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ABSTRACT 

A review of the developments within the field of structural reliability theory shows that 

some gaps still exist in the reliability prediction process and hence there is an urgent  

desire for improvements such that the estimated structural reliability will be capable of 

expressing a physical property of the given structure. The current reliability prediction 

process involves the continuous estimation and use of reliability index as a way of 

estimating the safety of any given structure. The reliability index β depends on the 

Probability Density Function (PDF) distribution for the wave force and the corresponding 

PDF of resistance from respective structural members of the given structure. The PDF 

for the applied wave force will depend on the PDF of water depth, wave angular velocity 

and wave direction hence the reliability index as currently practiced is a statistical way 

of managing uncertainties based on a general probabilistic model.  

This research on Smart Offshore Structure for Reliability Prediction has proposed the 

design of a measurement based reliability prediction process as a way of closing the 

gap on structural reliability prediction process.  Structural deflection and damping are 

some of the measurable properties of an offshore structure and this study aims at 

suggesting the use of these measurable properties for improvements in structural 

reliability prediction process. A design case study has shown that a typical offshore 

structure can deflect to a range of only a few fractions of a millimetre. This implies that if 

we have a way of monitoring this level of deflection, we could use the results from such 

measurement for the detection of a structural member failure. This advocated concept is 

based on the hypothesis that if the original dynamic characteristics of a structure is 
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known, that measurement based modified dynamic properties can be used to determine 

the onset of failure or failure propagation of the given structure.  

This technology could reveal the location and magnitude of internal cracks or corrosion 

effects on any given structure which currently is outside the current probability based 

approach. A simple economic analysis shows that the recommended process shows a 

positive net present value and that some $74mln is the Value of Information for any life 

extension technology that could reveal the possibility of extending the life of a given 

10,000bopd  production platform from 2025 to 2028.   
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1 INTRODUCTION 

Energy use and availability are important drivers for national development today and the 

per capita energy use is now gradually becoming accepted as a part of national 

development indices. In 2000, fossil fuels supplied 90% of global energy with crude oil 

accounting for 40% of the total, coal 25% and natural gas 25% [1]. Several studies have 

been done on future energy demand and supply and almost all studies reveal that there 

is going to be a significant gap between demand and supply from 2013 onwards. This 

view is supported by the Organization of Petroleum Exporting Countries (OPEC). 

According to its 2010 Long Term Scenario (LTS) document OPEC agrees that growing 

supply needs in emerging markets will continue to fuel development, especially as the 

axis of the global economy increasingly shifts towards developing Asia [2]. According to 

these studies, notwithstanding recent efforts on alternative energy sources, fossil fuels, 

with a growing contribution from nuclear energy is generally foreseen to be supplying 

the main share of the world’s energy supply hence the urgent need to develop safer and 

more efficient ways for oil and gas exploration and production.  

Two of the key performance indicators (KPI) that determine the survival of operating 

companies in the Petroleum and Natural gas (PNG) extractive industry are cost and 

safety. There is some form of dependency between operating cost and safety 

performance. Some opex can be used for facility upgrade and hence improve on overall 

safety performance. On the other hand we can defer some maintenance program and 

operate with reduced safety margins or barriers while bearing in mind that the absence 

of necessary barriers could lead to accidents. Table 1 shows a listing of offshore 

platform accident statistics and related fatalities. 



 

  8 

 

S/

No 

Rig Name / 

Well name 

Date Location Fatalities Incident Comments 

1 Bombay High 

North
 

7/27/2005 Indian Ocean 22 Fire Boat impact 

2 Cerveza 1983-00-00 - 0 Blowout Abandon 

3 Chevron 

Typhoon
 

9/27/2005 GOM 0 Hurricane Major damage 

4 Cormorant A 4/18/1989 UK CS 3 Explosion Gas leak 

5 Ekofisk A 1975-00-00 Norwegian CS 6 Fire - 

6 Ekofisk B
 

4/22/1977 Norwegian CS 0 Blowout Major release 

7 Ekofisk P 1989-00-00 Norwegian CS 0 Fire - 

8 Enchova Central
 

8/16/1984 Enchova Field, 

Brazil 

37 Blowout Fire, lifeboat fell to sea 

9 Enchova Central
 

4/24/1988 Enchova Field, 

Brazil 

0 Blowout Destroyed by fire 

10 Fulmar A 1991-08-00 UK CS 0 Explosion Shell 

11 Funiwa Platform
 

1/17/1980 Nigeria 0 Blowout Major release 

12 Getty Platform A 5/13/1984 West Cameron, 

GOM 

1 Explosion - 

13 Hasbah Platform
 

10/2/1980 Persian Gulf 19 Blowout Major release 

14 Main Pass Block 

41 

2/10/1970 GOM 0 Fire Burned for 2 months 

15 Medusa Spar
 

9/15/2004 GOM 0 Hurricane Damaged 

16 Mississippi 

Cany. 311A 

11/4/1987 GOM 0 Blowout Platform tilted 

17 Mumbai High 

North
 

7/27/2005 Indian Ocean 22 Fire Boat impact 

18 Nabors Rig269 7/17/1998 GOM 0 Collapse - 

19 NFX Platform A 9/9/1999 GOM 0 Blowout Fire 

20 Nowruz 

Platforms 

1983-03-00 Persian Gulf 20 Fire Major release 

21 Oseberg B 1988-00-00 Norwegian CS 0 Collision Sub collision - anchor 

chain 
22 Petrobras P7

 

6/19/2001 Bicudo Field, 

Brazil 

0 Blowout Fire 

23 Petrobras P36
 

3/20/2001 Campos Basin, 

Brazil 

11 Sinking Explosion 

24 Petronius A
 

12/3/1998 GOM 0 Sinking Lift failure, dropped 

module 
25 Piper Alpha

 

7/6/1988 UK CS 167 Fire Explosion and loss after 

gas leak 
26 Placid L10a 5/15/1983 SNS, NL 0 Blowout Corrosion 

27 Pride 1001E 4/1/1997 GOM 0 Blowout Fire 

28 Shell Mars
 

8/29/2005 GOM 0 Hurricane Major damage 

29 Ship Shoal 246b 3/9/1980 GOM 0 Blowout Killed after 1 day 

30 Sleipner A
 

8/23/1991 Norwegian CS 0 Sinking - 

31 Snorre A
 

11/28/2004 Norwegian CS 0 Blowout Seabed gas blowout 

32 South Timbalier 

26 

12/1/1970 GOM 4 Blowout Platform lost 

33 Steelhead 

Platform
 

12/20/1987 Cook Inlet, 

Alaska 

0 Blowout Fire. Unocal, Penrod rig 

also lost? 
34 Sundowner 15 1/24/1996 GOM 0 Blowout Fire 

35 Trinimar Marine 

W327
 

8/8/1973 Venezuela 0 Blowout Major release 

36 Ubit Platform 1996-00-00 Nigeria 18 Fire Explosion 

37 Union Oil 

Platform A
 

1/28/1969 Dos Cuadras F, 

OCS, US 

0 Blowout Major release 

Table 1 : Offshore accident statistics.  Source :  http//home.versatel.nl/the_sims/rig/losses.htm 

 

Very expensive, high technology equipment is necessary for the acquisition and 

processing of high-resolution seismic images to the required level of certainty prior to 

commitment of investor funds for exploration or development well drilling. Also very 

expensive oil rigs, logging tools and high grade steel tubular are needed for well drilling 

http://home.versatel.nl/the_sims/rig/mhn.htm
http://home.versatel.nl/the_sims/rig/mhn.htm
http://home.versatel.nl/the_sims/rig/h-rita.htm#typhoon
http://home.versatel.nl/the_sims/rig/h-rita.htm#typhoon
http://home.versatel.nl/the_sims/rig/ekofiskb.htm
http://home.versatel.nl/the_sims/rig/enchova.htm
http://home.versatel.nl/the_sims/rig/enchova.htm
http://www.incidentnews.gov/incident/6256
http://www.incidentnews.gov/incident/6258
http://home.versatel.nl/the_sims/rig/h-ivan.htm#medusa
http://home.versatel.nl/the_sims/rig/mhn.htm
http://home.versatel.nl/the_sims/rig/mhn.htm
http://www.usatoday.com/news/world/2001-04-12-braziloil.htm
http://home.versatel.nl/the_sims/rig/p36.htm
http://home.versatel.nl/the_sims/rig/petroniusa.htm
http://home.versatel.nl/the_sims/rig/pipera.htm
http://home.versatel.nl/the_sims/rig/h-katrina.htm#mars
http://home.versatel.nl/the_sims/rig/sleipnera.htm
http://www.ptil.no/English/Helse+miljo+og+sikkerhet/Tilsyn+og+raadgivning/5_gransking_gassutblaasing_snorre-a.htm
http://home.versatel.nl/the_sims/rig/steelhead.htm
http://home.versatel.nl/the_sims/rig/steelhead.htm
http://www.incidentnews.gov/incident/6219
http://www.incidentnews.gov/incident/6219
http://www.countyofsb.org/energy/information/1969blowout.asp
http://www.countyofsb.org/energy/information/1969blowout.asp
http://home.versatel.nl/the_sims/rig/losses.htm
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and completion. The first attempt at accessing the hydrocarbon accumulations during 

exploration drilling operation is very risky, hence all the front end engineering design 

(FEED) work prior to initial well drilling is aimed at reducing known project risks. The 

FEED activities include seismic acquisition, interpretation and geological modeling, are 

used to develop plans for management of project risks. The risk and uncertainty 

management continues after appraisal well drilling through to development drilling, 

production operations, reservoir performance modeling and remedial field development 

up to field abandonment.  

Accidents occur when risks are not properly evaluated and managed. The cost of 

accidents could be huge and are capable of having a significant effect on company’s 

bottom line: cost of impacted lives, damaged facilities, environmental remediation cost, 

and associated litigation cost, loss of revenue etc.  Offshore accidents, especially those 

in offshore facilities with accommodation could additionally lead to multiple fatalities as 

was the case in the Piper alpha incident in 1988.  

The PNG extractive industry has made significant steps on managing safety. Since the 

mandatory requirement for notification of major accidents in 1984, under the aegis of 

Major Accident Reporting System (MARS), the rate of major accidents has significantly 

and consistently decreased.  By the end of the 1980s the average number of major oil 

spills each year dropped to one-third of that in the previous decade as documented by 

Kirchsteiger [3]. Also continuous improvement in accident statistics in the North Sea 

from 1960 to 2006 was recorded based on continuous improvements in legislation that 

follow any major accident review. Lindoe et al [4] showed that, from a LTIF level of 

almost 50 in 1976, the number of injuries per million working hours had a definite 
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downward sloping trend and ends at about 10 in 2006. Also public awareness of major 

accidents via the media and in orchestra with issue champions, politicians, unions, 

public debates and decisions in parliament has also helped in enforcing HSE 

improvements [4].  

 

Fig 1: A shallow water offshore structure prior to installation 

 

Offshore structures as shown in figure 1 usually comprise of steel and are mainly 

deployed for oil and gas exploration or renewable energy extraction. These structures 

are safety critical structures and are designed, constructed and installed to create a 

platform for well drilling, hydrocarbon processing and accommodation for field 
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operators. Such structures can be permanently fixed, or temporary anchored to the 

seabed. Some temporary anchored structures like tensioned leg offshore platforms can 

be towed out of location when necessary while others are capable of moving on their 

own. A self-propelled mobile structure like a floating Production Storage and Offloading 

(FPSO) structure can propel itself but it is not designed to move over long distances. 

The offshore structural installation site, especially for wellhead structures is determined 

by the location of the subsurface hydrocarbon accumulation that it plans to develop. 

This constraint is to ensure flow efficiency, flow assurance and efficient use of energy 

as there is a limit to the reach of a horizontal or deviated wells based on rig capability. 

The other constraint is tied to some additional requirement for subsurface gas or water 

injection energy efficient in support of sweep or pressure maintenance. The offshore 

installation surface location hence has to be close to the top of the subsurface 

hydrocarbon accumulation to maximize the injection energy efficiency.  
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Fig 2 : world hydrocarbon distribution map. Source: Wikipedia http://en.wikipedia.org/wiki/File:Oil_Reserves.png 

Figure 2 shows a graphical view of world hydrocarbon distribution map while the details 

for the top seventeen resource holder nations are shown in table 2. The USA GOM 

reserves is estimated at 4,886 x109 bbl [5] and the spread of associated GOM Offshore 

platform statistics by water depth is shown in table 3 [6] while a graphical representation 

of location of such structures is shown in figure 3. 

Water depth 

(m)  

Active 

platforms  

Producing 

well 

Producing well / 

Active platform  

0–200 3489 3840 1.1 

201–400 455 1873 4.1 

401–800 49 285 5.8 

801–1000 4 50 12.5 

1000+ 22 309 14 

Table 3: GOM Offshore structures at various water depths 

 

http://en.wikipedia.org/wiki/File:Oil_Reserves.png
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Table 2 Summary of Reserve Data as of 2011  

Country Reserves  

10
9
 bbl 

Reserves 

10
9
 m

3
 

Production  

10
6
 bbl/d 

Production 

10
3
 m

3
/d 

Reserve life 
 
 

years 

Venezuela  296.5 47.14 2.1 330 391 

Saudi Arabia  264.52 42.055 8.9 1,410 81 

Canada  175 27.8 2.7 430 178 

Iran  151.2 24.04 4.1 650 101 

Iraq  143.1 22.75 2.4 380 163 

Kuwait  101.5 16.14 2.3 370 121 

United Arab Emirates  97.8 15.55 2.4 380 112 

Russia  74.2 11.80 9.7 1,540 21 

Libya  47 7.5 1.7 270 76 

Nigeria  37 5.9 2.5 400 41 

Kazakhstan 30 4.8 1.5 240 55 

Qatar  25.41 4.040 1.1 170 63 

China  20.35 3.235 4.1 650 14 

United States  19.12 3.040 5.5 870 10 

Angola  13.5 2.15 1.9 300 19 

Algeria  13.42 2.134 1.7 270 22 

Brazil  13.2 2.10 2.1 330 17 

Total of top seventeen 

reserves 

1,324 210.5 56.7 9,010 64 

Source: http://en.wikipedia.org/wiki/Oil_reserves  

http://en.wikipedia.org/wiki/Oil_Reserves_in_Venezuela
http://en.wikipedia.org/wiki/Oil_Reserves_in_Saudi_Arabia
http://en.wikipedia.org/wiki/Oil_reserves_in_Canada
http://en.wikipedia.org/wiki/Oil_reserves_in_Iran
http://en.wikipedia.org/wiki/Oil_reserves_in_Iraq
http://en.wikipedia.org/wiki/Oil_Reserves_in_Kuwait
http://en.wikipedia.org/wiki/Oil_reserves_in_the_United_Arab_Emirates
http://en.wikipedia.org/wiki/Oil_Reserves_in_Russia
http://en.wikipedia.org/wiki/Oil_Reserves_in_Libya
http://en.wikipedia.org/wiki/Oil_Reserves_in_Nigeria
http://en.wikipedia.org/w/index.php?title=Oil_Reserves_in_Kazakhstan&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Oil_Reserves_in_Qatar&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Oil_Reserves_in_the_People%27s_Republic_of_China&action=edit&redlink=1
http://en.wikipedia.org/wiki/Oil_Reserves_in_the_United_States
http://en.wikipedia.org/w/index.php?title=Oil_Reserves_in_Angola&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Oil_Reserves_in_Algeria&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Oil_Reserves_in_Brazil&action=edit&redlink=1
http://en.wikipedia.org/wiki/Oil_reserves
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Fig 3 USA GOM offshore installations in; Source : http://en.wikipedia.org/wiki/File:Gulf_Coast_Platforms.jpg 

Some 4000 offshore structures currently exist in the US GOM and many of these 

structures are approaching their design life. This USA GOM data analysis implies that, 

apart from the very deep water platforms, the productivity of existing GOM offshore 

wells is about 1.5 active wells per active platform. This implies that the 4,886 x109 bbl 

GOM reserves would also be at risk if many of these structures are found to be too risky 

to operate or too expensive to maintain. Additionally, these structures will have to be 

decommissioned when they are no longer operable and the cost of the 

decommissioning exercise is also huge.  In 2012, 285 structures were decommissioned 

and 1,269 wells were abandoned in the GOM at a cost of about $2.1 billion [7]. 

With over a hundred years of oil and gas industry experience, a lot of improvement in 

technology, design codes, construction and operation processes has evolved around 

http://en.wikipedia.org/wiki/File:Gulf_Coast_Platforms.jpg
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the world. Also the application of information technology improvement processes in the 

Petroleum and natural gas (PNG) exploitative industry led to some paradigm shift in 

decision cycle time relating to uncertainty management. These process improvements 

include the use of electronic monitoring devices for controlling processes or generating 

auto notifications on almost any design or process parameter anomaly. Some of these 

process parameters include temperature of electric motors, beam deflections and 

torques, fluid levels, pressures, and flow sensors. Process monitoring sensors are now 

routinely coupled together to process alarms and emergency shutdown systems for 

development of smart operations capabilities that can detect anomalies and send 

signals that are capable of preventing plant upsets and emergencies. Some of these 

smart technology capabilities are already used to aid subsurface hydrocarbon sweep 

monitoring. Fibre optic cables, distributed temperature gauges, electronic pressure and 

flow gauges for example are now used in standard hydrocarbon Well design and 

construction to aid real time data acquisition for dynamic reservoir simulation update. 

The results from these real time dynamic models are then used to predict more reliable 

performance forecast as well as plan future activities for improvement of asset value.  

This thesis conducts a holistic safety assessment of offshore structural safety issues, 

examining not only the design aspects of offshore structures but also the operational 

safety issues, especially close to end of design life of such structures and their impact 

upon the overall structural reliability based on a design case study that underpinned the 

case for data driven reliability prediction process for offshore structures. 
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1.1  Aims and Objectives 

 

1.1.1 Aim 

The aim of this thesis is to reviews reports of past accidents along the developed HSE 

management systems and see through emerging themes if, through the use of 

technology, some process improvements can be recommended to improve on offshore 

reliability prediction process such that LTIF and fatalities can be reduced to ALARP. 

 

1.1.2 Objectives 

The objectives of the thesis are as follows: 

• Identify emerging themes from recorded accident reports in offshore structures 

within the past three decades.  

• Assess process or business improvement initiatives for addressing the root 

causes of reported accidents in fixed offshore structures. 

• Conduct a computer simulation case study for an offshore structure for 

determination of magnitude of structural deflections and dynamic response 

function. 

• Assess the usefulness of measurement based systems for predicting potential 

failure of offshore structures. 
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1.2 Thesis Structure 

• Chapter 1 is an introduction to the thesis. It highlights the high demand for 

energy and how the gap between demand and supply would lead to energy 

supply pressures and hence the urgent need to develop safer and more efficient 

ways for energy exploration and production especially in offshore structural 

engineering. 

• Chapter 2 describes the issues that could impact the LTIF in fixed offshore 

structures based on literature review. The review is based on the HSE 

management business controls of Policies, Plans and Strategic objective, 

Organisation, Hazard and Effect management process, Procedures and 

Standards, Implementation and Monitoring, and Review and Appraisal. 

• Chapter 3 describes a design case study of a fixed offshore structure. It 

describes the process for structural modelling, highlights key issues and 

assumptions. The modelling results were used to calculate the DRF for the 

designed structure. This section ends with suggestions on how the failure of any 

given structure can be determined through the trending of the DRF of the 

designed structure. 

• Chapter 4 describes uncertainty management in offshore structural engineering, 

the current structural reliability prediction process, a case for change in reliability 

prediction process and ends with a value of information economics for the 

proposed change in methodology. The proposed change is based on potential 

use of the DRF for structural failure determination. 
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• Chapter 5 presents research conclusions and recommendations for future 

research. It recommends the use of HUMS technology for continuous monitoring 

of the DRF of any structure such that deviation from the DRF trend based on 

structural response can be used to predict the failure of a structural member. It 

also recommends further research on HUMS technology selection for the 

advancement of recommended hypothesis on Smart Offshore Structure for 

Reliability Prediction Process. 
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2 ACCIDENTS STATISTICS AND INFLUENCING 

FACTORS  

2.1 The cost of accidents  

In 2010, offshore production regions represented nearly 650 billion barrels of oil 

equivalent (Gboe), or 20% of known remaining global oil reserves and 28% of remaining 

gas reserves [8]. The offshore is therefore a nonnegotiable imperative for oil companies, 

but one that presents multiple technological challenges as a result of the water depths 

and high reservoir pressures involved. It is estimated that offshore production involves 

some 17,000 operating platforms, with more than 400 new production facilities being 

constructed every year. The number of offshore construction projects has grown by an 

average of 15% per year since 2005 and it is expected that this growth in the overall 

number of construction projects will continue [9]. 

Offshore structural failures and accidents arise due to unanticipated service loads, earth 

movements, material defects, crack or propagation of cracks, loss of hydrocarbon 

containment, corrosion, explosion, fire, collision etc. The cost of such failures and 

accidents could be huge and capable of having a significant effect on any company’s 

bottom line: cost of impacted lives, facilities; remediation cost, cost of litigation and loss 

of revenue.  Such accidents, especially those in offshore facilities with accommodation 

could have grave consequences as was the case in Piper Alpha incident in 1988. These 

accidents could additionally have damaging environmental consequences as seen in 

drilling failure that led to the sinking of an ocean rig in USA in 2010 [10]. Some 279 
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major energy accidents in the coal, oil, natural gas, hydroelectric, renewable, and 

nuclear sectors were reviewed over the last century and such disasters have been 

responsible for some $41 billion in damages and 182,156 deaths [11].  Accident is a 

product of risk potential and the likelihood of the risk happening. The risk itself is based 

on perception and is most times subjective. It is noted that although there have been 

accidents with major impact on human beings, it is the accidents with environmental 

impacts, such as oil spills, that are perceived as most risk relevant [3]. As a result of the 

perceived huge effect of offshore accidents several efforts have been made on 

continuous improvements on offshore HSE management since the commercial 

exploitation of oil and gas. These efforts include continuously developing Hazard and 

Effect Management process (HEMP) and the development of related HSE business 

controls. Good HSE operations management requires the installation of a fit for purpose 

physical, process, and regulatory barriers in order to prevent accidents. These barriers 

or business controls include Policies, Plans and Strategic objective, Organization, 

HEMP, Procedures and Standards, Implementation and Monitoring, and Review and 

Appraisal. 

 

 

2.2 Factors influencing accident statistics  

A review of offshore practices and related accidents along these well defined business 

controls shows that energy security, technology, organisational safety climate, 

legislation and regulation have direct effects or were used to improve on LTIF in 
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offshore structures. These controls relate to Strategic planning, Processes, 

Organisation, Procedures, and Standards respectively as shown in table 3 below.  

Identified Weakness Related Business control 

failure Energy security Strategic Planning 

Technology  Process and Procedures 

Organisational safety climate  Organisation 

Legislation  Implementation and Monitoring 

Regulation Review and Appraisal 

Table 3: Mapping of Identified weakness to business control failure 

 

2.2.1  Energy Security  

Energy security and issues relating to uninterrupted energy supply at an affordable price 

are managed at country level through trade policies, common infrastructure 

development, bilateral or group treaties [8]. Energy security issues can sometimes lead 

to hostilities and in extreme cases wars where agreements break down. A jurisdiction 

can attempt to improve its energy security by targeting processes with policies that 

reduce energy consumption, replace insecure energy sources or processes with ones 

that are secure, and restrict demand to sources and processes that are secure [12]. 

 

Table 3 shows that the hydrocarbon resources are not equally distributed around the 

globe and this creates a form of energy insecurity among nations. Even within some 

developing nations the discovery of hydrocarbon creates its own peculiar tension. 

These natural resources, where they exist, bring with them great social and economic 

promise, providing financial growth for communities and energy services for local 
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economies [11]. Notwithstanding the strife that comes with the discovery and production 

of hydrocarbons in multi-ethnic developing countries, the contributions of oil and gas 

industry to the development of such countries cannot be over emphasised. In most 

cases revenue from such oil and gas sector accounts for significant export earning that 

is required to finance major capital investment as well as add to the GDP of such 

countries. Additionally, such hydrocarbon extractive industries attract investors thereby 

creating employment and human capital development opportunities for the citizens of 

such nations.  

In 2000, fossil fuels supplied 90% of global energy with crude oil accounting for 40% of 

the total, coal 25% and natural gas 25%. Nuclear energy contributed 7% and hydro-

electricity 3%” [1]. Several studies have been done on future energy demand and 

supply and almost all studies reveal that there is going to be a significant gap between 

demand and supply from 2013 onwards. This view is supported by the Organization of 

Petroleum Exporting Countries (OPEC). In all their three planning scenarios for 2010, 

OPEC predicted a continued increase in world oil demand. According to its 2010 LTS 

document OPEC agrees that the growing supply needs in emerging markets will 

continue to fuel development, especially as the axis of the global economy increasingly 

shifts towards developing Asia [2]. The exact dimension of the energy gap may never 

be known due to huge uncertainty in the security situation of some of the key players in 

the world energy supply. This supply insecurity in developing nations is sometimes 

associated with tribal and religious conflicts, government instability, or inequity related to 

the use of revenue from the hydrocarbon resources. Other issues contributing to this 

energy insecurity at global level include wars and natural disasters.  
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Some of the efforts being made to address this energy insecurity include the 

development of new hydrocarbon heartlands in countries with stable economies and 

government, investment in combustion efficiency and energy efficient systems and cars, 

development of renewable wind and solar energy for electricity and the development of 

solar powered vehicles. According to the United Nations Environmental Programme 

(UNEP), the global investments in sustainable energy exceeded US$155 billion in 2008 

and new investments in companies developing and scaling-up new technologies, 

including energy efficiency, increased to over US$23 billion in 2008 [12].  

Notwithstanding all these efforts on alternative energy sources, fossil fuels, with a 

growing contribution from nuclear energy is generally foreseen to supply the main share 

of the world’s future energy supply hence the urgent need to develop safer and more 

efficient ways for oil and gas exploration and production.  

The push for energy independence sometime creates cost and desperation pressures 

and the likelihood of accidents are increased under such operating conditions. One 

attempt by the USA to address its energy security was to lift an offshore drilling 

moratorium in GOM in 2009. This led to aggressive drilling permit approvals and 

campaigns in 2010 which in turn led to a major accident in 2010 [13]. This state of 

energy insecurity pressures will continue to exist in foreseeable future hence the desire 

for improved HSE management of offshore E&P facilities.  
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2.2.2  Technology 

Offshore structures are safety critical and are designed, constructed and installed to 

create a platform for well drilling, hydrocarbon processing and accommodation for field 

operators. Fig 1 shows a shallow water wellhead platform awaiting tow out for 

installation in the South China Sea. Depending on location and logistics, the cost of 

developing a 500 MMbbl reserves offshore field with 20 wells and a platform for the 

wells and hydrocarbon processing at a water depth of 30m can be in the range of $1bn.  

The oil and gas E&P industry is a high skill, high capital, high risk and high technology 

industry. This requirement for high technology and huge investment is a part of the 

hydrocarbon process flow from seismic acquisition, interpretation, subsurface geological 

mapping, well drilling, production, hydrocarbon processing, transportation and use. Very 

expensive, high technology equipment is necessary for the acquisition and processing 

of high-resolution seismic images to the required level of certainty prior to commitment 

of investor funds for exploration or development well drilling. Some of the major risks 

that must be managed during drilling include presence of submarine salt domes, 

geological faults and fractures, and presence of shallow high-pressure gas 

accumulations. The first attempt to access the hydrocarbon accumulation during 

exploration drilling operation is a very risky one with huge uncertainties hence all the 

FEED work prior to initial well drilling is aimed at reducing the highlighted risks. The risk 

and uncertainty management through continuous data acquisition continues after 

appraisal well drilling. Such data acquisition during development drilling, production 
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operations, reservoir performance modelling are aimed at refining the initial models that 

will be used for planning of remedial field development plan (FDP) activities.  

The production and processing of hydrocarbons also has some inherent risk because it 

involves the production of hydrocarbons under high pressure and temperature from 

subsurface to surface, the processing of such hydrocarbon and transport for export or 

as feedstock to other process plants. The hydrocarbon itself is inflammable, hazardous, 

and sometimes contains high risk impurities like sand, hydrogen sulphide and carbon 

dioxide.  Hydrogen sulphide is fatal if inhaled even at low concentrations. Both hydrogen 

sulphide and carbon dioxide can cause steel embrittlement and hence lead to loss of 

containment. Hydrocarbon conduit erosion due to sand production from sandstone 

reservoirs will also lead to loss containment. Any loss of containment could lead to fire, 

and explosion in the presence of an ignition source.  

Carbon steel is the most common hydrocarbon conduit and processing materials but 

very expensive Chrome and Nikel steel alloys capable of handling impurities like 

Hydrogen sulphide, carbon dioxide and sand are sometimes used when operators are 

certain that such impurities are contained in the hydrocarbon reservoir being developed. 

Other hydrocarbon impurities like Hydrates, Scale, Wax and Asphaltenes are more of a 

hindrance to flow assurance rather than facility integrity hazards. Hydrates are managed 

by suitable chemical injection like methanol or glycol, reduction of process pressures, or 

increasing the process temperature. Scale is managed by continuous anti-scale 

chemical injection while wax is prevented through process insulation to ensure that the 

hydrocarbon cloud point is not realized.  Asphaltenes prevention on the other hand can 

be avoided by preventing the mixing incompatible hydrocarbon streams. 
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A review of the developments within the field of structural reliability theory with particular 

attention to structural systems was undertaken [14]. The review appreciate that a 

measure of safety based on a general probabilistic model in general does not express a 

physical property of the structure in its operating environment. The review remarked that 

a safety measure should be a decision variable that embraces the applied knowledge 

about the strength properties of the structure in relation to the actions on the structure. 

Deflection and damping are some of the measurable strength properties of any offshore 

structure and hence some study was undertaken to see if these measurable properties 

could aid in getting structural reliability prediction closer to reality. Elshafey et al [15] 

investigated both theoretically and experimentally methods for structural damage 

detection using the free vibration response of the structure to validate the results of their 

finite element analysis.  Other recent researchers on vibration based structural health 

reliability prediction include Basseville et al [16],  Deraemaeker et al [17], and Straub et 

al [18]. These researchers agree that sensing technology could aid in predicting 

structural failure. It has also been shown by Li et al [19] that the cumulative fatigue 

damage of a bridge can be assessed if some structural health monitoring system is 

installed or retrofitted as part of the bridge. 

This use of HUMS technology can also lead to a significant reduction in cycle decision 

time for reliability updating as obtained in the E&P reserves updating. Previously E&P 

operators have to wait for some significant oil volumes to be produced before a revision 

of the reservoir STOIIP is made but with the use of smart wells we now have the 

capabilities for real time data acquisition for dynamic reservoir simulation update. These 

smart technologies include pilots for controlling or generating auto notifications on 
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almost any design or process parameters. These parameters include temperature of 

motors, deflections, torques, fluid level, pressure, flow sensors etc. These sensors are 

sometimes coupled together to several alarms and emergency shutdown systems for 

development of smart operations capabilities that are capable of early detection and 

preventing plant upset and emergencies. Fibre optic cables, distributed temperature 

gauges, electronic pressure and flow gauges are some of the sensors that can be used 

in standard hydrocarbon Well design to aid real time data acquisition for dynamic 

reservoir simulation update. The results from these real time dynamic models are then 

used to predict more reliable performance forecasts as well as plan future activities for 

improvement of asset value.  

 

2.2.3 Organisational safety climate 

The Organisation is a part of management control aimed at ensuring that business 

objectives, which also include safe operations, are met. The Organisational business 

control specifies the roles and responsibilities of persons and positions, required 

competences for respective roles, and required internal and external interfaces with 

relevant authorities among other things.  The accountable E&P organisations for 

offshore energy exploitation include the energy exploitation and production companies 

that are licensed to explore and produce energy and their staff on one hand, and the 

supervising local authorities responsible for controlling the energy E&P companies on 

the other hand. Other stakeholders influencing the management of offshore structural 

risks include local communities, NGOs, and Politicians.   
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The HSE department in UK provides independent advice on the safety of people in the 

vicinity of major hazard establishments and this guidance enables hazardous substance 

authorities and local planning authorities to give due weight to safety concerns, 

balanced against other relevant planning considerations, when determining applications 

for hazardous substances consent and applications for planning permission in the 

vicinity of existing consented establishments [20]. The UK HSE and other similar bodies 

in other jurisdictions specify a guidance on safe distance around a major hazard 

establishment. Beyond this area the individual risk would be considered to be low 

enough that there would not generally be sufficient grounds to advice against any 

planning application. 

The operating companies are required by law to promote a safe working environment 

and to continuously improve the work environment after any incident. About 80 to 90% 

of all types of offshore structural accident in the past three decades are traceable to 

human errors and these human errors could be due to lack of knowledge, unexpected 

operating environment, unanticipated event, unsafe conditions, external influence, and 

attitude to safety [21].  

The organisational safety climate is made up of shared perceptions among stakeholders 

concerning the procedures, practices and kinds of behaviours that get rewarded and 

supported. This can be deciphered from organizational relative priorities; alignment 

between espousals and enactments, internal consistency of policies, procedures and 

practices and shared cognitions or social consensus [22]. E&P managers are aware of 

their roles and responsibilities as leaders and always attempt to demonstrate HSE 

leadership in all communication with staff and stakeholders. However research data 
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shows that in most cases leaders are unable to promote safety by developing good 

quality participative and open relationships with subordinates [23]. As a result of this, 

good organizations regularly conduct internal reviews or sometimes engage external 

bodies to verify, on regular basis, how they rank on performance as well as on safety 

climate. The results from such surveys are used to create improvement plans, which 

among other things aim at improving the organizations safety culture. Also 

improvements in overall organisational safety can be achieved through training, 

coaching, networking, competence certification and continuous review of operating 

standards. The International Well Control Forum (IWCF) for example was established in 

1992 to ensure the maintenance of common standards and the certification of all 

persons involved in well engineering critical roles during well drilling and workover 

activity.  

The regulatory government organizations have also continuously and diligently been 

using the Reviews and Appraisal process as well as related consequence management 

for noncompliance to improve HSE and organisational safety climate. The effect of 

regulatory organisations became more noticeable since the mandatory requirement for 

notification of major accidents in 1984, under the aegis of the Major Accident Reporting 

System (MARS) as the rate of major accidents has significantly and consistently 

decreased.  By the end of the 1980s the average number of major oil spills each year 

dropped to one-third of that in the previous decade [3]. This view is supported in the 

work of O'Dea & Flin [23] when they remarked that over the past 10 years, a plethora of 

technological, engineering and design improvements have undoubtedly helped to 

reduce the accident rates offshore to their current plateau. This HSE data reporting has 
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since the 1980s come to stay as a KPI for HSE performance measurement for most 

organisations. Such KPIs are used as vehicles for continuous HSE improvement and 

some HSE proactive organisations have even gone to adopt slogans like Zero 

Tolerance to Accidents. 

 

 

2.2.4 Legislation and Regulation   

The main goal of most enterprise is to make profit, although there is now some 

emphasis on social responsibilities. The investments on social responsibilities 

developed over the years and in most cases were actually imposed on such companies 

by the local governments, the regulating authorities, and pressures from NGOs. Some 

of the social responsibilities include improvements in safety culture through education, 

environmental upgrade of facilities, process modifications, adoption of environmental 

management systems e.g. ISO 14001, so as to attract the required staff loyalty and 

dedication. Through these investments in social responsibilities, corporations are known 

to get social licence to operate (LTO) from their host communities, local governments 

and even the media. The LTO benefits can be overwhelming and includes goodwill to 

corporation staff and facilities, favourable government considerations during future 

licence bids or renewals. It can therefore be said that a combination of self-effort and 

compliance to local laws has contributed to improvements in overall HSE performance 

in several jurisdictions around the world.   
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Public awareness of major accidents via the media and in orchestra with issue 

champions, politicians, unions, public debates and decisions in parliament, is another 

mechanism of enforcing HSE improvements [4]. The use of the media as a means of 

putting pressure on authorities has been useful regarding some recent fatal accidents. 

The effect of such pressure was overwhelming and had damaging effects on BP stock 

in April 2010 when BP stock fell by 40% in June 2010 after several attempt to shut off 

spurring oil well in the GOM that resulted from an offshore blowout from a drilling rig 

[64]. The media position has also contributed to shaping opinions and forcing 

governments and regulators to be more stringent on laws and punishment for non-

compliance. The media, especially the USA media, mounted such pressure on the initial 

handling of the BP disaster in the USA that the US President had to cancel his trip to 

Indonesia to stay at home and demonstrate his commitment to resolving the crises [10]. 

Also the continuous improvement in accident statistics in the North Sea from 1960 to 

2006 was recorded based on continuous improvements in legislation that follow any 

major accident review. Lindoe et al [4] showed that, from a level of almost 50 in 1976, 

the number of injuries per million working hours had a definite downward sloping trend 

levelling at about 10 in 2006.  

But legislation and regulation are just one part of Implementation and Monitoring 

business control. The other parts are the planning, execution and monitoring of 

operating integrity needs.  Currently offshore Inspection plans are made and executed 

in line with company operating procedures and applicable regulation. This approach can 

be improved upon if we can borrow some best practices from other industrial sectors. 
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One readily available option would be the adaptation some proven technologies from 

reservoir modelling and simulation process in the E&P business sector.  

 

2.3 Chapter Conclusions  

Nonrenewable energy like petroleum and natural gas are not equally distributed around 

the globe and this creates some form of energy insecurity among nations. Some of the 

several efforts being made to address this energy insecurity include development of 

new hydrocarbon heartlands in countries with stable economies and government, 

investment in combustion efficiency, energy efficient systems and cars, development of 

renewable wind and solar energy for electricity and the development of solar powered 

vehicles. Notwithstanding all these efforts, it is projected that fossil fuels is generally 

foreseen to be supplying the main share of the world’s energy supply hence the urgent 

need to develop safer and more efficient ways of oil and gas exploration and production.  

Offshore structures are vital in chasing the limited patches of petroleum around the 

world. Four hundred such structures were built in 2005 and studies have shown that the 

number of offshore construction projects has grown by an average of 15% per year 

since 2005. It is expected that this growth in the overall number of construction projects 

will continue hence the urgent need to develop safer and more efficient ways of 

managing structural safety in E&P operations.  

A review of the development within the field of structural reliability theory with particular 

attention to structural systems shows that some gaps still exist in the reliability 
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prediction process and hence there is a urgent desire for improvements such that the 

estimated reliability is capable of expressing a physical property of the structure rather 

than a measure of safety based on a general probabilistic model. One way of closing 

this gap is to design a measurement based system that measures some physical 

properties of any given structure.  Deflection and damping are some of the measurable 

properties of an offshore structure and so a some study was undertaken to see if these 

measurable properties could aid in getting structural reliability prediction closer to 

reality. This suggested approach would eliminate reliance on people’s capability and 

hence eliminate human errors which were estimated as being responsible for 80 - 90% 

of all offshore structural accidents.  

The feasibility of this recommendation will be tested using a design case study in 

chapter 3. 
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3 OFFSHORE STRUCTURAL DESIGN CASE 

STUDY 

The required performance of offshore structures is ensured by designing them to 

comply with serviceability and safety requirements for a service life as specified by the 

owner, as well as carrying out load or response monitoring, or inspection and taking 

appropriate remedial actions. The safety requirements are imposed to avoid ultimate 

consequences such as fatalities and environmental or property damage. 

Moan [24] documented that the current practice which is implemented in new offshore 

codes are characterized by:   

- Design criteria formulated in terms of limit states.  

- Semi-probabilistic methods for ultimate strength design which have been 

calibrated by reliability or risk analysis methodology. 

- Fatigue design checks depending upon consequences of failure and 

access for inspection. 

- Explicit accidental collapse design criteria to achieve damage-tolerance 

for the system. 

- Considerations of loads that include payload; wave, current and wind 

loads, ice (for arctic structures), earthquake loads (for bottom supported 

structures), as well as accidental loads such as e.g. fires, explosions and 

ship impacts. 



 

  35 

- Global and local structural analysis by finite element methods for ultimate 

strength and fatigue design checks. 

- Nonlinear analyses to demonstrate damage tolerance in view of inspection 

planning and progressive failure due to accidental damage. 

This research and the case modelling below aims at demonstrating a data based 

concept which could be added as a criteria in support of global and local structural 

analysis for ultimate strength and fatigue checks. This advocated methodology has the 

capacity to contribute to addressing the Long-term planning and Implementation of 

Safety Cases where the UK HSE plans to collaborate with the UK industry towards a 

unified approach to the safety management of ageing offshore infrastructure.  

 

3.1 CASE MODELING  

The shallow water oil and gas development is critical to ensuring energy security as 

they are simpler and involve cheaper drilling rigs and operations. Table 4 shows that 

86% of the installed offshore structures in the GOM are below 200m of water and these 

are classified as shallow water installations. Figure 4 shows the Nigetria coastal area 

and continental shelf.  The inner Nigerian continental shelf of 0 to 45m water depth 

areas extend from the shoreline to between 30 km inland to150km in the Niger Delta 

[25]. The water depths of the Niger delta creeks which have been heavily drilled are in 

also less than 30ft hence a 60m offshore structural design was selected as fit for 

purpose for this research which is in support of shallow offshore structural engineering 

development in Nigeria. 
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Table 4: GOM Offshore structures at various water depths 

Water depth (m)  Active platforms  Producing well Producing well / Active platform  

0–200 3489 3840 1.1 
201–400 455 1873 4.1 
401–800 49 285 5.8 
801–1000 4 50 12.5 
1000+ 22 309 14 

 

 

Figure 4 Bathymetric configuration of the Nigerian continental shelf [25]. 

A 60m shallow water offshore steel structure was therefore modelled and subjected to 

possible high case loads realizations in 30m water depth in other to estimate the 

magnitude of measurable data in support of the thesis on smart offshore structure for 

reliability prediction process. Having discussed the application of smart technology to 

the oil and gas industry in Chapter 2, an attempt is made to discuss the application of 

the smart operations technology process to offshore structural reliability prediction 

process.  
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The ABAQUS Unified FEA product suite from Dassault Systems USA was chosen for 

this modelling research based on availability. The deflection predictions from the 

ABAQUS model was calibrated with manual computations based on a simple 20 m, 

0.75m diameter pipe with 0.0254m thickness, cantilever beam subjected to 1KN end 

load as shown in figure 5. The results from both methods are in very close agreement 

with a maximum error of 2.97% as shown in table 5 hence the justification for the use of 

ABAQUS FEA modelling tool.  

 

Figure 5 Cantilever bean design for ABAQUS calibration 
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Table 5: Abaqus model static deflection calibration  

  Manual Calculation   Calculations from ABAQUS Model Error 

Node distance  (x) 

 

Deflection V.Mises Stress Strain 
Young 
Modulus    

  m m  (m) N/m2   N/m2 % 

1 0 0 0 8.96E+01 4.27E-10 2.10E+11 0.00% 

2 2 4.64919E-08 4.59E-08 1.79E+02 8.53E-10 2.10E+11 1.35% 

3 4 1.79555E-07 1.75E-07 3.58E+02 1.71E-09 2.10E+11 2.26% 

4 6 3.8957E-07 3.80E-07 5.38E+02 2.56E-09 2.10E+11 2.56% 

5 8 6.66918E-07 6.49E-07 7.17E+02 3.41E-09 2.10E+11 2.71% 

6 10 1.00198E-06 9.74E-07 8.96E+02 4.27E-09 2.10E+11 2.80% 

7 12 1.38514E-06 1.35E-06 1.08E+03 5.12E-09 2.10E+11 2.86% 

8 14 1.80677E-06 1.75E-06 1.25E+03 5.97E-09 2.10E+11 2.90% 

9 16 2.25726E-06 2.19E-06 1.43E+03 6.83E-09 2.10E+11 2.93% 

10 18 2.72699E-06 2.65E-06 1.61E+03 7.68E-09 2.10E+11 2.95% 

11 20 3.20634E-06 3.11E-06 1.70E+03 8.11E-09 2.10E+11 2.97% 
 

E =    2.10E+11         

I = 

 

0.003960409 
   

  
6EI=   4990115475         

The ABAQUS FEA suite was used to create a conceptual shallow water wellhead 

structure using the data shown in table 6 below: 
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DESIGN ENVIRONMENTAL DATA 

Water depth :   30m 

Lowest water level :  20m 

Highest water level   30 m 

STEEL MATERIAL SPECIFICATION 

 Base of structure is 20.00 x 20.00 m  

 Top of structure is 13.48 x 13.48 m 

 Height of Structure 60 meters divided into 
three equal parts of 20m.   

 Main beams : 0.76m pipe and 0.0254m 
thickness 

 Horizontal beams : 0.60m pipe and 0.0254m 
thickness 

 Braces: 0.308m pipe and thickness of 
0.0127m  

Table 6: Design basis and specifications for offshore structures case 

Wellhead structures do not support any deck load and hence no deck load was used in 

this design case study. Figure 6 shows the designed structure while figure 7 is a 
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schematic of the said design that will be used for wave force estimation.   

 

Fig 6: ABAQUS Model Simulation 
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3.2 WAVE FORCE ON DESIGNED STRUCTURE 

 

Fig 7:  Model Simulation schematics 

 

WAVE FORCE ESTIMATION 

The details of the design data for the modelled structure are shown in table 6.   

Wave amplitude of 2m and frequency of 0.6286rad/sec on a 30m water depth was used 

to estimate the wave force on the designed structure as shown below. 

 

𝐅 = 𝑪𝑫𝝆
𝑫

𝟐
|𝒖|𝒖 + 𝑪𝑨𝑴𝝆𝝅

𝑫𝟐

𝟒
𝒖̇   (Morison’s equation) 

 

It can be shown that 𝐶𝐷 =  1 + 𝐶𝐴𝑀  
 

Velocity potential Ф=−
𝑎⍵

𝑘
𝑒𝑘𝑦 cos(𝑘𝑥 − ⍵𝑡) 
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The Morison’s equation can be written as dF(t)= (𝟏 + 𝑪𝑨𝑴)𝝆𝑼𝒏̇𝒅V + 
𝟏

𝟐
𝑪𝑫𝝆|𝑼𝒏|𝑼𝒏𝒅𝑺 

 

𝑼𝒏 =
𝝏Ф

𝝏𝒙
 = 

𝒂⍵

𝒌
𝒆𝒌𝒚𝒌 𝐬𝐢𝐧(𝒌𝒙 − ⍵𝒕) = a⍵𝟐𝒆𝒌𝒚 𝐬𝐢𝐧(𝒌𝒙 − ⍵𝒕) 

 

𝑼𝒏̇ =
𝝏𝑼𝒏

𝝏𝒕
 = -a⍵𝟐𝒆𝒌𝒚 𝐜𝐨𝐬(𝒌𝒙 − ⍵𝒕) 

 
For the designed structure the total horizontal wave force on the body (x=0 at the FWL of the body) : 

 

F(t) =∫ 𝑑𝐹(𝑡)𝑑𝑦
0

−𝑑
 

 

 =∫ [(1 + 𝐶𝐴𝑀)𝜌𝑑𝑉(−𝒂⍵𝟐𝒆𝒌𝒚 𝐜𝐨𝐬(−⍵𝒕)) +  
1

2
𝑪𝑫𝝆𝒅𝑺|𝒂⍵𝒆𝒌𝒚 𝐬𝐢𝐧(−⍵𝒕)|𝒂⍵𝒆𝒌𝒚 𝐬𝐢𝐧(−⍵𝒕)]

0

−𝑑
𝑑𝑦 

  

 =−(1 + 𝐶𝐴𝑀)𝜌𝑎 ⍵𝟐𝐜𝐨𝐬(−⍵𝒕) 𝑑𝑉 ∫ 𝒆𝒌𝒚0

−𝑑
𝑑𝑦 +

1

2
𝑪𝑫𝜌𝒂𝟐 ⍵𝟐|𝐬𝐢𝐧(−⍵𝒕)| 𝒔𝒊𝒏(−⍵𝒕)𝑑𝑆 ∫ 𝒆𝟐𝒌𝒚0

−𝑑
𝑑𝑦  

 
D = 0.76m 

Volume per unit length dV=𝜋 (
0.76

2
)

2

 = 0.454 m
3
/m 

 
Surface per unit length dS= 0.76/2 = 0.38m

2
/m 

 
Amplitude a = Hw/2 = 4m/2 = 2m 
 
Frequency ω=2π/T= 2π/10 = 0.6286rad/sec 
 
Wave number k=2π/λ=4π

2
/(gT

2
) = 0.0365rad/m 

 
d=30m 
 

∫ 𝒆𝒌𝒚0

−𝑑
𝑑𝑦 =

1

𝑘
𝑒𝑘𝑦| 0

−𝑑
 = 

1

𝑘
(1 − 𝑒−𝑘𝑑) = 18.23m 

 

∫ 𝒆𝟐𝒌𝒚0

−𝑑
𝑑𝑦 =

1

2𝑘
𝑒𝑘𝑦| 0

−𝑑
 = 

1

2𝑘
(1 − 𝑒−2𝑘𝑑) = 12.16m 

 
Substituting  

F(t) =∫ 𝑑𝐹(𝑡)𝑑𝑦
0

−𝑑
 

 

=−(1 + 1) ∗ 1025kg/m3∗ 2𝑚 ∗ (0.628
𝑟𝑎𝑑

𝑠
)𝟐𝐜𝐨𝐬(−⍵𝒕) ∗ 𝟎. 𝟒𝟓𝟒

𝒎𝟑

𝒎
∗ 18.23𝑚 +

1

2
∗ 𝟎. 𝟕 ∗

1025𝑘𝑔

𝑚3
∗ 4𝒎𝟐 ∗

(0.628
𝑟𝑎𝑑

𝑠
)𝟐|𝐬𝐢𝐧(−⍵𝒕)| 𝒔𝒊𝒏(−⍵𝒕) ∗

𝟎.𝟑𝟖𝒎𝟐

𝒎
∗ 12.16𝑚 

 
= -13382.8N*𝑐𝑜𝑠(−⍵𝒕) +2615|𝐬𝐢𝐧(−⍵𝒕)| 𝒔𝒊𝒏(−⍵𝒕) 
 
 

For the given frequency of ω of 0.6286rad/sec the wave  force due to the wave loading 

can be calculated as a function of time (t) as shown in table 7  
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Time (Sec) Force (N) Time (Sec) Force (N) Time  (Sec) Force (N) 

0 -13383 18 -7362 36 4285 

1 -9082 19 -13290 37 -9160 

2 3407 20 -7641 38 -13011 

3 13197 21 5500 39 -5998 

4 10245 22 13382 40 7474 

5 -1392 23 9003 41 13279 

6 -12646 24 -3532 42 7550 

7 -11218 25 -13219 43 -5620 

8 -612 26 -10178 44 -13382 

9 11749 27 1518 45 -8924 

10 12003 28 12690 46 3657 

11 2556 29 11163 47 13240 

12 -10540 30 488 48 10110 

13 -12606 31 -11815 49 -1644 

14 -4396 32 -11959 50 -12734 

15 9061 33 -2437 51 -11107 

16 13033 34 10624 52 -364 

17 6099 35 12573 53 11879 

 

 
Table 7: Dynamic wave force on designed structure  

 

Table 7 shows that the force on the designed structure as a sine wave and varies from 

a low of about 0.48 KN to a maximum of 13.2 kN. This force is calculated at a FWL of 

30m. This free water level varies from 20m to 30m. To generate another load realisation 

the calculated force of 13KN was evaluated at an average free water level of 25m. 

Figure 8a shows a representation of the wave on the designed offshore structure based 

on the realisation of max force of 13.3kN acting at an average FWL of 25m. By 

replacing the exponential wave force with a uniformly varying triangular force, the 
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equivalent wave force acting on the node of the designed structure at average FWL of 

25m can be calculated. The calculation was made by calculating bending moments 

around the seabed where the structural leg is fixed. By assuming that the calculated 

13KN act acts through the centroid of the triangular force shown in fig 8b an equivalent 

nodal force of 11kN is estimated. This 11KN wave force was then used for structural 

analysis of the designed structure. The uncertainties related to wave force estimation 

and how they impact on the estimated structural reliability will be discussed in chapter 4. 

 
Fig 8: Equivalent Force estimation due to wave action. 

 

3.3 DYNAMIC RESPONSE FUNCTION OF DESIGNED 

STRUCTURE 

The elasticity property of steel has been documented as Hooke’s law. The Frequency 

Response Function (FRF) or Dynamic Response Function (DRF) is a measure of the 
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ratio of the output to the input signal for any given system and can be used for the 

identification of system characteristics in engineering. In its basic form the DRF of a 

system response, at any load, can be described by the ratio of amplitude of output to 

input function [26]. The Wave forces to which the offshore structures are subjected are 

cyclic. The structural resistance is also cyclic and the cyclic load - resistance effect can 

be modelled through the use of dynamic response as represented in figure 9 [27]. 

 

Fig 9: Dynamic response function illustration block diagram 

For the block diagram in fig 9 the DRF  

H𝜔 =
Y𝜔

X𝜔
=  

δ𝑑𝑦𝑛𝑎𝑚𝑖𝑐

δ𝑠𝑡𝑎𝑡𝑖𝑐
=  

σ𝑑𝑦𝑛𝑎𝑚𝑖𝑐

σ𝑠𝑡𝑎𝑡𝑖𝑐
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Where  δ𝑑𝑦𝑛𝑎𝑚𝑖𝑐 and  δ𝑠𝑡𝑎𝑡𝑖𝑐 are the dynamic and load static deflections respectively.  

Figure 10 shows a harmonic response of the designed structure at different time 

intervals. It should be noted that dynamic force has to have enough acceleration in 

comparison to the structure's natural frequency otherwise the structure will not vibrate 

as shown in figure 10. Only the first nodes of the harmonics of the designed structure 

for each wave frequency was used in the calculation of the DRF as documented in this 

section. 

 

Fig 10: ABAQUS Structural response to Wave load 

The dynamic response function is analogous to the tuning fork sound damping 

experiment and, like any given tuning fork, any given offshore steel structure will vibrate 
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at a given frequency when subjected to a particular dynamic load. These dynamic 

characteristics of the structure will change due to failure of one or more structural 

members of the given structure. 

This change in the dynamic properties of a modified structure can be determined by 

experimental testing or numerical simulation, both of which are complex, expensive, and 

time-consuming. The modified dynamic properties can also be determined numerically 

without solving the equations of motion of the fully modified structure and this is the 

focus of this case study.   

 

 

Fig 11: ABAQUS model for structural response investigation of members 
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Labels were assigned to structural members in the structural case as shown in figure 11 

for monitoring of respective stress response for each dynamic loading simulation run. 

The 11kN equivalent nodal load was used to generate the static deflection in ABAQUS. 

Using the same 11kN equivalent nodal load and several frequencies the max dynamic 

deflection for each frequency for the respective members were recorded after each 

simulation run.  

 
 

3.4   DYNAMIC LOADING OF DESIGNED STRUCTURE 

The static displacement calibration for Abaqus modelling has been documented in 

section 3.3.  The same model used for static deflection calibration was also used for the 

calibration of ABAQUS result with that for manual calculation. The objective of this 

calibration is to verify that the dynamic load deflection results from Abaqus modelling 

compares very well with manual computation. The manual computation derives from 

some form of approximation to solution to the differential equation for estimation of 

displacement as discussed below. The analogue for the cantilever deflection figure 12a 

would be the spring deflection as shown in figure 12b.  

The deflection of a spring system due to load M can be expressed as: 

𝑀𝑥̈ + 𝐾𝑥 = 0  or 𝑥̈ + 𝑝2𝑥 = 0  where 𝑝 = √𝑘 𝑀⁄  

Cheng [28] has shown that the solution to the dynamic displacement (x) of the structure in 

figure 12  below can be given as 

 𝑥 = 𝑥𝑡𝑜 cos 𝑝 (𝑡 − 𝑡0) +
𝑥̇𝑡0

𝑝
sin 𝑝(𝑡 − 𝑡0)       
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Where 𝑝 =
2𝜋

𝑇
=2𝜋𝑓   (angular frequency, rad/s) 

𝑓 =
1

𝑇
=

𝑝

2𝜋
      (natural frequency , cycles/s) 

𝑇 =
1

𝑓
=

2𝜋

𝑝
      (natural period , s) 

This implies that the displacement profile is a form of sine wave when the applied force is a sine wave. 

By evaluating the displacement at high angular frequencies the contribution of  
𝑥̇𝑡0

𝑝
sin 𝑝(𝑡 − 𝑡0)     can be 

ignored. 
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Figure 13 ABAQUS cantilever beam model for dynamic response calibration 

The ABAQUS cantilever beam model for dynamic load calibration is as shown in figure 13. Node 1 is 

fixed while  a 5kN static load in the 𝑥 direction was applied at node 11. The resulting static deflection at 

node 11 from ABAQUS model was  5.31958E-03m.  For the same 5kN force at node 11 and a frequency 

of 40 cycles/s ( p= 2*π*40=251.327 rad/s), the deflection from manual calculation at any point can be 

approximated to  

𝑥 = (5.31958E − 03) ∗ cos 𝑝 (251.327 ∗ 𝑡)  

The dynamic deflection due to wave load at the respective nodes from ABACUS model simulation were 

generated. The manual estimate of the dynamic deflection based on the approximate equation above was 

also made for the respective nodes. The comparison of this approximate manual calculation with Abaqus 

model result at different time intervals, for the respective nodes are shown in table 8 below. 
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  STATIC Dynamic Deflection (m) after  

Node Deflection (m) t=1sec t=300sec t=450sec 

1 -2.60294E-03 -2.60709E-03 -2.60309E-03 -2.60298E-03 

2 -1.81072E-03 -1.81361E-03 -1.81082E-03 -1.81075E-03 

3 -1.01850E-03 -1.02012E-03 -1.01856E-03 -1.01852E-03 

4 -2.26276E-04 -2.26632E-04 -2.26288E-04 -2.26278E-04 

5 5.65954E-04 5.66863E-04 5.65985E-04 5.65962E-04 

6 1.35819E-03 1.36036E-03 1.35827E-03 1.35822E-03 

7 2.15044E-03 2.15387E-03 2.15056E-03 2.15047E-03 

8 2.94271E-03 2.94740E-03 2.94286E-03 2.94275E-03 

9 3.73498E-03 3.74093E-03 3.73518E-03 3.73504E-03 

10 4.52728E-03 4.53447E-03 4.52752E-03 4.52734E-03 

11 5.31958E-03 5.32803E-03 5.31985E-03 5.31964E-03 
Table 8: Abaqus model dynamic deflection calibration  

 

A comparison of Abaqus modelling simulation results and approximate solution at 

maximum deflection point (node 11) is presented in table 9. The results show very good 

comparison and hence reinforced the used of Abaqus FEA simulator for the analysis of 

dynamic analysis of the designed offshore structure. 

 

Elapsed  Max (Node 11) Dynamic Deflection (m) after  
 

t (sec) 
Manual 
calculation From Abaqus Percentage error 

 1 5.31958E-03 5.32803E-03 0.15860% 
 300 5.27894E-03 5.31985E-03 0.76898% 
 450 5.22829E-03 5.31964E-03 1.71723% 
 Table 9: Dynamic deflection calibration error propagation with time  

 

Having obtained a very good match between manual computation and ABAQUS 

simulation, the case model created in section 3.3 was then used to calculate the 

Dynamic response of the designed structure based on the 11kN approximate equivalent 

wave load. 
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3.5   STRUCTURAL DYNAMIC RESPONSE FUNCTION  

Abaqus simulation runs was made for several wave frequencies and the dynamic 

response (load) for each member was generated. A wave amplitude of 2m and 

frequency of 0.6286rad/sec was the Basis for Design for the case study described in 

this thesis. This level of wave dimension are typical of benign shallow water offshore 

environments and present very little dynamic response on any offshore structure. As a 

result much higher wave frequencies are used in the estimation of the dynamic 

response function presented below in other to simulate a typical hostile offshore 

environment.  

The ratio between this dynamic response and static load response was used to 

calculate the DRF for respective structural members. The calculated DRF for selected 
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members of the designed structure for various frequencies is as shown in figure 14.  

 

Figure 14: Data and DRF of members of interest  

This FEA results show that the bottom braces support the bulk of the unidirectional 

wave load force with member 29 being slightly more stressed than member 30. Two 

structural members were removed from the bottom of the 60ft modelled structure in 

other to simulate a failed structural. The failed structure was then subjected to the same 

11kN wave. The resistance from this damaged structure was then evaluated. Figure15 

shows the DRF after the failure of brace 29 and its corresponding pair on opposite 

plane. It highlights the stress redistribution with the failure of member 29 (and its 

corresponding member on the opposite plane shows) in the form of increased DRF 

responses on the middle and top braces.  

Frequency(rad/s) 6 7 12 13 29 30

Static 134.553 90.3941 1.02372 5.1777 4.5756 4.3075

10 85.681 120.602 39.8669 40.6532 536.984 524.879

15 40.0013 89.216 23.5212 24.7003 915.599 856.846

20 1564.23 1473.29 733.421 731.342 3569.45 3461.34

25 359.729 306.82 180.083 178.776 1388.38 1324.86

30 495.356 463.557 309.671 308.86 948.072 908.504

35 128.053 68.1219 69.0465 67.534 1269.37 1197.47

40 341.01 435.715 615.587 617.466 2512.91 2405.16

45 111.98 180.257 265.649 258.317 1439.08 949.694

50 316.638 357.504 292.433 294.978 2371.14 2323.54

55 147.405 120.258 2.1023 4.72437 1292.34 1256.36

Frequency(rad/s)

6 7 12 13 29 30

10 0.636783 0.896316 0.296291 0.302135 3.990873 3.900909

15 0.29729 0.663055 0.17481 0.183573 6.804746 6.368093

20 11.62538 10.94951 5.450796 5.435345 26.52821 25.72473

25 2.673512 2.280291 1.33838 1.328666 10.31846 9.84638

30 3.681494 3.445163 2.30148 2.295452 7.046086 6.752016

35 0.951692 0.506283 0.513155 0.501914 9.433978 8.899616

40 2.534392 3.238241 4.575052 4.589017 18.67599 17.87519

45 0.832237 1.339673 1.974308 1.919816 10.69527 7.058141

50 2.353259 2.656975 2.173367 2.192281 17.62235 17.26859

55 1.095516 0.893759 0.015624 0.035112 9.604691 9.337287
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Figure 15: Data and DRF of members of interest after initial failure of two members 

 

3.6 Dynamic Modelling result analysis  

The DRF analysis of the case model have shown that the bottom braces of the 

designed offshore structure bear most of the dynamic load. In the case described above 

the bottom braces yields a maximum load amplification of 25 due to the applied wave 

force equivalent to 11KN nodal force. These bottom members are much more difficult to 

access and repair, implying that a lot of front end engineering design (FEED) work is 

necessary for structural robustness of these members. This also implies that, in addition 

to ensuring that the cathodic protection for the structure is functional, the bottom brace 

materials, as well as structural legs that will be submerged in water have to be made 

Frequency(rad/s) 12 30 7 13 6

Static 0.159978 1239.27 25.8538 1.5071 39.1147

10 88.5944 1552.31 327.31 86.357 248.911

15 174.266 10241.2 670.296 182.807 560.89

20 175.234 1506.6 623.128 171.415 489.441

25 84.635 1318.33 347.713 82.9135 268.38

30 5.87132 918.57 180.667 2.50782 132.823

35 150.349 1114.07 415.066 240.55 313.074

40 90.807 3518.44 798.734 812.559 741.046

45 201.831 2349.88 555.719 201.831 992.84

50 174.75 1472.06 261.912 173.219 219.83

55 174.35 1072.24 271.713 92.1541 271.713

Frequency(rad/s)

12 30 7 13 6

10 553.7911 9703.272 2045.969 539.8055 1555.908

15 1089.312 64016.3 4189.926 1142.701 3506.045

20 1095.363 9417.545 3895.086 1071.491 3059.427

25 529.0415 8240.696 2173.505 518.2806 1677.606

30 36.7008 5741.852 1129.324 15.67603 830.2579

35 939.8105 6963.895 2594.519 1503.644 1956.982

40 567.6218 21993.27 4992.774 5079.192 4632.174

45 1261.617 14688.77 3473.721 1261.617 6206.103

50 1092.338 9201.64 1637.175 1082.768 1374.126

55 1089.837 6702.422 1698.44 576.0423 1698.44

STRUCTURAL MEMBER REACTION TO 11KN LOAD
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much thicker and with stronger steel grades. The corrosion risk on these main load 

bearing members can also be managed by applying stricter fabrication methods and 

standards. This is especially critical considering that these members also have to 

support the hydrostatic load which is not felt by other members that are not submerged. 

With the failure of two bottom brace, the dynamic load amplification of all other 

structural members increased as shown in the figure15. The finding of this FEA result is 

in line with assertion by Lee & Shin [29] when they documented that the existence of 

structural damages within a structure leads to the changes in dynamic characteristics of 

the structure such as the vibration responses, natural frequencies, mode shapes, and 

the modal damping.  

The foregoing therefore means that by designing a smart system that records the 

changes in dynamic characteristics of a structure we can detect structural damages 

within such structure. This is the basis for the advocated smart structure for reliability 

updating process documented and explained below. 

 

 

3.7  SMART OFFSHORE STRUCTURE FOR RELIABILITY 

PREDICTION  

The fact that structural failure can be detected by designing a smart measurement 

system that records the changes in dynamic characteristics of a structure has been 

demonstrated in section 3.8. Though recommended for new structures, retrofitting the 

advocated process improvement to existing structures will not be difficult since higher 
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deflections will always occur around the top of the designed structure and higher 

magnifications will also be noticed around the top and middle braces of the respective 

structures when any of the bottom braces fail. Also, since the DRF is a ratio of output to 

input forces, this process  could eliminate the requirement for precision in the 

determination of anticipated maximum design load. The deployment challenge would 

however be the limit to vibration sensors that could detect the very slight deflections 

noticeable in fixed offshore structures. This detail of the advocated smart structure for 

reliability updating process is documented in figure 16 and explained below. 
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Fig. 16 : SMART OFFSHORE STRUCTURAL RELIABILITY PREDICTION PROCESS 
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The shortcomings of the current reliability process are explained in section 4.3. This 

recommended process, aimed at addressing some of shortcomings of the current 

reliability process, involves the generation of failure realisations 𝐹𝑥1,𝑦1,𝑧1
, 

𝐹𝑥2,𝑦2,𝑧2
... 𝐹𝑥𝑛,𝑦𝑛,𝑧𝑛

, generation of pseudo DRFs 𝐹′
𝑥1,𝑦1,𝑧1

, 𝐹′
𝑥2,𝑦2,𝑧2

... 𝐹′
𝑥𝑛,𝑦𝑛,𝑧𝑛

 based on 

measurements and designing an electronic system for continous matching of 𝐹𝑥1,𝑦1,𝑧1
 , 

𝐹𝑥2,𝑦2,𝑧2
... 𝐹𝑥𝑛,𝑦𝑛,𝑧𝑛

 to respective  𝐹′
𝑥1,𝑦1,𝑧1

 , 𝐹′
𝑥2,𝑦2,𝑧2

... 𝐹′
𝑥𝑛,𝑦𝑛,𝑧𝑛

.  

𝐹𝑥1,𝑦1,𝑧1
 is the DRF realisation in x,y,z direction based on dynamic loading of a particular 

member and 𝐹′
𝑥1,𝑦1,𝑧1

 is a Pseudo DRF realisation in x,y,z direction based dynamic 

loading of the corresponding member.  The calculation of the DRF has been discussed 

in section 3.5 through 3.7. The process for the generation of pseudo based dynamic 

response function involves the use of sensors on any given offshore structure for 

gauging water level, measuring wave angular velocity and the corresponding structural 

deflections. An algorithm can then be developed for estimating the real-time wave force 

based on measured data and using these real time data to determine both the DRF and 

the Pseudo dynamic response function. By continuous trending of the calculated DRF 

and Pseudo DRF any onset of trending anomaly can be used to identify the onset of 

failure and by comparing the DRF at failure with defined failure realisation data an 

estimate of the failed member can be made. 

The selection of measurement systems requires further research and this proposed 

technology improvement can contribute to savings in steel usage by using suitable 

HUMS technology to justify the use of fit for purpose design factors for middle and top 

brace members of the designed offshore structure. The intent for the use of the HUMS 
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monitoring for these members would be to determine the onset of failure of the 

submerged members and hence determine when to reinforce the upper members or 

when to plan the repairs of failed bottom members. 

This recommended approach is suitable for detecting all failure causes as the  structural 

failure will be detected irrespective of failure cause if a suitable sensing technology is 

applied an integral part of the given offshore steel structure. Whether the failure is as a 

result of earthquake, corrosion, frequent boat landing, accidental impacts or even 

explosion it will be detected. It is also possible that real time online data from these 

sensors can be designed and transmitted via satellite to an operational base where the 

data will be used for real time updating of the offshore reliability data. 

The approach described above for a single member failure can be used to generate  

several DRFs for several single or multiple member failures. The DRF so created can 

be stored in a database as Structural Failure Models. Measurement systems can then 

be created for the designed structure and used together with real time data response to 

determine when a particular structural member has failed based on a matched SFM.  

 

3.8 CHAPTER CONCLUSSION  

The case study has shown that if we have a way of monitoring deflections in the 

fractional millimetre range, we could use the results from such measurement for the 

detection of member failures through the monitoring of DRF in offshore structural 

members. The DRF is a ratio of output to input signals hence the suggested 
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measurement approach will eliminate the requirement for exactness in the 

determination of the anticipated maximum design load in an offshore structure. 

The selection of measurement systems requires further research and where such 

sensors are available, they can be made part of the offshore structural design for 

monitoring of vibration trends. This measurement based reliability updating technique 

could lead to some cost savings especially in marginal offshore field development 

where the hydrocarbon accumulation cannot pay for the deployment of huge offshore 

structures. 

  



 

  61 

 

4 UNCERTAINTY MANAGEMENT AND 

STRUCTURAL RELIABILITY ISSUES  

 

4.1 UNCERTAINTY MANAGEMENT 

Every project has an associated risk which is a representation of what we do not know. 

These risks can be Technical, Economic, Commercial, Operational or Political. The 

offshore Technical risks have been discussed in chapter 2. Uncertainty management 

involves processes for managing risks while risk management is what you can achieve 

if you manage well despite conditions of uncertainty.  

One uncertainty management technique involves the use of probabilistic forecasts 

about the future and calculating summary statistics from those distributions as risk. A 

more recent way of managing uncertainties include the use of Design of Experiments 

(DOE) which aims at using statistical models to address data paucity. This technique 

involve the use of independent variables to create possible realizations that could be 

used to manage project uncertainties. The cyclic wave force acting on an offshore 

structure, for example, depends on wave force direction, water level, wave height, 

angular velocity etc. A set of possible combination of all realizations of these variables 

can be used to generate a PDF of the forces on individual structural members and this 

can be used as a design basis for the structure. This is a probability based design and 

in a similar way the reliability estimate for such structure can be based on probability.    
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Inspection and monitoring is routinely used for managing uncertainties for offshore 

structures. The techniques and tools to conduct such inspections vary widely from 

country to country. In some instances periodic inspection is required by law while in 

other instances there is no such requirement once a structure has been installed. The 

total cost of underwater inspection to the operator is also high, especially if production 

interruption is required, and will get higher as the water depth and structural complexity 

increases.  

A detailed review of issues relating to underwater inspection has been documented [30]. 

Traditionally the diver has been, and still is, the primary inspector for offshore structural 

defects and visual inspection, photographic and video documentation have been his 

primary tools. The review reveals that until 1953 the only requirements for inspection of 

such structures were those which the platform operator/owner elected to impose upon 

themselves. In the U.S. this situation still prevails although the U.S. Geological Survey 

in 1953 and the Occupational Safety and Health Administration in 1970 obtained 

statutory permission to conduct and/or require inspection of structures in U.S. waters. In 

England five classifying societies are authorized to set standards for underwater 

inspection: Lloyds Register of Shipping, Germanischer Lloyds, Bureau Veritas, Det 

Norske Veritas (DNV) and the American Bureau of Shipping [30]. 

There is also no strong financial incentives for structural health monitoring as a way of 

managing the reliability of offshore structures. This is partly because there is no 

regulatory requirement for such in all locations. From the operator’s point of view, the 

structure is just an enabler rather than the “actual” asset. Once there is enough 

hydrocarbon reserves, the required structure will be built and the given structure will be 
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abandoned once the reserves are recovered.  The cost of inspection and production 

interruptions are fully captured in the project economics and companies can afford to 

accommodate inspection and maintenance costs which sometimes are huge if there are 

enough hydrocarbon reserves to be exploited.   

The use of measurement techniques for uncertainty management is much more recent 

and have demonstrated huge capacity in uncertainty management. This approach 

addresses the uniqueness of any given facility and can be used, through elimination 

process, to point to the exact model failure realization. This continuous data acquisition 

process for uncertainty reduction has gradually developed into health Usage and 

monitoring systems (HUMS) technology. Continuous data acquisition has been applied 

in subsurface hydrocarbon development as a way of managing uncertainties. This 

involves regular Bottom hole pressures (BHP) surveys for monitoring of reservoir 

pressure depletion, reservoir saturation logs for monitoring of hydrocarbon contact 

movement etc. With this approach the uncertainties with respect to hydrocarbon 

reserves are continuously updated and used for redevelopment planning.  More 

recently, the introduction of Smart-well technologies has further reduced the 

requirement production interruption for data acquisition and hence accelerated remedial 

activity planning response time.  Pressure gauges, Distributed temperature surveys 

DTS, flow meters are now part of the Smart well completion such that real time 

uncertainty management are possible through the integration of the data from these 

Smart wells for regular update of the reservoir models.  
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4.2 STRUCTURAL RELIABILITY 

One way of managing the offshore structural design uncertainties involves the use of 

generous design safety factors. However the increasing demand for steel and the 

associated long lead times between order and delivery makes the use of very generous 

design factors very unpopular.  

Structural reliability index (β) was introduced in offshore structural engineering as a 

statistical concept for estimating failure probability of any given structure. It is 

associated with the notion of dependability and survival of offshore installations in the 

face of structural integrity threats [31]. It is determined using quantitative measures of 

failure and is based on the priority of regulators to develop internal guidance on the 

appropriate use of reliability techniques which is used to determine if the structure as a 

whole survives by assessing various combinations of members and their associated 

load effects. 

Once a decision to construct a facility has been made, the uncertainties affecting the 

Reliability index (β) for the designed structure can be grouped in terms of modelling and 

measurement capabilities as shown in table 10 below: 
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Uncertainty Uncertainty 

Class (Risk) 

Impact  

(cost, & 

schedule 

overrun)  

Uncertainty management 

• Metallurgy. 
• Manufacturing methods. 
• Welding. 

Low Medium Design standards (e.g. API, 

Eurocodes etc). 

• Modelling Low Medium Research and process 

improvements. 

• Service loads (cyclic loads 
and thermal loads) in familiar 
environment. 

 

Low Low History and design Reviews. 

• Corrosion, & Cathodic 
protection effectiveness. 

Low Medium Modelling / measurements 

• Service loads (Cyclic loads 
and Thermal loads) in new 
frontlines 

 

High High Use of analogues 

• Shocks and explosion. 
• Boat landing & deck mating 

impact. 
• Unpredicted Sea 

environment 
• Earth movements 

High High Measurement of shock effects 

on designed models 

 Table 10 Offshore structural design Uncertainty classification  

With over 100 years of improvements in offshore facilities construction, a lot of process 

improvements have been made in metallurgy and fabrications methods such that the 

uncertainties due to these issues are classified as low and well controlled. Also with 

developments in super fast computers and research on experimental testing the 

uncertainties with respect to the representation of physical, mechanical and processes 

with mathematical algorithms is so enhanced that the uncertainties with respect to these 

issues are well controlled and managed. Marine corrosion and the anticipated load on 

very benign marine environment are also known and managed. Unfortunately the 



 

  66 

service load in new frontiers as well as shocks, explosions, boat landing and deck 

mating impacts, unpredicted sea environment, earth movements carry a lot of 

uncertainties.  The HSE management business control discussed in chapter 2 requires 

that the management of high risk, high impact activities must be governed by detailed 

standards and stricter design codes.  

A review of the current design limits and standards for offshore structures concluded 

that external factors such as load, model accuracy, failure prediction accuracy, model 

updating process demands a detailed consideration as they all have a direct effect on 

the confidence of the predicted reliability [32]. Also selecting the reliability targets for 

structural engineering purposes is difficult because of the unique nature of the facility in 

question, limited data, and small limit state probabilities of relevance [33]. The US Navy 

Argus Island Tower in Bermuda failed within ten years of operations in 1969 as a result 

of storm generated wave height of 21m which was also the wave weight upon which the 

tower design was based [34]. The structural failure for this structure was assessed as 

being too costly to repair and maintain and hence the tower was demolished. Also the 

effect of hurricane Rita and Katrina are constant reminders that not much is known 

about the character of most tsunamis or hurricanes. Hurricane Ivan, Katrina, and Rita 

that passed through the GOM during 2004 and 2005 are some examples of high risk, 

high Impact events. The total remaining reserves from the set of destroyed structures 

destroyed by those hurricanes range in value between $1.3 and $4.5 billion [6].  

It is often difficult to plan repair after a high impact event like Tsunami. This is primarily 

because of the uncertainty involved in damage assessment and remedial cost 

estimation. Mark Kaise et al [6] highlighted that some of the questions raised following 
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the Katrina and Rita hurricanes include whether current design standards are adequate, 

whether current monitoring systems are sufficient, whether  pipe laying in mudslide 

areas is appropriate and whether all pipe work should be buried. The costs of the 

resulting repairs after major platform damage are usually weighed against the potential 

revenue generating capability from the given structure. The revenue generation 

potential is expressed through the remaining reserves, expected production levels, and 

future hydrocarbon prices. If the anticipated benefits exceed costs, redevelopment may 

be approved while deferral or decommissioning will be recommended if repair costs 

exceed potential benefits. Even in cases where no visible damage is evident on the 

impacted offshore structure, some form of reliability re-assessment is needed prior to 

production start-up. Such reassessment exercise could involve some expensive and 

time consuming inspection scenario planning. The scenario planning depends on the 

experience of the assessment team and hence still carries some uncertainties. Most 

times an initial data modelling planning approach had to be followed by a physical 

inspection before decisions can be made for production start-up. As a result of the 

foregoing, some step out process for monitoring the effects of these high risk, high 

impact events on the designed structure is therefore recommended for the management 

of these uncertainties.  

 

4.3 CURRENT STRUCTURAL RELIABILITY PROCESS 

The Reliability Analysis for Linear Safety Margins has been discussed and documented 

[35]. The analysis will be presented here for analysis of uncertainty management and 
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how the concept for recommended smart offshore structure for reliability prediction 

process was scoped. 

Figure 17 Failure function  

A safety margin, which is linear in basic variables, can be written 

M =  𝑎𝑜 + 𝑎1𝑥1+...+ 𝑎𝑛𝑥𝑛   

where 𝑎𝑜 , 𝑎1,..., 𝑎𝑛 are constants. The expected value µ𝑀 and the standard deviation 

σ𝑀 are: 

µ𝑀 =  𝑎𝑜 + 𝑎1µ𝑥1+...+ 𝑎𝑛1µ𝑥𝑛=  𝑎Tµ𝑥 

𝜎𝑀  = √𝑎T𝐶𝑎               

        

 

If the basic variables are independent then  
 

𝜎𝑀  = √𝑎1
2𝜎𝑥1

2 + ⋯ + 𝑎𝑛
2𝜎𝑥𝑛

2                                                                                            

 
As a measure of the reliability of a component with the linear safety margin the reliability 

index β can be used: 

P 

S 
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β = 
µM

σM
  

If the basic variables are normally distributed and the safety margin is linear then M becomes 

normally distributed. The probability of failure is, see figure 18: 

 

𝑝𝑓 =  𝑃(𝑀 ≤ 0)=  𝑃(µM + 𝑈σM ≤ 0) = 𝑃 (µM ≤ −
µM

σM
)=φ(-β) 

where Φ is the standard normal distribution function and U is a standard normally distributed 

variable with expected value zero and unit standard deviation (µU = 0, σU =1). 

 

Figure 18 Reliability index and probability of failure.  

 

If the stochastic variables P and S are independent then the reliability index becomes: 

 

β = 
µM

σM
 =

µS−µP

√σS
2+σP

2
 

from the above equation the reliability index β depends on the PDF distribution of the 

applied force and hence the PDF resistance for the respective structural members. 

The PDF for the applied force will depend on the PDF of water depth, wave angular 

velocity and wave direction. Therefore the reliability index as currently practiced is a 

U 

  

 

φ(μ) 

-β 
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generally accepted way of managing these uncertainties.  Several researchers have 

reviewed the process for reliability prediction and refined the process for managing 

uncertainties with respect to statistical reliability prediction. Notwithstanding these past 

efforts, selecting the reliability targets for structural engineering purposes is still difficult 

because of the unique nature of each facility, limited data, and small limit state 

probabilities of relevance [33]. Also the calculated Structural Reliability for any given 

structure, by definition, changes with the amount and quality of the information on basis 

of which it is calculated.  

 

4.4 DATA DRIVEN UNCERTAINTY MANAGEMENT 

It would then be desirable to have a structural design model that enables fast and 

reliable decisions based on some dependable data during the operate phase of such 

facility. These data will help in reliability assessment post emergency situations like 

earthquake or major accidents. This would be analogous to the role played by flight data 

recorders post flight emergencies in the aviation industry. This aspiration was supported 

Cruz  and Krausmann [36] when they noted that there was little coordination and 

guidance in efforts to carry out post-storm assessments after Katrina and Rita and 

hence recommended that industry needs to work on improved pre-storm preparation 

and planning through post-storm response and recovery. 

So how can we ensure that the residual uncertainties on the predicted reliability for any 

offshore structure can be verified as being ALARP or what else can we do to improve 

on the management of structural reliability uncertainties during emergencies.  
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To achieve ALARP requires a cost effective, efficient and reliable system. The question 

then is whether there are workable systems in other engineering sectors that can be 

copied and adapted to the offshore reliability prediction process. The SMART Wells 

operations in subsurface hydrocarbon development looks like a suitable analogue. 

Table 11 compares the components of the smart well operations concepts to equivalent 

components in offshore structural engineering. It should be noted that while the smart 

well was designed to manage reserve uncertainties, the smart offshore reliability 

prediction process can be designed to manage the remaining life of any given structure. 

The detailed comparison of the selected technology analogue is shown below:  

 Technology Analogue Offshore Structural equivalent  

Asset Subsurface trap (STOIIP) Offshore Structure 

Managed Uncertainty  Reserves Remaining life 

Monitoring points Wells draining the reserves Nodes within the offshore structure 

Desired measurements Production, Fluid contacts Deflections, vibrations and DRF 

Results  Remaining field life. Asset value  Remaining facility life. Asset value 

Table 10 Smart Offshore structural Reliability technology analogue  

Having identified an analogue technology application in Smart Well operations, an 

attempt is made to build a case for a change to Smart Offshore Reliability prediction 

Process. 
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4.5 CASE FOR CHANGE IN METHODOLOGY 

A detailed review of methods for structural system reliability was undertaken and some 

of the findings and conclusions of the review by Ditlevsen and Bjerager [14], which tend 

to support an urgent design for further process improvements, include: 

 

 That the mathematical methods of structural systems reliability analysis beyond 

the event of first element failure requires quite restrictive mechanical idealizations 

either of the failure performance of the structure or of the load history.  

 That except for very simple structures or for model structures defined to have 

ideal elastic-plastic performance, meaningful statements about the structural 

system reliability can at present only be given for proportionally increasing 

loading i.e. for essentially a deterministic load history.  

 That only upper and lower probability bounds can be calculated, and these 

bounds may for larger structural systems be quite wide.  

 That without an explicit definition of the load history it easily becomes impossible 

to judge under which conditions some advocated engineering approach really 

gives a valid estimate of the system reliability. 

Also the construction and installation method for offshore structures introduces some 

huge uncertainties on the Limit State analysis. The computing ability to accurately 

model the effect of welded joints to great accuracies is yet to be achieved. We also do 

not we have real calibrations on joint failures other than those determined through 

laboratory experiments. Also loading the offshore structures in even fairly advanced 
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models are still based on assumptions, and the coupling of corrosion modeling 

experimental results is still an area of further research.  

It has been demonstrated in chapter 3 that the frequency response analysis can be 

used for the identification of the system characteristics of any given offshore steel 

structure. If the frequency response functions (FRFs) of the modified structure can be 

computed then it is possible that through some form of measurement, the delta change 

in measured dynamic data can be used to determine when the structural stiffness is 

modified through crack, crack propagation or a member failure. We know the 

uncertainties on predicted structural reliability reduce with the amount and quality of the 

information on basis of which it is calculated. We also know that measurement systems 

can be designed based on the technology analogue presented in section 4.4. We also 

know that the frequency response function (FRF) does not necessarily have to be 

calculated based on model simulation but can also be calculated based on 

measurements from the given.  

However the reality is that some gaps still exist between our measurements based 

reliability prediction process aspiration and the current reality. The gap relate to the limit 

of available sensing technology. Some advances have been made on the use of very 

sensitive accelerometers to detect and monitor vibration in the past but before delving 

deep into further research on sensing techniques there is need to evaluate, even though 

notionally, the potential gains derivable from this measurement based reliability 

prediction effort. 
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4.6 VALUE OF INFORMATION ECONOMICS 

A necessary condition for an offshore field development project to be economic requires 

that the future precedes from discovered subsurface hydrocarbon accumulation pays for 

the field development project (FDP) capital expenditure (Capex) and Operating 

expenditure (Opex). The FDP activities include well costs for drilling, crude processing 

and transportation, facility construction and deployment as well as all abandonment 

expenditures.  

A value of information case modelling was undertaken to quantify some data driven 

economic results (gains or losses) that could arise as a result of optimal maintenance 

programme that is underpinned by data from the structure under consideration. This 

VOI economics is based on a 30 year facility design life that will be abandoned in 2025.  

The planned decommissioning is based on economics and platform reliability. This 

value of information case relates to the cost of capital that is available for data 

acquisition and analysis to determine if any life extension possibility exists after 2025 for 

safe operation of the given facility to produce some of the remaining reserves. The 

premise for this economic analysis are: 

Oil prize :    $60/bbl 

Condensate prize :  $60/bbl 

Gas prize :    $1.7 / mmbtu 

Cost sensitivity   100% 

Production :   100% 

Royalty  rate :  85% 

Other Tax rate :  30% 
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Discount rate :  10% 

Other input data are shown in table 11 below: 

 

Table 11 VOI economics input data 

The governing equations for the Net present value economics is  

NPV = ∑
C𝑡

(1 + 𝑟)𝑡
+ C0

𝑇

𝑡=1

 

C𝑡= net cash inflow during planning period 

C0= initial (unrecovered) investment 

 r = discount rate 

Data Input : 2025 Abandonment 
date 

                  Project   Days 366 365 365 365 366 365 365 365 366 365 365 365 366 365 
   

Production     2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 
   

Oil/Associated Gas                                 
   

 Oil Rate kbbl/d 
90.6

5 30.00 27.60 25.39 23.36 21.49 19.77 18.19 16.74 15.40 14.16 13.03 11.99 11.03 0.00 
   

 AG Produced Rate mmscf/d 
45.3

3 15.00 13.80 12.70 11.68 10.75 9.89 9.10 8.37 7.70 7.08 6.52 5.99 5.51 0.00 
   

Non-Associated Gas/Condensate                               
   

 NAG Rate mmscf/d 
949.

8 200 200 200 200 200 200 200 200 200 200 200 200 200 0 
   

 Cond Rate kbbl/d 
9.49

8 2 2 2 2 2 2 2 2 2 2 2 2 2 0 
   

Capex RT 2012   2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 
   

 Facilities (Processing) Mln USD 18                           18 
    Oil Well Capex 

(Drilling) Mln USD 0                             
    NAG Well Capex 

(Drilling) Mln USD 0                             
   

                    

                    Data Input : 2028 Abandonment 
date 

                  
Project   Days 366 365 365 365 366 365 365 365 366 365 365 365 366 365 365 365 366 

Production     2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 

Oil/Associated Gas                                       

 Oil Rate kbbl/d 
100.

9 30.00 27.60 25.39 23.36 21.49 19.77 18.19 16.74 15.40 14.16 13.03 11.99 11.03 10.15 9.34 8.59   

 AG Produced Rate mmscf/d 
50.4

5 15.00 13.80 12.70 11.68 10.75 9.89 9.10 8.37 7.70 7.08 6.52 5.99 5.51 5.07 4.67 4.29   

Non-Associated Gas/Condensate                                     

 NAG Rate mmscf/d 1169 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200   

 Cond Rate kbbl/d 
11.6

9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   

Capex RT 2012   2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 
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 t = number of time periods  

T = end of field life  

For the case study above the NPV is generated from the sale of Oil, gas and 

condensate as shown in table 11. Royalty and tax rates are calculated by applying the 

applicable royalty and tax rates on the generated gasflow from salses of hydrocarbons.  

Therefore  NPV = NPV𝑜𝑖𝑙+NPV𝑔𝑎𝑠-Royalty-Technical cost-Taxes 

Economics analysis and sensitivities were executed to compare the NPV of the given 

field if the offshore structure will be abandoned in year 2025 as planned or if the 

planned abandonment can be rescheduled to 2028. The decommissioning cost of 

$18mln is spent in 2025 and 2028 for the respective scenarios. The economic analysis 

shows that the field NPV increased from $909mln to $983mln if any information can 

reveal that the platform life can be extended by three years from the originally planned 

abandonment year of 2025 to 2028. Figure 19 and 20 shows the respective economic 

runs for field  abandonment date of 2025 and 2028. The calculated NPV is sensitive to 

hydrocarbon production and operating cost as shown in the respective tornado charts 

for the respective abandonment dates. Production sensitivity of 60% and 125% of base 

production was used while the cost performance of 70% and 145% was used for the 

calculation of tornado chart.  
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 Figure 19  VOI ECONOMICS ANALYSIS WITH 2025 ABANDONMENT DATE  
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Figure 20 VOI  ECONOMICS ANALYSIS WITH 2028 ABANDONMENT DATE  

This economic analysis shows that $74mln is the VOI for any life extension technology 

that could reveal the possibility of extending the life of the given platform from 2025 to 

2028 as the net present value (NPV) of the overall project would have increased from  
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$983mln to $983mln. On the other hand if the same data reveals the need to abandon 

earlier than 2025 then some critical HSE decisions could be made to safeguard the staff 

and the environment from serious impacts.  

If  some $74mln NPV can be gained by extending the life of a medium sized 30Mbopd 

offshore platform by three years then there could be huge potentials for some 17000 Oil 

and gas platforms by researching on technologies that could more accurately predict 

offshore structural reliability and yield potential life extension of these structures. 

Several sensitivities on this result still show some huge potential on this research into 

this proposed new approach to data driven reliability prediction process even at a 

quarter probability of success (POS). 

 

4.7 CHAPTER CONCLUSIONS  

One way of managing uncertainties for offshore structures include the requirements for 

underwater inspection of these structures. The techniques and tools to conduct such 

inspections vary widely from country-to-country. In some instances periodic inspection 

is required by law while in other instances there is no requirement whatever once a 

structure has been installed. The instruments to conduct underwater inspections also 

vary; their effectiveness is sometimes questionable, and the total cost of underwater 

inspection to the operator is high and will get higher as the water depth and complexity 

of the structure increases.  

There is also no strong financial incentives for structural health monitoring as a way of 

managing the reliability of offshore structures. The offshore maintenance inspection 
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objective is to locate defects and based on the size and location of such cracks or 

defects a detailed cause and effect analysis is then used for recommendation of 

immediate repairs or otherwise. The lowlight to this approach is that most times only the 

external corrosion and cracks are seen and so the effect of internal corrosion and 

defects are not properly represented nor assessed.  Do we really have a case for 

improvement in operational excellence in reliability engineering or should we continue 

with routine inspection and monitoring programme ? One of the major hindrances for 

the improvement in functional excellence is lack of research cooperation and funding. 

Most organisations are also not able to share their maintenance programme. The case 

study result shows that for a small production platform some $74mln opportunity could 

exist if some data driven reliability prediction process can be made through 

measurement based reliability updating process.  

Apart from the increasing demand for use of offshore structures in oil and gas 

development, there is also an increasing demand in renewable energy as documented 

in chapter 2. Climate change, the soaring global electricity demand, the scarcity of fossil 

fuels, and consequently, their rising costs, make renewable energy gain importance. 

Wind power and solar energy are promising alternative energy sources and can help 

countries lacking natural resources gain greater independence from fossil fuels and 

secure their own climate-friendly energy supply. It is projected that renewable energy 

will account for 17% of world energy demand in 2030 [37]. The offshore wind renewable 

energy source are also based on steel structures and whatever reliability prediction 

processes used for offshore structures also apply. However, unlike the inspection of 

offshore structures which involve diving for shallow water inspection, inspection of a 
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wind turbine towers are cost prohibition.  The additional cost and safety issues for 

erecting the required scaffold for wind turbine structures is much more than that 

required for diving in offshore structures and sometimes can be prohibitive.  

In 2012 four hundred and seventeen (417) offshore structures were constructed for wind 

turbine [38]. Similar number of structures were constructed for hydrocarbon exploration 

and production and it is projected that this level of offshore deployment will continue up 

to 2030 in support of world energy demand. This implies that the value of the proposed 

smart structure for reliability updating process could be huge. This cost analysis could 

be a subject of further research but are indicative of value upside considering that a 

$74mln opportunity exists in medium sized shallow water offshore Oil and gas 

exploration and production through a three year life extension decision.   

Based on the forgoing, a further investment in research is therefore recommended to 

test the feasibility of piloting a data driven reliability improvement process. This would 

help determine if we can live with defects based on actual data or determine the optimal 

life of a facility based on data.  
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5   RESEARCH CONCLUSSION 

5.1 RESERACH CONCLUSSIONS 

The goal of forecasting is not to predict the future but to tell you what you what you 

need to know to take action in the present [39]. Similarly the objective of reliability 

engineering in offshore structures should be to find what we need to know in other to 

predict the current safety performance of any given structure. The desire for a proactive 

safety culture in offshore structural engineering could not have come at a better time 

than now due to increased demand for energy as a catalyst for development on one 

hand and the general global economic stagnation that calls for cost cutting measures on 

the other hand. Other drivers for this improved HSE performance include projected 

increase in the number of new offshore structures in support of oil and gas exploration 

and renewable energy extraction.  

Notwithstanding every effort aimed at guaranteeing energy supply and security, it is 

projected that fossil fuels will continue to supply the main share of the world’s energy 

supply in the foreseeable future. Offshore structures are very vital in chasing the limited 

patches of offshore petroleum and natural gas around the world as well as offshore 

renewable energy. The increasing demand for renewable energy is driven by climate 

change, soaring global electricity demand and the scarcity of fossil fuels among other 

things. The wind power and solar energy are the most competitive of the renewable 

energy sources and are helping countries lacking natural resources gain greater 

independence from fossil fuels and secure their own climate friendly energy supply. It is 
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projected that renewable energy will account for 17% of world energy demand in 2030. 

In 2012 four hundred and seventeen (417) offshore structures were constructed for wind 

turbine. Similar numbers of structures were constructed for hydrocarbon exploration and 

production and it is expected that this growth in the overall number of construction 

projects will continue. Unlike the maintenance inspection of offshore structures which 

involve diving for shallow water inspection, inspection of offshore wind turbine towers 

are cost prohibitive.  The additional cost and safety issues for erecting the required 

scaffold is much more than that required for diving in offshore structures hence the 

application of the recommendations of this research can also be applicable in 

monitoring of the reliability of offshore wind turbine structures.   

A review of the developments within the field of structural reliability theory with particular 

attention to structural systems shows that some gap still exist in the reliability prediction 

process. This is partly because the estimated reliability indices do not express a 

physical property of the structure but a measure of safety based on a general 

probabilistic model. It has also been shown that the calculated structural reliability for 

any given structure, by definition, changes with the amount and quality of the 

information on the basis of which it is calculated hence reinforcing the need for 

designing a smart structure for reliability prediction process such that continuous data 

from the structure will continuously be used to update the reliability of that structure at 

any given time.  

Another setback to the current practice is based on the fact that  selecting the reliability 

targets for structural engineering purposes is difficult because of the unique nature of 

each facility, limited data, and small limit state probabilities of relevance. One way of 
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closing this gap is to design a monitoring system that measures some physical 

properties of any given structure. Structural deflection and damping are some of the 

measurable physical properties of any given offshore structure hence a case study was 

undertaken to evaluate the magnitude of these measurable properties. This research 

has therefore recommended the use of these measurable properties to design an 

improvement process such that the data from the structure will be used to estimate the 

remaining life of the structure.  

This thesis has propounded that if we have a way of monitoring deflection in an offshore 

structures, we could use the results from such measurement for the detection of 

member failures by monitoring the load redistribution in the form of increased DRF in 

other structural members. The applicability of this process improvement has been 

documented in this research. Though recommended for new structures, retrofitting the 

advocated process improvement to existing structures will not be difficult since higher 

deflections will always occur around the top of the designed structure and higher 

magnifications will also be noticed around the top and middle braces of the respective 

structures when any of the bottom braces fail.  

 

5.2 RESERACH IMPLEMENTATION SETBACK 

The deployment challenge to this propounded thesis would be the sensitivity of current 

strain or vibration sensors.  Other issues militating against the non implementation of 

the thesis recommendations include lack of financial incentives for the use of Structural 

health monitoring devices. The operators views the structure as an enabler rather than 
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the “actual” asset. Once there is enough hydrocarbon reserves, the required offshore 

structure will be built for the required wellhead and production platforms and will be 

abandoned once the reserves are recovered.   

There is also no universal regulatory requirement mandating the implementation of 

regular inspection of offshore steel structures in accordance to any particular standard 

in any given location. The cost of inspection is also relatively cheap in shallow offshore 

structures. The inspection objective is to locate defects and based on the size and 

location of such defects a detailed cause and effect analysis is then used for 

recommendation of remediation plans. The lowlight to this inspection based approach is 

that most times only the external corrosion and cracks are seen and so the effect of 

internal corrosion and defects are neither properly represented nor assessed.  Also 

most organizations are not willing to share their structural design, performance, and 

maintenance data hence making it difficult for the industry to undertake performance 

improvement research on the use of HUMS technology in offshore reliability prediction 

process.  

 

5.3 Recent developments in measurement based reliability research  

Hillis & Courtney [40] studied and documented structural health monitoring of fixed 

offshore structures using the bicoherence function of ambient vibration measurements 

to provide automatic early detection of damage in an offshore structure. This 

experimental research demonstrated that very small changes in stiffness of individual 

structural members are detectable from measurements of global structural motion. 
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Kopsaftopoulos & Fassois [41] undertook a comparative experimental assessment of 

vibration based statistical time series for Structural Health Monitoring (SHM) and their 

application to damage diagnosis in a lightweight aluminium truss structure. Their 

experiment assessment concludes, among other things, that statistical time series 

methods for SHM achieve damage detection and identification based on vibration 

response signals.   

Also the damage detection in offshore structures using neural networks was studied by 

Ahmed et al [42]. Their experimental research showed that the random decrement 

technique can be used to extract the free decay of the structure from its online response 

while the structure is in service and can be used routinely to discover any changes in 

the shape of the damage index. 

 

5.4 New knowledge contribution from this research 

The most recent research works in the Smart Offshore Structural area were highlighted 

in section 5.3. All of these researchers agree that early detection of an offshore 

structural failure is possible through some measurement systems. These research 

conclusions are based on laboratory experiments but the recommendation from this 

research is slightly different based on the following:  

1. It is based on generation of failure realisations from Dynamic Response 

Functions and trending of measurement based DRF to determine the onset of 

failure in an offshore structure. As a result, the proposed Smart Offshore 
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structure for reliability prediction process can form part of the basis for future 

prediction of offshore structural reliability prediction process. 

2. It provides a better way of managing uncertainties and eliminates the need for 

detailed estimation of the wave load in any given environment. Only an idea of 

the uncertainty range is needed.  

3. It could be used to pin point the exact structural member that failed by trending 

the DRF for the given structure and comparing that with several failure 

realizations for any given structure. 

4. It can yield failures due to internal corrosion which is not revealed from Inspection 

based reliability updating process.   

5. It can be used to re-evaluate old and aging structures. 

The recommended Health monitoring systems are readily available and widely used in 

automotive engineering and the oil and gas industry. The recommended Smart Offshore 

structure for reliability prediction process will help and  provide a more holistic view of 

the facility’s health by integrating asset performance and health monitoring data with 

maintenance data.  
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5.5 JUSTIFICATION FOR FURTHER RESEARCH 

The case for the deployment of Smart Offshore Structure for Reliability Prediction 

Process has been made. A notional economic case study also shows that for a 

30,000bopd production platform projected to be producing about 11,000bopd by 2025 

abandonment date, some $74mln opportunity exist if some data driven reliability 

prediction recommendation can be made through measurement that could defer the 

abandonment to 2028. This cost analysis could be a subject of further research but are 

indicative of huge value upside. This research is worth undertaken as a reasonale value 

of $37mln would be realiosed at 50% probability of success. A major driver to this 

performance improvement research is the quantity of offshore structures being used for 

hydrocarbon and wind energy extraction. Based on the forgoing, a further investment in 

research is recommended to test the feasibility of piloting a data driven Smart Offshore 

Structure for Reliability Prediction Process. This would help improve decisions on 

maintenance planning and hence cost optimization. 

The recomended further research could involve a case study for potential retrofitting of 

suitable HUMS equipment to an existing structure for piloting of advocated technology 

improvement process. This advocated methodology will contribute to addressing the 

Long-term planning and Implementation of Safety Cases where the UK HSE plans to 

collaborate with the UK industry towards a unified approach to the safety management 

of all ageing offshore infrastructure.  
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