. (1952) Use of
ranks in one-criterion variance analysis. Journal of
the American Statistical Association, 47, 583–621.

[69] Bulmer, M. G. (1979) Principles of Statistics.
Dover Publications.

[70] Brglez, F. ACM/SIGMOD benchmark dataset,
available online at http://cbl.ncsu.edu:16080/

benchmarks/Benchmarks-upto-1996.html.

The Computer Journal, Vol. ??, No. ??, ????

27

F
IG

U
R

E
15

:
T

im
e

co
m

p
ar

is
on

to
co

n
st

ru
ct

st
at

e
id

en
ti

fi
ca

ti
o
n

se
q
u

en
ce

s.
E

a
ch

co
lu

m
n

re
p

re
se

n
ts

th
e

av
er

a
g
e

ti
m

in
g
s

o
f

2
0
0

F
S

M
s.

The Computer Journal, Vol. ??, No. ??, ????

