
CRANFIELD UNIVERSITY

Chi Kin Lai

A NOVEL COLLISION AVOIDANCE LOGIC FOR
UNMANNED AERIAL VEHICLES USING
REAL-TIME TRAJECTORY PLANNING

SCHOOL OF ENGINEERING

PhD THESIS

CRANFIELD UNIVERSITY

SCHOOL OF ENGINEERING

PhD THESIS

Academic Year 2013-2014

Chi Kin Lai

A Novel Collision Avoidance Logic for Unmanned Aerial

Vehicles Using Real-Time Trajectory Planning

Supervisor: Dr James F. Whidborne

October 2014

c©Cranfield University 2014. All rights reserved. No part of this publication may be
reproduced without the written permission of the copyright owner.

For my family and especially my fiancée,

Hoi Lam Cheong,

who always supports.

With special thanks to,

Ip Shing Long and Ana Leong,

who believed.

Acknowledgements

I would first like to thank my supervisor, Dr James Whidborne, for his
patience to listen to my scattered, and sometime unclear, thoughts and
more importantly to help me understanding those thoughts better by asking
the right questions.

I would also like to thank Dr Darren Ansell for his useful advices on my
work and the arrangement of my placement in BAE Systems. Particular
thanks go to Richard Freeman, Robert Dixon, Dr Charles Patchett, Rod
Buchanan, Paul Marsland and Fish Lee from BAE Systems for their sup-
port and valuable discussions during my placement.

I am also thankful to the members of Dynamics, Simulation and Control
Group for all those random but sometime inspiring discussions over the
tea time. Special thanks go to Dr Mudassir Lone who not only shared his
experience and work but also offered countless helps during my PhD, Dr
Rick Drury and Quintain Mcenteggart who shared their own experiences
and knowledge in trajectory optimization, Dr Peter Thomas who shared
his vehicle model, and Dr Pierre-Daniel Jameson, Dr King Tin Leung, Dr
Sunan Chumalee, Dr Neil Panchal and Dr Ramey Jamil who helped me
out with starting a PhD.

I am also grateful to BAE Systems and EPSRC for the bursary and support
under an Industrial CASE award.

Abstract

An effective collision avoidance logic should prevent collision without ex-
cessive alerting. This requirement would be even more stringent for an
automatic collision avoidance logic, which is probably required by Un-
manned Aerial Vehicles to mitigate the impact of delayed or lost link is-
sues. In order to improve the safety performance and reduce the frequency
of false alarms, this thesis proposes a novel collision avoidance logic based
on the three-layer architecture and a real-time trajectory planning method.
The aim of this thesis is to develop a real-time trajectory planning algo-
rithm for the proposed collision avoidance logic and to determine the inte-
grated logic’s feasibility, merits and limitations for practical applications.

To develop the trajectory planning algorithm, an optimal control prob-
lem is formulated and an inverse-dynamic direct method along with a two
stage, derivative-free pattern search method is used as the solution ap-
proach. The developed algorithm is able to take into account the flyability
of three dimensional manoeuvres, the robustness to the intruder state un-
certainty and the field-of-regard restriction of surveillance sensors. The
testing results show that the standalone executable of the algorithm is able
to provide a flyable avoidance trajectory with a maximum computation
time less than 0.5 seconds.

To evaluate the performance of the proposed logic, an evaluation frame-
work for Monte Carlo simulations and a baseline approach for comparison
are constructed. Based on five Monte Carlo simulation experiments, it is
found that the proposed logic should be feasible as 1) it is able to achieve
an update rate of 2Hz, 2) its safety performance is comparable with a ref-
erence requirement from another initial feasibility study, and 3) despite a
0.5 seconds computation latency, it outperforms the baseline approach in
terms of safety performance and robustness to sensor and feedback error.

Contents

Contents vii

List of Figures xiii

List of Tables xxi

Nomenclature xxv

Acronyms xxxiii

1 Introduction 1
1.1 Motivations . 1

1.2 Challenges . 3

1.3 Overview of the Proposed Approach 4

1.4 Aim and Objectives . 5

1.5 Organization and Highlights of this Thesis 6

2 Background and Literature Review 11
2.1 Introduction . 11

2.2 Conflict Management . 11

2.2.1 Layered Approach . 11

2.2.2 Safety Events . 12

2.2.3 Risk Mitigation Mechanisms 13

2.3 Sense and Avoid Systems . 14

2.3.1 A Safety-Analysis Development Process 15

2.3.2 Intended Functions and Sub-Functions 17

vii

CONTENTS

2.3.3 Functional Architecture . 18

2.4 Collision Avoidance Logics . 20

2.4.1 Conflict Detection and Resolution 20

2.4.2 Challenges and State-of-the-Arts 22

2.4.3 Problem Scope . 25

2.5 Trajectory Planning . 26

2.5.1 Trajectory Planning rather than Path Planning 26

2.5.2 Optimal Control Approach 26

2.6 Summary . 27

3 Modelling and Simulation Framework 29
3.1 Introduction . 29

3.2 Encounter Model . 30

3.2.1 Encounter Modelling . 31

3.2.2 ICAO Standard Encounter Model 32

3.2.3 Encounter Generation . 35

3.2.4 Encounter Simulation . 38

3.3 Intruder Model . 38

3.3.1 Manoeuvre Uncertainty . 39

3.3.2 Intruder Limitations . 39

3.3.3 State Equation . 40

3.4 Aircraft System Model . 40

3.4.1 Aircraft Dynamics . 41

3.4.2 Navigation System . 45

3.4.3 Manoeuvre Autopilot . 46

3.5 Surveillance System Model . 51

3.5.1 Actual Relative Motion . 53

3.5.2 Field of Regard . 54

3.5.3 Track Maintenance . 56

3.5.4 Measurement Error . 58

3.5.5 Target Tracking . 59

3.6 Collision Avoidance Logic Model 60

3.6.1 Conflict Detection . 61

viii

CONTENTS

3.6.2 Conflict Resolution . 63

3.6.3 Conflict Monitor . 65

3.7 Summary . 66

4 Evaluation and Analysis Framework 71
4.1 Introduction . 71

4.2 Typical Performance Metrics . 72

4.2.1 Possible Outcomes of an Encouter Scenario 72

4.2.2 Metrics Definitions . 73

4.3 Additional Metrics for Non-Cooperative Resolution 74

4.3.1 Basic Concepts . 74

4.3.2 Metrics Definitions . 76

4.4 Two Simulation Experiments . 77

4.4.1 Experiment Setting . 77

4.4.2 Establishment of the Baseline Performance 79

4.4.3 Investigation of Field-of-Regard Restriction Effect 82

4.5 Summary . 84

5 Trajectory Planning Algorithm Development 87
5.1 Introduction . 87

5.2 Problem Formulation . 88

5.2.1 Differential Constraints . 89

5.2.2 Trajectory Constraints . 90

5.2.3 Boundary Conditions . 93

5.2.4 Cost Functions . 95

5.3 Problem Transcription . 97

5.3.1 Differential Constraint Removal 97

5.3.2 Parameterization . 100

5.3.3 Boundary Conditions Satisfaction 102

5.3.4 Trajectory Discretization . 103

5.4 Problem Solution . 105

5.4.1 Solution Space . 105

5.4.2 Problem Scaling . 108

ix

CONTENTS

5.4.3 Penalty Function . 110

5.4.4 Optimization . 111

5.5 Main Results . 112

5.5.1 Experiment Settings . 112

5.5.2 Result Statistics . 114

5.5.3 Example Trajectories . 116

5.6 Summary . 118

6 System Integration and Performance Evaluation 121
6.1 Introduction . 121

6.2 Integration of Trajectory Planning 122

6.2.1 Trajectory Planner . 122

6.2.2 Trajectory Manager . 123

6.2.3 Trajectory Tracker . 124

6.3 Evaluation of the Proposed Approach 128

6.3.1 Safety Performance Evaluation under the Ideal Condition . . . 128

6.3.2 Robustness Analysis on Sensor Noise 131

6.3.3 Evaluation of the Field-of-Regard-Restriction Effect 132

6.4 Discussions with Example Encounters 136

6.4.1 Ineffectiveness of the Emergency Strategy 136

6.4.2 Conservativeness in Uncertainty Propagation 136

6.4.3 Parallel-Track Results . 139

6.4.4 Field-of-Regard-Restriction Effects 139

6.5 Summary . 140

7 Conclusions 143
7.1 Feasibiliy, Mertis and Limitations 143

7.2 Contributions to Knowledge . 147

7.3 Dissemination of Results . 148

7.4 Recommendations for Future Research 149

A Notation 156
A.1 Definitions and Typefaces of Mathematical Objects 156

x

CONTENTS

B Aircraft System Model 162
B.1 Aircraft Performance Data . 162
B.2 Verification Examples . 162

C Trajectory Planning Algorithm Implementation Details 171
C.1 Hooke-Jeeves Algorithm . 171
C.2 Algorithm Parameters . 171
C.3 Example Trajectories for the Infeasible Solutions 174

References 179

xi

List of Figures

1.1 The notional explanation of the desire to use an avoidance manoeuvre
of higher performance. 4

1.2 Architecture of the proposed collision avoidance logics for Sense and
Avoids (SAAs) systems. The grey functional blocks highlight the fo-
cus of this thesis. More details can be found in §2.3.3 and §6.2 for the
architecture and in Chapter 5 for the trajectory planning method. . . . 5

1.3 Main features of the proposed trajectory planning method, more details
can be found in Chapter 5. 5

1.4 Concept of the proposed trajectory planning method of high perfor-
mance manoeuvres for collision avoidance problems. 5

1.5 Overview of the organization, deliverables and target domains of con-
tributions of this thesis, see §7.2 for more details. 6

2.1 Overview of Chapter 2, containing the context of the literature and
their relationships to the scope of this thesis. 11

2.2 The safety layer models illustrating the layered approach used for col-
lision avoidance in the Air Traffic Management (ATM) system. 12

2.3 Risk mitigation mechanisms grouping into three safety layers. The
scope of SAA is also highlighted. 14

2.4 Safety-analysis methodology for the development of SAA systems. . . 15

2.5 The process to calculate the system risk of collision, adapted from Ray-
naud & Arino [2006]. 15

2.6 SAA Capability Sub-Functions, reproduced according to [FAA-Sponsored
Workshop, 2009, as cited in [George, 2012]]. 18

xiii

LIST OF FIGURES

2.7 The functional architecture of a generic SAA system, for autonomous
Unmanned Aircraft Systemss (UASs), summarized from Hutchings
et al. [2007]; Patchett & Ansell [2010]; Dixon [2011]. 18

2.8 The necessary elements of a conflict detection and resolution (CDR)
process, which is the underpinning principle for all collision avoidance
logics. 22

2.9 The relationship between the methods (for intruder state projections
and conflcit resolution) used in this thesis to the existing methods in
the literature. 22

2.10 Comparison of the development and usage processes of two genera-
tions of Airborne Collision Avoidance System (ACAS), based on Kochen-
derfer et al. [2011]. 25

3.1 Modelling and Simulation Framework and Overview of Chapter 3. . . 30

3.2 The evolution of the existing encounter models, adapted from Kochen-
derfer et al. [2008a]. 30

3.3 The outline of §3.2, showing the general process to construct and use
an encounter model. 31

3.4 An example of the model structure of encounter models, using a Bayesian
network. 32

3.5 An example encounter illustrating the encounter window; and the en-
counter characteristics of time of closest approach (tca), approach an-
gle (Θapp), horizontal miss distance (H MD), vertical miss distance
(V MD), and encounter altitude (Henc). 33

3.6 An example encounter to illustrate the model variables that specify the
trajectory characteristics. 35

3.7 Establishment of the Navigation coordinate system and initialization
of the aircraft trajectory construction process. 37

3.8 Intruder model architecture. 38

3.9 Overview of a configurable aircraft system model. 41

3.10 Parameter definitions of the aircraft point-mass model in the navigation
coordinate system N, adapted from Menon et al. [1999] 42

xiv

LIST OF FIGURES

3.11 The control scheme for the manoeuvre autopilot, which is based on
Nonlinear Dynamic Inversion technique. 47

3.12 The signal flow diagram for the Manoeuvre Autopilot. 48

3.13 The Block Diagram for the Desired Dynamics Controller. 50

3.14 Architecture of surveillance system model, showing the generation of
four types of test cases: 1. Ideal; 2. Noisy; 3. Field of Regard (FOR)

restricted; 4. Realistic. 52

3.15 Relative motion geometry, illustrating 1) the relative position between
the host and intruder and 2) thee frames of reference: navigation, host
and body-fixed frames. 53

3.16 Sensor suite’s field of regard. 55

3.17 The finite state machine used to model the status of a target track. . . 57

3.18 State machine for the collision avoidance logic, constructed according
to Fasano et al. [2008]. 60

3.19 Illustration of conflict detection solution, adapted from Carbone et al.

[2006]. 61

3.20 Geometry of a conflict resolution solution, adapted from Luongo et al.

[2009]. 64

3.21 The conflict picture of an example encounter. 65

4.1 The evaluation and analysis framework used throughout this thesis. . . 71

4.2 Notional illustration of all the possible outcomes of an encounter sce-
nario. Solid lines represent the avoidance trajectories with the Colli-
sion Avoidance System (CAS), while dotted lines represent the orig-

inal trajectories without the CAS, modified from Kochenderfer et al.

[2010a, Figure 17]. 72

4.3 Illustrations of the basic concepts in conflict resolution. 76

4.4 The System Operating Characteristic curves of the candidate colli-
sion avoidance logic under four testing conditions. This illustrates the
trade-off between the risk ratio and unnecessary alert rate and shows
the effect of the limited FOR and of the noise on the logic performance. 80

4.5 Evaluation of the baseline configuration’s robustness to noise level. . 82

xv

LIST OF FIGURES

4.6 Composition of resulting Near Mid-Air Collision (NMAC) events, il-
lustrating the FOR effect on safety performance. 83

4.7 The resulting expected feedback quality metrics, illustrating the FOR
effect on feedback quality. 83

4.8 The resulting metrics for the probability of Clear of Conflict (CoC) and
Secondary Conflict, illustrating the FOR effect on operational suitability. 84

5.1 Three possible models for the protected volume. 91

5.2 Construction of the generating ellipse of the oblate spheroid model of
the collision volume. 92

5.3 An empirical approach to propagate the intruder uncertainty. 93

5.4 Illustration of the Converging and Invisibility Cost Functions.. 97

5.5 Illustration of the final position’s coordinate transformation of and limit
imposition. 107

5.6 Squared 2-norm penalty function contour plot with a two-dimensional
constraint vector. 111

5.7 Average cost values of two test runs and their relative optimality. . . . 115

5.8 Histogram of the computational load required by the trajectory plan-
ning algorithm with a budget of 4500 function evaluation. 116

5.9 Maximum constraint violations summary over all infeasible trajectory
results. 117

5.10 Statistics of the initial infeasibility. 118

5.11 An example trajectory showing the recovery from an initial infeasibil-
ity. Although the initial throttle of the reduced-order model is −0.283,
the subsequent throttles fall back into the feasible region as soon as the
second time step. 118

6.1 Architecture of two conflict resolution functions. 122

6.2 The system description of the Trajectory Planner. 123

6.3 Result histograms of the (a) computation time, (b) number of function
evaluations and (c) cost function values of three different implemen-
tations of the Trajectory Planning Algorithm (TPA): (1) TPA in MAT-
LAB and (2) TPA in MATLAB executable (MEX). 123

xvi

LIST OF FIGURES

6.4 Trajectory Manager architecture, consisting of Plan Generator, Plan
Assessor and Plan Selector. 124

6.5 The Trajectory Manager’s concept of operation. 124

6.6 Notation used for trajectory tracking, see the first paragraph in §6.2.3
for more details. 125

6.7 2-Degree of Freedom (DoF) control architecture for the Trajectory
Tracker. 125

6.8 Architecture of the PID controller with saturation and anti-windup. . . 127

6.9 Comparision of two resulting trajectories with and without the feed-
back compensator, validating the capability of the Trajectory Tracker. 127

6.10 Deliberative and reactive logics’ sensitivity curves on Risk Ratio while
varying the feedback error level. 132

6.11 NMAC events decomposition for the three candidate logics. 134

6.12 Sensitivity curves of probability of resolution-related NMAC, while
varying the noise level. 134

6.13 Sensitivity curves of probability of FOR-related NMAC, while varying
the noise level. 135

6.19 Example encounter illustrating a failure case when using the reactive
logic’s emergency strategy. Resolution 1 is the reactive logic in co-
operative cases. Resolution 2 is the deliberative logic in cooperative
cases. 136

6.14 Sensitivity curves of expected feedback availability level, while vary-
ing the noise level. 137

6.15 Sensitivity curves of expected feedback error level, while varying the
noise level. 137

6.16 Sensitivity curves of probability of clear of conflict, while varying the
noise level. 137

6.17 Sensitivity curves of probability of secondary conflict, while varying
the noise level. 137

6.18 Details of the example encounter in Figure 6.19, while using the reac-
tive logic’s emergency strategy. 137

6.20 Comparison of two uncertainty propagation approaches. 138

xvii

LIST OF FIGURES

6.21 Example encounter illustrating the conservativeness of the uncertainty
propagation approach used. Resolution 1 is the deliberative logic and
Resolution 2 is the reactive. 138

6.22 An observed causal chain from the near-parallel geometry to the re-
sulting NMAC encounters. 139

6.23 Example encounter illustrating the parallel-track result. Resolution
1 is the reactive logic in non-cooperative cases. Resolution 2 is the
deliberative logic in non-cooperative cases. 139

6.24 An observed causal chain illustrating the effect of FOR restriction on
the feedback quality and safety performance. 140

6.25 Example encounter illustrating the FOR effect: 1) the effect of ma-
noeuvring on feedback availability; and 2) the effect of feedback avail-
ability on feedback error. Resolution 1 is the reactive logic (at 2Hz)
and Resolution 2 is the deliberative logic. Both are in non-cooperative
cases with noise at level 5. 140

B.1 Flight envelop of the Jetstream 31 aircraft model used in this work. . . 163

B.2 The maximum load factor look-up table model. 163

B.3 The n-V diagram used as the maximum load factor model used in the
trajectory planning algorithm. 164

B.4 The step responses of three control channels: Airspeed, Aircraft Head-
ing, and Aerodynamic Flight-Path Angle. 165

B.5 The ramp responses of the three command channels. 167

B.6 The responses for a three dimensional manoeuvre with simultaneous
changes in three control channels. 168

C.1 A feasible trajectory example. 175

C.2 An acceptable trajectory example. Most performance violations are
within 2% of their limits; and at its maximum constraint violation, the
miss distance is 591 ft, that is 91 ft further than the required separation. 175

C.3 An infeasible-obstacle trajectory example. Despite the 49% of obsta-
cle constraint violation, the estimated miss distance and the required
performance show the trajectory’s applicability. 175

C.4 An infeasible-performance trajectory example. 175

xviii

LIST OF FIGURES

C.5 A both-infeasible trajectory example. 176

xix

This page intentionally contains only this sentence.

List of Tables

2.1 Typical SAA sensor characteristics [Chen et al., 2011]. 19

3.1 Part of the model variables specifying the encounter characteristics. . 35

3.2 Conditional probability table of a turn and speed change. 36

3.3 Intruder limitations parameters. 39

3.4 An example set of surveillance sensor parameters. 55

3.5 Measurement error model parameters. 58

3.6 Guarding conditions for the transitions among different finite states of
the baseline collision avoidance logic. 66

3.7 Summary sheet of the models used for Monte-Carlo simulation (I). . . 68

3.8 Summary sheet of the models used for Monte-Carlo simulation (II). . 69

4.1 Event definitions for the possible outcomes of results. 73

4.2 Characteristics of the original aircraft trajectories in the standard en-
counter set. 78

4.3 Test condition definitions. 78

4.4 Summary of twelve configurations for the candidate collision avoid-
ance logic. 79

4.5 Logic performance of the baseline configuration, under the nominal
noise level. 81

5.1 Success rate for the testing of the trajectory planning algorithm over
1040 test cases. 114

5.2 Summary of the average computational load for the trajectory planning
algorithm over 1024 testing scenarios. 116

xxi

LIST OF TABLES

5.3 Percentage of five types of result trajectories, categorized according to
their constraint violations. 117

6.1 The parameter values for the PID controllers in the Trajectory Tracker. 127
6.2 Experiment settings for the safety performance evaluation. 129
6.3 Overall safety performance results of three candidate logics, compared

with the original performance with no conflict resolution logic. 129
6.4 Safety performance in distance-emergency situations. 130
6.5 Safety performance in time-emergency situations. 131
6.6 Experiment settings for the robustness evaluation. 131
6.7 Experiment settings for the evaluation of FOR effect. 133

7.1 Summary of the objectives, findings and conclusions of the five simu-
lation experiments in this thesis. 151

7.2 The main result of the initial feasibility study of the proposed approach—
based on a trajectory-planning method for robust collision avoidance
with high performance manoeuvres, as described in §1.3. 152

B.1 Aircraft performance model parameters. 164

C.1 Trajectory Planning Algorithm Parameters. 174

xxii

This page intentionally contains only this sentence.

Nomenclature

Typeface
A A coordinate system.
A A frame.
A A point.
A A matrix.
~a A Euclidean vector.
a α A vector.
a α A scalar.

Accent
˙(·) A derivative with respect to time
ˆ(·) An estimation
˜(·) A measurement or variable subject to random error

Coordinate System
Bs Body-fixed spherical coordinate system
B Body-fixed coordinate system
C Conflict coordinate system
D Desired-path coordinate system
H Host-carried coordinate system
N Navigation coordinate system
R Resolution coordinate system

Euclidean vector - Roman letters
~rA/B The displacement vector of a point A with respect to a point B
~pA/H The position vector of a point A in a frame H

xxv

Nomenclature

Frame - Roman letters
B Body-fixed frame.
H Host-carried frame.
N Navigation (inertial) frame.

Matrix - Roman letters
CB

A The direction cosine matrix from a coordinate system A to a coordinate
system B

Point - Roman letters
B The origin of the body-fixed coordinate system
D Current desired position point
H The origin of the host-carried coordinate system; the host aircraft’s center

of mass
I The center of mass of the intruder aircraft
N The origin of the navigation coordinate system
R The origin of the resolution coordinate system

Right subscripts
(·)0 Of the initial state
(·)D Of the Down coordinate
(·)E Of the East coordinate
(·)N Of the North coordinate
(·)H Of the host
(·)I Of the intruder
(·) f Of the final state
(·)rou Of the original route
(·)max Of the maximum limitation
(·)min Of the minimum limitation

Right superscripts
(·)CR For conflict resolution
(·)des For the desired values
(·)re f For the reference values

Scalar - Greek letters

xxvi

Nomenclature

ΦBs Intruder’s azimuth coordinate in the body-fixed spherical coordinate sys-
tem

Φlim Azimuth limitation of the field of regard of a surveillance sensor

ΘBs Intruder’s elevation coordinate in the body-fixed spherical coordinate sys-
tem

Θlim Elevation limitation of the field of regard of a surveillance sensor

α Angle of attack

χ Ground track angle

ε Random error

λava Feedback availability

λava Feedback error

µ Bank angle

φ f Final cost

φ Roll attitude

ψ f Final constraint

ψ Yaw attitude

ρ Air density; penalty parameter

σ Standard deviation

τ Time constant of the of the uncertainty bound of the intruder projection
model

θ Pitch attitude

Scalar - Roman letters
CD Number of Correct Detection events

CR Number of Correct Rejection events

CD0 Zero-lift drag coefficient

CD Drag coefficient

CL0 Zero-angle-of-attack lift coefficient

CLα Lift curve slope

CL Lift coefficient

CTc, i Thrust coefficients

CTcr Thrust coefficient

D Drag force

F A Number of False Alarm events

xxvii

Nomenclature

F Cost of the Nonlinear Programming problems

H Required vertical separation

I N Number of Induced Near Mid-Air Collision events

J Cost functional

K Controller gain

L A Number of Late Alert event.

L Lift force

MD Number of Missed Detection events

M Mach number

N M Number of Near Mid-Air Collision even.

RR Risk ratio

R Required horizontal separation

S Aircraft wing area

T Thrust, propulsion force

UL Uncertainty Level

Va True airspeed

Vg Ground speed

Vv Vertical speed

V Inertial speed

E (λava) Expected feedback availability

E (λerr) Expected feedback error

T̄ Throttle setting

χa Aerodynamic heading angle

ṙ Relative range rate

γa Aerodynamic flight-path angle

γ Flight-path angle

Pr(CoC) Probability of Clear of Conflict, a.k.a. CoC rate

Pr(NM) Probability of Near Mid-Air Collision, a.k.a. NMAC rate

Pr(SC) Probability of Secondary Conflict, a.k.a. secondary conflict rate

Pr(UA) Probability of Unnecessary Alert, a.k.a. unnecessary alert rate

a Length of the major axis of the generating ellipse of the spheroid pro-
tected volume

xxviii

Nomenclature

b Length of the minor axis of the generating ellipse of the spheroid pro-
tected volume

dCl in Linear miss distance

g Acceleration due to gravity, or the growth factor of the uncertainty bound
of the intruder projection model

hmd Horizontal miss distance

h Altitude

k Induced drag factor

m Mass

nz Normal load factor

p1 Host’s first coordinate in the resolution coordinate system

p2 Host’s second coordinate in the resolution coordinate system

p3 Host’s third coordinate in the resolution coordinate system

rBs Intruder’s radial coordinate in the body-fixed spherical coordinate system

rmax Relative range limitation

r Radial coordinate in a spherical coordinate system; or relative range be-
tween the host and intruder

tCl in Linear time-to-CPA

tca Time of closest approach

t Time

vmd Vertical miss distance

Vector - Greek letters
Ψ Aircraft attitude vector

Ξ Optimization variable vector

ε Random error vector

ψc Trajectory control constraint vector

ψd Trajectory derivative constraint vector

ψo Trajectory obstacle constraint vector

ψx Trajectory state constraint vector

ψ Trajectory constraint vector

Vector - Roman letters
c+ Constraint violation vector

xxix

Nomenclature

cH Host manoeuvre command vector
cI Intruder manoeuvre command vector
c Constraint vector
e Error vector
pI/Bs

The relative position vector in the body-fixed spherical coordinate system
pI/B The relative position vector in the body-fixed coordinate system
pI/H The relative position vector in the host-carried coordinate system
pI Intruder position vector in the navigation (or resolution) coordinate sys-

tem
pr Relative position vector of the intruder with respect to the host in naviga-

tion (or resolution) coordinate system
vH Host velocity vector in the navigation coordinate system
vI Intruder velocity vector in the navigation coordinate system
vr Relative velocity vector of the intruder with respect to the host in naviga-

tion (or resolution) coordinate system
xH host state vector
xI intruder state vector
xnav Navigation state vector
xtra Tracker state vector
zlim
I Intruder limited-field-of-regard measurement vector

zI Intruder measurement vector

xxx

This page intentionally contains only this sentence.

Acronyms

ACAS Airborne Collision Avoidance System

ACAS X Airborne Collision Avoidance System X

ADS-B Automatic Dependent Surveillance-Broadcast

ASAS Airborne Separation Assurance System

ATC Air Traffic Control

ATCO Air Traffic Controller

ATM Air Traffic Management

BADA Base of Aircraft Data

CA Collision Avoidance

CAA Civil Aviation Authority

CAS Collision Avoidance System

CASSATT Collision Avoidance System Safety Assessment Tool

CDR conflict detection and resolution

CM Centre of Mass

CoC Clear of Conflict

CPA Closest Point of Approach

DoF Degree of Freedom

EO Electro-Optical

EoM Equations of Motion

EUROCONTROL European Organisation for the Safety of Air Navigation

FAA Federal Aviation Administration

xxxiii

Acronyms

FOR Field of Regard
FoV Field of View
FPA Flight Path Angle

HJ Hooke-Jeeves
HMD Horizontal Miss Distance
HMI Human-Machine Interface

ICAO International Civil Aviation Organization
IR Infra-Red
ISA International Standard Atmosphere

JOCA Jointly Optimal Collision Avoidance

MAC Mid-Air Collision
MEX MATLAB Executable
MIDCAS Mid Air Collision Avoidance System

NDI Nonlinear Dynamic Inversion
NLP Nonlinear Programming
NMAC Near Mid-Air Collision

OCP Optimal Control Problem
OV Optimization Variable

SAA Sense and Avoid
SAAFT Sense-and-Avoid Flight Tests
SOC System Operating Characteristic
SS Self Separation

TCAS Traffic Alert and Collision Avoidance Systems
TCAS II Traffic Alert and Collision Avoidance Systems II
TGA Trajectory Generation Algorithm
TGP Trajectory Generation Problem
TPA Trajectory Planning Algorithm
TPP Trajectory Planning Problem
TRL Technology Readiness Level

xxxiv

Acronyms

UAS Unmanned Aircraft Systems
UAV Unmanned Aerial Vehicle
UAVp Unmanned Aerial Vehicles pilot

VMD Vertical Miss Distance

xxxv

This page intentionally contains only this sentence.

Chapter 1

Introduction

1.1 Motivations

To fully realize their great potential for dirty, dull and dangerous tasks, Unmanned Air-
craft Systems (UAS) require their routine access to all classes of airspace without the
restrictive conditions of operation. According to the existing regulations and guidance
by different organizations [FAA, 2008; Drozdowski & Dean, 2010; CAA, 2012], UAS
are required to comply with the same flight rules as manned aircraft. This includes a
requirement to ‘see and avoid’ other airspace users as specified in the Rules of the Air
[ICAO, 2005a]. Currently, in order to satisfy this requirement, a UAS can only operate
in the segregated airspace, where collision risks are eliminated by strictly controlling
entry to this airspace by other aircraft; otherwise, it is required to be equipped with
an approved Sense and Avoid (SAA) systems as a mean to comply with the see and
avoid requirement. Despite tremendous efforts that have been devoted to the integra-
tion of UAS in non-segregated airspaces, the standard for SAA systems has yet to be
established and the SAA remains one of the unconquered challenges. This challenge
is mentioned in the recent UAS integration roadmap by [Huerta, 2013]:

Research is underway on Airborne Sense and Avoid (ABSAA) concepts.

Due to complexity, significant progress in ABSAA is not expected until

the mid-term [between 2015-2020]. Research goals for the near-term

[prior to October 2015] include a flight demonstration of various sensor

modes (electro-optic/infrared, radar, Traffic Alert and Collision Avoidance

1

Chapter 1 · Introduction

System (TCAS) and Automatic Dependent Surveillance-Broadcast (ADS-

B)). Actual fielding of a standardized ABSAA system is a long-term [after

2020] objective.

The sensing function of the SAA capability involves monitoring the surrounding
traffic and maintaining a track for every detected object. Similar function is referred
to as the Surveillance and Tracking Module in the Airborne Collision Avoidance Sys-
tem X (ACAS X), the next generation airborne collision avoidance systems [Walters,
2012]. Although still some time away from standardization, the development of the
SAA sensing function is relatively mature and appears to settle on a multi-sensor, data-

fusion configuration with the sensor technologies mentioned in the previous paragraph.
This multi-sensor configuration is adapted by all the reviewed state-of-the-art SAA
technology demonstration programmes, such as [Chen et al., 2011; Buchanan, 2012;
Petri & Spriesterbach, 2012; MIDCAS, 2013].

On the other hand, the avoidance function of SAA capability is relatively in its
infancy. A key element of the avoidance function is the collision avoidance logic,
which relies on noisy estimations from the sensing function to determine whether a
collision alert needs to be issued and, if so, what resolution action shall be taken. It is
said to be in its infancy not because of the lack of collision avoidance logic solutions—
in fact numerous collision avoidance logics in the literature are shown to be effective—
but because of the challenge to accommodate the unique characteristics of UAS, for
instance, the absence of an onboard pilot, the diversity in unmanned aircraft’s dynamics
performance and in sensor capabilities, and the issues of communication latency and
possible lost links [Zeitlin, 2012; Edwards, 2012].

In order to mitigate the impact of delayed or lost link issues, SAA systems are
expected to be required to perform an automatic collision avoidance manoeuvre after
reaching some design threshold, see NATO [2008, CAS9] and Sellem-Delmar [2010,
§12.7.2]. However, automatic collision avoidance manoeuvres would only be allowed
if the false alarm rate is acceptably low. For instance, in the design of an automatic
aircraft collision avoidance logic for fighter aircraft [Sundqvist, 2005; Turner et al.,
2012], a nuisance free requirement is posed so that the automatic manoeuvre would
not interfere the current operational mission.

Furthermore, the false alarm rate is traded directly with the safety performance, i.e.
for a particular collision avoidance logic design, adjusting the parameters to allow a

2

Challenges · § 1.2

smaller false alarm rate would inevitably increase the collision risk. In other words,
the envisioned, more stringent requirement on false alarm would make a considerable
number of existing collision avoidance logics unsuitable candidates for SAA systems.

Therefore, the motivation of this thesis is to develop a collision avoidance logic
that is able to not only prevent collision but also achieve the envisioned, stringent false
alarm rate for automatic activation.

1.2 Challenges

In the development of new collision avoidance logics, there is a trend to use a trajec-
tory planning framework, which is characterized by the following five elements: 1) a
response model of the host aircraft to generate the avoidance trajectory; 2) a dynamic
model of the intruder to predict its future state; 3) some criteria used to evaluate the
feasibility and optimality of the avoidance trajectory; 4) an action space to define all
the available avoidance manoeuvres; and 5) an online mechanism to determine the
optimal action to perform. Despite the slight differences in their realizations, the solu-
tions proposed by different SAA technology demonstration programmes [Chen et al.,
2009; Nicoullaud, 2012; Petri & Spriesterbach, 2012] also fit into this framework.

Although the trajectory planning framework normally relies on some computation-
ally expensive methods, there is a desire to increase the update rate so that the effect of
the uncertainty in the intruder state can be alleviated. In order to satisfy a target update
rate, most trajectory planning methods in the literature have to restrict their solution
spaces to the ones with only a small number of resolution actions, and thus sacrificing
the aircraft manoeuvrability that is safely available for collision avoidance.

On the other hand, it is believed that making the most of the aircraft performance
that is safely available for collision avoidance can improve the safety performance and
also alleviate the difficulty in meeting the stringent nuisance alert rate requirement.
For instance, MIDCAS [Nicoullaud, 2012, pp. 23] proposes to perform the automatic
collision avoidance manoeuvre at the last instant associated with a high performance
manoeuvre, so that the nuisance alert rate can be reduced and it leaves the maximum
amount of time for UAS pilots to use their normal authorities. Figure 1.1a shows a
notional example to illustrate how high performance manoeuvres can safely delay an
automatic collision avoidance manoeuvre. Figure 1.1b illustrates how the problem

3

Chapter 1 · Introduction

dimension is increasing with the fidelity of the host aircraft model.
However, subject to the ‘curse of dimensionality’, it is daunting to extend the ex-

isting trajectory planning methods to handle the collision avoidance problems of high
dimension in real time. These challenges have also been mentioned by Temizer [2011];
Wolf & Kochenderfer [2011]; Bai & Hsu [2011]; Chen et al. [2009].

1.3 Overview of the Proposed Approach

In order to handle the high dimensional collision avoidance problems in real time, this
thesis proposes to use a control architecture to separate the avoidance trajectory plan-
ning from the avoidance trajectory execution and to use a trajectory planning method,
based on the real-time approximate solution for an optimal control problem, to take
into account the flyability of high performance manoeuvres and robustness to the in-
truder projection uncertainty.

Firstly, the control architecture, as shown in Figure 1.2, is based on the conven-
tional robotic three-layer architecture (see Gat [1998]; Patchett & Ansell [2010]), com-
prising Planning, Management (or Sequencing) and Control. Starting from the bottom
is the control layer containing a typical navigation, guidance and control loop, which
is used to automate the execution of the avoidance command from the decision maker
and to assure an accurate execution of the high performance avoidance manoeuvre,
see §6.2.3 for more details. The management layer contains a decision making loop,
which is in charge of making the decision about when the avoidance action should be
commanded, see Figure 2.7 and §6.2.2 for more details. The planning layer accommo-
dates the proposed trajectory planning method, which is responsible for answering the
request from the management layer with an avoidance trajectory.

Secondly, there are three main steps in the robust trajectory planning method, as
shown in Figure 1.2. The method starts with generating a candidate trajectory with an
initial guess of the avoidance action. The candidate trajectory is then evaluated against
a set of criteria representing the constraints and costs defined for the collision avoid-
ance problem, some example criteria are shown in Figure 1.3 and more details can be
found in §5.2. Based on the evaluated values of the criteria, an optimization mecha-
nism is employed to iteratively adjust the avoidance action, until it finds an avoidance
trajectory whose constraint and cost values satisfy some specified conditions.

4

Overview of the Proposed Approach · § 1.3

Collision Avoidance Manoeuvre

at the last instant associated with

a high performance manoeuvre

Intruder

Current Collision

Avoidance Manoeuvre

(a) A notional example illustrating how a high performance manoeuvre can safely
delay an automatic collision avoidance manoeuvre, adapted from Nicoullaud [2012].

Aircraft Performance Safely
Available for Collision Avoidance

Continuous Action Space
+ Aircraft Performance Model

[Nicoullaud, 2012; Lai & Whidborne, 2011]

Discrete Action Space + Kinematic Model
[Bai & Hsu, 2011; Temizer et al., 2010]

Discrete Action Space +
Aircraft Performance Model

[Chen et al., 2009]

Collision Avoidance Manoeuvre
of Higher Performance

Scope of this work

(b) The notional solution spaces of different collision avoidance logics in the litera-
ture, and their relationship to high performance avoidance manoeuvres.

Figure 1.1: The notional explanation of the desire to use an avoidance manoeuvre of
higher performance.

5

Chapter 1 · Introduction

The trajectory planning method is robust in the sense that it uses an empirical
method, i.e. linear projection with an exponentially growing uncertainty margin, to
project the intruder state so as to explicitly compensate for prediction uncertainty.

The main concepts and key features of the robust trajectory planning method are
summarized in Figures 1.3 and 1.4, the details of which can be found in §5.2. The
detailed implementation of the proposed control architecture can be found in §6.2.

Collision Avoidance Logic
Based on Three-Layer Architecture

Decision Making Loop

Guidance, Navigation and Control Loop

Trajectory
Planner

Trajectory
Manager

Trajectory
Tracker

Navigation
System

Flight Control
System

Surveillance
and Tracking

Module

Decision Maker

In
fo

rm
a

ti
o

n
 S

y
s
te

m

Trajectory Planning Method

Trajectory
Generation

Trajectory
Evaluation

Trajectory
Selection

Optimization Mechanism

Figure 1.2: Architecture of the proposed collision avoidance logics for SAAs systems.
The grey functional blocks highlight the focus of this thesis. More details can be found
in §2.3.3 and §6.2 for the architecture and in Chapter 5 for the trajectory planning
method.

6

Overview of the Proposed Approach · § 1.3

Intruder State
Uncertainty

Safe and
Controlled
Manoeuvre

Desired
Behaviours

CostsConstraints

Safety Margin
Aircraft

Performance
Model

Route
Deviation

Growing
Safety Margin

Continuous
Action Space

3D Trajectory

Performance
Limitations

Keep within
Field of View

High
Performance
Manoeuvre

Linear
Extrapolation

Intruder
Motion

Uncertainty

Feature
Feature
Driver

Figure 1.3: Main features of the proposed trajectory planning method, more details
can be found in Chapter 5.

Figure 1.4: Concept of the proposed trajectory planning method of high performance
manoeuvres for collision avoidance problems.

7

Chapter 1 · Introduction

1.4 Aim and Objectives

The aim of this thesis is to develop a real-time trajectory planning algorithm for a
novel Unmanned Aerial Vehicle (UAV) collision avoidance logic and to determine the
integrated logic’s feasibility, merits and limitations for practical applications. This was
achieved by pursuing the following objectives:

1. Perform a review of the latest collision avoidance logics and the existing meth-
ods for trajectory planning methods so as to determine the problem scope and
identify the potential methods;

2. Construct a modelling and simulation framework1 for the performance evalu-
ation of collision avoidance logics; the framework should be sufficiently repre-
sentative of the realistic operating environment, and yet computationally fast and
flexible enough for large-scale, fast-time Monte Carlo simulations;

3. Establish a set of effectiveness measures and a baseline for performance com-
parison; the effectiveness measures should be recognizable in the research com-
munity of collision avoidance systems and the baseline method should be com-
parable with the proposed method;

4. Develop a trajectory planning algorithm that is able to take into account the
flyability of combined manoeuvres, robustness to intruder uncertainty and Field
of Regard (FOR) restriction; the selected algorithm should have the potential for
real-time implementation; and

5. Evaluate the performance of the integrated system so as to determine the feasi-
bility, merits and drawbacks of the proposed method.

1.5 Organization and Highlights of this Thesis

Figure 1.5 provides an overview of this thesis and the highlights of each chapter is
summarized as follows:

1By framework, this thesis means a collection of computational models and analysis tools designed
for a particular purpose.

8

Organization and Highlights of this Thesis · § 1.5

Thesis Organization Main Achievements Target Domains of
Contributions

1. Introduction

2. Literature Review &

Thesis Scope

3. Modelling &

Simulation Framework

4. Evaluation & Analysis

Framework

5. Trajectory Planning

Algorithm Development

6. Integration and

Evaluation

7. Conclusions

Collision Avoidance

Trajectory Planning

Formulation of an avoidance

trajectory planning problem

A real-time trajectory planning

algorithm

Demonstration of the feasibility

& potential benefits

An additional set of metrics for

evaluation and analysis

A novel collision avoidance

logic

Figure 1.5: Overview of the organization, deliverables and target domains of contribu-
tions of this thesis, see §7.2 for more details.

9

Chapter 1 · Introduction

Chapter 2: Literature Review and Thesis Scope

In order to confine the scope of this work, this chapter first presents the background
information about the role of collision avoidance in the current Air Traffic Manage-
ment (ATM) system (§2.2); and then summarizes the development process, intended
functions and functional architecture of SAA systems in §2.3. Moreover, it reviews the
latest work published in the field of collision avoidance logic development in §2.3 and
describes the reason for the choice of the trajectory planning algorithm.

Chapter 3: Modelling and Simulation Framework

For the capability to statistically demonstrate the effectiveness of the safety-critical
collision avoidance systems, this chapter aims to construct a modelling and simulation
framework for large-scale, fast-time Monte Carlo simulations. In order to emulate the
actual operating conditions, the following models are implemented: 1) the Standard
Encounter Model used by ICAO [2007] to generate a credible set of testing scenar-
ios (§3.2); 2) a kinematic intruder model with configurable aircraft performance and
manoeuvre uncertainty (§3.3); 3) an aircraft system model with configurable transient
response characteristic and realistic aircraft performance according to the Base of Air-
craft Data (BADA) (§3.4); 4) a surveillance and tracking model able to produce the
noisy and limited FOR1 surveillance conditions (§3.5); and 5) a collision avoidance
logic model implementing a collision-cone-like2 geometric conflict detection and res-
olution method §3.6.

The final result of this chapter is a modular and parametric framework. As summa-
rized in Tables 3.7 and 3.8, the implementation used in this thesis is based on the ICAO
[2007] Standard Encounter Model and the aircraft performance model of the Jetstream
31 aircraft [Nuic, 2012; Cooke, 2008].

1Field of regard is the spatial volume, within which the SAA sensor(s) can make measurements,
which is specified in terms of relative range, azimuth and elevation from the fixed body reference frame
of the SAA platform, see §3.5.2 for specific details.

2See Carbone et al. [2006]; Chakravarthy & Ghose [1998]

10

Organization and Highlights of this Thesis · § 1.5

Chapter 4: Evaluation and Analysis Framework

Given the enormous amount of result data from a Monte Carlo simulation, this chapter
presents a framework, consisting of a systematic process (Figure 4.1) and a collection
of analysis tools, to facilitate the performance evaluation and safety analysis of col-
lision avoidance logics. A typical set of performance metrics, such as risk ratio and
unnecessary alert rate, is first presented in §4.2; and then, in order to enable the in-
vestigation of the effect of the FOR restriction on the logic performance, an additional
set of metrics (such as the probability of a secondary conflict and feedback quality) is
introduced in §4.3. Finally, other necessary analysis tools (such as System Operating
Characteristic (SOC) and sensitivity curves) along with two simulation experiments—
establishment of baseline performance and investigation of FOR-restriction effect1—
are described in 4.4.

Besides the establishment of the baseline performance for comparison, the main
contribution of this chapter is to quantitatively show that the FOR restriction would
reduce the quality of the feedback to the collision avoidance logic, increase the risk of
collision and make the determination of the moment to issue a Clear of Conflict (CoC)
more challenging (4.4.3).

Chapter 5: Trajectory Planning Algorithm Development

In order to make the most of the aircraft performance that is safely available for col-
lision avoidance, this chapter describes the development of a trajectory planning al-
gorithm that is capable of planning resolution trajectories with high performance ma-
noeuvres. The development involves 1) capturing some requirements from the litera-
ture, such as the flyability of resolution manoeuvres, minimum separation and opera-
tional suitability (§5.1), 2) formulating an optimal control problem to accommodate the
identified requirements (§5.2), and 3) implementing an algorithm to solve the optimal
control problems.

The algorithm itself contains an inverse-dynamic direct method (§5.3) to convert
the optimal control problem to a 15-dimensional Nonlinear Programming (NLP) prob-
lem (Problem 5.3.1) and a two-stage, derivative-free pattern search method §5.4.4 to
solve the converted Nonlinear Programming (NLP) problems.

1The effect caused by the FOR restriction.

11

Chapter 1 · Introduction

The testing results (§5.5) show that the algorithm (without the low-level code gen-
eration) is able to find a feasible trajectory in 88% of the testing encounters, using 2.56
seconds and 2212 function evaluations on average. With the function evaluation bud-
get of 4500, the maximum computation time over all cases is 5 seconds. A preliminary
investigation of the usability of the reaming 12% infeasible solutions is also presented.

Chapter 6: System Integration and Performance Evaluation

In order to provide the initial feasibility study with evidence, this chapter first describes
an integrated software prototype for testing and then presents the testing results of a
Monte Carlo simulation with 3800 encounter geometries under 8 different surveillance
conditions (resulting in 30400 testing encounters in total). Section 6.2 first describes
the architecture of the overall prototype, consisting of a Trajectory Planner (§6.2.1), a
Trajectory Manager (§6.2.2) and a Trajectory Tracker (§6.2.3). In particular, the Tra-
jectory Planner was implemented using low-level code generations and the testing re-
sults in §6.2.1 shows that the maximum computation time of the MATLAB executable
has been reduced by 10 times to about 0.5 seconds.

Section 6.3 presents the results of three simulation experiments for the purpose of
1) safety performance evaluation in ideal conditions, 2) robustness analysis to sensor
noise, and 3) investigation of the FOR-restriction effect. The main results shows that
the proposed method outperformed the baseline method, in terms of risk ratio by 50%,
and was significantly more robust to sensor noise. Table 7.1 summarizes other findings
in the three experiment simulations.

Section 6.4 discusses four phenomena—ineffectiveness of the emergency strategy,
conservativeness in uncertainty propagation, FOR-restriction effect and parallel-track
encounters—observed from the resulting Near Mid-Air Collision (NMAC) encounters.
One major finding in this section is an observed causal chain (Figure 6.24) that explains
how the FOR restriction can affect the feedback quality and safety performance.

Chapter 7: Conclusions

This chapter draws conclusion on the proposed logic’s feasibility and potential benefits,
outlines the deliverables from this work, highlights the contributions to knowledge and
suggests areas for further development.

12

Chapter 2

Background and Literature Review

2.1 Introduction

This chapter determines the problem scope of this thesis via 1) providing the back-
ground information about the role of collision avoidance in the current ATM systems;
2) presenting the development process of SAA systems; 3) reviewing the latest devel-
opment on the collision avoidance logics; and 4) explaining the choice of the trajectory
planning algorithm for further development. The organization and the scopes of this
thesis are summarized in Figure 2.1.

Figure 2.1: Overview of Chapter 2, containing the context of the literature and their
relationships to the scope of this thesis.

13

Chapter 2 · Background and Literature Review

2.2 Conflict Management

2.2.1 Layered Approach

In the current ATM system, a number of risk mitigation measures (including proce-
dures, personnel and systems) are in place in order to limit the risk of collision to an
acceptable level. The mitigation measures are effectively functioning in a layered ap-

proach, which means that it would take failures at multiple layers to cause a system
failure. Figure 2.2 illustrates such a layered approach, where each safety layer contains
a set of mitigation measures and a hole in the safety layer represents a possible failure
of the mitigation measures.

Figure 2.2a shows a safety layer model to represents the ATM situation. The model
is consisted of three conflict management layers as specified by ICAO [2005b] and one
final layer of Providence to distinguish an actual mid-air collision from an NMAC,
which is defined mainly for analysis purposes.1

Figure 2.2b shows a model with an additional layer of Separation Restoration,
as mentioned by Drozdowski & Dean [2010, p. 26]. This layer is included here to
highlight the fact that there may exist a gap in the current model and a set of mitigation
measures are emerging to improve the ATM system by filling this gap.

2.2.2 Safety Events

For the purpose of safety analyses, the following safety events as the consequences of
breaching the safety layers are defined:

• Conflict is a situation involving aircraft and hazards2 in which the applicable
separation minima may be compromised, according to ICAO [2005b].

• Loss of Separation is a situation involving aircraft and hazards in which the
applicable separation minima has been compromised.

• Close Proximity is a situation in which the involving aircraft are in such prox-
imity as to require collision avoidance actions to maintain safety, in the opinion

1There is about a 1 in 10 chance that an NMAC will in fact be an actual collision, see Drozdowski
& Dean [2010, pp.12].

2Hazards include other aircraft, terrain, weather, wake turbulence, etc.

14

Conflict Management · § 2.2

Providence

Collision
Avoidance

Separation
Provision

Strategic Conflict
Management

Collision
Avoidance

Separation
Provision

Strategic Conflict
Management

Providence

Separation
Restoration

-

Close
Proximity

Loss of
Separation

Conflict

Traffic

-

Near Mid-Air
Collision

-

a. Existing Safety Layers b. Emerging Safety Layers

Mid-Air Collision
Accidents

-

-

Figure 2.2: The safety layer models illustrating the layered approach used for collision
avoidance in the ATM system.

of a pilot or a flight crew member. Note that, no specific definition of this safety
event can be found in the existing regulations.3 This event is included here to
facilitate the discussion in this thesis (i.e. when the aircraft is not ‘well clear’ of
other traffic, they are in close proximity) and to highlight the need for a separation
standard for the definition of ‘well clear’ found in the regulation as addressed by
Weibel et al. [2011].

• Near Mid-Air Collision (NMAC) is a situation in which the separation between
the involving aircraft is simultaneously less than 500 ft horizontally and 100 ft
vertically.

• Mid-Air Collision (MAC) is an aviation accident where two aircraft come into
contact with each other while both are in flight.

3This concept is similar to but not equal to an Airprox defined in UK and to a collision hazard as
mentioned in [Weibel et al., 2011].

15

Chapter 2 · Background and Literature Review

2.2.3 Risk Mitigation Mechanisms

Figure 2.3 shows the risk mitigation mechanisms used in the middle three layers of the
emerging model, as shown in Figure 2.2b:

• Separation Provision layer includes all mitigation measures that keep aircraft
away from hazards by at least the appropriate separation minima, by means
of tactical intervention. It is currently carried out by Air Traffic Controllers
(ATCOs) and, possibly in the future, by flight-crew with the assistance of on-
board Airborne Separation Assurance System (ASAS), see Barhydt et al. [2003];
Hoekstra [2002].

• Separation Restoration layer includes all mitigation measures that prevent air-
craft from operating in such proximity to other aircraft as to create a colli-
sion threat. One example of a mitigation measure is the Short Term Conflict
Alert (STCA) system [Bakker, 2009], which is an automated warning system
for ATCO; while another, by the flight-crew, is the visual separation manoeu-
vres that uncontrolled aircraft could make in order to remain well clear of other
traffic, known as self-separation according to Zeitlin [2012].

• Collision Avoidance layer includes all mitigation measures that take all possi-
ble measures to ensure that an aircraft does not collide with any other aircraft.
Depending on whether there exist datalinks between the involving aircraft, there
are two types of mechanisms:

1. Cooperative1 collision avoidance mechanism includes all risk mitigation
measures that rely on the information obtained from any communication
links, such as transponders and ADS-B. For instance, Airborne Collision
Avoidance System (ACAS) is an airborne safety net based on Secondary
Surveillance Radar transponder signals.

2. Non-cooperative collision avoidance is the lowest-level mechanism to pre-
vent an imminent collision. In manned aviation, this entirely relies on the

1Note that, by cooperative, it means there is datalink, such as Automatic Dependent Surveillance-
Broadcast (ADS-B), among the involving aircraft, it is not necessary that they are coordinating with
each other to resolve a conflict.

16

Sense and Avoid Systems · § 2.3

S
e

p
a

ra
ti

o
n

P
ro

v
is

io
n

S
e

p
a

ra
ti

o
n

R
e

s
to

ra
ti

o
n

C
o

ll
is

io
n

A
v

o
id

a
n

c
e

Risk of Collision

Scope of Sense and

Avoid Systems

Figure 2.3: Risk mitigation mechanisms grouping into three safety layers. The scope
of SAA is also highlighted.

ability of the flight-crew to See and Avoid, in order to carry out the regula-
tory requirement specified in the Rules of the Air ICAO [2005a]: “Nothing
in these rules shall relieve the pilot-in-command of an aircraft from the re-
sponsibility of taking such action, including collision avoidance manoeu-
vres based on resolution advisories provided by ACAS equipment, as will
best avert collision."

2.3 Sense and Avoid Systems

Although the remote pilots of UAVs are not on-board the vehicles, none of the pilot’s
responsibilities in the existing collision risk mitigation measures should be relieved.
For this purpose, UAS are required to be equipped with SAA system so as to enable
the Unmanned Aerial Vehicles pilot (UAVp) to carry out these responsibilities. How-
ever, until the time of writing of this thesis, the standard for SAA systems is still under
development, for instance, by EUROCAE (European Organisation for Civil Aviation
Equipment) Working Group 73 and RTCA (Radio Technical Commission for Aero-
nautics) Special Committee 228. A preliminary Minimum Operational Performance

17

Chapter 2 · Background and Literature Review

Standards (MOPS) establishing performance standards for UAS SAA systems in the
operational environment specified in [RTCA, 2013] is expected to be available in July
2015.

Beside the standardization efforts, there exist technology demonstration programmes
aiming at demonstrating the SAA capability with flight testing, for instance, the Mid
Air Collision Avoidance System (MIDCAS) programme1 across five European coun-
tries [Pellebergs, 2010], the ASTRAEA (Autonomous Systems Technology Related
Airborne Evaluation & Assessment) programme2 in UK [Hutchings et al., 2007; Patch-
ett & Ansell, 2010] and the Sense-and-Avoid Flight Tests (SAAFT) [Shakernia et al.,
2007] and ACAS XU [Petri & Spriesterbach, 2012] programmes in US.

2.3.1 A Safety-Analysis Development Process

Because of the potentially catastrophic consequences of error in the operation of SAA
systems, the researchers from MITRE Corporation and Lincoln Laboratory, with their
rich experience associated with the development and implementation of Traffic Alert
and Collision Avoidance Systems II (TCAS II), have stressed the important role of a
safety-analysis methodology in the development and standardization of such a safety-
critical system, more than once in Kuchar [2005]; Zeitlin et al. [2006]; Zeitlin [2012];
Edwards [2012]; Cole et al. [2013].

Figure 2.4 shows a high level view of the safety-analysis methodology. This is an
iterative development process, involving the following seven main steps:

1. Develop a concept of operations (CONOPS) to provide information, for ex-
ample, on UAS flight characteristics, the environment in which the UAS will
operate, responsibilities of the ground pilot, and communication protocols; and
thus deriving the initial requirements for operations (where), functions (what),
performance (how well) and safety (how risky), see, for example, the MIDCAS
programme’s CONOPS and requirement synthesis [Farjon & Sellem-Delmar,
2012; Sellem-Delmar, 2010];

2. Develop a functional architecture to accommodate the initial functional re-
quirements, via identifying the necessary sub-functions and defining the data

1See the project website at http://www.midcas.org/.
2See the project website at http://astraea.aero/.

18

http://www.midcas.org/
http://astraea.aero/

Sense and Avoid Systems · § 2.3

Hazard

Analysis

Functional

Allocation

Operation

Environment

Modelling

Fast-Time

Simulation

(Fligh Tests)

System

Modelling

(Synthesis)

Performance

Evaluation

Performance

Trade-off
Accept?

Architecture

Fault Tree

Model

Envrionment

Models

System Models

Results

Performnace

Metrics

No

Concept of Operation Development &

Requirement Analysis

Performance

Requirement

Architecture

Operational

Requirements

Functional

Requirements

Safety

Requirements

Intial

Performance

Requirements

System Design &

Requirements

Modelling and Simulation Framework

Assessment

Results

&

Analyses

Yes

Operation

Data Collision Risk

Calculation

Risk of Collision

Figure 2.4: Safety-analysis methodology for the development of SAA systems.

Statistical

Modelling

Fast-Time

Simulation &

Evaluation

System Risk

Calculation

Underlying

Risk

Logic

Risk

System

Models

System

Risk

Performance

Metrics

Environment

Models

Fault Tree

Models

Operational

Data

Figure 2.5: The process to calculate the system risk of collision, adapted from Raynaud
& Arino [2006].

19

Chapter 2 · Background and Literature Review

flow and interfaces among them, see §2.3.2 and 2.3.3 for more details;

3. Develop a fault tree model1 to identify all events that could lead to a failure in
the end-to-end SAA system, via analysing the potential failures of each func-
tion and data flow from the architecture step, see, for example, the MIDCAS’s
scenario assessment [Clarkson, 2012];

4. Develop a modelling and simulation framework to enable fast-time Monte
Carlo simulations, so that sufficient data can be generated to statistically demon-
strate the system effectiveness. Monte Carlo simulation is an established tech-
nique that repeatedly simulates the system models with independently selected
values from their respective probability distributions. These simulations require:

• a set of models to replicate the environmental and operational situations,
e.g., encounter models [Kochenderfer et al., 2008a, 2010b], sensor envi-
ronment models [Griffith & Lee, 2011] and platform characteristics (vehi-
cle dynamics, aircraft performance); and

• the models for the SAA system candidates, including surveillance system,
avoidance logics, and response characteristics (i.e. communications and
pilot response latency).

5. Develop a recognized set of performance metrics to evaluate the system’s safety
performance, operational suitability and interoperability, see Edwards [2012];
Kochenderfer et al. [2010a]; ICAO [2007] for some useful metrics;

6. Calculate the risk of collision, using the tools developed in the previous steps
and the process shown in Figure 2.5. A risk assessment can then be carried out
to determine whether the resulting risk is at an acceptable level. If the risk is
not acceptable, additional mitigation of risks will need to be considered in the
CONOPS; or if the required performance is infeasible or at least undesirable for
economic reasons, performance trade-offs will need to be made among the sub-
functions so as to make certain requirements less onerous without compromising
overall safety performance, see Zeitlin [2012]; and

1Also known as a contingency tree in some EUROCONTROL reports, such as Hutchinson & Droz-
dowski [2007] and Raynaud & Arino [2006, see pp. 10].

20

Sense and Avoid Systems · § 2.3

7. Validate the requirements with flight testing to reinforce the simulation results.
The output of this overall process is the set of acceptable system design that
satisfy the safety requirements.

2.3.2 Intended Functions and Sub-Functions

Although the standard functional requirements of SAA systems are still under develop-
ment, it is expected that the SAA system would deliver at least two intended-functions1
via eight sub-functions. According to the final report produced by FAA-Sponsored
Workshop [2009, as cited in [George, 2012]], they are:

“Sense and Avoid (SAA) is the capability of a UAS to remain well clear

from and avoid collisions with other airborne traffic. SAA provides the in-

tended functions of self separation and collision avoidance as a means of

compliance with the regulatory requirements to “see and avoid” compat-

ible with expected behavior of aircraft operating in the airspace system.

An SAA capability performs the following sub- functions (see Figure 2.6):

1. Detect - Determine presence of aircraft or other potential hazards;

2. Track - Estimated position and velocity (state) of a single intruder

based on one or more surveillance reports;

3. Evaluate - Assess collision risk based on intruder and UA states;

4. Prioritize - Determine which intruder tracks have met a collision risk

threshold;

5. Declare - Decide that action is needed;

6. Determine - Decide on what action is required;

7. Command - Communicate determined action; and

8. Execute - Respond to the commanded action.”

1Besides the two intended functions described here, MIDCAS proposes an additional function:
provision of traffic information to allow the UAS pilot to build his situational awareness related to the
surrounding traffics, [Farjon & Sellem-Delmar, 2012, see pp. 42].

21

Chapter 2 · Background and Literature Review

Figure 2.6: SAA Capability Sub-Functions, reproduced according to [FAA-Sponsored
Workshop, 2009, as cited in [George, 2012]].

2.3.3 Functional Architecture

The design of each sub-system and the way they interact with each other constitutes
the system architecture. Figure 2.7 shows a generic functional architecture used to
accommodate the previous initial functional requirements, see Hutchings et al. [2007];
Patchett & Ansell [2010]; Dixon [2011].

The main functional elements are as follows:

• Surveillance Sensors: the environment must be first monitored using sensors
and/or communications equipment. Surveillance sensors, depending on whether
relying on datalinks, are divided into two groups: cooperative and non-cooperative.
Table 2.1 summarizes the typical characteristics of four sensors technologies that
are prevalent in the literatures [Griffith et al., 2008; Chen et al., 2011; Angelov,
2012; Boskovic et al., 2013].

• Sensor Fusion and Tracking: the measurements from multiple sensor sources
are fused together so as to improve the measurement accuracy and a tracker is
required to associate successive measurements with specific targets. Once there
are sufficiently consistent measurements for a specific target, a valid track is ini-

22

Sense and Avoid Systems · § 2.3
M
a
n
a
g
e
m
e
n
t

REQ-3. Evaluate

REQ-4. Prioritize

Risk

Assessment

REQ-7. Command

SAA

Management

REQ-5. Declare

REQ-6. Determine

Collision

Avoidance Logic
Self Separation

Logic

System-Wide Information Management

REQ-2. Track

 Tracking

REQ-5. Declare

REQ-6. Determine

REQ-8. ExecuteREQ-1 Detect

Surveillance

Sensor Vehicle Platform

UAV

Pilot

Mission

Management

System

Standard

Interface

Data Fustion

Data

Link

P
la
n
n
in
g

In
fo
rm
a
ti
o
n

C
o
n
tr
o
l

Figure 2.7: The functional architecture of a generic SAA system, for autonomous
UASs, summarized from Hutchings et al. [2007]; Patchett & Ansell [2010]; Dixon
[2011].

Table 2.1: Typical SAA sensor characteristics [Chen et al., 2011].

Cooperative Sensing Non-Cooperative Sensing

Unit ACAS ADS-B Radar EO

Accuracy in:
Range ft 175 – 300 - 10 – 200 -

Range rate ft/s - - 1–10 -
Bearing deg 9 – 15 - 0.5 – 2 0.1 – 0.5
Altitude ft 50 – 100 50 – 100 - -

Horizontal position ft - 25 – 250 - -

Update rate Hz 1 1 0.2 – 5 20

Detection range nm ≥ 14 ≥ 20 5–10 2–5

23

Chapter 2 · Background and Literature Review

tialized and, thereafter, will be updated over time. The tracking function should
be capable of maintaining the track for a certain time even in the absence of a
measurement update and capable of dropping the track after too many updates
are missed, see, for example, [Fasano et al., 2009; Chen et al., 2011].

• Risk Assessment: each tracked object is assessed to decide if the track can be
projected into the future with sufficient confidence and, if so, to evaluate the
projected state against a set of criteria that would indicate the potentials for the
track to become a close proximity or an NMAC. The tracked objects can then
be prioritized according to the evaluated criteria. This allows the subsequent
process to focus on the most critical objects with the limited on-board resource.

• Logics: given the prioritized list of tracked objects, both the Self Separation (SS)
and Collision Avoidance (CA) logics are run in parallel, to detect, respectively, 1)
any potential close proximity situations and 2) any potential NMAC situations.
As discussed in the next section, the conflict detection and resolution (CDR)
mechanisms, embedded in the logics, will then determine when to issue an alert
and which advisory to issue. One of the main design challenges in SS is the lack
of a recognized analytical definition of ‘well clear’, against which the SS logic
should protect, [Weibel et al., 2011]. Discussion on collision avoidance logics
will be deferred to the next section.

• Management: given the SAA picture (consisting of the tracked objects, threat
alerts, and resolution advisories), a decision-making mechanism among the UAVp,
Mission Management System, and SAA Management should be in place to se-
lect the appropriate action for execution. For instance, as proposed by Hutchings
et al. [2007], the UAVp can accept or reject the SS advisories, and can choose
to either accept or ignore the CA manoeuvres until the SAA system is forced
to take autonomous action, while the UAVp is always legally responsible, even
during autonomous operation, for the safety of the UAV. However, there remains
several open research questions here: the level of pilot involvement considering
the possible communication delays and the design of a Human-Machine Inter-
face (HMI) to provide the UAVp with sufficient situational awareness [Tadema,
2011].

24

Collision Avoidance Logics · § 2.4

• Vehicle Platform: the platform (including the Autopilot, Flight Control System
and Navigation System) is responsible for the execution of the commanded ma-
noeuvre and provision of the navigation states.

The focus of this work lies mainly in the Collision Avoidance Logic block and this
will be discussed in detail in the subsequent sections.

2.4 Collision Avoidance Logics

2.4.1 Conflict Detection and Resolution

CDR in aviation is a methodology for maintaining separation between aircraft. This
has been served as the underpinning principle for a wide range of systems to improve
the safety level of the overall ATM. These systems include:

• the ground-based systems intended to assist ATCOs in:

– strategically, maintaining separation among many aircraft [Jardin, 2003];

– tactically, preventing close proximity between aircraft [Bakker, 2009].

• the airborne systems intended to assist fly crew in:

– maintaining its separation with other aircraft [Barhydt et al., 2003];

– preventing Mid-Air Collision (MAC) against other aircraft in proximity
[ICAO, 2007].

Depending on the operational context, these systems are generally referred to as
CDR systems for separation provision in the Air Traffic Control (ATC) context, ASAS
for separation provision and ACAS for collision avoidance in the avionics context.

Figure 2.8 shows all the necessary elements of the CDR process based on that
described by Kuchar & Yang [2000]:

1. a response model to project the host aircraft’s nominal/resolution trajectory;

2. a dynamic model to project the intruder aircraft’s future state;

25

Chapter 2 · Background and Literature Review

3. some criteria models used to evaluate the feasibility, and optionally the optimal-
ity, of the projected trajectories;

4. a mechanism to determine if an alert is required to be issued;

5. an action space to define all the available resolution actions; and

6. a mechanism to determine the resolution action to perform.

It is worth noting that, as mentioned in Kuchar & Yang [2000, pp. 181]:

• although the Criteria Models in Figure 2.8 is shown as a single block, different
sets of decision criteria may be used for conflict detection and conflict resolution.

• as depicted by the dashed arrow in Figure 2.8, it is sometimes not clear how to
separate conflict detection from conflict resolution, especially for the systems
requiring a very low nuisance rate. For example, deciding when the action is
required may depend on the type of action that will be performed; and similarly,
the type of action that is required may depend on how early that actions begins.
See the trigger mechanisms proposed by Patel & Goulart [2010] for an example
of this interaction.

In his review paper, Kuchar & Yang [2000] presented a survey of 68 different meth-
ods to address CDR, most of which were driven by the desire to implement the CDR
tools to assist the human operators in handling the expanding traffic loads and improve
flow efficiency. In the last decade, along with the emerging need in developing the
SAA systems, the diversity and quantity of CDR methods has been ever-increasing.
Kopřiva et al. [2012] presented a survey of about 120 methods. While these methods
cover a broad spectrum of operational context from the separation provision to colli-
sion avoidance safety layer, this work focuses only on the methods that are suitable for
non-cooperative collision avoidance problems. Figure 2.9 relates the methods used in
this thesis to the method categories proposed by the two survey papers.

2.4.2 Challenges and State-of-the-Arts

The recent development of collision avoidance logics are mainly driven by the fol-
lowing challenges: handling of non-cooperative intruders and robustness to uncertain
intruders.

26

Collision Avoidance Logics · § 2.4

Intruder Projection Model Host Response Model

Criteria Models

Conflict Detection
Mechanism

Conflict Resolution
Mechanism Action

Space

Intruder State
Estimation

Host State
Information

Alert Resolution

Possible conflict
resolution loop

Possible Interactions

Figure 2.8: The necessary elements of a CDR process, which is the underpinning
principle for all collision avoidance logics.

27

Chapter 2 · Background and Literature Review

a) Nominal

d) Worse-Case

b) Probabilistic

c) Empirical*

(a) Intruder state projection method category
proposed by Kuchar & Yang [2000]. The em-
pirical method (i.e. linear projection with grow-
ing uncertainty bounds) used in this thesis is in-
spired by Berry et al. [2010].

Conflict

Resolution

Rule-based

Game Theory

Field Methods

Geometric Methods

Numerical
Optimization

Multi-agent Methods

Combined Methods

Other Methods

(b) Conflict resolution method cat-
egory proposed by Kopřiva et al.
[2012].

Figure 2.9: The relationship between the methods (for intruder state projections and
conflcit resolution) used in this thesis to the existing methods in the literature.

28

Collision Avoidance Logics · § 2.4

Collision Avoidance with Non-Cooperative Intruders

Not all intruder aircraft (or other airborne objects) are equipped to communicate their
state information with other airspace users. When there is no communication link
between the intruder and host aircraft, the host aircraft can only detect the airborne ob-
jects with on-board non-cooperative sensors, such as radar and Electro-Optical (EO)/Infra-
Red (IR) sensors. Non-cooperative sensing normally results in a relatively less accu-
rate state estimate, has shorter detection range and is subject to the limited FOR. All
these limitations introduces additional technical challenges to collision avoidance with
non-cooperative intruders.

In order to alleviate the effect of the limited FOR, additional measures have been
studied. Fasano et al. [2008] introduced an additional “Blind Avoidance Manoeuvre”
mode, in which the intruder’s trajectory is estimated by the propagation of the last
measured speed vector. Saunders & Beard [2008] proposed a nonlinear guidance law
that attempts to manoeuvre the UAV in such a way that the intruder is moved to the
edge of the Field of View (FoV), and thus guarantees that the UAV trajectory is not on
the collision course with the obstacle.

Moreover, non-cooperative sensing approaches are divided into active and passive
ones, depending on whether transmitting energy as part of the sensing. While the ac-
tive sensors, including the component to generate the transmitted energy, are normally
more expensive in terms of size, weight and power, not all UAVs are capable of carry-
ing an active sensor system. Therefore, collision avoidance logics that are only based
on passive sensors have been developed. For instance, Lai et al. [2012] and Cho et al.

[2012] presented the collision avoidance logics based only on computer vision. An-
gelov et al. [2008] proposed a new passive approach for collision avoidance, which
takes as input only the bearing between the host and intruder aircraft.

Robustness to Uncertain Intruders

The estimate of the intruder’s current state and future trajectory are inherently un-
certain due to the limited accuracy of surveillance sensors and unknown intention of
intruders. As the uncertainty propagates along the time, small uncertainties can signifi-
cantly result in large estimate errors in the future. These estimation errors could trigger
a nuisance alert in the detection phase or invalidate a selected resolution manoeuvre

29

Chapter 2 · Background and Literature Review

in the resolution phase. Therefore, the treatment to the intruder uncertainty is a crit-
ical part of a collision avoidance logic. According to the method used to project the
intruder’s state, different measures have been used to handle the intruder uncertainty.

In the nominal methods, the current state is projected into the future along a single
trajectory of maximum likelihood. The uncertainties are then handled by measures,
such as introducing some safety buffer to accommodate the possible position error, in-
troducing some time threshold to limit the extent the uncertainty could propagate, and
introducing high-rate feedback to correct for the error. These measures are relatively
simple and straightforward and have been applied to the existing Traffic Alert and Col-
lision Avoidance Systems (TCAS) logic [ICAO, 2007], and other geometric collision
avoidance logics, such as those of Carbone et al. [2006] and Shin et al. [2012].

In the probabilistic methods, the uncertainties are modelled as probability distribu-
tions to describe potential variations in the estimate, and the detection and resolution
decisions are then made based on these probability distributions. For instance, Kochen-
derfer et al. [2012] models the intruder uncertainty as a Markov process and formulates
a discrete-time stochastic optimal control problem. The problem is solved using dy-

namic programming to produce a numeric lookup table. The collision avoidance logic
is encoded in the lookup table and will be used in real time via table lookups. The
logic, used in the ACAS X as shown in Figure 2.10b, have two major features: the
new model-based optimization development approach and the usage of interval-type
estimation.

In the worse-case methods, it is assumed that the intruders’ controls are uncertain
but bounded within a certain range. The uncertainties are modelled by all possible
manoeuvres within the bounded range. For instance, Bayen et al. [2003] applies a
differential game formulation to a two-vehicle collision avoidance problem, where both
vehicles are modelled as 2D kinematic models with constant speeds and bounded turn
rates. A computational method, based on level set, is used to calculate the unsafe
regions from which the intruder can cause a loss of separation with the host, regardless
of the control action of host aircraft. These unsafe regions are used as a metric for
conflict detection and resolution.

30

Collision Avoidance Logics · § 2.4

Offline Development Real-Time Usage

(Update at 1 Hz)

TCAS II -

Heuristic Rule Coding

Encounter

Model

Performance

Requirements

Simulation

Logic

Pseudocode

Pseudocode
Target Tracking

TCAS II

Transponder

Interrogation

Advisory

Selection

Measurement

Evaluation

Results

Yes

Feedback to drive the
manual pseudocode revision

Logic

Pseudocode

State Estimate
(Point Estimation)

No

Advisory

Display

Resolution
Advisory

(a) Traditional development approach for TCAS II, the current generation of ACAS
in operation.

Offline Development Real-Time Usage

(Update at 1 Hz)

Performance

Requirements

Encounter

Model

ACAS X -

Dynamic

Programming

Simulation

Logic

Lookup Table

Metrics

Modelling

Model

Discreitzation

Data Fusion &

Target Tracking &

State Estimation

Advisory

Selection

Performance
Metrics

Discrete Model

Lookup
Table

Evaluation

Results

Yes

No

Feedback to drive the
tuning process

Surveillance

Sensor

Measurement

Surveillance

Sensor

Measurement

Logic

Lookup Tables

State Distribution
(Interval Estimation)

Advisory

Display

Advisories

Measurements

(b) New development approach for the ACAS X, the next generation of ACAS.

Figure 2.10: Comparison of the development and usage processes of two generations
of ACAS, based on Kochenderfer et al. [2011].

31

Chapter 2 · Background and Literature Review

2.4.3 Problem Scope

To focus on the feasibility study of the application of high performance avoidance ma-
noeuvres in collision avoidance logic, this thesis is confined to the collision avoidance
problem with a single non-cooperative intruder and assumes that a surveillance and
tracking module is available to provide a point estimation of intruder states.

However, it is worth noting that, the design of a collision avoidance logic should
also take the following aspects, among others, into account:

• Multiple intruders: as the density of the airspace increases, encounters with
multiple intruder aircraft will become increasingly likely. Especially, when an
aircraft is performing an unplanned collision avoidance manoeuvre, it may en-
croach on an adjacent altitude level or cause secondary conflict with otherwise
safely separated aircraft. Therefore, a collision avoidance logic should be able
to handle multiple intruders. The proposed logic can be extended to accommo-
date multiple intruders by increasing the collision avoidance constraints in the
problem formulation in §5.2.2, however, the effect of additional constraints on
the logic performance will require further investigations.

• Interoperability: a new collision avoidance logic should be able to, whenever
possible, interoperate with other existing collision avoidance systems. For in-
stance, when encountering with a TCAS-equipped aircraft, the logic should be
able to take the existing coordination mechanism into account, so as to prevent,
for example, both aircraft from climbing into each other. The interoperability
behaviour can be achieved by introducing an additional cost term to the problem
formulation but this is left for future research.

2.5 Trajectory Planning

2.5.1 Trajectory Planning rather than Path Planning

As can be found in the survey paper on motion/trajectory planning algorithms by Go-
erzen et al. [2010] and the Planning Algorithm by LaValle [2006], the major difference
between trajectory planning and path planning is the consideration of the differential
constraints. Although decoupled approaches, or some other ad hoc measures, exist to

32

Trajectory Planning · § 2.5

extend the path planning methods to handle the differential constraints, the high per-
formance manoeuvres considered in this thesis (e.g. to constraint the aircraft’s bank
angle rather than its turn rate) would make implementing those extensions too chal-
lenging. Therefore, this thesis only considers the methods that can take the differential
constraints into account.

2.5.2 Optimal Control Approach

According to the survey paper by Betts [1998], numerical methods for solving opti-
mal control problems are divided into two major classes: indirect methods and direct
methods. An indirect method attempts to solve the necessary conditions for optimal
control and thus requires to explicitly derive the necessary conditions using calculus

of variation, see Betts [2010, §4.1]. In contrast, a direct method does not require ex-
plicit derivation and construction of the necessary conditions. It directly transcribes,
via parametrization and discretization, an Optimal Control Problem (OCP) to a finite-
dimensional parameter optimization problem, which is then solved with an NLP al-
gorithm. Among other reasons given by [Betts, 2010, §4.3], direct methods are more
suitable for real-time implementation because they are less sensitive to the initial guess
and thus have a larger radius of convergence.

With their great promise in real-time trajectory generation [Milam, 2003; Ross &
Fahroo, 2006; Basset et al., 2010; Drury et al., 2010], direct methods have been used
to generate obstacle-free trajectories for aerial vehicles. For example, Bollino & Lewis
[2008] used a numerical solver called DIDO that is based on a pseudospectral di-
rect method and sequential quadratic programming, to generate collision-free optimal
trajectories for multiple UAVs. Flores [2007] developed a direct method based on the
differential flatness property and the non-uniform rational B-spline basic functions. By
utilizing the property of these basic functions, a dynamically feasible trajectory can be
guaranteed to be generated within an obstacle-free corridor. Singla & Singh [2008]
converted an obstacle avoidance problem to a convex one with a coordinate transfor-
mation and then solved it via a sequential linear programming approach. Patel et al.

[2009] applied a direct multiple shooting method for an aircraft avoidance manoeuvre
in the context of an anti-hijack system.

Among other direct methods reviewed by Hull [1997]; Betts [1998]; Rao [2009]

33

Chapter 2 · Background and Literature Review

and Drury [2010, §2.4.3], the inverse-dynamic direct method described by Yakimenko
[2000] is selected as the candidate method for further development because of its fol-
lowing features:

• a priori satisfaction of the boundary conditions;

• an absence of ‘wild’ trajectories, which do not satisfy the differential constraints,
during optimization; and

• a small number of optimization variables.

In the case of computing short time aircraft manoeuvres, simulation results presented
by Basset et al. [2010] have shown that these features would enable a good convergence
robustness to the initial guess and a relatively fast computation time.

2.6 Summary

In order to confine the scope of this work, this chapter has presented the background
information about the role of collision avoidance in the current ATM system and in
SAA systems. Moreover, it has reviewed the latest work published in the field of
collision avoidance logic development and found that the three state-of-the-art collision
avoidance logics also lend themselves to the trajectory planning framework. Finally, it
identified a potential algorithm for further development.

34

Chapter 3

Modelling and Simulation Framework

3.1 Introduction

In order to statistically demonstrate the effectiveness of collision avoidance systems
of a safety-critical nature, large-scale Monte Carlo simulations are required to gen-
erate sufficient data for statistic analyses. For this capability, this chapter presents
a modelling and simulation framework, which is constructed based on the Collision
Avoidance System Safety Assessment Tool (CASSATT) developed by MIT Lincoln
Laboratory, see Kochenderfer et al. [2010a]; Temizer [2011].

The framework is designed to be modular and parametric. It is modular in the
sense that the whole framework is divided into different models according to the func-
tional architecture given by Figure 2.7; and standard interfaces are used to connect
these models. This enables rapid and simple adaptation as the design and/or fidelity of
the models are evolving with the development. Moreover, the models are parametrized
with a large set of configurable parameters (see Tables 3.7 and 3.8) to facilitate the
parametric analyses for different purposes.

The framework was built in MATLAB and Simulink and the interfaces among the
components are mainly according to the Interface Control Document (ICD) of the SAA
system developed by BAE Systems [Dixon, 2011]. Figure 3.1 shows an overview of
the framework. Given the test conditions:

1. the encounter model is used to generate initial conditions and nominal com-
mands for both aircraft involved in a close encounter;

35

Chapter 3 ·Modelling and Simulation Framework

2. the nominal commands are then used to drive the host aircraft model and the
intruder kinematic model;

3. the surveillance system model takes as input the current state of the intruder
model and produces an estimate of the intruder state, termed target track;

4. based on the target track,1 the collision avoidance logic determines whether a
collision alert is required, and, if so, selects the resolution manoeuvre command;

5. finally, the host aircraft model executes the resolution/nominal commands and
updates the navigation state. The process continues until the end of an encounter.

In the following, the detailed implementation of each component will be described
and the interfaces and set of configurable parameters will be summarized in §3.7.

Test Case Generation

Performance Evaluation

Modelling and Simulation

Test Conditions

Simulation Resutls

Nominal Intruder Cmd.

Intruder

State

Navigation State

Target

Track Cmd.

Nominal Host Cmd.

Host State

Figure 3.1: Modelling and Simulation Framework and Overview of Chapter 3.

1The actual input interface is a prioritized list of target track from a Risk Assessment process, shown
in 2.7. This is required for multi-threat avoidance, but this work only focuses on single-threat cases.

36

Encounter Model · § 3.2

3.2 Encounter Model

Briefly, an encounter model is a statistical model used to generate trajectories of the
aircraft involved in a close-encounter traffic situation. This can be regarded as a repli-
cation of the airspace environment in which the collision avoidance system is being
operated. Figure 3.2 shows the evolution of the existing encounter models, which are,
respectively, developed by the International Civil Aviation Organization (ICAO) [see
ICAO, 2007], European Organisation for the Safety of Air Navigation (EUROCON-
TROL) [see Arino et al., 2002] and MIT Lincoln Laboratory [see Kochenderfer et al.,
2008a].

Figure 3.2: The evolution of the existing encounter models, adapted from Kochender-
fer et al. [2008a].

Figure 3.3 shows the overview of an process to model and simulate an encounter
model. The general process to construct an encounter model (§3.2.1) and the descrip-
tion of a particular Standard Encounter Model specified by ICAO [2007] (§3.2.2) will
be presented. Using the Standard Encounter Model as an example, the process to gen-
erate and simulate an close encounter will be elaborated in §3.2.3 and §3.2.4.

37

Chapter 3 ·Modelling and Simulation Framework

Trajectory

Construction

Feature

Extraction

Random

Sampling

Encounter Generation

Dynamic

Simulator

Nominal

Commands

Nominal

Trajectories

Sampled

Model

Variables

Model

Structure

&

Model

Parameters

Operational

Data

Database

Operational

Data
Encounter

Model

Database

Trajectory

Database

Encounter Modelling

Encounter Simulation

Model

Variable

Statistics

Encounter

Models

Nominal

Trajectories

Figure 3.3: The outline of §3.2, showing the general process to construct and use an
encounter model.

3.2.1 Encounter Modelling

Encounter Types Prior to extracting encounter features from the operational data,
the encounter type of interest needs to be specified. According to Kochenderfer et al.

[2008b,d] and Edwards et al. [2009], an encounter model can be one of three types:

1. A correlated encounter model is used to represent situations in which it is
likely that there would be ATC intervention prior to a close encounter.

2. An uncorrelated encounter model is used to represent situations in which it is
unlikely that there would be prior intervention by ATCO.

3. An uncorrelated, unconventional encounter model is used to represent the
uncorrelated situations with an unconventional aircraft, i.e. an aircraft other than
fixed-wing powered aircraft, such as a balloon or glider.

38

Encounter Model · § 3.2

Feature Extraction Depending on the encounter type, the operational data needs to
be filtered and processed in order to extract the features of the observed encounters.

Features may include static variables that specify an encounter (such as vertical or
horizontal miss distance, approach angle, and altitude layer) and dynamic variables that
describe the aircraft trajectories (such as turn rate and vertical rate at every second).
These features will be represented by model variables, which will be elaborated along
with the encounter model in § 3.2.2.

To aid in data processing, each feature was quantized into several bins and counts
were taken of the frequency with which each bin was occupied by observed data. Based
on these counts, probability tables were then constructed so that each feature can be
randomly generated such that the overall geometries and dynamics are representative
of the actual events observed in the data.

Model Construction With the model variables statistics, the model structure repre-
senting the interrelationship between the model variables needs to be identified. Fig-
ure 3.4 shows an example of such a model structure.

The example uses a Bayesian network1 to represent four model variables and their
dependency. The arrows show dependencies between variables, represented by condi-
tional probability tables. For example, the probability of a given airspeed rate depends
on airspace class, altitude, and airspeed. All these probability values in the conditional
probability tables are the parameters of encounter models.

3.2.2 ICAO Standard Encounter Model

This subsection described the main elements of the Standard Encounter Model given
by ICAO [2007], the full details of which can be found in ICAO [2007, §4.4.2.6]. This
model was used to generate the nominal trajectories of close encounters in this work.

Terminology Figure 3.5 depicts an encounter window and some model variables
specifying the encounter characteristic. The encounter window is a time interval only
within which the nominal trajectories of the two aircraft in an encounter are defined.

1A Bayesian network model is a probabilistic graphical model that represents a set of random vari-
ables and their conditional dependencies via a directed acyclic graph (DAG).

39

Chapter 3 ·Modelling and Simulation Framework

Altitude

Layer

Airspace

Class

Airspeed
Airspeed

Rate

Figure 3.4: An example of the model structure of encounter models, using a Bayesian
network.

0 40 50
9.0

9.5

10.0
× 10

3 Vert i c al P rofi l e

A
lt
it
u
d
e
[f
t]

T ime [s]

V MD

Henc

Encounte r Window

[t c a − 40 , t c a + 10]

t s t et c a

0 5000 10000
−13.0

−10.0

−7.0

−4.0

−1.0

2.0

5.0

Hori z ontal P rofi l e

N
o
rt
h
[f
t]

E ast [f t]

× 10
3

−400 −200 0

−200

−100

0

100

200

Enlarged Hori z ontal
P rofi l e at t c a

Θ a p p

HMD

Hos t

In t r u d e r

S t ar t P o i n t

C l os e s t P o i n t o f
Ap p r oac h

Figure 3.5: An example encounter illustrating the encounter window; and the en-
counter characteristics of time of closest approach (tca), approach angle (Θapp), hor-
izontal miss distance (H MD), vertical miss distance (V MD), and encounter altitude
(Henc).

40

Encounter Model · § 3.2

The time of closest approach, denoted by tca, is a reference time2 at which various
characteristics, including the vertical and horizontal miss distance (V MD and H MD),
are specified. Without loss of generality, the following reference times are used:

ts = 0s; tca = 40s; te = 50s; [ts, te] = [0,50]s (3.2.1)

where ts, te are the start and end time of the encounter window [ts, te].
The encounter altitude, denoted by Henc, is the average altitude of the two aircraft

at the closest approach.
The approach angle, denoted by Θapp, is the the difference in the ground track

angle of the two aircraft at closest approach, with 180 degrees defined as head on and
0 degrees defined as parallel.

Encounter Sets According to ICAO [2007, 4.4.2.6.1.1]:

In order to calculate the effect of ACAS on the risk of collision and the
compatibility of ACAS with ATM, sets of encounters shall be created for
each of:

1. two aircraft address orderings;

2. six altitude layers (given in ICAO [2007, 4.4.1]);

3. nineteen encounter classes (given in ICAO [2007, 4.4.2.6.2.3.1]); and

4. nine or ten vmd bins (given in ICAO [2007, 4.4.2.6.2.4]).

However, for the preliminary evaluation in this work, only the encounter sets with
the following properties are considered:

1. one altitude layer, Henc ∈ [5000,10000]ft;

2. nineteen encounter classes;

3. two vmd bins, V MD ∈ [0,100] ft for risk ratio and V MD ∈ [0,200] ft for nui-
sance alert rate.

This yields 38 = 1 × 19 × 2 encounter sets in total.

2Note that, encounters in this model are constructed by building the trajectories of the two aircraft
outwards starting at tca. When the process is complete, tca may not be the precise time of closest
approach and differences of a few seconds are acceptable.

41

Chapter 3 ·Modelling and Simulation Framework

Model Variables The geometric and kinematics properties of an encounter are de-
termined by a set of random variables1 in nature. These model variables, as depicted
in Figure 3.5 and 3.6, include:

1. in the vertical plane, for all i = {1, 2}:

(a) V MD: a vertical miss distance from the appropriate vmd bin;

(b) Ż0, i and Ż f , i: a vertical rate for each aircraft at the beginning of the en-
counter window and at the end of the encounter window;

(c) Z̈i: a vertical acceleration for each aircraft;

(d) TZ̈ , i: a start time for the vertical acceleration for each aircraft;

2. and in the horizontal plane, for all i = {1, 2}:

(a) H MD: a horizontal miss distance;

(b) Θapp: an approach angle;

(c) VCPA, i: a speed for each aircraft at closest approach;

(d) δturn, i: a decision for each aircraft whether or not it turns;

(e) Θtrun, i, Θbank, i and TtrunEnd, i: the turn extent, bank angle and turn end time
for each aircraft;

(f) δacc, i: a decision for each aircraft whether or not its speed changes; and

(g) AH, i: the magnitude of the speed change.

3.2.3 Encounter Generation

For each of the 38 encounter sets, 100 encounters are independently and randomly
generated. The resulting 3800 encounters were stored in an Encounter Database, and
served as the basis set of encounters for performance evaluation. The generation pro-
cess involves two steps: Random Sampling and Aircraft Trajectory Construction:

1A random variable is assigned to each of the encounter characteristics. These random variables are
denoted by upper case letters; and their realizations (the samples of a random variable) are denoted by
the corresponding lower case letters with the subscripted index indicating the sample order.

42

Encounter Model · § 3.2

0 10 20 30 40 50
9.2

9.6

10.0
× 10

3 Vert i c al P rofi l e

A
lt
it
u
d
e
[f
t
]

T ime [s]
0 5000 10000

−13.0

−10.0

−7.0

−4.0

−1.0

2.0

5.0

Hori z ontal P rofi l e

N
o
r
th

[f
t
]

E ast [f t]

× 10
3

0 10 20 30 40 50

−100

−50

0

Time [s]

χ
[d

e
g
]

G round track

T tu r nEnd Θ tu r n

0 10 20 30 40 50
100

150

200

250

Ground spe ed

V
g
[k

n
o
t]

T ime [s]

t c a

VCP A

AH

0 10 20 30 40 50
−20

−15

−10

−5

0

5

Vert i c al Spe ed

V
v
[f
t/

s]

T ime [s]

Ż s

Ż e

0 10 20 30 40 50
−0.5

0

0.5

Vert i c al Acc e l e rat i on

V̇
v
[f
t/

s2
]

T ime (s)

Z̈

T Z̈

Hos t

In t r u d e r

S t ar t P o i n t

C l os e s t P o i n t o f
Ap p r oac h

Figure 3.6: An example encounter to illustrate the model variables that specify the
trajectory characteristics.

Random Sampling Along with the definitions of the model variables (specifying
the encounter and trajectory characteristics), an encounter model would also give, as
the model parameters, the probability distributions of the associated random variables.
These probability distributions are normally given in the form of probability tables,
either representing the random variable’s probability density (mass) functions or cu-
mulative distribution functions, see ICAO [2007, p. 4-37] and Kochenderfer et al.

43

Chapter 3 ·Modelling and Simulation Framework

Table 3.1: Part of the model variables specifying the encounter characteristics.

Variable Symbol Distribution Unit
for risk ratio for nuisance alert rate

Encounter altitude Henc U(5000,10000) U(5000,10000) ft
Vertical miss distance V MD U(0,100) U(0,200) ft
Horizontal miss distance H MD U(0,500) FHMD (x), x ∈ [0, 18228] ft
Approach angle Θapp FΘapp (x), x ∈ [0, 180] FΘapp (x), x ∈ [0, 180] deg

1 U(a, b) is the uniform distribution with parameters a and b.
2 FX (x) = Pr(X ≤ x) is the cumulative distribution function for a random variable X ; the correspond-

ing model parameters can be found in [ICAO, 2007, p. 4-40].

[2008c]. Table 3.1 shows, for example, the probability distribution of some model
variables used in this work.

Furthermore, in order to model the dependencies between the model variables, their
joint and conditional probability distribution are also given; for instance, Table 3.2
shows the conditional probability distribution table for the probability of a turn and a
speed change.

Table 3.2: Conditional probability table of a turn and speed change.

Layer Pr(turn) Pr(speed change| a turn) Pr(speed change| no turn)
1 0.31 0.20 0.5
2 0.29 0.20 0.25
3 0.22 0.10 0.15

4, 5, 6 0.16 0.05 0.10

With the probability distributions, any numbers of model variables can be obtained
by random sampling. The sampled model variables can then be used to construct the
trajectories for a nominal encounter. However, due to the limited aircraft performance
of the host aircraft selected for this work, not all of these variables, specifying the
trajectory characteristics, are achievable. For instance, according to ICAO [2007, p.4-
37], the vertical rate Z0, i can take values between −6000 ft/min to 6000 ft/min, which
is not achievable for the selected aircraft type. Therefore, a rejection sampling process
is further required to ensure that the sampled model variables can be used to generate
realistic encounters.

44

Encounter Model · § 3.2

Aircraft Trajectory Construction Although the sampled model variables specify
how the aircraft will manoeuvre during an encounter and their nominal relative po-
sitioning at tca, the nominal aircraft trajectories still remain unknown. A process is
required to construct the trajectories that would match the given trajectory characteris-
tics and result in the given encounter characteristics.

In order to satisfy the encounter characteristics at tca, the aircraft trajectories are
building outwards starting at time of closest approach. This is mainly achieved by
integrations of the kinematics variables while having the sampled model variables as
the boundary values. For instance, as shown in Figure 3.6, the vertical acceleration
V̇v (t) is integrated to obtain the vertical speed Vv (t) while having the sampled variables,
Żs and Że, as the boundary values. In general, the process takes the following steps:

1. Initialization, see Figure 3.7:

(a) establish a local Navigation coordinate system with its origin at an arbitrary
position on the Earth’s surface and its axes oriented in the north, east and
down directions;

(b) initialize the host such that it is located at the origin and flying due North;

(c) initialize the intruder according to the sampled approach angle and Hori-
zontal Miss Distance (HMD), [see Kochenderfer et al., 2008b, p.41]

2. Construction of the aircraft trajectory in the vertical plane, see Figure 3.6:

(a) construct the vertical acceleration trajectory;

(b) integrate the vertical acceleration twice to get the altitude trajectory; and

(c) shift both the altitude trajectories according to the encounter altitude.

3. Construction of the aircraft trajectory in the horizontal plane, Figure 3.6:

(a) construct the trajectories of the ground speed rate and ground track angle
rate, according to the sampled variables given in page 34;

(b) integrate the above two trajectories to obtain the trajectories of the ground
speed and ground track angle;

(c) calculate the north and east components of their velocities; and

45

Chapter 3 ·Modelling and Simulation Framework

(d) integrate the north and east speeds to get the aircraft trajectory in the hori-
zontal plane.

Note that, it is possible for the selections made for the various characteristics of an en-
counter to be infeasible. When this occurs, the selection for a particular characteristic
is re-sampled until the resulting encounter is feasible.

H (p
H
| t= tc a)

x̂N (North)

ŷ
N
(East)

vH| t= tc a

HMD

vr el

I

p
I
| t= tc a

vr el

vI| t= tc a

Θ a p p

Nav i gat i on c oor d i n at e s y s t em (N)

Hos t (H) .

In t r u d e r (I) .

Hos t ’ s p os t i on (pH) an d v e l oc i t y (vH) .

In t r u d e r ’ s p os t i on (pI) an d v e l oc i t y (vI) .

Re l at i v e v e l oc i t y (vr e l) .

Figure 3.7: Establishment of the navigation coordinate system and initialization of the
aircraft trajectory construction process.

The outputs of the trajectory construction process are the discrete time histories of
both aircraft’s positions and velocity expressed in the navigation coordinate system,
with a time step ∆t = 0.1 s:

pi (k∆t) =



pi,N (k∆t)

pi,E (k∆t)

pi,D (k∆t)


, vi (k∆t) =



vi,N (k∆t)

vi,E (k∆t)

vi,D (k∆t)


,

46

Intruder Model · § 3.3

∀k = [0, 1, . . . , 500] and ∀i ∈ {I,H} (3.2.2)

where point H and point I denote the host and intruder respectively.

The nominal trajectories for 3800 encounters are saved in an encounter database

file that will be used in the simulation.

3.2.4 Encounter Simulation

During the simulation, the discrete nominal trajectories will be interpolated to give
both aircraft’s velocities vi (t),∀i ∈ {I,H}, which will then be transformed to the ma-
noeuvre command vectors c:

ci = [Vg,i χi Vv,i]T , ∀i ∈ {I,H} (3.2.3)

with

ci =



Vg,i

χi

Vv,i


=



√(
vi,N

)2
+

(
vi,E

)2

atan2
(
vi,E ,vi,N

)
−vi,D


, (3.2.4)

where Vg, χ and Vv are the ground speed, ground track angle and vertical speed, re-
spectively.

3.3 Intruder Model

The intruder model takes as input the manoeuvre commands and produces the air-
craft trajectory based on the basic kinematics. Figure 3.8 shows the architecture of
the intruder model, in which the Command Disturbance block is used to introduce
manoeuvre uncertainty; the Limiter block is to ensure the resulting intruder manoeu-
vre remains realistic; and the Coordinate Transformation and Integrator are used to
propagate the intruder’s position in the navigation coordinate system.

47

Chapter 3 ·Modelling and Simulation Framework

Integrator

Command

Disturbance

Figure 3.8: Intruder model architecture.

3.3.1 Manoeuvre Uncertainty

The intruder’s manoeuvre uncertainty is modelled by an input disturbance. The levels
of uncertainty can be controlled by a simulation switch, which will be set according to
the testing conditions.

1. When the switch is set to zero, the command disturbance vector εcI is equal to
zero:

0εcI = 03×1 (3.3.1)

2. When the switch is set to one, the components of the command disturbance
vector εcI are normally distributed:

1εcI = [εVg ε χ εVv]T , (3.3.2)

where
εVg ∼ N(0,σVg), ε χ ∼ N(0,σχ), εVv ∼ N(0,σVv),

with the variances σVg , σχ and σVv are simulation parameters.

3.3.2 Intruder Limitations

In order to ensure the resulting intruder manoeuvre remains realistic, a limiter is used
to impose the range and rate limits on the manoeuvre commands:

cdis
I = cI + εcI . (3.3.3)

48

Aircraft System Model · § 3.4

Table 3.3: Intruder limitations parameters.

Variable Limitations Unit
Maximum Minimum

Vg 400 0 knots
χ̇ 50 -50 deg/s
Vv 3000 -3000 ft/min

The limit values for all the manoeuvre commands are summarized in Table 3.3.

3.3.3 State Equation

The state equation of the intruder model represents the vehicle kinematics:

ṗI,N = Vg,I cos χI, (3.3.4a)

ṗI,E = Vg,I sin χI, (3.3.4b)

ṗI,D = Vv,I, (3.3.4c)

and augmenting the intruder state vector with its velocity yields:

xI =

[
pI,N pI,E pI,D vI,N vI,E vI,D

]T
, or simply xI =


pI
vI


. (3.3.5)

3.4 Aircraft System Model

Due to the fact that the sensor’s FoV is a function of the aircraft’s attitude, the aircraft
model should be able to provide the attitude information according to the realistic
aircraft dynamics; therefore, the following modelling objectives are required:

1. Aircraft Performance Compliance: The model should take the given aircraft
performance into account.

2. Attitude Estimate Provision: The model should be able to provide the attitude
estimates.

49

Chapter 3 ·Modelling and Simulation Framework

3. Manoeuvre Command Tracking Performance Configurability: The transient
response characteristic of the manoeuvre command tracking should match that
of the actual aircraft platform.

The model takes as inputs the manoeuvre commands and then generates the navi-
gation state as output. Figure 3.9 shows an overview of the parametric aircraft system
model. As can be seen from the dashed arrows in the figure, the model is parametrized
with the aircraft’s performance in terms of manoeuvre command tracking, flight dy-
namics, and navigation systems. The performance parameters can be configured to
match those of the actual host aircraft platform being tested. The steady wind con-
ditions can also be injected into the aircraft dynamics model. This flexibility is of
particular importance due to the diverse performance of numerous types of UAVs.

Tracking

Performance

Parameters

Control
True

State

Navigation

Performance

Parameters

Manoeuvre

Command

Aircraft

Performance

Parameters

Feedback

Navigation

State

Wind

Conditions

Figure 3.9: Overview of a configurable aircraft system model.

In response to the requirement of aircraft performance compliance, Section 3.4.1
describes an aircraft dynamics model, consisting of the equations of motion and aero-
dynamic force model described by Hull [2010], the propulsion force model given by
Nuic [2012] and the generic performance limitations model.

In response to the requirement of attitude estimate provision, Section 3.4.2 de-
scribes the outputs of the navigation system model, which provides three groups of
outputs for the purposes of output tracking, state feedback and navigation (including
the attitude estimation), respectively.

In response to the requirement of manoeuvre command tracking performance con-
figurability, Section 3.4.3 describes the implementation of a programmable manoeu-
vre autopilot, which is based on the Nonlinear Dynamic Inversion (NDI) concept, see

50

Aircraft System Model · § 3.4

Ducard [2009, Ch. 6] and Stevens & Lewis [2003, Ch. 5.8] for more details. The
idea behind the NDI scheme is to transform the nonlinear system into a linear one
and then design a controller for the transformed linear system. The details about the
transformation and the controller design are also presented.

Some example results are presented in Section B.2 to verify the modelling require-
ments.

3.4.1 Aircraft Dynamics

Equation of Motion A three Degree of Freedom (3-DoF) point-mass model is used
to represent the flight dynamics and vehicle performance of the host aircraft. Fig-
ure 3.10 shows the coordinate system used for the derivation of the point-mass model.

Figure 3.10: Parameter definitions of the aircraft point-mass model in the navigation
coordinate system N, adapted from Menon et al. [1999]

For manoeuvres undertaken over the short period of collision avoidance, it can be
assumed that:

51

Chapter 3 ·Modelling and Simulation Framework

1. the fuel expenditure is negligible, so the aircraft mass remains constant;

2. the wind is steady, i.e. time-invariant and uniform, so the wind condition remains
constant;

3. the side-slip angle is zero, as only coordinated flight is considered;

4. the angle of attack is small, so the thrust is approximately aligned with the ve-
locity.

With the above assumptions, the Equations of Motion (EoM) for a generic aircraft
over the flat Earth can be written as:

ṗH,N = Va cos γa cos χa + vW,N (3.4.1a)

ṗH,E = Va cos γa sin χa + vW,E (3.4.1b)

ṗH,D = −Va sin γa + vW,D (3.4.1c)

V̇a =
T − D

m
− g sin γa (3.4.1d)

χ̇a =
gnz sin µ
Va cos γa

(3.4.1e)

γ̇a =
g(nz cos µ − cos γa)

Va
(3.4.1f)

where:

pH,N , pH,E , pH,D: are the North, East, Down components of pH, the host’s position
in the navigation coordinate system.

vW,N , vW,E , vW,D: are the North, East, Down components of vW, the wind velocity
in the navigation coordinate system.

Va, χa, γa: are the true airspeed, aerodynamic heading angle, and aerody-
namic flight-path angle, respectively.

µ: is the bank angle.

nz: is the normal load factor, defined as nz = L/mg.

g: is the acceleration due to gravity.

m: is the aircraft mass.

T , L, D: are the thrust, lift and drag respectively.

52

Aircraft System Model · § 3.4

Note that, true airspeed Va is equal to the inertial speed V when there is no wind;
aerodynamic heading χa is equal to the aircraft heading ψ when there is no side-slip
β; and bank angle is equal to roll angle φ when angle of attack α and side-slip β are
both zero.

Force Models The aerodynamics and propulsion forces are aircraft-type-dependent;
they are normally functions of aerodynamic angle, Mach number, altitude, control
inputs and aircraft specific coefficients, see Stevens & Lewis [2003] and Hull [2010] for
the detailed description of these functions; and see the Base of Aircraft Data (BADA),
Nuic [2012], for the parameters of most currently operating aircraft.

For a particular type of aircraft, the thrust is modelled as a function of throttle
setting T̄ , airspeed Va, and altitude h:

T = fT (T̄ ,Va,h) = T̄Tmax (3.4.2)

with
Tmax = CTcr

(
CTc,1

Va

(
1 −

h
CTc,2

)
+ CTc,3

)
(3.4.3)

where:

h: is the altitude and equals to the negative down position (−pH,D).

Tmax: is the maximum available thrust during the cruise phase.

CTc,i, CTcr : is the thrust coefficients, as defined in Nuic [2012, p.22].

The lift and drag are modelled as functions of angle of attack α, airspeed Va, and
altitude h:

L = fL (α,Va,h) = 1
2 ρV 2

a SCL

D = f D (α,Va,h) = 1
2 ρV 2

a SCD

(3.4.4)

with the lift and drag coefficient defined as:

CL = CL0 + αCLα (3.4.5a)

CD = CD0 + kC2
L (3.4.5b)

53

Chapter 3 ·Modelling and Simulation Framework

where:

S: is the aircraft wing area.

ρ: is the air density, which is modelled as a function of altitude ρ(h)
according to the International Standard Atmosphere (ISA).

CL0, CLα,
CD0, k:

are the zero-angle-of-attack lift coefficient, lift curve slope, zero-lift
drag coefficient, and induced drag factor, respectively. All of them
are functions of the Mach number M and assumed to be available in
the form of look-up tables.

M: is the Mach number, a function of the true airspeed and altitude
M (Va,h).

Performance Limitations In order to reflect the realistic aircraft behaviour, the air-
craft performance is taken into account by restricting the corresponding variables to
their upper and lower bounds. The flight envelope and the V-n diagram for the Jet-
stream 31 aircraft can be derived from the above force models, which are shown in
Appendix B.1.

For the performance in propulsion systems and airframe aerodynamics:

0 ≤ T̄ ≤ 1, αmin ≤ α ≤ αmax (3.4.6)

For the flight envelope:

0 ≤ h ≤ hmax , Va,min ≤ Va ≤ Va,max (3.4.7)

For the rolling performance and the structural limitations on load factor:

µmin ≤ µ ≤ µmax , µ̇min ≤ µ̇ ≤ µ̇max , nz ≤ nstr
zmax

(3.4.8)

The above limitation values are aircraft specific and can be varying with the flight
conditions. For the purpose of this study, the most conservative values of each limita-
tion bound are used as a static limitation. Table B.1 summarized all the values used in
this work.

54

Aircraft System Model · § 3.4

Aircraft Dynamics Model By substituting the force models, in (3.4.3) and (3.4.4),
into the equation of motion in (3.4.1), the standard state-space form of the aircraft
dynamics model can be written as:

ẋAC = f AC (xAC ,uAC), (3.4.9a)

xAC = [pH,N pH,E pH,D Va χa γa]T , (3.4.9b)

uAC = [T̄ nz µ]T (3.4.9c)

where xAC is the aircraft state vector, uAC is the aircraft control vector and f AC (xAC ,uAC)
is the resulting non-linear vector-value function of the aircraft dynamic model.

3.4.2 Navigation System

The navigation system model takes as input the true values of the aircraft state and
then generate the necessary outputs for the purposes of output tracking, state feedback,
and navigation. Therefore, the outputs are grouped into three sets, as will be seen in
Figure 3.11.

Firstly, the tracked output vector, denoted by y, contains the system variables
required by the outer tracking loop of the manoeuvre autopilot. In order to track the
airspeed, aircraft heading, and aerodynamic flight-path angle commands, the following
output vector is required:

y = [Va χa γa]T . (3.4.10)

Secondly, the feedback state vector, denoted by x f bk , contains the system variables
required by the inner feedback-linearization loop of the manoeuvre autopilot. In order
to track the above commands, the following feedback state vector is required:

x f bk = [h Va χa γa V̇a χ̇a γ̇a]T . (3.4.11)

Thirdly, the host’s navigation state vector, denoted by xnav, is obtained by impos-
ing a random error ε on the actual values of the host state vector, that is:

xnav = xH + ε (3.4.12)

55

Chapter 3 ·Modelling and Simulation Framework

where the host state vector is defined as:

xH =

[
pH,N pH,E pH,D vH,N vH,E vH,D φ θ ψ

]T
=



pH
vH

Ψ


(3.4.13)

and φ, θ, ψ and Ψ denote the roll, pitch, yaw and aircraft attitude vector, respectively;
and from the assumptions in Section 3.4, we have:

φ = µ, θ = α + γa, ψ = χa . (3.4.14)

3.4.3 Manoeuvre Autopilot

The design of the manoeuvre autopilot is based on the idea of NDI, which has been
widely used in guidance and flight control system design, such as Snell et al. [1992]
and Möckli [2006], and in aircraft performance simulation, such as Fisch [2011] and
Hoffren & Sailaranta [2001]. Figure 3.11 shows the control scheme of NDI, which
consists of two control loops: 1) an inner feedback linearization loop to transform
the nonlinear system to a linear one; and 2) an outer output tracking loop to make the
system outputs to track the given commands with the required performance. The trans-
formation is achieved by making use of the known nonlinearity of the system, which
is encapsulated in the Control Allocation block. The controller design for the trans-
formed linear system, according to the given Tracking Performance, will be described
in Desired Dynamic Controller.

Control Allocation The Control Allocation process deals directly with the known
nonlinearities, i.e. the nonlinear aircraft dynamics and performance limitation (satu-
ration) here. Although the Control Allocation technique is normally applied to over-
actuated systems and involves solving an optimization problem, see Johansen & Fossen
[2013], we used a virtual control vector of the same dimension as the tracked output
and a simple algorithm to determine the aircraft controls for this work. Figure 3.12
shows this process with two steps: Dynamic Inversion and Constraint Handling.

56

Aircraft System Model · § 3.4

Aircraft

Dynamics &

Navigation

Filter

Manoeuvre Autopilot

Inner

Feedback Linearization Loop

Outer

Output Tracking Loop

Figure 3.11: The control scheme for the manoeuvre autopilot, which is based on Non-
linear Dynamic Inversion technique.

Dynamic Inversion Firstly, as shown in the signal flow diagram in Figure 3.12, we
select the virtual control vector v1 as:

v =

[
V̇a χ̇ γ̇

]T
(3.4.15)

so that the virtual system from v to y is a linear system with three poles at the origin.
The current value of the virtual control will be commanded to the Dynamic Inversion
process and served as the reference value for the first derivative of the tracked output:

ẏre f ,DD (t) = v(t) (3.4.16)

the superscript (re f ,DD) denotes that the underlying signal contains the reference values
provided by the Desired Dynamic block.

Then, the aircraft’s equation of motion in (3.4.1) is rearranged to give the aircraft
control as a function of the feedbacked state, i.e. u

(
x f bk

)
:

T̄ =
mV̇a + mg sin γ + D

Tmax
(3.4.17a)

µ = arctan
Va χ̇ cos γ

V γ̇ + g cos γ
(3.4.17b)

nz =
g cos γ + Vaγ̇

g cos µ
(3.4.17c)

1Note that, v is a general vector, which is different from ~v as a Euclidean vector.

57

Chapter 3 ·Modelling and Simulation Framework

Control Allocation

Aircraft Dynamic &

Navigation Filter

Legend

Figure 3.12: The signal flow diagram for the Manoeuvre Autopilot.

where D
(
Va,h,nz

)
and T (Va,h) can be calculated with (3.4.4) and (3.4.3).

Finally, using the function u
(
x f bk

)
, the current values of the aircraft control vector

can be estimated by the Dynamic Inversion block with:

uest,DI (t) = u
(
x f bk (t)

)
(3.4.18)

where x f bk (t) is from the navigation system.

The reference values of the aircraft control vector are generated by the Dynamic
Inversion block with:

ure f ,DI (t) = u
(
xest,DI

f bk (t)
)

(3.4.19)

where xest,DI
f bk (t) is the estimated value of the state feedback vector, internally made by

the Dynamic Inversion block using:

xest,DI
f bk (t) =[
h(t) Va (t) χa (t) γa (t) V̇a

re f ,DD (t) χ̇a
re f ,DD (t) γ̇a

re f ,DD (t)
]T

(3.4.20)

Constraint Handling With the estimated and reference values of the aircraft control
vector, as given in (3.4.18) and (3.4.19), and their limitation values given by (3.4.8),

58

Aircraft System Model · § 3.4

the Constraint Handling Algorithm given in Algorithm 3.1 is used to ensure that the
commanded aircraft control vector is attainable:

umin ≤ ucmd ≤ umin, u̇min ≤ u̇cmd ≤ u̇min (3.4.21)

Besides imposing the rate and range limit on the control signal, the algorithm
makes sure that the constraints are imposed in the correct order, so as to take into
account the dependency between the nz and µ, as shown in (3.4.17).

Algorithm 3.1: Constraint Handling Algorithm
Input: ure f ,DI , uest,DI , umax , umin, u̇max , u̇min
Output: ucmd

1 ∆t ← Sample time;
2 for ∀ure f ,DI

i ∈ {T̄ , µ,nz} do

3 u̇re f ,DI
i ←

ure f ,DI
i − uest,DI

i

∆t
;

4 if u̇re f ,DI
i > u̇i,max then

5 ucmd
i = uest,DI

i + ui,max∆t;
6 else if u̇re f ,DI

i < u̇i,min then
7 ucmd

i = uest,DI
i − ui,min∆t;

8 else
9 ucmd

i = ure f ,DI
i ;

10 end
11 if ucmd

i > ui,max then
12 ucmd

i = ui,max;
13 else if ucmd

i < ui,min then
14 ucmd

i = ui,min;
15 end
16 end

Desired Dynamics Controller Figure 3.13 shows the signal flow graph for the de-
sired dynamics controller, in which the transformed (virtual) system, assuming perfect
dynamic inversion, appears to be a linear system with three parallel and uncoupled
integrators. The task is now reduced to designing a linear controller to drive the error
signal to zero.

59

Chapter 3 ·Modelling and Simulation Framework

Virtual

System
Manoeuvre

Commands

Figure 3.13: The Block Diagram for the Desired Dynamics Controller.

The linear controller can be designed (or simply tuned) to match the given track-
ing and transient performance of the platform being tested. This work uses a simple
proportional controller of the form K : R3 → R3 :

v = K (e) = K (r − y) (3.4.22)

The signal flow is:
v(t) = K (r(t) − y(t)) (3.4.23)

with:

v(t) =



V̇ re f ,DD
a (t)

χ̇
re f ,DD
a (t)

γ̇
re f ,DD
a (t)


, r(t) =



V re f
a (t)

χ
re f
a (t)

γ
re f
a (t)


, y(t) =



Va (t)

χa (t)

γa (t)



K =



KVa 0 0

0 K χa 0

0 0 Kγa


where:

K⊗: is the gain of the controller, which can be regarded as the reciprocal
of the time constant τ⊗ of the corresponding control channel ⊗.

Lastly, as shown in the Command Interpreter block in Figure 3.13, some operation
may be required to transform the external manoeuvre commands (from the collision
avoidance system or encounter model) to the reference values of the reference vector

60

Surveillance System Model · § 3.5

r. For example, the vertical speed commands V cmd
v can be transformed to the reference

value of aerodynamic flight-path angle as, assuming there is no vertical wind:

γre f (t) = arcsin
V cmd
v (t)
Va (t)

(3.4.24)

3.5 Surveillance System Model

In order to be able to study the effect of the FOR restriction—i.e. the effects caused by
the restricted Field of View and maximum detection range, referred to as FOR effect
hereafter, the following surveillance system conditions are required:

1. Ideal condition, serving as a theoretical limit, which uses the true intruder state
for collision avoidance.

2. Noisy condition, emulating the cooperative situation, which uses the noisy in-
truder state subject to random error.

3. Limited FOR condition, serving as a theoretical basis to investigate the FOR
effect, which uses the FOR-restricted intruder state.

4. Realistic condition, emulating the non-cooperative situation, which uses the
FOR-restricted, noisy intruder state.

Figure 3.14 shows the architecture of the surveillance system model that is developed
to provide the above conditions. The model takes as input the true states of the host
and intruder (xH and xI) and generates a tracker state vector xtra, via the following
intermediate processes:

1. calculates the actual relative position between the two aircraft;

2. converts the relative position to the relative range, azimuth and elevation and
only outputs them when they are within the FOR limits, so as to emulate the
FOR-restricted measurements;

3. maintains the intruder track status according to the FOR-restricted measure-
ments;

61

Chapter 3 ·Modelling and Simulation Framework

Field of

Regard

Restriction

Actual

Relative

Motion

Track

Maintenance

Meas.

Error
Target

Tracking

Meas.

Error

Target

Tracking

Field of

Regard

Restriction

Ideal

FOR

Restricted

Noisy

Realistic

=

Figure 3.14: Architecture of surveillance system model, showing the generation of
four types of test cases: 1. Ideal; 2. Noisy; 3. FOR restricted; 4. Realistic.

4. adds random errors to the measurements according to the current track status;
and

5. filters the noisy measurements in order to emulate the behaviour of the actual
tracker.

3.5.1 Actual Relative Motion

Figure 3.15 shows the relative geometry between the host and intruder. Three frames
of reference are required to calculate the relative motion and the FOR-restricted mea-
surements:

1. Navigation (inertial) frame N: a frame of reference, non-rotating and non-translating
with respect to the rigid Earth. The frame has its origin N at an arbitrary position
(defined for each simulation) on the Earth’s surface, and its base triad oriented
in the north, east, and down directions. This is regarded as an inertial frame.

2. Host-carried frame H: a frame of reference, translating with the rigid host air-
craft. The frame has its origin H at the Centre of Mass (CM) of the host aircraft,
and its base triad oriented in the north, east, and down directions.

62

Surveillance System Model · § 3.5

~B2

~H2 (East)

~B1

H (B)

~H3, ~B3 (Down)

~N 2 (East)

~rH /N

~H1 (North)

~rI /H

N

~N 3 (Down)

~rI /N

I

~N 1 (North)

Nav i gat i on f r ame an d i t s b as e s (N) .

Hos t - c ar r i e d f r ame an d i t s b as e s (H) .

B od y -fi x ed f r ame an d i t s b as e s (B) .

Nav i gat i on f r ame or i gi n (N) .

Hos t ’ s c . m , t h e or i gi n of H an d B (H , B) .

In t r u d e r ’ s c . m . (I) .

Hos t ’ s p os t i on (~rH / N) .

In t r u d e r ’ s p os t i on (~rI / N) .

Re l at i v e p os t i on (~rI / H) .

Figure 3.15: Relative motion geometry, illustrating 1) the relative position between
the host and intruder and 2) thee frames of reference: navigation, host and body-fixed
frames.

3. Body-fixed frame B: a frame of reference, translating with the rigid host aircraft.
The frame has its origin B at the CM of the host aircraft, and its first base vector
parallel to the fuselage reference line, and its third base vector in the aircraft
plane of symmetry.

The relative motion is described by the displacement vector ~rI/H between the CM of
the intruder I and host H. The figure also illustrates the following vector equations:

~rI/H = ~rI/N − ~rH/N (3.5.1)

= ~pI/N − ~pH/N (∵ N is the base origin of N) (3.5.2)

⇐⇒ ~pI/H = ~pI/N − ~pH/N (∵ H is the base origin of H) (3.5.3)

= ~pI/B (∵ H and B share the same base origin H(B)) (3.5.4)

~pI/H and ~pI/B are, respectively, the position vectors of the intruder in the host and
body frame and both position vectors are equal to the displacement vector ~rI/H.which

63

Chapter 3 ·Modelling and Simulation Framework

is referred to as the relative position vector of the intruder with respect to the host.

Expressing the relative position (3.5.3) in the Host coordinate system H yields:[
~pI/H

]H
=

[
~pI/N

]H
−

[
~pH/N

]H

= CH
N︸︷︷︸

I3×3



[
~pI/N

]N︸ ︷︷ ︸
≡pI

−
[
~pH/N

]N︸ ︷︷ ︸
≡pH




(3.5.5)

∴ pI/H ≡
[
~pI/H

]H
= pI − pH, (3.5.6)

where CH
N 1 is the direction cosine matrix between the host and navigation coordinate

system; pH and pI are the host and intruder (absolute) position vector.

Similarly, the relative position can also be expressed in the Body coordinate system
with the following equations:[

~pI/B
]H

=
[
~pI/H

]H
(from (3.5.4)) (3.5.7)

= pI − pH (from (3.5.6))

⇐⇒ CB
H

[
~pI/B

]H
= CB

H
(
pI − pH

)
(3.5.8)

∴ pI/B ≡
[
~pI/B

]B
= CB

H
(
pI − pH

)
(3.5.9)

where CB
H is the direction cosine matrix from the host to body-fixed coordinate system,

which is a function of the aircraft attitude, i.e. CB
H(Ψ).

In summary, expressing the relative position vector ~rI/H in the host and body-fixed
coordinate system (H and B) yields two different coordinate vectors (pI/H and pI/B).
Both of these are also functions of the host and intruder state vector (xH and xI), i.e.
pI/H(xH,xI) and pI/B(xH,xI).

3.5.2 Field of Regard

A multi-sensor configuration, combing a set of electro-optical/infrared (EO/IR) sensors
and an on-board radar, is regarded as a promising solution for non-cooperative sensing,

1As there is no rotation between the host and navigation frame (so as their coordinate systems, and
therefore CH

N = I3×3), the two components vectors are the same when an Euclidean vector is expressed
in these two coordinate systems, i.e.

[
~a
]H

=
[
~a
]N.

64

Surveillance System Model · § 3.5

Table 3.4: An example set of surveillance sensor parameters.

Parameter Symbol Unit Radar EO/IR
Relative range limitation rmax NM 5 5
Azimuth limitation Φlim deg ±110 ±110
Elevation limitation Θlim deg ±15 ±15
Relative range error standard deviation σr ft 50 N/A
Relative range rate error standard deviation σṙ ft/s 10 N/A
Bearing error standard deviation σΦ deg 1 0.5
Bearing rate error standard deviation σΦ̇ deg/s N/A 0.5
Elevation error standard deviation σΘ deg 1 0.5
Elevation rate error standard deviation σΘ̇ deg/s N/A 0.5

see Fasano et al. [2008]; Chen et al. [2009]; Patchett & Ansell [2010].

Sensor Performance Table 3.4 summarizes an example set of performance param-
eters for this sensor suite, based on Temizer et al. [2010] and F38 Committee [2007].
The sensor parameters are given in a spherical coordinate system, i.e. the limits and
error standard deviation on the relative range, azimuth, and elevation.

Field of Regard According to the specified limits, Figure 3.16 shows the sensor
suite’s field of regard, within which the sensors make measurements. As can be seen
from its shape, the field of regard is determined by the range (relative range limit) and
field of view (azimuth and elevation limits). Depending on the system configurations,
the field of view can be either body-fixed or roll-stabilized.

Body-fixed Measurement Figures 3.16b and 3.16d show the body-fixed field of re-
gard, which can be conveniently expressed in the body-fixed spherical coordinate sys-
tem. A target measurement is given by its relative position’s spherical coordinates, i.e.
the relative range rBs , azimuth ΦBs and elevation ΘBs:

pI/Bs
=

[
rBs ΦBs ΘBs

]T
, (3.5.10)

65

Chapter 3 ·Modelling and Simulation Framework

(a) Roll-stabilized field of regard in a climb. (b) Body-fixed field of regard in a climb.

(c) Roll-stabilized field of regard in a turn. (d) Body-fixed field of regard in a turn.

Figure 3.16: Sensor suite’s field of regard.

66

Surveillance System Model · § 3.5

where the subscript (·)Bs denotes that the variables are related to the body-fixed spher-
ical coordinate system.

Limited-Field-of-Regard Measurement The relative position vector’s spherical co-
ordinates can be obtained from its rectangular coordinates:

pI/Bs
= Ts

r

(
pI/B

)
. (3.5.11)

with a coordinate transformation function:

Ts
r

(
pI/B

)
=



√
x2 + y2 + z2

arctan(yx)

− arcsin(z
r)


.

Only the coordinate values that fall within the field of regard limits, as given by
Table 3.4, will be outputted to simulate the FOR-restricted measurements:

zlim
I = xlim

I =

xI if
(
rBs ≤ rmax

)
∧

(���ΦBs
��� ≤ Φlim

)
∧
���ΘBs ≤ Θlim

���
06×1 else

(3.5.12)

3.5.3 Track Maintenance

According to Zeitlin [2012], a tracker should be able to:

1. initiate a target track whilst gaining sufficient confidence that the target detection
is valid;

2. update the target track whilst gaining sufficient confidence that the measurements
are valid;

3. maintain the target track even in the absence of valid measurements; and

4. drop the target track according to some design criteria.

Figure 3.17 shows a state machine representing the high-level view of the tracker
model, in which four states are used to represent the tracker’s mode of operations:
No_Track, New_Track, Updated_Track, and Predicted_Track.

67

Chapter 3 ·Modelling and Simulation Framework

Figure 3.17: The finite state machine used to model the status of a target track.

The transitions between the states are guarded by two conditions: ValidMeasurement
and InvalidMeasurement. For the model in this work, ValidMeasurement will be
satisfied, if 80% of the previous measurements, over the update interval of the tracker
system1, are valid; otherwise the other condition InvalidMeasurement will be satis-
fied.

According to the active state, a series of actions (such as track prediction, measure-
ment comparison, and track update) will be triggered. It is assumed in this work that
the final product after all those actions is simply an estimate of the target’s position
and velocity, subject to different level of uncertainty. Therefore, depending on the ac-
tive mode, this block will output the corresponding uncertainty level (denoted by UL)
along with the limited-field-of-regard measurement (zlim

I), which will be used in the
measurement error model to emulate the uncertainty in the tracker system.

1Note that, the update intervals of the sensors and of the tracker are normally different. The tracker’s
update interval would depend on the technology, and typically would lie within 1 to 5 second, [Zeitlin,
2012, § 2.7], while the update interval for the sensor can be as soon as 0.1 second [Fasano, 2008, § 2.2].

68

Surveillance System Model · § 3.5

3.5.4 Measurement Error

Gaussian noise is added to the measurement vector to emulate the noisy measurements:

z̃I = zI + κtraULε or z̃Ilim = zlim
I + κtraULε, (3.5.13)

where ˜(·) denotes the noisy values of the underlying variable, κtra is a simulation
parameter used to scale up the random error to emulate the desired level of tracking
uncertainty, UL ∈ {0,1,1.5,2} is the uncertainty level corresponding to the current
track status; ε is the random error vector:

ε =
[
ε pN ε pE ε pD εvN εvE εvD

]T
(3.5.14)

with
ε i ∼ N(0,σ2

i), ∀i ∈ {pN ,pE ,pD,vN ,vE ,vD}

where, N is the normal distribution, σ is standard deviation as given by Table 3.5.

Table 3.5: Measurement error model parameters.

Standard Deviation of Symbol Value Unit
North position σpN 50 ft
East position σpE 50 ft
Down position σpD 50 ft
North speed σvN 10 ft/s
East speed σvE 10 ft/s
Down speed σvD 10 ft/s

1 It is assumed that the error magnitudes, of the
position and speed, are similar to those of the
relative range and range rate of a radar, as
specified in the Table 3.4.

3.5.5 Target Tracking

With the noisy measurement vector, an Alpha-Beta-Gamma Filter is used to estimate
the intruder’s position and velocity.

69

Chapter 3 ·Modelling and Simulation Framework

Initialization Process Upon receiving the first valid measurement z̃I, the filter ini-
tializes the estimate ẑI and its derivatives using:

zest (0) = zmes (0) (3.5.15a)

żest (0) = 06×1 (3.5.15b)

z̈est (0) = 06×1 (3.5.15c)

with
zmes = z̃I and ẑI = zest (3.5.16)

where zest , żest , and z̈est are the internal states of the filter and will be updated subse-
quently with the following two steps.

The prediction step

zpre(k) = zest (k − 1) + żest (k − 1)∆t +
1
2

z̈est (k − 1)∆t2 (3.5.17a)

żpre(k) = żest (k − 1) + z̈est (k − 1)∆t (3.5.17b)

z̈pre(k) = z̈est (k − 1) (3.5.17c)

The correction (update) step

zest (k) = zpre(k) + α
(
zmes (k) − zpre(k)

)
(3.5.18a)

żest (k) = żpre(k) + β
[
zmes (k) − zpre(k)

] 1
∆t

(3.5.18b)

z̈est (k) = z̈pre(k) + γ
[
zmes (k) − zpre(k)

] 1
∆t2 (3.5.18c)

k = 1, . . . ,N

where, k is the time step, N is the time step when there is an invalid measurement, ∆t

is the update interval, and α, β, and γ are three diagonal matrices with the filter gains
on the diagonals.

The filter gains determine the relative degree of reliance on current and previous
measurements. The larger the gains, the more confidence placed on the measurement;

70

Collision Avoidance Logic Model · § 3.6

gains of unity would place complete reliance on the current measurement and result in
no filtering. For this work, the following gains are used:

∀i = j : αi,j = 0.4, βi,j ,= 0.1 γi,j = 0.01 (3.5.19)

which are the minimum values of the gains for the relative range, range rate, and range
acceleration in an adaptive alpha-beta-gamma tracker used in ICAO [2007].

3.6 Collision Avoidance Logic Model

To serve as a baseline, this section describes a collision avoidance logic based on a
geometric CDR approach developed by Fasano et al. [2008]; Carbone et al. [2006];
Luongo et al. [2009].

ConflictResolution

monitorConflict();
generateResolution();

EstimatedConflictResolution

monitorConflict();
estimateIntruderState()
generateResolution();

ConflictClearance

monitorConflict();
maintainClearedVelocity();

ConflictDetection

checkConflictConditions();
ConflictDetected

BackInFOR
ConflictCleared

ConflictResolved

BeyondFOR

ConflictDetected

EstimatedConflictResolved

Figure 3.18: State machine for the collision avoidance logic, constructed according to
Fasano et al. [2008].

Figure 3.18 shows the state machine of the collision avoidance logic, which takes as
input the navigation states xnav and tracker states xtra and outputs the host manoeuvre

71

Chapter 3 ·Modelling and Simulation Framework

commands cH. The logic works in the following four modes:

• in its initial ConflictDetection state, the logic continuously checks the con-
flict conditions as given in § 3.6.1;

• if the conflict conditions are met, the logic will trigger a transition to the state
ConflictResolution, in which the resolution manoeuvre command will be
generated (as described in §3.6.2) and the detected conflict will be monitored
thereafter (as explained in §3.6.3);

• once the conflict is resolved, a transition to the ConflictClearance state will
be triggered, and the last cleared velocity will be outputted as the manoeuvre
command until the the conflict is cleared, or unless the conflict conditions are
satisfied again;

• the EstimatedConflictResolution state is included to handle the situation
when the intruder goes beyond the FOR. In this situation the intruder state will
be estimated by linearly projecting its last known state.

The specific definitions for the above triggering events can be found in the correspond-
ing subsections.

3.6.1 Conflict Detection

The conflict detection problem is to detect whether the displacement between the host
and intruder is potentially, or even actually, less than the required separation minimum.
We formulate the problem in the navigation coordinate system N (see Figure 3.7) and
use the notation and solution given by Carbone et al. [2006].

Relative Motion Figure 3.19a shows the geometry of the problem, in which the in-
truder is denoted by the sphere B with radius R (referred to as Safety Bubble hereafter)
and the host is denoted by the point A, that is:

~PA = [p̂H,N p̂H,E p̂H,D]T and ~V A = [v̂H,N v̂H,E v̂H,D]T (3.6.1)

~PB = [p̂I,N p̂I,E p̂I,D]T and ~V B = [v̂I,N v̂I,E v̂I,D]T (3.6.2)

72

Collision Avoidance Logic Model · § 3.6

(a) Relative motion geometry in the conflict de-
tection problem.

CPA

(b) Collision plane π containing the vectors of
the relative position ~rA/B and velocity ~VAB.

Figure 3.19: Illustration of conflict detection solution, adapted from Carbone et al.
[2006].

where the estimated values are from the navigation (xnav) and tracker (xtra) system.

By introducing the relative position~rA/B and velocity ~V AB between the point A and
sphere B:

~rA/B = ~PB − ~PA and ~V AB = ~V A − ~V B, 1 (3.6.3)

and assuming that the velocities of the host and intruder remain constant (referred to
as linear assumption hereafter), the relative motion can be regarded as: the point A is
moving relative to the sphere B with the relative velocity ~V AB.

Closest Point of Approach As can be seen from Figure 3.19b, if A and B are con-
verging, the point A will move along the direction of ~V AB and reach, after a certain
time, the Closest Point of Approach (CPA) where the separation distance between A

and B is minimum.2 This point is referred to as linear CPA and denoted by Clin here-

1Note that, ~r is the relative position vector of point B with respect to point A, while ~V AB is the
realative veclocity vector of point A with respect to point B.

2Otherwise, if they are diverging (moving away from each other), the current position of the host
will be the CPA.

73

Chapter 3 ·Modelling and Simulation Framework

after, where the‘linear’ is used to highlight that the variable is derived under the linear
assumption.

Linear Time-to-CPA The relative range r is defined as the Euclidean norm of the
relative position vector; and the relative range rate ṙ can be calculated by projecting
the relative velocity ~VAB onto ~rA/B:

r = ‖~rA/B‖ and ṙ = −
~VAB · ~rA/B

‖~rA/B‖
(3.6.4)

Under the linear assumption, the linear time-to-CPA can be calculated with:

tCl in = −
r
ṙ

(3.6.5)

Alternatively, see Figure 3.19b, one can project ~rA/B onto ~VAB and divide the resulting
scalar projection by ‖~VAB‖ (the relative speed) to obtain3 the tCl in :

tCl in =
~rA/B · ~VAB

‖~VAB‖
2
. (3.6.6)

Linear Miss Distance Figure 3.19b also shows the definition of the minimum sepa-

ration distance vector, which is the negative of the vector rejection of ~rA/B from ~VAB,:

~dAB =
~rA/B · ~VAB

‖~VAB‖
2

~VAB − ~rA/B (3.6.7)

where | | · | | is the Euclidean norm operator and · is the dot product operator. The
Euclidean norm of the minimum separation distance vector is defined as the linear
miss distance:

dCl in = ‖~dAB‖. (3.6.8)

Conflict Detection Conditions It has been shown by Carbone et al. [2006] that the
point A and the sphere B are headed for a collision if and only if the following condi-
tions are satisfied:

‖~dAB‖ ≤ R and ṙ < 0. (3.6.9)

3This work used this formula, as the singularity only appears when ‖~VAB ‖
2 is equal to zero.

74

Collision Avoidance Logic Model · § 3.6

In this work, the collision conditions are modified to incorporate the two alerting
thresholds (RT H and tT H) :

dCl in ≤ RT H and 0 < tCl in ≤ tT H . (3.6.10)

Moreover a range test and an altitude test are used to introduce a trigger zone, only
within which a conflict may be declared:

r ≤ rT H and | p̂H,D − p̂I,D | ≤ ∆hT H (3.6.11)

3.6.2 Conflict Resolution

Once the conflict detection conditions are satisfied, the Minimum Deviation control
strategy, given by Luongo et al. [2009], is used to generate the conflict resolution
command:

cd
H =

[
V d
g χd V d

v

]T
(3.6.12)

where the superscript d denotes the desirable values derived from the ~V
d
A , as shown in

Figure 3.20b. The solutions for ~V
d
A in different situations will be described below.

Tangential Solution With the assumption of no flight envelope limitations and dy-
namic constraints (along with the above linear assumption), Luongo et al. [2009] has
shown that the below desired velocity is the optimal solution, in terms of deviations
from the nominal (straight) route:

~V
d
A =
‖~VAB‖ cos (η − ξ)

sin ξ

[
sin ηV̂ AB − sin (η − ξ)r̂

]
+ ~V B (3.6.13)

with (see Figure 3.20a)

ξ = arcsin
‖~dAB‖

‖~rA/B‖
and η = arcsin

R′

‖~rA/B‖
(3.6.14)

where the accent ˆ denotes the vector is a unit vector; and R′ is the radius of an
enlarged safety bubble and serving as a tunable parameter for the algorithm, in order
to compensate for the assumption of no dynamic constraints. The R′ is set to 2000 ft,

75

Chapter 3 ·Modelling and Simulation Framework

(a) Collision cone and the circumference
of its base C⊥.

(b) The desired relative velocity vector on
the collision plane π.

Figure 3.20: Geometry of a conflict resolution solution, adapted from Luongo et al.
[2009].

as suggested by Luongo et al. [2009], in order to protect the target safety bubble with
radius of 500 ft. Note that, when ξ is equal to zero, the solution in (3.6.13) becomes
indeterminate and the following solution will be used.

Constrained Solution The above analytical solution (3.6.13), based on purely ge-
ometric consideration, does not take into account the aircraft’s flight envelope lim-
itations. If the desired velocity goes beyond the limitations (specified in B.1), i.e.
V d

A <
[
Va,min,Va,max

]
or V d

A,V <
[
VV,min,VV,max

]
1, the lateral-directional control strategy

given by Carbone et al. [2006] is used to generate the desired ground track angle χd

while keeping the current ground speed V d
g and vertical speed V d

V constant. The gener-
ation of the desired ground track angle requires solving a fourth order polynomial, as
explained by Carbone et al. [2006]; details are omitted here for brevity.

Emergency Solution When the separation distance between the point A and sphere
B is less than R′ (i.e. the host is within the enlarged safety bubble), the solution in

1V d
A,V

= −V d
A,D

is the vertical component of ~V
d

A.

76

Collision Avoidance Logic Model · § 3.6

(3.6.13) cannot be adopted since there does not exist a tangent from the point A to the
sphere B in this situation. The following emergency solution, as proposed by Luongo
et al. [2009], will be adopted in this situation:

~V
d
A = −‖~VA‖r̂ (3.6.15)

which provides a strong control action to exit from the enlarged safety bubble; after
that the tangential solution (3.6.13) will continue to be applied.

3.6.3 Conflict Monitor

Once a conflict is detected, the collision avoidance logic initiates a process to monitor
the evolution of the conflict so as to:

1. provide conflict resolution algorithms with an estimate of the intruder state when
the intruder is temporarily beyond the host’s FOR; this is achieved by maintain-
ing a conflict picture;

2. trigger the corresponding transitions between the operating states of the collision
avoidance logic, see Figure 3.18; this is achieved by continuously checking the
transitions’ guarding conditions, as summarized in Table 3.6

Conflict Picture Figure 3.21 shows the conflict picture of an example encounter.
The conflict picture is initiated once a conflict is detected and will be maintained until
the conflict is cleared, the period of which is referred to as a conflict window hereafter.

The figure also illustrates the three main elements of a conflict picture:

1. Conflict coordinate system, denoted by C, is a geographic coordinate system

with its origin at the host aircraft position where the conflict is first detected.

2. Host trajectory keeps track of the history of the host aircraft’s positions, by con-
verting the position information from the navigation system into the coordinates
of the conflict coordinate system.

77

Chapter 3 ·Modelling and Simulation Framework

Table 3.6: Guarding conditions for the transitions among different finite states of
the baseline collision avoidance logic.

Transition Guarding Conditions

Conflict Detected
• The linear time-to-CPA is greater than zero and smaller
than a threshold;
• The linear miss distance is smaller than a threshold.

Conflict Resolved
• There exists no detected conflict;
• The range rate is greater than zero; and
• The range is greater than a threshold.

Clear of Conflict •The conflict is resolved for a threshold period of time.

Back into FOR
•The output from the tracker system changes from invalid to
valid.

Beyond FOR
• The output from the tracker system changes from valid to
invalid.

3. Intruder trajectory keeps track of the history of the intruder aircraft’s posi-
tions, by converting the position information from the tracker system into the
coordinates of the conflict coordinate system. Whenever there are no valid out-
puts from the tracker system, linear extrapolation based on the last position and
velocity is used for estimation, see Figure 3.21.

3.7 Summary

In order to enable the capability to perform large-scale, fast-time Monte Carlo sim-
ulations under a wide range of testing conditions, this chapter has modelled the nec-
essary components required to simulate the collision avoidance problems with non-
cooperative sensing. The five models include 1) the Standard Encounter Model used
to generate a credible set of testing scenarios; 2) a kinematic intruder model with
Gaussian-noise manoeuvre commands; 3) an aircraft system model with configurable
transient response characteristic and realistic aircraft performance; 4) a surveillance
and tracking model able to produce the noisy and limited FOR conditions; and 5) a

78

Summary · § 3.7

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

−15000−10000−500005000

ŷ
C

Airc raft track s in the Navigat ion and Conflc it axe s.

North [ft]

x̂C

ŷ
N

x̂N

E
a
st

[f
t]

−2000

−1500

−1000

−500

0

500

1000

010002000

Li n e ar e x t r ap ol at i on

North [ft]

Enlarged v iew near the CPA

E
a
st

[f
t]

Nav i gat i on ax e s (N)

Con fl i c t ax e s (C)

S t ar t of e n c ou n t e r

S t ar t of c on fl i c t

E n d of c on fl i c t

C l os e s t P oi n t of Ap p r oach (CPA)

Hos t ’ s t r u e t r a j e c t or y

Hos t ’ s t r a j e c t or y i n Con fl i c t P i c t u r e

In t r u d e r ’ s t r u e t r a j e c t or y

In t r u d e r ’ s t r a j e c t or y i n Con fl i c t P i c t u r e

Figure 3.21: The conflict picture of an example encounter.

collision avoidance logic model serving as the baseline method.
The main result of this chapter is the modular and parametric modelling and simu-

lation framework that can be used for large-scale, fast-time Monte Carlo simulations.
The five functional modules, along with their interfaces and configurable parameters,
are summarized in Tables 3.7 and 3.8.

This framework will be used to evaluate the performance of the baseline method in
§4.4, and to perform a safety performance evaluation, robustness analysis and study of
FOR effects in §6.3.

79

Chapter 3 ·Modelling and Simulation Framework

Table 3.7: Summary sheet of the models used for Monte-Carlo simulation (I).

Input Output Group Configurable Parameter Value Unit

E
nc

ou
nt

er

N
o

In
pu

ts

H
os

tC
m

d.
In

tr.
C

m
d.

Encounter
Set

Encounter ID. {1, . . . ,100} -

Encounter class {1, . . . ,19} -

Encounter type {1,2} -

Rejection
Sampling

Host max. vertical speed 1800 ft/min

Host min. vertical speed -2300 ft/min

Host max. ground speed 240 kt

Host min. ground speed 150 kt

Intr. max. ground speed 250 kt

Intr. min. ground speed 35 kt

In
tr

ud
er

In
tr.

C
m

d.

In
tr.

St
at

es

Simulation Manoeuvre uncertainty {0,1} -

Intruder
Performance

Intr. max. vertical speed 6000 ft/min

Intr. min. vertical speed -6000 ft/min

Intr. max. ground speed 400 kt

Intr. min. ground speed 0 kt

Intr. max. turn rate 50 deg/s

Intr. min. turn rate -50 deg/s

H
os

t

H
os

tM
an

oe
uv

re
C

m
d.

H
os

tS
ta

te
s

N
av

ig
at

io
n

St
at

es

Aircraft Performance model Jetstream31 -

Envelope
Protection

Max. airspeed 290 kt

Min. airspeed 137 kt

Max. vertical speed 2000 ft/min

Min. vertical speed -2000 ft/min

Flight
Control
System

Max. airspeed rate 2 ft/s2

Min. airspeed rate -2 ft/s2

Max. turn rate 9 deg/s

Min. turn rate -9 deg/s

Max. flight-path angle rate 0.582a deg/s

Min. flight-path angle rate -0.582 deg/s

Tracking
Performance

Airspeed time constant 5 -

Heading time constant 2 -

Flight-path angle 2 -

a Abbreviation: cmd. - command; intr. - intruder; max. - maximum; min. - minimum
b 0.582 deg/s =

5 ft/s2

290 kt ×
1

1.688 ×
180
π , where 5 ft/s2 is the maximum normal acceleration for

civil flights, [see Nuic, 2012, p.33].

80

Summary · § 3.7

Table 3.8: Summary sheet of the models used for Monte-Carlo simulation (II).

Input Output Group Configurable Parameter Value Unit

Su
rv

ei
lla

nc
e

In
tr.

St
at

es

Tr
ac

ke
rS

ta
te

s

Simulation

Field of Regard switch {0, 1} -

Tracker uncertainty switch {0, 1} -

Tracker uncertainty level {1, . . . , 5} -

FOR
Limits

Relative range limit 5 NM

Relative azimuth limits ±110 deg

Relative elevation limits ±15 deg

Tracker
Performance

North position σ 50 ft

East position σ 50 ft

Down position σ 50 ft

North speed σ 10 ft/s

East speed σ 10 ft/s

Down speed σ 10 ft/s

C
ol

lis
io

n
A

vo
id

an
ce

L
og

ic

N
av

ig
at

io
n

St
at

es
Tr

ac
ke

rS
ta

te
s

R
es

ol
ut

io
n

C
m

d.

Conflict
Detection

Linear time-to-CPA Th. {15, 30} s

Linear miss distance Th. {500, . . . , 3000} ft

Conflict
Resolution

Safety bubble radius 2000 ft

Max. inertial speed 233 kt

Min. inertial speed 151 kt

Max. vertical speed 1968 ft/min

Min. vertical speed -1968 ft/min

Conflict
Monitor

Min. range to clear a threat 600 ft

Min. time to confirm a
clear of conflict

2 s

a Abbreviation: cmd. - command; intr. - intruder; max. - maximum; min. - minimum; Th. -
Threshold.

81

This page intentionally contains only this sentence.

Chapter 4

Evaluation and Analysis Framework

4.1 Introduction

With the modelling and simulations framework constructed in the previous chapter, the
performance of a candidate collision avoidance logic can be evaluated via large-scale
Monte Carlo simulations. However, given the enormous amount of simulation result
data, a set of analysis tools (such as performance metrics and visualization tools) is
required to facilitate the performance evaluation. The evaluation and analysis frame-
work used throughout this thesis to evaluate the performance of collision avoidance
logics is shown in Figure 4.1, in which the necessary analysis tools are described in
the specified sections.

In the following, a typical set of metrics used to evaluate the collision avoidance
logics’ performance in terms of safety and operational suitability will be presented
in §4.2. Furthermore, in order to enable an investigation of the FOR effect on the
logic performance, an additional set of metrics is introduced in §4.3. Finally, the nec-
essary analysis tool (such as System Operating Characteristic (SOC) and sensitivity
curves) along with two simulation experiments—the establishment of the baseline per-
formance and an investigation of the FOR effect on the logic performance—are de-
scribed in §4.4.

83

Chapter 4 · Evaluation and Analysis Framework

§4.4
Experiments

Design

Chapter 3
Monte Carlo
Simulations

§4.2 & §4.3
Metrics

Calculation

§4.4
Visualization
& Analysis

Candidates &
Test Conditions

Objective Simulation
Result Data

Performance
Metrics

Conclusion

Figure 4.1: The evaluation and analysis framework used throughout this thesis.

4.2 Typical Performance Metrics

The aim of this section is to describe three typical performance metrics given by
Kochenderfer et al. [2010a] [Raynaud & Arino, 2006; Holland et al., 2013, see also]:
risk ratio, NMAC rate and unnecessary alert rate1. §4.2.1 first describes a scheme used
to categorize the possible outcomes of a simulated encounter; and then, based on the
scheme, the mathematical definitions of the three metrics will be given in §4.2.2.

4.2.1 Possible Outcomes of an Encouter Scenario

There are six possible outcomes for a simulated encounter, depending on three ba-
sic events: (1) whether an NMAC occurred, (2) whether an alert was issued, and (3)
whether an alert was necessary. The definitions of the three basic events are:

1. NMAC: an event defined to occur when separation between two aircraft is less
than 100 ft apart vertically and 500 ft horizontally.

2. Alert: an alert issued by the collision avoidance logic when a conflict is detected.

3. Necessary Alert: an alert defined to be necessary when the original trajectory2
results in an NMAC.

Figure 4.2 depicts all the possible outcomes using notional trajectories. The definitions
and abbreviations for these events are summarized in Table 4.1.

1This is equivalent to the nuisance alert rate in this dissertation.
2The one without a collision avoidance system.

84

Typical Performance Metrics · § 4.2

False Alarm

Induced NMAC

Correct Detection

Late Alert

Missed Detection

Correct Rejection

Figure 4.2: Notional illustration of all the possible outcomes of an encounter scenario.
Solid lines represent the avoidance trajectories with the Collision Avoidance System
(CAS), while dotted lines represent the original trajectories without the CAS, modified
from Kochenderfer et al. [2010a, Figure 17].

Table 4.1: Event definitions for the possible outcomes of results.

Outcomes Category Abbreviation Basic Events (Abbreviation)

Necessary Alert System Alert NMAC
(NA) (A) (NM)

Correct Rejection CR
Correct Detection CD X X

False Alarm FA X

Missed Detection MD X X

Induced NMAC IN X X

Late Alert LA X X X

* The italic version of an abbreviation represents the count of the respective event
occurred in the simulation.

* The count of total encounter is N = CR + CD + F A + MD + I N + L A.
* The count of Necessary Alert is N A = CD + MD + L A.
* The count of Alert is A = CD + F A + I N + L A
* The count of NMAC is N M = MD + I N + L A

85

Chapter 4 · Evaluation and Analysis Framework

4.2.2 Metrics Definitions

Based on the counts of six outcomes for each simulation experiment, the following
three performance metrics are defined1

1. Risk ratio is a measure of the change in the probability of NMAC due to the
equipage of a collision avoidance logic. This is defined as:

RR ≡
Pr(NM|CDR)

Pr(NM|CDR)
=

MD + I N + L A
CD + MD + L A

=
N M
N A

(4.2.1)

where Pr(NM|CDR) is the probability of NMAC with the collision avoidance
logic and Pr(NM|CDR) is the one without the collision avoidance logic.

A risk ratio of zero indicates that the logic resolves all NMAC, while a risk ratio
of one indicates that the logic provides no benefit in reducing collision risk.

2. NMAC rate: The probability that an NMAC occurs can be estimated from the
outcome counts as follows:

Pr(NM) =
MD + I N + L A

CR + CD + F A + MD + I N + L A
=

N M
N

(4.2.2)

The smaller the NMAC rate, the better the system’s safety performance in pre-
venting collision is.

3. Unnecessary alert rate: The probability of unnecessary alert, Pr(UA), can be
approximated by1:

Pr(UA) =
F A + I N

CD + F A + I N + L A
=

F A + I N
A

. (4.2.3)

The smaller the unnecessary alert rate, the better the system’s performance in
detecting conflicts is.

A collision avoidance logic is deemed effective if risk ratio RR and the probability of
unnecessary alert rate Pr(UA) do not exceed the required level simultaneously.

1Note that, all metrics definitions in this section assume each encounter is equally likely while dif-
ferent types of encounters are normally not equally likely. For instance, ICAO [2007] gives a weighting
for each encounter type in the Standard Encounter Model.

1Compared with Kochenderfer et al. [2010a], this definition excludes the MD in the denominator.

86

Additional Metrics for Non-Cooperative Resolution · § 4.3

4.3 Additional Metrics for Non-Cooperative Resolution

Two major issues for collision avoidance with non-cooperative intruders are the larger
uncertainty in intruder state estimation and the possibility of losing sight of the in-
truder. In order to investigate the effect of these issues on the collision avoidance log-
ics’ performance, this section first discusses the basic concepts of these issues (§4.3.1)
and then introduces four additional metrics for evaluation (§4.3.2).

4.3.1 Basic Concepts

Figure 4.3 illustrates the possible issues of non-cooperative collision avoidance: a)
the field-of-regard status plot shows the possibility of losing sight of the intruder; b)
the conflict resolution status plot depict the possibility of secondary conflict during an
encounter; c) the intruder state plot shows the uncertainty in the state estimation. With
the reference of Figure 4.3, the following features can be defined for each simulated
encounter:

1. Number of Detected Conflicts Ncon: the number of conflicts detected in a res-
olution encounter.

2. Clear of Conflict δCoC: a boolean variable indicating whether all the detected
conflicts have been cleared before the simulation time ends.

3. Feedback Availability λava: an index indicating the amount of feedback avail-
able when it is required; a feedback availability of one indicates that the feedback
is always available, while a feedback availability of zero indicates that the feed-
back is not available at all.

This can be estimated with the ratio of the number of time steps when the intruder
is within the FOR to the number of time steps when the conflict is being resolved:

λava =

Ncon∑
j=1

∑kcc , j
k=kcd, j

δFOR(k)

kcc, j − kcd, j + 1
(4.3.1)

where δFOR is a boolean variable indicating whether the intruder is within the
FOR, j is the index for detected conflicts, k is the index for time steps, kcd and
kcc are the time steps when the conflict is detected and cleared.

87

Chapter 4 · Evaluation and Analysis Framework

4. Feedback Error λerr : an index indicating how accurate the estimations of the
intruder states are, when they are required by the conflict resolution logics.
This is calculated with the average of the Normalized Root Mean Square Er-
ror (NRMSE) of all the estimated intruder states:

λava =

∑Nsta

i=1 N RMSEi

Nsta
(4.3.2)

with

N RMSEi =

Ncon∑
j=1

RMSEi,j

xi, j,max − xi, j,min
(4.3.3)

and

RMSEi, j =

√√√∑kcc, j
k=kcd, j

[x̂i (k) − xi (k)]2

kcc, j − kcd, j + 1
(4.3.4)

where xi and x̂i are the true and estimated values of the ith intruder state, Nsta is
the number of intruder states; i is the index for intruder states.

4.3.2 Metrics Definitions

Based on the features defined in the previous subsection, four metrics are introduced:

1. Secondary conflict rate: An operational suitable collision avoidance logic should
reduce the chance to cause a secondary conflict during the resolution. This can
be measured by:

Pr(SC) =
SC
A
, (4.3.5)

where SC is the count of simulated encounters in which the number of detected
conflicts Ncon is larger than one.

2. CoC (Clear of Conflict) rate: An operational suitable collision avoidance logic
should resolve the conflict in a reasonable time. The metric is defined as:

Pr(CoC) =
CoC

A
, (4.3.6)

88

Additional Metrics for Non-Cooperative Resolution · § 4.3

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

δ
F

O
R
 [

−
]

 (a) Boolean variable indicating whether the inruder is within the field−of−regard.

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

δ
C

R
 [

−
]

(b) Boolean variable indicating whether it is resovling a conflict. Also shown are:
1) the number of triggered conflicts N

con
, 2) Clear of Conflict δ

CoC

 N
con

 = 3

 j = {1, 2, 3}
j = 1 j = 2 j = 3

 δ
CoC

 = 0

 k
cd,j

 k
cc,j

0 5 10 15 20 25 30 35 40 45 50
0

50

100

Time [s]

x
i [

m
/s

]

(c) The estimated and true values of the i
th

 intruder state during resolution.

Estimated Values

True Values

Figure 4.3: Illustrations of the basic concepts in conflict resolution.

where CoC is the count of simulated encounters in which all the detected con-
flicts have been cleared.

3. Expected feedback availability: In order to evaluate the quality of feedback
to the collision avoidance logic, the expected value of the feedback availability
over all alerted encounters is used:

E (λava) =

∑
∀l=lA λava, l

A
. (4.3.7)

4. Expected feedback error: In order to evaluate the quality of feedback to the
collision avoidance logic, the expected value of the feedback error index over all
alerted encounters is used:

E (λerr) =

∑
∀l=lA λerr, l

A
. (4.3.8)

89

Chapter 4 · Evaluation and Analysis Framework

Table 4.2: Characteristics of the original aircraft trajectories in the
standard encounter set.

Characteristics
Intruder Host

Encounters Rate (%) Encounters Rate (%)

Turning 324 9 260 7
Hori. Accelerating 915 24 1664 44
Veri. Accelerating 3119 82 2065 54
Manoeuvring* 3304 87 2546 67

1 N = 3800, N M = 1615, Pr(N M) = 0.425.
2 Encounters with both aircraft not manoeuvring = 227.
* Either turning, horizontally accelerating or vertically accelerating.

4.4 Two Simulation Experiments

Using the simulation experiment process given by Figure 4.1, this section presents two
simulation experiments that were designed to:

1. establish a baseline performance for collision avoidance logics;

2. investigate the FOR effect on the performance of collision avoidance logics.

In the remainder of this section, the common experiment setting will be detailed in
(§4.4.1); followed by an establishment of the baseline performance (§4.4.2) and an
investigation of the FOR effect (§4.4.3).

4.4.1 Experiment Setting

Standard Encounter Set In order to achieve statistically meaningful results, a total
of 3800 encounter samples were randomly generated using the Standard Encounter
Model as described in §3.2.3. Table 4.2 summarizes the characteristic of the original
aircraft trajectories in the standard encounter set. This standard encounter set will be
used throughout the simulation experiments in this thesis.

Test Conditions There are twelve test conditions in total. They are characterized by
different sensor models used in the simulations. Table 4.3 summarizes the simulation

90

Two Simulation Experiments · § 4.4

Table 4.3: Test condition definitions.

Test Condition Name Sensor Characteristics FOR
Switch

Tracker
Error
Switch

Tracker
Error
Level

Cooperative-0 Ideal 0 0 0
Cooperative -1 Noisy Only 0 1 1
Cooperative-2 Noisy Only 0 1 2
Cooperative-3 Noisy Only 0 1 3
Cooperative-4 Noisy Only 0 1 4
Cooperative-5 Noisy Only 0 1 5
Non-Cooperative-0 Limited-FOR Only 1 0 0
Non-Cooperative-1 Limited-FOR and Noisy 1 1 1
Non-Cooperative-2 Limited-FOR and Noisy 1 1 2
Non-Cooperative-3 Limited-FOR and Noisy 1 1 3
Non-Cooperative-4 Limited-FOR and Noisy 1 1 4
Non-Cooperative-5 Limited-FOR and Noisy 1 1 5

parameters setting and the terms used to describe the simulation results.

Candidate Systems In the following experiments, there is only one candidate colli-
sion avoidance logic, the geometric and reactive one as described in §3.6. However,
in order to select a suitable set of alerting thresholds (see Table 3.8), twelve candidate
configurations, as summarized in Table 4.4, will be tested.

The test conditions and candidates described in this section are obtained by setting
the corresponding values of the model parameters given in Tables 3.7 and 3.8.

4.4.2 Establishment of the Baseline Performance

The establishment of the baseline performance takes three steps: 1) perform a trade-off

study to select a suitable configuration; 2) evaluate the performance of the logic with
the selected configuration; 3) evaluate the performance robustness to sensor noise of
the logic with the selected configuration.

91

Chapter 4 · Evaluation and Analysis Framework

Table 4.4: Summary of twelve configurations for the candidate collision
avoidance logic.

Time Threshold = 15 [s] Time Threshold = 30 [s]

Candidate Name Distance Candidate Name Distance]
Threshold [ft] Threshold [ft]

CAS-15-250 250 CAS-30-250 250
CAS-15-500 500 CAS-30-500 500
CAS-15-820 820 CAS-30-820 820
CAS-15-1640 1640 CAS-30-1640 1640
CAS-15-3280 3280 CAS-30-3280 3280
CAS-15-6560 6560 CAS-30-6560 6560

Trade-off Study The purpose of the trade-off study is to select a suitable configu-
ration for the collision avoidance logic so that the risk ratio requirement can be met
with a reasonable unnecessary alert rate. The viability is determined by a set of perfor-
mance requirements on safety, operational suitability and acceptability [Holland et al.,
2013]. For reference, ICAO [2007] sets for ACAS a logic risk ratio threshold of 0.04
and 0.18 when the intruder is and is not ACAS equipped, respectively. Although the
performance requirements for the SAA are still under development, Cole et al. [2013]
uses a risk ratio of 0.05 for the reference requirement. For the initial feasibility analysis
in this thesis, a risk ratio of 0.05 is also chosen as a notional requirement.

The candidate logic was tested with 2 different time threshold values and 6 differ-
ent distance threshold values, under 4 testing conditions. The results are summarized
in 2 groups (time threshold) of 4 curves (testing conditions) with 6 points (distance
threshold). These curves, as shown in Figure 4.4, are called the System Operating
Characteristic (SOC) curves of the candidate logic [Kochenderfer et al., 2010a]. The
shape of the curve is traced out as the altering threshold is varying. Each point on
the SOC curve, referred to as an operating point, corresponds to an alerting threshold
setting specified in Table 4.4. Each operating point is estimated using 3800 simulated
encounters and the resulting risk ratio is plotted against the unnecessary alert rate. The
closer the operating points are to the lower-left conner, the better the system performs:
i.e. a system achieves a low risk ratio while also maintain a low unnecessary alert rate.

92

Two Simulation Experiments · § 4.4

0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.2

0.3

0.4

0.5

 (a) Time threshold = 15 [s]

Unnecessary Alert Rate [−]

R
is

k
 R

a
ti
o

 [
−

]

Distance Threshold Increasing

0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.2

0.3

0.4

0.5

(b) Time threshold = 30 [s]

Unnecessary Alert Rate [−]

R
is

k
 R

a
ti
o

 [
−

]

Distance Threshold Increasing

 Testing Condition

Cooperative−0

Cooperative−1

Non−Cooperative−0

Non−Cooperative−1

Notional Requirement

 Sensor model

Ideal

Noisy Only

Limited−FOR Only

Limited−FOR & Noisy

Ideal Operating Point

Figure 4.4: The System Operating Characteristic curves of the candidate collision
avoidance logic under four testing conditions. This illustrates the trade-off between
the risk ratio and unnecessary alert rate and shows the effect of the limited FOR and of
the noise on the logic performance.

It can be observed from Figure 4.4 that:

• as the alerting thresholds are increasing, the operating points normally move to
the lower-right corner of the graph, i.e. a safer operation can be achieved at the
cost of more unnecessary alerts;

• compared to their ideal counterparts, the noisy operation points (denoted by the
square and diamond markers) always achieved slightly better or comparable risk
ratio while constantly having a larger unnecessary alert rate;

• the cooperative curves dominate the non-cooperative curves, i.e. with the same
level of the unnecessary alert rate, the cooperative curves always achieve better
lower risk ratio; and

• in order for the selected method to meet the notional requirement under all test-
ing conditions (as shown in the four curves in the 30s time threshold plot), the
unnecessary alert rate has to be traded for a lower risk ratio.

93

Chapter 4 · Evaluation and Analysis Framework

The baseline collision avoidance logic with the CAS-30-500 configuration is cho-
sen as the baseline configuration for the remainder of the work in this thesis. This tight
alerting threshold is deliberatively chosen so as to provide the performance evaluation
of the proposed approach with more challenging situations; this will be shown in §6.3.

It is worth noting that, the sample size (3800) for this initial feasibility is very
small, compared with those required by the ICAO [2007] guidance on ACAS or the
study for the ACAS X presented by Cole et al. [2013].

Performance Evaluation Statistics Table 4.5 summarizes the evaluation results of
the baseline configuration in the nominal noise level (noise level of 1). In addition to
the three performance metrics, the table also reports the counts of three basic events
and of six encounter outcomes to give an overview of the logic performance.

It can be seen that, the risk ratio is reduced from 1 to 0.0211 and to 0.06561 for the
cooperative and non-cooperative case, respectively. This means that the logic is able
to resolve about 97% and 93% of the original NMAC.

Performance Robustness to Noise Level The baseline configuration was tested in
the 2 cases of cooperative and non-cooperative with 5 noise levels, leading to 10 sets
of simulation results. Figures 4.5a and 4.5b summarise these results. These curves,
referred to as sensitivity curves hereafter, illustrate the effect of varying the noise level
on the probability of NMAC and on the unnecessary alert rate. Each point on the
sensitivity curves was estimated using 4 independent sets of 950 simulated encounters
(i.e. randomly divide 3800 simulated encounters into 4 sets). The error bars indicate
the standard deviation of the estimates over the four sets.

As the noise level is increased from level 1 to 5, the NMAC and unnecessary alert
rate (in the cooperative case) rise from 0.01 to 0.05 and from 0.3 to 0.375, respectively,
indicating that the abilities of the system to prevent NMACs and to detect conflicts have
degraded significantly. However, Figure 4.5a shows that the slope of the sensitivity
curves appear relatively flatter when the noise level is small, and therefore the safety
performance is relatively less sensitive to the small changes in noise level. Both the
cooperative and non-cooperative curves are of similar shape, indicating that both cases’

1Note that, this does not satisfy the notional requirement shown in Figure 4.4, but the logic with the
configuration of CAS-30-500 can provide a more challenging testing situation.

94

Two Simulation Experiments · § 4.4

Table 4.5: Logic performance of the baseline configuration, under the
nominal noise level.

Original Cooperative Non-Cooperative

Risk Ratio 1.000 0.0211 0.0656
NMAC Rate 0.4250 0.0089 0.0279
Unnecessary Alert Rate - 0.2954 0.2886

NMAC 1615 34 106
Necessary Alert - 1615 1615
Issued Alert - 2292 2197

Correct Rejection - 1508 1551
Correct Detection - 1585 1513
False Alarm - 673 630
Missed Detection - 0 52
Induced NMAC - 4 4
Late Alert - 30 50

1 There are 3800 simulated encounters in total.

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

Noise Level [−]

P
r(

N
M

)
[−

]

 (a) NMAC rate while varying noise level.

1 2 3 4 5
0.25

0.3

0.35

0.4

0.45

Noise Level [−]

P
r(

U
A

)
[−

]

(b) Unnecessary alert rate while varying noise level.

Cooperative

Non−cooperative

Figure 4.5: Evaluation of the baseline configuration’s robustness to noise level.

95

Chapter 4 · Evaluation and Analysis Framework

sensitivity (and thus robustness) to the noise level are similar.

4.4.3 Investigation of Field-of-Regard Restriction Effect

In order to investigate the FOR on the logic performance, the baseline configuration
was tested in the 2 cases (cooperative and non-cooperative) with 5 noise levels, leading
to 10 sets of simulation results. For each set of the simulation result (consisting of
3800 encounters), the typical and additions metrics (as defined in §4.2 and §4.3) were
evaluated. This subsection presents the evaluated metrics along with the analysis in
three groups: safety performance, robustness and feedback quality.

FOR Effect on Safety Performance Figure 4.6 shows the bar chart of the resulting
NMAC counts for each set of simulation results. Each bar comprise three groups
of NMAC: Miss Detection, Induced NMAC and Unresolved NMAC. It can be seen
that a salient FOR effect on safety performance is the increased numbers on NMACs
due to missed detections. While the logic is able to detect almost all conflicts in the
cooperative cases, there are about 50 missed detections in all five noise levels in the
non-cooperative cases. Secondly, while the number of induced NMAC remains similar
in two cases, there are more unresolved NMAC in the non-cooperative cases.

FOR Effect on Feedback Quality Figure 4.7a and 4.7b show the sensitivity curves
of the expected feedback availability E(λava) and the expected feedback error E(λerr).

As can be seen in Figure 4.7a, the expected feedback availability drops from 1 in the
cooperative cases to about 0.83 in the non-cooperative cases, indicating that, due to the
limited-FOR, the host has lost sight of the intruder in about 17% of resolution duration.
Moreover, the flat shape of the sensitivity curves shows that they are insensitive to the
noise level.

Figure 4.7b shows that the expected feedback errors, in both cooperative and non-
cooperative cases, are proportional to the noise level. In particular, when there is no
noise at all, a significant difference in the feedback error can be found between the
cooperative and non-cooperative situations. This difference, analogous to the effect of
limited FOR, is a shrinking from 1 to about 0.3 as the noise level is growing.

96

Two Simulation Experiments · § 4.4

Noise Level [−]

N
M

A
C

 C
o

u
n

ts
 [

−
]

 (a) Cooperative case.

0 1 2 3 4 5
0

50

100

150

200

250

300

Noise Level [−]

N
M

A
C

 C
o

u
n

ts
 [

−
]

 (b) Non−cooperative case.

0 1 2 3 4 5
0

50

100

150

200

250

300
Unresolved (UN)

Induced NMAC (IN)

Miss Detection (MD)

Total NMAC = MD + IN + LA

Alerted NMAC = IN + UN

Unalerted NMAC = MD

Figure 4.6: Composition of resulting NMAC events, illustrating the FOR effect on
safety performance.

0 1 2 3 4 5
0.8

0.85

0.9

0.95

1

Noise Level [−]

E
(λ

a
v
a
)

[−
]

(a) Expected feedback availability.

0 1 2 3 4 5
0

1

2

3

4

5

Noise Level [−]

E
(λ

e
rr
)

[−
]

(b) Expected feedback error level.

Cooperative

Non−cooperative

Figure 4.7: The resulting expected feedback quality metrics, illustrating the FOR effect
on feedback quality.

97

Chapter 4 · Evaluation and Analysis Framework

FOR Effect on Operational Suitability Figures 4.8a and 4.8b show the sensitivity
curves of the probability of clear of conflict Pr(CoC) and the probability of secondary
conflict Pr(SC).

As can be seen from Figure 4.8a, the probability of clear of conflict Pr(CoC) is
generally decreasing with the noise level; and the Pr(CoC) in non-cooperative cases
are normally smaller than those in cooperative cases. These indicate that it is harder
for the collision avoidance logic to clear a conflict in a noisier and/or non-cooperative
situations.

Figure 4.8b shows that the probability of secondary conflict Pr(SC) is generally
rising with the noise level; and, as the noise level increases, the rise in Pr(SC) in
the cooperative cases become larger than those in non-cooperative cases, it is because
there are significantly more chances for the collision avoidance logic to trigger the con-
flict conditions, by the noisy measurements which are available throughout the simu-
lated encounter (compared with some absence of measurement in the non-cooperative
cases).

0 1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

Noise Level [−]

P
r(

C
o

C
)

(a) Probability of Clear of Conflict.

0 1 2 3 4 5
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Noise Level [−]

P
r(

S
C

)

(a) Probability of Secondary Conflict.

Cooperative

Non−Cooperative

Figure 4.8: The resulting metrics for the probability of CoC and Secondary Conflict,
illustrating the FOR effect on operational suitability.

98

Summary · § 4.5

4.5 Summary

This chapter has described a framework, consisting of a systematic process and a col-
lection of analysis tools, for the performance evaluation and safety analysis of collision
avoidance logic. In particular, a set of metrics is introduced to measure the operational
suitability and feedback quality of the simulation results. Utilizing the framework, two
simulation experiments have been carried out.

In the first experiment to establish a baseline performance, the following can be
summarized:

• In the trade-off study, the reactive collision avoidance logic is shown to be ef-
fective at most operating points, i.e. the risk ratio and unnecessary alert rate
normally do not exceed the required level simultaneously; however, in the non-
cooperative cases, the reactive logic can only achieve the notional safety require-
ment by trading-off the unnecessary alert rate. This validates the vision stated
in §1.1 that a more stringent unnecessary rate requirement for automated colli-
sion avoidance manoeuvres would invalidate some existing collision avoidance
logics;

• A tight alerting threshold for the baseline collision avoidance logic (i.e. the reac-
tive logic with the selected configuration) is deliberately chosen so as to provide
the performance evaluation of the proposed approach (shown in §6.3) with more
challenging situations. Despite the tight alerting threshold, the baseline logic
is reasonably effective in preventing an NMAC, i.e. under the nominal noise
level, it achieves a risk ratio of 0.0211 and 0.0656 (i.e. resolving about 97%
and 93% of the original NMAC) in the cooperative and non-cooperative cases,
respectively; and

• The baseline robustness performance has also been established.

In the second experiment to investigate the FOR effect on the logic performance, it
has been quantitatively shown that:

• The immediate effect of the limited FOR is the reduction of the quality of feed-
back to the collision avoidance logic;

99

Chapter 4 · Evaluation and Analysis Framework

• The NMAC rate increases significantly as the result of limited FOR: when the
noisy level is relatively small, most NMAC are caused by missed detections;
however, as the noise level is increasing, the number of NMAC caused by miss
detections remains steady but the number of Unsolved NMAC (caused by the
more and more erroneous estimations of the intruder state) is rising rapidly with
the noise level;

• The limited FOR makes it harder to determine the moment to issue a Clear of
Conflict. This is manifested by the increase in the probability of CoC and the
probability of Secondary Conflict.

In response to the above findings, the following will be further studied in the remainder
of this thesis:

1. The baseline performance will be used for comparisons in Chapter 6 to investi-
gate the potential benefit of the proposed approach;

2. The findings in the investigation of the FOR effect will be used in Chapter 5 to
guide the requirements capture and problem formulation processes; and the FOR
effect on logic performance will be revisited in §6.3.

100

Chapter 5

Trajectory Planning Algorithm
Development

5.1 Introduction

The core of the proposed approach, as shown in §1.3, is the capability for a collision
avoidance logic to plan a flyable and operationally suitable trajectory to resolve an
imminent collision threat in real time. Specifically, in the context of this thesis, the
following general requirements are defined:

• Collision Avoidance: Avoidance manoeuvres should achieve a minimum sepa-
ration of 500 ft in the horizontal plane and 100 ft in the vertical plane from all
other aircraft.1

• Robust Collision Avoidance: The performance in collision avoidance should be
robust to the intruder state uncertainty.

• Flyability: All avoidance manoeuvre should be within the structural and aero-
dynamics performance limitations of the host aircraft at all flight conditions.2

• Operational Suitability–Route Deviation: The extent of the avoidance ma-
noeuvres should be minimized, so that the host does not encroach on an adjacent

1See Sellem-Delmar [2010, HLR114]
2See F38 Committee [2007, §4.3.5.1].

101

Chapter 5 · Trajectory Planning Algorithm Development

altitude level or cause secondary conflicts with otherwise safely separated air-
craft.1

• Operational Suitability–Safe Terminal State: Once the threat is resolved, the
collision avoidance logic should (barring additional ATC or UAVp instructions)
transmit clear of conflict to the UAVp and seek UAVp approval to conduct a
“return-to-route” manoeuvre.2 Therefore, the avoidance manoeuvre should ter-
minate at a state that is safe and suitable for return-to-route.

This chapter describes the development of a Trajectory Planning Algorithm (TPA)
for this capability. In the following, an avoidance trajectory planning problem ac-
commodating the above requirements is first formulated in §5.2. The problem is then
transcribed (converted) into an NLP problem via a direct method as described in §5.3.
Finally, an NLP problem solver is presented in §5.4 to complete the algorithm. The
testing results, some example trajectories and discussion will be shown in §5.5.

5.2 Problem Formulation

The above requirements for collision avoidance logics are incorporated into the fol-
lowing avoidance trajectory planning problem:

Problem 5.2.1 (Trajectory Planning Problem (TPP)). Find the system trajectory, con-

sisting of the control and state trajectories:

(
u∗(t), x∗(t)

)
,∀t ∈

[
t0, t f

]
(5.2.1)

that minimizes the cost functional consisting of the final and trajectory cost:

J = φ f
(
x(t f), ẋ,u

)
+

∫ t f

t0

L (u(t),x(t), t) dt (5.2.2a)

subject to the differential constraints:

ẋ(t) = f (x(t),u(t)) , ∀t ∈ [t0, t f], (5.2.2b)

1See Edwards [2012] and ICAO [2007, §4.4.4.3].
2See Sellem-Delmar [2010, HLR121 and HLR123], see also Lai & Whidborne [2012] for the dis-

cussion of the importance of a safe terminal state.

102

Problem Formulation · § 5.2

the trajectory constraints:

ψ (x(t), ẋ(t),u(t), u̇, t) ≤ 0, ∀t ∈ [t0, t f], (5.2.2c)

the final constraints:

ψ f
(
x(t f), t f

)
≤ 0, (5.2.2d)

and the initial conditions:

x (t0) = x0. (5.2.2e)

The state and control evolutions are described by the functions (mappings):

x (·) :
[
t0, t f

]
→ R6, u (·) :

[
t0, t f

]
→ R3.

The vector-value functions are the problem data and will be elaborated in §5.2.1-5.2.4:

φ f (·) : R6 × R6 ×
[
t0, t f

]
→ R Safe Terminal State

L (·) : R6 × R→
[
t0, t f

]
Operational Suitability

f (·) : R6 × R3 → R6 Aircraft Dynamics

ψ (·) : R6 × R6 × R3 × R3 ×
[
t0, t f

]
→ R17 Aircraft Performance and Collision Avoidance

ψ f (·) : R6 ×
[
t0, t f

]
→ R Safe Terminal State

where the initial time t0 and final time t f are fixed.

5.2.1 Differential Constraints

The differential constraints (system equations) are based on the aircraft dynamics (3.4.1).
Considering the avoidance manoeuvre is subject to a 1) limited acceleration; 2) limited
vertical rate; and 3) short duration (about 30 seconds), it is assumed that:

1. the wind disturbance is handled by an inner loop trajectory tracking controller
(as will be seen in §6.2.3), so the wind-related terms in (3.4.1) will be dropped;

2. the flight-conditions-dependent parameters (such as ρ(h), CD0(M)) remain con-
stant during the resolution manoeuvres, and the constant values are calculated
according to the current flight condition (i.e. ρ(h0), CD0(M0));

103

Chapter 5 · Trajectory Planning Algorithm Development

The position trajectory is described in a resolution coordinate system, which is a ge-
ographic coordinate system established at the current aircraft position according to
the input to the TPA. Under the above assumptions, the aircraft’s EoM (3.4.1) can be
algebraically manipulated to give the following system equations:

f (x,u) = ẋ =



ṗ1

ṗ2

ṗ3

V̇

χ̇

γ̇



=



V cos γ cos χ

V cos γ sin χ

−V sin γ

C1T̄ − C2V 2 + C3
n2
z

V 2 − g sin γ
gnz sin µ
V cos γ

g(nz cos µ−cos γ)
V



, (5.2.3)

with

x = [p1 p2 p3 V χ γ]T , (5.2.4a)

u = [T̄ nz µ]T , (5.2.4b)

C1 =
CTcr

(CTc,1
V0

(
1 − h0

CTc,2

)
+ CTc,3

)
m

, (5.2.4c)

C2 =
Sρ(h0)CD0(M0)

2m
, (5.2.4d)

C3 =
2mg2k (M0)
ρ(h0)S

, (5.2.4e)

where V and χ denote the ground speed and ground track, respectively; V0 and h0

denote the current airspeed and altitude and they are the input from the navigation
system; and p1, p2, and p3 denote the north, east and down coordinates in the resolution
coordinate system; all other the variables are the same as those in (3.4.1),

5.2.2 Trajectory Constraints

Aircraft Performance Limitations Taking into account the limited aircraft perfor-
mance (see Table 3.7), the following constraints are imposed during the resolution
manoeuvres:

104

Problem Formulation · § 5.2

• Control variables:

T̄min ≤ T̄ ≤ T̄max , µmin ≤ µ ≤ µmax , nzmin ≤ nz ≤ nzmax (h0, M0). (5.2.5)

• State variables:

VCR
min ≤ V ≤ VCR

max , p3min ≤ p3 ≤ p3max . (5.2.6)

• Derivatives of control and state variables:

V̇min ≤ V̇ ≤ V̇max , µ̇min ≤ µ̇ ≤ µ̇max , ṗCR
3min
≤ ṗ3 ≤ ṗCR

3max
. (5.2.7)

The constraint values are obtained from the aircraft performance model, and can be
found in Table B.1.

Remark 5.1. Note that, the constraint on the maximum angle of attack (3.4.6) is taken
into account by the maximum normal load factor nzmax (h0, M0), whose value is depen-
dent on the current flight condition (a lookup table for this dependency is implemented
and shown in Figure B.2 in Appendix B).

Collision Avoidance To enforce the collision avoidance requirement, an imaginary
collision volume is centred at the intruder aircraft. Figure 5.1 shows three possible
models for the collision volume. The oblate spheroid model is used in this work be-
cause of its continuity over the cylinder model and its realism over the sphere model.
The host aircraft is outside the intruder spheroid if and only if the following conditions
holds: (pI,1 − p1

a

)2
+

(pI,2 − p2

a

)2
+

(pI,3 − p3

b

)2
> 1, (5.2.8)

where pI =
[
pI,1 pI,2 pI,3

]T denotes the intruder’s position in the resolution coor-
dinate system; a and b are the major and minor axis of the generating ellipse.

The selection of the axis lengths take into account the required separation and the
estimated uncertainty (in intruder’s position caused by the limited sensor accuracy, and
in host’s position caused by the imperfect avoidance manoeuvre execution). Figure 5.2
shows the construction of the generating ellipse of the oblate spheroid model. The

105

Chapter 5 · Trajectory Planning Algorithm Development

Figure 5.1: Three possible models for the protected volume.

lengths of the two axes are given by:

a0 = λ
√

2R and b0 = λ
√

2H, (5.2.9)

where R and H are, respectively, the horizontal and vertical required separation; λ is a
design parameter according to the platform performance.

−1500 −1000 −500 0 500 1000 1500

−200

−100

0

100

200

H
√

2Hλ
√

2H

R

√

2R

λ
√

2R

Retangle of reqiured separation

Circumscribed ellipse

Ellpise with uncertainty bound

Figure 5.2: Construction of the generating ellipse of the oblate spheroid model of the
collision volume.

106

Problem Formulation · § 5.2

The condition (5.2.8) is applied to a finite look-ahead time horizon, referred to as
a planning horizon. This involves projecting the current intruder state into the future
over the planning horizon. Kuchar & Yang [2000] identified three types of projection
methods: nominal, probabilistic and worse-case.

This work uses an empirical approach to propagate the intruder uncertainty, as
illustrated by Figure 5.3 .Firstly, using the linear extrapolation, it projects the intruder’s
estimated state to produce a nominal trajectory:

pI(t) = pI,0 + ṗI,0t, (5.2.10)

where the initial intruder position pI,0 and velocity ṗI,0 are the input to the trajectory
generator. Secondly, in order to compensate for the prediction uncertainty, it enlarges
the safety margin exponentially with time along with the nominal trajectory:

a(t) = a0 · g
t/τ and b(t) = b0 · g

t/τ (5.2.11)

where a0 and b0 denote, respectively, the major and minor axis of the spheroid at the
initial time; the growth factor g and time constant τ are the design parameters.

Uncertainty Margin

growing with planning horizon

Linear

Extrapolation

True Intruder

State

Estimated

State

Nominal

Collision

Volume

Protected

Volume

Figure 5.3: An empirical approach to propagate the intruder uncertainty.

107

Chapter 5 · Trajectory Planning Algorithm Development

Trajectory Constraints In summary, the trajectory constraints in Problem 5.2.1 con-
sist of the performance (control, state, derivative) and obstacle constraint functions:

ψ (x, ẋ,u, u̇, t) =



ψc (u)

ψs (x)

ψd (ẋ, u̇)

ψo (x, t)



, (5.2.12)

with

ψc (u) =



T̄ − T̄max

T̄min − T̄

µ − µmax

µmin − µ

nz − nzmax (h0,M0)

nzmin − nz



, ψs (x) =



p3 − p3max

p3min − p3

V − Vmax

Vmin − V



, ψd (ẋ, u̇) =



ṗ3 − ṗ3CR
max

ṗCR
3min
− ṗ3

V̇ − V̇CR
max

V̇CR
min − V̇

µ̇ − µ̇max

µ̇min − µ̇



,

ψo(x, t) = 1 −
(

p1 − pI,1(t)
a(t)

)2

−

(
p2 − pI,2(t)

a(t)

)2

−

(
p3 − pI,3(t)

b(t)

)2

.

(5.2.13)

5.2.3 Boundary Conditions

Initial Conditions At the initial time (t0 = 0) when the trajectory generator is en-
gaged, the initial position is initialized as zero, and the initial ground seed, ground
track and flight path angle are initialized using the current values from the navigation
system:

x0 =

[
p1,0 p2,0 p3,0 V0 χ0 γ0

]T
=

[
0 0 0 Vnav χnav γnav

]T
.

(5.2.14)

108

Problem Formulation · § 5.2

Final Constraints The final time (t f) for the resolution manoeuvre is fixed at the
planning horizon and served as a design parameter in this work.1

To ensure the resolution manoeuvre would terminate at a state that is safe, the final
state of the resolution manoeuvre x

(
t f

)
is constrained so that the relative range rate ṙ

is increasing, see (3.6.4):

ṙ =
pr

(
t f

)
· vr

(
t f

)
| |pr

(
t f

)
| |

> 0, (5.2.15)

where the relative position and velocity vector are:

pr (t) = pI(t) − p(t), vr (t) = ṗI − ṗ(t). (5.2.16)

with the intruder trajectory pI(t) (5.2.10) as a known function.

Therefore, the final constraint function in Problem 5.2.1 is:

ψ f
(
x, t f

)
= −

3∑
i=1

(
pI, i (t f) − pi

) (
ṗI, i (t f) − ṗi

)
√

3∑
i=1

(
pI, i (t f) − pi

)2

. (5.2.17)

Final Cost It is desirable that the resolution manoeuvre would terminate at a state
that is suitable for the return-to-route manoeuvres; and for this purpose, we consider
two factors: being parallel to the original route and being non-accelerating:

1. The final velocity is parallel to the original route, when:

χ(t f) = χrou, γ(t f) = γrou, (5.2.18)

where χrou and χrou are the ground track and flight path angle of the original
route at the planning horizon.

1Note that, this condition is not necessary for the proposed method and the final time can be set free
and determined by the optimizer.

109

Chapter 5 · Trajectory Planning Algorithm Development

2. It is in a wing-level, straight and non-accelerating flight, when:

µ(t f) = 0, χ̇(t f) = 0, γ̇(t f) = 0, V̇ (t f) = 0. (5.2.19)

Therefore, the final cost function in Problem 5.2.1 is:

φ f (x, ẋ,u) =
�����
χ(t f) − χrou

χrou

����� +
�����
γ(t f) − γrou

γrou

����� +
���µ(t f)��� + ��� χ̇(t f)��� + ���γ̇(t f)��� + ���V̇ (t f)��� .

(5.2.20)

5.2.4 Cost Functions

The operational suitability of the generated trajectory is modelled by the cost func-
tions. For instances, the required route deviations from the original route is a typical
operational cost function. In this work, considering the non-cooperative nature of the
problem, two tentative cost functions, converging time and intruder invisibility, are
introduced.

Route Deviation In order to reduce the chances of causing secondary conflict, the
deviation from the original route should be minimized. The square of the distance
between the aircraft and the route position can be calculated with:

L1 (x(t), t) = | |
(
p(t) − prou(t)

)
| |22 (5.2.21)

where the original route coordinate prou(t) is a known function, as the input to the
trajectory planning algorithm. Its definite integral can be used as a cost function to
penalize the route deviation: ∫ t f

0
L1(x(t), t) dt. (5.2.22)

Negative Range Rate (Converging) Duration/Magnitude Two aircraft are heading
to a collision course if and only if their relative range rate is negative. Therefore,
minimizing the duration/magnitude of negative range rate should reduce the risk of

110

Problem Formulation · § 5.2

collision.1 As illustrated in Figure 5.4a, the negative part of the range rate function can
be obtained by the following piecewise function:

L2 (x(t), t) =

−ṙ (t) if
(
pr (t) · vr (t)

)
< 0,

0 otherwise.
, (5.2.23)

where pr and vr are the relative position and velocity (5.2.16); and its definite integral
can be used to penalize the converging duration/magnitude:∫ t f

0
L2 (x(t), t) dt. (5.2.24)

Intruder Invisibility When the intruder is beyond the FOR, the feedback to the con-
flict resolution logic is cut off. Therefore, it may be safer to choose a resolution ma-
noeuvre that can safely keep the intruder within the FOR, rather than other options that
do not take this into account. Recall that, in order to estimate whether the intruder is
within the FOR, see §3.5.2, the host aircraft’s attitude is required:

φ = µ, θ = α + γ, ψ = χ, (5.2.25)

where µ, γ and χ can be obtained from the system equation (5.2.3) and the angle of
attack α is estimated, according to (3.4.4) and (3.4.5), with:

α =
1

CLα

(
2nzmg

ρV 2S
− CL0

)
. (5.2.26)

With the host’s attitude and equations (3.5.9)-(3.5.11), the intruder’s relative position
vector, expressed in the spherical coordinate system Bs, can be calculated:

pI/Bs
=

[
rBs ΦBs ΘBs

]T
, (5.2.27)

1Note that, special care should be given to this cost function. This should only apply to feasible
(collision-free) trajectories; as, in some cases, an infeasible trajectory that moves toward to the intruder
as soon as possible may get a minimum converging duration trajectory.

111

Chapter 5 · Trajectory Planning Algorithm Development

and then a Field Of Regard function can be defined:

δFOR(t) =

1 if
(
rBs ≤ rmax

)
∧

(���ΦBs
��� ≤ Φlim

)
∧

(���ΘBs
��� ≤ Θlim

)
0 otherwise.

(5.2.28)

Furthermore, as illustrated in Figure 5.4b, let δN RR be a Negative Range Rate func-

tion:

δN RR(t) =

1 if
(
pr (t) · vr (t)

)
< 0

0 otherwise,
(5.2.29)

and L3 be the following piecewise function:

L3 (x(t),u(t), t) =

1 if δN RR(t) ∧ δFOR(t),

0 otherwise,
(5.2.30)

then the definite integral of L3:∫ t f

0
L3 (x(t),u(t), t) dt (5.2.31)

can be used to penalize any avoidance manoeuvres that takes the intruder outside the
FOR; and this penalty only applies when two aircraft are converging.

5.3 Problem Transcription

This section describes a direct method, based on that in Yakimenko [2000], to tran-
scribe the Problem 5.2.1 into a 15-dimension NLP (Problem 5.3.1). The transcription
process involves four steps: removing the differential constraints, parameterizing the
trajectory, satisfying the boundary conditions, and discretizing the constraint and cost
functions.

5.3.1 Differential Constraint Removal

The differential flatness property of dynamical systems is used to remove the differen-
tial constraint in Problem 5.2.1.

112

Problem Transcription · § 5.3

0 10 20 30
−200

−100

0

100

200

ṙ
[m

/
s]

Relative Range Rate

0 10 20 30
0

50

100

150
Integrand function for Converging Cost.

L
2
[-
]

Time [s]

(a) Converging cost function.

0 5 10 15 20 25 30

−1

0

1

Field−of−Regard Function

δ
F
O
R
[-
]

0 5 10 15 20 25 30

−1

0

1

Negative Range Rate Function

δ
N

R
R
[-
]

0 5 10 15 20 25 30
0

0.5

1

1.5
Integrand function for Invisibility Cost.

L
3
[-
]

Time [s]

(b) Invisibility cost function.

Figure 5.4: Illustration of the Converging and Invisibility Cost Functions..

Differential Flatness According to Murray [2010, Definition 1.1], a nonlinear sys-
tem:

ẋ = f (x,u) (5.3.1)

is differentially flat if there exists a function z (·):

z = z
(
x,u, u̇, . . . ,u(p)

)
(5.3.2)

such that we can write the solution of the nonlinear system (5.3.1) as functions of the
flat output z and a finite number of its derivatives z(q):

x = x
(
z, ż, . . . ,z(q)

)
, (5.3.3)

u = u
(
z, ż, . . . ,z(q)

)
. (5.3.4)

Remark 5.2. This definition is sufficient for our application and a more rigorous treat-
ment to the flatness property can be found in Fliess et al. [1995].

113

Chapter 5 · Trajectory Planning Algorithm Development

The significance of a system being differentially flat is that all system behaviour
(x and u) can be expressed without integration by the flat outputs z and a finite num-
ber of its derivatives. In other words, the system equation (and thus the differential
constraints) (5.3.1) will be automatically satisfied when varying the flat output.

Inverse Dynamics Model Recall that, the system equation (5.2.3) for Problem 5.2.1
is in the form:

ẋ = f (x,u) , with x =

[
p1 p2 p3 V χ γ

]T
, u =

[
T̄ nz µ

]T
. (5.3.5)

Choosing the aircraft position as the flat output, i.e. z , p, the system equation (5.2.3)
can be rearranged to give the flat output as a function of the state:

p =

[
p1 p2 p3

]T
, p (x) , (5.3.6)

the state as a function of the flat output and its first derivative x (p, ṗ):

x =



p1

p2

p3

V

χ

γ



=



p1

p2

p3√
ṗ1

2 + ṗ2
2 + ṗ3

2

atan2 (ṗ2, ṗ1)

− arctan ṗ3√
ṗ1

2+ṗ2
2



, x (p, ṗ) , (5.3.7)

and the control as a function of the first and second derivation of the flat output u (ṗ, p̈):

u =



T̄

nz

µ


=



arctan V χ̇ cos γ
V γ̇+g cos γ

1
g

√
(V γ̇ + g cos γ)2 + (V χ̇ cos γ)2

1
C1

(
V̇ + C2 V 2 + g sin γ − C3nz 2

V 2

)

, u (ṗ, p̈) (5.3.8)

114

Problem Transcription · § 5.3

with

cos γ =

√
ṗ1

2 + ṗ2
2

ṗ1
2 + ṗ2

2 + ṗ3
2 ,

sin γ =
ṗ3√

ṗ1
2 + ṗ2

2
,

V̇ =
ṗ1 p̈1 + ṗ2 p̈2 + ṗ3 p̈3√

ṗ1
2 + ṗ2

2 + ṗ3
2
,

χ̇ =
ṗ1 p̈2 − p̈1 ṗ2

ṗ2
1 + ṗ2

2

,

γ̇ =
ṗ3 (ṗ1 p̈1 + ṗ2 p̈2) − p̈3

(
ṗ2

1 + ṗ2
2

)
(
ṗ2

1 + ṗ2
2 + ṗ2

3

) √
ṗ2

1 + ṗ2
2

.

Similarly, the functions ẋ (ṗ, p̈) and u̇ (p̈, ...p) can also be obtained by taking the deriva-
tives of (5.3.7) and (5.3.8). The functions x (p, ṗ), ẋ (ṗ, p̈), u (ṗ, p̈) and u̇ (p̈, ...p), are
referred to as the inverse dynamics model hereafter, as they are inverting the system
dynamics to give the control and state from the output.

Therefore, with the functions inverse dynamics model, the differential constraints
in Problem 5.2.1 can be removed and the problem now is to find the optimal position
trajectory and its derivatives, i.e. p, ṗ, p̈.

5.3.2 Parameterization

Each position coordinate is parameterized with a global seven-degree polynomial:

p j (t) = a j 0 + a j1t +
a j2

2
t2 +

a j3

6
t3 +

a j4

12
t4 +

a j5

20
t5 +

a j6

30
t6 +

a j7

42
t7, (5.3.9a)

ṗ j (t) = a j1 + a j2t +
a j3

2
t2 +

a j4

3
t3 +

a j5

4
t4 +

a j6

5
t5 +

a j7

6
t6, (5.3.9b)

p̈ j (t) = a j2 + a j3t + a j4t2 + a j5t3 + a j6t4 + a j7t5, (5.3.9c)
...p j (t) = a j3 + 2a j4t + 3a j5t2 + 4a j6t3 + 5a j7t4 (5.3.9d)

∀ j = 1,2,3

in which, a j k is the kth coefficient of the jth coordinate.

The coefficients are defined by the boundary values of the coordinates and their

115

Chapter 5 · Trajectory Planning Algorithm Development

derivatives. They can be determined by the following set of linear equations:

a j = C−1b j , j = 1,2,3 (5.3.10)

in which C is the constant matrix depending on the initial and final time (t = t0 = 0
and t = t f), a j is the coefficient vector for each coordinate and b j is a vector containing
all the boundary values:

C =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 t f
t2
f

2
t3
f

6
t4
f

12
t5
f

20
t6
f

30
t7
f

42

0 1 t f
t2
f

2
t3
f

3
t4
f

4
t5
f

5
t6
f

6

0 0 1 t f t2
f t3

f t4
f t5

f

0 0 0 1 2t f 3t2
f 4t3

f 5t4
f



, a j =



a j0

a j1

a j2

a j3

a j4

a j5

a j6

a j7



, b j =



p j0

ṗ j0

p̈ j0
...p j0

p j f

ṗ j f

p̈ j f
...p j f



By solving the linear equation set (5.3.10), the coefficients can be expressed in
terms of the boundary values b j =

[
p j0 ṗ j0 p̈ j0

...p j0 p j f ṗ j f p̈ j f
...p j f

]
and the

final time t f :

a j0 = p j0, a j1 = ṗ j0, a j2 = p̈ j0, a j3 =
...p j0,

a j4 = −
2

...p j f + 8
...p j0

t f
+

30p̈ j f − 60p̈ j0

t2
f

−
180ṗ j f + 240ṗ j0

t3
f

+ 420
p j f − p j0

t4
f

,

a j5 =
10

...p j f + 20
...p j0

t f
−

140p̈ j f − 200p̈ j0

t2
f

+
780ṗ j f + 900ṗ j0

t3
f

− 1680
p j f − p j0

t4
f

,

a j6 = −
15

...p j f + 20
...p j0

t f
+

195p̈ j f − 225p̈ j0

t2
f

−
1020ṗ j f + 1080ṗ j0

t3
f

+ 2100
p j f − p j0

t4
f

,

a j7 = 7
...p j f +

...p j0

t f
− 84

p̈ j f − p̈ j0

t2
f

+ 420
ṗ j f + ṗ j0

t3
f

− 840
p j f − p j0

t4
f

. (5.3.11)

Therefore, the parameterized position trajectory is completely determined by its

116

Problem Transcription · § 5.3

boundary values, namely the initial and final positions, velocities, accelerations and
jerks.

5.3.3 Boundary Conditions Satisfaction

By pre-satisfying the given boundary conditions, the dimension of the problem can be
further reduced. Recall that, the velocity can be calculated with its spherical coordi-
nates (5.2.3):

ṗ1 = V cos γ cos χ, ṗ2 = V cos γ sin χ, ṗ3 = −V sin γ, (5.3.12)

and the acceleration can be obtained by taking the derivatives of them:

p̈1 = V̇ cos χ cos γ − χ̇V cos γ sin χ − γ̇V cos χ sin γ (5.3.13a)

p̈2 = V̇ cos γ sin χ + χ̇V cos χ cos γ − γ̇V sin χ sin γ (5.3.13b)

p̈3 = −V̇ sin γ − γ̇V cos γ (5.3.13c)

Initial Conditions To use the initial conditions (5.2.14) with the velocity formula
(5.3.12), the initial position and velocity can be obtained:

p0 =

[
0 0 0

]T
and ṗ0 =

[
V0 cos γ0 cos χ0 V0 cos γ0 sin χ0 −V0 sin γ0

]T

(5.3.14a)
To enable a smoother transit from the current state to the resolution trajectory, the
initial acceleration (of the resolution trajectory) is set to the values obtained from the
navigation system:

p̈0 =

[
aN aE aD

]T
. (5.3.14b)

Note that, this initial acceleration condition will be modified later in the integration
section §6.2.1.

The initial jerk is completely free and determined by the optimizer:

...p 0 =

[...p10
...p20

...p30

]T
. (5.3.15)

117

Chapter 5 · Trajectory Planning Algorithm Development

Final Conditions The final position, velocity, acceleration and jerk are not fixed and
determined by the optimizer:

p f =

[
p1 f p2 f p3 f

]T
, p̈ f =

[
p̈1 f p̈2 f p̈3 f

]T
,

...p f =

[...p1 f
...p2 f

...p3 f

]T
.

(5.3.16)
In particular, using the velocity’s polar coordinates (5.3.12), the final velocity is

parameterized as:

ṗ f =



Vf cos γ f cos χ f

Vf cos γ f sin χ f

−Vf sin γ f


, (5.3.17)

where Vf , γ f , and χ f are the final ground speed, flight path angle, and ground track
and will be determined by the optimizer.

In summary, with the equations (5.3.9)-(5.3.17), the aircraft position, velocity, ac-
celeration and jerk functions can be parameterized as followed:

p(t) , p (Ξ, t) , ṗ(t) , ṗ (Ξ, t) , p̈(t) , p̈ (Ξ, t) , ...p (t) , ...p (Ξ, t) ,∀t ∈ [t0, t f].
(5.3.18)

with an optimization vector with fifteen optimization variables:

Ξ =

[Vf p1 f p2 f p3 f
...p1 f

...p2 f
...p3 f

...p10
...p20

...p30 p̈1 f p̈2 f p̈3 f γ f χ f]
T
.

(5.3.19)

Remark 5.3. The order of the optimization variables may have some effects on the op-
timization process for some optimization algorithms (such as the Hooke-Jeeves pattern
search we used in §5.4.4), we used this particular order throughout this thesis and our
implementation.

5.3.4 Trajectory Discretization

Parameterized Constraint and Cost Integrand Functions After the removal of
differential constraints and parameterization of the position trajectory, the constraint
functions and the integrand functions of cost functions can be expressed as functions

118

Problem Transcription · § 5.3

of the optimization vector and time, for instance:

ψ (x, ẋ,u, u̇, t)
x(p, ṗ), ẋ(ṗ, p̈), u(ṗ, p̈), u̇(p̈, ...p)
−−−−−−−−−−−−−−−−−−−−−→

p(Ξ,t), ṗ(Ξ,t), p̈(Ξ,t), ...p (Ξ,t)
ψ (Ξ, t) , ∀t ∈ [t0, t f], (5.3.20)

L1 (x(t), t)
x(p, ṗ), ẋ(ṗ, p̈), u(ṗ, p̈), u̇(p̈, ...p)
−−−−−−−−−−−−−−−−−−−−−→

p(Ξ,t), ṗ(Ξ,t), p̈(Ξ,t), ...p (Ξ,t)
L1 (Ξ, t) . (5.3.21)

Collocation Points and Constraint Vector To translate the optimal control problem
into a finite-dimensional NLP problem, it is necessary to discretize the time interval
[t0, t f] into N − 1 intervals with N collocation points. The N collocation points, where
the constraints will be satisfied, are chosen uniformly over the time interval [t0, t f]:

t =

[
t1, t2, . . . , tN

]T
, ti = t0 + (i − 1)

t f

N − 1
, i = 1, . . . ,N. (5.3.22)

Let c be the constraint vector for the resulting NLP problem. The constraint vector
consist of the trajectory and final constraint evaluated at the collocation points

c (Ξ) =



ψ (Ξ, t1)
...

ψ (Ξ, tN)

ψ f (Ξ, tN)



∈ R17N+1 (5.3.23)

Quadrature Rules for Cost Function Recall that, in numerical analysis, the definite
integral of a function f (t) can be approximated using the extended trapezoidal rule:

∫ b

a
f (t) dt ≈

h
2

N−1∑
k=1

(f (tk+1) + f (tk)) , h =
b − a
N − 1

. (5.3.24)

Let F be the cost function for a NLP problem; and apply the above extended trape-
zoidal rule to calculate the integrals of the three cost functions in §5.2.4:

Fi (Ξ) =
t f − t0

2(N − 1)

2∑
j=1

N−1∑
k=1

(
L j (Ξ, tk+1) + L (Ξ, tk)

)
, i = 1,2,3. (5.3.25)

119

Chapter 5 · Trajectory Planning Algorithm Development

Furthermore, the final costs (5.2.20) are evaluated at the final time to give fourth com-
ponents of the cost function F:

F4 (Ξ) = φ f (Ξ, tN) . (5.3.26)

Therefore, the cost function of Problem 5.2.1 is transcribed into the following cost
function for the NLP problem:

F (Ξ) =

4∑
i=1

Fi (Ξ) (5.3.27)

To sum up, the transcribed NLP problem can now be written as:

Problem 5.3.1 (Nonlinear Programming Problem). Find

Ξ∗ = arg min
Ξ∈S

F (Ξ) , (5.3.28)

subject to:

c (Ξ) ≤ 0, (5.3.29)

where S denotes the solution space and will be discussed in §5.4.1.

5.4 Problem Solution

This section presents four core elements for our NLP solver: an analysis of the solution
space of the NLP problem; the scaling of the NLP problem for better performance and
constraint satisfaction accuracy; the penalty function used to handle the constraints in
the NLP; and finally the NLP algorithm used for optimization.

5.4.1 Solution Space

Recall that, the optimization variable vector is:

Ξ =

[Vf p1 f p2 f p3 f
...p1 f

...p2 f
...p3 f

...p10
...p20

...p30 p̈1 f p̈2 f p̈3 f γ f χ f]
T
,

120

Problem Solution · § 5.4

and therefore, the solution space is the 15-dimensional vector space over the field of the
real numbers, i.e. S = R15. Prior to performing a solution search, the solution space
can be reduced to a smaller search space by considering the feasibility of the given
problem. In our cases, all the optimization variables are the boundary values of an
aircraft trajectory and therefore can be bounded according to their physical properties.

Feasibility on the Boundaries The reduction of the search space can be achieved by
studying the constraint vector (ψ (x, ẋ,u, u̇, t)) and the inverse dynamics model (x (p, ṗ),
ẋ (ṗ, p̈), u (ṗ, p̈) and u̇ (p̈, ...p)). For instance, the final vertical (down coordinate) rate
constraint:

ṗ3max ≥ ṗ3, f ≥ ṗ3min
ṗ3, f =−Vf sin γrou
−−−−−−−−−−−−→

−
ṗ3min

sin γrou
≥ Vf ≥ −

ṗ3max

sin γrou
if γrou ≥ 0,

−
ṗ3max

sin γrou
≥ Vf ≥ −

ṗ3min

sin γrou
if γrou < 0,

(5.4.1)

can be combined to the final speed constraint:

Vf max ≥ Vf ≥ Vf min
ṗ3min<0
−−−−−−→
ṗ3max>0

Vf
′
max ≥ Vf ≥ Vf min, (5.4.2)

with

Vf
′
max =

min
(
Vf max ,−

ṗ3min

sin γrou

)
if γrou ≥ 0,

min
(
Vf max ,−

ṗ3max

sin γrou

)
if γrou < 0.

Therefore, a trajectory with its final speed satisfying (5.4.2) will also have a feasible
vertical rate.

On the other hand, given the initial position p0, velocity ṗ0, and acceleration p̈0

(from the navigation system), the initial elements (except those related to the initial
bank rate) of the constraint c (Ξ, t) (5.3.23) can also be calculated using the inverse
dynamics model. When there exists any element that is greater than zero, Problem
(5.3.1) is initially infeasible. In the simulation experiments, this initial infeasibility did
happen, the handling and discussion of which will be deferred until §5.5.3.

Reduced Solution Space The Optimization Variables (OVs) are subject to the fol-
lowing lower and upper bound:

121

Chapter 5 · Trajectory Planning Algorithm Development

• 1st OV: the final speed is subject to the speed limits (5.4.2):

Vf
′
max ≥ Vf ≥ Vf min (5.4.3)

• 2nd − 4th OVs: the final position are expressed with its cylindrical coordinate to
facilitate the imposition of the reachable limits. Figure 5.5 illustrates the final
position’s coordinate transformation and limit imposition. Therefore, the opti-

Figure 5.5: Illustration of the final position’s coordinate transformation of and limit
imposition.

mization variable becomes p3 f , Φp f and rp f :

p1 f = rp f cos
(
Φp f + χ0

)
, p2 f = rp f sin

(
Φp f + χ0

)
, (5.4.4)

and subject to:

Φp f ,max ≥ Φp f ≥ Φp f ,min, Vmaxt f ≥ rp f ≥ Vmin
t f

10
, ṗ3

CR
maxt f ≥ p3 f ≥ ṗ3

CR
mint f .

(5.4.5)
where Φp f ,max and Φp f ,min are the design parameters to control the limit of the

122

Problem Solution · § 5.4

azimuth of the final position.

• 5nd − 10th OVs: the initial and final jerks of the trajectory are subject to the
following bound constraint:

...p max ≥
...p i0 ≥ −

...p max and
...p max ≥

...p i f ≥ −
...p max , i = 1,2,3, (5.4.6)

with
...p max as a design parameter.

• 11nd − 13th OVs: the final acceleration is subject to:

along
max ≤

���p̈1 f
��� , along

max ≤
���p̈2 f

��� , anorm
max ≤

���p̈3 f
��� . (5.4.7)

where along
max and anorm

max are the limits on the longitudinal and normal accelera-
tions, obtained from the aircraft performance model.

• 14nd OV: final flight path angle γ f is subject to:

arcsin
(

ṗ3,min

Vmin

)
≥ γ f ≥ arcsin

(
ṗ3,max

Vmin

)
. (5.4.8)

• 15nd OV: final ground track χ f is subject to:

χ0 + ∆χ ≥ χ f ≥ χ0 − ∆χ, (5.4.9)

with ∆χ denotes the maximum ground track deviation (design parameter) and
χ0 denotes the initial ground track.

Initial Guess Considering the above feasible solution space and a bias to the resolu-
tion of turning right, the following initial guess is chosen as the start search point for
the subsequent constraint violation minimization process:

Ξ0 =

[
Ξ1 p1 f p2 f 0 0 0 0 0 0 0 0 0 0 γ f χ f

]T
. (5.4.10)

with
Ξ1 =

(
Vf
′
max − Vf min

)
/2 + Vf min and pi f =

pimax

2
, i = 1,2.

123

Chapter 5 · Trajectory Planning Algorithm Development

5.4.2 Problem Scaling

Scaling affects everything, as warned by Betts [2010]:

Poor scaling can make a good algorithm bad. Scaling changes the con-

vergence rate, termination tests, and numerical conditioning.

Optimization Variables The OVs with upper and lower bounds are scaled using:

Ξ̄i =
2(Ξi − Ξimax)
Ξimax − Ξimin

+ 1, (5.4.11)

so that the scaled OVs are in the range Ξ̄i ∈ [−1,1].
Therefore, when setting up the optimizer, the OVs’ bounds and step lengths of the

search direction should be selected accordingly.

Constraint Violations The constraint vector c (Ξ) is normalized such that, when the
constraint is violated, its elements have a similar magnitude, i.e. c̄i ≈ 1.

For bounded constraints, the following relative constraint violation is used, when
a maximum constraint is imposed:

c̄ =


x−xmax

|xmax |
if xmax , 0,

x otherwise.
, (5.4.12)

and when a minimum constraint is imposed:

c̄ =


xmin−x
|xmin |

if xmin , 0,

−x otherwise.
. (5.4.13)

As a result, although the elements of the constraint vector represent different types of
constraint with different limit ranges, e.g. V ∈ [78,120] m/s and µ ∈ [−0.785,0.785] rad,
the relative constraint violation, expressed as the ratio of the constraint violation to its
extreme value, can be used to judge the level of violation regardless of the magnitude
of the extreme value.

Remark 5.4. Note that, as will be seen in §5.4.4, the constraints will be handled by
a squared 2-norm penalty function and a major characteristic of the squared 2-norm

124

Problem Solution · § 5.4

penalty function is that it places extreme emphasis on constraint violations larger than
one and little emphasis on violations less than one. Therefore, the normalized con-
straint violations will be multiplied by 100 to express the relative constraint violation
with percentage.

Cost Functions The cost function F (Ξ) in the NLP problem is scaled using the
weighted sum of the normalized cost components:

F̄ =

NJ∑
i=1

wi F̄i, (5.4.14)

with the normalized cost components Fi ≈ 1:

F̄i =
�����
Fi − Fi,/,des

Fi,/,des

����� (5.4.15)

where NJ is the number of cost components, wi ∈ [0,1] is the relative importance,
Fi,des is the desired value of the cost component.

Hereafter, the scaled optimization variables, constraint functions, and cost func-
tions will be used, although the over bar accent ·̄ is dropped for writing convenience
and consistency with the notation in literatures.

5.4.3 Penalty Function

Problem 5.3.1 can be recast into the following unconstrained NLP problem with the
penalty method [Griffin & Kolda, 2010]:

Problem 5.4.1 (Nonlinear Programming Problem with Penalty Function). Find

Ξ∗ = arg min
Ξ∈S

F (Ξ) + P
(
c+ (Ξ) , ρk

)
, (5.4.16)

with P as a penalty function:

lim
ρk→∞

P
(
c+ (Ξ) , ρ

)
=

+∞ if ∀c+
i ∈ c+, ∃c+

i > 0,

0 otherwise.
(5.4.17)

125

Chapter 5 · Trajectory Planning Algorithm Development

to penalize the constraint violations c+:

c+
i (Ξ) = max(0,ci (Ξ)), (5.4.18)

where ρ is referred as the penalty parameter and determines the severity of the penalty.

Among other penalty function options proposed in Griffin & Kolda [2007], the
squared 2-norm penalty function:

P`2
2

(
c+ (Ξ) , ρ

)
= ρ| |c+ (Ξ) | |22 (5.4.19)

is selected after some preliminary tests. Figure 5.6 shows the contour plot of the
penalty functions as the constraint violations are varying from 0 to 100, illustrating
how the constraint violation will be penalized. This penalty function will be used to
handle constraint in the next section.

Relative Constraint Violation, c
1
 [%]

R
e

la
ti
v
e

 C
o

n
s
tr

a
in

t
V

io
la

ti
o

n
,

c 2
 [

%
]

Squared 2−norm Penalty Function

0 20 40 60 80 100
0

20

40

60

80

100

2000

4000

6000

8000

10000

12000

14000

16000

18000

Figure 5.6: Squared 2-norm penalty function contour plot with a two-dimensional
constraint vector.

5.4.4 Optimization

Nonlinear Programming Algorithms Although there exists numerous solvers for
the transcribed NLP problems, it is found that the gradient-based solvers (alone), such
as the SNOPT solver Gill et al. [2008] and the MATLAB fmincon function, are not as

126

Problem Solution · § 5.4

effective as the derivative-free solvers, such as the Hooke-Jeeves pattern search, which
has been mentioned by Yakimenko [2000], and further shown by Drury [2010] and by
Lai & Whidborne [2010].

A derivative-free solver implementing the pattern search algorithm by Hooke &
Jeeves [1961, as cited in [Kelley, 1999]] is used in this work. The solver is based on the
MATLAB implementation by Kelley [1999, §8.3]. As can be seen in Algorithm-C.2,
the Hooke-Jeeves algorithms only involves two basic operations: exploratory move

and pattern move and is relatively easy to implement. The simplicity of this algorithm
makes it a suitable candidate for on-board implementation. The algorithm parameters
are summarized in Table C.1.

Two-stage Approach A two-stage approach, as suggested by Yakimenko [2000] and
tested by the author in Lai & Whidborne [2010], is implemented.

In the first stage, with the purpose to achieve a feasible point, the initial guess Ξ0

from §5.4.1 is used as the starting point for to the Hooke-Jeeves (HJ) algorithm to
minimize the constraint violations, that is to solve:

Problem 5.4.2 (Constraint Violations Minization). Find

Ξ1 = arg min
Ξ∈S

| |c+ (Ξ) | |22 . (5.4.20)

The solutions Ξ1 are normally feasible in our tests, otherwise the resulting relative
constraint violations are mostly within the range of 1 to 20 %.

In the second stage, the Ξ1 is used as the starting point for the HJ algorithm to
minimize the cost and the penalty function, that is to solve:

Problem 5.4.3 (Cost Optimization). Find

Ξ2 = arg min
Ξ∈S

(
F (Ξ) + ρ| |κ c+ (Ξ) | |22

)
, (5.4.21)

where ρ is set to a large number to prevent any reduction of the existing feasibility, the

scale factor κ is used to scale the magnitude of the left-over constraint violations from

≈ 1 to about ≈ 100 so that the 2-norm penalty function can be more effective.

With a limited budget of function evaluations, the solutions Ξ2 are normally sub-
optimal but mostly feasible in our tests (about 88.79% of the test cases, see §5.5.2).

127

Chapter 5 · Trajectory Planning Algorithm Development

5.5 Main Results

This section presents the testing results of the developed trajectory planning algorithm.
The experiment set up is first introduced and then the experiment results are organized
in the subsequent two subsections to:

1. investigate the method’s ability to generate feasible and good trajectories in real
time, by looking into the success rate, optimality and computational load over
all test cases;

2. investigate the usability of the resulting trajectories when no feasible solutions
can be found by the solver in the tightly constrained or initially infeasible sit-
uation. This is done by looking into the constraint violation of the resulting
trajectories.

5.5.1 Experiment Settings

Testing Scenarios The testing encounters are obtained from the previous simulation
experiment in §4.4. There are, in total, 1040 encounters in which an alerted conflict still
resulted in an NMAC. For each simulated encounter, the navigation state, tracker state,
and route information (at the moment when the conflict is first issued) are extracted
and used as the initial condition of a testing scenario for the subsequent experiments.
The actual initial linear time-to-CPA tCl in , Vertical Miss Distance (VMD) and HMD
are also calculated. For analysis purpose, an encounter is regarded as critical when:

tCl in < 3 s or (hmd < 710 ft ∧ vmd < 140 ft) . (5.5.1)

Considering the definition of an NMAC (a 500 ft and 100 ft cylinder) and the intro-
duced robustness margin (5.2.9) (i.e. at least a factor of

√
2), a critical situation would

normally be unresolvable for the trajectory planning problem, from the perspective of
obstacle constraints.1 There exist 63 out of 1040 testing encounters (about 6%) that are
in critical situations.

Furthermore, there are 318 testing encounters (about 36%) that are initially in-
feasible, according to the initial navigation state and the aircraft performance model

1Note that, there exist 9 out of 63 critical encounters that are still solvable in our experiment.

128

Main Results · § 5.5

used for trajectory planning (whose performance is slightly reduced from that of the
simulation model to leave some performance margin for trajectory tracking). These
initial infeasibilities on performance constraints are caused by the reduced aircraft per-
formance and the model approximation (introduced as assumptions in §5.2.1). As in
the real world, the model mismatch and, sometimes the initial infeasibilities, are in-
evitable in practical applications. Some of these initial infeasibility can be recovered
by the algorithm, which will be discussed further in §5.5.3.

In §5.5.2, to purely measure the trajectory planning method’s ability to generate
feasible trajectories, the initial infeasibility will be removed by modifying the navi-
gation states to satisfy the performance constraints. Therefore, the are 1040 testing
encounters, with 63 critical encounters and no initial infeasibility.

Parameters Settings All the parameters used in the simulation experiments are sum-
marized in the aircraft performance data in Table B.1 and the trajectory planning algo-
rithm parameters in Table C.1.

5.5.2 Result Statistics

Success Rate The ability to generate feasible trajectories is measured by the percent-
age of successful testing encounters to total testing encounters. Success was defined
as satisfying the specified constraint violation tolerance within the specified budget
of maximum function evaluations. Considering the conservative aircraft performance
model and the virtually enlarged obstacle protected volume, a solution trajectory with
1% of the relative constraint violations (with respect to its limit values) is regarded as
feasible.

Table 5.1 summarizes the success, failure and critical situation rates. As can be
seen, the algorithm (with a budget of 4500 maximum function evaluations) is able to
find a feasible trajectory in 88% of the testing encounters. Besides the 6.06% of critical
situations, there are still 6.15% encounters in which no feasible solution can be found
by the algorithm. The usability of the resulting trajectories of the infeasible solutions
will be further investigated in §5.5.3.

129

Chapter 5 · Trajectory Planning Algorithm Development

Table 5.1: Success rate for the testing of the trajectory planning
algorithm over 1040 test cases.

Type Count Percentage [%] Percentage [%]
(Excluding Critical)

Success 913 88.79 93.45
Failure 64 6.15 6.55
Critical Situations 63 6.06 -

Optimality The ability to generate good (operational suitable) trajectories is mea-
sured by the relative optimality. The relative optimality is used to show that the op-
timization in the algorithm is taking effect to bring down the specified operational
cost. To obtain the relative optimality, the algorithm was run twice: with and with-
out the cost function; and then, the cost values of all solution trajectories generated
by the algorithm with the cost function were summarized and served as the baseline
(pseudo-optimal) for comparison. Relative optimality is defined as the ratio of the cost
difference in two runs to the pseudo-optimal cost value. The larger the relative opti-
mality, the bigger the difference between two runs, and thus the better the algorithm’s
ability to minimize the operational cost.

Figure 5.7 shows the relative optimality and the mean cost values of two runs over
1040 test cases, in which the overall cost were decomposed into eight components1 to
enable the component-wise comparison. It can be seen from the figure that:

(a) the pseudo-optimal cost is one third smaller than the one without cost minimiza-
tion, showing the effectiveness of the optimization process in the algorithm; the
relative optimality is 0.47, which on its own can tell little but this measure will
be used in §6.3 for more comparison;

(b) in both situations, the components’ average cost values appear uneven, indicating
the optimization process may have focused on some particular components;

(c) the relative optimality of components 4 to 8 show better performance than oth-
ers, as they are related to the optimization variables directly; furthermore, while

1Note that, the final costs function used in this experiment are the final flight path angle deviation,
ground track deviation and acceleration, which is equivalent to the final cost specified in (5.2.20).

130

Main Results · § 5.5

the route deviation and intruder invisibility cost have been reduced, the con-
verging duration/magnitude cost remained at a similar level even when the cost
minimization is enabled.

Overall Cost [−]

C
o

s
t

V
a

lu
e

 [
−

]

(a) Relative Optimality: 0.47.

Overall
0

0.5

1

1.5

2

2.5

3

Cost Component[−]

C
o

s
t

V
a

lu
e

 [
−

]

(b) Weightings for components are all set to 1.

1 2 3 4 5 6 7 8
0

0.5

1
With Cost Function

Without Cost Function

Cost Component[−]

R
e

d
u

c
ti
o

n
 [

−
]

(c) Relative optimality in each components.

1 2 3 4 5 6 7 8

0

0.5

1

1. Route Deviation
2. Convering
3. Invisibility
4. Final North Acc.
5. Final East ACc.
6. Final Down Acc.
7. TRK Deviation
8. FPA Deviation

Figure 5.7: Average cost values of two test runs and their relative optimality.

Computational Load The algorithm was implemented in MATLAB R2013a and
the simulation was performed on a 64-bit OS X operating system with a 2.7 GHz Intel
Core i7 processor. The computational load is measured by the number of function
evaluations invoked by the NLP algorithm and the computation time obtained with the
tic and toc functions in MATLAB.

Table 5.2 summarizes the average computational load over all testing scenarios. It
can be seen that it took an average of 2.56 s to obtain a solution, and 80% of which
(2.07 s) was spent on the cost minimization process. The variation of the computation
time is illustrated with its histogram in Figure 5.8a, from which it can be seen that the
maximum computation time is less than 5s.

Regarding the number of function evaluations, it took an average of 750 evaluations
(25% of its limit) in the first phase to obtain a feasible solution. However, in the second

131

Chapter 5 · Trajectory Planning Algorithm Development

Table 5.2: Summary of the average computational load for the trajec-
tory planning algorithm over 1024 testing scenarios.

Constraint Cost
Satisfaction Minimization Total

Function Evaluation [-] 750 1462 2212
Computation Time [s] 0.49 2.07 2.56
Time per Evaluation [s] 7.69 × 10−4 4.09 × 10−3 1.24 × 10−3

phase, it spent an average of 1462 evaluation (i.e. 97% of its limit), which means the
cost minimization process was normally stopped due to the function evaluation limit.

Lastly, as can be seen from the time per evaluation measures, each evaluation in
the cost minimization process (including both cost and constraint function evaluation)
is one order of magnitude more expensive than that in the constraint satisfaction pro-
cess (include the constraint function evaluation only), which means the cost function
evaluation is the most expensive part to compute in this implementation.

5.5.3 Example Trajectories

Infeasible Trajectory Characteristics For analysis purposes, Table 5.3 categorizes
all the result trajectories into five types according to their constraint violations: i.e.
feasible, acceptable, infeasible-obstacle, infeasible-performance, and both-infeasible
trajectory. Figure 5.9 shows four histograms of the maximum constraint violations of
these trajectories.1 A typical trajectory of each type is then chosen for demonstration.
A typical trajectory of each type is an example trajectory with its maximum constraint
violations at the level that appears most frequently in Figure 5.9.

Figures C.2-C.5 in Appendix C show, respectively, the examples of acceptable,
infeasible-obstacle, infeasible-performance, and both-infeasible trajectories. In each
figure, the resulting miss distance and constraint violations of the each infeasible-
solution trajectory are highlighted. Although no feasible solutions could be found,
within the maximum number of function evaluations, for these situations, it can be seen

1Note that, there are 16 unresolvable scenarios, in which both the host and intruder were initialized
at the same position.

132

Main Results · § 5.5

0 2 4
0

500

1000

Time [s]

C
o

u
n

ts
 [

−
]

(a) Constraint Satisfaction.

0 2 4
0

500

1000

Time [s]

C
o

u
n

ts
 [

−
]

(b) Cost Minimization.

0 2 4 6
0

200

400

600

Time [s]

C
o

u
n

ts
 [

−
]

(c) Total.

(a) Computation Time.

0 1000 2000 3000
0

500

1000

Function Evaluations [−]

C
o

u
n

ts
 [

−
]

(a) Constraint Satisfaction.

0 500 1000 1500
0

500

1000

Function Evaluations [−]

C
o

u
n

ts
 [

−
]

(b) Cost Minimization.

0 1500 3000 4500
0

500

1000

Function Evaluations [−]

C
o

u
n

ts
 [

−
]

(c) Total.

(b) Function Evaluation.

Figure 5.8: Histogram of the computational load required by the trajectory planning
algorithm with a budget of 4500 function evaluation.

Table 5.3: Percentage of five types of result trajectories, categorized according to
their constraint violations.

Type Definition Percentage [%] Example

Feasible | |c+ | |∞ ≤ 1 88.79 Fig. C.1
Acceptable 1 ≤ ||c+ | |∞ ≤ 10 2.60 Fig. C.2
Infeasible Obstacle

(
c+

o ≥ 10
)
∧

(
| |c+

p | |∞ ≤ 10
)

5.96 Fig. C.3
Infeasible Performance

(
c+

o ≤ 10
)
∧

(
| |c+

p | |∞ ≥ 10
)

1.06 Fig. C.4
Both Infeasible

(
c+

o ≥ 10
)
∧

(
| |c+

p | |∞ ≥ 10
)

2.60 Fig. C.5

that the aircraft performance required by these resulting trajectories’ are very close to
the specified limit and their miss distances are all larger than the required separation.

Initial Infeasibility Recovery As discussed in §5.5.1, there exist 318 testing en-
counters that are initially infeasible, due to the violation of the performance constraint

133

Chapter 5 · Trajectory Planning Algorithm Development

(a) Accetable Trj. (27 − 2.60% of all results).

Relative Constraint Violation [%]

T
ra

je
c
to

ry
 C

o
u
n
ts

 [
−

]

0 2 4 6 8 10
0

10

20

30
(b) Infeasible−Obstacle Trj. (62 − 5.96% of all results).

Relative Constraint Violation [%]

T
ra

je
c
to

ry
 C

o
u
n
ts

 [
−

]

10 30 50 70 90
0

10

20

30

(c) Infeasible−Performane Trj. (11 − 1.06% of all results).

Relative Constraint Violation [%]

T
ra

je
c
to

ry
 C

o
u
n
ts

 [
−

]

10 30 50 70 90
0

10

20

30
(d) Infeasible−Obst.−Perf. Trj. (27 − 2.60% of all results).

Relative Constraint Violation [%]

T
ra

je
c
to

ry
 C

o
u
n
ts

 [
−

]

10 30 50 70 90
0

10

20

30

16 Unresolvable
Testing Scenarios

Figure 5.9: Maximum constraint violations summary over all infeasible trajectory re-
sults.

according to the reduced-performance model. The type and magnitude of the initial
infeasibility (violated constraints) are summarized in Figure 5.10. It can be seen from
the constraint type figure, that initial throttle violations account for the majority of the
initial infeasibility, and the remaining are the airspeed and vertical rate only.

In the experiments, when the violation magnitude is small (about at the level of
25%), the initial infeasibility can be recovered by the algorithm in the next time step.
Figure 5.11 shows an example of recovering from an initial infeasible throttle setting.
In case of the 318 initially infeasible cases, 197 of them (62%) were recovered in the
next time steps while some others may take more steps.

Remark 5.5. The large number of initially infeasible throttle shows the mismatch of the
simulation model and the reduced-order model used for trajectory planning. Although
this mismatch is inevitable, further investigation is required to study its effect on the
trajectory tracking performance.

134

Summary · § 5.6

1 2 3 4 5 6 7 8 9
 0 %

29 %

58 %

88 %

 0 %

29 %

58 %

P
re

s
e
n
ta

g
e
 o

f
In

it
ia

l
In

fe
a
s
ib

ili
ty

 [
%

]

Constraint Type ID [−]

1. Tbar
2. mu
3. n

z

4, p3
5. V
6. p3d
7. Vd
8. muD
9. obst

0 20 40 60
 0 %

15 %

29 %

44 %

Initial Relative Constraint Violation [%]

P
re

s
e
n
ta

g
e
 o

f
In

it
ia

l
In

fe
a
s
ib

ili
ty

[%

]

Figure 5.10: Statistics of the initial infeasibility.

5.6 Summary

This chapter has formulated a trajectory planning problem to incorporate the require-
ments for conflict resolutions manoeuvres and then presented the development of a
trajectory planning algorithm to solve the problem. The algorithm has been tested
with 1040 encounters, in which an alerted conflict still resulted in an NMAC in the
experiment in §4.

The main testing results showed that the algorithm is able to find a feasible trajec-
tory in 88% of the testing encounters, using 2.56 s computation time and 2212 function
evaluations in average. With the function evaluation budget of 4500, the maximum
computation time over all cases is 5 s. The operational suitability of the generated
trajectories has been investigated with a relative optimality measure and the results
show that the algorithm is able to bring down one third of the original (without cost
minimization) operational cost.

Furthermore, closer inspection has been carried out with the initially infeasible
cases and the failure cases, in which the algorithm failed to find a feasible solution
within the given budget. The typical trajectory examples indicated that 1) the algo-
rithm is able to recover most (about 62%) of the initial infeasibility in the second time

135

Chapter 5 · Trajectory Planning Algorithm Development

(a) Resolution trajectory and the initial linear time-to-CPA,
horizontal and vertical range.

0 10 20 30
−2

−1

0

V
io

la
ti
o

n
 [

%
]

 x 10
2

0 10 20 30
0

10

20

R
a

n
g

e
 [

ft
]

 x 10
3

0 10 20 30
−10

0

10

R
a

n
g

e
 R

a
te

 [
ft

/s
]

Time [s]

 x 10
2

(b) Obstacle constraint and rela-
tive range.

0 10 20 30
50

100

150

V
 [
m

/s
]

Airspeed

0 10 20 30
−2

0

2

V
D

 [
m

/s
2
]

Acceleration

0 10 20 30
−1

0

1

X: 0
Y: −0.283

Time [s]

T
b
a
r

[−
]

Throttle

0 10 20 30
−50

0

50

m
u
 [
d
e
g
]

Bank

0 10 20 30
−20

0

20

m
u
D

 [
d
e
g
]

Bank Rate

0 10 20 30
−10

0

10

Time [s]

c
h
i
[d

e
g
]

Heading

0 10 20 30
7.6

7.8

8

h
 ×

 1
0

3
 [
ft
]

Altitude

0 10 20 30
−50

0

50

p
3
D

 [
ft
/s

]

Vertical Rate

0 10 20 30
0

2

4

Time [s]

n
z
 [
−

]

Load Factor

(c) Aircraft state and control trajectories and their perfor-
mance limits.

T mu nz p3 V p3d Vdmud ord

0

5

10

15

20

25

Magnitude of Constraint Vector.

R
e

la
ti
v
e

 V
ilo

a
ti
o

n
 [

%
]

Constraint Type [−]

Constraint−Satisfied Node

Constraint−Violated Node

Violation Boundary

(d) Constraint vector evaluated at
all the collocation points (nodes).

Figure 5.11: An example trajectory showing the recovery from an initial infeasibil-
ity. Although the initial throttle of the reduced-order model is −0.283, the subsequent
throttles fall back into the feasible region as soon as the second time step.

136

Summary · § 5.6

step; and 2) despite the infeasibility of solutions, the resulting trajectories’ required
performance are very close to the specified limit and their miss distances are normally
larger than the required separation.

The closed-loop performance of the algorithm and the trajectory usability of the
infeasible solutions will be further investigated in the next chapter.

137

This page intentionally contains only this sentence.

Chapter 6

System Integration and Performance
Evaluation

6.1 Introduction

As shown in the previous chapter, the trajectory planning process can take up to 5
seconds. For an aircraft travelling at 100 m/s, this is a relatively long time and will
inevitably introduce a time latency into the system. While §6.2.1 shows how a low-
level implementation can further reduce the computation time, §6.2 describes a three-
layer architecture (see Gat [1998]) that is used to explicitly handle the time latency and
to integrate the planning process into the collision avoidance logic.

Although the final product of §6.2 is a proof-of-concept software prototype of the
trajectory-planning collision avoidance logic, it is worth noting that, this initial pro-
totype does not implement a mechanism to detect conflicts (or to delay the issue of a
conflict alert) based on the resolution trajectory from the planning process. Therefore,
for the initial feasibility study in this thesis, this chapter regards the prototype as a con-

flict resolution logic, and simply integrates it into the baseline collision avoidance logic
by replacing the original geometric conflict resolution logic. Using the same conflict
detection mechanism in both candidates can facilitate a direct comparison of the con-
flict resolution capabilities between the geometric (reactive) and trajectory-planning
(deliberative) methods.

In order to study the feasibility and potential benefits of the trajectory-planning-

139

Chapter 6 · System Integration and Performance Evaluation

based collision avoidance logic, the prototype was tested in three simulation experi-
ments with the objectives of 1) safety performance evaluation, 2) robustness analysis
to sensor noise, and 3) investigation of the FOR effect; and the results were compared
with those of the baseline performance described in §4.4.2. Section 6.3 describes the
experiment settings and presents these comparisons.

Finally, a closer inspection of four observed phenomena—ineffectiveness of the
emergency strategy, conservativeness in uncertainty propagation, parallel-track en-
counters and field-of-regard effect—are discussed and demonstrated with examples
in §6.4.

6.2 Integration of Trajectory Planning

Figure 6.1 shows the architectures of two conflict resolution logics. The reactive

geometry-based logic, shown in Figure 6.1a, uses the conflict resolution logic de-
scribed in §3.6, which can be updated in real time as fast as 10 Hz. The deliberative

trajectory-based logic, shown in Figure 6.1b, uses the three-layer architecture to inte-
grate the planning process of trajectory planning into the collision avoidance system.
Both conflict resolution logics are interfaced with the collision avoidance system de-
scribed in Figure 3.18. The three components of the three-layer architecture will be
described in detail in the following subsections.

6.2.1 Trajectory Planner

System Description Figure 6.2 shows the concept of operation and the interface of
the Trajectory Planner, which takes as input the projected states (navigation, tracker
and route states) from the Trajectory Manager and computes a resolution trajectory as
output, using the algorithm described in §5.4. The Trajectory Planner is able to answer
the query from the Trajectory Manager in a response time of 0.5 s in our implementa-
tion.

Real-time Performance The computation time of the Trajectory Generation Algo-
rithm (TGA) can be further reduced by generating the MATLAB Executable (MEX)
file from the MATLAB source code. In order to verify the MEX implementation

140

Integration of Trajectory Planning · § 6.2

3D Geometric

Solution

(at 10 Hz)

Conflict

(Track)

NavState
Cmd.

(a) Reactive geometry-based.

Route

Trajectory

Tracker

(at 10 Hz)

Trajectory

Planner

(Response in 0.5s)

Trajectory

Manager

(at 2 Hz)

Conflict

(Track)

NavState

ResolutionTrj

ReferenceTrj

Query with

ProjectedState

Cmd.

(b) Deliberative trajectory-based.

Figure 6.1: Architecture of two conflict resolution functions.

against the MATLAB implementation, the two implementations (i.e. TGA and TGA-
MEX) were tested with the 1040 scenarios in §5.5.1.

Figure 6.3 summarizes the resulting computation time, number of function evalu-
ation and cost function with nine histograms. Compared with those of the MATLAB
implementation, the MEX implementation is about ten times faster and its computation
time is reduced to 0.5 s at its maximum. Moreover, the function evaluations and the
cost function of both implementations show exactly the same distributions, verifying
that both implementations had used the same number of function evaluations to get the
same results.

6.2.2 Trajectory Manager

In order to integrate the deliberative process into the collision avoidance system, the
Trajectory Manager (as the sequencer in the three-layer architecture) is required to
handle the issues, such as time alignments and coordinate transformations, due to the
non-zero computation time. The main function of the Trajectory Manager is to main-
tain a resolution plan, so as to provide the Trajectory Planner with the projected states
to perform the planning, and to provide the Trajectory Tracker with an execution tra-

jectory to facilitate a correct execution of the resolution trajectory and to ensure the
accuracy of the projected state.

141

Chapter 6 · System Integration and Performance Evaluation

i
i +1

Route

i

i +1 Proj_Track

Proj_NavState
ResolutionTrj

(a) Concept of operation.

Route

Trajectory

Planner

(Response in 0.5s)

Proj_Track

Proj_NavState ResolutionTrj

Status

SysParam HostParam

Query

(b) Interface.

Figure 6.2: The system description of the Trajectory Planner.

142

Integration of Trajectory Planning · § 6.2

Time [s]

T
e

s
t

C
a

s
e

 C
o

u
n

ts
 [

−
]

(1
)

T
P

A
 i

n
 M

A
T

L
A

B

0 2.5 5
0

100

200

300

400

Evaluations [−]

T
e

s
t

C
a

s
e

 C
o

u
n

ts
 [

−
]

0 2500 5000
0

300

600

Values [−]

T
e

s
t

C
a

s
e

 C
o

u
n

ts
 [

−
]

0 20 40 60 80
0

200

400

600

800

Time [s]

T
e

s
t

C
a

s
e

 C
o

u
n

ts
 [

−
]

(2
)

T
P

A
 i

n
 M

E
X

0 0.25 0.5
0

300

600

Evaluations [−]

T
e

s
t

C
a

s
e

 C
o

u
n

ts
 [

−
]

0 2500 5000
0

300

600

Values [−]

T
e

s
t

C
a

s
e

 C
o

u
n

ts
 [

−
]

0 20 40 60 80
0

200

400

600

800

(a) Computation
Time

(c) Cost Function
Value

(b) Function
Evaluation

Figure 6.3: Result histograms of the (a) computation time, (b) number of function
evaluations and (c) cost function values of three different implementations of the Tra-
jectory Planning Algorithm (TPA): (1) TPA in MATLAB and (2) TPA in MATLAB
executable (MEX).

143

Chapter 6 · System Integration and Performance Evaluation

A resolution plan, consisting of an execution trajectory, a reference trajectory and
a projected state, is depicted in Figure 6.5. Also illustrated in Figure 6.5 are the three
main functions used to update the resolution plan: plan generation, plan assessment

and plan selection. The interfaces and data flow among these functions are shown in
Figure 6.4.

Plan

Assessor
Plan

Generator

NavState

ResolutionTrj

Conflict (Track)

Route

Plan_memory

Plan_new

Plan_old

NavState
Plan

Selector

PlanRisk_new

PlanRisk_old

ProjectedState

ReferenceTrj

Plan_best

Memory

Store

Figure 6.4: Trajectory Manager architecture, consisting of Plan Generator, Plan Asses-
sor and Plan Selector.

In particular, for the results presented in this work, the criteria used by the Plan
Assessor to assess the risk and performance of each resolution plan are as followed:

• Direct Collision Risk: a logical value indicating whether the initial state of a
resolution plan satisfies the collision condition as specified in (3.6.10);

• Trajectory Collision Risk: the maximum value of the obstacle constraint viola-
tion φo in (5.2.13) over the whole plan;

• Trajectory Flyability Risk: the maximum value of the performance constraint
violation φc, φx and φd in (5.2.13) over the whole plan;

• Trajectory Deviation Risk: the Euclidean distance between the current aircraft
position and the initial position of the resolution plan.

The metrics used in Figure 6.5 is the weighted sum of the above criteria and will
be used by the Plan Selector to make its decision about the better plan.

144

Integration of Trajectory Planning · § 6.2

i - 1

TM - Memory Store

Trajectory Generator

i -1 i

i +1

ExecutionTrj

ReferenceTrj

ResolutionTrj

Legend
: Execution Trajectory

: Reference Trajectory

Graphical Illustrations
Update

Time
Description

 : Host

 : Projected Intruder

 : Intruder

 : Sample Time

i

: Resolution Trajectory

ProjectedState

i

TM - Plan Generator Plan_new

Plan_old

TM - Plan Assessor PlanRisk_new = 1

i +2
PlanRisk_old = 10

i +1

TM - Plan Selector Plan_best

i +1

i +2

: Resolution Plan

 : Host

 : Projected Host

ExecutionTrj ProjectedState

Memory Store holds the previous

selected Resolution Plan,

otherwise it initializes the memory

with a straight-line trajectory via

projecting the navigation state.

i -1

i -1

i -1

i

i

i

i

i

i -1

i -1

i -1

i +1

i +1

i - 1~ i

The Resolution Trajectory

generated with the projected

state from the previous update is

used as an input to the Plan

Generator.

Plan Generator formulates two

plans by shifting the previous

Resolution Plan and Resolution

Trajectory one update step

forward.

Plan Assessor evaluates the two

plans using a given set of criteria.

Plan Selector converts the

criteria into a metric via

normalization and weighting and

selects the best plan accordingly.

Figure 6.5: The Trajectory Manager’s concept of operation.

145

Chapter 6 · System Integration and Performance Evaluation

6.2.3 Trajectory Tracker

The Trajectory Tracker takes as input the execution trajectory selected by the Tra-
jectory Manager and outputs the autopilot command required to track this trajectory.
Although the execution trajectory consists of the host’s desired position and veloc-
ity trajectories, only the position trajectory is required to be tracked accurately for a
successful resolution.

Figure 6.6 depicts the notation used for trajectory tracking, in which:

• H denotes the host aircraft and D denotes the current desired point on the execu-
tion trajectory;

• p, p, and e denote the position, velocity and error vectors;

• R denotes the resolution coordinate system and D denotes a desired path coor-

dinate system that has its origin at the current desired point and its x-direction
and z-direction aligned with the desired horizontal velocity and the downward
direction.

The architecture of the Trajectory Tracker is based on the notion of two degree of

freedom controller design (see Murray [2010, §1.1]). This is a standard technique in
linear control theory that separates a controller into a feedfoward compensator and a
feedback compensator, as shown schematically in Figure 6.7.

Firstly, the feedforward compensator generates the current desired (nominal) con-
trol and state signals, according to the execution trajectory. As the execution trajectory
is generated in the resolution coordinate system R and probably at an earlier time (as
shown in Figure 6.6), the navigation state needs to be transformed to the resolution
coordinate system and the execution trajectory needs to be interpolated according to
the current time. This gives the desired control ud , desired state xd and actual state xa:

ud =



VH

χ

VV

d

, xd =


pD
vD


, xa =


pH
vH


. (6.2.1)

where VH,d , VV,d , and χd are the cylindrical coordinates of the current desired iner-
tial velocity; pH (vH) and pD (vD) are the current actual and desired position (velocity)

146

Integration of Trajectory Planning · § 6.2

Figure 6.6: Notation used for trajectory tracking, see the first paragraph in §6.2.3 for
more details.

Feedforward

Compensator

Wind

Compensation

Mehanism

ExecutionTrj

NavState

ud

ufb

u Cmd.

vw
~

Inertial

Velocity

Cmd.

Wind

Velocity

Estimation

Aerodynamics

Velocity Cmd.

Figure 6.7: 2-Degree of Freedom (DoF) control architecture for the Trajectory Tracker.

147

Chapter 6 · System Integration and Performance Evaluation

vectors resolved in the resolution coordinate system.

Secondly, the feedback compensator corrects for errors between the desired and

actual position trajectories. This involves computing the error e =

[
ex ey ez

]T
be-

tween the desired and actual states, and expressing the error in the desired path coor-
dinate system D (according to the geometry given in Figure 6.6), that is:

e =
[
~rD/H

]D
= CD

R



[
~pD/R

]R︸ ︷︷ ︸
≡pD

−
[
~pH/R

]R︸ ︷︷ ︸
≡pH




= CD
R

(
pD − pH

)
, (6.2.2)

and the error rate ė =

[
ėx ėy ėz

]T
can be obtained by taking the derivative of (6.2.2):

ė = CD
R

(
ṗD − ṗH

)
+ ĊD

R
(
pD − pH

)
, (6.2.3)

where, using the cross-product matrix and Poisson’s kinematical equations (see Stevens
& Lewis [2003, p.22-28]), the derivative of a rotation matrix can be expressed with:

ĊD
R = −ΩD

D/RCD
R (6.2.4)

= −



0 χ̇d 0

− χ̇d 0 0

0 0 0





cos χd sin χd 0

− sin χd cos χd 0

0 0 0


=



− χ̇d sin χd χ̇d cos χd 0

− χ̇d cos χd − χ̇d sin χd 0

0 0 0


.

(6.2.5)

Three proportional-integral-derivative controllers (PID controllers) are then used
to correct for the errors:

• Along-track error ex to horizontal speed command VH, f b;

• Off-track error ey to ground track command χ f b;

• Vertical-track error ez to negative1 vertical speed command −VV, f b.

1The positive vertical-track error is pointing downward.

148

Integration of Trajectory Planning · § 6.2

Using the architecture in Figure 6.8 and the parameter values in Table 6.1, the PID
feedback controllers significantly reduce the tracking error, as shown in the verification
example in Figure 6.9.

Figure 6.8: Architecture of the PID controller with saturation and anti-windup.

Table 6.1: The parameter values for the PID controllers
in the Trajectory Tracker.

Kp Ki Kd upperlimit lowerlimit

ex → VH 2 1 8 15 [m/s] −15 [m/s]
ey → χ 1 0.025 5 9 [deg] −9 [deg]
ez → VV 1 1 15 10 [m/s] −10 [m/s]

Finally, it is assumed that a wind compensation mechanism is available to enable
the aircraft system to track the inertial velocity command. In this work, the aero-
dynamic velocity command, as required by the manoeuvre autopilot (see §3.4.3), is
obtained by subtracting the estimated wind (assumed to be available) from the inertial
velocity command:

Cmd. = u − ṽW . (6.2.6)

149

Chapter 6 · System Integration and Performance Evaluation

−300 0 300 600
0

1000

2000

3000

−100
0

100
200
300

East [m])

North [m]

A
llt

it
u

d
e

 [
m

]

Actual

Reference

Start

5 10 15 20 25 30
−200

−100

0
Error: RMSE: 63.8 [m]; MAX: 134.5 [m]

∆
 x

 [
m

]

5 10 15 20 25 30
−100

0

100
Error: RMSE: 40.9 [m]; MAX: 83.8 [m]

∆
 y

 [
m

]
5 10 15 20 25 30

−40

−20

0
Error: RMSE: 21.6 [m]; MAX: 27.1 [m]

∆
 z

 [
m

]
Time [s]

(a) Trajectory tracking without the feedback compensator.

−300 0 300 600
0

1000

2000

3000

−100
0

100
200
300

East [m])

North [m]

A
llt

it
u

d
e

 [
m

] Actual

Reference

Start

5 10 15 20 25 30
−2

0

2
Error: RMSE: 0.5 [m]; MAX: 1.2 [m]

∆
 x

 [
m

]

5 10 15 20 25 30
−10

0

10
Error: RMSE: 2.6 [m]; MAX: 5.4 [m]

∆
 y

 [
m

]

5 10 15 20 25 30
−5

0

5
Error: RMSE: 1.3 [m]; MAX: 2.4 [m]

∆
 z

 [
m

]

Time [s]

(b) Trajectory tracking with the feedback compensator.

0 5 10 15 20 25 30
0

100

∆
 d

 [
m

]

Time [s]

Without feedback

With feedback

(c) Distance error.

Figure 6.9: Comparision of two resulting trajectories with and without the feedback
compensator, validating the capability of the Trajectory Tracker.

150

Evaluation of the Proposed Approach · § 6.3

6.3 Evaluation of the Proposed Approach

6.3.1 Safety Performance Evaluation under the Ideal Condition

In order to solely reflect their capability in resolving conflicts, the deliberative and
reactive logics were tested with an ideal surveillance condition with no FOR restriction
and no estimation error. There are three candidate logics in this evaluation and they
were evaluated with 3800 encounters sampled from the standard encounter model. The
resulting simulated encounters would have led to an NMAC if the separation between
two aircraft was less than 100 ft apart vertically and 500 ft horizontally. The probability
of NMAC and the risk ratio were used as the safety performance measures. Table 6.2
summarizes the nomenclature and setting used for this evaluation.

Table 6.2: Experiment settings for the safety performance evaluation.

Group Settings/Terms Value/Description

Encounter Geometry Standard Encounter Set, see Table 4.2.
Sample Size 3800.

Encounter
Samples

Underlying Risk Original probability of NMAC is 0.42.

Ideal Condition See Figure 3.14.
FOR Switch 0 (No FOR restriction).

Testing
Conditions

Noise Level 0, see Table 3.7.

Reactive (10Hz) Geometry-based logic in §3.6.
Reactive (2Hz) Geometry-based logic in §3.6.

Candidate
Systems

Deliberative (2Hz) Trajectory-based logic in §6.2.

Pr(NM) Probability of NMAC (4.2.2).
Pr(NM|E) Probability of NMAC given an emergency con-

dition (6.3.3).
Performance
Measure

RR Risk Ratio (4.2.1).

Overall Safety Performance Table 6.3 summarizes the main results of this evalua-
tion. Without any collision avoidance logic, the probability of an NMAC is 4.22×10−1,
indicating that about four in ten testing encounters have resulted in an NMAC. All the

151

Chapter 6 · System Integration and Performance Evaluation

Table 6.3: Overall safety performance results of three candidate logics, compared
with the original performance with no conflict resolution logic.

Deliberative (2Hz) Reactive (2Hz) Reactive (10Hz) Without

N M 27 54 73 1605
Pr(NM) 7.11 × 10−3 1.42 × 10−2 1.92 × 10−2 4.22 × 10−1

RR 0.017 0.034 0.045 1

* Total number of testing encounters is 3800.

probabilities with conflict resolution logics are at least one order of magnitude smaller
than the original probability, showing that all candidate logics are effective in prevent-
ing NMAC. Comparing the reactive logics’ performance, the logic at 2 Hz performed
slightly better than that at 10 Hz, which is unexpected, i.e. to achieve a better perfor-
mance with a lower update rate, and this will be further discussed in the next paragraph.
The deliberative logic outperformed the other two reactive logics by at least 50% and
further reduced the NMAC probabilities to 7.11 × 10−3 and the risk ratio to 0.017.

Safety Performance in Emergencies A closer inspection to the resulting NMAC
encounters revealed that 1) the intruders in about 95% (i.e. 58 in 61 and 77 in 80) of
the NMAC encounters were manoeuvring; 2) in all the NMAC encounters, the linear
time-to-CPA tCl inCD, vertical range rV,CD and horizontal range rH,CD (at the time when
the conflict is first detected) satisfy either the time-emergency condition:

tCl inCD < 15 s, (6.3.1)

or the distance-emergency condition:

(
rH,CD < 2100 ft ∧ rV,CD < 1300 ft

)
. (6.3.2)

However, for the reactive logic at 10Hz, only 59% (43 in 73) of its resulting NMAC
satisfy the emergency conditions, indicating that this logic has failed significantly even
when the situation is not very “emergent”. Without detailed investigation, we cannot
conclude the reason for this but it is observed that while the higher rate logic performed
better than the lower rate one, in terms of aiming at just missing the intruder with

152

Evaluation of the Proposed Approach · § 6.3

a 2000 ft safety bubble as designed, it resulted in smaller separation and thus more
chance of an NMAC.

To compare the performance in emergency situations, the conditional probability
of an NMAC given an emergency condition is calculated with:

Pr(NM|E) =
Pr(NM ∩ E)

Pr(E)
. (6.3.3)

Tables 6.4 and 6.5 summarize the resulting conditional probabilities of an NMAC
given the specified conditions. When the thresholds are very small, both logics were
having difficulties to resolve the conflict, about six of ten of these emergency encoun-
ters have resulted in an NMAC. As the threshold was increasing, all three logic’s safety
performance were improving and, normally, the deliberative logic has the largest im-
provement while the reactive logic at 2Hz has the least. It is worth noting that, when
the linear time-to-CPA tCl inCD is less than 6 seconds, the reactive logic at 10 Hz per-
formed better that the reactive logic at 2 Hz and the deliberative logic. It is consistent
with the expectation that the higher update can be more effective in resolving conflicts.
The performance drop of the deliberative logic can be attributed to its time delay of 0.5
second, when the time delay is comparable to the linear time-to-CPA.

Table 6.4: Safety performance in distance-emergency situations.

Pr(NM|E) with E = rV,CD < T H1 [ft] ∩ rH,CD < T H2 [ft]

T H1 = 50 200 400 1300
T H2 = 750 1000 2000 2100

Reactive (2Hz) 6.7 × 10−1 5.0 × 10−1 2.9 × 10−1 2.3 × 10−1

Reactive (10Hz) 6.7 × 10−1 3.5 × 10−1 2.5 × 10−1 2.0 × 10−1

Deliberative (2Hz) 6.7 × 10−1 3.0 × 10−1 1.7 × 10−1 9.8 × 10−2

6.3.2 Robustness Analysis on Sensor Noise

In order to evaluate their robustness to feedback error, the three logics were tested with
noisy conditions subject to four noise levels and no FOR restriction. The same 3800
encounter geometry were used and the risk ratio and probability of unnecessary alert

153

Chapter 6 · System Integration and Performance Evaluation

Table 6.5: Safety performance in time-emergency situations.

Pr(NM|E) with E = tCl inCD < T H [s]

T H = 3 6 9 12

Reactive (2Hz) 6.4 × 10−1 5.4 × 10−1 3.1 × 10−1 1.7 × 10−1

Reactive (10Hz) 6.4 × 10−1 3.6 × 10−1 2.1 × 10−1 1.3 × 10−1

Deliberative (2Hz) 5.7 × 10−1 4.4 × 10−1 1.7 × 10−1 9.1 × 10−2

are used as performance measures. Table 6.6 summarizes the nomenclature and setting
used for this evaluation.

Table 6.6: Experiment settings for the robustness evaluation.

Group Settings/Terms Value/Description

Encounter Set See Table 4.2.Encounter
Samples Total Encounter 3800.

Noisy Condition See Figure 3.14.
FOR Switch 0 (No FOR restriction).Testing

Conditions Noise Level {0,1,3,5}, see Table 3.7.

Reactive (10Hz) Geometry-based logic in §3.6.
Reactive (2Hz) Geometry-based logic in §3.6.

Candidate
Systems

Deliberative (2Hz) Trajectory-based logic in §6.2.

RR Risk Ratio, see (4.2.1).Performance
Measure Pr(UA) Probability of Unnecessary Alert, see (4.2.3).

Sensitivity Curve Figure 6.10 summarizes the main evaluation results in the sensi-
tivity curves of the three logics, illustrating the effect of varying the noise level on the
Risk Ratio and on the probability of unnecessary alert rate. Each point on the sensi-
tivity curves was estimated using 4 independent sets of 950 simulated encounters (i.e.
randomly divide 3800 simulated encounters into 4 sets). The error bars indicate the
standard deviation of the estimates over the four sets.

It can be seen that:

154

Evaluation of the Proposed Approach · § 6.3

1. using the same conflict detection logic, the two Pr(UA) sensitivity curves of
lower update rate are exactly the same and the curve of higher rate is with larger
unnecessary alert probabilities as there is a greater chance to trigger an alert by
the noisy estimation;

2. the risk ratio is relatively insensitive to the noise until a level of about four and
there is no appreciable difference between the nominal case (noise level 1) and
the case without any uncertainty. This trend is consistent with the results by
Edwards [2012] in a parametric analysis of radar position uncertainty. Moreover,
for the reactive logic at 10Hz, the results with little noise have better performance
than those with no noise at the cost of more unnecessary alerts; and

3. the deliberative logic always outperformed the other two reactive logics, no mat-
ter whether in terms of the safety performance itself or the performance robust-
ness to the noise level. In particular, as the noise level (equivalent to the feedback
error) was increasing, the performance and its robustness of the deliberative logic
performed overwhelmingly better than the reactive ones’.

6.3.3 Evaluation of the Field-of-Regard-Restriction Effect

In order to evaluate the FOR-restriction effect on safety performance, the three log-
ics were tested with the noisy conditions (with noise but no FOR restriction) and the
realistic conditions (with noise and FOR restriction), subject to four different noise
levels, using the same 3800 encounter geometry. Different measures to evaluate the
safety performance, FOR-restriction effect, operational suitability and feedback qual-
ity are used and will be described as the results are presented. Table 6.7 summarizes
the nomenclature and setting used for this evaluation.

FOR Effect on Safety Performance Figure 6.11 summarizes the overall number
of the resulting NMACs (denoted by N M) for each of three logics in the coopera-
tive and non-cooperative cases. The bar chart also decomposes the overall N M into
three components: the number of Unresolved NMAC (U N), Induced NMAC (I N)
and Miss Detection (MD). Compared with their cooperative counterparts, the non-
cooperative cases not only have more NMACs due to miss detections but also have

155

Chapter 6 · System Integration and Performance Evaluation

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Noise Level [−]

R
R

 [
−

]

 (a) Risk ratio.

0 1 2 3 4 5
0.2

0.25

0.3

0.35

0.4

0.45

Noise Level [−]

P
r(

U
A

)
[−

]

(b) Unnecessary alert rate.

Reactive (10Hz)

Reactive (2Hz)

Deliberative (2Hz)

Figure 6.10: Deliberative and reactive logics’ sensitivity curves on Risk Ratio while
varying the feedback error level.

significantly more unresolved NMACs, mainly due to late detections and erroneous
estimation caused by the FOR restriction.

Furthermore, purely to compare the performance of the conflict resolution logics,
the miss detection encounters are excluded and the number of the resolution-related

NMACs is calculated:

N Mres = U N + I N = N − MD. (6.3.4)

Figure 6.12 shows the sensitivity curves of N Mres, for each of three logics in the
cooperative and non-cooperative cases. It can be seen that the shapes of two curves are
similar, indicating there is little impact of FOR on their robustness to noise; and the
deliberative logic also achieved the best safety performance and robustness to noise
level in the realistic conditions.

Lastly, to assess the impact of the FOR restriction on each candidate’s safety per-
formance, the FOR-induced NMAC event is defined, which is an encounter that leads
to an NMAC in the non-cooperative case but does not in the cooperative case. The

156

Evaluation of the Proposed Approach · § 6.3

Table 6.7: Experiment settings for the evaluation of FOR effect.

Group Settings/Terms Value/Description

Encounter Set See Table 4.2.Encounter
Samples Total Encounter 3800.

Realistic and Noisy
Condition

See Figure 3.14.

FOR Switch 0 and 1.
Testing
Conditions

Noise Level {0,1,3,5}, see Table 3.7.

Reactive (10Hz) Geometry-based logic in §3.6.
Reactive (2Hz) Geometry-based logic in §3.6.

Candidate
Systems

Deliberative (2Hz) Trajectory-based logic in §6.2.

N M Number (Num.) of NMAC.
N Mres Num. of resolution-related NMAC (6.3.4).
N MFOR Num. of FOR-induced NMAC, see page 134.
E (λava) Expected feedback availability (4.3.7).
E (λerr) Expected feedback error (4.3.8).
Pr(CoC) Probability of clear of conflict (4.3.6).

Performance
Measure

Pr(SC) Probability of secondary conflict (4.3.5).

number of FOR-induced NMACs, denoted by N MFOR, is calculated and the higher
the N MFOR, the more impact it has on the safety performance. Figure 6.13 shows the
N MFOR sensitivity curves of the three logics. It can be seen that the curve of the de-
liberative logic has the most N MFOR in all noise levels, indicating that the deliberative
logic is affected by FOR restriction the most. This observation is unexpected as the
deliberative logic, embedding a planning process, is expected to be less reliant on the
continuous feedback and thus to be less sensitive to the FOR restriction. This will be
further discussed in the next section.

FOR Effect on Feedback Quality Two metrics were introduced in §4.3 to measure
the feedback quality: the expected feedback availability E (λava) and the expected
feedback error level E (λerr). Figures 6.14 and 6.15 summarise and compare the sen-

157

Chapter 6 · System Integration and Performance Evaluation

Noise Level [−]

N
M

 [
−

]

 (A) Cooperative case.

0 1 3 5
0

50

100

200

300

400

500

Noise Level [−]

N
M

 [
−

]

 (B) Non−cooperative case.

0 1 3 5
0

50

100

200

300

400

500
Unresolved NMAC (UN)

Induced NMAC (IN)

Miss Detection (MD)

NM = MD + IN + UN

NM
res

 = IN + UN

(a) Deliberative logic at 2 Hz.

Noise Level [−]

N
M

 [
−

]

 (A) Cooperative case.

0 1 3 5
0

50

100

200

300

400

500

Noise Level [−]

N
M

 [
−

]

 (B) Non−cooperative case.

0 1 3 5
0

50

100

200

300

400

500

(b) Reactive logic at 2 Hz..

Noise Level [−]

N
M

 [
−

]

 (A) Cooperative case.

0 1 3 5
0

50

100

200

300

400

500

Noise Level [−]

N
M

 [
−

]

 (B) Non−cooperative case.

0 1 3 5
0

50

100

200

300

400

500

(c) Reactive logic at 10 Hz..

Figure 6.11: NMAC events decomposition for the three candidate logics.

158

Evaluation of the Proposed Approach · § 6.3

0 1 2 3 4 5
0

100

200

300

400

500

600

Noise Level [−]

N
M

re
s
 [

−
]

(a) Cooperative case.

0 1 2 3 4 5
0

100

200

300

400

500

600

Noise Level [−]

N
M

re
s
 [

−
]

(b) Non−cooperative case.

Reactive @10Hz

Reactive @2Hz

Deliberative @2Hz

Figure 6.12: Sensitivity curves of probability of resolution-related NMAC, while vary-
ing the noise level.

0 1 2 3 4 5
60

65

70

75

80

85

90

95

100

105

110

Noise Level [−]

N
M

F
O

R
 [

−
]

Reactive @10Hz

Reactive @2Hz

Deliberative @2Hz

Figure 6.13: Sensitivity curves of probability of FOR-related NMAC, while varying
the noise level.

159

Chapter 6 · System Integration and Performance Evaluation

sitivity curves of the E (λava) and E (λerr), for the three logics in both cooperative and
non-cooperative cases.

In the cooperative case, the feedback is always available and therefore the feed-
back error is proportional to the noise level. This trend remains the same in the non-
cooperative case. Moreover, in the non-cooperative case, the feedback availability
were decreased from 1 to about 0.9 and to about 0.75 for the reactive and deliberative
logic, respectively, due to the FOR restriction. This decrease in availability has led
to the increase in the feedback error, which is manifested in the deliberative logic’s
feedback error level.

FOR Effect on Operational Suitability Two metrics were introduced in §4.3 to
measure the operational suitability: the probability of clear of conflict Pr(CoC) and
the probability of secondary conflict Pr(SC). The bigger the Pr(CoC) (or the smaller
the Pr(SC)), the better the system performance is.

Figures 6.16 and 6.17 summarise and compare the sensitivity curves of the Pr(CoC)
and Pr(SC), for the three logics in both cooperative and non-cooperative cases. The
Pr(CoC) figure shows the typical trend that the performance would decline in the non-
cooperative case and this decline becomes more severe as the noise level increases;
while the Pr(SC) figure shows the opposite that the better performance is found in
the non-cooperative case, i.e. with a smaller probability of secondary conflict. This
is because there are more chances to trigger the conflict detection logic by the noisy
feedback in the cooperative case.

More importantly, the figure shows that the deliberative logic has a higher probabil-
ity of Clear of Conflict and smaller probability of Secondary Conflict than the baseline
method, indicating that the deliberative logic can choose a safer terminal state to issue
a CoC.

160

Evaluation of the Proposed Approach · § 6.3

0 1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Noise Level [−]

E
x
p

e
c
te

d
 F

e
e

d
b

a
c
k
 A

v
a

ila
b

ili
ty

 [
−

]

(a) Non−cooperative Situations.

0 1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Noise Level [−]

E
x
p

e
c
te

d
 F

e
e

d
b

a
c
k
 A

v
a

ila
b

ili
ty

 [
−

]

(b) Cooperative Situations.

Reactive @10Hz

Reactive @2Hz

Deliberative @2Hz

Figure 6.14: Sensitivity curves of expected feedback availability level, while varying
the noise level.

0 1 2 3 4 5
0

1

2

3

4

5

Noise Level [−]

E
x
p

e
c
te

d
 F

e
e

d
b

a
c
k
 E

rr
o

r
L

e
v
e

l
[−

]

(a) Non−cooperative Situations.

0 1 2 3 4 5
0

1

2

3

4

5

Noise Level [−]

E
x
p

e
c
te

d
 F

e
e

d
b

a
c
k
 E

rr
o

r
L

e
v
e

l
[−

]

(b) Cooperative Situations.

Reactive @10Hz

Reactive @2Hz

Deliberative @2Hz

Figure 6.15: Sensitivity curves of expected feedback error level, while varying the
noise level.

161

Chapter 6 · System Integration and Performance Evaluation

0 1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

Noise Level [−]

P
ro

b
a

b
ili

ty
 o

f
C

le
a

r
o

f
C

o
n

fl
c
it

(a) Non−cooperative Situations.

0 1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

Noise Level [−]

P
ro

b
a

b
ili

ty
 o

f
C

le
a

r
o

f
C

o
n

fl
c
it

(b) Cooperative Situations.

Reactive @10Hz

Reactive @2Hz

Deliberative @2Hz

Figure 6.16: Sensitivity curves of probability of clear of conflict, while varying the
noise level.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

Noise Level [−]

P
ro

b
a

b
ili

ty
 o

f
S

e
c
o

n
d

a
ry

 C
o

n
fl
ic

t
[−

]

(a) Non−cooperative Situations.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

Noise Level [−]

P
ro

b
a

b
ili

ty
 o

f
S

e
c
o

n
d

a
ry

 C
o

n
fl
ic

t
[−

]

(b) Cooperative Situations.

Reactive @10Hz

Reactive @2Hz

Deliberative @2Hz

Figure 6.17: Sensitivity curves of probability of secondary conflict, while varying the
noise level.

162

Discussions with Example Encounters · § 6.4

6.4 Discussions with Example Encounters

This section performs a closer inspection of four phenomena—the ineffectiveness of
the emergency strategy, tendency to touch the protected volume, parallel-track encoun-
ters and field-of-regard effect—observed from the analysis of the resulting NMACs.

6.4.1 Ineffectiveness of the Emergency Strategy

As described in the conflict resolution logic on page 65, if the relative range of the in-
truder is smaller than the radius of the safety bubble (2000 ft in the current implemen-
tation), an emergency strategy will be used. Figure 6.19 shows an example encounter
in which the emergency strategy is used but failed. As can be seen from the result of
the reactive logic in figure (a), despite the resolution command to turn right at about
32 seconds, the close encounter still resulted in an NMAC at 40 seconds. Figure 6.18
shows the detail of the encounter geometry and explanation of the decision to turn right
in the emergency strategy. On the other hand, the deliberative logic in Figure 6.19b
succeeds in preventing the eight-second-ahead NMAC by issuing a relatively complex
resolution to simultaneously turn left, climb and decelerate.

−2000−1500−1000 −500 0 500

−2500

−2000

−1500

−1000

−500

0

TestID:
F
0

T
0

C
1

M
v3

1E
1059

 t
CD,1

 = 32.0 [s]

East [ft]

−−− Resolution 1−−−
NMAC: 	 1 	 [−]
 md: 	 238 	 [ft]
 vmd: 	 61 	 [ft]
 hmd: 	 230 	 [ft]
t
CPA

: 	 40 	 [s]

θ
app

: 	 −47 	 [deg]

N
o
rt

h
 [
ft
]

0 10 20 30 40 50
8000

8500

9000

A
lt
it
u
d
e
 [
ft
]

−15000 −10000 −5000 0 5000
−15000

−10000

−5000

0

5000

TestID:
F
0

T
0

C
2

M
v3

1E
1059

 t
CD,2

 = 32.0 [s]

East [ft]

−−− Resolution 2−−−
NMAC: 	 0 	 [−]
 md: 	 516 	 [ft]
 vmd: 	 114 	 [ft]
 hmd: 	 504 	 [ft]
t
CPA

: 	 39 	 [s]

θ
app

: 	 −84 	 [deg]

N
o
rt

h
 [
ft
]

0 10 20 30 40 50
−50

0

50

100

G
ro

u
n
d
 T

ra
c
k
 [
d
e
g
]

0 10 20 30 40 50
300

305

310

315

320

G
ro

u
n
d
 S

p
e
e
d
 [
ft
/s

]

Time [s]
0 10 20 30 40 50

0

10

20

30

V
e
rt

ic
a
l
S

p
e
e
d
 [
ft
/s

]

Time [s]

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

F
O

R
 B

o
o
le

a
n
 [
−

]

Start of encounter

CPA

Time of conflict detected, t
CD

Host original state

Host resolution − 1

Host resolution − 2

Intr. true state

Intr. state in Conflict (Tracker)

(a) Closer look of the resulting
NMAC geometry.

(b) Resolution decision of the emer-
gency strategy.

Figure 6.18: Details of the example encounter in Figure 6.19, while using the reactive
logic’s emergency strategy.

163

Chapter 6 · System Integration and Performance Evaluation

−15000 −10000 −5000 0 5000
−15000

−10000

−5000

0

5000

(a) Bird−eye view of Resolution 1, t
CD,1

 = 32.0 [s].

 TestID =
F
0

T
0

C
1

M
v3

1E
1059.

East [ft]

−−− Resolution 1−−−
NMAC: 	 1 	 [−]
 md: 	 238 	 [ft]
 vmd: 	 61 	 [ft]
 hmd: 	 230 	 [ft]
t
CPA

: 	 40 	 [s]

θ
app

: 	 −47 	 [deg]

N
o

rt
h

 [
ft

]

0 10 20 30 40 50
8000

8500

9000

A
lt
it
u

d
e

 [
ft

]

−15000 −10000 −5000 0 5000
−15000

−10000

−5000

0

5000

(b) Bird−eye view of Resolution 2, t
CD,2

 = 32.0 [s].

 TestID =
F
0

T
0

C
2

M
v3

1E
1059.

East [ft]

−−− Resolution 2−−−
NMAC: 	 0 	 [−]
 md: 	 516 	 [ft]
 vmd: 	 114 	 [ft]
 hmd: 	 504 	 [ft]
t
CPA

: 	 39 	 [s]

θ
app

: 	 −84 	 [deg]

N
o

rt
h

 [
ft

]

0 10 20 30 40 50
−50

0

50

100

G
ro

u
n

d
 T

ra
c
k
 [

d
e

g
]

0 10 20 30 40 50
300

305

310

315

320

G
ro

u
n

d
 S

p
e

e
d

 [
ft

/s
]

Time [s]
0 10 20 30 40 50

0

10

20

30

V
e

rt
ic

a
l
S

p
e

e
d

 [
ft

/s
]

Time [s]

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

F
O

R
 B

o
o

le
a

n
 [

−
]

Start of encounter

CPA

Time of conflict detected, t
CD

Host original state

Host resolution − 1

Host resolution − 2

Intr. true state

Intr. state in Conflict (Tracker)

Ineffectiveness of
emergency strategy

Figure 6.19: Example encounter illustrating a failure case when using the reactive
logic’s emergency strategy. Resolution 1 is the reactive logic in cooperative cases.
Resolution 2 is the deliberative logic in cooperative cases.

164

Discussions with Example Encounters · § 6.4

6.4.2 Conservativeness in Uncertainty Propagation

The deliberative logic uses a more conservative approach to propagate the intruder
uncertainty than the reactive logic. The deliberative logic uses an uncertainty bound
that is growing with time and the resulting resolution manoeuvre tends to move away
from the area to which the intruder is possibly travelling, as shown in Figure 6.20a.
Figure 6.21 shows an example encounter and compares the resulting resolution tra-
jectories of the two logics. Compared with the reactive logic’s resolution trajectory
(from the bird-eye view and the vertical profile), the deliberative logic has resulted in
not only larger separation with the intruder but also more deviation from the original
route. Although an optimization process in the deliberative logic is applied to mini-
mize the route deviation (and other cost), the near-optimal solution obtained from the
trajectory planning algorithm would be inevitably subject to this conservativeness.

Despite the possibility of larger route deviation, it pays to be conservative in terms
of robustness. With this conservative approach to propagate uncertainty, the delib-
erative logic is shown to be more robust to high level of intruder uncertainty (see
Figure 6.10). While this empirical approach is chosen because of its simple imple-
mentation (i.e. it uses a fixed set of empirical parameters to control the uncertainty
margin and its growing rate), there exist other approaches to propagate the uncertainty
in a more systematic manner (such as the probabilistic approach Kochenderfer et al.

[2011] and the worse-case approach based on the level set Bayen et al. [2003]). Utiliz-
ing the more systematic approach should be able to provide more accurate uncertainty
propagation at the cost of additional computation. The possible performance gain by
utilizing the more systematic approach is left for future study.

165

Chapter 6 · System Integration and Performance Evaluation

(a) Reactive logic. (b) Deliberative logic.

Figure 6.20: Comparison of two uncertainty propagation approaches.

166

Discussions with Example Encounters · § 6.4

−1 −0.5 0 0.5 1

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

(a) Bird−eye view of Resolution 1, t
CD,1

 = 10.0 [s].

 TestID =
F
0

T
0

C
2

M
v3

1E
0204.

East [ft]

−−− Resolution 1−−−
NMAC: 	 0 	 [−]
 md: 	 2811 	 [ft]
 vmd: 	 321 	 [ft]
 hmd: 	 2792 	 [ft]
t
CPA

: 	 41 	 [s]

θ
app

: 	 −92 	 [deg]

N
o

rt
h

 [
ft

]

0 10 20 30 40 50
8000

8500

9000

9500

A
lt
it
u

d
e

 [
ft

]

−1 −0.5 0 0.5 1

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

(b) Bird−eye view of Resolution 2, t
CD,2

 = 10.0 [s].

 TestID =
F
0

T
0

C
1

M
v3

1E
0204.

East [ft]

−−− Resolution 2−−−
NMAC: 	 0 	 [−]
 md: 	 1238 	 [ft]
 vmd: 	 87 	 [ft]

 hmd: 	 1235 	 [ft]
t
CPA

: 	 40 	 [s]

θ
app

: 	 −155 	 [deg]

N
o

rt
h

 [
ft

]

0 10 20 30 40 50
−100

0

100

200

G
ro

u
n

d
 T

ra
c
k
 [

d
e

g
]

0 10 20 30 40 50
300

350

400

G
ro

u
n

d
 S

p
e

e
d

 [
ft

/s
]

Time [s]
0 10 20 30 40 50

−20

0

20

40

V
e

rt
ic

a
l
S

p
e

e
d

 [
ft

/s
]

Time [s]

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

F
O

R
 B

o
o

le
a

n
 [

−
]

Start of encounter

CPA

Time of conflict detected, t
CD

Host original state

Host resolution − 1

Host resolution − 2

Intr. true state

Intr. state in Conflict (Tracker)

Tendency to move
away from the intruder

Tendency to move
toward the intruder

Figure 6.21: Example encounter illustrating the conservativeness of the uncertainty
propagation approach used. Resolution 1 is the deliberative logic and Resolution 2 is
the reactive.

167

Chapter 6 · System Integration and Performance Evaluation

6.4.3 Parallel-Track Results

Among the failures cases of the reactive logic, there is a type of resulting NMAC en-
counter, referred to as parallel-track results, that accounts for a considerable proportion
of the resulting NMACs in our testing. Figure 6.23 shows one example encounter of
the parallel-track results. As can be seen from the Resolution 1’s bird-eye view and
ground track profile, the reactive logic, considering an intruder coming from behind on
the left-hand side, commanded a resolution manoeuvre to turn right; however, given
that particular geometry, the host ended up travelling in parallel to the intruder at about
30 seconds. In this parallel situation, the geometric solution becomes ineffective and
finally resulted in an NMAC at about 42 seconds.

To summarize, Figure 6.22 depicts the observed casual chain from the particular
“near-parallel” geometry to the resulting NMAC encounters, for both the cooperative
and non-cooperative cases. It is worth noting that, according to the rules of the air, the
overtaking traffic, which is supposed to have the other aircraft in his FOR, should give
way to avoid the NMAC in those situations.

Intruder travelling in the direction

similar to the intended route.

Overtaking traffic

coming from behind.

Tendency of

touching the

protected volume

Parallel-Track

Situation

Singlarities of

geometric solution

Manoeuvring

Intruder

NMAC

Field-of-Regard

Restriction

Miss Detection/

Late Detection

NMAC

Near Parallel Geometry

Cooperative Case Non-cooperative Case

Figure 6.22: An observed causal chain from the near-parallel geometry to the resulting
NMAC encounters.

168

Discussions with Example Encounters · § 6.4

−3000 −2000 −1000 0 1000
−15000

−10000

−5000

0

5000

(a) Bird−eye view of Resolution 1, t
CD,1

 = 24.0 [s].

 TestID =
F
0

T
0

C
1

M
v3

1E
0376.

East [ft]

−−− Resolution 1−−−
NMAC: 	 1 	 [−]
 md: 	 222 	 [ft]
 vmd: 	 57 	 [ft]
 hmd: 	 214 	 [ft]
t
CPA

: 	 42 	 [s]

θ
app

: 	 0 	 [deg]

N
o

rt
h

 [
ft

]

0 10 20 30 40 50
8000

8500

9000

9500

10000

A
lt
it
u

d
e

 [
ft

]

−3000 −2000 −1000 0 1000
−15000

−10000

−5000

0

5000

(b) Bird−eye view of Resolution 2, t
CD,2

 = 24.0 [s].

 TestID =
F
0

T
0

C
2

M
v3

1E
0376.

East [ft]

−−− Resolution 2−−−
NMAC: 	 0 	 [−]
 md: 	 641 	 [ft]
 vmd: 	 389 	 [ft]
 hmd: 	 510 	 [ft]
t
CPA

: 	 33 	 [s]

θ
app

: 	 −26 	 [deg]

N
o

rt
h

 [
ft

]

0 10 20 30 40 50
−40

−20

0

20

G
ro

u
n

d
 T

ra
c
k
 [

d
e

g
]

0 10 20 30 40 50
250

300

350

G
ro

u
n

d
 S

p
e

e
d

 [
ft

/s
]

Time [s]
0 10 20 30 40 50

−50

0

50

V
e

rt
ic

a
l
S

p
e

e
d

 [
ft

/s
]

Time [s]

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

F
O

R
 B

o
o

le
a

n
 [

−
]

Start of encounter

CPA

Time of conflict detected, t
CD

Host original state

Host resolution − 1

Host resolution − 2

Intr. true state

Intr. state in Conflict (Tracker)

Parallel Track

Figure 6.23: Example encounter illustrating the parallel-track result. Resolution 1 is
the reactive logic in non-cooperative cases. Resolution 2 is the deliberative logic in
non-cooperative cases.

169

Chapter 6 · System Integration and Performance Evaluation

6.4.4 Field-of-Regard-Restriction Effects

This section discusses two initially unexpected observations found in §6.3.3: 1) despite
the introduction of the intruder invisibility cost in the trajectory planner (see 5.2.4), it is
found in Figure 6.15 that the feedback availability with the deliberative logic is worse
than those with the reactive logics; and 2) although the overall performance of the
deliberative logic, under the FOR restriction, is better than those of the reactive logics,
it appears in Figure 6.13 that the FOR restriction has more impact on the deliberative
logic’s safety performance than on the reactive logics’.

Figure 6.25 shows an example encounter illustrating the effect of FOR restriction.
Compared with those of the Resolution 1 (reactive logic), the Resolution 2’s vertical
speed, ground track and ground speed profiles show that the resolution from the de-
liberative logic required more manoeuvring, so that more separation (as shown in the
bird-eye view and the altitude profile) could be achieved to accommodate the uncer-
tainty caused by the high level of noise (as shown in the bird-eye views). As a result of
more manoeuvres, the intruder was beyond the host FOR more often; and as annotated
in the Figure 6.25, the error in the estimation of the intruder’s position also became
significantly larger as the intruder was beyond the FOR. The above observations are
explained by the observed causal chain as shown in Figure 6.24.

Figure 6.24: An observed causal chain illustrating the effect of FOR restriction on the
feedback quality and safety performance.

170

Discussions with Example Encounters · § 6.4

−15000 −10000 −5000 0 5000
−1.5

−1

−0.5

0

0.5

1
x 10

4

(a) Bird−eye view of Resolution 1, t
CD,1

 = 12.5 [s].

 TestID =
F
1

T
5

C
1

M
v3

1E
1029.

East [ft]

−−− Resolution 1−−−
NMAC: 	 1 	 [−]
 md: 	 458 	 [ft]
 vmd: 	 80 	 [ft]
 hmd: 	 451 	 [ft]
t
CPA

: 	 40 	 [s]

θ
app

: 	 −167 	 [deg]

N
o

rt
h

 [
ft

]

0 10 20 30 40 50
6000

7000

8000

9000

A
lt
it
u

d
e

 [
ft

]

−15000 −10000 −5000 0 5000
−1.5

−1

−0.5

0

0.5

1
x 10

4

(b) Bird−eye view of Resolution 2, t
CD,2

 = 12.5 [s].

 TestID =
F
1

T
5

C
2

M
v3

1E
1029.

East [ft]

−−− Resolution 2−−−
NMAC: 	 0 	 [−]
 md: 	 1552 	 [ft]
 vmd: 	 34 	 [ft]

 hmd: 	 1552 	 [ft]
t
CPA

: 	 40 	 [s]

θ
app

: 	 −130 	 [deg]

N
o

rt
h

 [
ft

]

0 10 20 30 40 50
−100

0

100

200

G
ro

u
n

d
 T

ra
c
k
 [

d
e

g
]

0 10 20 30 40 50
250

300

350

400

G
ro

u
n

d
 S

p
e

e
d

 [
ft

/s
]

Time [s]
0 10 20 30 40 50

−50

0

50

V
e

rt
ic

a
l
S

p
e

e
d

 [
ft

/s
]

Time [s]

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

F
O

R
 B

o
o

le
a

n
 [

−
]

Start of encounter

CPA

Time of conflict detected, t
CD

Host original state

Host resolution − 1

Host resolution − 2

Intr. true state

Intr. state in Conflict (Tracker)

Linear Projection
while out of FOR

Figure 6.25: Example encounter illustrating the FOR effect: 1) the effect of manoeu-
vring on feedback availability; and 2) the effect of feedback availability on feedback
error. Resolution 1 is the reactive logic (at 2Hz) and Resolution 2 is the deliberative
logic. Both are in non-cooperative cases with noise at level 5.

171

Chapter 6 · System Integration and Performance Evaluation

6.5 Summary

This chapter has presented the three-layer architecture used to integrate the trajectory
planner into the collision avoidance logic. The three components in each layer have
been described in detail with their interfaces and concepts of operations. The examples
for each component to verify their implementations have also been shown. In partic-
ular, the trajectory planner has been implemented in MATLAB executables and the
computation time has been reduced by 10 times to about 0.5 seconds.

The integrated prototype has been tested with Monte Carlo simulations with 3800
encounter geometries under 8 different surveillance conditions (resulting in 30400 test
cases in total) and the results have been compared with those of the baseline logic,
which uses the geometric method in a reactive manner as opposed to the deliberative
manner of the integrated system. It is encouraging to observe that the deliberative
conflict resolution logic, despite a 0.5 second latency, has better safety performance
under all the testing surveillance conditions and it is significantly more robust to the
sensor noise.

Furthermore, closer inspection of the resulting NMAC encounters indicates that 1)
most failure cases of the baseline reactive logic is attributed to the ineffectiveness of its
emergency resolution strategy; 2) the deliberative logic with a conservative approach
to propagate the uncertainty achieved better robustness at the cost of larger route devi-
ation; 3) the deliberative logic, using a growing uncertainty bound around the intruder,
significantly outperformed the reactive logic in the near-parallel-track situations; and
4) the deliberative logic achieved better safety and robustness performance even when
its feedback quality is worse than those of the reactive logic (due to larger degree of
manoeuvring), indicating a larger degree of robustness to feedback error.

It is worth noting that the sample size of testing encounters is small compared
with that required the international standard [ICAO, 2007] and they are obtained under
the following conditions: 1) no wind, 2) no navigation error, 3) assuming a global
coordinate is available, and 4) with ideal autopilot dynamic of the first order. As the
performance of the trajectory-based logic is expected to rely on the accuracy of the
navigation state and the trajectory tracking performance considerably, the robustness
to these uncertainties would need to be further assessed.

172

Chapter 7

Conclusions

The aim of this thesis is to develop a real-time trajectory planning algorithm for a
novel UAV collision avoidance logic and to determine the integrated logic’s feasibility,
merits and limitations for practical applications. This chapter draws conclusion on
the proposed logic’s feasibility, merits and limitations, outlines the main deliverables
of this work, highlights the contributions to knowledge and suggests areas for further
development.

7.1 Feasibiliy, Mertis and Limitations

Table 7.1 summarizes the objectives, findings and conclusions of the five simulation
experiments presented in this thesis. These are the underpinnings to support the feasi-
bility and potential benefits of the proposed approach. The areas that required further
research will also be highlighted in this section.

Feasibility The main result of the initial feasibility study is summarized in Table 7.2,
from which it can be seen that:

• The proposed trajectory planning method is able to achieve an update rate of 2Hz
with a standalone executable running in Simulink in the laptop environment. For
reference, ACAS X is expected to operate at 1Hz [Kochenderfer et al., 2012] and
MIDCAS [2012] targets at a update rate of 5Hz for collision avoidance.

173

Chapter 7 · Conclusions

• The testing results shows that the proposed approach, despite a 0.5 seconds com-
putation latency for trajectory planning, outperformed the baseline approach in
terms of safety performance and robustness to sensor and feedback error. The
baseline approach is drawn from the literature and its effectiveness is demon-
strated with a flight test campaign presented in Luongo et al. [2011].1

• The resulting risk ratios of the proposed approach is comparable with the ref-
erence threshold used in the example feasibility analysis given by Cole et al.

[2013].

Merits Based on the data given in Table 7.1 and the author’s opinions, the following
potential benefits of the proposed approach are expected:

• With the capability to plan and perform a larger range of high performance avoid-
ance manoeuvres (i.e more resolution actions available), the proposed approach
should have better safety performance, especially when the time or distance sep-
aration is small.

• Given more resolution actions, the proposed approach could issue a more timely
collision alert than the methods with less resolution alternatives could. This
could reduce the nuisance alerts by filtering the early false alarms caused by
noisy measurement and/or uncertain intruder motion.

• The proposed approach could achieve better robustness to sensor noise and feed-
back error by employing a relatively more conservative method to propagate the
intruder uncertainty. The flexibility in resolution actions could compensate for
the conservativeness in intruder state propagation.

• Activating a safe collision manoeuvre in a timely manner (enabled by high per-
formance manoeuvres) could reduce the requirement on sensor performance and
thus reducing the operational cost of SAA systems.

1Note, however, that the method was implemented according to the available description given by
Fasano et al. [2008] and Carbone et al. [2006] and only validated with the testing shown in this thesis.
The implementation may not completely reflect the baseline method’s effectiveness.

174

Feasibiliy, Mertis and Limitations · § 7.1

Limitations On the other hand, the following limitations of the proposed approach
require further research:

• The trajectory planning algorithm will give the best, not necessarily the optimal,
trajectory obtained from an iterative process in real time, however, in some very
restrictive situations, the resulting trajectory may not be able to meet all the given
constraints. Some additional measures may be introduced to prevent the aircraft
from entering these restrictive situations, e.g.[Patel & Goulart, 2010], but it is
left for future research.

• As there is no analytical solution for the formulated collision avoidance prob-
lem, the proposed logic can only be verified statistically rather than analyti-
cally. Moreover, it is more time-consuming to statistically verify the proposed
approach than other existing approaches. Specifically, the initial prototype is
currently able to run at 2Hz, while some other geometric approaches can run at
as fast as 50Hz.

• The conservativeness introduced by the uncertainty propagation methods may
cause scalability problems. As a collision avoidance logic should be able to
handle multiple intruders, the conservative projections of multiple intruders may
leave no room for the host aircraft to perform an efficient resolution manoeuvre.
Therefore, further analysis will be required to investigate the balance between
robustness, conservativeness and scalability.

• The complexity introduced by the trajectory planning algorithm and the addi-
tional components of the Trajectory Manager and Trajectory Tracker may in-
crease the difficulties to develop, verify and certify such a system.

175

Chapter 7 · Conclusions

Conclusion of the initial study on the feasibility and potential benefits

The data and analysis presented in this thesis has shown that real-time trajec-
tory planning for robust collision avoidance with high performance manoeuvres
is feasible and potentially beneficial to the development of collision avoidance
systems.

From the safety benefit perspective, the proposed approach is expected not only
to achieve better performance when the separation is small but also to pro-
vide a more timely collision avoidance manoeuvre. From the cost perspective,
considering the high-end processing capability is much cheaper than the high-
performance sensors, it would be sensible to develop an advanced algorithm
to alleviate the stringent sensor performance, and thus reducing the operational
cost. Although the development of a safety-critical avionics software with a
complex algorithm comes at a high price, the proposed approach is based on a
parametric aircraft model that can be easily adapted to a wide range of platforms,
implying that it may be able to make a great effort to accomplish something once
and for all.

Therefore, this study concludes that it would be worth to further investigate the
above limitations and to start looking at the possible issues in the verification
and certification process.

176

Contributions to Knowledge · § 7.2

7.2 Contributions to Knowledge

The key achievements of the work presented in this thesis have contributed to the below
two domains as followed:

Trajectory Planning:

• The formulation of an avoidance trajectory planning problem that accom-
modates the requirements of the flyability of combined manoeuvres and the
robustness to the intruder state uncertainty. Section 5.2 introduces a generic
aircraft performance model for the flyability of combined manoeuvres (§5.2.1),
an empirical quasi-worse-case projection model for the intruder state uncertainty
(§5.2.2) and a cost model for the intruder invisibility in §5.2.4. Although similar
models can be found in the existing problem formulations, the combination of
them is original.

• A trajectory planning algorithm that is able to provide an approximate solu-
tion to the formulated problem in real time. Although the algorithm is mainly
based on an inverse-dynamic direct method, algorithmic modifications are in-
troduced in §5.3 to improve the real-time performance (via the removal of the
virtual domain) and to adapt the algorithm to the collision avoidance problems
(via fixing the final time and freeing the other final states). Moreover, the solu-
tion space analysis and problem scaling have been carried out in §5.4 to further
reduce the computation time. The results presented in §5.5 and §6.2.1 show that
the low-level implementation of the algorithm is able to provide a usable avoid-
ance trajectory with a maximum computation time less than 0.5 seconds. The
main contribution here is to show that suitable algorithmic modifications can
be introduced to make the algorithm to run in real time while providing flyable
avoidance trajectories.

Collision Avoidance Logic:

• The introduction of a set of metrics to measure the operational suitability
of a collision avoidance logic and the feedback quality during the resolution

177

Chapter 7 · Conclusions

period. Sections 4.4.3 and 6.3.3 show how these newly introduced metrics can
be used to evaluate the logic’s operational suitability and to investigate the effects
of the Field of Regard restriction on the logic performance.

• A novel collision avoidance logic based on the three-layer architecture and
the real-time trajectory planning method. Whilst most existing methods tend
to trade off the details in the collision avoidance problems for a reactive-planning
logic (i.e. a logic combining the planning, decision making and guidance control
into a single process), this thesis proposes to separate the deliberative avoidance
trajectory planning from the reactive avoidance manoeuvre execution (§1.3 and
§6.2). The separation allows more details to be included in the planning pro-
cess (§5.2). The novelty of the proposed logic lies mainly in the application
of the three-layer architecture and the capability to perform real-time trajectory
planning.

• Demonstration of the feasibility and potential benefits of the proposed col-
lision avoidance logic. The preliminary analysis presented in §7.1 shows that
the proposed collision avoidance logic is feasible and has the potential to reduce
the risk of collision while achieving a lower nuisance alert rate than the exist-
ing approaches. This provides the motivation for the further development of the
proposed logic.

7.3 Dissemination of Results

The main deliverables as the results of the work presented in thesis are:

Software:

• A modelling, simulation, analysis and evaluation framework that can be used for
collision avoidance systems performance evaluation and safety analysis;

• A collision avoidance logic software that is based on the analytical solution of a
geometric collision avoidance problem;

178

Recommendations for Future Research · § 7.4

• A trajectory planning software capable of planning high performance collision
avoidance manoeuvres;

• A proof-of-concept software prototype that can be used to further develop a col-
lision avoidance logic based on the trajectory planning with high performance
manoeuvres.

Publication:

[1] C. Lai, J. Whidborne. (2012). Automated Return-to-Route Maneuvers for Un-
manned Aircraft Systems. In 2012 IEEE/AIAA 31st Digital Avionics Systems

Conference (DASC).

[2] C. Lai, J. Whidborne. (2011). Real-Time Trajectory Generation for Collision
Avoidance with Obstacle Uncertainty. In AIAA Guidance, Navigation, and Con-

trol Conference.

[3] C. Lai, M. Lone, P. Thomas, J. Whidborne, and A. Cooke. (2011). On-Board
Trajectory Generation for Collision Avoidance in Unmanned Aerial Vehicles. In
2011 IEEE Aerospace Conference.

[4] C. Lai, J. Whidborne. (2011). Safety-Guaranteed Trajectory Generation for Col-
lision Avoidance in UAVs. In 2011 26th International Conference on Unmanned

Air Vehicle Systems.

[5] C. Lai, J. Whidborne. (2010). Aircraft Route Re-Planning for a Pop-up Obstacle
Using a Direct Method. In 2010 UKACC International Conference on Control.

7.4 Recommendations for Future Research

Based on the initial study of the feasibility, merits and drawbacks of the proposed
collision avoidance logic, the following possible directions for further research are
recommended:

• A mechanism to trigger the automatic collision avoidance manoeuvre should
be developed. Although a simple geometric trigger mechanism is used in this

179

Chapter 7 · Conclusions

work, coupling the conflict resolution process with the conflict detection process
would be able to reduce the false alarms. For instance, Patel & Goulart [2010]
proposed and tested three trigger mechanisms based on the capability of real-
time trajectory planning.

• Analyses of the proposed logic’s robustness to the modelling error, trajectory
tracking performance and navigation state error should be performed. On one
hand, the logic performance should be dependent on the accuracy for the host
aircraft to execute the high-performance avoidance trajectory, while on the other,
the Trajectory Tracker has been introduced to compensate for the modelling error
and other external disturbance. Therefore, a more detailed robustness analyses,
like those carried out by Kochenderfer & Chryssanthacopoulos [2011], would
further demonstrate the effectiveness of the proposed logic.

180

Recommendations for Future Research · § 7.4

Table 7.1: Summary of the objectives, findings and conclusions of the five simulation
experiments in this thesis.

§4.4.2 Establishment of the baseline performance:
• The trade-off study (Figure 4.4) shows that the baseline method is able

to meet the notional requirement by trading-off the unnecessary alert rate.
With a tight alerting threshold (Table 4.5), the logic reduced the risk ratio
from 1 to 0.0211 and 0.0656, for the cooperative and non-cooperative cases.

• The baseline method is effective in preventing NMACs.

§4.4.3 Investigation of the Field-of-Regard restriction effect:
• Figures 4.6–4.8 quantitatively show that FOR restriction would reduce the

quality of the feedback to the collision avoidance logic, increase the risk of
collision and make the determination of the moment to issue a CoC more
challenging.

• Collision avoidance with non-cooperative sensing is more challenging due
to the FOR restriction effects as described above.

§6.3.1 Safety performance evaluation under ideal conditions:
• Table 6.3 shows that the proposed method outperformed the baseline

method in risk ratio by 50%. Tables 6.4 and 6.5 show that the proposed
method also performed better when the distance and time separations are
small.

• The proposed method is more effective in preventing NMACs, even when
the distance and time separations are small.

§6.3.2 Robustness analysis to sensor noise:
• Figure 6.10 shows that, while varying the noise level, the slope of the sen-

sitivity curve of the proposed method is smaller.
• The proposed method is significantly more robust to sensor noise.

§6.3.3 Evaluation of the FOR restriction effects:
• The FOR restriction had more impact on the proposed method’s safety per-

formance (Figure 6.13). Due to the FOR restriction, the feedback quality
to the logic has been decreased even more with the proposed method (Fig-
ures 6.14 and 6.15). The proposed method achieved better performance
in CoC rate and secondary conflict rate (Figures 6.16 and 6.17). Despite
the larger feedback error, the proposed method was able to achieved better
safety performance in all surveillance condtions (Figure 6.13).

• The proposed method is significantly more robust to feedback error and
more capable of determining a safe terminal state to issue a CoC.

181

Chapter 7 · Conclusions

Table 7.2: The main result of the initial feasibility study of the proposed
approach—based on a trajectory-planning method for robust collision avoidance
with high performance manoeuvres, as described in §1.3.

Surveillance Conditions Risk Ratio

(under nominal noise, given in Table 3.5) Baseline1 Proposed2

Cooperative 0.026* 0.015*

Non-Cooperative♥ 0.064 0.062
Non-Cooperative (Without Miss Detection)♠ 0.035* 0.033*

1 A geometric logic running at 2Hz in a reactive manner.
2 A trajectory-planning-based logic running at 2Hz in a deliberative manner,

with a 0.5 seconds computation latency.
♥ Tight alerting threshold values have been deliberative chosen for the conflict

detection mechanism so as to reflect the collision avoidance logic’s capability
of conflict resolution in emergency situations, see §4.4.2.

* A reference risk ratio threshold used in an initial feasibility by Cole et al.
[2013] is 0.05.
♠ The ICAO [2007] Standard Encounter Model is designed for the evaluation of

the systems with a cooperative surveillance capability, and it is observed from
the results that the intruders in most miss-detection encounters are hard to be
detected due the FOR restriction, e.g. the parallel-track situations described
in §6.4.3.

Remark This is an evaluation using 3800 encounter geometries from the ICAO
[2007] Standard Encounter Model (with 1615 original NMAC).

182

Recommendations for Future Research · § 7.4

183

Appendices

184

185

Appendix A

Notation

A.1 Definitions and Typefaces of Mathematical Objects

With respect to is denoted by the slash symbol (/), mostly used in a subscript.

Point is the mathematical model of a physical object whose spatial extension irrele-
vant.

It is in Monospace font, e.g. H denotes the center of mass of the host aircraft.

Frame of reference is a rigid body or set of rigidly related points than can be used
to establish distances and directions.

It is in Calligraphy font, e.g. N denotes the navigation frame.

Euclidean vector is an abstract geometrical object that has both magnitude and di-
rection. It exists independently of any coordinate system.

It is in bold and italic typeface with an overhead right arrow; and a subscript will
be used to give the specific definitions:

1. For a displacement vector: a point with respect to another point, e.g. ~rH/N denotes
the displacement vector of point H with respect to point N.

2. For a position vector: a point with respect to a frame, e.g. ~pH/N denotes the
position vector of point H with respect to (the fixed point N in) the frame N.

186

Definitions and Typefaces of Mathematical Objects · § A.1

3. For a velocity vector: a point with respect to a frame, e.g. ~vH/N denotes the
velocity vector of point H with respect to frame N.

4. For an acceleration vector: a point with respect to a frame, e.g. ~aH/N denotes the
acceleration vector of point H with respect to frame N.

Derivative of an Euclidean Vector is denoted by the symbol of the Euclidean vec-
tor, with a left superscript indicating the frame in which a derivative is taken, and
the dot notation indicating a derivative, e.g.

N
~̇p denotes the derivative of the position

vector, taken in frame N.

Coordinate system is a measurement system for locating points in space, set up
within a frame of reference.

It is in upper-case sans-serif font, and subscripted by one of the followings for
different types of coordinate systems:

1. For the spherical coordinate system: a lower-case sans-serif s, e.g. Bs denotes
the body-fixed spherical coordinate system.

2. For the (Cartesian/rectangle)1 coordinate system: either a lower-case sans-serif r
or no subscript symbol, e.g. Nr or N denotes the navigation (Cartesian) coordi-
nate system.

Coordinate vector is a column vector containing the coordinates and associated with
a particular coordinate system. An Euclidean vector can be expressed with different
coordinate vectors in the different coordinate systems.

It is in bold and italic typeface in square bracket, with a right superscript indicating
the corresponding coordinate system, e.g.

[
~pH/N

]N
.

To avoid overloading variable symbol, the notation will be simplified when there
is no danger of confusion: to drop the default navigation frame N and navigation
coordinate system N in the notation; for instance, the position vector ~pH/N can be
expressed in the navigation coordinate system N with the following coordinate vectors:

1The (Cartesian/rectangle) coordinate system is the default type of coordinate system in this thesis,
and the word ’Cartesian’ will be dropped when there is no danger of confusion.

187

Chapter A · Notation

[
~pH/N

]N
= pN
H/N or simply

[
~pH/N

]N
= pH. (A.1.1)

Coordinate subscription is in italic typeface used for subscription. Each coordinate
system has its own standard basis, which is a set of mutually orthogonal unit vectors,
for instance:

1. for Cartesian coordinate systems: 〈x̂, ŷ, ẑ〉.

2. for spherical coordinate systems: 〈r̂,φ̂, θ̂〉.

3. for cylindrical coordinate systems: 〈ρ̂,φ̂, ĥ〉.

4. for geographic coordinate systems: 〈N̂, Ê,D̂〉.

Each coordinate is simply a scalar, denoted by the coordinate vector symbol with a
subscript indicating the corresponding basis vector, e.g.:

pH =



pH,x

pH,y

pH,z


or pHs

H =



pHs
H,r

pHs
H,φ

pHs
H,θ


or pEc

H =



pHc
H,ρ

pHc
H,φ

pHc
H,h


. (A.1.2)

Vector is a general column vector as defined in linear algebra.

It is in bold and italic typeface, e.g. x is the state vector.

Direction Cosine Matrix is a matrix used to perform the coordinate transformation
between different Cartesian coordinate systems, e.g. CH

N from navigation coordinate
system to host coordinate system.

Coordinate Transformation Function is a function used to perform the coordinate
transformation among the rectangle, spherical and cylindrical coordinate system.

A vector~a, defined in frame A, can be transformed from the rectangular (Cartesian)
coordinates to its spherical coordinates with the following coordinate transformation
functions Ts

r : R3 → S: [
~a
]As = Ts

r

([
~a
]Ar

)
(A.1.3)

188

Definitions and Typefaces of Mathematical Objects · § A.1

where

[
~a
]As =



r

Φ

Θ


;

[
~a
]Ar =



x

y

z


; Ts

r =



√
x2 + y2 + z2

arctan(yx)

− arcsin(z
r)


.

189

Chapter A · Notation

190

Definitions and Typefaces of Mathematical Objects · § A.1

191

Appendix B

Aircraft System Model

B.1 Aircraft Performance Data

Based on the BADA [Nuic, 2012] and the data pack [Cooke, 2008], this section presents
the data of the Jetstream 31 aircraft performance model, which have been mentioned
in the Chapter 3 and Chapter 5.

Table B.1 summarizes the parameters used for the flight dynamics modelling (§3.4.1)
and for the collision avoidance logics (§3.6.2 and §5.2.2). Figure B.1 shows the flight
envelope regime used in this work. Figure B.2 shows the maximum load factor look-op
table model, which is derived from the aerodynamic force model and the ISA model.
Figure B.3 shows the n-V diagram used as the maximum load factor model used in the
trajectory planning algorithm, which is obtained from Figure B.2.

B.2 Verification Examples

This sections presents the example results to verify that the implemented model meet
the modelling requirements as specified in Section 3.4. Table B.1 shows the parameter
values used for this verification.

192

Verification Examples · § B.2

20 40 60 80 100 120 140 160 180 200 220
0

0.5

1

1.5

2

2.5

3
x 10

4 Flight Envelop of Interest for Jetstream 31 Aircraft

A
lt
it
u
d
e
,
h
 [
ft
]

Airspeed, V
a
 [m/s]

Ceiling

Stall

CL,ma x= 1.7215

MM O = 0.52

q̄max= 1.436e4P a

F light Enve lop

of Inte re st :

70m/s < V a < 150m/s
1000f t < h < 20000f t

Figure B.1: Flight envelop of the Jetstream 31 aircraft model used in this work.

60

80

100

120

140

160

0

0.5

1

1.5

2

x 10
4

1

1.5

2

2.5

Airspeed, V
a
 [m/s]

n
z
(V

a
,h)|

α=15 deg

Altitude, h [ft]

M
a

x
im

u
m

 N
o

rm
a

l
L

o
a

d
 F

a
c
to

r,
 n

z
,m

a
x
 [

−
]

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure B.2: The maximum load factor look-up table model.

193

Chapter B · Aircraft System Model

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

n
z
(V

a
)|

α=15 deg, h = 20000 [ft]

Airspeed, V
a
 [m/s]

M
a

x
im

u
m

 N
o

rm
a

l
L

o
a

d
 F

a
c
to

r,
 n

z
,m

a
x [

−
]

←V
a,O

 = 150V
a,A

 = 105 →

V
a,s

 = 70 →

← n
z,max

 = 0.0402*V
a
 − 1.7324

Figure B.3: The n-V diagram used as the maximum load factor model used in the
trajectory planning algorithm.

194

Verification Examples · § B.2

Table B.1: Aircraft performance model parameters.

Parameter Symbol Value Unit

Reference Mass m 6200 kg
Wing area S 25.2 m2

Max. altitude hmax 25000 ft
Max. airspeed Va,max 150 m/s
Min. airspeed Va,min 70 m/s
Max. vertical speed VV,max 2000 ft/min
Min. vertical speed VV,min -2000 ft/min
Max. angle of attack αmax 15 deg
Min. angle of attack αmin -3 deg
Max. bank angle µmax 45 deg
Min. bank angle µmin -45 deg
Max. bank angle rate µ̇max 15 deg/s
Min. bank angle rate µ̇min -15 deg/s
Max. structural load factor nstr

max 2.5 -

Max. airspeed for CR VCR
a,max 119 m/s

Min. airspeed for CR VCR
a,min 77 m/s

Max. vertical speed for CR VCR
V,max 1968 ft/min

Min. vertical speed for CR VCR
V,min -1968 ft/min

Transient and Tracking Performance: To investigate the model’s performance in
velocity command tracking, a set of aircraft models, with different time constant set-
tings, is commanded to track the step and ramp test input signals. Figure B.4 sum-
marises five step responses for the three command channels. It shows that the time
constant can be used to model the transient performance of the platform being tested.
Figure B.5 summarises the ramp responses of the model with the selected time con-
stants values. As excepted with all controllers with only the proportional term, the
ramp responses show constant steady-state errors in all three channels: the commands
were able to be tracked with a constant delay, which is determined by the time constant
as depicted by the data points.

195

Chapter B · Aircraft System Model

0 10 20 30 40 50 60 70 80 90 100
130

132

134

136

138

140

142

t [s]

V
a
 [
m

/s
]

Airspeed

← Max. Slope due to

 acceleration limit: 0.6 m/s
2

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

t [s]

χ
a
 [
d
e
g
]

Aircraft Heading angle

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

t [s]

γ
a
 [
d
e
g
]

Aerodynamic Flight−path angle

Step Cmd.
τ

V
 = 1.25

τ
V
 = 2.50

τ
V
 = 5.00

τ
V
 = 10.00

τ
V
 = 20.00

Step Cmd.
τ

χ
a

 = 0.50

τ
χ

a

 = 1.00

τ
χ

a

 = 2.00

τ
χ

a

 = 4.00

τ
χ

a

 = 8.00

Step Cmd.
τ

γ
a

= 0.50

τ
γ
a

= 1.00

τ
γ
a

= 2.00

τ
γ
a

= 4.00

τ
γ
a

= 8.00

Figure B.4: The step responses of three control channels: Airspeed, Aircraft Heading,
and Aerodynamic Flight-Path Angle.

196

Verification Examples · § B.2

0 5 10 15 20 25 30 35 40 45 50
130

135

140

145

150

155

160

X: 30
Y: 142

X: 25
Y: 142

t [s]

V
a
 [

m
/s

]

Airspeed

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

X: 25.2
Y: 60.6

X: 27.2
Y: 60.6

t [s]

χ
a
 [

d
e

g
]

Aircraft Heading angle

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

t [s]

γ
a
 [

d
e

g
]

Aerodynamic Flight−path angle

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

X: 25.2
Y: 6.06

X: 28.2
Y: 6.061

t [s]

V
s
 [

m
/s

]

Vertical speed

Ramp Cmd.

Reference
τ

V
 = 5.00

Ramp Cmd.

Reference
τ

χ
a

 = 2.00

Reference
τ

γ
a

= 3.00

Ramp Cmd.

Reference
τ

γ
a

 = 3.00

Cmd. limitation

Cmd. limitation

Figure B.5: The ramp responses of the three command channels.

197

Chapter B · Aircraft System Model

Attitude Estimation and Performance Limitations: In order to investigate the cor-
rectness of the attitude state and the performance limitation compliance, a series of
over-limited manoeuvre commands is used to simulate a flight at the edge of the flight
envelop. Figure B.6 shows the time history of the aircraft state and controls. The fig-
ure is mainly divided into four parts: Decelerated Only, Turn Only, Climb Only, and
Combined (involving all three control channels) manoeuvre.

Firstly, during the pure deceleration phase, the pitch attitude and the angle of attack
(denoted by θ and α, respectively) had increased in order to compensate for the reduced
dynamic pressure, so as to provide enough lift to maintain the level flight. This can
verify the correctness of the aerodynamic force model implementation. Furthermore,
the command limits, due to the given aircraft performance limitations, are also verified
by the saturation as shown in the Va and Vs diagrams.

Secondly, given a turn command of 60 degrees, as shown in the actual bank angle
µ history, the model reached it maximum bank of 45 degrees at the maximum rate of
15 degree per second. Furthermore, as illustrated in the actual normal factor nz his-
tory, it is desirable to generate more lift to maintain level flight while at the maximum
bank, however, a conservative1 nz limit prevents the nz (and thus α) from increasing.
Therefore, the vertical speed Vs had to decrease and reached its limit value.

Finally, similar analyses can be found in the climb and combined phases.

1see the V-n diagram in Appendix A

198

Verification Examples · § B.2

60

70

80

V
a
 [
m

/s
]

Command Limit

Manoeuvre Cmd.

Actual Response

0

30

60

χ
a
 [
d
e
g
]

−10

0

10

V
s
 [
m

/s
]

−45

0

45

φ
 [
d
e
g
]

−45

0

45

ψ
 [
d
e
g
]

Roll

Yaw

0

5

10

15

θ
 [
d
e
g
]

0

5

10

15

α
 [
d
e
g
]

Pitch

AOA

−2

0

2

4
x 10

4

T
 [
N

]

Performance Limit

Desired Cmd.

Actual Responses

−45

0

45

µ
 [
d
e
g
]

0 10 40 60 80 120
0

1

2

n
z
 [
−

]

t [s]
Level

Straight
Acc.
Only

Turn
Only

Climb
Only

Combined

Figure B.6: The responses for a three dimensional manoeuvre with simultaneous
changes in three control channels.

199

Chapter B · Aircraft System Model

200

Verification Examples · § B.2

201

Appendix C

Trajectory Planning Algorithm

Implementation Details

This appendix provides the implementation details of the trajectory planning algorithm
and presents the example trajectories of some infeasible solutions obtained from the
algorithm, so as to demonstrate the possibility to use these trajectories in the emergency
situations.

C.1 Hooke-Jeeves Algorithm

Based on the description and implementation by [Kelley, 1999, §8.3.1], this section
presents two algorithms for the pattern search method used for the work presented in
the thesis: Exploratory Move Algorithm C.1 and Hooke-Jeeves Algorithm C.2.

C.2 Algorithm Parameters

Table C.1 summarizes all the configurable parameters of the trajectory planning algo-
rithm used for the work presented in the thesis.

202

Algorithm Parameters · § C.2

Algorithm C.1: Exploratory Move hjexplore
Input: xB ∈ R

N ; // Initial Base point vector
xC ∈ R

N ; // Initial Centre point vector
f : RN → R ; // Objective function
h ∈ RNh ,hi+1 > hi ; // Search step size vector
V = [v1 · · · vN] ∈ RN×N ; // Search direction matrix

1 s f ← 0 ; // Initialization
2 f B ← f (xB) ; σ ← 1 ; // Evaluate Base point
3 xbest ← xB; fbest ← f B; // Set best point to Base point
4 xt = xC ; // Set temporary point to Centre point
5 for j ← 1 to N do // Perform exploration for each direction
6 p← xt + hv j ; f t ← f (p) ; σ ← σ + 1 ;
7 if f t ≥ f B then
8 p = xt − hv j ; f t ← f (p) ; σ ← σ + 1;
9 end

10 if f t < f B then
11 s f ← 1; xt ← p; f B = f t ;
12 end
13 if s f = 1 then
14 xbest = xt ; fbest ← f t ;
15 end
16 end

203

Chapter C · Trajectory Planning Algorithm Implementation Details

Algorithm C.2: Hooke-Jeeves Algorithm hjsearch
Input: x0 ∈ R

N // Initial point vector
f : RN → R // Objective function
h ∈ RNh ,hi+1 > hi // Search step size vector
V = [v1 · · · vN] ∈ RN×N // Search direction matrix
σmax // Maximum function evaluations
ε f // Stopping criterion in objective tolerance
f tar // Stopping criterion in objective target

Output: x // Best point after the search
f lag ∈ {0, 1, 2} // Search status

1 i ← 1; x← x0; f0 ← f (x0) ; σ ← 1 // Initialization
2 while i ≤ Nh and σ ≤ σmax do
3

(
x, fi, s f ,σexp

)
← hjsearch(x, f ,hi,V,σ,σmax)

4 σ ← σ + σexp
5 if fi ≤ f tar then
6 f lag ← 2; return // Target-optimal

7 else if
(
s f = 0

)
∧ (i = Nh) ∧

(
| fi − fi−1 | ≤ ε f

)
then

8 f lag ← 1; return // Tolerance-optimal
9 else

10 f lag ← 0; return // Best-within-budget
11 end
12 i ← i + 1
13 end
// Search with one step size

14 Hooke-Jeeves Search
(
x, fbest , s f ,σ

)
← hjsearch(xB, f ,h,V,σ0,σmax)

15 xC ← xB; σ ← σ0

16
(
x, fbest , s f ,σexp

)
← hjexplore(xB,xC , f ,h,V) ; σ ← σ + σexp

17 while
(
s f = 1

)
∧ (σ < σmax) do

18 d ← x − xB; xB ← x; xC ← x + d // Pattern move

19
(
x, fbest , s f ,σexp

)
← hjexplore(xB,xC , f ,h,V); σ ← σ + σexp

20 if s f = 0 then // Pattern move fails

21
(
x, fbest , s f ,σexp

)
← hjexplore(xB,xB, f ,h,V)

22 σ ← σ + σexp

23 end
24 end

204

Example Trajectories for the Infeasible Solutions · § C.3

Table C.1: Trajectory Planning Algorithm Parameters.

Group Parameter Symbol Value Unit

Protected
Volume

Growth Factor (5.2.11) g 2 -
Time Constant (5.2.11) τ 30 s
Vertical Separation (5.2.9) H 100 ft
Horizontal Separation (5.2.9) R 500 ft
Scale Factor (5.2.9) λ 1 -

Solution
Space

Max. Final Position Azimuth (5.4.5) Φp f ,max 45 deg
Min. Final Position Azimuth (5.4.5) Φp f ,min -45 deg
Extreme Jerk Value (5.4.6)

...p max 50 m4/s
Extrem Ground Track Change (5.4.9) ∆χ 90 deg

Hooke-
Jeeves

Search Step Size Vector §C.1 h 1.3−i, i = 0, . . . ,20 -
Search Direction Matrix §C.1 V see C.2.1 -
Objective Tolerance §C.1 ε f 1 × 10−8 -
Objective Target §C.1 f tar 1 -
Maximum Function Evaluation §C.1 σmax 3000 -

V = diag([0.01 0.1 0.1 0.1 0.001 0.001 0.001 0.001

0.001 0.001 0.01 0.01 0.01 0.001 0.001]T) (C.2.1)

C.3 Example Trajectories for the Infeasible Solutions

This section summarise the examples of acceptable, infeasible-obstacle, infeasible-
performance, and both-infeasible trajectories, in Figures C.2-C.5. In each figure, the
resulting miss distance and constraint violations of the each infeasible-solution tra-
jectory are highlighted. Although no feasible solutions could be found, within the
maximum number of function evaluations, for these situations, it can be seen that the
aircraft performance required by these resulting trajectories’ are very close to the spec-
ified limit and their miss distances are all larger than the required separation.

205

Chapter C · Trajectory Planning Algorithm Implementation Details

(a) Resolution trajectory and the initial linear time-to-CPA,
horizontal and vertical range.

0 10 20 30

−0.4

−0.2

0

V
io

la
ti
o

n
 [

%
]

 x 10
2

0 10 20 30
0

5

10

R
a

n
g

e
 [

ft
]

 x 10
3

0 10 20 30
−5

0

5

R
a

n
g

e
 R

a
te

 [
ft

/s
]

Time [s]

 x 10
2

(b) Obstacle constraint and rela-
tive range.

0 10 20 30
50

100

150

V
 [

m
/s

]

Airspeed

0 10 20 30
−2

0

2

V
D

 [
m

/s
2
]

Acceleration

0 10 20 30
0

0.5

1

Time [s]

T
b

a
r

[−
]

Throttle

0 10 20 30
−50

0

50

m
u

 [
d

e
g

]

Bank

0 10 20 30
−20

0

20

m
u

D
 [

d
e

g
]

Bank Rate

0 10 20 30
−15

−10

−5

Time [s]

c
h

i
[d

e
g

]

Heading

0 10 20 30
8.4

8.6

8.8

h
 ×

 1
0

3
 [

ft
]

Altitude

0 10 20 30
−50

0

50

p
3
D

 [
ft

/s
]

Vertical Rate

0 10 20 30
0

2

4

Time [s]

n
z
 [

−
]

Load Factor

(c) Aircraft state and control trajectories and their perfor-
mance limits.

T mu nz p3 V p3dVdmud ord
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Magnitude of Constraint Vector.

R
e

la
ti
v
e

 V
ilo

a
ti
o

n
 [

%
]

Constraint Type [−]

Constraint−Satisfied Node

Constraint−Violated Node

(d) Constraint vector evaluated at
all the collocation points (nodes).

Figure C.1: A feasible trajectory example.

206

Example Trajectories for the Infeasible Solutions · § C.3

(a) Resolution trajectory and the initial linear time-to-CPA,
horizontal and vertical range.

0 10 20 30
−2

−1

0

1

V
io

la
ti
o

n
 [

%
]

 x 10
2

0 10 20 30
0

0.5

1

1.5

2
x 10

4

X: 4.5
Y: 591.1

R
a

n
g

e
 [

ft
]

0 10 20 30
−1

0

1

R
a

n
g

e
 R

a
te

 [
ft

/s
]

Time [s]

 x 10
3

(b) Obstacle constraint and rela-
tive range.

0 10 20 30
50

100

150

V
 [
m

/s
]

Airspeed

0 10 20 30
−2

0

2

V
D

 [
m

/s
2
]

Acceleration

0 10 20 30
0

1

2

Time [s]

T
b
a
r

[−
]

Throttle

0 10 20 30
−50

0

50

m
u
 [
d
e
g
]

Bank

0 10 20 30
−20

0

20

m
u
D

 [
d
e
g
]

Bank Rate

0 10 20 30
−10

0

10

Time [s]

c
h
i
[d

e
g
]

Heading

0 10 20 30
8.5

9

9.5

h
 ×

 1
0

3
 [
ft
]

Altitude

0 10 20 30
−50

0

50

p
3
D

 [
ft
/s

]

Vertical Rate

0 10 20 30
0

2

4

Time [s]

n
z
 [
−

]

Load Factor

(c) Aircraft state and control trajectories and their perfor-
mance limits.

T mu nz p3 V p3d Vdmud o
−1

0

1

2

3

4

5

6

Magnitude of Constraint Vector.

R
e

la
ti
v
e

 V
ilo

a
ti
o

n
 [

%
]

Constraint Type [−]

Constraint−Satisfied Node

Constraint−Violated Node

Violation Boundary

(d) Constraint vector evaluated at
all the collocation points (nodes).

Figure C.2: An acceptable trajectory example. Most performance violations are within
2% of their limits; and at its maximum constraint violation, the miss distance is 591 ft,
that is 91 ft further than the required separation.

207

Chapter C · Trajectory Planning Algorithm Implementation Details

(a) Resolution trajectory and the initial linear time-to-CPA,
horizontal and vertical range.

0 10 20 30
−2

0

2

V
io

la
ti
o

n
 [

%
]

 x 10
2

0 10 20 30
0

10

20
 x 10

3

X: 1.5
Y: 498.8R

a
n

g
e

 [
ft

]

0 10 20 30
−5

0

5

R
a

n
g

e
 R

a
te

 [
ft

/s
]

Time [s]

 x 10
2

(b) Obstacle constraint and rela-
tive range.

0 10 20 30
50

100

150

V
 [

m
/s

]

Airspeed

0 10 20 30
−2

0

2

V
D

 [
m

/s
2
]

Acceleration

0 10 20 30
−2

0

2

Time [s]

T
b

a
r

[−
]

Throttle

0 10 20 30
−50

0

50

m
u

 [
d

e
g

]

Bank

0 10 20 30
−20

0

20

m
u

D
 [

d
e

g
]

Bank Rate

0 10 20 30
−20

−10

0

Time [s]

c
h

i
[d

e
g

]

Heading

0 10 20 30
5

5.2

5.4

h
 ×

 1
0

3
 [

ft
]

Altitude

0 10 20 30
−50

0

50

p
3
D

 [
ft

/s
]

Vertical Rate

0 10 20 30
0

2

4

Time [s]

n
z
 [

−
]

Load Factor

(c) Aircraft state and control trajectories and their perfor-
mance limits.

T mu nz p3 V p3d Vdmud o

0

5

10

15

20

25

30

35

40

45

Magnitude of Constraint Vector.

R
e

la
ti
v
e

 V
ilo

a
ti
o

n
 [

%
]

Constraint Type [−]

Constraint−Satisfied Node

Constraint−Violated Node

Violation Boundary

(d) Constraint vector evaluated at
all the collocation points (nodes).

Figure C.3: An infeasible-obstacle trajectory example. Despite the 49% of obstacle
constraint violation, the estimated miss distance and the required performance show
the trajectory’s applicability.

208

Example Trajectories for the Infeasible Solutions · § C.3

(a) Resolution trajectory and the initial linear time-to-CPA,
horizontal and vertical range.

0 10 20 30
−0.1

0

0.1

V
io

la
ti
o

n
 [

%
]

 x 10
2

0 10 20 30
0

2

4
 x 10

3

X: 6
Y: 619.3

R
a

n
g

e
 [

ft
]

0 10 20 30
−2

0

2

R
a

n
g

e
 R

a
te

 [
ft

/s
]

Time [s]

 x 10
2

(b) Obstacle constraint and rela-
tive range.

0 10 20 30
50

100

150

V
 [

m
/s

]

Airspeed

0 10 20 30
−2

0

2

V
D

 [
m

/s
2
]

Acceleration

0 10 20 30
−1

0

1

Time [s]

T
b

a
r

[−
]

Throttle

0 10 20 30
−50

0

50

m
u

 [
d

e
g

]

Bank

0 10 20 30
−20

0

20

X: 0
Y: −17.99

m
u

D
 [

d
e

g
]

Bank Rate

0 10 20 30
−50

0

50

Time [s]

c
h

i
[d

e
g

]

Heading

0 10 20 30
9.5

10

10.5

h
 ×

 1
0

3
 [

ft
]

Altitude

0 10 20 30
−50

0

50

p
3
D

 [
ft

/s
]

Vertical Rate

0 10 20 30
0

2

4

Time [s]

n
z
 [

−
]

Load Factor

(c) Aircraft state and control trajectories and their perfor-
mance limits.

T mu nz p3 V p3d Vdmud ord

0

2

4

6

8

10

12

14

16

18

20

Magnitude of Constraint Vector.

R
e

la
ti
v
e

 V
ilo

a
ti
o

n
 [

%
]

Constraint Type [−]

Constraint−Satisfied Node

Constraint−Violated Node

Violation Boundary

(d) Constraint vector evaluated at
all the collocation points (nodes).

Figure C.4: An infeasible-performance trajectory example.

209

Chapter C · Trajectory Planning Algorithm Implementation Details

(a) Resolution trajectory and the initial linear time-to-CPA,
horizontal and vertical range.

0 10 20 30
−0.05

0

0.05

V
io

la
ti
o

n
 [

%
]

 x 10
2

0 10 20 30
0.5

1

1.5
 x 10

3

X: 2.5
Y: 529.3R

a
n

g
e

 [
ft

]

0 10 20 30
−1

0

1

R
a

n
g

e
 R

a
te

 [
ft

/s
]

Time [s]

 x 10
2

(b) Obstacle constraint and rela-
tive range.

0 10 20 30
50

100

150

V
 [

m
/s

]

Airspeed

0 10 20 30
−2

0

2

V
D

 [
m

/s
2
]

Acceleration

0 10 20 30
−2

0

2

Time [s]

T
b

a
r

[−
]

Throttle

0 10 20 30
−50

0

50

m
u

 [
d

e
g

]

Bank

0 10 20 30
−20

0

20

m
u

D
 [

d
e

g
]

Bank Rate

0 10 20 30
−20

0

20

Time [s]

c
h

i
[d

e
g

]

Heading

0 10 20 30
7.8

8

8.2

h
 ×

 1
0

3
 [

ft
]

Altitude

0 10 20 30
−50

0

50

p
3
D

 [
ft

/s
]

Vertical Rate

0 10 20 30
0

2

4

Time [s]

n
z
 [

−
]

Load Factor

(c) Aircraft state and control trajectories and their perfor-
mance limits.

T mu nz p3 V p3d Vdmud ord

0

5

10

15

20

25

30

35

40

45

50

Magnitude of Constraint Vector.

R
e

la
ti
v
e

 V
ilo

a
ti
o

n
 [

%
]

Constraint Type [−]

Constraint−Satisfied Node

Constraint−Violated Node

Violation Boundary

(d) Constraint vector evaluated at
all the collocation points (nodes).

Figure C.5: A both-infeasible trajectory example.

210

Example Trajectories for the Infeasible Solutions · § C.3

211

This page intentionally contains only this sentence.

References

[Angelov, 2012] Angelov, P., ed. (2012). Sense and Avoid in UAS: Research and Applica-

tions. Aerospace, Wiley, Hoboken, NJ. 18

[Angelov et al., 2008] Angelov, P., Bocaniala, C.D., Xideas, C., Patchett, C., Ansell, D.,
Everett, M. & Leng, G. (2008). A passive approach to autonomous collision detec-
tion and avoidance in uninhabited aerial systems. 23

[Arino et al., 2002] Arino, T., Carpenter, K., Chabert, S., Hutchinson, H., Miquel, T., Ray-
naud, B., Rigotii, K. & Vallauri, E. (2002). WP-1—Studies on the safety of ACAS
II in Europe. Tech. Rep. ACASA/WP-1.8/210D, EUROCONTROL. 30

[Bai & Hsu, 2011] Bai, H. & Hsu, D. (2011). Unmanned aircraft collision avoidance using
continuous-state POMDPs. In Proceedings of Robotics: Science and Systems, Los
Angeles, CA. 4

[Bakker, 2009] Bakker, B. (2009). EUROCONTROL guidance material for short term con-
flict alert. Tech. Rep. EUROCONTROL-GUID-123, EUROCONTROL. 13, 21

[Barhydt et al., 2003] Barhydt, R., Eischeid, T., Palmer, M. & Wing, D. (2003). Use of
a prototype airborne separation assurance system for resolving near-term conflicts
during autonomous aircraft operations. In AIAA Guidance, Navigation, and Control

Conference and Exhibit, Austin, TX. 13, 21

[Basset et al., 2010] Basset, G., Xu, Y. & Yakimenko, O.A. (2010). Computing short-time
aircraft maneuvers using direct methods. Journal of Computer and Systems Sciences

International, 49, 481–513. 26, 27

213

REFERENCES

[Bayen et al., 2003] Bayen, A., Santhanam, S., Michell, I. & Tomlin, C. (2003). A differ-
ential game formulation of alert levels in etms data for high altitude traffic. In AIAA

Guidance, Navigaion, and Coontrol Conference, Texas. 24, 138

[Berry et al., 2010] Berry, A., Howitt, J., Postlethwaite, I. & Gu, D. (2010). Enabling
the operation of multiple micro-air-vehicles in increasingly complex obstacle-rich
environments. In AIAA Infotech@ Aerospace Conference, Atlanta, Georgia. 22

[Betts, 1998] Betts, J.T. (1998). Survey of numerical methods for trajectory optimization.
Journal of Guidance, Control, and Dynamics, 21, 193–207. 26, 27

[Betts, 2010] Betts, J.T. (2010). Practical methods for optimal control and estimation using

nonlinear programming. SIAM, Philadelphia. 26, 108

[Bollino & Lewis, 2008] Bollino, K. & Lewis, L.R. (2008). Collision-free multi-UAV opti-
mal path planning and cooperative control for tactical applications. In AIAA Guid-

ance, Navigation and Control Conference and Exhibit, Reston, VA. 26

[Boskovic et al., 2013] Boskovic, J., Jackson, J.A. & Mehra, R. (2013). Sensor and tracker
requirements development for sense and avoid systems for unmanned aerial vehi-
cles. In AIAA Modeling and Simulation Technologies Conference, Boston, MA. 18

[Buchanan, 2012] Buchanan, R. (2012). Detect and avoid. ASTRAEA National Conference
2012. 2

[CAA, 2012] CAA (2012). Unmanned Aircraft System Operations in UK Airspace - Guid-

ance. TSO on behalf of the UK Civil Aviation Authority, Norwich. 1

[Carbone et al., 2006] Carbone, C., Ciniglio, U., Corraro, F. & Luongo, S. (2006). A novel
3D geometric algorithm for aircraft autonomous collision avoidance. In 2006 45th

IEEE Conference on Decision and Control, San Diego, CA. xv, 7, 24, 60, 61, 63,
64, 144

[Chakravarthy & Ghose, 1998] Chakravarthy, A. & Ghose, D. (1998). Obstacle avoidance
in a dynamic environment: a collision cone approach. IEEE Transactions on Sys-

tems, Man and Cybernetics, Part A: Systems and Humans, 28, 562–574. 7

214

REFERENCES

[Chen et al., 2011] Chen, R.H., Gevorkian, A., Fung, A., Chen, W.Z. & Raska, V. (2011).
Multi-sensor data integration for autonomous sense and avoid. In AIAA Infotech@

Aerospace Technical Conference, St. Louis, MO. xxi, 2, 18, 19

[Chen et al., 2009] Chen, W.Z., Wong, L., Kay, J. & Raska, V.M. (2009). Autonomous
sense and avoid (SAA) for unmanned air systems (UAS). In SCI-202 Symposium on

“Intelligent Uninhabited Vehicle Guidance Systems”, Universität der Bundeswehr,
München, Germany. 3, 4, 54

[Cho et al., 2012] Cho, S., Huh, S., Shim, D.H. & Choi, H.S. (2012). Vision-based detection
and tracking of airborne obstacles in a cluttered environment. Journal of Intelligent

& Robotic Systems, 69, 475–488. 23

[Clarkson, 2012] Clarkson, D. (2012). Scenario assessment. Tech. Rep. MIDCAS-T-0128,
MIDCAS. 16

[Cole et al., 2013] Cole, R., Kochenderfer, M.J., Weibel, R., Edwards, M.W.M., Griffith,
J.D. & Olson, W. (2013). Fielding a sense and avoid capability for unmanned aircraft
systems: Policy, standards, technology, and safety modeling. Air Traffic Control

Quarterly, 21, 5–27. 15, 79, 81, 144, 152

[Cooke, 2008] Cooke, A.K. (2008). Data pack for the Jetstream 31. Lecture Note FDP As-
signment, Cranfield University. 7, 162

[Dixon, 2011] Dixon, R. (2011). BAES S&A interface control document (ICD). Tech. Rep.
BAES/AS&FC/W/7Z1/ID/000763, BAE Systems, Warton. xiv, 18, 29

[Drozdowski & Dean, 2010] Drozdowski, S. & Dean, G. (2010). Unmanned aircraft sys-
tems - ATM collision avoidance requirements. Tech. Rep. CND/CoE/CNS/09-156,
EUROCONTROL, Brussels. 1, 12

[Drury et al., 2010] Drury, R., Tsourdos, A. & Cooke, A. (2010). Real-time trajectory gen-
eration: Improving the optimality and speed of an inverse dynamics method. In IEEE

Aerospace Conference, Big Sky, MT. 26

[Drury, 2010] Drury, R.G. (2010). Trajectory Generation for Autonomous Unmanned Air-

craft Using Inverse Dynamics. Ph.D. thesis, Cranfield University. 27, 111

215

REFERENCES

[Ducard, 2009] Ducard, G.J.J. (2009). Fault-tolerant Flight Control and Guidance Systems:

Practical Methods for Small Unmanned Aerial Vehicles. Springer. 41

[Edwards et al., 2009] Edwards, M., Kochenderfer, M.J., Kuchar, J.K. & Espindle, L.P.
(2009). Encounter models for unconventional aircraft version 1.0. Project Report
ATC-348, MIT Lincoln Laboratory. 31

[Edwards, 2012] Edwards, M.W.M. (2012). A safety driven approach to the development
of an airborne sense and avoid system. In AIAA Infotech@Aerospace Conference,
Garden Grove, California. 2, 15, 16, 88, 132

[F38 Committee, 2007] F38 Committee (2007). Specification for design and performance of
an airborne sense-and-avoid system. Tech. Rep. F2411-07, ASTM International. 55,
87

[FAA, 2008] FAA (2008). Interim Operational Approval Guidance 08-01: Unmanned Air-

craft Systems Operations in the U. S. National Airspace System. 1

[FAA-Sponsored Workshop, 2009] FAA-Sponsored Workshop (2009). Sense and avoid
(SAA) for unmanned aircraft systems (UAS). Workshop final report, FAA. xiii,
17, 18

[Farjon & Sellem-Delmar, 2012] Farjon, J. & Sellem-Delmar, S. (2012). MIDCAS concept
of operations (CONOPS). Tech. Rep. MIDCAS-T-0017, MIDCAS. 16, 17

[Fasano, 2008] Fasano, G. (2008). Multisensor based Fully Autonomous Non-Cooperative

Collision Avoidance System for UAVs. Ph.D. thesis, Università degli Studi di Napoli
Federico II. 57

[Fasano et al., 2008] Fasano, G., Accardo, D., Moccia, A., Carbone, C., Ciniglio, U.,
Corraro, F. & Luongo, S. (2008). Multi-sensor-based fully autonomous non-
cooperative collision avoidance system for unmanned air vehicles. Journal of

Aerospace Computing, Information, Communication, 5, 338–360. xv, 23, 54, 60,
144

[Fasano et al., 2009] Fasano, G., Accardo, D., Moccia, A. & Rispoli, A. (2009). Flight test
results for a multi sensor obstacle detection and tracking system for sense and avoid
applications. In AIAA Infotech and Aerospace, vol. 2009, Seattle, Washington. 19

216

REFERENCES

[Fisch, 2011] Fisch, F. (2011). Development of a Framework for the Solution of High-

Fidelity Trajectory Optimization Problems and Bilevel Optimal Control Problems.
Ph.D. thesis, Technische Universität München. 46

[Fliess et al., 1995] Fliess, M., Levine, J., Martin, P. & Rouchon, P. (1995). Flatness and de-
fect of nonlinear systems: Introductory theory and examples. International Journal

of Control, 61, 1327–1361. 98

[Flores, 2007] Flores, M.E. (2007). Real-Time Trajectory Generation for Constrained Non-

linear Dynamical Systems Using Non-Uniform Rational B-spline Basis Functions.
Ph.D. thesis, California Institute of Technology. 26

[Gat, 1998] Gat, E. (1998). On three-layer architectures. In Artificial Intelligence and Mo-

bile Robots: Case Studies of Successful Robot Systems, 195–210, AAAI Press. 4,
121

[George, 2012] George, S. (2012). Scope and intended function of systems and equipment
providing sense and Avoid/Detect and avoid (SAA/DAA) capability for unmanned
aircraft systems (UAS). Tech. Rep. UASSG/9-SN/4, ICAO. xiii, 17, 18

[Gill et al., 2008] Gill, P.E., Murray, W. & Saunders, M.A. (2008). User’s guide for
SNOPT version 7: Software for large-scale nonlinear programming. User manual,
Stanford Business Software Inc. 111

[Goerzen et al., 2010] Goerzen, C., Kong, Z. & Mettler, B. (2010). A survey of motion
planning algorithms from the perspective of autonomous UAV guidance. Journal of

Intelligent and Robotic Systems, 57, 65–100. 26

[Griffin & Kolda, 2007] Griffin, J.D. & Kolda, T.G. (2007). Nonlinearly-constrained opti-
mization using asynchronous parallel generating set search. Tech. Rep. SAND2007-
3257, Sandia National Laboratories, Albuquerque, New Mexico and Livermore, CA.
110

[Griffin & Kolda, 2010] Griffin, J.D. & Kolda, T.G. (2010). Nonlinearly constrained opti-
mization using heuristic penalty methods and asynchronous parallel generating set
search. Applied Mathematics Research eXpress, 2010, 36–62. 110

217

REFERENCES

[Griffith & Lee, 2011] Griffith, J.D. & Lee, S. (2011). Environment modeling for sense and
avoid sensor safety assessment. In Digital Avionics Systems Conference (DASC),

2011 IEEE/AIAA 30th, IEEE. 16

[Griffith et al., 2008] Griffith, J.D., Kochenderfer, M.J. & Kuchar, J.K. (2008). Electro-
optical system analysis for sense and avoid. In AIAA Guidance, Navigation, and

Control Conference and Exhibit, Honolulu, Hawaii. 18

[Hoekstra, 2002] Hoekstra, J.M. (2002). Free flight with airborne separation assurance.
Tech. Rep. NLR-TP-2002-170, NLR. 13

[Hoffren & Sailaranta, 2001] Hoffren, J. & Sailaranta, T. (2001). Maneuver autopilot for
realistic performance model simulations. In Proceedings of the 2001 AIAA Modeling

and Simulation Technologies Conference and Exhibit, AIAA. 46

[Holland et al., 2013] Holland, J.E., Kochenderfer, M.J. & Olson, W.A. (2013). Optimiz-
ing the next generation collision avoidance system for safe, suitable, and acceptable
operational performance. In Tenth USA/Europe Air Traffic Management Research

and Development Seminar, Chicago, Illinois. 72, 79

[Hooke & Jeeves, 1961] Hooke, R. & Jeeves, T.A. (1961). “ Direct search” solution of nu-
merical and statistical problems. J. ACM, 8, 212–229. 111

[Huerta, 2013] Huerta, M.P. (2013). Integration of Civil Unmanned Aircrat Systems (UAS)

in the National Airspace System (NAS) Roadmap. FAA, Washington, DC, 1st edn. 1

[Hull, 1997] Hull, D.G. (1997). Conversion of optimal control problems into parameter op-
timization problems. Journal of Guidance, Control, and Dynamics, 20, 57–60. 27

[Hull, 2010] Hull, D.G. (2010). Fundamentals of Airplane Flight Mechanics. Springer,
Berlin; New York. 41, 43

[Hutchings et al., 2007] Hutchings, T., Jeffryes, S. & Farmer, S. (2007). Architecting UAV
sense and avoid systems. In Autonomous Systems, 2007 Institution of Engineering

and Technology Conference on, 1–8. xiv, 15, 18, 20

[Hutchinson & Drozdowski, 2007] Hutchinson, H. & Drozdowski, S. (2007).
Report on RA downlink contingency tree study. Tech. Rep. Qine-
tiQ/D&T/C&IS/ADC/RADLCT/13/03, EUROCONTROL. 16

218

REFERENCES

[ICAO, 2005a] ICAO (2005a). Annex 2 to the Convention on International Civil Aviation:

Rules of the Air. ICAO, Montréal, Québec, tenth edn. 1, 14

[ICAO, 2005b] ICAO (2005b). Global Air Traffic Management Operational Concept. ICAO,
Montréal, Québec, 1st edn. 12

[ICAO, 2007] ICAO (2007). Annex 10 to the Convention on International Civil Aviation:

Aeornautical Telecommunications, vol. IV Surveillance and Collision Avoidance
Systems. ICAO, Montréal, Québec, 4th edn. 7, 16, 21, 24, 30, 31, 32, 33, 35,
36, 60, 73, 79, 80, 88, 141, 152

[Jardin, 2003] Jardin, M.R. (2003). Toward Real-Time En Route Air Traffic Control Opti-

mization. Ph.D. thesis, Stanford University. 21

[Johansen & Fossen, 2013] Johansen, T.A. & Fossen, T.I. (2013). Control allocation—A
survey. Automatica, 49, 1087–1103. 47

[Kelley, 1999] Kelley, C.T. (1999). Iterative Methods for Optimization, vol. 18. SIAM,
Philadelphia. 111, 171

[Kochenderfer & Chryssanthacopoulos, 2011] Kochenderfer, M.J. & Chryssanthacopou-
los, J.P. (2011). Robust airborne collision avoidance through dynamic programming.
Project Report ATC-371, MIT Lincoln Laboratory. 150

[Kochenderfer et al., 2008a] Kochenderfer, M.J., Espindle, L.P., Kuchar, J.K. & Griffith,
J.D. (2008a). A comprehensive aircraft encounter model of the national airspace
system. Lincoln Laboratory Journal, 17, 41–53. xiv, 16, 30

[Kochenderfer et al., 2008b] Kochenderfer, M.J., Espindle, L.P., Kuchar, J.K. & Griffith,
J.D. (2008b). Correlated encounter model for cooperative aircraft in the national
airspace system version 1.0. Project Report ATC-344, MIT Lincoln Laboratory. 31,
37

[Kochenderfer et al., 2008c] Kochenderfer, M.J., Kuchar, J.K., Espindle, L.P. & Gertz,
J.L. (2008c). Preliminary uncorrelated encounter model of the national airspace sys-
tem. Project Report CASSATT-1, MIT Lincoln Laboratory. 35

219

REFERENCES

[Kochenderfer et al., 2008d] Kochenderfer, M.J., Kuchar, J.K., Espindle, L.P. & Griffith,
J.D. (2008d). Uncorrelated encounter model of the national airspace system version
1.0. Project Report ATC-345, MIT Lincoln Laboratory. 31

[Kochenderfer et al., 2010a] Kochenderfer, M.J., Chryssanthacopoulos, J., Kaelbling, L.
& Lozano-Perez, T. (2010a). Model-based optimization of airborne collision avoid-
ance logic. Project Report ATC-360, MIT Lincoln Laboratory. xv, 16, 29, 72, 74,
80

[Kochenderfer et al., 2010b] Kochenderfer, M.J., M. Edwards, M.W., Espindle, L.P.,
Kuchar, J.K. & Griffith, J.D. (2010b). Airspace encounter models for estimating
collision risk. Journal of Guidance, Control, and Dynamics, 33, 487–499. 16

[Kochenderfer et al., 2011] Kochenderfer, M.J., Chryssanthacopoulos, J.P. & Weibel, R.E.
(2011). A new approach for designing safer collision avoidance systems. Air Traffic

Control Quarterly, 20, 27–45. xiv, 25, 138

[Kochenderfer et al., 2012] Kochenderfer, M.J., Holland, J.E. & Chryssanthacopoulos,
J.P. (2012). Next-generation airborne collision avoidance system. Lincoln Labora-

tory Journal, 19, 17–33. 24, 143

[Kopřiva et al., 2012] Kopřiva, Š., Šišlák, D. & Pěchouček, M. (2012). Sense and avoid
concepts: Vehicle-based SAA systems (vehicle-to-vehicle). In Sense and Avoid in

UAS: Research and Applications, 143–173, Wiley, Hoboken, NJ. 22

[Kuchar, 2005] Kuchar, J.K. (2005). Safety analysis methodology for unmanned aerial ve-
hicle (UAV) collision avoidance systems. In USA/Europe Air Traffic Management

R&D Seminars, Baltimore, MD. 15

[Kuchar & Yang, 2000] Kuchar, J.K. & Yang, L.C. (2000). A review of conflict detection
and resolution modeling methods. IEEE Transactions on Intelligent Transportation

Systems, 1, 179–189. 21, 22, 92

[Lai & Whidborne, 2010] Lai, C.K. & Whidborne, J. (2010). Aircraft route re-planning for
a pop-up obstacle using a direct method. In Control 2010, UKACC International

Conference on, Conventry. 111

220

REFERENCES

[Lai & Whidborne, 2012] Lai, C.K. & Whidborne, J.F. (2012). Automated return-to-route
maneuvers for unmanned aircraft systems. In 2012 IEEE/AIAA 31st Digital Avionics

Systems Conference (DASC), Williamsburg, VA. 88

[Lai et al., 2012] Lai, J., Ford, J.J., Mejias, L., O’Shea, P. & Walker, R. (2012). See and
avoid using onboard computer vision. In P. Angelov, ed., Sense and Avoid in UAS,
265–294, John Wiley & Sons, Ltd. 23

[LaValle, 2006] LaValle, S.M. (2006). Planning algorithms. Cambridge University Press.
26

[Luongo et al., 2009] Luongo, S., Carbone, C., Corraro, F. & Ciniglio, U. (2009). An op-
timal 3D analytical solution for collision avoidance between aircraft. In Aerospace

conference, 2009 IEEE, 1–9. xv, 60, 63, 64, 65

[Luongo et al., 2011] Luongo, S., Di Vito, V., Fasano, G., Accardo, D., Forlenza, L. &
Moccia, A. (2011). Automatic collision avoidance system: Design, development
and flight tests. In Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA

30th, Seattle, WA. 144

[Menon et al., 1999] Menon, P.K., Sweriduk, G.D. & Sridhar, B. (1999). Optimal strate-
gies for free-flight air traffic conflict resolution. Journal of Guidance, Control, and

Dynamics, 22, 202–211. xiv, 42

[MIDCAS, 2012] MIDCAS (2012). Design - performance working paper. Working paper,
MIDCAS. 143

[MIDCAS, 2013] MIDCAS (2013). Integration aspects—Sense. MIDCAS Workshop #4. 2

[Milam, 2003] Milam, M.B. (2003). Real-Time Optimal Trajectory Generation for Con-

strained Dynamical Systems. Ph.D. thesis, California Institute of Technology. 26

[Möckli, 2006] Möckli, M.R. (2006). Guidance and Control for Aerobatic Maneuvers of an

Unmanned Airplane. Ph.D. thesis, Swiss Federal Institute Of Technology Zurich. 46

[Murray, 2010] Murray, R.M. (2010). Optimization-Based Control. California Institute of
Technology. 98, 125

221

REFERENCES

[NATO, 2008] NATO (2008). Sense and avoid requirements for unmanned aerial ve-
hicle systems operating in non-segregated airspace. Document PFP(NNAG-
JCGUAV)D(2008)0002, NATO. 2

[Nicoullaud, 2012] Nicoullaud, V. (2012). Working paper - collision avoidance concept
and operational aspects considered in MIDCAS. Working Paper MIDCAS-T-0173,
MIDCAS. 3, 4

[Nuic, 2012] Nuic, A. (2012). User manual for the base of aircraft data (BADA) revision
3.10. EEC Technical/Scientific Report 12/04/10-45, EUROCONTROL. 7, 41, 43,
44, 68, 162

[Patchett & Ansell, 2010] Patchett, C. & Ansell, D. (2010). The development of an ad-
vanced autonomous integrated mission system for uninhabited air systems to meet
UK airspace requirements. In Intelligent Systems, Modelling and Simulation (ISMS),

2010 International Conference on, Liverpool. xiv, 4, 15, 18, 54

[Patel & Goulart, 2010] Patel, R.B. & Goulart, P.J. (2010). The design of trigger mech-
anisms for aircraft collision avoidance maneuvers. In AIAA Guidance, Navigation

and Control Conference and Exhibit, Toronto, Ontario Canada. 22, 145, 150

[Patel et al., 2009] Patel, R.B., Goulart, P.J. & Serghides, V. (2009). Real-time trajectory
generation for aircraft avoidance maneuvers. In AIAA Guidance, Navigaion, and

Coontrol Conference, Chicago, Illinois. 27

[Pellebergs, 2010] Pellebergs, J. (2010). The MIDCAS project. In 27th International

Congress of the Aeronautical Sciences, Nice, France. 15

[Petri & Spriesterbach, 2012] Petri, M. & Spriesterbach, T. (2012). ACAS X_U—Ensuring
collision avoidance interoperability. Working Paper WP-ASP13-19, FAA. 2, 3, 15

[Rao, 2009] Rao, A.V. (2009). A survey of numerical methods for optimal control. Advances

in the Astronautical Sciences, 135, 497–528. 27

[Raynaud & Arino, 2006] Raynaud, B. & Arino, T. (2006). Final report on the safety of
ACAS II in the European RVSM environment. Final Report ASARP/WP9/72/D,
EUROCONTROL. xiii, 15, 16, 72

222

REFERENCES

[Ross & Fahroo, 2006] Ross, I.M. & Fahroo, F. (2006). Issues in the real-time computation
of optimal control. Mathematical and Computer Modelling, 43, 1172–1188. 26

[RTCA, 2013] RTCA (2013). Terms of reference rtca special committee 228 minimum per-
formance standards for unmanned aircraft systems. Tech. rep. 15

[Saunders & Beard, 2008] Saunders, J. & Beard, R. (2008). Reactive vision based obstacle
avoidance with camera field of view constraints. In AIAA Guidance, Navigation and

Control Conference and Exhibit, Honolulu, Hawaii. 23

[Sellem-Delmar, 2010] Sellem-Delmar, S. (2010). Stakeholder requirement synthesis.
Technical Note MIDCAS-T-0039, MIDCAS. 2, 16, 87, 88

[Shakernia et al., 2007] Shakernia, O., Chen, W.Z., Graham, S., Zvanya, J., White, A.,
Weingarten, N. & Raska, V.M. (2007). Sense and avoid (SAA) flight test and
lessons learned. In AIAA Infotech@ Aerospace Conference and Exhibit, 1–12, Rohn-
ert Park, California. 15

[Shin et al., 2012] Shin, H.S., Tsourdos, A. & White, B. (2012). UAS conflict detection and
resolution using differential geometry concepts. In P. Angelov, ed., Sense and Avoid

in UAS, 175–204, Wiley. 24

[Singla & Singh, 2008] Singla, P. & Singh, T. (2008). A novel coordinate transformation for
obstacle avoidance and optimal trajectory planning. In AIAA Astrodynamics Special-

ist Conference and Exhibit, Honolulu, Hawaii. 27

[Snell et al., 1992] Snell, S.A., NNS, D.F. & ARRARD, W.L. (1992). Nonlinear inversion
flight control for a supermaneuverable aircraft. Journal of Guidance, Control, and

Dynamics, 15, 976–984. 46

[Stevens & Lewis, 2003] Stevens, B.L. & Lewis, F.L. (2003). Aircraft Control and Simula-

tion. Wiley, 2nd edn. 41, 43, 126

[Sundqvist, 2005] Sundqvist, B.G. (2005). Auto-acas - robust nuisance-free collision avoid-
ance. In 44th IEEE Conference on Decision and Control, 2005 and 2005 European

Control Conference. CDC-ECC ’05, 3961–3963, Seville, Spain. 2

223

REFERENCES

[Tadema, 2011] Tadema, J. (2011). Unmanned Aircraft Systems HMI and Automation - Tack-

ling Control, Integrity and Integration Issues. Ph.D. thesis, Delft University of Tech-
nology. 20

[Temizer, 2011] Temizer, S. (2011). Planning Under Uncertainty for Dynamic Collision

Avoidance. Ph.D. thesis, Massachusetts Institute of Technology. 4, 29

[Temizer et al., 2010] Temizer, S., Kochenderfer, M.J., Kaelbling, L.P., Lozano-Pérez, T.
& Kuchar, J.K. (2010). Collision avoidance for unmanned aircraft using Markov de-
cision processes. In AIAA Guidance, Navigation, and Control Conference, Toronto,
Ontario Canada. 55

[Turner et al., 2012] Turner, R., Lehmann, R., Wadley, J., Kidd, D., Swihart, D., Bier, J.
& Hobbs, K. (2012). Automatic aircraft collision avoidance algorithm design for
fighter aircraft. In Asia-Pacific International Symposium on Aerospace Technology,
DTIC Document, Jeju, Korea. 2

[Walters, 2012] Walters, E. (2012). Concept of operations for the Airborne Collision Avoid-
ance System X. Concept of operations document, FAA. 2

[Weibel et al., 2011] Weibel, R.E., Edwards, M. & Fernandes, C. (2011). Establishing
a risk-based separation standard for unmanned aircraft self separation. In Ninth

USA/Europe Air Traffic Management Research & Development Seminar, Berlin,
Germany. 12, 13, 20

[Wolf & Kochenderfer, 2011] Wolf, T.B. & Kochenderfer, M.J. (2011). Aircraft collision
avoidance using Monte Carlo real-time belief space search. Journal of Intelligent &

Robotic Systems, 64, 277–298. 4

[Yakimenko, 2000] Yakimenko, O.A. (2000). Direct method for rapid prototyping of near-
optimal aircraft trajectories. Journal of Guidance, Control, and Dynamics, 23, 865–
875. 27, 97, 111

[Zeitlin, 2012] Zeitlin, A. (2012). Performance tradeoffs and the development of standards.
In Sense and Avoid in UAS: Research and Applications, 35–54, Wiley. 2, 13, 15, 17,
56, 57

224

REFERENCES

[Zeitlin et al., 2006] Zeitlin, A.D., Lacher, A., Kuchar, J.K. & Drumm, A.C. (2006).
Collision avoidance for unmanned aircraft : Proving the safety case. Tech. Rep.
MP060219 (MITRE)/42PM ATC-329 (LL), The MITRE Corporation/MIT Lincoln
Laboratory. 15

225

	Contents
	List of Figures
	List of Tables
	Nomenclature
	Acronyms
	1 Introduction
	1.1 Motivations
	1.2 Challenges
	1.3 Overview of the Proposed Approach
	1.4 Aim and Objectives
	1.5 Organization and Highlights of this Thesis

	2 Background and Literature Review
	2.1 Introduction
	2.2 Conflict Management
	2.2.1 Layered Approach
	2.2.2 Safety Events
	2.2.3 Risk Mitigation Mechanisms

	2.3 Sense and Avoid Systems
	2.3.1 A Safety-Analysis Development Process
	2.3.2 Intended Functions and Sub-Functions
	2.3.3 Functional Architecture

	2.4 Collision Avoidance Logics
	2.4.1 Conflict Detection and Resolution
	2.4.2 Challenges and State-of-the-Arts
	2.4.3 Problem Scope

	2.5 Trajectory Planning
	2.5.1 Trajectory Planning rather than Path Planning
	2.5.2 Optimal Control Approach

	2.6 Summary

	3 Modelling and Simulation Framework
	3.1 Introduction
	3.2 Encounter Model
	3.2.1 Encounter Modelling
	3.2.2 ICAO Standard Encounter Model
	3.2.3 Encounter Generation
	3.2.4 Encounter Simulation

	3.3 Intruder Model
	3.3.1 Manoeuvre Uncertainty
	3.3.2 Intruder Limitations
	3.3.3 State Equation

	3.4 Aircraft System Model
	3.4.1 Aircraft Dynamics
	3.4.2 Navigation System
	3.4.3 Manoeuvre Autopilot

	3.5 Surveillance System Model
	3.5.1 Actual Relative Motion
	3.5.2 Field of Regard
	3.5.3 Track Maintenance
	3.5.4 Measurement Error
	3.5.5 Target Tracking

	3.6 Collision Avoidance Logic Model
	3.6.1 Conflict Detection
	3.6.2 Conflict Resolution
	3.6.3 Conflict Monitor

	3.7 Summary

	4 Evaluation and Analysis Framework
	4.1 Introduction
	4.2 Typical Performance Metrics
	4.2.1 Possible Outcomes of an Encouter Scenario
	4.2.2 Metrics Definitions

	4.3 Additional Metrics for Non-Cooperative Resolution
	4.3.1 Basic Concepts
	4.3.2 Metrics Definitions

	4.4 Two Simulation Experiments
	4.4.1 Experiment Setting
	4.4.2 Establishment of the Baseline Performance
	4.4.3 Investigation of Field-of-Regard Restriction Effect

	4.5 Summary

	5 Trajectory Planning Algorithm Development
	5.1 Introduction
	5.2 Problem Formulation
	5.2.1 Differential Constraints
	5.2.2 Trajectory Constraints
	5.2.3 Boundary Conditions
	5.2.4 Cost Functions

	5.3 Problem Transcription
	5.3.1 Differential Constraint Removal
	5.3.2 Parameterization
	5.3.3 Boundary Conditions Satisfaction
	5.3.4 Trajectory Discretization

	5.4 Problem Solution
	5.4.1 Solution Space
	5.4.2 Problem Scaling
	5.4.3 Penalty Function
	5.4.4 Optimization

	5.5 Main Results
	5.5.1 Experiment Settings
	5.5.2 Result Statistics
	5.5.3 Example Trajectories

	5.6 Summary

	6 System Integration and Performance Evaluation
	6.1 Introduction
	6.2 Integration of Trajectory Planning
	6.2.1 Trajectory Planner
	6.2.2 Trajectory Manager
	6.2.3 Trajectory Tracker

	6.3 Evaluation of the Proposed Approach
	6.3.1 Safety Performance Evaluation under the Ideal Condition
	6.3.2 Robustness Analysis on Sensor Noise
	6.3.3 Evaluation of the Field-of-Regard-Restriction Effect

	6.4 Discussions with Example Encounters
	6.4.1 Ineffectiveness of the Emergency Strategy
	6.4.2 Conservativeness in Uncertainty Propagation
	6.4.3 Parallel-Track Results
	6.4.4 Field-of-Regard-Restriction Effects

	6.5 Summary

	7 Conclusions
	7.1 Feasibiliy, Mertis and Limitations
	7.2 Contributions to Knowledge
	7.3 Dissemination of Results
	7.4 Recommendations for Future Research

	A Notation
	A.1 Definitions and Typefaces of Mathematical Objects

	B Aircraft System Model
	B.1 Aircraft Performance Data
	B.2 Verification Examples

	C Trajectory Planning Algorithm Implementation Details
	C.1 Hooke-Jeeves Algorithm
	C.2 Algorithm Parameters
	C.3 Example Trajectories for the Infeasible Solutions

	References

