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Abstract 

This thesis presents a novel hybrid prognostic methodology, integrating 

physics-based and data-driven prognostic models, to enhance the prognostic 

accuracy, robustness, and applicability. The presented prognostic 

methodology integrates the short-term predictions of a physics-based model 

with the longer term projection of a similarity-based data-driven model, to 

obtain remaining useful life estimations. The hybrid prognostic methodology 

has been applied on specific components of two different engineering 

systems, one which represents accelerated, and the other a nominal 

degradation process.  

Clogged filter and fatigue crack propagation failure cases are selected as 

case studies. An experimental rig has been developed to investigate the 

accelerated clogging phenomena whereas the publicly available Virkler 

fatigue crack propagation dataset is chosen after an extensive literature 

search and dataset analysis. The filter clogging experimental rig is designed 

to obtain reproducible filter clogging data under different operational 

profiles. This data is thought to be a good benchmark dataset for prognostic 

models. 

The performance of the presented methodology has been evaluated by 

comparing remaining useful life estimations obtained from both hybrid and 

individual prognostic models. This comparison has been based on the most 

recent prognostic evaluation metrics. The results show that the presented 

methodology improves accuracy, robustness and applicability. The work 

contained herein is therefore expected to contribute to scientific knowledge 

as well as industrial technology development. 

Keywords:  

Integrated Vehicle Health Management, Prognostics and Health 

Management, Condition Based Maintenance, Hybrid Prognostics, Physics-

based Prognostics, Data-driven Prognostics, Similarity-based Prognostics, 

Filter Clogging Modelling, Fatigue Crack Growth Modelling.  
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Chapter 1 

 

1 Introduction 

 

This chapter briefly describes the basics of Integrated Vehicle Health 

Management (IVHM), a capability that enables a number of maintenance 

philosophies emphasizing prognostics, one of the most attractive research 

topics in this area. Also, the research problem found in the literature of 

engineering applications is discussed. Finally, the aims and objectives of 

this study are outlined and the PhD contribution is presented. 

IVHM is a relatively new comprehensive technology, enabling many 

disciplines with an integrated framework. Maintenance strategies such as 

Condition Based Maintenance (CBM) or Reliability Centred Maintenance 

(RCM) are enabled using IVHM. Prognostics and diagnostics are integrated 

into the framework involving the monitoring of sensory information and 

predicting the future health level of the system, based on the monitored 

data. IVHM technology has potential applications in many fields such as 

aerospace, military systems, electronics, machinery, energy, and 

manufacturing. In IVHM, real-time sensory data obtained from the 

equipment is analysed continuously to detect and forecast the health states 

and to plan maintenance based on the forecasted health.  

Prognostics is challenging and the fundamental technology within IVHM, 

where it requires identification of the current health level and extrapolating 
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it to a predefined failure threshold, concluded with the estimation of 

remaining useful life (RUL). The output of prognostics (i.e. RUL) is the 

duration between the current time and the time at which the forecasted 

health level reaches to a predefined threshold. Benefits of the prognostics 

motivate researchers and the industry to achieve reduced costs, increased 

safety and availability via better maintenance planning. In contrast with 

traditional maintenance philosophies, the IVHM approach enables 

modelling and tracking of individual equipment deterioration leading to a 

maintenance action only when it is necessary rather than performing 

scheduled maintenance. Note that, Prognostics and Health Management 

(PHM) is a relevant technology to IVHM where slight differences may 

appear which are reported in the in the literature. IVHM endeavours 

bringing a business model within the integrated scheme which is missing in 

the PHM. However, this research coverage involves both PHM and IVHM. 

1.1    Research Problem Definition 

Prognostics applications are relatively immature compared to diagnostics 

applications in the literature. Prognostic models can be categorised into two 

major categories. These are: 1) Physics-based models 2) Data-driven models. 

Physics-based models, also called model-based prognostics, consist of 

mathematical abstractions of a degradation path derived from first 

principles. They can be incorporated with Bayesian tracking methods (e.g. 

Particle Filters, Kalman Filters) in order to learn state of health parameters 

in the model and to cope with the sources of uncertainty (e.g. measurement 

noise) in measurement processes. 

Alternatively, data-driven approaches employ historical run-to-failure data 

to construct a statistical or artificial intelligence based model aiming to 

accommodate the degradation process and predict the remaining useful life 

of the system. Extracted patterns from the signals, or raw data reflecting 
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the degradation pattern is used for predicting the time-to-failure with 

confidence bounds. 

Approaches in both categories have their own advantages and 

disadvantages in real life applications. Data-driven models suffer from the 

inability to learn in portions of the operations where no such data exists. On 

the other side, physics-based models require high expertise in application 

field and tend to be computationally prohibitive to apply at system level. 

Approaches under both data-driven and physics-based categories require 

many conditions to be met. Besides, there is no universally accepted best 

model to perform prognostics due to variations on limitations of data 

availability, application constraints, and system complexity (Liao and 

Kottig, 2014). Furthermore, in real life applications, unmet requirements 

make the model imperfect, resulting in ineffective RUL predictions. Hence, 

a hybrid prognostic approach is aimed at leveraging the advantages of both 

approaches and to compensate for their limitations. In this research, these 

limitations and their effects are analysed in five different categories. The 

fifth scenario imitates the real world prognostic application limitations and 

presents an integration solution to enhance the prognostic applicability. 

1.2    Research Aims & Objectives 

The PhD aim is to develop a hybrid prognostic approach that integrates 

physics-based and data-driven prognostics in order to enhance the 

prognostic results and to increase the applicability of prognostics in real 

applications. 

The core objectives of this research are:  

 To build an experimental rig with a high degree of accuracy, capable 

of taking data to validate prognostic algorithms. 

 To develop physics-based models (PbM) for the degrading components 

of two engineering systems. 
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 To develop a data-driven model (DDM) for the degrading components 

of two engineering systems. 

 To develop an integration scheme for combining physics based and 

data driven prognostic approaches. 

 To investigate the applicability & performance of the hybrid model for 

the application scenarios mentioned. 

The developed prognostic models (PbM, DDM, and Hybrid) have been 

implemented on two datasets: 1. Fatigue crack propagation dataset, 2. Filter 

clogging dataset. The former is a publicly available dataset, where a new 

experimental test rig has been designed and developed for the latter one. 

The experimental prognostic rig has been setup to produce a benchmark 

degradation dataset under different operational profiles. Variation under 

the same operation profile group is very low, whereas the spread in the 

complete dataset, consisting of all profiles, is significantly higher. On the 

other hand, the fatigue crack propagation dataset is a well-controlled set of 

crack growth experiments where the test specimens are exposed to a 

constant amplitude cyclic fatigue load. The dataset is publicly available and 

is known as the ‘Virkler Dataset’. 

For the filter clogging experiment, a physics-based prognostic model is 

derived from the porous flow pressure drop equations to model the 

differential pressure in the system and predict future pressure levels. For 

the Virkler fatigue crack growth dataset, a physics-based model employing 

the Paris and Erdogan crack propagation formulation is used. The hybrid 

integration scheme is applied on both case studies. Performance and 

applicability analysis is conducted by investigating the prognostic outputs 

obtained from the two application scenarios. The outcome of the analysis 

helps in decision making on the level of integration in hybrid model.  In 

addition, the development of a continuous learning environment that 

enhances the level of integration within product life cycle is studied. 
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1.3    Contributions 

The intellectual contributions of this research are outlined below: 

1. The development of a novel prognostic integration scheme enabling 

hybrid prognostic modelling to enhance prediction accuracy and 

robustness. 

2. The collection of a prognostic benchmark dataset consisting of fifty six 

run-to-failure samples for filter clogging failure, obtained under 

sixteen different operational profiles. 

3. A physics-based prognostic model of the clogging filter phenomena. 

4. Introducing a new parameter to improve a data-driven prognostic 

approach. 

5. A literature survey and prognostic eligibility study on benchmark 

prognostic datasets available on the Internet. 

1.4    List of Publications 

A list of publications that contributes to the literature regarding this 

research is listed below: 

Journal papers: 

1. Eker, O.F., Camci, F., Jennions, I.K., “An Integration Scheme for 

Hybrid Prognostics”, IEEE Transactions on Reliability, to be 

submitted, Mar. 2015. 

2. Eker, O.F., Camci, F., Jennions, I.K., “Physics-based Prognostic 

Modelling of Filter Clogging Phenomena”, Reliability Engineering 

and System Safety, submitted, Feb. 2015. 

Conference Proceedings: 

1. Eker, O.F., Skaf, Z., Camci, F., Jennions, I.K., “State-based 

Prognostics with State Duration information of Cracks in Structures”, 
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Proceedings of the 3rd International Conference in Through-life 

Engineering Systems, Volume 22, pp. 122-126, Nov. 2014. 

2. Eker, O.F., Camci, F., Jennions, I.K., “A Similarity-Based Prognostics 

Approach for Remaining Useful Life Prediction”, Second European 

Conference of the Prognostics and Health Management Society, 

Nantes, France, 8-10 Jul. 2014. 

3. Eker, O.F., Camci, F., Jennions, I.K., “Physics-based Degradation 

Modelling for Filter Clogging”, 2nd European Conference of the 

Prognostics and Health Management Society, Nantes, France, 8-10 

Jul. 2014. 

4. Eker O. F., Camci F., Jennions I.K., “Filter Clogging Data Collection 

for Prognostics”, Proceedings of the Annual Conference of the PHM 

Society 2013, New Orleans LA, USA, 14-17 Oct 2013. 

5. Eker O. F., Camci F., Jennions I. K., “Major Challenges in 

Prognostics: Study on Benchmarking Prognostics Datasets”, 1st 

European Conference of the Prognostics and Health Management 

Society, Dresden, Germany, 3-6 July 2012. 

1.5    Thesis Layout 

Organisation of the thesis is as follows: 

Chapter 2 introduces the maintenance technologies enabled by IVHM. A 

detailed prognostic literature survey consisting of the prognostic 

categorizations and comparisons of each category is presented. 

Chapter 3 discusses publicly available prognostic datasets and the 

properties of each set with a comparison of prognostic eligibility analysis. 

Also, the details of filter clogging prognostic rig test design, setup, and data 

collection is presented. 
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Chapter 4 describes in detail the integration scheme for hybrid prognostic 

modelling. Data-driven and physics-based modelling methodologies are also 

discussed in this section. 

Chapter 5 brings forward the prognostic results obtained from each 

methodology for different application scenarios. Prognostic performance 

analysis and results are given and a discussion section added in order to 

refer to the capabilities and imperfections of the proposed model. 

Chapter 6 summarises the research presented in this thesis and the future 

work on this research is laid out. 

 

  



 

20 

 

 

Chapter 2 

 

2 Literature Review 

 

The primary aim of this chapter is to provide a detailed literature review 

regarding IVHM and Prognostics along with a review of maintenance 

strategies. The prognostics approaches are categorised and discussed in 

detail. Furthermore, an analysis on strengths and weaknesses of the 

approaches has been conducted for each class.  This chapter is concluded 

with the prognostic modelling challenge analysis conducted by the 

researcher. 

2.1    Integrated Vehicle Health Management 

The Integrated Vehicle Health Management (IVHM) concept as introduced 

by NASA is defined as: 

“… the capability to efficiently perform checkout, testing, and monitoring of 

space transportation vehicles, subsystems, and components before, during, 

and after operation(s)…must support fault-tolerant response including 

system/subsystem reconfiguration to prevent catastrophic failure; and 

IVHM must support the planning and scheduling of post-operational 

maintenance.” (NASA, Oct. 1992) 

As mentioned in the above definition, IVHM acts an imperative role in 

aircraft operation management, and continues to offer the potential for a 
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paradigm shift in the way that aircraft organisations conduct business 

operations. Benedettini et al. (2009) postulate that IVHM is also potentially 

applicable to non-vehicle systems such as industrial process plants and 

power generation plants.  

However, IVHM is not suitable for all manufactured assets due to the IVHM 

solution may be more expensive than the asset or service itself (Jennions, 

2011). Therefore the technology is recommended to be applied for high-value 

complex products such as aircrafts, power generating equipment (e.g. wind 

turbines), or medical scanners.  

Jennions (2011) documents the generic IVHM taxonomy consisting of 

following sub-categories:  

 Maintenance service offerings (e.g. CBM, Total Care, RCM) 

 Business (e.g. Business models, IVHM mapping) 

 System design 

 Architecture 

 Analytics (e.g. Diagnostics, Prognostics) 

 Technologies (e.g. Structural Health Management (SHM)) 

IVHM enables many disciplines with an integrated framework. CBM, 

Health and Usage Monitoring Systems (HUMS), and RCM are some of the 

maintenance strategies offered under IVHM where diagnostics and 

prognostics considered under the analytics category. IVHM builds the 

background of this thesis along with the relevant technology, PHM. 

Following sections present the maintenance strategies including CBM and 

its sub-disciplines which provide a basis for this research. 

2.2    Maintenance Strategies Overview 

Maintenance philosophies are classified into two categories, these are: 

1. Reactive Maintenance (unplanned) 
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 Corrective Maintenance 

2. Proactive Maintenance (pre-planned) 

 Preventative Maintenance 

 Predictive Maintenance 

From the historical perspective of maintenance, it can be stated that the 

most spectacular changes have occurred in the last sixty years following 

World War  (Brown and Sondalini, 2014). Until then, corrective 

maintenance was the only option for a maintainer where equipment used to 

be fixed or replaced on a breakdown basis. Nevertheless, corrective 

maintenance is still in use for simple components such as light bulbs or a 

basic pipeline which are less risky and where the failure consequences are 

not fatal. 

From the 1950’s, mechanisation and automation steps have risen due to the 

increasing intolerance of downtime and the significantly increasing cost of 

labour. Improved machinery was of lighter construction and ran at higher 

speeds provoking wear out more quickly which lead to the development of 

proactive maintenance.  

Preventative maintenance is a sub-discipline of proactive maintenance in 

which the maintenance tasks are performed periodically. Periods are fixed 

intervals determined by using historical data (e.g. MTBF: Mean-Time-

Between-Failures) and without any input from the individual equipment 

itself. Equipment is serviced on a routine schedule whether the service is 

actually needed or not. However, both reactive and blindly proactive 

(preventative maintenance) maintenance approaches have financial and 

safety implications associated with them. Routine inspection rounds and 

lubrication, bi-monthly bearing replacements, or maintenance inspections 

and overhauls on aircraft systems are some of the examples of preventative 

maintenance activities. 
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In the late 1970s, the effectiveness of conducting preventative maintenance 

started to be questioned. A common concern about ‘over-maintaining’ arose 

which led to the development of predictive maintenance. Adaptively 

determined scheduling of maintenance actions are the main features of 

predictive maintenance that distinguishes it from preventative 

maintenance. On the contrary, predictive maintenance is limited to those 

applications where the cost and consequences are critical and technically 

feasible (Pintelon and Parodi-Herz, 2008). Predictive maintenance is 

classified as two: Condition-based Maintenance (CBM) and Reliability-

Centred Maintenance (RCM). RCM performs two tasks: first, analyse and 

categorise failure modes (e.g. FMEA) and second, assess the impact of 

maintenance schedules on system reliability (Kothamasu et al., 2006). RCM 

is based on manual inspections and basic data trending. CBM is discussed 

in further detail later in this chapter. 

From the 1980’s systems became progressively more complex in nature, 

bringing a more competitive marketplace and intolerance of increased 

downtimes. As an example from the 21st century, Murthy et al. (2002) 

reports that the daily loss of revenue due to downtime is £320,000 for 

Boeing 747 aircraft. Increasingly, risk analysis and environmental safety 

issues have become paramount. New concepts such as condition monitoring 

and expert systems have emerged. The Institute of Asset Management has 

been established in the UK in mid-90’s which has been received significant 

attention from most organisations. In 2000’s, terms such as prognostics, 

IVHM, and integrated system health monitoring (ISHM) have emerged and 

taken place in literature gradually thus far. 

To conclude, in engineering practices today, maintenance activities are 

predominantly intuitive and based on the expert’s or personnel’s experience 

that are familiar with the equipment. However, experience is becoming 

difficult to accumulate due to an ageing engineering workforce and 

improved asset reliability. In addition, when dealing with complex 
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equipment, human decision making is not always sufficiently reliable due to 

the multitude of interrelating failure modes (Sikorska et al., 2011). 

Industrial and military areas have become increasingly concerned about 

system availability and reliability, due to the fact that current systems 

became more complex and expensive which lead to an increase in 

competition drive more than ever. Maximised system availability and 

reliability, minimised failure and downtime cost are of great importance for 

many industries. Today’s sophisticated sensor technology enables engineers 

to track degradation processes and empowers for prognostic reasoning of 

equipment being monitored (Lee et al., 2006).  

2.2.1    Condition-Based Maintenance 

Condition-Based Maintenance (CBM) is a predictive maintenance strategy, 

whereby the maintenance tasks are performed when the need arises. The 

necessity concept is determined by assessing the health condition of the 

equipment continuously and extrapolating it to a predefined failure 

threshold (Camci and Chinnam, 2010; Eker et al., 2011). 

The hierarchical steps of standardised Open Systems Architecture for 

Condition-Based Maintenance (OSA-CBM) are depicted in Figure 2.1. OSA-

CBM is a layered approach, describing a standardised information delivery 

system in between its functional blocks. The process starts with acquisition 

of data and transmitting it to the higher level where the signal is processed 

(e.g. feature extraction). Third layer stands for diagnostics in which the 

comparisons are performed in order to detect and isolate different fault 

types (e.g. FMECA failure mode analysis). In the next level, the degradation 

level is identified to provide an input to prognostic block in order to be able 

to predict the remaining useful life of the asset. The top two layers are 

responsible for the intelligent decisions for a maintenance activity by means 

of the prognostic results and instrumentation, respectively. 
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An example of degradation in health level of an asset is shown in Figure 2.2. 

The P-F interval is the time interval between potential failure which is 

identified by health indicators, and an eventual functional failure. With 

CBM, it’s necessary that the P-F interval is long enough to enable corrective 

maintenance action to be taken (Jennions, 2011).  

 

Figure 2.1 The OSA-CBM architecture 

 

Figure 2.2. P-F curve of an equipment 

Performing maintenance preparation when the system is up and running 

has a great effect on reducing the operation and support costs. In addition to 

the reduced down time, the inventory cost will be reduced as more time will 

be available for obtaining required parts. Moreover, the efficiency in 

logistics & supply chain will be increased by means of better preparation for 
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maintenance. Eventually, the life cycle cost of the equipment will be 

reduced, as they are used until the end of their lives. 

2.2.1.1    Diagnostics and Prognostics in CBM 

Diagnostics and prognostics are two of the major disciplines of CBM. In the 

literature, there is a minor disagreement that prognostics is related to and 

highly dependent upon diagnostics (Sikorska et al., 2011). Diagnostics 

involves detecting and reporting abnormalities in signal as well as 

identifying the fault type, and quantification of current health status of an 

asset, being the relatively mature area compared to prognostics. CBM with 

diagnostics outputs aims to stop and schedule a maintenance task for the 

system once an abnormality has been detected otherwise the system 

continues to operate. Once degradation is detected, unscheduled 

maintenance should be performed to prevent the failure consequences. It is 

not uncommon to spend more time in maintenance preparation than in 

performing the actual maintenance due to the lack of resources.   

Ideally, in prognostics, maintenance preparation could be performed when 

the system is up and running, since the time-to-failure is known early 

enough. Thus, only the actual maintenance duration becomes the major 

contributor of the downtime which is way less than the fault diagnostic 

approach in CBM. As an example if prognostics can present a warning of a 

failure of an asset before 10 flight hours, re-test and installation steps can 

be pre-planned, yielding in saving of maintainer time and significant 

reduction in its variability (Hecht, 2006). Figure 2.3 illustrates the 

comparison of diagnostics and prognostics in CBM. 

In general, incipient failures follow a progressive degradation path (Kwan et 

al., 2003). Detection of failure progression is more valuable compared to the 

detection of failure once it has reached to a severe point. Furthermore, it is a 

prerequisite for prognostics (Xiong et al., 2008). In other words, prognostic 

utilise the health severity or health status information transmitted from the 
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diagnostics base. Hecht (2006) states that prognostics for avionics is 

essential as the increasing of the number of complex systems comprising of 

electro-mechanical components in current and future aircrafts and a 

possible shortage of technicians capable of servicing them. 

 

Figure 2.3. Fault Diagnostics vs. Failure Prognostics in CBM 

Prognostics involve two phases as shown in Figure 2.4. The goal of the first 

phase of prognostics is to assess the current health status. Severity 

detection, health assessment, and degradation identification are the terms 

used for describing this phase in the literature. This phase could also be 

considered under diagnostics as mentioned before. Usually, Bayesian 

filtering and/or pattern recognition techniques such as classification or 

clustering are employed in the health assessment part. The second phase, 

which is so-called the true prognostics, aims to predict the failure time by 

forecasting the degradation trend leading to the estimation of remaining 

useful life (RUL). Time series analysis, extrapolation, propagation, trending, 

projection and tracking are the terms used for describing this phase. 

Prognostics imply forecasting of the system’s/component’s future health 

level by propagating the current health level until a failure threshold. 
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Consequently, it enables an ability to provide an estimate of the remaining 

useful life (RUL). Prognostics is considered to be one of the most challenging 

and key enabling technologies among the CBM steps (Zhang et al., 2006b; 

Peng et al., 2010; Daigle and Goebel, 2010).  

 

Figure 2.4. Prognostic and diagnostic phases 

2.2.1.2    Benefits of Prognostics with CBM 

CBM approach has significant advantages on reducing the support and 

operating costs and leading to a more effective planning and operational 

decision making. An unexpected one-day stoppage in machinery industry 

may cost up to £160,000 (Peng et al., 2010). Another example from the 

return on investment for companies is the investment of £9,500 on 

monitoring the condition of systems prevents £315,000 of maintenance costs 

per year (Kothamasu et al., 2006).  

In another example, FAA’s BRITE radar was maintained either with pre-

arranged (proactive) or unscheduled (reactive) maintenance. Pre-arranged 

maintenance decisions were taken reasonably before the potential failure 

utilising prognostics by monitoring of degradation in the radar. 

Unscheduled maintenance took seventeen hours higher than pre-arranged 

maintenance in mean time to restore (MTTR) which was fifteen times 
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higher than that of the pre-arranged maintenance in comparison (Hecht, 

2006). A detailed review of prognostic approaches is presented in the 

following section. 

2.3    Review of Prognostics Approaches 

Amongst those papers reviewed, there is little consensus of prognostic field 

as to what categorisation is the most appropriate for prognostic models. In 

general, prognostic models can be categorised into four classes, these are:  

1. Data-driven models 

2. Physics-based models 

3. Knowledge-based models 

4. Hybrid models 

First three categories are illustrated in Figure 2.5, whereas a hybrid model 

implies fusion or combination of other methods is not shown in 

(Vachtsevanos et al., 2006) categorisation chart. This chart depicts the 

hierarchy of prognostic models based on the range of applicability, cost, and 

accuracy where knowledge-based models, being the most cost effective, find 

themselves a maximum applicability range in systems/components, albeit 

the accuracy of these models is less than the high accurate and costly 

physics-based models. Data-driven models fit in the middle of these models 

mentioned. Detailed discussion on comparison of the prognostic models will 

be presented in section 2.3.4.  

Several literature surveys covering the prognostic models have been 

presented by (Liao and Kottig, 2014; Kothamasu et al., 2006; Lee et al., 

2006; Zhang et al., 2006b; Peng et al., 2010; Vachtsevanos et al., 2006; Heng 

et al., 2009; Si et al., 2011; Luo et al., 2003b; Jardine et al., 2006). This 

literature review builds on the surveys referred in this section. In addition, 

current prognostic applications have emerged in the literature are further 
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discussed. In the following sections, a literature review of prognostic 

approaches within these categories is presented. 

 

Figure 2.5. Prognostic models hierarchy (Vachtsevanos et al., 2006) 

2.3.1    Data-Driven Models 

Data-driven models (DDM) employ routinely collected condition monitoring 

data and/or historical event data instead of building a model based on 

system physics or human expertise. DDMs attempt to track the degradation 

of an asset using extrapolation or projection techniques (e.g. regression, 

exponential smoothing, and neural networks) or match similar patterns in 

the history of relevant samples to infer RUL (Liao and Kottig, 2014). They 

also rely on the past patterns of deterioration to forecast future degradation. 

Usually system or loading inputs are not involved in data driven prognostic 

modelling. Assumption for models in this category is that the future system 

inputs or operational profile remains constant or consistent with the past 

data. Since data-driven prognostics have no elaborate information (e.g. 

physical information) related to the asset or system, it is considered to be a 

black-box operation (Zhang et al., 2009). Data-driven models are divided 

into two categories: Statistical models and Artificial Intelligence-Based (i.e. 

machine learning) models. 
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2.3.1.1    Statistical Models 

Statistical approaches construct models by fitting a probabilistic model to 

the data without depending on any engineering or physical principle. These 

approaches rely on statistical models and observed data to support the 

forecasting of the RUL of equipment. A comprehensive study on statistical 

data-driven models for remaining useful life estimation was conducted by Si 

et al. (2011). They divided statistical models into two categories based on 

the nature of condition monitoring (CM) data type used.  

Typically, CM data can be divided into two categories: direct CM data, and 

indirect CM data. Direct CM data indicates the health level of system 

directly (e.g. crack size, wear level) whereas indirect CM reflects the 

underlying system health partially or indirectly (e.g. sensor information, 

vibration, oil based monitoring). Wiener and Gamma processes, regression-

based models, and Markovian-based models find place under the models 

based on direct CM data; whereas, Stochastic Filtering-Based Models, 

Covariate-Based Hazard Models, Hidden Markov Models (HMMs) and, 

Hidden Semi Markov Models (HSMMs) are under the indirect CM category.  

Brownian Motion (or Wiener Processes) are a continuous state prognostics 

data driven models and their probability density function (PDF) is 

considered to be inverse Gaussian distribution. Wiener Processes use only 

the current health status instead of using past event data. Wang and Carr 

(2010) proposed an improved version of Brownian motion-based stochastic 

degradation model for remaining useful life prediction of monitored plants. 

They contributed to the literature in two ways: Firstly, drifting the 

parameters of Brownian motion model by using Kalman Filters. Secondly, 

they used failure distribution threshold instead of using a constant 

threshold.  

Gamma process is known for its simplicity. It’s a special version of 

Markovian-Based processes with continuous state representation (Si et al., 
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2011). A Gamma process-based deterioration model on (Hudak et al., 1978) 

crack growth data was implemented by Lawless and Crowder (2004). They 

incorporated covariates and a random effect to characterise the different 

rates among the different individuals.  

Bunks et al. (2000), Camci (2005), Baruah and Chinnam (2005) referred 

that the HMM based models could be applied in the field of prognostics in 

machining processes. Zhang et al. (2005) have investigated the use of 

Hidden Markov Models (HMMs) in bearing fault prognosis. They applied a 

combination of Principle Component Analysis (PCA) and HMM in order to 

obtain the degradation index of bearings, and they implemented Li et al.'s 

(2000) stochastic defect propagation model for predicting the RUL’s of 

components.    

Marjanovic et al. (2011) presented a combination of Auto-Regressive 

Moving-Average (ARMA) & hypothesis testing and HMMs on a steam 

separator subsystem of thermal plants. However, both techniques provide 

inaccurate RUL results. They accounted for the problem as the methods 

were not taking into consideration of system’s current state. They supplied 

prognostics results with a literature review. Auto-Regressive Integrated 

Moving-Average (ARIMA) models are an extended version classic ARMA 

models, enabling to model non-stationary time series signals. Typical ARMA 

models found to be less reliable for long-term predictions (Liao and Kottig, 

2014). Examples of ARIMA model in prognostic application is found in (Wei 

Wu et al., 2007; Saha et al., 2009) 

Camci (2005) developed an integrated diagnostics and prognostics 

methodology that employ support vector machines (SVM) and HMMs. 

Camci and Chinnam (2010)  compared the results of HMMs and 

Hierarchical Hidden Markov Models (HHMMs) on a CNC drilling machine 

degradation dataset,  reporting that the proposed model, HHMM, 

outperform regular HMMs in the literature. Another application of HMMs 
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in prognostics can be found in (Medjaher et al., 2012) in which they present 

a Gaussian Hidden Markov Models represented by Dynamic Bayesian 

Networks (DBN) for bearings. 

As an extension to SVMs, the Support Vector Regression (SVR) models are 

highly capable of addressing regression problems especially in cases where 

data is sparse (Khawaja, 2011). Applications of SVR on pattern recognition 

and prediction problems can be found in (Zhang et al., 2006a; Thissen et al., 

2003; Mattera and Haykin, 1999). 

Dong et al. (2006), Dong and He (2007b) Dong and He (2007a) proposed 

several Hidden Semi-Markov Model (HSMM) fault classification and 

prognostics applications on UH-60A Blackhawk main transmission 

planetary carriers in which HSMMs generate a segment of observations and 

estimate the durations from training data unlike HMMs which generate 

single observation for each state. Examples of discrete state-based approach 

for prognostic approaches can be found in (Eker et al., 2011; Eker and 

Camci, 2012; Guclu et al., 2010a). 

Proportional Hazard Model and Proportional Intensity Model (PIM) are also 

useful approaches for RUL estimation in combination with a trending model 

for the fault propagation process. Cox (1972) introduced the proportional 

hazard model to estimate the influences of diverse covariates affecting the 

RUL of a system. RUL prediction for a Markov failure time process which 

involves a joint model of hazard model and Markov property for covariate 

evolution as a special case has been discussed by (Banjevic and Jardine, 

2006). Another hazard rate algorithm was developed by (Li et al., 2007) to 

extract the repeated failure indications. A proportional hazard model for 

catastrophic failures and multiple degradation features of single equipment 

was introduced by (Liao et al., 2005). 

The Statistical Process Control (SPC) has been applied by (Goode et al., 

2000) where they employed SPC to separate the whole machine life into two 
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intervals: First, the installation–potential failure (I-P); second, potential 

failure-functional failure (P-F).  

Sheppard and Kaufman (2005) proposed a prognostics approach using 

Dynamic Bayesian Network (DBN) to model the changes over time. 

Bayesian Belief Networks (BBN) is recommended by (Przytula and Choi, 

2007) for prognostic purposes, since the estimation of RUL can be done 

within the framework of BBNs. 

Lastly, similarity-based prognostic approaches are usually effective when 

large amounts of historical data are available where a similarity matrix in 

between the current and historical data contributes to the estimation of 

RUL. Examples of Similarity-based Models for prognostics can be found in 

(Wegerich, 2004; Zio and Di Maio, 2010; Wang et al., 2008; Cheng and 

Pecht, 2007; Cheng and Pecht, 2007; Liu et al., 2007). Note that, some of the 

similarity-based approaches are categorised under the knowledge-based 

prognostic approaches (Wang, 2010). Details of the similarity based 

modelling approach are discussed in Chapter 0. 

2.3.1.2    Artificial Intelligence-Based Models 

Artificial Intelligence (AI) based or machine learning models attempt to 

recognise complex patterns and make intelligent decisions based on the 

empirical data. Machine learning approaches are adaptable to the situations 

where problem solutions require knowledge that is difficult to specify 

however enough data or observations are available. Artificial Neural 

Networks (ANN), Self-Organising Maps (SOM), and decision trees are 

common examples of machine learning approaches to be used for supporting 

the detection and diagnostics as well as prediction processes.   

ANNs are perhaps the most commonly used machine learning techniques 

for prognostics; consisting of input, hidden, and output layers that interact 

with each other with numerically weighted connections inspired by the 
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neural structure of the human brain. ANNs are as multi-input-multi-output 

nonlinear blackbox function approximators, categorised into two classes; 

these are, supervised and unsupervised learning. The supervised learning 

models employ input data (i.e. sensor information, condition monitoring 

data) and target data (i.e. direct health indicators, health state) in order to 

train the weights and learn the complex patterns. The unsupervised 

learning models adapt to find hidden structure in the unlabelled data. 

Clustering algorithms (e.g. k-means clustering, SOM) are examples of 

unsupervised learning algorithms. Eker et al. (2011) used k-means 

clustering algorithm along with Calinski-Harabasz clustering evaluation 

index for the health state identification of railway turnout mechanisms, 

whereas the RUL prediction part is carried out by means of a state-based 

prognostic algorithm they developed. 

Back propagation (BP) neural networks is a type of ANN, was utilised with 

a grey model in (Dong et al., 2004) for predicting the machine health 

condition. Gebraeel and Lawley (2008) proposed a degradation model based 

on dynamic wavelet neural networks (DWNN) in which the condition 

monitoring data was employed to estimate the RUL of partially degraded 

assets. Another example of DWNN in prognostics can be found in 

(Vachtsevanos and Wang, 2001). Huang et al. (2007) applied quantisation 

error indicator method (i.e. a derivation of SOM network) to assess the ball 

bearing degradation process and predict the remaining life. Time Delay 

Neural Networks (TDNN) is used for forecasting of a railway turnout 

systems in (Yilboga et al., 2010). A multi-layer perceptron NN along with 

regression NN is employed in (Herzog et al., 2009) for estimation through 

two application scenario. Ak et al. (2013) integrated a genetic algorithm to 

train ANN for predicting wind power under high uncertainty conditions. 

Mahamad et al. (2010) used Feed-Forward Neural Networks (FFNN) to 

predict RUL for a bearing failure case study.  
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Recurrent Neural Networks (RNN) with feedback connections can be 

considered as a non-linear extended version of classical ARMA models 

(Wang et al., 2004). RNNs have an advantage over generalised FFNNs 

where the uncertainty presentation of predictions is more robust. Zemouri 

et al. (2003) used recurrent radial basis neural networks to dynamically 

detect breakdowns and predict time series of nonlinear system states of gas 

ovens. Other examples for Recurrent Neural Networks for predicting 

machine condition trend can be found in (Yam et al., 2001; Heimes, 2008; 

Zhigang Tian, 2009). In the next section, literature review of physics-based 

models is provided. 

2.3.2    Physics-Based Models 

Physics-based models (PbM), also called ‘Model-based Prognostics or Model-

based Approaches’, typically involve describing the physics of the equipment 

and the failure mechanism. The author prefers to use the term ‘physics-

based models’ rather than ‘model-based prognostics’ since the most data-

driven approaches use models as well. This way of categorization gives a 

better ability to distinguish physics-based and data-driven models (Daigle, 

2014).  

In PbMs, mathematical models of failure are usually employed which is 

directly tied to health degradation. In order to provide knowledge rich 

prognostics output; PbMs are attempted to combine defect growth formulas, 

system specific mechanistic knowledge and condition monitoring data. 

These models assume that an accurate mathematical model for component 

degradation can be constructed from first principles. Residuals, the 

outcomes of consistency checks between sensor measurements and 

mathematical model outputs, are utilised as features of health condition in 

PbM approaches. Thresholds to detect the presence of faults are determined 

by using statistical techniques. In addition, model parameters are identified 

using empirical data obtained from specifically designed experiments (Liao 
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and Kottig, 2014). Physics-Based Models are implemented in three different 

ways (Sikorska et al., 2011); firstly, dynamic ordinary or partial differential 

equations that can be solved with approximation approaches (e.g. 

Lagrangian or Hamiltonian dynamics), secondly, state-space methods (i.e. 

no differential equations), thirdly, simulation methods. 

Kacprzynski et al. (2002) employed a physical stochastic model on gears. 

They calibrated the parameters for physical stochastic prognostics & 

diagnostics using system level features extracted from test specimens. 

Byington et al. (2004b) developed a fault detection and prediction algorithm 

for flight actuators which applies parametric identification and physical 

modelling techniques. Cempel et al. (1997) and Qiu et al. (2002) applied 

physics-based approaches to prognostics which have involved deriving the 

explicit relationship between condition variables and the current lifetime 

and failure lifetime via mechanistic modelling. Both of them applied their 

model for energy processors and bearings by employing vibration sensor 

measurements respectively. A general method for tracking the progress of a 

hidden damage process was proposed by (Chelidze and Cusumano, 2004). 

The proposed model is applicable for a given situation where a slowly 

evolving damage process is connected to a fast, directly observable dynamic 

system. Kacprzynski et al. (2004) fused diagnostic information and physics 

of failure modelling and applied for helicopter gear prognostics. A 

hierarchical modelling approach proposed by (Lesieutre et al., 1997) for 

system simulation to determine remaining useful life.  

A physics-of-failure approach reinforced with Kalman filters were used to 

track the dynamics of the frequency of accelerometer sensor signals in 

tensioned steel band by (Swanson, 2001). Phelps et al. (2001) used a Kalman 

Filter with an associated interacting multiple model to perform tracking of 

sensor-level test-failure probability vectors for prognostics. Assumptions for 

Kalman Filters are that the system exhibits a linear process and the noise 

in the system follows Gaussian distribution. Extended Kalman Filters and 



 

38 

Unscented Kalman Filters are some of the extensions to the traditional 

Kalman Filters in which the system is not bounded by the linear process. 

Hu et al. (2012) presented an Extended Kalman Filter approach for 

estimation of Lithium-ion battery life. Particle filters are a generic type of 

Bayesian tracking methods used with physics laws (i.e. in the form of 

differential equations) in which the model is not bounded by the assumption 

of linearity in the system and Gaussian noise. Instead of using deterministic 

probability distributions, significant numbers of particles are employed 

representing the health state of the system distribution. A number of 

examples are available in prognostic modelling literature for particle filters 

(Daigle and Goebel, 2010; Zio and Peloni, 2011; An et al., 2013). Detailed 

discussion of particle filters is given in section 4.2.1. 

Crack growth modelling is a widely used physics-based approach. Paris & 

Erdogan Law (Paris and Erdogan, 1963) is being used in several physics-

based prognostics applications. Li et al. (2000) and Li et al. (1999) correlated 

defect growth rate of rolling element bearings to the material constants (i.e. 

C and m) and to defect area size based on Paris & Erdogan’s law. They 

tuned both their defect diagnostic and defect propagation model parameters 

by monitoring of the system signals. Luo et al. (2003b) described an 

integrated prognostic process based on model-based simulation data under 

nominal and degraded conditions. Forman law of linear elastic fracture 

mechanics was used by (Oppenheimer and Loparo, 2002)  in order to model 

rotor shaft crack propagation. Orsagh et al. (2003) and Orsagh et al. (2004) 

employed a version of the Yu-Harris life equation for estimating the spall 

initiation. They used Kotzalas-Harris spall progression model to forecast the 

time to failure. Paris & Erdogan Law is also used in (Li and Choi, 2002; Li 

and Lee, 2005) to model gear crack growth. Most of the crack growth 

prediction models mentioned here are assumed that defect area size can be 

estimated using vibration data as the defect area size measurements are 

usually not available without interrupting the machine condition. A 
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comprehensive case study on modelling of fatigue crack propagation is 

provided in section 4.2.2. 

Physics-based models are considered to be more accurate if an accurate 

mathematical model representing the degradation process is fitted in the 

model thoroughly (Liao and Kottig, 2014). And the requirement concept on 

the data is significantly less, compared to the data-driven models. However, 

PbMs are usually component or system specific models which mean usually 

they cannot be applied to other type of components or systems in which the 

physics of failure mechanism is different. Another disadvantage is that the 

PbMs are costly compared to other approaches whereas they are the most 

suitable approach for cost-justified applications where accuracy weighs most 

other factors (Heng et al., 2009). 

2.3.3    Knowledge-Based Models 

It is usually difficult to obtain an accurate mathematical model in real-

world applications which limits the use of physics-based prognostic models. 

Due to the absence of a complex model, systems tend to be maintained with 

simpler models such as knowledge-based models (KbM). Knowledge or 

experience-based prognostic approaches are the simplest way of performing 

prognostics where the statistical historical failure information of systems is 

utilised for predicting the RUL (Vachtsevanos et al., 2006). The use of 

knowledge-based models is automated representation of how a human 

domain expert solves a problem (Liao and Kottig, 2014). Expert systems and 

fuzzy logic are two generic examples of these models. 

Disadvantages of knowledge based systems can be listed as: 

 Hard to obtain domain knowledge and extract rules 

 Handling of new situations which are not stored in knowledge base is 

limited 
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 Computational difficulty increases dramatically as the number of 

rules increases (i.e. combinational explosion problem) 

 No confidence limits are supplied 

2.3.3.1    Expert Systems 

Expert systems have been used since 1960s, and are considered as an 

artificial intelligence (AI) program that represent domain expert knowledge 

in solving a problem related to a particular domain. In expert systems, 

knowledge of domain experts is stored in the knowledge base where the 

extracted rules are applied into the failure situations by the maintainer. 

Knowledge-based rules are generated from collections of real experiments. 

Basic IF-THEN statement rules are often based on heuristic facts acquired 

by experts over a number of years (Sikorska et al., 2011). Outputs of expert 

systems are singular rather than a distribution of RUL. 

Expert systems have traditionally been used in failure diagnostics cases and 

it has started to be implemented in prognostics applications as well. 

Lembessis et al. (1989) developed an online expert system called 

CASSANDRA, which was built to monitor the condition of industrial 

equipment with the intent of fault prognostics. 

Biagetti and Sciubba (2004) developed an expert system called PROMISE 

(Prognostics and Intelligent Monitoring Expert System) which carries out 

both diagnostic and prognostic duties and provides solutions to system 

maintenance in plants. However no RUL information was provided with 

their proposed method. 

Butler (1996) developed an expert system based framework called FDPM 

(Failure Detection and Predictive Maintenance) which consists of several 

expert-system-related databases and components. It was applied on a power 

distribution system component for predicting maintenance demands. 
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2.3.3.2    Fuzzy Logic 

Similar to expert systems, fuzzy logic is a problem solving mechanism 

providing a robust mathematical framework to deal with non-statistical 

uncertainty and real world imprecision. A fuzzy system consists of a 

knowledge base; fuzzy rule, and the implementation algorithms for applying 

the logic. Fuzzy logic has a wide application area from simple small 

components to large workstations. Unlike expert systems, the fuzzy logic 

system has the ability to model system behaviours in continuum 

mathematics of fuzzy sets rather than with traditional discrete values. 

Fuzzy logic systems are usually incorporated with other methodologies such 

as neural networks (NN) or expert systems. 

Choi et al. (1995) proposed a fuzzy expert system called ‘Alarm Filtering’ 

and Diagnostic System (AFDS) which provide clean alarm pictures and 

system wide failure information during abnormal states. And also providing 

alarm prognosis to notify the operator of process abnormalities. 

Dmitry and Dmitry (2004) presented a fuzzy logic process in which the input 

data is mapped into fuzzy variables (i.e. fuzzification) using membership 

functions and de-mapping the fuzzy variables processed into numerically 

precise outputs (i.e. defuzzification). This methodology has been used widely 

in control applications such as in (Lee, 1990). 

Feng et al. (1998) proposed a dynamic fuzzy system for real-time condition 

monitoring and incident prevention. However, the RUL was not calculated 

whereas the applicability of fuzzy logic into prognostics was demonstrated. 

A comparison of a fuzzy logic model and neural networks is conducted by 

(Majidian and Saidi, 2007) for predicting the life of boiler tubes. Results 

show that neural network performed better where the applicability of NNs 

was favourable compared to the fuzzy logic model. 
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Unlike Majidian and Saidi's (2007) work, fuzzy logic is usually integrated in 

RUL calculation as an auxiliary method for the primary method to enhance 

prediction results.  Fuzzy logic has an ability of dealing with incomplete or 

imprecise input information with the use of linguistic variables such as 

‘low’, ‘very low’, which provides an intuitive way of reasoning and 

representing of failure health level. On the other hand; having no memory, 

limited capability of learning, and difficulties of determining good fuzzy 

rules and membership functions are some of the disadvantages of fuzzy 

logic.  

2.3.4    Hybrid Models 

It has been found to be difficult to predict the trends of all characteristic 

parameters by using an individual prognostic approach since the 

parameters are diversified in real world cases (Peng et al., 2010). The 

prognostic models under hybrid category combine multiple prognostic 

approaches in order to leverage the strengths of prognostic methods leading 

to enhanced prognostic results. Combination, fusion, integration, and hybrid 

terms are used for prognostic approaches in the literature for hybrid 

prognostic approaches. It is relatively a new area in prognostics and offers a 

promising concept for prognostics. 

Hybrid prognostic approaches consist of several advantages, some of these 

are: 

 Imperfections of individual approaches will be compensated; 

furthermore, merits of them could be utilised; 

 Prediction accuracy; hence prognostics performance can be enhanced; 

 Computation complexity may be reduced. 

Summarisation of advantages and disadvantages of prognostic approaches 

are shown in Table 2-1. A highly detailed comparison of prognostic models 

from an industrial point of view can be found in (Sikorska et al., 2011). 
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Table 2-1. Comparison of the benefits of prognostic approaches 

 Advantages Disadvantages 

Physics-Based Models Accurate compared to other 

approaches (if a good 

representative of 

mathematical model is 

available) 

Higher precision 

Requires less data compared 

to other approaches 

Suitable for creation in design 

phase 

Difficult to create a model 

especially for complex 

systems 

Sensitive to the design and 

material properties 

Sufficient component 

information and a good 

insight of the failure 

mechanism is required 

High cost of implementation 

Component or system specific 

Data-Driven Models Easy to conduct & simplicity 

in implementation 

Flexible and adaptable 

Suitable to all levels 

(component, system) 

More robust to changes in 

material or design 

compared to physics based 

Low cost 

Need data representing the 

failure progression, which is 

often not possible to obtain 

Computational complexity may 

be high 

Difficulty in determining of the 

failure thresholds 

Knowledge-Based 

Models 

Simple and easy to 

understand 

No model is required 

Wide application area and 

lower cost 

Ability of dealing with 

incomplete, noisy or 

imprecise input 

information 

Not always easy to obtain 

domain knowledge and 

extract rules 

Handling of new situations 

which are not stored in 

knowledge base is limited 

Computational difficulty 

increases dramatically as 

the number of rules 

increases 

Limited capability of learning  

No confidence limits are 

provided 

Liao and Kottig (2014) have conducted an extensive research on hybrid 

prognostic model categorisation. According to their study, hybrid models are 

classified into five different categories as shown in Figure 2.6 where: 
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 Knowledge-Based Model + Data-Driven Model (H1) 

 Knowledge-Based Model + Physics-Based Model (H2) 

 Data-Driven Model + Data-Driven Model (H3) 

 Data-Driven Model + Physics-Based Model (H4) 

 Knowledge-Based Model + Data-Driven Model + Physics-Based Model 

(H5) 

 

Figure 2.6. Hybrid prognostic model types (Liao and Kottig, 2014) 

2.3.4.1    Knowledge-Based Model & Data-Driven Model 

Hybrid prognostic models under this category represent incorporation of 

expert systems or fuzzy logic systems along with data-driven approaches. 

These approaches can add the flexibility of integrating domain knowledge 

into data-driven models for health state estimation where the RUL 

calculation is performed by a data-driven model.  

Artificial Neural Networks (ANN) is usually incorporated with expert 

systems or fuzzy logic systems. Brotherton et al. (2000) applied a neurofuzzy 

(NN & FL) combination method on gas turbine engines. NN learning 

procedures are combined with fuzzy interference system linguistic 
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description in the proposed model yielding an adaptive, robust, and flexible 

algorithm. Dong et al. (2004) proposed a multi-parameter condition 

prediction model by combining back propagation NN and gray model (GM 

(1, 1)) .The proposed combination model outperformed single characteristic 

parameter prediction results. Garga et al. (2001) presented a hybrid 

reasoning methodology for an industrial gearbox, integrating domain 

knowledge along with a feed forward neural network. However, in their 

study, the exact method for RUL prediction was not defined nor the results 

quantified.  

Neurofuzzy combination models have also been studied in (Zhang et al., 

2009; Wang et al., 2004; Chinnam and Baruah, 2004; Satish and Sarma, 

2005; Xue et al., 2005; Kothamasu and Huang, 2007).  

2.3.4.2    Knowledge-Based Model & Physics-Based Model 

In this category, knowledge-based approach output is often used as an 

auxiliary source to enhance physics-based model prognostic model outputs. 

Byington et al. (2004b) and Byington et al. (2004a) documented a 

methodology comprising of a fuzzy logic process and a physical model. The 

physical model incorporates actuator failure progression physics-of failure 

model with Kalman filters. Swanson (2001) combined a fuzzy logic system 

with a physics-based model where a crack propagation analytic model was 

combined with Kalman filters. In their study, fuzzy logic is also used for 

adapting failure thresholds to the operational profiles. 

2.3.4.3    Data-Driven Model & Data-Driven Model 

Hybrid models under this category consist of multiple data-driven 

approaches where one of the models is used for health state identification 

and the other model utilised for degradation state extrapolation and RUL 

estimation.  
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The author is involved in implementing a number of hybrid prognostic 

models incorporating different data-driven models in a research group 

before PhD studies. A clustering algorithm (e.g. k-means clustering) was 

trained to map the sensory data into discrete health index values. Then the 

health state of a turnout system was estimated using a classification 

algorithm (e.g. k-Nearest Neighbours) which maps the sensory data into 

health indexes by taking inputs from the trained clustering method. Finally, 

the future health state predictions leading to RUL estimations were 

performed with many different data-driven algorithms including Time 

Delay Neural Networks (TDNN), and Auto Regressive Moving Average. The 

articles describing these prognostic models can be found in (Eker et al., 

2011; Eker and Camci, 2012; Yilboga et al., 2010; Guclu et al., 2010b). 

Huang et al. (2007) presented a hybrid methodology in which the health 

state of the system is estimated by Self-Organising Maps baseline supported 

with the Minimum Quantisation Error (MQE), and RUL prediction is 

performed by a trained Back Propagation Neural Network (BPNN). Liu et 

al. (2012) proposed a model which integrates Least Squares Support Vector 

Regression (LSSVR) with HMMs where prognostic results are obtained for 

bearing degradation scenario. 

For further reading, other articles fall into this category can be found in 

(Heimes, 2008; Yan and Lee, 2007; Gebraeel et al., 2004; Peel, 2008; Du et 

al., 2012). 

2.3.4.4    Data-Driven Model & Physics-Based Model 

Hybrid prognostic algorithms under this category have been extensively 

studied in the literature.  

Hansen et al. (1995) fused data-driven and physics-based information in 

order to enhance the capabilities of failure diagnostics and prognostics. 

Hazard rate comparison is provided in the paper. Hazard rate (β) is 
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considered to be 1 for electronic equipment which means that the 

degradation of the component exhibit a constant increase whereas β>1 for 

mechanical equipment that is degradation of the component increases 

exponentially by time. Authors of the paper developed a methodology for 

combination of diagnostics and prognostics which involves the fusion of 

model-based and sensor-based approaches. However, only concept of the 

methodology is given. Results or model implementation details are not 

provided in the publication.  

A hybrid prognostics model which combines the information from off-line 

data-driven and physics-based, and on-line system identification-based 

predictive models was proposed by (Mohanty et al., 2008). The model was 

built for real-time remaining useful life estimation of metallic aircraft 

structural components. 

Many researchers have used a data-driven model to infer the measurement 

model, and used a physical model to predict RUL. The measurement model 

stands for mapping the sensory data to underlying system state, which is 

not measured. These studies can be found in  (Zhang et al., 2009; Orchard 

and Vachtsevanos, 2007; Kumar et al., 2008; Patil et al., 2009; Cheng and 

Pecht, 2009; Pecht and Jaai, 2010; Xing et al., 2011; Mohanty et al., 2007; 

Rosunally et al., 2009; Peng et al., 2012; Irving et al., 2012; Saha et al., 

2007; Baraldi et al., 2012). 

Pecht is involved in implementing their hybrid approach on several 

electronic equipment (Zhang et al., 2009; Cheng and Pecht, 2009; Pecht and 

Jaai, 2010; Mathew et al., 2008; Vichare and Pecht, 2006). In (Cheng and 

Pecht, 2009), a fusion prognostics model is implemented for electronic 

products. Both physics-based model and data-driven models are utilised in 

order to advance the RUL estimation. PbM was employed for identification 

and prioritising the failure model parameters, failure mechanisms and 

determining failure threshold. DDM was used for feature extraction, failure 



 

48 

anomaly detection, and trending the isolated parameters. Mathew et al. 

(2008) used canaries (canary devices) with their hybrid prognostics model. 

Canary devices are designed to fail faster than normal product so that they 

are used as indicator of failures. Zhang et al. (2009) presented a novel 

hybrid prognostics approach combining physics-based and data-driven 

models. In their model, DDM calibrates PbM in return PbM assists DDM by 

defining the failure criteria threshold. 

Another way of combining physics-based and data-driven models is to use a 

data-driven model to replace a system model in a physics-based model. 

System model is a degradation process model often involves physics-of-

failure models. This concept is suitable when an analytical degradation 

model is not available (Chen et al., 2011; Chen et al., 2012; Shetty et al., 

2008). 

Liu et al. (2012) and Orchard (2007) used data-driven models to predict 

future measurements while a physics-based model was used for predicting 

the RUL of the equipment. Hybrid approaches of this type aim to address 

the issue of data availability when updating a physical model in 

extrapolation phase where no measurements are available. 

Goebel and Eklund (2007) and Goebel et al. (2006) run data-driven and 

physics-based models simultaneously for prediction and fused their results 

to improve prediction efficiency. Liao and Kottig (2014) proposed a hybrid 

prognostic methodology and stated that the framework can be used in any 

application where knowledge about the degradation process and historical 

data or training data are available. 

2.3.4.5    Knowledge-Based Model & Data-Driven Model & Physics-Based 

Model 

Hybrid models under this section are designed as combination of data-

driven, physics-based, and data-driven models. 
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Examples of this combinations can be found in (Orsagh et al., 2003; Xu and 

Xu, 2011; Bartram and Mahadevan, 2012; Gola and Nystad, 2011).  

Table 2-2 is a chronologically ordered list of all hybrid models discussed in 

this chapter. Hybrid models belong to each category is listed as well as the 

individual prognostic models forming the hybrid architecture. Next section 

presents an analysis on prognostic applicability and challenges in the 

modelling of prognostics. 

Table 2-2. Hybrid prognostic model reference table 

 Hybrid Model Architecture Reference 

KbM  

+  

DDM 

Fuzzy Logic + NN 

Expert System + FFNN 

Fuzzy Logic + (DWNN & CPNN) 

Fuzzy Logic + TLFN 

Fuzzy Logic + NN 

Gray Model + NN  

Fuzzy Logic + NN 

Fuzzy Logic + ANN 

Fuzzy Logic + NN 

(Brotherton et al., 2000) 

(Garga et al., 2001) 

(Zhang et al., 2002) 

(Chinnam and Baruah, 2004) 

(Wang et al., 2004) 

(Dong et al., 2004) 

(Xue et al., 2005) 

(Satish and Sarma, 2005) 

(Kothamasu and Huang, 

2007) 

KbM  

+  

PbM 

Fuzzy Logic + (Crack Growth Model & 

KF) 

Fuzzy Logic + (Actuator Failure 

Progression & KF) 

(Swanson, 2001) 

 

(Byington et al., 2004a) 

DDM 

+ 

DDM 

FFNN + (WAFT & WAEP) 

(MQE & SOM) + BPNN 

ARMA + (Logistic Regression & MLE) 

MLP + RBF + KF 

RNN + EKF 

LSSVR + HMM 

NN ensemble (NN + NN) 

(k-means clustering & kNN) + 

(different discrete future health 

(Gebraeel et al., 2004) 

(Huang et al., 2007) 

(Yan and Lee, 2007) 

(Peel, 2008) 

(Heimes, 2008) 

(Liu et al., 2012) 

(Du et al., 2012) 

(Eker et al., 2011; Eker and 

Camci, 2012; Yilboga et al., 
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state prediction models)   2010; Guclu et al., 2010b) 

 

Hybrid concept only 

Empirical Spall Length Model + Spall 

propagation model 

Non-linear state-space model + (Paris 

Law + PF) 

Non-linear state-space model + PF 

(Hansen et al., 1995) 

(Goebel and Eklund, 2007; 

Goebel et al., 2006) 

(Orchard and Vachtsevanos, 

2007) 

(Orchard, 2007) 

DDM 

+ 

PbM 

GPR + FASTRAN-II 

 

Multivariate state-space model + 

MLE 

 

Mixture of different data driven and 

physics-based models for electronic 

equipment prognostics 

 

 

 

 

 

RVM + (Battery Health Model & PF) 

 

GPR + (Die-attach degradation model 

& EKF) 

ANFIS + PF 

 

Bayesian updating: Max. relative 

entropy + Small time scale model 

for crack growth 

Dataset statistical validation + Paris 

Law 

Bagged ensemble NNs + PF 

ANN + (Battery Model &PF) 

(SVR & SBP) + (Battery Health Model 

& PF) 

(Mohanty et al., 2008; 

Mohanty et al., 2007) 

(Shetty et al., 2008) 

 

CALCE Group Works 

(Zhang et al., 2009; Kumar et 

al., 2008; Patil et al., 2009; 

Cheng and Pecht, 2009; Pecht 

and Jaai, 2010; Xing et al., 

2011; Rosunally et al., 2009; 

Mathew et al., 2008; Vichare 

and Pecht, 2006) 

(Saha et al., 2007; Saha et al., 

2009) 

(Celaya et al., 2011) 

 

(Chen et al., 2011; Chen et 

al., 2012) 

(Peng et al., 2012) 

 

 

(Irving et al., 2012) 

 

(Baraldi et al., 2012) 

(Liu et al., 2012) 

(Liao and Kottig, 2014) 

KbM 

+ 

DDM 

+ 

PbM 

Expert Systems + Feature Based RUL 

+ Bearing spall propagation model 

(Fuzzy Logic & NN) + ARMA + SVM 

Expert Systems + FFNN + Choke 

valve fluid dynamic model 

(Orsagh et al., 2003) 

 

(Xu and Xu, 2011) 

(Gola and Nystad, 2011) 
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Expert Systems + DBN + (Crack 

Growth Model & PF) 

(Bartram and Mahadevan, 

2012) 

2.3.5    Challenges in Prognostic Modelling 

Wang (2010) reports that the examples of successful prognostic applications 

in complex engineering systems are still scarce, even though several 

improvements have been made in prognostic modelling. Such complex 

systems exhibit immensely stochastic and non-linear degradation profiles 

which make it difficult to model accurately. Therefore, the prognostics is 

considered as the ‘Achilles’ heel’ in CBM (Vachtsevanos and Valavanis, 

2009). 

Both, data-driven and physics-based models have different requirements to 

capture the degradation process and predict the RUL of a system. 

Challenges and requirements of these approaches are given in distinct sub-

sections below. 

2.3.5.1    Data-Driven Models 

In summary, data-driven models aim to model the system behaviour 

employing regularly collected condition monitoring data instead of using 

comprehensive system physics or human expertise. Generally, data-driven 

approaches are separated into two categories. These are statistical and 

machine learning (i.e. AI-based) prognostics approaches. In statistical 

approaches, models are constructed by fitting a probabilistic model to the 

available data; whereas, AI-based approaches attempt to recognise complex 

patterns and make intelligent decisions based on empirical data (Heng et 

al., 2009).  

Both statistical and machine learning methods employ the degradation 

patterns of sufficient samples representing equipment failure progression. 

This requirement is the major challenge in data-driven prognostics since it 

is often not possible to obtain samples of failure progressions. 
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Predominantly, industrial systems are not allowed to run until failure, is 

due to its consequences especially for critical systems. However, quality and 

quantity (sample size) of system monitoring data has a high influence on 

data-driven methods. Virkler et al. (1979) reports that sample size of a 

dataset should be at least 50 in order to conduct a meaningful analysis. 

Sample sizes of prognostic datasets found in the literature are ranging from 

10 to 100 (Camci and Chinnam, 2010; Eker et al., 2011; Baruah and 

Chinnam, 2005; Huang et al., 2007; NASA Ames, 2012; Gebraeel et al., 

2005). Another challenge for data-driven models is that the higher 

computational complexity of modelling due to the high number of statistical 

calculations. In the absence of prior knowledge about the failure 

mechanism, determining the failure threshold is considered to be another 

challenge.  

Majority of the electro-mechanical failures occur slowly, exhibiting a non-

linear degradation path (Gebraeel et al., 2009). Failure degradation of such 

systems may take months or even years. This challenge has been addressed 

in the literature in the following ways:  

1. Accelerated aging: Equipment is run in a lab environment with extreme 

loads and/or increased speed to allow faster failure. Structural health 

monitoring (SHM) applications are a good example of this type of failure 

progression. Test specimens are subjected to fatigue cyclic loading 

experiments so that cracks are propagated faster than normal degradation 

process (Camci et al., 2012; Diamanti and Soutis, 2010; Papazian et al., 

2009). Camci and Chinnam (2010) used imitations of real components which 

are made of lighter materials so that failure progresses faster than normal.  

2. Unnatural failure progression: A predefined degradation formula is used 

to define the discrete failure states and duration to be spent in each state. 

Failure progression in a railway turnout has been modelled using 

exponential degradation (Eker et al., 2011). 
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Each solution has its own strengths and weaknesses with some level of 

failure degradation representation capability. 

2.3.5.2    Physics-Based Models 

Physics-based models employ a physical understanding underlying the 

system degradation mechanism for estimating the remaining useful life of 

equipment. Unlike data-driven models, the samples of failure degradation 

usually do not play a significant role in physics-based prognostics; however, 

interrelated physical rules within the system should be known in detail 

which is often found to be significantly difficult, if not almost impossible. 

The first part of the physics-based modelling is to obtain the residuals that 

represent the dispersion of sensed measurements from their expected values 

of healthy systems (Luo et al., 2003a). The second phase in physics-based 

prognostics requires mathematical modelling of failure degradation. 

There exist two major challenges in physics based prognostics: 1) the lack of 

sufficient knowledge on physics of failure degradation; and 2) the inability 

to obtain the values of the parameters in the model formulations. Thus, 

sufficient component/system information and good understanding of failure 

mechanisms are essential and skilled personnel is also required in physics 

based models (Zhang et al., 2009). Environmental and operating conditions 

may be used as inputs and constitute added dimensions to be considered. 

2.3.5.3    Knowledge-Based Models 

Usually, systems are maintained with simpler models such as knowledge-

based approaches, due to the absence of a complex model. Knowledge or 

experience-based prognostic approaches are the simplest way of performing 

prognostics where the statistical historical failure information of systems is 

utilised for predicting the RUL. The use of knowledge-based models is an 

automated representation of how a human domain expert solves a problem. 

Expert systems and fuzzy logic are two generic examples of these models.  
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Similar to the physics-based models, it is often difficult to obtain domain 

knowledge and extract rules based on degradation phenomena. Handling of 

new situations which are not stored in knowledge base limits the ability of 

RUL predictions with knowledge-based models.  

Equivalently as data-driven models, knowledge-based models suffer from 

the increase in computational difficulty as the number of rules increases (i.e. 

combinatorial explosion problem). 

2.3.5.4    Research Gap 

As discussed in the previous sections, prognostics approaches have their 

own advantages and disadvantages. Hybrid approaches aim to integrate 

their individual advantages as well as avoiding their characteristic 

disadvantages.  

Engineering prognostic datasets that can be efficiently employed in a data-

driven modelling as well as in a physics-based modelling approach are 

remarkably sparse in the literature. Either lacking of sufficient data 

samples or missing of an efficient physical modelling is the case for most of 

the examples. Thus, development of a data driven and physics based model 

for the same system and their integration is a great challenge. The 

prognostic data gap is discussed thoroughly in the next chapter. 

In addition, hybrid prognostic models found in the literature are application 

specific and combination of models is achieved by using one method for 

health state estimation and the other for the RUL prediction. However, a 

generic prognostic integration scheme where multiple models are integrated 

in the RUL prediction phase (i.e. so called ‘true prognostics phase’) is found 

to be missing in the literature. This research aims to contribute in filling 

this gap.  

This PhD research contributes to the literature by serving an experimental 

benchmark dataset consisting of degradation signals, whose sample size is 
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sufficient enough for a data-driven prognostics method. Additionally, the 

degradation mechanism is not too complex, enabling to model the failure 

progression using a physics-based model thoroughly. In this research, data 

driven and physics based prognostics models have been developed for the 

experimental dataset and a publicly available dataset. In addition, a hybrid 

prognostic integration scheme to overcome the weaknesses of performing 

prognostics with a respective modelling technique (i.e. a data-driven model 

or a physics-based model) has been developed. This research proposes a 

generic prognostic integration scheme where multiple models are integrated 

in RUL prediction phase. 
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Chapter 3 

 

3 Data Selection & Data Collection 

 

This chapter introduces the case studies for prognostic implementation and 

the determination processes are also described in detail. Throughout this 

chapter, several publicly available datasets are analysed for their suitability 

in testing prognostic approaches. Their applicability of physics based and 

data-driven approach are discussed in detail. The applicability is analysed 

based on the available degradation data sample size for a data-driven 

approach. For the physics-based model eligibility analysis, availability of a 

mathematical degradation model and the knowledge of its parameters 

served the basis. The applicability of data-driven and physics-based 

prognostics methods have been presented in following subsections. 

3.1    Case Study 1: Available Prognostic Datasets 

NASA Ames prognostics data repository (NASA Ames, 2012) is a growing 

source covering several sets of prognostic data contributed by universities, 

companies, and agencies. Datasets in the repository consist of run-to-failure 

time series data, representing the case study under examination. There are 

seven sets of prognostics dataset available. In this section, analysis of five 

datasets from NASA data repository and a fatigue crack growth dataset for 

data-driven or physics-based modelling are presented.  
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3.1.1    Milling Dataset & Tool Wear Modelling 

The dataset was collected by (Agogino and Goebel, 2007). Sixteen milling 

inserts were aged by running them at different operating profiles. Once the 

flank wear on the milling insert exceeded a standard threshold level, the 

tool was considered to have failed. Flank wear was observed by a microscope 

on the flank face of the cutting tool caused by the abrasion of hard 

constituents of work piece material which is commonly observed during the 

machining of steels or cast irons. The acoustic emission, vibration and 

current readings, which are considered as the indirect health indicators, are 

collected from the tools. There are eight different operating conditions 

leading to only two samples for each operating condition. Effective data-

driven modelling is very difficult, if not impossible, using only two samples 

of failure degradation.  

Several tool life or tool-wear rate models, mostly based on Taylor’s formula 

(Yen et al., 2004), are available for physics based prognostics, displayed in 

Table 3-1. 

Tool life is described as the duration in which a tool can be operated 

properly before it starts to fail. In physics-based prognostics, Taylor tool life 

(Eq. 1) and its extended versions in Equations. 2-4, are well known life 

models employed in machining applications. Each of which can be applied 

into tool degradation scenarios separately. 

In machining applications, a predetermined flank wear upper level is used 

as a failure criterion. Tool life and rate of wear are sensitive to changes in 

cutting conditions. The relationship between tool life and machining 

parameters (e.g. cutting speed, feed, and depth of cut) are described by the 

Equations (1-5). Cutting speed is considered as the difference in speed 

between the cutting tool and the work piece. Feed rate is the velocity of a 

tool moving laterally across the work piece which is perpendicular to the 

cutting speed. The depth of cut is how deep a work piece is penetrated.  
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Takeyama and Murata’s tool wear rate model, shown in Eq. (5), describes 

the relationship between rate of volume loss on the tool insert, cutting 

distance and diffusive wear per cycle. Even though the parameters specific 

to the tool material or work piece (e.g. cutting tool hardness) can be found in 

machinery’s handbooks, operating or environmental condition parameters 

such as cutting temperature and sliding speed are not provided with the 

dataset. 

Table 3-1. Tool life and wear models 

Tool Life Models Tool Wear Rate Models 

𝑉𝐿𝑛 = 𝐶 (1) 

𝑑𝑊

𝑑𝑡
=  

𝐶

𝐻

𝐹𝑓

𝑉𝑓
𝑉𝑠 + 𝐵𝑒𝑥𝑝

−𝐸
𝑅𝑇𝑓 (5) 

𝑉𝑥𝑓𝑦𝑑𝑧𝐿 = 𝐶 (2) 

𝑉 =  
𝐶

𝐿𝑝𝑓𝑞𝑑𝑟(𝐵𝐻𝑁/200)𝑡
 

(3) 

𝑇𝐿𝑛 = 𝐶 (4) 

C, x, y, z, n, p, q, r, t = Constants 

V = Cutting speed 

L =  Tool life 

f = Feed rate 

d = Depth of cut 

BHN (Brinell Hardness Number) = Workpiece hardness 

H = Cutting tool hardness 

T = Cutting temperature 

Tf = Cutting temperature in tool flank 

E = Process activation energy 

R = Universal gas constant 

Ff = Normal cutting force 

Vs = Sliding speed 

For these reasons, the dataset is found to be inadequate for data-driven and 

physics-based prognostic models. 

3.1.2    Bearing Dataset & Spall Progression Modelling 

Three sets of tapered rolling element bearings, each of which consist of four 

bearings, have been run to failure under the same operating conditions (Lee 
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et al., 2007). Accumulated mass of debris was collected for each experiment. 

The amount of debris is linked to bearing health status (Dempsey et al., 

2006). In contrast to the milling dataset, the direct health indicator (i.e. the 

amount of debris collected) was not supplied with the dataset. Vibration 

data was collected regularly as an indirect health indicator. After 

approximately a hundred million revolutions, the bearings were failed due 

to a crack or outer race failure (Qiu et al., 2006). 

Yu-Harris (Y-H) and Kotzalas-Harris (K-H) models can be selected to be 

used in a physics-based prognostic approach for bearing failure scenarios. 

Both bearing spall initiation and spall progression models found in (Orsagh 

et al., 2003; Yu and Harris, 2001) are shown in  

Table 3-2. Y-H bearing stress-based spall initiation formula is a function of 

dynamic capacity (Qc) and the applied load (Q) as shown in Eq. 6. The 

dynamic capacity is also a function of bearing geometry and stress. Once 

initiated, a spall grows rapidly and a bearing has only 3% to 20% of its 

remaining useful life left (Kotzalas and Harris, 2000). 

The K-H spall progression rate model is a function of spall progression 

region width (Wsp), and is described with regards to maximum stress(σmax), 

average shearing stress(τavg), and spall length(Sp). Similarly, some 

parameters used in physics based modelling are not provided within the 

dataset (e.g.σmax, τavg, τavg). 

The emerging challenges from this dataset are as follows: 

 Three run-to-failure sets of samples are considered insufficient for 

data-driven modelling when compared to dataset sample sizes found 

in literature. 

 Lack of parameters to be used in physics-based modelling. 
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Table 3-2. Bearing fatigue life models 

Spall initiation model 

L10 =  (
Qc

Q
)

x+y+z
3

 
(6) 

where: 

Qc =  A1ΦD
2z−x−y−3

z+x+y  (7) 

Φ =  [(
T

T1

)
z u(DΣρ)

2z−x−y
3

(a∗)z−x(b∗)z−y

d

D
]

−3
z+x+y

 

(8) 

Spall progression model 

dSp

dN
= C(Wsp)m (9) 

where:  

Wsp = (σmax + τavg)√πSp (10) 

x, y, z = constants 

A1 = material property 

T = a function of the contact surface dimensions 

T1 =  value of T (when a/b =  1) 

u =  number of stress cycles per revolution 

D =  ball diameter 

ρ =  curvature 

d =  component diameter 

a∗ , b∗ =  function of contact ellipse dimensions 

Sp = spall length 

Wsp = spall  progression region width 

C and m = constants 

σmax = maximum stress 

τavg = average shearing stress 

3.1.3    Li-Ion Battery Dataset & Capacity Modelling 

Data collections from electric unmanned aerial vehicle (eUAV) Li-ion 

batteries were conducted by (Saha and Goebel, 2007).The batteries were 
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charged and discharged at different ambient temperatures and different 

load currents. There are four samples under the same operating conditions 

and 36 samples are provided in total. Battery capacity fade is chosen as a 

failure indicator for these experiments. It was assumed that 30% of a 

battery capacity fade (e.g. a reduction from 2000 to 1400 mAh) was 

determined as the failure threshold. Voltage, current, and battery 

temperature measurements are provided with the dataset as indirect health 

indicators. Impedance and capacity measurements were supplied within the 

dataset as damage criteria which are direct health indicators. 

Only four sets of batteries, under the same operating and environmental 

conditions, are not enough to apply data-driven prognostics in an effective 

way. Typically, battery capacity and end of life (EOL) modelling have been 

conducted for physics-based prognostics purposes. A remaining battery 

capacity model can be found in the literature (Rong and Pedram, 2006). All 

parameters, other than the constant coefficients which are determined from 

experimental testing by curve fitting, are available to be serviced within 

their model. Therefore, this dataset is thought to be appropriate for physics-

based modelling. 

3.1.4    Turbofan Engine Degradation Simulation Dataset 

This dataset contains four sets of data each of which is a combination of two 

failure modes and two operating conditions. Each set has at least 200 engine 

degradation simulations carried out using C-MAPSS, which are divided into 

training and test subsets (Saxena and Goebel, 2008). Twenty one different 

sensor measurements as well as RUL values for test subsets are given. 

However, health indicators are not provided with the dataset. 

Degradation in the HPC and Fan of the turbofan engine is simulated, whilst 

the dataset consists of multiple multivariate time series data. The 

simulations employ several operating conditions. The model that the dataset 

suppliers applied is exponential degradation shown in Eq. 11 where (d) is 
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initial degradation, (A) is a scaling factor, (B(t)) time varying exponent, and 

(thw) is upper wear threshold. The model is a generalised equation of 

common damage propagation models (e.g. Arrhenius, Coffin-Manson, and 

Eyring models).  

ℎ(𝑡) = 1 − 𝑑 −  𝐴𝑒𝐵(𝑡)/𝑡ℎ𝑤                   (11) 

The dataset is eligible for data-driven approach, as sufficient data and RUL 

values are available within dataset. Either statistical or machine learning 

data-driven models can be applied to predict the RUL of turbofan engines. 

However, it is found to be not appropriate for physics-based modelling as the 

physics-based degradation model for this complex system would be daunting 

and significantly complex. In addition, since it was used in a data challenge 

competition, the actual health index values are not provided within the 

dataset. 

3.1.5    IGBT Aging Dataset & Package Failure Modelling 

The dataset consist of thermal overstress aging experiments of Insulated 

Gate Bipolar Transistors (IGBTs) (Celaya et al., 2009). IGBTs are power 

semiconductor devices used in switching applications such as traction motor 

control, and switched-mode power supplies (SMPS). Five IGBTs were aged 

with a squared signal at the gate and one was aged with DC waveforms. The 

experiments were terminated after a thermal runaway and/or latch-up 

failure was detected. Collector current, gate voltage, collector-emitter 

voltage, and package temperature measurements are given as indirect 

health indicators.  

There are five run-to-failure samples under the same operational profiles. 

The dataset providers have also declared that they experienced several 

problems with aging systems (Sonnenfeld et al., 2008). Thus, it is difficult to 

claim that the dataset could be employed for data-driven prognostics 

effectively.  
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The Coffin-Manson model (Eq. 12) can be utilised within a physics-based 

model for thermal cycling applications (Cui, 2005). It is a function of 

temperature parameters and Arrhenius term (G(Tmax)). Arrhenius term is 

evaluated when the temperature level gets to the maximum temperature 

(Tmax) in each cycle. The temperature parameters to be used in the model 

are given with the dataset. The dataset is therefore found to be eligible for 

employing a physics-based approach. 

Table 3-3. Physics-based models for temperature cycling 

Coffin-Manson Model 

𝑁 = 𝐴𝑓−𝑎∆𝑇−𝑏𝐺(𝑇𝑚𝑎𝑥) (12) 

𝐺(𝑇𝑚𝑎𝑥) = 𝑒(𝐸𝐴/𝐾)(1/𝑇𝑚𝑎𝑥) (13) 

N = number of cycles to fail 

f = cycling frequency 

A = scaling factor 

∆T = temperature range during a cycle 

a = cycling frequency exponent 

b = temperature range exponent 

Tmax = maximum temperature reached in cycle 

G(Tmax) = Arrhenius term 

EA = activation energy 

K = Boltzman′s constant 

3.1.6    Virkler Dataset & Fatigue Crack Growth Modelling 

In structural health monitoring discipline, the fatigue cracks are defined as 

one of the primary structural damage mechanisms caused by cyclic loadings. 

Cracks at the structure surface grow gradually. Once a fatigue crack on a 

structure has reached to a critical length determined by standards, the 

structure will suddenly fracture and it may cause the system to fail 

catastrophically. Therefore, prediction of fatigue life or fatigue crack growth 

in structures is necessary. 

The Virkler fatigue crack growth dataset (Virkler et al., 1979) contains 68 

run-to-failure specimens. Specimens used for experiments are centre 
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cracked sheets of 2024-T3 aluminium. Each specimen was initiated with a 

notch of nine millimetre crack length. Data comprising of crack length and 

corresponding cycle information was recorded at consistently increasing 

discrete crack levels (e.g. 9.1mm, 9.2mm). The loading cycles were 

terminated once the crack length reached at 49.8mm for each experiment. 

Each specimen signal has 164 crack length observation points. Figure 3.1 

depicts the sample trajectories within the dataset. The crack length 

information is provided as a direct health indicator of the specimens. 

However, indirect sensory measurements such as vibration and acoustic 

emission are not provided. 

 

Figure 3.1. Virkler dataset visualisation 

The Virkler dataset is found to be eligible for a data-driven prognostic 

application, as there are sufficient run-to-failure samples within the 

dataset. Sixty eight samples are sufficient for developing data-driven 

method for RUL estimation of specimens.  

Physics-based modelling of fatigue crack propagation is a widely studied 

research area.  Paris & Erdogan crack growth formulation as shown in 

Equations 14 and 15 describes the relationship in between crack growth 
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rate (da dN⁄ ); and previous crack length (a), loading specifications (Paris and 

Erdogan, 1963; Cross et al., 2006). The Paris & Erdogan crack growth rate 

(da dN⁄ ) equation consists of two material specific constants (i.e. ‘C’ and ‘m’) 

and the range of intensity factor (∆K), where (∆σ) is the range of cyclic stress 

amplitude, (Y) is the geometric constant, and (a) is the crack length.  

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚  (14) 

Where: 

∆𝐾 =  ∆𝜎𝑌√𝜋𝑎  (15) 

The equation can be employed in a physics-based prognostic 

implementation. Physics-based modelling of crack propagation is discussed 

in detail in section 4.2.2. 

3.1.7    Dataset Comparison & Selection 

The challenge and requirement analysis of six different dataset have been 

performed both considering data-driven and physics-based modelling 

demands. As a result, noticeably four out of six datasets can be modelled 

within a physics-based approach smoothly; whereas, only two of them are 

applicable for a data-driven prognostics modelling.  

Table 3-4.Prognostic approach applicability table 

Dataset 
Data-Driven 

Modelling 

Physics-Based 

Modelling 

Milling Dataset   

Bearing Dataset   

Battery Dataset   

Engine Dataset   

IGBT Dataset   

Virkler Dataset   
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A summary table of all datasets is shown in Table 3-4. In comparison to 

other datasets, the Virkler dataset was found to be the most applicable, 

considering the requirements of both data-driven and physics-based 

approaches. The fatigue crack growth scenario, specifically the Virkler 

Dataset is selected as the first case study for this research. 

3.2    Case Study 2: Filter Clogging Data Collection 

This section discusses thoroughly the filter clogging experimental scenario 

and the data collection for a hybrid prognostic task under the accelerated 

aging conditions. 

Filtration phenomenon is interest of several engineering processes including 

automotive, chemical, reactor, and process engineering applications. 

Besides, several industrial applications such as food, petroleum, 

pharmaceuticals, metal production, and minerals embrace filtration process 

(Sparks, 2011). 

The aim of the filtration systems is to keep the rest of the system running 

smoothly; moreover, they play a vital role in maintaining the process 

operating. Filtration and separation equipment plays a substantial portion 

(15%) in production of transport equipment manufacturing. Modern 

commercial vehicles and automobiles have numerous types of filters 

including fuel, lubricant, and intake air (Sutherland, 2010). 

Sharing an important role with pumps, fuel filters filtrate dirt and other 

contaminants in the fuel system such as sulphates, polymers, paint chips, 

dust, and rust particulate which are released from a fuel tank due to 

moisture or other numerous types of dirt have been uplifted via supply 

tanker (Wilfong et al., 2010; Jones, 2008). Consequences like engine and 

pump performance degradation due to increased abrasion and inefficient 

burning in the engine are the main motivators for fuel filtration leading to a 

purified fuel. However, filtering the fuel associates with some complications 
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(e.g. clogging of filter) as well. System flow rate and engine performance 

declines once a fuel filter is clogged where it does not function well in its 

desired operation ranges. Jones (2008) reports that filter clogging indication 

due to fuel contamination may result in an aircraft having to return to the 

ground or divert for further fuel filter inspection or replacement. A fuel filter 

bypass indicator alarms the pilot and the crew to take an action when the 

pressure drop level reaches a predefined threshold (e.g. 11.5±1 PSI for GE 

CFM53-3 engine). A potential catastrophic failure such as engine shutdown 

may occur when both engines are exposed to unfiltered fuel due to the 

bypass operation. 

In today’s maintenance planning, fuel filters are replaced or cleansed on a 

regular basis. Jones (2008) reports that Boeing 777 fuel filter inspections 

are performed at every 2000 flight hours. Monitoring and implementation of 

prognostics on filtration system have the potential to avoid costs and 

increase safety. 

3.2.1    Test Rig Design & Setup 

An experimental rig to demonstrate filter clogging failure should consist of 

the following major components: Pump, liquid tanks, tank stirrer, pulsation 

dampener, filter, pressure and flow rate sensors, data acquisition system 

connected to a computer. Figure 3.2 illustrates the design of such 

experimental rig. Each component is discussed below. 

Pump: There are different types of pumps enabling a liquid to flow through 

a complex system. Since the system will involve contaminants in the fluid, a 

peristaltic pump has been used as its mechanism is more tolerant to 

particles in the liquid. A Masterflex® SN-77921-70 (Drive: 07523-80, Two 

Heads: 77200-62, Tubing: L/S© 24) model peristaltic pump was installed in 

the system to maintain the flow of the prepared suspension. The pump is a 

positive displacement source, providing a flow rate ranging from 0.28 to 

1700 ml/min (i.e. from 0.1 to 600 RPM). The practical part of peristaltic 
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pumps is that they confine the fluid to the tubing. In this way, the pump 

cannot contaminate the fluid and vice versa. Detailed design of the 

prognostic rig is illustrated in Figure 3.2. A photograph of the test system 

including all components is displayed in Figure 3.4. 

 

Figure 3.2. Filter clogging prognostic rig system design 

Dampener: The aim of using rigid tubing is to prevent the system from the 

unwanted tubing expansion due to pressure build up which interrupts the 

actual pressure build up generated from filter clogging. A Masterflex® pulse 

dampener is installed on the downstream side of pump to eliminate the 

pulsation in flow, hence pressure drop across the filter. Majority of the 

system is furnished with a rigid polypropylene tubing whereas the pump 

side is covered with a flexible Tygon® LFL pump tubing. 

Tank: One half-sphere-shaped main tank and two subsidiary tanks (i.e. 

reservoir tank and clean water tank) are installed in the system. The sphere 

shape tank bowl enables the stirrer work efficiently leading to 

homogeneously distributed slurry in the tank. The prepared suspension is 
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kept in the main tank and pumped through the filter and poured into the 

reservoir tank. The clean water tank is used to fill-up the system 

components (e.g. tubing and the filter chamber) with clean water prior to 

each test. A Kern® 10000-1N type high precision weighing scale (weighing 

range: 0.1 – 10,000 g.) is placed under the reservoir tank and connected to 

the PC with a serial cable to keep track of the amount of filtrated liquid 

continuously. 

Particles: The suspension is composed of Polyetheretherketone (PEEK) 

particles and water. PEEK particles have a density (1.3g/cm3) close to that 

of room temperature water and have significantly low water absorption level 

(0.1% / 24 hours, ASTM D570). Having a low water absorption level will 

prevent particles to expand their volume when they mix with water. 

Subsequently, closer density with water allows particles to suspend longer 

in water. Therefore, PEEK particles are selected to be used in the 

accelerated clogging of filter experiments. The particles have a large size 

distribution as seen in Figure 3.3. For this reason, narrowing the 

distribution by sieving is found to be necessary before conducting 

experiments. 

 

Figure 3.3. PEEK particle size distribution 
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Stirrer: An adjustable speed ceramic SC-1 type magnetic stirrer was 

installed in the system to ensure that the particles are distributed uniformly 

in the tank during the experiments. This is necessary as the particles, even 

though they are meant to be naturally buoyant, sink after a while leaving 

the water clean.  

Pressure Sensors: Upstream and downstream Ashcroft® G2 pressure 

transducers (measurement range: 0 - 100 PSI) are installed in the system to 

capture the pressure drop (i.e. ‘∆P’) across the filter, which is considered as 

the main indicator of clogging.  

 

Figure 3.4. Filter clogging prognostic rig 

Flow Rate Sensor: A GMAG100 series electromagnetic flow meter 

(measurement range: 3 – 25,000 millilitres per minute) is installed in the 

system to keep track of the flow rate in the system. The flow meter is also 

suitable for high pulsation flows. Magnetic flowmeters have no moving 

parts, which allow measuring the flow rate of slurry by means of the 

magneto-inductive principle. This type of flow meters has been selected for 

two reasons: 1) To enable measuring flow rate of water & PEEK suspension 

with no accuracy degradation; 2) They are reliable and very low unnecessary 

pressure loss across the flow meter. In addition, a pulse rate to current 
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converter is interfaced with the flow meter for converting frequency to 

proportional analogue 4-20mA current outputs. 

Camera: A high quality macro lens camera is positioned on top the filter 

chamber, enabling to take macro pictures every two seconds. The mesh 

inside the filter; hence, the retained particles can clearly be captured and 

used in an image processing application for determining the ground truth 

clogging rate or an auxiliary source for modelling of the filter clogging 

phenomena. To be more precise, pressure and flow rate data can be 

compared or utilised with the features extracted from the macro picture 

data. 

A box was designed to cover the filter container. The interior side of the box 

was masked with a white coloured material where a light source was 

projected inside the box to provide a constant uniform light so that the filter 

is isolated from varying environmental light. All components are placed on a 

grid style dripping tray in order to prevent potential problems due to a 

potential leakage.  

The prognostic rig is designed so that no other component will deteriorate 

other than the filter. This means that, filter clogging is the only failure type 

to be targeted in the degradation modelling. This study is resulted in the 

publication of two conference proceedings (Eker et al., 2013; Eker et al., 

2014). 

3.2.2    Data Collection 

This section provides the data collection details of the accelerated clogging 

experiments. Also, the ‘finale prognostic data’ is discussed thoroughly.  

The PEEK particles are ordered in the powder form. As mentioned in the 

previous section, particle size distribution of the powder was in range 

between approximately 5 to 180 microns. In order to see the particle size 

effect on data collection, the particle size distribution is narrowed into 
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smaller distributions. Sieving of the particles is necessary to serve for this 

purpose. Wet sieve analysis is found to be helpful when working with fine 

polymer powders where particles exhibiting severe static charges 

(Advantech Mfg., 2013). Static electricity causes the particles to cling and 

agglomerate which makes the sieving process difficult, if not impossible. 

Therefore, particles are wet sieved, hence separated into different size 

ranges using American Society for Testing and Materials (ASTM) standard 

45, 53, 63, and 75 micron pore sized sieves. For instance, the particles 

retained on top of the 45 micron sieve (i.e. 45-53 micron distribution) are 

used to obtain samples from the first four operational profiles shown in 

Table 3-5. On the other hand, the original sized (i.e. non-sieved) particles 

are used for the subsets under the last four operational profiles. 

Table 3-5. Operational profiles 

Profile 

No. 

Particle Size 

(μm) 
Solid Ratio (%) Sample Size 

1 

45-53 

0.4 4 

2 0.425 4 

3 0.45 4 

4 0.475 4 

5 

53-63 

0.4 4 

6 0.425 4 

7 0.45 4 

8 0.475 4 

9 

63-75 

0.4 4 

10 0.425 4 

11 0.45 4 

12 0.475 4 

13 

Non-sieved 

0.4 2 

14 0.425 2 

15 0.45 2 

16 0.475 2 

It is crucial to maintain the operational and environmental conditions 

consistent for the subset of data under the same operational profile. Hence, 

predefined operating conditions is kept as much as the same for sixteen 

different operational profiles each of which have four samples. Each 

operational profile is an outcome of a predefined combination of particle size 

distribution and solid ratio of the suspension. The entire dataset is 
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comprised of fifty six run-to-failure accelerated aging experiments. 

Operational profile details are shown in Table 3-5. Table 3-6 presents the 

amount of water and particles mixed for the first four operational profiles.  

For instance, roughly 8kg of water is mixed with 32 grams of PEEK 

particles in order to obtain a suspension with 0.4% solid ratio. Jones (2008) 

states that airlines must ensure that the fuel supply hold less than 0.5 

milligrams or contaminant particles per litre which corresponds to a 

maximum 0.00006% solid ratio is allowed in aviation fuel. This means that, 

in terms of the solid ratio values, the accelerated clogging experiments are 

approximately 6500 times faster compared to real life. However, there are 

many other parameters (e.g. flow rate, filtration rate, particle size, filter 

mesh size) to be considered in the mapping equation from accelerated times 

to real life scenarios.  

Table 3-6. Profile details of 45-53 μm particle size distribution 

 Profile No. 

 
1 2 3 4 

Water (g) 7968 7497 7079 6704 

Particle (g) 32 32 32 32 

Solid ratio 
0.004 

(0.40%) 

0.00425 

(0.43%) 

0.0045 

(0.45%) 

0.00475 

(0.48%) 

     

125 micron pore sized Baldwin® BF7725 type of fuel filters is used for 

clogging experiments in the laboratory environment, shown in Figure 3.5. 

For this particular filter, both filter container and the mesh structure are 

cylindrical shape. The flow direction is from left to the right where 

suspension enters the filter chamber and passes through the mesh cylinder 

following the path out to right, leaving the particles on the surface of the 

filtration mesh. Captured particles form a cake on the mesh surface where 

the cake becomes the actual filtering element leading to a more effective 
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filtration. However, the flow becomes more restricted as more particles are 

captured by time hence the pressure builds up in the upstream side. 

 

Figure 3.5. Baldwin fuel filter 

 

Figure 3.6. Pressure drop and flow rate measurements 

Pressure and flow rate readings have been collected continuously which are 

the main indicators of clogging. Each clogging experiment has been run and 
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monitored until the filter has clogged where the pressure drop (i.e. 

differential pressure, ∆𝑃 = 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 −𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) has 

reached its peak and entered into a stable pressure region as shown Figure 

3.6. In the figure, raw and low pass filtered signals are visualised against 

time. Fluctuations in the pressure measurements are generated due to the 

nature of peristaltic pump mechanism. Reflections of the pump RPM with 

regards to pressure pulsations are displayed in Figure 3.7. It has been found 

that the number of pulses in a second is proportional to the number of 

rollers in the pump mechanism. However this proportion rate changes when 

a pulsation damper and extra pump head added in the system. 

Also in Figure 3.6, flow rate measurements remain relatively constant for 

considerable amount of the entire experiment times. This means that the 

pump provides a constant RPM; however, the flow becomes restricted 

gradually due to the clogging of filter. Moreover, the sudden drop curve 

regime reflects the pulse dampener effect where the dampener is being 

filled-up with the suspension due to the back pressure.  

 

Figure 3.7. Magnified pressure plot of a sample 
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Figure 3.8. Filtered and sampled complete dataset 

The data collection is conducted with an NI DAQ-9203 16 bit analogue 

current output module, which is connected to an NI cDAQ-9174 4-slot USB 

chassis. Sampling rate is adjusted as 100Hz within the LabVIEW 

environment which is eligible for capturing the pulses generated by the 

pump. For visualisation purposes, data is low pass filtered and down-

sampled to 1Hz as displayed in Figure 3.8. Each trajectory in the figure 

represents differential pressure values for each distinct run-to-failure 

experiment. As seen from the figure, variation in the beginning is 

significantly lower than the critical clogging regime. However, the spread in 

the dataset increases as the experiment nears to the end of life. Variation in 

the experiments reflects the variation in sixteen different operational 

profiles.  

Figure 3.9 associates the entire dataset and to different particle size 

distributions. Lightened colour scales represent different distribution of 

particles used in experiments, where the lighter colours correspond to lower 

solid ratios. As seen in the figure, the experiments conducted with lower 

solid ratios takes longer to time reach higher pressure drop levels 

comparatively to the higher solid ratio experiments. In the figure, red scale 

50 100 150 200 250 300

5

10

15

20

25

30
P

re
s
s
u

re
 D

ro
p

 (
P

S
I)

Time (s)

All Samples



 

77 

trajectories represent the experiments under the first four operational 

profiles where particle size varies from 45 to 53 microns. This distribution is 

marked with a red band on top left hand side of the figure. Similarly, green 

and cyan coloured curves pertain to the 53-63 and 63-75 micron band of the 

distribution. Finally, the blue line trajectories obtained with non-sieved (i.e. 

original) particles whose distribution is shown with skewed normal 

distribution with a blue line. 

 

Figure 3.9. The dataset and sieved particle relation 

Next section describes the challenges in the data collection process and 

presents the improvements that have been made for generating a 

reproducible prognostic benchmark dataset. 

3.2.2.1    Challenges & Improvements 

This section presents the challenges in data collection process and discusses 

the improvements that have been made on the system design, and the 

actual data collection process. 
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It is important to note that, all the improvements have been made in order 

to increase the controllability, repeatability, and to aid the modelling of the 

system. Initial design of the system was a circular continuous flow 

mechanism, where filtered liquid was poured into the same tank after 

passing through all components, which raises a significant change in the 

solid ratio in the tank. During the experiments, solid ratio was changing 

(i.e. ~30% decrease) due to the retainment of considerable amount of 

particles on the filter mesh. To capture this change in physics-based 

modelling, it was necessary to model the change in the solid ratio. However, 

modelling the solid ratio was not serving main purpose of the clogging 

modelling. Therefore, to cope with this problem, system design is changed 

by adding a reservoir tank. The initial pressure drop and flow rate data is 

visualised in Figure 3.10. This dataset comprises of thirteen run-to-failure 

filter specimens plugged under the same operational condition represented 

with different colours in the figure. However, the external and system 

parameters affecting clogging during the test were not controlled 

sufficiently. Therefore, end-of-life variation under the same conditions was 

unacceptably high (e.g. 25%). Besides, the chaos in the flow rate 

measurements is another indicator of non-controlled experiments. 

After adding the reservoir tank in the system, a more controlled scheme was 

applied on the second attempt to data collection. Similar to the first 

attempt, the samples was obtained under a unique operational profile where 

solid ratio was fixed to 0.14%. Pressure drop and flow rate measurements 

are recorded for the six accelerated filter clogging experiments, displayed 

with different colours in Figure 3.11. In this figure, it can be observed that 

the lifetime variance in between the filters is reduced to 12%, which means 

that these experiments are relatively more repeatable compared to the first 

attempted set. 

However, a higher variation in the flow rates was observed. This was due to 

poor handling of the pump and the flexible tubing passing through its head. 
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It was understood that several parameters can affect the lifetime of a 

clogging process and repeatability of the experiments. Henceforward, these 

parameters will be discussed in detail. 

 

Figure 3.10. Initial data collection 

Firstly, the solid ratio is the main factor which affects the duration of 

clogging process. Suspensions with high solid ratio values will plug the filter 

quicker assuming the flow rate is same. Flow rate is another parameter 

which is indirectly proportional to the clogging duration as well. 

The shape and condition of the flexible tubing affects the flow rate, hence 

the duration of the clogging time. Therefore, before the start of each 

experiment, one needs to be sure that the tubing inside the pump heads are 

in the same condition in consideration of its geometry and heat. In this 

context, to cope with the uncertainty, pump RPM was adjusted precisely to 

provide the same initial flow rate before starting each experiment. 

50 100 150 200 250 300
0

10

20

30

Time (seconds)


P

Pressure Drops

50 100 150 200 250 300
0

200

400

600

Time (seconds)

m
l/m

in

Flow Rates

Threshold 

 

25% variation 



 

80 

Another indicator, affecting the clogging process is the high pulses in the 

pressure measurements. Thus, we installed a pulsation dampener and 

stacked another pump head in the system to restrain the pulsations in the 

liquid flow. Essentially, stacking another head in the pump produces out-

phase pulsations; hence, cancels the oscillations and doubles the flow rate. 

Note that, in this case, pump needs to be re-adjusted to half flow rate values 

than the desired flow rate. The dampening effects are visualised in Figure 

3.12. This figure depicts the comparison of pressure pulsations scenarios 

with or without dampener and a stacked head.  

 

Figure 3.11. Second attempt for data collection 

The top-left plot in the figure represents the pressure drop measurements 

where neither pulse dampener nor another pump head stacked in the 

system. Once we stacked another head in the pump or installed a pulsation 

dampener in the downstream side of the pump, a significant cancellation in 

the ∆P is distinguishable in the bottom-left and top right plots of the figure 
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respectively. The final experiments were conducted with two stacked heads 

and a pulsation dampener, shown in the bottom-right, where a compelling 

pulse cancellation is achievable.  

 

Figure 3.12. Pulsation dampening comparison 

Head loss, which is the pressure drop in the tubing due to the friction in 

between tubing interior surface and the liquid, is another aspect influencing 

the system. In addition, sharp bends and fittings which reduce the tubing 

inside diameter will also contribute in the pressure loss. The clogging rig is 

designed to minimise this influence. It has also been experienced that head 

loss negligible compared to the pressure drop due to clogging, when working 

with lower flow rates and shorter tubing lengths. According to our pre-

experiments, head loss increases exponentially when the flow rate is 

increased linearly. Therefore, we omit this phenomenon for filter clogging 

modelling.  
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Bubbles in the system, shown in Figure 3.13, are another factor which 

affects the repeatability of clogging experiments. Residual accumulation of 

bubbles in the filter container contributes to the stochasticity, which 

challenges the reproducibility of the data and also makes it difficult to 

model the clogging process. In addition, bubbles in the tubing have a 

potential effect in flow rate measurements as well. In order to eliminate 

these bubbles, the pump ran back and forth with clean water in opposite 

directions prior to each test until the entire system filled up with clean 

water.  

 

Figure 3.13. Accumulated bubbles inside the filter container 

Another point to be taken into consideration is the steadiness of the test rig 

components which are needed to be properly fixed on to a bed to prevent 

from vibration effects. Besides, flexible tubing length is required to be fixed 

for reproducible experiment durations, pressure levels, and flow rate 

measurements. Therefore, tube brackets and holders are placed to tighten 

the components onto a fixed bed. 

A final point to mention is that the PEEK particles naturally exhibit a 

hydrophobic character, or more evidently, mixing the particles in the water 

is burdensome. However; eventually, the particles were mixed sufficiently 

before starting the experiments by adding water on the particles slowly and 

constantly mixing them together. 
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Figure 3.14. Improvements in pressure and flow rate values 

The comparison of the previously collected and the final dataset is depicted 

in Figure 3.14. The previously attempted data represents the first and 

second data collection attempts where the life variation in the experiments 

stands 25%. In addition, a high variation in flow rates is also visible. Right 

column in the figure express the final data, where the entire dataset plotted 

with a grey colour. The different coloured trajectories in the right column 

exemplify the data from a single operational profile where the life spread is 

3%. This shows the impact of the improvements in terms of reproducibility 

of the data. However, the complete dataset, comprising of sixteen 

operational profiles, have a variation of 36% which encompass higher 

variation of pressure drops compared to the previously attempted data 
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collections. Summary of the challenges and improvements are given in 

Table 3-7. 

Table 3-7. Challenges & improvements 

Challenge Action Goal 

Picture quality & light 

reflection problem 

Covering the filter area 

with a box 

Image processing 

improvements 

Keeping the operating 

condition same 

Several enhancements done 

listed below 

Reproducibility 

Solid ratio variation Putting another tank in the 

system 

• Constant solid ratio 

• PbM enhancement 

High variety in clogging 

EoL (22% - 30%) 

Controlled test, pulsation 

dampening, fixing bubble 

problem, particle size 

narrowing 

• Reproducibility 

• PbM improvement 

High pulsations in pressure 

& flow rate measurements 

Installing a pulsation 

dampener in the system 

• Smoother data 

• Minimising the back 

and forth pressure effect 

Accumulated bubbles in the 

filter container 

Filling all the system with  

clean water prior to each 

test 

• Avoiding the bubble 

effect on clogging of 

filter mesh 

• Reproducibility 

High spread in the particle 

size distribution 

Wet sieving the particles • Narrower particle size 

distribution 

• PbM improvement 
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Chapter 4 

 

4 Methodology 

 

This chapter provides a list of prognostic methods to be practiced in the 

development of a hybrid approach for the selected two case studies. The 

details of each approach are given in each subsection. The approaches are 

discussed under two main categories: 1) Data-driven modelling, 2) Physics-

based modelling. 

4.1    Data-Driven Prognostic Modelling 

Data-driven modelling details are discussed in the literature review chapter. 

In this section, the data-driven prognostic approach has been chosen for 

modelling of the two engineering case studies which are further elaborated. 

4.1.1    Similarity-Based Prognostics 

Similarity-based Prognostics (SBP) is a generic type of prognostic approach 

where the test specimen signal segments, consisting of sequential raw 

measurements or processed data are correlated to the previously collected 

data (i.e. historical data) segments by using a similarity concept. Unlike 

traditional data-driven models, in SBP, RUL is calculated by aggregating 

the weighted average of the training sample RUL values rather than 

extrapolating the test sample’s current health level to a predefined 

threshold.  
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Similarity-based Prognostic approach is a powerful algorithm for RUL 

estimations, notably when the historical training sample size is relatively 

abundant. In addition, they are suitable for the cases where the degradation 

path is not necessarily exhibiting a monotonic propagation pattern which is 

difficult to model using parametric approaches (Wang, 2010). Wang et al. 

(2008) won the Prognostic and Health Management Society’s data challenge 

competition in 2008 where they employed a similarity-based prognostic 

approach to predict the RUL of turbofan engines created by C-MAPSS 

simulation. 

Zio and Di Maio (2010) developed a similarity-based prognostics 

methodology for estimating the remaining useful life of components in 

nuclear systems. Estimations of RUL implies evaluating the similarity 

between the test sample (i.e. ‘𝑞’) and the training samples (i.e. ‘𝑟 = 1: 𝑅’) as 

shown in Eq. (17). The similarity index is based on the calculated point wise 

Euclidean distances in between ‘𝑛 − 𝑙𝑜𝑛𝑔’ sequences of observations. 

Distance score calculation in between training samples and the test sample 

at the ‘𝑖𝑡ℎ’ time point formulated in Eq. (16). Final RUL estimation of a test 

sample at a time instance (i.e. ‘𝐼’) is achieved by aggregating the weighted 

average of training samples’ corresponding remaining useful life values as 

formulated in Eq. (18). To be more precise, ‘𝑟𝑢𝑙𝑖
𝑟 ’ symbolises the remaining 

useful life of the ‘𝑟𝑡ℎ’ training sample at ‘𝑖𝑡ℎ’ time point which is obtained by 

calculating the difference between the training sample’s end-of-life time and 

the ‘𝑖𝑡ℎ’ time point. The most similar segment to the test segment is 

specified for each training sample whereas the RUL of the test sample is 

obtained by taking the weighted average of these training RUL values. In 

fact, the weights are obtained using the bell-shaped similarity functions 

which turns out to give credible results due to its gradual smoothness 

(Baraldi et al., 2013). 

𝑑𝑖
𝑟 = √∑ ‖𝑧𝐼−𝑛+𝑗

𝑞 − 𝑧𝑖−𝑛+𝑗
𝑟 ‖

2
𝑛
𝑗=1   (16) 
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𝑠𝑖
𝑟 = 𝑒−

(𝑑𝑖
𝑟)2

𝜆   (17) 

𝑅𝑈𝐿𝐼
𝑞 =

∑ 𝑠𝑖
𝑟𝑟𝑢𝑙𝑖

𝑟𝑅
𝑟=1

∑ 𝑠𝑖
𝑟𝑅

𝑟=1
   (18) 

‘𝜆’ is an arbitrary parameter which can be set to shape the desired 

interpretation of similarity, whereas ‘𝑛’ defines the number of latest 

consecutive observations involved in similarity calculations. The smaller the 

‘𝜆’ is, the stronger the definition of similarity. For instance, a small value for 

‘𝜆’ signifies that the training segment should be very similar to the test 

segment so that it will be appointed with a similarity value reasonably 

higher than zero. However, when working with higher decimal point 

precision systems, this concept becomes trivial as the similarity ratio in 

between training samples remain the same. 

 

Figure 4.1. Similarity-based prognostic RUL calculation 

Figure 4.1 demonstrates the calculation of a RUL for a test specimen at a 

specific time point. Vertical dashed lines divide the signals into ‘𝑛 − 𝑙𝑜𝑛𝑔’ 

segments. The incomplete red line represents the test specimen signal 

trajectory whereas the blue complete signals stand for the two run-to-failure 
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training sample signals. It is assumed that the specimen is failed when it 

reaches the predefined threshold pictured in the black horizontal dashed 

line. Say, ‘𝑛’ is chosen as 20, which denotes the latest 20 long test specimen 

segment will be our reference to be compared with the ‘𝑛 − 𝑙𝑜𝑛𝑔’ segments 

within the training samples. Seventh segment of the first training sample 

comes forward as the most similar among the other segments. Similarly, 

eleventh segment is the most similar for training sample two as well. The 

corresponding RUL values for training samples (i.e. ‘𝑟𝑢𝑙140
1 ’ and ‘𝑟𝑢𝑙220

2 ’) are 

identified by subtracting the last points of the mentioned segments from the 

failure times as depicted in Figure 4.1. The final RUL assigned to the test 

specimen is calculated by aggregating the weighted average of the 

mentioned training RUL values. 

4.1.1.1    Modified SBP 

This subsection introduces the modifications that have been made on the 

similarity-based prognostic model discussed in the previous section. 

The similarity-based model formulated in Equations. (16-18) achieve the 

RUL prediction by comparing the ‘𝑛 − 𝑙𝑜𝑛𝑔’ train sample segments with the 

latest segment of the test specimen. However, as seen in Figure 4.1, the 

number of segments are limited to the ‘𝑡𝑟𝑎𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑛⁄ ’ which 

means only 8 and 12 comparisons have been made for the first and the 

second training samples respectively. Therefore, for the training signals, 

increasing the number of potential similar segments without decreasing the 

‘𝑛’ value, will broaden the search area, enabling to find more similar 

segments, hence better RUL representations within the training sample 

signal. In order to achieve this, instead of dividing the training signals into 

specific segments, all possible consecutive ‘𝑛 − 𝑙𝑜𝑛𝑔’ segments are 

incorporated in the distance and similarity calculations using sliding 

window approach. Thus, each time point concatenated to its ‘𝑛 − 1’ 

backward points form a new segment leading to the enrichment of segments 

up to the training sample’s signal length. Therefore, for this specific case, 
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the numbers of segments to be used in comparisons are increased up to 166 

and 253 for the training samples one and two respectively. It is important to 

note that, for the time points where it is impossible to go ‘𝑛 − 1’ backward 

points (e.g. the initial 18 time points when ‘𝑛 = 20’) are need to be treated 

differently. 

Evidently, the first ‘𝑛 − 2’ time points in a training signal cannot form a 

‘𝑛 − 𝑙𝑜𝑛𝑔’ segment. For instance, when ‘𝑛 = 20’ one cannot calculate the 

similarity between the ‘𝑛 − 𝑙𝑜𝑛𝑔’ test segment with the first 10-long train 

segment in this methodology. However, this can be solved by changing the 

static ‘𝑛’ to a variable value as shown in Eq. (19). Moreover, similarity 

calculation measure should be modified in order to equally treat the varying 

segment lengths, as lower length segments will produce less distance 

values. In the modified similarity calculation, variable segment length (i.e. 

‘𝑛𝑖 ’) is added in the equation to fix the mentioned bias. Equations (20, 21) 

are the modified version of the original distance and similarity calculations 

(i.e. Equations (16, 17)) shown below.  

𝑛𝑖 = 𝑚𝑖𝑛 (𝑖, 𝑛)  (19) 

𝑑𝑖
𝑟 = √∑ ‖𝑧𝐼−𝑛𝑖+𝑗

𝑞 − 𝑧𝑖−𝑛𝑖+𝑗
𝑟 ‖

2
𝑛𝑖
𝑗=1  (20) 

𝑠𝑖
𝑟 = 𝑒

−
(𝑑𝑖

𝑟)2

𝜆𝑛𝑖   (21) 

It has been found that the modifications in the distance and similarity 

calculations have enhanced the capability of the model for both case studies. 

Corresponding results of the modifications will be discussed in the Results 

Chapter. 

4.2    Physics-Based Prognostic Modelling 

This section starts with introducing the renowned Particle Filters which is 

widely used in the prognostics community followed by discussion on details 
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of the physics-based approaches, developed for the modelling of the two 

different engineering studies. 

4.2.1    Particle Filters 

“The probability of any event is the ratio between the value at which an 

expectation depending on the happening of the event ought to be computed, 

and the value of the thing expected upon its happening” 

-Thomas Bayes (1701-1761) 

Kalman and particle filters are two of the most known Bayesian stochastic 

filtering techniques, which have been widely used in prognostics, object 

tracking, computer vision and robotics, speech recognition; and in general, 

machine learning. Kalman filters (KF) are limited to the occasions where 

the degradation of an asset exhibit linear characteristics. KF estimators 

approximate the parameters distributions of the model, deterministically. 

On the other hand, in particle filters (PF), model parameter distributions 

are represented by means of significant amount of weighted particles rather 

than an analytic probability distribution function (PDF) (Chen, 2003). This 

means that each particle contributes to the parameter probability 

distribution and evolves through time. In addition, PFs are more generic 

compared to KFs, hence they are applicable to non-linear degradation 

profiles and also are not limited the Gaussian noise. Therefore, in this 

study, we have selected PFs over KFs as they provide wider application 

space for both filter clogging and crack propagation modelling. A brief 

literature review on PF applications in prognostics and the mathematical 

background are provided as follows. 

Particle filters, also called as ‘Sequential Monte Carlo Estimation’, have 

been used widely in prognostics, peculiarly integrated in physics-based 

models. Some of the examples found in the literature are; fatigue crack 

propagation modelling for various engineering structures (Zio and Peloni, 

2011; An et al., 2013; Baraldi et al., 2012; Cadini et al., 2009; Bechhoefer, 
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2008; Orchard et al., 2008), battery capacity modelling (An et al., 2013; 

Abbas et al., 2007; Weiming Xian et al., 2014), centrifugal pump 

degradation modelling (Daigle and Goebel, 2013), thermal processing unit 

degradation (Butler and Ringwood, 2010), pneumatic valve modelling 

(Daigle and Goebel, 2010), DC-DC converter system level degradation 

modelling (Samie et al., 2014), Isolated Gate Bipolar Transistor (IGBT) 

degradation modelling (Saha et al., 2009), Proton Exchange Membrane Fuel 

Cells (PEMFC) life modelling (Jouin et al., 2014), Lumen degradation 

modelling for LED light sources (Fan et al., 2015). The list can be expanded 

to various engineering prognostic applications. 

In general, dynamic systems can be modelled in the form of state transition 

equation, which describes the evolution of its state through time (Cadini et 

al., 2009). The system state and measurement models underpinning Particle 

Filter process are given in Equations (22, 23). 

𝑥𝑘 = 𝑔𝑘(𝑥𝑘−1, 𝜃𝑘−1, 𝑤𝑘−1)  (22) 

𝑧𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘)   (23) 

Where: 

𝑔𝑘: 𝑅𝑛𝑥 × 𝑅𝑛𝜃 × 𝑅𝑛𝑤 → 𝑅𝑛𝑥  : Dynamic state transition equation 

𝑥𝑘 - 𝑥𝑘−1    : State vector at discrete time points k and 

k-1 

𝜃𝑘     : Model parameter vector 

𝑤𝑘     : Process noise 

ℎ𝑘: 𝑅𝑛𝑥 × 𝑅𝑛𝑣 → 𝑅𝑛𝑧   : Measurement equation 

𝑧𝑘     : Measurement at time point k 

𝑣𝑘     : Measurement noise 

Particles, evolving in the system, can be represented as: ‘{𝑥𝑘
𝑖 , 𝜃𝑘

𝑖 , 𝑤𝑘
𝑖 }𝑖=1

𝑁 ’, 

where ‘𝑁’ symbolises the total number of particles and ‘𝑖’ is the particle 

number. This means that, each particle accommodates a state, model 
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parameters, and a process noise value, which evolves through time. 

Generally, the higher number of particles used in the construction of 

parameter distribution, the better representativeness of the system. 

Therefore, we selected a high number for ‘𝑁’ in the modelling of both filter 

clogging and crack propagation scenarios. However, higher numbers for ‘𝑁’ 

will increase the computational complexity, which may be burdensome when 

dealing with higher numbers of system parameters. 

In particle filters, the posterior distribution filtering process usually 

comprises three recursive steps: 1) Prediction, 2) Update, 3) Resampling. In 

the prediction step, system state is predicted using previous step’s the 

updated parameters via state transition equation. Then the predictions are 

updated for the current time step by using a likelihood function. Likelihood 

function assigns weights to particles according to the closeness to the 

measurement at each time point. In the resampling step, the particles with 

lower and higher weights are eliminated or duplicated, respectively, which 

is called inverse CDF (cumulative density function) method (An et al., 2013). 

This filtering process is entitled as Sequential Importance Resampling (SIR) 

particle filters. 

This parameter learning process is continued until no measurements have 

left where the extrapolation step commences (i.e. actual RUL calculation 

step). In the extrapolation phase, the state parameter vector (i.e. ‘𝑥𝑘’) is 

projected continuously by using the state transition equation until it reaches 

the failure threshold. In this way, ‘𝑁’ number of trajectories also entails the 

distribution of RUL estimations. Mean or median of the RUL distribution is 

generally used for visualisation of the estimated RULs. 

Next two sections describe the physics-based modelling for the two specific 

case studies where both models are incorporated with particle filters. 
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4.2.2    Fatigue Crack Propagation Modelling 

Fatigue crack propagation modelling is studied under the structural health 

monitoring (SHM) damage detection and characterisation strategy. SHM is 

specified as the process of implementing damage identification for 

engineering structures such as civil, aerospace and mechanical engineering 

infrastructures (Farrar and Worden, 2007). The damage term in the 

definition is understood as the adversely affecting changes to the material 

or its geometric properties. Fatigue and corrosion damage accumulations 

are two of the most common examples in SHM literature. In SHM, health 

status of an asset is monitored periodically. Scheduled (e.g. aircraft 

landings) or unscheduled (e.g. earthquake) events which result in 

accumulation of degradation leading to the failure of systems are also taken 

into consideration. 

Damage identification is carried out with five disciplines including SHM: 

1. Structural Health Monitoring (SHM) 

2. Condition Monitoring (CM) 

3. Damage Prognosis (DP) 

4. Statistical Process Control (SPC) 

5. Non-Destructive Evaluation (NDE) 

Typically, SHM is applied online in aircraft and building structure for 

damage identification, whereas CM application areas described are mostly 

rotating machines. On the other hand, NDE, carried out for offline damage 

characterisation, is performed after the localisation of the damage. SPC 

focuses on the detection of the causes of damage results. As the name 

suggests, damage prognosis is employed for predicting the remaining useful 

life of a structural system. DP attempts to forecast the system performance 

by assessing the current damage state of the system (i.e. SHM), estimating 

the future loading environments, and predicting the remaining useful life of 

the system through simulation and the past experience (Farrar and Lieven, 
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2007). However, the damage prognosis is in development phase and still 

relatively immature compared to the other disciplines. 

Typically, by implementing the SHM technology in maintenance planning, 

the maintenance cycles (i.e. mean time to repair) are anticipated to be 

extended leading to more cost effective maintenance activities. SHM process 

steps can be lined up as follows: 

1. Operational evaluation  

2. Data acquisition, normalisation, and cleansing 

3. Feature extraction and information condensation 

4. Statistical model development for feature discrimination 

Operational evaluation step is the decision making process where failure 

types and possible scenarios are analysed before the data collection step. 

Sensors are installed in the system to carry out monitoring and data 

acquisition. Normalisation is performed in order to evaluate all sensory 

information under equal terms. Data cleansing stands for the feature 

selection and removing useless data from the database. Feature extraction 

performs transforming input data into the feature space. Enormous amount 

of raw data is replaced by the features which are significantly lower in size. 

These meaningful features are extracted and passed on to the next stages. 

Next step is the statistical model development in which the extracted 

features are evaluated and separated.  Supervised and unsupervised 

techniques form the basis for classifying features, assessing the severity of 

the damage, and eventually predicting the remaining useful life of system. 

Several different techniques including eddy current testing, ultrasonic 

inspection, acoustic emission (AE), and vibration based methods used in 

SHM are discussed in (Diamanti and Soutis, 2010). They have examined the 

methods on determining the critical crack size and the effects of defects on 

composite structures’ life and strength. They have worked more on finding 
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the most reliable non-destructive evaluation (NDE) technique for detecting, 

characterising and locating the damage on composite materials. 

In fatigue crack propagation modelling, fatigue is defined as a progressive 

type of structural damage. It occurs when the material is exposed to a cyclic 

loading and unloading. In earlier steps of the fatigue damage, cyclic loadings 

provoke micro scale cracks on the material surface. The cracks will 

eventually reach to a crucial length leading to a sudden fracture within 

material. The fatigue damages are cumulative and irreversible unless a 

crack retardation technique is taken into consideration. Thus, resting the 

material does not imply a recovery process. In addition, the applied stress 

range is indirectly proportional to the total life of a structure before 

occurrence of a fracture. Ritchie (1999) reports that over 80% of all service 

failures can be related to fatigue concept.   

The detection and prediction of fatigue crack progression is of great 

importance as the consequences due to a sudden fracture in a structure may 

be catastrophic. Several catastrophic fatigue failures can be listed to remark 

the importance of fatigue modelling. Some of those failures are listed as 

follows. 

In 1842, a train was derailed and crashed in Paris, due to an excessive crack 

propagation leading to a broken locomotive axle, causing the death of 55 

passengers (Gray, 1845). Another disaster, caused by metal fatigue failure, 

occurred in 1954. A de Havilland DH-106 Comet passenger jet broke up in 

mid-air and crashed into the Mediterranean Sea while resulting with 35 

fatalities (Job, 1994). In 1980, a drilling rig located in Norwegian waters 

capsized due to an enormous fatigue crack in one of its six bracings, killing 

123. This was due to cyclic stresses aroused from the sea waves up to 12m 

(Norwegian Public Reports, 1981). In 2005, a twin engine G-73 Mallard 

seaplane crashed, killing all the passengers and crew. The crash was caused 
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by separation of the right wing from the fuselage which was due to metal 

fatigue (Goodnough, 2005). 

Physics-based modelling of fatigue crack propagation is a widely studied 

research area. The simplest and the most commonly used fatigue crack 

propagation model is developed by (Paris and Erdogan, 1963). Paris & 

Erdogan Law, as shown in Eq. (24), expresses the relationship between the 

crack growth rate per cycle ‘𝑑𝑎 𝑑𝑁⁄ ’; and previous crack length ‘𝑎’ (Paris and 

Erdogan, 1963; Cross et al., 2006).  

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚  (24) 

Where: 

∆𝐾 =  ∆𝜎√𝜋𝑎  (25) 

The Paris & Erdogan crack propagation equation consists of the two 

material specific constants ‘𝐶’ and ‘𝑚’, and the stress range intensity factor 

‘∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛’, where ‘∆𝜎’ is the range of cyclic stress amplitude, and ‘𝑎’ 

symbolises the crack length. Derivatives of this well-known equation are 

widely used in prediction of fatigue life (An et al., 2013; Luo and Bowen, 

2003; Wu and Ni, 2003; Righiniotis and Chryssanthopoulos, 2003; Liu et al., 

2015; Bigerelle et al., 2006; Kotulski, 1998).  

In this particular research, the renowned Paris Law, shown in Equations 

(24, 25), is incorporated with particle filters to establish a complete 

stochastic physics-based prognostic model. PF is employed for estimation of 

the parameters within the state transition function as well as in RUL 

predictions. Therefore, a system degradation model is required to be 

incorporated with PF. For sufficiently small ‘𝑑𝑁’, Paris law can be 

approximated into a discretised state transition function given in Eq. (26). 

𝑎𝑡 = 𝐶𝑡(∆𝜎√𝜋𝑎𝑡−1 )𝑚𝑡𝑒𝑤𝑡𝑑𝑁 + 𝑎𝑡−1  (26) 

𝑤𝑡~𝑁(0, 𝜎𝑤
2 )   (27) 
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In the equation, the dynamic current state parameter (i.e. crack length) is 

symbolised as ‘𝑎𝑡’, whereas ‘𝑎𝑡−1’ represents the previous cycle crack length. 

‘𝐶𝑡’ and ‘𝑚𝑡’ are the model parameters pertain to material characteristics, 

which are updated continuously in the PF mechanism. ‘𝑤𝑡’ exemplifies the 

process noise following a normal distribution shown in Eq. (27).  

Details of the crack propagation modelling results will be discussed in 

section 5.2. Next section describes the development of a physics-based 

prognostic model for filter clogging failure scenario. 

4.2.3    Filter Clogging Modelling 

Separation of solids from fluid is a vital process to achieve the desired level 

of purification in industry, where the contaminant filtration is a common 

process in a variety of applications. Clogging of filter phenomena is the 

primary failure mode leading to replacement or cleansing of filter. Reduced 

performance and efficiency, and cascading failures are the unfortunate 

outcomes of a clogged filter. For instance, solid contaminants in fuel may 

lead to performance reduction in the engine and rapid wear in the fuel 

pump.  

Filtration is basically described as a unit operation that is separation of 

suspended particles from the fluid, utilising a filtering medium, where only 

the fluid can pass (Cheremisinoff, 1998). Driving force for the filtration is 

the pressure gradient generated across the filter.  

Solid-liquid filtration processes can be classified into three categories:  

1) Deep-bed filtration 

2) Cross-flow filtration 

3) Cake filtration 

Deep-bed filtration can be performed using depth-filters. Depth filters retain 

the particulate through a porous packed bed. Sand filters are the common 
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examples of depth filtration. In cross-flow filtration mechanism, slurry flows 

parallel to the filter medium where only clean liquid can pass to the other 

side, leaving the particulate inside the filter.  

In cake filtration, solid particles in a suspension, flowing through a filter 

media, are retained on a filter medium, building up an increasing thicker 

cake as shown in Figure 4.2. As the cake layer becomes thicker, the cake 

structure becomes the main filtration component, leading to an excessively 

flow resistance in the final stages of filtration process. Eventually the flow 

rate drops to a certain level due to filter plugging, creating a need for 

cleansing or replacement of the filter. Ni et al. (2006) reports that the cake 

filtration process can be found in many industries including; mineral, 

chemical, pharmaceutical, food, and petroleum. From now onwards this 

section, we elaborate the cake filtration mechanism as our experimental 

filtration mechanism involves cake filtration. 

 

Figure 4.2. Schematic representation of cake build-up on filter medium (Abboud 

and Corapcioglu, 1993) 

Cake filtration processes are in the form of two: 1) constant rate filtration 

and 2) constant pressure filtration. Figure 4.3 depicts the flow rate and 
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pressure behaviours in each operating regime. Regime A exemplifies the 

constant rate filtration where the fluid flow rate of the system remains 

constant. Pressure drop across the filter increases as the cake builds up. 

Pressure build-up process may exhibit a stochastic logarithmic or 

exponential character. In most cases cake becomes compressed and more 

compact as the pressure increases, leading to higher cake resistance. 

Regime B represents constant pressure filtration where the flow rate of the 

system declines as the cake builds up. 

 

Figure 4.3. Constant rate vs. constant pressure filtration 

In our experiments, both regime A and B are experienced. However, we only 

modelled the constant rate regime as our threshold (i.e. 15 PSI) restricts the 

experiment life to only regime A. Note that, regime A can be divided into 

three stages. First stage, illustrated in Figure 4.4, represents so called ‘clean 

filter filtration regime’ which is the predecessor stage of the actual cake 

filtration (Endo et al., 1998). In this stage, majority of the particles passes 

through the filter mesh without being retained, however bridges appear to 

form by jamming of the particles gradually. During this stage, pressure and 

flow rate values remain relatively constant. At the end of this stage filter 

medium pores are blocked which led to dramatic increase in the retention of 
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particles. Second stage can be called ‘actual cake filtration’ as the captured 

particles form and build up the layers of cake which is significantly 

prolonged step than the initial one. The pressure drop increases steadily 

while flow rate remains constant. When the cake thickness reaches the filter 

container interior level height, a sudden drop occurs in flow rate 

measurement whereas the pressure drop values enter to an exponentially 

growing region. This dramatic increase in pressure drop is thought to be by 

virtue of the restriction of cake thickness by the filter chamber which led to 

raise different type of forces (e.g. reduction in effective filtration area). 

However, the growth in pressure drop turns into logarithmic characteristics 

as the pump approaches its maximum pressure levels. 

 

Figure 4.4. Filtration stages 
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Several studies on modelling of filtration process and fuel system exist in 

the literature. Park (2002) has investigated F-5F aircraft engine failure 

caused by erosion-corrosion of a fuel manifold, claiming the engine failures 

are caused by sudden pressure drop due to particles (e.g. mostly steel and 

iron) from the welding beads of fuel manifold. Internal welding beads are 

corroded and metal particles spread out which makes the fuel pump failed. 

The results are obtained by using energy-dispersive X-ray spectroscopy 

(EDX) analysis of related surfaces.  

A comprehensive investigation of unmanned aerial vehicle (UAV) fuel 

systems has been conducted in IVHM Centre, Cranfield University, UK 

(Niculita et al., 2012; Niculita et al., 2013). Several failure scenarios 

including clogged filter and faulty gear pump are investigated; particularly 

diagnostics-based studies are conducted. 

Clogging process of different types of filtration mechanisms has been 

studied in the literature. Roussel et al. (2007) presented a particle level 

filtration case study; stating that the general clogging process can be 

considered as a function of: ratio of particle to mesh pore size, solid fraction, 

and the number of grains arriving at each mesh hole during one test. The 

group conducted several clogging experiments and optimised the clogging 

parameters in their model. Their studies may help to model the first regime 

of cake filtration clogging process. Sappok et al. (2010) worked on the effects 

of ash accumulation in diesel particulate filters (DPF). They presented 

detailed measurement results with formulated lubricants, correlating ash 

properties to individual lubricant additives and their effects on filter 

pressure build-up. Pontikakis et al. (2001) developed a mathematical model 

for dynamic behaviour of filtering process for ceramic foam filters. The 

model is capable of estimation of the filtration efficiency, accumulation of 

particle mass in the filter, and the pressure drop throughout the filter. 

Roychoudhury et al. (2013) presented a diagnostic and prognostic solution 

for water recycling system for next generation spacecrafts. They simulated 
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several failure scenarios including clogging of membranes and filters. 

Baraldi et al. (2013) and Baraldi et al. (2015) developed a similarity-based 

and Gaussian process regression (GPR) prognostic approach to estimate the 

remaining useful life (RUL) of sea water filters. Saarela et al. (2014) 

presented a nuclear research reactor air filter pressure drop modelling 

scheme which utilises gamma processes. However, no physics-based or 

hybrid prognostic results are found in the literature for filter clogging 

scenario. 

Researches have been attracted to model the fluid flow through a porous 

media since early 1900s. One of the earliest models for this type of flow is 

hypnotised by Forchheimer (Tien and Ramarao, 2013). His simple model 

associates pressure drop to fluid flow, given in Eq. (28) where ‘∆𝑝’ is the 

pressure drop across the porous medium, ‘𝑉𝑠’ is the flow velocity, ‘𝐴’ and ‘𝐵’ 

are the constants characteristic to the filter medium. This model has served 

a basis for several complex models in the future (e.g. Kozeny-Carman, 

Ergun, and Endo equations). 

∆𝑝 = 𝐴𝑉𝑠 + 𝐵𝑉𝑠
2 (28) 

Darcy’s Law is another initial model which has been used for calculating the 

permeability of a filter septum (Wakeman, 2007). Darcy described the 

volumetric flow rate ‘𝑄’ of a system as a function of pressure drop ‘∆𝑝’, 

permeability ‘𝐾’, cross sectional area to flow ‘𝐴’, viscosity ‘𝜇’ of the fluid, and 

the thickness ‘𝐿’ as shown in Eq. (29). 

𝑄 =  
𝐾𝐴

𝜇𝐿
∆𝑝 (29) 

Kozeny-Carman (Carman, 1997) and Ergun (Ergun, 1952) equations are two 

of the commonly used formulations applied in fluid dynamics to model the 

pressure drop of a fluid flowing through a porous medium (e.g. packed bed, 

filter mesh). Tien and Ramarao (2013) brought an issue that Kozeny-

Carman equations are questionable when it comes to ‘porosity’ (i.e. void 



 

103 

fraction of the filtration medium) modelling of compressible and randomly 

packed filter cakes in gas-solid separation processes. They claimed that 

Kozeny-Carman is appropriate when it is used only for pressure drop-flow 

rate correlations. 

Endo et al. (1998) reports that Kozeny-Carman or the extended version (e.g. 

Ergun equation) can only be applied to the particles with a narrow size 

distribution. They developed a novel pressure drop model incorporating the 

particle size distribution and particle shape factor. 

Conventional cake filtration theory has the capability of estimating the cake 

thickness, cake resistance, porosity, and pressure drop in the system. Tien 

and Bai (2003) discussed a more accurate procedure applying of the 

conventional cake filtration theory. They reported that the cake thickness 

and compressibility of the cake have the highest influence on pressure drop 

across the filter.  

Several methods have been implemented to measure the cake thickness 

depending on the filter geometry including ultrasonic, electrical conductivity 

techniques, nuclear magnetic resonance micro-imaging, optical observation, 

and cathetometer measuring (Hamachi and Mietton-Peuchot, 2001). Ni et 

al. (2006) have modelled cake formation and pressure drop of a filtration 

mechanism in particle level (i.e. micro level) where majority of the studies in 

literature are conducted in macro level. They simulated the cake filtration 

process in both constant pressure and constant rate stages. Liu et al. (2013) 

implemented pressure drop modelling on the impact of membrane diesel 

particulate filter based on Endo’s extended version of Kozeny-Carman 

equations. In their model, they correlated the pressure drop across a type of 

membrane filters to diesel exhaust gas particulate retention parameters. 

In this research, the experimental rig is designed so that no other 

component is failed but the filter. Therefore, the modelling of differential 

pressure phenomena will pinpoint the system health. Pressure drop across 
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the filter, volumetric flow rate, cake thickness, and porosity parameters are 

the main dynamic indicators revealing the clogging severity of the filter. 

These parameters are required to be measured or derived from other 

parameters. In this study, correlation between the pressure drop and the 

other clogging parameters are modelled based on Ergun equation given in 

Eq. (30). 

∆𝑃 =
𝐴𝑉𝑠𝜇(1−𝜖)𝑣(𝜖)𝐿

𝐷𝑝
2𝜖2 +

𝐵(1−𝜖)𝜌𝑉𝑠
2𝐿

𝜖3𝐷𝑝
     (30) 

 𝑣(𝜖) =
10(1−𝜖)

𝜖
   (31) 

Where: 

∆𝑃 : Pressure drop=upstream pressure-downstream pressure 

𝑣(𝜖)  : Void function of porosity 

𝐿 : Total height of the bed (e.g. cake thickness) 

𝜖 : Porosity of the bed (or cake) 

𝑉𝑠 : Superficial (empty-tower) velocity 

𝜇 : Viscosity of the fluid 

𝐷𝑝 : Diameter of the spherical particle 

𝜌 : Liquid density 

𝐴, 𝐵 : Constants 

According to the equation; viscosity and velocity of fluid and thickness of 

cake are the parameters which raise the pressure drop across cake when 

they increase, in contrast to particle diameter and porosity parameters. The 

Ergun equation is a detailed version of the renowned Kozeny-Carman 

equation. Tien and Ramarao (2013) claimed that the Ergun equation is the 

most commonly used model which is capable of describing the pressure drop 

and flow rate correlation. The first term in the Ergun equation represents 

viscous effect whereas the second term associates with the inertial effect 

which is not taken into account in Kozeny-Carman model. Therefore Ergun 
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equation is chosen for the pressure drop modelling for our second case 

study.  

The void function of porosity (i.e. ‘𝑣(𝜖)’) has other complex forms for 

different type of applications (Liu et al., 2013). However a simpler version is 

used for Ergun and Kozeny-Carman equations, given in Eq. (31). Void 

function is substituted in the main equation and another parameter (i.e. ‘𝑎’) 

was added by the author to put the equation into the final form, given in Eq. 

(32).  

∆𝑃 =
10𝐴𝑉𝑠𝜇(1−𝜖)2𝐿

𝐷𝑝
2𝜖3𝑎

+
𝐵(1−𝜖)𝜌𝑉𝑠

2𝐿

𝜖3𝐷𝑝𝑎
     (32) 

The parameter ‘𝑎’ represents the effective filtration area rate which assist in 

modelling final stage of the filtration process (i.e. the third regime depicted 

in Figure 4.4) where the cake height is restricted to grow by the filter 

container leading to other type of forces to be concerned. However, these 

forces are not captured in the Ergun equation. Therefore, we linked these 

forces to the deviation within effective filtration area which led to 

favourably modelling of the final stage of filtration. 

The parameter ‘𝑎’ is a dynamic variable, driven by the sphere packing 

simulation modelling. The effective filtration area rate is defined as the rate 

of the filtration area of the particle deposit cake inside the filter chamber 

where fluid can pass. However this rate reduces dramatically when the 

deposited particles start reaching the filter container. Figure 4.5 depicts the 

progress in the adapted parameter. As seen in the figure, effective filtration 

area remains 100% during the first two stages defined before. However it 

drops dramatically as it enters the third regime where the cake height is 

restricted to grow by the filter container. 
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Figure 4.5. Sphere packing simulation results of the adapted parameter 

The modified Ergun equation is transformed into a dynamic state transition 

equation in order to be integrated with Particle Filters. For sufficiently 

small ‘𝑑𝑡’ intervals, the state space model can be discretised to give:  

∆𝑃𝑡+𝑑𝑡 ≅ ∆𝑃𝑡 + ∆𝑃𝑡
′𝑑𝑡 + 𝑤𝑡   (33) 

Eq. (33) represents a nonlinear pressure drop increment steps. ‘∆𝑃𝑡
′’ term 

can be obtained by taking the first derivative of the modified Ergun 

equation given in Eq. (32). A MatLab program is written to solve the 

discretised version of pressure drop model equations, simulate the dynamic 

parameters and integrate with Particle Filters. 

In Eq. (32), cake thickness ‘𝐿’, porosity of the cake ‘𝜖’, effective filtration area 

rate ‘𝑎’, and the fluid velocity ‘𝑉𝑠’ are the dynamic parameters while rest of 

the parameters remain constant as the filtration process proceeds. In this 

regard, these dynamic parameters are required to be modelled separately 

for prognostic goals. It is important to note that, even though the fluid 

velocity changes over time, we have not modelled the velocity and assumed 
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it to be constant, for simplicity. However, this study can be extended by 

modelling the flow rate or fluid velocity in the future. 

Next section elaborates the dynamic parameter simulation process and 

proposes an image processing technique for an indirect cake thickness 

measurement method. 

4.2.3.1    Cake Thickness and Porosity Modelling 

Cake thickness and porosity are the dynamic cake structure parameters 

required to be measured or simulated separately when modelling the 

pressure drop in the system.  

In general, the cake structure is assumed to be uniform, which means that 

the particles disperse equally in the filter container leading to a minor 

spread in cake thickness distribution. In this research, we propose an 

indirect way of obtaining the cake thickness information rather than using 

the cake thickness measuring techniques mentioned in the previous section. 

High quality, continuously captured filter mesh pictures are used in an 

image processing technique to correlate the particle deposition with the cake 

thickness phenomena. 

Figure 4.6 demonstrates the cake thickness approximation method. Original 

and the black & white transformation of the filter picture are depicted. 

Image processing was performed on the orange rectangular area covering 

one of the filter mesh areas.  An image processing program is developed to 

capture the biggest white area within the orange zone shown in green lines. 

The reference line is located in the far left of the mesh area. It is found out 

that the cake thickness is directly proportional to the expansion of particles 

to the left, starting from the reference point. Therefore, the mean expansion 

rate is calculated during the experiments, illustrated in Figure 4.7. 
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Figure 4.6. Cake thickness calculation using filter images 

In Figure 4.7, blue dotted line represents the average cake thickness values 

obtained from the picture data via the image processing program. Black 

solid line stands for the maximum cake thickness level restricted by the 

filter container. In addition, the logarithmic cake thickness measurement 

model is shown in solid red line. The measurement model is obtained by 
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fitting a logarithmic growth trajectory to the indirect cake thickness 

measurement points obtained from image processing technique. The 

pressure drop data is also utilised to define the minimum and maximum 

cake thickness time point detection. Cake thickness growth exhibits a 

reciprocal trajectory to the pressure drop values as it is confirmed by several 

studies in the literature. The logarithmic cake thickness model is 

determined as the final indirect cake thickness measurement and used as 

auxiliary information in pressure drop modelling. 

 

Figure 4.7. Cake thickness modelling demonstration 

Moving onwards from the cake thickness modelling to porosity modelling, 

porosity ‘𝜖’ is defined as the void fraction of the cake. The porosity 

calculation model is provided in Eq. (34) where ‘𝑀𝑐 ’ is the loaded mass of 
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particles, ‘𝜌’ is the particle density, and ‘𝐴𝑓 ’ is the cake area. The term ‘𝑀𝑐/𝜌’ 

outlines the loaded cumulative particle volume for each time instance 

whereas ‘𝐿𝐴𝑓’ stands for the cake volume. Loaded particle volume is 

calculated by multiplying the flow rate (i.e. ‘𝑄’) of the system by the solid 

fraction (i.e. ‘𝑥’) of the suspension. 

𝜖 =
𝑣𝑜𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑘𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
= 1 −

𝑀𝑐/𝜌

𝐿𝐴𝑓
    (34)  

The dynamic parameters ‘𝑀𝑐 ’, ‘𝐿𝐴𝑓 ’ hence the porosity values are simulated 

to imitate the clogging process of the filter. The simulation results including 

cake thickness, porosity and pressure drop will be provided in section 5.2. 

Next section elaborates the hybrid prognostic modelling integration 

methodology. 

4.3    Hybrid Prognostic Modelling 

In the previous sections, data-driven and physics-based modelling of the 

filter clogging and fatigue crack propagation case studies is discussed. In 

this section, we describe the proposed hybrid prognostic integration scheme. 

The motivation for the hybrid prognostic modelling is discussed in Chapter 

0. The proposed hybrid methodology aims to integrate a physics-based 

model (PbM) with a data-driven model (DDM) to enhance the prognostic 

capabilities. As discussed in the literature review chapter, majority of the 

hybrid prognostic models consist of two different models, where one 

performs the health state assessment while another performs the state 

projection and RUL calculation. Unlike those methodologies, we propose a 

generic integration scheme which appears in remaining useful life 

calculation phase of the prognostic process. 

The integration scheme can be analysed in the five different scenarios 

displayed in Figure 4.8. First two scenarios represent cases where the RUL 

results (i.e. ‘RUL1’ and ‘RUL2’) are obtained from single complete models 
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which produce highly accurate estimations. These two cases are 

representative of the conditions where the sources feeding the models and 

the prognostic models are exceptionally rich to provide remarkably precise 

prognostic outputs. However, as mentioned in section 2.3.5, it is often 

difficult to model system/component degradation profile completely due to 

many reasons which have been discussed in previous sections. Therefore we 

call these perfect modelling cases as ‘unrealistic’. Moreover, the first four 

cases represent the unrealistic cases where one of the models contributing to 

the hybrid scheme can capture the system degradation profile perfectly, 

which is not really the case in real life maintenance. 

However, we can investigate such unrealistic scenarios by dealing with 

simpler systems/components to capture the degradation profile perfectly. 

Therefore, we have worked on the Virkler crack propagation dataset and the 

filter clogging experimental studies which are relatively less complex assets 

and providing rich data sources. These two case studies can be modelled and 

their samples’ remaining useful lives can be estimated with significantly 

high accuracy levels. First two scenarios exemplify these accurate modelling 

cases for physics-based and data-driven modelling cases.  

Solid line arrows in the diagram represent the input/output for the complete 

modelling cases. On the other hand, the dashed arrows which symbolise the 

imperfect inputs/outputs represent real life conditions where the prognostic 

models often do not produce robust results linked to their weaknesses. The 

immaturity of a model may stem from many sources such as the lack of 

enough historical failure data or poor analysis of the degradation physics.  

Third and fourth scenarios represent the mixture models where a mature 

model integrated with an incomplete model. In these scenarios, the 

integration scheme is biased towards a model to compare and investigate 

the bias effectiveness. Therefore, third and fourth scenarios assist to reveal 
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the integration effectiveness for both physics-based and data-driven 

modelling cases.  

 

Figure 4.8. Hybrid integration scenarios 

The bias effect is also exemplified in the results chapter (i.e. Figure 5.4). The 

effect of changing the bias ratio is investigated and the results are 

illustrated in the figure. 
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In third scenario, the data-driven model (DDM) is identical to the second 

case whereas the physics-based model is weakened on purpose to observe 

the compensation effects on the hybrid results. The physics-based model is 

crippled by starting with poor initial parameters used in the particle filter 

modelling. In addition, the cake thickness simulation is also weakened by 

adding randomly shifted errors specifically for the filter clogging case study. 

These modifications are anticipated to be resulted in narrowed prognostic 

capability of the physics-based model. In Figure 4.8, ‘RUL_PbM’ represents 

the poor prognostic results obtained from incomplete physics-based model, 

whereas ‘RUL3’ can be considered as the physics-based results enriched 

with data-driven model inputs. In this scenario the integration mechanism 

is biased towards the DDM, which means that the data-driven model output 

weight is relatively higher than the physics-based model output. 

Similarly, in fourth scenario, for once the DDM is weakened by reducing the 

number of training samples. Training samples are the historical run-to-

failure data observations to be used in the training of the data-driven model. 

The less data imply insufficient training of the model resulting with 

inadequate prognostic results. The enhanced prognostic output (i.e. ‘RUL4’) 

is compared with the ‘RUL_DDM’ to assess the improvement rate. 

Lastly, the fifth scenario represents a real world prognostic application case 

where both models are incomplete; hence they are foreseen to produce 

relatively inaccurate results. However, even though these models are 

incomplete, each model can contribute to the final hybrid model when they 

are integrated to establish a hybrid model. Results of this final model are 

labelled as ‘RUL5’ in Figure 4.8. 

It is important to note that the highest accuracy in RUL estimations will 

obviously be achieved from the first two scenarios (i.e. ‘RUL1’ and ‘RUL2’) 

as both models are complete and fed by rich information sources. ‘RUL3’ and 

‘RUL4’ result are still obtained under unrealistic conditions where half of 
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the sources are rich. Therefore, the ‘RUL5’ results are required to be 

compared with the results ‘RUL_PbM’ and ‘RUL_DDM’ which are fed by the 

same incomplete information sources. The third and the fourth cases are 

designed to investigate the effects of bias ratio to serve a basis for the fifth 

and the final scenario. 

The details of the proposed integration scheme are discussed in next section. 

4.3.1    Proposed Hybrid Prognostic Methodology 

In Figure 4.8, the light green boxes represent the hybrid integration scheme 

where the physics-based model is integrated in the data-driven model. The 

PbM and DDM integration scheme is based upon the similarity-based 

prognostic methodology discussed in section 4.1.1. 

Typically for the similarity-based models, the latest ‘𝑛 − 𝑙𝑜𝑛𝑔’ segment of the 

test specimen is compared with the same lengths of segments within the 

training sample signals. In the proposed approach, similarity comparison is 

performed using ‘𝑛0 + 𝑛1 𝑙𝑜𝑛𝑔’ segment. The former part, ‘𝑛0 − 𝑙𝑜𝑛𝑔’ 

segment, is obtained from the data from previous time units; whereas the 

latter part, ‘𝑛1 − 𝑙𝑜𝑛𝑔’ segment is obtained from the forecasted data obtained 

from the physics based model. Hence, the similarity is obtained not only 

using the past, but also with model based future predictions. The forecasted 

values bring the failure point closer, which is expected to increase the 

estimation accuracy. The accuracy of the physics based model, selection of 

the number of forecasted points (𝑛1) and the number of past data to be used 

(𝑛0) are crucial.  

After the segment has been defined, the distance (i.e. Eq. (20)) and 

similarity (i.e. Eq. (21)) values for each training segment are calculated as it 

is discussed thoroughly in the modified SBP section (i.e. section 4.1.1.1). 

RUL value for the test specimen for the current time point is assigned by 

aggregating the weighted average of the training samples’ RUL values, 

given in Eq. (18) in section 4.1.1. 
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A demonstration of the RUL estimation integration mechanism is shown in 

Figure 4.9. In the figure, RUL calculation is performed for a test specimen 

at 140th second of its clogging process, shown in a red line where the future 

measurements are not known. The other two blue run-to-failure trajectories 

represent the training samples. Note that, for simplicity in the illustration, 

two out of 56 training signals are shown. It is assumed that the sample is 

failed when it reaches the predefined threshold shown in the black 

horizontal dashed line. Light green line extension is the ‘𝑛1’ number of time 

point estimations to the future, obtained from the physics-based model (e.g. 

Particle Filter & Ergun integration).  

 

Figure 4.9. Hybrid integration scheme demonstration 
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Similarly, for the crack propagation case study, future crack levels are 

predicted using discretised Paris Law and particle filter combination model. 

The current time is indicated with a black star marker for the test signal. 

Every possible ‘𝑛0 + 𝑛1 𝑙𝑜𝑛𝑔’ segment for each training is got involved in the 

similarity calculation and similarity values are assigned to each segment. 

The most similar segment for each training segment is detected and its RUL 

and similarity values are used in the final RUL calculation shown in Figure 

4.9. For instance ‘𝑠115
1 ’ and ‘𝑟𝑢𝑙115

1 ’ represents the similarity and RUL values 

of the most similar segment for training sample one. This means that the 

first training sample’s 115th second reference point is the most similar point 

to the current time of test specimen. Similarly, for the second training 

specimen, 195th second time point stand out as the reference point 

representing its ‘𝑛0 + 𝑛1 𝑙𝑜𝑛𝑔’ segment. 

In this way, by conjoining the future estimations in the similarity 

calculation, it is anticipated to enhance the prognostic results compared to 

the original definition of the similarity-based prognostic model. The results 

of the proposed integration scheme as well as the other models mentioned 

will be discussed in next chapter. 
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Chapter 5 

 

5 Results 

 

This chapter presents the results obtained from the models mentioned in 

the previous chapter. Data-driven, physics-based and the hybrid modelling 

prognostic results are analysed for two different engineering case studies: 1) 

Fatigue crack propagation 2) Filter clogging. Furthermore, prognostic 

performance metrics are discussed and the results are evaluated according 

to the metrics. The chapter is concluded with a discussion section.   

5.1    Prognostic Performance Evaluation Metrics 

It is necessary to introduce the prognostic evaluation metrics before 

discussion of the prognostic results. These metrics can be of generic use in 

many fields such as weather, aerospace, finance, medicine, automotive; 

which involve forecasting or prediction applications. Typically, prediction 

accuracy and precision levels are measured to evaluate the performance of 

algorithms. Mean squared error (MSE) and Root mean squared error 

(RMSE) are two of the most commonly used accuracy measure for prediction 

analysis. In addition, mean absolute deviation (MAD) and mean absolute 

percentage error (MAPE) are also widely used metrics for accuracy and 

precision evaluation (Saxena et al., 2010). RMSE and MAPE calculation 

equations are given in Equations (35-36). 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑓𝑖)2𝑛

𝑖=1

𝑛
   (35)  

𝑀𝐴𝑃𝐸 = ∑ |
100(𝑦𝑖−𝑓𝑖)

𝑛𝑦𝑖
|𝑛

𝑖=1    (36)  

Where: 

𝑦𝑖  : Actual RUL value at time point ‘ 𝑖’ 

𝑓𝑖  : Predicted RUL value at time point ‘ 𝑖’ 

𝑛 : The number of prediction time points 

As it is evident from the name, RMSE gives the root mean squared error of 

the predictions based on the actual RUL values for test signals. However, 

the outliers in the predictions will greatly affect the averaged result of 

RMSE. Unlike the RMSE metric, MAPE is a unit-free measure where the 

results make sense in percentage levels. In MAPE calculation mechanism, 

the error values are weighed via the actual RUL values which capture the 

time varying aspects relatively more compared to RMSE. 

 

Figure 5.1. Hierarchical design of the prognostic metrics (Saxena et al., 2009) 

Saxena et al. (2008) claims that these traditional forecasting performance 

metrics do not perfectly accommodate prognostic model performance 

requirements. For instance these metrics are not designed for applications 

where the predictions are updated continuously as more data become 

available. Typically, prognostic prediction performance tends to improve as 

Prognostic Horizon (PH) 

𝛼 − 𝜆 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 

Relative Accuracy (RA) 

Convergence 
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time progresses where the asset nears its end-of-life. In the early stages of 

an equipment degradation process, predictions are anticipated to be less 

accurate since there are not enough measurements fed to update the model 

parameters. Therefore, penalty rates of the crucial time points for errors 

should be higher than the earlier stages. Certainly, it is found to be 

necessary to tailor these traditional prediction performance metrics for 

prognostic algorithm performance evaluation. 

A research group from NASA have been conducting a comprehensive 

research on the standardisation of prognostic evaluation metrics (Saxena et 

al., 2010; Saxena et al., 2008; Saxena et al., 2009; Saxena et al., 2009; 

Saxena et al., 2010). They have introduced a hierarchical group of 

prognostic evaluation metrics. The hierarchical design of the proposed new 

metrics is illustrated in Figure 5.1. In this hierarchical design, a prognostic 

algorithm is tested and passed to the next metric if the metric condition is 

satisfied. These metrics follow a systematic progression in the sense of the 

data they seek. The evaluation metrics will be discussed briefly before 

passing on the prognostic modelling results.  

5.1.1    Prognostic Horizon (PH) 

PH is defined as the range in between the point where the predictions fall 

under the allowable error bound (defined by ‘𝛼’) for the first time and the 

end-of-life time point, given in Eq. (37). In other words, PH determines how 

far in advance an algorithm can provide estimations within the predefined 

accuracy bounds. Higher PH values imply longer prognostic horizon, hence 

better prognostic results.  

𝑃𝐻 = 𝐸𝑜𝐿 − 𝑖  (37) 

Where: 

𝑖 = 𝑚𝑖𝑛{𝑗|(𝑗 ∈ ℓ) ∧ (𝑟∗ − 𝐸𝑜𝐿 ∗ 𝛼) ≤ 𝑟𝑙(𝑗) ≤ (𝑟∗ + 𝐸𝑜𝐿 ∗ 𝛼))} (38) 

𝑖 : The first time index when predictions satisfy 𝛼-bounds 
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𝛼  : Accuracy modifier 

𝐸𝑜𝐿  : The ground truth end-of-life 

ℓ : Set of all RUL estimation point time indexes 

𝑙  : Test sample or specimen number 

𝑟∗   : Actual RUL 

𝑟𝑙(𝑗)  : Predicted RUL at time instance ‘𝑗’ for the test sample number ‘𝑙’ (i.e. 

can be mean or median of prediction RUL distribution). 

Best possible score for the PH is that the predictions always stay within the 

error bound whereas the worst score indicates it has never entered the 

accuracy zone. PH ranges can be described in percentage levels too. We 

prefer to present PH results as the percentage of actual life of test 

specimens. 

5.1.2    𝛂 − 𝛌 Performance 

This metric determines whether the predictions fall within the shrinking 

accuracy cone (defined by ‘𝛼’) around the actual RUL values. The output of 

the metric is binary; however, it can be converted to percentage values if the 

metric is implemented at multiple time instances. Shrinking cone 

boundaries are determined by the accuracy modifier ‘𝛼’. On the other hand, 

the parameter ‘𝜆’ specifies the rate of actual RUL over full life at time of the 

first predictions made within the allowable range. For instance, using this 

metric with ‘𝜆 = 0.5’ determines if a prediction falls within the accuracy 

bounds halfway through the failure from the time where first prediction 

made. Higher percentages of this metric result signify better prognostic 

ability. 

𝛼 − 𝜆 =  {
1       𝑖𝑓           𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑚𝑒𝑡
0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}  (39) 

Where: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 : 𝑟∗(1 − 𝛼) ≤ 𝑟𝑙(𝑡𝜆) ≤ 𝑟∗(1 + 𝛼) 

𝑡𝜆 = 𝑡𝑃 + 𝜆(𝐸𝑜𝐿 − 𝑡𝑃)  
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𝜆   : Time window modifier 

𝑡𝑃   : Prediction time 

5.1.3    Relative Accuracy (RA) 

This metric is similar to the alpha-lambda accuracy measure. Instead of 

inspecting whether the predictions fall within the boundaries, RA measures 

the accuracy level utilising absolute percentage error. Cumulative relative 

accuracy (CRA) is the weighted average of the RA values for the time 

instances of prediction points. RA and CRA equations are given in equations 

(40, 41) respectively. It is desirable getting higher RA and CRA scores for 

improved prognostics. Saxena et al. (2009) states that it is desirable to 

assign higher weights to RAs at final stages of predictions as it gets closer to 

EoL. 

𝑅𝐴𝜆 = 1 −
|𝑟∗

𝑙(𝑡𝜆)−𝑟𝑙(𝑡𝜆)|

𝑟∗
𝑙(𝑡𝜆)

  (40) 

𝐶𝑅𝐴𝜆 =
1

ℓ
∑ 𝑤(𝑟𝑙)𝑅𝐴𝜆

ℓ
𝑖=1   (41) 

Where: 

𝑤  : Weight factor as a function of RUL at all-time indices 

5.1.4    Convergence 

Convergence is the final metric to be verified in the hierarchical design. 

Firstly, an accuracy or a precision metric (i.e. ‘𝑀(𝑖)’) such as RA or MAPE is 

selected. Formerly, the algorithm is quantified whether it improves over 

time to converge the true RUL path. The convergence calculation is given 

below: 

𝐶𝑀 = √(𝑥𝑐 − 𝑡𝑃)2 + 𝑦𝑐
2  (42) 

Where: 

𝑥𝑐 =
1

2⁄ ∑ (𝑡𝑖+1
2−𝑡𝑖

2)𝑀(𝑖)𝐸𝑜𝑃
𝑖=𝑃

∑ (𝑡𝑖+1−𝑡𝑖)𝐸𝑜𝑃
𝑖=𝑃 𝑀(𝑖)

 (43) 
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𝑦𝑐 =
1

2⁄ ∑ (𝑡𝑖+1−𝑡𝑖)𝑀(𝑖)2𝐸𝑜𝑃
𝑖=𝑃

∑ (𝑡𝑖+1−𝑡𝑖)𝐸𝑜𝑃
𝑖=𝑃 𝑀(𝑖)

 (44) 

The terms ‘𝑥𝑐 ’ and ‘𝑦𝑐 ’ symbolise coordinates of the centre mass of the area 

under the curve ‘𝑀(𝑖)’. Therefore, Eq. (42) provides the Euclidean distance 

(i.e. ‘𝐶𝑀’) from the origin defined as ‘(𝑡𝑃 , 0)’. Lower convergence distances 

reveal that the algorithm converges faster, which is desired for prognostics. 

5.2    Crack Propagation Modelling 

The detailed discussion on the fatigue crack propagation modelling is 

provided in the methodology chapter at section 4.2.2. This section provides 

the remaining useful life estimation results of the physics-based, data-

driven, and hybrid modelling approaches. This section also entails the 

investigation of model performance evaluation. The entire prognostic models 

mentioned in the methodology chapter are implemented on the Virkler 

fatigue crack propagation dataset.  

The Virkler dataset (Virkler et al., 1979) consist of 68 crack growth 

trajectories collected upon well-controlled fatigue loading experiments. The 

experiments were conducted under the identical constant amplitude fatigue 

loading and controlled environmental conditions. Several preliminary tests 

were conducted for determining the actual load levels for the material type. 

The specimens aged in the experiments were the 2024-T3 aluminium alloy 

plates which are drilled in the centre to form a 2.54mm initial notch, 

illustrated in Figure 5.2. Test specimen geometry details are also shown in 

the figure. They reported that the dataset do not contain measurements 

until 9mm of half crack lengths as the steady state conditions would not met 

up to that level.  

During the aging process, samples were subjected to cyclic tensile loading at 

‘𝑅 = 0.2’ stress ratio with ‘∆𝜎 = 48.28 𝑀𝑃𝑎’ stress range levels. Throughout 

the experiments, cycle numbers are recorded at fixed increments in crack 

lengths (i.e. ‘∆𝑎 = 0.2𝑚𝑚’) until it reaches the predefined final length; 
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49.8mm. Note that, in the final stages of data collection, cycles were 

recorded at 0.4mm and 0.8mm increment levels as well. Each signal in the 

dataset contains 164 measurement points throughout its degradation path. 

 

Figure 5.2. Test specimen geometry 

As mentioned in the methodology chapter, the dataset is investigated by 

comparing the prognostic results from the integration scenarios discussed in 

section 4.3. The first scenario represents obtaining RUL from the particular 

physics-based model. The physics-based model implemented on the Virkler 

dataset is the distinguished Paris Law combined with particle filters. A 

demonstration of obtaining a RUL distribution result is shown in Figure 5.3. 

The top two subplots visualise the model parameter learning processes until 

the RUL prediction starting point at 150 thousand’s cycle. During this 

learning process PF is used to track and update the main parameter (i.e. 

crack length) and also the auxiliary parameters (i.e. C and m). Starting from 

the RUL estimation point, where the measurement input feed is terminated, 

the model parameters are extrapolated into the future up to the maximum 

crack length threshold using the discretised Paris Law equation via Monte 

Carlo simulation. Thus, the RUL distribution at this specific point is 

obtained by calculating the differences between the RUL estimation starting 

point time and the times where trajectories (i.e. the number of trajectories is 

equal to the number of particles) hit the threshold. In the figure, red lines 

2a 

Centre notch 
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represent the mean values of the distribution whereas the green curves 

encapsulate the 95% of the distribution (i.e. confidence bounds). 

 

Figure 5.3. Paris Law and particle filter integration 

For each test specimen, the RUL estimations are set to perform at every ten 

thousand cycles. RUL results of the individual physics-based modelling is 

analysed along with the fourth scenario. 

For the second scenario, the RUL results are obtained from a singular and 

complete data-driven model (i.e. modified SBP). The complete data-driven 

model refers to a model where the sources feeding the algorithm are rich 

enough to produce immensely accurate RUL estimates. A visualised 

comparison of the data-driven model (i.e. modified SBP) against the physics-

based model (i.e. Paris & PF) is depicted in Figure 5.5. X-axis scales the life 

period of the specific sample whereas y-axis stands for the corresponding 
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RUL values. In this figure, the dashed linear black lines represent the 

actual RUL values. Actual RUL values for a specimen are calculated by 

subtracting the current cycle from the EoL value specific to the specimen. 

The blue line represents the complete SBP model RUL estimation results 

(i.e. data-driven model results from the second scenario) where all training 

samples are used in the similarity calculations. The red curve serves as the 

complete physics-based model results (i.e. physics-based model results from 

the first scenario). The discretised Paris Law integrated with particle filters 

is the physics-based model which is selected for modelling the Virkler 

dataset signals. The physics-based modelling methodology is given in 

section 4.2.2. 

 

Figure 5.4. System bias comparison 
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The RUL estimation results presented in Figure 5.5 are obtained from the 

first two scenarios where the models are highly accurate. Shrinking alpha 

cone visual comparison, recommended by (Saxena et al., 2010), is used for 

visualisation of the complete models, hence the results from a single test 

specimen show that both models stay within the 10% error bound 

predominantly throughout the degradation process. Henceforward the 

results obtained from all test samples for these two scenarios are 

investigated along with the third and fourth scenarios. 

 

Figure 5.5. PbM vs DDM RUL visualisation on a Virkler dataset sample 

The use of ‘𝑛0’ and ‘𝑛1’ for the models is summarised in Table 5-1. Recall 

that ‘𝑛0’ stands for the number of latest data points within the signal to be 

used in similarity calculations for SBP and hybrid modelling. On the other 

hand, ‘𝑛1’ symbolise the number of estimations towards the future by the 

physics-based model. Therefore the numbers ‘𝑛0’ and ‘𝑛1’ can be used as a 

bias between the models. For instance, increasing ‘𝑛0’ means involving more 

data points from the past monitoring data into the similarity calculations 
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which imply the hybrid integration system is biased towards the data-

driven model. Contrarily, where the system is biased of physics-based 

modelling, can be achieved by increasing the ‘𝑛1 𝑛0⁄ ’ ratio. 

In Figure 5.4, we exemplify the effect of bias on the hybrid modelling results 

with four different ‘𝑛0 𝑛1⁄ ’ ratios. The top left plot in the figure represents 

the highest bias towards the data-driven models with ‘𝑛0 𝑛1⁄ = 10’ bias rate. 

The rate is decreased moving through the bottom right down to 0.1 levels. 

Note that, for this figure, the DDM is complete and the PbM is incomplete 

model (i.e. Scenario 3). Therefore the degeneration in the hybrid model 

results is apparent as the bias towards the complete model disappears. The 

hybrid curves remain significantly close to actual RUL values when the bias 

is directed to the matured model. The integration mechanism gives user the 

flexibility to play with the bias values as they desire. 

In addition, the standard deviation values selected for the measurement ‘𝜎𝑣’ 

and process noise ‘𝜎𝑤’ are selected 1 and 0.5 respectively. Similarly, for the 

parameters ‘log(C)’ and ‘m’, the error terms for the particle filtering are 

constructed with standard deviation values of 0.1 and 0.01 respectively. Five 

hundred numbers of particles are employed for PF for all scenarios. 

Figure 5.6 displays the remaining useful life results obtained from the 

scenario three, where the physics-based and data-driven models are 

incomplete and complete respectively. The modified similarity-based 

prognostic (SBP) model, discussed in section in 4.1.1, is selected to be used 

as data-driven model for the Virkler dataset modelling. The dataset samples 

are divided into training and testing parts. 59 out of 68 samples (i.e. ~85%) 

are selected to be used in the training of the modified SBP model while the 

remaining nine samples are (i.e. ~15%) left for testing the algorithm.  

The crack propagation physics-based model is crippled by initialising the 

model parameters poorly, which are learned by the particle filter as more 

data becomes available. However, ideally for physics-based models, the 
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model parameters are initialised wisely by calibrating the physics principles 

empirically. Moreover, parameter initialisation can be improved by learning 

the parameter variation from the training dataset. 

Table 5-1. Segment size construction for different scenarios 

 Scenario 

 1 2 3 4 5 

𝒏𝟎 - 100 100 10 100 

𝒏𝟏 - - 10 100 100 

The RUL results obtained from the nine test samples at every ten thousand 

cycles are depicted in Figure 5.6. As seen in the figure, SBP prediction 

accuracy is almost ideal; accordingly, the blue curves stayed significantly 

close to the actual RUL lines. This is due the training sample population 

that is rich enough to encapsulate the spread within the entire dataset. 

On the other hand, the physics-based model, represented in green curves, 

struggles to adapt its parameters yielding poor results for the initial 

periods. However, in the virtue of particle filter uncertainty handling, 

significant enhancement appears in the further stages as more data become 

available. The hybrid model, shown by the red lines, integrates the complete 

SBP with the incomplete physics-based model, (i.e. ‘RUL3 in Figure 4.8). 

The hybrid prognostic results stay as almost close as the SBP results to the 

actual RULs. 

Accuracy of the RUL estimations is measured by the performance metrics 

which are investigated in the previous section. Figure 5.7 visualises the 

comparison of the RUL prediction performances for the third hybrid 

scenario. X-axis for the plots signifies the test sample number, whereas the 

y-axis scales are specific to the performance metric. It is important to note 

that, the SBP results in Figure 5.6 and Figure 5.7 represent the second 

scenario. Figure 5.7 reveals that the hybrid model outperforms the 

incomplete physics-based model. Higher percentages indicate better 
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prognostic accuracy in prognostic horizon (PH), ‘𝛼 − 𝜆’ performance, and 

cumulative relative accuracy (CRA) metrics. For all metrics ‘𝛼’ and ‘𝜆’ values 

are selected as 0.1 and 0 respectively. Unlike other metrics, lower 

convergence distances signify improved prognostics, displayed in bottom 

right of the figure. According to the figure, for each metric, the hybrid and 

SBP models outperform the incomplete physics-based model as expected. 

The average results of all test specimens are displayed in each metric legend 

entries. For instance, the hybrid and data-driven models provide results at 

an average 88% band for the cumulative relative accuracy, whereas PbM 

stays in 61% accuracy levels. In this regard, these results manifest that the 

integration scheme favourably improves the prognostic results of the 

singular incomplete model. 

Moving on the fourth scenario; where the data-driven model is incomplete, 

whereas the physics-based model is complete. The data driven model is 

immatured by restricting the training data source significantly.  Recall that 

the number of training samples was 59 out of 68 (~85%) for the previous 

scenarios. In order to limit the capabilities of the data-driven model, the 

number of training samples is significantly reduced (e.g. 2%). As mentioned 

in previous sections, in most industries, the number of run-to-failure data is 

notably limited; sometimes there is even no historical data available. 

Therefore, reducing the training sample size down to 2% may well be more 

representative of the real life scenario than the complete dataset usage 

cases. 
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Figure 5.6. RUL results for Virkler dataset scenario 3 
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Figure 5.8 depicts the prognostic results for the fourth (i.e. the results 

labelled as ‘SBP’ and ‘Hybrid’) and the first (i.e. ‘PbM’) scenarios. In this 

figure, it is evident that the SBP model performance is greatly reduced after 

disregarding considerable amount of training samples. This performance 

drop in the RUL predictions is visually apparent that the predictions stay 

fairly beyond from the actual RUL values. Furthermore, the improvement in 

the physics-based model predictions when it is complete is noticeable as 

well.  

The hybrid results, represented as in red curves, remain close to the SBP 

trajectories in the early stages of crack propagation. However, the 

predictions tend to follow the Paris Law & Particle Filter model starting 

approximately halfway through the failure. This trend can be linked to the 

high numbers of similarity segment sizes (𝑛0 + 𝑛1 = 200). 

 

Figure 5.7. Performance results for Virkler dataset scenario 3 
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Figure 5.8. RUL results for Virkler dataset scenario 4 
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As seen in Figure 5.9, not surprisingly the complete PbM provides the 

highest prognostic performance. Aside from the complete PbM, one needs to 

focus on the comparison of the hybrid and the incomplete SBP results which 

reveal the hybrid prognostic efficiency levels. The hybrid model outperforms 

the SBP; however, the performance differences between the hybrid and 

incomplete model is not as high as the third scenario performance increase. 

Nevertheless, the performance increase is an indicator of hybrid integration 

scheme efficiency. 

 

Figure 5.9. Performance results for Virkler dataset scenario 4 
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towards PbM nor DDM. In addition, in this scenario, both DDM and PbM 

are incomplete.  

 

Figure 5.10. RUL results for Virkler dataset scenario 5 

0 1 2

x 10
5

0

0.5

1

1.5

2

x 10
5

Cycles

R
U

L
(c

y
c
le

s
)

Specimen: 1

0 1 2

x 10
5

0

0.5

1

1.5

2

x 10
5

Cycles

R
U

L
(c

y
c
le

s
)

Specimen: 9

0 1 2

x 10
5

0

0.5

1

1.5

2

x 10
5

Cycles

R
U

L
(c

y
c
le

s
)

Specimen: 17

0 1 2

x 10
5

0

0.5

1

1.5

2

2.5

x 10
5

Cycles

R
U

L
(c

y
c
le

s
)

Specimen: 25

0 1 2

x 10
5

0

0.5

1

1.5

2

2.5
x 10

5

Cycles

R
U

L
(c

y
c
le

s
)

Specimen: 33

0 1 2

x 10
5

0

0.5

1

1.5

2

x 10
5

Cycles

R
U

L
(c

y
c
le

s
)

Specimen: 41

0 1 2 3

x 10
5

0

0.5

1

1.5

2

2.5

3

x 10
5

Cycles

R
U

L
(c

y
c
le

s
)

Specimen: 49

0 1 2

x 10
5

0

0.5

1

1.5

2

2.5

x 10
5

Cycles

R
U

L
(c

y
c
le

s
)

Specimen: 57

0 1 2

x 10
5

0

0.5

1

1.5

2

2.5

x 10
5

Cycles

R
U

L
(c

y
c
le

s
)

Specimen: 65

 

 

Real RUL

SBP

Paris PF

Hybrid

Virkler Case Study: Scenario 5



 

135 

However, the results show that the prognostic performance increases when 

they are integrated together. The performance metric results are shown in 

Figure 5.11. After the integration, the prognostic horizon of the model 

increases up to 90% levels in average. The other accuracy metrics (i.e. ‘𝛼 − 𝜆’ 

performance and cumulative relative accuracy) also indicate that the 

accuracy escalates after the integration. Noticeably, the model converges 

faster than the other two, which is also an indicator for performance 

improvement. 

 

Figure 5.11. Performance results for Virkler dataset scenario 5 
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presents the results obtained from the experimental clogging dataset case 

study. 

5.3    Filter Clogging Modelling 

A detailed discussion on the filter clogging modelling is provided in the 

previous chapter. In this section, we present the prognostic modelling 

results of the filter clogging case study. All prognostic models mentioned in 

the methodology chapter are implemented on the experimental pressure 

drop dataset. In this context, physics-based, data-driven and the hybrid 

modelling results are investigated. This section also entails the analysis of 

model performance evaluation. 

The second case study, discussed in section 3.2, involves an experimental 

test rig setup to produce a prognostic benchmark dataset. The dataset 

consist of fifty-six run-to-failure samples obtained from well-controlled 

accelerated filter clogging experiments. The improvements in the system 

design and data collection mechanism resulted in the collection of 

reproducible and well organised dataset. A brief summary of the data 

collection mechanism is provided as follows. 

Before the actual data collection, several errands are required to be 

conducted. The particles are sieved for narrowing the particle size 

distribution. Therefore, after the sieving, four different groups of particles 

having different size distribution are obtained. In addition, auxiliary tests 

with clean water are conducted prior to each run-to-failure experiment. The 

reason for these preliminary tests is to dispose air and bubbles within the 

system. Furthermore, these preliminary runs are also useful for calibrating 

the system parameters before the actual tests.  

In addition to different particle size distributions, we have tested different 

rates of solid fractions in the suspension. Four different solid ratios are 

determined, ranging from 0.400% to 0.475% levels. As a result, data 
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collection has been conducted for sixteen different operational profiles each 

of which have four samples. Exceptionally, the last four profiles have fewer 

samples compared to the rest of the profiles. Operational profiles are the 

outcomes of predefined combinations of particle size distribution and solid 

ratio levels of the suspension. 

The tests have been conducted by setting the pump with 211 RPM to 

produce 600 ml/min flow rate initially. The pressure and flow rate readings 

have been collected continuously as they are the main indicators of clogging. 

Each clogging experiment has been conducted and monitored until the filter 

has clogged up where the pressure drop value has reached its peak and 

entered into a stable pressure region. The sample rate for the data collection 

is kept 100Hz. However, for the modelling studies, the signals are down-

sampled to 1Hz as shown in Figure 5.12. In the figure, the original signals 

are represented in blue whereas the sampled signal is the dotted red curve. 

 

Figure 5.12. Original 100Hz vs 1Hz sampled data for filter clogging dataset  
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final look of the entire sampled dataset signals are visualised in Figure 5.13. 

It is evident in the figure that the signals have an intrinsic noise. If we are 

to explain the variation within the dataset from top-down level, the 

threshold hitting spread (i.e. as mentioned before: 36%) is due to the 

operational profile input variation (i.e. sixteen different operational 

profiles). For each set in the same operational profile, the variation is 

measured approximately 3%. The final uncertainty to be considered in the 

particular signal level is the noise due to the pump pulsations. Even though 

the system design and well-controlled operational procedures have 

minimised this effect, pressure drop signals still have the pulsation, hence 

the noise in the system.  

 

Figure 5.13. Final pressure drop trajectories for filter clogging dataset 
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integrated with particle filters to give a dynamic degradation modelling 

solution for the filter clogging case study (i.e. Equations. (32, 33)). 

The hybrid integration scheme is analysed in five different scenarios, as 

previously illustrated in Figure 4.8. The same procedures are applied and 

discussed for the crack propagation degradation scenario in the previous 

section. Therefore, we will briefly introduce the results and move on to the 

discussion section, where the efficiency of the integration scheme is 

examined.  

 

Figure 5.14. Simulation results before Particle Filter integration 
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simulation results prior to particle filter integration are displayed in Figure 

5.14. In the figure, top left plots exemplify the actual pressure drop data for 

different particle size and solid ratio combinations. Each colour represents a 

different particle size distribution category. To be more precise, the blue, 

red, cyan and green colours represent the 45-53, 53-63, 63-75 and the 

original particle size distributions respectively. 

Two separate particle filter mechanisms are integrated into the simulations. 

The first one tracks the sphere packing cake thickness model whereas the 

latter tracks the Ergun pressure drop model and its parameters. Figure 5.15 

illustrates the demonstration of particle filter mechanisms integrated in the 

cake thickness and pressure drop modelling. The parameters are learned 

and updated until 150th second throughout the sample lifetime. Starting 

from the RUL estimation point, where the measurement input feed is 

terminated, the model parameters are extrapolated towards the future up to 

the maximum pressure drop threshold level using the discretised Ergun 

equation with Monte Carlo simulation. Thus, the RUL distribution at this 

specific point is obtained by calculating the differences between the RUL 

estimation starting point time and the times where trajectories (i.e. the 

number of trajectories is equal to the number of particles) hit the threshold 

for the first time. In the figure, blue lines represent the median values of the 

distribution whereas the green curves encapsulate the 95% of the spread 

within the distribution (i.e. confidence bounds). 

For each test specimen, the RUL estimations are set to perform at every five 

seconds. RUL results of the individual physics-based modelling is analysed 

along with the fourth scenario. Similarly, the complete data-driven 

modelling results will be analysed in investigation of the third integration 

scenario. 

The values chosen for the ‘𝑛0’ and ‘𝑛1’ are the same as the previous case 

study. Therefore, Table 5-1 is applicable in this case study as well. ‘𝑛0’ 
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stands for the number of latest data points within the signal to be used in 

similarity calculations for SBP and hybrid modelling. On the other hand, ‘𝑛1’ 

symbolise the number of estimations up to the future via the physics-based 

model. Therefore the numbers ‘𝑛0’ and ‘𝑛1’ can be used as the bias between 

the models. For instance, increasing ‘𝑛0’ means involving more data points 

from the past monitoring data into the similarity calculations which imply 

the hybrid integration system is biased towards the data-driven model. 

Contrarily, where the system is biased of physics-based modelling, can be 

achieved by increasing the ‘𝑛1 𝑛0⁄ ’ ratio. The integration scheme is biased 

towards PbM and DDM for the scenarios three and four respectively. For 

the fifth scenario, the system is not biased as the models (i.e. PbM and 

DDM) contribute to the hybrid model equally. 

 

Figure 5.15. Cake thickness and pressure drop modelling 
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The standard deviation values selected for the measurement ‘𝜎𝑣’ and process 

noise ‘𝜎𝑤’ are 0.01 and 0.001 respectively. Five hundred numbers of particles 

are employed for particle filters for all scenarios. 

 

Figure 5.16. RUL results for filter clogging dataset scenario 3 
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samples are shown. Each test sample is a representative of an operational 

profile. For these figures, the 4x4 matrix plotting mechanism is organised so 

that the rows represent the particle size distributions while the columns 

indicate the solid ratio levels. This figure organisation fits the order of 

operational profiles introduced previously in Table 3-5. For instance, the 

Sample 42 belongs to the 11th operational profile where the particle size 

distribution is 63-75 micron range and the solid ratio is 0.45%. 

Figure 5.16 displays the RUL results obtained from the incomplete PbM (i.e. 

Ergun & PF), complete DDM (i.e. modified SBP), and the hybrid models. 

Figure 5.17 depicts the RUL performance results for each test specimen. 

Results achieved by the integration scheme outperform the incomplete 

model as the integration mechanism is biased towards the complete model 

(‘𝑛0 ≫ 𝑛1’). 

 

Figure 5.17. Performance results for filter clogging dataset scenario 3 
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Similarly, Figure 5.18 shows the RUL results obtained from the incomplete 

DDM, complete PbM and the hybrid models.  

 

Figure 5.18. RUL results for filter clogging dataset scenario 4 
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study, the hybrid model performed relatively better than the particular 

incomplete models, as seen in Figure 5.21. 

 

Figure 5.19. Performance results for filter clogging dataset scenario 4 
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Figure 5.20. RUL results for filter clogging dataset scenario 5 
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Figure 5.21. Performance results for filter clogging dataset scenario 5 

To conclude, considering the results obtained from all scenarios, the 

integration scheme yields better prognostic capabilities for the filter 

clogging case study as well as the crack propagation study. Even though 

both models, contributing to the hybrid model, are incomplete and weak, the 

integration scheme greatly deals with the problem leading to better 

performance in RUL estimations. The next section presents the discussion 

on the RUL results for both case studies. 

5.4    Discussion 

In this section, we summarise and portray the prognostic performance 

results obtained from two different engineering case studies. In the first 

case study, a publicly available fatigue crack propagation dataset (Virkler 

dataset) is analysed and the prognostic results are obtained. The second 
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case study is an experimental degradation scenario where several fuel 

filters are gradually clogged using micron size polymer particles. 

Performance evaluation metric results are presented in previous sections. In 

this section, we examine the metric results thoroughly. 

Table 5-2 and Table 5-3 organise all prognostic evaluation results for all 

integration scenarios.  In these tables, scenario two and three; one and four 

are analysed together. PbM(c) and DDM(c) column names indicate that the 

model is complete, where they belong to the scenarios one and two 

respectively. Table 5-2 presents the metric measures for the Virkler dataset 

study, whereas Table 5-3 summarises the filter clogging study performance 

metric results. 

Table 5-2. Performance metrics comparison for crack propagation case study 

 Scenario 

 1 2 3 4 5 

 PbM(c) DDM(c) PbM Hybrid DDM Hybrid PbM DDM Hybrid 

PH (%) 95.33 93.26 75.47 93.60 29.22 52.04 76.63 21.19 89.95 

𝜶 − 𝝀 (%) 58.16 68.86 12.71 67.13 5.90 15.19 11.28 6.25 18.63 

CRA (%) 85.99 88.42 61.64 88.85 60.36 72.14 61.26 56.03 65.18 

Convergence 0.55 0.53 0.57 0.52 0.73 0.65 0.59 1.16 1.02 

nRMSE (%) 5.97 4.63 22.46 4.47 15.43 13.07 23.09 16.56 13.30 

Table 5-3. Performance metrics comparison for filter clogging case study 

 Scenario 

 1 2 3 4 5 

 PbM(c) DDM(c) PbM Hybrid DDM Hybrid PbM DDM Hybrid 

PH (%) 96.22 91.51 60.13 93.02 80.70 90.11 55.70 80.70 84.97 

𝜶 − 𝝀 (%) 59.65 27.25 16.61 27.16 13.50 42.09 4.68 13.50 19.15 

CRA (%) 83.56 72.85 62.58 72.80 61.47 81.34 63.25 61.47 70.24 

Convergence 0.51 0.51 0.55 0.51 0.53 0.51 0.53 0.53 0.52 

nRMSE (%) 7.17 11.09 26.24 11.20 25.04 10.58 20.30 25.04 17.60 

In addition to the new prognostic evaluation metrics (i.e. PH, 𝛼 − 𝜆 

performance, CRA, and convergence), normalised root mean squared error 

(nRMSE) results are also included in the comparison table. nRMSE metric 
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results are obtained by normalising the RMSE results with mean lives in 

the relevant conditions. Thus and so, the nRMSE results can be read as 

percentage level errors.  

The results highlighted with red colour in the tables indicate the highest 

performance under the group defined scenario. For instance in Table 5-2, for 

the scenarios one and four, the complete PbM performance levels are higher 

than the other two in terms of all evaluation metrics. The first three rows 

are occupied by the prognostic horizon (PH), ‘𝛼 − 𝜆’ performance and 

cumulative relative accuracy metrics where the higher percentage levels 

indicate better prognostic performance. On the contrary, for the convergence 

and nRMSE, higher values indicate poorer performance. 

For the combined scenarios one and four, the complete physics-based model 

is expected to perform the highest. Not surprisingly, the mature PbM 

outperforms the other two by scoring ten out of ten for both case studies. On 

the other hand, for the combined scenarios two and three, the complete 

model DDM was expected to perform the highest. However, the hybrid 

model produced significantly close results to the mature DDM model, and 

sometimes producing even better results for both filter clogging and crack 

propagation studies. This can be explained as the integration scheme is 

based on the similarity-based data-driven model. Hence, the PbM future 

estimations add value rather than corrupting the model. However, 

integrating these future estimations do not enhance the immatured SBP 

model as such. 

The previous scenarios are the auxiliary cases to measure the efficiency of 

integration and bias adjusting. The fifth scenario can be taken as a basis for 

the hybrid performance as it is considered as the real life prognostic 

scenario, where both PbM and DDM are immature. If we inspect the tables 

for both cases, the hybrid model performance is the best for nine out of ten 

metrics. This indicates that integration mechanism enhances the prognostic 
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capability in general. Also the results show that using an individual model 

will not produce robust outputs. For example, the DDM prognostic horizon 

encapsulates 80% of filter clogging lifetime. However, the same data-driven 

model produces roughly 20% prognostic horizon levels for the crack 

propagation case. However, the integration scheme brings the robustness 

where the PH percentage level remains approximately 85% for both cases. 

To conclude, one of the main goals for this research was to develop a generic 

integration scheme to be used in hybrid modelling, in which incomplete 

data-driven and physics-based models are integrated. The results obtained 

from two engineering case studies verify that the integration scheme 

produces better prognostic results compared to the particular models which 

contribute to the hybrid mechanism. Therefore, this integration scheme is 

anticipated to be applied to other engineering cases to enhance the accuracy 

of the estimations. The following chapter concludes the thesis work and 

outlines the future works. 
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Chapter 6 

 

6 Conclusions & Future Work 

 

Prognostics is the key component of IVHM technologies, which generally 

involves system monitoring, fault detection and diagnostics, failure 

prognostics and operating management. System monitoring, fault detection 

and diagnostics are relatively mature comparatively to prognostics. Despite 

the immaturity of prognostics field, in recent years the importance of the 

prognostics has been comprehended by the industry as well as research 

communities.  

The heart of the prognostics is to calculate remaining useful life of the 

engineering asset precisely, which could lead to avoidance of the incidents / 

accidents peculiarly in the safety critical industry such as aviation, nuclear 

and military. The benefits of prognostics are to provide cost effectiveness, 

increased safety and availability via better maintenance planning. 

There are several different approaches to achieve prognostic results. 

Physics-based and data-driven approaches are two of the most commonly 

used prognostic models in the industry / academia. Both approaches have 

their own pros and cons; therefore, the aim was to develop a hybrid 

prognostic model to leverage the strengths of both approaches whilst 

avoiding the cons where possible. The idea of combining prognostic models 
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to achieve hybrid prognostics is of great importance, hence the research 

community started to develop hybrid models.  

In this research we provide a generic integration scheme for prognostic 

models to enhance the prediction accuracy and robustness. This research 

not only intends to make contribution on the concept of hybrid approach, but 

also manifests a generic prognostic integration scheme, an experimental 

prognostic benchmark dataset, a physics-based prognostic model of the 

clogging filter phenomena, and a number of modifications to improve a data-

driven prognostic approach. Furthermore, a comprehensive literature 

survey on hybrid prognostic models is provided. 

For this study, in order to be able to analyse the integration scheme, it is 

found to be necessary to work on an engineering case where the degradation 

mechanism is not extremely complex, enabling to model the 

component/system physics accurately as well as providing a means for data-

driven modelling. For this reason, a comprehensive dataset eligibility 

analysis is conducted on the prognostic datasets available online. The 

Virkler fatigue crack growth dataset has found to be the suitable for this 

research purposes. However, an experimental rig has also setup to produce 

a prognostic benchmark dataset. Therefore, a simple filter clogging test rig 

has been designed and clogging indicators have been monitored throughout 

the accelerated aging experiments. In addition, several improvements have 

been made aiming to collect reproducible signals from different operational 

profiles. 

A novel hybrid prognostic integration scheme has been developed where a 

data-driven and a physics-based model are integrated, aiming to improve 

the prognostic output. In this research, a similarity-based prognostics 

approach is explored for data-driven modelling purposes. A number of 

modifications have been made to increase the model’s applicability and 

robustness. The modified model has been implemented on both case studies 
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and remaining useful life (RUL) estimation results are obtained. On the 

other hand, two physics-based models, accommodating two different 

degradation mechanisms, are implemented for each case study. The 

prognostic performance results show that the both physics-based and data-

driven models predict the system behaviour accurately which led to 

successful RUL predictions. Note that, the physics-based model for the filter 

clogging scenario which involves the integration of particle filters with 

modified version of the Ergun equation is a novel contribution devoted to 

the literature. 

However, in real-world conditions it is found to be very difficult to obtain 

highly accurate prognostic results due to the difficulties and limitations of 

data sources and the knowledge base. In order to mimic this fact, the models 

are deliberately weakened to produce less accurate and less price 

estimations. The integration methodology is tested on the mixture of these 

weakened and complete models. The results are scrutinised based on the 

new performance evaluation metrics designed for prognostic results. The 

results from the both case studies reveal that the integration scheme 

enhances the RUL prediction accuracy considerably. Furthermore, it can be 

observed the proposed generic hybrid integration scheme has potential to be 

applicable in a real world environment. 

The key areas for the future work will include the investigation of the 

hybrid integration scheme capabilities. Several improvements can be made 

on the hybrid mechanism such as adapting more advanced similarity 

measures within the integration scheme. In addition, an investigation on 

the reduction of computational complexity for the integration methodology 

will greatly help in a potential instrumentation phase. 

Furthermore, some future work can be expected to further explore the data 

collection mechanism, test rig design and publication of the collected 

clogging dataset for prediction and prognostic competitions. Also the dataset 
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can further serve a purpose as a benchmark dataset for prognostic 

algorithms to be tested on. 
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