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ABSTRACT

Maintenance strategies based on condition monitoring of the different machines
and devices in an industrial process can minimize downtime, increase the
safety of plant operations and help in the process of decision-taking for control
and maintenance actions in order to reduce maintenance and operating costs.
Multivariate statistical methods are widely used for process condition monitoring
in modern industrial sites due to the quantity of data available and the difficulties

of building analytical models in complex facilities.

Nevertheless, the performance of these methodologies is still far away from
being ideal, due to different issues such as process nonlinearities or varying
operational conditions. In addition application of the latest approaches
developed for process monitoring is not widely extended in real industry.

The aim of this investigation is to develop new and improve existing
methodologies for predictive condition monitoring through the use of
multivariate statistical methods. The research focuses on demonstrating the
applicability of multivariate algorithms in real complex cases, the improvement
of these methods in terms of fault detection and diagnosis by means of data

fusion and the estimation of process performance degradation caused by faults.

This research work was funded with the financial support from the Marie Curie
FP7-ITN project "Energy savings from smart operation of electrical, process and
mechanical equipment— ENERGY-SMARTOPS", Contract No: PITN-GA-2010-
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1 INTRODUCTION

Modern large scale industrial facilities such as oil separation plants and other
chemical processes are complex systems composed of machines and devices
of different nature. Such processes normally depend on a large number of
variables that should be monitored and controlled to ensure the final quality of
the product within safe, economical and environmentally friendly operating
conditions. Condition monitoring of the different machines and devices in the
process is important for deciding optimal production and maintenance
strategies. Condition based maintenance can increase the safety of plant

operations, minimize downtime and reduce operating and maintenance costs.

Breakdown maintenance and time-based maintenance strategies are still being
used for plant maintenance, but condition based maintenance has been shown
to be the most effective and economically profitable across most industries [1].
Breakdown maintenance consists basically of replacing a component when it
finally fails. It is simple and does not require important initial investments but it
has obvious disadvantages such as unplanned plant shutdowns or possible
catastrophic damage in the facilities when the failures happen. Time based
maintenance has the advantages of planned shutdowns and lower damage in
the components. However, in some instances components are replaced
unnecessarily, which means that component lifetime is not fully employed,
causing an increase in the final operating costs.

Depending on the plant size, a large capital outlay is normally required to install
an efficient and reliable condition monitoring system. This investment needs to
be justified, and such justification can be drawn from the fact that a condition
monitoring system will improve productivity and reliability, ultimately improving

financial returns. The main advantages of condition based maintenance are:
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e Plant shutdown planning: Pre order parts, reduced downtime grouping
maintenance tasks.

e Reduction of labour costs: Minimize breakdowns and maintenance.

e Capacity to negotiate better insurance quotes for the plant.

e Unexpected shutdowns are reduced or eliminated

e Improved process performance: Gain extra production due to minimized
downtime and operation according to process condition.

e Opportunity to improve and design a better plant

e Prevent secondary or extensive machine damage

e Safer plant operation

These advantages reiterate why condition based maintenance is a widely used
strategy in industrial processes all over the world, especially when the use of

electronics and information transmission systems are commonly extended [1].

Modern industrial facilities are heavily instrumented and automated,;
consequently there is a lot of process data available from the different sensors
which can be used in detecting, diagnosing and predicting faults. Many
methodologies have been developed to combine such data for analysis. One
such approach is the use of multivariate analysis, which can take into account
the relation between different variables measured, hence has an advantage in
fault detection and diagnosis against the traditional univariate methodologies
[2]. A large number of real industrial systems use multivariate algorithms to
monitor operating conditions and performance. Nevertheless, there are still a lot
of efforts concentrated on developing more effective techniques for fault
detection and diagnosis, specially addressing challenges such as system

dynamics and nonlinearity [3; 4].

The aim of this work is to develop and optimize new methodologies for
predictive plant-wide condition monitoring. These methodologies will make use
of statistical process monitoring of multi-variant data typically employed for
monitoring process, electrical and mechanical machinery. The potential benefits

of the application of such techniques include increased operational safety,
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improved performance and reduced operating and maintenance costs of
industrial processes.

1.1 The ENERGY-SMARTOPS project

The requirement of energy efficiency and reduction of CO, emissions is leading
to new industrial processes and new ways of operating existing processes. In
particular, the control and operation of the different interfaces of the system
(process, mechanical and electrical) is becoming radically more integrated,
giving new opportunities for energy saving through equipment management,

automation, and optimization.

The 2006 Green Paper of the European Commission [5] identified the threats
posed by security of energy supply and the need for sustainable, secure and
affordable energy. The document highlighted the need for innovative
technologies as well as diversification of energy supply and policies towards a
single European strategy for energy and an internal energy market. The
document also highlights that the EU needs to take measures to prevent energy

supply crises developing, including better energy efficiency.

The ENERGY-SMARTOPS project starts from the premise that the savings in
manufacturing industry must come from better operation of processes
equipment and machinery that is already installed and running at the present
time, which typically have an operative life of 30 to 50 years. In the light of these
challenges, there is a need for new training and research action to address
technology gaps at the interfaces between the process, mechanical and
electrical domains, and to realize energy savings from integrated operation. The
overall scientific and technical aim of the ENERGY-SMARTOPS project is to
take a pivotal role in demonstrations of creative ideas for energy savings in
large scale industrial sites making the best possible use of measurements from
all plant subsystems. The project integrates in-depth understanding of the
operational issues with analysis of measurements and first-principles physical
knowledge to invent and develop tools that will be deployed in the field in case
studies with the transmission operator partners. Three specific research areas

are:
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e Equipment and process monitoring; integrating multiple measurements
from the process, mechanical and electrical sub-systems.

e Integrated automation; capturing information from all the subsystems and
devising new algorithms that explicitty manage the interfaces and
interactions between them.

e Optimization; to provide energy savings by better integration of

operations across the process-mechanical-electrical interfaces.

This is a four years project financed by the Seventh Framework Program (FP7)
of the European Commission which started in 2011. The Energy-Smartops
consortium has detailed plans for cross-disciplinary training of a cohort of early
stage engineering researchers through several academic and industrial
participants. The project consortium includes universities like the London
Imperial College, Cranfield University, ETH Zurich, Technical University of
Krakow or Carnegie Mellon University and private partners like ABB, BASF,

ThyssenKrup Acciai Speciali Terni, ESD Training Simulation Ltd and Statoll.

The present work covers only one of the 19 tasks that will be developed by the
different project participants, and is included in the equipment and process
monitoring research area. The aim of this work is to develop and improve
condition monitoring techniques that can provide useful information about the
process condition. This information can be used afterwards to optimize the
operation of industrial processes from the maintenance point of view. Fig. 1
summarizes the concept of condition based maintenance for processes, where
the data acquired from the different system interfaces (process, mechanical and
electrical) is used to detect and diagnose faults, as well as to estimate the
impact of these faults in the system performance. The information provided by
the condition monitoring system is then used to produce optimal production and
maintenance schedules. This optimization problem takes into account the
different costs associated with maintenance actions (process stop and restart,
wasted raw materials, downtime, energy consumption, spare parts, labour, etc.)
to generate a schedule than satisfies the demand maximizing the economical

revenue. All this information about process condition and optimal scheduling is
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Fig. 1: Condition based maintenance scheme

visualized by the system operator, who takes the appropriate decisions to

actuate on the system.

The work presented in this thesis focuses exclusively on the condition
monitoring part, providing tools for fault detection and diagnosis and estimation
of performance degradation. Research involving scheduling optimization and
complex data visualization was carried out by others and is not part of this
thesis.

1.2 Objectives

The overall goal of the work presented in this thesis is to develop and optimize
new methodologies for predictive plant-wide condition monitoring
through multivariate statistical analysis. In order to improve the efficiency of the
process it is necessary in the first instance to ensure that the process
equipment is working smoothly and in good conditions. The implementation of
global actions on the process like advanced control strategies or optimized
workflow schemes to minimize the energy consumption only makes sense if the
system condition is known and the performance of the process is taken into
account. In the event of a fault, the early detection and diagnosis of the fault is
crucial for the operation and maintenance of the system. The information

provided by the condition monitoring system about the fault nature and its
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impact on the system performance can be used to optimize the scheduling of

maintenance and production accordingly.

The planed tasks undertaken to achieve the objectives of this study are:

1) Review current algorithms employed for multivariate analysis (MVA) and
diagnosis.

2) Assess current multivariate fault diagnosis algorithms using simulated
and real data.

3) Develop improved fault and prognostic algorithms based on literature.

4) Undertake experimental simulation studies on process, electrical and
mechanical machines.

5) Validate and optimize fault and prognostic algorithms using the

experimental data collected.

In order to fulfil the requirements of the ENERGY-SMARTOPS project this
research will focus on faults that develop over time affecting the overall system
performance rather than critical faults that require immediate maintenance
action after the fault detection to avoid catastrophic failures. If the detected fault
Is not critical and allows the operation of the system under suboptimal
conditions for a certain period, it is possible to optimally reschedule the
maintenance and operation of the plant according to the actual system
condition. The goal of this re-scheduling process is to exploit plant layout
flexibility and group maintenance tasks to minimize maintenance and production
costs while meeting the demand requirements, but the solution of this

optimization problem is out of the scope of this work.

The state of the art in the field of process condition based maintenance and the
potential improvements identified will be presented in chapter 0. Based on this

review the main research targets were identified, which included:
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1) Development of an experimental case study to assess currently
used multivariate algorithms for process monitoring and prove the
applicability of these techniques in real industrial environments.
This case study must include multivariate data acquired from a
large-scale complex facility, characterized by non-linear behaviour
and dynamically changing operational conditions.

2) Undertake a comparative study of the capabilities of different
monitoring algorithms in terms of fault detection and diagnosis

using real process data.

3) Development of prognostic algorithms based on reviewed
literature that can estimate the impact of faults over the system

performance and predict the future behaviour of a faulty system.

4) Integration of different types of data to develop improved condition
monitoring tools for earlier and more effective fault detection and

diagnosis

The research work to address these four points is presented in this thesis in

chapters 3 to 8.

1.3 Thesis structure

Following the introduction and the literature review, the thesis is structured in
seven further chapters. Fig. 2 shows schematically the concepts investigated in
each chapter, as well as the interconnections between the different chapters.

Each one of the chapters from 3 to 8 presents an independent research work,
containing the common subsections that are normally found in scientific
publications: introduction, methodology, results and discussion, and conclusion.
Chapter 3 describes the experimental work carried out in a large scale
experimental facility for investigation of multiphase flow. In this work multivariate
data was acquired from the system working under varying operational

conditions after seeding different faults. The objective is to generate a case
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Fig. 2: Schematic representation of the thesis structure

study to assess the capabilities of different multivariate algorithms for condition
monitoring in terms of fault detection and diagnosis using real data. This case
study is designed to be challenging for the algorithms containing data from
different types of sensors, non-linear relations and varying operational

conditions.

In chapter 4 the data sets described in chapter 3 were used to assess the
capabilities of Canonical Variate Analysis (CVA) in terms of fault detection and
diagnosis. This method has already been used for process monitoring using
simulated data, reporting a better performance than other traditional algorithms
such as the Principal Component Analysis (PCA) and the Partial Least Squares
(PLS). Fault detection and diagnosis using CVA is analysed in detail in this

chapter, and its performance is compared with PCA and PLS.
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Following the application of CVA, chapter 5 presents an investigation on the use
of this method for performance degradation analysis using real data acquired
from the same test rig described in chapter 3. The goal of this research is to
evaluate the capabilities of CVA to generate a model of a real complex process
that can be used to estimate the degradation on the system performance when
working under faulty conditions, as well as predicting the future behaviour of the
faulty system under different operational conditions. After the event of fault
detection and the isolation of the fault origin, this method can provide valuable
information about the performance of the faulty system that can be used to
optimize the production and maintenance plans according to the actual system

condition.

Independently of the content in chapters 3 to 5, chapter 6 evaluates the
performance of three different methods to enhance bearing fault features in the
vibration signal spectrum. Vibration-based condition monitoring is probably the
most common method for detection and diagnosis of mechanical faults in
rotating machinery. The objective of this chapter is to explore vibration signal
processing techniques in order to obtain a better understanding of vibration-
based monitoring and signal processing, so as to assess the potential benefits
of merging process and vibration data that will be investigated in chapter 8.
Similarly chapter 7 presents the results of an investigation about the application
of spectral Kurtosis on Acoustic Emission (AE) signals to detect seeded bearing
faults of different size. The objective again is to explore the capabilities of
condition monitoring based on AE, which is gaining popularity against vibration-
based monitoring in the last years.

Chapter 8 is dedicated to the investigation of the benefits that can be obtained
from merging different types of data for condition monitoring in a study carried
out using real data obtained from a compressor test rig. The objective of this
investigation is to improve the detection and diagnosis performance of currently
used techniques for condition monitoring, trying to combine the benefits of
process monitoring techniques and vibration-based monitoring. The research is
centred on the extraction of specific features from the vibration signal that can
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be combined with process data to improve the detection of mechanical faults in

systems working under varying operational conditions.

Finally, chapter 9 summarizes how the objectives stated in section 1.2 were
fulfilled and how the whole investigation presented in this thesis contributes to
the objectives of the ENERGY-SMARTOPS project. This chapter also includes
a list of the journal and conference papers generated as the result of the
investigations carried out, which proves the novelty of the work developed in

this thesis and the contributions to knowledge.
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2 LITERATURE REVIEW

Once the main objectives of this research have been stated, this chapter
attempts to summarize the state of the art and the main challenges to be faced
in the different fields covered. The objective of this literature review is not to do
an intensive research about the history and recent advances in each one of the
areas treated but to give an overview of the actual development of these areas
and the main research opportunities. Due to the variety of methodologies used
for this study a detailed review of the origins and latest developments in each
one of the research areas covered will be presented in the corresponding
chapters of the thesis.

Condition based maintenance is a strategy where the maintenance actions are
undertaken based on the information provided by condition monitoring systems.
The aim of this strategy is to reduce operating and maintenance costs in
industrial systems by minimizing the amount of maintenance carried out and

avoiding major breakdowns by means of preventive maintenance.

The first maintenance strategy used was breakdown maintenance (also known
as run-to-failure maintenance) which consists basically in undertaking
maintenance actions only when a failure happens. It requires no planning effort
or initial investments, but obviously it has several disadvantages such as
unplanned shutdowns, extensive damage to other system parts, longer
reparation times due to lack of planning, low operational safety, etc. Time based
maintenance was introduced later to avoid these problems, undertaking
preventive maintenance actions at certain time intervals in an attempt to avoid
failures in the system. The main drawback of this maintenance strategy comes
from the fact that maintenance actions are undertaken regardless of the actual
condition of the assets, which increases the maintenance costs if parts are
replaced or repaired before the end of their actual useful life. The complexity of
modern industrial sites and the increased expectations in terms of reliability and
product quality made these costs even higher. In condition based maintenance,

the maintenance actions are planned when the condition monitoring system
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shows evidences of damage, reducing unnecessary scheduled preventive

maintenance.

The economic benefit of condition based maintenance against other strategies
has been studied by several researchers. Recently Zhang [6] reported
significant savings applying condition based maintenance in medicine
dispensing stations. Rajan et al. [7] also reported condition-based maintenance
as the most cost effective maintenance strategy in a case study using real data
from a batch process in the pharmaceutical industry. Different studies have
been developed recently to model the application costs of condition based
maintenance strategies [8-13], but the cost analysis is out of the scope of this
investigation. The procedures for the successful implementation of cost
effective condition based maintenance were explored by Basim [14].

In the year 2000 Chiang et al. [2] published a book which compiles and
analyses the most commonly used methodologies for process monitoring.
Basically, the authors categorized these methods in three groups: data based
methods, analytical methods and knowledge based methods. Analytical
methods (or model-based methods) are the most traditional of all of them [4].
These approaches are based on the construction of mathematical models of the
system using first principle equations. Faults are detected and diagnosed by
looking at differences between process measurements and estimations
produced by the model. The results obtained are more accurate than the other
two methods as long as the model is reliable [4], however due to the complexity
of modern industrial facilities it is complicated (sometimes impossible) to build
reliable models. Knowledge based models rely on the knowledge about the
process behaviour and the experience of the operators to apply techniques like
causal analysis, machine learning, pattern recognition or Fuzzy logic, which is a
time consuming and difficult procedure. Finally data-based methods are derived
directly from process data, with no need of physical understanding of the
process or expert knowledge. Due to the complexity and the high degree of
instrumentation in modern industrial facilities this kind of methods became more

popular in the recent years. The main drawback of data-based methods is the

32



amount of data required to build the model, but in most processes nowadays
there is plenty of historical data stored that can be used for monitoring

purposes.

Given the objective of this research is to develop plant-wide condition
monitoring tools for large industrial sites where the impact of the process plant
performance on revenue is high, and due to the benefits of data-based
approaches, the investigation will focus on this type of methods. Multivariate
algorithms such as the PCA, PLS and CVA can account for the correlation
between the different variables measured in the process, and show advantages
against the traditional univariate methods [2]. These techniques allow the
conversion of the m-dimensional data acquired from the process into a single

health indicator that provides information about the process condition.

PCA is probably the most widely used method for process monitoring. It is a
linear dimensionality reduction technique which is optimal in terms of capturing
the variability of the data. PLS is another dimensionality reduction technique
that maximizes the covariance between a predictor (independent) data set X
and the predicted (dependent) Y for each component in the reduced space.
Finally CVA aims to find the linear combinations that maximize the correlation
between two sets of variables. The main peculiarity of this method is that it is
able to take into account time correlations due to the way in which the acquired
data is structured before the analysis, making it more suitable for dynamic
monitoring. Ku et al. [15] proposed the use of lagged variables to take into
account time correlation to extend PCA to dynamic system monitoring (DPCA).
Similarly, a dynamic version of PLS called dynamic PLS (DPLS) was proposed
by Komulainen [16] . Despite of their success, DPCA and DPLS have been
reported not to be as efficient as other state-space based methodologies such
as CVA when applied to systems working under variable loading conditions,

principally due to the representation of the system dynamics [17], [18; 19].

The literature gives examples of successful application of PCA, PLS and CVA
for fault detection and diagnosis using computer simulated data [2; 17-30]. The
Tennessee Eastman process simulator [31] has been widely used for the
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assessment and comparison of the performance of different algorithms due to
its realistic level of complexity and the challenges attached to the fact that it is a
highly non-linear system. The popularity of this particular benchmark case is
demonstrated by the high number of researchers that have used it in the last

years to prove the validity of a large variety of approaches [32-50].

Despite the superior performance of CVA against other methods when applied
to computer simulated data, examples of application using real industrial data
are almost anecdotal. These examples are restricted to data acquired in small
test rigs [51] or particular parts of a system [52] but there are no examples of
application of CVA in real and complex systems working under varying
operational conditions. That is why the first objective of this thesis is the
development of an experimental case study that allows the assessment of the

performance of different algorithms for fault detection and diagnosis.

A review about the research on data based process monitoring was presented
recently by Ge et al. [4]. The authors stated that non-Gaussian and non-linear
systems, time variance, dynamic monitoring and batch process monitoring are
the most active fields of research in this area. The development of tools for
monitoring complex dynamic processes, plant wide monitoring and multidata
fusion are some of the most promising issues. The capabilities of CVA seem to
match perfectly the type of solutions required by the industry, and consequently

this method in particular will be explored in detail in this investigation.

Vibration-based condition monitoring is probably the most common method for
detection and diagnosis of mechanical faults in rotating machinery and it has
several advantages against other methods [1]. Typically, analysis of the
vibration frequency spectrum can point directly to the source of the fault and
there are plenty of signal processing techniques available to help the user to
undertake diagnosis in conditions of high background noise. Assuming that the
initial status of the machine was healthy, any changes observed in the
measured vibration response are caused by the deterioration of the machine
condition. However, this assumption is only valid if all the measurements are

taken under the same loading conditions, as different levels of load will
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generate different vibration levels [53]. One of the most active research areas
in vibration based monitoring is the development of tools that can monitor the
condition of machines working under varying loading conditions [54-60]. Due to
the potential benefits of data fusion and the obvious advantages of vibration
based monitoring, another key point of this investigation will be the combination
of process data and key features obtained from vibration measurements to

provide a more robust and reliable condition monitoring tool.

In addition to the detection and diagnosis of faults in the process, prognosis is a
key aspect in the optimization of operation and maintenance schedules through
condition based maintenance. The concept of prognosis consist in the forecast
of remaining useful life, future condition or probability of reliable operation of the
equipment based on the information provided by condition monitoring [61]. This
forecast is used to minimize operation and maintenance costs by grouping
maintenance tasks, pre-ordering parts, planning labour needed, modifying the
operation strategy taking advantage of the plant flexibility, etc. The quantity of
publications listed in recent reviews about the prognosis state of the art [61; 62]
evidences how active is this field of research. Some of the issues enumerated
in these reviews in the field of prognosis are the effect of varying operational
conditions, non-linear relationships, practicability of the methods developed,
prognosis performance evaluation and efficient on-line signal processing

algorithms.

In the light of these challenges, this investigation will explore and test the
capabilities of CVA to efficiently build a mathematical model of the system that
allows the estimation of the process performance once it has been affected by a
fault. In addition, the prediction of the future process performance working
under faulty conditions will be investigated, with the objective of providing
reliable estimations of the system behaviour for different operational conditions.
This prediction can be used as an input for the calculation of remaining useful
life of individual components. These approaches could then be used to take into

account performance degradation and faulty system behaviour for the optimal
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planning of maintenance and operation schedules, improving the overall

efficiency and economic revenue of industrial processes.
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3 STATISTICAL PROCESS MONITORING OF A
MULTIPHASE FLOW FACILITY, PART I: THE
BENCHMARK CASE

Abstract

The early detection and diagnosis of faults can reduce the operating costs of
industrial processes by avoiding the inefficient operation of faulty equipment as
well as minimizing unplanned shutdowns, downtime and extensive damage to

other parts of the system.

The availability of process data in modern industrial facilities due to the high
degree of instrumentation and automation has increased the popularity of data-
driven methods for process monitoring. Today significant effort is placed on the
development of improved methodologies for the detection and diagnosis of
faults based on the manipulation of process data. These new techniques are
usually tested using computer simulated data, typically using benchmark case
studies such as the Tennessee Eastman Process Plant [31]. On the other hand,
although more and more application case studies of statistical process
monitoring have been reported in the literature, process data of these
applications are generally not available in public domain due to commercial

confidentiality.

In order to bridge the gap, this work aims to provide a benchmark case to
demonstrate the ability of different monitoring techniques to detect and
diagnose atrtificially seeded faults in a large scale test rig and measure the
impact of those faults on the system performance. The objective of this case
study is to provide a test bed for the development of new monitoring techniques
and its implementation in real industrial facilities. This chapter describes in
detail the experimental test rig and associated data for the different fault cases

studied, including an example of analysis employing the PCA.

Keywords: fault detection; diagnosis; process monitoring; multivariate; dynamic;

experimental
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3.1 Introduction

Modern large scale industrial facilities are complex systems with various types
of machines and devices. The process normally depends on a large number of
variables that are monitored and controlled to ensure the final quality of the
product and the process itself within safe, economical, and environmentally

friendly operating conditions.

Condition monitoring of the different machines and devices in the process is
important as the early and accurate detection and diagnosis of faults minimize
downtime, increase the safety of plant operations and help with decision-making
for optimal control and maintenance strategies. The latter reduces maintenance
and operating costs through the improvement of the process efficiency, avoiding
the operation of faulty and inefficient equipment. There is also a cost associated
with unplanned shutdowns as a consequence of the energy consumed during
the shutdown and restart process. These are clear examples of how fault
detection and diagnosis can contribute to the reduction of maintenance costs

and the improvement of plant safety and availability.

Industrial facilities are heavily instrumented and automated; consequently
significant amount of process data is available from the different sensors which
can be used for detecting and diagnosing faults. Data driven methods are
widely used for fault detection and diagnostic applications in real industrial
systems. Its success is dependent on the availability of measured data and the
difficulties associated to the development of reliable models based on first

principles equations for large and complex process plants [2].

Multivariate monitoring techniques take into account the relationship between
the different variables measured in the process and they have demonstrated to
be an advantage against the traditional univariate methodologies [2]. Despite
the popularity of multivariate algorithms for condition monitoring of industrial
processes, it is still necessary to develop more effective techniques that can
deal with problems like changing operational conditions or nonlinear systems
[3]. The literature gives examples of successful application of different improved
algorithms based on well-known techniques such as PCA, PLS and CVA for
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fault detection and diagnosis using computer simulated data [23-30]. It is
especially interesting to use data obtained from a common benchmark case
study, to compare the performance of different methodologies. The Tennessee
Eastman process simulator [31] has been widely used for the assessment and
comparison of the performance of different algorithms due to its realistic level of
complexity and the challenges attached to the fact that it is a highly non-linear
system. The popularity of this particular benchmark case is demonstrated by the
high number of researchers that have used it in the last years to prove the

validity of a large variety of approaches [32-50].

In addition to the use of computer simulated data, it is also possible to find
numerous examples of process monitoring techniques that have been tested
using real process data obtained from industrial facilities or experimental test
rigs. These data sets have been acquired from different types of processes
such as steel casting [63], ethylene compressors [64], blast furnaces [65],
sequencing batch reactors [66] and many others [67-74]. The application of
novel techniques using real data can prove the applicability of these methods in
real industrial applications but in the other hand, the diversity in the cases
studied makes it impossible for other researchers to compare the effectiveness
of different techniques under the same test conditions. This underlines the
authors’ motivation for generating a common benchmark case study which can
be used for the assessment of novel process monitoring techniques using real

data available in the public domain.

This study shows the experimental work carried out in the Three-phase Flow
Facility at Cranfield University, which is comparable in size and complexity to a
real small-scale multiphase flow separation process. Six different faults were
introduced deliberately in the system, simulating typical faults that may be
experienced in real plants such as blockages, incorrect system operation or
non-conventional operating conditions. The data sets were acquired under
changing operational conditions to ensure that the fault detection can be
undertaken not only in the steady-state regime but also under varying
operational conditions, making it valid for the assessment of dynamic process
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monitoring techniques. Additional data sets were acquired during steady
conditions for comparative purposes. The changing operational conditions and
the non-linear nature of the multiphase flow process, together with the size and
complexity of the test rig makes this case study an ideal candidate for a
benchmark case that can be used for the evaluation of novel multivariate

process monitoring techniques performance using real experimental data.

The outcome of this work is organised in two parts. This first part is included in
this chapter and describes in section 3.2 the test rig itself and how the data sets
were acquired. Section 3.3 describes the software tool developed for the
analysis of the data sets. In section 3.4 an example of application of the case
study for the detection of faults by applying the PCA is presented, then the work
is concluded in section 3.5. The second part of the investigation is presented in
chapter 4 and will show the results obtained after the application of CVA and

other algorithms to the data acquired in the laboratory.

3.2 Experimental set up

3.2.1 Description of the Three-phase Flow Facility

The Three-phase Flow Facility at Cranfield University is designed to provide a
controlled and measured flow rate of water, oil and air to a pressurized system.
Fig. 3 shows a simplified sketch of the facility. The test area consists of
pipelines with different bore sizes and geometries, and a gas and liquid two-
phase separator (0.5m diameter and 1.2m high) at the top of a 10.5 meters high
platform. It can be supplied with single phase of air, water and oil, or a mixture
of those fluids, at required rates. Finally the fluid mixtures are separated in a 11
m® horizontal three-phase separator at ground level (GS500). The air is returned
to the atmosphere and the emulsions of oil and water are separated in their
respective coalescers (CW500 and CO500), both having a capacity of 1.5 m®
approximately, before returning to their respective storage tanks (T200 and

T100). The capacity of each storage tank is approximately 12.5 m?,

Air is supplied by a union of two compressors which are capable to deliver a

flow rate up to 1410 m*h at 7 barg. The compressed air is received in a 8 m*
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Fig. 3: Sketch of the three-phase flow facility

vessel (R300) to dampen pressure fluctuations. Then is filtered of droplets and
particles and cooled before passing through the air flow meter FT305 and the
pneumatic valve VC302 that controls the air flow. The water and oil are stored
in tanks T100 and T200 and then supplied independently through multistage
Grundfos CR90-5 pumps (PO1 and PO2), each one of which can provide up to
100 m*/h at 10 barg with their rotational speed controlled by variable frequency
inverters. The water flow rate is measured by FT104 and oil flow rate by FT204.
The water and oil flow rates are controlled by pneumatic valves VC101 and

VC201, respectively.

After the mixture, the fluids can flow either through a 4” diameter flow loop
which has a 55m long and 2° downward inclined pipeline leading to a 10.5m
high catenary riser, or via a 2” flow loop which is a 40m long horizontal pipeline,
connecting to a 10.5m long vertical riser. Both flowlines are connected to the
two phase separator but can be isolated each other by manual valve manifolds
in both ends of the flowlines. During all the experiments adopted in this
benchmark case the 4” line was used exclusively, except for the study of a
particular fault (Case 6), where the 2” line was also involved. In the rig there is

an alternative 4” line which can carry the flow directly from the mixing point to
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the 3 phase separator, bypassing the riser and the top separator. This line is
labelled as “BYPASS” and marked in dashed red in Fig. 3.

There are sensors measuring pressure at the air supply line before the mixing
point (PT312), and along the 4” line at the bottom of the riser (PT401), at the top
of the riser (PT408), inside of the top separator (PT403) and inside of the three-
phase separator (PT501). The flow rate in the 4” line at the top of the riser can
be measured by FT407, which also provides measurements of the density and
the temperature. FT406 provides the measurements of the mass flow rate,
density and temperature at the bottom outlet of the top separator. The liquid
level inside of the top separator is measured by L1405 and controlled by VC402.
The pressure of the 3-phase separator is controlled by VC501, while the levels
between the different phases are measured by L1502 and LI504 respectively. In
addition the pressure in the 2” line at the bottom of the riser is measured by
PT417. The valves and sensors which control the level between phases in the
coalescers have not been shown in Fig. 3 for simplicity. The whole system is
managed using Delta V [75], a Fieldbus based supervisory, control and data
acquisition (SCADA) software supplied by Emerson Process Management.
Time stamped data of different variables can be retrieved, processed and
visualized. The data can also be saved for post-processing. Fig. 4 and Fig. 5
show the test rig platform and the control room respectively.

Fig. 5: Control room

Fig. 4: Test rig platform

In this study all the data was captured at a sampling rate of 1 Hz. The variables
used include 24 different process variables (see Table 1) and two process
inputs (air and water flow rate set point). Only air and water were used in all the
experiments and the three phase separator was always pressurized to 1.0 barg.
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Table 1: List of process variables used in this study

Variable nr  Location Measured Magnitude Unit
1 PT312 Air delivery pressure barg
2 PT401 Pressure in the bottom of the riser barg
3 PT408 Pressure in top of the riser barg
4 PT403 Pressure in top separator barg
5 PT501 Pressure in 3 phase separator barg
6 PT408 Diff. pressure (PT401-PT408) barg
7 PT403 Diff. pressure(PT408-PT403) mbarg
8 FT305  Flow rate input air Sm’h
9 FT104 Flow rate input water kgls
10 FT407 Flow rate top riser kgls
11 L1405 Level top separator m

12 FT406 Flow rate top separator output kgls
13 FT407  Density top riser kg/m?®
14 FT406 Density top separator output kg/m?®
15 FT104  Density water input kg/m?®
16 FT407 Temperature top riser °C

17 FT406 Temperature top separator output °C

18 FT104 Temperature water input °C

19 LI504 Level gas-liquid 3 phase separator %

20 VC501 Position of valve VC501 %

21 VC302 Position of valve VC302 %

22 VC101 Position of valve VC101 %

23 PO1 Water pump current A

24 PT417 Pressure in mixture zone 2" line barg

3.2.2 Normal Operation

In order to obtain data representing normal operating conditions three data sets
(T2, T2 and T3) were acquired from the system. The set points of air and water
flow rates were deliberately varied during the tests in order to obtain data from
the process working under variable operating conditions. To ensure that the
conditions during normal operation were representative 20 different
combinations of air and water flow rates (see Table 2) were tested for each one
of the three training data sets. In each one of them, the flow conditions were
changed, though not identically, in order to obtain a good variety of large, small,
long and short process changes happening in different directions (increment or
decrement). The objective of this variety in the operational conditions is to

ensure that the dynamics of the system are captured in all circumstances.

Fig. 6 represents the air and water flow rate for each data set.
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Table 2: Typical set point values for air and water flow rates

Air flow rate 75 100 125 150
(m®h)
Water flow rate 0.5 1 2 3.5

(kg/s)
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Fig. 6: Operational conditions for training data sets T1 (a), T2 (b) and T3 (c)

3.2.3 Operation with seeded faults

In addition to the training data sets, different sets of data were acquired from the

system working in faulty conditions after seeding six different faults into the

system. These faults were used in order to simulate typical malfunctions that

could be experienced in a real system such as blockages in the pipelines,

wrong system operation or abnormal operating conditions. The faults were
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introduced after a certain time of normal operation in order to investigate
changes in the health indicators generated by monitoring algorithms. These
faults were introduced gradually when possible, in order to observe how the
severity of the fault affects the indicator. After reaching a certain level of severity
the fault condition was removed, returning the system to normal conditions.
During these tests the flow rate conditions were changed in a similar way as
was undertaken for normal operation. There are additional data sets acquired
under constant flow rate conditions which allow the observation of the fault
effects on the different measured variables without disturbances created by
changes in the air or water flow rates. Table 3 summarizes the different faults
tested and the next subsections explain in detail how each one of the faults

were introduced.

Table 3: Summary of faults introduced

Case Description Type Nr. of data sets Nr. of data
(changing sets (steady
conditions) conditions)

1 Air line blockage Gradual 1 2

Water line blockage Gradual 1 2

3 Top separator input Gradual 1 3

blockage

4 Open direct bypass Gradual 1

Slugging conditions Random 2
6 Pressurization of the  Step 2 0
2" line

Case 1: Air line blockage

Just before the air, water and oil supply lines are joined at the mixing point,
there are individual manual valves for each one of the lines. The fault
introduced in this case was to gradually close the manual valve of the air line
simulating an air blockage that develops over time. The valve angle was
measured using a protractor attached to the valve. At the beginning of the
experiments the valve was fully open (normal conditions) and the valve was
gradually closed to introduce the fault condition simulating the blockage. Fig. 7

shows the manipulated manual valve:
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Fig. 7: Air line manual valve

For this fault case three data sets were acquired, one set under changing
operational conditions and another two sets had constant air and water flow
rates (see Table 4). All the details about the data sets acquired for this fault
case can be seen in Fig. 8, Fig. 9, and Fig. 10, including the evolution of the
fault, the profile of air and water flow rate set points, and actual measurements
of air and water flow rate during the experiments.

Table 4: Operational conditions for data sets in Case 1

Data Operating Duration  Air flow rate Water flow rate
set conditions (s) (m%/s) (kg/h)

1.1 Changing 5811 Varying Varying

1.2 Steady-State 4467 2 150

1.3 Steady-State 4321 3.5 75
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Data set 1.2
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Data set 1.3
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data set 1.3

Case 2: Water line blockage

This fault is exactly the same as the fault introduced in Case 1, with the
difference that in this case the water line valve (see Fig. 11) was closed
gradually to simulate the blockage instead of the air line valve. Despite the fault
Is basically the same, the results are expected to be different, as the physical
properties of air and water (especially density and viscosity) are considerably
different. For this case three data sets were acquired, one under changing
operational conditions and the other two sets with constant air and water flow

rates (see Table 5). All the details about the data sets acquired for this fault
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Fig. 11: Water line manual valve

case can be seen in Fig. 12, Fig. 13 and Fig. 14 including the evolution of the

fault, the profile of air and water flow rate set points and actual measurements

of air and water flow rate during the experiments.

Table 5: Operational conditions for data sets in Case 2

Data Operating Duration  Air flow rate Water flow rate
set conditions (s) (m%/s) (kg/h)

21 Changing 9192 Varying Varying

2.2 Steady-State 3496 2 100

2.3 Steady-State 3421 35 150
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Data set 2.2
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Data set 2.3
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conditions (c) for data set 2.3

Case 3: Top separator input blockage

In this case the type of fault introduced is again similar to the air and water line
blockage. The main difference is that the valve manipulated in this case is
VC404 (top separator input, see Fig. 15) which is operated pneumatically. The
valve can be controlled remotely from the control room and the angular position
can be accurately measured. This allows the precise observation of how the
fault severity affects the results provided by condition monitoring algorithms.
The fault was introduced in most cases with a fast evolution in a first instance

due to the inherent behaviour of ball valves: in this type of valves the change in
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the pressure drop is almost insignificant for valve positions near the fully open
position, but it is much more sensitive to changes in the valve position as the
valve is gradually closed. For this case four data sets were acquired, one of
them under changing operational conditions and another three with constant air
and water flow rates (see Table 6). All the details about the data sets acquired
for this fault case can be seen in Fig. 16, Fig. 17, Fig. 18 and Fig. 19 including
the evolution of the fault, the profile of air and water flow rate set points and

actual measurements of air and water flow rate during the experiments.

Fig. 15: Top separator input valve VC404

Table 6: Operational conditions for data sets in Case 3

Data Operating Duration  Air flow rate Water flow rate
set conditions (s) (m3/s) (kg/h)

3.1 Changing 9090 Varying Varying

3.2 Steady-State 6272 2 100

3.3 Steady-State 10764 35 75

34 Steady-State 8731 35 75
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Data set 3.2
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Data set 3.3
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Data set 3.4
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Fig. 19: Fault evolution (a) flow rate set points (b) and measured flow rates (c) for
data set 3.4

Case 4: Open direct bypass

The bypass line can direct the multiphase flow after the mixing point to the 3-
phase separator, bypassing the riser. There are valves at the beginning and at
the end of this alternative line to isolate it from the rest of the system, and in
normal conditions they are always closed. One of these valves is represented in
Fig. 20. The objective of this fault is to simulate a leakage at the bottom of the
riser, causing a lack of flow in the top of the riser. For this case three data sets
were acquired, one set under changing operational conditions and another two

with constant air and water flow rates (see Table 7). All the details about the
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Fig. 20: Bypass line derivation and valve

data sets acquired for this fault case can be seen in Fig. 21, Fig. 22 and Fig. 23
including the evolution of the fault, the profile of air and water flow rate set
points and actual measurements of air and water flow rate during the

experiments.

Table 7: Operational conditions for data sets in Case 2

Data Operating Duration  Air flow rate Water flow rate
set conditions (s) (m%/s) (kg/h)

4.1 Changing 7208 Varying Varying

4.2 Steady-State 4451 2 150

4.3 Steady-State 3661 3.5 75
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Data set 4.1
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Fig. 21: Fault evolution (a) flow rate set points (b) and measured flow rates (c) for
data set 4.1
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Data set 4.2
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Fig. 22: Fault evolution (a) flow rate set points (b) and measured flow rates (c) for
data set 4.2
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Data set 4.3
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Fig. 23: Fault evolution (a) flow rate set points (b) and measured flow rates (c) for
data set 4.3

Case 5: Slugging conditions

Slugging [76] is a transient phenomenon that can occur in risers with multiphase
flow when the velocities of the gas and the liquid are relatively low. The liquid
tends to accumulate in the base of the riser blocking the flow. Due to this
blockage, the pressure builds upon the blockage until it is sufficient to flush the
liquid (and the gas) out of the riser. After this surge, the liquid remaining in the
riser falls down, creating a new blockage and starting the cycle again. This
phenomenon is typical for offshore oil production systems, where multiphase

hydrocarbon fluids travel from an oil filed along a long pipeline on the sea bed to
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a riser connecting to a separation process on an offshore oil rig. It can produce
large amplitude fluctuations in the pressure and flow rates, which can affect and
damage the equipment [77]. The fault was introduced by reducing the air and
water flow rates to regimes where slugging is produced. During the test, the
flow rate was varying at different points from normal to slugging conditions. For
this case 2 data sets were acquired, both of them under changing operational

conditions (see Table 8).

Table 8: Operational conditions for data sets in Case 5

Data Operating Duration  Air flow rate Water flow rate
set conditions (s) (m%/s) (kg/h)

51 Changing 2541 Varying Varying

5.2 Changing 10608 Varying Varying

Fig. 24 and Fig. 25 describe in detail each one of the data sets, including the
profile of air and water flow rate set points, actual measurements of air and
water flow rate and the evolution of the pressure in the bottom of the riser
during the experiments, where it is possible to observe the fluctuations caused
by the slugging. For each data set the flow rate combinations where slugging is
expected are shaded in grey in the chart corresponding to the flow rate set

points.
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Data set 5.1
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Fig. 24: Flow rate set points (a), measured flow rates (b) and bottom riser
pressure PT401(c) for data set 5.1
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Data set 5.2
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pressure PT401(c and d) for data set 5.2
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Case 6: Pressurization of the 2” line

In the cases presented previously the 4” line was used to carry the flow to the
top of the riser. In these conditions, the 2” line is totally isolated from the rest of
the system and thus it should not be pressurized. In the top of the riser, just
before the input of the top separator there is a bridge with a valve that connects

the 4” and the 2” line. Fig. 26 shows a detail of this valve:

Fig. 26: ridge valve between the 4" line and the 2" line

The fault introduced consisted basically in opening this bridge valve keeping
both sides of the 2” isolated from the rest of the installation. The objective of this
fault condition is to simulate an unusual operation of the system that in a real
process can cause degradation in the performance or in the output product
quality or even safety issues. This fault should not affect the flow conditions in
the 4” line or other parts of the rig, but it will pressurize the 2” line. In this
particular case, an additional variable was measured and included in the
analysis. This variable is the pressure measured in the bottom of the riser in the
2" line by PT417. For this case 2 data sets were acquired, both of them under

changing operational conditions (see Table 9).

Table 9: Operational conditions for data sets in Case 6

Data Operating Duration  Air flow rate Water flow rate
set conditions (s) (m®/s) (kg/h)

6.1 Changing 2800 Varying Varying

6.2 Changing 4830 Varying Varying

Fig. 27 and Fig. 28 describe in detail each one of the data sets including the

fault evolution, the pressure measurements observed in PT417, the profile of air
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and water flow rate set points and actual measurements of air and water flow

rates during the experiments.
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Fig. 27: Fault evolution (a), 2" line pressure PT417 (b), flow rate set points (c) and

measured flow rates (d) for data set 6.1
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Data set 6.2
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Fig. 28: Fault evolution (a), 2" line pressure PT417 (b), flow rate set points (c) and

measured flow rates (d) for data set 6.2
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3.3 Data analysis software

A special software tool was designed in Matlab (version R2010A) for the
analysis of the data sets described in 3.2 using different multivariate algorithms.
It is a graphic user interface where the user can easily select the set of data to
analyse, the process variables included in the analysis and the tuning
parameters for the selected algorithm. The objective of this tool is to allow the
user to run multiple analyses with different configurations in a fast and
organized manner. In this way it is easier to observe how changes in the
training data sets selected, the variables included in the analysis, or the tuning
parameters affect the final results in terms of fault detection and diagnosis. Fig.
29 shows the software interface and the different sections of the main window.
The following subsections describe in detail the different parts of the main

menu.
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Fig. 29: Software tool main menu
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3.3.1 Data set selection

In this section the user can select the data sets to be analysed. Initially, it is
necessary to select the data set used for training the algorithm and calculate the
transformation matrices and the thresholds for the health indicators. Normally,
the data sets acquired under normal operational conditions will be used for
training. To obtain good results in terms of fault detection and diagnosis it is
important to select a training data set where the operational conditions are
representative of the conditions that will be found in the data set to analyse. In
this section of the program it is also possible to obtain a plot of the operational
conditions (air and water flow rate) to help the user to decide if a particular data

set should be included or not.

Select Case Study Case 3 (Top separator input block.. = | Multiple training

Select Training Data ‘ Multiple training selection ‘

Select Monitoring Data def26Apr - ‘ See flow conditions

Fig. 30: Detail of data set selection section

3.3.2 Selection of process variables

The variables selection section is designed to allow the user to observe how the
monitoring results are affected by the process variables selected for the
analysis. Originally 30 different process variables were measured during the
tests, but only 24 were included in the final analysis presented in chapter 4. For
this case study it was particularly important to remove the valve position
measurements of the valves which were not manipulated during the tests. The
addition of measurements consisting in a constant value (e.g. 100% for valves
fully opened during the analysis or 0% for those fully closed) without any
deviation due to noise or changes in the operational conditions causes
problems in the mathematical manipulation of the data. The presence of several
columns consisting in constant values can affect the internal process of matrix
inversion, essential in many multivariate algorithms. This was the case of the
two outlet valves in the top and bottom of the top separator (VC401 and VC402)

and the top separator input valve (VC404). Two flow meters situated in in

70



alternative pipe branches that were not used in this case study were also
excluded (FT302 and FT102). The pressure measured in the bottom of the
riser in the 2” line (PT417) was only included in Case 6 for both the normal and

faulty operation data.
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Fig. 31: Detail of the process variables selection section

3.3.3 Algorithms Parameters

The application of multivariate algorithms for process monitoring normally
requires the selection of certain parameters such as the number of lags to be
considered, the confidence bound for the thresholds of the health indicators or
the number of dimensions to be retained. In this part of the program (Fig. 32)
the user can select the algorithm to be used for the data analysis and introduce
these parameters. In addition it is possible to obtain a plot of the statistical
distribution of the health indicators calculated during the training period, which

can be helpful for the selection of the desired confidence bound (see Fig. 33).
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Fig. 32: Detail of the algorithms parameters section

From this section the calculation can be run, obtaining the results in the “Fault
detection results” section, and it is also possible to obtain a report of the

violations of the health thresholds pushing the button “Generate report”.
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Fig. 33: Example of health indicators during training phase (left)

and their statistical distribution (right)

3.3.4 Fault detection results

After running the analysis, the T? and Q indicators for the monitoring data set
are plotted in this section, as well as the thresholds represented by a red line in
each plot. In these charts the user can see if the threshold has been violated at
any time, indicating that a fault was detected (see Fig. 34). The y axis can be
represented either in linear or logarithmic scale to provide a better visualization

of the health indicator against the threshold.
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Fig. 34: Detail of fault detection section

3.3.5 Fault diagnosis

Once the health indicators have been calculated for the monitoring data set, the
contribution plots for the statistic indicators can be plotted at any time point
selected by the user. These charts represent how much is contributing to the
final value of the indicators each one of the process variables included in the
analysis, helping the user to identify the origin of the fault (Fig. 35).
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Fig. 35: Detail of fault diagnosis section

3.4 Application example: Fault detection using PCA

This section shows an example of application of the data sets described in the
previous sections. The PCA was used to detect the fault introduced in data set
1.1 after the computation of the transformation matrices and the thresholds for

the indicators using the normal operation data sets T1, T2, and T3.
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3.4.1 Introduction to PCA

PCA can characterize the state of a process by projecting the measured data
into a lower-dimensional space. This dimensionality reduction technique
preserves the correlation between the process measurements capturing the
data variability in an optimal way [2]. Given an n x m data set matrix X containing
n observations and m variables it is possible to obtain a set of loading vectors V

by solving the eigenvalue decomposition of the covariance matrix S

s= 1 xTx —vAVT (3-1)
n-1

where the loading vectors V are ordered by the amount of variance expressed
by the corresponding eigenvalues in the diagonal matrix A. The loading vectors
attached to the a largest singular values are retained in the loading matrix P
eRma, These vectors will be used to produce a lower dimensional
representation of the measured data that captures systematic trends of the
process, separating it from the part of the data which contains basically random
noise. The score matrix W contains the projection of the observed data into the
lower-dimensional space, while the residual matrix E represents the difference
between the observations and the projection of W back into the m-dimensional

space:

W = XP (3-2)

E=X-WP' (3-3)

The indicators most commonly used for the detection of faults are the Hotelling
T2 indicator (which represents major variations in the data) and the squared
prediction error Q (representing variations in the residual space). These

indicators can be computed for each observation x as follows:
T2 =yly (3-4)

Q=x"(I -PP")x (3-5)
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where the principal components y=4"P'x have been re-scaled to have unit

variance [15].

Assuming that the observations are sampled randomly from a multivariate
normal distribution, the threshold for the T? indicator can be estimated as [78]:

T2_ a(n-1)(n+1)

a F,(a,n—-a) (3-6)
a(n—-a)

where F, (a, n-a) is an F-distribution having degrees of freedom a and n-1 with a
significance level of a. The control limit for the Q index was computed as
defined by Jackson and Mudholkar [79]:

1/ho
| c./20,h8 0,hy(h, 1) (3-7)
Q, =0 ———+1l+—=—"F—=
0, 041
20,6,

where 6,=>"" (4, ) for j=1,2,3h, =1— c, is the normal deviate that

27 Ta
2

corresponds to the (1-a) percentile.

3.4.2 Results and discussion

Training

The three data sets acquired during normal operation were joined to give a
continuous run of 33397 observations and 23 variables that captured all normal
operating conditions. This was then used as the training data set for building the
PCA model. Five principal components were retained based on the number of

principal components whose cumulative variance accounted for 86.76% of the

total variance (Table 10).
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Table 10: Relative variance explained by the first 10 principal components

PC Eigenvalue Per_cent Cur_nulative percent
variance variance
1 8.14 35.38 35.38
2 4.95 21.53 56.91
3 3.98 17.29 74.20
4 1.97 8.54 82.74
5 0.92 4.01 86.76
6 0.84 3.65 90.41
7 0.81 3.50 93.91
8 0.50 2.18 96.09
9 0.23 1.02 97.11
10 0.19 0.84 97.95

The thresholds for the T? and Q statistics were calculated using (3-6) and (3-7)
for a confidence bound of 99%, obtaining a result of 15.09 and 9.69

respectively.

Monitoring

The transformation matrices calculated during the training period were used to
compute the T? and Q statistics for the data set 1.1. Fig. 36 shows the
monitoring charts for Case 1.1, where the T? and Q indicators are plotted in
black and the threshold of these indicators is represented by a dashed grey line.
The fault start and end points are marked as vertical dashed lines. It can be
seen that both the T? and Q values exceeded their control limits at some points
which indicates the detection of a fault. The Q index detected the fault earlier
than the T2 However, the Q index is not robust in this case as it records a high
false alarm rate. That is, its value exceeded the control limit at several points
that had no programmed fault (Fig. 36(b)).
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Fig. 36: On-line monitoring charts for data set 1.1 (air-line blockage, changing

operational conditions)

Fig. 37 shows the contribution plots obtained from data set 1.1 for the T> and Q
indices respectively. At sample 5000, both contribution plots point at variable 1
(air delivery pressure PT312) as the main contributor to the deviation observed
during the analysis. This result correctly indicates that a fault related to the air
delivery pressure occurred, showing that this fault can be detected and

diagnosed using multivariate statistical methods.
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Fig. 37: Contribution plots of T2 and Q at sample number 5000 for data sets 1.1

(air-line blockage, changing operational conditions)
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3.5 Conclusion

Despite the success reported by many researchers in the application of different
data driven methods for fault detection and diagnosis using computer simulated
data and real data acquired in different experimental rigs and industrial facilities,
there is a lack of a common benchmark case study for the comparison of the
performance of this methods using real process data. This work is presented
with the aim of providing a benchmark case study to prove the effectiveness of
different methodologies for the detection and diagnosis of faults in processes
working under varying operational conditions. In this chapter the test rig and the
different case studies have been presented. This cases are composed of three
data sets acquired under normal operational conditions to be used for training
purposes and six cases were different faults were artificially introduced to
assess the capabilities of process monitoring algorithms in detecting and
diagnosing these faults. In order to provide an example of application of this
case study, PCA was used for the detection and diagnosis of one of the faults
introduced in the rig. The results showed that it is effectively possible to detect
the fault, but the capabilities of PCA in this particular case were relatively weak
due to the dynamic and non-linear nature of the process. This caused a high
false alarm rate (especially in the Q indicator) and a long detection time.
Consequently, there are still lots of opportunities to improve the result obtained
applying more advanced algorithms that can deal with these particular
challenges. The results obtained from the analysis of the data applying CVA
and other multivariate algorithms will be presented in chapter 4, including a
detailed description of the methodology used and a discussion about these

results.
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4 STATISTICAL PROCESS MONITORING OF A
MULTIPHASE FLOW FACILITY, PART Il: APPLICATION
OF CANONICAL VARIATE ANALYSIS FOR FAULT
DETECTION AND DIAGNOSIS

Abstract

Industrial needs are evolving fast towards more flexible manufacture schemes.
As a consequence, it is often required to adapt the plant production to the
demand, which can be volatile depending on the application. This is why it is
important to develop tools that can monitor the condition of the process working
under varying operational conditions. CVA is a multivariate data driven
methodology that can be applied to detect and diagnose faults in industrial
systems. This method has the ability to capture the process dynamics more
efficiently than other similar data driven algorithms and its superior performance
has already been demonstrated by several researchers using computer

simulated data.

The aim of this study is to demonstrate the ability of CVA to detect and
diagnose artificially seeded faults in a complex large scale test rig working
under variable operating conditions. Chapter 3 described in detail the
experimental test rig from which the data was collected for different cases. This
chapter reports on the results obtained by applying the CVA to acquired data
sets for fault detection and diagnosis. The CVA results are compared with other
dynamic approaches to demonstrate its superior performance.

4.1 Introduction

Data driven methods are widely used for fault detection and diagnosis
applications in real industrial systems. In particular, multivariate monitoring
techniques such as the PCA or the PLS can take into account the correlation
between the different variables measured in the process, and they show
advantages against the traditional univariate methods [17]. However, there is a
need for more effective techniques that can deal with problems like changing

operational conditions or nonlinear systems [3; 17; 22] . Ku et al. [15] proposed
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the use of lagged variables to take into account time correlation to extend PCA
to dynamic system monitoring (DPCA). Similarly, a dynamic version of PLS was
proposed by Komulainen [16] . Despite of their success, DPCA and DPLS have
been reported not to be as efficient as other state-space based methodologies
such as CVA when applied to systems working under variable loading
conditions, principally due to the representation of the system dynamics [17],
[18; 19].

Canonical Variate Analysis is a data driven methodology which maximizes the
correlation between two sets of variables [2]. The literature gives examples of
successful application of CVA for fault detection and diagnosis using computer
simulated data [2; 17-22] or data acquired in small test rigs [51] or particular
parts of a system [52] but there are no examples of application of CVA in real
and complex systems working under varying operational conditions. The aim of
this work is to demonstrate the ability of CVA to detect and diagnose artificially

seeded faults in a large scale test rig similar to a real process.

This chapter shows the results obtained from the application of CVA to
experimental data acquired in the three-phase flow facility at Cranfield, which is
comparable to a real small multiphase flow separation process. In this case
study different faults were introduced deliberately in the system, simulating
typical faults that can be expected in real plants such as blockages, incorrect
system operation or non-conventional operating conditions. The data sets were
acquired under changing operational conditions, modifying the flow rate set
points to ensure that the fault detection was undertaken not only in the steady-
state regime. The objective of this case study is to assess the performance of
CVA as a method capable of detecting faults in real systems working under
variable operating conditions. Additional tests were carried out using data sets
acquired under steady operational conditions, and the performance of CVA for
the detection and diagnosis of faults was compared with other methodologies
such as PCA, DPCA, PLS and DPLS using the data sets acquired under single
or multiple steady operational conditions.
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4.2 Methodology

4.2.1 CVA for fault detection in industrial processes

The application procedure of CVA is similar to other multivariate algorithms for
condition monitoring: it requires an initial data set to train a model, which is used
to calculate the transformation matrices and the thresholds for the health
indicators. In application, it is possible to monitor the process by simply
converting the high-dimensional acquired data into the indicators using the
transformation matrices. The value of these indicators compared with the
threshold calculated during the training stage will determine the presence or

absence of detected faults.

The objective of CVA is to find the linear combinations that maximize the
correlation between two sets of variables. In order to take into account time
correlations, the observation vector y is expanded at each time point k by
considering p previous and f future measurements (each one containing m
variables), generating the past and future observation vectors ypx and Yk

respectively:

Yia Y

y y (4-1)
Yok = k:_z eR™ Yik = I§+1 e R™

Yip Yieta

The data are normalized to 0 mean in each different variable to avoid

domination of those variables with higher absolute values measured:
yp,k = yp,k - yp,k (4'2)
Vik =Yk~ Yix (4-3)

where yox and yok represent the sample means of y,xand ysx respectively. The
optimal number of past and future lags (p and f) considered in the analysis can

be calculated computing the autocorrelation function of the summed squares of
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all measurements [17]. All the past and future vectors are arranged together in
different columns generating the past and future matrices Y, and Y

Yp = [yp, p+l yp, pr2:-" S/p, p+M ] c ERWM (4_4)

Yi = [yf,erl’ Vi pr2rYt pim ]e RmM (4-5)
where M=n-f-p+1 for a data set of n observations.

The covariance and cross-covariance matrices of past and future matrices can

be estimated as follows:

1
)y pp = mYpYJ (4_6)
1 T
)y = me Yf (4_7)
L ovyr (4-8)
VIS

The correlation between two linear combinations of future and past vectors

(@' (k) and b'(¥,x)) can be calculated as:

(4-9)

(ab) a'z.b
T s ) bz b

Using the variable changes u=3Yxa and v=>Y4,,b the optimization problem can

be rewritten as:

max,, U (£ 50 M (@-10)
st. uu=1
viv=1

The solution u and v for the optimization problem can be calculated
decomposing the scaled Hankel matrix using Singular Value Decomposition
(SVD):

H=3/%, 2 ?=UDV’ (4-11)

where:
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U =[u,u,--u,, Je R™ V= vl,vz---vmp]eER”’"X’"p

y, 0 - 0
D= O }/:2 O einmfxmp
0 0 - vy,

U and V are orthogonal matrices of eigenvectors and D is a diagonal matrix,
indicating that U and V are only pairwise correlated. The degree of pairwise
correlation between U and V is indicated by the diagonal elements y; in D.
Reordering the elements in D (y1> y2>...> ymp) and the attached eigenvectors in
U and V it is possible to select the first r columns of V which best correlate U

and V, generating a new dimensionally reduced matrix V.

The transformation matrices J and L which convert the m-p-dimensional past
measurements to the r-dimensional canonical variates and residuals can be

calculated as:
J=VTE Y (4-12)
L=(1-V,- V) ? (4-13)
The canonical variates z and the residuals ¢ are calculated projecting the
acquired data into the low-dimensional space:
z=J-Y, (4-14)

e=L-Y, (4-15)

The statistical indicators that provide information about the health of the system
can be obtained converting the available past observations into a lower
dimensional data. The statistical indicators more frequently used are the

Hotelling T? statistic and Q statistic.

=37, (+10

Q =2 ¢ (4-17)
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The upper control limits (UCL) for T?> and Q can be calculated for a given
significance level « such that P(T>T%cu(@)= a and P(Q>QucL(a)= «
respectively. Normally these control limits are calculated assuming that the
probability density functions of the T and Q statistics are Gaussian, but system
nonlinearities can derive into modelling errors which are not Gaussian, making

this assumption invalid.

Odiowei and Cao [17] developed a methodology to solve this issue by
estimating the actual probability density function of the statistical indicators
using Kernel Density Estimations (KDE). The probability of a random variable y
(with a probability density function p(y)) to be smaller than a certain value b is

defined as:

b

P(y<b)= [ p(y)dy (4-18)

—0

Where p(y) can be calculated through the kernel function K:

1 y—ykj )
p(y)—MhéK( - (4-19)
K()=e 2 / Jor (4-20)

Where h is the selected bandwidth (see [17]) and yx is each one of the M
samplesiny.

The T2 metric represents the variation of the state variables indicating changes
in the retained space. Q is also known as the squared prediction error and it
represents the sum of the squared variation error in the residual space. Both
indicators are complementary; some faults can cause an increment in the
variability of the system states whilst others will be manifested as an increment
in the residual space variability. For this case study the event of fault detection
will be considered every time any of the indicators exceed the respective UCL.
This makes the monitoring performance insensitive to the number of states
retained r [17].

In the event of fault detection it is crucial to locate the source of the fault in order

to understand the origin of the problem and undertake the best maintenance
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action. Chiang et al. [2] suggested the use of contribution plots to estimate how
much each one of the variables contributed to the final value of the statistical
indicator. In CVA it is easy to calculate the contribution ¢ of each variable y; to

the final value of each of the canonical variates z:

Y (@-21)

where v; is the singular value corresponding to the loading vector J,. The total

contribution C of the ji process variable y; can be obtained as:
C =>c, (4-22)
i=1

This technique has been successfully applied by other researchers for fault
identification [80-83]. Once a fault has been detected, it is possible to prioritize
the variables responsible for fault identification based on their individual
contributions, and the plant engineers can use this information together with

their plant knowledge to determine the origin of the fault.

4.2.2 Experimental set up

The data sets used in this investigation were acquired from the 3 phase flow
facility at Cranfield University, which is a large scale test rig for multiphase flow
research designed to provide a controlled and measured amount of air oil and
water. All the data were captured by the Emerson Delta V Digital Automation
System at a sampling rate of 1 Hz. Mixture of only air and water was used in all
the experiments, and the three phase separator was always pressurized to 1.0
barg. The rig description and a detailed explanation of the data sets acquired
and the faults introduced were presented in chapter 3. Three data sets (T1, T2
and T3) were acquired from the system working under normal operating
conditions (no faults). In these data sets the air and water flow rate set point
was modified to obtain data from the system working under different conditions,
trying to cover all the available spectrum of flow rate combinations. Additionally,
six different faults were introduced in the system to study the capabilities of
different monitoring algorithms in terms of fault detection and diagnosis. The

faults introduced were summarized in Table 3. These faults were introduced
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gradually when possible so as to observe how the severity of the fault affects
the health indicators. The faults were introduced after a period of normal
operation to visualize the change in the indicators from normal operation to
faulty conditions. After reaching the maximum fault severity, the faults were
removed from the test rig allowing the operation to return to normal operational
conditions. For each one of the cases (except Case 6) 2 different data sets
were analysed using CVA in order to observe how the algorithm performs under
different conditions. Table 1 summarized the different measurements acquired
from the system, although variable 24 was only included in the analysis of Case
6.

4.3 Results and discussion

The results provided by the application of CVA to the training and monitoring
data sets introduced above are presented in this section. Each one of the faults
is explained briefly again here, but additional details can be found in chapter 3
of this document. For each data set analysed the information provided here
includes the results obtained from the CVA application: T? and Q indicators and
contribution plots at the moment of fault detection. The plots representing CVA
fault detection results for each analysis contain the T? and Q indicators plotted
as solid black lines, while the threshold is plotted as a grey dashed line. The
fault starting and ending points in each case are represented by a vertical
dashed black line. It is important to notice that all the faults cases except Case
6 were introduced gradually, and the fault severity increases with time after the
introduction of the fault.
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4.3.1 Training data sets and selection of tuning parameters

The first step for the application of CVA to the “normal operation” data sets in
order to train the algorithm and obtain the transformation matrices and UCL for
the thresholds is to select the number of past and future lags considered (p and
f) and the number of estates retained (r). The optimal number of past and
future lags considered in the analysis can be calculated computing the
autocorrelation function of the summed squares of all measurements [17]. This
function measures the cross correlation between a signal and a delayed version
of itself at different lags. In this way it is possible to determine for how long the
correlation of the signal with past lags is significant, and thus only the lags
which are relevant are selected. Fig. 38 shows an example of autocorrelation
function for the training data set T1 against a confidence bound of +5% (solid
black line).

Sample Autocorrelation Function

e

Sample Autocorrelation

P AN N S I T S N N B
0

Fig. 38: Autocorrelation function of the summed squares of all

measurements for data set T1

For this study p and f were set to 15 according to the results obtained from the

analysis of the autocorrelation function of the three training data sets.

Different methodologies have been suggested for the calculation of the optimal
number of states retained r, among which those based on considering the
dominant singular values in the matrix D [84] and methodologies based on the

Akaike Information Criterion (AIC) [2] are the most common.
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Fig. 39 shows the normalized singular values obtained from (4-11). In this
particular case, the singular values decrease slowly and setting the number of
retained states based on the dominant singular values will derive in an
unrealistic model [17]. In addition, the number of states retained is not
especially relevant for this study because both statistical indicators (T? and Q)
are used at the same time for fault detection. It means that those system
variations not captured in the retained space will be captured by the residual
space and vice versa. A confidence bound of 99% was considered for the
calculation of the UCL.
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Fig. 39: Normalized singular values for T1

In order to obtain a richer and more varied training set that covers all the
spectrum of operational conditions, the data sets acquired under normal
operational conditions were combined. The combination was done by
calculating the past and future matrices individually for each data set according
to (4-4) and (4-5) and then the matrices obtained were merged. The original
length of the data sets was 10372 s for T1, 9825 s for T2 and 13200 s for T3. In
order to check the capacity of these data sets to represent the system dynamics
accurately producing a low number of false alarms, the three data sets were
mixed in pairs generating three different combined sets. The objective of
analysing these three combinations is to see which of them produces a lower

false alarm rate when the remaining data set is used during the monitoring
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period. In order to select the optimal number of dimensions retained r, CVA was
performed for each one of the three combined training data sets using a range
of values for this parameter. For low values of r the number of false alarms is
high because the retained space is not able to represent accurately the states
of the system and consequently the number of the T? threshold violations
increases. On the other hand if the state order selected is too high it results in
the model underfitting the data [2], increasing again the false alarm rate. The
training data set combination which produced lower false alarm rates was T2
and T3. After several analyses testing different values for r for each
combination of data sets finally r=25 was adopted in order to minimize the false

alarm rate in normal conditions (see Fig. 40).
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Fig. 40: Analysis of the influence of the number of

states retained

The T? and Q plots obtained for the different combined training sets using the
selected number of states retained are represented in Fig. 41, Fig. 42 and Fig.
43 including the UCL calculated using KDE for a 99% confidence bound plotted

as a grey dashed line.
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Fig. 41: T2 and Q statistics for data set T3 using T1 and T2 combination for
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Fig. 42: T? and Q statistics for data set T2 using T1 and T3 combination for

training
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Fig. 43: T? and Q statistics for data set T1 using T2 and T3 combination for

training

Table 11 summarises the results obtained from this analysis for the parameter
r=25:

Table 11: Summary training data sets analysis

Training Monitoring T2 Threshold  Q threshold False alarm False alarm
rate T2 rate Q
T1&T2 T3 3036.81 734.94 0.0378% 29.1158%
T1&T3 T2 1620.63 1158.71 0.0102% 7.9601%
T2&T3 T1 1753.97 6940.73 0% 0.2121%

This results show that the combination of T1 and T2 for training is not able to
capture accurately all the systems variations that occurred during T3, obtaining
a high number of points over the limit especially for the Q indicator. The number
of points over the threshold using the combination T1 and T3 for the training
stage and T2 for monitoring produced slightly better results, but it is obvious
that the combination which produced the best results capturing the system
dynamics and consequently reducing the number of threshold violations was T2
and T3. For this reason, in the analysis of the different data sets acquired under
faulty operating conditions the transformation matrices and indicators thresholds
obtained using this combination of data sets will be used. The length of the
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combined training data set is 22967 s, taking into account that after the
calculation of the past and future matrices the length of each data set is
reduced by p-f+1 samples. Fig. 42 shows the probability density functions
obtained applying KDE to the T? and Q statistic values calculated for the data
set combination T2 and T3.
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Fig. 44: Probability density functions of T2 and Q statistics during training (99%

confidence bound)

The UCL calculated for the T? and Q statistics was 1753.98 and 6940.73

respectively.

4.3.2 Case 1: Air line blockage

The fault introduced in this case was to gradually close the manual valve of the
air line simulating a blockage that develops over time. Two data sets were
analysed, identified in chapter 3 as data sets 1.1 and 1.2. In data set 1.1 the
fault was introduced while the system was operated in changing loading
conditions but in data set 1.2 the air and water flow rates set points were

constant, 150m?/hr of air and 2kg/s of water.
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The results obtained in terms of fault detection and diagnosis for data set 1.1
are represented in Fig. 45. The first fault detection occurred at sample 2992 for
the T2 statistical indicator and in sample 2985 for the Q indicator. Those
samples correspond to a valve opening of 60° in both cases. Both indicators fall
below the UCL when the fault is removed opening the air valve completely. The
contribution plots at the fault detection time (sample 2985) are represented in
Fig. 45(b). In this case the variable contributing more to the final value of the T?
statistical indicator is the air delivery pressure (PT312), pointing at a conflict
with the pressure in the air line section before the mixing point. The Q indicator
is not as clear as the T? for this test, and other variables like the pressure at the
bottom of the riser (PT401) or the differential pressure between the top and the
bottom of the riser (PT401-PT408) are more significant.
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Fig. 45: Results from data set 1.1: T2 and Q indicators (a) and contribution plots
at sample 2985 (b)

The results obtained in terms of fault detection and diagnosis for data set 1.2
are represented in Fig. 46. For this data set the first fault detection happened in
sample 2163 for the T? statistical indicator and in sample 1870 for the Q
indicator without short false alarms in any case. Those samples correspond to a
valve opening of 35° and 40° respectively. Both indicators fall below the UCL
when the fault is removed opening the air valve completely. The contribution
plots at the fault detection time (sample 1870) are represented in Fig. 46(b).
The variable contributing more to the final value of the T? statistical indicator is

again the air delivery pressure PT312. The Q indicator is not as clear as the T?,
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and other variables like the pressure at the bottom of the riser (PT401) and the
differential pressure between the top and the bottom of the riser (PT401-PT408)
are more significant.
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Fig. 46: Results from data set 1.2: T? and Q indicators (a) and contribution plots
at sample 1870 (b)

4.3.3 Case 2: Water line blockage

Similar to the fault case 1, in fault case 2, the water line valve was closed

gradually to simulate the blockage instead of the air line valve. Two data sets

were analysed, identified in chapter 3 as data sets 2.1 and 2.2. In data set 2.1

the fault was introduced while the system was operated in changing loading

conditions and in data set 2.2 the air and water flow rates set points were
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constant, 100m%hr of air and 2kg/s of water. The results obtained in terms of
fault detection and diagnosis for data set 2.1 are represented in Fig. 47.
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Fig. 47: Results from data set 2.1: T2 and Q indicators (a) and contribution plots
at sample 5660(b)

In this case the first fault detection happened in sample 5660 for the T?
statistical indicator, while in the Q indicator there is no clear sign of fault
detection apart from 3 short alarms around sample 6600. Sample 5660
corresponds to a valve opening of 25°. It is important to notice that in this
particular case the water flow rate was seriously affected by the fault introduced
instants after the fault detection, which gives a reduced amount of reaction time
before the fault becomes critical. The T? indicator falls below the UCL when the

fault is removed opening the water valve completely but generates several short
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false alarms before the end of the test. The poor performance of the Q indicator
in this particular fault is attributed to the threshold value calculated:
observations of the Q statistic seem to indicate it may have been possible to
detect the fault using a lower threshold. The contribution plots at the fault
detection time (sample 5660) are represented in Fig. 47 (b). In this case the
variable contributing more to the final value of the T? statistical indicator is the
position of the valve VC101 which corresponds to the valve that controls the
water flow rate. This is an indication that the control loop is reacting to the
increment in the pressure losses generated by the blockage by increasing the
valve opening to keep the desired flow rate. For the Q indicator the main
contributions are split between different variables, which makes it difficult to

identify the source of the fault.

The results obtained in terms of fault detection and diagnosis for data set 2.2
are represented in Fig. 48. In this case the first fault detection happened in
sample 2288 for the T? statistical indicator, while in the Q indicator again there is
no clear sign of fault detection apart from 3 short alarms around sample 2700.
Sample 2288 corresponds to a valve opening of 20°. The T?indicator falls below
the UCL when the fault is removed opening the water valve completely. For the
Q statistic it could have been possible to detect the fault using a lower
threshold. The contribution plots at the fault detection time (sample 2288) are
represented in Fig. 48 (b). In this case the variable contributing more to the final
value of the T? statistical indicator is again the position of the valve VC101. For
the Q indicator the main contributions are split between different variables,
which makes it difficult to identify the source of the fault. The repeated lack of
precision of the Q indicator locating the source of the fault and the high number

of false alarms can be an indication of oversensitivity in the residual space.
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Fig. 48: Results from data set 2.2: T2 and Q indicators (a) and contribution plots
at sample 2288 (b)

4.3.4 Case 3: Top separator input blockage

In this case the blockage was introduced manipulating the valve VC404 (top
separator input) which is operated pneumatically, offering higher precision in the
measurement of the valve position. Two data sets were analysed, identified in
chapter 3 as data sets 3.1 and 3.2. In data set 3.1 the fault was introduced while
the system was operated in changing loading conditions. In data set 3.2 the air
and water flow rates set points were constant, 100m%nhr of air and 2kg/s of
water. The results obtained in terms of fault detection and diagnosis for data set

3.1 are represented in Fig. 49.
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Fig. 49: Results from data set 3.1: T2 and Q indicators (a) and contribution plots
at sample 1230 (b)

The first fault detection happens in sample 1230 for the T? statistical indicator
and 1324 for the Q indicator. These time points correspond to a valve opening
of 60% and 45% respectively. Both indicators fall below the UCL values when
the fault is removed opening the valve completely. In this case the recovery to
normal conditions takes slightly longer than in the previous cases because the
air and water flow rates were seriously affected in the last stages of the fault.
The contribution plots at the fault detection time (sample 1230) are represented
in Fig. 49(b). In this case the variable contributing more to the final value of the
T? statistical indicator is the differential pressure over the valve VC404 (PT408-

PT403), pointing precisely to an excessive pressure loss in this valve. It is
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important to mention that the position of the valve VC404 was not included in
the analysis. The contribution of the level in the 3 phase separator (LI504) is
also significant. For the Q indicator, the most significant variables are the
differential pressure over the valve VC404 (PT408-PT403), and the pressure
measured at the bottom of the riser (PT401).

The results obtained in terms of fault detection and diagnosis in data set 3.2 are

represented in Fig. 50.
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Fig. 50: Results from data set 3.2: T2 and Q indicators (a) and contribution plots

at sample 3419 (b)

The first fault detection happens in sample 3419 for the T? statistical indicator

after 8 short fault alarms (difficult to see due to the logarithmic scale) while for
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the Q indicator the detection happens at sample 3704 after 8 short false alarms.
Sample number 3419 corresponds to a valve opening of 48% and sample 3704
corresponds to 43%. Both indicators fall below the UCL values when the fault is
removed opening the valve completely. The contribution plots at the fault
detection time (sample 3419) are represented in Fig. 50 (b). In this case the
variables contributing more to the final value of the T statistical indicator are the
differential pressure over the valve VC404 (PT408-PT403) and the pressure at
the top of the riser (PT408). For the Q indicator the most significant variables
are the differential pressure over the valve VC404 and the position of the air

outlet valve in the 3 phase separator.

4.3.5 Case 4: Open direct bypass

In the rig there is an alternative 4” line which can carry the flow directly from the
mixing point to the 3 phase separator, bypassing the riser and the top
separator. There are valves at the beginning and at the end of this alternative
line to isolate it from the rest of the system, and in normal conditions they are
closed. The fault introduced in this case consisted in the gradual opening of this
valves, simulating a leakage where part of the flow is lost or a wrong system
operation. Two data sets were analysed, identified in chapter 3 as data sets 4.1
and 4.2. In data set 4.1 the fault was introduced while the system was operated
under changing loading conditions. In data set 4.2 the air and water flow rates
set points were constant, 150m®hr of air and 2kg/s of water. The results
obtained in terms of fault detection and diagnosis for fault 4.1 are represented in
Fig. 51.

The first fault detection occurs at sample 1501 for the T? statistical indicator and
1531 for the Q indicator. Those time points correspond to a valve opening of
10° in both cases. The behaviour of the indicators in this case is completely
different from the behaviour observed in the previous cases. The T? indicator
shows an oscillating behaviour from the point of fault detection. Secondly both
indicators reach a maximum value around sample 3500 and next their value

decreases despite the fault severity continuously increased until sample 6293.
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Fig. 51: Results from data set 4.1: T2 and Q indicators (a) and contribution plots
at sample 1501 (b)

The introduction of a leakage at the bottom of the riser generated slugging
(which will be studied in the next fault case) due to the geometry of the bypass
valve manipulated to simulate this leakage. As it can be seen in Fig. 52, the
derivation for the bypass pipe line is located at the top part of the 4” line,
situating the bypass line around 45cm higher than the main 4”line. When the
bypass valve was initially opened, the gas flowing inside the 4” line on top of the
water escaped through this alternative line, which affected the multiphase flow
through the riser. The water remained at the bottom of the riser generating a
blockage which reached the bypass valve region, increasing the pressure in all
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the pipe lines before that point. When the pressure was sufficiently high as to
flush the liquid through the 4” line and the bypass line the water was
discharged, clearing the blockage and restarting the cycle again. This explains
the oscillations in the T? indicator as a consequence of the oscillations in the
pressure measured in the air line (PT312) and the pressure at the bottom of the

riser PT401. Fig. 53 shows the effect generated by the fault over the pressure

in the air supply line (PT312) and its consequence in the measured flow rate at

the top of the riser (FT407).

Fig. 52: Bypass derivation detail
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Fig. 53: Effect of fault 4 on the air supply pressure (a) and top riser flow rate (b)

As the bypass valve is opened, a higher percentage of the flow is carried
through this alternative pipe line. This mitigates the liquid blocking effect and
reduces the severity of the slugging. That is the reason why both indicators
decrease after reaching a maximum around sample 3500 despite the fault

continuously increased in severity. The contribution plot for the T indicator at
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the detection time (sample 1501) shows a higher contribution of the air supply
line pressure (PT312) and the pressure measured at the bottom of the riser
(PT401) due to the effect of the liquid blockage. For the Q indicator the most
important contribution comes from the flow rate measured at the top of the riser
(FT407), due to the lack of flow rate caused by the derivation of part of the air
and water through the bypass line and the liquid blockage at the bottom of the

riser.

The results obtained in terms of fault detection and diagnosis for fault 4.2 are

represented in Fig. 54.
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Fig. 54: Results from data set 4.2: T2 and Q indicators (a) and contribution plots
at sample 1281(b)
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The first fault detection occurs at sample 1287 for the T statistical indicator and
1281 for the Q indicator. These time points correspond to a valve opening of
10° in both cases. The behaviour of the indicators in the same observed in data
set 4.1, the T? indicator oscillates after the point of fault detection and both
indicators reach a maximum value after which their value decreases despite the
fault severity keeps increasing. The contribution plot for the T? indicator at the
detection time (sample 1281) shows a higher contribution of the air supply line
pressure (PT312) and the pressure measured at the bottom of the riser (PT401)
due to the effect of the liquid blockage. For the Q indicator the most significant
variables are the differential pressure between the top and the bottom of the

riser, the bottom riser pressure and the air delivery pressure.

4.3.6 Case 5: Slugging conditions

Slugging is a transient phenomenon that can occur in risers with multiphase
flow when the speed of the gas and the liquid are relatively small. The liquid
tends to accumulate in the base of the riser blocking the flow. Due to this
blockage, the pressure rises until it is sufficient to flush the liquid (and the gas)
out of the riser. After this surge, the liquid remaining in the riser falls down,
creating a new blockage and starting the cycle again. The fault was introduced
by reducing the air and water flow rates to regimes where slugging is produced.
During the tests, the flow rate was varying at different points from normal to
slugging conditions. Two data sets were analysed, identified chapter 3 as data
sets 5.1 and 5.2. Fig. 55 represents the operational conditions selected for data

set 5.1. The flow rate combinations where slugging is expected are shaded in

grey.
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Fig. 55: Flow rate set points for data set 5.1

The results obtained in terms of fault detection and diagnosis for data set 5.1
are represented in Fig. 56.
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Fig. 56: Results from data set 5.1: T2 and Q indicators (a) and contribution plots
at sample 769(b)
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In this data set both indicators are above the threshold at the beginning of the
experiment. This was not an expected result as the flow rates selected at the
beginning of the experiment (125m%hr of air and 6kg/s of water) are not
supposed to produce slugging and are already included in the training data
sets. The value of both indicators fluctuates with time during slugging conditions
but the threshold is only reached when slugging is produced. The fault detection
produced by the introduction of slugging conditions happens at samples 769
and 1895 for the T? statistic and samples 773 and 1895 for Q. In this case the
variables contributing most to the final value of the T? statistical indicator for the
first detection caused by slugging (sample 769) are the differential pressure
between the top and the bottom of the riser and the air delivery pressure
(PT312). The most significant variable for the value of the Q indicator at this
time point is the density measured at the top of the riser (FT407). As it can be
seen in Fig. 57 which represents the pressure measured at the bottom of the
riser during the experiment (PT401), slugging was not produced at the
beginning of the experiment but the values observed are significantly high. The
fluctuations observed in the T and Q indicators correspond with the pressure
fluctuations generated by the slugging effect, returning momentarily to normal

values after each discharge.
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Fig. 57: Riser bottom pressure (PT401) for data set 5.1

Fig. 58 represents the operational conditions selected for data set 5.2.
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The results obtained in terms of fault detection and diagnosis for data set 5.2
are represented in Fig. 59.
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The fault detection caused by slugging happens at samples 1716, 7075 and
8171 for the T? statistical indicator and 1643 and 8103 for the Q indicator after
one short false alarm. The detection of the second period of slugging is
complicated in the Q indicator because it was already over the threshold limit
before the introduction of slugging, where the flow rate conditions were in a
transition zone between slugging and normal. In this particular case the value of
both indicators fluctuates with time during slugging conditions due to the
repetitive nature of the phenomenon, but the threshold is only reached during
slugging conditions and also for transition zones in case of the Q indicator. In
this case the variables contributing more to the final value of the T? statistical
indicator at the first detection point (sample 1643) are the density of the fluid at
the top of the riser, differential pressure between the top and the bottom of the
riser, and the bottom riser pressure (PT401). These are the key variables
normally used to characterise slugging. The most significant variables for the
value of the Q indicator at this time point are the flow rate at the top of the riser

and the density measured in the same point.

4.3.7 Case 6: Pressurization of the 2” line

In the previous cases the 4” line was used to carry the flow to the top of the
riser. In these conditions, the 2” line is totally isolated from the rest of the
system and thus it should not be pressurized. At the top of the riser, just before
the input of the top separator there is a bridge with a valve that connects the 4”
and the 2” line. Fig. 60 shows a detail of this valve:

Fig. 60: Bridge valve between the 4" line and the 2" line
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The fault introduced consisted basically in opening this bridge valve keeping
both sides of the 2” line isolated from the rest of the installation. The objective of
this fault is to simulate a wrong operation of the system that in a real process
can cause degradation in the performance or in the output product quality or
even safety issues. This fault should not affect the flow conditions in the 4” line
or other parts of the rig, but it will pressurize the 2” line. In this particular case,
an additional variable was measured and included in the analysis in both the
training and the monitored data set. This variable is the pressure measured at
the bottom of the riser in the 2” line by PT417. The addition of this variable
caused a change in the estimated threshold for the T and Q indicators,
obtaining new values of 1755.16 and 3774 respectively. The valve was opened
fast as the pressurization is expected to happen almost instantaneously. One
data set was analysed, identified in chapter 3 as data set 6.1.

The results obtained in terms of fault detection and diagnosis are represented in
Fig. 61. The fault detection was noted at sample 1724 for both statistical
indicators, showing a fast reaction to the fault. Both indicators remained over
the UCL until the end of the experiment as expected. In the instant of fault
detection, the contribution plots of both indicators show clearly that the fault is
related with pressure measured in the 2” line (PT417). Without this additional
measurement included in the analysis it was impossible to detect the fault, and
both indicators remained below the UCL for the whole experiment with the

exception of one short false alarm in the Q indicator (see Fig. 62).
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Fig. 62: T and Q indicators for Case 6 without PT417

4.4 Results summary

This section summarizes the results obtained in terms of fault detection. The
results shown previously obtained by the application of CVA with KDE are
compared with the results obtained by the application of PCA, DPCA, PLS and
DPLS with and without KDE for the calculation of the indicators’ thresholds. The
results obtained from the analysis of additional data sets described in chapter 3
but not included in 4.3 are also summarized here. For the PCA, DPCA, PLS and
DPLS analysis the number of retained states was set to 5 in order to cover 85%
of the covariance, and the number of lags considered in DPCA and DPLS was
set to 5. For the PLS and DPLS analysis the air and water set points were
selected to construct the predictor matrix, while the measurements taken from
the system were used in the predicted matrix. For the calculation of the UCL a
confidence bound of 99% was used in all cases.

Table 13 and Table 14 show the results obtained in terms of detection rate,
which is calculated as the percentage of observations between the fault starting
and the ending point whose indicator value is over the corresponding threshold.
Table 12 shows the start and end points considered for each one of the data

sets.
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The false alarm rates presented in Table 15 and Table 16 are calculated as the
percentage of observations outside the fault region for which the indicator
exceeds the threshold. The fact that most faults were introduced gradually
makes it more difficult to identify the start and end of the fault. For this
performance analysis it was established that the starting point of each fault will
be the instant where the system was first manipulated, independently of the
degree of manipulation. In the particular case of data sets 5.1 and 5.2 where the
faulty conditions were introduced and removed 2 and 3 times respectively in
each experiment, the start and end of the faulty conditions is considered as the
instant when the flow rate set point expected to produce slugging was

introduced or changed.

The detection times presented in Table 17 and Table 18 are calculated as the
difference between the fault detection time and the fault starting time. The event
of fault detection was considered independently for the T? and Q indicators as
the first point after which it was found a significant amount of consecutive
observations above the threshold, trying to avoid short false alarms happening

inside the fault zone.
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Table 12: Fault starting and ending points

Data

set Start End
11 1566 5181
1.2 657 3777
1.3 691 3691
2.1 2244 6616
2.2 476 2656
2.3 331 2467
3.1 1136 8352
3.2 333 5871
3.3 596 9566
34 452 8731
4.1 953 6294
4.2 851 3851
4.3 241 3241
5.1(1) 686 1172
5.1() 1772 2253
52(1) 1633 2955
52(2) 7031 7553
52(3) 8057 10608
6.1 1723 2800
6.2 1037 4830
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Table 13: T? detection rate (%)

Case Data PCA DPCA PCA DPCA PLS DPLS PLS DPLS CVA CVA

set KDE KDE KDE KDE KDE
Threshold 15.09 15.09 21.37 21.88 15.09 15.09 81.14 1239.32 44.38 1753.98
1 11 22.65 23.10 14.72 14.69 36.49 - 27.11 20.97 - 60.66
1.2 22.91 2285 2285 2279 3247 - 22.91 22.98 - 51.73
1.3 19.63 19.60 19.56 19.56 31.2 - 19.7 19.77 - 39.73
2 21 - - - - 1.87 59.42 - - - 21.87
2.2 - - - - - 15.45 - - - 16.88
2.3 - - - - - - - - - 29.21
3 3.1 98.37 98.44 97.69 97.81 99.36 - 96.71 96.72 - 98.69
3.2 81.41 8281 37.14 36.53 4823 92.79 3295 32.39 - 45.75
3.3 97.22 97.73 9557 95.37 99.36 - 96.21 96.62 - 98.81
3.4 97.09 97.15 96.67 96.65 99.33 - 96.80 96.98 - 98.06
4 4.1 34.50 35.61 30.425 29.43 40.34 - 30.94 30.08 - 57.74
4.2 9.5 9.87 6.4 470 15.07 - 597 344 9053 21.50
4.3 18.43 17.23 1547 123 2543 - 14.8 15.10 - 29.03
5 51 70.63 71.87 53.98 5491 94.72 - 29.69 28.74 - 25.33
5.2 83.34 84.19 67.51 66.49 98.68 - 57.73 5277 100 43.17
6 6.1 99.72 99,53 99.72 99.44 67.13 - - - - 99.91
6.2 99.86 99.78 99.84 99.76 - - - - 100 100

The results from Table 13 about the detection rate observed using the T?
statistic show that PCA and DPCA have a similar rate of detection success. The
detection rate observed by adding KDE for the calculation of the indicator
threshold is also very similar. The performance of PLS was slightly better than
PCA and DPCA, but in most cases it was impossible to determine the fault
detection using DPLS due to the unrealistic value obtained from the threshold
calculation. The DPLS results were massively improved adding KDE for the
calculation of a more realistic threshold. Similarly, it was impossible in most
cases to determine the success rate of CVA due to the low threshold value
estimated using the Gaussian assumption, but the results were improved

adding KDE, obtaining better detection rates than with any other method.
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Table 14: Q detection rate (%)

Case Data PCA DPCA PCA DPCA PLS DPLS PLS DPLS CVA CVA
set KDE KDE KDE KDE KDE
Threshold  9.77 4234 10.73 50.15 46.71 226.21 41.53 456.75 343.29 6940.73
1 11 5272 60.17 5032 49.68 30.23 50.34 34.80 29.90 81.24 6141
12 4292 4333 4246 4248 3256 32.69 3259 32.63 83.75 61.13
1.3 38.23 4297 3353 36.37 19.83 87.83 20.26 299 64.73 39.73
2 21 6296 69.47 58.30 6043 - 6.84 121 379 46.75 -
22 2486 4522 18.67 1835 - 12.16 - - 17.84 -
23 3254 1587 3043 2935 - 12.68 - - 3459 -
3 3.1 99.72 100 99.84 100 98.67 99.42 098.75 98.65 99.91 97.87
32 - - 96.87 99.89 88.01 93.82 96.17 56.62 - 41.71
3.3 99.65 99.70 99.63 99.61 99.25 99.88 99.26 99.38 99.60 96.55
34 99.72 99.94 99.69 99.59 99.19 99.89 99.23 99.32 99.57 97.01
4 41 9264 9414 92.14 9198 43.02 57.59 4522 4285 9253 82.32
42 3163 37.20 2847 30.77 1530 6153 16.17 15.73 90.97 47.63
43 9486 9943 9223 941 22,67 541 2500 2583 923 5843
5 51 - - - - 58.63 96.48 65.77 78.80 - 16.23
52 8941 9328 87.34 8957 7151 97.64 74.13 85.89 100 67.49
6 6.1 99.81 99.81 99.81 99.81 99.81 99.72 99.81 99.72- 99.91 99.91
6.2 99.94 100 100 100 99.92 99.89 100 99.89 100 100

The results obtained from the analysis of the detection rate using the Q statistic

indicate a similar trend. DPCA shows a better performance than PCA and the

addition of KDE reduces slightly the detection rate of both methods due to the

higher threshold value obtained. DPLS performance is better than PLS, but

again this performance is slightly reduced by the addition of KDE, although the

real benefit of KDE will be seen in the false alarm rate. The performance of CVA

is better than the performance observed for other techniques. Again the addition
of KDE to CVA reduces slightly the detection rate due to the higher threshold

estimated, but this small decrement will be rewarded by a large reduction of the

false alarm rate.
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Table 15: T? false alarm rate (%)

Case Data PCA DPCA PCA DPCA PLS DPLS PLS DPLS CVA CVA
set KDE KDE KDE KDE KDE
1 11 591 569 3.09 318 2399 - 063 045 - 1.14
1.2 1351 13.95 10.84 11.14 18.48 - 579 1.78 - 2.89
13 953 1014 6.73 6.89 1211 - 159 098 - 2.42
2 21 - - - - 958 9571 - - - 41.76
2.2 - - - - - 18.90 - - - 1.67
2.3 - - - - - - - - - 1.47
3 3.1 1595 13.32 10.62 10.83 22.62 - 218 181 - 2.13
3.2 51.77 51.77 38.96 37.60 10.08 56.57 4.08 260 - 3.54
3.3 2229 2230 1794 17.78 18.95 - 228 189 - 2.78
3.4 20.80 21.24 1349 13.72 26.11 - 0.22 022 - 0.22
4 4.1 343 364 149 149 2233 - 150 150 - 2.78
4.2 9.17 965 6.96 6.96 1481 - 565 504 39.29 531
4.3 2935 29.65 2148 21.33 3222 - 923 439 - 13.31
5 51 70.08 69.82 6531 6505 5025 - 2395 2332 - 24.46
5.2 1147 1115 3.03 268 64.44 - 3.02 310 5791 048
6 6.1 127 145 029 - 029 - - - - 0
6.2 0 0 0 0 - - - - 3784 0

In terms of false alarms, PCA and DPCA showed a similar performance, which

really was improved by the introduction of KDE .This improved performance

caused by the addition of KDE is even more evident in the case of PLS and
DPLS, which show the best results together with CVA including also KDE for

the estimation of the threshold. The results obtained from this analysis evidence

the major improvements obtained when KDE is used to estimate the threshold

of the indicators.
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Table 16: Q false alarm rate (%)

Case Data PCA DPCA PCA DPCA PLS DPLS PLS DPLS CVA CVA
set KDE KDE KDE KDE KDE

1 11 1698 3756 851 11.20 3.051 34.17 4.00 273 37.84 134

12 3526 50.26 2524 34.04 11.14 1228 12.03 8.04 3274 3.34

1.3 1022 10.74 825 947 689 66.81 7.00 691 20.06 3.10

2 21 5358 5346 5353 5347 - 22.80 091 157 6049 -
22 2348 5691 11.02 14.06 - 3.20 - - 18.77 -
23 1159 1587 7.47 583 - 8.89 - - 30.66 -

3 3.1 3297 57.79 20.43 33.17 1141 5417 1339 10.00 33.83 1.54
32 - - 71.93 86.64 4836 5150 5217 1643 - 3.67

33 1231 1573 9.98 992 1694 3559 1940 1592 2525 551

34 2323 4203 12.61 16.37 1549 56.63 1836 8.18 31.19 0.22

4 41 4730 5051 38.29 4793 193 5693 225 230 46.27 278

42 2591 4962 18.12 2088 7.03 862 717 6.77 4135 6.75

43 4297 6096 31.32 39.93 1846 7534 20.12 19.06 41.30 12.10

5 51 - - - - 3577 73.06 4199 4111 - 23.76
52 2253 2677 1990 6164 7.86 3234 9.02 21.73 4097 5

6 6.1 597 887 319 487 O 081 O 0 8.067 O
6.2 028 O 028 O 0 038 O 0 13.02 O

In the case of false alarms observed in the Q statistic, PCA showed a better
performance than DPCA, but those differences are minimal after the addition of
KDE, which caused a massive improvement in the false alarm rate. Similarly
PLS presents lower rates off false alarms than DPLS and the latter one
improved its performance remarkably with the addition of KDE. CVA shows a
relatively high rate of false alarms, but this rate is reduced when adding KDE,

obtaining the best results among all the algorithms studied.
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Table 17: T? detection time (s)

Case Data PCA DPCA PCA DPCA PLS DPLS PLS DPLS CVA CVA
set KDE KDE KDE KDE KDE
1 1.1 3080 3080 3083 3084 2296 - 2698 3080 - 1426
1.2 2405 2407 2407 2409 2107 - 2405 2407 - 1506
1.3 2411 2412 2413 2415 2105 - 2409 2411 - 1808
2 21 - - - - 4378 4023 - - - 3416
22 - - - - - 1849 - - - 1812
23 - - - - - - - - - 1512
3 31 207 112 374 211 52 - 399 235 - 94
3.2 3266 3219 3745 3733 3240 1405 3967 3788 - 3086
33 434 307 453 450 90 - 451 307 - 106
34 299 243 303 305 72 - 303 250 - 160
4 41 585 586 585 588 512 - 584 585 - 548
42 493 494 507 443 457 - 442 448 291 436
43 400 393 416 404 375 - 400 400 - 416
5 5.1 (1)- - - - - - 65 64 - 69
5.1 (2) 40 37 47 45 28 - 103 121 29 109
52 27 28 42 40 32 - 50 47 2 83
()
52 - - - - - - - - - 44
(2)
5.2
(3) 16 14 19 18 17 - 36 86 83 114
6 61 3 3 2 356 - - - - 1
62 5 4 6 5 - - - - 1 1

In terms of detection time using T2, DPCA shows a faster response in some

cases compared with PCA. The detection time is slightly increased for both

algorithms after the addition of KDE due to the higher threshold estimated.
Similarly, DPLS with KDE presents lower detection times than PLS with KDE in

most cases, improving also the performance observed in DPCA, but the

algorithm which showed the fastest reaction to the faults was CVA with KDE.
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Table 18: Q detection time (s)

Case Data PCA DPCA PCA DPCA PLS DPLS PLS DPLS CVA CVA
set KDE KDE KDE KDE KDE

1 1.1 1829 1830 1830 1831 2584 1834 2583 2585 644 1419

1.2 1803 1804 1804 1804 2104 2104 2103 2106 590 1213

1.3 2103 1809 2103 2101 2405 1713 2404 2107 1195 1808

2 21 1852 1783 2214 1857 - 4073 4199 4249 3431 -
22 1816 1803 1828 1817 - 1912 - - 1791 -
23 1536 1536 1542 1537 - 1918 - - 1481 -

3 3.1 17 0 74 0 99 46 94 101 34 188
32 - - 2067 1173 1834 1405 1409 2637 - 3371

33 34 34 50 35 93 31 92 65 22 309

34 32 24 33 34 153 59 63 63 21 247

4 41 426 422 436 428 480 461 467 476 455 578

42 376 348 410 369 455 436 440 442 292 430

43 302 162 313 302 379 371 378 3737 293 371

5 5.1S1- - - - - - - - - 73
5.152- - - - 47 32 42 60 23 109
5.2 (1) 36 31 21 34 39 29 38 34 1 87
5.2 (2)- - - - - - - - - -
5.2 (3) 85 13 85 16 29 23 29 27 36 46

6 6.1 2 1 2 1 2 1 2 1 1 1
6.2 2 1 2 1 3 1 2 1 1 1

Using the Q indicator the fault reaction time is similar for PCA and DPCA, but
DPCA produced slightly better results. The addition of KDE in these cases
again increases the detection time. DPLS performs better than PLS but after the
addition of KDE the performance of both algorithms is similar, and slower
compared with the Gaussian assumption. CVA shows the fastest performance,
which is slightly reduced by the addition of KDE.

4.5 Conclusion

CVA is a well-known technique for dynamic process monitoring which
performance has already been tested by several researchers using computer
simulated data. Nevertheless, examples of application using real data are

anecdotic. In this work CVA was applied to sets of data obtained in a large
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scale test rig where different process faults were seeded during changing
operational conditions. The faults were successfully detected using the T? and Q
metrics. In some cases the fault detection happened earlier for the Q statistic
but in the other hand, Q produced a higher number of false alarms than T2 This
indicates that the Q statistic was slightly oversensitive for these particular
conditions. This phenomenon has already been reported by other researchers
[2] and it has been attributed to the fact that most faults tend to create new
states rather than magnifying the states based on normal operation.
Contribution plots were used to locate those measurements which are more
severely affected by the fault in order to help in the process of fault diagnosis
once a fault has been detected. The results obtained for the T? contribution plots
were always related with the fault introduced and, combined with knowledge
about the process, could have been used for fault identification. In the other
hand the Q contribution plots were not always as clear as the T? plots. This was
probably caused by the mentioned oversensitivity of the Q indicator; as a
consequence any small variation in the residual space is represented in the
contribution plots, sharing the contribution between several variables which
complicates the fault detection. These results demonstrate that CVA can be
effectively applied for the detection and diagnosis of faults in real complex
systems working under variable operating conditions.

When comparing the performance of CVA including KDE with other
methodologies it is clear that this method is superior to the rest in terms of
detection rate, false alarm rate and detection time. For fault detection, CVA with
KDE produced a higher detection rate in most cases and, when it was not the
case, the higher rate obtained using other method had a much higher false
alarm rate as a consequence (see for example data sets 3.2 and 4.2). It is
noticeable that the use of KDE for the calculation of the thresholds improved the
performance of all the algorithms in terms of false alarms rate. In some of the
studied cases it was not possible to use the results obtained for fault detection if
the thresholds were calculated using the Gaussian assumption because the
indicator value was higher than the threshold during the whole experiment. This

evidences that the Gaussian assumption in this case was unrealistic due to high
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nonlinearities in the system, which made almost essential the use of KDE for
threshold estimation.
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5 ESTIMATION OF PROCESS PERFORMANCE
DEGRADATION UNDER FAULTY CONDITIONS USING
CANONICAL VARIATE ANALYSIS

Abstract

Condition monitoring of industrial processes can minimize maintenance and
operating costs of industrial systems while increasing the process safety and
enhancing the quality of the product. In order to achieve these goals it is
necessary not only to detect and diagnose process faults but also to react to
them by scheduling the maintenance and production according to the condition

of the process.

In this investigation, process data was acquired from an experimental large-
scale multiphase flow facility operated under changing operational conditions to
test the capabilities of canonical variate analysis (CVA) to detect and diagnose
process faults, as well as to estimate performance degradation and predict the
behavior of the faulty system. This information could be used to improve the
maintenance and production schedules attending to two criteria: firstly the
impact of the fault in terms of operation safety, product quality, loading
conditions, energy consumption, etc. compared with normal operation; and
secondly the performance of the faulty system working under the operating

conditions expected in the future.

The results suggest that CVA can be effectively used to estimate how faults
affect the process performance in comparison to normal operation and to
predict future process performance after the appearance of the fault by using
data collected during the early stages of degradation.

5.1 Introduction

Modern industrial facilities are highly complex systems composed by
interconnected devices of different nature (process, electrical and mechanical
interfaces). Physics-based methods have been traditionally used for process

monitoring [4]. These methods model the process behaviour using first-principle
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equations and the fault detection and diagnosis is performed by observing
differences between the model predictions and actual process measurements.
These types of methodologies provide accurate results as long as the model is
reliable. However, due to the complexity of modern facilities the characterization
by using first-principle models is difficult and sometimes impossible [4]. Due to
these difficulties and the high degree of instrumentation and automation in
modern industrial processes data-based methods have gained popularity. Some
of the main challenges associated with the data-driven methods are high-
dimensional data, non-Gaussian distributions, non-linear relationships and

dynamically varying operational conditions [3; 4; 17; 22].

As it was mentioned in previous chapters, data driven methods are widely used
for fault detection and diagnosis applications in real industrial systems.
Multivariate algorithms such as the Principal Component Analysis (PCA) or the
Partial Least Squares (PLS) can account for the correlation between the
different variables measured in the process, which is an advantage over the
traditional univariate methods [2]. The use of lagged variables to take into
account time correlation to extend PCA to dynamic system monitoring (DPCA)
was proposed by Ku et al. [15]. Similarly, a dynamic version of PLS was
proposed by Komulainen [16] . Despite of their success, DPCA and DPLS are
known to be not as efficient as other state-space based methodologies such as
Canonical Variate Analysis (CVA) when applied to systems working under
variable operating conditions, principally due to the representation of the system
dynamics [17], [18; 19].

CVA aims to maximize the correlation between two sets of variables [2]. This
method has been applied in the past for fault detection and diagnosis using
computer simulated data [2; 17-22] or data acquired in small test rigs [51] or
particular parts of a system [52]. In chapter 4 the capabilities of CVA to detect
and diagnose process faults were tested and compared with other monitoring
techniques using experimental data. This investigation proved the superior
performance of CVA for the detection and diagnosis of faults in a real complex
system working under varying operational conditions. In addition, CVA can be
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used to identify the coefficients in the linear state-space equations that define
the dynamic behaviour of a system [21]. This method has been successfully
applied for system identification using computer simulated data (including the
Tennessee Eastman case study) and a pilot-scale distillation column. [21; 85;
86].

The objective of this investigation is to show how the system identification
capabilities of CVA can be used to estimate the performance degradation in a
real system affected by faults, and predict the future performance of the faulty
system working under varying operational conditions. Once a fault is detected
by the algorithm, if it is not critical and allows a safe process operation, the
operators can use this information to improve the maintenance and production
schedules based on the evaluation of the following two aspects: Firstly the
impact of the fault in terms of operation safety, product quality, loading
conditions, energy consumption, etc. compared with normal operation.
Secondly the future performance of the faulty system for the different operating

conditions expected.

The process data used in this investigation was acquired from the multiphase
flow facility described in 3.2, where different process faults were deliberately
introduced. The changing operational conditions and the non-linear nature of
the multiphase flow process, together with the size and complexity of the test rig
make this rig an ideal candidate for the case studied. CVA was applied in first
place for fault detection and diagnosis and secondly to estimate the process
performance under normal and faulty conditions using process data. The results
suggest that CVA can be effectively used to estimate how the fault affects the
process performance in comparison to normal operation and to predict future
process performance after the appearance of the fault by using data collected

during the early stages of degradation.

The rest of the chapter is structured as follows: 5.2.1 describes the CVA
methodology for system identification, and a brief description of the test rig
configuration for this study is presented in 5.2.2. The different data sets

acquired are explained in detail in 5.3. The results obtained from the analysis
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are presented in section 5.4, including algorithm training in 5.4.1, fault detection
and diagnosis in 5.4.2, performance degradation in 5.4.3 and prediction of faulty

system behaviour in 5.4.4. Finally the work is concluded in 5.5.

5.2 Methodology

5.2.1 CVA for system identification

The application procedure of CVA for fault detection and diagnosis was
described in detail in 4.2.1. In addition to the detection and diagnosis of process
faults, CVA can be used to identify the coefficients in the linear state space
equations that define the dynamic behaviour of the system. This method has
been used in the past for system identification using simulated data or data
acquired from pilot-scale rigs [21; 85; 86]. In particular Juricek et al. [86]
presented a successful application of CVA for identification of the Tennessee
Eastman challenge, which simulates a nonlinear, open-loop unstable and large-
dimensional process which contains a mixture of fast and slow dynamics. This
method is more computationally efficient than PLS as it is based on generalized
singular value decomposition instead of iterative estimation of residuals from
the previous step. The procedure of system identification using CVA requires a

sequence of steps [21]:

1) Selection of the input (manipulated) and output (measured) variables for
the model

2) Selection of the input excitation sequence

3) Collection of data using the selected input

4) Selection of the model structure (number of states and number of past
and future lags considered)

5) Estimation of the parameters in the state-space equations

6) Model validation

Given a set of inputs u and outputs y, the model that represents the linear state-

space is given by:
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%1 = D% +GU + W (5-1)
Y, =Hx + Ay, + Bw +V, (5-2)

where X is a r-order state vector, w; and v; are white noise and &, G, H, 4 and B
represent the state-space matrices. If the order of the model r is selected to be
equal or greater than the actual order of the system, the state vectors x; can be

replaced by the state estimates z [19; 87]:
z=3-% (5-3)

Assuming y; and u; are known and z can be obtained from CVA analysis, the
only unknowns of the system are the matrices @, G, H, A and B. Larimore [87]
proposes the next method for the calculation of those matrices using

multivariate regression:
MR (E3IN 8 Wi *

where X (a,b) denotes the sample covariance matrix for variables a and b.

This procedure was used in this investigation, in the first instance, to capture
the behaviour of a system working under normal operating conditions. After a
fault was introduced in the system, the performance degradation was estimated
as the difference between the actual measurements and the estimations
produced by the model assuming normal operation. Secondly, data was
acquired from the system working under faulty conditions during the early
stages of degradation to be able to predict the performance of the system for
the different operating conditions forecasted in the future. The objective of this
analysis is to observe how the fault affects the process when working under
different loading conditions assuming that the severity of the faults allows the

system to continue operating in suboptimal circumstances.

The accuracy of the model was assessed by looking at the average normalized

error e for each one of the measured variables y;:
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1 i Yij — yt j (5-5)
t=1 Yii

where y; represents the estimated value of the measured variable y; at time t,
and N denotes the total number of observations measured during a period of

time T.

The total averaged model error E is computed as:

]

; (5-6)
e
i

BIH

5.2.2 Experimental set up

The data sets used for this investigation were acquired from the 3-phase flow
facility described in 3.2.1. In this study all the data was captured at a sampling
rate of 1 Hz. The variables used include 17 different process variables (see
Table 19) and two process inputs (air and water flow rate set point, see Table
20). Only air and water were used in all the experiments and the three phase
separator was always pressurized to 1.0 barg in normal operation. The variety
in the nature of the selected variables (including pressure, flow rate, level,
density, temperature, valve position and current measurements) and the
different dynamics of these variables make the problem more challenging from
the identification point of view. The changing operational conditions and the
non-linear nature of the multiphase flow process, together with the size and

complexity of the test rig make this rig an ideal candidate for the case studied.
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Table 19: List of process variables used in this study

Variable nr Location Measured Magnitude Unit
V1 PT312 Air delivery pressure barg
Yo PT401 Pressure in the bottom of the riser  barg
V3 PT408 Pressure in top of the riser barg
Vi PT403 Pressure in top separator barg
Vs PT501 Pressure in 3 phase separator barg
Ve PT408 Diff. pressure (PT401-PT408) barg
V7 PT403 Diff. pressure (PT408-PT403) mbarg
Vs FT305 Flow rate input air Sm®h
Vo FT104 Flow rate input water kg/s
Y10 L1405 Level top separator m

Yu FT407 Density top riser kg/m?®
Y12 FT104 Temperature water input °C
V13 L1504 Level gas-liquid 3 phase %

Yia VC501 Position of valve VC501 %

Yis VC302 Position of valve VC302 %

Y6 VC101 Position of valve VC101 %

Y7 PO1 Water pump current A

Table 20: List of process inputs used in this study

Input nr Magnitude Unit
Uy Air flow rate Sm’h
U, Water flow kgls

5.3 Cases studied

5.3.1 Normal operation

As was mentioned in section 4.2.1, it is necessary to obtain data from the
system working under normal operating conditions to develop a CVA model
together with transformation matrices and the thresholds of the health
indicators. The procedure to apply the CVA used in this investigation the same
that was used in chapter 4, where CVA was used to detect and diagnose
process faults in the same test rig used here. Three new training data sets (T1,
T2 and T3) were acquired from the system. In these sets the set points of air
and water flow rates were deliberately varied to obtain data from the process
working under varying operating conditions. The duration of these sets was
11881s, 3151s and 4550s respectively. The set T1 was acquired to train the
CVA model while T2 and T3 were used for validation purposes. In order to

129



cover a wide spectrum of operating conditions 20 different combinations of air
and water flow rates (see Table 21) were tested in T1. The flow conditions were
changed, though not identically in each of the data sets, in order to obtain a
good variety of large, small, long and short process changes happening in
different directions (increment or decrement). The objective of this variety in the
operational conditions is to ensure that the dynamics of the system are captured
in all circumstances. Some of the air and water flow rate set points chosen for
T2 are also shown in Table 21 as they were the same selected for T1.
Nevertheless, the set points selected in T3 were different from the set points
shown in Table 21 with the objective of ensuring an effective detection,
diagnosis and identification under different operating points. Fig. 63 represents

the measured air and water flow rate for each data set:

Table 21: Typical set point values for air and water flow rates during Tland T2

Air flow rate (m®/h) 75 100 125 150

Water flow rate (kg/s) 0.5 1 2 35 6
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5.3.2 Case 1: Sensor communication error/ Stuck valve

The first fault introduced tried to simulate a sensor communication error in the
pressure transducer PT501 (which measures the pressure inside the 3-phase
separator) or a stuck valve in VC501 (which regulates the pressure inside the 3
phase separator). In order to simulate that fault, the control loop that links
PT501 and VC51 was broken by changing the valve operation to manual mode.
This test was carried out two times, the first one using the same flow rates set
points represented in Table 21 (Case 1.1) and the second using different flow
rates set points (Case 1.2). Fig. 64 and Fig. 65 show the operating conditions
during the tests (a), the position of valve VC501 (b) and the evolution of PT501

during the tests (c) for Case 1.1 and Case 1.2 respectively.
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observed in PT501 (c) for Case 1.1

132



[oe]

Air flowrate @
g 140 - 4 . 2
"\E/ 777777 Water flowrate - :
g " f M i <
® 100 | o e o P e T
| | | h | o
g g : I e e e R N IR G C
oM ! ;‘ S S
< [ R | ) L\ b =
| | | | | | 0
0 0.5 1 15 2 2.5 3
Time (s) x 10°
30
L
2 25t i
£ h
o )
& (0)
g 20 B
<
>
15 | | | | | |
0 0.5 1 15 2 2.5 3
Time (s) % 10*
2.5
B 2 )
©
2
= 1.5 B
© (©
a 1 i
05¢ I I I I I I 7
0 0.5 1 1.5 2 2.5 3 3.5
Time (s) % 10*

Fig. 65: Operational conditions (a), valve position VC501 (b) and fault evolution
observed in PT501 (b) for Case 1.2

5.3.3 Case 2: Top separator input blockage

The second fault introduced simulates a partial pipe blockage in the inlet of the

two phase separator placed on the top of the tower. The fault was simulated by
closing VC404 (which is normally 100% open) to 20%. Fig. 66 shows the

operating conditions during the test (a), the position of valve VC404 (b) and the

evolution of the pressure measured in the top of the raiser (PT408) during the

test (c).
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Fig. 66: Operational conditions (a), valve position VC404 (b) and fault evolution
observed in PT408 (b) for Case 2

5.3.4 Case 3: Top separator air outlet blockage

The third fault introduced simulates a partial pipe blockage in the air outlet line
of the two phase separator. The fault was simulated by closing VC401 (which is
normally 100% open) to 45%. This test was carried out two times, the first one
using the same flow rates set points represented in Table 21 (Case 3.1) and the
second using different flow rates set points (Case 3.2). Fig. 67 and Fig. 68 show
the operating conditions during the tests (a), the position of valve VC401 (b) and
the evolution of PT403 during the tests (c) for Case 3.1 and Case 3.2
respectively.
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Fig. 67: Operational conditions (a), fault evolution observed in PT403 (b) and
valve position VC401 (c) for Case 3.1
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Fig. 68: Operational conditions (a), fault evolution observed in PT403 (b) and

valve position VC401 (c) for Case 3.2

5.3.5 Case 4: Flow derivation through the 2” line

The last fault introduced simulates wrong system operation where part of the
flow is derived through an alternative pipeline. The fault was simulated by
opening the manual valves that allow the flow through the 2” line to the two
phase separator in parallel with the flow in the 4” line, and some time later
VC401 was fully closed to force the flow through the 2” line. Fig. 69 shows the
operating conditions during the test (a), the position of the 2” line valve and
VC404 (b) and the evolution of the pressure measured in the top of the raiser
(PT408) during the test (c).
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Fig. 69: Operational conditions (a), 2" line & VC404 valve position (b) and fault
evolution observed in PT408 (b) for Case 4

5.4 Results

5.4.1 Algorithm training and selection of tuning parameters

As stated in section 5.3.1, data acquired from the system working under normal
operating conditions is needed to obtain the transformation matrices and UCL
for the thresholds. In order to build the past and future vectors in (4-1) it is
necessary is to select the number of past and future lags considered (p and f)
and the number of estates retained (r). The optimal number of past and future
lags considered in the analysis was calculated computing the autocorrelation
function of the summed squares of all measurements [17]. This function

provides a measurement of the cross correlation between a signal and a
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delayed version of itself at different lags. It is used to determine how long the
correlation of the signal with past lags is significant, and thus only the number of
lags which are deemed relevant are selected. Fig. 70 shows an example of
autocorrelation function for the training data set T1 against a confidence bound

of £5%. According to this result the parameters p and f were set to 15 for this

study.
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Fig. 70: Sample autocorrelation function for T1

From the different methodologies suggested for the calculation of the optimal
number of states retained r, the most popular are those based on considering
the dominant singular values in the matrix D [84] and methodologies based on
the Akaike Information Criterion (AIC) [2].

Fig. 71 shows the normalized singular values obtained from D in (4-11) for data
set T1. As it happened in the analysis in section 4.3.1, in this particular case
there is not an evident number of dominant singular values as their values
decrease slowly. Setting the number of retained states based on the
assumption of the dominant singular values will derive in an unrealistic model
[17]. The number of states retained is not especially relevant for this study due
to the fault detection criterion used, where both statistical indicators (T and Q)
are used at the same time for fault detection. Using this assumption those
system variations not captured in the retained space will be captured by the

residual space and vice versa.
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In order to check the capacity of T1 data set to represent the system dynamics
accurately producing a low number of false alarms, this data set was used to
train the CVA model while T2 and T3 were used in the monitoring phase. The
objective of this analysis is to select the optimal number of dimensions retained
r that minimizes the total number of false alarms found in T2 and T3. A
confidence bound of 99% was considered for the calculation of the UCL. After
the analysis testing different values for r for each combination of data sets
finally r=25 was adopted in order to minimize the false alarm rate in normal

conditions (see Fig. 72).
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Fig. 72: Total number of false alarms for different number of states retained r

Similarly to the results obtained in 4.3.1, for low values of r the number of false
alarms was high because the retained space is not able to represent accurately
the states of the system and consequently the number of the T? threshold
violations increases. On the other hand if the state order selected is too high it
results in the model underfitting the data [2], increasing again the false alarm
rate. This behaviour was observed in the analysis (Fig. 72) and the total number
of false alarms found followed a similar pattern for T2 and T3, although this
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number was typically higher for T3 probably because it is longer than T2 and
the operating conditions selected were different from those chosen in T1. The T?
and Q plots obtained from the analysis of the data sets T2 and T3 are
represented in Fig. 73 and Fig. 74 respectively including the UCL calculated

using KDE for a 99% confidence bound plotted as a grey dashed line.
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Fig. 73: T?and Q statistics for data set T2 using T1 for training (r=25)
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5.4.2 Fault detection and diagnosis

To avoid the problem of short false alarms before the introduction of the fault,
the event of fault detection was considered when the value of at least 60
consecutive samples of an indicator was over the UCL. For Case 4 two events
of fault introduction are considered, the first when the 2” line valve was opened
and the second one when VC404 was closed. Fig. 75 shows the results
obtained in terms of fault detection for the six data sets analysed in their
corresponding T? and Q plots, which are summarized in Table 22. The UCL is

represented as a horizontal grey dashed line.
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Fig. 75: T? (A) and Q (B) plots for the 6 data sets analysed
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Table 22: Fault detection summary

Data Fault start Li Q
set (s) Detection False False Detection False False
time (s) alarms Negatives time(s) alarms Negatives
1.1 5456 2177 0.16% 60.8% 232 3.02% 10.8%
1.2 3963 655 0.02% 31.31% 515 36.23% 20.15%
2 3161 11 0.35% 0.62% 9 3.32% 0.09%
3.1 3301 540 0.45% 49.66% 91 9.39% 0.71%
3.2 3362 510 0.26% 54.34% 459 13.83  63.81%
4(1) 4550 - - - 1192 3.20% 11.85%
4(2) 6179 8 0.34% 0.13% - - -

The results obtained show that all the faults introduced were detected by the T
and Q statistics, although the changing operational conditions created
fluctuations in the shape of both indicators. These fluctuations were expected
as different flow rates will produce different pressures in the presence of a
blockage, a reduction in the pipe diameter or lack of control action in a valve
that regulates pressure in a tank. Consequently the different flow rates used in
each case generated different levels of fault severity that the indicators are able

to capture and represent.

All the faults were detected earlier by the Q statistic, which also produced a
lower rate of false negatives in all cases except 3.2. In the other hand the T?
statistic produced a very low rate of false alarms, showing a more reliable
performance with no presence of faults. In the case of fault 4, only the Q
statistic was able to detect the fault when the 2” line was opened, and it was
necessary to close VC404 and derive the flow completely through the 2” line to
make the fault visible for the T? statistic. It is important to notice that for cases
1.1 and 3.1 the results obtained were similar to the results obtained for cases
1.2 and 3.2 respectively, which were obtained under operating conditions that
were not tested during the training phase. This demonstrates the capability of
CVA to capture the system dynamics and detect abnormalities under different

operating conditions.
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Once the faults were detected, contribution plots were used at the instant of
fault detection to determine the origin of the fault. The charts in Fig. 76
represent the contribution of each one of the measured variables to the final

indicator value in each tested case.

In Casel.l the most significant variable contributing to the T? statistic was the
pressure measured in the 3-phase separator PT501, caused by the lack of
control action. Other pressure measurements such as PT312, PT401, PT408
and PT403 were also affected; showing how the effects of a fault located at one
point of the system affects the rest of the process. The Q contribution plot points
directly to valve VC501 as the origin of the fault. Similar results were obtained in
Case 1.2 where the same fault was introduced under different operating

conditions.

In Case 2 the plots of both indicators show a high contribution of variable 7,
which represents the differential pressure over VC404 obtained as the
difference between the top riser pressure (PT408) and the top separator
pressure (PT403). This result is very precise locating the origin of the fault. In
addition, PT312, PT401 and PT408 show a significant contribution to the T?

statistic, caused by the pressure increment in the pipeline before the blockage.

The contribution plots for Case 3.1 and Case 3.2 are again very similar. The
most significant contribution for the T? indicator comes from the pressure
measured inside the 2-phase separator, although the contribution of PT312,
PT401 and PT408 are also significant due to the expansion of the fault in the
system. In the case of Q indicator, most of the contribution comes also from
PT403, although the level measured inside the 2-phase separator is also

significant, pointing at a conflict in that region of the process.

The last case studied shows an important contribution of the top riser pressure
(PT408) to the T? statistic, probably caused by flow being forced through the 2”
line. The density measured in the top of the riser is the most significant variable
for the Q indicator, reinforcing the results provided by the T? contribution plot.
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Fig. 76: T2 (A) and Q (B) contribution plots for the 6 data sets analysed
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5.4.3 Performance degradation

The data acquired under normal operating conditions in data set T1 was used to
build a model of the system using the methodology presented in 5.2.1. This
model was used to estimate the system response assuming normal operation
for the four faulty cases studied, using the same input sequence u; from the test
to predict the response of the system using the model. The differences between
the measured and the estimated system outputs can be used to estimate the
degradation in the system performance caused by the fault. This information
can be used afterwards to optimize maintenance and production scheduling
taking into account the effect of running the system under faulty conditions.

In order to select the model order r and ensure its accuracy, the total averaged
error presented in (5-6) was calculated for a range of values of r using data set
T1 to build up a model and T2 and T3 to estimate the model error. The objective
of this analysis is to select the model order that minimizes the prediction error.

Fig. 77 shows the results obtained from this analysis.
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Fig. 77: Model order analysis

The results show that the averaged error for all variables tends to grow as the
model order increases. This effect is caused mainly by the inaccurate initial
estimation of the states. This causes oscillations in the output prediction which
grow with the model order due to the increment in the number of degrees of
freedom in the model. This effect can be seen in Fig. 78, which represents the
prediction of PT312 for model orders 2, 3 and 4.
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Fig. 78: Effect of model order (2, 3 and 4) over PT312 prediction accuracy for T2
(A) and T3 (B)

The results plotted in Fig. 78 show that the model of order 2 produces very low
oscillations in the initial estimations, but the model ability to represent fast
changes is quite limited due to the model restrictions. For model order 3 the
initial oscillations are larger than for model 2, but the oscillations are dissipated
relatively quickly and the estimation provided is more flexible and able to
represent better the system behaviour. In model order 4 (and larger) the initial
oscillations are even higher, and the attenuation takes more time. Once these
initial oscillations disappear the results provided are accurate, but this transient

phenomenon increases the total averaged error as shown in Fig. 77.

All the model orders tested were able to estimate the changes in the measured
variables caused by changes in the operating conditions with relatively high
accuracy. However, very fast random oscillations such as the first 1000
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samples of T3 and around sample 2600 to 2900 in T3 cannot be represented.
For this investigation, model order 3 was selected in order to combine both
flexibility to represent system dynamics and accurate initial estimations. The
prediction results obtained for the rest of variables (2 to 17) are summarized in
Appendix A for T2 and Appendix B for T3. Using this model structure, the
average normalized error calculated for each measured variable in T2 and T3 is

represented in Table 23.

Table 23: Average normalized estimation error for each measured variable

Set y1 Yo Y3 Ya Y5 Y6 Y7 Yo Yo Yo Yu Yz Yz Y Y5 Yie Yir AVG
T2(%)1.86 1.92 2.19 2.16 1.32 470 47.373.32 220 11.1339.324.58 0.64 3.09 3.56 2.05 5.17 8.42
T3(%)1.93 2.01 3.07 3.00 2.06 6.31 37.00 6.57 5.77 8.68 42.77 3.93 0.81 6.01 7.12 3.13 5.35 8.97

The estimation error obtained for each of the variables in T2 and T3 was of the
same order of magnitude, proving that the model is able to represent the
system working in conditions that were not tested during the training phase. The
error is relatively much larger in variables number 7 and 11 (Differential
pressure over VC404 and Density measured in FT407) due to the noise content
of these variables, which cannot be accurately represented by the model.

The validated model was used to provide estimations of the process variables
assuming normal operation in each one of the faulty cases studied. The model
representing the system under normal operation was fed with the same input
sequence used during the experiments in order to obtain estimations of its
performance for the same operating conditions that were tested in the faulty
cases. The objective of this analysis is to allow the process operators to
estimate the impact of the fault over the system performance and take into
account the effects in terms of safety, efficiency and product quality when
scheduling the production and maintenance plans according to the process

condition.

Based on the results provided by the contribution plots (see Fig. 76) the most
significant variables in terms of fault detection in Case 1.1 and Case 1.2 were
the pressure in the 3-phase separator PT501 and the position of the valve

VC501. Fig. 79 represents the measurements observed for these variables in
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both faulty cases and the estimation using a nornmnal operation model. It can be
seen that after the fault introduction the changes in operating conditions
generate variations in PT501 (which in normal conditions is maintained at
1lbarg) and the algorithm was able to estimate VC501 valve position assuming
normal operation. The estimations obtained for both variables befiore the fault

introduction were accurate as expected after seeing the model validation

results.
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Fig. 79: Performance degradation in PT501 (A) and VC501 (B) in Case 1.1 and 1.2

For Case 2 two of the most affected variables were the pressure imeasured in
the bottom of the riser (PT401) and the differential pressure over VC404
(PT408-PT403). The results obtained for prediction of these two variables in

Case 2 assuming normal operation are represented in Fig. 80.
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Fig. 80: Performance degradation in PT401 (A) and differential pressure over
VC404 (B) in Case 2

Again the estimation of both variables was accurate until the introduction of the

fault. Thereafter the differences between the measured and the estimated
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values for each variable were significantly high due to the effect of the fault over
the system performance. The main changes observed after the introduction of
the fault were an increment of the pressure measured in the sensors placed
before the blockage (PT312, PT401 and PT408) and a huge increment in the
differential pressure measured between PT408 and PT403. This variable
reaches values of around 5 mbar when the system is working under normal
operation, but after the blockage was introduced it reached values up to 700

mbar depending on the operating conditions.

The most significant variable for the faulty cases 3.1 and 3.2 was the top
separator pressure PT403 for both indicators, although the contribution of the
top separator level LIC405 was also significant for Q. The results obtained for
the estimation of these variables using a healthy model are represented in Fig.
81. The estimations were accurate in both cases until the fault was introduced,
and the most obvious effect of the fault was an increment in the pressure
measured inside the 2-phase separator (PT403). Changes in the behaviour of
the level measurement inside the 2-phase separator are not that evident due to
the high level of noise in this signal, but a slight increment in the average level
over the estimated value can be perceived after the fault introduction.
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Fig. 81: Performance degradation in PT403 (A) and LIC405 (B) in Case 3.1 and 3.2

For the last case studied, the most significant variables identified for fault

diagnosis were the top riser pressure PT408 and the density measured by

150

Case 3.1

Case 3.2



FT407 in the top of the riser. Fig. 82 shows the measurements of these two
variables in Case 4 and the corresponding estimation using a healthy model. It
can be seen that the initial opening of the 2” valve did not have a significant
effect on the measured variables, except for a slight increment in the oscillation
in the PT408 signal. These oscillations are more evident around sample 5800 in
both measurements, probably caused by the change in the water flow rate at
that point. Closing VC404 to derive all the flow through the 2” line had a
considerable effect on PT408 in comparison with the estimation assuming
normal operation, as well as on the density measurement which acquired an
almost constant value of 998kg/m*® due to the accumulation of liquid in the
sensor region.
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Fig. 82: Performance degradation in PT408 (A) and density measured in FT407
(B)in Case 4

5.4.4 Prediction of performance under faulty conditions

The analysis carried out in the previous subsections described how process
faults can be detected and diagnosed, and how the degradation of the system
performance can be estimated using CVA. If the fault severity is not critical, it
can be the case that the optimal maintenance and operation strategy is to
continue operating the system under faulty conditions until the next planned
shutdown or until the spare parts and repairing equipment are available in the
plant. In that case the plant operators will need to know how the faulty process
will behave for the future expected operating conditions and determine how this
behaviour affects the product quality, the safety of the plant or the energy
consumed by the equipment. For example it can happen that a minor blockage
has a minimal effect on the pressure inside the pipelines, the energy consumed

by pumps and compressor and their capacity to deliver the desired flow rate.
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However, if in the upcoming days or weeks the production plan requires
operating the system with higher flow rates the additional pressure loses
generated by the blockage can increase the pressure downstream to dangerous
levels, increase the energy consumed by the devices providing raw material

and affect the quality of the product if the desired flow rate is not achieved.

The faulty system can be modelled using data acquired during the early stages
of degradation once a fault has been detected. The forecasted input sequences
can be obtained from the production plan, from estimations based on historic
data, etc. and then be used in the model to predict the system behaviour for
that particular conditions. For this analysis the data acquired from the instant of
fault detection was used to build a model for each one of the faulty cases
studied. The amount of data used to build the model needs to be sufficient to
represent the system dynamics and produce an accurate model. There is a
numerical limitation on the minimum amount of data needed in relation to the
matrix inversion in (5-4). If the system inputs contain constant values for each
operating condition (as it happened in this case) it is necessary to capture data
from at least two different operating points in order to avoid rows and columns

containing zeroes in the covariance matrix Cov([z,u],[z,u]).

In order to ensure accuracy in the prediction the total averaged error will be
computed for different lengths of training data, and the model will be considered
valid once the error of the model predicting the same data segment used for
training is considered acceptable. Fig. 83 shows the evolution of the total
averaged error with the number of samples selected for model training in each
case studied. The evolution of the error is similar in all the cases studied except
in Case 2; initially the error is large and as the number of samples used for
training is increased the error decreases to values of around 8.5%, similar to the
error found under normal operating conditions. In Case 2 the error is initially
lower probably due to the operating conditions during the fault introduction, but
as the number of samples grows and the diversity of the data increased the
error tended to values of around 8% as in the rest of cases. It is important to

mention that for the analysis of Case 1 it was necessary to remove the variable
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VC501 (y14) from the analysis, as the series of constant values generated after
switching the valve to manual mode caused numerical problems in the matrix
inversion required in (4-10).
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Fig. 83: Evolution of the total averaged error with the number of samples

selected for model training

The total averaged error shown in Fig. 83 was calculated as the error of the
model predicting the same data set portion used for model training so that the
operator can estimate in real time model accuracy in order to perform a reliable
long time prediction. One model was built for each one of the cases studied
using a limited amount of data acquired after the fault detection according to the
error estimations shown in Fig. 83. This model was then used to perform a long
time prediction of all the samples available in each data set, so that the model
built with data acquired from the early stages of degradation can be used to
predict future process performance under different operating conditions. Table
24 shows the normalized estimation error calculated for each variable of each
case studied for the long term prediction. The starting point and the number of
samples used to train the model are presented in columns 2 and 3 respectively.
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Table 24: Average normalized estimation error for each measured variable (%)

Set Start Samplesy: Yo Y3 Va2 Y5 ¥ Y7 Yo Yo Yo Yu Y2 Y3 Y Y5 Yie Yz Avg

1.1 5688 5000 3.05 321 447 441 471 287 2754 119 182 7.85 4136 221 117 - 154 139 525 7.13
1.2 4478 5000 716 7.35 11.35 11.11 11.79 493 3268 121 174 832 4118 257 046 - 1.96 250 6.70 9.56
2 3170 3000 572 590 736 371 241 1531 5894 142 159 806 3785 158 125 496 163 534 503 9.89
3.1 3392 2000 6.62 686 878 860 365 7.47 3307 124 165 873 4448 236 112 806 115 3.69 497 897
3.2 3821 5000 6.19 6.38 851 828 271 273 3155 234 063 893 3267 1.07 175 728 299 150 6.69 7.78
4 6187 3000 545 6.21 11.20 287 261 3.08 64.62 136 588 14.03 77.46 1.08 1.62 599 187 511 6.80 1278

All the cases showed similar error rates than the estimations obtained from
modelling normal operating conditions, showing that if enough data is used to
train the model it is possible to represent the process behaviour under different
operating conditions. Fig. 84 shows the prediction results under faulty
conditions of the most significant variables of each case. As mentioned before,
it was not possible to produce results for VC501 in cases 1.1 and 1.2 due to its
constant value once the fault was introduced. All the predictions obtained show
a similar behaviour than the estimations under normal operating conditions, with
some oscillations in the initial estimations but a good accuracy once the
transient is extinguished. This result shows that it is possible to perform a
reliable long time prediction using a small amount of data acquired during the
early stages of degradation, and this prediction will be reliable if the forecast of
future inputs is known. This prediction can be used by plant operators to
estimate how the faulty system will react to different operating conditions, and
determine whether it is safe and appropriate to operate the system in these

conditions.
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Prediction of PT501 for Case 1.1 using faulty model
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Fig. 84: Summary of prediction results under faulty conditions for the most

significant variables in each case
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5.5 Conclusion

Process data was acquired from an experimental large-scale multiphase flow
facility to test the capabilities of CVA to detect and diagnose process faults, as
well as to estimate performance degradation and predict the behaviour of the
system working under varying operating conditions. This system is non-linear

and was operated under changing operational conditions.

The four different faults introduced were successfully detected using the T? and
Q indicators within a reasonable detection time, low number of false alarms and
false negatives. The most significant variables affected by the fault were
identified using contributions plots to help in the process of fault diagnosis.
Once the faults were detected, CVA was used to build a state-space model that
represents the system working under normal operating conditions. This model
was used to observe the difference between the process measurements when
working under faulty conditions and the model estimations assuming normal
operation. The estimations obtained were close to the process measurements
before the introduction of the faults, and the differences observed afterwards
can be used to quantify the impact of the fault on the different process
variables. Secondly, a new model was built for each case studied using data
acquired during the early stages of degradation after the fault introduction. This
model was used to predict the faulty process performance for different operating

conditions.

The system identification procedure based on CVA was performed in a fast and
stable manner, due to the numerical and computational benefits of singular
value decomposition. The estimation error was always relatively low, allowing
an accurate estimation of all process variables under normal and faulty
operation. The model was able to represent the process dynamics working
under varying operating conditions, however very fast oscillations and noisy

measurements were not precisely estimated.

The results obtained from this investigation demonstrate that CVA can be used
for system identification using real process data acquired from a large and

complex facility. This technique allowed the estimation of performance
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degradation as the difference between actual measurements and estimations
provided by a model trained under normal operation. This information can be
used by plant operators to measure the impact of the fault on the process
performance and take it into account for scheduling optimal maintenance and
production plans that consider the condition of the process. In addition, the
behaviour of the faulty process was modelled using data acquired during the
early stages of degradation, allowing the operators to predict how the fault will
affect the process for future operating conditions. This methodology advances
the traditional condition monitoring procedure of fault detection and diagnosis,
and provides estimations of the impact of the fault on the system behaviour that
can be used to react to the faults with the optimal maintenance and production

strategies leading to more efficient, reliable and profitable processes.
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6 APPLICATION OF LINEAR PREDICTION, SELF-
ADAPTIVE NOISE CANCELLATION AND SPECTRAL
KURTOSIS IN IDENTIFYING NATURAL DAMAGE OF A
ROLLING ELEMENT BEARING IN A GEARBOX

Abstract

The ability to detect and diagnose faults in rolling element bearings is crucial for
modern maintenance schemes. Several techniques have been developed to
improve the ability of fault detection in bearings using vibration monitoring,
especially in those cases where the vibration signal is contaminated by
background noise. Linear Prediction and Self-Adaptive Noise Cancellation are
techniques which can substantially improve the signal to noise ratio of the
signal, improving the visibility of the important signal components in the
frequency spectrum. Spectral Kurtosis has been shown to improve bearing
defect identification by focusing on the frequency band with a high level of
impulsiveness. In this paper the ability of these three methods to detect a
bearing fault is compared using vibration data from a specially designed test rig
that allowed fast natural degradation of the bearing. The results obtained show
that the Spectral Kurtosis was able to detect an incipient fault in the outer race

of the bearing much earlier than any other technique.

6.1 Introduction

Rolling element bearings are important components in rotating machinery. By
monitoring the vibration signature of bearings, it is possible to obtain important
information about their condition, and use this information to improve the
maintenance strategy. Diagnostic techniques based on vibration are mainly
concerned with the extraction of defect features in the acquired signal, which
can be related to the healthy or defective state of vital parts in a machine. Many
different diagnostic methods have been successfully used to identify machine
faults, processing the vibration signal in the time or frequency domain, in order
to locate and quantify any existing damage. In complex machines the signal

acquired is normally inclusive of additive background noise from other machine
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components or subsystems, which can make it difficult or sometimes impossible

to identify the fault patterns in the signal.

In the case of bearings, the fault is produced typically by the damage of the
surface of the inner or outer race of the rolling elements. When a damaged
surface contacts another rolling surface a force impulse is generated which
excites resonances in the bearing and the machine [88]. The successive
Impacts generate a vibration signal which often has an impulsive repetitive
nature that is easy to identify in the presence of low background noise. In a real
machine, the background noise can mask the bearing fault components of the
signal, especially in gearboxes because the gear meshing can generate a
strong level of vibration [89]. For this reason many different signal processing
methodologies have been developed in order to facilitate the detection of

defects particularly in bearings.

Some examples of classic techniques used to enhance bearing fault features in
vibration signals are Linear Prediction (LP), Self-Adaptive Noise Cancellation
(SANC), Cyclostationarity, Hilbert-Huang Transform (HHT) or Wavelet
Transform (WT). LP is based on the estimation of the deterministic part of a
signal as a linear combination of past inputs and outputs of the system while
SANC aims to minimize the noise in the manipulated signal by recursively
adapting the filtration parameters [90]. Cyclostationarity studies the periodicities
of the different features of machine vibration signals using cyclic autocorrelation
function and spectral correlation density [91]. HHT can be used to decompose
a non-stationary and nonlinear signal into intrinsic mode functions and
obtain instantaneous frequency data [92], and WT can be applied on non-
stationary signals to increase the frequency resolution at low frequencies and
reduce noise in raw signals[93]. All these techniques have been already applied
by various researchers for the detection and diagnosis of bearing and gearbox

faults.

In this investigation three diagnostic techniques, LP, SANC and Spectral
Kurtosis (SK) were applied in identifying a bearing defect in a gearbox where

the bearing degradation happened naturally in a specially designed test rig. LP
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and SANC have been successfully used as denoising tools in different
applications for many years [94; 95]. Nevertheless, even nowadays many
researchers are exploring their capabilities to reduce background noise and
enhance the fault features in a signal to improve the fault detection and
diagnosis in bearings [96-102]. On the other hand, SK is a relatively new
methodology which is able to enhance the fault signature in a signal by focusing
in the frequency band with a higher level of impulsiveness [103-105]. This
technigue has demonstrated to be very effective especially for bearing fault

detection, and many researchers have reported its benefits [106-111].

The aim of this chapter is to compare the performance of these methodologies
in detecting a bearing fault during the early stages of natural degradation and
show the benefits of SK over more stablished denoising techniques. For this
purpose, these three methodologies have been applied on a vibration signal
acquired from a particular gearbox where the bearings failed much earlier than
the theoretical life calculated for certain loading conditions. Analysis of acquired
vibration signals associated with different stages of bearing degradation proved
to be ideal for this comparative study. This was principally because the bearing
defect frequency was only evident at the final stage of degradation. Thus the
study presented will explore if these techniques can offer the ability to identify
earlier the presence of the defect.

6.2 Theoretical background

6.2.1 Linear Prediction

The estimation of a dynamic system output and its later analysis is one of the
most important problems in signal processing. Different techniques have been
employed by several researchers in a wide range of applications such as
neurophysics, electrocardiography, geophysics and speech communication
[94]. One of the most powerful estimation models is based on the assumption
that the value of a signal x at the time n can be obtained as a linear combination
of past inputs and outputs of the system. Those models which use the
information from only the past system outputs are called all-pole or

autoregressive models, and were first used by Yule [112] in an investigation of

161



sunspot numbers. LP is one of those methods where the objective is to predict
or estimate the future output of a system based on the past output observations.
The complete mathematical development and a compilation of the different LP

approaches have been presented by Makhoul [94].

In vibration based diagnostics, LP is a method that allows the separation of the
deterministic or predictable part of a signal from the random background noise
using the information provided by past observations [101; 113]. If it is assumed
that the background noise is totally random, applying this method it is possible
to eliminate the background noise and thus improve the signal to noise ratio.
This technique is based on the principle that the value of the deterministic part

of a signal can be predicted as a weighted sum of a series of previous values:

x(n) = —i a(k) - x(n—k) (6-1)

Where i(n) is the predictable part of the n™ sample of the signal x, p is the
number of past samples considered and a(k) are the weights attached to each
past observation. The weighting coefficients can be obtained at each step n, by
a linear operation from the autocorrelation function R, of the time series x(n),

which can be efficiently solved using the Yule-Walker equation [114]:

R R - R,|[a] [-R
R R - Ra|la|_|-R
. . . . (6-2)

R, R, - R |la| |-R

Where:

N

R =23 x(t-1)-x(t)

N = (6-3)

N is the number of past samples considered at each step, in this case only p
past samples were considered for each prediction for computational reasons,
but all the available past samples at each time point were used in the

calculation of the values R..

The results of the algorithm depend on the number of past observations p

considered. Small values of p produce a poor prediction, giving a result of
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negligible improvement in the signal to noise ratio, while very high values of p
affect negatively to the computational cost, over restrain the prediction and tend
to reduce even the main components of the signal. For this particular
investigation several analyses were carried out using different numbers of past
samples, in order to establish the value p for each test case which optimizes the

signal to noise ratio of the output signal.

6.2.2 Self-Adaptive Noise Cancellation

Adaptive Noise Cancelling (ANC) is another technique used to reduce the
background noise in a signal and increase the signal to noise ratio, improving
the visibility of the different signal components in the frequency spectrum. The
first work in ANC was performed by Howells and Applebaum at the General
Electric Company between 1957 and 1960. The first ANC system was designed
and built at Stanford University in 1965 [95]. Since then, this method has been
successfully applied to a number of additional problems including
electrocardiography, cancelling noise in speech signals, cancelling antenna

sidelobe interferences, etc.[95]

The general ANC concept is shown in Fig. 85, and a basic explanation of the
method was given by Chaturvedi et al. [115]: the input x(n) composed by the
signal of interest S and additive noise ng is received at the primary sensor. A
reference noise n; (which must be related to the noise nyg in some unknown way
but is not coherent with the signal S) is received at the reference sensor. The
reference input is then adaptively filtered to match ny as closely as possible,
which is then subtracted from the primary input x(n)=Stny to produce the
system output e=Stngy. This output contains the signal plus residual
undesirable noise. The adaptive filter acts minimizing, indirectly, the average
power of this residual noise at the system output e. The output is fed back to the
adaptive filter and the filter weights are adjusted at each calculation step to
minimize the total output power of the system. It can be demonstrated that
minimizing the total output power minimizes the output noise power or, in other

words, maximizes the output signal to noise ratio.[95]
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The problem of this method applied to bearing fault detection in real
applications is that it is not always easy to identify the source of noise n; which
is correlated with the noise ny (common source) but not with the fault signal.
Chaturvedi et al.[115] presented an example where the method was applied to
detect an induced bearing fault in a gearbox using two sensors; one was placed
in the surroundings of the bearing housing to obtain the main signal and another
sensor was placed at a remote location in the casing of the gearbox to obtain
the reference signal. To solve this issue, a further development of ANC was
formulated using a delayed version of the primary signal [95]. This latter version
was named the SANC and the schematic concept is represented in Fig. 86.
The time delay A which is fixed forces the delayed version of the input signal to
become uncorrelated with the primary signal introducing a phase difference.
The adaptive filter responds firstly by compensating for the phase shift so that
the sinusoidal components cancel each other at the output, and secondly by
removing as much noise as possible to minimise the output error [116]. As it
happens in the original ANC, the output error is then fed back to the adaptive
filter to adjust recursively the filter weights w in order to minimize the total output
power and thus, the output noise power. There are many adaptation rules to do

this; the most well-known is the least mean square [95]:
W =W + - e(n) - x(n—A-i) (6-4)

Where the parameter x (forgetting factor, strictly positive) controls the stability
and rate of convergence of the process and the subscript i differentiates each of
the H weighting coefficients of the filter. The recursive weight calculation starts
with a random value for each weight wi. The output of the filter y(n) can be

calculated as:
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y(n) =W'(n)- X(n-A) (6-5)

where W is a vector containing the H weighting coefficients w; and X(n-A) is
another vector containing the H components of the delayed signal immediately

preceding the sample n. The output e(n) is easily obtained from:
e(n) = x(n) - y(n) (6-6)

As shown by equation (6-4), the performance of the SANC algorithm clearly
depends on the choice of three parameters: the time delay A, the filter length H
and the forgetting factor x. The influence of these parameters was investigated
by Ho et al.[117] who suggested some parameter selection guides. A should be
large enough to ensure that the delayed signal becomes uncorrelated with the
original, and H should be chosen to cancel all the broadband components of the
delayed signal. In both cases, if the selected value for the parameter is too large
it will lead to computation problems. Ho [117] stated the forgetting factor
depends mainly on the filter order H. In this particular investigation the
parameters A, H and p were selected after several tests with the aim of
optimizing the signal to noise ratio of the output signal. From these tests it was
concluded that the selection of p is crucial for the process performance: very
small variations on this parameter can change the output signal, from no noise
reduction effect if the selected value is too high, to distortion of the main signal
components when it is too low. This influence can be seen in Fig. 87 where the
SANC was applied to a representative signal acquired during the tests using
different values for the forgetting factor p. It is always important to check the

convergence of the filter weights to ensure optimal performance.

165



(a)

0 500 1000 1500 2000 2500
Frequency (Hz)

(b)
0 500 1000 1500 2000 2500
Frequency (Hz)
04 T
Y S SRR RN SR A -
1) S A— -
g s s B e | 1 ©
N | \ [ SR S T
0 500 1000 1500 2000 2500
Frequency (Hz)
0.4
Y O S AN SR A — 1
14 I S S— H— -
O v R o e 1 @
o L o S IR
0 500 1000 1500 2000 2500

Frequency (Hz)

Fig. 87: Effect of the forgetting factor p on the SANC results. (a):original
spectrum; (b) signal processed through SANC using p=0.0001; (c) signal
processed through SANC using p=0.00001; (d) signal processed through SANC
using n=0.000001

6.2.3 Spectral Kurtosis and Envelope Analysis

Kurtosis is defined as the degree of peakness of a signal with probability density
function p(x), and mathematically it is defined as the normalized fourth moment

of a probability density function [118]:

[ Ix= a] Py

4
o

(6-7)

K =
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Where x is the signal of interest with average p and standard deviation o.

As mentioned earlier, in real applications background noise often masks the
signal of interest and, as a result, the Kurtosis is unable to capture the
peakness of the fault signal, giving usually low Kurtosis values. Therefore, in
applications with strong background noise, the Kurtosis as a global indicator is
not useful, and it gives better results when it is applied locally in different
frequency bands [104]. This technique is named Spectral Kurtosis (SK).

The SK was first introduced by Dwyer [119] as a statistical tool which can locate
non-Gaussian components in the frequency domain of a signal. This method is
able to indicate the presence of transients in the signal and show their locations
in the frequency domain. It has demonstrated to be effective even in the
presence of strong additive noise [104]. The basic principle of this method is to
calculate the Kurtosis at different frequency bands in order to identify non
stationarities in the signal and determine where they are located in the
frequency domain. Obviously the results obtained strongly depend on the width
of the frequency bands Af in which the analysis is performed and its influence
was analysed by Antoni [105].

The Kurtogram is basically a representation of the calculated values of the SK
as a function of f and Af [120]. However, the exploration of the whole plane (f,
Af) is a complicated computation task difficult to deal with, though Antoni [105]
suggested a methodology for the fast computation of the SK. In this approach,
at each bandwidth level the number of filtered sequences is increased by a
factor 2, and the Kurtogram is finally estimated by computing the Kurtosis of all

sequences.

The importance of the Kurtogram relies on the fact that it allows the
identification of the frequency band where the SK is maximum, and this
information can be used to design a filter which extracts the part of the signal
with the highest level of impulsiveness. Antoni et al.[104] demonstrated how the
optimum filter which maximizes the signal to noise ratio is a narrowband filter at
the maximum value of SK. Therefore the optimal central frequency and

bandwidth of the band-pass filter are found as the values of f and Af which
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maximise the Kurtogram. The filtrated signal can be finally used to perform an
envelope analysis, which is a widely used technique for identification of
modulating frequencies related with bearing faults. In this investigation the SK
computation and the subsequent signal filtration and envelope analysis was

performed using original Matlab code programmed by Jérdme Antoni [121].

This investigation assesses the merits of these three techniques in identifying a

natural degraded bearing under conditions of relatively large background noise.

6.3 Experimental set up

The vibrational data used in this investigation was obtained from a specially
designed gearbox test rig. The gearbox type employed is a part of the
transmission driveline on the actuation mechanism of secondary control
surfaces in civil aircrafts. The bearing of this gearbox failed in an endurance test
at around 30% of its total expected life (around 3000 hours), making it an ideal
candidate for this investigation where fast natural degradation of the bearing
was needed. The rig was built originally to identify the origin of premature failure
in order to modify the gearbox design. The acquired vibrational signal was used
in this investigation to find traces of the fault during the early stages of

degradation, which is an obvious advantage from a maintenance point of view.

This gearbox, whose basic cross section is shown in Fig. 88, has two bevel
gears with 17 teeth on each gear, generating a transmission ratio of 1:1. Each
gear is supported by two angular contact bearings with 12 balls each and a
contact angle of 40°, mounted in a back-to-back configuration. The main
dimensions of the bearing and the attached bearing defect frequencies can be
seen in Table 25 and Table 26 respectively. The test rig was built trying to
emulate the actual transmission system used in the aircraft, and it is
schematically represented in Fig. 89. The transmission is driven by an electric
motor with a nominal speed of 710 r.p.m. An electric load motor placed at the
opposite side of the transmission line was used to apply different loads used
during the experiment. In order to simulate the actual loading conditions
expected during the life of the gearboxes, the test rig was subjected to a mixture

of seven different types of flight load cycles derived from the actual flight data
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and loads. These load cycles include the simulation of takeoff and landing with
different flap positions, ground maintenance, etc. The expected bearing life for
these loading conditions was around 3000 hours. Fig. 90 shows a typical type 3
load profile, which was chosen as an illustrative example because it contains
several speed changes and the highest torque is applied in this particular load
cycle. The loading conditions of each cycle type applied are explained in Table
27, which specifies the number of times each cycle was applied during the
experiment for the expected bearing life, the duration of each cycle and the

maximum toque applied in each case.

Location of
i 1H Accelerometer 3

Location of [ p— . Table 25: Bearing Main Dimensions
Accelerometers | Ej /
142 .
[ - h No. of rolling elements 12
...... Ball Diameter (By) 0.4063”
Contact Angle () 40°
Gear Mesh : .
. Pitch Diameter (Py) 1.811”
= E Input Shaft Speed (RPM) 710 rpm
Gear Teeth 17
Fig. 88: Gearbox Section
Table 26: Main Defect Frequencies and Harmonics (Hz)
Harmonic 1X 2X 3X 4X 5X 6X
Shaft speed frequency (SS) 11.8 23.7 355 473 59.2 71
Gear mesh frequency (GM) 201.2 402 604 805 1006 1207
Inner race defect frequency(IRD) 83.2 166 250 333 416 499
Outer race defect frequency (ORD) 58.8 118 176 235 294 353
Cage defect frequency 4.9 9.8 147 196 245 29.4
Ball spin frequency 25.6 51.2 76.8 102 128 154
Rolling element defect frequency 51.2 102 154 205 256 307
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Table 27: Load cycles characteristics summary

Cycle type 1 2 3 4 5 6 7 8 9

Number of repetitions

: s 18296 22869 4574 462 462 2200 6600 4620 41580
during bearing life

Duration (sec) 131 131 131 350 42 71 268 52 52
Torque max. (Nm) 126.1 126.1 158.6 126.1 126.1 428 428 124 97.7

The experiment ran continuously for 24 hours a day over a duration of 36 days,
but at certain points during the test run the rig was stopped for visual inspection
for damage in the bearings. The gearbox was always then reassembled and the
sequence continued. Fig. 91 shows a detail of the bearing outer race during a
visual inspection undertaken one month after the experiment started, covering

24% of the estimated bearing life.

Fig. 91: Detail of bearing outer race after one month

Three accelerometers were mounted in the gearbox at locations identified in
Fig. 88, two of them placed on the top of the gearbox measuring acceleration in
the vertical plane and a third one placed on the casing measuring the
acceleration in the horizontal plane. The selected accelerometers (Omni
Instruments model RYD81D) had an operating frequency range of 10Hz to 10
kHz. These accelerometers were connected to signal conditioners (model
Endevco 2775A) which were attached to a NI USB 6009 data acquisition
device. This digital data was filtered, windowed and stored in the computer
using Dasylab version 10.0, and finally it was exported for its final manipulation

in Matlab R2010A. Other than the vibration data, various parameters were
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monitored and stored at the same time and with the same sampling frequency:
angular position of the input shaft, input and output torque and shaft speed.

The experiment started running on the 19/07/2010 and the vibration
measurements were taken on the 19/08/2010, 22/08/2010 and finally on the
24/08/2010. For each measurement case a total 1048569 points were acquired
at a sampling rate of 5 kHz which resulted in a measurement length of
approximately 3.5 minutes; sufficiently long to cover a whole loading cycle. The
stored data was then analysed, selecting groups of 8192 data samples in the
region of constant speed where the load applied was maximum (Fig. 90). After
a preliminary data analysis it was decided to always use the signal acquired by
the third channel in the next steps of the analysis. This signal comes from the
accelerometer which measures acceleration in the horizontal plane, and the
characteristics found in the signal spectrum were representative of what was

observed in the other channels.

The visibility of main signal components is usually measured using the signal to
noise ratio (SNR). This concept is widely used in electronics to evaluate the
performance of different electronic devices such as amplifiers or radio receivers
because it gives a measure of the signal quality. In those applications the
signal to noise ratio is calculated as the ratio between the power of the signal
and the power of the background noise. Another definition of SNR is the ratio
between the average amplitude of the main signal components p, and the
standard deviation of the background noise o, which is equivalent to the
reciprocal of the coefficient of variation [122]. This alternative definition is used
in those applications where it is difficult to differentiate between the main signal
and the background noise such as image processing and this definition was
employed in this investigation. The average amplitude of the main signal
components was calculated in each case as the average amplitude of the
visible peaks associated with the characteristic defect frequencies (Table 26),
while the rest of components with significant lower amplitude were considered
as background noise. In order to estimate the average amplitude of the main

signal components, the amplitude attached to each characteristic frequencies of
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the rig (Table 26) and its harmonics, was calculated for each spectrum.
Obviously, because not all the possible defects were present at all times, it was
necessary to determine whether there is a visible peak at each of those defect
frequencies or not for each measurement. The assumption made was to
consider main signal components only those peaks whose amplitude in the
spectrum is at least 3 times the average amplitude across the whole frequency
range. This average was calculated excluding the amplitudes related with the
defect frequencies. Using this procedure it was possible to separate the main
peaks in the spectrum attached to the known defect frequencies and the rest of
the components in the spectrum, considered as background noise. According
to this definition, in each case studied the improvement in the signal to noise
ratio was measured as a percentage comparing the SNR of the manipulated

signal against the SNR of the raw signal.

6.4 Results

Once the experiment was carried out, the data acquired was processed using
the methodologies mentioned in section 6.2. The results obtained for each
measurement are plotted in this section with the following format:

a) Amplitude spectrum of the original signal

b) Amplitude spectrum of the signal obtained by LP

c) Amplitude spectrum of the signal obtained by SANC

d) Magnitude of the squared envelope of the signal obtained by filtration
in the frequency band of maximum SK

The spectrums of the original signal, and the signals obtained by LP and SANC
are represented twice. The left plot corresponds to the spectrum covering a
frequency range of 0-2500Hz which contains the gear mesh components and its
harmonics. The right plot covers the region of 0-500Hz, where it is easier to
identify the typical defect frequencies. The available frequency range of the
squared envelope of the signal obtained by filtration after the Kurtosis analysis
depends on the filter parameters, different for each analysis. The Kurtograms of
the different observations and the main information extracted taken can be seen
in6.4.4
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6.4.1 First Observation (19/08/2010)
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Fig. 92: Results obtained from the first observation (19/08/10)

For this observation, the LP analysis (Fig. 92 b) was performed using 200 past

samples for each prediction, and the parameters selected for the self-adaptive

filter (Fig. 92 c) were: delay A=100 samples, filter order H=1000 and forgetting

factor u=0.00001. The maximum Kurtosis found was 2.4, at a frequency band
centred in 2083.33Hz and a bandwidth of 833.3Hz.

174

(b)

(d)



6.4.2 Second Observation (22/08/2010)
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Fig. 93: Results obtained from the second observation (22/08/10)

For the second observation, 