
Robust 3D Registration and
Tracking with RGBD Sensors

Abdenour Amamra
PhD

Centre for Electronic Warfare

© Cranfield University 2015.
All rights reserved

Robust 3D Registration and
Tracking with RGBD Sensors

By Abdenour Amamra

This thesis is submitted in partial fulfilment of the
degree of

Doctor of Philosophy

In the

Centre for Electronic Warfare

Cranfield University

Date of submission: May 2015
Supervisor: Dr. Nabil Aouf

© Cranfield University 2015. All rights reserved. No
part of this publication may be reproduced without the

written permission of the copyright owner.

i

Abstract
This thesis investigates the utilisation of cheap RGBD sensors in rigid body
tracking and 3D multiview registration for Augmented and Virtual reality ap-
plications. RGBD sensors can be used as an affordable substitute for the more
sophisticated, but expensive, conventional laser-based scanning and tracking so-
lutions. Nevertheless, the low-cost sensing technology behind them has several
drawbacks such as the limited range, significant noisiness and instability.

To deal with these issues, an innovative adaptation of Kalman filtering scheme
is first proposed to improve the precision, smoothness and robustness of raw
RGBD outputs. It also extends the native capabilities of the sensor to capture
further targets. The mathematical foundations of such an adaptation are ex-
plained in detail, and its corrective effect is validated with real tracking as well
as 3D reconstruction experiments. A Graphics Processing Unit (GPU) imple-
mentation is also proposed with the different optimisation levels in order to en-
sure real-time responsiveness.

After extensive experimentation with RGBD cameras, a significant difference in
accuracy was noticed between the newer and ageing sensors. This decay could
not be restored with conventional calibration. Thus, a novel method for worn
RGBD sensors correction is also proposed.

Another algorithm for background/foreground segmentation of RGBD images is
contributed. The latter proceeds through background subtraction from colour
and depth images separately, the resulting foreground regions are then fused for
a more robust detection.

The three previous contributions are used in a novel approach for multiview ve-
hicle tracking for mixed reality needs. The determination of the position regard-

tering algorithm that is able to handle the uncertainties in the system and
measurement models resulting in multiple position estimates; the latter algo-
rithm aims at merging the independent estimates by using a set of optimal
weighting coefficients. The outcome of fusion is used to determine vehicle’s ori-
entation in the scene.

Finally, a novel recursive filtering approach for sparse registration is proposed.
Unlike ordinary state of the art alignment algorithms, the proposed method has
four advantages that are not available altogether in any previous solution. It is
able to deal with inherent noise contaminating sensory data; it is robust to un-
certainties related to feature localisation; it combines the advantages of both

, norms for a higher performance and prevention of local minima; it also
provides an estimated rigid body transformation along with its error covariance.
This 3D registration scheme is validated in various challenging scenarios with
both synthetic and real RGBD data.

iii

In memory of aunty Aicha Amamra

v

Acknowledgment

First and foremost I offer my sincerest gratitude to my supervisor, Dr
Nabil Aouf, who has supported me throughout my thesis with his
patience and knowledge whilst allowing me to work in my own way. I
am also grateful to my committee members, particularly Prof Mark
Richardson, for his supportive approach in discussing and reviewing my
progress.

To my parents who, although being so far away, have been with me in
every step. To my dearest wife, thank you for your encouraging words
and patience for all the time I spent away from you. My brothers,
sisters and my uncle Abdelkader Attalah; thank you all for your love
and encouraging support.

To Luke Feetham for his continual help in thoroughly proofreading
most of my research papers. To Dr Gray Greer and Dr Dowling Stuart
for their assistance with English. Many thanks to Dr Lounis Chermak
for his fruitful technical and moral advice throughout my research. To
Oualid and Saif my office mates. To Riad, Tarek, Mohammed, Ivan,
Abdennour and Ozgun my colleagues in the lab. To my home mates
Badis and Rahim.

I would like to express my gratitude to the staff of the Military
Polytechnic School of Algeria. I would also thank Cranfield University
staff, in particular, those of Defence Academy campus, Shrivenham.

Finally, I’m grateful to all those who helped in a way or in another in
the achievement of this research work.

vii

Table of Contents

Abstract i

Acknowledgment v

Table of Contents vii

List of Figures xi

List of Tables xv

List of Abbreviations xvii

1 Introduction 1
1.1 Background & Objectives .. 1
1.2 Research Statement .. 3
1.3 Thesis Organisation & Contributions .. 3
1.4 Contributed Papers ... 8
1.5 Software Tools ... 10

2 Background 13
2.1 Augmented Reality (AR) .. 14
2.2 Virtual Reality (VR) .. 15
2.3 Mixed Reality Applications (MR) .. 17

2.3.1 3D Rendering... 17
2.3.2 Medical ... 18
2.3.3 Military ... 19
2.3.4 Robotics .. 19
2.3.5 Civil Engineering .. 20
2.3.6 Manufacturing ... 20
2.3.7 Tourism... 20

2.4 Performance Parameter of the MR Systems 20
2.5 Virtual Model Design... 21
2.6 Image Registration Importance for MR Applications 24
2.7 3D Registration Strategies ... 26

2.7.1 Sparse Registration .. 26
2.7.2 Dense Registration ... 28
2.7.3 A Compromise between Quality & Time 30

2.8 Rigid-Body Tracking .. 31
2.8.1 Real-Time 6 DOF Tracking Methods ... 31
2.8.2 Marker-based Tracking ... 32
2.8.3 Markerless Tracking ... 36

2.9 Camera Model and Imaging Geometry ... 38
2.9.1 Pinhole Camera Model ... 38

viii

2.10 Stereo Imaging ... 44
2.10.1 Depth Recovery ... 46

2.11 Multiview Imaging .. 49
2.12 Case Study: RGBD Cameras .. 51

2.12.1 Kinect V1 ... 51
2.12.2 Kinect V2 ... 56
2.12.3 Kinect Calibration ... 60
2.12.4 Multi Kinects Calibration .. 62
2.12.5 Interference between Kinect Cameras 65

2.13 3D Feature Points ... 65
2.13.1 3D Key Points’ Properties ... 67
2.13.2 Key Point Descriptors ... 74

2.14 GPU Acceleration .. 76
2.15 Conclusion.. 79

3 GPU-Based Real-Time RGBD Data Filtering 81
3.1 Overview ... 82
3.2 Related Works .. 85
3.3 System Architecture .. 86
3.4 Kalman Filter .. 88
3.5 Kalman Filter on Kinect’s Data ... 90

3.5.1 Z-Resolution .. 90
3.5.2 Depth Noise Statistics .. 94
3.5.3 IR Pixel States .. 95
3.5.4 Kalman Filter Adaptation to Kinect Sensor101

3.6 Kalman Filter Effect on RGBD Data for Moving Vehicles Tracking103
3.7 Kalman Filter Effect on RGBD Data for Depth Image Registration105
3.8 Results & Discussions ...109

3.8.1 GPU Implementation of Kalman Filter for Depth Map Filtering .109
3.8.2 Expending Sensor’s Field of View ...112
3.8.3 Object Tracking Applications ..114
3.8.4 Registration Applications ...126

3.9 Conclusion ..132

4 RGBD Data Correction and Background Removal 135
4.1 Overview ..136

4.1.1 Depth Sensors Correction ..136
4.1.2 RGBD Background Removal Methods137

4.2 Depth Sensors Correction ...139
4.2.1 Filtering Unreliable ...139
4.2.2 Kinect Depth Map Structure ..140
4.2.3 Problem Statement ...142
4.2.4 Depth Correction with Interpolation147
4.2.5 GPR on Kinect Depth Data ...148
4.2.6 Depth Map Correction Procedure ..152

4.3 Real-Time RGBD Data Segmentation ...156
4.3.1 GMM for RGBD Background Subtraction156

ix

4.3.2 Background Modelling ..156
4.3.3 GMM on RGBD Data ...159
4.3.4 RGBD Background Fusion ..162
4.3.5 GPU Acceleration of the GMM ...164

4.4 Results & Discussions ...166
4.4.1 Correction with Polynomial Interpolation166
4.4.2 Depth Map Correction with GPR ..172
4.4.3 RGBD-GMM Segmentation ..175

4.5 Conclusion ..180

5 Real-Time Multiview Data Fusion for Object Tracking with RGBD Sensors 183
5.1 Overview ..184
5.2 Related Works ...186
5.3 System Overview ...189

5.3.1 Kinect V1 Camera ...189
5.3.2 Hardware and Software Configuration189
5.3.3 Real-Time Multi-Kinect Tracking Architecture190

5.4 Capture and Marker Extraction ...197
5.4.1 RGB to HSV Conversion ...197
5.4.2 Colour Thresholding and Morphological Operations200

5.5 Robust Filtering ...203
5.5.1 Motion Model ..203
5.5.2 Robust Filter...205
5.5.3 Difference Between , Kalman and the Robust210

5.6 Tracking Data Fusion ..211
5.6.1 Covariance Intersection Filtering ..211
5.6.2 Covariance Intersection for Multikinect Tracking213

5.7 Orientation Computation ...216
5.7.1 Special Case..220

5.8 Results & Discussions ...222
5.8.1 Synchronisation ..222
5.8.2 GPU Capture and Marker Extraction Algorithms225
5.8.3 Robust Filter...227
5.8.4 Covariance Intersection ...229
5.8.5 Vehicle Orientation ...241

5.9 Conclusion ..246

6 A Recursive Robust Filtering Approach for 3D Registration 249
6.1 Overview ..250
6.2 Related Works ...252
6.3 Problem Statement ..255

6.3.1 Preliminary Translation Estimation ...256
6.3.2 Scale Difference Elimination ..258
6.3.3 Optimal Rotation Estimation ..259

6.4 Weighted Least Squares (WLS) Estimation ...260
6.5 Recursive Least Squares (RLS) Estimation ..263
6.6 Kalman Filter and RLS ...266

x

6.7 3D Registration with RLS ..272
6.7.1 Recursive 3D Registration Modelling273

6.8 3D Points Uncertainty ..281
6.8.1 RGBD Camera z-Resolution ..281
6.8.2 Depth Noise Statistics ...282

6.9 Robust Filter for 3D Registration ...287
6.10 Results & Discussions ...289

6.10.1 Synthetic Data ..291
6.10.2 Real Data..302

6.11 Conclusion...309

7 Conclusion & Future Works 313
7.1 Conclusion ..313
7.2 Future Works ..316

Bibliography 319

xi

List of Figures
2.1 Virtuality Continuum; Courtesy of Milgram et al. [12] 14
2.2 Some augmented reality applications. .. 16
2.3 Boeing 737 Flight Simulator. .. 18
2.4 A perspective view of the 3D model for the lab ... 22
2.5 Real images on the left and their 3D correspondent on the right. 23
2.6 An example of an erratic mapping of texture ... 25
2.7 Sparse Registration.. 27
2.8 Dense registration ... 30
2.9 6 DOF of a rigid body ... 32
2.10 Marker-based tracking pipeline .. 33
2.11 OptiTrack tracking system in the Autonomous Robotic Lab. 35
2.12 Markerless tracking ... 37
2.13 Pinhole camera model. .. 40
2.14 Pinhole Perspective Projection Geometry ... 41
2.15 Stereo camera model .. 45
2.16 Stereo vision geometry .. 48
2.17 Multiview imaging ... 50
2.18 Kinect sensor in operation ... 52
2.19 Raw outputs of Kinect V1 camera ... 53
2.20 Kinect V1 depth output .. 54
2.21 Kinect V1 points cloud structure ... 55
2.22 Raw outputs of Kinect V2 cameras .. 57
2.23 Kinect V2 depth result ... 58
2.24 Kinect V2 points cloud structure ... 59
2.25 Calibration checkerboard ... 62
2.26 Multiple Kinect calibration ... 63
2.27 Multiview Calibration .. 64
2.28 Kinect interference problem. .. 66
2.29 Key points extraction and descriptor matching process 68
2.30 Key points Extraction Process ... 71
2.31 Comparison between HARRIS3D & THRIFT .. 73
2.32 3D key point Extraction .. 74
2.33 SHOT algorithm ... 76
2.34 GPU (Device) general architecture .. 78

3.1 Kinect depth and colour data ... 84
3.2 Kinect data streams ... 87
3.3 Real-time RGBD data filtering architecture .. 87
3.4 Kinect’s point cloud structure ... 92
3.5 Depth data quantisation noise ... 93
3.6 The behaviour of for every Z-Level ... 95
3.7 The smoothing effect of Kalman filter on the “flat panel” scene 97
3.8 The smoothing effect of Kalman filter on the “Shelves” scene 98
3.9 The smoothing effect of Kalman filter on the “Desk” scene 99
3.10 The smoothing effect of Kalman filter on the “screen” scene100
3.11 Kalman effect on Kinect’s data for object tracking applications104
3.12 Kalman effect on position data ..105

xii

3.13 Kinect sensing of 3D feature points ..106
3.14 Kalman filter influence on the captured points107
3.15 Registration error ...108
3.16 Kalman filter GPU implementation for depth map filtering111
3.17 Data exchange optimisations in the GPU ..111
3.18 CPU/GPU benchmarking of KF for Kinect ...112
3.19 Kalman filter effect on 3D points localisation at different distances113
3.20 Robot tracking experimental setup ..114
3.21 trajectories of the vehicles for tracking scenario 1 (circle)116
3.22 and variations ..118
3.23 Error graphs ...119
3.24 trajectories of the vehicles for tracking scenario 2 (Left-to-Right)120
3.25 x and z variations..121
3.26 Error graphs ...122
3.27 trajectories of the vehicles for tracking scenario 3 (Front-to-Back)123
3.28 and variations ..124
3.29 Error graphs ...125
3.30 3D Registration pipeline ..127
3.31 Point cloud registration using THRIFT and CSHOT129
3.32 The effect of refinement ...129
3.33 Experimental results for 3D on-line reconstruction applications131

4.1 Kinect depth data ...141
4.2 Error intervals in Z-Levels ..143
4.3 Accuracy difference between and at 3.9m145
4.4 Accuracy difference between and at 3.7m146
4.5 Shift in depth values of the worn sensor ..147
4.6 GPR components..149
4.7 GPR-based RGBD drift correction with another sensor154
4.8 GMM Distribution ..157
4.9 GMM architecture ..158
4.10 RGBD segmentation result (Depth as a fourth component)160
4.11 RGBD segmentation result (Fusion of independent foreground regions) ...161
4.12 Array of Structures to Structure of Arrays transformations165
4.13 Kinect error in depth measurement. ..167
4.14 () distribution before correction ...169
4.15 shift fitting ...170
4.16 () distribution after correction ...171
4.17 GPR correction result ..173
4.18 Depth measurement error before and after GPR correction174
4.19 GMM input data ...177
4.20 RGB||D GMM segmentation result ...178
4.21 Segmentation results ...179
4.22 Computation time results ...180

5.1 Multi-Kinect real-time tracking system ..190
5.2 Filtering modules ...191
5.3 Kinect IR/RGB mapping ...194
5.4 Colour representation ..197

xiii

5.5 RGB vs HSV ..198
5.6 Colour distance ..199
5.7 Markers extraction ...201
5.8 Marker’s size and contour ...202
5.9 Covariance Intersection parameters ..215
5.10 Markers’ structure ..218
5.11 Orientation computation ..219
5.12 The behaviour of the vehicles ..221
5.13 Kalman filter GPU implementation for depth map filtering226
5.14 Experimental setup ..227
5.15 The best monoview tracking RMSE ..231
5.16 The best monoview tracking trajectory ...232
5.17 The worst monoview tracking RMSE ..233
5.18 The worst monoview tracking results trajectory234
5.19 multiview weighting RMSE ...235
5.20 multiview weighting trajectory ...236
5.21 and multiview weighting RMSE ..237
5.22 and multiview weighting trajectory ..238
5.23 , and multiview weighting RMSE ...239
5.24 , and multiview weighting trajectory240
5.25 Angle between the GT and the estimated heading241
5.26 Error in the estimated orientation of the vehicle245
5.27 Interference between structured light patterns247

6.1 Capture and recasting module ..268
6.2 3D recursive registration with Kalman filter ..269
6.3 3D point's uncertainty ..285
6.4 2D projections on the cardinal planes ..286
6.5 Synthetic data with small noise magnitude ..294
6.6 Synthetic data with average noise magnitude ..297
6.7 Synthetic data with large noise magnitude...300
6.8 Kinect data collection ...301
6.9 New Kinect data ...304
6.10 Old Kinect data; large noise magnitude ..307
6.11 Some visual results of the tested algorithms ...312

xv

List of Tables
2.1 Calibration results for the two versions of Kinect sensor 61
2.2 CPU/GPU comparison ... 78

3.1 RMSE results of the tracking scenarios ..116

4.1 RMSE before and after interpolation-based correction168
4.2 RMS error before and after GPR correction ...172
4.3 RMSE before and after GPR correction for , and175

5.1 Error in component for all cameras ...228
5.2 Error in component for all cameras ..228
5.3 Error in component for all cameras ..229
5.4 Final tracking error after CI filtering with weighting243
5.5 Final tracking error after CI filtering with , weighting243
5.6 Final tracking error after CI filtering with , and weighting ...243

6.1 RMSE (mm) for the whole set of samples ..308

xvii

List of Abbreviations
2D Two Dimensions
3D Three Dimensions
AR Augmented Reality
CAD Computer Aided Design
CPU Central Processing Unit
CSHOT Colour Signature of Histograms of Orientations
DOF Degrees of Freedom
DOG Difference of Gaussians
EKF Extended Kalman Filter
EM Expectation Maximisation
EMICP Expectation Maximisation Iterative Closest Point
FOV Field of View
FPS Frames Per Second
GMM Gaussian Mixture Model
GPGPU General Purpose GPU
GPR Gaussian Process Regression
GPU Graphics Processing Units
GTLS Generalised Total Least Squares
HD High Definition
HMD Head Mounted Device
HSV Hue Saturation Value
Hz Hertz
ICP Iterative Closest Point
IMU Inertial Measurement Unit
IR Infra-Red
KF Kalman Filter
LED Light Emitting Diode
LS Least Squares
ML Maximum Likelihood
MP Mega Pixels
MR Mixed Reality
PCA Principal Components Analysis
RAM Random Access Memory
RANSAC RANdom SAmple Consensus
RF Reference Frame
RGB Red Green Blue

xviii

RGBD Red Green Blue Depth
RLS Recursive Least Squares
RMSE Root Mean Squares Error
SHOT Signature of Histograms of OrienTations
SIFT Scale Invariant Feature Transform
SOCP Second Order Cone Programming
SURF Speed Up Robust Features
SVD Singular Value Decomposition
TOF Time of Flight
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
UKF Unscented Kalman Filter
UPF Unscented Particle Filter
VGA Video Graphics Array
VR Virtual Reality
WICP Weighted Iterative Closest Point
WLS Weighted Least Squares

1

Introduction

1.1 Background & Objectives

Sophisticated mixed (i.e. Virtual and Augmented) reality platforms require a

complete and accurate real-time information about the geometry and the

photometry of the physical world [1]. Advanced laser scanners and tracking

systems can be a straightforward solution to acquire these cues [2]. Yet this is

not an optimal one, due to its cost, size and complicated usage. Such properties

remain a prohibitive challenge for many budget applications [3].

On the other hand, 2D imagery can be an affordable substitute for the previous

expensive advanced tools [4]. The latter has achieved a significant success

among industrial and research actors [5]. This success is underlined by the

abundance of cheap cameras, continually developing image processing and

computer vision algorithms as well as the simplicity of acquisition and exchange

between different devices.

Despite their attractive cost and ease of access, 2D images still suffer from an

inherent drawback in their informativeness due to the loss of depth information,

i.e. the geometry. This deficiency is undergone during the projection from the

2 1. Introduction

3D world onto the 2D camera plane. Many attempts have already been carried

out in order to recover the missing geometry, but only a few impractical

solutions have reached the required accuracy at a near real-time performance,

i.e. greater than 10 frames per second (FPS) [6].

Two other types of depth sensors, namely Time of Flight (TOF) and structured

light cameras, have recently become available to the public at an affordable cost

[8]. Both sensing technologies are capable of delivering the colour image (RGB)

and the depth map (D) at a satisfactory frame rate (30 FPS). In addition, the

release of the two versions of Microsoft Kinect has featured various successful

solutions for tackling the traditional problems of Mixed Reality. Several

applications have consequently benefited from such an optimal trade-off

between performance and cost to realise an interesting product [7].

Regardless of their economical capabilities of simultaneous visual and structural

features acquisition, RGBD sensors have several limitations owing to their low-

cost [8]. They are able to deliver fair quality depth readings for a relatively

narrow field of view. For instance, the view can be extended by involving

multiple sensors in order to cover the entire scene. Nevertheless, because of their

active nature, they emit and scan infrared (IR) light to infer the range of

objects, concurrent utilisation of multiple RGBD cameras results in interference

between the respective IR beams. The depth image is accordingly corrupted

with void pixels due to confusion during the estimation of their depth [9].

Furthermore, the effective range of these cameras stretches from 0.8m to 4.0m,

which is insufficient in many practical scenarios. More importantly, the depth

measurements can be altered by two types of noise [10]: The former is due to

the quantification process, i.e. the action of discretising the continuous real

world in order to accommodate its depth image in the available storage

capacity; The latter, on the other hand, is the fluctuations in measurements due

to perturbing lighting conditions, materials of imaged objects as well as the

wear incurred by the sensor over time.

1.3 Thesis Organisation & Contributions 3

Several challenges should, therefore, be overcome in order to improve the

accuracy and stability of RGBD data with adequate rapid filtering strategies.

The purpose is the delivery of a clean (eliminate outliers), accurate (reduce

inherent measurement noise effect) and smooth (eliminate discreteness) outputs.

After such a pre-processing procedure, the outputs should bear maximally useful

information.

The result of the previous procedure can be used in tracking and registration

algorithms. The objective of tracking is the delivery of accurate and robust (not

affected by fluctuations in measurements) position and orientation (6 Degrees of

Freedom) of objects at a high frame rate (FPS). On the other hand, the

registration must be able to support MR applications with accurate and robust

alignments between stored templates and acquired models in real-time.

1.2 Research Statement

In light of this background and challenges, the objective of this thesis is set to:

The enhancement of the capabilities of cheap depth sensors to develop robust

and accurate real-time tracking and registration solutions for Mixed Reality

applications.

1.3 Thesis Organisation & Contributions

To fulfil this research statement, the thesis was organised in seven chapters.

The first is the Introduction. It should be noted that this section does not

include any detailed discussion of the state of the art. A detailed analysis of the

related works underlying each contribution is included at the beginning of each

chapter.

The remaining elements of this thesis consist of a theoretical primer followed by

the four seminal chapters, where novel contributions are treated, and a

conclusion.

4 1. Introduction

Chapter 2: Background (contribution 5)

In this chapter, an overview of the different concepts and tools regarding image

acquisition and object tracking are addressed:

 Virtual and Augmented reality are presented and illustrated with sev-

eral established applications. In addition, their respective specifications

and parameters are exposed in order to assess the quality of emersion

in virtual space or augmentation of real data.

 The main strategies to image registration (sparse and dense) as well as

rigid-body tracking (marker or markerless) are debated.

 Mono, stereo and multiple camera models are investigated.

 A thorough analysis of the available 3D keypoint extractors and de-

scriptors is also presented.

 Finally, Graphics Processing Units (GPU) are investigated for the

purpose of leveraging their processing capabilities for sizeable 3D data

processing.

Chapter 3: GPU-based real-time RGBD data filtering (papers 1, 4,

6)

In this chapter, a novel filtering scheme is contributed to improve the precision

of Kinect as a real-time RGBD capture device.

 The complete architecture of the filtering system is presented along

with its principal components.

 The working principle of RGBD sensors is thoroughly analysed in

order to identify the source of inaccuracy regarding measurements. In

addition, the technical specifications characterising the sensors are

highlighted.

1.3 Thesis Organisation & Contributions 5

 The Mathematical formulation of depth camera properties that have

been discovered by the author are then detailed. The adaptation of a

Kalman filter to the model of measurements discretisation is then the-

oretically established. The Kalman filter will, therefore, serve as a real-

time de-noising/enhancement solution for the raw outputs of depth

cameras.

 The efficiency of the proposed scheme is tested in both tracking and

registration scenarios.

 The former application (tracking) consists in the localisation of a mov-

ing vehicle where the author’s findings are verified to be beneficial to

recognise these sensors as an accurate real-time tracking device. The

results of this scenario are tested on moving ground robot localisation

with a single camera. The accuracy of the proposed filter has demon-

strated its superiority over equivalent algorithms. The purpose of this

type of application is the evaluation of precision regarding the con-

tributed filter.

 The latter scenario consists of a demonstration of the performance of

the proposed scheme on a 3D registration pipeline. The potential of

such a strategy was noticeable after testing it against equivalent

methods. Here, the purpose of tests is the assessment of the visual

quality of the geometry built upon filtered 3D data.

 A GPU implementation of the proposed approach is also provided

with different levels of optimisation.

Chapter 4: RGBD Data Correction and Background Removal (papers

7, 8, 9)

In this chapter, two innovative pre-processing algorithms for the correction of

depth measurements and the segmentation of foreground regions are presented.

6 1. Introduction

 A novel method to calibrate accurately the ageing depth cameras is

proposed. This approach can be based on either simple interpolation or

on more sophisticated Gaussian Process Regression (GPR).

 Another innovative background/foreground segmentation algorithm is

proposed. The latter is based on Gaussian Mixture Models (GMM)

and colour/depth image-fusion strategy for a more robust segmenta-

tion.

 The experiments carried out on real data prove the weaknesses of the

standard calibration in correcting age-related decay of accuracy and

the corrective asset of the proposed solution. They also show the ro-

bustness of the suggested segmentation algorithm in coping with illu-

mination changes, shadows and reflections.

 The two algorithms were implemented in the GPU. In addition, sever-

al additional optimisation policies were taken into account to ensure

an entire profit from the frame rate delivered by the sensor (30 FPS).

Chapter 5: Real-Time Multiview Data Fusion for Object Tracking

with RGBD Sensors (paper 2)

In this chapter, a novel approach for accurate tracking of moving vehicles with

multiple RGBD cameras is presented. This chapter exploits the smoothed

results of a Kalman filtering scheme and the pre-processing achieved by both

previous algorithms. It is designed in the form of a pipeline of processing where

the input is raw RGBD data, and the output is accurate localisation of the

objects.

 The sensors are initially corrected for a possible deficiency in the accu-

racy of depth measurements.

1.3 Thesis Organisation & Contributions 7

 A second depth data correction/enhancement algorithm is run to cope

with the inherent noise contaminating the sensing. This phase is based

on the filter of Chapter 3.

 The markers employed to localise the object are extracted from the

acquired images by means of the background removal solution that

has been developed in the preceding chapter.

 A novel tracker based on the Robust filter is developed in order

to improve each sensor’s tracking ability. The motion model of the

moving vehicle used in Chapter 5 (see Figure 5.1) is assumed to be

unknown. Hence, the algorithm should be endowed to cope with mod-

elling and measurement uncertainties. In other words, it must be able

to ensure a high level of robustness in the output whatever perturbed

the input. The result of this procedure is the sensor-wise position es-

timates.

 Another innovative weighting strategy is used in a Covariance Inter-

section Fusion scheme in order to combine optimally sensor-wise re-

sults into a single estimate.

 The computation-costly fragments of the solution are implemented in

the GPU. As a consequence, the whole tracking system, from the ac-

quisition of raw data to the delivery of the result, is capable of operat-

ing at up to 25 FPS.

Chapter 6: A Recursive Robust Filtering Approach for 3D

Registration (paper 3)

In this chapter, a novel recursive robust filtering approach for sparse 3D

registration is proposed. Unlike the ordinary state of the art alignment

algorithms, the proposed algorithm has four advantages that, in the author’s

knowledge, have not yet cohabited in any previous solution in the literature.

This iterative registration approach has the ability to align large datasets

8 1. Introduction

iteratively using just a few key points contaminated with measurement noise. It

is also robust to the perturbations caused by the uncertain key point

localisation. In addition, it combines the advantages of both and norms

for a higher performance and a more likely prevention of local minima. The

result is an estimated rigid body transformation along with its error covariance.

 The detailed modelling behind Weighted Least Squares (WLS) is ini-

tially discussed along with its recursive counterpart (RLS). The link

between the Kalman filter model and the RLS is, therefore, settled.

 The 3D registration problem is then fitted into a Kalman filter frame-

work in order to express it in an iterative manner.

 The parametric uncertainty of the 3D points is quantified then used in

the formulation of a 3D registration problem with a Robust filter-

ing model.

 The mathematical rationale of the proposed approach is explained in

detail. Moreover, the results are validated on various challenging sce-

narios with both synthetic and real data.

Chapter 7: Conclusion & Future Works

In this section, the thesis is concluded. The degree of achievement regarding the

objectives raised in the Introduction is assessed, and potential future works are

covered.

1.4 Contributed Papers

Journals

1. A. Amamra, N. Aouf “GPU-based real-time RGBD data filtering,” Journal

of Real-Time Image Processing, Sep. 2014. (Published)

1.4 Contributed Papers 9

2. A. Amamra and N. Aouf, “Real-time multiview data fusion for object

tracking with RGBD sensors,” Robotica, pp. 1–25, Dec. 2014. (Published)

3. A. Amamra, N. Aouf, D. Stuart and M. Richardson “A Recursive Robust

Filtering Approach for 3D Registration,” Signal, Image and Video Pro-

cessing (SIVP). (Accepted)

Conferences

4. A. Amamra and N. Aouf, “Robust and Sparse RGBD Data Registration

of Scene Views,” in 2013 17th International Conference on Information

Visualisation, 2013, pp. 488–493. (Published)

5. A. Amamra and N. Aouf, “Indoor 3D Augmented Reality,” in 11th

Electro Optics and Infrared Conference, Shrivenham, Defence Academy

of the UK, Jun. 2013. (Presented)

6. A. Amamra and N. Aouf, “Real-Time Robust Tracking with Commodity

RGBD Camera,” in 2013 IEEE International Conference on Systems,

Man, and Cybernetics, 2013, pp. 2408–2413. (Published)

7. A. Amamra and N. Aouf, “RGBD sensors correction with Gaussian pro-

cess regression,” in Proceedings ELMAR-2014, 2014, pp. 1–4. (Pub-

lished)

8. A. Amamra, T. Mouats, and N. Aouf, “GPU based GMM segmentation

of kinect data,” in Proceedings ELMAR-2014, 2014, pp. 1–4. (Pub-

lished)

9. A. Amamra, T. Mouats, and N. Aouf, “Real-Time Back-

ground/Foreground Segmentation of RGBD Data”, in Proceedings IC-

STCC, 2014. (Accepted)

10 1. Introduction

1.5 Software Tools

The most notably used software tools to achieve the objectives of this research

work are:

 C/C++ it is an object oriented programming language characterised

by a high performance and a widespread usage in most computer vi-

sion and graphics applications. In this research, it has been used to

develop real-time algorithms destined to run on the CPU.

 CUDA stands for Compute Unified Device Architecture, is a hetero-

geneous programming language that executes in both CPU and GPU.

It was created by NVIDIA. In this thesis, CUDA is used to write the

online parallel algorithms that run in the GPU.

 Matlab contraction of Matrix Laboratory, is a multi-paradigm numer-

ical programming framework that facilitates mathematical and partic-

ularly linear algebra operations. In this thesis, Matlab was used as a

quick test tool for different algorithms as well as to plot the results.

 PCL (Point Cloud Library) is a 2D/3D image and point cloud pro-

cessing library. It encloses a broad range of functions for 3D point

cloud processing such as the computation of normals and curvature,

downsampling, outlier removal, filtering, feature extraction as well as

alignment to name a few. In this research, PCL is used for standard

3D point clouds operations.

 OpenCV is a real-time image processing and computer vision library.

It includes most of the standard algorithms such as image de-noising,

binarisation, feature extraction, description and matching, pose esti-

mation and calibration to name a few. It is used to capture and treat

2D images in real time.

1.5 Software Tools 11

 Google SketchUp is a 3D model design tool. It can be utilised to

build architectural, mechanical and video games’ 3D samples. In the

thesis, SketchUp is employed for the design of the 3D model regarding

the lab where the experiments have been conducted.

 OpenGL (Open Graphics Library) is a multi-platform 2D/3D

graphics rendering library. In this research, it is used to ensure hard-

ware-accelerated rendering and interaction with 3D models.

 Boost it is a collection of C++ libraries that supplies this research

with functions for thread and process creation, management as well as

synchronisation.

13

Background

One of the most challenging aspects of human-machine interaction systems

design is the integration of physical and digital worlds in the same environment.

This fusion involves the development of Mixed Reality Systems [11] (see Figure

2.1). In other words, the technology behind includes both the Augmented

Reality and the Virtual Reality concepts. The mixed reality paradigm allows the

digital world to be extended into the user’s physical world. It studies how the

human could interact with machines, and to what extent this interaction could

be successful [12]. In such a system, the user perceives both the physical and the

digital worlds around them. They can even be immersed in a digital scene using

the 3D immersion hardware (head mounted devices, tracking systems, haptic

devices, rear-projection screens, etc.).

This field of research is highly interdisciplinary as it engages many domains

such as computer vision, signal processing, computer graphics, user interfaces,

information visualisation and the design of displays and capture sensors.

In this chapter, an overview of the different tools required for the acquisition of

the 3D structure of the physical scene, and the motion (pose and position) of

the mobile entities are discussed.

14 2. Background

Figure 2.1 Virtuality Continuum; Courtesy of Milgram et al. [12]

2.1 Augmented Reality (AR)

The concept of Augmented Reality was invented for the purpose of combining

computer-generated models (synthetic data) with image data captured from a

real scene. The origin of the word does not make sense until one

focuses on the perceptual sensing observed by human beings towards their

surroundings [13]. The Reality itself cannot be improved, but the level of

perception can be. As a result, the term AR in this manuscript means the

enhanced perception of the real world.

Azuma et al. [14] contributed an interesting survey paper on the trend of the

state of the art of AR research. The recent widespread abundance of

smartphones and gaming sensors at an affordable price has opened a new

perspective for more sophisticated applications. The last mentioned of these

emerged in the computer vision research community and afterwards was

extended to the industrial level. As a result, many commercial applications are

now available in the market.

Figure 2.2 (a) is taken from a commercial technology AREngine 1 that

augments the real world with 3D virtual content after the recognition and pose

estimation of the target image. Figure 2.2 (b) depicts an augmented reality

1 http://www.metaio.com/solutions/vision-solutions-new/arengine/. 2015

2.2 Virtual Reality (VR) 15

exhibit that enhances the images of visitors in an Arctic tundra during the

Wildlife Film Festival 20122. Figure 2.2 (c) illustrates some visitors who

witnessed an AR show of the wildlife in the Rotterdam Central.

The two primary requirements for AR application to work realistically are:

 Real-time response to the images streamed by the camera (most applica-

tions designed for human require a frame rate of 30 FPS [15]); in addition

to the ability to find and render the corresponding virtual models.

 A correct registration of the augmenting virtual data on the real scene.

Otherwise, the misplacement of the extra information normally renders the

application entirely useless.

2.2 Virtual Reality (VR)

Unlike AR, the Virtual Reality concept aims at realistically immersing the user

in a computer-generated world (virtual world). Such an immersion can be

achieved through visual, auditory, and sometimes tactile sensors. The sensory

data serve as an extension of the human senses in order to perceive the virtual

world. It provides an intuitive, powerful and easy framework for

human/computer interaction. As a result, the user would be able to interact

with the simulated environment in the same way they act in the physical world,

without any requirement to learn how the complicated interface operates.

The ultimate purpose of the VR discipline is a complete isolation of the users

from their familiar surroundings. As a result, they experience the illusion of a

faithful interaction with the computer generated environment.

2 http://www.wildlife-film.com/films.html. 2015

16 2. Background

(a)

(b)

(c)

Figure 2.2 Some augmented reality applications. (a) AREngine. (b)
Wildlife film festival. (c) Rotterdam Central

2.3 Mixed Reality Applications (MR) 17

Four requirements are crucial for any VR system to work correctly [1]:

 Blocking out any contradictory sensory impressions from the real world.

 The graphical rendering system should be able to refresh the 3D view at a

minimum rate of 20 frames per second.

 An excellent tracking system that continually reports the position and ori-

entation of the user's head and limbs.

2.3 Mixed Reality Applications (MR)

In this section, some concrete examples of AR/VR applications are presented to

demonstrate the importance of such concepts in practice.

2.3.1 3D Rendering

The most straightforward application of AR is the visualisation of computer-

generated objects on real image data. W. Qi et al. [16] presented a vision-based

AR system for interaction with the rendered scene. Brenner et al. [17] proposed

another application named designed for augmenting the images of

cities, landscapes and buildings.

Figure 2.3 illustrates an example of a VR application of the flight simulator

regarding the Boeing 737. The space where the aircraft flies is rendered on a

spherical zonal screen. The simulated model contains two seats one for the pilot

and another for the co-pilot. The cockpit of the aircraft is similar to that of a

real airplane. The instrument panel conveys faithfully the results of physical

avionics.

The entire setup is mounted on a motion control platform that gyrates within a

three-storey space. The vehicle’s dynamics and simulated motions are highly

accurate. The platform also produces realistic engine as well as wind sounds.

18 2. Background

(a)

(b)

Figure 2.3 Boeing 737 Flight Simulator. (a) View from the inside.
(b) View from the outside

2.3.2 Medical

AR can very efficiently facilitate the work of doctors by augmenting ultrasound

images with additional information. Bajura et al. [18] proposed an application

where the practitioner views a volumetric image of a foetus overlaid on the

abdomen of a pregnant woman. The resulting image looks as if it were taken

from the inside of the abdomen.

The availability of digitised 3D human models has opened a new perspective on

the study and the practice of medical science. Recent innovations have brought

2.3 Mixed Reality Applications (MR) 19

into existence a realistic simulation of the whole physiology with regards to the

human body [18].

Surgery is the most targeted medical application where the surgeon is immersed

in a virtual operating theatre using a Head Mounted Device (HMD) and Data

Gloves. The latter can operate a patient through this virtual scene. Such a

facility is now possible and even tele-operational, where the surgeon is distant

from the patient [18]. On the other hand, the best way for students to learn how

to operate has become risk-free by practising on a 3D virtual patient instead of

a real one. As a result, medical errors, frequently made by beginners, have been

significantly reduced [18].

2.3.3 Military

Livingston et al. [19] demonstrated how beneficial AR is for military operations

in urban terrains. Arcane3 developed a technique to display an animated terrain

that can be used in military intervention planning.

VR solutions for training recruits are increasingly involved in modern armies.

The simulator renders a 3D environment where soldiers operate as if they were

in a real battlefield. To this end, they wear HMDs, and their respective moves

are captured by a high accuracy tracking system.

The solutions that exist in the market can even allow a group of soldiers to

work cooperatively with mock weapons based on real prototypes.

2.3.4 Robotics

Suzuki et al. [20] claimed that robotic image-guided surgery is one of the most

prominent domains where the asset of AR can be clearly seen. Another tele-

operated manipulation based on the augmentation of the images of the subject

scene was presented by Tachi et al. [21].

3 http://www.arcane-technologies.com/en/home.html?section=products. 2015

20 2. Background

2.3.5 Civil Engineering

An AR architecture was proposed by Webster et al. [22] to improve the

methods of construction, as well as the renovation of architectural structures.

The contribution of AR technology is constituted in the exploration of the

relationship between the perceived architectural structure and the designed

plan.

2.3.6 Manufacturing

Reinhart et al.[23] proposed an approach to integrate AR technology in a

product assembly line. Animated graphical assembly instructions and sequences

are displayed upon request of the workers. The virtual enhancements are

overlaid on the products to facilitate the work expected from the operator.

Altair’s HyperWorks4 is a good example that illustrates how useful the VR

concept is to simulate a Virtual Wind Tunnel. This solution aims at providing a

better simulation technology and user experience. It can also faithfully predict

an automobile’s aerodynamics at a high frame rate for a better-performing, and

more fuel-efficient vehicle.

2.3.7 Tourism

The interactive augmentation of images of historical and cultural sites with AR

technologies allows greater ease and better information for the visitors. Such an

improvement in the experience of tourists has already gained a significant niche

in the market of smartphones as has been claimed by Fritz et al. in [24].

2.4 Performance Parameter of the MR
Systems

The most important parameters to assess an MR application are listed below

[25]:

4 http://www.altairhyperworks.com. 2015

2.5 Virtual Model Design 21

 Update rate: It defines the frequency of sampling and rendering measured

either in Hertz (Hz) or Frames per Second (FPS). A higher frame rate is

always better for smoothness and precision.

 Latency: It is the amount of time elapsed between the end of the request

and the beginning of result transmission. A smaller latency yields a higher

comfort of operation.

 Accuracy: It is the measure of the distance separating the reported result

from the ground truth. It is measured in the same units as the observed

variables. All the applications seek a higher accuracy.

 Resolution: The tiniest perceivable change between two different samples,

measured in the same units as the variables. A higher resolution leads to a

smoother and more precise tracking, but also larger amounts of data.

 Working volume: It is the volume defined by the field of view regarding

the tracker. The tracked entities cannot be detected outside of this space.

2.5 Virtual Model Design

In this section, an example of a virtual 3D model regarding the HL5

Autonomous Robotics Lab is illustrated. All the experiments in this thesis have

been carried out in this indoor environment. The purpose of 3D design is the

representation of the real arena with a faithful virtual scene.

An additional motion capture framework is required in order to compute the

position and the aspect of the objects for a real-time interaction and a realistic

perception. The more accurate the 3D representation and object tracking

become, the less erroneous the interaction with reality will be [1].

As has been already shown in Chapter 1, the objective of this study is the

improvement of the quality of real-time 6 DOF rigid-body tracking and 3D

22 2. Background

registration in indoor environments. The indoor space is assumed to contain

multiple ground and aerial vehicles, as well as some obstacles.

Figure 2.4 and Figure 2.5 depict some samples taken for the 3D model of the

lab. The virtual representation is based on real measurements of the different

components. The design was conceived and built with Google SketchUp5.

The 3D lab is regarded as a static virtual environment (it does not change its

geometric properties over time). This model can be populated with other 3D

models of moving robots.

The process of 3D CAD modelling is done for every prospective item that may

exist in the arena (robots or obstacles). These models are designed and stored in

a database along with their necessary information such as the scale and the

initial pose.

Figure 2.4 A perspective view of the 3D model for the lab

5 http://www.sketchup.com/products/sketchup-pro. 2015

2.5 Virtual Model Design 23

(a)

(b)

(c)

Figure 2.5 Real images on the left and their 3D correspondent on
the right. (a) View 1. (b) View 2. (c) View 3

24 2. Background

All the measurements of the items that co-exist in the same virtual

environment, either static or dynamic, should be proportional to their real

counterparts. Otherwise, a contradiction could occur and, therefore, lead to a

mismatching between the virtual and the real views.

Only an indoor environment has been considered because of the limitations of

the utilised sensors. However, the same methodologies and principles remain

valid for outdoor scenarios. A good example of such an indoor/outdoor instance

can be seen in the space exploration robot [26]. Nevertheless, some

considerations should be taken into account to deal with the nature of the

terrain and the opposing forces.

2.6 Image Registration Importance for MR
Applications

Sight (of the five human senses) contributes 70% to the overall human sensing

data [27]. For this reason, image data has a significant importance in MR

applications. An entire scientific field has been dedicated to the research on how

it would be possible to mimic the biological vision systems [28]. This field is

Computer Vision, where researchers try to make computers understand their

surrounding 3D real world through image data.

For mixed reality applications to work properly, the objects in the real and the

virtual worlds must be properly aligned with respect to each other.

Alternatively, the illusion that the two worlds coexist will be compromised (see

Figure 2.6). For example, recall the medical application where the surgeon

operates on the patient, Section 2.3.2. If the virtual tool (surgical needle) is not

placed where the target area is located, the surgeon will miss the objective, and

the entire operation would consequently fail. Such an erratic action may result

in severe damage to the organ and the tissue. Therefore, without an accurate

registration, MR concept would not be acceptable for any serious application.

2.6 Image Registration Importance for MR Applications 25

On the other hand, Virtual Environments suffer less from erroneous alignment.

This is due to the fact that the user sees only the virtual objects in a virtual

environment. When the user is wearing a closed view HMD and hold up their

real hand. The virtual hand should be rendered exactly where they expect it to

be. If the virtual hand is wrongly placed by a few millimetres, the user may not

notice unless actively looking for such an error. However, registration errors

may cause seamlessness and conflicts between the different senses. As a

consequence, the user can experience motion sickness, and the immersion

becomes insupportable [29].

Another phenomenon known as Visual Capture [30] makes it even harder to

detect such a registration error. The event occurs when the brain tends to

believe what it sees rather than what it touches or hears. That is, the visual

information overrides the remaining senses. However, if the errors are

systematic, the users can even adapt to the new environment after a long

exposure [30].

Figure 2.6 An example of an erratic mapping of texture on the 3D
mesh of the terrain. Courtesy of Google Earth6

6 http://www.google.co.uk/intl/en_uk/earth/. 2015

26 2. Background

2.7 3D Registration Strategies

Feature correspondence is considered as the seminal basis for the 3D registration

problem [31]. The latter can be either sparse, i.e. by just considering some key

points or dense when all the points are involved.

2.7.1 Sparse Registration

The sparse or feature-based approaches (Figure 2.7) can be applied to the

estimation of the rigid body motion of point clouds according to the following

sequence:

 Extracting interest points using a 3D feature extractor. The result of this

step (feature extraction) is a list of source/target key points , , re-

spectively. These points have some special characteristics that enable them

to be more informative than standard points.

 Computing the respective feature descriptors within their neighbourhood,

these descriptors can have different strategies and sizes. For feature match-

ing to work correctly, the descriptor should be similar to its counterparts

captured at various viewpoints, lighting conditions or other sensors. On

the other hand, the information embedded in a given descriptor should be

sufficiently dissimilar to alternative descriptors’.

 Matching the descriptors in order to find a list of pairs of

es , . The matching algorithm evaluates the distance between two

descriptors. The latter can be matched in an easy and straightforward

brute force manner (all against all; obviously time costly). Alternatively,

KDtrees [32] can be used to restrict the search to just the neighbouring

proximity. The best match corresponds to the minimal distance between

two descriptors.

2.7 3D Registration Strategies 27

 The resulting pairs are used to minimise a cost function defined by an er-

ror metric that separates the source and the target sets of points. This er-

ror is written in the norm form [33].

Figure 2.7 Sparse Registration

2.7.1.1 Advantages of Sparse Registration

The most plausible advantage of sparse registration is the relatively low

computational burden compared to the dense one. Moreover, if features’

positions are precisely determined, i.e. no outliers among the key points and no

mismatches in the list of correspondences, the sparse registration outputs its

best possible result.

Another advantage is the high likelihood of preventing local minima. Dense

methods, on the other hand, suffer severely from such a problem.

2.7.1.2 Drawbacks

As was shown above, sparse registration can be solved optimally if the key

points are outlier-free, and the correspondences between the source/target

features are correctly determined. However, in practice, it is not possible to

totally eliminate noise from the measured points. Hence, other measures to cope

with the undesirable circumstances should be taken into account.

28 2. Background

Another challenge for the sparse methods is the deficiency in good quality

features in the poorly-textured 3D areas. The sparse registration can also be

challenged with near-degenerate configurations due to the geometry of the

points (collinear).

2.7.2 Dense Registration

Unlike the sparse, dense registration takes into account all the available data to

compute the rigid body transformation. If the correspondences between points

are known, a closed form solution is preferable. However, the determination of

the correspondences itself is the real issue in the registration process.

2.7.2.1 Closed Form Solution

The closed-form approach has the advantage of being achieved in a single

iteration. Unlike iterative methods, this approach does not require a good initial

guess. It therefore spends just one iteration as shown in the diagram of Figure

2.8, to find an excellent result. The single iteration description can be confusing,

however. It concerns just the computation of the eigenvectors of a 4 × 4 matrix.

Nevertheless, prior to that task, the matrix must be built with the combination

of the sums of products regarding the coordinates of the points. The complexity

of this operation is linear to the number of points (). In addition, a quartic

equation needs to be solved to find the eigenvalues.

Horn presented a solution to this problem. The rotation matrix was initially

represented by a unit quaternion vector [34], then an orthonormal matrix [35].

2.7.2.2 Iterative Solutions

When the correspondences between points are unknown, the iterative

registration is the best qualified to align the views progressively. To this end,

the method iterates over the following steps shown in Figure 2.8:

 At every iteration , the process of alignment starts with the estimation

of a set of correspondences that are not necessarily correct. For every

source point, the algorithm determines the closest neighbour in the target

2.7 3D Registration Strategies 29

cloud. The result of such a strategy is initially coarse, but it becomes

gradually finer.

 Based on the estimated correspondences, an optimisation algorithm mini-

mises the cost function, which is the distance between the sets of

points. The result of this minimisation is the k-th rigid body transfor-

mation , .

 Using the estimated transformation, the source cloud is mapped

to + = + .

 The convergence of the algorithm is based on checking whether the error

(distance between the sets of points after registration) is below a certain

threshold. Otherwise, the number of iterations should not exceed a

predefined maximum value. Both parameters are fixed by the user. If one

of the conditions is breached, the algorithm terminates immediately. The

result would, therefore, be the last registered source. Alternatively, it reit-

erates from the beginning with the transformed source instead of the initial

one.

2.7.2.3 Advantages

The iterative dense registration does not require any feature extraction,

descriptor computation or matching. As a result, it is simpler and easier to

implement. In addition, the closed form solution gives the lowest error when the

correct correspondences between source and target data are available.

30 2. Background

Figure 2.8 Dense registration

2.7.2.4 Drawbacks

The rough criterion in the association of the points into the same pair of

correspondences increases the probability of the algorithm being trapped in a

local minimum. Another shortcoming of dense methods is slow processing. The

long time required to deliver the result of a relatively small point cloud (1000

points) renders the iterative choice unsuitable for real-time applications.

Nevertheless, recent advancements have leveraged the computational power of

the GPU to reduce the time elapsed in the search for correspondences [36].

2.7.3 A Compromise between Quality & Time

In practical real-time registration scenarios, such as those required for MR

applications, it is always recommended to leverage both methods (sparse and

dense) for a more optimised result and processing time. The sparse registration

is good at preventing local minima and is time-efficient. However, it is worth

considering an additional refinement step with the dense approaches to further

tighten the quality of alignment. An iterative registration solution has the

ability to achieve this extra smoothing.

The outcome of the sparse registration stage would serve as a good initial guess

for the dense solution. As a result, the dense alignment would converge within a

2.8 Rigid-Body Tracking 31

few iterations to an even better result. This strategy helps in the reduction of

cumulative alignment errors.

2.8 Rigid-Body Tracking

Accuracy of detection of the position and orientation of the real entity that

interacts with the virtual data is crucial for a decent MR application. The

objective expected from the tracker is the estimation of the 6 DOF regarding

the objects. After that, it will be able to position them in the simulated world.

The available tracking systems can either provide the absolute (related to a

single common reference frame) or a relative pose (linking one view to another).

Here the pose consists of the position, responsible for describing the translations

undergone by an object, and the rotations around the three axes.

2.8.1 Real-Time 6 DOF Tracking Methods

Despite the various means available for the determination of the pose of objects,

vision-based tracking is still the most solicited and addressed in the community

[37]. The dominance of this kind of implementation is due to the ubiquitous

availability of cheap cameras. The term vision refers to the reliance on image

data and computer vision algorithms to obtain the 6 DOF attribute. The

coordinates , , serve for the localisation, the aspect (orientation) is defined

by the angles , , , Figure 2.9.

Two main strategies can be followed to infer the relative position and

orientation of a given object in the scene: The former is called Marker-Based, as

its name indicates, it is based on several markers of known properties. Indeed,

these markers can be easily distinguished from their surrounding [38]; the latter,

on the other hand, is called Markerless. It does not assume the existence of any

known markers.

32 2. Background

Figure 2.9 6 DOF of a rigid body

It rather detects the objects of interest based on their shape and appearance

(texture) [39].

2.8.2 Marker-based Tracking

belong to the scene. These markers are attached to the body surface. They also

remaining neighbourhood. The system, therefore, triangulates the 3D position of

a marker between two or more calibrated views to provide the overlapping

projections. The result is the position. Nevertheless, at least three

markers are required to further estimate the angles that constitute the

orientation.

The markers can either be passive or active. The passive markers are coated

with a retro-reflective paint to allow the IR cameras to detect them quickly.

These cameras are endowed with a ring of IR-LEDs in order to illuminate the

2.8 Rigid-Body Tracking 33

markers, Figure 2.11 (b). On the other hand, the active markers generate their

light to allow the ordinary colour cameras to see them clearly.

Figure 2.10 depicts the flow of data starting from the acquisition, to the actual

pose estimation. The input image can either be visible or IR. In order to

extract the markers from the image, several thresholding approaches can be

used. The latter segment the areas where the markers reside from the remaining

background. In professional tracking solutions, the thresholding operation can

be accelerated with filters running in the camera itself. The result is a binary

image that contains the white spots representing the markers. Every

marker in is then represented with a Gaussian distribution whose mean

is its centroid.

Figure 2.10 Marker-based tracking pipeline

The 3D position of the markers is computed from the triangulation over

multiple cameras. To this end, each marker must be uniquely identifiable in

order for its inter-camera matching to be achieved correctly.

2.8.2.1 Case Study: OptiTrack Tracking System

OptiTrack (Figure 2.11) is a motion capture system manufactured by

NaturalPoint7. This motion capture system provides a high precision tracking

for commercial, industrial, gaming as well as research applications. It has the

ability to track rigid bodies, full body motion and face expressions.

7 https://www.naturalpoint.com/. 2015

34 2. Background

OptiTrack system contains several IR cameras placed at different viewpoints.

The cameras allow the simultaneous recording of the movements of the markers

attached to subjects. The system computes the three-dimensional position of

every marker. The configuration for the Autonomous Robotics Lab encompasses

six Prime 17W cameras. Each has a resolution of 1.7 MP (1664 × 1088 pixels),

with a broad field of view 70°.

In order to track an object in the 3D space, the user must define a set of at

least three markers for each rigid body. It is conventional for the markers to be

spherical. Such a choice is motivated by the fact that the sphere conserves the

same appearance after being rotated, translated or even scaled. This property

makes its centre of mass stable and reliable.

When the number of markers used to define a rigid body exceeds three, the

accuracy will increase. Nevertheless, the use of too many markers may cause

redundancy. Their topology should be spacious enough. An inter-markers’

distance of less than 6mm is very likely to result in an inaccurate estimation.

The same problem happens when the extrinsic calibration of the cameras is

poor. The quality of calibration directly affects the correctness of triangulation.

In other words, the rays from the centre of each camera to the centroid of the

marker do not meet at a single point.

An asymmetrical arrangement of the markers is also better to avoid the

confusion that may arise because of the symmetry of shape. Moreover, it is

worth considering different patterns for different rigid bodies to prevent the

swapping and misidentification between them.

The arena where all the experiments of this thesis have been carried out has a

volume of 8 × 13 × 3 . The tracking system in the lab works at up to 360

FPS, which means a very low latency (2.8ms) and a smoother tracking.

2.8 Rigid-Body Tracking 35

(a)

(b)

Figure 2.11 OptiTrack tracking system in the Autonomous Robotic
Lab. (a) Cameras setup. (b) Prime 17W camera.

The software that runs the tracking is called Motive. The system must be

calibrated with the OptiWand and the Calibration Square before the first use.

The Calibration Square is necessary to align the virtual axes of Motive with the

physical volume. If any of the cameras is moved, the system must be

recalibrated. A real-time access to the rigid body pose is available for third-

party application through a C++ API.

36 2. Background

2.8.3 Markerless Tracking

Unlike the previous strategy, this family of vision-based tracking algorithms

does not necessitate any artificial markers. However, these methods rely on

image features to detect the objects in the real world. At detection, the

captured features are matched against the ones belonging to a known template.

The latter can be either standard images taken for the object of interest or

artificial CAD models.

The markerless tracking works as follows (see Figure 2.12):

At the acquisition of a new frame I, the tracking process begins with the

extraction of the key points from the image. The latter can either be 2D or 3D.

The result of this step is a list of key points . The descriptors that identify

the features are then computed . The descriptors with regards to the

template () are assumed to have been calculated beforehand and stored in

Templates’ Database. Subsequently, the captured and the stored descriptors are

matched to test whether a given template appears in the current frame. For

instance, the feature extractor can be different among current image and the

precomputed template. However, the respective descriptors (,) should

have the same size (e.g. 64, 128, 256, 512 or 1024). This constraint is important

to consider because the matching process is mathematically reduced to the

evaluation of the distance between descriptors in the same dimension. The

output of this stage is a list of correspondences , .

Based on corresponding features, an optimisation algorithm is launched to align

the sets of the captured 3D points () on the templates’ (). Alternatively,

in the 2D case, the features identifying an object are assumed to be resting in a

same plane. As a result, a homography between the template and image is

computed. This limitation is due to the missing information about the depth of

feature points. If the last mentioned are captured with a depth sensor, their

mutual three-dimensional coordinates must be obtainable. For this reason, the

assumption of the common plane is not necessary for 3D key points. The latter

2.8 Rigid-Body Tracking 37

Figure 2.12 Markerless tracking

can be handled by the 3D registration algorithms as has been shown in Section

2.7. The result is a 6 DOF pose that identifies the current position and

orientation of the target relative to the template.

As an alternative to the stored template, a frame-to-frame feature tracking is

also possible. More sophisticated algorithms are required, however, to correct

the drift due the cumulative incremental errors [40].

To sum up, it is possible to track real objects without a requirement for

artificial markers. Such an alternative is ideal since it eliminates the hassle of

placing and calibrating the markers in the scene. Nevertheless, the

computational burden required to match an object in the captured data against

all the templates may significantly challenge the real-time responsiveness. In

addition, the current body of knowledge is not yet satisfactory to enable a

performance equivalent to that of the marker-based tracking. More importantly,

the preventing factor from using the markerless methods is their dependence on

the captured image for feature extraction. The image data is naturally noisy,

fluctuating and sometimes deficient in feature points. Such shortcomings render

38 2. Background

the markerless methods currently inappropriate for accurate real-time

applications.

2.9 Camera Model and Imaging Geometry

Theoretically, a camera model is a projective mapping from a three-dimensional

to another -dimensional space, , }:

: , {2, 3} ; (, ,) (,… ,) (2.1)

For typical RGB cameras, the source space is the 3D real world, and the

destination is the 2D camera plane. Such a mapping can utilise perspective, i.e.

further objects are smaller than the closer ones. Such a property is due to the

rays of light passing through the camera centre before reaching the imager. This

projection can be seen in the human vision system as well as in most

commercial cameras. Alternatively, the projective mapping can be orthogonal.

The orthogonality originates from the incident rays of light being orthogonal to

the image plane; i.e. they are not forced into the centre of the camera. In this

thesis, a perspective (pinhole) camera model is adapted.

2.9.1 Pinhole Camera Model
The pinhole camera is the simplest camera that can mimic real ones. It is mere-

ly a cubical box with an extremely tiny hole in one of its faces. Its mathematical

model fits most of the cameras in the market, with some considerations that

should be taken into account.

The working principle of this camera is as follows:

Let us imagine ourselves in a large dark square room whose frontal wall contains

a tiny hole in the middle. When a beam of light is shone from the scene towards

the holed wall, a small upside down image of the scene appears on the opposite

wall, Figure 2.13 (a).

Figure 2.13 (b) depicts a camera model whose centre of projection is and the

principal axis . The image plane is at focus, i.e. = . Conventionally, this is

2.9 Camera Model and Imaging Geometry 39

done to avoid the negative sign in the subsequent computations. A 3D point

(, ,) is projected on the image plane (imager) at (,). In the

beginning, the camera calibration matrix must be defined. The latter is used

to determine the mapping relating the 3D point to its correspondent on the

imager .

From the illustration shown in Figure 2.14, with the similarity of the two

triangles, blue and green Figure 2.14 (b), one can deduce:

The representation of the point in the homogeneous space associated to

is:

1
=

0 0 0
0 0 0
0 0 1 0

1

(2.4)

= (2.2)

= (2.3)

40 2. Background

(a)

(b)

Figure 2.13 Pinhole camera model. (a) Model. (b) Geometry

2.9 Camera Model and Imaging Geometry 41

(a)

(b)

Figure 2.14 Pinhole Perspective Projection Geometry

If the centre of the imager is different from the intersection of z-axis with the

plane , then must be translated with the vector). The

translated point therefore becomes:

= + (2.5)

= + (2.6)

42 2. Background

The matrix representation of the Equations (2.5), (2.6) is:

1
=

0
0
0 0 1

/
/
1

(2.7)

In practice, the measurements obtained from the image are expressed in pixels.

For this reason, it is necessary to map the coordinates of p from to the

discrete pixel array. This mapping is a scaling along the axes , :

=
0

0 (2.8)

Scaling factors and are defined from the shape of the pixel in the

captured image.

The focal length (expressed in metres) also needs to be scaled to pixel unit:

=
0

0 (2.9)

The Intrinsic camera calibration matrix becomes:

=
0

0
0 0 1 (2.10)

is an upper triangular 3×3 matrix. It holds the intrinsic parameters of the

camera that consist in , , , .

If the camera does not have its centre of projection O at the origin of the world

frame, or if its axes are not aligned, the rigid body transformation that aligns its

frame on the world’s frame must also be defined. The latter holds two

transformations, i.e. camera translation to the origin of the world frame

(, ,) and the rotation that aligns the principal axes, 3×3 matrix .

2.9 Camera Model and Imaging Geometry 43

This rigid body transformation, applies a translation followed by a rotation. It is

given by the 3×4 matrix called the Extrinsic Parameters Matrix:

= [|] (2.11)

The complete camera transformation can now be represented by:

[|] = [|]

= [|]
(2.12)

Then , the 2D projection of , is given by:

= [I|T]

=
(2.13)

is a 3×4 matrix called the Complete Calibration Matrix. The point is

defined in the homogeneous space associated with . Its 2D projection in the

camera plane is also represented in the homogeneous space associated with .

To sum up, before using the camera, it is necessary to calibrate it, i.e. finding

the matrix or just when camera frame is regarded as reference. For some

cameras, it is also worth considering lens distortion. However, this parameter

could be neglected for small fields of view.

To eliminate distortion from the captured images, Brown’s [31] model can be

adapted. The radial distortion is due to the shape of the lens. It creates the fish-

eye effect in the image. The tangential distortion, on the other hand, is caused

by the wrong parallelism between the imager and the lens.

The elimination of the distortion is based on the coefficients , , , for the

radial and , for the tangential distortion as follows:

44 2. Background

= (1 + + +)
= (1 + + +)

(2.14)

is the original radius. , are the result after the elimination of the radial

distortion.

The undistorted coordinates , are then computed as follows:

= + 2 + + 2
= + + 2 + 2

(2.15)

2.10 Stereo Imaging

The purpose of using two images instead of one is to recover the 3D structure

lost during projection. The two cameras must be at different viewpoints,

however. For instance, stereo images can be obtained either with two cameras

or by a single, moving camera. Stereo imagery is regarded as a basis for the

multiple view imaging. In other words, the problem of multiple cameras

reconstruction can be reduced to the estimation of the poses between pairs of

views [40], the resulting pose is then corrected with a global alignment

approach.

Figure 2.15 depicts the different notions related to stereo vision geometry with

, being the centres of the left and the right cameras, respectively. In

addition, , are the 2D points where the object is projected on the image

planes. Here are some notions related to the stereo imagery:

 Baseline: the distance that separates the centres of the two cameras.

 Epipolar plane: the plane defined by camera centres and the 3D

point .

2.10 Stereo Imaging 45

Figure 2.15 Stereo camera model

 Epipolar line: the intersection of the epipolar plane with the image plane.

The imagers are assumed to rest in this plane.

 Conjugate pair: it is any point in the world that is visible to both cameras.

Its representation of the stereo setup is a pair of pixels sharing the same

epipolar plane.

 Disparity: the distance in pixel unit between two corresponding pixels. It is

computed after overlaying the images.

 Disparity map: the 2D array of the same resolution as the images. Its

entries are the disparity readings of all the points observable by both cam-

eras (conjugate pairs).

46 2. Background

2.10.1 Depth Recovery

The recovery of the distance between the epipolar plane and the scene (depth or

range) is based on the triangulation principle [41]. The 3D location of any

visible point in space is restricted to the straight line that passes through the

centre of the camera and its projection on the image plane. The depth of the

object is recovered from the intersection of the two lines , passing

through the centres of projection and the 2D points in each image, Figure 2.16.

The intrinsic camera calibration matrices are assumed to be known.

, , , and , , , for the left and the right camera,

respectively.

Assuming that the right camera is the reference, the mapping from the

coordinate system centred at to can be achieved after the determination

of the translation and the rotation , Figure 2.16 (a).

Consider recovering the position of from its projections and , see Figure

2.16 (b):

= + (2.16)

= + (2.17)

The two cameras are related by the extrinsic parameters:

= (+) (2.18)

It results from applying the rotation to the frame of the left image:

= = (2.19)

2.10 Stereo Imaging 47

= + (2.20)

By replacing in Equations (2.16), (2.17):

= + (2.21)

= (2.22)

= (2.23)

Equation (2.23) outputs the actual depth of the point .

48 2. Background

(a)

(b)

Figure 2.16 Stereo vision geometry. (a) Left-to-right alignment. (b)
Detailed geometry

2.11 Multiview Imaging 49

2.11 Multiview Imaging

Since it is not always possible to cover the whole scene with a single camera,

accurate tracking requires additional sensors in order to provide a full view of

the scene. In addition, occlusions are another issue that can be encountered due

to one object obstructing another. Nevertheless, coordinate systems differ from

one camera to another. It is therefore necessary to determine the relationships

between viewpoints in order to exploit multiview imaging, Figure 2.17 (b).

Image-based 3D modelling does not assume knowledge of the geometry of the

scene. The quality of reconstruction increases with the number of the available

views [42]. Hence, a large number of views is necessary to accomplish a high-

performance of rendering. Similarly, a vast amount of image data needs to be

processed. On the other hand, if the number of views is small, the reconstructed

scene will accordingly have a reduced quality.

Capturing multiple views from the scene can be achieved in two ways, either by

the use of multiple cameras or a single, moving camera. The geometry of the

cameras can be determined through an extrinsic calibration procedure. The

latter is essential to register their respective frames to the common world frame.

A set of planar patterns that hold known features is the most broadly used tool

to calibrate the cameras. Alternatively, when the scene contains a sufficient

number of key points observable by at least two cameras, the pose can be

obtained without a calibration pattern. The procedure of 3D reconstruction

from multiple images is called Structure from Motion [26].

50 2. Background

(a)

(b)

Figure 2.17 Multiview imaging. (a) Multiview illustration, courtesy
of Computer Vision Group8. (b) Local frames associated with
each view

8 http://vision.in.tum.de/. 2015

2.12 Case Study: RGBD Cameras 51

2.12 Case Study: RGBD Cameras

Kinect is an RGBD camera that was initially designed for the users of the

Xbox9 gaming console in order to enable them to interact with the game

without a controller. The sensor captures the gesture and the speech of the

players in real time.

This sensor consists of an (i) IR projector, (ii) an IR camera and (iii) an

ordinary RGB camera. The projector projects a set of patterns onto the camera

scene. The IR camera captures the projected patterns and sends them to a

triangulation module. This module performs the triangulation10 for the IR stereo

setup to infer the depth map, Section 2.10. On the other hand, the colour

camera is used to sense the texture of objects. The Kinect sensor is, therefore,

an RGBD camera that is capable of simultaneously capturing the depth map

and the colour image at a frame rate of 30 FPS.

The manufacturer has already released two generations of this sensor.

2.12.1 Kinect V1

2.12.1.1 Kinect V1 Specifications

This version of the sensor (Figure 2.18 (a)) is able to stream the depth and the

colour images with a VGA resolution (640 × 480 pixels) at a frame rate of 30

FPS. The depth is encoded with 11 bits. The sensor, therefore, provides 2,048

different depth levels. The conventional minimum depth is 0.8m, and the

maximum is 4.5m. The Kinect is also able to stream either the depth map or IR

image with colour exclusively. Nevertheless, its hardware configuration does not

allow the simultaneous streaming of the IR image and depth map.

The sensor can also deliver higher resolution images 1280 × 1024 at a lower

frame rate (12 FPS). Both cameras (IR, RGB) have a field of view 57°

9 http://www.xbox.com/. 2015
10 http://wiki.ros.org/kinect_calibration/technical. 2015

52 2. Background

(a)

(b)

Figure 2.18 Kinect sensor in operation. (a) Kinect V1. (b) Kinect
V2

horizontally and 43° vertically. Figure 2.19 depicts an image sample of the

RGB, subfigure (a), and the IR, subfigure (b). The bright dots caused by the

projected IR light can be clearly seen.

Figure 2.20 illustrates the depth map of the imaged scene. Subfigure (a)

represents an intensity image for the depth map. The further away the object

gets from the sensor, the darker its representation. On the other hand, Figure

2.20 (b) illustrates the 3D structure of the depth map after a surface

reconstruction procedure. The resulting surface is bumpy and less representative

of the real scene due to noise and the missing depth readings.

2.12 Case Study: RGBD Cameras 53

(a)

(b)

Figure 2.19 Raw outputs of Kinect V1 camera. (a) RGB. (b) IR

54 2. Background

(a)

(b)

Figure 2.20 Kinect V1 depth output. (a) Intensity representation of
the depth map (lighter colour for closer objects; black:
undefined value). (b) Reconstructed surface

2.12 Case Study: RGBD Cameras 55

2.12.1.2 Kinect V1 Working Principle

Kinect V1 uses a structured light principle to compute depth [43]. The

acquisition of the range is done by projecting known optical patterns onto the

scene (they play the same role as features do). The deformation undergone by

patterns when they strike the surface of the object is captured by the IR camera

[44]. The shift between the obtained pattern and the reference stencil yields the

actual value of disparity [45].

The resulting depth map does not perfectly represent the continuous detail of

the scene due to limited resources [45]. It projects the captured depth map onto

a set of discrete parallel planes, Figure 2.21. Consequently, some data, which

should be positioned between the planes (according to their real-world

coordinates), is either lost or shifted to the closest available level. The accuracy

of the sensor is largely affected by this quantisation operation.

This version of the sensor (Kinect V1) was used in the experimental section of

Chapters 3, 4, 5. Hence, when we use the term Kinect in these chapters we refer

to Kinect V1.

Figure 2.21 Kinect V1 points cloud structure

56 2. Background

2.12.2 Kinect V2

2.12.2.1 Kinect V2 Specifications

The recent version of the sensor (Figure 2.18 (b)) can stream the depth map

and the colour image of an HD resolution (1920 × 1080 pixels) at a frame rate

of 30 FPS. The minimum conventional depth is 0.8m, and the maximum is

4.5m. Kinect V2 uses USB 3.0 instead of USB 2.0; i.e. it has a ten times wider

bandwidth than the older camera. This improvement enables the Kinect V2 to

stream a data load of up to 2 Gigabyte/second.

Figure 2.22 depicts a sample of the RGB (Figure 2.22 (a)) and IR (Figure 2.22

(b)) images. It is noticeable that the last mentioned does not contain any bright

dots.

Figure 2.23 illustrates a depth map. Its intensity image is depicted in subfigure

(a). On the other hand, subfigure (b) illustrates the 3D structure of the depth

map after surface reconstruction. The resulting surface is smooth and accurate.

Unlike Kinect V1, the fine details on the edges of the table and the handle of

the drawer are clearer. However, the checkerboard is wrongly reconstructed.

The original board is flat, but the reconstructed one contains some cubical

structures that are a corrupted representation of the flat squares. This

phenomenon is due to the specular reflective nature of the metallic board.

2.12 Case Study: RGBD Cameras 57

(a)

(b)

Figure 2.22 Raw outputs of Kinect V2 cameras. (a) RGB. (b) IR

58 2. Background

(a)

(b)

Figure 2.23 Kinect V2 depth result. (a) Intensity representation of
the depth map (lighter colour for further objects; black:
undefined value). (b) Reconstructed surface

2.12 Case Study: RGBD Cameras 59

2.12.2.2 Kinect V2 Working Principle

Kinect V2 is based on a Time of Flight (TOF) principle to measure the depth of

the scene. A TOF camera illuminates the scene with a modulated light signal.

The phase shift between the emitted signal and the received one yields the

range between the sensor and the scene. Every pixel in the resulting depth map

holds a single depth reading.

Structured-light cameras have a higher spatial resolution, but they do not

support interference with the alternative light sources. As a result, such a

technology is better suited for indoor scenes. On the other hand, TOF

technology is less sensitive to the lighting conditions, and it is more affordable.

It also delivers a higher frame rate compared to structured light. As a result,

the captured geometry is smoother, Figure 2.24.

Figure 2.24 Kinect V2 points cloud structure

60 2. Background

2.12.3 Kinect Calibration

Kinect sensor is distributed with its factory calibration parameters

, , , , , = . Hence, these parameters are assumed to be the same for

all the cameras in the market. Since the old version of the sensor has a narrow

field of view, it does not suffer from significant lens distortion. The newest

camera, on the other hand, has a larger field of view. Thus, the distortion

cannot be neglected.

A complete calibration is necessary for the camera to acquire reliable

measurements [46]. First, both the RGB and IR cameras, are calibrated

separately with the checkerboard of Figure 2.25. The purpose is to estimate the

parameters regarding the projection matrix of Equation (2.10). To this end,

several images were captured for the calibration pattern at different poses.

Indeed, it is recommended to take various samples from the entire operational

space for a good result.

For the IR camera, if the projector is left uncovered, the IR speckles yield a salt

and pepper noise. This problem can be prevented by covering the projector’s

aperture with an opaque tape. Table 2.1 summarises the results of the

calibration. The overall accuracy of point marking residuals in image space was

0.115 pixels for the IR and 0.078 pixels for the RGB camera.

2.12 Case Study: RGBD Cameras 61

Parameter Kinect V1 Kinect V2
RGB IR RGB IR

(pixels) 528.22 594.21 1060.70 367.53
(pixels) 526.62 591.04 956.35 244.49
(pixels) 329.02 339.30 1058.60 366.59
(pixels) 268.08 242.73 518.97 207.83

0.259 -0.263 0.0544 0.010
-0.840 -0.999 -0.067 -0.289
0.912 -1.305 -0.019 0.111

-0.002 -0.001 0.0003 -0.001
0.001 0.001 -0.002 0.001

(cm)
1.989
0.001
0.003

5.192
0.0004
0.0001

0.995 0.001 0.0174
0.001 0.997 0.0122
0.017 0.012 0.9934

0.9967 0.0126 0.0072
0.0162 0.999 0.0074
0.0078 0.0078 0.994

Table 2.1 Calibration results for the two versions of Kinect sensor

62 2. Background

Figure 2.25 Calibration checkerboard

2.12.4 Multi Kinects Calibration

The data captured from different Kinects looking at the same scene are mapped

to different coordinate frames. It is, therefore, necessary for 3D reconstruction

applications to transform the sensor-wise outputs into a standard coordinate

system. To this end, a global external calibration of the three cameras in Figure

2.26 was carried out. The calibration procedure that has been implemented in

this thesis is a combination of the works [47] [48] using just the colour images as

input. This cue is more stable and simpler for the extraction of features. Either

the colour or the IR image is sufficient because they both belong to the same

sensor that is regarded as a rigid body.

The relationship between the different views is deduced from their feature

correspondences. To facilitate the acquisition of feature data, a checkerboard of

a known geometry has been used. The whole procedure is described below:

 Several RGB frames are simultaneously taken for the checkerboard by the

three Kinects, Figure 2.27 (a), (b), (c). All the cameras must see the same

calibration pattern at every frame. This pattern must also be large and po-

sitioned at different poses in the working volume.

2.12 Case Study: RGBD Cameras 63

 The features (corners) of the checkerboard are then extracted, identified

and sorted in the conventional order. As a result, a list of correspondences

between all the views can be directly obtained.

 Based on these correspondences between each pair of views, the pose relat-

ing a couple of sensors is computed. For the setup of Figure 2.26, three dif-

ferent stereo parameters were computed,

i.e.).

 Eventually, a loop closure between the elementary stereo results is further

applied to reduce the cumulative pairwise error. A bundle adjustment al-

gorithm [44] was run on the stereo and mono camera parameters and the

entire image data to refine features' re-projection error [44].

Figure 2.26 Multiple Kinect calibration

64 2. Background

(a)

(b)

(c)

Figure 2.27 Multiview Calibration. (a) View k1. (b) View k2. (c)
View k3

2.13 3D Feature Points 65

2.12.5 Interference between Kinect Cameras

When more than one Kinect is looking at the same target, the projected IR

beams mutually interfere. This phenomenon manifests in a confusion that

misleads the stereo matching, as a single pixel may be attributed multiple depth

readings. Consequently, it receives a null disparity. The correspondent of a null

disparity is a hole in the captured image, Figure 2.28.

In order to reduce interference when multiple RGBD cameras are used

simultaneously, Maimone et al. [49] used a vibration motor. Their idea lies in

minimally vibrating a given unit (sensor) to produce an artificial blur to

alternative concurrent units. Such a blurring is due to the inability of the latter

to observe correctly structured light patterns emitted by the vibrated sensor. As

a result, interference among cameras is eliminated. Whereas, the IR

projector/camera of the vibrated unit move in harmony. Its depth sensing,

therefore, works normally. This solution was not used in our work because the

interference was not significant.

2.13 3D Feature Points

Key points are important to find the correspondences between two sets of 3D

data. In this thesis, four key point extractors have been tested: TOMASI [50],

SIFT3D [51], THRIFT [52] and HARRIS3D [53]. Feature detectors are used to

determine the pose between two views. The processing load regarding the

registration based on sparse key points is not as substantial as the dense

iterative registration’s. Among all key points that have been tested so far in the

extent of this thesis, HARRIS3D and THRIFT have output the best results for

RGBD data. The two methods are based on local property description. In other

words, they find in which directions the gradient or the normals change

significantly. HARRIS3D uses the gradient of intensity, whereas, THRIFT uses

the normals and the geometric curvature.

66 2. Background

View 1

View 2

View 3

Figure 2.28 Kinect interference problem. On the left, the depth
outputs with only one camera operating. On the right, the
output when all three cameras are working

2.13 3D Feature Points 67

2.13.1 3D Key Points’ Properties

A good 3D key point must hold all the following properties:

 Distinctiveness: The neighbourhood of a key point should have a distinc-

tive geometry and appearance that allow the descriptor to be correctly as-

sociated with its counterparts in alternative views.

 Sparseness: The number of key points must be small compared to the size

of the entire point cloud where they belong.

 Repeatability: The key points should also be repeatedly detectable from

different viewpoints and in various conditions.

Despite the partial knowledge that the sparse registration methods have on the

scene, they are as effective as the dense ones because of the superior

distinctiveness of the key points compared to the ordinary points. In addition,

the exclusion of the non-key points reduces error during the matching process.

This is due to the fact that the presence of non-descriptive points will result in

uncertain correspondences. The key points identify a small number of locations

where computing feature descriptors have maximum effect.

3D key points should determine stable regions in 3D point clouds. They must

remain detectable and less affected by the different transformations that can

alter the data they represent [54]. In other words, after applying a rotation,

translation or a variation of sampling density, the entries of the descriptors

should not change significantly. Similarly, they must also be robust to the mild

noise that can corrupt useful data [55].

68 2. Background

Figure 2.29 Key points extraction and descriptor matching process

Despite the attractive computational asset of geometric key points, their

descriptors fail to provide a reliable distinctiveness. This shortcoming is due to

the sparseness and the irregularity that characterise point clouds. The addition

of colour information, has been proven to be very useful to complete the

geometric information. In addition, the colour enables the detectors to leverage

the mature solutions already available in the 2D imagery to tackle 3D problems.

2.13.1.1 HARRIS3D Key Points

HARRIS3D feature detector (Figure 2.30 (a)) uses an auto-correlation matrix

based on image intensity. This intensity is the value taken by a pixel. It

represents a physical entity such as light or the range.

If we consider a patch in the image being shifted with a small

amount is:

(,) = (,)[(,) (+ , +)] (2.24)

Taylor’s first order approximation of yields:

(+ , +) = (,) + + (2.25)

are the gradient in directions respectively.

The matrix form of Equations (2.24) becomes:

2.13 3D Feature Points 69

[] (2.26)

The matrix is a cross-correlation matrix. The response () of Harris

detector is therefore given by:

(,) = (()) (2.27)

is a positive real number. This parameter plays the role of a lower bound for

the ratio between the magnitude of the weakest and the strongest edges. There

 Significant response: the locations (,) with (,) greater than a cer-

tain threshold.

 Local maximum: The locations (,), where (,) is the greatest within

the neighbourhood.

In the case of 3D data, for a given point in space, the authors of [53] associate

multiple rings composed of neighbouring points centred at the subject key point

(centroid). This pattern is then translated to the origin of the 3D coordinate

system. The best fitting plane is computed by Principal Component Analysis

(PCA). Its normal vector is associated with the lowest eigenvalue.

Afterwards, the set of points is rotated in a way that the normal of the fitting

plane is overlaid on the z-axis. The least principal component is chosen as a

normal to the plane. The authors claimed that the transformed points show a

good spread in the -plane after rotation. Therefore, it becomes possible to

work only in the -plane to compute the derivatives. For the partial derivation

in the direction of and , the authors fit a quadratic surface to the set of

the resulting points. The partial derivatives of this function would replace the

gradients of Equation (2.25).

70 2. Background

= (,) = + + + + + (2.28)

2.13.1.2 HARRIS3D in Practice

The same formulation of the original Harris detector can be followed to extend

the definition to 3D space. To this end, the image gradient is replaced by the

surface normal. It becomes possible to compute a 3 × 3 covariance matrix in the

neighbourhood of a given 3D point. The response at the 3D point (, ,),

whose normal is (, ,) can be defined by:

(, ,) = , , (((, ,))) (2.29)

In the Point Cloud Library (PCL) library11, two implementations of

HARRIS3D, dubbed Lowe and Noble, are available. The difference between

them resides in the response function. For Noble, the response is given by:

(, ,) =
(, ,)
(, ,) (2.30)

And for Lowe it is given by:

(, ,) =
(, ,)

(, ,) (2.31)

Unlike the previous formulation, these variants deliver a reasonable accuracy, at

a small computation burden.

2.13.1.3 THRIFT Key Points

HARRIS3D detector is invariant to rigid body motion. However, it lacks the

ability to handle the scale difference between point clouds. In practice, the scale

factor tends to vary largely between views. The THRIFT detector (Figure 2.30

(b)) was introduced by Flint et al. [56]. It is an extension to the Scale Invariant

Feature Transform (SIFT) [57] and the Speed Up Robust Features SURF [58].

It benefits from the advantages of both for repeated 3D features extraction and

11 http://pointclouds.org/. 2015

2.13 3D Feature Points 71

invariance towards scale. SIFT is the original idea that has been proposed in

order to cope with the scale change. The same strategy was later extended to

deal with the 3D space context [59].

(a)

(b)

Figure 2.30 Key points Extraction Process. (a) HARRIS3D. (b)
THRIFT

Unlike HARRIS3D, the authors replaced the colour intensity or the normals at

a given point by the direction of surface normal at its level.

The THRIFT extractor uses the following steps to extract interest points:

 It utilises a 3D version of the Hessian matrix to select reliable features.

The input is a cloud of points that will be convolved with the

72 2. Background

Gaussian kernels , , ,), = ,… , of different standard devia-

tions { , , . . . , }; with + = . Typically = , as recom-

mended by the author of the algorithm [57]. These standard deviations act

as scaling coefficients.

 Adjacent Gaussians are then subtracted

(, , ,) = (, , , + (, , ,). The resulting

(, , ,) is the Difference of Gaussians (DOG) between the adjacent

clouds.

 The previous two steps are repeated over the entire scale levels.

 The preliminary features are the local extrema of the resulting DOG. Each

point in the DOG is compared to its eight neighbours at the same scale

and nine in every DOG within the adjacent scales (above and below).

 The point is designated as a potential feature when its value is extremal

(minimal or maximal). Afterwards, the candidate features are tested for

possible elimination.

 A key point will be discarded if its principal curvatures are greater than a

specified threshold.

SIFT and SURF both use the image gradient as the basis for describing image

patches. Both extractors are robust to changes in viewpoint and partial

illumination [53]. On the other hand, THRIFT uses the orientation as a basis

for its descriptor. In the case of range data, the dominant orientation at a given

point is the direction of surface normal. In this sense, the surface normal is a

direct generalisation of the pixel orientation that has been used in SIFT [53].

Figure 2.31 depicts a comparison between THRIFT and HARRIS3D in terms of

registration and computation time. The test was run on 50 point clouds of a

similar size (50000 points). Typically, the extraction of key points results in an

average of 300 features for THRIFT and 176 for HARRIS3D. From the

2.13 3D Feature Points 73

alignment error, Figure 2.31 (a), as well as the time taken for the extraction,

Figure 2.31 (b), it is plausible that THRIFT has a higher performance. On the

other hand, HARRIS3D spends less time for an accuracy comparable to

THRIFT’s.

(a)

(b)

Figure 2.31 Comparison between HARRIS3D & THRIFT. (a)
Error in registration. (b) Computation time

74 2. Background

(a)

(b)

Figure 2.32 3D key point Extraction. (a) HARRIS3D. (b) THRIFT

2.13.2 Key Point Descriptors

The quality of feature correspondences has a direct impact on the outcome of

the sparse registration. Moreover, the computation of the correspondences itself

relies on the quality of the input feature descriptors. Good feature data are,

therefore, essential for a correct registration. The latter, should not lead to any

confusion during the matching process.

The role of the descriptor is to encode a point’s -neighbourhood geometrical

and textural properties in a higher dimension space (64, 128, 256, 512 and

1024). The greater the dimension, the more distinctive the descriptors.

Nevertheless, the processing of larger data is clearly time consuming.

The similarity between two matched descriptors respective to a pair of key

points means that these points represent the same world’s feature. A reduced

dimension in the descriptor can lead to large errors in the matching process

(inconsistent correspondences).

2.13 3D Feature Points 75

2.13.2.1 CSHOT Descriptor

An evaluation of most of the existing key point descriptors claimed that the

definition of a single, unambiguous and stable local reference frame (coordinate

system) at each key point is the most prohibiting issue in the description of key

points [60]. The authors further proposed a novel descriptor based on the

definition of a local Reference Frame (RF). The latter was called Signature of

Histograms of Orientations (SHOT). The algorithm of description works as

follows, see Figure 2.33:

 It computes a local RF at a given key point . To this end, the coordi-

nates of of its neighbouring points ; < < are used to calculate a

weighted covariance matrix :

= 1 (). ()() (2.32)

is the radius of neighbourhood’s volume.

 The eigenvalue decomposition of outputs three orthogonal eigenvectors.

The latter are used to define the local RF at the point . The decreasing

order of the corresponding eigenvalues associates to each eigenvector the

local , and axes respectively.

 The RF is used to partition the isotropic spherical grid centred at . For

every point in a given cell within the grid, the angle that separates

the normals at and is computed. The local distribution of angles is

therefore described by a single histogram associated with each cell.

 If the grid contains cells whose histograms comprise bins, the global

histogram related to the feature point would cover at most values.

The latter are normalised to sum up to one in order to adapt to the vary-

ing density of points across the views.

76 2. Background

Figure 2.33 SHOT algorithm

SHOT is classified among Signature of Histogram descriptors [61]. It promotes

computation efficiency as well as distinctiveness and the robustness against

noise. It also allows encoding of multiple cues such as shape and colour

simultaneously. Initially, the descriptor was not designed to take advantage of

the colour of 3D points. The authors later added this cue to the original solution

that has finally become Colour-SHOT or CSHOT [62]. This improved version is

used in the thesis to leverage the colour information for a higher performance.

The latter is naturally available in the RGBD data. After testing several

descriptors [7], CSHOT was proven to be the best qualified for RGBD key

points description [7].

2.14 GPU Acceleration

Graphical Processing Units (GPU) are powerful parallel processing devices

dedicated to 3D image synthesis. Indeed, gaming and multimedia industries are

the principal consumers of this technology. However, the array structure of an

image fits very smoothly into the parallel design of the GPUs. This convenience

is due to the simultaneous processing that can be launched for every pixel

separately. Most algorithms in the literature were developed in a sequential

manner that suits CPU. The transition from sequential to parallel processing is

not always straightforward since several algorithms proved hard to reshape into

a parallel structure [63].

2.14 GPU Acceleration 77

Throughout the past decade, parallel computing platforms and strategies have

made significant progress. Such a progress is mostly owed to the escalation of

clock frequency and the multiplication of cores within a single unit.

Nevertheless, only the multiplication of cores has remained increasing. Such a

trend is driven by the cessation of raising clocks frequency because of the heat

sink problem [64].

Nowadays, multithreaded programming is primarily related to conventional

multicore CPUs [64]. However, the General Purpose GPU (GPGPU)

programming model is progressively invading the market for data processing12.

The demand for a highly realistic rendering has triggered a rapid improvement

of GPU technologies. The computational capability of the GPU exceeds

considerably that of traditional processors for certain algorithmic structures. As

a result, attention has shifted towards them to overcome various computational

bottlenecks.

Among the few companies manufacturing GPUs, NVidia has played a

significant role in affordable accessibility to GPGPU after releasing CUDA .

The latter is a programming language dedicated to writing heterogeneous

programmes able to run in both the CPU and the GPU13.

The general architecture of the GPU is shown in Figure 2.34. This device

encompasses Multiprocessors along with their memory spaces. Each of which

has a local Shared Memory as well as a set of Scalar Processors managed by

a local Instruction Unit. This unit is responsible for handling the multithreaded

execution on the scalar processors. Unlike the CPU, the GPU sustains a higher

number of threads executed at lower speed. These threads are grouped into one

block called Thread Block. Each of which runs entirely on a single

Multiprocessor. The large number of threads enables a one-to-one association

between the processing unit and a datum. Table 2.2 illustrates a comparison

12 http://www.gpgpu.org. 2015
13 http://www.nvidia.com/object/cuda_home_new.html. 2015

78 2. Background

between the GPU and the CPU for some basic image processing operators. An

extensive comparison can be found in [63].

Figure 2.34 GPU (Device) general architecture

Operator Erode/Dilate Sobel

Image size in
pixels CPU GPU CPU GPU

2048 × 2048 27.35 820 s 33 962 s
1024 × 1024 5.52 153 s 8.54 234 s
512 × 512 1.7 89 s 1.42 95.4 s

256 × 256 750 75 s 715 s 74.2 s
128 × 128 122 s 53 s 153 s 58.49 s

Table 2.2 CPU/GPU comparison based on some basic image
processing operations (binary erosion/dilatation and Sobel edge
detector). The hardware includes an Intel i7 CPU, 3.20 GHz.
NVidea GeForce 2GB GTX 680

2.15 Conclusion 79

2.15 Conclusion

In this chapter, the seminal theoretical and practical basis of the concepts

related to the thesis was presented. The notions of VR and AR, which can be

merged to form MR, were studied. Several examples available in the market

were given to motivate the practical utilisation of these technologies (AR, VR

and MR).

The communication between the real and the virtual requires an accurate

registration and tracking of the physical entities to mimic their behaviours in

the virtual environment. Both concepts, i.e. registration and tracking, were

thoroughly presented.

The alignment of 3D data requires the rigid body motion that relates two point

clouds. The latter can be computed either with a sparse or a dense strategy.

The former selects just some reliable key points; whereas, the latter considers all

points together.

On the other hand, the estimation of the motion undertaken by real objects is

necessary to update the state of their virtual counterparts. This task can also be

approached in two different alternatives: The first one utilises several artificial

markers, OptiTrack system was presented as a case study. The second is

markerless, it relies only on the natural landmarks that can be obtained from

the scene. The advantages and drawbacks of each were discussed.

Since the data that feeds the MR applications is mainly visual, another section

was dedicated to defining the different schemes related to the camera model. In

other words, the Pinhole, Stereo and Multiview imaging principles were all

debated along with their properties and mathematical formulations. A case

study about RGBD sensors used to capture datasets for the validation of

contributions was considered with the necessary calibration procedures.

The 3D interest points used by the registration were also discussed. If the scale

different is not significant, HARRIS3D is better. Otherwise, THRIFT can cope

80 2. Background

with the scale for an extra load in computation. Furthermore, the CSHOT

descriptor was presented along with its algorithm.

Lastly, the GPU architecture was described. This device is used in the thesis to

ensure real-time responsiveness of otherwise bottlenecked algorithms.

81

GPU-Based Real-
Time RGBD Data
Filtering

Commodity RGBD cameras such as the Kinect sensor have recently been a

large success in many indoor robotics and computer vision applications.

Nevertheless, professional applications cannot rely on their raw outputs because

of their low accuracy. Indeed, these consumer cameras can produce precise

depth measurements within a small range, but, they do suffer from potential

noise when the target is further away than the permitted distance. In this

chapter, an innovative adaptation of the Kalman filtering scheme is proposed to

improve the precision of Kinect as a real-time RGBD capture device. The

Kalman filter’s adaptation to any Kinect-like camera is demonstrated and

justified by real experiments. A GPU implementation of the filter with different

coding optimisations is also described.

82 3. GPU-Based Real-Time RGBD Data Filtering

3.1 Overview

The notion of mixed reality has been progressively gaining importance in many

civilian and defence applications. This trend is mainly due to the easiness of

importing 3D data from the scene into virtual environments [1]. Tools to acquire

the 3D information of objects are required, however. Laser scanning devices can

produce very high-quality scans [65], but they are expensive and require a level

of proficiency to manipulate them correctly [2]. Along with laser scanners,

ultrasonic and radar scanners [66] are available for use as well. The existing

multi-view methods [5] can produce acceptable models after the registration of

two or more views acquired for the same object at different viewpoints [4].

Nevertheless, this solution for 3D reconstruction is computationally greedy;

therefore, not suitable for real-time applications [6]. Besides, the multiview

reconstruction technology presents other drawbacks such as sparse textures or

complex occlusions among different perspectives [4].

Two other classes of range sensors namely, Time of Flight (TOF) and

structured light can be considered as well [67]. The former captures reflected

light and computes the distance between the sensor and the scene from the time

elapsed between emission and reception [68]. The latter uses an IR projector

that fires light patterns onto the scene [69]. The same patterns are then

captured back by an IR camera then the sensor produces a disparity map in

order to determine the actual depth of the scene [70]. The purpose of this

chapter is commodity range cameras capabilities enhancement with the

integration of an innovative filtering stage in order to infer accurate and

trustworthy 3D scans. Nevertheless, the precision on its own is not sufficient for

a realistic 3D emersion. Real-time performance should also be considered in the

architecture that is aimed to be designed. In other words, filtering algorithms

should run at the same frame rate as image acquisition without introducing any

latency in the system. Consequently, the user benefits as much as possible from

the stream of data delivered by the sensor.

3.1 Overview 83

The device used is the Microsoft Kinect1 V1. Additionally, a parallel design is

proposed and implemented in the GPU for a shorter response time. At this

level, it would become possible to embed the entire GPU-based filtering

algorithm in dedicated cards for a self-contained capture/filtering solution. The

resulting configuration could serve as a pre-processing layer for any pipeline

using RGBD data to feed the subsequent processing levels with clean inputs.

This chapter is organised as follows: In Section 3.2, the related state of the art

research in RGBD data filtering is debated. The general architecture of the

system is then presented in Section 3.3. In Section 3.4, Kalman filter is

presented. Then, its utilisation to improve the depth quantisation accuracy is

investigated in Section 3.5. In addition, the different components of the sensor,

its driver, and the higher data smoothing algorithms are discussed in detail. In

the same section, the issue of accuracy is raised. In addition, the Mathematical

formulation of the problem and the properties of the camera are exposed in

detail. The effect of the proposed filtering scheme is validated with two

experiments:

The former (Section 3.6) is a moving vehicle tracking scenario where it has been

confirmed that cheap RGBD sensors can be used as an accurate real-time

tracking device. The results are obtained from a single depth camera for moving

robot localisation. The purpose of this type of applications is the evaluation of

filter’s precision.

The latter (Section 3.7) demonstrates the performance of a Kalman filter in a

depth image registration pipeline. Here, the visual quality of the geometry built

upon filtered 3D data is assessed. 3D registration plays a fundamental role in

many applications, such as simultaneous localisation and mapping (SLAM). The

potential of the proposed filtering scheme is easily noticeable after testing it

against equivalent methods in the literature in Sections 3.8, 3.9.

1 http://www.microsoft.com/en-us/kinectforwindows/. 2015

84 3. GPU-Based Real-Time RGBD Data Filtering

(a)

(b)

Figure 3.1 Kinect depth and colour data. (a) RGB. (b) Depth

3.2 Related Works 85

3.2 Related Works

By their very nature, depth data are rough and noisy. RGBD sensors, in

general, are sensitive to noise because of their active nature, see Figure 3.1.

Filtering approaches aim to remove the noisy data (outliers), clean the useful

regions (inliers) and preserve the edges. In the presence of specular reflective or

light emitting objects, holes appear in the captured depth data. Hole-filling can

be a useful tool to recover the lost data, but it is a challenging task due to the

missing depth values. The recovery of the lost information is constrained by

some assumptions about the neighbourhood where disparity data is available.

Despite the non-negligible quantisation noise (Chapter 4), most research papers

commonly use raw Kinect data without any pre-processing or filtering. Hence,

arises the motivation to address the limitation of the covered space and the

maximum reachable distance. Some alternative works in the literature have

already alluded to Kinect data de-noising or proposed a pre-processing stage in

their applications. Menna et al. [71] presented a detailed study regarding

precision of the Kinect’s depth map. Although no particular approach to depth

map accuracy improvement is proposed, they applied a filtering approach based

on the Spatio-temporal median computed from motion vector. On the other

hand, Camplani et al. [72] used an adaptive joint bilateral filter that combines

depth and colour images by analysing an edge-uncertainty map and foreground

regions to improve the quality of Kinect data.

Kalman filter is an optimal state estimation tool that can produce statistically

optimal estimates from a sequence of noisy measurements observed over time

[73]. This filter is well-known amongst navigation, guidance, communication and

control researchers. It is appreciated by the community because it helps

enormously in predicting and correcting the context of noisy measurements.

The Kalman de-noising algorithm was implemented to clean Kinect data in a

few works in the literature. Ling et al. [74] applied the extended Kalman filter

in a real-time 3D mapping framework on Kinect RGBD data. The authors

86 3. GPU-Based Real-Time RGBD Data Filtering

proposed a repetitive linearization of the nonlinear measurement model to

provide a running estimate of camera motion. Likewise, Thibault et al. [75]

applied nonlinear-Kalman filtering to generate accurate 3D maps. Sangheon et

al. [76] also proposed a 3D hand tracking method based on the Kinect along

with a Kalman filtering strategy.

In all the previously cited works, the Kalman filter was customised to fit the

target application (3D mapping or tracking). However, the novelty of this

contribution originates from the fact that some interesting characteristic

properties of the Kinect sensor and the behaviour of its outputs over time were

uncovered. The depth measurements can be optimally filtered to feed several

applications without any supplementary parameter tuning. Such a modelling is

useful for the users of the Kinect camera in particular, and RGBD sensors in

general.

3.3 System Architecture

As illustrated in Figure 3.2, the Kinect outputs three different streams of data2.

Among all others, the depth stream is of particular interest in the system to be

designed. The Kinect sensor has the advantage of working in real-time at a

frequency of 30 FPS. Whenever a further processing load is included in the line

of processing, a significant frame rate drop can occur. Consequently, to conserve

the real-time nature of the solution, an optimal hardware/software combination

that best fits the requirements has to be found.

The GPU has provided many advantages when the CPU has been proven

incapable of coping with substantial data. As a consequence, a series of

algorithms embedded in the graphics processor has been designed. These

algorithms allow full advantage of the maximum frame rate delivered by the

camera.

2 http://www.microsoft.com/en-us/kinectforwindows/develop/learn.aspx. 2015

3.3 System Architecture 87

Figure 3.2 Kinect data streams

Figure 3.3 Real-time RGBD data filtering architecture

Such a performance would be otherwise impossible to reach with the classic

CPU implementations. Figure 3.3 shows the stream regarding depth data

flowing from the camera to the parallel filtering stage, to arrive finally at the

application level. This architecture could be easily integrated as an independent

data enhancement module into the driver of any RGBD camera. The core

algorithm requires only some initialisation with the appropriate calibration

parameters.

88 3. GPU-Based Real-Time RGBD Data Filtering

From the software side, a recursive state-transition filter for Kinect’s depth data

was adapted. However, this was not a straightforward task, since some

preliminary conditions needed to be fulfilled. In addition, this kind of adaptation

has not been previously discussed in the literature. Thus, a proper mathematical

formulation was developed to fit the problem adequately into the filter’s model.

3.4 Kalman Filter

Since the Kinect was designed for computer gaming, where the user is relatively

close to the sensor all the time (Chapter 2), professional applications using

Kinect’s data can only be accurate within a small range. Indeed, for depth

values greater than 3.50m the error can reach ±20cm. This low accuracy is

unacceptable by most market and research applications.

Many filters in the literature can be applied to improve the limited quality of

data. Nevertheless, none was entirely adapted to work on RGBD sensors. Here,

a Kalman filter was used carefully to stabilise the capture of Kinect depth data

over time. Sensory capabilities of covering a larger and deeper view were also

enhanced. As stated earlier, this contribution is motivated by some properties

discovered in the depth data. These features allow fitting of the depth data

smoothing problem into a Kalman filter stabilisation framework. The working

principle of this filter is based on a recursive of the next state

followed by its optimal . The Kalman filter is distinguished by its

ability to run in real-time, using only the recent measurements as input and the

previously estimated state. Thus, no additional anterior knowledge about the

behaviour of the system is required [77]. In addition, the filter needs the

statistical characteristics of the inherent process and measurement noise models.

To ensure the optimality of estimation, some conditions require to be initially

satisfied, however. The mathematical rationale is based on the assumption of

Gaussianity resulting from system and measurements’ noise processes; as well as

the linearity of the frame to frame relationship between successive states. As

will be shown, both conditions are verified for RGBD sensors.

3.4 Kalman Filter 89

The general form of state-transition filters to predict or estimate the state of a

dynamic system from a series of incomplete or noisy measurements is defined by

the following equations:

Prediction

= + + (3.1)

= (3.2)

= + (3.3)

Correction

= (+) (3.4)

= + () (3.5)

= () (3.6)

Where for each discrete time-step :

is the a priori state estimate; is the a posteriori state estimate; = is

the measurement; is the a priori state-error covariance estimation; is the

a posteriori state-error covariance estimation; is the Kalman filter’s gain;

is the state-transition model; is the control-input model; is the

observation model; is the covariance matrix of process noise; is the

covariance of measurement noise. is a random variable representing process

noise, is another random variable representing measurement noise; is a

control signal. Process and observation noise models should be independent,

90 3. GPU-Based Real-Time RGBD Data Filtering

white and follow a normal distribution ~ (,), ~ (,),

respectively.

To adapt the Kalman filter to this particular RGBD data filtering problem, one

should first demonstrate that the sensor’s model and its data satisfy the

requirement to fit into Equations (3.1) through to (3.6). During the

experiments, it was found that Kinect RGBD pixels lie in parallel planes

towards the positive -axis direction. The depth values are limited to a known

discrete range. An adaptation of depth data structure to the Kalman filter was

contributed in order to improve the precision of the sensor without any extra

hardware. The latter associates each pixel with an optimal depth value within a

few frames.

3.5 Kalman Filter on Kinect’s Data

3.5.1 Z-Resolution

To study the nature of depth resolution regarding the camera, we pointed the

sensor parallel to a large flat wall as shown in Figure 3.4 (a). This setup allows

us to get a cloud of points from the whole operational field of view and to

determine the parameters regarding the filter.

As shown in Figure 3.4 (b), depth resolution is inversely proportional to the

distance from the sensor. In addition, the points within the snapshot (taken

from the same frame) are distributed over independent clusters that have been

defined as Z-levels, Figure 3.4 (c). For this reason, the Kinect’s data is

formulated as a finite set of points lying in parallel planes. Every plane

constitutes a partition of the whole cloud of points. The mathematical definition

is as follows:

 : Set of ordered indices ranking the parallel planes.

 : Set of indices indexing the points resting in the same plane.

3.5 Kalman Filter on Kinect’s Data 91

 : Set corresponding to the whole point cloud Figure 3.4 (b),

 , : Plane in Figure 3.4 (c),

 , ,), : Point in the RGBD space, lying in a given Z-

Level; = , , Figure 3.4 (c).

Every point cloud satisfies the properties:

= , (3.7)

, , , , , = (3.8)

, , , ! , (3.9)

, , (3.10)

92 3. GPU-Based Real-Time RGBD Data Filtering

(a)

(b)

(c)

Figure 3.4 Kinect’s point cloud structure. (a) Colour image. (b)
Depth image. (c) Point cloud components

3.5 Kalman Filter on Kinect’s Data 93

(a)

(b)

Figure 3.5 Depth data quantisation noise. (a) Statistics of depth
data at 1.51m, 3.40m and 0.60m, respectively. (b)
Displacement of a single depth measurement

94 3. GPU-Based Real-Time RGBD Data Filtering

3.5.2 Depth Noise Statistics

The Kinect, as an electronic device, has an inherent hardware related noise. The

latter is due to reference template inaccuracy, the calibration process or lighting

conditions and the objects’ surface properties [46]. The errors in the imaged

data increase proportionally to the depth of the scene. This behaviour is due to

the decrease in depth resolution, see Figure 3.4 (b). We carried out a study in

order to determine the nature of noise affecting depth measurements. We found,

after sampling and fitting the distribution of data with different probability

models of different parameters, that depth outputs are more likely to follow a

normal distribution. This distribution has the average of Z-levels as mean and

, of Equation (3.11), as standard deviation. More importantly, the more

samples we consider, the more Gaussian depth data distribution becomes.

Figure 3.5 (a) shows some samples that were captured at 1.51m, 3.40m, and

0.60m, respectively. Based on the graphs, the corresponding standard deviations

are respectively 0.032m, 0.075m and 0.0025m.

When the sampled points were re-projected back to their original depth map, it

was found that the standard deviations could be formulated by this

equation:

= (+) / 2, , + (3.11)

Where is the average distance between the two extremities of the + Z-

levels and the central one that contains the sampled point, see Figure 3.5

(b). As a result, at every level , Kinect noise remains Gaussian and

defined in Equation (3.11) is its standard deviation. Empirically, the best results

are reached when = . This property allows one to prove the Gaussian nature

of the quantisation noise affecting the depth data. It also means that the first

condition required to apply a Kalman filter is satisfied. For instance, a Kalman

filter still works fine for non-Gaussian noise; but estimation optimality is not

guaranteed [77].

3.5 Kalman Filter on Kinect’s Data 95

Figure 3.6 The behaviour of for every Z-Level

3.5.3 IR Pixel States

When the sensor is pointed towards a static scene, and the depth map is

observed over time (Figure 3.6), fluctuations in almost 90% of all map’s

elements (range readings) are noticed. The sensor and the scene are assumed to

remain steady during the whole period of acquisition.

The depth value taken by a given pixel) in the depth image tends to

vary within a limited range over time. This variation is due to the fact that: for

every frame, the discrete imaged point) associated with a given

point in the observed scene moves to a neighbouring Z-level in the range

], as can be seen in Figure 3.5 (b). In addition, for every capture in

any scene, there is a finite set of depth values. In other words, the possible

discrete depth values that may be encountered in the output data can be

predicted. As explained above, the Kinect sensor works in a discrete set of depth

elements Z-levels. Every level constitutes a partition of the ensemble of points

within a frame, Equations (3.7), (3.8), (3.9), and has the property of being

entirely independent of the neighbouring levels and orthogonal to the -axis,

Equation (3.10). As a result, a point cannot be found out of these parallel

96 3. GPU-Based Real-Time RGBD Data Filtering

planes. This is what really appears in all the scanned data if the scene is rotated

over or axes; i.e. the points lie in fronto-parallel planes. The importance of

such findings for Kinect based applications is that the relationship between

depth measurements over different frames can be studied. That is, if it is found

that two successive depth measurements are related with a linear mapping, i.e.,

the second condition required to adapt Kalman filter would have been fulfilled.

When the sensor is stationary, the depth map keeps changing because of points

jumping from one Z-Level to another, Figure 3.6. The destination level is not

necessarily adjacent but within a limited radius, Equation (3.11).

Even when the points change their depth level, the 2D (,) image

coordinates on the screen remain identical. Nevertheless, their world

counterparts (, ,) vary. This is true because every point (, ,)

in the 3D world lies on a line originating from the centre of the camera passing

through the pixel (,) on the screen towards the scene, Figure 3.6, following

the direction of the perspective frustum [78]. Using this information, the

relationship between two successively measured 3D coordinates can be inferred.

From the intrinsic parameters of the camera (, ; ,), two equations can

be obtained:

= (/) +
= (/) + 0

(3.12)

As pixel coordinates in two successive frames remain the same, from Equation

(3.12) with , + ; (+) means the new coordinates in the following

frame are:

+ = (/ +) + + = (/) +
+ = (/ +) + + = (/) + (3.13)

3.5 Kalman Filter on Kinect’s Data 97

(a)

(b)

Figure 3.7 The smoothing effect of Kalman filter on the “flat panel”
scene. (a) Before. (b) After

98 3. GPU-Based Real-Time RGBD Data Filtering

(a)

(b)

Figure 3.8 The smoothing effect of Kalman filter on the “Shelves”
scene. (a) Before. (b) After

3.5 Kalman Filter on Kinect’s Data 99

(a)

(b)

Figure 3.9 The smoothing effect of Kalman filter on the “Desk”
scene. (a) Before. (b) After

100 3. GPU-Based Real-Time RGBD Data Filtering

(a)

(b)

Figure 3.10 The smoothing effect of Kalman filter on the “screen”
scene. (a) Before. (b) After

3.5 Kalman Filter on Kinect’s Data 101

Finally, after simplification of Equation (3.13) it can be seen that:

+ =
+

+ =
+ (3.14)

Equation (3.14) proves the linearity between points projected at the same pixel

on the screen over different frames. Adding this to the Gaussian nature of noise,

the Kalman filter can be safely adapted as a real-time filtering tool for RGBD

sensors. The effect of the filter can clearly be seen in Figure 3.7 through to

Figure 3.10.

3.5.4 Kalman Filter Adaptation to Kinect Sensor

For a given pixel within the frame at time step , is the state estimate; is

the measured depth; is the a priori estimate-error covariance and is the

Kalman gain. There is one to one scalar correspondence between state-

measurements, so = . Moreover, = as the depth should not change

beyond the magnitude of noise () between two successive frames. = for

a fixed sensor. As the system is modelled accurately, we assume a small process

noise whose covariance = , is a small positive number that was set to

in our experiments. = covariance of observation noise (is the

standard deviation describing the magnitude of noise around the expected ,

and differs from one Z-level to another proportionally to the distance from the

sensor). For a static sensor/dynamic scene setup, Kalman Equations (3.1) to

(3.6) become:

Prediction

= (3.15)

= (3.16)

= (3.17)

Correction

102 3. GPU-Based Real-Time RGBD Data Filtering

= (+) (3.18)

= + () (3.19)

= (1) (3.20)

From the equations above, one may think that at a given pixel, does not

change over time. Although important variations in depth occur if the observed

object moves backward or forward, the filter optimises the depth estimates

under the assumption that the dynamics of the scene do not abruptly change

between two successive frames (the change is not sudden, i.e. ×

within 33ms. For instance 33ms = 1/30 Hz). has been determined empirically.

After experimental tuning, we found that = . leads to the smallest error in

depth estimation. In practice, this customisation of Kalman filter is generally

verified because the scene contains physical objects that move gradually and

continually.

The elementary displacements of these entities are small given the high frame

rate of capture that is being ensured by implementing the filter on the GPU.

After taking this into account, whenever the depth reading changes its levels,

the filter updates the pixel’s workspace (, , ,). However, when the

difference between two successive values becomes greater than . × , the

same workspace is reinitialised according to the current value of depth. In other

words, the object has jumped from Z-level to Z-Level (+ = + , =

. × , + = , + = + (+ +)). As a result, the steadier

the scene, the better the filter performs. In real scenarios, most of the pixels

within the depth image do not jump beyond the threshold at every frame. This

fact helps the filter to operate smoothly in an indoor environment where the

scene does not tend to change all the time.

3.6 Kalman Filter Effect on RGBD Data for Moving Vehicles Tracking 103

To validate these findings, the literature was checked for the most potential

scenarios where RGBD data is used. As a result, it was found that there are

mainly two classes of possible applications relying on depth sensors: The former

uses the sensor as a depth measuring device, which is widely encountered in

robotics and object tracking domains; the latter uses the camera as a scanning

device, which is widely regarded in mixed reality and computer graphics

applications. For this reason, the filter was tested on both classes of scenarios to

assess its added-value to their innate performance.

3.6 Kalman Filter Effect on RGBD Data
for Moving Vehicles Tracking

Tracking applications are very sensitive to position accuracy of the tracked

entity. However, Kinect raw data is not accurate enough to precisely localise an

object within its neighbourhood. When the sensor acquires a point cloud, the 3D

data is automatically distributed over the discrete Z-Levels, Figure 3.11 (a).

Original point data comes from the continuous real world. The corresponding

images in Kinect’s space lie in the sensor’s parallel planes, Figure 3.11 (b). The

error in measurement is therefore proportional to the gaps between Z-Levels

where the 3D points are projected.

The Kalman filter takes these noisy raw data as input, optimises them to

approach as closely as possible their real world positions, see Figure 3.11 (c).

The performance of the filter can be clearly seen in Figure 3.12. The latter

depicts the raw and the filtered trajectories for a moving robot tracked by the

same Kinect camera. The blue points in Figure 3.12 (a) represent the measured

positions taken by the robot. If the deepest points are carefully observed

(greater), it is noticed that the gaps between the parallel Z-Levels are larger.

Indeed, this is due to the drop in resolution as one gets far away from the

camera.

However, Kalman filter’s smoothing effect, as seen in Figure 3.12 (b), optimally

condenses the sparse and discrete points around their relevant real world true

104 3. GPU-Based Real-Time RGBD Data Filtering

(a)

(b)

(c)

Figure 3.11 Kalman effect on Kinect’s data for object tracking
applications. (a) Ground truth trajectory. (b) Raw Kinect
trajectory. (c) Filtered trajectory

3.7 Kalman Filter Effect on RGBD Data for Depth Image Registration 105

(a)

(b)

Figure 3.12 Kalman effect on position data. (a) Raw points. (b)
Filtered points

measurements. This behaviour reduces the error in the 3D point cloud. As a

result, the position of the tracked object becomes more precise and reliable.

3.7 Kalman Filter Effect on RGBD Data
for Depth Image Registration

Image registration is necessary to reconstruct 3D models of real objects for

simulation, virtual and augmented reality applications. Feature extraction and

matching are the essential tools to find the respective correspondences between

two different images before alignment takes place, see Figure 3.13 (a).

106 3. GPU-Based Real-Time RGBD Data Filtering

(a)

(b)

Figure 3.13 Kinect sensing of 3D feature points. (a) Our setup with
world positions of the features. (b) Features projected on Z-
Levels. Here, the two viewpoints refer to the same camera
looking at the scene from two different angles

3.7 Kalman Filter Effect on RGBD Data for Depth Image Registration 107

Figure 3.14 Kalman filter influence on the captured points

3D reconstruction applications using Kinect can only be accurate at a close

range. This inaccuracy is unacceptable by most registration applications, as it

widely exceeds the alignment error. To deal with this low-quality data, many

filters exist in the literature, but up to now, none was entirely adapted to work

on Kinect.

Figure 3.13 (b) illustrates the fact that the captured points are distributed on

parallel planes (as explained earlier). When the same real world feature is

detected within multiple point clouds, its respective projections in the different

views rest in the discrete Z-levels, Figure 3.14. The 3D data of the scene are

discretised because of the nature of the limited resolution regarding the sensor.

These levels do not necessarily correspond to the correct locations. The gaps

between the scanned positions and the actual ones increase exponentially as one

gets further away from the sensors. As a result, similar features within different

point clouds will be wrongly matched, and alignment error accordingly grows,

see Figure 3.15 (a).

On the other hand, the application of Kalman filter optimises the positions of

the tracked features and produces the best possible result given hardware

limitations. Kalman filter optimally places the discrete points in the continuous

real space (off the Z-Levels), see Figure 3.14. For this reason, the features

108 3. GPU-Based Real-Time RGBD Data Filtering

obtained from different viewpoints show closer 3D geometric properties, and the

subsequent registration is achieved with less error, see Figure 3.15 (b). The

Kalman filter is more useful at greater ranges because the Kinect accurately

measures the depth at small ranges (below 1.5m).

(a)

(b)
Figure 3.15 Registration error. (a) Raw Kinect data. (b) Filtered

data

3.8 Results & Discussions 109

3.8 Results & Discussions

The discussions below are based on the following hardware configuration: an

Intel i7 3930K CPU with six physical cores (two logical cores per physical)

running at 3.20 GHz. 16.0 GB of RAM along with an NVidea GeForce 2GB

GTX 680 GPU.

Our results were compared with the Moving Average Filtering [79]. This method

is designed to smooth a series of noisy or incomplete data, just as the Kalman

filter does. However, the optimality is not guaranteed even with Gaussian noise.

The results show that our technique outperforms the moving average filter.

Such an advantage is due to the optimality ensured by the Kalman filter when

correctly adapted to the problem.

Image data is more naturally organised to fit GPU thread blocks. Every

element in the block (Thread) processes a single pixel at a time [80]. Figure 3.16

illustrates how the depth map delivered by the camera is divided into image

blocks of a constant size (16 × 16 pixels. Thus, 256 threads is the size in of the

block in this implementation). The pixels of the same image block are processed

simultaneously in the same GPU thread block. As a result, a thread in the GPU

is attributed to every pixel in the depth map. The latter runs the actual filtering

(KF) on a single depth pixel (range reading) and saves the necessary data for

the next frame (,). This scheme is straightforward because there are no

constraints amid the pixels and the order in which they should be processed.

Otherwise, more specific techniques should be applied to benefit from the

parallel computing ability of GPUs. Processing complexity is reduced to that of

the algorithm running in the thread (Kalman filter), which is indeed constant.

3.8.1 GPU Implementation of Kalman Filter for
Depth Map Filtering

After establishing the theoretical feasibility of the main ideas, it has been found

that the usual implementation on the CPU generates latency. This problem

induces a decrease in the native frame rate of the sensor. When the filter was

110 3. GPU-Based Real-Time RGBD Data Filtering

first run on a regular CPU, the maximum reachable frame rate was 17 FPS.

The need to implement the solution on the GPU has therefore emerged. The

GPU was used instead because of its adequacy of fitting image processing

problems and efficiency of preserving the real-time property of the system. As a

result, the filter is eventually capable of processing VGA resolution (640 × 480

pixels) depth images at the same frame rate as the camera. The enhanced

results allow the following applications to exploit the frame rate offered by the

sensor (30 FPS) entirely.

Other optimisations should be addressed to profit fully from the utilisation of all

the available hardware capability. The design of heterogeneous algorithms aims

at a higher occupancy of the processors, as well as an extensive usage of the

bandwidth when exchanging data between the central memory (RAM) and the

global memory of the GPU (GMGPU)[81]. To this end, two optimisation

aspects have been focused on:

: When the GPU is processing the current

frame, the bus linking it to the central memory is entirely free. This idle state

can be exploited to exchange data. In other words, the following frame (+) is

sent from the RAM to the GMGPU and the already available result () is

sent back to the RAM. Simultaneously, the current frame () is being

processed on the device (GPU), see Figure 3.17 (a).

: The GPU automatically loads the content of adjacent

memory cells because its internal design assumes that it is very likely for

neighbouring data within the same area to be soon requested as well [82].

Memory coalescing is another optimisation measure that significantly helps

increasing the probability of threads in the same warp (a group of 32 threads

from the same thread block running simultaneously) to access the memory

together. The purpose of coalescing is to ensure that the threads access the

same memory segment to only pay a single memory transaction. However, if

3.8 Results & Discussions 111

they request sparse locations, it would cost the GPU as many transaction as the

number of sparse addresses.

Figure 3.16 Kalman filter GPU implementation for depth map
filtering

(a) (b)

Figure 3.17 Data exchange optimisations in the GPU. (a)
Asynchronous transfer RAM/GMGPU. (b) Data loading
GMGPU local memory

112 3. GPU-Based Real-Time RGBD Data Filtering

Appropriately organising the data in the GMGPU allows such a contiguous

access to happen automatically. Structure of Arrays [83] instead of the easy to

use Array of Structures significantly increases the chances of loading a chunk of

memory containing the data not only for the thread which has requested it, but

also for its neighbours in the warp. Figure 3.17 (b) illustrates what happens

when a thread requests the content of a given cell in the global memory.

Figure 3.18 illustrates GPU/CPU benchmarking for the three tracking scenarios

that will be discussed later. The outcome of GPU’s implementation can be

clearly seen. The whole frame rate of tracking is just below 30 FPS (almost one

frame processed every 33ms).

3.8.2 Expending Sensor’s Field of View

Another advantage, of using a Kalman filter, is extension of the native

operational range regarding the sensor. The filter can compensate for the lack in

accuracy at a larger range. As shown in Figure 3.19, an extra 1.5m could be

afforded without any additional hardware improvement. As a result, the

reachable space becomes broader, with a better accuracy. The latter remains

proportional to the square of the depth, but its slope becomes less important

compared to the raw measurements.

Figure 3.18 CPU/GPU benchmarking of KF for Kinect

3.8 Results & Discussions 113

(a)

(b)

Figure 3.19 Kalman filter effect on 3D points localisation at different
distances. (a) Raw measurements. (b) Kalman correction

More importantly, the filter can be implemented to work in real-time. Hence, its

processing load does not affect the frame rate of the sensor significantly (it

filters 29.5 frames on average out of a total of 30 every second).

114 3. GPU-Based Real-Time RGBD Data Filtering

Figure 3.20 Robot tracking experimental setup

Note that when the range of 7.0m is exceeded, the Kinect’s outputs become very

noisy. The filter cannot handle this very low quality of measurements anymore.

Such an inadequacy is a pure hardware limitation to fit the affordable price of

the sensor [45].

3.8.3 Object Tracking Applications

To validate the Kalman filtering effect on Kinect data, an experiment, where a

moving vehicle was tracked by one Kinect camera, was conducted, see Figure

3.20. The robot moves in a closed space of 4 × 4 . The objective is the

determination of its global position within the surrounding environment whilst

scanning. The solution was tested against a Moving Average Filter (MovAve)

[79] in order to justify the rationale of fitting Kalman equations to Kinect

sensor.

The two components required for robot localisation are and coordinates.

Even though is almost unchangeable over time for ground robots, it can be

included in the filter without any further restriction. The purpose of this

approach is to test the accuracy of the Kinect in issuing three-dimensional

positions for a given object in real-time. The filter affects only on the depth

3.8 Results & Discussions 115

data (component in this setup). Afterwards, the computation of the two

remaining coordinates is based on and the calibration parameters of the IR

camera, Equation (3.12). For the sake of generality, the tracker was tested on

three different scenarios where the robots were moving in front of the camera (i)

in a circular motion, (ii) Left to Right (swinging back and forth) and (iii) Front

to Back (swinging left and right). For every scenario, the ground truth

trajectory undergone by the vehicle along with the raw position and the filtered

trajectories resulting from the Kalman filter (KF) were plotted as well as the

moving average filter (MovAve).

To assess the accuracy of this approach, the Root Mean Square Error (RMSE)

was evaluated for both and . The results can be seen in Figure 3.21 to

Figure 3.29.

The OptiTrack3 (Chapter 2) system was used as a high precision ground truth

reference. In all the three scenarios, it is plausible that and graphs, filtered

with KF, are contaminated with less error due to KF optimal smoothing effect.

Moreover, the further the robot gets from the camera to the upper left and right

corners, the higher the error becomes. The noisy fragments of the trajectory

correspond to peaks in and ’s error plots. Ultimately, the filtered trajectory

(red) is always the closest to the ground truth (black). Its RMSE is also smaller

than MovAve’s one. In other words, at every position KF-RMSE is at least

1.0cm less than MovAve-RMSE Table 3.1. The raw data (blue) is sparser and

un-steadier. Its corresponding error is remarkably larger. Kinect accuracy is

acceptable in the range below 3.5m from the sensor (Maximum error 5cm).

However, when the tracked object moves beyond this limit, the error increases

dramatically to up to 20cm at 4.5m. The actual operating range of the sensor is

(0.8m to 3.5m) out of which Kinect is not meant to work properly [2].

3 https://www.naturalpoint.com/optitrack/. 2015

116 3. GPU-Based Real-Time RGBD Data Filtering

Scenarios MovAve (cm) KF (cm) Difference (cm)

Scenario 1
(circle)

z 4.03 2.81 1.22

x 8.17 5.63 2.54

Scenario 2
(left-to-right)

z 4.03 2.81 1.22

x 8.17 5.63 2.54

Scenario 3
(front-to-back)

z 4.52 3.32 1.2

x 8.94 5.88 3.06

Table 3.1 RMSE results of the tracking scenarios

Figure 3.21 trajectories of the vehicles for tracking scenario 1
(circle)

3.8 Results & Discussions 117

3.8.3.1 Scenario 1 (Circle)

From an object tracking perspective, the aim of this scenario is to test the

effectiveness of the filter at the boundaries of the working space. In addition,

the closed shape of the trajectory gives an insight into prospective deviations of

measurements over time. For instance, small frame-to-frame position estimation

errors accumulate over time and may cause the estimated trajectory to diverge

from the ground truth one. In other words, a correct loop closure means that

the algorithm is drift-free. From Figure 3.21, one can see that the sensor

delivers the worst measurements at the deepest extremities of -axis. has a

bell-shaped curve as shown in Figure 3.22 (a), ranging from a minimum value of

0.8m (minimum quantifiable depth) to a maximum of just below 5.0m. For

instance, the maximum measurable depth is 4.5m. on the other hand, is

periodic in the interval m, Figure 3.22 (b). In general, the RMSE

regarding for both the Kalman filter and its moving average counterpart are

within the range [0.0, 0.05]m and [0.05, 0.1]m, respectively, Figure 3.23 (a).

Likewise, error varies in [0.0, 0.25]m for Kalman and in [0.0, 0.5]m for MovAve

Figure 3.23 (b). Overall, the Kalman filter gives better results for both

components and .

118 3. GPU-Based Real-Time RGBD Data Filtering

(a)

(b)

Figure 3.22 and variations. KF in red, MovAve in green and
ground truth in black. (a) . (b)

3.8 Results & Discussions 119

(a)

(b)

Figure 3.23 Error graphs, KF in red, MovAve in green. (a) . (b)

120 3. GPU-Based Real-Time RGBD Data Filtering

Figure 3.24 trajectories of the vehicles for tracking scenario 2 (Left-
to-Right)

3.8.3.2 Scenario 2 (Left-to-Right)

The purpose of this scenario is to test the capabilities of the filter in the middle

of the scene towards the positive direction of the -axis (Left to Right). It is

clear from Figure 3.24 that the inaccuracy of measurements streamed by the

sensor becomes more significant at higher depth levels as well as at the two

limits of the -axis. For instance, component variations are periodic with an

extremal value of (~5m) at only two positions, see Figure 3.25 (a). Otherwise,

varies in the interval [0.8, 5.0]m. , on the other hand, remains continually

increasing within m, Figure 3.25 (b). The RMSE of component

ranges between 0.0m and 0.08m for KF. Nevertheless, it marks an unusual level

of 0.14m at a single position. MovAve error on the other hand, remains large

throughout the whole period within [0.0, 0.16]m. It reaches its lowest levels

when the robot is the closest to the camera, see Figure 3.26 (a).

3.8 Results & Discussions 121

(a)

(b)

Figure 3.25 x and z variations. KF in red, MovAve in green and
ground truth in black. (a) . (b)

122 3. GPU-Based Real-Time RGBD Data Filtering

(a)

(b)

Figure 3.26 Error graphs, KF in red, MovAve in green. (a) . (b)

3.8 Results & Discussions 123

Figure 3.27 trajectories of the vehicles for tracking scenario 3
(Front-to-Back)

error levels are more important since with KF the RMSE varies in the range

[0.0, 0.16]m, and [0.0, 0.4]m for MovAve, Figure 3.26 (b).

3.8.3.3 Scenario 3 (Front-to-Back)

This scenario has been carried out to test the capabilities of the filter in the

middle of the scene towards a positive direction of the -axis (Front-to-Back).

From Figure 3.27, one can see that the overall accuracy of measurements is less

noisy than the previous scenario, although, the trajectory still experiences

substantial inaccuracies at the same weak spots (greater and extreme).

Conversely to Scenario 2, is increasing continually in the interval [0.8, 4.8] m

Figure 3.28 (a). component variations, however, are pseudo-periodic with a

magnitude ~2m, Figure 3.28 (b).

124 3. GPU-Based Real-Time RGBD Data Filtering

(a)

(b)

Figure 3.28 and variations. KF in red, MovAve in green and
ground truth in black. (a) . (b)

3.8 Results & Discussions 125

(a)

(b)

Figure 3.29 Error graphs, KF in red, MovAve in green. (a) . (b)

126 3. GPU-Based Real-Time RGBD Data Filtering

The RMSE of z component ranges between 0.0m and 0.1m for KF. The latter

reaches the highest levels at the three turning points corresponding to changes

in the orientation of , Figure 3.29 (a). RMSE with MovAve becomes more

important at the turning points in the same interval as in the previous scenario

[0.0, 0.16]m, Figure 3.29 (a). The RMSE for with KF progressively increases

in the interval [0.0, 0.15]m and so does for MovAve in the interval [0.0, 0.35]m,

Figure 3.29 (b).

3.8.4 Registration Applications

3.8.4.1 Off-Line Registration

The result delivered by the Kalman filter was tested within a 3D registration

pipeline as presented in Figure 3.30. The process starts with the application of

the filter to the 3D data streamed by the camera. In the module of feature

extraction Figure 3.30, four key point extractors were investigated: TOMASI

[50], SIFT3D [51], HARRIS3D [53] and THRIFT [59]. The latter fitted best to

the need along with the CSHOT feature descriptor [84]. This descriptor

leverages the colour information, available by default in Kinect data, for an

even more distinctive matching of key points. Some results can be seen in

Figure 3.31. Combining both THRIFT and CSHOT presents a twofold

advantage because THRIFT describes very well the 3D geometry surrounding

the features without considering colour information. Also, CSHOT builds the

descriptors with both modalities, feature positions and its colour. Figure 3.31 (a)

(b) (c) illustrates the intermediate results of the different steps regarding the

off-line registration pipeline. The latter starts with the acquisition of the source

and target point clouds to 3D key points extraction. Followed by

correspondence matching and eventually the computation of the relative pose

between two views. The resulting shiny surfaces are shown beneath the line of

three images containing point clouds.

3.8 Results & Discussions 127

Figure 3.30 3D Registration pipeline

Although a good feature data was used (optimised with Kalman filter, THRIFT

key points, and CSHOT descriptor), features-based registration does not always

give the best result. It reduces computation time to over 1/80 the original time

(the ratio between the size of key points’ set and the whole point cloud). In

most cases, the initial transformation gives a satisfactory result that hugely

reduces the work expected from a further registration refinement stage. This is

particularly the case, when there is no scale difference among the views.

Nevertheless, a misalignment can appear when the features are correctly

matched but the 3D geometry of the corresponding views is not similar; i.e.

cases where the snapshots are captured at widely different scales, or when the

objects in the scene are not totally rigid. For the latter (non-rigid objects),

features on the surfaces do not conserve their relative world location and aspect.

Rigid body transformations cannot handle this deformability, however. On the

other hand, it is possible to remedy this limitation partially within the family of

rigid body transformations. To this end, the misalignment can be overcome

between feature points by taking into account not just the detected key points

but the entire point cloud data. The corrective effect of this strategy can be

seen in Figure 3.32. There may be a need to refine the registered point cloud for

a smoother surface reconstruction.

128 3. GPU-Based Real-Time RGBD Data Filtering

(a)

(b)

3.8 Results & Discussions 129

(c)

Figure 3.31 Point cloud registration using THRIFT and CSHOT
(a) view 1. (b) view 2. (c) view 3

Figure 3.32 The effect of refinement

130 3. GPU-Based Real-Time RGBD Data Filtering

3.8.4.2 Real-Time Reconstruction

Unlike tracking, real-time registration applications use many features to find the

correct mapping between the source and target views. In order to test the

effectiveness of the filter for this type of application, some experiments on a

real-time 3D scanning application with Kinect were carried out. In this

experiment, a Structure From Motion algorithm was used to build gradually the

3D geometry of the scene as one moves around with a hand-held Kinect [85].

The algorithm reconstructs the 3D geometry of the site by aligning the freshly

acquired frames on the already built model. Both the filtered and the raw 3D

data were tested, see Figure 3.33.

The registration based on the raw data is prone to misalignments that in turn

lead to rough 3D structure, particularly when the object is further away from

the camera. As can be seen in Figure 3.33 column (b), raw depth points are

lying in parallel planes (the discrete stripes can be clearly seen in Figure 3.33

column (b)). Such a structure demonstrates what has already been explained in

Section 3.5. Feature positions are discretised and distributed on the available

depth levels. Although surface reconstruction algorithm interpolates the gaps

between the planes after triangulation, the resulting model still suffers from a

rough and bumpy surface. This downside clearly appears after lighting the

reconstructed structure. Nevertheless, for the model arising from the filtered

data, illustrated in Figure 3.33 column (c), the geometry is smoother, and there

is almost no misalignment between the views taken over time. The resulting 3D

geometry is more realistic and less noisy. Hence, it does not need any further

post-processing.

From a computational point of view, the 3D reconstruction algorithm runs at 20

FPS. This frame rate is less than the frequency of filtering that varies between

25 FPS to 30 FPS. In addition, one can visually evaluate the high quality of the

outputs resulting from the scanning process. The filter successfully moves the

discretised points back to their optimal 3D locations.

3.8 Results & Discussions 131

(a) (b) (c)

Figure 3.33 Experimental results for 3D on-line reconstruction
applications. (a) RGB image. (b) 3D Scene reconstructed from
raw depth data. (c) 3D Scene reconstructed from the filtered
depth data

132 3. GPU-Based Real-Time RGBD Data Filtering

3.9 Conclusion

In this chapter, an innovative enhancement approach for the raw RGBD data

issued by Kinect-like sensors was presented. The mathematical model

representing the depth map was constructed and successfully adapted to a

Kalman filtering scheme. The adaptation started from the demonstration that

was conducted in order to satisfy the requirements of a Kalman filter in terms

of linearity between the depth of points resting in parallel Z-levels and the

Gaussian nature of their inherent noise.

Firstly, the filtering approach was tested on an object tracking algorithm to

assess the accuracy of data after applying the filter. To this end, three fixed

viewpoint tracking scenarios were carried out with one Kinect in front of a

moving robot. The different scenarios were chosen to assess all the aspects of

tracking based on RGBD sensors. Such a family of sensors shares the same

deficiency of accuracy on the boundaries of the imager because of the

unavoidable residual lens distortion, even after an accurate calibration. In

addition to a substantial drop in accuracy at greater depth levels. The results

have proved the effectiveness of the filter with the appropriate parameters that

have been determined. The effective operational range of the camera was also

extended from 4.0m for the raw output alone to 5.5m with the filtered outputs.

Secondly, the output of the filter in a 3D scanning application was tested to

assess visually its effect on 3D model reconstruction. A complete pipeline for off-

line RGBD data registration was proposed starting from feature extraction to

descriptor computation to correspondence extraction and matching and finally

the actual alignment followed by the refinement. The result expected from a

feature-based pre-alignment registration is highly reliable and takes less time.

The best results were reached with THRIFT key points in addition to CSHOT

as the most efficient descriptor.

Thirdly, a possible architecture to integrate the filter directly in the existing

driver of the camera was proposed. However, in order to maintain the real-time

3.9 Conclusion 133

nature of the sensor, an algorithm that applies in parallel a single kernel of

processing launched on all the pixels of the depth image was used. Thus, the

solution was implemented in the GPU to boost the frame rate. Practically, the

filter was designed pixel-wise because each pixel is independent of its

neighbours.

This solution could be easily extended to other 3D scanning devices. Such a

facility would provide the users with great potential to reach a better accuracy

without causing any latency to the system. Consumer cameras are now better

endowed to achieve reasonably what could not be otherwise accomplished

without expensive, sophisticated laser scanners and tracking frameworks.

135

RGBD Data
Correction and
Background Removal

In this chapter, two pre-processing algorithms aiming at the correction of depth

measurements delivered by ageing RGBD cameras and background subtraction

are presented.

The first contribution (ageing sensors correction) is a novel method to calibrate

active depth cameras accurately. This approach can either be based on simple

interpolation means or the more sophisticated Gaussian Process Regression

(GPR). It is applied after the standard calibration, and it is particularly useful

for worn depth cameras. The latter were proven to present a significant decay of

accuracy that cannot be fixed with the standard pinhole mono or stereo

calibration procedures.

The second contribution is another algorithm for background/foreground

segmentation of RGBD data with the Gaussian Mixture Models (GMM). The

algorithm begins with background subtraction from the colour and the depth

136 4. RGBD Data Correction and Background Removal

images separately. The foreground regions resulting from both streams are then

fused for a more robust detection.

The experimental data, obtained when both algorithms are applied, show the

weaknesses of standard calibration and the corrective asset of the proposed

solution. They also demonstrate the robustness of the proposed segmentation

approach in coping with illumination change, shadow and reflection. These

findings can be further extended to fit any type of range cameras that have a

similar working principle as the Kinect.

The two algorithms have been implemented in the GPU. Thus, they are suitable

for real-time systems because they exploit the entire frame rate offered by the

sensor (30 FPS).

4.1 Overview

4.1.1 Depth Sensors Correction

Despite widespread success achieved by RGBD cameras, their accuracy issues

have not been fully addressed. Prior studies in the literature have focused on

either regular monocular camera calibration (colour and infrared cameras

independently) or stereo calibration, where both RGB and IR cameras are

jointly characterised [46]. During experimentation with Kinects, a continually

decaying quality of range measurements is noticed over time. This phenomenon

persists even after carrying out a correct standard calibration. More

importantly, this issue of accuracy regarding Kinect was very little discussed in

the literature.

The working principle of the correction module is partly based on the findings

presented in the previous chapter. In addition, a simple regression as well as a

learning approach adapting GPR are applied to correct the drift of depth

readings. GPR has been chosen because it provides a probabilistic framework to

work directly with priors on a space of functions. It also provides a more

accurate prediction and correction of the outputs. On the other hand, an

4.1 Overview 137

important limiting factor for the acceptance of this method in practice is the

computational burden observed when training datasets grow. However, the

training phase can be carried out offline, just as the regular calibration is

performed. Generally, the algorithm requires a set of less than 1% of the entire

working dataset to accomplish the learning phase correctly. The correction step

applies only to the coordinate (depth) of the query data. The remaining and

components are deduced from the corrected and camera calibration

parameters.

Few works in the literature have yet discussed the issue of accuracy when depth

cameras are used as a measuring tool. Zhu et al. [86] combined a Time Of

Flight (TOF) camera with a colour stereo setup to correct the distribution of

depth data. Chiu et al. [87] combined the depth images captured from a range

sensor and the disparity map delivered by an IR/RGB pair to improve the

accuracy of the 3D map. Xul et al. [52] used the same technique to improve the

accuracy of the depth image covering the scene. Henry et al. [88] combined the

visual features of an RGB camera and the shape-based alignment of a range

sensor to reconstruct a reliable 3D geometry. Moreover, Matyunin et al. [89]

increase the temporal stability of outputs.

In all of the above-cited works, the authors either compensate for one sensor’s

accuracy with alternative sensors’ data or they filter the raw data streamed by

the sensor itself. Nevertheless, the solution proposed in this thesis corrects the

active depth cameras by leveraging the characteristic properties of structured

light sensors, already presented in Chapter 3, and a learning algorithm (GRP)

to readjust the measurements. The results are cleaner (fewer outliers), more

stable (fewer abrupt fluctuations) and accurate sensory data.

4.1.2 RGBD Background Removal Methods

Moving objects tracked with RGBD cameras must first be detected in the

image. This detection requires a tool able to extract foreground pixels

138 4. RGBD Data Correction and Background Removal

corresponding to the regions of interest from the remaining background. Hence,

emerges the need to decide whether a newly acquired frame contains any

foreground regions corresponding to the tracked objects and, if there are any,

where they are located.

Several problems must, therefore, be tackled by a good background removal

algorithm. Such an algorithm should be robust against non-stationary

backgrounds such as waving trees, sudden illumination changes, shadows and

camouflage. Most of the current solutions in the literature are able to cope

decently with all the disturbances listed above. In addition, robustness and

processing time limitations are also a critical requirement for real-time

applications.

Many works in the literature have already addressed the possibility of using

depth and colour images jointly for a better background segmentation. Cristani

et al. [90] presented an overview of background subtraction solutions for mono

as well as stereo cameras. Abramoff et al. [91] used a stereo pair of cameras for

an automatic segmentation algorithm. Gordon et al. [92] added disparity

information to the GMM for background modelling. In their approach, the

authors found that the combination stereo/colour helps enormously overcoming

the classic problems of colour segmentation.

Nevertheless, stereo data itself originates from pairs of RGB images. For this

reason, it holds the same weaknesses towards change in illumination and

shadows. Friedman and Russell proposed a GMM approach for background

removal in [93]. A few years later, several innovations were added to the original

model by Stauffer and Grimson [94]. Their paper is often regarded as a reference

for GMM-based background/foreground segmentation. Lee et al. [95] later

proposed a GPU implementation of Stauffer and Grimson’s algorithm that has

the same performance as the native implementation but it is much quicker.

Both algorithms of the present chapter, i.e. GPR correction and GMM

foreground/background segmentation, will serve as an RGBD data pre-

4.2 Depth Sensors Correction 139

processing module for the next chapter. Similarly, they can also be used by any

other application to take full advantage of the potential of cheap depth sensors.

The remainder of this chapter is organised as follows: In Section 4.2, a depth

sensor correction solution is provided. The problem of decay in accuracy is

initially uncovered then two solutions are offered to solve it. In Section 4.3,

another cooperative background removal method, using both RGB and Depth

images, is detailed. In Section 4.4, test results are presented and discussed along

with an analysis of computation time.

4.2 Depth Sensors Correction

4.2.1 Filtering Unreliable

Here, filtering means eliminating the unreliable measurements. Kinect’s driver

computes the depth map from the raw disparity data delivered by the device.

The IR camera/projector setup constitutes a stereo pair with a baseline of

approximately 7.5cm (Chapter 2). The projector emits a beam of known IR

patterns onto the scene, which are generated by a set of diffraction gratings

with special care in order to reduce the effect of zero-order propagation at the

central bright dot [96]. The actual depth is computed by a triangulation process

that correlates each measured value to a reference disparity stored in the device.

In other words, for each pixel in the IR image, a small correlation window is

used to compare the local pattern at that pixel with the reference one (Chapter

2). This correlation yields an offset from the known depth value, which is the

actual disparity measurement.

Kinect performs a further interpolation to reach sub-pixel accuracy. The camera

computes the disparity according to the following equation:

= 1
8

() (4.1)

140 4. RGBD Data Correction and Background Removal

Where is the normalised disparity, is Kinect’s disparity, and is an

offset value dedicated to the device. The ratio / appears because the value of

is expressed in / pixel unit1.

Before proceeding with the correction of depth readings, the unreliable are

eliminated from the captured map. A depth value is considered as unreliable

when no disparity information is available. Its corresponding location in the

scene may be either out of reach regarding the sensor; or it may have a shiny or

light-emitting surface. In addition, when the object is too close to the

camera < . , the sensor delivers imprecise measurements, which are

useless in their coarse state.

4.2.2 Kinect Depth Map Structure

In order to study the nature of sensory outputs, the camera was pointed parallel

to a large flat wall [7]. This experiment results in a cloud of points from the

entire operational range, see Figure 4.1 (a).

The 3D distribution of depth levels is illustrated in Figure 4.1 (b). Point data

within the captured cloud lie in the independent parallel planes , … , .

Each of which, has its own depth value , and set of points (, ,).

The latter share the same range reading . The number of Z-Levels determines

the precision of depth measurement. In other words, the density of Z-Levels is

proportional to the depth resolution of the sensor.

The discrete nature of captured data originates from the quantisation of the

actual continuous distance separating the objects from the camera plane. In

addition, they are limited in number (+ distinct depth levels). More

importantly, the finite set of possible levels is similar for all Kinects running the

same driver. The gap between two successive Z-Levels (+) increases

1 http://wiki.ros.org/kinect_calibration/technical. 2015

4.2 Depth Sensors Correction 141

proportionally to the square of the distance separating the camera from the

scene [46].

(a)

(b)

Figure 4.1 Kinect depth data. (a) Actual output of the wall. (b) 3D
structure of the Z-Levels

142 4. RGBD Data Correction and Background Removal

4.2.3 Problem Statement

After being used for an extended period, some electronic sensory device suffers

from a decreasing accuracy. The quality of the 3D map generated by Kinect

sensor is, therefore, highly affected by the performance of its IR setup. However,

the RGB camera, passive part of the device, is more robust, since the colour

image is less affected over time.

In all the following sections, the Kinects are assumed to have undergone a

proper standard monocular calibration (, ; ,) for both cameras. In

addition, a stereo calibration determines the parameters [,].

Let be a healthyKinect. Its resolution is the same as the native one

characterising factory operational range regarding the sensor (±1.5mm at 80cm,

±5.0cm at 4.0m). On the other hand, is a worn Kinect, for which the

accuracy (± 1.8mm at 80cm, ± 20.0cm at 3.8m) cannot be recovered with

standard calibration procedures. Thus, the problem becomes: given the

trustworthy depth readings delivered by , how could one correct the shifted

disparity image generated by ?

The phenomenon of deterioration in accuracy is explained in Figure 4.2.

covers the entire operational range of the camera (0.8m to 4.0m) at a good

accuracy, Figure 4.2 (a). The error in the depth estimation is shown with green

intervals. On the other hand, ’s range is smaller (0.8m to 3.8m) and the

uncertainty in its depth measurements is larger compared to (red intervals

in Figure 4.2 (b)).

4.2 Depth Sensors Correction 143

(a)

(b)

Figure 4.2 Error intervals in Z-Levels. (a) depth map structure.
(b) depth map structure

144 4. RGBD Data Correction and Background Removal

This decreasing accuracy is remarkably observed within ageing sensors. To the

author’s knowledge, the state of the art calibration and studies on depth

cameras have not yet addressed either this issue or a solution for it.

Before this work was raised, many attempts were undertaken to correct the shift

with optical calibration procedures. However, the erroneous range readings

persisted. In the technical specifications of the sensor, it is mentioned that the

computation of the disparity map is based on a triangulation algorithm applied

to the IR projector/camera pair. The projector is an output device, hence, it is

not capable of capturing any calibration patterns. In addition, the factory

calibration parameters concerning the IR setup are embedded in the sensor itself

and inaccessible from outside.

To explain the problem with a real scenario, a flat wooden panel was fixed in a

fronto-parallel direction to the two Kinects at a distance of 3.90m Figure 4.3

(a). The upper camera () is working properly, but the other one () is

worn. In this experiment, the range separating the panel from both sensors is

measured. The disappearance of the grey square (panel) from the image is a sign

of its non-detection in the native operational range. At 3.90m the depth map

captured by the healthiest camera localises the panel at 3.89m, Figure 4.3 (b).

However, the worn camera is unable to see it as shown in Figure 4.3 (c).

Afterwards, the panel was moved forward to 3.70m, so both Kinects could

detect it, Figure 4.4 (a). indicates that the pattern is seen at 3.70m, Figure

4.4 (b). Whereas, localises it at 3.95m, Figure 4.4 (c).

In order to fix this issue, a learning algorithm was proposed in order to leverage

the precise outputs of the healthy sensor for the elimination of shift in the worn

one.

4.2 Depth Sensors Correction 145

(a)

(b)

(c)

Figure 4.3 Accuracy difference between and at 3.9m. (a)
Setup (3.90m). (b) output (3.89m). (c) output (unseen)

146 4. RGBD Data Correction and Background Removal

(a)

(b)

(c)

Figure 4.4 Accuracy difference between and at 3.7m. (a)
Setup (3.70m). (b) output (3.70m). (c) output (3.95m)

4.2 Depth Sensors Correction 147

4.2.4 Depth Correction with Interpolation

To remedy the erroneous measurements, a mathematical model is first built

from the observed data and then attributed to the respective sensor for

correction. The design of such a model is based on the determination of the

appropriate function that readjusts the inherent shifted raw measurements. This

function should be able to remap each shifted depth value () to its respective

real world position. Hence, the depth metrics streamed by the sensor and their

corresponding ground truth ones, i.e. pairs), are related with the equation

(shift from the true value), Figure 4.5.

Figure 4.5 Shift in depth values of the worn sensor

) computes for each depth value the corresponding error based on a precise

ground truth reference. This function results from the interpolation of the points

taken simultaneously from the Kinect’s point cloud and a high precision

tracking system2. Alternatively, a trustworthy sensor, capable of delivering good

quality measurements, can be used as well. The sparse data) is fitted

2 https://www.naturalpoint.com/optitrack/. 2015

148 4. RGBD Data Correction and Background Removal

with a polynomial function () that analytically approaches the distribution of

samples. This function takes as input the raw worn measurements () and

outputs correct correspondents ().

Although the correction helps significantly to overcome the shift in the depth

data, the drop in the resolution of the sensor could not be entirely resolved. In

other words, the correction algorithm improves the accuracy of the device, but

it cannot surpass the native resolution due to the innate hardware limitations.

Practically, such an algorithm is more suitable to run in the GPU

simultaneously with the image acquisition process. The measurements are

therefore corrected without incurring an extra computational load to the

remaining layers of processing.

4.2.5 GPR on Kinect Depth Data

The Gaussian Process Regression is a generic supervised learning method

initially designed to solve regression problems [97]. This method has the

advantages of being: , it interpolates all the available training data;

, one can compute empirical confidence intervals that may be used

to refit the prediction in some regions of interest and , because different

linear regression models can be specified [98].

In this thesis, the proposed correction procedure is underlined by the GPR in

order to fit the finite set of sampled points. The latter (priors) are considered as

training data based on which the GPR computes the posterior distribution. The

more likely functions are, therefore, those passing through training points. As a

result, the GPR provides a continuous predictive distribution whose mean is the

estimation of the underlying model and variance is the confidence in

measurement (see Figure 4.6).

The model is non-parametric and fully specified via mean and covariance

functions. The latter often have hyper-parameters that would be optimised to fit

the model to a given training dataset. Given a set of training pairs {(,)},

4.2 Depth Sensors Correction 149

where denotes the erroneous depth measurements and are their respective

ground truth counterparts. The purpose is to learn a model), which is able

to attribute to every shifted a single accurate correspondent). This

function is therefore able to accurately express the actual range that should be

seen from the query pixel instead of . The process is modelled by the following

function:

= () + (4.2)

Where is a random variable that has a Gaussian distribution of mean zero

and variance .

The fundamental assumption in GPR modelling is that the data is sampled

from a multivariate Gaussian distribution [97]. The observed pairs of

Figure 4.6 GPR components

depth values can also be described as a Gaussian distribution

where }, and is the covariance

matrix computed using a known covariance function):

150 4. RGBD Data Correction and Background Removal

, =

(,) (,) … (,)
(,) (,) … (,)

(,) (,) … (,)

+ (4.3)

The diagonal elements of are equal to + . Where, is the maximum

allowable variance between two input variables. The extreme off-diagonal

elements tend to zero when a large domain is spanned.

The Gaussian and Squared Exponential are the most commonly used covariance

functions [4]. In this work, Squared Exponential has been chosen as a covariance

function:

(), () = ,

= (() ()) (4.4)

The covariance between the outputs (), () (corrected depth values) is

described as a function of the inputs , (drifty depth values). It reaches its

maximum value , = when the two variables become very close to

each other (() ()) . This means that the two

outputs are nearly perfectly correlated. On the other hand, when the two

variables are far away from each other, , . This means that the two

points , are very weakly correlated, and so are the outputs (), ().

The relationship between the covariance function and the distance between two

elements causes distant observations to carry a negligible effect during the

interpolation at a new point. The length parameter defines how much effect

this separation has. The latter controls the flexibility built into Equation (4.4).

The joint distribution of observed = […] and the predicted values ()

for a query point is given by:

4.2 Depth Sensors Correction 151

() ~ 0, (4.5)

With:

= [(,) (,) … (,)]

= [(,)]

The posterior distribution)| , i.e. given the data , how likely is the

prediction), is given by:

(()|) ~ (,) (4.6)

The best estimation of) is the mean value of the distribution in Equation

(4.6):

The uncertainty in the estimation is the covariance of the distribution given by:

If the Gaussian kernel is used, the hyper-parameter of the Gaussian is given

by = , , , where is the width of the kernel [97]. These parameters

are the only free parameters. Their optimal values for a particular dataset can

be automatically estimated by maximising the marginal likelihood with

standard optimisation methods.

() = (4.7)

() = (4.8)

152 4. RGBD Data Correction and Background Removal

The purpose of adapting the GPR in this work is the learning of a function

() from the training data ,)}. These pairs of (,

depth values will serve to correct the query points , ,). Nevertheless,

the correction applies only on the depth component . Thereafter, the

computation of the remaining two coordinates (,) is based on the corrected

depth () =), and the native calibration parameters of the IR camera

(, ; ,). For instance, the depth measurements are projected

in the 3D frame of the IR camera as follows:

= (/)()
= (/)() (4.9)

(,) are the 2D image coordinates of the target pixel where the depth value

has been captured.

4.2.6 Depth Map Correction Procedure

The complete correction procedure of the worn sensor is illustrated in

Figure 4.7. This procedure starts with a phase, Figure 4.7 (a); followed

by (test) stage, Figure 4.7 (b). The pairs (,) , i.e.

(,) corresponding points, are utilised in the construction of the

training set {(,)}. These points are selected from a collection of feature

points sampled from the whole operational range of the camera. At this level,

both cameras (,) are supposed to have accurately undergone a mono,

IR and RGB calibration separately, and a stereo calibration IR/RGB.

More importantly, in this experiment the healthy camera was tested against

the accurate range measurements delivered by a rangefinder3. The wooden panel

facing the camera (see Figure 4.3 (a)) is set to a position orthogonal to -axis.

Both, camera and rangefinder, are located at the origin = .

3 Bosch Laser Range Finder DLE40

4.2 Depth Sensors Correction 153

The panel is moved over several distances from the sensor. Each distance is

attributed a marker. The collection of the pairs worn/correct range values is

achieved jointly between the sensor and the rangefinder. For every known

distance, a human agent fires the laser beam at the panel and reads the

distance. Simultaneously, the cameras capture a 3D snapshot of the scene. The

imaged snapshots are saved together with their respective correct readings

obtained from the rangefinder. Afterwards, the extraction of planar surfaces

within the scene is performed. For instance, the panel is easily recognisable

among alternative shapes. Later, the average value of component regarding

the points resting in the panel is computed. All these points are normally at the

same range from the sensor.

Despite the tediousness of this data collection process (because the human agent

needs to fire the laser beam and read the distance for every sample), the ground

truth range readings represent the actual depth value very accurately. However,

if the user does not have a rangefinder, an easier alternative can be used as well.

The latter requires a healthy camera to be associated with the worn one. The

rigid body transformation linking both cameras can be obtained from the

alignment of the set of features extracted from the respective colour images. The

procedure of correction is described below:

 Set the two cameras at a close scale (small scale difference between point

clouds). At this stage, the worn/healthy rigid-body transformation be-

tween cameras is assumed to be known.

154 4. RGBD Data Correction and Background Removal

(a) (b)

Figure 4.7 GPR-based RGBD drift correction with another sensor.
(a) Training. (b) Correction (test)

 Extract the 2D features from each of the two RGB images delivered by the

sensors. The pair of colour images (,) is required in order to ex-

tract good distinctive features. Alternatively, one can visually select differ-

ent pairs of points from anywhere in the colour image. Preferably from re-

gions at close proximity to the camera in order to prevent potential errors.

This manual action has become possible due to the knowledge of stereo-

calibration regarding the IR/RGB stereo setup.

4.2 Depth Sensors Correction 155

 The training stage begins with the matching of the extracted 2D features

, , Figure 4.7 (a). The result of the matching is a list of corresponding

pairs (,) .

 The 3D points (, ,), , ,)) are then computed based on

(,) positions of their respective 2D correspondents (,),

,)) as well as calibration parameters of the camera, Figure 4.7 (a).

After computing the 3D coordinates of points, the actual GPR is applied.

The latter computes the correction model . This model will be considered

as an extra calibration parameter for the worn sensor.

 Correction phase uses the outputs of the training algorithm () to readjust

the wrongly captured readings, Figure 4.7 (b). The entire depth map { }

undergoes the correction in the same way the ordinary calibration is ap-

plied.

 Corrected depth data is used to process the remaining two coordinates

{ , }. As a result, a more accurate 3D point cloud , ,) is ob-

tained.

The number of features necessary for correction module to work properly

depends on the size of images and the field where the end application operates

(1% of the pixels is generally sufficient). For experiments with VGA resolution

images, 130 samples are adequate, but the greater the number of samples, the

better the correction.

The set of training features must be varied and taken at different 3D locations

in the scene. Otherwise, the training will not be complete, and the sensor

delivers erroneous measurements for the regions where no samples had been

provided.

156 4. RGBD Data Correction and Background Removal

4.3 Real-Time RGBD Data Segmentation

4.3.1 GMM for RGBD Background Subtraction

The segmentation algorithm starts by applying the GMM separately on both

frames streamed by the cameras (Depth and RGB). The resulting foregrounds

are then fused based on another algorithm. The power of the GPU is widely

leveraged throughout this background removal solution to ensure the real-time

performance of the system. Real-time responsiveness is crucial for segmentation

as it was for the correction because both components (correction and

segmentation) constitute a pre-processing module required for the next chapter.

From here on, it is assumed that depth data used by the segmentation

algorithm is delivered by the correction stage proposed in Section 4.2.

4.3.2 Background Modelling

The GMM is a parametric probability density function represented as a

weighted sum of Gaussian distributions [99], see Figure 4.8. The estimation of

its parameters is based on the training data either with the iterative

Expectation-Maximization (EM) algorithm or the Maximum a Posteriori (MAP)

estimation of a trained model. The foreground detection follows the steps listed

below:

 Modelling the values of a particular pixel as an () mixture of

Gaussians { , , }; , Figure 4.9 (a). Each distribution

has a mean and a variance , as well as a weighting coefficient to

quantify its importance. The weightings are positive and add up to

one.

 Determining the Gaussian that corresponds to the background model

based on the mean and the variance of each of the distributions.

 The foreground is then defined as the set of pixels that do not fit into the

background model.

4.3 Real-Time RGBD Data Segmentation 157

 Updating the parameters of the distribution with the newly detected fore-

ground pixels in order to be taken into account in the following detections.

 The regions that do not match one of the Gaussians representing the

background are grouped into a foreground blob.

Figure 4.8 GMM Distribution4

4 http://www.maths.adelaide.edu.au/matthew.roughan/code.html. 2015

158 4. RGBD Data Correction and Background Removal

(a)

(b)

Figure 4.9 GMM architecture. (a) Background model. (b) Working
principle

For every new frame , the GMM computes the distance between the

pixel and each of the means characterising the distributions,

Figure 4.9 (b). The new pixel is tested against the highly weighted distributions

first, then against the remaining ones according the descending order defined by

the weightings. If the new pixel does not match any of the recorded

distributions, it will be considered as a foreground element. The background

model is also updated with the intensity of the newly acquired pixel, i.e. the

parameters of the corresponding distribution (mean, covariance) are re-

evaluated with the value of the new pixel.

4.3 Real-Time RGBD Data Segmentation 159

4.3.3 GMM on RGBD Data

Colour images are perceptually more representative of the real world.

Nevertheless, colour representation is naturally sensitive to the illumination

perturbations. The depth data, on the other hand, has been proven robust to

changes in the lighting of the scene, but it lacks the ability to detect the texture

of objects. The concept of fusing depth and RGB images, therefore, emerges as a

tool of choice for background removal, which in turn is a prerequisite for marker

extraction.

The fusion of the two modalities can be approached in two different manners:

 Either by augmenting the three colour channels with a fourth depth com-

ponent. Experimental tests have shown that the resulting image still suf-

fers from the classic artefacts caused by light intensity fluctuations. The

contribution of depth data in this segmentation model is weakened by the

remaining three colour channels. Hence, the resulting image is almost iden-

tical to the one that does not take into account the depth information,

Figure 4.10.

 Or by completely separating the two modalities during background remov-

al phase, i.e. the GMM is applied on RGB image and depth map inde-

pendently. The resulting foreground regions are then combined into a sin-

gle global result, Figure 4.11. This alternative has been selected in this

thesis because of its reliability.

160 4. RGBD Data Correction and Background Removal

(a)

(b)

Figure 4.10 RGBD segmentation result (Depth as a fourth
component). (a) RGB. (b) RGB+D

4.3 Real-Time RGBD Data Segmentation 161

(a)

(b)

(c)

Figure 4.11 RGBD segmentation result (Fusion of independent
foreground regions). (a) RGB. (b) Depth (D). (c) RGB||D

162 4. RGBD Data Correction and Background Removal

4.3.4 RGBD Background Fusion

Before combining the results of the two independently segmented images, the

foreground resulting from the depth image is mapped with the stereo calibration

parameters to the colour frame. This mapping is required because the two

modalities do not share the same coordinate system. Algorithm 4.1 is proposed

in order to fuse the two foreground regions.

When the two responses at a given pixel in depth and colour binary images are

distinct, a decision should be taken regarding the fused result. To this end, the

following rule is applied: the pixel retains the same state, i.e. as it was before

the confusion occurs, as long as no consecutive three frames with the same pixel

value are met. This parameter may be subject to change. Empirically, three was

adequate for our experimental scenarios.

This assumption is empirically motivated by the fact that permanent

incoherence between colour and depth GMMs (in one image the pixel is white

and in the other it is black) is considered as a confusion. In such a situation, it

is not possible to decide correctly which modality, depth or colour, holds the

actual state of scene’s active foreground.

4.3 Real-Time RGBD Data Segmentation 163

Algorithm 4.1 RGBD foreground fusion algorithm

2D binary images: RGB, D, Forg;
//these image containers hold foreground regions only
int ** cpt;
for (u=1;u<=640;u++)// VGA resolution 640X480
{

for (v=1;v<=480;v++)
{
if (RGB(u,v) == D(u,v))
//if the segmented pixels are the
//same in both modalities
{

Forg(u,v)=D(u,v);
cpt(u,v) = 0;

}
else
//if RGB and Depth segmentation
//results are different
{
if (cpt(u,v) == +3)
//the pixel is more likely to follow
// colour segmentation result
{

Forg(u,v) = RGB(u,v);
cpt(u,v) = 0;

}
else if (cpt(u,v) == -3)
//the pixel is more likely to follow
// depth segmentation result
{

Forg(u,v) = D(u,v);
cpt(u,v) = 0;

}
//increment the number of successive
//times when Forg(u,v) == RGB(u,v)
else if (Forg(u,v) == RGB(u,v))

cpt(u,v)++;

//decrement the number of successive
//times when Forg(u,v) == D(u,v)
else if (Forg(u,v) == D(u,v))

cpt(u,v)--;
}

}
}

164 4. RGBD Data Correction and Background Removal

4.3.5 GPU Acceleration of the GMM

Here, both colour and depth images are assumed to have a VGA resolution. In

order to achieve the segmentation in the GPU, a thread is associated with each

pixel. The treatment is, therefore, run on every element independently from its

neighbourhood.

Other memory storage optimisations should be taken into account in order to

benefit from the hardware architecture. As has been seen in Chapter 3, when

the current frame is being processed in the GPU (device), the following pair of

images is dispatched as well. Simultaneously, the already available foreground

results are delivered back to the central memory.

Due to the large quantity of image data required for the joint colour/depth

segmentation, the GMGPU (see Figure 2.34) should be carefully utilised. Some

design considerations should also be taken into account to promote the

download of contiguous memory chunks instead of a single cell. Figure 4.12 (b)

depicts how the array of data structures regarding RGB image as well as their

GMM workspace , , , , , , , are recast into a Structure of

Arrays. At the request of a given memory cell, the internal design of the GPU

causes the content of adjacent cells to be automatically downloaded. This policy

is motivated by the manufacturer’s assumption about the data stored in

neighbouring memory emplacements to be soon requested as well [8].

The programmer should, consequently, take advantage of such a policy by

reorganising their data into a Structure of Arrays. In other words, the RGB

data should be divided into three arrays, each corresponding to a single channel

(Red, Green or Blue), Figure 4.12 (a). The same procedure is applied to the

parameters of the Gaussian distributions constituting the GMM, Figure 4.12

(b), (c). On the other hand, the depth map does not require to be reshaped

since it has only one component.

4.3 Real-Time RGBD Data Segmentation 165

(a)

(b)

(c)

Figure 4.12 Array of Structures to Structure of Arrays
transformations. (a) RGB image memory coalescing. (b) RGB-
GMM workspace. (c) D-GMM workspace

166 4. RGBD Data Correction and Background Removal

4.4 Results & Discussions

4.4.1 Correction with Polynomial Interpolation

To illustrate the effect of the proposed sensor-correction method, some

experiments were carried out. The previous two Kinects V1 with different

measurement precision grades were corrected. Figure 4.14 to Figure 4.16

illustrate two cases where a worn and a healthy sensors were adjusted using an

eighth degree polynomial interpolation. In other words, a standard polynomial

interpolation is initially tested instead of the GPR in order to approximate the

underlying model. Figure 4.14 illustrates the values of the function =

, where is the shifted depth and is the ground truth reference depth.

The most fitting line is similar to = , the more accurate the sensor.

In other words, range measurements obtained from the Kinect will be closer to

their ground truth counterparts. With the worn sensor, Figure 4.14 (a), the

curve representing is clearly shifted below = .

This behaviour occurs because of the overestimation of the distance separating

the objects from the sensor. The erroneous interpretation of depth weakens the

ability of the sensor to capture correctly the 3D geometry within the functional

range. On the other hand, with the good sensor, Figure 4.14 (b), the

representative curve is overlapping = as long as the depth of the object

remains below 4.0m. When the target moves beyond the maximum range

advised by the manufacturer (> 4.0m), the accuracy declines exponentially

(see Figure 4.13) and the corresponding fitting line deviates from = .

To calibrate the sensor, first, all points (,) are plotted. Then,

fitted with a polynomial that minimises the gap between and in

the Least Squares sense. Empirically, it has been found that an eighth degree

polynomial suffices to interpolate the set of points with a relatively small error.

The correct depth values corresponding to the shifted ones () are inferred

from the evaluation of for the whole depth map.

4.4 Results & Discussions 167

Figure 4.13 Kinect error in depth measurement.

More importantly, the depth values that can cohabit in any point cloud

generated by the Kinects is limited to a known list. As a result, to every

element in this list is attributed a respective corrected value . The

correction of the depth image is therefore reduced to the re-adjustment of the

known depth levels [7].

This algorithm (Depth correction) is launched in the GPU, and it is designed to

work in a pixel-wise fashion. The correction is applied to every valid depth

reading before any further processing takes place. The purpose of pre-processing

is the guarantee the best conceivable quality of data. This strategy enables an

optimal utilisation of the full potential offered by the sensor.

After the correction, see Figure 4.16, the depth data becomes similar to the

ground truth one. However, at the further distances, the resolution of the sensor

decreases and only some discrete sparse measurements can be acquired. It can

be seen from Figure 4.16 that the density of learning samples is inversely

proportional to the actual depth.

Table 4.1 reveals the error in the outputs of some Kinects of different

measurement accuracies. These cameras will be utilised in the multiview

168 4. RGBD Data Correction and Background Removal

tracking experiments of the next chapter. The larger the difference between

RMSEs before and after the correction, the more worn the sensor.

RMSE (m) Kinect_0 Kinect_1 Kinect_2 Kinect_3

Before 0.1114 0.1474 0.2189 0.0703

After 0.0490 0.0598 0.0633 0.0538

Table 4.1 RMSE before and after interpolation-based correction for
some Kinects used in Chapter 5

4.4 Results & Discussions 169

(a)

(b)

Figure 4.14) distribution before correction. (a) . (b)

170 4. RGBD Data Correction and Background Removal

(a)

(b)

Figure 4.15 shift fitting. (a) . (b)

4.4 Results & Discussions 171

(a)

(b)

Figure 4.16) distribution after correction. (a) . (b)

172 4. RGBD Data Correction and Background Removal

4.4.2 Depth Map Correction with GPR

To validate the GPR depth data correction approach, a series of experiments

were conducted on the same cameras that have been used previously. The set of

3D points was extracted from both the healthy () and the worn cameras

(). After applying ordinary camera calibration, the 3D points delivered by

both sensors were plotted on the same graph, see Figure 4.17 (a). The shift

incurred by the range data belonging to the worn sensor is expressed by the

black arrows stretching from the red crosses towards the blue circles. The length

of these arrows quantifies the magnitude of shift. The latter is the distance

between the correct points and their drifty correspondents. Furthermore, this

distance is proportional to the range separating the sensor from the scene.

The impact of correction can be seen in the significant improvement of

accuracy, Figure 4.17 (b). The wrongly captured depth readings were

substituted by their respective estimates computed by the GPR. Error bars

(Figure 4.18) depict the error in points’ positions before (red) and after

correction (green). The error in is increasing with growing depth values.

However, the error in both and does not depend only on the depth, but also

on the positions of the pixels relative to the centre of the image. Table 4.2 and

Table 4.3 illustrate a comparison between the RMSE before and after the

correction.

RMSE (m) Kinect_0 Kinect_1 Kinect_3 Kinect_4

Before 0.1114 0.1474 0.2189 0.0703

After 0.0230 0.0312 0.0462 0.0162

Table 4.2 RMS error before and after GPR correction for some
Kinects used in Chapter 5

4.4 Results & Discussions 173

(a)

(b)

Figure 4.17 GPR correction result. (a) and 3D data after
ordinary calibration and before GPR. (b) and 3D data
after GPR correction

174 4. RGBD Data Correction and Background Removal

(a)

(b)

(c)

Figure 4.18 Depth measurement error before and after GPR
correction. (a) . (b) . (c)

4.4 Results & Discussions 175

RMSE (m) Overall

Before 0.0295 0.0102 0.0743 0.0809

After 0.0015 0.0051 0.0037 0.0065

Table 4.3 RMSE before and after GPR correction for , and
components regarding the Kinect used in the experiments

4.4.3 RGBD-GMM Segmentation

Two experiments were carried out on an ordinary scene with two significant

illumination changes and a moderately changing background. In addition to a

challenging scene, the illumination keeps fluctuating during the whole capture,

see Figure 4.19 and Figure 4.20. Evaluation parameter [100] is computed

from the false () and the true () positives () and negatives (). The

resulting four combinations are (, , ,). is the number of

foreground pixels that were detected as foreground in the input image. is

the number of background pixels that were detected as foreground. is the

number of background pixels that were detected as background. is the

number of foreground pixels that were detected as background.

is the true positive rate:

=
+

(4.10)

is the ratio between the number of the correctly detected pixels and

the total number of pixels clustered in the foreground blob.

=
+

(4.11)

The accuracy metric combines the precision and the recall to objectively

evaluate the accuracy of segmentation.

176 4. RGBD Data Correction and Background Removal

= 2
+

(4.12)

is a good indicator of segmentation robustness. The higher it is, the better

the performance.

The graphs in Figure 4.21 illustrate the behaviour of in two different

experimental scenarios. The first scenario was conducted in a typical indoor

environment, where light intensity was only very slightly changing. The imaged

scene contains several moving objects that should be segmented from input

frames. In the second scenario, the lighting was constantly changing due to the

varying intensity.

is plotted for all three alternatives (RGB, Depth, and the fusion of both

RGB||D). Figure 4.21 (a) shows that the behaviour of regarding the colour

image undergoes two major drops that correspond to important perturbations.

These are due to the abrupt decays in the quality of detection (Red). Whereas,

the depth map is corrupted by the shadows caused by moving entities (Blue).

Its generally remains above 0.90. However, for the fused outputs (Green)

remains above 0.97. This value clearly shows the robustness of the proposed

fusion against each modality treated independently.

On the other hand, in Figure 4.21 (b) all the three methods are similarly

disturbed by the perturbations during the capture because the background was

significantly changing. The RGB image remains the most affected, however. The

depth map is also affected, but the latter was robust to disturbance. Despite the

challenging conditions, generally stays above 0.80 for the fused outputs. Such

a robustness allows an accurate detection of the markers in the scene that in

turn will lead to significant improvements in the results of the tracking as will

be shown in the next chapter.

4.4 Results & Discussions 177

(a)

(b)

Figure 4.19 GMM input data. (a) RGB. (b) Depth

178 4. RGBD Data Correction and Background Removal

(a)

(b)

(c)

Figure 4.20 RGB||D GMM segmentation result. (a) RGB-GMM.
(b) D-GMM. (c) RGB||D-GMM

4.4 Results & Discussions 179

(a)

(b)

Figure 4.21 Segmentation results . (a) Ordinary scene. (b)
Challenging scene

180 4. RGBD Data Correction and Background Removal

Figure 4.22 Computation time results

4.4.3.1 Processing Time Metrics

Both algorithms, sensor correction and background segmentation, were

implemented in the GPU. Hence, the supply of subsequent applications with a

full advantage of the available frame rate provided by the Kinect sensor became

possible. The frame rate remained close to 30 FPS for the different experimental

scenarios. The responsiveness of the GPU can be clearly seen in the blue and

red bars against CPU’s, green bars in Figure 4.22. More importantly, the

improvements after considering memory coalescing and the optimised utilisation

of the bus linking the RAM and the GMGPU increased the final frame rate of

segmentation to just below 30 FPS.

4.5 Conclusion

A new phenomenon of wear-related deficiency in the capabilities of RGBD

sensors was discovered and investigated. The classic mono, as well as stereo

calibration techniques were proven incapable of compensating for this lack of

4.5 Conclusion 181

precision. The author proposed a regression-based solution to leverage the

capabilities of a healthy sensor for the correction of a worn one. This alternative

is underlined by the properties of the depth map and the GPR.

An innovative real-time background removal approach based on a joint

RGB/Depth fusion technique was presented. The latter adapts a GPU

implementation of the GMM for background subtraction. The proposed solution

was validated in real test scenarios under different lighting conditions. The

results were promising, even though no additional filtering was incorporated.

This fusion approach opens a new perspective on the combination of colour and

depth modalities to tackle the inherent problems of colour imagery.

A parallel algorithm has been designed to benefit from the potential

asynchronous data exchanges between the host (CPU) and the device (GPU). In

addition, data structures were organised in the GMGPU in a way that allows a

higher degree of memory coalescing.

Correction and background removal blocks will constitute a single module that

serves as a pre-processing framework to clean the raw depth outputs and extract

the markers attached to the vehicle from the containing image.

183

Real-Time
Multiview Data Fusion
for Object Tracking
with RGBD Sensors

In this chapter, a novel approach for accurate tracking of moving vehicles with

a multiview setup of RGBD cameras is presented. The first step of this solution

is a correction phase where the shift that occurs in the outputs of depth sensors

when they become worn is eliminated, as has been done in Chapter 4. This

problem cannot be fixed with the ordinary calibration procedure. A second

depth data correction/enhancement stage is considered to cope with the

inherent noise contaminating the sensing. This phase is based on the Kalman

filter of Chapter 3. After refining the depth data, markers extraction is

performed by means of background subtraction as presented in Chapter 4. The

latter (markers) are attached to the robot. Next, comes the actual tracking of

the vehicles; i.e. the Robust (RF) and the Covariance Intersection (CI).

The former is a sensor-wise filtering algorithm used to correct for an unknown

vehicle motion. This filter results in the sensor-wise position estimates. The

184 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

latter is another algorithm that aims at data fusion. It is proposed for optimal

merging of the single-view estimated trajectories.

The computation-costly fragments of the proposed solution are implemented in

the graphical processor. As a result, the whole tracking system is capable of

operating at up to 25 FPS with a multithreaded architecture of five cameras.

Test results show the achieved accuracy and the robustness of the solution to

overcome the uncertainties in measurements, as well as in modelling.

5.1 Overview

Image base real-time tracking of moving objects is regarded as a fundamental

tool to acquire the dynamics of the physical scene. The ultimate purpose of this

acquisition is virtual representation of the real world or the localisation of the

entities of interest in their neighbourhood. Surveillance, sports reporting, video

annotation, and traffic management systems are a few of the domains that have

extensively benefited from advancements in this field [1]. At the highest current

performance level, the RGB data persists as a limiting agent in providing a

complete view of the real-world. Recent off-the-shelf RGBD sensors, such as the

Microsoft Kinect exhibit a high potential for a better perception of the virtual

space [2]. These cameras can simultaneously stream both the 3D map of the

scene along with its corresponding colour image at a frequency of 30 FPS.

The main purpose of the solution proposed in this chapter is the use of multiple

RGBD sensors to localise moving robots accurately. The result is used to feed

augmented reality, and robotic systems with real-time 6 DOF pose data.

Cooperative multiview sensing is more adequate than mono view to overcome

the occlusions among various angles. Such an architecture leverages the joint

action of all the sensors for more reliable tracking. Nevertheless, the processing

of large amounts of 3D data flowing from multiple cameras is computationally

expensive. As such it may inversely affect the response time of the system. For

5.1 Overview 185

this reason, a need for a compromise between performance and response-time

arises.

The GPUs are a very powerful tool whenever the load of data treatment can be

distributed over several threads running concurrently [3]. In this study, the large

amount of 3D data issued by the cameras is subject to smoothing and fusion

algorithm. The processing begins with the procedure of data acquisition.

Captured data is then sent through a smoothing stage to enhance its quality.

The 3D positions of the targets are then computed and forwarded to the Robust

framework for correction. Based on the single estimates, a data fusion

algorithm is adapted to combine all sensor-wise position-estimates into a unique,

consistent result.

The major contributions of the present chapter are:

 Coping with the uncertainties in the model describing the motion of the

vehicle using the Robust filter. The latter has the ability to handle

measurements as well as modelling uncertainties.

 A Covariance Intersection algorithm for data fusion with the adaptive

weighting coefficients computed from the particular properties of the

tracking setup.

The chapter is structured as follows: in Section 5.2, the state of the art

regarding image-based tracking applications is discussed. Then the architecture

of the whole system is explained in Section 5.3. Details of the first two modules

of the system are provided in Section 5.4. Then in Section 5.5, the modelling

regarding the uncertainties and how the objects can be accurately tracked

without a prior knowledge of their motion are described. In Section 5.6, the

covariance intersection technique is presented along with the procedure of

weighting coefficients determination required to sort the single estimates

according to their quality. In Section 5.7, a clarification of the possibility to

compute the orientation of the vehicle in the current solution is provided. The

186 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

author’s findings are validated with experimental results in Section 5.8, where

error graphs obtained from real scenarios are plotted. Finally, possible

improvements of the current solution to achieve even better performance are

mentioned in Section 5.9.

5.2 Related Works

The tracking problem is divided into three levels of processing: motion

detection, object segmentation and object tracking [101]. Single-camera tracking

methods suffer from object/object or object/obstacle occlusions. This

shortcoming leads to failure as the tracked entities may become incorrectly

associated [102]. Zhao et al. [103] presented a method for people tracking with a

single camera. They used the 3D shape models of people that were projected

into the image space in order to perform the segmentation and resolve the

occlusions. Each human hypothesis is then tracked in 3D with a Kalman filter

using the appearance of the object constrained by its shape. Okuma et al. [104]

proposed a combination of Adaboost for object detection and several variants of

the particle filter for multiple objects tracking.

The combination of both approaches results in less failure than by using either

one on its own. Moreover, both the detection and the consistent track formation

are in the same framework. Leibe et al. [105] presented a pedestrian detection

algorithm for crowded scenes. Their method iteratively aggregates local and

global patterns for a better segmentation. These and other similar algorithms

are challenged by the entirely and partially occluding objects and appearance

changes.

On the other hand, cooperative multiview object tracking has the advantage of

possessing a broader coverage of the scene compared to a single camera setup

[102]. This benefit is also an asset in handling occlusions. The KidsRoom system

5.2 Related Works 187

[106] developed at MIT Media Laboratory1 uses a real-time tracking algorithm

based on contextual information. The algorithm uses an overhead camera view

of the space to minimise the possibility of one object occluding another. The

system can track and analyse the actions and the interactions of people as well

as objects. The lighting is assumed to remain constant during the runtime. A

background subtraction technique is used to segment the objects [107], and the

foreground pixels are clustered into 2D blobs. The algorithm then maps each

person known to be in the room with a blob in the incoming image frame.

Pfinder (Person-finder) is another real-time system for the tracking and

interpretation of human motion [108]. Motion detection is performed using the

background removal techniques, see Chapter 4, where the statistics of the

background pixels are recursively updated using a simple adaptive filter. The

human body is modelled as a connected set of blobs formed by a combination of

spatial as well as colour cues. Pfinder has been applied in a variety of

applications including video games, distributed virtual reality, interface to

information spaces and sign language recognition. The solution proposed by the

author of this thesis, however, is only concerned with indoor tracking of moving

robots.

A background subtraction procedure is also used to extract the positions of the

markers attached to the vehicle. The computation of the actual centres of mass

is based on the extraction of contours for every marker and the calculation of

their respective zeroth and first moments [109].

From a filtering point of view, object tracking is considered as a sequential

recursive estimation problem where each frame is processed within a single time

step. The estimator combines knowledge about the previous state (position and

orientation) and the current measurement using a state-transition model. The

statistics concerning the behaviour of the estimation and the measurements are

1 http://www.media.mit.edu/. 2015

188 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

deduced from the noise processes affecting both measured and estimated

positions.

The state/space formalism [110], where the currently tracked object’s properties

are described in an unknown state vector updated by the noisy measurements,

is very well adapted to the object tracking problem. The sequential estimation

has an analytical solution under a very restrictive hypothesis.

The Kalman filter (KF) is an optimal solution for the class of linear Gaussian

estimation problems [111]. For nonlinear systems, a number of Bayesian

techniques have been proposed to perform the optimisation. If a Gaussian

distribution is assumed, the commonly used approaches include the extended

Kalman filter (EKF) [112] and the Unscented Kalman filter (UKF) [113]. The

particle filter is another numerical method that enables an approximate solution

to be found with the sequential estimation. [114].

All the previously cited filters are very sensitive to error in the system’s model.

In other words, if the system is imprecisely modelled, which is indeed very likely

in real scenarios [77], estimation accuracy is not optimal. To remedy uncertainty

in the system, the Robust filter (RF) is known for its ability to cope with

the inaccuracies contaminating the model and the measurements. Such an

innovative adaptation of the RF for accurate tracking with imprecise motion

models has not yet been discussed in the published literature of multiview

tracking. In addition, the Covariance Intersection technique [115] is applied to

combine the estimates computed from the raw output of each camera in a way

that minimises global estimation error [116].

Joint colour/depth information enables the full advantage of both colour image

and 3D geometry approaches to cope with the traditional problems of many

robotics and computer vision applications. Some examples are: human pose

estimation [117], robot navigation [118], SLAM [88], object tracking [119] and

3D scanning [85] to name a few. However, the size of the 3D point data is larger

than the corresponding RGB image. Hence, the GPU is leveraged to achieve a

5.3 System Overview 189

real-time performance, as has been done in Chapter 3. There are several state-

of-the-art examples showing that processing bottlenecks could be reduced when

the solution is re-designed to run on the GPU. Kinect Fusion [85] and the work

of Tong et al. [6] are well-known examples.

5.3 System Overview

5.3.1 Kinect V1 Camera

Although the Kinect is distributed with factory embedded calibration

parameters, , , , intrinsic parameters for both RGB and IR

cameras and the extrinsic parameters [,] of the IR/RGB stereo setup, the

actual resolution of capture may range from less than one millimetre to many

centimetres. This plausible difference depends on the state of the sensor, the

target application and the nature of the scene [120]. For a robust tracking of

moving objects with Kinect, the sensor should be correctly recalibrated. The

native parameters are more generic and similar for all the Kinects in the

market. However, the frequency of usage and the external factors, that vary

widely from one application to another, can significantly affect the precision of

measurements [119].

5.3.2 Hardware and Software Configuration

The real-time tracking setup is composed of = Kinects V1 covering a

volume of 4 × 4 × 3 . All the sensors are connected to the same computer

(Figure 5.1). The hardware configuration that has been used for this multiview

tracking scenario is the same as the one in Chapter 3. The target setup is

developed as a multiview ground robot tracking system (Pioneer P3-DX2 for the

current experiments). However, the tracking system can be used to estimate the

trajectory of any ground and aerial vehicle moving in indoor environments. The

robot moves freely in the space covered by the cameras according to an on-line

2 http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx. 2015

190 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

obstacle avoidance algorithm that runs simultaneously with the capture. A more

general motion model is therefore adapted. The last-mentioned accommodates

every possible other type of motion describing the displacements and the aspects

of the vehicle over time. From a software point of view, the algorithm needs to

access the outputs of all the Kinects simultaneously in real time. Thus, Kinect

Figure 5.1 Multi-Kinect real-time tracking system

SDK 1.7.03 and CUDA4 is used for GPU programming along with the Boost5

library.

5.3.3 Real-Time Multi-Kinect Tracking Architecture

The system consists of four main modules through which flow the RGBD frames

streamed by the five Kinect sensors, see Figure 5.2. The sensors are assumed to

capture RGBD data concurrently to cooperatively estimate the pose of the

robot. Thus, some insignificant interference may appear among them. One

might think of Time-Division Multiplexing as an alternative solution that allows

a single sensor to be operational at a given frame. Indeed, such a solution leads

3 http://www.microsoft.com/en-us/kinectforwindows/develop/learn.aspx. 2015
4 http://www.nvidia.com/object/cuda_home_new.html. 2015
5 http://www.boost.org/. 2015

5.3 System Overview 191

to the elimination of interference between IR patterns, but the multiview setup

would be reduced to a single view one at every frame. Hence, cameras perform

individually and estimation accuracy decreases. On the other hand, our solution

takes into account all the data delivered by the sensors at every frame. Such a

strategy allows us to benefit from the best of each camera for a more accurate

tracking.

(a)

(b)

Figure 5.2 Filtering modules

192 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

5.3.3.1 Capture Module

This module is responsible for the delivery of the 3D point clouds to the tracker

and the subsequent stages of the tracking system. At this level, a thread is

associated with each sensor. Such an architecture permits a complete occupation

of both the CPU and the GPU during the capture. Nevertheless, other sensor-

related limitations should be taken into account when using multiple Kinects

simultaneously. The IR beams emanating from the projectors interfere with each

other. They confuse the IR cameras during the evaluation of the disparity as it

would be impossible to decide which IR speckle belongs to which sensor. As a

result, some holes appear in the 3D data because of the undefined disparity

information [45]. In the current architecture, each thread operates independently

by loading the data into the GPU and running the following computations:

 Filtering the unreliable elements (empty pixels where no disparity in-

formation is readable).

 Correcting the remaining valid depth values using the appropriate correc-

tion modules.

 Computing , for only the valid points using the intrinsic parameters

of the IR camera.

 Mapping the colour image onto the depth one using the stereo calibration

parameters.

5.3.3.2 Markers Extraction Module

To compute the position and the orientation of the robot, three distinctive

markers are fixed on its top (see Figure 5.1). The 3D pose of the moving object

is obtained by estimating its centre of mass and the corresponding orientation.

This processing becomes possible because of the correct association of colour

data to the depth pixels. As a result, only the localisation of the markers in the

2D colour image is needed. Then the corresponding 3D positions can be easily

5.3 System Overview 193

resolved. The background/foreground segmentation module Chapter 4 takes as

input the aligned colour image and follows these steps:

 RGB to HSV (Hue, Saturation and Value) conversion. This conversion is

motivated by the fact that the HSV space is more robust to changes in

light intensity [121].

 Colour thresholding to separate the markers from the background.

 Erosion and dilation of the thresholded binary image.

 Actual extraction of the markers.

The output of this module is the pixel positions of the marker attached to the

vehicle.

5.3.3.3 , Computation and Stereo Mapping

The data streamed by the IR camera is just the disparity resulting from the

comparison between the shape of the reflected pattern and its reference

correspondent. These disparity pixels are rendered to the actual depth

measurements. The latter indicate how far the objects are from the sensor, by

the driver responsible for the exchange of data between the computer and the

device.

Until now, the depth corresponding to a given pixel in the colour image cannot

be inferred because the two cameras have different coordinate frames. Thus, an

accurate stereo calibration must be performed to get the right [,]

transformation that links both cameras.

The computation of the 3D , coordinates is possible after using the

enhanced by Kalman scheme (Chapter 3) as shown in Equations (5.1) and (5.2).

194 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

Figure 5.3 Kinect IR/RGB mapping

The achievement of this step requires knowledge of the calibration parameters

characterising the IR camera:

= () / (5.1)

= / (5.2)

As shown in Figure 5.3, stereo calibration parameters relating the

coordinate systems of RGB and IR cameras belonging to the same Kinect are

used to transform the point) from the IR coordinate system to

the RGB one), Equation (5.3).

= P + (5.3)

Afterwards, is re-projected to the RGB imager using the intrinsic parameters

of the colour camera, Equations (5.4) and (5.5), to complete the correspondence

between the 3D points and their colour.

5.3 System Overview 195

= / + (5.4)

= / + (5.5)

All computations of this stage are executed in parallel for every pixel inside the

GPU. The output is a coloured 3D point cloud, where every point

(, ,) has its own colour information and world coordinates.

5.3.3.4 Robust Filtering Module

The purpose of the filtering module is quality enhancement of the position and

the orientation information issued by the stages above. It acts on the whole

trajectory traversed by the moving robot over time by filtering it according to a

roughly predefined state-transition motion model. However, for the sake of

generality, i.e. to allow the solution to work for any ground or aerial vehicle, it

is assumed that the exact motion model regarding the object is not available.

Hence, a classical Newtonian framework is chosen with rough parameters.

The loose fit of this standard model to the actual system can be compensated

for as well when applying the robust filtering scheme [122]. This filter is

capable of dealing with the uncertainties in system’s and measurements’

matrices. In the current case study, it is possible to correct for the lack of

knowledge about the modelled system by adapting the filter to Newton’s

equations of motion.

This filter is implemented in the CPU, and its output is the filtered object

position and orientation resulting from every camera alone. The filter is applied

to the tracking data delivered at a given time-step (the actual frame that is

being processed by the pipeline), not on the entire depth map as with the

correction led by the KF in Chapter 3. In addition, it takes intuitively into

account the whole history of estimation since the beginning of capture.

196 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

5.3.3.5 Data Fusion Module

After getting each sensor’s result regarding position and orientation data from

the previous filtering algorithm, comes the combination of all the sensor-wise

localisation information to produce a more complete and accurate result. Prior

to this stage, the output of every camera was treated separately by its

respective thread. The multithreaded design permits an optimised usage of the

multicore processor.

The fusion of the single estimates begins with the transformation of all the

sensor-wise positions into a common reference frame. Afterwards, the mapped

data are combined with a covariance intersection technique [123][115]. The

latter allows optimal merging of all the outputs of the cameras into a single and

more precise estimate benefitting from the best of each sensor.

The entire procedure is summarised in the following steps:

 Transforming each position data for every Kinect to a global reference

frame.

 Applying the covariance intersection algorithm to the data in order to

produce decent single position and orientation information.

This procedure is also executed in the CPU because the subject data is just the

(, ,) positions delivered by the cameras of the setup.

It is necessary to overcome the occlusions when the markers are not seen from

all the viewpoints. In addition, if more than one position information is

available, it is possible to fuse them altogether using a set of weighting

coefficients. These coefficients promote the most accurate estimate. For

instance, the accuracy is determined by the estimation-error covariance matrices

resulting from RF module.

5.4 Capture and Marker Extraction 197

5.4 Capture and Marker Extraction

5.4.1 RGB to HSV Conversion

RGB colour model, Figure 5.4 (a), is commonly used in computers and

electronic systems such as televisions and photographing cameras. However, this

(a) (b)

Figure 5.4 Colour representation. (a) RGB. (b) HSV

well-established colour-coding experiences some inaccuracies when the colour is

seen from a perceptual point of view [121]. In other words, when the problem of

deciding whether an object of a known colour can be localised in a given image

is encountered, a significant difference between the respective RGB

combinations of the source and the target regions is noticed. This difference

appears even when a tiny change in lighting intensity occurs.

On the other hand, HSV colour coding (Figure 5.4 (b)) has been proven to

withstand robustly unsteady lighting conditions and shadows [124]. Figure 5.5

depicts a case of a homogeneously coloured surface (orange coating). However,

exposure to light creates many appearance differences amongst various regions.

These areas are supposed to have the same colour (orange). The distance (

norm in the 3D space between two colour codes) in the RGB space between the

two regions surrounded by the black squares is 50.16 pixels Figure 5.5.

198 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

Figure 5.5 RGB vs HSV. RGB_Diff = 50.16 pixels; HSV_Diff =
11.66 pixels

Whereas, in the HSV space it is only 11.66 pixels. This property of HSV coding

helps enormously in localising an object of a given colour in the image streams.

In the present study, the HSV colour coding is therefore convenient for

extracting the markers quickly and efficiently from the images.

As the robot is assumed to move freely over different positions, where

luminosity is not necessarily similar, the tracking solution should be robust to

unstable lighting conditions in order to maintain an accurate tracking during

the whole scenario.

In the following example, a localisation experiment is conducted on a yellow ball

resting on top of a chair in different lighting conditions (with the light of the

room switched on then off). The objective of markers extractor is their

separation from the background. As depicted in Figure 5.6, the yellow ball

captured by Kinect is detected in the image with the light of the room switched

on (the left image), and the image on the right, obtained with the light switched

off. The HSV images in Figure 5.6 (a) are steadier as the distance separating

the colours of the target in the two different images is smaller (34.91 pixels).

The ball (in the white circle) appears clearly with almost the same HSV colour.

Whereas, in the RGB images (Figure 5.6 (b)) the distance is 206.43 pixels. As a

consequence, the tracking cross does not appear on the right RGB image as the

5.4 Capture and Marker Extraction 199

algorithm was initially set to track the target whose colour was sampled from

the scene with the light switched on.

(a)

(b)
Figure 5.6 Colour distance. (a) HSV 34.91. (b) RGB 206.43

This example explains the necessity for converting Kinect’s colour stream from

RGB to HSV. Computationally, the complexity of conversion algorithm is linear

to the size of the RGB image 640 × 480). In addition, this operation is

scheduled on the GPU because the same conversion kernel runs in parallel for

all the pixels in the image.

200 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

5.4.2 Colour Thresholding and Morphological Opera-
tions

After converting the image to HSV format, the localisation of the areas that

have the same colour as the target is undertaken (target’s colour has been

initially captured in normal lighting conditions).

The aim of thresholding and binarisation is the recognition and the isolation of

the three yellow markers from the background. Then, the alignment between

the colour image and the depth map enables the resolution of the 3D

coordinates regarding each marker.

Thresholding parameters should be relaxed to fit all possible colours that can be

taken by the markers over different lighting conditions during the whole

scenario. After that, comes the binarisation of the HSV image by attributing a

white colour to the markers and a black to all the remaining regions in the

frame (background), Figure 5.7 (b). The extraction of the markers in the binary

space facilitates the computation of the respective centres of mass.

Image-erosion is applied afterwards to the binary image in order to eliminate

the disturbing noise spots, followed by the dilation of the eroded regions to

recover the areas corresponding to the markers.

The 3D location of the robot is superimposed on the centre of the 3D triangle

formed by the three markers. All the markers should be visible to at least one

camera for the computation of position. After localising the markers in the

binary image, comes the actual computation of their centres of mass. The latter

starts with the extraction of the contours for every marker in the binary image

(white dots in Figure 5.7 (b)). Afterwards, comes the computation of the zeroth

and the first moments for each marker in the binarised image [109].

Analytically, the moments of a two-variable function are given by:

5.4 Capture and Marker Extraction 201

= () (,)
+

(5.6)

Here, is the actual image that is assumed to be continuous. The discrete

version of Equation (5.6) is:

= () (,)
==

(5.7)

(a) (b) (c)

Figure 5.7 Markers extraction. (a) HSV image. (b) Blobs in the
binary image. (c) Tracked markers

The moments are calculated at the origin as the mean

value. Equation (5.7) becomes:

= (,)
==

(5.8)

To compute the centroid of the markers in the binary image, the first

moments , are calculated along with the zeroth one

(the area

covered by the marker). The coordinates of marker’s centroid are;

(,) = , (5.9)

202 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

For a binary image, the moment is the sum of white pixels’ coordinates forming

the contour around the area that corresponds to the marker.

Figure 5.7 summarises the entire extraction. This technique is robust to noise.

The centroid might be a little bit shifted because of some noisy contour

elements. However, the error in its position does not significantly affect the

accuracy of tracking even when the target is further away. The scale of the

markers is inversely proportional to the distance from the sensor. In other

words, when the robot is far away from the camera, the regions corresponding

to the markers in the image become smaller. Consequently, the error in their

position-estimates decreases proportionally. The size of the marker in the image

also depends on the size and the shape of the patch that was used in the

morphological operations.

Figure 5.8 depicts the relationship between the accuracy of centroid and contour

noise originating from the discrete nature of the image data. Before computing

the centroid of the marker, the observed pixel-contour is bounded by two circles

where the inner (blue) represents a lower bound.

(a) (b)

Figure 5.8 Marker’s size and contour

The disc delineated by this circle contains white pixels only. On the other hand,

the exterior circle is the upper limit joining the white pixels. Using the two

circles one can compute an accurate centroid for the marker.

5.5 Robust Filtering 203

The noisier the contour, the wider the area between the two circles and their

respective radii. This behaviour contributes an extra noise to the detected

centroid. Thus, accurate detection is seen in smooth contours in both situations:

When the marker is large, this corresponds to a higher resolution observed when

the target is close to the camera, the difference between the radii of the two

circles is small even if the area separating them is large (Figure 5.8 (a)).

Alternatively, when the marker is small (target further away from the camera),

the two circles become almost superimposed. Such a situation also leads to a

reasonably accurate detection of the centroid based on the available data and

the assumption that the original marker was circular (Figure 5.8 (b)).

Subsequently, the heading of the robot can be obtained from the centre of the

triangle defined by the three markers and the frontal one.

5.5 Robust Filtering

5.5.1 Motion Model

Raw Kinect position measurements are only precise at a close range because

error in position remains below 5.0cm for depth measurements of up to 3.0m

without the correction module seen in Chapter 4. Whenever one goes beyond

this distance or the sensor becomes worn, the error can grow up to ±20cm. On

the other hand, when the correction module is used, the error becomes less than

5.0cm for the depth value rising up to 4.0m. However, the accurate tracking of

moving objects requires a higher accuracy with an acceptable additional

computational load. To fulfil this requirement in a relatively large indoor space,

the robust filtering [122] is adapted to every trajectory delivered by a

single camera. The need for such a filtering scheme is motivated by its ability to

deal with the problem of uncertainty in the model describing the motion of the

vehicle as well as the measurements. If the filter over fits the imprecise model of

the vehicle, the tracking would fail within a few iterations.

204 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

The tracked entities are assumed to move irregularly. The translation, the

rotation and the occlusions between the rigid bodies (robots, obstacle) often

occur in real situations. As a consequence, a constant velocity model is difficult

to adapt. On the other hand, acceleration of ordinary ground and flying vehicles

is more stable and does not change in magnitude as it does in sign, because of

the smooth and gradual variations of the velocity. Consequently, the motion of

the vehicle follows a Newtonian model with a varying velocity and a bounded

acceleration.

To correct the raw position supplied by the cameras in real time, the filter

should be able to predict robustly the state of the vehicle

[] . Subsequently, it should also be able to correct the

state after obtaining the measurements and the control input (acceleration).

However, the filter is not applied to the orientation data. The computation of

the latter is based on the estimated positions of the markers and the centroid of

the robot.

For the position (, ,) of a given marker, the motion model will be:

+ = + +
2

+ = + +
2

+ = + +
2

(5.10)

The equations of the corresponding velocities , , are:

+ = +

+ = +

+ = +

(5.11)

The state-transition model is:

5.5 Robust Filtering 205

= + +

(5.12)
= +

Where:

= []

(5.13)

= []

= []

= [, 0]

At every time-step ; is the estimated state of the vehicle (position and

velocity); is position measurement output by the sensor; : the acceleration

of the vehicle along the three axes; : the covariance of the noise process

affecting the system (); : the covariance of the noise affecting the

measurements ().

From Equations (5.10), (5.11); the state-transition matrix becomes:

5.5.2 Robust ∞ Filter

In practice, an exact model of the system may not be available. The

performance of such a system becomes an important issue. State/space

= 0 (5.14)

= 2 (5.15)

206 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

representation of the robust filter [77] is given in Equation (5.16). In the

present study, the matrices of these models are defined by Equation (5.14):

= (+) + +
(5.16)

= (+) +

At time-step , the two random variables and are uncorrelated zero-

mean white noise processes with the covariance matrices and ,

respectively. The matrices and represent the uncertainties in

system and measurements matrices. These uncertainties are assumed to be of

the form:

[] = [] (5.17)

, and are three known matrices, and is an unknown matrix

satisfying the bound:

(5.18)

It is assumed that is non-singular. This condition is verified with most

physical systems. The purpose is to find an estimator of the form:

= + (5.19)

With the following characteristics:

 It should be stable (the eigenvalues of should be less than one in mag-

nitude).

5.5 Robust Filtering 207

 Its error satisfies the following worst-case bound:

max
+ + +

1
(5.20)

 Estimation error of satisfies the following RMS bound:

() < (5.21)

The solution of this problem can be determined with the following procedure:

1) Choose a scalar sequence > and a small > .

2) Define the following matrices

= +

(5.22)=

= +

3) Initialise and as follows:

=

(5.23)
=

, are the initial values attributed to the estimation-error covariance

matrices for the computation of , , , and . Although these

parameters have initially large values, the filter automatically tunes them within

208 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

a few iterations. As a result, the process reaches a steady state, and the error in

estimation decreases to its lowest levels.

4) Find the positive definite solutions and satisfying the following

Riccati equations:

+ = + +
(+) (+)

+ (5.24)

+ =
+ +
+

(5.25)

Where the matrices , , , and are defined as:

= (/) (5.26)

= (/) (5.27)

= + (5.28)

= + (5.29)

= () (5.30)

5) If Ricatti equation’s solutions satisfy:

5.5 Robust Filtering 209

1 > (5.31)

> (5.32)

Equation (5.19) solves the problem with:

= (+) (5.33)

= + + (5.34)

= (5.35)

The parameter is generally chosen as a very small positive number. In the

present study it was set to = .

The parameter must be chosen large enough so that the conditions of

Equations (5.31), (5.32) are satisfied. However, when increases, also

increases, which results in a looser bound for the RMS estimation error [77].

A steady-state of the robust filter can be obtained by letting the parameter

+ = and + = in Equation (5.25). Tracking results delivered by

the Kalman filter are compared with the trajectory filtered with the Robust

. The application of this filter results in a more robust tracker.

The adaptation of the Robust filtering scheme is proven to be flexible and

capable of producing an accurate state estimation based on uncertain system’s

parameters. This asset allows the tracking of vehicles without an exact

knowledge of their motion model. The Robust filter exhibited very

interesting results in several automation and control applications [125] [126].

More importantly, the results obtained from the experiments and the error in

estimation compared to ground truth measurements show the effectiveness of

the current approach against the naïve filtering scheme (Kalman filter does not

consider the uncertainties in the system). Nevertheless, if the exact model is

210 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

available, the Robust filter performs even better. However, in many real

cases the exact model remains hard to determine [127]. The Robust filter

combines the robustness of and the optimality of Kalman filtering.

5.5.3 Difference Between ∞, Kalman and the Ro-
bust ∞

filter [77] minimises the error cost-function in the norm sense. In other

words, it bounds the worst case or the maximum possible steady state

estimation-error given by:

= =

(0) (0) + +=
(5.36)

< 1
(5.37)

The value of determines how loose the bound is, Equation (5.37). Thus, how

large one can tolerate the maximum magnitude of estimation-error.

On the other hand, Kalman filter optimises the (least squares norm or the

RMS of estimation-error). Its error function is given by:

= ()
=

(5.38)

In both filters, it is assumed that the parameters (states-transition matrix,

state/measurements projection matrix) have been accurately determined in

advance. However, this is very unlikely in practice. The Robust filter

combines the advantages of Kalman filter and together; i.e. it has the

ability to minimise the overall RMS, as well as to bound the worst case error.

More importantly, the Robust is also useful when the parameters of the

system are imprecise. In the present study (tracking of moving objects), exact

knowledge about the dynamics of the vehicle are not available. The native

(without uncertainty handling) is as good as a Kalman filter provided that the

5.6 Tracking Data Fusion 211

noise processes are white Gaussian. Nevertheless, when the noise process is not

Gaussian, is better endowed to keep the magnitude of error below a

particular threshold. The Robust offers the advantages of , with the

extra benefit of the minimisation of the global RMS error.

5.6 Tracking Data Fusion

The drop in precision of some tracking measurements can be significant,

particularly when the target moves far from the cameras. In addition, when

there are many targets moving around the obstacles in the same scene,

occlusions can appear and consequently prohibit the correct recognition of the

vehicles. At this level in the pipeline, the cooperation is established between

multiple Kinects with the application of covariance intersection filter [115]. The

estimated positions delivered by all cameras are merged (after being filtered by

the robust) into one consistent estimate that precisely determines the pose

of the vehicle in its space.

5.6.1 Covariance Intersection Filtering

Based on the estimates determined by the Robust filter ()

at time step , and their respective covariance matrices ; a joint estimate

is computed along with its error covariance where the true state of the

system is (the true position of the vehicle).

If > is the number of unbiased estimates delivered by all the cameras

, , … . for the unknown state vector :

=
= (5.39)

=
=

(5.40)

212 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

When there exists some correlation between estimation errors, may become

far too optimistic and this may lead to a divergence in the sequential filtering. A

conservative estimate can be given by applying covariance intersection

according to Equations (5.41) and (5.42) :

With the nonnegative coefficients verifying the following consistency

condition:

=
= 1 (5.43)

An estimate can always be obtained with:

[()()] (5.44)

Where denotes the fact that is positive semi-definite. As a

result, the coefficients should minimise either the trace or the determinant

of .

In order to avoid the possibly high numerical effort to find a solution to this

nonlinear optimisation problem, Neihsen [115] proposed a fast approximate

solution following this reasoning:

For)); , ; () refers to the trace of the matrix

, one would expect . For the purpose of decreasing the

computational load, instead of using the estimation uncertainty , the

authors in [123] introduced estimation certainty by considering =

resulting in:

=
=

(5.41)

=
=

(5.42)

5.6 Tracking Data Fusion 213

= ()
()=

(5.45)

Equation (5.45) means that the greater () is: the more certain the

estimate , the higher the corresponding weighting . Conversely, the

smaller (), the lower the weighting becomes. More importantly,

consistency condition of Equation (5.43) remains satisfied:

=
=

()=

()=

= 1 (5.46)

5.6.2 Covariance Intersection for Multikinect
Tracking

As has been shown in Chapter 4, some Kinects may be worn. Hence, they

produce erroneous measurements when the target is far away from the sensor.

However, with a cooperative multiview setup, the global position and

orientation estimate can be cooperatively corrected. The weighting coefficients

lead this correction by attributing a greater weight to the more accurate single-

camera estimates in the multiview setup covering the scene.

Another contribution of the present chapter is the adaptive weighting scheme

based on the assessment of the quality regarding each estimate resulting from

the Robust filter and the confidence in the raw measurement delivered by

the camera itself. Indeed, a quality factor is attributed to each camera

participating in the capture process. This indicator is obtained from the residual

error after applying the appropriate correction model. The mathematical

formulation is as follows: For the processing thread corresponding to the -th

camera:

 : is the covariance matrix of the error in the estimate delivered by the

Robust filter.

214 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

 : is the covariance matrix characterising the residual error after cor-

rection.

 : is a positive scalar that represents the distance between the target

and the camera.

The last assumption is inspired by the fact that the smaller the depth of the

target, the more accurate the resulting measurement.

Figure 5.9 describes a situation where every sensor has its native hardware

accuracy matrix (Red circles). In addition, based on the distance separating

the cameras from the target, weighting coefficient is introduced. For every

pair of position-estimates , the following condition should be satisfied:

() + () + () + () + ;

1 ,
(5.47)

Equation (5.47) represents the fact that affects the final estimate more

than does. In addition, affects the final error in estimation more

than does. In the tracking algorithm, Niehsen’s [115] findings about the fast

covariance intersection are considered. In addition, the uncertainty

characterising the quality of the measurements delivered by the sensor is

defined. The weightings are given by the equation below:

= 1
1

(() + () +)=

(() + ()= +)
(5.48)

5.6 Tracking Data Fusion 215

Figure 5.9 Covariance Intersection parameters

Another form of the same expression, which is more suitable to reduce the load

of computation is given by:

At this level, it would be just necessary to compute the traces of the matrices

once. The denominator) stays the same for all the

estimates. Hence, it is also computed once. Afterwards, the appropriate

parameter () corresponding to each estimate is subtracted

from the denominator. The condition of consistency of Equation (5.43) remains

verified because . The conducted experiments using this approach

proved that Equation (5.49) is the most realistic and suitable for the tracking

scenario.

= 1
1

(() + ()+=) (() + ()+)

(() + ()+=) (5.49)

216 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

5.7 Orientation Computation

Until this point, the calculation of the direction towards which the robot is

heading has not been involved in the estimation process. However, the current

solution is already able to deliver the 6 DOF regarding the tracked entity

without any need to process orientation data separately. In the published

literature, the conventional way to compute the orientation during the motion

of the vehicle is the well-known Least Squares algorithm. In this category of

solutions, the optimiser iterates over all the elementary rotations and

translations before reaching the correct pose of the robot. For this reason, they

are not suitable for real-time solutions.

If the nine entries of the rotation matrix are added to the state vector, the size

of the latter grows to accommodate 12 components (3 for translation and 9 for

rotation). The corresponding matrices will scale to up to 12 × 12 elements,

which could not be processed by dense alignment algorithms at more than 8

FPS for the five sensors. As a result, the little improvement in the accuracy of

estimation is not worth the time taken by the processing. One may think of the

rotation being a rank three matrix. However, the independent components

(three , , angles in the 3D space) cannot be applied directly on point data.

In addition, they need to be converted into a rotation matrix to test how far the

estimate is from the optimal value.

Some accuracy is traded for computation time as shown in the results. This

choice is driven by the fact that when the accurate position data for the three

markers is available, it becomes possible to efficiently compute the rotation

matrix describing the pose of the vehicle (see Figure 5.10 (a), (b)) in the scene

relative to the world frame, Figure 5.11.

On the other hand, the accurate estimate of the position of the vehicle can be

used to compute the remaining three orientation components (, ,). Such a

procedure requires only some simple trigonometry to be applied on the accurate

position of the centroid and the frontal marker, Figure 5.11 (a), (b). This

5.7 Orientation Computation 217

method is effective because it avoids complicating the filter with the additional

load of computations that ultimately leads to almost the same result.

Figure 5.11 (c), (d) depicts how the determination of the orientations can be

formulated. From the Equations (5.51) to (5.53), one can directly obtain the

three angles that define the aspect of the vehicle in the scene. In addition, it is

possible to compute the 3D rotation between two different orientations by only

using the angles characterising the two poses.

= () + () + () (5.50)

= (5.51)

= (5.52)

= (5.53)

218 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

(a)

(b)

Figure 5.10 Markers’ structure. (a) Heading vector (upper view).
(b) Heading vector (side view)

5.7 Orientation Computation 219

(a)

(b)

Figure 5.11 Orientation computation. (a) Pose of the robot in the
scene. (b) Orientation definition

220 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

5.7.1 Special Case

The presented approach to compute the pose of the vehicle in the scene is not

yet complete. This is due to the fact that it gives the same orientation angles

when the robot rotates around its heading vector. As a result, the poses taken

by the vehicle are obviously different but their respective heading vectors are

similar.

The use of the whole rotation matrix was avoided in the filtering scheme. This

is because it would not be possible to track the vehicle at a high frame rate

(author’s experiments showed a maximum of 8 FPS with all coding

optimisations taken into account). However, it has been already claimed in the

introduction to this chapter that the purpose is the design of a real-time system

running at 25 FPS, and the ability to describe the 6 DOF for the vehicle in the

scene. The delivery of the rotational data in real-time can be possible if the

vehicle is equipped with an IMU. The latter is able to stream the accelerations

of the vehicle and its angular velocities at a high frame rate. The problem with

this kind of sensor is the drift over time [128]. Thus, another source of pose

estimation is necessary to eliminate the drift periodically.

In practice, it is very unlikely for the vehicle to rotate around its heading

vector. This fact is verified by the physical constraints on its dynamics and

mechanical structure. For ground vehicles, there could be a high risk of slip if

the robot is driven to rotate around the axis passing through its heading vector,

Figure 5.12 (a). On the other hand, for aerial vehicles there will be some

difficulty encountered by the vehicle in lifting itself when rotating around its

heading, Figure 5.12 (b). The latter would lose equilibrium and consequently

crash into the ground.

For this reason, another sparse filtering-based registration approach will be

contributed in the next chapter to remedy this special case as well as processing

time requirement. Based on some feature data taken from the scene, the last

5.7 Orientation Computation 221

mentioned computes successfully the rigid-body motion undergone between

successive frames.

(a)

(b)

Figure 5.12 The behaviour of the vehicles under the effect of the
different forces when they rotate around their heading vectors.
(a) Ground vehicles (UGV). (b) Aerial vehicles (UAV)

222 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

5.8 Results & Discussions

All the following stages are based on the same hardware configuration presented

in Chapter 3. For programming, C++ was used for the CPU and CUDA for the

GPU/CPU heterogeneous coding.

5.8.1 Synchronisation

5.8.1.1 Kinects/Ground Truth

The key to synchronisation between ground truth measurements (OptiTrack6)

and experimental data in the solution is the clock signal. In other words, the

two threads (position estimation and the ground truth capture) run on the same

machine. Thus, they share the same clock signal. In addition, the frequency of

capture concerning the OptiTrack system is set to 120 FPS, which means it is

more than four times higher than the native frame rate of the estimation

pipeline (25 FPS). To handle concurrency between the two threads, a

multithreaded solution synchronised by the clock signal is, therefore, proposed.

For instance, at the reception of every new pair of positions (estimated, ground

truth) the time of capture is saved. Afterwards, another algorithm matches the

currently delivered position estimate with the set of the freshly acquired ground

truth measurements. Knowing that the rate of capture is not the same, it results

in at least four ground truth measurements for each estimated position. The

closest in time is chosen (the frame with the smallest time difference with the

instant of capture regarding the estimated position). Algorithm 5.1 provides the

details of how the synchronisation works.

5.8.1.2 Between the Kinects

Although all the sensors are similar, their respective rates of capture are not

synchronised. Algorithm 5.2 depicts the procedure of synchronisation between

the flows of data streamed by the Kinects in the multiview setup. It also shows

6 https://www.naturalpoint.com/optitrack/. 2015

5.8 Results & Discussions 223

the synchronisation between the capture, of all five Kinects, and the fusion

module.

Algorithm 5.1 Synchronisation OptiTrack/Kinects
posData;
// an array of six pose data (x, y, z, ox, oy, oz)
f;
//an Optitrack frame containing the position and the orientation of
the rigid body (robot)
ft;
//an Optitrack frame to which is added the time information to find
the correspondence with tracker's data
OptiTrackThread()
{
...

while (true)
{
...

EmptyArray (posData);
for (i=0; i<4; i++)// for all five cameras
{

getFrame(f);
addTimeToPoseData(ft,f);
posData = <posData, ft>;

}
sendPoseDataToTracker(posData);

...
}

...
}

TrackerThread()
{
...

while (true)
{
...

if (newFrame)
{

bestMatchIndex = LookForTheBestMatch (posData,
frameTime);
//fetch the ground truth frame that better fits the one
//delivered by the Kinects and discard the remaining
//ones
saveMeasureAndGt(posData, bestMatchIndex, frameTime);
//save the pair <pose, ground truth>

}
...
}

...
}

224 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

Algorithm 5.2 Synchronisation between the Kinects
CamNum=5;// this variable indicates the number of cameras
Buff;// array of 3D position data. It is a global variable pointing to the
memory space where is kept the position data issued by each camera.
NumIndex; // Index of a given thread corresponding to one camera
nbFilled=0;// nbFilled < CamNum; represents the number of the already ac-
quired frames
semaphore Mutex=1; //semaphore to protect the critical section when updat-
ing nbFilled
semaphore Empty=1;// indicates whether all the sensor-wise position data is
ready
semaphore Filled=0;// indicates if the fusion of the available data has
completed

CaptureThread (CamIndex)
{
....

while (true)
{

// test whether a new frame has just arrived
if (NewFrame(CamIndex))
{

//lock the section of code which updates the variable
nbFilled
Down(Mutex);
nbFilled++;
if(nbFilled >= CamNum)
{

Down(Empty);
Up(Filled);

}
//compute the 3d position of a given robot in
//the scene from the depth image embedded in the current
//frame
buff(CamIndex) = poseData(NewFrame(CamIndex));
Up(Mutex);

}
}

....
}

Fusion()
{
...

while (true)
{
Down (Filled);
...
//position data Fusion algorithm
...
//Proceed through the actual fusion
...
//after reading all necessary data the
//acquisition is launched again for all five cameras
nbFilled = 0;
Up(Empty);
}

...
}

5.8 Results & Discussions 225

The algorithm (Chapter 2) needs the following three semaphores:

 used to update the number of the available positions (NbFilled).

 is set to one when the Fusion finishes.

 is set to one when all the threads supervising the capture finish ac-

quiring the image data (NbFilled = 5).

5.8.2 GPU Capture and Marker Extraction Algo-
rithms

The subject images that are being processed have a VGA resolution (640 × 480)

delivered at the same frame rate as the camera to allow the following

applications to exploit fully the frame rate offered by the sensor. When the

correction was first run on a regular CPU, the maximum achieved frame rate

was 15 FPS. Hence, arises the need to implement the bottlenecks of the solution

in the GPU. In addition, image data is more naturally organised to fit GPU

blocks, where every element in the block (thread) processes a single pixel at a

time [80]. Figure 5.13 illustrates how the depth image can be embedded in the

GPU and the steps of processing in the kernel. The same architecture as that

used in Chapter 3. The image is divided into blocks of a constant size (16 × 16

pixels; so 256 threads is the size of a single block). Pixels of the same block are

processed simultaneously in the same thread block. As a result, for every pixel

in the image is attributed a thread in the GPU. The latter is responsible for all

the processing related to that pixel (capture, correction and markers extraction).

From a computational point of view, there are no iterations in the kernel of the

filter. The optimisation applies to the three components of position , ,).

Velocity components in the state vector are just needed to propagate the

estimation to the next time-step. Hence, they are not considered in all the

matrices. Most of these matrices are 3 × 3.

This solution does not have any problems in scaling up to a reasonable level.

Processing bottlenecks were implemented in the GPU (image data capture and

226 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

markers extraction). Such an architecture allows a simultaneous processing of all

the pixels. The results are validated with five sensors to show the real-time

capability of the filtering algorithm with large images (5 × 2 × 640 × 480 pixels

processed at 25 FPS). Nevertheless, structured light cameras still suffer from

interference when they are used altogether (Chapter 2).

Figure 5.13 Kalman filter GPU implementation for depth map
filtering

The CPU and the GPU are significantly different. A GPU can handle large

amounts of data in many streams, performing relatively simple operations, but

it is inadequate for massive processing on a single stream. A CPU is much faster

for a per-core treatment and can, therefore, perform complex operations on a

single stream of data more quickly. Consequently, the robust filter and the

covariance intersection algorithms have not been implemented in the GPU. The

reason is that the complexity of these algorithms is not proportional to the size

of images. They just refine the 3D positions of the markers. It was possible to

filter the five position data using a CPU-based multithreaded architecture where

each thread handles the stream of a given camera. The fusion algorithm is then

executed on the resulting estimates to find the correct pose of the vehicle.

5.8 Results & Discussions 227

5.8.3 Robust ∞ Filter

The results discussed in the following sections are obtained from the setup

shown in Figure 5.14.

Figure 5.15 and Figure 5.17 present respectively the best and the worst

performances of both the Robust (RF) tracking algorithm as well as the

Kalman filter (KF). As shown in Section 5.5, the motion model of the robot is

unknown. Hence, a generic Newtonian system is assumed to mimic the

displacements regarding the vehicle. Uncertainties are controlled with RF.

Figure 5.14 Experimental setup

, and -axes are shown in Figure 5.14. For and coordinates, Figure 5.15

and Figure 5.17 show almost similar shapes for the error graphs regarding the

two filters. Such a resemblance appears because of the similarity of the model of

motion for both algorithms. Nevertheless, tracking error of the Robust is

smaller. The smallest error among all five cameras for coordinate was

0.0403m with RF against 0.0546m for KF, Figure 5.15 (a). The worst case in

was 0.0450m for RF against 0.0580m for KF, Figure 5.17 (a). For coordinate,

the best RMSE was 0.0252m with RF against 0.040m for the KF, Figure 5.15

(b). The worst case in was 0.0253m with RF against 0.0429m for KF, Figure

5.17(b).

228 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

For component, the best result with RF was 0.0493m against 0.064m for

Kalman filter, Figure 5.15 (c). The worst result was 0.053m with RF against

0.0634m for KF, Figure 5.17 (c).

Throughout the experiments, the RF was the least affected by the inaccuracies

in the parameters of the system. It always gives the best estimation. More

importantly, it was capable of predicting the position of the moving robot even

when no measurements were available. The detailed results for all the five

sensors are given in Table 5.1, Table 5.2 and Table 5.3. The results shown in

these tables are achieved after the correction of all cameras with their respective

models. On the other hand, the effectiveness of some sensors against others is

profoundly influenced by the shape of the trajectory followed by the vehicle. If

all the cameras have the same precision of depth sensing, the closest one to the

robot will be the best candidate to capture the position precisely.

-RMSE(m) Kinect_0 Kinect_1 Kinect_2 Kinect_3 Kinect_4

KF 0.0570 0.0575 0.0580 0.0552 0.0546

RF 0.0433 0.0435 0.0456 0.0440 0.0403

Difference(KF-RF) 0.0137 0.0140 0.0124 0.0112 0.0143

Table 5.1 Error in component for all cameras

-RMSE(m) Kinect_0 Kinect_1 Kinect_2 Kinect_3 Kinect_4

KF 0.0392 0.0429 0.0414 0.0415 0.0415

RF 0.0253 0.0253 0.0253 0.0253 0.0252

Difference(KF-RF) 0.0139 0.0176 0.0161 0.0162 0.0163

Table 5.2 Error in component for all cameras

5.8 Results & Discussions 229

-RMSE(m) Kinect_0 Kinect_1 Kinect_2 Kinect_3 Kinect_4

KF 0.0614 0.0594 0.0634 0.0590 0.0640

RF 0.0537 0.0524 0.0530 0.0534 0.0493

Difference(KF-RF) 0.0077 0.0070 0.0104 0.0056 0.0147

Table 5.3 Error in component for all cameras

5.8.4 Covariance Intersection
At the final stage of the cooperative multiview tracking pipeline, the Covariance

Intersection filter (CI) has been adopted to fuse the position data of the sensor-

wise estimates. To validate the findings about the CI weighting coefficients,

three different approaches of applying these weightings to the estimates have

been compared. The weighting with only the error in estimation () obtained

from RF was first tested. Then the pair with the uncertainty in the

accuracy of the sensor (,). Finally, the combination of both previous

parameters with the confidence in the depth measurement (, ,). After

considering each new parameter in the weighting of data fusion, the quality of

the estimation was improved. The CI algorithm has been tested on the

estimates of the trajectory resulting from the Kalman filter (CI + KF) and the

one obtained from the robust filter (CI + RF). The results of the fused

trajectories were as follows:

Firstly, for the coordinate with on its own, Figure 5.19 (a), Table 5.4 (col

), gave an error of 0.028m with RF, whereas with KF it gave 0.0415m. After

considering the accuracy of the sensor, Figure 5.21 (a), Table 5.5 (col), the

error decreased for both filters to reach 0.0188m with RF, and 0.028m for KF.

The introduction of , Figure 5.23 (a), Table 5.6 (col), further approached

the estimation to its ground truth value as the error reached 0.011m with RF

and 0.016m for KF.

Secondly, for the coordinate on its own, Figure 5.19 (b), Table 5.4 (col),

gave again an error of 0.0154m for RF, whereas with KF it gave 0.0247m. After

230 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

adding the accuracy parameter regarding the sensor, the error fell down to

0.011m with the RF. Likewise, the introduction of , Figure 5.21 (b), Table

5.5 (col), clearly improved the accuracy of KF estimation. The error decreased

to 0.017m. Lastly, after including in the weighting, Figure 5.23 (b), Table

5.6 (col), the error in the estimation fell to 0.006m, at the same time the error

with KF decreased to 0.0098m.

Thirdly, for the component , Figure 5.19 (c), Table 5.4 (col), on its own

gave again an error of 0.0323m for RF, whereas with KF it gave 0.0484m. After

adding the accuracy parameter of the sensor, the error was slightly reduced to

0.0223m with RF. Similarly, the introduction of , Figure 5.21 (c), Table 5.5

(col), improved the accuracy of KF estimates as the error dropped to

0.0333m.

The introduction of , Figure 5.23 (c), Table 5.6 (col), positively affected

the error in the RF, which reached 0.013m. The error in KF estimation also

decreased to 0.0195m.

Based on the results obtained from these experiments, the quality of the

estimation between RF and KF is not significantly different because of the

compensating effect of the CI algorithm over all the sensors. In other words,

each sensor contributes its best estimation. After correction, the most accurate

measurement is used in both KF and RF to compute the next prediction. As a

consequence, the difference in the fused output is not significant when a higher

weighting is attributed to the most reliable measurement. In addition, given the

limited space used for this indoor experiment, the RF theoretically performs as

well as the KF when the robot moves linearly following the predefined motion

model.

5.8 Results & Discussions 231

(a)

(b)

(c)

Figure 5.15 The best monoview tracking RMSE (a) . (b) . (c) .

232 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

(a)

(b)

Figure 5.16 The best monoview tracking trajectory (a) 3D view of
the trajectory. (b) view of the trajectory

5.8 Results & Discussions 233

(a)

(b)

(c)

Figure 5.17 The worst monoview tracking RMSE (a) . (b) . (c) .

234 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

(a)

(b)
Figure 5.18 The worst monoview tracking results trajectory (a) 3D
view of the trajectory. (b) view of the trajectory

5.8 Results & Discussions 235

(a)

(b)

(c)

Figure 5.19 multiview weighting RMSE (a) . (b) . (c) .

236 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

(a)

(b)

Figure 5.20 multiview weighting trajectory. (a) 3D view of the
trajectory. (b) view of the trajectory

5.8 Results & Discussions 237

(a)

(b)

(c)

Figure 5.21 and multiview weighting RMSE (a) . (b) . (c) .

238 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

(a)

(b)

Figure 5.22 and multiview weighting trajectory. (a) 3D
view of the trajectory. (b) view of the trajectory

5.8 Results & Discussions 239

(a)

(b)

(c)

Figure 5.23 , and multiview weighting RMSE (a) . (b) . (c) .

240 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

(a)

(b)

Figure 5.24 , and multiview weighting trajectory. (a) 3D
view of the trajectory. (b) view of the trajectory

5.8 Results & Discussions 241

Figure 5.25 Angle between the GT and the estimated heading

5.8.5 Vehicle Orientation

To test the orientation obtained from the 6 DOF tracking solution, the error

angles between the ground truth heading and the estimated one are computed.

To this end, the dot product between the two vectors representing the ground

truth and the expected direction of the robot is used. As one can see in Figure

5.25, the dot product between the two vectors can be obtained from their

magnitudes and the angle separating them as shown in Equation (5.54):

= | || | () (5.54)

It results from Equation (5.54):

() = | || | (5.55)

Error angle between the two directions, therefore, becomes:

= | || | (5.56)

242 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

After applying Equation (5.56), the results illustrated in Figure 5.26 were

obtained. The error in the orientation of the vehicle resulting from the RF

was 11°. Whereas, KF’s was 17°. With both filters, the error in the direction of

the mobile robot was not significant. More importantly, the application of the

CI improved the accuracy of the orientation angle as follows: with on its

own RF-RMSE was 7.1° and KF-RMSE was 12°. With , the results is

even better where RF-RMSE turned into 4.8° and KF-RMSE to 8.1°.

Finally, the introduction of significantly reduced the error to 2.7° for RF

and 4.6° for KF. The result is very accurate given the fact that the three angles

of orientation were not involved in the filtering algorithm. Consequently, the

current approach to compute the heading of the vehicle has proven its

effectiveness and high adequacy for real-time systems.

5.8 Results & Discussions 243

Table 5.4 Final tracking error after CI filtering with weighting

Filters -RMSE(m) -RMSE(m) -RMSE(m)

CI + KF 0.0281 0.017 0.0333

CI + RF 0.0188 0.011 0.0223

Difference CI+(KF-RF) 0.0093 0.0065 0.011

Table 5.5 Final tracking error after CI filtering with ,
weighting

Filters -RMSE(m) -RMSE(m) -RMSE(m)

CI + KF 0.0165 0.0097 0.0195

CI + RF 0.011 0.006 0.0129

Difference CI+(KF-RF) 0.0055 0.0037 0.0066

Table 5.6 Final tracking error after CI filtering with , and
weighting

Filters -RMSE(m) -RMSE(m) -RMSE(m)

CI + KF 0.0415 0.0247 0.0484

CI + RF 0.0275 0.0154 0.0323

Difference CI+(KF-RF) 0.014 0.0093 0.0161

244 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

(a)

(b)

(c)

5.8 Results & Discussions 245

(d)

`
(e)

Figure 5.26 Error in the estimated orientation of the vehicle. (a)
Best orientation estimation with RF. (b) Worst orientation
estimation with RF. (c) CI with weighting results. (d) CI
with and weighting results. (e) CI with , and

weighting

246 5. Real-Time Multiview Data Fusion for Object Tracking with RGBD
Sensors

5.9 Conclusion

A novel approach to the tracking the moving vehicles in indoor environments

with a setup of multiple RGBD cameras was proposed. All the details about the

methodology and the different constraints of implementation were described.

Robust filtering was investigated in object tracking applications using multiple

RGBD sensors. The power of the latter was demonstrated in overcoming the

lack of knowledge about the system governing the motion of the vehicles. The

quality of the measurements and the single estimates delivered by each sensor

were then forwarded to a Covariance Intersection framework. The latter

successfully combined all the individual contributions of the cameras in a single,

consistent result.

The conducted experiments showed the achieved performance at a frame rate of

25 FPS with the five Kinects. The GPU implementation of the computationally

demanding stages of processing (capture and markers extraction) helped

significantly to accomplishing the real-time performance. However, no

parallelisation was required for the robust filtering and the covariance

intersection algorithms. The latter were just applied to the five sensor-wise

position estimates (five 3D centroids). Their linear complexity of computation

does not involve any parallel processing. Hence, they were implemented on the

CPU, which indeed is more powerful in linear processing.

On the other hand, there are some limitations due to the active nature of the

RGBD cameras that create interference problems, see Figure 5.27. A few

solutions have been proposed in the literature to overcome such an inherent

defect in this family of sensors [129]. However, these methods have other side

effects such as the blurring of images that in turn causes substantial

inaccuracies to the tracking. The current study does not deal with such an issue.

5.9 Conclusion 247

Figure 5.27 Interference between structured light patterns of the
different RGBD cameras

249

A Recursive Robust
Filtering Approach for
3D Registration

In this chapter, a recursive robust filtering approach for sparse 3D feature-based

registration is proposed. Unlike the ordinary state of the art alignment

algorithms, the proposed method has four advantages that have not cohabited

altogether within any previous solution in the literature:

 It has the ability to deal with the inherent noise contaminating sensory
data.

 It is robust to the uncertainties caused by uncertain feature localisation.

 It also combines the advantages of both and norms for a higher
performance and more prospective avoidance of local minima.

 It also provides an estimated rigid body transformation along with its er-

ror covariance. The latter enables a thorough control of the convergence

regarding the alignment as well as a correct assessment of the quality of

registration.

250 6. A Recursive Robust Filtering Approach for 3D Registration

The mathematical rationale of the proposed approach is presented in detail. In

addition, the results obtained from this 3D registration scheme are validated on

various challenging scenarios with both synthetic and real data.

6.1 Overview

The widespread abundance of commercial 3D sensing devices for the general

public and researchers at an affordable price has encouraged many enthusiasts

to improve the quality of pose estimation algorithms. Many solutions and new

algorithms have contributed to answering the growing need of the market.

These algorithms leverage the raw sensor outputs and the high computational

capability of multicore and graphic processors for a better human-machine

interaction. Despite the high performance achieved with HD (High Definition)

resolution images captured at 30 FPS in general, depth map in particular, the

sensors still suffer from a significant measurement noise and a narrow field of

view.

3D data registration is a very common tool that enables the recovery of the 6

DOF of the viewpoints from which the different scans were taken. For instance,

the prime motivation of image registration returns back to the limited field of

view regarding the real cameras. In other words, each viewpoint has its own

coordinate system. Hence, emerges the need for the knowledge of

transformations that map a given 3D dataset from one frame to another. To

this end, several approaches have been proposed for point clouds, mesh and

surface data registration. In most cases, objects of interest are assumed to be

rigid. For this reason, their respective geometry remains unchanged over time.

In addition, images taken from different viewpoints must share sufficiently large

overlap regions. Based on the features observed in these areas, alignment

algorithms compute a rigid body mapping that readjusts the images on each

other. In practice, the alignment starts with the selection of some key points to

be matched against each other in both source and target datasets [130]. Some of

the matched pairs are systematically rejected when classified as outliers. Finally,

6.1 Overview 251

the minimisation of the distance between the pairs source/target key points

yields the actual 3D transformation.

The computation of the 6 DOF transformations is achieved with a Least

Squares (LS) minimisation algorithm. In practice, the output of the sensor is

naturally contaminated with noise from potentially many different sources, each

of which possibly has a different statistical nature (although the noise is

assumed to be Gaussian) and amplitude. Assuming that a good initial guess

may be available (e.g. human assisted alignment), most LS methods use

Singular Value Decomposition (SVD) decomposition [131] or Horn’s absolute

rotation [34] [35] to estimate an approximate rigid body transformation.

Moreover, these methods assume the whole source and target datasets being

available before the processing takes place. However, in practice the data may

be large, noisy, and streamed at a high frame rate, particularly when modern

HD depth cameras are used. The latter are capable of delivering over two

megapixel images at 30 FPS.

To cope with these shortcomings affecting the alignment process, a novel 3D

registration solution is proposed in this thesis’ chapter. The latter is capable of

delivering 6 DOF transformations recursively, as well as of handling the noise

and uncertainty seen in the position of 3D points. The link between ordinary LS

registration methods such as: SVD [131] , Principal Component Analysis (PCA)

[132], Iterative Closest Point (ICP) algorithm [133], and the recursive LS that is

well known among optimal state estimation methods has been established. The

relationship between the classic solutions and the recursive ones allows an

efficient handling of uncertainties in parameters for a more robust registration.

The remainder of this chapter is organised as follows: In Section 6.2, the related

works about 3D registration are discussed, and different alignment solutions

that have been proposed in the literature are analysed. In Section 6.3, the target

problem is formulated, and the elements of solution are clearly established. Two

preliminary simplifications regarding translation and scale difference between

two point clouds are examined to relax the problem. In Section 6.4, the

252 6. A Recursive Robust Filtering Approach for 3D Registration

modelling behind the Weighted Least Squares is considered. Then, in Section

6.5, its recursive equivalent is deducted. In Section 6.6, the link between the

Kalman filter and the RLS is settled. In Section 6.7, the registration model is

fitted into a Kalman filter framework. In Section 6.8, the parametric uncertainty

of the imaged 3D points is explained. Afterwards, in Section 6.9, the knowledge

about uncertainty is used in the parameters of the Robust filtering scheme.

In section 6.10, the experimental results of the proposed registration approach

applied to synthetic and real datasets including different noise levels are shown.

In Section 6.11, the chapter is concluded and potential future works that can

benefit from this modelling approach in alternative domains are debated.

6.2 Related Works

3D registration algorithms are useful for many applications such as 3D scanning,

mapping, localisation, egomotion estimation and human body tracking. Mainly,

this chapter delivers a more general solution to the estimation of the 6 DOF

relating two states taken by the robot as seen in Chapter 5.

Schönemann was the first to publish a solution for the registration problem in

1966 [134]. Arun et al. [131] derived a closed-form solution to compute the

absolute rotation with SVD. In the same year, Horn [34] proposed a similar

solution based on Unit Quaternion, as well as another approach that uses the

orthonormal matrices [35]. Rigid body alignment algorithms require an

initialisation that can be achieved via several methods. The identification and

indexation of features, scanner position tracking [135], principal axes of scans

[136], exhaustive search for point correspondences [137]; are a few of the

automatic solutions. On the other hand, a direct user action can also be useful

to guess a good initial pose. Walker et al. [138], proposed an alternative solution

to finding the absolute rotation using dual quaternions. Since its invention by

Besl et al. [133], the Iterative Closest Point algorithm (ICP), has been

considered as the state of the art point cloud alignment tool. Nevertheless, it

6.2 Related Works 253

requires a good initial guess or some feature correspondences to avoid falling

into a local minimum.

Nowadays, the newest variants such as EMICP [139] and SOFTASSIGN [140]

are able to overcome some of the traditional ICP’s limitations. Unlike the

original algorithm, where each point in the source dataset has a single

correspondent in the target one, the subsequent variants allow each point in the

source to be checked against all the points belonging to the target dataset. To

this end, the authors in [139] [140] introduced a weighting coefficient associated

with every element. However, the computational effort to determine all possible

combinations becomes a preventing factor when the size of the datasets grows

beyond a thousand elements.

Other variants inspired from ICP were further proposed such as non-linear ICP

[141], generalised ICP [142], and non-rigid ICP [143]. The latter have different

levels of accuracy and convergence rates. What a given ICP variant can achieve

may not be possible to accomplish with another variant. Hence, the decision

about the usage of a particular registration algorithm depends on the nature of

data and target application. Larusso et al. [144] showed that all the closed-form

solutions are computationally similar. However, the performance can

significantly differ. Thus, no single algorithm is exclusively optimal for all

scenarios.

Umeyama [145] states in his work that Horn and Arun’s algorithms fail when

the datasets become highly corrupted with noise. He further proposed an

alternative solution that uses Lagrange Multipliers [146]. Kanatani [147]

simplified Umeyama’s solution by fitting a rotation matrix to the 3D datasets

using SVD. Granger et al. [148] reformulated the rigid body registration as a

Maximum Likelihood problem with the Expectation Maximisation (EM) [149]

approach to estimating transformation parameters. The authors update point

correspondences between two datasets during the expectation step. Afterwards,

they compute the parameters of the transformation using the derived

correspondences.

254 6. A Recursive Robust Filtering Approach for 3D Registration

A recursive solution, to sequentially estimate rigid body transformations with

the Extended Kalman Filter (EKF) [24] was first proposed by Pennec et al.

[150]. Ma et al. [151] followed the same strategy in order to align a dataset

contaminated with isotropic Gaussian noise using the Unscented Particle Filter

(UPF) [152]. This algorithm can accurately estimate the parameters for tiny

datasets (less than one hundred elements). Ohta et al. [153] proposed the

Generalised Total Least Squares (GTLS) method to compute a rotation matrix

in the presence of anisotropic and inhomogeneous noise. An approximate

algorithm for the 3D registration was later proposed by Balachandran et al.

[154] in order to reduce the anisotropic noise.

Julier et al. also used an Unscented Kalman Filter (UKF) algorithm [155] to

align two datasets following a sequential estimation. All these filter-based

algorithms use the norm and consider the parameters being accurately

determined beforehand. It is still impossible to completely eliminate the

uncertainty from the parameters of the filter. The proposed method minimises

the cost function in the norm sense as long as the provided parameters are

assumed to be accurate enough. On the other hand, when the latter

(parameters) have not been carefully determined, or in the case where

alternative hardware precision limitations intervene, a non-negligible

uncertainty amount must be properly included in the modelling for a more

robust estimation. Such a carefulness yields a good maintenance of estimation

error within a predefined bond by optimising in the instead of norm.

This norm has been adopted as a standard in the community of mathematical

optimisation and computer vision to solve a particular category of optimisation

problems [156]. Micusik et al. [157] localise non-overlapping cameras using

Second Order Cone Programming (SOCP) to minimise the norm. They

showed a good performance of SOCP for camera centre localisation with a fairly

small error magnitude. Lee et al. [158] further claimed that by using a

number of computer vision problems such as homography estimation

6.3 Problem Statement 255

(considered a quasi-convex problem) can be formulated and solved using the

Bisection method.

Despite the latest developments in based solutions, vision optimisation can

provide accurate and globally optimal solutions, but the practical

implementation is computationally demanding. The method proposed and

implemented in this thesis on the other hand, uses a simpler and more

computationally attractive based filtering approach to constrain the worst-

case error.

6.3 Problem Statement

Let us consider two sets of 3D points belonging to the source and the target

point clouds = ,… , }, = ,… , }, respectively. Each of the

elements , within the sets of points has three components =

, , and = , , . The -th point in the source point cloud

is matched a priori with the -th point in the target point cloud . The

purpose of a 3D registration operation is finding a rigid body transformation (:

translation, : rotation) that best maps the source point cloud onto the

target one . The determination of such a mapping can be modelled as an

optimisation problem. Nevertheless, due to the noisy outputs streamed by the

sensor, an exact solution is very unlikely to be determined. Thus, a realistic

model must take into account alignment error as follows:

= + + (6.1)

Equation (6.1) can be re-written in the form:

= (+) (6.2)

256 6. A Recursive Robust Filtering Approach for 3D Registration

The rigid body transformation is optimal when the sum of the squares of errors

() becomes minimal:

= (+)
=

(6.3)

Where:

=
(6.4)

=
(6.5)

6.3.1 Preliminary Translation Estimation

It is possible to simplify the problem of Equation (6.3) by decoupling the

translation vector from the cost function following the steps below:

Let and be the centroids of the two point clouds,

= 1

=

= 1

=
(6.6)

The two datasets are centred by translating the 3D points to the origin of the

world frame,

=

6.3 Problem Statement 257

= (6.7)

Hence, Equation (6.2) becomes:

= (+) (6.8)

The decoupled translation is:

= + (6.9)

The error function to be minimised, therefore, becomes:

= ()
=

= 2
= =

+ (6.10)

It results from Equations (6.6) and (6.7):

=
= ()

= =

1

=
= 0

=
= ()

= =

1

=
= 0 (6.11)

Consequently,

=
=

+ (6.12)

Equation (6.12) represents a positive function of . The latter attains its

minimum value at = [, ,] because the first term is constant. Equation

(6.9) subsequently becomes:

258 6. A Recursive Robust Filtering Approach for 3D Registration

= (6.13)

This equation represents an optimal translation between the source and the

target centroids. In other words, a good initial guess at the translation can be

obtained as shown in Equation (6.14). Instead of searching for an optimal

solution in a space of 12 dimensions, i.e. 3 entries for translation and 9 entries

for rotation which amounts to 12 total. Preliminary translation estimate

reduces the dimensionality of the problem to 9. The value of the initial

translation becomes:

= (6.14)

6.3.2 Scale Difference Elimination

=
=

(6.15)

Using Equation (6.15) and the fact that = = = , one can

estimate the scale factor between the two sets of points from the following

equation:

=
=

2
=

+
=

(6.16)

The inner products between the source and the target vectors of data are

replaced as follows:

=
=

(6.17)

=
=

(6.18)

6.3 Problem Statement 259

=
=

(6.19)

Substituting the new variables , and in Equation (6.16) results in:

= 2 + (6.20)

Equation (6.20) is reformulated as follows:

= + (6.21)

Expression (6.21) is minimal when takes the following value:

=
=

(6.22)

A good initial guess for the scale factor can, consequently, be:

=
=

(6.23)

6.3.3 Optimal Rotation Estimation

Up until now, it has been possible to decouple the translation () and eliminate

the scale difference () between the source and the target point clouds after the

computation of the maximal value taken by the sum of the squared errors.

Nevertheless, the determination of the rotation transform is more complicated

and computationally challenging. The previous results (,) obtained from

Equations (6.14), (6.23) are orientation-invariant. Thus, the registration

problem (rigid-transformation estimation) is reduced to the estimation of the

rotation between point clouds from Equation (6.3) to the following simplified

form:

260 6. A Recursive Robust Filtering Approach for 3D Registration

=
=

(6.24)

Once the optimal rotation is computed, the optimal translation can be

directly deduced, as well as the best scale between the two sets of points using

Equations (6.13) and (6.22).

The best rotation can be obtained with Least Squares minimisation tools that

are capable of providing a closed form solution for the orientation relating

source and target point clouds. This solution is sufficient for most applications.

However, if the inputs are significantly contaminated with measurement noise,

the transformation becomes unstable, i.e. very sensitive to perturbations in the

data to be aligned.

6.4 Weighted Least Squares (WLS)
Estimation

The Least Squares registration is sufficient to estimate the rigid-body

transformation between two sets of points. In the cost function of Equation

(6.24) there are more equations than unknowns. The function is convex because

it is quadratic in R. A single optimal solution is therefore expected to be found

by the minimisation algorithm. The latter can either be the SVD [131],

quaternions [34], orthonormal matrices [35] or dual quaternions [138]. On the

other hand, the feasibility of the solution requires at least three pairs of

correspondences (9 pairs of coordinates) that are linearly independent in order

to solve each equation in the system.

Another class of solutions that is based on the non-linear methods, such as

Levenberg-Marquardt, or the linearization of the cost function with the

assumption of the incremental elementary rotations for infinitesimal changes

in . The latter can then be approximated by a skew symmetric matrix where

the entries are the actual rotation angles over the three main axes. A recent

survey on 3D registration [159] cited several approaches aiming at the best

6.4 Weighted Least Squares (WLS) Estimation 261

rotation matrix. However, the authors have not mentioned any time-varying

solution, i.e. a solution based on iterative/recursive optimal filtering framework.

The Weighted Least Squares (WLS) estimation is a variant of the original Least

Squares (LS) algorithm. Real world datasets contain different measurements

with various confidence levels. WLS attributes a weighting coefficient to every

measurement, computed with its respective accuracy. In the registration case,

the elements of the 3D dataset (points in point clouds and triangles for 3D

surfaces) are ordered according to their uncertainty, i.e. the inverse of

confidence or certainty. The uncertainty quantifies the amount of noise in

measurements. The noisier the measurements, the less their contribution in

terms of useful information.

Suppose that one wants to estimate the best value () of an -element vector

from a series of noisy measurements . are independent random variables

representing measurement noise. The mathematical formulation of the WLS

algorithm is based on the least squares estimation as shown in these equations:

= + + +

= + + + (6.25)

The matrix form of Equation (6.25) with a × projection matrix that

maps an -dimensional vector into the -dimensional space, where the vector

= ,… ,] rests:

= + (6.26)

= (6.27)

The solution that minimises the error [160] is given by:

262 6. A Recursive Robust Filtering Approach for 3D Registration

= () (6.28)

Since it is assumed that the noise process for each measurement is non-zero and

independent, the covariance matrix becomes, with = [,… ,] :

= () (6.29)

The variance of each observation noise is) = ; .

The solution that minimises the error [160] of the weighted observations is

given by:

= () (6.30)

The asset of the WLS over its original counterpart LS lies in its ability to

handle situations where the elements of the dataset are not similar in quality. In

such a case, observation errors are not uniform. As a result, the weighted

version of least squares estimation takes advantage from just the useful

information provided by the data and yields an accurate estimate [161]. These

weighting factors (covariance matrix) are assumed to have been precisely

determined beforehand. However, in real scenarios another type of the estimated

weightings is used instead. The latter are computed from the properties of

observation noise. If redundant observations exist in the dataset, the result of

the WLS estimation will be adversely affected. Such a drawback is more likely

to occur in small datasets [162] [163].

Outliers are another performance limiting factor of the WLS. Captured

measurements must be cleaned thoroughly with an appropriate outlier removal

algorithm such as RANSAC [164]. Otherwise, outliers can have a significant

effect that causes the WLS to promote them instead of the useful data. In this

case, the result may become worse than the naive least squares estimation.

6.5 Recursive Least Squares (RLS) Estimation 263

6.5 Recursive Least Squares (RLS)
Estimation

In many real-world scenarios, observations are not entirely available. Instead,

they are streamed progressively. This can be particularly noticed when the size

of the outputs is important, or when their respective processing is time-

consuming. The previous formulation of the WLS does not allow such a time-

varying update of the already computed estimate to be performed. When a

new sample arrives, all the parameters of the filter are entirely re-evaluated.

In addition, the matrices and are augmented with the recently-delivered

observation. In order to avoid re-computing the estimate from scratch, an

alternative recursive version of the ordinary WLS algorithm is suggested. The

latter takes advantage of the already available estimate to compute the

current one without re-calculating the entire expression in Equation (6.30).

The recursive estimator [77] can be written in the form:

= + (6.31)

= + () (6.32)

Equations (6.31), (6.32) are a particular case of the Kalman filter [165]. is

called the and the difference () is called

. The latter represents how significant is the contribution of the last

observation to the final estimate. In cases where either the gain or the

innovation becomes zero, the last sample would not have any contribution to

the estimation. is accordingly determined as follows:

() = []

= [()]

264 6. A Recursive Robust Filtering Approach for 3D Registration

= [(+)]

= [()]

= [()]

= () () () (6.33)

Another condition should be taken into account to determine the best estimate.

The last mentioned concerns the minimisation of estimation-error covariance:

= ()=

=
=

= []

= [()]

= () (6.34)

is the covariance of the estimation-error. A recursive form for it can be

obtained with the same rationale followed in Equations (6.31) to (6.33):

= []

= () ()

6.5 Recursive Least Squares (RLS) Estimation 265

= [() () ()
() +]

=)))
() () + () (6.35)

With measurements noise being independent from estimation-error one

gets:

() = () ();
(6.36)() = () ()

() = () = 0 () = () = 0 (6.37)

Equation (6.37) is verified because is a white noise process. Equation (6.35)

therefore becomes:

= () () + (6.38)

is the covariance of the measurement noise . The variable of Equation

(6.38) represents the form of the estimation error covariance

resulting from the RLS.

From the same Equation (6.38), it is plausible that is proportional to .

The best result in the estimation of is consequently reached at the minimum

of ()].

In order to find the best value of the gain , the result of Equation (6.38) is

applied with the chain rule of Equations (6.39) and (6.40):

() = 2 =
(6.39)

266 6. A Recursive Robust Filtering Approach for 3D Registration

= 2() () + 2
(6.40)

is therefore minimised by setting the derivative of Equation (6.40) to zero:

= ()

=

(+) =

= (+) (6.41)

The global least squares estimation algorithm is summarised in Algorithm 6.1.

6.6 Kalman Filter and RLS

The process of recursive registration starts with the capture of the 3D data

Figure 6.1 (a). The captured data is sent through a 3D feature extraction

algorithm. The selection of a relatively small subset of features instead of the

Algorithm 6.1 Recursive Least Squares Algorithm
Initialisation

= ()

= [()()]

for every iteration (= 1,)

Read a new measurement:

= +

Then, carry out through the estimation:

= (+)

= + ()

= () () +

end

6.6 Kalman Filter and RLS 267

whole point cloud is advantageous in two aspects: the first is the significant

decrease of processing time as the size of feature's subset is around 1/80 smaller

than the one of the entire 3D map; on the other hand, feature points are more

representative, stable and almost outlier-free. For instance, outliers can

considerably mislead the search for the optimal 3D transformation.

Correspondence computation algorithms are responsible for the matching of key

points (features). The result of this stage is a list of source/target pairs of

features.

The Data Recasting Module embeds the coordinates of a source feature within a

given pair in a matrix called the Projection matrix , Figure 6.1 (b). Target

feature point coordinates are also inserted in a vector . and serve as

parameters for the ultimate Recursive Registration solution.

Figure 6.2 (a) illustrates a general architecture characterising the state-

transition filters. The equations are taken from Kalman filter definition in

Chapter 3. The choice of this framework is motivated by the fact that the

Kalman filter is the basis for all the subsequent alternatives in the same family

(recursive optimal state estimators). All the filters belonging to this family are

divided into two stages: and .

Recursive filtering is a branch of the prediction/correction paradigm. The last

mentioned enables the computation of the a priori estimation based on the

dynamic nature of the target system, followed by a correction that associates

with the actual measurements of the a priori estimate. The algorithm

progressively refines the estimated transformation at the reception of new pairs

of feature points.

268 6. A Recursive Robust Filtering Approach for 3D Registration

(a)

(b)

Figure 6.1 Capture and recasting module. (a) Capture and
correspondence extraction module. (b) } to }
recasting module.

6.6 Kalman Filter and RLS 269

(a)

(b)

Figure 6.2 3D recursive registration with Kalman filter. (a) Kalman
filter for registration. (b) Global registration pipeline.

270 6. A Recursive Robust Filtering Approach for 3D Registration

Recursive processing is convenient for problems where the datasets are

substantially large. On the other hand, regular registration algorithms are

proven to be very poor in coping with such scenarios [166].

The global diagram explaining the flow of data and the different stages of

processing is depicted in Figure 6.2 (b).

The Kalman filter (KF) is a more general form of Recursive Least Squares

optimisation. All of its parameters can be time-varying. KF was first introduced

by Rudolf Kalman [167]. Since then, it has become a standard for optimal linear

filtering as well as a source of inspiration for many modern, more sophisticated

approaches to optimal state estimation.

In KF’s scheme, see Chapter 3, represents the state vector,

is the measurement or observation vector. In addition to these vectors that have

been already introduced in the RLS method, the KF provides the possibility to

further include an external control variable that enables the filter to

maintain a more general affine form (Equation (6.42)). KF equations generalise

the original RLS as follow:

= + + (6.42)

= + (6.43)

In addition to the measurement noise , the KF takes into account another

noise process , that disturbs the process of the prediction regarding the

estimate . Both noise processes handled by the KF are assumed to be white

with normally distributed random variables ~ (,), ~ (,).

Using the recursive Equation (6.32) relating and the prior along with

the initial value of the state and the respective error in estimation , KF

estimates optimal state vector by minimising the norm of the mean squared

error () recursively.

6.6 Kalman Filter and RLS 271

The recursive nature of the filter requires an initial value for the state and

its corresponding error . By replacing the variables , of Equations

(6.32), (6.38) and (6.41), with their Kalman corresponding variables , . KF

equations become as Equation (3.1) to (3.6).

The simplification of Equation (6.38) yields (3.6), as follows:

KF is divided into:

Prediction: the previously obtained state estimate is projected forward along

with its covariance matrix using filter’s parameters , and . The

purpose of the prediction stage is the estimation of an a priori value of the state

variable. The latter will be further corrected with the actual noisy

measurements. Moreover, the prediction is capable of providing a relatively

good estimation of the state and its covariance matrix even when no

measurements are provided.

Correction: the correction is performed on the predicted estimates at the

reception of the newly acquired measurements. The result is the a posteriori

estimate that is theoretically the most accurate among all the results of

alternative filters, provided that the system is linear and precisely modelled.

= () () +

= + (+)

= +

= () (6.44)

272 6. A Recursive Robust Filtering Approach for 3D Registration

6.7 3D Registration with RLS

RLS has been established as a very useful tool for the resolution of many

engineering problems. This usefulness results from its ability to fit noisy data to

a known model, in both time-invariant and time-varying filtering problems.

Shortly after the KF was invented, many subsequent optimal state estimation

techniques were developed with more sophisticated formulations. The latter

have become a standard for several applications. Nevertheless, 3D data

registration solutions have profited very poorly from the assets of time-varying

filters; even though the close form solutions were experiencing several

weaknesses. Moreover, the authors of a number of recent image registration

surveys did not allude to the possibility of solving the 3D alignment problem

with any recursive filtering tools [31].

The idea of aligning 3D data by means of a recursive filtering scheme is

motivated by some advantages that promote time-varying registration solutions

against alternative methods. The first advantage is that recursive filtering based

registration does not require all the data to be entirely available at the

beginning of processing. The advantage of such a property can be particularly

seen in scenarios where the amount of data is important. It can also be seen

when feature extraction or matching algorithms deliver the pairs of

correspondences progressively over time. Another advantage of time-varying

registration is the possibility for cooperation between different active

registration units working in parallel. The latter can instantaneously share their

respective most updated estimates. This asset allows for various instances of

registration to take advantage of each other’s contributions, since some features

can be more accurately seen from another viewpoint. This cooperation helps in

reducing the probability of the alignment algorithm being trapped in a local

minimum or being sensitive to perturbations.

6.7 3D Registration with RLS 273

6.7.1 Recursive 3D Registration Modelling

Intuitively, 3D registration is clearer to write in the native LS form that has

been illustrated in Equation (6.24). To express the same problem with a

recursive framework, that can fit the KF, in particular, as well as any other

time-varying filter, the original problem of Equation (6.24) should be rewritten

as follows:

= + (6.45)

= + (6.46)

After distributing, Equation (6.46) is rewritten as a system of three equations:

= + + +
= + + +
= + + +

=
=
=

+ +
+ +

+ + (6.47)

274 6. A Recursive Robust Filtering Approach for 3D Registration

= + (6.48)

= + (6.49)

Equation (6.49) expresses the target feature point coordinates as a

transformation applied to the new vector that holds the elements of the

rotation matrix .

The advantage of this formulation is the possibility for fitting the 3D

registration problem into the recursive least squares framework. In other words,

instead of applying the ordinary rotation matrix on source feature points; the

matrix built upon the source data is applied on the vector containing the nine

entries of the rotation matrix. The latter is estimated recursively, using the

pairs of matched features. In other words, the state variable represents the

rotation matrix of Equation (6.24). Subsequently, the filter uses the pairs of

corresponding points, , embedded in the projection matrix to refine the

entries of the subject rotation matrix.

The formulation of the registration problem for each time-step is modelled as

follows:

 = [] : State vector contain-

ing the nine components of the rotation matrix.

6.7 3D Registration with RLS 275

 = : Theoretically, the estimated state (rotation transformation)

remains unchanged for all pairs of corresponding feature points to be

aligned, as long as the latter is assumed to be rigid. In other words, the

state at the current time-step should not be propagated at the reception of

the new source and target feature-points linked by the same rigid body

transformation.

 = : No control variable is required.

 ~ (,) : Random variable representing the uncorrelated zero-mean

noise process, for which = : should remain small as long as

the noise process perturbing the system is assumed to have been accurately

characterised. The latter can be anisotropic, i.e. can have different magni-

tudes in the different directions of the space where the state variables be-

long.

 : Actual noisy measurement vector, whose elements are the coor-

dinates of the target feature point obtained a priori from feature matching

module.

 : Predicted observation vector that contains the 3D position of

the target feature point.

 ~ (,) : Random variable representing the uncorrelated zero-mean

measurement noise, for which = [] , the three diagonal ele-

ments represent the standard deviations regarding the three coordinates.

The latter are obtained from the analysis of the properties of noise con-

taminating the outputs streamed by the sensor.

 : Estimation error covariance matrix.

 : Kalman gain matrix.

 : Corrected estimate at time-step .

276 6. A Recursive Robust Filtering Approach for 3D Registration

 : Corrected covariance matrix of error in .

Both KF-based registration and state of the art ICP algorithms compute a rigid

body transformation that aligns the source point cloud with the target one by

the minimisation of the norm of alignment error. However, the time-varying

solution has the advantage of working progressively at the pace of data delivery

as well as the ability to handle errors corrupting 3D point’s positions in an

effective manner. The complete algorithm for Kalman-based registration is

explained in Algorithm 6.2.

The algorithm works as follows:

 Initialise the state vector (rotation matrix elements) with the identity ma-

trix entries. Alternatively, if available, a preliminary guess at its value as

well as the covariance matrix. The latter allows one to weight feature

points.

 Iterate over feature points; acquire the next measurement from the tar-

get features and build the projection matrix from the coordinates of

the source features.

 KF starts with the prediction of the next estimate along with its covari-

ance matrix. The system equation regarding the expected transformation

expresses the fact that the correct transformation should not evolve during

the scanning of the list of the feature points. For instance, they are all re-

lated by the same transformation.

 Afterwards, comes the correction stage where the first step is the computa-

tion of the Kalman gain from the predicted covariance matrix ,

and the covariance matrix of measurement noise .

 The estimate and the covariance of error in estimation are there-

fore corrected with .

6.7 3D Registration with RLS 277

The innovation term () is computed upon the difference between

the measured feature position and the predicted position resulting from the

current state estimate (transformation) as well as the projection matrix formed

by the entries of source feature points coordinates . In addition, the

prediction covariance matrix of the error in estimation, , is computed from

the previous covariance matrix and the constant one of noise process disturbing

the system .

The computational complexity of the KF-based registration is proportional to

×) = (×) in the worst case. is the number of feature points

used to compute the optimal registration and 12 is the maximum size of the

filter’s state vector. This relatively high computational load can be reduced with

matrix-computation optimisation approaches such as CW-like algorithms [168].

By doing so, the previous complexity of computation can be reduced to

(× (× .). On the other hand, the complexity regarding

the state of the art registration approaches is proportional to (×

(× .). In other words, due to the quadratic complexity of the

classical registration methods, they can only be suitable for reduced size

alignment problems. This consideration is important to enable the algorithm to

output a good-quality rigid body transformation in a reasonable time. The

larger datasets are more effectively aligned with linear-complexity algorithms

such as the proposed KF-based solution.

From Algorithm 6.2, one can easily append the three components of the

translation vector to the projection matrix along with the scale factor

between the source and the target point clouds in the following manner:

1 = 0 1 1 + 1
(6.50)

278 6. A Recursive Robust Filtering Approach for 3D Registration

1

=

0 0 0 1 1

+ 1
(6.51)

In the formulation of Equations (6.50), (6.51), the complexity of the filter

becomes proportional to ×) = (×) in the worst case. After

applying the computational optimisations, the previous complexity decreases

down to (× (× .). When compared to KF-based

registration, ordinary registration approaches achieve the same result with a

complexity proportional to (× (× .).

6.7 3D Registration with RLS 279

=

=
. . .

. . .
. . .

Algorithm 6.2 Kalman-based registration

Source and target point clouds

P, : 3D feature points;

,] : Correspondences list;

Find 3d correspondences in the two point clouds

,] = FindCorrespondences(P,Q);

= [1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0]

=

= []

for each pair of correspondences (k=1, n)

= [. . .

Prediction

=

=

= +

Correction

= (+)

= + ()

= ()

end

280 6. A Recursive Robust Filtering Approach for 3D Registration

Equation (6.53) expresses the target feature point coordinates as a

transformation applied to the new vector that holds the twelve elements

of the rigid body [,] matrix .

Although the KF can be very useful, its projection matrices , are

defined by the noisy inputs of source point cloud. This noise factor negatively

impacts the stability of estimation. The filter therefore responds reciprocally to

the quality of the captured feature points. In other words, if the points are

accurately captured, the respective projection matrix regarding the filter will be

accurate. Alternatively, if the 3D input data is noisy, then the corresponding

projection matrix becomes inaccurate.

The robust time-varying filters are able to guarantee a certain level of

robustness of estimation in order to prevent unreliable inputs from significantly

biasing resulting estimates. To this end, such a family of filters uses knowledge

of how uncertain the parameters are in order to estimate a stable and reliable

mean value for the state of the system with a reduced estimation error

covariance. The next approach proposed to overcome the instability in the 3D

registration with time-varying filters is based on the adaptation of the Robust

filter to the 3D registration problem. Nonetheless, it is necessary to

=
1

1
1

+ (6.52)

= + (6.53)

6.8 3D Points Uncertainty 281

quantify the amount of the global uncertainty characterising RGBD sensor’s

outputs before proceeding through the actual registration.

6.8 3D Points Uncertainty

It has been shown in the previous section that the 3D registration problem is

easier to express with measurement noise metrics alone (covariance matrices).

The latter can be straightforwardly embedded in the covariance matrix of time-

varying filters. Nevertheless, the parameters of the filter are computed from

noisy point cloud data, which itself changes from one frame to another. For this

reason, the filter becomes very sensitive and highly dependable on the accuracy

of sensory outputs.

To handle the instability of the resulting estimation, the intervals of

uncertainties affecting the parameters of the filter should be confined. These

parameters are recast in the projection matrix . In other words, the

behaviour of the noisy outputs delivered by the sensor (Microsoft Kinect) should

be thoroughly studied. Yet, the same concepts remain applicable for alternative

3D sensors.

The uncertainties are modelled empirically by looking at how the 3D points are

distributed, and how the camera senses the real world. Up until now, several

noise cancellation approaches have been proposed to smooth RGBD data.

Likewise, the appropriate smoothing technique that has been developed in

Chapter 3 enables a precise tracking of the 3D features to produce an optimal

3D structure of the scene.

6.8.1 RGBD Camera z-Resolution

Before building a model for uncertainties affecting the outputs, the resolution of

the depth map generated by the camera should be closely studied. The camera

was pointed parallel to a large flat wall as has been shown in Figure 3.4 (a).

That setup permits the capture of a point cloud covering the whole operating

range regarding the sensor. The depth resolution is inversely proportional to the

282 6. A Recursive Robust Filtering Approach for 3D Registration

distance from the device. More importantly, the points within the captured data

are dispersed over parallel clusters that were named . Every level

constitutes a partition in the whole point cloud.

6.8.2 Depth Noise Statistics

It has already been demonstrated in Chapter 3 that noise process in the Kinect

has a Gaussian distribution with varying standard deviations. These standard

deviations rely on the range between the sensor and the scene. The standard

deviation of a given Z-level is defined with how far the level is from

the camera plane. These statistical parameters can be obtained from Equation

(3.11).

is a set of indices used to identify the different Z-levels. of Equation

(3.11) represents the average distance separating the two boundaries of the

interval [, +] and the central level to which belongs to the sampled

point. Empirically, the best results are reached with = . That is, the true

depth at every pixel is expected to be equal to ±((+) /).

The standard deviations concerning the remaining two coordinates ,) are

deduced from the intrinsic parameters of the camera (, , ,) and the

standard deviation of the depth measurements . Their respective equations

are as follows:

= (/) +
= (/) +

(6.54)

= (/)()
= (/)()

(6.55)

= 0.5 (+)
= (/)()
= (/)()

(6.56)

6.8 3D Points Uncertainty 283

From Algorithm 6.1, it is plausible that the coordinates of feature points are the

basis for the computation of the projection matrix . However, every point is

affected by a certain amount of noise characterised by the standard deviations

, , towards the directions of the axes , and , respectively.

Taking this into account, a covariance matrix is associated with every feature in

order to describe its uncertainty. As can be seen in Figure 6.3 (a), each

covariance matrix (equation (6.56)) can be represented by an ellipsoid whose

principal axes’ lengths are the respective standard deviations.

Knowledge about the quality of measurements is used to feed a robust filtering

scheme that has the ability to deal with the reduced accuracy to deliver a more

resilient estimation. The robustness is therefore seen in the stability of the

resulting estimated 3D transformation over different feature data with varying

levels of accuracy. The result consequently becomes less sensitive to the quality

of inputs.

Using the standard deviations , , , the covariance matrix can be

quantified as follows:

(, ,) = (6.57)

Every point (, ,) has a covariance matrix (, ,) representing the

spread of uncertainty in the three axial directions. An example of three points

in space is illustrated in Figure 6.3 (b). The projection of covariance ellipsoids

on the planes , , produces three ellipses, Figure 6.4 (a), (b), (c). The

volume of the ellipsoid is proportional to the norm of the covariance matrix,

which in turn, is proportional to the uncertainty itself. Ellipses lying in the

three principal planes explain the diffusion of the uncertainty in their respective

directions. The more accurately a feature point is captured, the smaller the

norm of its covariance matrix will be (blue point in Figure 6.3 (b)). Likewise,

284 6. A Recursive Robust Filtering Approach for 3D Registration

the less accurate the capture of a given feature, the larger the norm of its

covariance matrix (red point in Figure 6.3 (b)).

Kanazawa et al. [169] claimed that the incorporation of the error in the

estimation of pose between features does not contribute any further

improvements to the final result. On the other hand, Brooks et al. [170] as well

as the author of this manuscript in a previous work, both noticed a reduced

error in estimation after considering the uncertainty. Based on the conducted

experiments with the registration algorithms and the fact that WICP (Weighted

ICP) outperforms ICP, as the results will show, it is evident that the

incorporation of uncertainty in a feature's location improves the estimation of

the relative pose between point clouds. In addition, there are practical tools in

optimal state estimation theory that can be used to reduce the perturbations

caused by the uncertain data. The proposed registration scheme follows Brooks'

findings and uses the knowledge about feature point's uncertainty to recast the

problem of the point cloud alignment into a time-varying robust filter. The

latter is able to guarantee a more precise and robust registration that cannot be

otherwise ensured with most of the known approaches in the 3D registration

literature. As will be shown in the results, the robust algorithm will be tested

against the naive Kalman filter based registration algorithm as well as several

other registration methods such as WICP [171], EMICP [172] and Horn's

absolute rotation with quaternions.

6.8 3D Points Uncertainty 285

(a)

(b)

Figure 6.3 3D point's uncertainty. (a) Uncertainty ellipsoid. (b)
Projections of uncertainty ellipsoids on the three principal
planes (xy, yz, zx), where the three red ellipses correspond to
the red point, and vice versa for the blue and the green points.

286 6. A Recursive Robust Filtering Approach for 3D Registration

(a)

(b)

(c)

Figure 6.4 2D projections on the cardinal planes. (a) . (b) .
(c)

6.9 Robust ∞ࡴ Filter for 3D Registration 287

6.9 Robust Filter for 3D Registration

In Section 6.7, the possibility of solving the registration problem with the

recursive least squares algorithm was proven. After the study of measurement

uncertainties, it is now possible to estimate changing rigid body motions over

time. The last estimated motion is supposed to align the source and the target

point clouds robustly.

The proposed registration framework is a variant of the formulation of time-

varying recursive registration. It incorporates modelling and measurement

uncertainties. This formulation begins from Equation (6.48) as follows:

=
+ + +

+ + +
+ + +

= +

(6.58)

The compact form, therefore, becomes:

is the uncertainty impinging on the model, and is the predicted

measurement. The difference between the latter and the measured target feature

location () is the actual innovation contributed by the filter.

= (+) (6.59)

288 6. A Recursive Robust Filtering Approach for 3D Registration

In addition to measurement uncertainty, , the robust filter takes into

account process-modelling uncertainties as well. The equations with the same

state and measurement variables , as in Equations (6.42), (6.43) are:

= (+) + +

= (+) + (6.60)

= []

=
(6.61)

is a diagonal matrix (see Equation (6.61)) whose entries are the standard

deviations of the incremental alignment error that represents the spread of error

in the directions of the available degrees of freedom.

If one is only interested in the estimation of the rotation matrix, diagonal

elements are initially set to one. The latter are subject to change when the

algorithm progresses in time. The most optimal transformation is attained

when .

The two matrices and are, therefore, system and measurements

uncertainties. If these two matrices are not available they can be assumed to

have the form of Equation (5.17).

The adaptation of the Robust filtering scheme is shown to be flexible and

capable of delivering accurate state estimations even with uncertain system

parameters. The estimation error compared to the ground truth measurements

will show the effectiveness of the contributed approach against alternative

recursive filters such as Kalman and the more established registration solutions

available in the literature. These tools and many others do not consider the

uncertainties in the parameters of their respective systems. If the parameters are

accurate, then the robust registration performs as efficiently as KF. However,

6.10 Results & Discussions 289

when the system is not precisely characterised, the naive algorithms do not

possess sufficient resilience to reliably handle the unstable parameters. In real

scenarios, the exact model is very unlikely to be determined [127]. The robust

registration combines the robustness of (it is less affected by the accuracy

of system’s parameters) and the optimality of Kalman filtering on linear

systems.

6.10 Results & Discussions

In this section, the results regarding the recursive filter-based registration

solution are validated with tests on synthetic and real 3D data. For instance,

the algorithms that have been compared to the implementation of the Kalman

and the Robust solutions for registration are:

 The Weighted-ICP [171] (WICP): Several approaches have been contribut-

ed to assign the weightings to the 3D points. The two main perspectives

are: a constant weighting based on the distance separating the two points

belonging to the same pair of features; alternatively, a varying weighting

based on sensor’s noise. Point’s measurement uncertainty is converted into

a covariance matrix as has been shown in Section 6.8. The latter will be

used to rank the quality of points.

 Expectation Maximisation ICP algorithm [172] (EMICP): The authors of

this algorithm investigated the registration problem on 3D points sampled

from surface data. They suggested a general Maximum-Likelihood (ML)

estimation of the rigid body transformation between the sets of points.

They claimed, that if the Gaussian noise is assumed, the ML estimator is

equivalent to ICP with the Mahalanobis distance. After they had consid-

ered the matches as a hidden variable, they obtained a marginally more

compound criterion that could be adequately resolved using Expectation

Maximisation (EM) tools. If Gaussian noise is assumed, their proposed

method is equivalent to ICP with various matches biased by the normal-

290 6. A Recursive Robust Filtering Approach for 3D Registration

ised Gaussian weightings. The last mentioned is computed from covariance

matrices that define the spread of uncertainty around the sample.

 Horn’s closed form solution based on quaternions [34] (Horn): The author

proposed a closed-form solution to the least squares problem of Equation

(6.3). The closed form property is due to the fact that no iterations are re-

quired. Its advantage is therefore the possibility of obtaining an optimal

estimation in a single step. The triviality of the solution is due to the easi-

ness in computing the eigenvector of a symmetric matrix associated with

the most positive eigenvalue. The entries in this matrix result from the

summation of the products of the corresponding points coordinates. This

operation is computationally proportional to () where is the number

of points. Another advantage is that no initial guess is necessary for the

algorithm to work. Nevertheless, in the presence of measurement noise

these advantages will no longer be verified and additional iterations are

necessary after every estimation to refine the final result. The author used

the unit quaternion vector instead of the normal rotation matrix to repre-

sent the rotation. Such a representation is robust against the Gimbal lock

problem [173].

Since the level of accuracy reached with any given algorithm may not be

achievable by another one, the behaviours of the different algorithms are

analysed thoroughly by computing the RMSE and the time taken to deliver the

result.

RMSE measurement resides in the distance separating the target and the

transformed source point clouds. The new set of points is the outcome of the

application of transformation obtained from alignment on the initial source.

(, ,) coordinate’s distance between the components of the two point clouds

is calculated, as well as the overall distance separating all the points together.

In order to fairly assess every solution, processing time elapsed to find the best

pose between the two sets of points is also studied. Throughout the

6.10 Results & Discussions 291

experiments, it is noticeable that the plotted metrics (RMSE and processing

time) are not homogeneous. For this reason, a logarithmic scale has been used

to cope with the difference of scale on the same graph. The error graphs

regarding Kalman and the Robust have a higher tendency to stay smaller

in magnitude than EMICP, WICP and Horn. However, EMICP, WICP and the

Robust are the most time-consuming algorithms. Whereas, Kalman and

Horn tend to be quicker.

Only the RMSE for 30 samples from the whole 1000 samples that have been

tested will be plotted to avoid overloading the graphs with too many results.

The number of features extracted from every point cloud is about 400 points.

This choice is motivated by the fact that after removing outliers and false

matches, average sized point cloud in a single frame contains up to 400 useful

features. In addition, the implication of every single element within the cloud

alignment process will significantly increase processing time without a

remarkable improvement in the quality of the registration. The computation

time has been computed for the five algorithms running in an

working at 2.2 , with 12.0 of RAM.

6.10.1 Synthetic Data

Different sets of 3D points have been generated, where (source) as well as a

random 3D rigid transformations [,]. Based on the latter, a set of target

3D points, i.e. = + is built. To realistically simulate the physical

data, a normally distributed anisotropic white noise is added to the clean

datasets. The latter has different magnitudes , large (20

80), average (10) and small (0.1

10). The datasets therefore become + and + .

For each one of the three noise levels, 1000 point clouds in a volume ranging

from 0.5×0.5×0.5 to 10×10×10 are generated to test the performance

of algorithms. The latter (algorithms) have been tested on every single sample

in order to compare their respective performances.

292 6. A Recursive Robust Filtering Approach for 3D Registration

6.10.1.1 Scenario 1: Small Noise Magnitude

RMSE

The average RMSE for EMICP (pink line in Figure 6.5 (a, b, c, d)) was

(288, 288, 330)mm for the single components of the triplet (, ,). The overall

error was 302mm. WICP RMSE (green line in Figure 6.5 (a, b, c, d)) was

(193, 173, 200)mm for (, ,). The overall error reached 189mm. Horn RMSE

(red line in Figure 6.5 (a, b, c, d)) was (271, 293, 318)mm for (, ,)

separately. The overall error was 294mm. Robust RMSE (black line in

Figure 6.5 (a, b, c, d)) was (0.61, 0.668, 0.51)mm for the triplet (, ,). The

total error was 0.596mm. Kalman RMSE (blue line in Figure 6.5 (a, b, c, d))

was (1.48, 1.62, 1.22)mm for the triplet (, ,), and its global error was

1.44mm.

6.10 Results & Discussions 293

(a)

(b)

(c)

294 6. A Recursive Robust Filtering Approach for 3D Registration

(d)

(e)

Figure 6.5 Synthetic data with small noise magnitude. (a)
RMSE. (b) RMSE. (c) RMSE. (d) RMSE. (e)
Processing time

Although the knowledge of the correspondences between features helps

enormously in preventing local minima, the disparity in performance between

the proposed filtering based approach and state of the art algorithms is

noticeable. As feature localisation is inherently contaminated with noise, the

resulting alignment is not very well refined with EMICP, Horn and less

significantly WICP. On the other hand, filter-based solutions have the ability to

6.10 Results & Discussions 295

cope with the noisy measurements; for this reason they have marked a higher

accuracy, with the best result observed with the Robust filter.

Processing time

As shown in Figure 6.5 (e), the average processing time taken by EMICP (pink

line) is 43ms (23 FPS). This frequency is steady for most samples. With WICP

(green line) the processing takes on average 82.5ms (12 FPS). This duration is

fluctuating in the interval [50,120]ms. For Horn (red line) the processing takes

on average 1.08ms (925 FPS). Eventually, both solutions have a very stable

processing time of (22.8, 9.12)ms or (43, 109) FPS for Robust and Kalman

respectively.

6.10.1.2 Scenario 2: Average Noise Magnitude

RMSE

The average RMSE for EMICP (pink in Figure 6.6 (a, b, c, d)) was

(309, 313, 335)mm for the triplet (, ,). The overall error increased slightly

from 302mm (small magnitude scenario) to 319mm. WICP RMSE (green in

Figure 6.6 (a, b, c, d)) was (208, 226, 246)mm for (, ,), respectively. The

overall error increased with about 30mm to reach 227mm. Horn RMSE (red in

Figure 6.6 (a, b, c, d)) was (282, 313, 330)mm for (, ,). The total error

increased from 294mm to 309mm. Robust RMSE (black in Figure 6.6 (a,

b, c, d)) was (0.78, 0.765, 0.66)mm for (, ,), respectively. The overall error

increased mildly with less than 0.15mm to reach 0.73mm. Kalman RMSE (blue

in Figure 6.6 (a, b, c, d)) was (1.8, 1.67, 1.43)mm for the triplet (, ,). Just

like the Robust , overall Kalman RMSE increased also by less than 0.2mm

to reach 1.63mm.

Processing time

As shown in Figure 6.6 (e), the average processing time taken by EMICP (pink)

is 44ms (23 FPS). This frequency is steady for most samples. For WICP (green)

the processing takes an average period of 72.5ms (13 FPS). The latter is

296 6. A Recursive Robust Filtering Approach for 3D Registration

(a)

(b)

(c)

6.10 Results & Discussions 297

(d)

(e)

Figure 6.6 Synthetic data with average noise magnitude. (a)
RMSE. (b) RMSE. (c) RMSE. (d) RMSE. (e)
Processing time

298 6. A Recursive Robust Filtering Approach for 3D Registration

significantly fluctuating from one sample to another. For Horn (red) the

processing takes on average 1.09ms (917 FPS). Finally, both proposed solutions

still preserve their stable processing time of (23.3, 9.28)ms or (43, 107) FPS for

the Robust and Kalman respectively.

6.10.1.3 Scenario 3: Large Noise Magnitude

RMSE

The average RMSE for EMICP (pink in Figure 6.7 (a, b, c, d)) was

(440, 313, 322)mm for the triplet (, ,). Its RMSE increased again by 7mm

from 319mm to 327mm. WICP RMSE (green in Figure 6.7 (a, b, c, d)) was

(255, 222, 273)mm for (, ,). Its total RMSE increased from 219mm in the

scenario of average noise magnitude to 250mm. WICP is still significantly

affected by the important amount of noise as the difference in RMSE reached

30mm. Horn RMSE (red in Figure 6.7 (a, b, c, d)) was (350, 316, 326)mm for

the triplet (, ,). The overall error increased from 309mm to 331mm.

Robust RMSE (black in Figure 6.7 (a, b, c, d)) was (1.28, 1.18, 1.16)mm for

(, ,). Whereas, the overall RMSE increased from 0.73mm to 1.21mm.

Kalman RMSE (blue in Figure 6.7 (a, b, c, d)) was (2.17, 1.86, 1.98)mm for

(, ,), respectively. The total error increased again by about 0.4mm to reach

2.00mm in this scenario.

Processing time

As shown in Figure 6.7 (e), the average processing time taken by EMICP (pink

line) was 41ms (24 FPS). This frequency is steady for most samples. With

WICP (green line) the processing takes an average period of 71.4ms (14 FPS).

The latter is still continually fluctuating. For Horn (red line), the processing

takes an average of 1.07ms (934 FPS). The contributed solutions have a very

stable processing time of (23.1, 9.28)ms or (43, 107) FPS for Robust and

Kalman respectively.

6.10 Results & Discussions 299

(a)

(b)

(c)

300 6. A Recursive Robust Filtering Approach for 3D Registration

(d)

(e)

Figure 6.7 Synthetic data with large noise magnitude. (a) RMSE.
(b) RMSE. (c) RMSE. (d) RMSE. (e) Processing
time

6.10 Results & Discussions 301

(a)

(b)

Figure 6.8 Kinect data collection. (a) Experimental setup. (b)
Synchronisation module

302 6. A Recursive Robust Filtering Approach for 3D Registration

6.10.2 Real Data

The proposed solutions have been also validated in a real scenario where image

data was delivered by two versions of a consumer RGBD sensor (Microsoft

Kinect1). The oldest version of the sensor has a VGA resolution of 640 ×

480 pixels for both depth and colour cameras working at 30 FPS. The latter

uses a structured light principle [96] to compute the distance separating objects

from the camera plane. Whereas, the newest Kinect sensor can stream HD

images (1280 × 1024 pixels) at 30 FPS. 3D point clouds delivered by the old

version of the sensor are noisier than the ones streamed by the latest one

(Chapter 2).

To collect test data, the camera was moved in an indoor environment (Kinect

works only indoors). The module captures pairs of colour and depth images. The

latter constitute the raw data for 3D point clouds building. In order to precisely

assess the performance of registration, a high-quality tracking system

(OptiTrack2) is required to track instantly the pose of the camera (ground

truth), Figure 6.8 (a). Nevertheless, another synchronisation module is needed

to associate the actual pose of the sensor [,] with its corresponding pair of

depth/colour images [,] respectively at time-step , Figure 6.8 (b).

Just 400 key points were selected from each acquired point cloud to test the five

algorithms.

6.10.2.1 Scenario 4: New Kinect

RMSE

The average RMSE observed with EMICP (pink in Figure 6.9 (a, b, c, d)) was

(246, 217, 285)mm for the triplet (, ,). The overall error was 285mm. WICP

1 http://www.microsoft.com/en-us/kinectforwindows/. 2015
2 http://www.naturalpoint.com/optitrack/. 2015

6.10 Results & Discussions 303

(a)

(b)

(c)

304 6. A Recursive Robust Filtering Approach for 3D Registration

(d)

(e)

Figure 6.9 New Kinect data. (a) RMSE. (b) RMSE. (c)
RMSE. (d) RMSE. (e) Processing time

6.10 Results & Discussions 305

RMSE (green in Figure 6.9 (a, b, c, d)) was (128, 119, 143)mm for (, ,)

respectively. The overall error reached 130mm. Horn RMSE (red in Figure 6.9

(a, b, c, d)) was (248, 219, 286)mm for (, ,). Whereas, the overall error was

251mm. Robust RMSE (black in Figure 6.9 (a, b, c, d)) was

(0.611, 0.51, 0.55)mm for (, ,) respectively. The global error was 0.56mm.

Kalman RMSE (blue in Figure 6.9 (a, b, c, d)) was (1.49, 1.25, 1.31)mm for

(, ,) respectively. The total RMSE reached 1.35mm.

Processing time

As shown in Figure 6.9 (e), the average processing time taken by EMICP (pink

line) is 42.5ms (23 FPS). This time is steady for most samples. With WICP

(green line) the processing takes an average period of 76.6ms (13 FPS). The

latter is still continually fluctuating just like it does with synthetic data. For

Horn (red line) the processing takes an average of 1.18ms (847 FPS). Both

solutions have a very stable processing time of (23.9, 9.33)ms or (41, 107) FPS

for Robust and Kalman respectively.

6.10.2.2 Scenario 5: Old Kinect

RMSE

The average RMSE for EMICP (pink in Figure 6.10 ((a, b, c, d)) was

(293, 282, 323)mm for the triplet (, ,). The overall error increased from

285mm to 299mm. WICP RMSE (green in Figure 6.10 (a, b, c, d)) was

(160, 166, 166)mm for (, ,) respectively. The total error also increased with

about 30mm to reach 164mm. Horn RMSE (red in Figure 6.10 (a, b, c, d)) was

(282, 276, 305)mm for the triplet (, ,). The overall error increased by 30mm

to reach 288mm. Robust RMSE (black in Figure 6.10 (a, b, c, d)) was

(1.04, 1.01, 0.93)mm for (, ,) respectively. The RMSE increased from

0.56mm to 0.99mm. Kalman RMSE (blue in Figure 6.10 (a, b, c, d)) was (1.86,

1.73, 1.64)mm for (, ,). The overall error increased from 1.35mm to 1.74mm.

306 6. A Recursive Robust Filtering Approach for 3D Registration

(a)

(b)

(c)

6.10 Results & Discussions 307

(d)

(e)

Figure 6.10 Old Kinect data; large noise magnitude. (a) RMSE.
(b) RMSE. (c) RMSE. (d) RMSE. (e) Processing
time

308 6. A Recursive Robust Filtering Approach for 3D Registration

Processing time

As shown in Figure 6.10 (e), the average processing time taken by EMICP (pink

line) was 44.3ms (22 FPS). This frame rate is steady for most samples. With

WICP (green line), the processing takes an average time of 64ms (15 FPS). The

latter is still continually fluctuating. For Horn (red line) the processing takes an

average of 1.05ms (952 FPS). Both solutions conserve a stable processing time

of (23.1, 9.15)ms or (43, 109)FPS for Robust and Kalman respectively.

Table 6.1 shows the overall results for 1000 simulation samples (100 distinct

shapes, with ten different poses each) and 120 different point clouds captured by

each of the two Kinects in an indoor space.

Noise EMICP WICP Horn Robust Kalman

Small 298 193 285 0.55 1.52
Average 323 235 315 0.91 1.78
Large 332 260 343 0.96 2.10
New Kinect 274 152 246 0.72 1.62
Old Kinect 310 162 302 1.03 2.03

Table 6.1 RMSE (mm) for the whole set of samples: 1000 for each
simulation scenario and 120 for every version of the Kinect

Figure 6.11 illustrates some visual results that were encountered during the

experiments. As can be seen in Table 6.1, EMICP and Horn have the largest

error of alignment, because they do not consider weighting the points involved

in the alignment. This behaviour often occurs with these two algorithms when

the shapes present some symmetry. WICP has the ability to cope with such

drawbacks since it uses knowledge about the quality of features. The latter

helps the algorithm to discard noisy elements. On the other hand, the recursive

solutions are capable of precisely aligning the shapes using just a small set of

features. The percentage of the last mentioned is about 1% of the size of the

entire point cloud.

6.11 Conclusion 309

6.11 Conclusion

In this chapter, a novel approach for robust 3D point cloud registration has

been presented. This contribution is based on a recursive optimal state

estimation framework of Kalman and Robust . First, the link between the

weighted recursive least-squares formulation and its original counterpart (it has

not got neither recursion nor weighting) was demonstrated. 3D point cloud

registration problem was then fitted into Kalman filter equations.

Since the parameters of the filter (state and projection matrices) were built from

noisy data, a non-negligible instability of estimation was noticed. The last

mentioned was therefore interpreted as an uncertainty metric that the solution

aims to bound and reduce with the Robust filter.

The performance of the proposed solution was tested on many synthetic samples

as well as real 3D data delivered by each version of the Microsoft Kinect. The

results are promising since it was possible to reach a higher performance and

robustness with moderate computational power. In real world situations, sensory

outputs are always affected by some noise. Hence, Kalman registration is

sufficient for the applications that require higher frame rates (>109 FPS) as

long as the data is not significantly noisy. However, when the necessary frame

rate is below 40 FPS (which is sufficient for most applications), then it would be

preferable to benefit totally from the Robust estimator, which yields an

even better registration accuracy.

On the other hand, the proposed solution requires some feature points to be

extracted from source and target point clouds before the alignment is carried

out. The number of the latter is relatively small compared to the entire cloud.

Although the selected subset of key points is theoretically representative and

sufficient to obtain a decent registration, a brute force refinement may be still

required for the best possible result. For instance, this can be done by taking as

correspondent for every single point in the source its closest neighbour in the

310 6. A Recursive Robust Filtering Approach for 3D Registration

target. The list of correspondences is then delivered to the same algorithms

(Kalman, Robust) to run the alignment. This process can be repeatedly

performed until the desired result is achieved.

The contributed solution is extensible to any dimension for point clouds, meshes

as well as surfaces given that some distinctive features are available. In the case

where features are missing, a brute force strategy is still possible.

The investigation of other potential applications should also be carried out for

the recursive filtering algorithms in the field of computer vision. It would also

be interesting to implement the robust filter in the graphic processor to reach

higher frame rates. In addition, in a multiview scenario (many sensors streaming

images in parallel), fusion algorithms open a new perspective for the users to

reconstruct 3D scenes and to track moving objects cooperatively. This new

horizon would be useful for the emerging technologies of virtual and augmented

reality.

6.11 Conclusion 311

(a)

(b)

312 6. A Recursive Robust Filtering Approach for 3D Registration

(c)

Figure 6.11 Some visual results of the tested algorithms

313

Conclusion &
Future Works

7.1 Conclusion

This thesis has investigated the enhancement of the capabilities of cheap depth

sensors to develop robust and accurate real-time tracking and registration

solutions for Mixed Reality applications. The most significant contributions

were therefore devoted to overcoming the different challenges related to the

capture of the geometrical and photometrical cues from the real world. Several

innovative strategies have been contributed in the domains of RGBD sensor

correction/calibration, RGBD image segmentation, multiview real-time 6 DOF

tracking and 3D registration. In addition, the achieved progress has led to

several other works that can constitute a starting point for future research.

Chapter 3: GPU-Based Real-Time RGBD Data Filtering

A novel mathematical model for the discrete depth map was initially

constructed and adapted to a Kalman filtering scheme.

314 7. Conclusion & Future Works

This solution was tested on object tracking applications to assess its accuracy of

localising moving targets in real-time. The results have, therefore, proven its

rapid smoothing capability. The operational range of the camera has also been

extended as a consequence of the filtering. Additionally, the solution was tested

on 3D scanning applications in order to assess its ability of surface

reconstruction. The outcome of the filtered data gives smoothness and accuracy,

whereas, the one based on raw data still suffers from discontinuities and

bumpiness.

An architecture that aims at integrating the filter into the existing driver of the

depth sensors was also proposed. However, a GPU implementation was required

to maintain the real-time operability of the filter. As a result, consumer cameras

have become sufficiently endowed to achieve what could not be otherwise done

without expensive, sophisticated laser scanners.

Chapter 4: RGBD Data Correction and Background Removal

A novel phenomenon of decay in accuracy was discovered in ageing RGBD

sensors. The classical calibration techniques have shown several weaknesses in

handling all aspects of sensing accuracy. The proposed correction, on the other

hand, uses knowledge about the structure of the depth map, supplied by the

technique presented in the previous chapter, and the GPR correction to adjust

the precision of the depth readings.

Another innovative real-time background removal approach based on

cooperative RGBD data fusion was also presented. The latter has been

validated with several tests in real scenarios with different conditions. The

results were promising, albeit only the background subtraction was applied

without any additional filtering.

Chapter 5: Real-Time Multiview Data Fusion for Object Tracking

with RGBD Sensors

7.1 Conclusion 315

Another novel approach to moving vehicle tracking in indoor environments with

a setup of multiple RGBD cameras was contributed. All the details about the

methodology and the different constraints of implementation were provided. A

solution based on the Robust filtering scheme was first designed to deliver

accurate sensor-wise estimates. Then, another fusion framework built upon a

Covariance Intersection algorithm was used to combine optimally the single

estimates into a unique, consistent result.

The GPU implementations of computationally greedy processing stages helped

significantly to accomplish real-time performance. The experiments have shown

a high accuracy of tracking at a frame rate of 25 FPS with a configuration of

five Kinects.

Chapter 6: A Recursive Robust Filtering Approach for 3D

Registration

The last contribution of this thesis was based on a novel adaptation of recursive

optimal state estimation filters to solve the registration problem. To this end,

the original alignment error function was reformulated into a recursive least

squares framework. Then, a Kalman filter was used to minimise it in the

norm sense. However, since the parameters of the filter were built upon noisy

sensory data, they were liable to error and perturbations. A Robust

framework, that minimises the norm regarding error function, was

additionally adapted to handle the parametric uncertainties.

The proposed solution was tested on many synthetic as well as real 3D point

clouds. The alignment based on a Kalman filter takes less time and is sufficient

when the data is not significantly noisy. However, it would be preferable to

benefit totally from the Robust for better accuracy and robustness.

316 7. Conclusion & Future Works

7.2 Future Works

Although the objectives set in the introductory chapter were mostly achieved,

there are still additional improvements that could be the subject of future

research.

For Chapter 3, it would be preferable to embed the filtering algorithm in

dedicated computing boards in order to free the system entirely from the burden

of filtering 3D data. In addition, other imaging problems could be tackled by

fitting them in the framework of optimal state estimators. The latter can

guarantee the optimality when correctly applied to the problem.

For Chapter 4, a possible future work could be the investigation of the same

calibration approach to correct mutually multiple depth cameras. This allows

the sensors with low accuracy to compensate with the outputs of the most

reliable cameras.

Furthermore, the result of fusing depth and colour images for background

segmentation may also inspire other solutions to leverage several image

modalities in order to overcome the weaknesses of a single one.

For Chapter 5, it would be interesting to investigate the capabilities of the same

framework for multiview object recognition purposes. This would be beneficial

since it would allow a complete acquisition of the geometry, texture as well as

the behaviour of the targets. In addition, the proposed marker detection

strategy could be replaced with a GPU-accelerated markerless approach as long

as a sufficient number of good feature points could be obtained. Such an

alternative would be more ergonomic because it avoids the utilisation of

artificial markers.

For Chapter 6, it is worth considering investigation of the robust filter in other

problems where uncertainty cannot be neglected. Moreover, in a multiview

setup, it is recommended to combine the elementary sensor-wise pose estimates

7.2 Future Works 317

with fusion algorithms in order to overcome occlusions and the contrast in

accuracy across different views.

Finally, the contributions delivered by this thesis would serve as a solid basis for

the design and development of a complete MR solution. The hardware needed is

just some low-cost RGBD cameras and GPUs. The proposed tracking as well as

registration solutions, software means, would afterwards exploit optimally the

potential of rudimentary hardware for a more realistic immersion/interaction.

319

Bibliography
[1] F. P. Brooks, “What’s real about virtual reality?,” IEEE Computer Graphics and

Applications, vol. 19, no. 6, pp. 16–27, 1999.

[2] W. Boehler, M. B. Vicent, and A. Marbs, “Investigating laser scanner accuracy,”
The International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 34, no. Part 5, pp. 696–701, May 2003.

[3] D. Lichti, S. Gordon, and M. Stewart, “Ground-based laser scanners: operation,
systems and applications,” Geomatica, vol. 56, no. 1, pp. 21–33, 2002.

[4] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel, and S. Thrun,
“Performance capture from sparse multi-view video,” ACM Transactions on
Graphics, vol. 27, no. 3, p. 1, Aug. 2008.

[5] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A Comparison
and Evaluation of Multi-View Stereo Reconstruction Algorithms,” in 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition -
Volume 1 (CVPR’06), vol. 1, pp. 519–528.

[6] J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, “Scanning 3D full human bodies
using Kinects.,” IEEE transactions on visualization and computer graphics, vol.
18, no. 4, pp. 643–50, Apr. 2012.

[7] A. Amamra and N. Aouf, “Robust and Sparse RGBD Data Registration of Scene
Views,” in 2013 17th International Conference on Information Visualisation,
2013, pp. 488–493.

[8] K. Litomisky, “Consumer RGB-D Cameras and their Applications,” 2012.

[9] D. A. Butler, S. Izadi, O. Hilliges, D. Molyneaux, S. Hodges, and D. Kim,
“Shake’n'sense: reducing interference for overlapping structured light depth
cameras,” Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 1933–1936, 2012.

[10] A. Amamra and N. Aouf, “GPU-based real-time RGBD data filtering,” Journal
of Real-Time Image Processing, Sep. 2014.

[11] J. Quarles, S. Lampotang, I. Fischler, P. Fishwick, and B. Lok, “A Mixed Reality
Approach for Merging Abstract and Concrete Knowledge,” 2008 IEEE Virtual
Reality Conference, no. 1, pp. 27–34, 2008.

[12] P. Milgram and F. Kishino, “A taxonomy of mixed reality visual displays,”
IEICE TRANSACTIONS on Information and Systems 77.12 (1994): 1321-1329.,
1994.

320 Bibliography

[13] M. Mallem, “Augmented Reality: Issues, trends and challenges,” in 2010 2nd
International Conference on Image Processing Theory, Tools and Applications,
2010, pp. 8–8.

[14] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre,
“Recent advances in augmented reality,” IEEE Computer Graphics and
Applications, vol. 21, no. 6, pp. 34–47, 2001.

[15] Digital Human Modeling: Trends in Human Algorithms, vol. 24. Springer Science
& Business Media, 2008.

[16] Wen Qi and W. Qi, “A Vision-Based Augmented Reality System for
Visualization Interaction,” in Ninth International Conference on Information
Visualisation (IV’05), 2005, pp. 404–409.

[17] V. C. Brenner, “The Geoscope-A Mixed-reality system for planning and public
participation,” 25th Urban data management symposium. 2006., 2006.

[18] M. Bajura, H. Fuchs, and R. Ohbuchi, “Merging virtual objects with the real
world,” ACM SIGGRAPH Computer Graphics, vol. 26, no. 2, pp. 203–210, Jul.
1992.

[19] M. Livingston, L. Rosenblum, and S. Julier, “An augmented reality system for
military operations in urban terrain,” 2002.

[20] N. Suzuki, A. Hattori, and M. Hashizume, “Benefits of augmented reality
function for laparoscopic and endoscopic surgical robot systems,” navigation,
2008.

[21] S. Tachi, “Experimental Study on Remote Manipulation Using Virtual Reality,”
Proceedings of the Eighth international symposium on measurement and control
in robotics, Czech Technical University in Prague, Czech Republic. 1998., 1998.

[22] A. Webster, S. Feiner, and B. MacIntyre, “Augmented reality in architectural
construction, inspection and renovation,” Proc. ASCE Third Congress on
Computing in Civil Engineering. 1996., 1996.

[23] G. Reinhart and C. Patron, “Integrating augmented reality in the assembly
domain-fundamentals, benefits and applications,” CIRP Annals-Manufacturing
Technology, 2003.

[24] F. Fritz, A. Susperregui, and M. Linaza, “Enhancing cultural tourism experiences
with augmented reality technologies,” 2005.

[25] D. Bhatnagar, “Position trackers for Head Mounted Display systems: A survey,”
University of North Carolina, Chapel Hill TR93, 1993.

[26] D. Gonzales, D. R. Criswell, E. Heer, U. S. A. Force, and U. S. N. A. and S.
Administration, Automation and robotics for the Space Exploration Initiative:
results from Project Outreach. Rand, 1991.

Bibliography 321

[27] M. L. Heilig, “El cine del futuro: the cinema of the future,” Presence:
Teleoperators and Virtual Environments, vol. 1, no. 3, pp. 279–294, Jul. 1992.

[28] R. Klette, Concise Computer Vision. London: Springer London, 2014.

[29] T. C. Randy Pausch, “A Literature Survey for Virtual Environments: Military
Flight Simulator Visual Systems and Simulator Sickness.,” Presence, vol. 1, pp.
344 – 363, 1992.

[30] R. B. Welch, Perceptual modification: adapting to altered sensory environments.
Academic Press, 1978.

[31] G. K. L. Tam, Z. Cheng, Y. Lai, F. C. Langbein, Y. Liu, D. Marshall, R. R.
Martin, X. Sun, and P. L. Rosin, “Registration of 3D Point Clouds and Meshes :
A Survey From Rigid to Non-Rigid,” vol. 19, no. 7, pp. 1–20, 2013.

[32] A. Adams, N. Gelfand, J. Dolson, and M. Levoy, “Gaussian KD-trees for fast
high-dimensional filtering,” ACM Transactions on Graphics, vol. 28, no. 3, p. 1,
Jul. 2009.

[33] M. A. Treiber, Optimization for Computer Vision. London: Springer London,
2013.

[34] B. K. P. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” Journal of the Optical Society of America A, vol. 4, no. 4, p. 629,
Apr. 1987.

[35] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour, “Closed-form solution of
absolute orientation using orthonormal matrices,” Journal of the Optical Society
of America A, vol. 5, no. 7, p. 1127, Jul. 1988.

[36] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D.
Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, “KinectFusion: Real-time
dense surface mapping and tracking,” in 2011 10th IEEE International
Symposium on Mixed and Augmented Reality, 2011, pp. 127–136.

[37] H. B.-L. Duh and M. Billinghurst, “Trends in augmented reality tracking,
interaction and display: A review of ten years of ISMAR,” in 2008 7th
IEEE/ACM International Symposium on Mixed and Augmented Reality, 2008,
pp. 193–202.

[38] W. Narzt, G. Pomberger, A. Ferscha, D. Kolb, R. Müller, J. Wieghardt, H.
Hörtner, and C. Lindinger, “Augmented reality navigation systems,” Universal
Access in the Information Society, vol. 4, no. 3, pp. 177–187, Dec. 2005.

[39] M. Gross, S. Lang, K. Strehlke, A. Vande Moere, O. Staadt, S. Würmlin, M.
Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier, T. Svoboda, and L.
Van Gool, “blue-c,” ACM Transactions on Graphics, vol. 22, no. 3, p. 819, Jul.
2003.

322 Bibliography

[40] A. F. Bill Triggs, Philip Mclauchlan, Richard Hartley, “Bundle adjustment – a
modern synthesis,” Vision algorithms: theory and practice. Springer Berlin
Heidelberg, 2000. 298-372.

[41] R. Hartley and P. Sturm, “Triangulation,” Computer vision and image
understanding 68.2 (1997): 146-157., 1997.

[42] K. Kolev, M. Klodt, T. Brox, S. Esedoglu, and D. Cremers, “Continuous Global
Optimization in Multiview 3D Reconstruction,” pp. 1–13.

[43] K. Khoshelham, “ACCURACY ANALYSIS OF KINECT DEPTH DATA,” 2010.

[44] J. Geng, “Structured-light 3D surface imaging: a tutorial,” Advances in Optics
and Photonics, 2011.

[45] M. Andersen, T. Jensen, and P. Lisouski, “Kinect depth sensor evaluation for
computer vision applications,” 2012.

[46] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of Kinect depth
data for indoor mapping applications.,” Sensors (Basel, Switzerland), vol. 12, no.
2, pp. 1437–54, Jan. 2012.

[47] T. Svoboda, D. Martinec, and T. Pajdla, “A Convenient Multicamera Self-
Calibration for Virtual Environments,” Presence: Teleoperators and Virtual
Environments, vol. 14. pp. 407–422, 2005.

[48] G. Kurillo and R. Bajcsy, “Wide-area external multi-camera calibration using
vision graphs and virtual calibration object,” in 2008 Second ACM/IEEE
International Conference on Distributed Smart Cameras, 2008, pp. 1–9.

[49] A. Maimone and H. Fuchs, “Reducing interference between multiple structured
light depth sensors using motion,” Virtual Reality Short Papers and Posters
(VRW), 2012 IEEE, no. May, pp. 51 – 54, 2012.

[50] C. Tomasi, “Good Features,” in IEEE Computer Society Conference, 1994, pp.
593–600.

[51] P. Azad, T. Asfour, and R. Dillmann, “Combining Harris interest points and the
SIFT descriptor for fast scale-invariant object recognition,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2009, pp. 4275–
4280.

[52] K. Xu, L. Qin, and L. Yang, “RGB-D fusion toward accurate 3D mapping,” in
2011 IEEE International Conference on Robotics and Biomimetics, 2011, pp.
2618–2622.

[53] I. Sipiran and B. Bustos, “Harris 3D: a robust extension of the Harris operator
for interest point detection on 3D meshes,” The Visual Computer, vol. 27, no. 11,
pp. 963–976, Jul. 2011.

Bibliography 323

[54] X. Jiang, O. R. P. Bellon, D. Goldgof, and T. Oishi, Eds., Advances in Depth
Image Analysis and Applications, vol. 7854. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013.

[55] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Aligning point cloud views
using persistent feature histograms,” in 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2008, pp. 3384–3391.

[56] A. Flint, A. Dick, and A. van den Hengel, “Thrift: Local 3D Structure
Recognition,” in 9th Biennial Conference of the Australian Pattern Recognition
Society on Digital Image Computing Techniques and Applications (DICTA
2007), 2007, pp. 182–188.

[57] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, 2004.

[58] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,”
Computer vision–ECCV 2006, 2006.

[59] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in 2011
IEEE International Conference on Robotics and Automation, 2011, pp. 1–4.

[60] F. Tombari, S. Salti, and L. Di Stefano, “Performance evaluation of 3D keypoint
detectors,” International Journal of Computer Vision, 2013.

[61] L. D. S. Federico Tombari , Samuele Salti, “A Combined Texture-Shape
Descriptor For Enhanced 3d Feature Matching,” in Conference, Ieee
International Processing, Image, 2011, pp. 825–828.

[62] F. Tombari, S. Salti, and L. Di Stefano, “A combined texture-shape descriptor
for enhanced 3D feature matching,” in 2011 18th IEEE International Conference
on Image Processing, 2011, pp. 809–812.

[63] Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan, “GpuCV: A GPU-
accelerated framework for image processing and computer vision,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2008, vol. 5359 LNCS, pp.
430–439.

[64] S. Akhter and J. Roberts, Multi-core programming. 2006.

[65] K. Kraus and N. Pfeifer, “Determination of terrain models in wooded areas with
airborne laser scanner data,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 53, no. 4, pp. 193–203, 1998.

[66] W. Cady, “Radar scanners and radomes,” 2008.

[67] Y. Y. M. Kim, C. Theobalt, J. Diebel, J. Kosecka, B. Miscusik, and S. Thrun,
“Multi-view image and ToF sensor fusion for dense 3D reconstruction,” in 2009

324 Bibliography

IEEE 12th International Conference on Computer Vision Workshops, ICCV
Workshops, 2009, pp. 1542–1549.

[68] C. Meinherz, “Time of flight camera unit and optical surveillance system,” US
Patent App. 13/086,686, Oct. 2011.

[69] J. Smisek, M. Jancosek, and T. Pajdla, “3D with Kinect,” in 2011 IEEE
International Conference on Computer Vision Workshops (ICCV Workshops),
2011, pp. 1154–1160.

[70] O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time
structured-light range scanning of moving objects,” in Proceedings Eighth IEEE
International Conference on Computer Vision. ICCV 2001, 2001, vol. 2, pp.
359–366.

[71] F. Menna, F. Remondino, R. Battisti, and E. Nocerino, “Geometric investigation
of a gaming active device,” Videometrics, Range Imaging, and Applications XI,
p. 80850G–80850G–15, Jun. 2011.

[72] M. Camplani, T. Mantecon, and L. Salgado, “Depth-color fusion strategy for 3-D
scene modeling with Kinect.,” IEEE transactions on cybernetics, vol. 43, no. 6,
pp. 1560–71, Dec. 2013.

[73] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,”
Journal of Basic Engineering, vol. 82, no. 1, p. 35, 1960.

[74] L. Ling, E. Cheng, and I. S. Burnett, “An Iterated Extended Kalman Filter for
3D mapping via Kinect camera,” in 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013, pp. 1773–1777.

[75] T. Hervier, S. Bonnabel, and F. Goulette, “Accurate 3D maps from depth images
and motion sensors via nonlinear Kalman filtering,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2012, pp. 5291–
5297.

[76] S. Park, S. Yu, J. Kim, S. Kim, and S. Lee, “3D hand tracking using Kalman
filter in depth space,” EURASIP Journal on Advances in Signal Processing, vol.
2012, no. 1, p. 36, 2012.

[77] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. Wiley-Interscience, 2006.

[78] D. Liebowitz and A. Zisserman, “Metric rectification for perspective images of
planes,” in Proceedings. 1998 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (Cat. No.98CB36231), 1998, pp. 482–488.

[79] G. Arce, Nonlinear signal processing: a statistical approach. 2005.

Bibliography 325

[80] J. Fung and S. Mann, “Using graphics devices in reverse: GPU-based Image
Processing and Computer Vision,” in 2008 IEEE International Conference on
Multimedia and Expo, 2008, pp. 9–12.

[81] F. Jargstorff, “GPU Image Processing,” SIGGRAPH 2004, 2004.

[82] E. Kilgariff and R. Fernando, “The GeForce 6 series GPU architecture,” ACM
SIGGRAPH 2005 Courses, 2005.

[83] P. Carr, “GPU Accelerated Multimodal Background Subtraction.,” DICTA, 2008.

[84] I. I. Conference and I. Processing, “A Combined Texture-Shape Descriptor For
Enhanced 3d Feature Matching,” pp. 809–812, 2011.

[85] S. Izadi, A. Davison, A. Fitzgibbon, D. Kim, O. Hilliges, D. Molyneaux, R.
Newcombe, P. Kohli, J. Shotton, S. Hodges, and D. Freeman, “KinectFusion,” in
Proceedings of the 24th annual ACM symposium on User interface software and
technology - UIST ’11, 2011, p. 559.

[86] J. Davis, “Fusion of time-of-flight depth and stereo for high accuracy depth
maps,” in 2008 IEEE Conference on Computer Vision and Pattern Recognition,
2008, pp. 1–8.

[87] W. Chiu, U. Blanke, and M. Fritz, “Improving the Kinect by Cross-Modal
Stereo.,” BMVC, 2011.

[88] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping: Using
Kinect-style depth cameras for dense 3D modeling of indoor environments,” The
International Journal of Robotics Research, vol. 31, no. 5, pp. 647–663, Feb.
2012.

[89] S. Matyunin, D. Vatolin, Y. Berdnikov, and M. Smirnov, “Temporal filtering for
depth maps generated by Kinect depth camera,” in 2011 3DTV Conference: The
True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON),
2011, pp. 1–4.

[90] M. Cristani, M. Bicego, and V. Murino, “Multi-level background initialization
using Hidden Markov Models,” in First ACM SIGMM international workshop on
Video surveillance - IWVS ’03, 2003, p. 11.

[91] M. D. Abràmoff, W. L. M. Alward, E. C. Greenlee, L. Shuba, C. Y. Kim, J. H.
Fingert, and Y. H. Kwon, “Automated segmentation of the optic disc from stereo
color photographs using physiologically plausible features.,” Investigative
ophthalmology & visual science, vol. 48, no. 4, pp. 1665–73, Apr. 2007.

[92] G. Gordon, T. Darrell, M. Harville, and J. Woodfill, “Background estimation and
removal based on range and color,” in Proceedings. 1999 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (Cat. No PR00149),
1999, pp. 459–464.

326 Bibliography

[93] F. E. Alsaqre and Y. Baozong, “Moving object segmentation from video
sequences: an edge approach,” in Proceedings EC-VIP-MC 2003. 4th EURASIP
Conference focused on Video/Image Processing and Multimedia
Communications (IEEE Cat. No.03EX667), 1997, vol. 1, pp. 193–199.

[94] C. Stauffer and W. Grimson, “Adaptive background mixture models for real-time
tracking,” in Proceedings. 1999 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (Cat. No PR00149), 1999, pp. 246–
252.

[95] S. Lee and C. Jeong, “Real-time Object Segmentation based on GPU,” in 2006
International Conference on Computational Intelligence and Security, 2006, pp.
739–742.

[96] J. Fu, S. Wang, Y. Lu, S. Li, and W. Zeng, “Kinect-like depth denoising,” in
2012 IEEE International Symposium on Circuits and Systems, 2012, pp. 512–
515.

[97] D. MacKay, “Introduction to Gaussian processes,” NATO ASI Series F
Computer and Systems Sciences, 1998.

[98] S. Seo, M. Wallat, T. Graepel, and K. Obermayer, “Gaussian process regression:
Active data selection and test point rejection,” Mustererkennung 2000, 2000.

[99] D. Reynolds, “Gaussian mixture models,” Encyclopedia of Biometrics, 2009.

[100] E. J. Fernandez-Sanchez, J. Diaz, and E. Ros, “Background subtraction based on
color and depth using active sensors.,” Sensors (Basel, Switzerland), vol. 13, no.
7, pp. 8895–915, Jan. 2013.

[101] A. Yilmaz, O. Javed, and M. Shah, “Object tracking,” ACM Computing Surveys,
vol. 38, no. 4, p. 13–es, Dec. 2006.

[102] M. Taj and A. Cavallaro, “Multi-view multi-object detection and tracking,”
Computer Vision, 2010.

[103] R. Nevatia, “Self-calibration of a camera from video of a walking human,” in
Object recognition supported by user interaction for service robots, 2002, vol. 1,
pp. 562–567.

[104] K. Okuma, A. Taleghani, and N. De Freitas, “A boosted particle filter:
Multitarget detection and tracking,” Computer Vision-ECCV, 2004.

[105] S. Z. Li, “Multi-pedestrian detection in crowded scenes: A global view,” in 2012
IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 3124–
3129.

[106] A. F. Bobick, S. S. Intille, J. W. Davis, F. Baird, C. S. Pinhanez, L. W.
Campbell, Y. A. Ivanov, A. Schütte, and A. Wilson, “The KidsRoom: A

Bibliography 327

Perceptually-Based Interactive and Immersive Story Environment,” Presence:
Teleoperators and Virtual Environments, vol. 8, no. 4, pp. 369–393, Aug. 1999.

[107] S. Intille, J. Davis, and A. Bobick, “Real-time closed-world tracking,” in
Proceedings of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 1997, pp. 697–703.

[108] C. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: real-time
tracking of the human body,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 19, no. 7, pp. 780–785, Jul. 1997.

[109] J. Flusser and T. Suk, “Rotation Moment Invariants for Recognition of
Symmetric Objects,” IEEE Transactions on Image Processing, vol. 15, no. 12,
pp. 3784–3790, Dec. 2006.

[110] J.-Q. Tarn, “A state space formalism for anisotropic elasticity. Part I: Rectilinear
anisotropy,” International Journal of Solids and Structures, vol. 39, no. 20, pp.
5143–5155, Oct. 2002.

[111] S. Y. Chen, “Kalman Filter for Robot Vision: A Survey,” IEEE Transactions on
Industrial Electronics, vol. 59, no. 11, pp. 4409–4420, Nov. 2012.

[112] L. Liu, B. Sun, N. Wei, C. Hu, and M. Q.-H. Meng, “A Novel Marker Tracking
Method Based on Extended Kalman Filter for Multi-Camera Optical Tracking
Systems,” in 2011 5th International Conference on Bioinformatics and
Biomedical Engineering, 2011, pp. 1–5.

[113] Y. Rui and Y. Chen, “Better proposal distributions: object tracking using
unscented particle filter,” in Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001, 2001,
vol. 2, pp. II–786–II–793.

[114] M. Pupilli and A. Calway, “Real-Time Camera Tracking Using a Particle
Filter.,” BMVC, 2005.

[115] Wolfgan Niehsen and W. Niehsen, “Information fusion based on fast covariance
intersection filtering,” in Proceedings of the Fifth International Conference on
Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997), 2002, vol. 2, pp.
901–904.

[116] D. Smith and S. Singh, “Approaches to Multisensor Data Fusion in Target
Tracking: A Survey,” IEEE Transactions on Knowledge and Data Engineering,
vol. 18, no. 12, pp. 1696–1710, Dec. 2006.

[117] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M.
Cook, and R. Moore, “Real-time human pose recognition in parts from single
depth images,” Communications of the ACM, vol. 56, no. 1, p. 116, Jan. 2013.

[118] D. S. O. Correa, D. F. Sciotti, M. G. Prado, D. O. Sales, D. F. Wolf, and F. S.
Osorio, “Mobile Robots Navigation in Indoor Environments Using Kinect

328 Bibliography

Sensor,” in 2012 Second Brazilian Conference on Critical Embedded Systems,
2012, pp. 36–41.

[119] T. Nakamura, “Real-time 3-D object tracking using Kinect sensor,” in 2011 IEEE
International Conference on Robotics and Biomimetics, 2011, pp. 784–788.

[120] “kinect_calibration/technical - ROS Wiki.” [Online]. Available:
http://wiki.ros.org/kinect_calibration/technical. [Accessed: 27-Jan-2014].

Central European Seminar on Computer Graphics, Budmerice.”

[122] Y. S. Hung and F. Yang, “Robust H∞ filtering with error variance constraints for
discrete time-varying systems with uncertainty,” 2003.

[123] D. Franken and A. Hupper, “Improved fast covariance intersection for
distributed data fusion,” in 2005 7th International Conference on Information
Fusion, 2005, vol. 1, p. 7 pp.

[124] C. G. M. P. A. P. S. S. Rita Cucchiara, “Improving Shadow Suppression in
Moving Object Detection with HSV Color Information.”

[125] M. S. Mahmoud, “Resilient linear filtering of uncertain systems,” 2004.

[126] L. Xie, L. Lu, D. Zhang, and H. Zhang, “Improved robust H2 and H∞ filtering
for uncertain discrete-time systems,” 2004.

[127] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a survey.,”
Cognitive processing, vol. 12, no. 4, pp. 319–40, Nov. 2011.

[128] A. Parr, R. Miesen, F. Kirsch, and M. Vossiek, “A novel method for UHF RFID
tag tracking based on acceleration data,” in 2012 IEEE International Conference
on RFID (RFID), 2012, pp. 110–115.

[129] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform Deblurring for
Shaken Images.”

[130] A. Baumberg, “Reliable feature matching across widely separated views,” in
Proceedings IEEE Conference on Computer Vision and Pattern Recognition.
CVPR 2000 (Cat. No.PR00662), 2000, vol. 1, pp. 774–781.

[131] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-Squares Fitting of Two 3-D
Point Sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. PAMI-9, no. 5, pp. 698–700, Sep. 1987.

[132] Turgay Celik and Kai-Kuang Ma, “Fast object-based image registration using
principal component analysis for super-resolution imaging.” pp. 705–710, 2008.

Bibliography 329

[133] P. J. Besl and H. D. McKay, “A method for registration of 3-D shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp.
239–256, 1992.

[134] P. H. Schönemann, “A generalized solution of the orthogonal procrustes
problem,” Psychometrika, vol. 31, no. 1, pp. 1–10, Mar. 1966.

[135] O. Faugeras and M. Hebert, “The Representation, Recognition, and Locating of
3-D Objects,” The International Journal of Robotics Research, vol. 5, no. 3, pp.
27–52, Sep. 1986.

[136] C. Dorai, J. Weng, and A. K. Jain, “Optimal registration of object views using
range data,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 19, no. 10, pp. 1131–1138, 1997.

[137] Chu-Song Chen, C.-S. Chen, Y.-P. Hung, and J.-B. Cheng, “RANSAC-based
DARCES: a new approach to fast automatic registration of partially overlapping
range images,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 21, no. 11, pp. 1229–1234, 1999.

[138] M. W. Walker, L. Shao, and R. A. Volz, “Estimating 3-D location parameters
using dual number quaternions,” CVGIP: Image Understanding, vol. 54, no. 3,
pp. 358–367, Nov. 1991.

[139] T. Tamaki, M. Abe, B. Raytchev, and K. Kaneda, “Softassign and EM-ICP on
GPU,” 2010 First International Conference on Networking and Computing, pp.
179–183, Nov. 2010.

[140] S. Gold, A. Rangarajan, C.-P. Lu, S. Pappu, and E. Mjolsness, “New algorithms
for 2D and 3D point matching,” Pattern Recognition, vol. 31, no. 8, pp. 1019–
1031, Aug. 1998.

[141] S. Fantoni, U. Castellani, and A. Fusiello, “Accurate and Automatic Alignment
of Range Surfaces,” in 2012 Second International Conference on 3D Imaging,
Modeling, Processing, Visualization & Transmission, 2012, pp. 73–80.

[142] J. Servos and S. L. Waslander, “Multi channel generalized-ICP,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA), 2014, pp. 3644–
3649.

[143] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes,
“Nonrigid registration using free-form deformations: application to breast MR
images.,” IEEE transactions on medical imaging, vol. 18, no. 8, pp. 712–21, Aug.
1999.

[144] A. Larusso, D. Eggert, and R. Fisher, “A Comparison of Four Algorithms for
Estimating 3-D Rigid Transformations.,” in Procedings of the British Machine
Vision Conference 1995, 1995, pp. 24.1–24.10.

330 Bibliography

[145] S. Umeyama, “Least-squares estimation of transformation parameters between
two point patterns,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 13, no. 4, pp. 376–380, Apr. 1991.

[146] L. Nielsen, “Least-squares estimation using Lagrange multipliers,” Metrologia,
vol. 37, no. 2, pp. 183–183, Apr. 2000.

[147] K. Kanatani, “Analysis of 3-D rotation fitting,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 16, no. 5, pp. 543–549, May 1994.

[148] S. Granger and X. Pennec, Computer Vision — ECCV 2002, vol. 2353. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002.

[149] Y. Lu and J.-Q. Fang, Advanced Medical Statistics. WORLD SCIENTIFIC,
2003.

[150] X. Pennec and J.-P. Thirion, “A Framework for Uncertainty and Validation of 3-
D Registration Methods Based on Points and Frames,” International Journal of
Computer Vision, vol. 25, no. 3, pp. 203–229, Dec. 1997.

[151] B. Ma and R. E. Ellis, Surface-based registration with a particle filter, vol. 3216.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

[152] E. A. Wan and R. van der Merwe, Kalman Filtering and Neural Networks. New
York, USA: John Wiley & Sons, Inc., 2001.

[153] N. Ohta and K. Kanatani, Optimal estimation of three-dimensional rotation and
reliability evaluation, vol. 1406. Berlin, Heidelberg: Springer Berlin Heidelberg,
1998.

[154] R. Balachandran, J. M. Fitzpatrick, and R. F. Labadie, “Fiducial registration for
tracking systems that employ coordinate reference frames | (2005) |
Balachandran | Publications | Spie,” 2005, pp. 134–145.

[155] S. J. Julier and J. K. Uhlmann, “Unscented Filtering and Nonlinear Estimation,”
Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, Mar. 2004.

[156] F. Kahl and R. Hartley, “Multiple-view geometry under the Linfinity-norm.,”
IEEE transactions on pattern analysis and machine intelligence, vol. 30, no. 9,
pp. 1603–17, Sep. 2008.

[157] B. Micusik and R. Pflugfelder, “Localizing non-overlapping surveillance cameras
under the L-Infinity norm,” in 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2010, pp. 2895–2901.

[158] H. Lee, Y. Seo, and R. Hartley, “Homography estimation with L∞ norm
minimisation method,” 14th Korea-Japan Joint Workshop FCV, pp. 87-91.
2008., 2008.

Bibliography 331

[159] B. Bellekens, V. Spruyt, R. Berkvens, and M. Weyn, “A Survey of Rigid 3D
Pointcloud Registration Algorithms,” no. c, pp. 8–13, 2014.

[160] “ Front Matter : Classics in Applied Mathematics: Vol. , No. (Society for
Industrial and Applied Mathematics) .”

[161] J. Willems, “Least squares stationary optimal control and the algebraic Riccati
equation,” IEEE Transactions on Automatic Control, vol. 16, no. 6, pp. 621–634,
Dec. 1971.

[162] R. J. Carroll and D. Ruppert, Transformation and Weighting in Regression.
CRC Press, 1988.

[163] T. P. Ryan, Modern regression methods, Volume 1. Wiley, 1997.

[164] M. Fischler and R. Bolles, “Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,”
Communications of the ACM, 1981.

[165] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Journal of basic Engineering, vol. 82, no. Series D, p. 35, 1960.

[166] S. Chicotay, O. E. David, and N. S. Netanyahu, “Image Registration of Very
Large Images via Genetic Programming,” in 2014 IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2014, pp. 329–334.

[167] J. Fix, “An introduction to Kalman filters,” pp. 1–11, 2012.

[168] F. Le Gall, “Powers of tensors and fast matrix multiplication,” in Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation -
ISSAC ’14, 2014, pp. 296–303.

[169] Y. Kanazawa and K. Kanatani, “Do we really have to consider covariance
matrices for image features?,” in Proceedings Eighth IEEE International
Conference on Computer Vision. ICCV 2001, 2001, vol. 2, pp. 301–306.

[170] M. J. Brooks, W. Chojnacki, D. Gawley, and A. van den Hengel, “What value
covariance information in estimating vision parameters?,” in Proceedings Eighth
IEEE International Conference on Computer Vision. ICCV 2001, 2001, vol. 1,
pp. 302–308.

[171] A. Marinov, N. Zlateva, D. Dimov, and D. Marinov, “Weighted ICP Algorithm
for Alignment of Stars from Scanned Astronomical Photographic Plates,” Serdica
Journal of Computing, vol. 6, no. 1. pp. 101–110, 2012.

[172] J. Hermans, D. Smeets, D. Vandermeulen, and P. Suetens, “Robust point set
registration using EM-ICP with information-theoretically optimal outlier
handling,” in CVPR 2011, 2011, pp. 2465–2472.

[173] J. Kuipers, Quaternions and rotation sequences. 1999.

