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ABSTRACT

Exposure of bare soil for long periods and onsite compaction create soil and water

problems in asparagus production. This project aims to develop a cost effective and

practical runoff and soil erosion management system. Two field trials (Phase 1 running

from April - July 2012 and Phase 2 running from May - November 2013) tested different

combinations of shallow soil disturbance (SSD) and mulch (straw and compost)

application for soil erosion control. Cranfield University’s soil bin was used to test the

effect of different tine configurations on soil disturbance. The results of this research

corroborated observations that asparagus production can result in levels of

unsustainable soil loss that will contribute to the degradation of the existing soil

resource.

The field trials demonstrated that a straw mulch applied at 6 t ha-1 significantly

improved key performance indicators (KPIs, i.e. runoff initiation, volume and rate; total

soil loss; sediment concentration; total oxides of nitrogen; orthophosphate-P; and

sediment-bound P) as compared with the Non-SSD Control. In general, SSD

(irrespective of tine configuration) was ineffective at improving key performance

indicators as compared with the Non-SSD Control.

In the soil bin work, different tine configurations generated varying degrees and extent

of SSD, with the modified para-plough giving the greatest soil disturbance for the least

draught force. However, the differences in SSD observed in the soil bin had no effect

on the KPI’s tested in the Phase 2 field trial.

The effective treatments observed in the field trials only yielded cost savings to the

farmer/grower when a high level of soil loss occurred. This research highlights the need

to develop erosion control measures in asparagus fields, with wider implications to

other row crops. However caution is needed, given the observed variation in

effectiveness and reliability of in-field mitigation measures, especially during ‘extreme’

rainfall events.
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1 INTRODUCTION

Inappropriate soil and water management, generally caused by a lack of adoptable and

practical options, can lead to accelerated soil erosion. Soil erosion degrades agricultural

land, threatening agricultural sustainability. Runoff and soil erosion is the costliest and most

damaging consequence of conventional agriculture. In England and Wales 2.2 million tonnes

of topsoil is lost annually (SSLRC, 2000), costing the farming industry between £180 and

£280 million (Graves et al., 2011). However, the impacts are much wider as soil is key to

ecosystems services that include food production, flood management, water filtration, carbon

storage and climate regulation (Defra, 2011). This total cost of soil degradation (as a result

erosion, compaction and loss of organic matter) has been estimated to cost the UK economy

£1.2 billion a year (Defra, 2011). In order to address global degradation Rio+20 has set a

target for a land degradation neutral world by 2030 that includes a sub-target of a 50 %

reduction in erosion by wind and water (Defra, 2011). However, in order to tackle this, the

effectiveness, feasibility and practicality of in-field measures that control erosion to an

‘acceptable’ rate must be understood (Defra, 2014a). The large degree of variability in the

effectiveness of in-field measures on erosion control makes this difficult (Defra, 2014a).

Furthermore, there is a knowledge gap in the effectiveness of in-field measures under

extreme weather events that are predicted to become more frequent with climate change

(Rickson et al., 2010).

Agricultural erosion and runoff is accelerating with the increased frequency of ‘extreme’

rainfall events and the increased susceptibility of soil to erosion. This increased susceptibility

is due to increased compaction, reducing soil pore space resulting in poor soil structure and

a reduced infiltration potential, as well as the loss of soil organic matter. Soil susceptibility is

further worsened by land management. Asparagus when grown on erodible soils and sloping

land can, under extreme rainfall, generate high rates of runoff and soil erosion, and thus is

the focus of this project. Asparagus is a growing British industry covering >2000 ha and

worth approximately £30 million (Defra, 2014b). It is an intensive cropping system grown as

a continuous monoculture stand for up to 15 years. Grown as a row cropping system it

leaves areas of bare vulnerable soil exposed to rainfall for up to 6-months per year. In

addition, the uncropped areas or ‘wheelings’ act as channels, concentrating runoff further

increasing erosion risk. The addition of polythene cloches used to promote early harvesting

creates impermeable layers further increasing runoff coefficients and directing rainfall to

wheelings.. In order to ensure the economic and environmental sustainability of asparagus
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production in the light of the increased frequency of extreme rainfall events, runoff and

erosion must be controlled.

Many erosion control studies have been carried out under both construction site and

agriculture conditions. Some studies have been undertaken on erosion control in row crops

(Holstrom et al., 2008; Edwards et al., 2000; Döring et al., 2005; Rees et al., 2002).

However, erosion control in asparagus production has not been studied in published

literature. Fewer still have considered the interaction effects between shallow (<350 mm) soil

disturbance and mulch application (Holstrom et al., 2008). Both individually and in

combination, shallow soil disturbance and mulching has been proven in other agricultural

systems such as cereals to be an effective control of erosion and runoff. This study aims to

test the effectiveness of a range of currently adopted and commercially available tines to

generate shallow soil disturbance in combination with/without mulch on sloping asparagus

fields as a cost effective and practical method to control runoff and erosion management.

Two field trials (Phase 1 running from April - July 2012 and Phase 2 running from May -

November 2013) undertaken at Cobrey Farms, Ross-on-Wye, UK, tested different

combinations of shallow soil disturbance (SSD) and mulch (straw and compost) application

for soil erosion control. In addition, the Cranfield University’s soil bin was used to test the

effect of the selected tine configurations on above and below ground soil disturbance and

draught efficiency. The results of this study will contribute much needed empirical data on

the effectiveness of simple and affordable land management practices to control runoff and

erosion control for asparagus.

This thesis is divided into 8 chapters. Chapter 2 presents the relevant literature that led to

the formation of the research hypotheses that are outlined in Chapter 3. Chapter 4, 5 and 6

document the experimental programmes undertaken to address the research hypotheses. In

Chapter 7, the conclusions of each experimental programme are brought together in a

synthesis. An economic appraisal is undertaken to establish the cost effectiveness of erosion

control treatments and final conclusions drawn. Chapter 8 discusses the wider implications

of the research and potential opportunities for further work.
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2 LITERATURE REVIEW

2.1 Soil erosion

Processes2.1.1

Water induced soil erosion is a three stage process consisting of; detachment,

entrainment and transport (Figure 2.1). As a raindrop strikes the soil it creates a small

amount of compaction on the soil surface, this seals some of the soil pores. Raindrop

splash leads to some soil becoming detached. Some of the raindrops infiltrate into the

soil whilst the remainder runs off downslope. This runoff builds up speed and volume,

and entrains any detached sediment and transports it downslope. The magnitude of

each of these stages depends upon rainfall and runoff erosivity and soil erodibility.

Erosivity pertains to the potential of rainfall and runoff to cause erosion (Morgan, 2005).

Soil erodibility is the degree to which soil is susceptible to erosion by eroding agents

(Morgan, 2005).

Figure 2.1. The three stage rainfall induced erosion process on a slope. Modified

from: Simmons (2011).

Soil detachment2.1.1.1

Soil detachment is the critical component in the erosion process. Rainfall is the key

agent in soil detachment as very fine sand requires an erosion velocity of 30 cm s-1
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(Figure 2.2) that is rarely attained by overland flow (Evans, 1980). The probability of

soil particles or even small aggregates detaching during a rainfall event is determined

by both rainfall erosivity and soil erodibility (Figure 2.4).

Figure 2.2. Hjulstrom curve demonstrating required flow velocity for soil particle

erosion, transportation and deposition. Source:

http://www.utexas.edu/depts/grg/hudson/grg338c/schedule/3_erosion_sed/sedim

ent_transport_suspended.html (2014).

The erosivity of rainfall is dependent upon rainfall kinetic energy, this is determined by

individual rain drop characteristics such as drop size, mass and fall velocity. The

intensity and duration of the storm also has an effect (Morgan and Duzant, 2008).

Raindrop impact can alter the soil surface (Figure 2.5). It can compact the soil creating

a dense, low permeability layer of soil at the surface, commonly known as a structural

seal when wet, and a crust when dry (Bradford et al., 1987). Soil aggregates are

broken down (creating easily detachable material) by raindrop impact, or through

slaking (Assouline, 2004). In this process soil wetting weakens the cohesion within soil
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aggregates causing them to collapse (Morgan, 2005). The resulting soil particles are

dispersed by the splash jets of impacting raindrops (Figure 2.3) and are then deposited

back onto the soil surface where they can clog soil pores. This sedimentation process

also forms a surface seal (Assouline, 2004). Consequently, soil infiltration is reduced

increasing the risk of runoff and crop yield impacts.

In addition to rain splash detachment, soil can become detached by the scouring action

of rainfall-induced surface overland flow (Hillel, 2008). When infiltration is reduced as a

result of poor soil structure or land becomes saturated, water begins to flow over the

surface. When slope gradient is >0
o, the velocity of this water increases resulting in

kinetic energy which is expended to detach unstable soil. This process results in the

formation of micro-rills, rills and gullies.

Figure 2.3. The action of a falling raindrop striking the soil surface.

Soil erodibility is determined by soil properties that affect their susceptibility to erosion.

Stable, well-structured soils are not generally easily detached. Soil stability originates

from the internal bonds existing within aggregates reinforced by clay particles, organic

matter, microorganisms and plant roots (Hillel, 2008). Soils with a restricted clay

content of < 30 % are considered to be the most susceptible to erosion (Evans, 1980).

Organic matter addition can be a catalyst to improved soil structure. It is able to bond

with soil particles directly, and encourage microbial communities that further increase

particle bonding (Hillel, 2008). Low organic matter soils (> 2 %) therefore are more

prone to detachment (Fullen, 2000). Field cultivation can also increase the likelihood of

soil detachment as it creates a loose and unstructured soil layer (Reed, 1983).



6Figure 2.4. The consequences of raindrops on the soil surface. Source: Modified from Simmons (1998).
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Figure 2.5. The soil surface response to raindrop impact and resulting effects. Modified from Simmons (1998).
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In row crops, the probability of soil detachment by rainfall is high due to the large extent

of bare soil between crops that facilitate various field operations. Furthermore some

field operations, such as de-stoning in potato crops and harvesting in carrot production,

produce a large layer of disturbed, structure-less soil, which is highly susceptible to

detachment, often resulting in the formation of rills and gullies. Compaction between

rows from field operations also reduces soil structure and increases the generation of

surface flow, making the soil more susceptible to detachment.

Sediment entrainment2.1.1.2

Detached soil particles can become entrained within the splash jets of raindrops

impacting on the soil surface and within runoff. For the latter, entrainment is dependent

upon the volume and velocity of runoff and the size of the detached soil particles.

Runoff of a moderate velocity will first entrain smaller non-cohesive particles such as

silts and fine sands (Quinton et al., 2001), extending to larger particles if the velocity is

increased (Figure 2.2).

Steeper slope gradients increase the likelihood of entrainment as runoff velocity is

increased (Table 2.1). In some raised-bed row crop systems, cultivation follows the

predominant slope fall line, in order to avoid water ponding. This is also the case where

harvest operations are impaired by the slope gradient when cultivated across slope

making it necessary to cultivate up and down slope (EA, 2007). This generates long

down-hill runs where high runoff velocities can be generated, thus enabling more

energy with which to entrain detached sediment. Compaction between row crops as a

result surface sealing and trafficking further facilitates high runoff volume and velocity,

as these conditions create a relatively smooth channel-like surface over which the

runoff can flow easily without hindrance.

Sediment transport2.1.1.3

The degree to which detached soil is transported depends upon the runoff volume and

runoff velocity, which is often determined by the gradient of the land. Runoff volume

determines the carrying capacity of detached soil, with greater volumes capable of

transporting more soil. Meanwhile, runoff velocity dictates the particle size that can be

transported. When velocity is slowed, the heavier particles are the first to be deposited

(Figure 2.2).
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Today, row crops are grown without interruption over large open areas of land over

which water can flow and gain speed. Finer fractions including clay and organic matter

are transported away from where they are most needed, leaving behind coarser low-

nutrient soil particles (Dalzell et al., 1987).

Table 2.1. Risk associated with erosion based on soil type and slope gradient.

Source: DEFRA (2005).

Soils Steep slopes

>7 degrees

Moderate slopes

3 – 7 degrees

Gentle

slopes 2 – 3

degrees

Level ground

< 2 degrees

Sandy and light

silty soils
Very high High Moderate Lower

Medium and

calcareous

soils

High Moderate Lower Lower

Heavy soils Lower Lower Lower Lower

Soils

Impacts2.1.2

Soil degradation2.1.2.1

Soil loss is often not an immediate concern for farmers as significant losses of soil,

fertiliser and crops do not occur (Boardman and Evans, 2006), but it can result in long-

term impacts. As discussed above, lighter soil particles are the most easily detached

during soil erosion, leaving behind coarser materials (Dalzell et al., 1987). However,

organic matter is also sufficiently light to become easily eroded, and is found in high

concentration in eroded soil (Schwab et al., 1957). Rees et al. (2002) reported eroded

soil to contain 2.3 times the organic matter content found in the in-situ, un-eroded soil.

Soil organic matter improves soil water holding capacity, soil structure and tilth, and

provides a carbon substrate for soil microorganisms (Lal, 2004). Without organic matter

water is less able to infiltrate making the soil more susceptible to erosion and therefore

at a greater risk of further degradation. Soil erosion also reduces soil depth. This can

have an impact on crop yields as less growing media is available (Table 2.2).
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As soil becomes displaced the nutrients and organic matter lost needs to be replaced.

As well as the cost implications of inputting these components back into the soil, some

nutrient inputs are becoming scarcer and so in the future could become irreplaceable.

Whilst nitrogen-based fertilisers are in abundance, the commercially viable reserves of

rock phosphate are limited (Rosemarin et al., 2010). Reserves are currently estimated

to last between 48 to 235 years depending on the agricultural production of the

developing world (Rosemarin et al., 2010). This reinforces the need to control

agricultural losses in order to preserve the longevity of our existing phosphorus

reserves.

Further to a reduction in soil quality and health, large erosion events result in rill and

gully formation (Figure 2.6). These damage agricultural land, expose plant roots and

interrupt farming operations, so need to be filled in to maintain crop production.

Figure 2.6. Gully formation from asparagus wheelings. Runoff from the

compacted wheelings forms deep rills in the relatively less-compacted track way.

These rills run downslope, and merge to form one deep gully.
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Table 2.2. Impact of past erosion and resulting differences in soil depth on crop yields (European data). Source: den Biggelaar

et al. (2004).

Crop
No of

records

Mean

duration of

experiments

(yr)

Mean of

mean

experimental

crop yield

(Mg ha-1)

Erosion-induced yield loss

Source
Mg ha-1 cm-1 soil

erosion, mean

(range)

Kg ha-1

Mg-1

soil

erosion

% Mg-1

soil

erosion

Wheat 8 4 3.5 0.026 ((-0.058)

to 0.097)

0.17 0.00 Burnham and Mutter, 1993; Duck,

1974; Evans and Nortcliff, 1981;

Krisztian et al., 1987; Krumov and

Tzvetkova, 1998; Tikhonov, 1960;

Vernander et al., 1964

Barley 11 3 2.5 0.052 ((-0.023) to

0.174)

0.35 0.01 Biot and Lu, 1993; Duck, 1974;

Dzhadan et al., 1975; Evans and

Nortcliff, 1978; Krisztian et al., 1987;

Lu and Biot, 1994; Tikhonov, 1960; Xu

and Biot, 1994
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Crop
No of

records

Mean

duration of

experiments

(yr)

Mean of

mean

experimental

crop yield

(Mg ha-1)

Erosion-induced yield loss

Source
Mg ha-1 cm-1 soil

erosion, mean

(range)

Kg ha-1

Mg-1

soil

erosion

% Mg-1

soil

erosion

Millet 2 4 0.3 0.011 (0.005 to

0.018)

0.08 0.02
Tikhonov, 1960

Soybeans 1 10 0.6 0.020 (n/a) 0.13 0.02 Krisztian et al., 1987;

Potatoes 2 5 11.4 0.084 (0.018 to

0.150)

0.56 0.00 Krumov and Tzvetkova, 1998;

Tikhonov, 1960;
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Off-site impacts2.1.2.2

Agricultural runoff contains soil, agrochemicals, minerals and fertilisers. Two nutrients

most commonly found in agricultural runoff are nitrogen and phosphorus. Together with

soil, these make up the three largest contributions of agriculture to water pollution

(Figure 2.7). Soil contained within runoff can have negative off-site effects. For water

companies, additional costs in water treatment can be incurred to achieve necessary

drinking water quality standards. Sediment can also reduce reservoir storage

capacities and increase the risk of river flooding. Deposited sediment can smother fish

spawning grounds, reduce food supply to aquatic organisms and promote large

growths of aquatic vegetation that may further increase flood risks by decreasing

watercourse capacity (Defra 2009). As a result of the effects of detached soil on river

ecosystems a guideline of 25 mg l-1 has been provided for annual suspended sediment

levels in rivers (Collins et al., 2008).

One of the common pollutants derived from nitrogen is nitrate. This is formed from the

mineralisation of ammonia fertiliser (Merrington et al., 2002). Nitrate is very soluble and

remains in the soil solution, so that it is easily available to crops (Merrington et al.,

2002). However, once in contact with a water course it can, depending on its

concentration, kill fish, cause eutrophication (e.g. excessive algae growth with high

biological oxygen demand), and lead to untreatable sources of drinking water (Defra,

2009). Nitrate removal in drinking water has been estimated to have cost England and

Wales £ 184 million between 2004 and 2009 (NAO, 2010). The Water Framework

Directive (WFD, 2000) in its drive for ‘good ecological status’ within rivers and other

water bodies has stipulated a nitrate concentration limit of 25 mg l-1.
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Figure 2.7. Agriculture’s contribution to total sediment, nitrate and phosphate

pollutants found in English water courses. Data source: NAO (2010).

Phosphorus is less soluble than nitrogen (Balana et al., 2012). Whilst present in soil

solution in a small amount, it is strongly absorbed onto soil surfaces and can be lost in

both the entrained soil particles and surface runoff (Cherry et al., 2008). Only 30 % of

the phosphorus added as fertiliser is retained within the soil (Rosemarin et al., 2010).

High levels of phosphorus in watercourses can, as with nitrogen, lead to eutrophication.

As a result, the WFD (2000) has stipulated limits for soluble reactive P of between 0.04

and 0.12 mg l-1 dependent upon water body alkalinity and elevation.

2.2 Compaction

Compaction, alongside soil erosion, is the costliest and most environmentally

damaging consequence of conventional agriculture (FAO, 2003). Graves et al. (2011)

estimated the cost of soil compaction in England and Wales at £472 million a year. This

figure includes the on-site cost of nutrient and productivity loss, the increase fuel

required to work compacted soils and the environmental cost of nutrient and sediment

pollution as well as greenhouse gas losses. In Europe alone it is believed to be

responsible for the degradation of 33 million hectares (Hamza and Anderson, 2005), of

which 3.9 million hectares is deemed at risk in England and Wales (Graves et al.,

2011).
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Compaction can increase the risk of erosion as a result of increasing soil bulk density

and decreasing void spaces (Hamza and Anderson, 2005). This decreases infiltration

rates and lowers thresholds at which rainfall becomes erosive (Fullen, 2000), as the

inter-locking forces between particles decrease, making the soil more susceptible to

detachment. The reduced infiltration also increases runoff generation, which on sloped

land can result in overland flow (Batey, 2009). Therefore, where soil detachment has

occurred, compaction can facilitate the entrainment and transport of soil. Silgram et al.

(2010) studied tramline runoff in cereal fields, finding that such areas of compaction are

important pathways for phosphorus and sediment.

Compaction can be caused by any degree of loading applied to the soil surface. The

extent of the compaction depends upon the nature of the loading and the physical

properties of the soil at the point where and when the load is applied. The complex

interactions between these factors can make compaction very difficult to predict

(Larson et al., 1980).

Susceptible soil types2.2.1.1

Some soil types have properties that pre-dispose them to compaction. These

properties fall into two categories; frictional resistance and cohesion (Jones et al.,

2003). Stable soils with good aggregate stability, particle size distribution, soil organic

matter and low soil moisture content, have both frictional resistance and cohesion.

Clay soils are the most susceptible soil type to compaction, and silt soils the least

(Graves et al., 2011). The percentage of soil organic matter affects a soils frictional

resistance to compaction, as organic matter holds the soil open, creating voids,

reducing the impact of soil loading (Davies et al., 2001). Organic matter also increases

the cohesion between soil particles increasing soil strength and reducing deformation.

Soil moisture content can affect cohesion. High soil moisture content can weaken the

cohesive forces between soil particles (Mouazen et al., 2002) making it more likely to

deform under loading (Hamza and Anderson, 2005). Soils that have been recently

loosened are also particularly vulnerable to compaction as soil aggregates have been

re-organised and require time to stabilise into an improved profile (Spoor, 2006).

Compaction following tillage has been found to decrease hydraulic conductivity beyond

the pre-tilled conditions (Unger and Cassel, 1991).
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Causes of compaction2.2.2

In row crops, factors affecting soil compaction include loading by agricultural machinery

(tractors, trailers etc.), and where crops are hand-harvested, human trampling (foot

traffic). Research has been predominantly undertaken on vehicle-based compaction,

known as trafficking, as load mass and distribution can be easily manipulated to reduce

compaction risk, such as the use of low ground pressure tyres or tracks as an

alternative to tyres.

Agricultural machinery induced compaction2.2.2.1

Agricultural machinery induced compaction can occur by two methods; soil loading and

compaction form cultivation implements. Agricultural machinery has high axle loadings

that in turn apply massive force onto the soil surface. All agricultural machines used

today exert ground contact pressures that can induce compaction (Hetz, 2001). The

total force exerted is dependent upon the total axle weight and the soil surface contact

area. The resulting compaction radiates from the wheel contact area affecting both the

topsoil and sub-soil, and can lead to surface rut formation (Hamza and Anderson,

2005, Figure 2.8).

Figure 2.8. Distribution of pressure stresses beneath a lightly loaded small tyre

and a heavily laden large tyre exerting similar ground pressures. Source:

Forristal (2003).
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The degree of the resulting compaction depends upon several factors. These pertain to

both the machine; the total axle load, wheel type, tyre dimensions, tyre pressure and

number of passes, and the soil; soil type and moisture content. Greater axle loads

cause greater subsoil compaction (Botta et al., 1999). Tracks as opposed to tyres are

known to better distribute axle loads resulting in less compaction. When using tyres

wider treads equate to a better distribution of load resulting in reduced compaction, as

do lower tyre pressures. The frequency of vehicle passage over the soil will also affect

compaction extent. Whilst it could be assumed that with more vehicle passes

compaction will increase, laboratory research suggests that the first pass of a vehicle

causes the most soil deterioration of up to 90 % of the total increase in density,

subsequent trafficking further degrades soil condition but to a lesser extent (Davies, et

al., 2001, Figure 2.9).

Figure 2.9. The impact of the first wheeling and subsequent wheelings on soil

density. Source: Davies et al. (2001).
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In addition to machinery tyres, cultivation equipment can cause compaction. This

compaction occurs below the depth of cultivation, and can be referred to as a plough

pan. Considering tillage operations, a tine, if used too deep can cause compaction. As

the working depth increases so too do the compressive forces operating on the tine.

This results in inhibited soil failure, where only a leg slot is created whilst the foot-soil

interface compresses the soil compacting it to the sides and below (Spoor, 2006). The

point at which forces become compressive is referred to as critical depth. Due to the

inherent variation in soil properties, critical depth is not something that is easily

ascertained in the field; however, it can be observed by assessing the degree of

disturbance following the first tine pass (Spoor, 2006, Figure 2.10).

Figure 2.10. Soil disturbance patterns of a conventional subsoiler both above

(0.35 m) and below critical depth (0.42 m). Source: Spoor and Godwin (1978).

Foot trafficking/human trampling2.2.2.2

The soil response to foot trafficking has been little investigated in an agricultural

setting. However, research on military training areas and recreational land has been

undertaken, and has demonstrated that foot trafficking does result in compaction.

These findings, particularly from recreational land can be applied to on-farm, in-field
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foot-trafficking, as the processes operating between crop rows are not dissimilar to

those on unsurfaced footpaths.

Quinn et al. (1980) investigated the trampling forces exerted by the foot when walking

upslope (Figure 2.11). The foot exerts a maximum compressive force at heel strike

followed by lesser compressive forces from the toe prior to the foot being lifted off. The

force of the toe pushing off the ground also exerts a shear stress force. From this,

Quinn et al. (1980) deduced that whilst heel strike would result in compaction and

vegetation damage, pressure from the toe would wear vegetation and damage the

footpath surface. Resulting heel strike compaction has been observed in the top 3 to 5

cm’s of soil (Kuss 1983).

Figure 2.11. The forces exerted on the soil surface whilst walking upslope. Based

on experimental results from Quinn et al. (1980).

Monti and Mackintosh (1979) support this observation. On boreal forest soils,

increasing foot traffic intensity first removes surface organic matter, and then forms a

thin compacted mineral layer. This led to an increased bulk density, a reduction in

macro-pore area of up to 60%, and reduced infiltration rates to less than 0.1 cm min-1.

Post-construction changes in the degradation of recreational footpaths occur with initial

or low levels of use (Leung and Marion, 1996). Changes then diminish with increasing

use. This suggests, as with vehicle compaction, that soil degradation occurs from the

first passes even with low intensity traffic.

The toe-pressure imparted by foot traffic responsible for wearing vegetation could

result in the downslope displacement of soil, as it loosens and detaches soil particles

(Quinn et al., 1980). This detached material can later be transported downslope by
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overland flow. However, Quinn et al. (1980) found that with rainfall, soil loss was not

initiated until 900 passes. Whilst runoff was initially high, it levelled off with increasing

passes due to the surface depression storage created by foot print indentations. Kuss

(1983), compared two different trampling intensities and found that the sediment yield

in runoff increased with higher intensities, and remained (all be it at a lower level) 41

days after trampling had ceased.

2.3 Asparagus agronomy

Asparagus is a perennial crop that can grow for approximately 15 years in a single

rotation (Hamel et al., 2005). It is a high value crop, requiring a lot of initial financial

investment. Asparagus (Asparagus officinalis) exhibits autotoxicity, meaning that with

time asparagus crops lead to fusarium build-up in the soil that can lead to its own

decline (Batish et al., 2001). Therefore once asparagus decline has fully set-in a new

asparagus crop cannot be successfully re-grown in the same field. This makes initial

crop management very important. An overview of asparagus agronomy is provided in

Figure 2.12.

Asparagus is grown on a raised bed system in order to prevent beds from becoming

water logged as rainwater is channelled into the wheelings that are situated in between

each bed. Following initial plantation, the crop is not suitable for harvest until the

second year. The rhizome root mass, known as the crown, sends shoots upwards that

come through the soil surface as asparagus spears. Once the spears are of a

marketable size, they are hand-harvested, by pickers on foot and cut just below

ground. The typical UK asparagus season runs from April 23rd to June 23rd, but harvest

can be extended using plastic cloches installed over the beds to create hospitable

temperatures for crop emergence. After harvest, the asparagus plants develop into

ferns that naturally senesce and are later chopped and incorporated into the beds to

prevent disease from Stemphylium vesicarium .

Typically asparagus consumed in the UK market originates from Peru where the

climate is favourable and the production costs low. However, concerns over the

detrimental environmental impacts of excessive ‘air miles’ and the demand for home

grown produce mean that suitable conditions are being developed in the UK where
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asparagus can grow. Consequently, home-grown asparagus is increasingly seen on

supermarket shelves.

Soil impacts of asparagus production2.3.1

A ‘typical’ asparagus production year has several potential environmental and

economic impacts that revolve around soil and water management (Figure 2.12).

Compaction and soil erosion are big on-site issues witnessed on some asparagus

producing fields. Both issues are worsened by cultivation practices, including minimal

surface cover, low organic matter, cloching, and a poor soil legacy (Figure 2.13).

Soil erosion2.3.1.1

Asparagus production is typically undertaken on sandy free-draining soils. Such soil

types have a very low clay and organic matter content making them initially susceptible

to erosion (MAFF 1969). Furthermore, asparagus cultivation up and down slope gives

inclined and long slopes over which runoff could potentially entrain and transport

detached soil.

Asparagus practices (Figure 2.12) are synonymous with extremely low vegetative

cover on the soil. Approximately 65% of a typical asparagus production year sees fields

with negligible surface cover. This leaves the susceptible soil exposed to the full kinetic

energy of erosive rain drops and is thus vulnerable to erosion (Figure 2.4). This can

lead to the formation of a surface crust that reduces the infiltration of the soil increasing

runoff into the wheelings (Figure 2.13). Both raised beds and wheelings are left bare

over winter when rains are deemed to be most erosive. In early spring, spears offer

little soil protection on the beds, and wheelings remain bare until fern development.

Plastic cloches installed over the beds for 5 months of the year provide an

impermeable rainfall barrier. This diverts rainfall onto the bare wheelings, further

exposing them to erosion risk (Figure 2.13). In late summer, asparagus fern intercepts

rainfall protecting the bed and to some extent the wheelings from direct rainfall impact.

Compaction2.3.1.2

Compaction is a significant problem in typical asparagus production systems. This is a

result of poorly structured soil, multiple machinery passes and the requirement to

access land daily during harvest.
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Current asparagus agronomy can consist of many different field operations with varying

breadths of operation; bed forming, subsoiling, plastic cloche hoop and plastic laying,

spraying, fern topping and incorporation. Consequently every asparagus wheeling is

trafficked. Furthermore, during the harvest season harvest workers that hand-pick the

asparagus will walk the wheelings as often as twice daily, irrespective of weather

conditions. This further contributes to compaction and in wet weather increases the risk

of soil smearing. When soil is smeared it seals over any open pores at the surface

inhibiting water infiltration (Morgan, 2005).

Soil legacy2.3.1.3

Every field has a soil legacy, namely the soil condition that exists following the previous

land use and its management. The nature of the previous crop will determine initial soil

properties. In the UK, fields available for new crops such as asparagus tend to be

former potato fields that are no longer suitable as a result of a high Potato Cyst

Nematode (PCN) index. Following potato cultivation, a legacy exists of intensively

cultivated soil to depth, probable compaction and low stone content (Chow et al.,

1990). When compounded with subsequent asparagus agronomy, this legacy results in

an increased erosion risk.
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Figure 2.12. Potential environmental and economic impacts associated with ‘traditional’ asparagus cultivation methods. Source:

Simmons (2010).
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Importance of soil and water conservation2.3.2

Sound soil and water management is not just pertinent to soil protection. In asparagus

production, poor soil and water management can lead to disease and crop decline

(Figure 2.12). Disease control is particularly critical to ensuring a good yield over the

full length of the asparagus production cycle (approximately 15 years). Asparagus

crops are threatened by several pests and diseases: Purple spot, botrytis, and

asparagus beetle. Most of these can be managed using chemicals, however, fusarium

and phytopthora, both soil borne diseases, pose a constant threat that instead requires

careful environmental management.

Fusarium can invade the roots/crown of asparagus early-on and reside as a parasite

(Nigh, 1990). Once the plant becomes stressed, the parasite becomes pathogenic,

causing crown and root rot (Hamel et al., 2005, Damicone, 1987)). Stressors can

include; poor soil drainage, drought, weed competition, tillage and soil compaction

(Nigh, 1990; Drost, 1999; Wilcox-Lee and Drost, 1991). According to Nigh (1990),

fusarium risk can only be managed by first minimising the risk of early-on infection of

the crown/roots. After that, careful environmental management to minimise stress to

the asparagus is required. Phytophthora survives in the soil as oospores, producing

asexual sporangia under wet conditions (Snowdon, 1991). Infection results in reduced

asparagus yield and plant death (Snowdon, 1991). Fungicide application can help

control phytophtora (Snowdon, 1991); however, field conditions also have an effect.

After heavy and prolonged periods of rain, sporangia are mobilised and invade the

crowns, so infecting the asparagus (Snowdon, 1991).

On-site soil and water management can help maintain a healthy asparagus stand, and

will dramatically reduce the risk of crown and root rot. MAFF (1969) verifies this,

documenting that wet soil during winter is especially known to cause crown rot,

resulting in serious yield losses. Falloon et al. (1986) also demonstrate higher yield

losses from phytophthora when field conditions were cool (15°C soil temperature) and

wet, as opposed to warm (27°C soil temperature) and dry. If water is unable to infiltrate

into the soil it will either runoff on slopes, or pond on the surface (Reed, 1983). Runoff

risks depleted soil health, however in asparagus water ponding increases risk of

disease generating favourable conditions for phytophthora and fusarium infection. In

order to prevent ponding, asparagus ridges and cultivations are oriented downslope,

increasing the risk of soil erosion.
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The ability to improve infiltration and reduce runoff and erosion from asparagus fields

will also further deliver multiple benefits both on and off site, over several timescales. In

the short term, on-site labour costs could be reduced. This could occur as a result of a

reduction in field operations required to fill gullies and large rills that affect land

accessibility and future field operations. The development of a new erosion control

method could also result in less field operations (e.g. subsoiling operations) than

currently carried out to address the problem. Furthermore, improved traffickability as a

result of improved soil moisture status could improve the timeliness of field operations

and reduce subsequent compaction. An improved soil moisture status could also

improve picker efficiency and fatigue. In the short-term off site issues and associated

costs could also be reduced as a result of a reduction in watercourse pollution events

from entrained soil particles and nutrients. This will not only reduce the risk of financial

penalties (e.g. EA fines) but will also help maintain a good level of ecological health

within the water body as required by the WFD. In the long term an improvement in

infiltration will reduce nutrient loss in runoff, together with organic matter and finer soil

fractions, maintaining a degree of soil fertility and reducing input costs. Furthermore the

improvement of soil moisture re-charge will improve plant nutrient uptake, reduce plant

water stress and reduce the need for supplementary irrigation. This could also improve

the re-charge of root carbohydrates during the fern stage. Over the profitable

asparagus production period (10-12 years) this could result in an increase in yields

without increasing inputs.
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Figure 2.13. Agronomic factors of asparagus production contributing to soil erosion, compaction and runoff.
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2.4 Soil erosion management measures

Soil erosion can be managed by manipulating variables known to influence erosion

rates. These variables include slope (length and gradient), surface water storage,

surface protection, surface roughness and soil compaction. Table 2.3 reviews existing

erosion and runoff control measures relative to the perceived suitability for adoption in

asparagus production. No previous erosion studies have been found on soils under

asparagus production. The erosion and runoff control measures that appear most

suitable for application in asparagus production are considered to be surface mulch

application and shallow soil disturbance.

Surface cover2.4.1

Surface cover both protects the soil surface and imparts a degree of surface roughness

(Dalzell et al., 1987; Foster et al., 1982). Rainfall can be intercepted by surface cover

that protects the soil surface from the compacting and detaching energy of rain splash

(Dalzell et al., 1987; Morgan, 1979). This can protect a soil surface from sealing (Zuzel

et al., 1990) and maintain infiltration thus reducing entrainment and transport. Following

rainfall interception, the cover can collect and absorb some of the rainfall depth (Persyn

et al., 2004) thus reducing runoff volume and the associated entrainment and transport

of eroded material. This intercepted rainfall could be permanently excluded from runoff

generation through later evaporation (Duran-Zuazo and Rodriguez-Pleguezuelo, 2008).

An increased surface roughness can reduce runoff velocity affecting the entrainment

and transport capacity of runoff, so reducing soil erosion rate. As velocity decreases,

less entrainment will occur, and runoff has a greater opportunity to infiltrate, thus

reducing the runoff volume available to transport detached particles (Persyn et al.,

2004). Manning’s n typically expresses the effect of surface roughness in soil

conservation studies (Morgan, 2005).
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Table 2.3. A review of existing erosion and runoff control measures and their suitability to current asparagus production.

Control type
Key

references
Erosion/runoff control function Suitability to asparagus production.

Field Layout

Grassed strips
Shipitalo et

al., 2010

Reduces runoff velocity forcing deposition of

entrained soil particles.

Not suitable for established asparagus

fields.

Slope management

Terraces
Morgan,

2005

Shortens steep slopes, reducing runoff

velocity, entrainment and transport capacity.
Slopes are not steep enough to benefit. -

Bunding
Morgan,

2005

Reduces runoff velocity forcing deposition of

entrained soil particles.
Not suitable for furrow trafficking. -

Cross contour

cultivation

Stevens et

al., 2009

Reduces slope gradient reducing runoff

velocity, entrainment and transport capacity.

Water ponds in between furrows causing

asparagus decline.
-

Increase surface storage

Tied ridging
Roose,

1996

Reduces runoff volume, when full with water it

protects the soil surface from detachment.

Puts asparagus at disease risk. In

downslope cultivation storage ponds are

susceptible to breaching. Not suitable for

hand-harvest practices.

-

Soil cover
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Control type
Key

references
Erosion/runoff control function Suitability to asparagus production.

Crop residue
Shock et al.,

1997

Protects soil from detachment by rainfall.

Reduces soil entrainment and transport using

surface roughness and storage. Adds organic

matter to the soil reducing soil erodibility.

Asparagus has little crop residue. The

residue that it has is already

incorporated into the soil above crowns

for disease control.

-

Cover crops
Brainard et

al., 2012

Intercepts rainfall protecting the soil from

detachment. Root mass further prevents soil

detachment.

Concern of water and nutrient

competition. Current herbicide regime

Weed kill rate too high to support this.

-

Surface mulch
Silgram et

al., 2010
Same function as crop residue.

Suitable if applied to furrows where most

erosion is observed.
+

Soil conditioners

Polyacrylamides
Lentz et al.,

1994

Acts as an adhesive between soil particles

reducing detachment.
Leaves soil exposed to rainfall. -

Compaction alleviation

Controlled traffic

farming

Chamen et

al., 1992;

Chamen,

2006

Reduces runoff volume and velocity by

reducing compacted tramlines.

Many operations are currently

undertaken on different wheelings, with

some machinery being specifically

designed on-site. Loss of land to wheel

tracks is not an issue as furrows are not

planted.

-
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Control type
Key

references
Erosion/runoff control function Suitability to asparagus production.

Soil disturbance
Sharma,

1991.

Increases soil porosity, increasing infiltration

reducing runoff volume and velocity with

surface roughness and storage.

Sub-surface cultivation is already

routinely undertaken to improve

infiltration, as are other cultivations such

as asparagus bed formation that result in

soil disturbance.

+
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Mulch is a suitable option for asparagus production. Crop residues are not typically

available due to mono-culture cropping systems and the adoption of disease

prevention practices with the small amount of existing asparagus residue. In the

literature many mulch types have been applied for erosion control in construction and

agricultural applications; straw, wood chips / shavings, compost (green waste,

municipal solid waste, poultry waste, bio solids and food waste) and geotextiles such

as coconut fibre blankets (Table 2.4). Despite this, few mulch types have been studied

in a UK horticultural context, particularly in row crop systems. Of all the mulch types,

straw has been studied the most. This section will focus on two mulch types that are

easily sourced in the UK; cereal straw and compost materials which have become

more abundant recently because of improved recycling of green waste.

Cereal straw2.4.1.1

Studies in irrigation furrows and under rainfall (both natural and simulated) have found

straw to be an effective means of reducing soil loss, and to some extent runoff volume

(Table 2.5). Furthermore, the addition of straw has had additional benefits to soil

condition.

Such benefits include increased soil moisture, increasing the water available for crop

uptake (Shock et al., 1997, Brown and Kemper, 1987 and Berg, 1984). In compacted

furrows this has been achieved through increased lateral wetting as the straw holds

back the water allowing a greater wetting front (Shock et al., 1997 and Berg, 1984).

This increased water uptake often results in increased yields (Holstrom et al., 2008,

Brown and Kemper, 1987, Berg, 1984). Straw can also add organic matter to the soil;

however, its high isohumic factor means that this effect is only seen in the longer term

as compared with additions of manure and leguminous crops (Morgan, 1979).
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Table 2.4. A summary of studies investigating the effectiveness of a range of mulches in runoff and erosion control. Adapted

from Persyn et al. (2004).

Citation Application Media Slope
Rainfall

(simulated/irrigated/natural)
Mulch

Agassi et
al., 1998

Arid/semi
arid bare

soil

Laboratory
runoff rig.

5% Simulated rainfall: 40mm h-1. Solid waste compost.

Block,
2000

Construction
Road

construction
site.

50% Natural rainfall.
Composted yard waste, wood mulch and

straw.

Brown et
al., 1987

Agriculture
Dry bean
furrows.

Year 1:
2.4%, 3.9%
and 1.9%.

Year 2:
2.4%, 4.4%
and 2.4%.

Irrigated: 15.2 l min-1 for 8
hour periods (yr 1) and 12

hour periods (yr2).

Straw mulch 45 g m-1 (yr1), 30 g m-1 (yr2).

Brown et
al., 1998

Agriculture
Sweet corn

furrows.
2.3%, 2.4%
and 4.4%

Irrigated: 11 l min-1 for 12
hour periods.

Straw mulch 780 kg ha-1 and cottage cheese
whey.

Demars et
al., 2000

Construction
Bare soil field

slope.
50% Natural rainfall. Wood waste materials.

Faucette
et al.,
2004

Construction
Laboratory
runoff rig.

10%
Simulated rainfall: 160 mm h-

1 for 60 minute periods.

Seven different compost mixes from various
feedstocks and 3 different grades of wood

mulch.
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Citation Application Media Slope
Rainfall

(simulated/irrigated/natural)
Mulch

Faucette
et al.,
2009

Construction
Laboratory
runoff rig.

50%, 33%
and 25%.

Simulated rainfall: 60 minute
periods split into 3 different
intensities 50 mm h-1 (20
min), 100 mm h-1 (20 min)
and 150 mm h-1 (20 min).

Green waste compost blankets (1.25, 2.5 and
5 cm depths), straw blankets (single and
double), coconut fibre blanket, wood fibre

blanket, tackifiers and PAM.

Meyer et
al., 1971

Agriculture
Cotton
furrows

12% Simulated rainfall: 63 mm h-1.
Straw mulch of 2.3 t ha-1, 10cm topsoil

application.

Reinsch et
al., 2007

Agriculture 33%
Natural rainfall and simulated

rainfall: 64 mm hr-1 for 50
minute periods.

Yard waste and straw mats.

Risse et
al., 2002

Construction 10%
Simulated rainfall: 167 mm h-

1.
Compost, wood mulch, poultry litter at 5 cm

depths.

Shock et
al., 1997

Agriculture Onion furrows 3% Irrigated Wheat straw 900 kg ha-1.

Storey et
al., 1996

Recreational
paths

33%
Simulated rainfall: 1, 2 and 5

year storm events.

Compost and wood mulch with synthetic
chemical tackifiers applied between 76 to 101

mm depth.
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Some adverse effects of straw mulch have also been noted in the literature. Döring et

al. (2005) observed that straw at 10 t ha-1 gave a pronounced decrease in soil

temperature, leading to a reduction in potato yield. In carrots, Holstrom et al. (2008)

noted an increase in nematodes with straw mulch treatments, although the effects on

nematode populations can vary. The addition of straw can also affect nutrient

concentrations. Döring et al. (2005) acknowledge straw to be a nitrogen immobiliser

post-potato harvest, as it decreases N concentrations in runoff. Rees et al. (2002)

observed a greater increase in phosphorus in runoff from straw mulch applied at 9 t ha-

1 as compared with straw applied at 2.25 and 4.5 t ha-1.

Foster et al. (1982b) describes the effectiveness of mulch cover in terms of shear

stress of overland flow. With the addition of a surface mulch, there are two types of

shear stress applied to flow; mulch shear stress and soil shear stress. Both are

dependent on their irrespective properties, similar to the properties that deem soil to be

erodible. A high rate of mulch application can reduce the flow shear stress imparted to

soil, thus protecting it from erosion. In unanchored corn straw, Foster et al. (1982a)

observed three types of mulch failure; piece by piece movement, floating and en-

masse mulch movement. Piece by piece movement was observed at the lowest

application rate of 0.2 kg m-2 (2 t ha-1), whilst mulch floating was observed at rates

greater than 0.4 kg m-2 (4 t ha-1). En-masse failure of sections of up to 1 m length was

observed upon reaching a critical discharge point in flow rate. These sections moved

downslope where they were re-deposited, resulting in bare soil sections interspersed

with bunched up corn stalk. This bunching up effect results in the creation of mini

dams, which effectively increases the wetted perimeter of the mulched area. This

results in the slowing down of advancing irrigation water (Kwaad et al., 1998; Brown et

al., 1998; Berg, 1984), giving the runoff more time to infiltrate.

Table 2.5. A summary of results from straw mulch studies in agriculture.

Study Slope (%)

Straw

application

rate (t ha-1)

Runoff

reduction (%) †

Sediment loss

reduction (%)

Berg (1984)‡ 1.5, 4, 7
0.6, 1.2 and

2.2.

Improved

infiltration; 0 to

65 to 97, 79 to

98 and 85 to
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Study Slope (%)

Straw

application

rate (t ha-1)

Runoff

reduction (%) †

Sediment loss

reduction (%)

100, 0 to 109

and 0 to 172.

100.

Brown and

Kemper (1987)‡

Mixed

slope

profile

3 and 4.5. 21 and 33.
74 to 92 and 83

to 99.

Brown et al.

(1998)‡

2.3, 2.4,

4.4
7.8 -21 to 49. 46 to 99

Döring et al.

(2005)
5-6

1.25, 2.5 (cut

and uncut) and

5.0.

/
98, 97 (92

uncut) and 98.

Edwards et al.

(2000)*

2.6, 4.6,

5.4
4 / 49

Holstrom et al.

(2008)
2.25* and 3.5.

-2.6 to 12 and -

17 to 32.

23 to 45 and 61

to 74.

Rees et al.

(2002)‡
8, 11 2.25, 4.5 and 9.

-0.5 to 57, -0.3

to 78 and 76.

55 to 86, 75 to

93 and 98.

Shock et al.

(1997)
3 9 95

Silgram et al.

(2010)*
4 2.5 23 to 50 40 to 43

Tatham (1989) 2.5 82

*Straw was incorporated. †Negative numbers indicate a runoff increase. ‡Percentage
ranges result from data merged from different slope conditions.

Within straw treatments, different erosion control properties will exist depending upon

the means of straw application. In particular, the straw application rate, straw length

and whether the straw is incorporated into the soil or left on the surface will all have an

impact. Higher mulch application rates increase the effectiveness of soil erosion

prevention. The studies summarised in Table 2.5 show that where straw is applied at

different rates, the higher rates achieve higher reductions in soil loss, as well as less

variability within the results. Morgan (2005) suggests that this effectiveness relates to
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percentage cover, stating that a cover of 70-75% is sufficient to protect the soil surface

from erosion. This is because as straw rates increase, a greater percentage surface

cover is achieved, although this is dependent on the density of the straw applied. This

will boost the erosion properties of the mulch such as protecting the surface from

raindrop and runoff impact (as well as sealing processes), increase surface roughness

and increase the critical flow threshold (Foster et al., 1982a) at which the mulch may

become displaced. A high rate of straw application does risk negative consequences

on runoff properties such as increased nutrient pollution; however, this is rarely cited in

the literature.

Studies of chopped and un-chopped straw have shown a difference in soil loss

reduction. Döring et al. (2005) compared chopped and un-chopped straw at 2.5 t ha-1

applied to potato ridges on a loamy soil with an 8% slope. Chopped straw treatments

reduced soil loss by 97 % as compared with the control, whilst un-chopped straw

resulted in a lower (92 %) reduction. Similar results were observed in runoff sediment

concentrations, with chopped straw sediment reductions of 97 % as compared with the

control, compared with just 85 % from un-chopped straw treatments. In both

treatments, straw was observed to move from the ridges into the furrows to form mini

dams and retain surface water. Berg (1984), whilst not directly testing different straw

lengths, observed that shorter straw pieces tended to float down and bunch up with the

first application of irrigation water, whilst longer pieces stuck to the side of the furrow

and became embedded. Furthermore, Berg (1984) observed that straw effectiveness in

erosion control reduced after the first irrigation as the combined dispersion and settling

of the straw allowed water to channel around it. This suggests that un-chopped straw

would make a more effective surface cover.

It is generally agreed in the literature that mulch is a more effective erosion control

measure when applied to the surface as compared with when it is incorporated into the

soil (Raper, 2007; Wischmeier and Smith, 1965). In studies where straw is

incorporated, the soil loss reduction is less than the equivalent surface applied straw

(Table 2.5). Holstrom et al. (2005) and Silgram et al. (2010) observed greater soil loss

with incorporated straw (applied at 2.25 t ha-1) than Rees et al. (2002) observed when

surface applied. Similarly, Edwards et al. (2000) observed at least 25% more soil loss

from 4 t ha-1 incorporated than from 4.5 t ha-1 surface applied straw (Rees et al., 2002;

Brown and Kemper, 1987). Despite this, incorporated residue can still be considered to

be an effective erosion control measure (Silgram et al., 2010; Holstrom, 2008; Edwards
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et al., 2000; Tatham, 1989). Tatham (1989) compared both surface applied and

incorporated straw in the same study. The surface application of straw (at 2.5 t ha-1)

resulted in the greatest reduction of soil loss as compared with the control and

incorporated straw treatment. However, the incorporated treatment also reduced soil

loss when compared with the control. Silgram et al. (2010) looked at the effect of

chopping and incorporating 2.5 t ha-1 of straw in a moderately sloping (4 degrees)

cereal field on and between designated tramlines. Due to the differences in response

between tramline and non-tramline rows, no significant differences were found between

the straw and no straw treatments. However, straw did reduce surface runoff, soil loss,

total phosphorus and nitrogen by approximately 50% on no-tramline rows and

sediment, total phosphorus and nitrogen by over 35% on tramline rows. Edwards et al.

(2000) applied straw to potatoes prior to planting, which was then partially incorporated

following potato ridging. He observed a significant (49 %) reduction in soil loss and a 6

% increase in soil moisture that could benefit the crop in dry years. Holstrom et al.

(2005) applied straw prior to several tillage operations pre carrot planting on a 5-6%

slope on a shallow sandy soil. In all instances the mulched treatments produced less

sediment (23 to 45 %), with significantly less sediment observed at one of two testing

sites. Despite this success, grower feedback stated that the mulch treatments

negatively impacted the quality of raised beds for seed planting. Consequently non-

cultivated, post-planting alternatives were developed instead.

The results of the incorporated straw studies discussed confirm that surface application

of mulch is the most effective erosion control measure. However, when necessary field

operations incorporate straw soil loss is still reduced as compared with no mulch

treatments.

Compost2.4.1.2

In addition to agricultural studies, mulches have also been effectively applied in the

prevention of erosion on engineered slopes. In this application, mulch is required to

temporarily stabilise slopes against erosion whilst vegetation is established (Block,

2000). Compost has the added benefit of inputting nutrients to degraded soils,

facilitating vegetation establishment (Table 2.6). Persyn et al. (2004) postulated that a

compost blanket is expected to have the same effect as a straw blanket. In UK

agriculture there is an increased drive from organisations including the Waste and

Resources Action Programme (WRAP) to make use of compost. Consequently several
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studies exist on the crop benefit of compost application; however, little literature

evidence exists to support the claim of potential erosion control properties.

Table 2.6. Typical nutrient content of compost. Source: WRAP (2007).

Nitrogen Potassium Phosphorus

Kg t-1 8 6 3

When directly compared with straw, studies show compost to be the most effective

erosion control measure of the two. Faucette et al. (2009) compared green waste

compost blankets at 1.25, 2.5 and 5 cm depths with and without netting and single-net

and double-net straw blankets on varying slopes of 25, 33 and 50%. Over a simulated

rainfall event of 20 minutes (16.5 mm total rainfall) all treatments significantly reduced

soil loss. After 40 minutes (50 mm total rainfall) and a further 60 minutes (100 mm total

rainfall), the 5 cm compost blanket depth with netting reduced significantly more soil

loss as compared with the single-net straw. Beighley et al. (2010) investigated the

runoff characteristics of the treatments and rainfall conditions used by Faucette et al.

(2009) on a 50% slope. Double-net straw generated less runoff than single net straw

following 20, 40 and 60 minutes of rainfall. However, compost at all three thicknesses

best reduced runoff as compared with the double-net straw following 20 minutes of

rainfall. At 40 and 60 minutes the double-net runoff reduction was less than the

compost treatments at 2.5 and 5 cm depths.

Reinsch et al. (2007) compared runoff volume and total soil loss from a single-net straw

mat and 5 cm depth, yard waste compost. The compost blanket outperformed the

straw mat on both runoff and soil loss reduction. Compost reduced runoff by 96 % and

straw by 29 % as compared with control plots. Soil loss was a closer comparison with

compost reducing sediment by 99 % and straw by 93 % as compared with control

plots.

There is some evidence in the literature that compost is a more effective erosion

control measure when applied in combination with netting. The application of compost

on top of netting reduces the failure potential of the compost by sliding downslope or



39

lifting off the soil surface (Beighley et al., 2010). When tested under laboratory

conditions, compost applied on top of a 5 mm polypropylene net with 19 mm openings

generates less sediment and runoff (Faucette et al., 2009 and Beighley et al., 2010).

Faucette et al. (2009) observed an improvement in soil loss reduction of between 0.1 to

46 % as compared with the control, with the greatest improvement evident on the

shallowest blanket depth (1.25 cm). Netted blankets also demonstrated a better mean

performance and decreased variability on runoff reduction (Beighley et al., 2010).

Compost blanket thickness is also an important erosion control property to consider.

Thicker blankets tend to result in more effective erosion control results (Table 2.7).

Beighley et al. (2010) demonstrated that blanket depths only played an important role

in initial runoff rates after which little difference between depths were observed. At 5 cm

thick the compost blanket showed the most reduction initially, followed by the 2.5 cm

thick treatment. This suggests that a key mechanism in compost effectiveness is initial

water storage, thus reducing initial runoff (Beighley et al., 2010). From the same study,

Faucette et al. (2009) demonstrated a noteworthy (but not significant) reduction in

sediment with a thicker compost blanket irrespective of netting. Compost at 5 cm depth

is the most effective in reducing sediment after 20 minutes by 99.8 %, and then 66.8

and 71.9 % after 40 and 60 minutes respectively as compared with the control. Little

difference (+/- 6 %) is observed between 5 and 2.5 cm depth. The greatest difference

is observed between the 1.25 and 5 cm compost blanket, with the extra 3.75 cm depth

improving soil loss reductions by up to 48 %.



40

Table 2.7. A summary of results from compost erosion studies.

Study
Compost

thickness (cm)

Runoff reduction

as compared to

the control (%)

Sediment loss

reduction as

compared to the

control (%)†

Faucette et al. (2009)

and Beighley et al.

(2010)

1.25, 2.5 and 5 Netted: 15 to 60, 34

to 92 and 38 to 95.

Un-netted: 10 to 58,

25 to 88 and 28 to

94.

Netted: 30 to 58, 61

to 99 and 67 to 100.

Un-netted: 45 to 98,

68 to 100, 69 to

100.

Glanville et al. (2004) 5 and 10 100 (mean of two

depths)

100 (mean of two

depths)

Reinsch et al. (2007) 5 96 99

Simmons et al. (2011) 2.5 and 5 58 to 97 (5 cm) 99 (5 cm)

†Percentage ranges result from data merged following different rainfall durations.
Percentages are rounded up to the nearest whole integer.

Soil disturbance2.4.2

Soil disturbance (also known as tillage or soil loosening) is the only means by which

compacted areas can be broken up quickly and in time for the next field operations. It

requires the loosening or disturbance of compacted areas generally using a tine.

Compaction can be ameliorated by brittle or tensile forces applied through an upward

movement of soil initiated 25-40 mm beneath the compacted layer (Spoor, 2006). This

breaks up the soil into smaller units, creating cracks, increasing porosity, enabling

water to infiltrate (Figure 2.14), roots to penetrate and biological activity to stabilise the

area (Spoor, 2006). This can delay runoff generation as well as reduce runoff volume

(Rao et al., 1998) thus reducing the amount of detached soil transported. With soil

disturbance a rough soil surface is generated as loosened soil is left on the soil surface

(Figure 2.14). This surface roughness can store water in surface depressions (Idowu et

al., 2002) further reducing runoff volume. The generated surface roughness can also

reduce runoff velocity as it imparts a frictional component to the flow (Figure 2.14).



41

Figure 2.14. A cross sectional area of a compacted wheeling both pre and post

shallow soil disturbance.

The type of soil disturbance conducted in the field depends upon several factors;

subsequent land use requirements, extent of compaction, availability of

machinery/implements and cost of operation. Research has shown that optimum

loosening operations occur at 300 – 350 mm depth, with deeper operations being less

successful (Spoor, 2006). Subsequent land use requirements such as those for root

crops would mean that thorough loosening would be required to enable normal crop

development (Spoor, 2006). For compaction extent, farmers are encouraged to

regularly assess compaction problems to ensure that the correct loosening needs are

addressed. Cost can be managed by ensuring that specific draught –force required per

area disturbed- is necessary for the loosening achieved. Many farmers undertake soil

loosening but without being fully informed of the risk associated with the practice.

These risks are that soils left in a very loose, open condition following tillage are

particularly susceptible to re-compaction (Spoor, 2006). Furthermore, working below

critical depth (the maximum working depth to which a tine will continue to loosen the

soil) may not alleviate existing compaction but risks worsening it. To improve soil

loosening success, tillage implements geometries and arrangements can be modified

to suit individual requirements.

Implements2.4.2.1

Tines are designed in such a way that soil is forced upward and forwards by the angled

tine foot resulting in failure and slip along a plane (Figure 2.15).
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Figure 2.15. Brittle soil disturbance with a narrow tine. Source: Spoor (2006).

The extent of disturbance caused by a tine can be manipulated through tine design

and, in wider operations, tine arrangement. Considering typical asparagus systems,

tine spacing is limited by wheeling width between beds, therefore some tine

arrangement factors such as spacing between main tines will not be considered here.

Soil disturbance can be increased by working well above the critical working depth.

This is the depth at which loosening operations are limited by confining forces that

prevent the upward movement of the soil (Spoor and Godwin, 1978). This means that

at the critical depth the tine is no longer loosening and is instead compacting. The

critical depth can be increased by widening the tine point or with the addition of wings.

This increases the strain exerted on the soil by the tine increasing the confining forces

required to prevent upward soil movement. Soil disturbance with winged tines is

greater as tension cracks develop as soil flows up and over the wings (Figure 2.16).

With wings, disturbance can be further manipulated by altering wing lift, with higher lift

height resulting in greater disturbance.

Figure 2.16. Tensile soil disturbance with a winged tine. Source: Spoor (2006).
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The use of shallow leading tines can also increase the critical working depth and

degree of disturbance (Spoor, 2006). As the shallow leading tine first passes through

the soil it reduces the confining resistance applied on the deeper tine (Spoor, 2006).

The deeper tine is then only disturbing a shallower area of soil, resulting in greater

disturbance, for least force.

Considering more novel tines, Tatham (1989) experimented with an innovative

implement called a ‘tramline drainer’ (Figure 2.17). This targets drainage improvements

in wheel ruts by loosening the outside of a compacted wheeling rut thus allowing water

to infiltrate around it. Whilst this does not directly alleviate compaction it does alleviate

the effects of compaction. Given the high proportion of wheelings occurring in row crop

systems this could be an appropriate implement with which to control runoff through

diversion around the compacted area.

Figure 2.17 The tramline drainer. Source: Tatham (1989).

Erosion control application2.4.2.2

Many studies have assessed different tillage practices and their impacts on soil erosion

and runoff. Francia, et al. (2006), Silgram et al. (2010) and Tatham (1989) have all

found tillage to aid erosion and runoff control. Francia et al. (2006) tilled plots using a

mouldboard plough to 150 mm depth and found soil erosion reduced by 79 % and

runoff 67 % as compared to the control. Silgram et al. (2010) conducted a study of

tramlines on moderate sloping arable fields. In one treatment, a single tine was run
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behind a cultivator wheel to a 600 mm depth, disturbing the soil. Silgram et al. (2010)

found that losses of soil, nitrogen, phosphorus and water were reduced by 86 – 97 %,

as compared with undisturbed tramlines in the same field. This suggests that soil

disturbance could be used in reducing runoff and losses from heavily compacted areas.

Tatham (1989) compared the effect of four different tramline treatments for physical soil

changes and runoff. The treatments applied were an 80 % cover straw surface mulch;

a tramline drainer; a tramline drainer over a straw surface mulch; and a horizontal

ripper. With the tramline drainer, bulk density in the central rut increased, whilst in the

loosened area, infiltration rates were 6 times that of the control. This can be accounted

for by the flow pathways observed; surface water drained into the loosened zones

instead of favouring rut-free tramline centres. In the extent of soil lost, ‘drained’ tramline

rates were second highest to untrafficked soil conditions.

Other studies have shown variable effects of tillage. Holstrom et al. (2005) compared a

mouldboard plough, disk and chisel plough at 15 – 20 cm depth in combination with

straw mulch at 2.25 t ha-1. No difference in relative soil erosion was observed between

the tillage methods used. Foster et al. (1982a) tilled plots using a roto-tiller at 100 mm

depth. Tilled plots were more susceptible to erosion generating >185 % more soil loss

as compared with untilled plots. Jasa and Dickey (1991) found sub-soiling at

approximately 360 mm to reduce runoff by 38 % as compared to control plots but

increase soil loss by 116 %. Unger and Cassel (1991) reviewed the effect of different

tillage mechanisms on soils, finding that water retention increased but not in coarse

textured soils. Tillage conducted on soil with unstable aggregates found a negative

impact of rapid soil dispersion and surface sealing, decreasing the infiltration rate

(Unger and Cassel, 1991).

The effectiveness of soil disturbance on runoff and erosion control can vary over time.

Soil disturbance can slump resulting in a reversion to pre-existing conditions

particularly if the area is wheeled, as demonstrated by Unger and Cassel (1991).

Furthermore, rainfall received shortly after tillage can result in a change in surface

roughness as soil particles are detached and transported (Burwell et al., 1966). This

can affect infiltration rates. Unger (1984) states that soil disturbance is effective at

improving infiltration when precipitation is sufficiently low. This has been shown in

several studies where soil disturbance effectiveness was reduced with increasing

rainfall; 85 mm rainfall (Gomez et al., 1999) and 155 mm rainfall (Rao et al., 1998).
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Soil disturbance in combination with surface mulch2.4.3

Surface cover on soil disturbance can protect the soil surface from crust development,

thus increasing the longevity of the disturbance effect on runoff and erosion (Rao et al.,

1998). Furthermore, it can prevent the soil slumping back into the same position. Of the

erosion control studies found, few have considered the interaction effects between soil

disturbance and mulch application. Those that have are outlined in (Table 2.8).

The addition of mulch to the tramline drainer by Tatham (1989) increased infiltration

rates after 30 minutes as compared with the tramline drainer alone. The presence of

the surface mulch also lowered runoff and soil loss rates on ‘drained’ tramlines.

Surface mulch when applied alone caused the lowest runoff and soil loss rates out of

all other treatments. These results suggest that whilst disturbance improves infiltration,

it is the effects of the mulch that further optimises the outcomes. Holstrom et al. (2005)

found mulching reduced soil loss significantly by 45 % on one of two sites both with

and without tillage as compared with un-mulched plots. However, Rao et al. (1998)

found no difference between tilled and untilled plots with the same mulch amendment.

McGregor et al. (1990) observed a significant difference between average soil loss

from wheat residue and fallow disked plots. This was a reduction of 84 % from wheat

mulch plots as compared with fallow. However, one contributing factor could have been

that fallow plots were disked 40 mm deeper than wheat plots potentially providing more

loose sediment for entrainment. Wheat tilled plots also reduced total runoff by 26 % as

compared with un-mulched tilled plots. However, significant differences in runoff

volume were only observed in the first 60 minutes of rainfall. This suggests a

deterioration in the soil loosening effect.

Vegetation has also been considered as a solution in human trampling studies. Monti

and Mackintosh (1979) found that organic leaf litter acted as a barrier to initial footpath

erosion process. This led them to conclude that organic leaf litter plays an important

role in protecting the soil surface from negative changes; suggesting that conserving or

maintaining a surface cover is key to footpath management. Further to this the

breakdown of organic leaf litter by foot traffic was seen to initially be beneficial. Monti

and Mackintosh (1979) observed that each foot fall initiates the decomposition of

surface organic matter, as soil macro-fauna would, increasing the surface area and

accelerating rates of microbial activity. This suggests a wider benefit of vegetative
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cover as a means of compaction mitigation, not just maintaining soil physical properties

but increasing soil health through microbial activity.

Leung and Marion (1996) support the use of vegetation in soil protection, stating that in

areas of low trampling intensities, vegetation of a high trampling resistance and

resilience can be used, resulting in minimal degradation. However, on grassland, Quinn

et al. (1980) found that soil degradation occurred before changes in vegetation cover

had been observed. This suggests vegetation to be more of a cover-up than protector,

and that visual vegetation damage is an insufficient indicator for the initiation of soil

degradation. Although, before this theory can be considered the work by Quinn et al.

(1980) requires further validation, as the experiment was carried out under controlled

laboratory conditions with very high intensities of rainfall.
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Table 2.8. A summary of studies investigating the interaction of mulch and soil disturbance. Adapted from Persyn et al. (2004).

Citation Investigation Conditions

Sharma,

1991

Water use, growth and yield of

fodder maize.

Crop: fodder maize. Plot size: 6 x 6 m. Duration: 2 years. Natural rainfall with irrigation.

Tillage type: minimum, reduced and conventional.

Treatment: surface residues presence (5 t ha-1) and absence. Normal (75 kg ha-1) and

high (150 kg ha-1) N application

Iqbal et

al., 2008

Crop grain yield, growth

parameters and soil physical

properties.

Crop: maize. Plot size: 10 x 10 m. Duration: 2 years. Natural rainfall with irrigation.

Tillage type: zero, minimum, conventional and deep tillage.

Treatment: wheat straw mulch at rates of zero, 2, 4 and 6 mg ha-1.

Roozeh

et al.,

2011

Sediment loss, runoff nitrate

concentration, N losses and N

recovery.

Crop: wheat. Plot size: Slope: 0.5%. Duration: 3 irrigations.

Tillage type: conventional tillage; mouldboard plough and 2 disks (3 passes), mouldboard

plough and power harrow (2 passes), reduced tillage; stubble cultivator only.

Treatment: PAM at rates of 0, 10 and 20 mg l-1.

Silgram

et al.,

2010

Whether tramline management

and/or crop residue can reduce

erosion, loss of sediment and P.

Crop: cereals. Plot size: 3.5 x 270 m, Slope: 4 degrees. Duration: 2 years at time of

publishing. Natural rainfall.

Tillage type: a 6cm deep tine following behind the wheel of the cultivator.

Treatment: effect of baled and removed, and chopped and spread cereal straw residue. In

addition to tine disruption.
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Citation Investigation Conditions

Holstrom

et al.,

2008

Tillage regimens on soil erosion,

nematodes and carrot yield.

Crop: carrots. Plot size: Slope: 5 - 6%. Simulated rainfall.

Tillage type: Experiment 1 (pre-planting): no fall tillage, full mouldboard plough, fall disked,

fall chisel ploughed -all to 15-20 cm.

Treatment: Timothy Hay mulch at 2.25 t ha (pre-planting exp.) and 3.5 t ha (post-planting

exp.).

Tatham,

1989

Wheel rut drainage and erosion

control

Crop: unknown. Plot size: Unknown. Natural and simulated rainfall.

Tillage type: Tramline drainer and horizontal ripper.

Treatment: Surface straw application (0.25kg m).

Cattan

et al.,

2006

Runoff control under Banana

crops

Crop: Banana. Plot size: Slope: 12%. Natural rainfall

Tillage type: Cross-contour disc ploughing followed by harrowing and furrowing.

Treatment: bare soil (cycle 1), mulch with harvest residues in every other interrow, mulch

with harvest residues in every interrow.

Rao et

al., 1998

Rainfall infiltration and runoff from

tilled systems.

Crop: Sorghum bicolour and orr Zea mays. Plot size: 28.5 x 8 m. Slope: 2 %. Bulk density:

1.4 to 1.6 g cm3. Natural rainfall.

Tillage type: no tillage, shallow tillage (duck foot tine 10 cm depth, annual), deep tillage

(duck foot tine 20 cm depth, annual).

Mulch: Farmyard manure 15 Mg ha-1, Rice straw 5 Mg ha-1.
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3 RESEARCH OBJECTIVES

Based on a detailed literature review, it was found that little work has been done to

alleviate the soil and water management problems identified. In order to address this,

this study aims to:

Develop a cost effective and practical runoff and soil erosion management system for

asparagus production.

Main hypothesis:

Shallow soil disturbance and mulch application are cost effective and practical methods

to control runoff and soil erosion from asparagus fields.

In order to test the hypothesis the following sub-hypotheses have been developed.

a. Shallow soil disturbance alone can significantly reduce runoff volume and

associated nutrient and sediment loads in an asparagus production system,

as compared with control plots with no shallow soil disturbance.

b. The application of mulch materials (defined by type and rate) can

significantly reduce runoff volume, and associated nutrient and sediment

loads in an asparagus production system, as compared with control plots

with no mulch application.

c. The application of mulch materials (defined by type and rate) in combination

with shallow soil disturbance can significantly reduce runoff volume, and

associated nutrient and sediment loads in an asparagus production system,

as compared with control plots with no mulch application and no shallow soil

disturbance.

d. Tine configuration (geometry, arrangement and depth of operation) can

significantly change the degree and extent of soil disturbance and affect

implement dynamics (draught force) as compared with the currently adopted

tine.

e. Tine configuration (geometry and arrangement) can significantly affect runoff

volume, and associated nutrient and sediment loads in an asparagus

production system, as compared with control plots with no soil disturbance.

f. Tine configuration (geometry and arrangement) in combination with mulch

can significantly affect runoff volume, and associated nutrient and sediment
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loads in an asparagus production system, as compared with control plots

with no soil disturbance and no mulch.

These sub-hypotheses will be tested using three different experimental programmes

that are detailed in the subsequent chapters (Table 3.1). Once all sub-hypotheses have

been tested the final sub-hypothesis will further test the main hypothesis.

g. Adopting the most effective soil erosion measure will result in cost benefits.

Table 3.1. The experimental programmes to be used to test the sub-hypotheses.

Sub-hypothesis Experimental programme

a, b, c Phase 1 field trials (Chapter 4)

d Soil bin work (Chapter 5)

e, f Phase 2 field trials (Chapter 6)



51

4 PHASE 1 FIELD TRIALS

4.1 Methodology

In order to test the research hypotheses (Chapter 3) the following methodology was

developed.

The Phase 1 experimental programme took place between February and July 2012 at

Cobrey Farms, Coughton, Ross on Wye (SO619218) in a field that had been under

asparagus production for 7 years. Replicated field runoff plots were setup in which

shallow soil disturbance (SSD) and mulch treatment combinations were tested (Section

4.1.1 and 4.1.2). Runoff rate, volume and associated nutrient and sediment loads were

measured from each plot and subsequently analysed to ascertain the effective erosion

control of each treatment.

Treatment selection4.1.1

Experimental treatments were selected based on a detailed literature review (Chapter

2) as well as an assessment of their feasibility within an asparagus production system

and practical adoptability relative to material sourcing and costs. This also involved

consultation with the grower. Table 4.1 shows the treatments tested in this experiment

namely:

• two types of soil disturbance (SSD (0-175 mm) and non-SSD);

• three mulch options (straw, PAS 100:2005 compost, and a bare soil control).

The mulch treatments were applied at two different application rates (low and

high). Straw was applied at 6 and 3 t ha-1 and compost at 15 and 7 t ha-1.

The economics of the treatments are discussed later in Chapter 7.

Table 4.1. A summary of Phase 1 experimental treatments, and their associated

reference codes.

Treatment

number

Shallow soil

disturbance†

Mulch

type‡

Application

rate*
Treatment code

1 Non-SSD Cp L Non-SSD CpL

2 Non-SSD Cp H Non-SSD CpH
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Treatment

number

Shallow soil

disturbance†

Mulch

type‡

Application

rate*
Treatment code

3 Non-SSD N/A N/A Non-SSD Control

4 Non-SSD St L Non-SSD StL

5 Non-SSD St H Non-SSD StH

6 SSD Cp L SSD CpL

7 SSD Cp H SSD CpH

8 SSD N/A N/A SSD No Mulch

9 SSD St L SSD StL

10 SSD St H SSD StH

†Non-SSD = Without shallow soil disturbance; SSD = With shallow soil disturbance
(Winged tine at 175 mm depth). ‡Cp = Compost; St = Straw. *Compost application
rates; Low (L) = 7 t ha-1, High (H) = 15 t ha-1 Straw application rates; Low (L) = 3 t ha-1,
High (H) = 6 t ha-1.

Shallow soil disturbance4.1.1.1

Currently, on-site shallow soil disturbance (SSD) is undertaken post-harvest in the

asparagus wheelings using a modified single winged tine with a tine rake angle of 65

degrees (Figure 4.1). The depth of cultivation is 175 mm, kept shallow to minimise

damage to asparagus roots. These wheelings are defined here as the bare soil areas

situated between the raised asparagus beds and make up the treatment areas for each

experimental plot.
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Figure 4.1. The currently adopted single winged tine.

Compost4.1.1.2

The PAS 100:2011 Quality Protocol compliant green waste compost utilised in Phase 1

was sourced from a certified local compost supplier; Rose Hill Recycling (Table 4.2).

The product was of a 20 – 40 mm grade, with sufficiently reduced fines to ensure

adequate erosion control (Mantovani, 2010) Potentially toxic elements (PTE) were

below the upper limit set for general compost application (WRAP, 2011).

Table 4.2. Physical and chemical characteristics of the Rose Hill Compost.

Means are derived from triplicate analysis. *Property determined from fresh.

Property Unit Mean
Standard
deviation

Upper limit
for PAS 100

compost

Dry matter* % 78.2 0 N/A

Moisture* % 21.9 0 N/A

pH* pH units 8.9 0 N/A

Organic Matter LOI % w/w 54.4 ± 2.90 N/A

Organic Carbon % w/w 31.6 ±1.70 N/A

Scale

100 mm
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Property Unit Mean
Standard
deviation

Upper limit
for PAS 100

compost

Electrical

Conductivity*
μS cm-1

1325 ± 142 N/A

Total soluble N mg kg-1 900 ± 140 N/A

Total N mg kg-1 22967 ± 759 N/A

Total P mg kg-1 4621 ± 58.0 N/A

Total Cu mg kg-1 57.3 ± 0.26 200

Total Zn mg kg-1 195 ± 14.4 400

Total Pb mg kg-1 97.6 ± 21.3 200

Total Cd mg kg-1 0.44 ± 0.01 1.5

Total Hg mg kg-1 0.15 ± 0.01 1

Total Ni mg kg-1 16.1 ± 0.39 50

Total Cr mg kg-1 24.3 ± 0.99 100

N/A; No upper limit set within the PAS 100 Compost Quality Protocol.

Compost application rates were calculated based upon the pre-2013 Nitrate Vulnerable

Zones (NVZ) Directive limiting annual nitrogen (N) application to 250 kg ha-1 (Defra,

2013). This limit formed the basis of the highest compost rate used in this experiment

(15 t ha-1, giving a compost depth in the wheelings of 35 mm). This application rate was

then halved for the low application rate (7 t ha-1, compost depth of 15 mm). Due to a

change in compost supplier and a subsequent delay in N content analysis, the resulting

N content in the high compost rate exceeded the maximum permissible limit (Table

4.3). However, this application rate is below the current revised (post 2013) NVZ

guidelines which allow 500 kg N ha-1 to be applied over a two-year period, when

compost is the only organic fertiliser applied (Defra, 2013). Compost rate calculations

are presented in Appendix A.1, Figure_Apx A-1 and Figure_Apx A-2.

Table 4.3 Details of PAS 100:2011 compost treatments.
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Application rate (t ha-1) Compost depth (cm) Total fresh N (kg ha-1)

7 1.5 168

15 3.5 391

Straw4.1.1.3

Wheat straw, grown locally was selected for use in the straw treatment. Unlike compost

application to land, the use of straw mulches is not restricted by legislation. Therefore,

application rates were based on existing guidance on effective erosion control mulch

cover. Morgan (2005) reports that a 70-75% surface cover (≈ 5 t ha-1) is sufficient to

protect the soil surface from erosion. This rate was rounded up to 6 t ha-1 for the high

straw application rate. The low rate used was half this at 3 t ha-1. This provided a less

adequate cover for erosion control (approximately 35 – 40 % cover), but represents a

lower cost of application and offers more soil protection than the bare soil control.

Straw cover calculations are presented in Appendix A.1, Table_Apx A-1.

Experimental setup4.1.2

Figure 4.2. Overall view of the Phase 1 experimental area. N.B Photo taken on the

12th April 2012, at which time the asparagus beds were under plastic cloches.
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Design4.1.2.1

Each treatment was replicated three times, and included an untreated control (Non-

SSD Control) to which no mulch was applied (Table 4.4). Treatment allocation to each

plot was based on a randomised split-plot design. The experimental area was first

divided into paired plots that were randomly assigned to the SSD and non-SSD

treatment. This took into account the two-wheeling breadth of operation of the SSD

machine. Mulch treatments were then randomly allocated to individual plots.

Table 4.4 Phase 1 experimental design with treatment codes.

Plot # Treatment Code Plot # Treatment Code Plot # Treatment Code

1 Non-SSD CpL 11 Non-SSD CpH 21 SSD No mulch

2 Non-SSD Control 12 Non-SSD StL 22 SSD CpL

3 SSD StH 13 Non-SSD StL 23 Non-SSD StH

4 SSD StL 14 Non-SSD CpH 24 Non-SSD CpH

5 Non-SSD StH 15 SSD StL 25 Non-SSD Control

6 Non-SSD Control 16 SSD StH 26 Non-SSD StL

7 SSD CpH 17 Non-SSD StH 27 SSD CpL

8 SSD StL 18 Non-SSD Control 28 SSD No mulch

9 SSD StH 19 SSD CpH 29 Non-SSD CpL

10 SSD CpH 20 SSD CpL 30 Non-SSD CpL

SSD = Shallow soil disturbance, Cp = Compost, St = Straw, L = low application rate, H =
High application rate.

Typical field operations of harvest, cloche removal, fertiliser, herbicide, fungicide

(Botrytis and Purple Spot Control) and insecticide (Asparagus beetle control)

application continued on the field trial area throughout the experimental period. To

facilitate access by machinery for routine spray operations, two wheelings were left

bare in the middle of the experimental area.
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Treatment application4.1.2.2

Treatments were only applied in the wheelings, as this was where the greatest erosion

had previously been observed. Furthermore, wheeling application minimised potential

damage to the asparagus crown and impacts on spear yield and yield quality. SSD and

Non-SSD treatments were applied on the 24th February 2012. Shallow soil disturbance

was undertaken to a depth of approximately 175 mm using a single winged tine

described in Section 4.1.1.1. Plots with the mulch / SSD combination treatment had

mulch applied first. Subsequently, SSD was undertaken in one pass with a leading

serrated disc coulter opening the soil surface directly ahead of a winged tine, followed

by a separate 8-bar crumbler of approximately 300 mm diameter, placed approximately

850 mm behind the tine (Figure 4.3). This avoided the mulch being dragged by the

leading edge of the tine and accumulating at the bottom of the slope. Mulch treatments

were applied to the entire 40 m plot within the wheelings to a width of 0.4 m. Straw was

chopped to approximately 400 mm and machine blown onto the wheelings using a

Teagle Tomahawk 5050 Straw Blower. The machine speeds required for the

prescribed high and low straw application rates were 8 km hr-1 and 16 km hr-1

respectively. Compost proved too wet to be machine blown and so had to be applied

by hand on a kg m-2 basis.

Figure 4.3 The customised cultivator used for shallow soil disturbance following

mulch application.

Scale

20 cm
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Runoff plots4.1.2.3

Experimental plots were 40 m in length situated between two asparagus beds set on

1.5 m centres (Figure 4.4). Each plot included a wheeling (0.4 m width). It was

assumed that 50 % of the rainfall hitting the asparagus beds was shed to the upslope

and downslope wheeling, forming the crest line acting as the hydrological border of the

plots (Figure 4.4). Furthermore, upslope plot boundaries were positioned at the top of a

slope feature preventing additional runoff onto each plot.

The methods used to capture runoff and soil loss in the field trials are similar to erosion

plots used in other documented field-based soil loss experiments (Unger 1984; Zöbisch

et al., 1996; Silgram et al., 2010). Furthermore, the methods adopted have been tried

and tested in an initial proof of concept study (Niziolomski, 2011).

The experimental area consisted of in-wheeling runoff plots feeding into stainless steel

Gerlach troughs (0.21 x 0.95 x 0.11 m) that were connected via 110 mm diameter

PVC-u waste drainage pipe to 250 litre capacity household water tanks (Figure 4.4 and

Figure 4.5). The Gerlach troughs were bedded in with cement and set with a slight drop

towards the pipe outlet. The plot and trough interface was carefully cemented and

sealed to ensure that all runoff was collected. Sedimentation within the pipe was

avoided by keeping a good fall on the pipe network from the Gerlach trough to the

collection tank.
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Figure 4.4 A raised bed-wheeling experimental runoff plot.

Figure 4.5. In-field experimental plot set-up (looking downslope from the

treatment area). 1. Treatment area; 2. Gerlach trough; 3. Pipe; 4. Collection tank.

1

2

3

4

Scale

1 m
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Data collection and analysis4.1.3

Runoff sampling4.1.3.1

The persistent nature of on-site rainfall meant that individual rainfall event-based runoff

and erosion monitoring was not possible. Instead, runoff and sediment accumulated

over multiple rainfall events. This accumulated runoff and sediment was sampled on

five separate occasions that are hereafter referred to as Sampling Periods.

Runoff and soil loss from the experimental plots were collected in two forms; i) three

500 ml sub-samples of the water collected in the tanks, after agitation to ensure the

collected sediment was entrained in each sub-sample, ii) sediment contained within

and deposited around the Gerlach Trough (GTSamples). Three sub-samples were taken

per tank to minimise the risk of under calculation of tank suspended sediment (Zöbisch

et al., 1996). Tank runoff depth was measured to validate the values obtained from the

linear level sensors.

Runoff analysis4.1.3.2

The triplicated tank runoff samples collected from each plot were hand shaken to

ensure sample homogeneity and combined into a 2 litre glass beaker. The combined

sample was then stirred for 30 seconds using a wide stirrer in order to bring the

sediment into suspension. Immediately after stirring, 500 ml of the sample was poured

into a pre-labelled bottle. This sample was tested in triplicate for Total Sediment Load

(TSL) (‘Total Solids dried at 103°C - 105°C’; Eaton et al., 2005). Alternate Sampling

Periods (Periods 1, 3 and 5) were also analysed for chemical parameters. This was not

carried out on all Sampling Periods due to the time taken to carry out and interpret the

analyses. Total Oxides of Nitrogen (TON) (‘Automated Hydrazine Reduction Method’;

Eaton et al., 2005), and orthophosphate-P (‘Automated Ascorbic Acid Reduction

Method’; Eaton et al., 2005) were determined using a Burkard SFA-2000 auto analyser.

Total sediment-bound-P was determined using a maximum 0.5 g sub-sample of the

total solids retained after oven drying. The solids were carefully brushed from the

bottom of the beaker and prepared using an aqua-regia microwave digest (BS EN 7755

Section 3.13:1998). Results from these analyses enabled runoff water quality to be

assessed in relation to water quality guidelines and a sub-total of soil loss from each

runoff plot to be calculated (Equation 1).
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For each Sampling Period, plot specific GTSamples were collected, air dried and weighed.

Later methodology refinements meant that samples were collected into a bucket and

weighed on-site. Each bucket was then sub-sampled and placed into a pre-weighed

container. The sub-sample was later air dried and re-weighed to determine the Dry

Matter Content (DMC) of sediment deposited in and around the Gerlach trough (BS EN

7755: Section 3.1:1994) (GTTotal). This enabled a total soil loss (TSLTotal) to be

calculated from the plot when added to the total sediment load calculated from tank

runoff samples (Equation 1).

TSLTotal = (RVTotal x TSConc) + GTTotal
(Equation 1)

Where TSLTotal = total soil loss (g); RVTotal = total Runoff Volume (l); TSConc =
concentration of sediment in the Tank (g l-1); GTTotal = total Gerlach Trough Sediment
Load (g).

All experimental data was put into STATISTICA version 12 and checked for normal

distribution (using residual analysis). If required the data was transformed by

calculating the log (log n or log 2n) of each value and outliers were identified and

removed as appropriate. Data was then analysed for statistical significance (p < 0.05)

using a nested full Factorial ANOVA. The objective of this analysis was to quantify any

differences between individual treatment components (Non-SSD/SSD, St/Cp/No Mulch

and L/H application rates) and any interaction effects between these treatment

components. Individual testing of the effect of L and H application rates was not

possible due to an insufficient number of controls. Where significant differences were

observed post-hoc Fisher LSD analysis was undertaken. In all cases the reported

means are in the original units and the significant differences were identified using the

appropriately transformed data. Results for runoff volume and total soil loss were

standardised against the Non-SSD Control (results shown as a percentage as

compared with the control). This enabled differences in treatment hydrological

response across all Sampling Periods to be observed, despite the variable rainfall

characteristics of each Sampling Period.
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Event driven hydrological response measurement4.1.3.3

Event-driven hydrological response was determined using an automated system that

linked a tipping bucket rain gauge via a DT80/2 data logger to pre-calibrated linear

level sensors located in each of the runoff storage tanks. Data logging was rainfall

event driven, so began automatically following the onset of rainfall. A GSM/GPRS

modem attached to the data logger allowed GSM data pull to a webserver. The data

logger was solar powered and maintained with an 80Ah professional gel cell battery

linked to a 50W panel.

Logged data consisted of 30 min interval rainfall data, with more frequent, one minute

interval data if ≥ 0.2 mm of rainfall fell. The 30 min interval data logging resumed 1.0 hr 

after rainfall ceased so that any ‘post-rainfall runoff could be captured. Rainfall event

driven runoff monitoring allowed the hydrological response of the treatments to be

assessed, under a range of rainfall intensities and runoff events.

Event-driven hydrological response analysis4.1.3.4

Runoff hydrographs were used to measure treatment response to individual rainfall

events that were not captured in the combined Sampling Period final tank volume.

Treatment response parameters tested were cumulative runoff volume (l), runoff rate (l

min-1) and time of initiation and cessation (min).

In order to concentrate only on the events where significant rainfall fell, rainfall

recorded within each Sampling Period was classified into separate rainfall events.

These rainfall events were defined as ≥ 1.0 mm falling within a 10 minute period. A 

large rainfall event dataset was collected across the whole experimental programme

(43 rainfall events, ranging from 3 to 98 minutes duration, recorded at one minute

intervals). This is more than could be meaningfully analysed alongside the other

parameters tested within this study. Therefore only the initial rainfall event (referred to

as RE1) of each Sampling Period was selected for analysis. The selection of RE1 also

meant that treatment response could be best observed prior to any pipes / troughs

becoming blocked. RE1 data was further reduced to two minute intervals starting from 1

minute post rainfall initiation, a frequency closer to that observed in other studies

(Beighley et al., 2010; Faucette et al., 2004; Jasa and Dickey, 1991). This continued

until rainfall cessation. Data was further analysed 1 minute and 10 minutes post

cessation. If after 10 minutes runoff continued (≥ 1.0 l) and a new rainfall event had not 
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begun then data was analysed at 5 minutes intervals until runoff had reached a steady

state.

Within each of the five RE1 data, statistical differences between treatment responses

were tested using a one-way ANOVA within STATISTICA version 12. For all analyses

undertaken, the assumptions of the ANOVA were checked (using residual analysis)

with outliers identified and removed as appropriate. If required the data was

transformed by calculating the log of each value. Data was analysed for statistical

significance at p ≤ 0.2. This level was selected as a large variation in plot response 

within treatment was expected. Where significant differences between treatment

responses were observed post-hoc Fisher LSD analysis was undertaken.

Field site characterisation4.1.4

Climate4.1.4.1

The average annual rainfall recorded in Ross on Wye (SO601241) was 734 mm from

1981 to 2010 (Met Office, 2014). However, in 2012, 1370 mm was recorded at Cobrey

Farms (SO614218), with the periods of heaviest rainfall starting from April and

continuing through to December (Figure 4.6).

Figure 4.6. Rainfall data for Ross on Wye for 2012 as compared with the 20 year

average. Data courtesy of Cobrey Farms and the Met Office.



64

In total approximately 562 mm of rainfall was recorded on-site during the Phase 1 field

trial period (February to July 2012). Approximately 174 mm rainfall was received by

treatments prior to sample collection due to a delay in final runoff collection setup. The

rainfall characteristics of each Sampling Period varied and are presented in Table 4.5.

Sampling Periods 1, 2, 3, 4 and 5 were associated with maximum rainfall intensities of

48, 72, 24, 48 and 96 mm hr-1, respectively. Total rainfall for all sampling periods

collectively amounted to 388 mm, of which 76.6% was associated with Sampling

Periods 4 and 5.

Table 4.5. A summary of rainfall characteristics associated with each Sampling

Period.

Sampling
Period

Collection
period

Total
rainfall
(mm)

Total no.
collection

days

No.
rain

days‡

No
rainfall
events†

Mean
rainfall

intensity
(mm hr-1)

Maximu
m rainfall
intensity
(mm hr-1)

1
1st-3rd May

2012
47.8 3 2 5 15 48

2
4th-14th May

2012
25.8 10 4 2 14 72

3
15th-28th May

2012
16.8 13 3 4 12 24

4
29th May-26th

Jun 2012
149 28 16 16 13 48

5
27th Jun-17th

Jul 2012
149 19 13 16 15 96

†Rainfall events defined as ≥1.0 mm rain over a 10 minute period. ‡Rain days defined 
as a ≥ 1.0 mm within one day. 

Soil4.1.4.2

The soil at the field site is classified as the Eardiston Soil Association (Whitfield, 1971).

This typically consists of fine to very fine sandy loam soils and loam soils with < 20 %

clay content (Whitfield, 1971). Historic organic matter levels taken from two local sites
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range from 4.1 % and 5.0 % at 0 – 35 cm depth and 2.7 – 2.9 % at 35 – 75 cm depth

(Whitfield, 1971). Typical historic bulk density values were reported at 1.5 g cm-3, with

observations of earthworm channels and roots throughout the soil profile (Whitby,

1971).

To fully characterise the existing baseline soil properties, replicate samples were taken

from the asparagus wheelings of each Non-SSD Control plot. A nine point randomly

selected composite soil sample at 0 – 150 mm depth was taken from the length (40 m)

of each Non-SSD Control plot post treatment application. Bulk density samples at 0 –

50 mm depth were from both Non-SSD Control plots and an asparagus ridge to

characterise the degree of surface soil compaction.

Composite samples from each Non-SSD Control plot were air dried and ground to

<2mm. They were analysed for particle size distribution (BS 7755-5.4, 2010) and

organic matter content (BS EN 13039, 2000). These particular parameters were

selected in order to understand the main structural components of the soil (Table 4.6).

The data was checked for normal distribution, and analysed for statistical significance

(p= ≤0.05) using a Factorial ANOVA followed by Fisher LSD. 

Table 4.6. Justification for the soil parameters selected for analysis.

Tested parameters Justification

Particle size distribution Particle size distribution will determine soil erodibility, and

structure.

Organic matter content The amount of organic matter can indicate soil stability and

structure.

Soil particle size distribution results (Table 4.7) confirmed a sandy loam soil texture as

stated by Whitby (1971). However, organic matter content has reduced to just one third

of that originally reported in the upper soil profile. It is interesting to note that no

earthworm activity and very few roots were observed during the soil sampling period.

Whilst measured soil properties show little variation between field study control plots

(Table 4.7) some significant differences do occur. Bulk density varies between the plots
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by up to 0.25 g cm-3, soil organic matter by 0.1 % and sand content by up to 2.0%.

However, these differences are considered negligible and would not result in

differences in plot response. In conclusion, at the beginning of the trials, the plots were

shown to have the same soil characteristics, so the subsequent field trials could be

considered a fair test.

Table 4.7. Mean soil properties of field control plots. Within each parameter,

values followed by a different letter indicate statistical difference at P ≤ 0.05. 

Bulk

density

(g cm-3)

Soil organic

matter†

(%)

Sand

(%)

Silt

(%)

Clay

(%)

1.80 b 1.4 b 68.0 a 16.8 a 15.2 a

1.76 b 1.4 ab 68.2 a 16.9 a 14.9 a

1.60 a 1.4 a 69.9 b 14.6 a 15.5 a

1.55 a 1.5 c 70.0 b 15.1 a 15.0 a

†Results based on loss on ignition analysis.

Slope gradient is an important factor in erosion, with slope length being equal, steeper

slopes generate greater runoff velocity and can result in increased erosion. In this

experiment the steepest field was selected for field trial setup. This served three

purposes:

1. To simulate the worst case scenario for asparagus fields.

2. To ensure a more accurate measurement of plot runoff and soil loss, as with a

steeper drop, collection pipes will more efficiently transport runoff reducing pipe

blockages.

3. For ease of installation as a steeper drop makes it unnecessary to excavate a

pit for the runoff collection tanks.

Typical slope angles currently adopted in new asparagus bed field layouts for erosion

control rarely exceed 4 degrees, suggesting that even at these slopes erosion occurs

(Simmons and Truckell, 2013).

Due to local slope variations of the site, each plot slope angle was measured. A hand-

held clinometer was used for this measurement at the top of the plot and a point of
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equal height at the base of the plot. Results show that plots ranged from 5.2 – 6.0o

(mean of 5.7 ± 0.3 STDEV). No significant difference in slope gradient was found

between the plots following full factorial ANOVA (Table 4.8). These measured slope

gradients in combination with the on-site soil texture are classified as at high risk of

water erosion (Defra, 2005).

Table 4.8. Mean slope gradient measurements for each treatment type (no. 1, 3-

10 n=3, no. 2 n=4). Within each parameter, values followed by a different letter

indicate statistical difference at p ≤ 0.05. 

No. Plot treatment code
Slope

(degrees)

1 Non-SSD CpL 5.2 a

2 Non-SSD Control 5.5 a

3 SSD StH 6.0 a

4 SSD StL 5.7 a

5 Non-SSD StH 5.7 a

6 SSD CpH 6.0 a

7 Non-SSD CpH 6.0 a

8 Non-SSD StL 5.7 a

9 SSD CpL 5.5 a

10 SSD No Mulch 5.5 a

A series of penetration resistance tests were carried out in the Non-SSD Control plots.

This sought to establish whether the extent of compaction went deeper than the current

practice 175 mm SSD. Three sets of tests were undertaken at the top, middle and

bottom of each control plot using an Eijkelkamp Penetrologger with a 1.2 cm2 30○

internal angle cone operating to a maximum depth of 0.5 m. Prior to each

measurement a 0 – 50 mm undisturbed soil bulk density sample was taken to ensure

similar soil moisture conditions between measurements. The penetrometer was slowly

inserted into the soil at a uniform rate and angle.

Results show compaction beyond the current cultivation depth of 175 mm. Penetration

resistance readings ranged between 3 and 5 MPa up to a depth of 0.5 m (Figure 4.7).
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Figure 4.7. Mean soil penetration resistance readings taken from experimental control plots. Error bars show ± 1 SE.
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This degree of penetration resistance indicates an extremely dense soil (>3.0 MPa),

through which very few plant roots would be able to penetrate (Reijmerink, 1973).

Where penetration to the full 0.5 m was achieved, a peak in soil resistance was

observed between approximately 0.05 and 0.3 m. This suggests the presence of a

plough pan. Below 0.3 m, penetrative resistance still remained at 3 MPa.

The original cause of compaction is most likely to be the legacy of potato cropping

where cultivations can occur up to a depth of 0.6 m. This has the effect of removing soil

structure and consequently makes the cultivated soil more susceptible to compaction.

This problem is then exacerbated by repeating trafficking throughout the period of

asparagus production on soils with little organic matter

4.2 Results

Treatment codes referred to in this section are defined in Table 4.1.

Runoff volume (l)4.2.1

It was expected that the least runoff volume would be generated by the SSD

treatments as compared with Non-SSD treatments due to increased porosity and

increased infiltration. Furthermore, within the SSD plots it was expected that those with

the high application rate mulch treatments would further reduce runoff volume by

slowing runoff velocity as a result of increased surface roughness and surface

depression storage, so allowing a longer time for infiltration.

Overall runoff volume4.2.1.1

Runoff volumes totalled across the entire sample collection period partially met the

treatment expectations outlined above. Some significant differences between treatment

types were observed. These differences were a result of mulch alone and in interaction

with SSD. Mulch expectations were not met as St and Cp treatments demonstrated

mixed effects on runoff. St treatments increased runoff independent of SSD/Non-SSD

and L/H application rates. Meanwhile Cp treatments reduced runoff volume

independent of SSD/Non-SSD and L/H application rates. Only Non-SSD CpH, SSD CpL

and SSD No Mulch resulted in significant reductions in runoff volume as compared to

the Non-SSD Control by 43, 48 and 43 % respectively.
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Table 4.9. Mean runoff volume (l) for each treatment across the entire Phase 1

sample collection period. Results followed by different letters are significantly

different (p ≤ 0.05) following one-way factorial ANOVA and post hoc Fisher LSD. 

Treatment Runoff volume (l)

Non-SSD CpL 822 ab

Non-SSD CpH 636 a

Non-SSD Control 1118 bcd

Non-SSD StL 1193 d

Non-SSD StH 1147 cd

SSD CpL 581 a

SSD CpH 884 abc

SSD No Mulch 636 a

SSD StL 1116 bcd

SSD StH 1025 bcd

Individual Sampling Period runoff volume4.2.1.2

SSD treatment expectations outlined above were not met in individual Sampling

Periods. No significant differences were observed in runoff volume between SSD and

Non-SSD treatments across all Sampling Periods (Table 4.10). However, mulch

treatment expectations were met to some extent with significant differences observed

in the first three Sampling Periods (Table 4.10). A significant difference was observed

between the 2 way treatment interaction effect of tillage and mulch type in Sampling

Period 2 (Table 4.10). However, no significant 3-way interaction effects were observed

between SSD/Non-SSD, St/Cp/No Mulch and L/H application rate (Table 4.10).

Significant differences in mulch treatments were not consistent across St and Cp mulch

types (Figure 4.8). Cp irrespective of tillage and application rate significantly reduced

runoff volume by 32, 38 and 28 % as compared with St treatments in Sampling Periods

1, 2 and 3 respectively (Appendix A.3, Table_Apx A-3). Furthermore, no significant
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differences were observed between Cp and No Mulch treatments or St and No Mulch

treatments, due to high variation between No Mulch replicates.

Table 4.10. Significance levels (p-values) of each treatment factor on runoff

volume, derived from nested full factorial ANOVA

Dependent
variable

Sampling
Period

Factors

Tillage
(SSD/Non-

SSD)

Mulch
type

(St/Cp)

Tillage and
mulch type

(2-way
interaction)

Tillage, mulch
type and rate

(3-way
interaction)

Runoff
volume (l)

1 0.28 0.01* 0.48 0.93

2 0.12 0.02* 0.04* 0.15

3 0.50 0.01* 0.17 0.16

4 0.38 0.20 0.54 0.20

5 0.38 0.14 0.98 0.38

*A statistically significant result (p≤0.05) 

A significant difference was observed in Sampling Period 2 treatment interaction effects

between Non-SSD/SSD and Cp/St/No Mulch. Non-SSD/SSD Cp and Non-SSD No

Mulch treatments significantly reduced runoff volume as compared with Non-SSD St

treatments. Furthermore, Non-SSD Cp significantly reduced runoff volume as

compared with SSD St and the Non-SSD No Mulch control. SSD No mulch also

significantly reduced runoff volume as compared with the Non-SSD No mulch control.

The lack of statistical difference within the 3-way treatment interaction between tillage,

mulch type and mulch rate for all treatments across all Sampling Periods is due to a

similarity in results, with most tanks reaching their full capacity at the point of sampling.

Furthermore, large variations in runoff volume existed between replicates. Despite no

statistically significant differences in the 3 way treatment interaction, trends between

results were evident with some treatments (Figure 4.8). Non-SSD CpH reduced runoff

volume by 71 % in Sampling Period 2 as compared with the Non-SSD Control. In the

same Sampling Period, SSD No Mulch resulted in runoff volume reductions of 69 % as

compared with the Non-SSD Control. Non-SSD CpL reduced runoff volume by 52 % in

Sampling Period 5 and SSD StH by 45 % as compared to the Non-SSD Control.
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Figure 4.8. Relative runoff volume (l plot-1) from each treatment compared with

the Non-SSD Control (the dashed line). Filled circles denote a statistical

difference from the Non-SSD Control. For statistical differences between

treatments see Appendix A.3, Table_Apx A-3.
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Event driven hydrological response of treatments4.2.2

It was envisaged that a detailed analysis of the hydrological response of treatments

(cumulative runoff volume, runoff rate, time to rainfall initiation and runoff cessation) to

the RE1 for each Sampling Period would have the potential to highlight differences in

treatment response, allowing the interpretation of runoff volume results prior to the plot

tanks reaching full capacity. The rainfall characteristics of the RE1 for each Sampling

Period differed (Table 4.11).

Table 4.11. RE1 characteristics for each Sampling Period.

Sampling

Period

RE1

duration

(mins)

Rainfall

(mm)

Percentage of

Sampling Period

rainfall (%)

Mean

Intensity

(mm hr-1)

Peak

intensity

(mm hr-1)

Frequency

(years)*

1 4 1.4 3 21 36 < 2

2 14 5.4 63 27 72 2

3 8 1.0 17 15 24 < 2

4 18 1.6 3 12 12 < 2

5 13 9.0 12 45 72 10

*Frequency calculations based upon intensity and duration curves (Corney, 2011).

Cumulative volume (l)4.2.2.1

Some significant differences in cumulative runoff volume between treatments were

evident (Table 4.12). However, the treatment expectations outlined in Section 4.2.1

were not met by the event-based measurement of hydrological response; different

treatments exhibited different cumulative volume responses.
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Table 4.12. Significance levels (p-values) of the treatment effect on RE1

cumulative runoff volume derived from one-way ANOVA.

Cumulative

volume (l)

Sampling Period

1 2 3 4 5

0 0.03* N/s N/v N/v N/s

1 0.03* N/s N/v N/v N/s

3 0.01* N/s N/v N/s N/s

5 0.21 0.18* N/s N/s 0.20*

7 - 0.50 0.05* N/s 0.69

9 - 0.38 <0.01* N/s 0.12*

11 - 0.33 - 0.58 0.15*

13 - 0.32 - 0.72 0.17*

14 0.32 - - - -

15 - 0.35 - 0.64 -

17 - - - 0.46 -

18 - - 0.01* - -

19 0.29 - - 0.38 -

23 - - - - 0.16*

24 - 0.28 - - -

28 - - - 0.15* -

33 - - - 0.11* -

*A statistically significant result (p ≤ 0.20). N/v; No variance within results. N/s; Data is 
not suitable for ANOVA (assumptions not met).

Mulched treatments generated the most frequent significant reductions in RE1

cumulative volume as compared to the Non-SSD Control. Non-SSD StH, Non-SSD StL

and SSD StH significantly reduced cumulative runoff in Sampling Periods 1-3, SSD CpH

in Sampling Periods 2, 3 and 5 and SSD CpL in Sampling Periods 2, 3 and 4).
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Furthermore, SSD StL resulted in significant reductions in Sampling Periods 2 and 3,

and Non-SSD CpL in Sampling Period 2.

In Sampling Period 1 (Figure 4.9) Non-SSD StH, Non-SSD StL and SSD StH had

significantly lower cumulative volumes as compared with the Non-SSD Control. Non-

SSD StH generated significantly lower cumulative runoff than all other treatments at 1

and 3 minutes post rainfall initiation with an 88 and 82 % reduction respectively as

compared to the Non-SSD Control. In Sampling Period 2 (Figure 4.10) all mulch

treatments generated significantly lower cumulative volumes at 5 minutes post rainfall

initiation as compared to the Non-SSD Control. These reductions ranged from a 39 %

(Non-SSD CpL) to 74 % (Non-SSD StH) as compared with the Non-SSD Control. No

statistical differences between the mulched treatments were observed. In Sampling

Period 3 (Figure 4.11) both Non-SSD and SSD St treatments together with SSD CpH

significantly reduced cumulative volume at 7 and 9 minutes post rainfall initiation as

compared to the Non-SSD Control. These significant differences continued into the

final cumulative volume 10 minutes post rainfall cessation. Both StH treatments did not

generate runoff throughout the event. SSD StL only generated runoff at 18 minutes (10

minutes post RE1 rainfall cessation) resulting in 88 % less runoff as compared with the

Non-SSD Control. By Sampling Period 4 (Figure 4.12) fewer significant reductions in

runoff between treatments were observed. SSD CpL generated no cumulative volume

resulting in the only significant reduction as compared with the Non-SSD Control at just

28 and 33 minutes. This demonstrates a high degree of variability within the data with

at least 1 out of three replicates not initially producing runoff. In Sampling Period 5

(Figure 4.13) SSD CpH significantly reduced cumulative volume by 67 % at 23 minutes

(10 minutes post rainfall cessation) as compared to the Non-SSD Control, whilst Non-

SSD St treatments, SSD StL and SSD No mulch all generated significantly higher

cumulative volumes as compared with the Non-SSD Control.

Runoff rate (l min-1)4.2.2.2

Some significant differences in runoff rates between treatments were evident (Table

4.13Table 4.13. Significance levels (p-values) of the treatment effect on RE1 runoff

rates, derived from one-way ANOVA.Table 4.12). It was expected that runoff rate

would be reduced by SSD and high mulched application rate treatments. This is

because the frictional components imparted onto the runoff will reduce the velocity thus

reducing the overall rate. However, this was not the case with a similar frequency of
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significant reductions in runoff rates from high and low mulch treatments (50:50). SSD

treatments demonstrated a greater effect on runoff rate reduction as compared to Non-

SSD treatments (60:40). Furthermore, high levels of mulch application dominated

incidences of significantly greater runoff rate as compared to the Non-SSD Control

90:10. Non-SSD treatments also accounted for the majority of significant runoff rate

increases (70:30). Mulched treatments again generated the most frequent significant

reductions as compared to the Non-SSD Control. SSD CpH, SSD StH and SSD StL all

significantly reduced runoff rate in 3 Sampling Periods. Furthermore, Non-SSD CpH,

Non-SSD CpL, Non-SSD StH, Non-SSD StL and SSD CpL significantly reduced runoff

rate in 2 Sampling Periods, and SSD No mulch in 1 Sampling Period.

Table 4.13. Significance levels (p-values) of the treatment effect on RE1 runoff

rates, derived from one-way ANOVA.

Runoff rate

(l min-1)

Sampling Period

1 2 3 4 5

0 N/s N/v N/s N/v N/v

1 0.02* N/s N/v N/v N/v

3 0.33 N/v N/v N/s 0.50

5 0.11* 0.20 N/s N/v N/s

7 - 0.19* 0.01* N/s 0.54

9 - 0.57 <0.01* N/s 0.24

11 - 0.24 - 0.54 0.01*

13 - 0.53 - 0.66 0.16*

14 0.02* - - - -

15 - 0.97 - 0.28 -

17 - - - 0.09* -

18 - - ns - -

19 0.02* - - 0.09* -
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Runoff rate

(l min-1)

Sampling Period

1 2 3 4 5

23 - - - - 0.13*

24 - 0.74 - - -

28 - - - 0.01* -

33 - - - 0.08* -

*A statistically significant result (p ≤ 0.20). N/v; No variance within results. N/s; Data is 
not suitable for ANOVA (assumptions not met).

In Sampling Period 1 (Figure 4.9), 5 minutes post rainfall initiation Non-SSD CpL, SSD

CpH and SSD CpL significantly reduced runoff rate as compared to the Non-SSD

Control by 93, 61 and 89 % respectively. At 14 and 19 minutes, SSD CpL and SSD No

mulch significantly reduced runoff rate as compared to the Non-SSD Control with no

runoff generated from either treatment. Furthermore, at 19 minutes SSD CpH and SSD

StL also generated no further runoff, whilst Non-SSD CpH and Non-SSD CpL reduced

runoff by 99 and 54 % respectively as compared with the Non-SSD Control. All

reductions in runoff rate had not preceded the observed reductions in cumulative

volume.

In Sampling Period 2 (Figure 4.10), no significant reductions in runoff rate were

observed. Meanwhile in Sampling Period 3 (Figure 4.11), Non-SSD StH, SSD StH and

SSD StL significantly reduced runoff rate with 0 l min-1 as compared with the Non-SSD

Control at 7 and 9 minutes. This concurs with cumulative volume data that showed no

runoff volume generation from Non-SSD and SSD StH. Furthermore, Non-SSD StL and

SSD CpH significantly reduced runoff rate at 7 minutes by 87 and 75 % respectively

and both by 73 % at 9 minutes. The occurrence of significantly reduced runoff rates at

7 and 9 minutes coincided simultaneously with significant reductions in cumulative

volume. In Sampling Period 4 (Figure 4.12), Non-SSD CpL generated no runoff

throughout. At 17, 19 and 28 minutes SSD StH significantly reduced the rate of runoff

by 69, 69 and 87 % respectively as compared with the Non-SSD Control. Furthermore,

at 17 and 19 minutes SSD StL significantly reduced the rate of runoff by 69 and 67 %

respectively as compared with the Non-SSD Control. In Sampling Period 5 Non-SSD

CpH significantly reduced the rate of runoff at 11 and 13 minutes by 100 and 99 %
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respectively as compared with the Non-SSD Control. Furthermore, at 13 minutes SSD

CpH and SSD StH significantly reduced the rate of runoff by 93 and 99 % respectively

as compared with the Non-SSD Control.

Time to runoff initiation (min)4.2.2.3

It was expected that SSD and high mulched treatments would increase the time to

runoff initiation. This is because treatments could first allow rainfall to infiltrate rainfall

and become stored on the surface before runoff was generated. Furthermore, surface

roughness could reduce runoff velocity, increasing the time taken to travel downslope

as compared with Non-SSD and No Mulch treatments. However, this was not the case

as RE1 runoff initiation was only significantly affected in Sampling Periods 1 and 3

(Table 4.14). In Sampling Period 1, Non-SSD StH has a significant lag in time to runoff

initiation as compared with the Non-SSD Control (3 minutes) and all other treatments.

In Sampling Period 3, no runoff is initiated by any St treatments or SSD No mulch.

Furthermore, SSD CpL and SSD CpH significantly increase time to runoff initiation as

compared to the Non-SSD Control by approximately 2 and 1.5 minutes respectively.

Runoff initiation takes longer in Sampling Period 4 across all treatments. This is due to

a low rainfall intensity of RE1, with peak rainfall not reached (0.4 mm in 2 minutes) until

9 minutes post rainfall initiation (Figure 4.12).

Table 4.14. Mean time to runoff initiation (minutes) of each treatment for RE1 of

each Sampling Period. Within each Sampling Period values followed by different

letters denote statistical significance (p ≤ 0.2) following one-way ANOVA. 

No. Treatment

Sampling Period†

1 2 3 4 5

1 Non-SSD CpL 2.00 a 5.33 a 6.50 ab 13.50 a 7.50 a

7 Non-SSD CpH 1.00 b 5.67 a 10.00 a 7.00 a

2 Non-SSD Control 1.67 ab 5.00 a 5.75 a 12.33 a 8.00 a

8 Non-SSD StL 1.67 ab 5.00 a 14.67 a 6.67 a

5 Non SSD StH 4.33 c 5.67 a 13.67 a 7.67 a

9 SSD CpL 2.00 a 5.00 a 7.67 c 7.33 a
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No. Treatment

Sampling Period†

1 2 3 4 5

6 SSD CpH 1.67 ab 5.33 a 7.00 bc 13.00 a 7.00 a

10 SSD No mulch 1.50 ab 7.00 a

4 SSD StL 2.00 a 5.33 a 17.00 a 8.00 a

3 SSD StH 1.00 b 5.33 a 17.50 a 7.67 a

†Blank cells indicate treatments that did not generate runoff.
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Sampling Period 1

Figure 4.9. Runoff hydrographs for the first rainfall event of Sampling Period 1. Cumulative runoff volume is shown at set

intervals during the rainfall event as well as 1 minute, 10 minutes and 15 minutes post rainfall cessation. For significance levels

see Table 1.1, for significant differences between treatments see Appendix A.4, Table_Apx_A-6.
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Sampling Period 2

Figure 4.10. Runoff hydrographs for the first rainfall event of Sampling Period 2. Cumulative runoff volume is shown at set

intervals during the rainfall event as well as 1 minute and 10 minutes post rainfall cessation. N.B. Non-SSD Cp H and SSD No

mulch are omitted due to insufficient sensor data. For significance levels see Table 1.1, for significant differences between

treatments see Appendix A.4, Table_Apx A-7.
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Sampling Period 3

Figure 4.11. Runoff hydrographs for the first rainfall event of Sampling Period 3. Cumulative runoff volume is shown at set

intervals during the rainfall event as well as 1 minute and 10 minutes post rainfall cessation. N.B. SSD No mulch is omitted due

to insufficient sensor data. For significance levels see Table 1.1, for significant differences between treatments see Appendix

A.4, Table_Apx A-8.
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Sampling Period 4

Figure 4.12. Runoff hydrographs for the first rainfall event of Sampling Period 4. Cumulative runoff volume is shown at set

intervals during the rainfall event as well as 1 minute, 10 minutes and 15 minutes post rainfall cessation. N.B. SSD No mulch is

omitted due to insufficient sensor data. For significance levels see Table 1.1, for significant differences between treatments see

Appendix A.4, Table_Apx_A-9.
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Sampling Period 5

Figure 4.13. Runoff hydrographs for the first rainfall event of Sampling Period 5. Cumulative runoff volume is shown at set

intervals during the rainfall event as well as 1 minute and 10 minutes post rainfall cessation. For significance levels see Table

1.1, for significant differences between treatments see Appendix A.4, Table_Apx A-10.
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Total soil loss (kg)4.2.3

It was expected that SSD combined with St and Cp treatments at high mulch

application rates would achieve the greatest reduction in TSL. This is because the

increased infiltration associated with SSD will reduce the runoff volume capable of

entraining and transporting sediment. Furthermore, the surface mulch will protect the

soil surface from detachment and in combination with SSD will impart a frictional

component to flow reducing runoff velocity resulting in fewer soil particles becoming

entrained.

Overall TSL4.2.3.1

TSL results for each treatment for the entire Phase 1 collection period were calculated

(Table 4.15). These results met the expectations outline above with significant

differences between SSD mulched and Non-SSD No Mulch treatments. Non-SSD CpH,

Non-SSD StL, Non-SSD StH and SSD StH significantly reduced soil loss as compared

with the Non-SSD Control by 60, 57, 72 and 53 % respectively. SSD treatments

generated relatively moderate soil loss as compared to equivalent Non-SSD

treatments. Both CpL and No Mulch treatments (including the Control) resulted in the

largest soil loss in excess of 100 kg plot-1.

Table 4.15. Mean TSL (kg plot-1) for each treatment across the entire Phase 1

sample collection period. Results followed by different letters are significantly

different (p ≤ 0.05) following one-way factorial ANOVA and post hoc Fisher LSD. 

No. Treatment code
Mean soil loss

(kg plot-1)

Mean soil loss

(t ha-1)

1 Non-SSD CpL 147 c 24.6

2 Non-SSD CpH 52.7 ab 8.79

3 Non-SSD Control 131 cd 21.8

4 Non-SSD StL 56.7 ab 9.44

5 Non-SSD StH 36.5 a 6.08

6 SSD CpL 148 c 24.7
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No. Treatment code
Mean soil loss

(kg plot-1)

Mean soil loss

(t ha-1)

7 SSD CpH 92.2 bcd 15.4

8 SSD No Mulch 124 cd 20.7

9 SSD StL 72.5 abd 12.1

10 SSD StH 61.8 ab 10.3

N.B. Results are reported in t ha-1 for ease of comparison with other studies.

Individual Sampling Period TSL4.2.3.2

TSL results from individual Sampling Periods did not fully meet treatment expectations

(Section 4.2.3). Non-SSD treatments were associated with greater TSL reductions as

compared with the equivalent SSD treatments. These reductions were only significant

in 1 out of 5 Sampling Periods. Significant differences between treatment factors were

only observed in Sampling Periods 1, 2, 3 and 4, with significant 3-way interaction

effects observed in Sampling Periods 1, 2 and 4 (Table 4.16). Sizeable differences

between treatments were observed in Sampling Period 3; however, high variation

between replicates meant that no significant differences were observed (Figure 4.14

and Appendix A.3, Table_Apx A-3).

Across Sampling Periods 1, 2 and 4, 6 treatments significantly reduced TSL as

compared with the Non-SSD Control (Figure 4.14). Non-SSD StH most frequently

reduced TSL (Sampling Periods 1, 2 and 4). Furthermore, Non-SSD StL and SSD StH

reduced TSL in Sampling Periods 1 and 2, and SSD StL in Sampling Periods 1 and 4.

Non-SSD CpH and SSD CpH both reduced TSL in Sampling Period 1.

Non-SSD StH resulted in the greatest reduction in TSL as compared to the Non-SSD

Control (Figure 4.14). TSL reductions associated with Non-SSD StH were 76, 85 and 59

% for Sampling Periods 1, 2 and 4 respectively. This was followed by Non-SSD StL with

significant reductions in TSL of 41 and 64 % for Sampling Periods 1 and 2 respectively

as compared with the Non-SSD Control. Non-SSD CpH significantly reduced TSL by 66

% as compared with the Non-SSD Control in Sampling Periods 1, but did not differ

significantly from either Non-SSD St treatment (Figure 4.14).
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Table 4.16. Significance levels (p-values) of each treatment factor on total soil

loss, derived from nested full factorial ANOVA.

Dependent

variable

Sampling

Period

Factors

Tillage

(SSD/Non

-SSD)

Mulch

type

(St/Cp)

Tillage and

mulch type

(2-way

interaction)

Tillage, mulch

type and rate

(3-way

interaction)

Total soil

loss (kg)

1 0.01* <0.01* 0.90 0.01*

2 <0.01* <0.01* 0.48 0.04*

3 0.02* <0.01* 0.13 0.09

4 0.26 <0.01* 0.96 0.03*

5 0.79 0.06 0.90 0.11

*A statistically significant result (p≤0.05) 

The equivalent SSD treatments also significantly reduced TSL as compared to the

Non-SSD Control. SSD StH significantly reduced TSL during Sampling Period 1 and 2

by 49 and 54 % respectively. In Sampling Period 1 and 4 SSD StL resulted in the

significant TSL reductions of 30 and 51 % respectively. SSD CpH only significantly

reduced TSL as compared with the Non-SSD Control for Sampling Period 1 (33 %).

However, this was not significantly different from SSD StH and SSD StL.
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Figure 4.14. Relative mean TSL (kg plot-1) from each treatment compared with the

Non-SSD Control (the dashed line). Filled circles denote a statistical difference

from the Non-SSD Control. For statistical differences between treatments see

Appendix A.3, Table_Apx A-3.
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Sediment concentration (g l-1)4.2.4

As was the case for TSL, it was expected that the enhanced surface roughness

imparted by treatments such as SSD StH and CpH would result in the greatest reduction

in suspended sediment in the runoff. This is because reduced runoff velocity and

volume would result in less soil becoming entrained and transported by runoff.

Furthermore, the mulch effect would minimise the supply of detached material as it

forms a protective barrier between the soil surface and the rainfall and runoff. However,

this was not the case with few significant differences observed between SSD

treatments and the Non-SSD Control, although there was some evidence of a mulch

effect in treatment response.

Only Sampling Periods 1 and 2 showed significant differences in treatment factors

(Table 4.17). No significant differences were observed in Sampling Periods 3, 4 and 5

due to a high degree of variation between replicates for all treatments.

Table 4.17. Significance levels (p-values) of each treatment factor on sediment

concentration in runoff, derived from nested full factorial ANOVA.

Dependent
variable

Sampling
Period

Factors

Tillage
(SSD/Non

-SSD)

Mulch
type

(St/Cp)

Tillage and
mulch type

(2-way
interaction)

Tillage, mulch
type and rate

(3-way
interaction)

Runoff
sediment
concentration
(g l-1)

1 0.10 0.04* 0.24 0.77

2 0.65 0.68 0.03* 0.96

3 0.39 0.06 0.96 0.24

4 0.19 0.63 0.12 0.71

5 0.99 0.43 0.45 0.51

*A statistically significant result (p≤0.05) 

All treatments across all Sampling Periods exceed the suspended sediment

concentration guideline value of 25 mg l-1 (0.025 g l-1) set by the EU Directive

75/440/EEC for the quality of surface waters suitable for drinking water abstraction

(Figure 4.16). Therefore, all events can be deemed to be polluting. Only one treatment

is of the same order of magnitude as the 25 mg l-1 guideline; SSD No mulch in
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Sampling Period 2. However, this result has a high degree of variation (± 5.3 g l-1

standard error).

In Sampling Period 1 no significant differences in sediment concentration were

observed between any treatment and the Non-SSD Control. The high variability within

the Non-SSD Control limited the occurrence of any statistical differences, despite SSD

StH producing a 43 % reduction in runoff sediment concentration (Figure 4.15).

However, differences between St and Cp treatments were observed. St treatments

resulted in a significant 38 % reduction in runoff sediment concentration as compared

with No mulch treatments. This is evident within treatments for example; Non-SSD StH

runoff resulted in significantly less sediment concentration (66 %) as compared with

Non-SSD CpH. Furthermore, Non-SSD StL had a significantly lower sediment

concentration (52 %) as compared with Non-SSD CpH. In Sampling Period 2

differences between 2-way treatment interactions were observed (Table 4.17). Non-

SSD StH differed significantly from the Non-SSD Control, generating 67 % less

sediment concentration in runoff. Furthermore, there was a strong trend for SSD No

Mulch to produce a 59 % reduction in mean runoff sediment concentration. However,

this is not significant due to the high variability between replicates for both the Control

and SSD No Mulch.

Total oxides of nitrogen (mg l-1)4.2.5

It was expected that the greatest TON concentrations would be associated with Cp

treatments. This is because the N contained within Cp will become slowly mineralised

and released (WRAP, 2007). Furthermore, the addition of St can cause N to become

immobilised by soil microbes (Christenson and Olesen, 1998). However, this was not

found to be the case with significant differences only observed between mulch types in

Sampling Period 1 (Table 4.18). Furthermore, significant differences were also

observed between tillage in the same Sampling Period. Significant differences in the 3

way interaction between treatments was also observed, although only in Sampling

Period 5.
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Table 4.18. Significance levels (p-values) of each treatment factor on TON

concentration in runoff, derived from nested full factorial ANOVA.

Dependent
variable

Sampling
Period

Factors

Tillage
(SSD/Non

-SSD)

Mulch
type

(St/Cp)

Tillage and
mulch type

(2-way
interaction)

Tillage, mulch
type and rate

(3-way
interaction)

TON
concentration
(mg l-1)

1 0.03* <0.01* 0.51 0.10

3 0.77 0.43 0.88 0.46

5 0.24 0.60 0.83 0.03*

*A statistically significant result (p≤0.05) 

In Sampling Period 1 (Figure 4.16), St significantly reduced TON in runoff by 50 % as

compared to No Mulch treatments and 35 % as compared with Cp treatments. Non-

SSD treatments also reduced TON in runoff in Sampling Period 1 by 18 % as

compared with SSD treatments. In Sampling Period 5, SSD CpH is the only treatment

that produces significantly less TON (57 %) as compared with the Non-SSD Control.

TON concentrations in Sampling Period 1 and 3 are below the standard 25 mg l-1

nitrate guideline set by the EU Directive 75/440/EEC (Figure 4.16). However, in

Sampling Period 5, all treatments (including the control) exceeded this, producing

concentrations of up to 5 times greater than the guideline. However, due to the type of

TON analysis undertaken, the concentrations reported in Figure 4.16 included both

nitrate and nitrite concentrations. Therefore, whilst runoff may still have exceeded the

nitrates guideline, it is difficult to know the exact value.

Phosphorus (mg)4.2.6

Orthophosphate-P (mg l-1)4.2.6.1

It was expected that Cp treatments would result in increased orthophosphate-P

concentrations, as a result of bringing additional P to the site. However, this was not

the case, with few significant differences between treatments. Significant differences

were only observed in Sampling Period 1 within individual tillage and mulch factors

(Table 4.19).
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Table 4.19. Significance levels (p-values) of each treatment factor on

orthophosphate-P concentration in runoff, derived from nested full factorial

ANOVA.

Dependent
variable

Sampling
Period

Factors

Tillage
(SSD/Non

-SSD)

Mulch
type

(St/Cp)

Tillage and
mulch type

(2-way
interaction)

Tillage, mulch
type and rate

(3-way
interaction)

Orthophosphate
-P concentration
(mg l-1)

1 0.04* <0.01* 0.08 0.31

3 0.25 0.13 0.65 0.37

5 0.87 0.91 0.38 0.44

*A statistically significant result (p≤0.05) 

Orthophosphate-P concentrations in treatment runoff all exceed the WFD annual mean

range for soluble reactive P as prescribed for rivers of good ecological status for all

alkalinity and elevation classifications (UKTAG, 2008). In Sampling Period 1, 90 % of

treatments generated P concentrations that were 5 times greater than the upper P limit

(0.12 mg l-1). This increases to 100 % in Sampling Period 3 and drops to 40 % in

Sampling Period 5.

In Sampling Period 1 (Figure 4.17), St treatments significantly reduced

orthophosphate-P by 27 % as compared with No Mulch treatments and 22 % as

compared with Cp treatments. Furthermore, Non-SSD treatments significantly reduced

orthophosphate-P by 16 % as compared with SSD treatments. In Sampling Periods 3

and 5, replicate variability increased and consequently no significant differences

between treatments were observed.

Sediment-bound P (mg kg-1)4.2.6.2

It was expected that the lowest levels of sediment-bound P would be associated with

SSD mulched treatments. This is because mulch will protect the soil from detachment

and enhanced surface roughness and improved infiltration will reduce the likelihood of

soil particle becoming entrained and transported in runoff. However, this was not the

case with no significant differences between treatment factors (Table 4.20).
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Table 4.20. Significance levels (p-values) of each treatment factor on sediment-

bound P concentration in runoff, derived from nested full factorial ANOVA.

Dependent
variable

Sampling
Period

Factors

Tillage
(SSD/Non

-SSD)

Mulch
type

(St/Cp)

Tillage and
mulch type

(2-way
interaction)

Tillage, mulch
type and rate

(3-way
interaction)

Sediment
bound P
concentration
(mg kg-1)

1 0.34 0.24 0.58 0.24

3 0.52 0.04* 0.57 0.97

5
Results do not meet the assumptions of ANOVA

analysis
*A statistically significant result (p≤0.05) 

In Sampling Period 1 and 3 (Figure 4.18), no significant differences between

treatments were evident. This is a result of similar concentrations between treatments.

In Sampling Period 5, elevated results for SSD CpH meant that ANOVA could not be

carried out as data was not normally distributed (Appendix A.3, Table_Apx A-4).

Despite being considered a potential pollutant, no specific guideline value is available

for sediment-bound P.
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Surface water quality guideline

(0.025 g l-1) for suspended sediments

stipulated by EU Directive 75/440/EEC.

Figure 4.15. Mean sediment concentration in runoff (mg l-1) across all Sampling

Periods. Filled circles denote a statistical difference from the Non-SSD Control.

Error bars show ± 1 SE. For statistical differences between treatments see

Appendix A.3, Table_Apx A-3.



95

Nitrates surface water quality guideline (25 mg l -1)
stipulated by EU Directive 75/440/EEC

Figure 4.16. Mean concentration of TON in runoff (mg l -1) for the three tested Sampling Periods. Filled circles denote a statistical

difference from the Non-SSD Control. Error bars show ± 1 SE. For statistical differences between treatments see Appendix A.3,

Table_Apx A-4. *Scales on the y axis vary.
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Soluble reactive P limits for ‘good ecological status’ (0.04 to

0.12 mg l-1) as stipulated by the Water Framework Directive

(2000).

Figure 4.17. Mean concentration of Orthophosphate P in runoff (mg l -1) for the three tested Sampling Periods. Filled circles

denote a statistical difference from the Non-SSD Control. Error bars show ± 1 SE. For statistical differences between treatments

see Appendix A.3, Table_Apx A-4.
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Figure 4.18. Mean concentration of sediment-bound P in runoff (mg kg-1) for the three tested Sampling Periods. Filled circles

denote a statistical difference from the Non-SSD Control. Error bars show ± 1 SE. For statistical differences between treatments

see Appendix A.3, Table_Apx A-4.
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4.3 Discussion

The effectiveness of individual treatments was ranked based on the treatment means

for each key performance indicator; total runoff volume, total soil loss and sediment,

TON, orthophosphate-P and sediment-bound P concentration in runoff. This was

carried out across both individual Sampling Periods (Table 4.21) and overall for the

entire Phase 1 sample collection period (Table 4.22 and Table 4.13) so that differences

in performance and reliability could be clearly identified. Across each Sampling Period,

the lowest means were assigned a rank of 1 and the highest means a rank of 10. The

mean treatment rank was then calculated for each performance indicator across all

Sampling Periods to indicate overall performance. These means were then tabulated

for each treatment and a mean rank calculated across all performance indicators

(Table 4.22).

Across all Sampling Periods, the most reductions were observed from Non-SSD StH

(TSL and sediment and orthophosphate-P concentration in runoff). Furthermore, Non-

SSD CpH most reduced runoff volume, SSD StL most reduced TON concentration in

runoff and SSD StH most reduced sediment-bound P concentration in runoff (Table

4.21). Overall, Non-SSD StH ranked as the most effective treatment followed by Non-

SSD StL and SSD StH, whilst SSD Mulch was the least effective treatment (Table 4.22).

Table 4.21. A ranked summary of the effectiveness of individual treatments on

each performance indicator. Differences in rank are based on differences in

mean values. Lower scores mean the ‘best’ treatment.

Variable Treatment
Sampling Period

Mean
1 2 3 4 5

Total runoff

volume

Non-SSD CpL 5 5 2 4 5 4.2

Non-SSD CpH 2 1 4 3 4 2.8

Non-SSD Control 6 7 6 6 9 6.8

Non-SSD StL 8 10 10 7 7 8.4

Non-SSD StH 7 8 8 5 8 7.2
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Variable Treatment
Sampling Period

Mean
1 2 3 4 5

SSD CpL 3 4 9 1 1 3.6

SSD CpH 1 6 1 8 3 3.8

SSD No mulch 4 2 3 2 6 3.4

SSD StL 10 3 5 10 10 7.6

SSD StH 9 9 7 9 2 7.2

Total soil loss

Non-SSD CpL 7 8 9 9 10 8.6

Non-SSD CpH 2 4 4 3 2 3

Non-SSD Control 9 6 7 7 8 7.4

Non-SSD StL 4 2 2 2 3 2.6

Non-SSD StH 1 1 1 1 1 1

SSD CpL 8 10 5 10 9 8.4

SSD CpH 5 7 8 6 4 6

SSD No mulch 10.0 9 10 8 7 8.8

SSD StL 6 5 6 4 5 5.2

SSD StH 3 3 3 5 6 4

Runoff

sediment

concentration

Non-SSD CpL 7 8 7 8 9 7.8

Non-SSD CpH 9 5 6 3 6 5.8

Non-SSD Control 3 10 8 10 7 7.6

Non-SSD StL 2 3 3 5 4 3.4

Non-SSD StH 1 2 1 6 2 2.4

SSD CpL 6 6 10 9 8 7.8

SSD CpH 8 4 4 4 1 4.2

SSD No mulch 10 1 9 1 10 6.2
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Variable Treatment
Sampling Period

Mean
1 2 3 4 5

SSD StL 5 9 5 2 3 4.8

SSD StH 4 7 2 7 5 5

TON

concentration

Non-SSD CpL 8 - 2 - 5 5

Non-SSD CpH 5 - 6 - 9 6.7

Non-SSD Control 7 - 8 - 8 7.7

Non-SSD StL 2 - 7 - 3 4

Non-SSD StH 1 - 3 - 6 3.3

SSD CpL 9 - 1 - 10 6.7

SSD CpH 6 - 10 - 1 5.7

SSD No mulch 10 - 9 - 7 8.7

SSD StL 3.5 - 4 - 2 3.2

SSD StH 3.5 - 5 - 4 4.2

Orthophosphate

P concentration

Non-SSD CpL 7 - 9 - 1 5.7

Non-SSD CpH 8 - 1 - 10 6.3

Non-SSD Control 5 - 8 - 7 6.7

Non-SSD StL 2 - 4 - 4 3.3

Non-SSD StH 1 - 2 - 5 2.7

SSD CpL 9 - 6.5 - 8 7.8

SSD CpH 4 - 3 - 2 3.0

SSD No mulch 10 - 10 - 3 7.7

SSD StL 6 - 6.5 - 6 6.2

SSD StH 3 - 5 - 9 5.7

Sediment- Non-SSD CpL 10 - 10 - 7 9.0
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Variable Treatment
Sampling Period

Mean
1 2 3 4 5

bound P

concentration
Non-SSD CpH 5 - 8 - 3 5.3

Non-SSD Control 7 - 3 - 4 4.7

Non-SSD StL 6 - 6 - 1 4.3

Non-SSD StH 4 - 5 - 2 3.7

SSD CpL 1 - 7 - 5 4.3

SSD CpH 9 - 9 - 10 9.3

SSD No mulch 8 - 4 - 8 6.7

SSD StL 3 - 2 - 9 4.7

SSD StH 2 - 1 - 6 3.0



102

Table 4.22. Overall rank for each treatment performance indicator across all Sampling Periods based upon data presented in

Table 4.21. Lower scores mean the ‘best’ treatment.

Treatment

Performance indicator

Mean
rankRunoff

volume
TSL

Sediment
concentration

in runoff

TON
concentration

Ortho-
phosphate-

P

Sediment
-bound P

Non-SSD CpL 4.2 8.6 7.8 5.0 5.7 9.0 6.7

Non-SSD CpH 2.8 3.0 5.8 6.7 6.3 5.3 5.0

Non-SSD Control 6.8 7.4 7.6 7.7 6.7 4.7 6.8

Non-SSD StL 8.4 2.6 3.4 4.0 3.3 4.3 4.3

Non-SSD StH 7.2 1.0 2.4 3.3 2.7 3.7 3.4

SSD CpL 3.6 8.4 7.8 6.7 7.8 4.3 6.4

SSD CpH 3.8 6.0 4.2 5.7 3.0 9.3 5.3

SSD No mulch 3.4 8.8 6.2 8.7 7.7 6.7 6.9

SSD StL 7.6 5.2 4.8 3.2 6.2 4.7 5.3

SSD StH 7.2 4.0 5.0 4.2 5.7 3.0 4.8
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Runoff volume4.3.1

For Sampling Periods 1-5, Phase 1 results showed an uncertainty in the effectiveness

of treatments to reduce total runoff volume. This uncertainty is due to partial failure of

the field monitoring system used. During Phase 1, there was above average rainfall

with 1370 mm recorded on-site as compared with the 30 year (1981 – 2010) average of

734 mm (Met Office, 2014). The continuous nature and above average volume of

rainfall received over the Sampling Periods, in combination with long, steep-sloped

plots meant high volumes of plot runoff were generated. This often resulted in

collection tanks reaching capacity (approximately 250 l) and overtopping. Evidence of

over-topping was observed at the point of sampling. As a consequence all tanks

achieved maximum capacity during Sampling Periods 1-5, irrespective of treatment

variations in runoff rate and event-based cumulative runoff volumes. However, within

Sampling Periods significant differences in RE1 driven runoff volumes and runoff rates

were detectable by utilising the runoff hydrograph data generated by the linear level

sensors.

Furthermore, the high degree of variability between replicates of the same treatment

(unrelated to maximum tank volumes) are in large part a result of where blockages in

the Gerlach troughs prevented the runoff reaching the collection tank. Whilst outliers

generated by blocked pipes were removed, it was not possible to do so where blocked

Gerlach troughs were observed, as they occurred too frequently. These blockages

resulted in a high variation in treatment replicate response. Therefore even where

maximum tank capacity was not reached, treatment response was not always

indicative of true plot runoff volume.

Blockages demonstrate that erosion occurred in the plots. This is further supported by

on-site recorded rainfall intensities of ≥ 12 mm hr-1 (mean) and up to a 96 mm hr-1

(maximum). Rainfall intensities as low as 1.5 mm hr-1 have been found to result in a 15

% occurrence of erosion in other UK erosion studies (Evans, 1990). Furthermore,

rainfall intensities of 10 mm hr-1 are considered to result in erosion during moderate

rainfall events and brief falls (Morgan, 1980, Fullen, 1992) and >15 mm hr-1 during very

short rainfall periods (Fullen, 1992).



104

Event based hydrological response of treatments4.3.2

In contrast to the measured runoff volume data, runoff hydrograph data for each

Sampling Period RE1 does show some significant differences in the hydrological

response of each treatment. These suggest the efficacy and longevity of treatments in

controlling runoff.

The Non-SSD Control was amongst the highest runoff producing treatments for three

of the five Sampling Period RE1’s. This is to be expected as no improvement in soil

porosity or surface roughness had been made and so infiltration was impeded by the

pre-existing high level of compaction. St treatments (Non-SSD StH, Non-SSD StL and

SSD StH) significantly delayed runoff generation in RE1 Sampling Period 1 and resulted

in reduced cumulative volumes between Sampling Period 1 and 3. In Sampling Period

3 RE1, both Non-SSD StH and Non-SSD StL did not generate any runoff. This was the

smallest RE1 with just 1 mm rainfall and a low mean intensity of 15 mm hr-1 peaking at

just 24 mm hr-1. This suggests that only higher intensity events result in runoff from

these treatments, as confirmed by runoff generation in all other RE1 Events.

SSD StL did not generate significant reductions in runoff volume until Sampling Period

3. This delayed effectiveness as compared with SSD StH could be a combination of the

low mulch application rate and partial incorporation with SSD. This could have reduced

the surface roughness and surface storage relative to SSD StH, preventing the

treatment from effectively reducing runoff. With time, the St could have become

mobilised by the runoff (Berg, 1984) forming dams (Brown et al., 1998; Kwaad et al.,

1998) that could have impeded the runoff providing surface storage and a greater

opportunity for infiltration. In the case of SSD StL, this process could have improved the

effectiveness of the treatment over time resulting in significant reductions in Sampling

Period 3 and 4. Overall, Non-SSD StH proved most effective as a result of the

increased surface roughness and surface applied St. Furthermore, there was no SSD

effect to reduce over time thus effecting reliability.

In two of the RE1 events all Cp treatments showed a greater reduction in runoff as

compared with all St treatments. Similar results have been found in other studies

(Beighley et al., 2010; Reinsch et al., 2007). This difference in mulch response

suggests that Cp is more able to hold water (Persyn et al., 2004) than St. However, this

was only observed in CpL treatments, whilst this effect would be expected to be more

pronounced at high application rates (Beighley et al., 2010). This suggests that
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treatment effectiveness had been affected, which can be corroborated with field notes

that list frequent blockages from the Cp plots. These blockages most likely result from

the Cp fine particles moving downslope and blocking pipes, as was observed in the

field following a large rainfall event prior to runoff collection.

Total soil loss4.3.3

TSL results were standardised to give an equivalent t ha-1 soil loss (Table 4.15). This is

an extrapolation of the soil loss measured over the 5 month experimental period of an

extremely wet year, and assumes that TSL would be the same across a greater area,

something that cannot currently be verified. However, this calculation allows an

approximate comparison to be made with other studies. All values exceed the latest

tolerable annual soil erosion rate for Europe estimated at 1.4 t ha-1 (Verheijen et al.,

2009). These are indicative of a very erodible soil. The on-site sandy loam soil (Section

1.1.1.2) contains less than 16 % clay. Soils with less than 30 – 35 % clay have little

cohesion (Evans, 1980). It is the clay fraction that can strengthen and stabilise soil

aggregates (Davies et al., 2001) without which soils are more resistant to detachment

by rainfall (Evans, 1980). On-site organic matter content is also low. With less than 2

%, this soil is classified as erodible (Fullen, 2000). Current onsite organic matter

content is lower than that previously documented in local soils, and suggests that the

soil has been degraded. The low clay and organic carbon content combined with a

legacy of on-site compaction to depth will limit infiltration and create a very erodible

soil. Furthermore, the continual disturbance of the soil surface by foot traffic during the

harvest period might be providing a supply of detached material that could be readily

transported by runoff. Despite being indicative of an extreme period, soil loss measured

from the plots is unsustainable and needs to be further addressed.

The results indicate that both Non-SSD StH and Non-SSD StL were the most effective

at reducing TSL across all Sampling Periods. However, of the two treatments Non-SSD

StH results in the greatest reduction in TSL across all Sampling Periods. This

effectiveness suggests that the simple application of St at 6 t ha-1 can reduce TSL by

between 59 to 92 % as compared with the Non-SSD Control.

The effectiveness of StH may in large part be due to the greater degree of protection

provided to the soil surface, intercepting rain and dissipating energy (Persyn et al.,

2004; Morgan, 1979). However, whilst the 70 – 75 % cover prescribed by Morgan

(2005) protects the soil surface from erosion relative to the other treatments, factors



106

such as incorporation, foot-traffic, rainfall volume, slope (length and gradient) and soil

characteristics affect its efficacy as erosion still occurs. In comparison to Cp, the

uniform structure of St lends itself to creating mini dams thus reducing runoff velocity

and reducing sediment entrainment (Döring et al., 2005; Brown et al., 1998). Similar

soil loss reductions from the application of St have been observed in carrots (Holstrom

et al., 2008) and potatoes (Döring et al., 2005), as well as in non-row crop settings

(Rees et al., 2002; Shock et al., 1997; Tatham 1989; Brown and Kemper 1987; Berg

1984; Meyer et al., 1971). Edwards et al. (2000) only found a 49 % reduction in TSL

with incorporated St. However, incorporation during potato ridging would have spread

the straw over a larger area (both above and below ground) reducing the resulting

surface coverage. In this Phase 1 study, focusing application of the St into the wheeling

proved to be more successful overall.

TSL reductions between Non-SSD StL and Non-SSD StH were only significantly

different in Sampling Period 1. This suggests that in this study post Sampling Period 1,

both rates offered inadequate surface protection for erosion reduction. This could be a

result of continuous reorganisation and incorporation of St by foot traffic in wet weather

conditions during asparagus harvest reducing the initial increased effectiveness of

Non-SSD StH. However, the Non-SSD StH treatments are not completely altered as the

general trend showed that more TSL was produced from Non-SSD StL, as found by

other authors (Holstrom et al., 2008; Döring et al., 2005; Rees et al., 2002; Brown and

Kemper, 1987 and Berg, 1984).

In the literature, Cp mulch blankets are expected to have the same effect on erosion as

St (Persyn et al., 2004). However, this is not fully demonstrated in this study. Faucette

et al. (2009) demonstrates no significant difference between compost blankets of 1.3,

2.5 and 5 cm depth as compared with single-net and double-net straw geotextile

treatments. This difference in result can be explained by the nature of the Cp blankets

used. Firstly, in this study Cp was hand applied directly onto the soil surface, whilst

Faucette et al. (2009) applied compost onto polypropylene netting that was first laid

onto the soil surface. This helped maintain the anchorage of the compost, preventing

channeling and downslope movement (Beighley et al., 2010). Secondly, compost

blanket thicknesses adopted by Faucette et al. (2009) were at least three times those

used in this study, as application was not restricted by N content. Higher Cp application

rates are known to provide better ground cover and rainfall interception more akin to

the effects of St. Therefore, if more Cp was applied in this study, in combination with
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some form of anchorage, Cp treatments could have proved a more effective means of

runoff and erosion control as compared to St.

Shallow soil disturbance interactions with mulch application were mainly associated

with reductions in TSL in the early stages of Phase1 (Sampling Periods 1 and 2). TSL

from SSD CpL, actually exceeded the TSL of the Non-SSD Control in Sampling Period

2. This ties in with field observations that some Cp (both CpL and CpH treatments) had

been washed off prior to Sampling Period 1. This meant that on SSD CpL little mulch

was left protecting the SSD from the short and intense rainfall events of Sampling

Period 2. This is supported by the fact that the TSL was no longer significantly different

from SSD No Mulch. This goes against the findings of an initial proof of concept study

(Niziolomski, 2011) in which mulch in combination with SSD resulted in a highly

significant (>90 %) reduction in TSL throughout the trial. This may in part be attributable

to differences in the rainfall characteristics and/or mulch types adopted between this

and the present study. This study was conducted in an extremely wet year, receiving

557 mm more rainfall than the 2011 study. The present study was also conducted over

an additional 105 days. Some studies have shown that soil disturbance is effective at

only initially improving infiltration. Gomez et al., 1999 observed tilled soil infiltration

rates to match that of non-tilled soils following 85 mm rainfall. Furthermore, Rao et al.,

1998 observed similar runoff from tilled and un-tilled soils following approximately 150

mm rainfall. It could also be suggested that instead of a reduced effectiveness in SSD,

the loosened soil on the plots was so overwhelmed by runoff that it carried with it,

accumulating into a greater TSL. This matches observations from runoff rate data, as

reduced rates do continue in high mulched treatments.

In the current study, St mulch was chopped to a length of < 40 mm, blown into the

wheelings and loosely incorporated (in SSD plots), whilst the straw treatment in

Niziolomski (2011) was uncut and surface applied. This could further account for

differences in results with the previous study (Niziolomski 2011). In other studies, un-

chopped straw been observed to stick to the sides of wheelings and become

embedded when water was applied, making a more effective cover than when chopped

(Berg, 1984). Whilst chopped straw has a tendency to lift up and float downslope (Berg,

1984), it has also been shown to better reduce sediment concentrations (Döring et al.,

2005). Therefore the mobility of the cut straw contributes to the effectiveness in

reducing sediment. Surface and incorporated mulch are documented as having mixed

effects on erosion. Dango and Wakindiki (2009) demonstrate less erosion with surface
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applied straw (3 – 5 t ha-1) as compared with incorporated straw to 0.2 m. This

difference corresponds with a significant increase in aggregate stability between

treatments. In contrast, Leys et al. (2010) showed no difference in erosion between

incorporation at 0.05 m (0.1 to 1.5 t ha-1) and surface applied (0.2 to 4.8 t ha-1) straw

treatments. Therefore it could be deduced that with St chopped and mostly

incorporated in Phase 1 would make treatments less effective than Niziolomski (2011).

Treatment TSL results for Sampling Period 5 showed a high degree of variability. This

variability is a result of two factors. Firstly, the length of time since the treatments have

been installed meant that changes in treatment interactions (SSD, mulch and

application rate) have occurred resulting in different treatment responses. This changes

were a result of rainfall received compacting the surface and creating a surface crust,

SSD slumping and foot traffic compaction from hand-harvest operations. Furthermore,

in this time gradual pipe blockages across replicates may have occurred. Secondly, the

rainfall characteristics leading up to Sampling Period 5 are the most intense of all the

Sampling Periods. This puts a lot of pressure on already degrading treatments, thus

resulting in a highly variable treatment responses.

Pollutant load4.3.4

Sediment concentration4.3.4.1

The extremely high levels of suspended sediment found for all treatments across all

Sampling Periods confirms the frequency and magnitude of on-site erosion as already

suggested by the TSL results.

Suspended sediment results demonstrated few significant differences between

Sampling Periods. This is due to the high variability within and between treatments

caused by the presence of pipe and trough blockages. These were most frequently

observed in Sampling Periods 1, 3, 4 and 5. However, some significant differences

were observed. Non-SSD StH demonstrated initial significant reductions in sediment

concentration, despite increasing runoff. This suggests that the friction component

imparted to surface runoff by the St reduced flow velocity and hence transport capacity

allowing sediment to drop out of suspension. Sediment transported as bed load and via

saltation will be reduced as a result of reduced runoff velocity. Furthermore, at high

rates of application (6 t ha-1) the St sufficiently protects the soil surface, preventing rain

splash soil detachment. Furthermore, the surface cover is protecting the surface from
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sediment displacement by foot traffic as observed by Monti and Mackintosh (1979) with

leaf litter on frequently trafficked forest footpaths. The fact that SSD StH does not also

show reductions in suspended sediment suggests that either the surface cover is not

as effective due to incorporation, or that the loose soil resulting from the SSD or

subsequent foot trafficking is contributing to the higher suspended sediment.

The results indicate that the efficacy of Non-SSD StH in reducing sediment

concentration is lost by Sampling Period 3. This period also coincides with the highest

number of trough and pipe blockages. By Sampling Period 5 there is a great

inconsistency within treatments resulting in a high variability of data and thus no

observed significant differences in sediment concentration between treatments. This

could be a result of the high volume and intensity of rainfall received by Sampling

Period 5. This rainfall could have inundated each treatment degrading the SSD effect,

and force mulch to move exposing areas of bare soil. Furthermore, the intensity of the

rainfall could result in surface compaction. Any differences in replicates could become

more pronounced with the development of the asparagus as cloches were removed

and asparagus fern allowed to develop. This makes the effectiveness more dependent

upon the bed conditions (e.g. the presence of surface crusting, deformations and

surface compaction resulting from pickers).

Total oxides of Nitrogen4.3.4.2

Both Non-SSD St treatments were the only treatments to significantly reduce TON as

compared to the Non-SSD Control in Sampling Period 1. This suggests that No Mulch

treatments were contributing TON to the runoff. This could result from soil N

mobilisation as runoff is entraining both suspended and soluble soil components. TSL

and TON results appear to be linked as mulched treatments reduce both. However, the

increase in TON observed is not of a significant level to result in pollution as defined by

EC guidelines / limits. In these results, no first flush of TON is evident as it is in other

studies (Simmons and Alexander, 2011). However, in this study one large rainfall event

had already occurred prior to data collection that could have been the first flush.

The elevated TON concentrations observed in Sampling Period 5 coincides with an on-

site application of ammonium nitrate fertiliser on the 12th July 2012. This was followed

by a brief but intense rainfall event on the 13th July 2012 (22 minute duration, 36 mm hr-

1 maximum intensity, 19.8 mm hr-1 mean intensity). Results suggest that this rainfall

event washed away a large amount of the applied fertiliser, not allowing time for it to
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dissolve and infiltrate into the compacted soil profile. SSD CpH is effective under these

conditions at reducing runoff TON, although due to the analysis used it is unclear

exactly how this relates to the nitrate guidelines (EU Directive 75/440/EEC). However,

this could be related to a reduced runoff observed suggesting pipe blockage. SSD

infiltration could be inferred but this is not observed in the Non-SSD No mulch or SSD

St treatments.

Orthophosphate P4.3.4.3

All treatments resulted in orthophosphate-P concentrations in excess of the WFD

ecological status criteria for soluble reactive P. However, treatments did not

consistently or significantly affect the concentration of orthophosphate-P in runoff. This

suggests that other environmental factors are responsible for P concentrations in

runoff; i.e. the soil. A critical P soil index of 3 (26 – 45 mg l-1) is assigned to vegetable

farming systems (Defra, 2010). However, on-farm soil sampling conducted by SOYL in

January 2014 showed the average P soil concentration for the field-trial field to equal

56 mg l-1 (P index 4, following Olsen’s P analysis). Above the critical P index, crops do

not utilise the increased P and therefore it remains and accumulates in the soil

(Johnston and Dawson, 2005). A soil considered to be P enriched (P index ≥ 3) has an 

increased risk of P loss into surface water (Johnston and Dawson, 2005).

Consequently when soil erosion takes place, the detached soil has a greater P

concentration (both sediment bound and soluble forms) and thus poses a significant

pollution risk to receiving water bodies.

For the duration of the field trials, just two treatments gave a significant difference in

orthophosphate-P as compared with the Non-SSD Control. Knowing the high P soil

index, higher values associated with the increase from SSD No Mulch are to be

expected. SSD increases the exposure of P-enriched soil particles to runoff, thus

resulting in a higher concentration of P being solubilised by the runoff. In other studies,

this increase did not occur often (Smith et al., 2007; Quincke et al., 2007). Soil mixing

is even advised as a means of reducing P in upper surface layers, by exposing deeper

soil layers with lower P. However, these studies have been conducted on long-term,

no-till plots that have good soil structure, where low P sub-soils can desorb the high P

top soil (Sharpley, 2003). By comparison, the soils at Cobrey Farm, which have been

continuously tilled to depth, are homogenous and compacted and thus are likely to



111

have little variation in P through the soil profile. Instead the low P surface runoff

desorbs the readily soluble soil P.

The second significant difference is an initial reduction in orthophosphate-P with Non-

SSD StH. This too is to be expected as the soil is being protected by a good surface

coverage of St. Any particles detached from 50 % of each bed either side of the treated

wheeling, will be dropped from suspension due to the reduced flow velocity resulting

from the St imparted surface roughness.

Sediment-bound P4.3.4.4

No significant differences from the Control were observed across all treatments and

Sampling Periods. This is to be expected as the sediment-bound P concentration only

originates from the soil, with no mulch treatments able to affect this. The one significant

difference observed between SSD CpH and SSD StH represents a very small reduction

(13 %, 162 mg kg-1) by SSD StH in sediment-bound P. This could be a result of P

contained within the Cp but this would generate a significant difference from the SSD

No mulch as well. It is very difficult to assess the potential threat to the environment of

the concentrations observed, as the release of the P is dependent of many

environmental conditions (Haygarth et al., 1999). However, the combination of high

runoff volumes, high total soil loss and high soil P index equates to a very large stock

of P that could threaten receiving water bodies being mobilised.

4.4 Conclusion

This Phase 1 experimental programme has assessed the resulting runoff and

associated nutrient and sediment loads from Non-SSD and SSD replicated treatments

in combination with No mulch, St (6 t ha-1 and 3 t ha-1) and Cp (15 t ha-1 and 7 t ha-1).

Overall, results show mulch alone can significantly reduce runoff volume and

associated nutrient and sediment loads allowing sub-hypothesis b to be accepted. The

most significant and consistent improvements in runoff volume and associated nutrient

and sediment loads was achieved by Non-SSD StH. The nature of Cp does not allow

for effective erosion control under the tested conditions and application rates (7 and 15

t ha-1). To improve Cp effectiveness at these rates, a biodegradable geotextile could be

laid beneath or on top of the compost to improve anchorage. In fields not subject to

NVZ nitrogen application restrictions, Cp could be used to better effect with a higher

application rate (>15 t ha-1).
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SSD was not found to significantly reduce runoff and associated nutrient and sediment

loads and therefore sub-hypothesis a. cannot be accepted. Significant reductions were

evident from SSD treatments in combination with StH and CpH. However, these only

occurred with TSL, therefore sub-hypothesis c. can also not be accepted. This

reduction effect in TSL did not match the consistency of that observed in Non-SSD StH

through all Sampling Periods, with SSD StH reduction evident only up to Sampling

Period 2.

The results show that soil erosion can be dramatically reduced in asparagus

production. However, over five months, total soil loss remained in excess of annual

tolerable erosion (1.4 t ha-1), as well as sediment concentration exceeding

environmental guidelines. This suggests that if used in isolation under the tested field

conditions other supporting mitigation measures will be needed to bring soil loss to a

sustainable level. To support the findings of this study further studies are required.
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5 SOIL BIN EXPERIMENTAL WORK

5.1 Methodology

In order to test the research hypothesis (Chapter 3) the following methodology was

developed.

To date, the effectiveness of the currently adopted SSD practice had not been critically

evaluated, in terms of compaction alleviation and soil erosion control. Phase 1 field

trials demonstrated that SSD does not have a significant impact on runoff and erosion

control. However, different tine configurations may generate different effects.

Therefore, under controlled laboratory conditions the effect on soil conditions pertinent

to compaction alleviation and erosion control of the currently adopted winged tine were

compared against a range of commercially available and innovative tillage alternatives.

From this experiment, the resulting ‘optimum’ tine configurations would be selected and

evaluated in the Phase 2 field trial runoff and soil loss plots (Chapter 6).

Tine configuration selection5.1.1

Implement geometry and arrangement5.1.1.1

Following a detailed literature review (Chapter 2), four tine geometries and

arrangements were identified and compared against the currently adopted winged tine

(Table 5.1, Figure 5.1 and Figure 5.2).
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Table 5.1 Types of tine to be tested in the soil bin.

No. Tine type Code Geometry Configuration

1 Winged
tine○

WT Rake angle; 45 degrees,
wing inclination 30
degrees.

Single tine, in-line

2 Narrow tine NT Rake angle; 45 degrees Single tine, in-line

3 Modified
para-plough

MPP Tine and rake angle; 45
degrees

Two tines, in parallel.

4 Winged tine
with shallow
leading
narrow tines

WSLT Rake angle; 45 degrees,
wing inclination 30
degrees.

Two leading shallow tines
spaced 220 mm apart, 350
mm ahead of the main tine.

5 Narrow tine
with shallow
leading
narrow tines

NSLT Rake angle; 45 degrees Two leading shallow tines
spaced 220 mm apart, 350
mm ahead of the main tine.

○Currently adopted on-site. Original designs and configurations are included in
Appendix B.1.

Figure 5.1. Tine configurations to be tested (not to scale); winged tine (WT; 1),

narrow tine (NT; 2), modified para-plough (MPP; 3), winged tine with shallow



115

leading tines (WSLT; 4) and narrow tine with shallow leading tines (NSLT; 5). See

Appendix B.1 for detailed tine designs and measurements.

Figure 5.2. Plan view of the tine configurations; NT (a), WT (b), MPP (c), NSLT (d)

and WSLT (e). See Appendix B.1 for specific tine geometry and configuration

designs.

Tine selection criteria for this experiment was based on the need for a large area of

below ground soil disturbance within the asparagus wheelings (i.e. compaction

alleviation). NT was selected as a simple non-winged tine for comparison with the

currently used WT. The inclusion of shallow leading tines for both WT and NT was to

increase the area of soil disturbance with little or no increase in draught force required

(Spoor and Godwin, 1978). Spacing between the shallow leading tines was based

upon the width of the asparagus wheeling, to ensure that disturbance was confined to

the wheeled areas. The MPP was selected as an innovative option based upon a

previously tested tramline drainer (Tatham, 1989). The MPP loosens either side of the

wheeling, rather than breaking through the heavily compacted centre as the other tines

are designed to do. This should allow water to infiltrate into the less compacted soil

associated with the asparagus bed (Figure 5.3). This however might translate to

increased draught as compared with the other tines, as the two tines work separately

through the soil.

Scale

100 mm

a b c d e
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Figure 5.3. Soil disturbance using the MPP relative to the area of compaction.

Bulk density values are true to in-field measurements.

Implement Depths5.1.1.2

Each tine was tested at three different depths. These were; the current on-site working

depth of 175 mm, the optimum depth for effective soil loosing operations as

recommended by Spoor (2006) (i.e. 300 mm) and an intermediate depth of 250 mm.

The depths of the shallow leading tines were calculated with the effective depth

formulae proposed by Spoor and Godwin (1978) (Equation 2). The resulting shallow

leading tine depths are presented in Table 5.2.

SLD = 2 / 3 x WD
(Equation 2)

Where SLD = Shallow leading tine depth; WD = Working depth.
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Table 5.2 Calculated depths for shallow leading tines (based on Spoor and

Godwin, 1978).

Main tine depth
(mm)

Shallow leading tine
depth (mm)

175 120

250 170

300 230

N.B. Calculated shallow tine depths have been rounded up for practical application.

Experimental setup5.1.2

A controlled laboratory-based study was designed and implemented in the Cranfield

Soil Dynamics Facility, specifically in the soil bin which measures 20 x 1.7 x 0.7 m. The

bin was filled with a sandy loam soil (64% sand, 18% clay and 18% silt), comparable to

that found in the field (Table 4.7, Phase 1 field trials). The soil profile was built up in 50

mm layers to the prescribed bulk density (Section 1.1.3.2), using a 700 kg roller and

the application of small amounts of water to allow the desired soil compression.

Soil Bin Calibration5.1.2.1

Prior to starting the experiment, the force measuring Extended Octagonal Ring

Transducer (EORT) was calibrated. The EORT is made up of a series of strain gauges

that simultaneously monitor the vertical force and draught (kN) associated with pulling

an implement through the soil, as a function of tine geometry and configuration

(Godwin, 1975).

For calibration, a series of known forces were applied to the EORT in several directions

(Table 5.3) and the resulting voltage (v) recorded. From this data it was possible to

calculate a voltage to kN conversion that could be used in the data logging programme

(Data Acquisition System, DASY, laboratory Version 8.00.04) to convert EORT voltage

readings into kN force.
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Table 5.3 Means of calibration for the various forces.

Force Method of calibration

Draught Instron 8500 digital control load frame.

Vertical Manual

Draught force calibration was carried out using an Instron 8500 digital control. Force

was applied in 5 kN intervals starting from 0 kN up to 80 kN, and the resulting EORT

output voltage recorded.

Vertical force calibration was carried out manually with the EORT fixed in situ on the

soil bin processor. Using a weight holder, kilogram weights were suspended from the

EORT. Weights were added in 10 kg intervals starting from 0 kg and going up to 100

kg. The resulting voltage output was recorded.

Both EORT calibrations were carried out in triplicate, using increasing and decreasing

loadings to account for any hysteresis within the EORT. This data was inputted into

Excel and graphed to ascertain the voltage and kN correlation (Appendix B.2,

Figure_Apx B-8). The resulting formula from the linear trend line was input to the

relevant channel (draught/vertical) of the DASY logging programme. This was then

checked by repeating the vertical calibration and comparing the resulting kN reading

with that calculated during calibration.

Soil Bin Preparation5.1.2.2

To recreate a bulk density in the soil bin similar to that observed in the field (1.67 g cm-3

± 0.12), a number of test soil bin preparations were undertaken, each with a different

number of roller passes (ranging from 10 to 30). With each preparation triplicate bulk

density samples were taken at three points across the centre of the bin. Following

several test preparations it was evident that 1.6 g cm-3 (±0.01) was the most

consistently achievable bulk density (Appendix B.2, Table_Apx B-1). Considering this,

13 roller passes were selected for experimental preparation. This was the most time

and energy efficient option whilst still achieving the desired bulk density.

To check the continuity of these test conditions, single bulk density measurements

were made at three randomly selected points along the length of the soil bin following
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each soil bin preparation (Appendix B.2, Table_Apx B-2). Once prepared, the

processor, with instrumented mounting points, was fitted with the tines ready to be

tested.

Experimental Design5.1.2.3

Soil bin availability constraints meant that the experiment had to be conducted in two

stages; firstly the 175 mm depth was tested, followed later by 250 mm and 300 mm

depths. The experiment was not of an entirely randomised design due to the health and

safety considerations of repeatedly mounting and dismounting the tines from the

bracket. However, randomisation did occur in other ways. In the 175 mm depth testing

the order in which the tines were tested was randomised. This was also true for the 250

mm and 300 mm depths. Furthermore, randomisation was also facilitated with the

selection of the individual depth sequences for each tine.

With each soil bin preparation two separate tine runs were tested each measuring

approximately 8 m in length. All tines were operated at a constant speed of 2.1 km h-1.

This allowed good control of the experiment, particularly when ensuring consistent run

lengths.

Data collection and analysis5.1.3

Tine performance was based on the following six indicators; draught force, specific

draught, above and below ground disturbance, in-line and parallel surface roughness.

Table 5.4. Performance indicators and their relationship to the sub-hypothesis.

Sub-hypothesis

component

Performance indicator

Implement dynamics Draught force

Specific draught

Degree and extent

of soil disturbance

Above ground / surface disturbance (DAG)

Below ground disturbance (DBG)

Surface roughness; perpendicular (SRP) and in-

line (SRI) relative to tine run.
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Draught and Vertical Force5.1.3.1

Draught is frequently measured in tillage experiments (Arvidsson and Hillerström,

2010). It is an important consideration for fuel and tractor power requirements

(Arvidsson and Hillerström, 2010). Vertical force data, although not a performance

indicator in this experiment, was also collected to understand the engagement of the

tine in the soil i.e. whether it was remaining in position, pushing up or pulling down.

This would indicate whether ballast or depth control wheels would be required when

used in a non-controlled field setting. For both draught and vertical force measurement

a separate mean of peaks was taken from the graphed outputs of each run generated

by the DASY software.

Specific draught5.1.3.2

Specific draught, also known as specific resistance, is a commonly used value to

demonstrate the efficiency of the draught force in disturbing soil. Once DBG had been

measured (Section 5.1.3.3) the specific draught was calculated for each tine run using

Equation (Equation 3). Tine configurations that most efficiently use draught force have

a low specific draught.

Specific draught (kN m-2) = D / DBG

(Equation 3)
Where D = mean draught (kN), DBG = Cross sectional area of disturbed

soil below ground (m2).

Given that the focus of this study is compaction alleviation, a new specific draught

measurement has been developed (Equation 3). This incorporates the degree of soil

disturbance both above and below ground.

SDD = D / DAG + DBG

(Equation 4)
Where SDD (kN m-2) = specific draught for complete soil disturbance; D

= mean draught (kN); DAG = Cross sectional area of above ground /
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surface soil disturbance (m2); DBG = Cross sectional area of below

ground soil disturbance (m2).

Soil disturbance5.1.3.3

Soil disturbance measurement quantifies the area of compaction that is alleviated.

Measurements of DAG and DBG were carried out using a profile metre. This comprised

of 50 adjustable pins, 72 cm long and set at 2 cm intervals covering a 105 cm length

with a clamping section in the middle (Figure 2.5). One fixed pin existed on either end

of the metre.

Above ground (DAG) and below ground (DBG) soil disturbance measurements were

taken at three random points along each tine run. For the above ground soil

disturbance, the profile metre was placed carefully onto the disturbed area with the

outer prongs resting on the adjacent original (undisturbed) soil surface. The adjustable

prongs were carefully lowered to take the shape of the surface soil disturbance. Once

the pins were fixed, the profile metre was placed onto brown paper, and the shape was

traced. The differences in height between each prong and the adjacent undisturbed soil

surface (captured by the two outer pins) was measured, and subsequently entered into

Excel. The three resulting graphs for each replicate were aligned with one another and

the mean cross sectional area calculated.

The loosened soil was then carefully excavated by hand until the entire DBG area was

exposed. The excavation depth was checked using metre sticks to ensure that it had

reached the depth of cultivation. The profile metre was placed across the top of the

excavation and the prongs carefully released to take the shape of the area excavated

(Figure 5.4). The shape was then transferred, measured and graphed in the same way

as for the DAG.
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Using these measurements the new bulk density of the soil following SSD was

calculated. This first required the calculation of the mass of the soil moved by the tine

(Equation 5). To do this the bulk density (between 0 – 5 cm depth) of the soil prior to

cultivation was multiplied by the cross sectional volume of DBG (cm3). This mass was

then applied to (Equation 6) and divided by the total volume of the soil post-SSD; the

sum of DBG and DAG (cm3).

Mass = Density x Volume
(Equation 5)

Mass (g) = Initial bulk density (g cm-3) x DBG (cm3)

Scale

10.5 cm

Scale

6 cm

Figure 5.4. Profile measurement of DBG.
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Density = Mass / Volume
(Equation 6)

Density (g cm-3) = Calculated mass of soil (g) / DBG + DAG (cm3)

Surface roughness5.1.3.4

Whilst the DAG profile provided the cross sectional area of disturbance and an

indication of the shape at 2 cm intervals, it was unable to provide a specific measure of

surface roughness. The chain method (Saleh, 1993) compares favourably to the profile

metre measure but provides a more detailed surface roughness measurement

(depending on the size of chain links used), and allows the calculation of a surface

roughness index.

Surface roughness was assessed both perpendicular to (SRP) and in-line with (SRI) the

direction of the tines. This reflects the two runoff pathways identified in the field (Figure

5.5). For SRP a chain with 3 mm links, that was 1 m (at 175 mm depth testing) or 1.5 m

(250 and 300 mm depths) in length was carefully placed across the disturbed surface

at the same points at which the profile metre measurements had been taken (Figure

5.6). The horizontal distance covered by the chain was measured, recorded and

divided by the original chain length. This was then subtracted from 1, to provide an

Wheeling

Raised
bed

Raised
bed

Figure 5.5. The two water runoff pathways from an asparagus raised bed system

demonstrating the need for two different SR measures. 1. Runoff flows from the

top of the raised beds (dashed line) into the wheeling (relevant to SRP). 2. Runoff

flows downslope in the wheeling (relevant to SRI).

1

1
2
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index of roughness, with 0 equating to a completely smooth surface (Equation 7). This

was repeated for SRI using the 1 m length of chain placed along the central line of the

disturbance at three separate points (Figure 5.6).

Figure 5.6 Measurement of surface roughness by the chain method, both

perpendicular to (SRP; (1) and in-line with (SRI; (2) the tine direction.

SR = 1 - (L1 / L2)

(Equation 7)
Where SR = surface roughness, L1 = length of chain when laid on the

surface (m), L2 = original length of chain (m)

Statistical analysis5.1.3.5

For all analysis the data was checked for normal distribution using residual analysis.

Outliers were identified and removed as appropriate. Data was then analysed for

statistical significance (p ≤ 0.05) using full factorial ANOVA. Where statistical 

differences were observed this was followed by post-hoc Fisher LSD.

Potential root damage5.1.3.6

As each tine interacts with the soil it has the potential to damage asparagus roots. This

damage can stress the plant making it susceptible to disease (Nigh, 1990) and could

facilitate fusarium infection (Lim Group, 2013). Furthermore, this can reduce asparagus

yields and the life span of the crop.

1 2

Scale

6 cm

Scale

1 cm
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This risk can be considered by looking at both the area of the tine leading edge and

DBG. To estimate the potential root damage, the leading edge surface area of each tine

configuration was calculated (Figure 5.7). This takes into account the potential for roots

to be cut or damaged by the tine leading edge as it passes through the soil. The size of

the DBG area was also taken into consideration as larger areas have the potential to

disturb and damage more roots.

Figure 5.7. Plan view of the leading edge area of each tine (shaded) at 175 mm

depth (the dashed line).

Scale

100 mm
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5.2 Results

Soil disturbance5.2.1

Of the five tine configurations tested, the currently adopted WT did not generate the

highest level of DBG at any of the depths tested (Figure 5.8).

Figure 5.8. The mean area of DBG (m2) generated by each tine configuration at

each tested depth. Error bars indicate ±1 SE. For statistical differences between

tine configurations see Appendix B.3, Table_Apx B-3.

It was expected that the greatest area of DBG would be generated by the MPP, WT and

shallow leading tine configurations. This is because the MPP generates two distinct

area of disturbance. The increased width of the WT would create a greater breadth of

disturbance than NT. Similarly this would be expected to occur with the addition of

shallow leading tines. However, this was the case with MPP, WT and WSLT often

generating the large areas of DBG across all depths.

The MPP created significantly more DBG (5.1 m2 at 175 mm; Figure 5.8) than any other

tine configuration. This was almost 1.5 times the area disturbed by the WT. The WT

generated the second highest DBG of 3.4 m2, whilst the remaining tines did not differ

significantly from each other. At 250 and 300 mm there was no significant difference
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between the WT (6.3 and 8.4 m2), MPP (6.7 and 8.0 m2) and WSLT (6.5 and 8.5 m2).

However, these differed significantly from the NT and NSLT. The NT generated the

least DBG of 3.8 m2 at 250 mm. At 300 mm both the NT and NSLT generated the least

DBG at 4.6 and 5.7 m2 respectively.

It was also expected that the tines generating the greatest area of DBG (MPP, WT and

WSLT) would also generate the greatest DAG. This is because a greater volume of soil

is being disturbed, increasing the volume of the soil. This was found to be the case as

the MPP generated a significantly greater area of DAG (3.1 m2) at 175 mm depth as

compared with all other tine configurations (Figure 5.9). At 250 mm and 300 mm the

MPP, WT and WSLT created significantly higher DAG than the NT and NSLT.

Figure 5.9. The mean area of DAG (m2) generated by each tine configuration at

each tested depth. Error bars indicate ±1 SE. For statistical differences between

tine configurations see Appendix B.3, Table_Apx B-3.

When the DBG profiles were graphed it was possible to see the extent of the cross

sectional area of the tine disturbance and the different profile shapes generated (Figure

5.10). There was little difference in profile shape between NT and NSLT and WT and

WSLT. However, one notable difference between WT/WSLT, NT/NSLT and MPP

profiles was observed. Typically in MPP, NT and NSLT profiles disturbance radiates at
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a uniform angle right up to the soil surface. However, in both WT and WSLT the angle

is less uniform with a notch present (Figure 5.10). This notch becomes more defined

with depth and could mean that the soil at depth is being compacted and not loosened;

the tine is operating below the critical depth.

Figure 5.10. Soil disturbance profiles for the NT and WT at 175 mm. See

Appendix B.3, Figure_Apx B-9 to B-11 for profiles of tines at all depths.
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Change in bulk density5.2.1.1

It was expected that multiple tines would result in the greatest reduction in bulk density.

This is because the soil becomes increasingly disturbed by each tine resulting in a

greater porosity.

However, this was not the case with few significant differences in bulk density reduction

at each cultivation depth (Table 5.5). All tines reduced bulk density by one third or more

of the original bulk density. At 175 mm the reduction in bulk density was greater with

the WSLT as compared with the MPP, NSLT and NT. However, the initial bulk density

for both WT and WSLT at 175 mm was significantly greater than all other treatments.

Furthermore, at 300 mm NT generated a significantly higher reduction in bulk density

as compared with NSLT, WT and WLST.

Table 5.5. Mean soil bulk density (g cm-3) both prior to SSD (measured) and post

SSD (calculated). Within each variable and working depth, different letters

following results denote statistical differences (p ≤ 0.05). 

Working

depth

(mm)

Tine

Initial bulk

density

(g cm-3)

Estimated post

SSD bulk

density

(g cm-3)

Reduction in

bulk density

(g cm-3)

Percentage

reduction in

bulk density

(%)

175

MPP 1.50 a 0.93 a 0.57 a 38

NSLT 1.50 a 0.91 a 0.59 a 39

NT 1.53 a 0.99 a 0.54 a 35

WSLT 1.60 b 0.89 a 0.71 b 44

WT 1.60 b 0.97 a 0.63 ab 39
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Working

depth

(mm)

Tine

Initial bulk

density

(g cm-3)

Estimated post

SSD bulk

density

(g cm-3)

Reduction in

bulk density

(g cm-3)

Percentage

reduction in

bulk density

(%)

250

MPP 1.57 a 1.02 a 0.54 a 35

NSLT 1.53 a 1.02 a 0.51 a 33

NT 1.53 a 0.93 a 0.60 a 39

WT 1.57 a 1.02 a 0.55 a 35

WLST 1.53 a 0.96 a 0.58 a 38

300

MPP 1.57 a 1.02 a 0.55 ab 35

NSLT 1.53 a 1.00 a 0.53 a 35

NT 1.53 a 0.91 a 0.62 b 40

WT 1.57 a 1.04 a 0.52 a 33

WLST 1.50 a 1.02 a 0.48 a 32

Surface roughness5.2.2

It was expected that the simplest tine arrangements would generate the greatest

surface roughness. This is because with minimum soil contact it will break the soil into

larger peds generating a coarser, rougher surface than soil that has been worked more

by multiple and bent-leg tines. However, this was not the case with no significant

difference in SRP between all tine configurations at 175 and 250 mm (Figure 5.11).

Furthermore, at 300 mm the WSLT generated significantly greater SRP (0.34) than the

WT, NT and MPP.
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Figure 5.11. The mean SRP resulting from each tine configuration at each tested

depth. Error bars indicate ±1 SE. For statistical differences between tine

configurations see Appendix B.3, Table_Apx B-3. NB. An index of zero equates

to a perfectly smooth surface.

SRI showed more significant differences than SRP (Figure 5.12). These results are

more akin to those expected. At 175 mm the NT generated a significantly higher SRI

(0.45) than all other tines. At 250 mm the NT continued to create greater SRI (0.44) as

compared with WT, WSLT and MPP. Furthermore, at 300 mm no significant difference

occurred between the WSLT (0.40), NSLT (0.38) and NT (0.37) (Figure 1.10).

However, these were associated with significantly higher levels of SRI as compared

with the WT and MPP.
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Figure 5.12. The mean SRI resulting from each tine configuration at each tested

depth. Error bars indicate ±1 SE. NB. An index of zero equates to a perfectly

smooth surface. For statistical differences between tine configurations see

Appendix B.3, Table_Apx B-3.

Root damage5.2.3

It was expected that tines with the greatest leading edge surface area would be tines

made up of the greatest components (wings and additional legs) such as the WT,

WSLT, NSLT and MPP. This is because the WT wings have a large angled surface

area. Furthermore, the presence of multiple tines such as the WSLT and NSLT and the

MPP also increases the leading edge surface area. However, this was the case with

WSLT having the greatest area (Table 5.6) followed by the WT. This was 9 times

greater than the NT, and 3.5 times that of the MPP. Furthermore the addition of shallow

leading tines increased the potential root cutting area. The NT followed by the MPP

and NSLT had the smallest leading edge surface area.
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Table 5.6. The leading edge area for each tine geometry and configuration.

Calculations are included in Appendix B.3.1.

Tine type Tine leading edge surface area (m2)

Foot Wing Leg Total area

NT 0.004 N/A N/A 0.004

WT 0.004 0.032 N/A 0.036

MPP 0.004 N/A 0.006 0.01

NSLT 0.01 N/A N/A 0.01

WSLT 0.01 0.032 N/A 0.042

N/A not applicable

Draught force5.2.4

It was expected that the tines with the greatest components, such as wings and

multiple legs would exert the greatest draught force to move through the soil. This is

because of the increased frictional resistance that comes with an increased surface

area in contact with the soil. This was found to be the case with WT and WSLT exerting

the most force and NT the least. At 175 mm both the WSLT and WT exerted

significantly more draught force as compared with the other tines with values of 2.75

and 2.55 kN respectively (Figure 1.11). The NT exerted the least draught force at 1.31

kN (Figure 5.13). At 250 mm draught forces increased for all tine configurations, by

between 8 and 11 times that of the 175 mm depth values. The WSLT exerted

significantly more force (25.7 kN) than all other tine configurations. The NT and NSLT

exerted the least draught of 14.3 and 14.7 kN respectively. At 300 mm draught force

increased again for all tine configurations. Unexpectedly, the MPP required the highest

draught force of 37.0 kN, whilst the NT and NSLT required the lowest (22.3 and 19.7

kN).
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Figure 5.13. The mean draught force exerted by each tine configuration at each

tested depth. Error bars indicate ±1 SE. For statistical differences between tine

configurations see Appendix B.3, Table_Apx B-3.

Specific draught5.2.5

It was expected that the lowest specific draught would be created by the MPP and NT

and NSLT. This is because the MPP created the greatest area of disturbance, whist the

NT exerted the least draught force and the addition of shallow leading tines generates

increased disturbance for little additional draught force. However, this was the case

with the MPP, NT and NSLT demonstrating significant reductions in SD, although not

consistently with depth. At 175 mm the MPP had significantly lower specific draught

(0.41 kN m-2) as compared with WT, WSLT and NSLT. However, it was not significantly

different from the NT (0.49 kN m-2). The WSLT (0.98 kN m-2) had significantly higher

specific draught than all other tines. Both narrow tine configurations had significantly

less specific draught than the winged tine configurations (Figure 1.12). At 250 mm

values for all treatments increased by between 4 and 8 times that recorded at 175 mm.

NSLT had the least specific draught (2.7 kN m-2) as compared with NT, WT and WSLT.

However, it was not significantly different from the MPP of 3.3 kN m-2. At 300mm no

significant difference in specific draught was observed between the different tine

configurations.
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Figure 5.14. Mean SD (kN m-2) required by each tine configuration at each tested

depth. Error bars indicate ± 1 SE. For statistical differences between tine

configurations see Appendix B.3, Table_Apx B-3.

Considering SDD, where the specific draught includes both DAG and DBG, significant

differences were only observed at 175 mm. At this depth the MPP (0.25 kN m-2), NT

(0.32 kN m-2) and NSLT (0.35 kN m-2) were the most efficient, generating the most DAG

and DBG for the least draught when compared with the other tines. In comparison to

SD, SDE generates lower values for each treatment. This is to be expected as draught

force is considered over a greater area with the inclusion of DAG. This also has the

effect of reducing statistical variation between results, especially between the narrow

tine configurations.
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Figure 5.15. Specific draught for soil disturbance (SDD) (kN m-2) required by each

tine configuration. Error bars indicate ±1 SE. For statistical differences between

tine configurations see Appendix B.3, Table_Apx B-3.

Tine suitability for Shallow Soil Disturbance (SSD)5.2.6

In order to summarise the overall effectiveness of each tine type on soil disturbance

several performance indicators were identified from the tested parameters (Table 5.7).

For each performance indicator each tine was graded against the currently adopted

WT and ranked using the Pugh ranking matrix (Burge, 2009). A worked example is

given in Table 5.8. Where tine results showed a positive statistical difference (p ≤ 0.05) 

as compared with the WT (Table 5.7) a ‘+’ was assigned. Negative statistical

differences were assigned a ‘-‘, and where no significant difference was observed an

‘S’. Within each tine, the number of ‘+’ and ‘-‘ classes were totalled and the ‘-‘ total

subtracted from the ‘+’ total. This final value (with 3 in this case being the best, Table

5.8) was ranked from the most effective (1) to the least effective (max. 5). Once

ranked, the top 3 tines at 175 mm (field cultivation depth) were selected for testing in

the Phase 2 field trials. This restriction was a result of field trial equipment availability.
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Table 5.7. Performance criteria for Pugh ranking matrix, the desired effect on soil

properties and the positive result sought.

Performance
indicator

Desired effect of soil properties
Optimum positive

result

SDD Greatest disturbance for minimum force
exertion.

Low

DBG Good compaction alleviation, reducing bulk
density and increased infiltration potential.

High

DAG Good mass of soil above ground creating
surface roughness.

High

SRP A rough surface perpendicular to the line of
cultivation.

High

SRI A rough surface along the line of cultivation. High

Change in
bulk density

A reduction in bulk density, increasing pore
space.

Low

Table 5.8. A worked example of the Pugh ranking matrix as applied to the 175

mm results.

Criteria

Soil bin results Pugh matrix ranking

W
T

W
S

L
T

N
T

N
S

L
T

M
P

P W
T

W
S

L
T

N
T

N
S

L
T

M
P

P

SRP 0.24 a 0.22 a 0.21 a 0.31 a 0.23 a S S S S S

SRI 0.34 a 0.22 b 0.45 c 0.36 a 0.30 ab S - + S S

SDE 0.45 b 0.55 c 0.32 a 0.35 a 0.25 a S - + + +

DBG 3.41 b 2.82 a 2.68 a 2.92 a 5.07 c S - - - +

DAG 2.21 a 2.25 a 1.46 b 1.9 a 3.11 c S S - S +
BD
reduction 0.63 ab 0.71 b 0.54 a 0.59 a 0.57 a S S S S S

Total + 0 0 2 1 3

Total - 0 3 2 1 0
Total
score 0 -3 0 0 3

Rank 2 5 2 2 1
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Pugh ranking matrix results (Table 5.9) showed that the MPP was the optimal tine

configuration for soil disturbance at 175 mm (Table 5.9), the current depth of

cultivation. The WSLT was the least optimal. Three tines ranked jointly; the WT, NSLT

and NT. Of these three, only two tines could be selected in addition to the MPP for the

Phase 2 field trials. These were the currently adopted WT (against which the others

could be compared) and the NSLT, this generated a better ‘-‘ and ‘+’ scoring than the

NT.

At 250 mm depth the NSLT configuration was ranked the most optimal tine and the NT

the least optimal (Table 5.9). At 300 mm depth the WSLT ranks the highest, whilst the

NT and NSLT are jointly assigned the lowest rank (Table 5.9).

Table 5.9. Pugh ranked tine configurations for each cultivation depth. Full

calculations are available in Appendix B.3.1, Table_Apx B-4.

Tine configuration
Cultivation depth (mm)

175 250 300

MPP 1 2 2

NSLT 2 1 5

WT 2 2 2

NT 2 5 2

WSLT 5 2 1
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5.3 Discussion

Soil disturbance5.3.1

From the results it is clear that the currently adopted WT is out-performed by other tine

configurations in terms of DAG, DBG and SRI at the current on-site cultivation depth of

175 mm. Application of the WT at a greater depth however would achieve improved

disturbance (DAG and DBG) making it one of the significantly highest tines (with MPP

and WSLT) at 250 and 300 mm depth.

Below ground soil disturbance5.3.1.1

At 175 mm, the MPP created a larger area of DBG than the currently adopted WT. The

success of the MPP at 175 mm can be attributed to the spatial configuration of the

tines in this treatment, with two tines running parallel, creating two separate entry

points into the soil profile which disturbs two distinct areas.

Winged tines typically increase the lateral extent of DBG by forcing the soil mass to flow

over the wings (Spoor, 2006). This should result in 1.5 times more DBG than non-

winged tines (Spoor and Godwin, 1978). However, results show that the WT achieved

just 21 % additional DBG at 175 mm when compared with the NT. At 250 and 300 mm,

the WT created over 1.5 times more DBG as compared with the NT. This suggests that

with increased depth the wings are disturbing soil more effectively, as the closer the

wings are to the soil surface, the less soil lift will occur. This effect was observed from

photographs taken during testing where the top of the wing plates were visible as it

passed through the soil at 175 mm depth.

The presence of a distinct notch in the WT below-ground cross section profile as

compared with the NT suggests that the tine is operating below the critical working

depth (Figure 5.10). This means that the soil is no longer being loosened at depth, as a

result of confining forces preventing the upward movement of the soil. Instead it is

forced forward and sideways resulting in compaction (Spoor and Godwin, 1978). If this

is true in the field, then the current loosening operation is generating as much DBG as it

should be. Furthermore, it is generating an impermeable base to the disturbance and

so would restrict infiltration exacerbating the compaction further at depth. This will have

serious consequences in terms of reducing water infiltration down the soil profile as

well as possible hindrance to root development. However, owing to the different soil

properties affecting critical depth; soil compressibility, moisture content and bulk
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density in the field (Spoor, 2006), it cannot necessarily be assumed that this is also

taking place in the field.

Above ground soil disturbance5.3.1.2

As the DBG increases, so too does DAG. This is to be expected as the area loosened

increases (DBG) the volume of soil expands and moves upwards, thus generating a

larger area of DAG. The DAG measurement represents the new pore space created by

SSD. This increased pore space will result in a reduction in bulk density. This is

demonstrated by calculated reductions in bulk density from all SSD types. Furthermore,

the DAG increases surface roughness and depression storage on the soil surface.

Differences in estimated bulk density reductions can largely be accounted for by a

significantly greater initial bulk density (WSLT and WT at 175 mm). However, at 300

mm this is not the case. The NT results in a significantly greater bulk density with an

initial bulk density not significantly different from the other tines. This could be

attributed to the type of soil disturbance undertaken by the NT (fracture at a 45 degree

angle), generating greater pore spaces or larger pores than the other SSD types that

result in greater soil rearrangement.

Surface roughness5.3.1.3

Winged tines typically result in a greater rearrangement of the soil than non-winged

tines as the tine point first fractures the soil, after which it is lifted over the wings (Spoor

and Godwin, 1978). Therefore, it would be expected that the winged tine treatments

would generate the greatest surface roughness. However, this study shows that the

greatest SRP was achieved by the action of both NSLT and WSLT. Furthermore, the

greatest SRI was achieved using the NT.

It was observed that the resulting surface roughness from the WT comprised of much

finer soil clods than from the NT. The soil fracture and partial lift undertaken by the NT

left large clods of compacted soil on the surface, generating a rougher surface. The

reduced roughness measured from the WT can be attributed to the combined effect of

soil rearrangement by the wings. The more the soil was fractured, the looser the soil

became and without any inherent structure, the soil broke down into very small soil

clods. This resulted in a relatively smooth surface.

However, whilst large surface clods are here viewed as beneficial to erosion control it is

not considered so in the field. Spoor and Godwin (1978) observed that the limited soil
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rearrangement by narrow tines could be more likely to fall back into place and re-

compact than greater rearranged soil –such as that achieved with winged tines- thus

reducing the longevity of effect of the initial loosening. Despite this it could be argued

that smaller clods (as produced by winged tine configurations) would be more readily

broken down under rainfall, compaction and soil surface sealing (insert ref). However,

when combined with a surface cover, clod break down by rainfall and sealing could be

reduced and the longevity of disturbance and the associated improved infiltration could

be increased.

Root damage5.3.1.4

The type and degree of DBG will have an effect on the tine’s potential to damage

asparagus roots. A smaller cross sectional area of DBG would reduce the risk of root

damage as a smaller potential root-holding soil mass is disturbed. Therefore, the NT

configurations would most minimise root damage at 175 mm whilst the WT and MPP

could potentially result in the most root damage. However, the shape of the DBG would

also have an effect. For example, a narrow but deep area of DBG may have the same

area as a wide but shallow DBG but if the roots are more concentrated at depth then the

narrow but deep DBG could result in higher root damage potential. In this study the only

real difference in shape is that of the MPP that targets a different area of the wheeling

to the other tine configurations. This area may be of a lower root density and thus result

in less root damage.

The type of soil disturbance could also affect the likelihood of root damage. The

rearrangement associated with the winged tine could result in more root damage due to

a greater soil movement; lifting and lowering both from the tine foot and over the wings.

A non-winged tine just lifts and lowers the soil mass over the tine foot, potentially

resulting in less root breakage.

The WSLT and WT have the greatest leading edge area thus increasing the likelihood

of cutting roots that lie in its path than the other tines. The WT vertical arrangement

(the bulk of mass being situated at the base of the tine) also means that this potential

cutting area is concentrated at depth where roots are perceived as most likely to be

(Figure 5.2). Whilst the MPP with a much smaller tine surface area than the WT and

WSLT and less mass at depth has a reduced potential root impact. The addition of

shallow leading tines might also reduce root damage despite having a greater potential
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cutting area, as the roots may not be present at the shallower depth to which they

cultivate.

Forces5.3.2

Draught force5.3.2.1

The high draught forces observed for the WT at 175 and 250 mm are to be expected.

This configuration has a greater leading edge area than other configurations creating a

larger frictional component as it is pulled through the soil (Figure 5.7).

Specific draught5.3.2.2

The MPP had one of the lowest SD results across two sampling depths (175 and 250

mm), something that was not observed with any other tine. This was a result of the

MPP exerting a large amount of draught force whilst also generating the greatest DBG.

NT was not significantly different from the MPP at 175 mm. This is despite generating

the least DBG, as it also exerted significantly lower draught force as compared with any

other tine. This is helped by the small leading edge area of the tine minimising the

frictional resistance as it passes through the soil. The success of the NSLT at 250 mm

suggests that the shallow leading tines are working more effectively at this depth

generating sufficiently greater DBG in combination with the NT. Both winged tine

configurations have the highest SD at 175 mm, which reflects the increased frictional

resistance as well as the observed incomplete engagement of the wings with the soil.

SD then decreases with depth for both winged tine configurations, as the wings

become fully engaged.

SDD shows higher values as compared to SD results. This is to be expected as these

values consider draught force over a larger area of disturbed soil; i.e. both DAG and

DBG. Statistical differences between tine configurations do not change much with the

inclusion of DAG in SDD. This is because DAG and DBG increase at the same rate.

Tine suitability for SSD5.3.3

At 175 mm the MPP ranks as the most effective tine configuration for soil disturbance.

This is a result of the significantly higher DAG and DBG generated and the SD. The high

degree of DAG and DBG is to be expected as two tines run in parallel through the soil

creating two separate disturbance areas. The effect of two tines working in combination

also results in an increased draught efficiency.
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If compaction at depth is to be addressed, the Pugh matrix ranking suggests that the

NSLT would be most effective at 250 mm, and the WSLT at 300 mm. This highlights

the benefits of adding shallow leading tines. The role of the shallow leading tine is to

initially disturb soil in the path of the main tine, thus reducing the confining forces

(Spoor, 2006). This enables the main tine to disturb the soil using less draught and so

increases the area of DBG.

Soil disturbance and erosion control5.3.4

The soil property changes observed in this study are not just pertinent to compaction

alleviation but will also have an effect on runoff and erosion processes. Soil

disturbance reduces compaction by increasing soil porosity. This increased soil

porosity will increase infiltration (Davies et al., 2001) and reduce runoff (Gomez et al.,

1999, Meek et al., 1992 and Jasa and Dickey, 1991). Furthermore, increased soil

porosity means a greater below ground water storage capacity also resulting in

reduced runoff volumes. A reduction in runoff (rate and volume) will reduce the

capacity of the runoff to entrain and transport detached soil particles, thus reducing

erosion (Morgan, 2005). The resulting DAG increases the volume of soil (by reducing

bulk density) resulting in a roughened area of soil above ground. This has the potential

to impart a frictional component to runoff, reducing velocity and the capacity of runoff to

entrain soil particles (Burwell et al., 1966). Furthermore a roughened surface can

increase surface depression storage (Idowu et al., 2002). Therefore the tine

configurations that significantly increase the extent and degree of soil disturbance

should also reduce runoff and soil erosion.

5.4 Conclusion

Shallow soil disturbance results in a change in soil properties; it reduces bulk density,

increases porosity and increases surface roughness. This study has assessed the

resulting changes in soil properties from different tine configurations under controlled

conditions at three different depths. Tine configurations including geometry,

arrangement and depth have shown to significantly change the degree and extent of

soil disturbance as well as tine dynamics in the case of all parameters tested.

Therefore the tested hypothesis can be accepted. Furthermore, results show that the

currently adopted winged tine compares unfavourably to the other tine configurations at
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the current cultivation depth (175 mm). Furthermore, the design of the currently

adopted winged tine is compromising its soil disturbance potential.

The observed changes in soil properties will lead to a different soil system response to

rainfall, affecting runoff and erosion control. Based on the results of this study, on-site

erosion control potential could be improved by using the modified para-plough at the

current depth of cultivation. Where root damage is not a concern, such as in recently

planted asparagus fields with limited root development, or for non-asparagus row

crops, erosion control could be further improved by increasing the depth of cultivation.

In this case, the NSLT (at 250 mm) and the WSLT (at 300 mm) would be the most

effective for compaction alleviation and thus erosion control.

Whilst this study has tested tine configurations under controlled conditions, both the

soil type and the bulk density used were similar to that observed in the field. Therefore,

whilst some conditions such as soil moisture content and whether the winged tine is

operating below the critical depth may differ in the field, the comparative performance

of each tine should not. However, it is important to check whether the differences

observed under these conditions do have an effect on soil physical conditions and thus

erosion control in the field under natural rainfall conditions. Therefore, field testing

should be undertaken to relate these results to in-field effectiveness of tillage

configurations on runoff and erosion.

The changes in soil properties observed in the soil bin relate to conditions obtained

immediately following soil disturbance. In a field setting these conditions can degrade

rapidly with time through rainfall impact and trafficking. In order to maintain the

longevity of the initial soil disturbance effect mulch can be added. This can protect the

shallow soil disturbance from rainfall degradation and help keep it open for longer.
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6 PHASE 2 FIELD TRIALS

6.1 Methodology

In order to test the research hypotheses (Chapter 3) the following methodology was

developed.

The Phase 2 experimental programme took place between 2nd May to 26th November

2013 at Cobrey Farms, Coughton, Ross on Wye. A different field was used for Phase 2

(SO612219) to that used for Phase 1. This was so that residue effects of Cp and St

applied in Phase 1 were avoided. The ‘new’ field had been under asparagus production

for 10 years. Replicated field runoff plots were setup in which the three shallow soil

disturbance practices selected from the Soil Bin experimental work and mulch

treatment combinations were tested (Section 6.1.1). The runoff sampling and analysis

methods used were identical to those reported for the Phase 1 field trials (Chapter 4).

Treatment selection6.1.1

Shallow soil disturbance6.1.1.1

SSD selection was based upon the top three ranked tines from the Soil bin experiment

results (Chapter 5). The treatments tested in Phase 2 are detailed in Table 6.1.

Surface mulch6.1.1.2

In this experiment only wheat straw mulch was applied at a single application rate (6 t

ha-1). Wheat straw was firstly selected based upon its consistency as a mulch product

as compared to the variable nature of PAS 100 compost due to the complex nature of

the feedstock. Secondly, it has generated good and consistent results in both the

Phase 1 Field trials and the initial proof of concept trials (Niziolomski, 2011). Unlike

Phase 1, straw used in Phase 2 was un-chopped for ease of setup.
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Table 6.1. Summary of Phase 2 experimental treatments and their associated

reference codes.

Treatment

number

Shallow soil

disturbance†
Tine type‡ Mulch type* Treatment code

1 SSD MPP No mulch MPP No mulch

2 SSD MPP St MPP St

3 Non-SSD N/a No mulch Non-SSD Control

4 Non-SSD N/a St Non-SSD St

5 SSD WT No mulch WT No mulch

6 SSD WT St WT St

7 SSD NSLT No mulch NSLT No mulch

8 SSD NSLT St NSLT St

†Non-SSD = Without shallow soil disturbance; SSD = With shallow soil disturbance.
‡MPP = Modified para-plough; WT = Winged tine; NSLT = Narrow tine with two shallow
leading tines. *St = Straw. N/a = Non applied

Experimental setup6.1.2

Figure 6.1. Overview of Phase 2 experimental setup.
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Runoff plots6.1.2.1

Runoff plots were setup similar to that described in the Phase 1 Field Trials

methodology, but with the following modifications:

• Water tanks were situated below the soil surface in a ditch at the end of the

treatment area (Figure 6.1). This was to ensure a sufficient drop for effective

runoff and detached soil capture, and to minimise pipe blockages.

• Treatment plots were 10 m shorter than in Phase 1 (30 m in length), thus

reducing the runoff catchment area. This was a precaution to reduce the risk of

tanks filling to their maximum capacities following multiple rainfall events thus

masking the differences in runoff volume between treatments.

• Plots were of shallower slope gradients than Phase 1. This was again a

precaution to reduce the risk of tanks filling to their maximum capacities

following multiple rainfall events thus masking the differences runoff volume

between treatments. This meant that plots were situated mid-slope for uniform

gradients and so were bounded by a purpose made ditch at the top of the plot

to prevent runoff entering the plots from upslope areas.

Experimental design6.1.2.2

The experimental design was randomised and included an untreated control (Non-SSD

Control). Each treatment was repeated in triplicate. A pseudo control was also included

(Non-SSD St) for a complete statistical design. Shallow soil disturbance was first

randomly assigned, followed by the presence/absence of mulch (Table 6.2).
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Table 6.2. Phase 2 experimental design.

Plot # Treatment code Plot # Treatment code

1 MPP No mulch 13 WT No mulch

2 Non-SSD Control 14 WT No mulch

3 WT St 15 MPP St

4 MPP St 16 Non-SSD St

5 NSLT St 17 MPP No mulch

6 MPP St 18 Non-SSD St

7 Non-SSD Control 19 Non-SSD St

8 NSLT St 20 NSLT No mulch

9 NSLT No mulch 21 Non-SSD Control

10 MPP No mulch 22 WT No mulch

11 NSLT St 23 NSLT No mulch

12 WT St 24 WT St

Non-SSD = Without shallow soil disturbance, MPP = Modified para-plough, WT =
Winged tine, NSLT = Narrow with shallow leading, St = Straw

As with Phase 1, typical farming operations of cloche removal, harvesting and spraying

continued both around and within the experimental plot area for the duration of the

experiment. In order to facilitate spraying operations, two wheelings were left bare in

the middle of the experimental layout.

Treatment application6.1.2.3

Treatments were only applied to the asparagus wheelings. Shallow soil disturbance

was undertaken first, to a depth of approximately 175 mm (standard on-site practice).

Each treatment was applied on a wheeling-by-wheeling basis on an offset tractor

mounted bracket (Figure 6.2 and Appendix C.1). Straw was first weighed out and then

applied by hand to the designated plots.
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Figure 6.2. Shallow soil disturbance application using an offset mounted bracket.

Data collection and analysis6.1.3

The runoff sampling and analysis methods used were identical to those reported for the

Phase 1 field trials. Statistical analysis did differ as the Phase 2 experimental design

involved just two levels of treatment; SSD and mulch, this lent itself to a two-way full

factorial ANOVA.

Event driven hydrological response measurement was also identical to that of the

Phase 1 Field Trials. However, the analysis of this data did differ for RE1 definition. In

Phase 2, the RE1 was defined as the first rainfall event to generate runoff from > 50 %

of plots. This was intended to minimise the observed variation between replicates.

Field site characterisation6.1.4

Climate6.1.4.1

As discussed in Chapter 4 the average rainfall for Ross on Wye (SO601241) is 734

mm yr-1 (Met Office, 2014). During 2013, 771 mm was recorded on-site (SO614218).

For the duration of the Phase 2 field trial monthly rainfall was generally below the 20
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year average (Figure 6.3). The high rainfall experienced in October did not influence

results as samples were not collected over that period. Five sampling periods took

place in total (Table 6.3). However, Sampling Period 4 was omitted as only 2 out of 8

treatments generated runoff (Non-SSD Control and MPP No Mulch).

Figure 6.3. Rainfall data for Ross on Wye for 2013 as compared with the 20 year

average. Data courtesy of Cobrey Farms (2014) and the Met Office (2014).

Total rainfall across the Phase 2 collection period (1st May to 26th November 2013)

amounted to 428 mm. Approximately 65 mm of rainfall was received by treatments

prior to sample collection due to a delay in weather station installation. In addition, a

break in sampling occurred between Sampling Period 4 and 5, due to other work

commitments, over which 240 mm rainfall was recorded on-site. The rainfall

characteristics of each Sampling Period varied and are presented in Table 6.3.

Sampling Periods 2, 3 and 5 were associated with maximum rainfall intensities of 588,

792 and 792 mm hr-1 (based on a 1 minute logging interval). The occurrence of storm

based rainfall allowed a more event-based runoff and erosion monitoring programme

than in Phase 1.
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Table 6.3. A summary of the rainfall characteristics associated with each

Sampling Period.

Sampling

Period

Collection

period

Total

no.

days

Total

rainfall

(mm)

No.

rain

days†

No.

rainfall

events‡

Maximum

rainfall

intensity

(mm hr-1)*

Mean

rainfall

intensity

(mm hr-1)*

1
30th May -

6th Jun
8 3.6 2 3 N/a N/a

2
7th Jun -

24th July
48 16.2 1 1 588 54

3
25th Jul -

6th Aug
13 46.6 7 11 792 124

5
6th Nov -

26th Nov
21 28.8 5 5 792 97

†Rain days defined as ≥ 1.0 mm received. ‡Rainfall Events defined as ≥ 1.0 mm rain 
over a 10 minute period. *Based on a 1 minute logging interval. N/a; High resolution
data not available due to logging error.

Soil6.1.4.2

The documented soil properties identified for the Phase 1 field trials are also applicable

to Phase 2. Baseline characterisation of soil properties was undertaken as per the

Phase 1 methodology described in Chapter 4.

Table 6.4. Mean soil properties of Phase 2 Non-SSD Control plots. Within each

parameter, values followed by a different letter indicate statistical difference at p

≤ 0.05. 

Bulk density

(g cm-3)

Soil organic

matter (%)
Sand (%) Silt (%) Clay (%)

1.58 a 1.0 a 80.6 a 12.7 a 6.70 a

1.59 a 1.0 a 78.7 a 13.9 a 7.36 a
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Bulk density

(g cm-3)

Soil organic

matter (%)
Sand (%) Silt (%) Clay (%)

1.70 a 1.1 b 76.0 b 15.7 a 8.26 b

Few significant differences in soil properties were observed between control plots

(Table 6.4). Significant differences observed in organic matter (0.1 %) and sand and

clay content (2 %) are not large enough to result in a difference in treatment response.

No significant difference between treatment plot slopes was observed (Table 6.5).

Table 6.5. Mean slope gradient for each treatment type. Values followed by a

different letter indicate statistical difference at p ≤ 0.05. 

No. Treatment code Slope (degrees)

1 MPP No Mulch 3.2 a

2 MPP_St 3.0 a

3 Non-SSD Control 2.8 a

4 Non-SSD St 2.8 a

5 WT No mulch 3.0 a

6 WT St 3.0 a

7 NSLT No mulch 3.0 a

8 NSLT St 3.0 a

6.2 Results

Treatment codes referred to in this section are summarised in Table 6.1. Full factorial

ANOVA showed no significant interaction effects between SSD type and mulch for any

variables across all Sampling Periods. Despite this, distinct differences were evident

between treatments for some variables. In order to quantify these differences one-way

ANOVA was carried out in which some significant differences were evident between
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individual treatments. For example, in Sampling Period 1 the sediment concentration in

runoff was orders of magnitude greater from MPP No mulch plots than Non-SSD St,

NSLT St, MPP St, and WT St (Table 6.6), with different data populations. This

difference was not captured by full-factorial analysis as it was not a result of a

significant 2-way interaction between SSD and mulch (p-value = 0.44). However,

following one-way ANOVA a significant difference (p-value = <0.01) was observed

between individual treatment types MPP No mulch as compared with Non-SSD St,

NSLT St, MPP St, and WT St (Table 6.7).

Table 6.6. Sampling Period 1 results for sediment concentration (g l-1) in runoff

from each plot

Sampling Period Plot No. Treatment Addition Rep
Sediment

concentration (g l-1)

1 1 MPP No mulch 1 1.25

1 10 MPP No mulch 2 No data

1 17 MPP No mulch 3 1.04

1 2 Non-SSD No mulch 1 0.69

1 7 Non-SSD No mulch 2 0.68

1 21 Non-SSD No mulch 3 0.83

1 9 NSLT No mulch 1 1.12

1 20 NSLT No mulch 2 0.67

1 23 NSLT No mulch 3 0.55

1 13 WT No mulch 1 0.97

1 14 WT No mulch 2 0.41

1 22 WT No mulch 3 0.59

1 4 MPP St 1 0.38

1 6 MPP St 2 0.64

1 15 MPP St 3 0.45
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Sampling Period Plot No. Treatment Addition Rep
Sediment

concentration (g l-1)

1 16 Non-SSD St 1 0.18

1 18 Non-SSD St 2 0.17

1 19 Non-SSD St 3 0.36

1 5 NSLT St 1 0.27

1 8 NSLT St 2 0.47

1 11 NSLT St 3 0.58

1 3 WT St 1 0.42

1 12 WT St 2 0.31

1 24 WT St 3 0.28

Table 6.7. Significant differences in mean sediment concentration in runoff (g l-1)

for Sampling Period 1 following full factorial two-way and one-way ANOVA.

Within each ANOVA type, values followed by different letters denote statistical

significance (p ≤ 0.05). 

Treatment

Mean sediment concentration (g l-1)

Full factorial

two-way ANOVA

Full factorial

one-way ANOVA

MPP No Mulch 1.14 a 1.14 d

MPP St 0.49 a 0.49 abc

Non-SSD No Mulch 0.73 a 0.73 bc

Non-SSD St 0.24 a 0.24 a

WT No Mulch 0.66 a 0.66 bc

WT St 0.34 a 0.34 a
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Treatment

Mean sediment concentration (g l-1)

Full factorial

two-way ANOVA

Full factorial

one-way ANOVA

NSLT No Mulch 0.78 a 0.78 c

NSLT St 0.44 a 0.44 ab

Runoff volume (l)6.2.1

It was expected that plots with SSD and St would result in reduced runoff as compared

with Non-SSD No Mulch plots. This is because with SSD the soil porosity has been

increased; increasing infiltration and thus generating a greater water storage area

below the soil surface (Davies et al., 2001). Meanwhile, St imparts a surface roughness

that slows runoff allowing more time for infiltration (Foster et al., 1982a). Furthermore,

St provides surface depression storage as well as holding runoff back behind mini

dams that are formed with mulch movement (Brown et al., 1998).

Overall runoff volume6.2.1.1

Runoff volumes totalled across the entire sample collection period did not meet the

expectations outlined above. No significant differences were observed in runoff volume

between SSD or mulch alone, SSD and mulch interactions or individual treatments.

Individual Sampling Period runoff volume6.2.1.2

Individual Sampling Period results also did not meet the treatment expectations

outlined above, with no significant differences observed between mulch and SSD both

separately and in combination (Table 6.8, Figure 6.4). This is a result of a large

variation in runoff volumes between replicates for most treatments.



156

Table 6.8. Significance levels (p-values) of each treatment factor on runoff

volume, derived from full factorial and one-way ANOVA.

Dependent

variable

Sampling

Period

Full factorial ANOVA factors
One-way

ANOVA

SSD type

(MPP, Non-SSD,

WT, NSLT)

Mulch

(St/No

Mulch)

SSD and

mulch

(two-way

interaction)

Individual

treatment

type

Runoff

volume (l)

1 0.78 0.68 0.91 0.91

2 0.38 0.17 0.32 0.30

3 0.93 0.92 0.19 0.55

5 0.13 0.65 0.30 0.20

N.B. Results of full factorial ANOVA presented are across all treatment types. *Denotes
a statistically significant result (p ≤ 0.05). 

Event driven hydrological response6.2.2

It was envisaged that a detailed analysis of the hydrological response of treatments

(cumulative runoff volume, runoff rate and time to rainfall initiation) to the RE1 for each

Sampling Period would have the potential to highlight differences in treatment response

to rainfall that are not apparent in total runoff volume results presented above. The

rainfall characteristics of each Sampling Period RE1 are presented in Table 6.9.

It was expected that SSD and St treatments would be associated with different

hydrological responses to other treatments. This is because SSD would result in

greater initial infiltration and St reduce runoff velocity. However, this was not the case

with few significant differences between treatment hydrological responses. This is due

to a large variability within treatment replicates due to different runoff response times,

as well as homogenous values between plots that made data often not suitable for

ANOVA. Only Sampling Periods with significant differences will be discussed here.
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Figure 6.4. Relative runoff volume (l plot-1) from each treatment as compared with

the Non-SSD Control (the dashed line). For statistical differences between

treatments see Appendix C.3, Table_Apx C-2.

Table 6.9. RE1 characteristics for each Phase 2 Sampling Period.

Sampling

Period

RE1

duration

(mins)

Rainfall

(mm)

Percentage of

Sampling

Period rainfall

(%)

Mean

intensity

(mm hr-1)

Peak

intensity

(mm hr-1)

Frequency*

(years)

1 Data unavailable due to logging error.
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2 19 15.2 94 54 588 20

3 3 8.2 18 82 432 5

4 10 14.4 50 123 432 > 30

*Frequency calculations based upon intensity (mean) and duration curves (Corney,
2011).

Table 6.10. Significance levels of the treatment effect on RE1 cumulative runoff

volume and runoff rate derived from one-way ANOVA.

Time from RE1

initiation (min)

Cumulative volume (l) Runoff rate (l min-1)

Sampling Period Sampling Period

1 2 3 5 1 2 3 5

0 N/v N/v N/v N/v N/v N/v

1 N/v 0.75 0.38 N/s 0.32 0.38

3 N/s 0.71 0.38 N/s N/s N/s

5 0.16* 0.68 0.37 0.22 N/s N/s

7 0.07* 0.68 0.39 0.24 N/v N/s

9 0.30 0.69 0.39 N/s N/s 0.94

11 0.30 0.69 0.39 N/s N/s 0.39

12 - - 0.40 - - N/s

13 0.30 0.69 - N/s N/s -

15 0.27 - - N/s - -

17 0.27 - - 0.98 - -

19 0.29 - - N/s - -

21 0.30 - 0.40 N/s - 0.01*

22 - 0.68 - - N/s -

30 0.30 - - N/s - -
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N/v; No variance within results. N/s; Data is not suitable for ANOVA (assumptions not

met).* Denotes significant differences (p ≥ 0.2). N.B. Values in italics are derived from 

the log of mean values.

Cumulative volume (l)6.2.2.1

Significant differences between treatments were only observed in Sampling Period 2

(Table 6.10). All treatments in Sampling Period 2 demonstrated a slow initial runoff

response despite high intensity rainfall at 1 minute (Figure 6.5). MPP No Mulch and WT

No mulch showed a significant delay in time to runoff initiation by 8 and 9.5 minutes as

compared with the Non-SSD Control (Appendix C.4, Table_Apx C-8). At 5 minutes post

rainfall initiation, WT No mulch, MPP No mulch and Non-SSD St had still not generated

any runoff, making them significantly different from WT St, MPP St, NSLT St and NSLT

No Mulch treatments. At 7 minutes post rainfall initiation, only WT No Mulch had not

generated runoff, this meant a significant reduction in cumulative runoff of 100 % as

compared with the Non-SSD Control. Furthermore, MPP No mulch and Non-SSD St

also generated significantly less cumulative runoff volume at 7 minutes as compared

with the Non-SSD Control by 83 and 74 % respectively.

Runoff rate (l min-1)6.2.2.2

Significant differences between treatments were only observed in Sampling Period 5

(Table 6.10). At 21 minutes (10 minutes post rainfall cessation), NSLT No mulch, MPP

St and WT St generated significantly higher runoff rates as compared with all other

treatments, as runoff from the other treatments had ceased.
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Figure 6.5. Runoff hydrographs for RE1 of Sampling Period 2. Cumulative runoff volume is shown at set intervals during the

rainfall event as well as 1 minute and 10 minutes post rainfall event cessation. For significant differences between treatments

see Appendix C.4, Table_Apx C-9.
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Figure 6.6. Runoff hydrographs for RE1 of Sampling Period 5. Cumulative runoff volume is shown at set intervals during the

rainfall event as well as 1 minute and 10 minutes post rainfall event cessation. For significant differences between treatments

see Appendix C.4, Table_Apx C-11.
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Total soil loss (kg)6.2.3

It was expected that the least total soil loss (TSL) would result from St treatments. This

is because the soil surface is protected from detachment by rain splash (Morgan,

2005). Furthermore, it would impart a roughness to the flow resulting in a reduced flow

velocity causing any soil particles entrained in the runoff to drop out. It was also

expected that SSD (MPP, WT and NSLT) would reduce TSL by increasing infiltration

thus reducing the transport capacity of the runoff.

Overall TSL6.2.3.1

Soil loss results totalled across all five Sampling Periods partially met the treatment

expectations outlined above with significant differences in TSL between individual

treatments (Table 6.11). This was not a result of a significant interaction between

mulch and SSD type, but a significant mulch effect. On average St resulted in a total

reduction in TSL of 81 % as compared to No mulch treatments. This resulted in

significant reductions between MPP St, WT St, Non-SSD St and NSLT St treatments of

87, 82, 77 and 76 % respectively as compared with the Non-SSD Control.

Table 6.11. Mean TSL (kg plot-1 and t ha-1) for each treatment across the entire

Phase 2 sample collection period. Values followed by different letters denote

statistical significance (p ≤ 0.05) following one-way ANOVA. 

No. Treatment TSL (kg plot-1) TSL (t ha-1)

1 MPP No mulch 4.09 b 0.91

2 MPP St 0.45 a 0.10

3 Non-SSD Control 3.54 b 0.79

4 Non-SSD St 0.83 a 0.18

5 WT No mulch 2.99 b 0.66

6 WT St 0.64 a 0.14
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No. Treatment TSL (kg plot-1) TSL (t ha-1)

7 NSLT No mulch 3.58 b 0.80

8 NSLT St 0.85 a 0.19

N.B. Results are reported in t ha-1 for ease of comparison with other studies.

Individual Sampling Period TSL6.2.3.2

Significant differences in TSL were only observed between St/No Mulch treatments and

individual treatments (Table 6.12). Treatment expectations outline in Section 6.2.3

were partially met with significant TSL reductions observed for St treatments. With

regards to an SSD effect this was only observed in Sampling Period 5 (Table 6.12),

with reductions in TSL associated with SSD treatments as compared with Non-SSD

treatments. Whilst no significant two-way interaction was observed between SSD and

mulch, significant differences were observed between individual treatment types

following one-way ANOVA (Table 6.12).

In Sampling Periods 1, 2 and 3 (Figure 6.7), St significantly reduced TSL by 54, 88 and

79 % respectively across WT, MPP, NSLT and Non-SSD treatments as compared to

the No Mulch treatments (Appendix C.3, Table_Apx C-6). This was reflected in

differences between treatments in Sampling Period 3 (Figure 6.7) where all St

treatments significantly reduced TSL as compared to the Non-SSD Control. The most

significant difference was observed from MPP St with an 84 % reduction in TSL as

compared to the Non-SSD Control. Non-SSD St generated the least significant

reduction (69 %) as compared to the Non-SSD Control, but did not differ significantly

from WT St or NSLT St treatments. All SSD No Mulch treatments were observed to

increase TSL as compared to the Non-SSD Control (Figure 6.7). However, this

difference was not significant. In Sampling Period 5 MPP and WT treatments

significantly reduced TSL both by 65 % as compared to Non-SSD treatments

(Appendix C.3, Table_Apx C-4). NSLT treatments also resulted in significant reductions

in TSL of 45 % as compared with Non-SSD treatments.
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Table 6.12. Significance levels of each treatment factor on TSL, derived from full

factorial and one-way ANOVA.

Dependent

variable

Sampling

Period

Full factorial ANOVA factors
One-way

ANOVA

SSD type

(MPP, Non-SSD,

WT, NSLT)

Mulch

(St/No

Mulch)

SSD and

mulch

(two way

interaction)

Individual

treatment

type

Total soil

loss (kg)

Total 0.38 <0.01* 0.42 <0.01*

1 0.90 <0.01* 0.92 0.18

2 0.63 <0.01* 0.55 0.05

3 0.69 <0.01* 0.08 <0.01*

5 0.03* 0.07 0.41 0.05

Results of full factorial ANOVA presented are across all treatment types. *Denotes a
statistically significant result (p ≤ 0.05). 
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Figure 6.7. Relative TSL (kg plot-1) from each treatment compared with the Non-

SSD Control (the dashed line). Filled circles denote a statistical difference from

the Non-SSD Control. For statistical differences between treatments see

Appendix C.3, Table_Apx C-2.
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Sediment concentration (g l-1)6.2.4

Significant differences in runoff sediment concentration were observed between mulch

and SSD factors as well as between individual treatment types (Table 6.13). Treatment

expectations were the same as with TSL, with the least sediment concentration in

runoff expected from St plots. This is because initial soil detachment will have been

prevented by surface protection afforded by straw and runoff velocity reduced by

surface roughness allowing soil particles to be deposited. This was found to be the

case with St treatments resulting in a significant reduction in sediment concentration in

the first three Sampling Periods.

Table 6.13. Significance levels of each treatment factor on sediment

concentration in runoff, derived from full factorial and one-way ANOVA.

Dependent

variable

Sampling

Period

Full factorial ANOVA factors
One-way

ANOVA

SSD type

(MPP, Non-SSD,

WT, NSLT)

Mulch

(St/No

Mulch)

SSD and

mulch

(two-way

interaction)

Individual

treatment

type

Runoff

sediment

concentration

(g l-1)

1 0.04* <0.01* 0.44 <0.01*

2 0.53 <0.01* 0.56 0.02*

3 0.37 <0.01* 0.39 <0.01*

5 0.26 0.34 0.25 0.59

Results of full factorial ANOVA presented are across all treatment types.
*denotes a statistically significant result (p ≤ 0.05). 

Furthermore, it was expected that SSD would also reduce sediment concentration. This

is because it too imparts a roughness to the flow reducing velocity in addition to

increasing infiltration resulting in a reduction in runoff and thus its capacity to entrain

and transport detached soil particles. However, this was not the case with no significant

differences observed between SSD and Non-SSD treatments.
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It was also expected that the combined effect of SSD and mulch on runoff and soil loss

would result in significant reductions in runoff sediment concentrations. This was found

to be the case, although not as a result of significant interactions between the two

treatment factors. Significant reductions were observed in sediment concentration

following one-way ANOVA from most SSD St treatments over 3 out of 4 Sampling

Periods.

St treatments significantly reduced sediment concentration in runoff across Sampling

Periods 1, 2 and 3. These reductions were of 55, 88 and 76 % respectively as

compared with the Non-SSD Control (Appendix C.3, Table_Apx C-6). This trend was

also evident in differences between individual treatment types. In Sampling Period 1,

only Non-SSD St and WT St significantly reduced runoff sediment concentration as

compared with the Non-SSD Control by 67 and 54 % respectively. This significant

difference was not observed with MPP St and NSLT St as a result of a greater variation

between replicates. In Sampling Period 2 and 3, all St treatments significantly reduced

sediment concentration. These reductions were 78 and 84 % (MPP St), 77 and 75 %

(Non-SSD St), 75 and 77 % (WT St) and 79 and 78 % (NSLT St) as compared with the

Non-SSD Control.

In Sampling Period 1, MPP treatments with and without St generated a significant 68 %

increase in sediment concentration as compared with Non-SSD treatments (Appendix

C.3, Table_Apx C-4). MPP treatments also generated significantly more runoff

sediment concentration (64 %) as compared with WT treatments. This difference was

also reflected between individual treatments, with significantly increased sediment

concentration with MPP No Mulch in Sampling Period 1 as compared with all other

treatments. This was an increase of 56 % as compared with the Non-SSD Control.
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Surface water quality guideline (0.025 g l
-1

) for suspended
sediments stipulated by EU Directive 75/440/EEC.

Figure 6.8. Mean sediment concentration (g l-1) in runoff across all Sampling

Periods. For statistical differences between treatments see Appendix C.3,

Table_Apx C-2. *Scales on the y axis vary.
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Total oxides of nitrogen (mg l-1)6.2.5

Significant differences in TON were observed between SSD treatments and mulch

treatments as well as between individual treatment types (Table 6.14). However, no

two-way treatment interactions were observed. It was expected that the least TON

would result from SSD plots. This is because SSD plots have a greater water storage

area that can reduce runoff and thus the concentration of TON. This was found to be

the case with SSD treatments resulting in some TON reductions. Furthermore,

reductions were expected as a result of surface depression storage created in St

treatments as well as N immobilisation by microbes associated with St decomposition

(Christenson and Olesen, 1998). However, this was not the case with a variable effect

observed from St treatments. It was also expected that the combined effect of SSD and

mulch would reduce TON. However, only in Sampling Period 1 was this observed and

not as a result of significant interaction effects.

Table 6.14. Significance levels of each treatment factor on TON in runoff, derived

from full factorial and one-way ANOVA.

Dependent

variable

Sampling

Period

Full factorial ANOVA factors
One-way

ANOVA

SSD type

(MPP, Non-SSD,

WT, NSLT)

Mulch

(St/No

Mulch)

SSD and

mulch

(two-way

interaction)

Individual

treatment

type

TON

concentration

(mg l-1)

1 0.18 <0.01* 0.75 <0.01*

3 0.03* 0.02* 0.18 0.01*

5 <0.01* 0.69 0.06 0.01*

Results of full factorial ANOVA presented are across all treatment types.
*denotes a statistically significant result (p ≤ 0.05). 

In Sampling Period 3 all SSD treatments significantly reduced TON as compared with

the Non-SSD Control (Figure 6.9). MPP, NSLT and WT treatments irrespective of

mulch all reduced TON by 73, 67 and 28 % respectively (Appendix C.3, Table_Apx C-
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5). This was reflected in differences between individual treatments with MPP No mulch

and WT No Mulch resulting in significant reductions of 73 and 52 % as compared with

the Non-SSD Control (Figure 6.9). In Sampling Period 5, only NSLT and WT

treatments independent of mulch resulted in reduced TON of 42 and 40 % respectively

as compared with the Non-SSD Control (Appendix C.3, Table_Apx C-5). This too was

reflected in differences between individual treatments with a 43 and 52 % reduction

from WT St and NSLT St treatments respectively as compared with the Non-SSD

Control (Figure 6.9).

St treatments independent of SSD first reduced TON in runoff by 73 % as compared

with No Mulch treatments in Sampling Period 1 (Appendix C.3, Table_Apx C-7). This

was reflected in differences between treatments with a reduction in TON from MPP St

(60 %), Non-SSD St (87 %), WT St (68 %) and NSLT St (67 %) as compared with the

Non-SSD Control (Figure 6.9). However, in Sampling Period 3, St treatments resulted

in an 173 % increase in TON as compared with No mulch treatments. This trend

continued into Sampling Period 5 with a non-significant increase of 5 % TON as

compared to the No Mulch treatments.

Phosphorus (mg)6.2.6

Orthophosphate-P (mg l-1)6.2.6.1

Significant differences were observed in orthophosphate-P between mulch treatments,

and between individual treatments (Table 6.15, Figure 6.10). It was expected that the

greatest reduction in orthophosphate-P would be created by St treatments. This is

because the St protects the soil surface and so any P present is less at risk of

becoming solubilised by the runoff. However, this was not the case with a mixed effect

of St on orthophosphate-P evident. Furthermore, it was expected that Non-SSD

treatments would reduce orthophosphate-P as soil P reserves are not exposed to

runoff. However, this was not found to be the case as no significant differences were

observed between Non-SSD and SSD treatments. It was further expected that in

combination Non-SSD and St treatments would reduce orthophosphate-P. However,

this was only observed in Sampling Period 1 as a difference between individual

treatment type and not an interaction effect (Figure 6.10).
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Table 6.15. Significance levels of each treatment factor on orthophosphate-P in

runoff, derived from full factorial and one-way ANOVA.

Dependent

variable

Sampling

Period

Full factorial ANOVA factors
One-way

ANOVA

SSD type

(MPP, Non-

SSD, WT,

NSLT)

Mulch

(St/No

Mulch)

SSD and

mulch

(two-way

interaction)

Individual

treatment

type

Orthophosphate

-P concentration

(mg l-1)

1 0.09 0.01* 0.36 0.03*

3 0.33 0.06 0.93 0.36

5 0.78 0.05* 0.78 0.46

Results of full factorial ANOVA presented are across all treatment types.
*denotes a statistically significant result (p ≤ 0.05). 

For Sampling Periods 1 and 3, significant differences in orthophosphate-P

concentration in runoff were observed between St and No Mulch treatments

independent of SSD. St significantly reduced orthophosphate-P by 40 % in Sampling

Period 1 as compared with the No Mulch treatments independent of SSD (Appendix

C.3, Table_Apx C-7). This was reflected in differences between individual treatments

with Non-SSD St generating significantly less (61 %) orthophosphate-P as compared

with the Non-SSD Control (Figure 6.10). However, by Sampling Period 3

orthophosphate-P levels from St treatments had increased by 67 %, as compared with

Sampling Period 1, although the concentration was not significantly different (37 %)

from No Mulch treatments (Appendix C.3, Table_Apx C-7). This trend continued into

Sampling Period 5 with a significant 31 % increase in orthophosphate-P as compared

with No Mulch treatments. Over the three Sampling Periods tested, 96 % of treatments

exceeded the stipulated concentration levels for ‘good ecological status’ under the EU

WFD (2000).

Sediment-bound P (mg kg-1)6.2.6.2

As with orthophosphate-P, significant differences were observed in sediment-bound P

between mulch treatments independent of SSD, and between individual treatment
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types (Table 6.16). It was expected that the greatest reduction in sediment-bound P

would be achieved by mulched treatments. This is because mulch protects the soil

from detachment thus reducing the runoff sediment concentration and associated P.

However, this was not the case with St treatments showing a variable effect on

sediment-bound P.

Furthermore, it was expected that sediment-bound P would be reduced by SSD

treatments. This is because SSD increases infiltration reducing the velocity and volume

of runoff. This reduces the entrainment and transport of any detached soil particles

thus reducing concentration in runoff and associated P. However, this was not the case

as no significant differences were observed between SSD and Non-SSD treatments

(Table 6.16, Figure 6.11).

Table 6.16. Significance levels of each treatment factor on sediment-bound P in

runoff, derived from full factorial and one-way ANOVA.

Dependent

variable

Sampling

Period

Full factorial ANOVA factors
One-way

ANOVA

SSD type

(MPP, Non-SSD,

WT, NSLT)

Mulch

(St/No

Mulch)

SSD and

mulch

(two-way

interaction)

Individual

treatment

type

Sediment-

bound total P

concentration

(mg kg-1)

1 0.11 <0.01* 0.46 0.01*

3 0.37 0.03* 0.32 0.15

5 0.58 0.46 0.46 0.70

Results of full factorial ANOVA presented are across all treatment types.
*denotes a statistically significant result (p ≤ 0.05). 

St significantly reduced sediment-bound P by 30 % in Sampling Period 1 as compared

with No mulch treatments (Appendix C.3, Table_Apx C-7). This was reflected in

differences between individual treatments in Sampling Period 1 with a significant

reduction in sediment-bound P from MPP St and Non-SSD St treatments by 35 and 45
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% respectively as compared with the Non-SSD Control (Figure 6.11). However, in

Sampling Period 3 St resulted in a significant 10 % increase in sediment-bound P.
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Figure 6.9. Mean concentration of TON (mg l -1) in runoff for the three tested Sampling Periods. Error bars show ± 1 SE. For

statisitical differences between treatments see Appendix C.3, Table_Apx C-3. *Scales on the y axis vary.
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Soluble reactive P limits for ‘good ecological status’ (0.04 to 0.12 mg
l
-1

) as stipulated by the Water Framework Directive (2000)

Figure 6.10. Mean concentration of Orthophosphate P (mg l -1) in runoff for the three tested Sampling Periods. Error bars show ±

1 SE. For statisitical differences between treatments see Appendix C.3, Table_Apx C-3.
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Figure 6.11. Mean concentration of sediment-bound P (mg kg -1) in runoff for the three tested Sampling Periods. Error bars show

± 1 SE. For statisitical differences between treatments see Appendix C.3, Table_Apx C-3.
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6.3 Discussion

The effectiveness of individual treatments was ranked based on the treatment means

for each performance indicator; total runoff volume, total soil loss and sediment, TON,

orthophosphate-P and sediment-bound P concentration in runoff. This was carried out

across both each Sampling Period (Table 6.17) and overall for the entire Phase 2

sample collection period (Table 6.18) so that differences in performance and reliability

could be clearly identified. Across each Sampling Period, the lowest means were

assigned a rank of 1 and the highest means a rank of 10. The mean treatment rank

was then calculated for each performance indicator across all Sampling Periods to

indicate overall performance (Table 6.17). These means were then tabulated for each

treatment and a mean rank calculated across all performance indicators (Table 6.18).

Across all Sampling Periods, the most reductions were observed from MPP No Mulch,

MPP St and NSLT St treatments. MPP No Mulch most reduced runoff volume and

orthophosphate-P concentration, MPP St most reduced TSL and sediment-bound P

and NSLT St most reduced sediment and TON concentration (Table 6.17). Overall,

NSLT St ranked as the most effective treatment followed by MPP St and WT St, whilst

Non-SSD No Mulch was the least effective treatment (Table 6.18).

Table 6.17. A ranked summary of the effectiveness of individual treatments on

each performance indicator. Differences in rank are based on differences in

mean values. Lower scores mean the ‘best’ treatment.

Performance

Indicator
Treatment code

Sampling Period
Mean

1 2 3 5

Total runoff

volume

MPP No mulch 1 4 2 3 2.5

Non-SSD Control 4 6 8 6 6.0

WT No mulch 6 8 3 1 4.5

NSLT No mulch 5 2 4 7 4.5

MPP St 3 7 6 4 5.0

Non-SSD St 2 1 1 8 3.0
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Performance

Indicator
Treatment code

Sampling Period
Mean

1 2 3 5

WT St 8 3 7 5 5.8

NSLT St 7 5 5 2 4.8

Total soil loss

MPP No mulch 5 7 8 5 6.3

Non-SSD Control 8 8 5 8 7.3

WT No mulch 6 6 6 4 5.5

NSLT No mulch 7 5 7 6 6.3

MPP St 2 2 1 2 1.8

Non-SSD St 1 3 4 7 3.8

WT St 3 1 2 3 2.3

NSLT St 4 4 3 1 3.0

Runoff sediment

concentration

MPP No mulch 8 7 7 5 6.8

Non-SSD Control 6 8 8 6 7.0

WT No mulch 5 6 5 3 4.8

NSLT No mulch 7 5 6 7 6.3

MPP St 4 2 1 8 3.8

Non-SSD St 1 3 4 4 3.0

WT St 2 4 3 2 2.8

NSLT St 3 1 2 1 1.8

TON

concentration

MPP No mulch 8 1 5 4.7

Non-SSD Control 6 6 6 6.0

WT No mulch 5 2 3 3.3

NSLT No mulch 7 4 4 5.0

MPP St 4 5 8 5.7
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Performance

Indicator
Treatment code

Sampling Period
Mean

1 2 3 5

Non-SSD St 1 8 7 5.3

WT St 2 7 2 3.7

NSLT St 3 3 1 2.3

Orthophosphate-

P concentration

MPP No mulch 3 1 1 1.7

Non-SSD Control 6 5 4 5.0

WT No mulch 7 2 3 4.0

NSLT No mulch 8 3 2 4.3

MPP St 2 4 6 4.0

Non-SSD St 1 8 7 5.3

WT St 5 7 5 5.7

NSLT St 4 6 8 6.0

Sediment-bound

P concentration

MPP No mulch 5 2 7 4.7

Non-SSD Control 6 1 5 4.0

WT No mulch 7 4 4 5.0

NSLT No mulch 8 5 6 6.3

MPP St 2 6 1 3.0

Non-SSD St 1 7 8 5.3

WT St 4 3 3 3.3

NSLT St 3 8 2 4.3
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Table 6.18. Overall rank for each treatment performance indicator across all Sampling Periods based upon data presented in

Table 6.17. Lower scores mean the ‘best’ treatment.

Treatment

Performance indicator

MeanRunoff

volume
TSL

Sediment

concentration

TON

concentration

Orthophosphate-

P

Sediment-

bound P

MPP No mulch 3 6 7 5 2 5 4.4

Non-SSD Control 6 7 7 6 5 4 5.9

WT No mulch 5 6 5 3 4 5 4.5

NSLT No mulch 5 6 6 5 4 6 5.4

MPP St 5 2 4 6 4 3 3.9

Non-SSD St 3 4 3 5 5 5 4.3

WT St 6 2.25 3 4 6 3 3.9

NSLT St 5 3 2 2 6 4 3.7
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Runoff volume6.3.1

No significant differences were found between treatment effect (SSD type, mulch type

or interactions between the two) and individual treatment type (one-way ANOVA) on

runoff volume. This was a result of highly variable hydrological responses between

treatment replicates. Results suggest that infiltration was variable with some treatments

associated with 50 % (non-significant) reductions in runoff volume as compared with

the Non-SSD Control (Figure 6.4).

The non-significant differences observed from SSD and Non-SSD treatments alike

could have resulted from plots becoming inundated by the high intensity rainfall events

observed, with rain falling at a greater rate than infiltration. This could have limited any

SSD effect and result in equal runoff volumes from all treatments. Furthermore the

kinetic energy of the high intensity rainfall could have accelerated the temporal

degradation of the SSD effectiveness (Rao et al., 1998). However, some reductions in

runoff volume from MPP, WT and NSLT treatments as compared with Non-SSD

treatments occurred in Sampling Period 5 suggesting that the SSD effect has not been

entirely degraded. This is not supported by field observations (Appendix C.5,

Figure_Apx C-2).

The lack of effectiveness observed in runoff volume reduction from St treatments goes

against findings of the proof of concept field trials (Niziolomski, 2011). Furthermore, it

contradicts the findings of many other studies (Gholami et al., 2012, Brown and

Kemper, 1987, Silgram et al., 2010, Jiang et al., 2011 and Jordán et al., 2010) in which

percentage reductions of runoff from St were observed. However, this could be a result

of the continual rearrangement of St into the wheelings by the foot-traffic of hand-

harvesters (between late April and late June) in wet weather conditions, particularly

over Sampling Period 2 where 54 mm of rainfall was received over the final month of

harvest. This would have degraded St treatments, reducing the effectiveness of mulch

in slowing and reducing runoff. Previous studies, with the exception of Niziolomski

(2011), were not subject to foot-traffic, with plots completely isolated during testing.

Furthermore, Niziolomski (2011) only captured the final month of harvest in which little

rainfall was received and so less rearrangement during this period may have occurred.

One further possibility is that in Phase 2 the rainfall volume was so high that the

occurrence of sheet runoff masked the effect of surface applied mulch making all

treatments equal (Cattan et al., 2006).
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Event-driven hydrological response6.3.2

Few significant differences were observed in the event-driven hydrological response of

treatments based on one-way ANOVA results. This is due to the high degree of within

treatment variation in plot responses. Furthermore, the homogenous nature of the data

shortly after rainfall initiation suggests that other, untested variables are affecting

treatment response. Several factors are known to be uniform across all treatments.

These include the rainfall received, plot catchment area and the plot slope gradients.

Furthermore, soil property tests carried out on the randomly distributed control plots

showed similar characteristics in organic matter, particle size distribution and bulk

density. This suggests that the differences could be attributed to the effect of foot-traffic

in wet weather conditions as discussed in Section 6.3.1.

Some significant differences in runoff rate were observed for a limited period of time.

WT and MPP No mulch and Non-SSD St significantly delayed runoff during Sampling

Period 2 RE1. When tested in the Soil Bin, both WT and MPP generated the largest

area of below ground disturbance significantly exceeding that of the NSLT tine

(Chapter 5). This could account for the delay in runoff as water first infiltrates and

becomes stored below ground. The stored water is unable to infiltrate further as a

result of the compaction to depth. Therefore once the below ground storage has

reached capacity runoff is initiated from the plots (Rao et al., 1998; Blough et al., 1990).

The delay observed from Non-SSD St can be attributed to the effect of St as discussed

in Chapter 4. Similar delays in runoff from wheat straw have been observed by Jordán

et al. (2010) and from rice straw mulch by Gholami et al. (2012) and Rao et al. (1998).

The effectiveness of St without SSD on runoff rate in this instance could relate to the

smooth soil surface beneath (Non-SSD) allowing a freer movement than when it is

placed on top of a rougher SSD soil surface. In this case St can move and rearrange

with the runoff and re-align to form mini dams for surface water storage. Similar results

were observed by Tatham (1989), where surface mulch alone had a greater reduction

in runoff volume as compared with MPP with straw. Contrary to this, Foster et al.

(1982a) observed a similar straw movement across tilled and untilled soils. However,

the untilled component of the trial was not replicated and although not measured the

roto-tiller used does not generate much above ground disturbance that could affect

straw movement. Rao et al. (1998) conducted a triplicated trial and showed no
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difference between tilled and untilled plots using a duck foot tine (comparable to the

WT) at 100 and 200 mm depths.

In Sampling Period 5 an increased runoff rate is evident post rainfall cessation from

NSLT No mulch, MPP St and WT St. This acceleration suggests that runoff is being

slowed by the effect of surface roughness and improved infiltration.

Total soil loss6.3.3

The key treatment factor found to most consistently reduce total soil loss was the

addition of St irrespective of SSD treatment. This meant a significant reduction in TSL

over the combined Sampling Periods from all St treatments as compared with the Non-

SSD Control. MPP St was associated with the greatest reduction of 87 %. Straw

effectiveness irrespective of SSD type was also observed in Sampling Period 1, 2 and

3. This highlights the importance of detachment in the erosion process (Evans, 1980)

as St protects the vulnerable soil from detachment by rainfall. This protective cover

negates the potential for loosened soil from SSD becoming entrained and transported

downslope. The effectiveness of St alone corroborates the findings of many other

studies that have shown similar significant reductions in TSL with similar St application

rates (Brown and Kemper, 1987; 3 and 4.5 t ha-1, Brown et al., 1998; 7.8 t ha-1, Döring

et al., 2005; 5 t ha-1, Rees et al., 2002; 4.5 and 9 t ha-1). Other studies have found

similar reductions using lower St application rates (Berg, 1984; 0.6, 1.2 and 2.2 t ha-1;

Holstrom et al., 2008; 2.25 and 3.5 t ha-1; Griffin and Honeycott, 2009; 1.5 t ha-1).

The lack of a consistent effect of SSD on TSL in the presence of St can also be

corroborated in the literature. Tatham (1989) investigated a very similar implement to

the MPP used in this study with a lower St application rate (2.5 t ha-1) and found that

soil loss was most significantly reduced by St treatments, followed by MPP St

treatments and then by MPP No Mulch treatments. In this current study, although MPP

did not significantly reduce TSL at the individual Sampling Periods, the MPP St

treatment did result in the most significant reduction in overall TSL as compared with

the Non-SSD Control. It is also of note that there was no significant difference between

Non-SSD St and MPP St in overall TSL values. Significant increases in TSL have also

been observed once mulch had been removed from SSD treatments (McGregor et al.,

1990; Rao et al., 1998; Holstrom et al., 2008). This could be accounted for by the short-

lived effect of SSD on infiltration as shown in mean time to runoff initiation in Sampling
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Period 2 discussed in Section 6.3.2, and also observed by Rao et al. (1998) and Cattan

et al. (2006).

Pollutant load6.3.4

Sediment concentration in runoff6.3.4.1

As expected, the sediment concentration in runoff was as significantly reduced by St as

TSL. This is because TSL was partially derived from sediment concentration results.

Further to this, a significant effect on sediment concentration was also observed with

SSD. In Sampling Period 1, MPP treatments (St and No mulch) increased sediment

concentration by 68 % as compared with Non-SSD treatments and 64 % as compared

with WT treatments (Appendix C.3, Table_Apx C-4). In the Soil Bin, the MPP

generated a significantly greater area of above and below ground disturbance as

compared with the WT. Surface roughness is known to degrade with successive rainfall

events (Idowu et al., 2002). By the end of Sampling Period 1 (30th May – 6th June)

almost 70 mm of rainfall had been received on-site. These results suggest that MPP

surface roughness had been degraded through the process of entrainment and

transport of the loosened soil. Given that MPP had previously shown a greater area of

disturbance the loosened soil may have already been eroded from WT plots whilst in

MPP plots more remained, thus generating the 64 % difference. Results also suggest

that multiple legged tines increased the risk of runoff sediment concentration initially

with no significant difference between MPP and NSLT irrespective of mulch.

Total oxides of nitrogen6.3.4.2

The addition of St was observed to both positively and negatively affect TON

concentration in runoff. When St is applied the protection provided to the soil surface

reduces the TON concentration in runoff. This is supported by Non-SSD St generating

the greatest reduction in TON. However, post Sampling Period 1 the opposite effect

was observed. The increase in TON concentration observed between Sampling Period

1 and 3 can be attributed to the routine on-site application of N fertiliser (69.16 kg)

undertaken on the 26th June, half way through Sampling Period 2. With the addition of

fertiliser, the St treatments generated significantly higher TON concentrations in runoff.

This effect was not observed in the Phase 1 field trials post fertiliser application.

However, in Phase 1 St was partially incorporated whilst in Phase 2 it was not. This

could mean that the St in Phase 2 was associated with more of a blanket effect not

allowing applied fertiliser to dissolve and infiltrate into the soil. Instead it was dissolved
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in the runoff as it flowed over the mulch surface. Phase 2 also had greater rainfall

intensities than Phase 1, therefore St TON concentrations could also have been

attributed to rainfall falling at such an intensity that runoff could not percolate through

the St instead it flowed over the St as sheet flow (Cattan et al., 2006) solubilising the

applied N with it. Faucette et al., (2007) observed a similar increase in Total N when

applying straw blanket mulch combined with N fertiliser.

Whilst St increased the TON concentration in runoff following fertiliser application, SSD

treatments reduced it. A reduction in TON concentrations with tillage has been

observed previously by Silgram et al. (2010) on tramlines and in olive orchards by

Francia et al. (2006). However, in the absence of reliable infiltration data in this current

study the reduction could relate to a greater area of above ground loosened soil that

has become re-organised by foot traffic. This could increase the surface area over

which the runoff passes giving more time for applied TON to dissolve and become

stored on the soil surface in surface depressions (Burwell et al., 1966).

Orthophosphate-P6.3.4.3

Only the addition of St was observed to reduce orthophosphate-P in runoff. Straw has

been observed in many studies to have the effect of reducing nutrient concentrations in

runoff as a result of surface protection (Silgram et al., 2010; Rees et al., 2002). Similar

to TON, orthophosphate-P results increased from Sampling Period 3, with St

generating the greatest increase and most significantly in Sampling Period 5. However,

no on-site application of P was recorded. Whilst this is not typically found in literature,

Rees et al. (2002) observed a one-off increase in Total P from straw applied for the

fourth consecutive year at a high rate of 9 t ha-1. This was deemed to be the result of

the accumulated residual fertiliser contained in the straw. Although St in this current

study had not been applied for such an extended period of time, results suggest that St

is the source of the P. The effect of intense rainfall at high depths and durations in

Sampling Period 3 and 5 combined with foot-traffic could have caused St to have

moved to such an extent that a great area of soil was exposed resulting in sediment-

bound P reserves becoming solubilised.

Sediment-bound P6.3.4.4

Straw was again the only treatment resulting in a positive effect on sediment-bound P.

This is a result of the protection effect previously described preventing sediment from

becoming detached. This effect was particularly significant in Sampling Period 1 when
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treatments were relatively fresh and in-tact. However, in Sampling Period 3 sediment-

bound P increased by 10 % across all St treatments as compared with No Mulch

treatments. This suggests that a greater area of bare soil was exposed and subject to

detachment by rainfall resulting in higher rates of detachment and provision of material

available for transport.

6.4 Conclusion

The following sub-hypotheses were tested in Phase 2.

a. Tine configuration (geometry and arrangement) can significantly affect runoff

volume, and associated nutrient and sediment loads in an asparagus

production system, as compared with control plots with no soil disturbance.

b. Tine configuration (geometry and arrangement) in combination with mulch

can significantly affect runoff volume, and associated nutrient and sediment

loads in an asparagus production system, as compared with control plots

with no soil disturbance and no mulch.

The tested sub-hypotheses can be rejected as in general, SSD (irrespective of tine

configuration, with and without St) was ineffective at reducing key performance

indicators (runoff volume, rate, total soil loss, sediment concentration, TON,

orthophosphate-P and sediment-bound P). However, both MPP and WT without mulch

improved runoff initiation and TON concentration for one Sampling Period.

Soil erosion across the Phase 2 sample collection period can be dramatically reduced

with the surface application of St to wheelings at 6 t ha-1. Of these treatments MPP St

resulted in the greatest reduction. NSLT St was the most reliable treatment to improve

key performance indicators. Out of four total Sampling Periods, St mulch improved

runoff cumulative volume and rate once, total soil loss once, sediment concentration

three times, TON twice and orthophosphate-P and sediment-bound P once. Despite

the effectiveness of St treatments, sediment concentration was not reduced to such a

level that could be potentially harmful to receiving water bodies.
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7 SYNTHESIS, ECONOMIC APPRAISAL AND

CONCLUSION

7.1 Synthesis

This research has sought to address soil erosion management in asparagus production

systems. This on-site problem arises as a result of historical potato production resulting

in compaction to a depth of 0.5 m. This has been further exacerbated by asparagus

production practices in which large areas of erodible soil are exposed to rainfall for 65

% of the year, including over winter. Beds are also covered with plastic cloches for up

to 5 months of the year concentrating rainfall runoff into the wheelings. The wheelings

are heavily foot-trafficked by hand-harvesters for two months of the year in all weather

conditions generating surface compaction and smearing. Wheelings are further subject

to compaction from field operations of bed formation, cloche installation and removal

and fern chopping. The problems of runoff generation and associated soil erosion have

been addressed in three experimental programmes that set out to test several sub-

hypotheses. Phase 1 and Phase 2 field trials were undertaken in a dynamic farm

environment with treatments subject to the normal operations associated with an

asparagus production system.

Phase 1 field trials7.1.1

Phase 1 tested sub-hypotheses a, b and c using replicated field trials treated with Non-

SSD and SSD in combination with mulch (Cp/chopped St) applied at high and low rates

and partially incorporated when combined with SSD. Results showed that Non-SSD StH

resulted in the most significant and consistent improvements in runoff volume and

associated nutrient and sediment loads, allowing sub-hypothesis b (that the application

of mulch materials can significantly reduce runoff volume, and associated nutrient and

sediment loads compared with control plots with no mulch application) to be accepted.

The nature of Cp did not allow for effective erosion control under the tested conditions

and application rates. SSD was not found to significantly reduce runoff and associated

nutrient and sediment loads and therefore sub-hypothesis a (that shallow soil

disturbance alone can significantly reduce runoff volume and associated nutrient and

sediment loads in an asparagus production system, compared with control plots with

no shallow soil disturbance) was rejected. Significant reductions were evident from

SSD treatments in combination with StH and CpH however only in TSL therefore sub-
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hypothesis c (that the application of mulch materials in combination with shallow soil

disturbance can significantly reduce runoff volume, and associated nutrient and

sediment loads, compared with control plots with no mulch application and no shallow

soil disturbance) was also rejected. This reduction effect in TSL did not match the

consistency of that observed in Non-SSD StH through all Sampling Periods, with SSD

StH reductions only evident up to Sampling Period 2.

Overall, the results showed that soil erosion can be dramatically reduced in asparagus

production. However, over five months, total soil loss remained in excess of annual

tolerable erosion (1.4 t ha-1), as well as sediment concentration exceeding

environmental guidelines. This suggests that if used alone under field conditions other

supporting mitigation measures will be needed to bring soil loss to a sustainable level.

Soil Bin experimental programme7.1.2

In the Soil Bin, soil disturbance properties of the currently adopted SSD were tested

against other tines. Shallow soil disturbance was observed to result in a change in soil

properties with all tine configurations. However, significant differences in the degree

and extent of soil disturbance and draught force and specific draught tine were

observed between the currently adopted tine (WT) and other tested tine configurations.

Therefore the tested sub-hypothesis d (that tine configuration - geometry, arrangement

and depth of operation - can significantly change the degree and extent of soil

disturbance and affect implement dynamics as compared with the currently adopted

tine) was accepted. Furthermore, results showed that the currently adopted WT

compares unfavourably to the MPP at the current cultivation depth (175 mm).

Therefore the design of the currently adopted winged tine is compromising its soil

disturbance potential.

The observed changes in soil properties will lead to a different soil system response to

rainfall, affecting runoff and erosion control. Based on the results of this study, on-site

erosion control potential could be improved by using the MPP at the current depth of

cultivation. Where root damage is not a concern, such as in recently planted asparagus

fields with limited root development, or for non-asparagus row crops, erosion control

could be further improved by increasing the depth of cultivation. In this case, the NSLT

(at 250 mm) and the WSLT (at 300 mm) would be the most effective for compaction

alleviation and thus erosion control.
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Phase 2 field trials7.1.3

Phase 2 tested sub-hypotheses e (that tine configuration -geometry and arrangement-

can significantly affect runoff volume, and associated nutrient and sediment loads in an

asparagus production system, as compared with control plots with no soil disturbance)

and f (that tine configuration -geometry and arrangement- in combination with mulch

can significantly affect runoff volume, and associated nutrient and sediment loads in an

asparagus production system, as compared with control plots with no soil disturbance

and no mulch). These were tested using replicated field trials treated with surface

applied St (0 and 6 t ha-1) in combination with three tine configurations (MPP, NSLT,

WT) identified as effective for soil disturbance in the Soil Bin experimental work as well

as a Non-SSD control.

Tine configurations demonstrated very few significant effects as compared with the

Non-SSD Control on performance indicators (runoff volume, total soil loss, sediment

concentration, TON, orthophosphate-P and sediment-bound P) across all Sampling

Periods. This meant that sub-hypothesis e. was rejected. SSD in combination with

mulch showed limited significant effects on TON concentration and no significant

interaction effects between treatments. This meant that sub-hypothesis f. was also

rejected. St mulch applied at 6 t ha-1 irrespective of SSD showed the most significant

reductions in runoff volume, total soil loss, sediment concentration, TON,

orthophosphate-P and sediment-bound P.

In this study no treatments produced sufficient total soil loss to exceed the tolerable soil

erosion limit within the trial period. However, measured sediment concentration still

exceeded guideline values.

Phase 1 and 2 field trial interrelations7.1.4

Both field trials demonstrate that St applied in isolation can control runoff and erosion

from asparagus fields. However, in Phase 1 total sol loss still remains higher than the

tolerable soil erosion rate. This was most likely a result of larger plot sizes, greater

slope gradients and extreme rainfall conditions (exceeding the 30 year average).

Furthermore, both field trials generate sediment concentrations that exceed guideline

values that could result in river level sediment concentrations breaching the annual

requirements under the Water Framework Directive. Values associated with soil loss

and sediment concentration are greater in Phase 1 as compared with Phase 2. This is
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most likely the result of lower runoff volumes between both trials, with Phase 2

generating 3 times less runoff volume than Phase 1. These differences could be a

result of different rainfall characteristics (Table 7.1) with Phase 1 treatments subject to

long periods of relatively low intensity rainfall, and Phase 2 treatments subject to short

periods of high intensity rainfall. Furthermore Phase 2 used shorter and shallower

slopes that would have reduced runoff volume and runoff velocity, affecting detached

soil entrainment and transport.

Table 7.1. Sampling Period rainfall characteristics of each field trial phase.

Sampling Period rainfall characteristics

Field trial

phase

Mean rainfall

event duration

(mins)

Range of

rainfall depths

(mm)

Range of

mean rainfall

intensity

(mm hr-1)

Range of

maximum

rainfall intensity

(mm hr-1)

Phase 1 21 25.8 - 149 12 – 15 24 - 96

Phase 2 10 3.6 - 48 54 - 124 588 - 792

N.B. Intensity calculations based on a 1 minute data logger readings.

In Phase 1 a difference in effect between SSD St and Non-SSD St treatments was

evident that was not observed in Phase 2. This could be a result of differences in

treatment application. In Phase 1 St was chopped and surface applied prior to SSD.

With SSD, the St became partially incorporated. Therefore, SSD mulched plots were

testing the effects of both SSD and the partial incorporation of St. However, in Phase 2

St was surface applied post SSD making any differences observed accountable to just

the effect of SSD alone. In which case it would suggest that surface applied St at 6 t

ha-1 negates the effect of SSD. Furthermore, St applied to the surface is an effective

runoff and erosion control measure across different rainfall conditions.
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Soil Bin and Phase 2 field trial interrelations7.1.5

The differences observed in soil disturbance in the Soil Bin between the MPP, WT and

NSLT did not manifest into significant differences in soil system response to rainfall in

the Phase 2 field trials. However, this does not necessarily mean that no differences

exist between tines, particularly as no difference was observed between Non-SSD and

SSD treatments both with and without mulch. This suggests that compaction alleviation

is not a necessary part of runoff and erosion control in this study. However, early on,

differences in runoff associated with the MPP were initially observed. This (in

combination with the Phase 1 effectiveness of SSD as compared with Non-SSD with

incorporated St) suggests that to be effective, mulch is needed to keep the SSD open

but not to completely cover it.

7.2 Economic appraisal

Phase 1 and Phase 2 trials have tested the effectiveness of soil management practices

in controlling runoff and soil erosion (Chapters 4 and 6). However, the financial cost of

these practices is yet to be determined in the present study. Using available agricultural

contract work costing resources (NAAC, 2014; AgriContractor.com), the financial

implications of adopting these practices have been calculated. Furthermore, some of

the potential costs of not implementing these practices have also been calculated.

Soil management costing7.2.1

The cost of applying soil management has two components; the materials cost and the

cost of treatment application. These costs were estimated on a hectare basis in line

with other research (Newell Price et al., 2011; Rickson et al., 2010) to standardise the

results so they are applicable to any field/farm size.

From the initial calculated mulch application rates (Appendix A.1); the true rate of straw

and compost mulch required per hectare of asparagus field was first calculated by

ascertaining the maximum area of wheelings within 1 hectare (Table 7.2). This area

was subsequently multiplied by the mulch application rate (t m2) to give a total rate of

mulch required per hectare. Finally this value was multiplied by the material cost (£ t-1)

of the mulch used to give a total mulch cost (£ ha-1) (Table 7.3). This cost does not take

into account transport costs so unless the mulch is available very locally the total value

is most likely to be an underestimate.
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Table 7.2. Calculation of the maximum wheeling area within 1 ha.

1. Number of asparagus beds in 100 m†

= 100m / 1.5 m‡

= approximately 66 beds

3. Maximum potential wheeling area.

= 40 m2 x 66

= 2640 m2

2. Maximum run length of wheeling area.

= 0.4 m2* x 100 m

= 40 m2

†Assuming a square field of 100 m  100 m. ‡Raised bed spacing. *Approximate
wheeling width.

Table 7.3. Calculation of mulch costs.

Mulch type and application

rate†

Mulch cost

(£ t-1)‡

Total mulch

cost (£ ha-1)

Straw

3 t ha-1 (0.8 t ha-1) 31.81 25.45

6 t ha-1 (1.6 t ha-1) 31.81 50.90

Compost

7 t ha-1 (1.8 t ha-1) 6.00 10.80

15 t ha-1 (4.0 t ha-1) 6.00 24

†Application rates shown in brackets indicate the total rate per ha when applied only to
the wheelings. ‡Wheat straw price (big square baled) sourced from Farmers Weekly
(2014) based on British Straw and Hay Merchants’ Association prices for week ending
26/10/14 averaged for all UK areas. Price for PAS 100 Quality Compost, 20 – 40 grade
sourced from Quality Garden Supplies Ltd (2014).

With regard to the costs of applying the mulch, NAAC (2014) costs farmyard manure

(FYM) spreading at £36 hr-1. This includes labour, machinery costs and fuel (based on

red diesel prices of 70 ppl). This was deemed to be the most similar operation to St and

Cp spreading in the absence of a cost for a straw blower similar to that used in Phase
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1, or a suitable machine for spreading Cp into the wheelings. However, the area

included in the cost was not stated. This had to be approximated using other resources

(Table 7.4). Using an online agricultural contractor rates estimator

(AgriContractor.com), FYM spreading was calculated for a 30 acre area (acres were

the only available unit). The resulting value was divided by the NAAC (2014) cost rate

(£36 hr-1) to ascertain the duration (hours) taken for the practice to be carried out. This

value was divided by 30 to ascertain the length of time required for a single acre, and

then converted for a single hectare. Finally, the original NAAC contractor rate (£ 36 hr-

1) was divided by the time required to apply materials for one hectare, resulting in an

estimated cost of £ 12.37 ha-1.

Table 7.4. Calculations of the application cost associated with spreading mulch.

FYM spreading tractor and side discharge

contracting rate.1

£ 36.00 hr-1

Agricultural contract estimate for 30 acres of FYM

spreading tractor and rear discharge.2

£ 1282.50

Time required to complete the contract estimate

(calculated using the known £ 36 hr rate).

35.62 hr

Time required for one acre. 1.18 hr

Time required for one hectare. 2.91 hr

Approximate cost per hectare. £ 12.37 ha

1NAAC Contracting Charges 2013/14 (2014) based on red diesel pricing at 70 ppl.
2AgriContractor.com (2014) based on FYM spreading tractor rear discharge.

For the calculation of the Phase 1 SSD treatment, a standard cost was sourced from

NAAC Contracting Charges 2013/2014, as all treatments used the same tine

configuration. The closest operation was taken to be “ploughing light soil”, which was

listed at £ 23 acre (£ 56.81 ha-1). This cost includes labour, machinery and fuel (based

on red diesel prices of 70 p l-1).
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For the calculation of the Phase 2 SSD treatments, the draught force of the respective

tine configurations measured in the Soil Bin at Cranfield University were used to

estimate the fuel requirement. Fuel requirement was first calculated using (Equation 8).

Several assumptions were used in the calculation; a slip value ratio of 0.1, transmission

loss of 0.8 and a thermal input factor of 3 (personal communication with K. Blackburn,

2014). The resulting fuel requirement (Table 7.5) was then multiplied by the time taken

(seconds) to cultivate the maximum asparagus inter-bed wheeling length contained

within 1 ha (Table 7.6). This value was multiplied by a red diesel cost of 70 p l-1 as used

in NAAC (2014) to give a total fuel cost (£ ha-1). A labour cost was added to the total

fuel cost based upon the time taken to cultivate 1 hectare (3.2 hrs, Table 7.6) at a rate

of £ 8 hr-1 (personal communication with H. Chinn, 2014). This final value does not take

into account machinery costs for the tractor, as these costs excluding fuel could not be

found. Furthermore the machinery costs for the tine configuration were also excluded,

and therefore the total costs estimated can be considered to be an underestimate of

the true cost. It is important to note that the fuel cost used in this calculation is based

upon the test conditions of the Soil Bin; i.e. cultivation of a ‘light’ soil operating at 175

mm depth at a speed of 0.58 m s-1 (2.1 km hr-1), soil moisture content of 8 %, and bulk

density of approximately 1.6 g cm-3. The total costs of soil management implementation

for each treatment are presented in Table 7.9 and Table 7.10.

Fuel requirement (l s-1) = (((F x S / 1 – s) / Tr) x Th) / Se (Equation 8)

Where F = draught force (N), S = speed (m s-1), s = slip ratio, Tr = transmission loss
percentage, Th = Thermal input power factor, SE = specific energy of diesel (J l-1).
Source: Personal communication with K. Blackburn, 2014).

Table 7.5. Calculated fuel requirement for Phase 2 tine configurations. For full

calculations see Appendix D.1.

Tine configuration Fuel requirement (l s-1)

MPP 1.38 x10-4

NSLT 1.12 x10-4
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Tine configuration Fuel requirement (l s-1)

WT 1.69 x10-4

Table 7.6. Calculation of the time taken to cultivate the wheelings contained

within 1 hectare.

1. Number of asparagus beds in 100 m†

= 100 m / 1.5 m‡

= approximately 66

3. Time taken to cultivate

= 6600 m / 0.58 m*

= 11379 seconds (3.2 hours)

2. Total length of wheelings

= 66 x 100 m

= 6600 m

†Assuming a square field of 100 m  100 m. ‡Raised bed spacing. +Approximate
wheeling width. *Length of wheeling cultivated per second, based on the tine speeds
used in the Soil Bin.

Soil erosion costing7.2.2

Graves et al. (2011) estimated the total cost of soil erosion in England and Wales. The

costs relate to the consequences of soil erosion in terms of the loss of soil ecosystem

services listed in Table 7.7. Using this approach, it was possible to approximate a cost

of each tonne of soil eroded (Table 7.8), based upon the reported annual soil erosion in

England and Wales of 2.9 Mt (Graves et al., 2011). The potential cost per tonne of lost

soil due to erosion (£ 60.37) was then applied to the measured soil loss (t) of each

Phase 1 and 2 treatments to give a total estimated cost of soil loss per treatment

(Table 7.9 and Table 7.10). The difference between the soil loss cost and the Non-SSD

Control for each treatment was calculated and the cost of soil management subtracted.

This gave a total cost saving for each treatment (Table 7.9 and Table 7.10). Finally a

unit cost for each treatment was calculated by dividing the cost of soil management by

the difference in soil loss as compared with the Non-SSD Control. This provided a
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standardised value (£ t-1) for the cost of soil management per unit of soil conserved that

could be used to select the most cost effective treatment (Table 7.9 and Table 7.10).

Table 7.7. Soil ecosystem services and associated erosion impacts and costs,

adapted from Graves et al. (2011).

Ecosystem

service group
Service type

Erosion impacts

Provisioning† Crop productivity Loss of soil depth.

Soil nutrient stock Nutrient loss (N, P, K).

Soil carbon stock Carbon loss.

Regulating‡ Clean drinking water Higher concentration of nutrients

in incoming water.

Flood prevention Increased sediment in rivers,

reservoirs and urban drainage

systems.

Clean air (greenhouse gas

emissions)

Soil carbon lost to the

atmosphere.

Cultural‡ Leisure and tourism Increased N and P in rivers and

lakes reducing fish populations.

Aesthetically pleasing landscapes Eutrophication of water bodies

results in large algal blooms.

†On-site costs of erosion ‡Off-site costs of erosion

Table 7.8. Calculated cost of soil loss (£ t-1) in England and Wales, based on data

presented in Graves et al. (2011).

Total soil loss (t yr-1) Total cost of soil loss

(£ yr-1)

Cost of soil loss (£ t-1)

2.9 million 176.3 million 60.37
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Economic appraisal findings7.2.3

Cost savings afforded by implementation of soil management measures were only

evident in Phase 1 (Table 7.9). In Phase 2, soil losses were negligible and as such the

costs of soil management measures exceeded the cost benefit of reducing soil loss

(Table 7.10). In Phase 1, the application of Non-SSD StH under the climatic and soil

conditions observed during the Phase 1 research period would have yielded the

greatest saving of approximately £ 885.75 ha-1. This treatment was also ranked as the

overall most effective in reducing key performance indicators (e.g. runoff and soil loss)

across all Sampling Periods. Graves et al. (2011) estimated that on-site cost savings

are equal to 23 % of the total costs saved. Therefore the on-site cost saving that would

directly benefit the grower would be approximately £204 ha-1. Savings of > £500 ha-1

were also calculated from Non-SSD CpH (£ 749.04 ha-1), Non-SSD StL (£ 708.35 ha-1),

and SSD StH (£ 574.18 ha-1). However, Non-SSD CpL and SSD CpL yielded no savings.

Even so, Non-SSD StH is not the most cost effective with regards to the standardised

unit cost. Instead it has the third lowest standardised unit cost of £4.02 t-1 after Non-

SSD CpH at £2.80 t-1 and Non-SSD StL at £3.06 t-1 (Table 7.9). However, in the

absence of an available commercial machine to apply compost into wheelings, this cost

difference could change.

It is accepted that there are a number of assumptions made during this financial

analysis of the treatments. In the cost of soil loss calculations, it is assumed that every

tonne of eroded soil has the same on-site and off-site effect. However, this is not the

case as the magnitude of effect depends upon the bio-physical environment in which

the soil is eroded (Rickson et al., 2010). For example, runoff and erosion that does not

occur in close proximity to a river or water body will not result in their subsequent

pollution and therefore are not associated with the off-site costs of water pollution and

remediation.

The potential costs of uncontrolled soil erosion for growers in terms of soil resource lost

could be an underestimation. Additional financial penalties could be incurred as a result

of prosecution for polluting local water supplies under the EU Water Framework

Directive. These penalties could be as much as £ 50,000 (UKELA, 2014). However the

likelihood of prosecution is low due to the difficulty (not least limited staff resource
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available) in finding evidence to support diffuse pollution related incidents (Maltby and

Walker, 2011; Howarth, 2011). It is possible that this may change as the environmental

authorities strive to meet the surface water quality standards imposed by the Water

Framework Directive better. The requirement for the UK to meet water quality

standards could however also benefit growers through the increased availability of

financial incentives for sustainable soil management that is seen to limit pollution of

waterbodies by sediment (Maltby and Walker 2011). This would incentivise growers to

adopt soil conservation treatments.

Other costs (of erosion) and benefits (of soil management practices) exist that have not

been costed in this section due to their relative unknown value. These include the

potential cost of hindrance to farm operations by erosion and management practices,

loss of agricultural production and maintenance of field practices, as well as on-site

benefits to soil and crop health (Rickson et al., 2010). As the treatments used in the

present study have been applied in an existing asparagus production system, it is

known that none of the treatments hinder farm operations or result in a loss of land for

production. Furthermore, maintenance was not required over the experimental period

(February to July 2012 and May to November 2013), although treatment consistency

was observed to decrease with time. With regard to on-site benefits, treatments without

SSD will have the added benefit to crops of not cutting roots when implemented,

resulting in reduced incidence of disease and asparagus decline. Furthermore, the

addition of St or Cp mulch will increase the organic matter content of the soil over time

that will result in increased soil health (including resistance to erosion) as well as

reduced nutrient input costs.
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Table 7.9. Calculated costs (soil management and soil loss) and savings for each Phase 1 treatment. Treatments are ordered

according to maximum cost saving.

Phase 1

treatment

Materials

cost

(£ ha-1)

Treatment

application

(£ ha-1)

Total cost of soil

management

(£ ha-1)

Mean

soil loss

(t ha-1)

Cost of

measured

soil loss (£)

Total cost

saving

(£)†

Unit cost of soil

management

(£ t-1) ‡

Non-SSD StH 50.90 12.37 63.27 6.08 367.05 885.75 4.02

Non-SSD CpH 24.00 12.37 36.37 8.79 530.65 749.04 2.80

Non-SSD StL 25.45 12.37 37.82 9.44 569.89 708.35 3.06

SSD StH 50.90 69.18 120.08 10.3 621.81 574.18 10.44

SSD StL 25.45 69.18 94.63 12.1 730.48 490.96 9.76

SSD CpH 24.00 69.18 93.18 15.4 929.70 293.19 14.56

SSD No mulch 0.00 56.81 56.81 20.7 1249.66 9.60 51.65

Non-SSD Control 0.00 0.00 0.00 21.8 1316.07 0.00 0.00

Non-SSD CpL 11.40 12.37 23.77 24.6 1485.10 -192.81 -8.49

SSD CpL 11.40 69.18 80.58 24.7 1491.14 -255.65 -27.79

† The difference between the costs of measured soil loss as compared with the Non-SSD Control minus the cost of soil management.
‡The cost of soil management divided by the difference in mean soil loss as compared with the Non-SSD Control. N.B. Negative values
indicate a saving loss.
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Table 7.10. Calculated costs (soil management and soil loss) and savings for each Phase 2 treatment.

Phase 2 treatment

Materials

cost

(£ ha-1)

Treatment

application

(£ ha-1)

Total cost of soil

management

(£ ha-1)

Mean

soil loss

(t ha-1)

Cost of

measured

soil loss

(£)

Total cost

saving

(£)†

Unit cost of

soil

management

(£ t-1) ‡

MPP No mulch 0.00 26.70 26.70 0.91 54.94 -33.94 -222.50

MPP St 50.90 39.07 89.97 0.1 6.04 -48.31 130.39

Non-SSD Control 0.00 0.00 0.00 0.79 47.69 0.00 0.00

Non-SSD St 50.90 12.37 63.27 0.18 10.87 -26.44 103.72

WT No mulch 0.00 26.95 26.95 0.66 39.84 -19.10 207.30

WT St 50.90 39.32 90.22 0.14 8.45 -50.98 138.80

NSLT No mulch 0.00 26.49 26.49 0.8 48.30 -27.09 -2648.84

NSLT St 50.90 38.86 89.76 0.19 11.47 -53.54 149.60

†The difference between the costs of measured soil loss as compared with the Non-SSD Control minus the cost of soil management. ‡The
cost of soil management divided by the difference in mean soil loss as compared with the Non-SSD Control. N.B. Negative values indicate
a saving loss.
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7.3 Conclusions

• This research demonstrates for the first time that asparagus production can result

in levels of unsustainable soil loss that will contribute to the degradation of the

existing soil resource.

• In both Phase 1 and Phase 2 field trials, a straw mulch, applied at 6 t ha-1,

significantly delayed time to runoff initiation in the first runoff producing rainfall

events in 25 % of Sampling Periods and reduced cumulative runoff volume and

runoff rate in the first runoff producing rainfall events in 50 % and 13 % of

Sampling Periods respectively. It also significantly and consistently reduced total

soil loss both overall and within 50 % of Sampling Periods, in addition to reducing

sediment concentration, TON, orthophosphate-P and sediment-bound P as

compared with the Non-Shallow soil disturbance (SSD) Control.

• A straw mulch applied at 3 t ha-1 significantly reduced cumulative runoff volume

and runoff rate in the first runoff producing rainfall events in 38 % and 13 % of

Sampling Periods respectively and total soil loss both overall and within 38 % of

Sampling Periods. It also significantly reduced TON in one Sampling Period as

compared with the Non-SSD Control.

• A compost mulch applied at 15 t ha-1 significantly reduced runoff rate in the first

runoff producing rainfall events in 25 % of Sampling Periods and reduced total soil

loss (both overall and within 25 % of Sampling Periods) as compared with the Non-

SSD Control.

• In general, under the field trial conditions namely the continuation of normal

harvesting and agronomic operations, SSD alone (irrespective of tine

configuration) is ineffective at improving runoff initiation, cumulative volume, rate,

soil loss, sediment concentration, TON, orthophosphate-P and sediment-bound P

as compared with the Non-SSD Control.

• Shallow soil disturbance undertaken using a winged tine in isolation significantly

delayed time to runoff initiation and reduced cumulative volume and runoff rate for

the first runoff producing rainfall event of one Phase 2 Sampling Period. It also

significantly reduced orthophosphate-P and TON for one Sampling Period as

compared with the Non-SSD Control.

• Shallow soil disturbance in combination with the straw mulch (applied at 3 t ha-1

and 6 t ha-1) significantly reduced cumulative runoff volume and runoff rate in the



202

first runoff producing rainfall events in 38 % (volume and rate for St at 6 t ha-1) and

25 % and 38 % (St at 3 t ha-1) of Sampling Periods.

• Shallow soil disturbance in combination with the straw mulch applied at 6 t ha-1

significantly reduced overall total soil loss as compared with the Non-SSD Control;

however this reduction was not as great as with St alone at 6 t ha-1.

• Shallow soil disturbance in combination with the compost mulch (applied at 7 t ha-1

and 15 t ha-1) significantly delayed rainfall initiation for one Sampling Period’s first

runoff producing rainfall event and cumulative runoff volume and runoff rate in 38

% of Sampling Periods first runoff producing rainfall events as compared with the

Non-SSD Control.

• Shallow soil disturbance in combination with the compost mulch applied at 15 t ha-1

significantly reduced total soil loss for one Sampling Period as compared with the

Non-SSD Control.

• The modified para-plough generated the greatest degree and extent of soil

disturbance for the least draught, followed by the narrow tine with shallow leading

tines.

• During Phase 2, SSD undertaken using the modified para-plough significantly

delayed time to runoff initiation in the initial rainfall event of one Sampling Period

and reduced TON for only one Sampling Period as compared with the Non-SSD

Control.

• The implementation of the most effective treatments only resulted in cost savings

when high soil loss occurred.

• The application of straw at 6 t ha-1 under the rainfall and site conditions associated

with the Phase 1 field trials would result in the greatest cost saving of £885 ha-1.

• This research highlights the variation in effectiveness and reliability of in-field

mitigation measures with ‘extreme’ rainfall events which are likely to become more

frequent.
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8 WIDER IMPLICATIONS AND FURTHER WORK

8.1 Wider implications

This research provides data on the effectiveness of in-field shallow soil disturbance and

mulch application in asparagus. With the subsequent adoption of the treatments in the

tested fields as well as further development (Section 8.2), asparagus can potentially be

grown without excessive environmental impact specifically with regard to water

pollution. Although the erosion and runoff measured was from two single asparagus

fields, the similarity of asparagus production systems in the UK (e.g. suitable soil types)

makes these erosion and runoff management options potentially applicable to other UK

asparagus fields. The application of this work contributes towards ensuring the

sustainable growth of the UK asparagus industry, and the reduction of our dependence

on imported produce. Furthermore, it can help sustain our agricultural land for future

agricultural production and food security.

This data provides scientific evidence of soil erosion rates and control practices that

can be used to inform policy. It contributes knowledge of the effect of asparagus

production on erosion and runoff that was previously unknown. Furthermore, it provides

data on erosion and runoff under different rainfall extremes that are set to become

more common place in our future climate. This will help fill in some of the knowledge

gaps in the effectiveness of in-field mitigation measures on reducing soil erosion to a

more ‘acceptable’ level as identified by Defra (2014a). This will help plan for and

address the proposed 50 % reduction in erosion as part of the Rio+20 aspiration of

land degradation neutral world by 2030.

This research can also be applied in the context of the Water Framework Directive

(2000). Surface waters and ground waters need to meet a ‘good ecological status’ by

2027, with interim targets set for 2015 and 2021. This status includes limits for soluble

P and nitrates. The data provided in this study can inform UK policy makers of what

can be used in-field to achieve reductions in P and N runoff from agriculture that

currently contribute to high levels found in receiving surface waters that fail to meet the

standards of ‘good ecological status’.

There is a knowledge gap within the British horticultural industry for soil management

research for the control of soil degradation (Rickson and Deeks, 2013). This research

can address that gap with practical erosion control measures for asparagus.
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Furthermore, it provides research on interaction effects between two soil management

practices (shallow soil disturbance and mulch) that few horticultural studies currently

cover (Rickson and Deeks, 2013).

This research could also be applied to other horticultural crops and production systems

that share similar soil and water management problems. Graves et al. (2011) states

that horticulture in silt and sand is highly likely to suffer soil loss via erosion. In UK

soils, horticulture includes brassicas, lettuce, parsnip, leeks, potatoes and carrots

(Figure 8.1). These crops, as well as sugar beet, bulbs and soft fruit have been

identified as vulnerable to erosion (Defra, 2005; Environment Agency, 2007; Graves et

al., 2011). In addition, since undertaking this project, several recommendations for SSD

and mulching suitability in other cropping systems have been made. These are;

perennial field grown herbs (personal communication with R Simmons, November,

2014), European white asparagus (personal communication with L. Aldenhoff, October,

2013) and maize (personal communication with J. Chinn, November, 2014).

Figure 8.1. Suitability of different soil types to vegetable production. Source:

Sarrouy and Lillywhite (2013).
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8.2 Further work

In order to be able to apply this work most effectively to the broader asparagus industry

and beyond, further work is required. In particular trials could be conducted in fields of

different slope gradients and lengths and geographic locations where there are some

variations in soil type as well as different rainfall conditions. Furthermore, soils that

have been under asparagus for different periods of time and with different soil legacies

could be tested. It would also be interesting to isolate the effects of foot traffic on

treatment effectiveness that would make treatments more applicable to newly

established asparagus fields (pre hand-harvest) as well as for other (not hand-

harvested) horticultural systems. This could also be carried out to establish treatment

longevity. In order to ascertain winder applicability, field work could also be carried out

across different horticultural production systems identified above (Section 8.1) as these

are potentially highly vulnerable to erosion. Finally, on fields most vulnerable to erosion

(such as used in Phase 1) treatments could be tested in conjunction with other erosion

measures (such as grass waterways) to see how final soil loss results compare to

tolerable and sustainable levels.
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APPENDICES

Appendix A Phase 1 Field Trials

A.1 Treatment application rate calculations

Figure_Apx A-1. Values used for compost application rate calculations.

Parameters Blanket volumes

Blanket Depth (10mm CECB) (m) 0.01

10 mm CECB Furrow compost

(l) 160

Blanket Depth (15mm CECB) (m) 0.015

15 mm CECB Furrow compost

(l) 240

Blanket Depth (20mm CECB) (m) 0.02

20 mm CECB Furrow compost

(l) 320

Blanket Depth (25mm CECB) (m) 0.025

25 mm CECB Furrow compost

(l) 400

Blanket Depth (40mm CECB) (m) 0.04

35 mm CECB Furrow compost

(l) 560

Blanket Depth (35mm CECB) (m) 0.035

40 mm CECB Furrow compost

(l) 640

Blanket Depth (50mm CECB) (m) 0.05 50mm CECB Furrow compost (l) 1.5

Furrow width (m) 0.4 50 mm Compost volume (m3 ha-1) 100.5

Furrow length (m) 40 40 mm Compost volume (m3 ha-1) 80.4

Volume (m3) 0.8 35 mm Compost volume (m3 ha-1) 70.35

Volume (l) 800 25 mm Compost volume (m3 ha-1) 50.25

Area (m2) 16 20 mm Compost volume (m3 ha-1) 40.2

No. Furrows per 100m 67 15 mm Compost volume (m3 ha-1) 30.15

Furrow area (m2) per 100m length

(ha length) 30
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Figure_Apx A-2. Compost applicate rate calculations.

Initial compost analytical results

N mg l
-1

BD mg m
-3

3738.00 0.25

3425.00 0.22

2285.00 0.16

3149.33 0.21

Nitrogen content

50 mm CECB 40 mm CECB 35 mm CECB 20 mm CECB 15 mm CECB

Total N applied to plot (mg) 2519467 2015573 1763627 1007787 755840

Total N applied to plot (g) 2519 2016 1764 1008 756

Total Napplied to plot (kg) = 16m2 2.52 2.02 1.76 1.01 0.76

Total N (kg) applied per m2 0.16 0.13 0.11 0.06 0.05
Total N (kg) applied per ha

(assuming 67 furrows per 100m) 317 253 222 127 95.0 <250 kg ha (NVZ)

Selected

blanket depth

based on N

results (m)

Volume per

plot (m
3
)

Mass

(t plot
-1

)

Mass

(kg plot
-1

)

Mass

(t ha
-1

)

0.035 0.56 0.12 118 14.9

0.015 0.24 0.05 50.7 6.37

Applied compost analytical results

N mg l-1 BD mg m-3

5669 0.31

5717 0.31

5306 0.31

5564 0.31

Nitrogen content

50mm CECB 40mm CECB 35mm CECB 20mm CECB 15mm CECB 10mm CECB

Total N applied to plot (mg) 4451200 3560960 3115840 1780480 1335360 890240

Total N applied to plot (g) 4451 3561 3116 1780 1335 890

Total Napplied to plot (kg) = 16m2 4.45 3.56 3.12 1.78 1.34 0.89

Total N (kg) applied per m2 0.28 0.22 0.19 0.11 0.08 0.06
Total N (kg) applied per ha

(assuming 67 furrows per 100m) 559 447 391 224 168 112

Selected

blanket depth

based on N

results (m)

Volume per

plot (m
3
)

Mass

(t plot
-1

)

Mass

(kg plot
-1

)

Mass

(t ha
-1

)

0.035 0.56 0.1736 173.6 21.81

0.015 0.24 0.0744 74.4 9.35
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Table_Apx A-1. Straw application rate calculations.

Phase 1 High rate

based on Morgan

(1995)†

Phase 1 high

application

rate based on

Niziolomski

(2011)‡

Phase 1 low

application

rate based

on

Niziolomski

(2011)‡

Phase 2

application

rate

Rate (t ha-1) 5 6.3 3.1 6.3

Conversion to m2

(t m-2)

0.0005 0.00063 0.00031 0.00063

Conversion to kg

(kg m-2)

0.5 0.63 0.31 0.63

Phase 1 plot size

(m2)

16 16 16 -

Phase 2 plot size

(m2)

- - - 12

Applied to

wheeling

(kg plot-1)

8 10.08 4.96 7.56

†Sourced from Morgan, R. P. C. (1995), Soil erosion and conservation, 2nd Edition,

Longman Group Limited, UK. ‡modified from 6.7 to 6.3 to bring down to 10.
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A.2 Sampling Period characteristics

Table_Apx A-2. Rainfall characteristics for each Phase 1 Sampling Period.

Sampling Period 1

Rainfall
event
no.

Date
Start
time

Duration
(hh:mm)

Total
rainfall
(mm)

%
Total

rainfall

Mean
intensity
(mm hr-1)

Peak
intensity
(mm hr-1)

1 01/05/2012 02:15 00:03 1.40 2.9% 21.0 36.0

2 01/05/2012 03:47 01:06 16.6 35% 20.8 48.0

3 01/05/2012 05:25 00:20 3.20 6.7% 14.8 24.0

4 01/05/2012 06:13 00:10 1.00 2.1% 12.0 12.0

5 03/05/2012 08:01 00:21 2.00 4.2% 12.0 12.0

Sampling Period 2

Rainfall
event
no.

Date
Start
time

Duration
(hh:mm)

Total
rainfall
(mm)

%
Total

rainfall

Mean
intensity
(mm hr-1)

Peak
intensity
(mm hr-1)

1 07/05/2012 15:49 00:13 5.40 63% 27.0 72.0

2 09/05/2012 13:11 00:25 3.20 37% 12.8 24.0

Sampling Period 3

Rainfall
event
no.

Date
Start
time

Duration
(hh:mm)

Total
rainfall
(mm)

%
Total

rainfall

Mean
intensity
(mm hr-1)

Peak
intensity
(mm hr-1)

1 15/05/2012 15:35 00:07 1.00 17% 15.0 24.0

2 15/05/2012 16:50 00:19 2.60 45% 13.0 24.0

3 18/05/2012 18:24 00:13 1.20 21% 12.0 12.0

4 19/05/2012 00:38 00:09 1.00 17% 12.0 12.0

Sampling Period 4

Rainfall
event
no.

Date
Start
time

Duration
(hh:mm)

Total
rainfall
(mm)

%
Total

rainfall

Mean
intensity
(mm hr-1)

Peak
intensity
(mm hr-1)

1 02/06/2012 22:34 00:17 1.60 3.3% 12.0 12.0

2 02/06/2012 23:07 00:52 9.40 20% 14.1 24.0

3 03/06/2012 18:43 00:19 1.80 3.8% 12.0 12.0



223

4 07/06/2012 15:15 00:10 1.20 2.5% 12.0 12.0

5 07/06/2012 16:02 00:18 2.60 5.4% 14.2 24.0

6 11/06/2012 17:50 00:12 1.60 3.3% 13.7 24.0

7 14/06/2012 22:18 00:41 4.80 10% 12.5 24.0

8 14/06/2012 23:09 00:41 4.20 8.8% 12.0 12.0

9 15/06/2012 12:40 00:06 1.00 2.1% 12.0 12.0

10 16/06/2012 12:18 00:21 2.20 4.6% 12.0 12.0

11 16/06/2012 12:51 00:08 1.00 2.1% 12.0 12.0

12 16/06/2012 13:03 00:31 7.60 16% 20.7 48.0

13 21/06/2012 01:52 00:43 4.60 10% 12.0 12.0

14 21/06/2012 02:43 00:11 1.20 2.5% 12.0 12.0

15 21/06/2012 03:02 00:17 1.60 3.3% 12.0 12.0

16 21/06/2012 15:03 00:17 1.60 3.3% 12.0 12.0

Sampling Period 5

Rainfall
event
no.

Date
Start
time

Duration
(hh:mm)

Total
rainfall

%
Total

rainfall

Mean
intensity
(mm hr-1)

Peak
intensity
(mm hr-1)

1 28/06/2012 09:48 00:12 9.00 11.7% 45.0 72.0

2 30/06/2012 01:24 00:21 2.00 2.61% 12.0 12.0

3 30/06/2012 02:05 00:17 1.60 2.09% 12.0 12.0

4 06/07/2012 05:33 01:38 35.6 46.5% 24.6 96.0

5 06/07/2012 08:03 00:31 5.20 6.79% 13.0 24.0

6 07/07/2012 22:11 00:10 1.00 1.31% 12.0 12.0

7 07/07/2012 22:38 00:17 1.60 2.09% 12.0 12.0

8 08/07/2012 18:28 00:14 1.40 1.83% 12.0 12.0

9 11/07/2012 09:45 00:11 1.40 1.83% 14.0 24.0

10 11/07/2012 16:38 00:28 3.80 4.96% 17.5 36.0

11 13/07/2012 19:46 00:22 6.60 8.62% 19.8 36.0

12 13/07/2012 23:44 00:21 2.60 3.39% 12.0 12.0

13 14/07/2012 00:31 00:10 1.00 1.31% 12.0 12.0

14 14/07/2012 01:58 00:13 1.20 1.57% 12.0 12.0

15 14/07/2012 15:59 00:11 1.60 2.09% 12.0 12.0

16 14/07/2012 18:44 00:09 1.00 1.31% 15.0 24.0
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A.3 Runoff analysis means

Table_Apx A-3. Mean values for runoff sample variables tested on all Sampling

Periods. Within each Sampling Period, results followed by different letters are

significantly different (p = ≤0.05) following factorial nested ANOVA and post-hoc 

Fisher LSD.

Treatment code
Total runoff volume (l)

1 2 3 4 5

Non-SSD CpL 209 a 164 a 153 a 262 a 96.0 a

Non-SSD CpH 180 a 67.2 a 178 a 254 a 76.6 a

Non-SSD Control 259 a 233 a 245 a 265 a 125 a

Non-SSD StL 270 a 269 a 269 a 268 a 116 a

Non-SSD StH 263 a 241 a 262 a 263 a 118 a

SSD CpL 189 a 150 a 268 a 217 a 59.2 a

SSD CpH 154 a 182 a 134 a 269 a 75.6 a

SSD No mulch 190 a 73.2 a 177 a 249 a 108 a

SSD StL 273 a 145 a 236 a 270 a 143 a

SSD StH 271 a 249 a 255 a 270 a 68.9 a

Treatment code
Total soil loss (kg)

1 2 3* 4 5**

Non-SSD CpL 14.9 bde 21.4 ce 20.6 a 40.1 de 46.8 a

Non-SSD CpH 7.75 ac 11.2 abd 9.57 a 15.6 ab 14.4 a

Non-SSD Control 17.7 ef 18.9 cd 17.4 a 33.5 cde 39.8 a

Non-SSD StL 10.5 ab 6.74 ab 5.69 a 14.4 a 19.4 a

Non-SSD StH 4.28 c 2.77 a 1.36 a 13.8 a 14.2 a

SSD CpL 17.0 def 34.2 f 11.9 a 44.0 e 41.1 a

SSD CpH 11.9 ab 21.4 ce 18.1 a 23.8 abcd 20.6 a

SSD No mulch 22.1 f 33.8 ef 28.4 a 36.9 bcde 38.5 a

SSD StL 12.3 abd 14.8 bcd 12.3 a 16.4 ab 21.5 a

SSD StH 8.96 ac 8.62 ab 8.32 a 20.23 abc 22.39 a

Treatment code
Runoff sediment concentration (g l-1)

1 2 3 4 5

Non-SSD CpL 8.58 abc 12.0 ab 14.1 a 13.0 a 42.0 a

Non-SSD CpH 10.1 a 10.4 ab 13.5 a 8.72 a 31.7 a

Non-SSD Control 5.92 abc 14.1 a 17.0 a 20.1 a 32.2 a

Non-SSD StL 4.80 bc 6.81 ab 9.87 a 10.7 a 26.2 a
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Non-SSD StH 3.43 b 4.65 b 4.87 a 11.4 a 22.0 a

SSD CpL 7.51 abc 10.5 ab 24.1 a 14.0 a 38.1 a

SSD CpH 10.0 a 10.0 ab 10.2 a 9.78 a 12.3 a

SSD No mulch 10.2 ac 1.92 ab 18.0 a 7.57 a 43.9 a

SSD StL 7.50 abc 13.8 a 12.3 a 8.26 a 25.2 a

SSD StH 6.68 abc 11.9 ab 8.40 a 12.8 a 28.0 a
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Table_Apx A-4. Mean values for runoff nutrient analysis. Within each Sampling

Period, results followed by different letters are significantly different (p = ≤0.05) 

following factorial nested ANOVA and post-hoc Fisher LSD.

1 Non-SSD CpL
1.92 def 3.17 a 102 ab

2 Non-SSD CpH
1.39 abd 3.47 a 128 a

3 Non-SSD Control 1.87 bdef 4.18 a 117 a

4 Non-SSD StL 1.21 ac 3.74 a 93.4 ab

5 Non-SSD StH 0.67 c 3.18 a 105 a

6 SSD CpL
2.01 ef 2.74 a 134 a

7 SSD CpH
1.57 abde 4.70 a 50.0 b

8 SSD No mulch 2.45 f 4.37 a 106 ab

9 SSD StL 1.26 abc 3.30 a 85.9 ab

10 SSD StH 1.26 abc 3.34 a 98.1 ab

1 Non-SSD CpL
0.78 abd 0.86 a 0.22 a

2 Non-SSD CpH
0.81 abd 0.62 a 0.73 a

3 Non-SSD Control 0.69 ab 0.83 a 0.63 a

4 Non-SSD StL 0.62 ac 0.72 a 0.35 a

5 Non-SSD StH 0.47 c 0.63 a 0.46 a

6 SSD CpL
0.84 bd 0.79 a 0.67 a

7 SSD CpH
0.68 abc 0.69 a 0.24 a

8 SSD No mulch 0.98 d 0.95 a 0.25 a

9 SSD StL 0.70 ab 0.79 a 0.58 a

10 SSD StH 0.63 abc 0.78 a 0.70 a

1 Non-SSD CpL
1510 a 1288 a 1189 a

2 Non-SSD CpH
1367 a 1273 a 1152 a

3 Non-SSD Control 1406 a 1159 ab 1171 a

4 Non-SSD StL 1385 a 1201 ab 1093 a

5 Non-SSD StH 1354 a 1199 ab 1130 a

6 SSD CpL
1233 a 1238 ab 1178 a

7 SSD CpH
1476 a 1274 a 4792

8 SSD No mulch 1459 a 1195 ab 1198 a

9 SSD StL 1286 a 1153 ab 1214 a

10 SSD StH 1237 a 1112 b 1185 a

*Significant differences derived from Log n of mean values.

**Significant differences derived from Log 2n of mean values.

1 3 5

No. Treatment code

Sediment-bound phosphorus

concentration(mg kg-1)

No. Treatment code
Runoff phosphorus concentration (mg l-1)

1 3 5

No. Treatment code
TON concentration (mg l-1)

1 3 5
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A.4 Event-driven hydrological response means

Table_Apx A-5. Mean time to runoff initiation (minutes) of each treatment for the RE1 of each Sampling Period. Within each

Sampling Period, values followed by different letters denote statistical significance (p ≤ 0.2) following one-way ANOVA. 

Treatment
Sampling Period

1 2 3 4 5

Non-SSD Control 1.67 ab 5.00 a 5.75 a 12.3 a 8.00 a

Non-SSD CpH 1.00 b 5.67 a 10.0 a 7.00 a

Non-SSD CpL 2.00 a 5.33 a 6.50 ab 13.5 a 7.50 a

Non-SSD StH 4.33 c 5.67 a 13.7 a 7.67 a

Non-SSD StL 1.67 ab 5.00 a 14.7 a 6.67 a

SSD CpH 1.67 ab 5.33 a 7.00 bc 13.0 a 7.00 a

SSD CpL 2.00 a 5.00 a 7.67 c 7.33 a

SSD No Mulch 1.50 ab 7.00 a

SSD StH 1.00 b 5.33 a 17.5 a 7.67 a

SSD StL 2.00 a 5.33 a 17.0 a 8.00 a
N.B. Blank cells exist where no runoff was initiated from 2 or more treatment replicates.

Table_Apx A-6. Mean values for runoff cumulative volume and rates for RE1 Sampling Period 1. Within each variable and time

interval, results followed by different letters are significantly different (p ≤ 0.20) following one-way ANOVA and post-hoc Fisher 

LSD.

No. Treatment
Time from RE1 initiation (mins)

0 1 3 5 14 19

Cumulative volume (l)

2 Non-SSD Control 31.6 bc 32.2 bc 61.3 a 92.8 a 123 a 127 a
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No. Treatment
Time from RE1 initiation (mins)

0 1 3 5 14 19

7 Non-SSD CpH 28.9 abc 30.6 abc 53.5 ab 73.8 a 93.7 a 95.7 a

1 Non-SSD CpL 34.5 c 34.5 c 55.9 a 59.0 a 63.5 a 64.9 a

5 Non-SSD StH 3.73 e 3.74 e 11.1 d 27.3 a 82.7 a 92.0 a

8 Non-SSD StL 19.5 ad 20.1 ad 40.4 bc 67.3 a 114 a 120 a

6 SSD CpH 27.3 abc 28.0 abc 53.5 ab 67.3 a 79.1 a 80.8 a

9 SSD CpL 25.1 abc 25.2 abcd 48.0 abc 51.2 a 63.6 a 65.7 a

10 SSD No Mulch 30.3 abc 31.3 abc 62.1 a 81.7 a 97.2 a 98.6 a

3 SSD StH 13.7 de 15.3 d 35.8 c 65.5 a 107 a 112 a

4 SSD StL 22.9 abd 23.0 abd 50.3 ab 85.8 a 125 a 129 a

Runoff rate (l min-1)

2 Non-SSD Control 0.55 ‡ 0.57 abc 20.70 a 13.37 ab 1.22 ac 1.17 c

7 Non-SSD CpH 0.06 ‡ 1.68 de 14.95 a 9.03 abde 0.72 ab 0.01 ad

1 Non-SSD CpL 0.08 ‡ 0.00 a 10.78 a 0.88 c 0.62 ab 0.54 bd

5 Non-SSD StH 0.00 ‡ 0.01 ab 5.60 a 10.25 abe 3.15 d 1.24 bc

8 Non-SSD StL 1.15 ‡ 0.61 abc 14.19 a 13.70 ab 2.18 cd 0.92 bc

6 SSD CpH 0.56 ‡ 0.66 bc 18.40 a 5.17 cde 0.56 ab 0.00 a

9 SSD CpL 0.00 ‡ 0.11 ab 13.42 a 1.48 cd 0.00 b 0.00 a

10 SSD No Mulch 0.00 ‡ 0.96 cd 22.80 a 7.53 acde 0.00 b 0.00 a

3 SSD StH 0.00 ‡ 1.68 e 15.67 a 13.16 ab 1.31 ac 0.86 bc

4 SSD StL 0.11 ‡ 0.08 ab 17.84 a 16.85 b 1.34 ac 0.00 a

†No data variance ‡Data not suitable for ANOVA.
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Table_Apx A-7. Mean values for runoff cumulative volume and rates for RE1 Sampling Period 2. Within each variable and time

interval, results followed by different letters are significantly different (p ≤ 0.20) following one-way ANOVA and post-hoc Fisher 

LSD.

No. Treatment
Time from RE1 initiation (mins)

0 1 3 5 7 9 11 13 15 24

Cumulative runoff (l)

2 Non-SSD Control 0.00 ‡ 0.00 ‡ 0.00 ‡ 32.6 b 86.8 a 121 a 125 a 129 a 133 a 137 a

7 Non-SSD CpH

1 Non-SSD CpL 0.00 ‡ 0.00 ‡ 0.00 ‡ 19.9 a 51.1 a 58.7 a 61.5 a 64.9 a 67.6 a 72.4 a

5 Non-SSD StH 0.00 ‡ 0.00 ‡ 0.00 ‡ 8.55 a 89.1 a 156 a 184 a 201 a 206 a 224 a

8 Non-SSD StL 0.00 ‡ 0.00 ‡ 0.00 ‡ 12.5 a 56.1 a 88.2 a 118 a 141 a 151 a 166 a

6 SSD CpH 3.07 ‡ 3.09 ‡ 3.07 ‡ 15.3 a 58.3 a 76.0 a 87.4 a 96.1 a 103 a 113 a

9 SSD CpL 0.00 ‡ 0.00 ‡ 0.00 ‡ 19.2 a 37.8 a 48.8 a 55.9 a 66.8 a 74.1 a 81.0 a

10 SSD No Mulch

3 SSD StH 0.00 ‡ 0.00 ‡ 0.00 ‡ 12.7 a 100 a 154 a 185 a 207 a 211 a 220 a

4 SSD StL 0.00 ‡ 0.00 ‡ 0.00 ‡ 9.41 a 49.0 a 63.7 a 73.3 a 81.4 a 88.8 a 100 a

Runoff rate (l min-1)

2 Non-SSD Control 0.00 † 0.00 † 0.00 † 32.6 a 22.7 ab 10.9 a 1.81 a 2.24 a 1.23 a 0.00 a

7 Non-SSD CpH 0.00 † † †

1 Non-SSD CpL 0.00 † 0.00 † 0.00 † 19.9 a 7.48 a 2.98 a 1.66 a 1.68 a 1.09 a 1.00 a

5 Non-SSD StH 0.00 † 0.00 † 0.00 † 8.55 a 51.2 c 20.2 a 11.9 a 5.44 a 2.35 a 1.14 a

8 Non-SSD StL 0.00 † 0.00 † 0.00 † 12.5 a 21.3 ab 16.7 a 13.6 a 9.22 a 3.38 a 1.05 a

6 SSD CpH 0.00 † 0.02 † 0.00 † 12.3 a 16.6 ab 6.37 a 5.36 a 4.10 a 2.94 a 0.00 a

9 SSD CpL 0.00 † 0.00 † 0.00 † 19.2 a 7.17 a 3.51 a 3.61 a 4.55 a 2.71 a 0.79 a

10 SSD No Mulch 0.00 † † †

3 SSD StH 0.00 † 0.00 † 0.00 † 12.7 a 38.3 bc 21.5 a 14.2 a 8.54 a 1.71 a 0.42 a
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No. Treatment
Time from RE1 initiation (mins)

0 1 3 5 7 9 11 13 15 24

4 SSD StL 0.00 † 0.00 † 0.00 † 9.41 a 16.0 a 5.91 a 4.32 a 4.09 a 3.46 a 1.01 a

†No data variance ‡Data not suitable for ANOVA. N.B. Blank cells exist where errors in sensor measurement occurred for 2 or more
treatment replicates.

Table_Apx A-8. Mean values for runoff cumulative volume and rates for RE1 Sampling Period 3. Within each variable and time

interval, results followed by different letters are significantly different (p ≤ 0.20) following one-way ANOVA and post-hoc Fisher 

LSD.

No. Treatment
Time from RE1 initiation (mins)

0 1 3 5 7 9 18

Cumulative runoff (l)

2 Non-SSD Control 0.00 † 0.00 † 0.00 † 2.47 ‡ 17.6 d 22.6 b 25.9 c

7 Non-SSD CpH 0.00 † 0.00 † 0.00 † 3.76 ‡ 16.1 cd 20.8 b 24.4 c

1 Non-SSD CpL 0.00 † 0.00 † 0.00 † 0.00 ‡ 13.3 bcd 19.4 bc 24.7 bc

5 Non-SSD StH 0.00 † 0.00 † 0.00 † 0.00 ‡ 0.00 a 0.00 a 0.00 a

8 Non-SSD StL 0.00 † 0.00 † 0.00 † 3.78 ‡ 6.14 ab 7.36 ac 8.54 ab

6 SSD CpH 0.00 † 0.00 † 0.00 † 0.00 ‡ 8.29 abc 10.9 c 12.8 b

9 SSD CpL 0.00 † 0.00 † 0.00 † 0.00 ‡ 6.93 ab 12.5 b 15.4 c

10 SSD No Mulch

3 SSD StH 0.00 † 0.00 † 0.00 † 0.00 ‡ 0.00 a 0.00 a 0.00 a

4 SSD StL 0.00 † 0.00 † 0.00 † 0.00 ‡ 0.00 a 0.00 a 3.21 ab

Runoff rate (l min-1)

2 Non-SSD Control 0.00 ‡ 0.00 † 0.00 † 2.47 ‡ 4.85 b 2.25 bc 0.00 ‡
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No. Treatment
Time from RE1 initiation (mins)

0 1 3 5 7 9 18

7 Non-SSD CpH 0.00 ‡ 0.00 † 0.00 † 3.76 ‡ 3.56 b 1.83 bc 0.00 ‡

1 Non-SSD CpL 0.00 ‡ 0.00 † 0.00 † 0.00 ‡ 6.30 bc 2.07 be 0.00 ‡

5 Non-SSD StH 0.00 ‡ 0.00 † 0.00 † 0.00 ‡ 0.00 a 0.00 a 0.00 ‡

8 Non-SSD StL 0.00 ‡ 0.00 † 0.00 † 3.78 ‡ 0.63 ad 0.61 ad 0.00 ‡

6 SSD CpH 0.03 ‡ 0.00 † 0.00 † 0.00 ‡ 1.20 cd 0.61 de 0.01 ‡

9 SSD CpL 0.00 ‡ 0.00 † 0.00 † 0.00 ‡ 6.93 bc 4.40 c 0.00 ‡

10 SSD No Mulch

3 SSD StH 0.00 ‡ 0.00 † 0.00 † 0.00 ‡ 0.00 a 0.00 a 0.00 ‡

4 SSD StL 0.00 ‡ 0.00 † 0.00 † 0.00 ‡ 0.00 a 0.00 a 0.00 ‡

†No data variance ‡Data not suitable for ANOVA. N.B. Blank cells exist where errors in sensor measurement occurred for 2 or more
treatment replicates.

Table_Apx A-9. Mean values for runoff cumulative volume and rates for RE1 Sampling Period 4. Within each variable and time

interval, results followed by different letters are significantly different (p ≤ 0.20) following one-way ANOVA and post-hoc Fisher 

LSD.

Time from
RE1

initiation
(mins)

Treatments

Non-SSD
Control

Non-SSD
CpH

Non-SSD
CpL

Non-SSD
StH

Non-SSD
StL

SSD CpH SSD CpL
SSD
No

Mulch
SSD StH SSD StL

Cumulative runoff (l)

0 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 †

1 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 †

3 0.00 ‡ 3.19 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡
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Time from
RE1

initiation
(mins)

Treatments

Non-SSD
Control

Non-SSD
CpH

Non-SSD
CpL

Non-SSD
StH

Non-SSD
StL

SSD CpH SSD CpL
SSD
No

Mulch
SSD StH SSD StL

5 0.00 ‡ 3.20 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡

7 2.40 ‡ 4.33 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡

9 3.68 ‡ 6.11 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡

11 5.96 a 10.4 a 8.91 a 7.64 a 0.00 a 0.00 a 0.00 a 0.00 a 5.51 a

13 12.2 a 21.1 a 19.4 a 15.4 a 4.93 a 10.7 a 0.00 a 0.00 a 9.16 a

15 18.4 a 33.4 a 28.6 a 24.2 a 11.8 a 24.8 a 0.00 a 4.88 a 13.0 a

17 27.2 a 45.6 a 42.1 a 32.9 a 23.0 a 35.8 a 0.00 a 8.47 a 16.6 a

19 35.7 a 56.6 a 51.7 a 40.0 a 33.1 a 46.5 a 0.00 a 11.7 a 20.0 a

28 56.6 abc 83.4 b 72.2 ab 75.6 ab 62.8 ab 72.1 ab 0.00 d 25.0 cd 44.6 ac

33 69.4 ab 99.6 b 83.6 ab 94.2 ab 76.7 ab 88.0 ab 0.00 c 32.7 cd 55.9 ad

Runoff rate (l min-1)

0 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 †

1 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 †

3 0.00 ‡ 3.19 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡

5 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 † 0.00 †

7 2.40 ‡ 0.57 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡

9 0.85 ‡ 1.19 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡

11 1.37 a 2.45 a 8.91 a 4.35 a 0.00 a 0.00 a 0.00 a 0.00 a 1.73 a

13 4.40 a 4.35 a 4.34 a 3.67 a 1.71 a 5.56 a 0.00 a 0.00 a 1.85 a

15 2.93 a 8.36 a 3.79 a 4.54 a 5.06 a 5.54 a 0.00 a 1.70 a 1.96 a

17 5.84 a 5.65 a 3.96 a 4.12 ac 6.96 a 5.77 a 0.00 b 1.82 bc 1.53 bc

19 4.42 a 5.32 a 3.83 a 3.41 ac 5.15 a 4.81 a 0.00 b 1.38 bc 1.44 bc

28 1.73 a 2.61 bcd 1.81 ab 3.00 d 2.87 cd 1.73 ab 0.00 e 0.22 e 2.03 abc

33 2.45 ab 2.87 ac 1.78 ab 3.64 c 3.05 ac 2.86 ac 0.00 d 1.59 b 2.20 ab
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†No data variance ‡Data not suitable for ANOVA. N.B. Blank cells exist where errors in sensor measurement occurred for 2 or more
treatment replicates.

Table_Apx A-10. Mean values for runoff cumulative volume and rates for RE1 Sampling Period 5. Within each variable and time

interval, results followed by different letters are significantly different (p ≤ 0.20) following one-way ANOVA and post-hoc Fisher 

LSD.

No. Treatment
Time from RE1 initiation (mins)

0 1 3 5 7 9 11 13 23

Cumulative runoff (l)

2 Non-SSD Control 2.30 a 2.30 a 2.32 a 2.30 ab 5.59 a 28.9 bc 34.1 ad 35.2 abd 37.1 ab

7 Non-SSD CpH 0.00 a 0.00 a 0.00 a 0.00 a 13.7 a 36.5 ab 37.1 ab 37.6 ab 37.7 abd

1 Non-SSD CpL 0.00 a 0.00 a 0.00 a 0.00 a 7.34 a 32.6 abc 35.6 abd 35.6 abd 35.9 abd

5 Non-SSD StH 0.00 a 0.00 a 0.00 a 0.00 a 4.39 a 55.8 ad 58.7 bc 58.7 ac 59.6 ac

8 Non-SSD StL 3.09 a 3.08 a 3.13 a 6.42 c 13.6 a 52.7 ad 57.5 bc 58.6 ac 60.3 ac

6 SSD CpH 0.00 a 0.00 a 0.00 a 0.00 a 8.75 a 12.3 c 12.3 d 12.3 d 12.3 d

9 SSD CpL 0.00 a 0.00 a 0.00 a 0.00 a 10.5 a 37.1 ab 43.7 abc 46.7 abc 47.6 abc

10 SSD No Mulch 0.00 a 0.00 a 0.00 a 0.00 a 13.8 a 58.0 ad 67.0 c 68.8 c 70.3 c

3 SSD StH 0.00 a 0.00 a 0.00 a 0.00 a 5.53 a 29.9 bc 31.1 ad 32.2 bd 33.0 bd

4 SSD StL 5.18 a 5.18 a 5.42 a 5.92 bc 6.00 a 64.0 d 69.4 c 71.9 c 72.8 c

Runoff rate (l min-1)

2 Non-SSD Control 0.00 † 0.00 † 0.02 a 0.00 ‡ 3.28 a 13.8 a 1.66 a 0.63 bc 0.00 a

7 Non-SSD CpH 0.00 † 0.00 † 0.00 a 0.00 ‡ 13.7 a 4.03 a 0.00 b 0.01 a 0.00 ab

1 Non-SSD CpL 0.00 † 0.00 † 0.00 a 0.00 ‡ 7.34 a 7.14 a 1.09 cd 0.02 abd 0.00 a

5 Non-SSD StH 0.00 † 0.00 † 0.00 a 0.00 ‡ 4.39 a 16.6 a 2.02 a 0.01 ad 0.03 b

8 Non-SSD StL 0.00 † 0.00 † 0.03 a 3.28 ‡ 6.99 a 19.2 a 1.73 a 0.56 bc 0.53 c
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No. Treatment
Time from RE1 initiation (mins)

0 1 3 5 7 9 11 13 23

6 SSD CpH 0.00 † 0.00 † 0.00 a 0.00 ‡ 8.75 a 0.59 a 0.01 bc 0.05 a 0.00 ab

9 SSD CpL 0.00 † 0.00 † 0.00 a 0.00 ‡ 10.5 a 7.30 a 2.83 ad 1.35 bc 0.00 ab

10 SSD No Mulch 0.00 a 0.00 ‡ 13.8 a 14.8 a 3.06 a 0.82 bcd 0.00 a

3 SSD StH 0.00 † 0.00 † 0.00 a 0.00 ‡ 5.53 a 6.50 a 0.11 bc 0.00 a 0.00 ab

4 SSD StL 0.00 † 0.00 † 0.23 a 0.31 ‡ 0.00 a 24.2 a 1.28 ad 1.32 c 0.01 ab

†No data variance ‡Data not suitable for ANOVA. N.B. Blank cells exist where errors in sensor measurement occurred for 2 or more
treatment replicates.
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Appendix B Soil Bin Experimental Work

B.1 Tine geometry and configuration designs

Figure_Apx B-1. Narrow tine design.
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Figure_Apx B-2. Shallow leading tines design.
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Figure_Apx B-3. Modified para-plough designs and configuration.
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Figure_Apx B-4. Narrow with shallow leading tines configuration design.

Figure_Apx B-5. Design for spacers for use between the bracket and tine legs.
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Figure_Apx B-6. Rear mounting bracket design.
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Figure_Apx B-7. Modification design for existing bracket.
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B.2 Soil Bin calibration

Figure_Apx B-8. Calibration curves for the draught and vertical channels of the

EORT.
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Table_Apx B-1. Mean bulk densities of soil bin preparation tests with varying

numbers of rolls. Results followed by different letters denote a statistical

difference following ANOVA analysis and post-hoc Fisher LSD.

Bin fit
no.

No. rolls
Bulk density

(gcm-3)

Moisture
content (%)

1 10 1.55 a 7.01 a

1 14 1.56 a 7.27 ab

2 16 1.56 a 7.05 a

2 20 1.59 a 7.84 bcd

3 26 1.60 a 7.32 ab

3 30 1.57 a 7.06 a

4 10 1.57 a 7.85 bcd

4 16 1.55 a 8.10 cd

5 14 1.59 a 8.32 d

5 20 1.59 a 7.58 abc

Table_Apx B-2. Mean bulk densities of soil bin preparations for stage 1 (175 mm)

and stage 2 (250 and 300 mm) testing. Results followed by different letters

denote a statistical difference following ANOVA analysis and post-hoc Fisher

LSD.

Experimental
stage

Bin fit
no.

Bulk density

(gcm-3)

Moisture content
(%)

1 1 1.59 a 8.34 b

1 2 1.56 a 7.70 ac

1 3 1.54 a 8.09 ab

1 4 1.58 a 8.09 ab

1 5 1.58 a 8.08 ab

1 6 1.54 a 7.90 abc

1 7 1.54 a 7.53 ac

1 8 1.51 a 6.93 d

1 9 1.51 a 7.32 cd

2 1 1.46 a 7.32 a

2 2 1.56 bcd 8.36 b
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Experimental
stage

Bin fit
no.

Bulk density

(gcm-3)

Moisture content
(%)

2 3 1.53 bc 8.36 b

2 4 1.53 bc 8.14 b

2 5 1.56 bcd 8.44 bc

2 6 1.57 cd 8.52 bc

2 7 1.53 bc 8.36 b

2 8 1.52 bc 8.72 bc

2 9 1.56 bcd 8.61 bc

2 10 1.56 bcd 8.40 b

2 11 1.54 bc 8.35 b

2 12 1.55 bcd 8.11 b

2 13 1.52 abc 8.26 b

2 14 1.55 bc 8.47 bc

2 15 1.56 bcd 8.49 bc

2 16 1.51 ab 9.04 c

2 17 1.61 d 9.69 d
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B.3 Soil Bin results

Table_Apx B-3. Mean results for each tine configuration at all three tested depths. Within each cultivation depth, different letters

following results for each variable denote statistical differences (p =<0.05).

Tine
DBG

(m2)
SRP SRI

DAG

(m2)

Draught
force
(kN)

Vertical
force
(kN)

SD
(kN m-2)

SDE

(kN m-2)

175 mm

1 NT 2.68 a 0.21 a 0.45 c 1.46 b 1.31 b 0.32 c 0.49 ab 0.32 a

2 WT 3.41 b 0.24 a 0.34 a 2.21 a 2.55 a -0.09 ab 0.75 c 0.45 b

3 MPP 5.07 c 0.23 a 0.30 ab 3.11 c 2.08 d 0.81 d 0.41 a 0.25 a

4 NSLT 2.92 a 0.31 a 0.36 a 1.90 a 1.68 c 0.17 bc 0.58 b 0.35 a

5 WSLT 2.82 a 0.22 a 0.22 b 2.25 a 2.75 a -0.37 a 0.98 d 0.55 c

250 mm

1 NT 3.78 b 0.15 a 0.44 c 2.42 b 14.3 a -6.67 ab 3.9 a 2.35 a

2 WT 6.28 a 0.17 a 0.32 ab 3.38 ac 22.7 b -0.33 d 3.6 a 2.34 a

3 MPP 6.67 a 0.26 a 0.28 a 3.59 a 22.0 b -9.33 a 3.3 ab 2.15 a

4 NSLT 5.43 c 0.23 a 0.38 bc 2.71 bc 14.7 a -4.00 bc 2.7 b 1.80 a

5 WSLT 6.53 a 0.24 a 0.31 a 3.93 a 25.7 c -2.33 cd 3.9 a 2.46 a

300 mm

1 NT 4.62 b 0.21 ab 0.37 a 3.10 b 22.3 a -9.00 b 5.0 a 2.94 a
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Tine
DBG

(m2)
SRP SRI

DAG

(m2)

Draught
force
(kN)

Vertical
force
(kN)

SD
(kN m-2)

SDE

(kN m-2)

2 WT 8.38 a 0.18 ab 0.31 b 4.20 a 32.0 b -1.67 e 3.8 a 2.55 a

3 MPP 8.02 a 0.12 a 0.30 b 4.21 a 37.0 c -14.3 a 4.8 a 3.07 a

4 NSLT 5.66 b 0.24 bc 0.38 a 3.00 b 19.7 a -6.00 c 3.5 a 2.29 a

5 WSLT 8.47 a 0.34 c 0.40 a 4.01 a 32.3 b -4.00 d 3.8 a 2.59 a
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Figure_Apx B-9. Above and below ground disturbance of each tine configuration

at 175 mm, derived from the mean profile measurements of three runs of each

experimental tine.
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Figure_Apx B-10. Above and below ground disturbance of each tine

configuration at 250 mm, derived from the mean profile measurements of three

runs of each experimental tine.
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Figure_Apx B-11. Above and below ground disturbance of each tine

configuration at 300 mm, derived from the mean profile measurements of three

runs of each experimental tine.
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Figure_Apx B-12. Above ground disturbance at 300 mm resulting from the

narrow tine (top image) and the winged tine (bottom image).
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B.3.1 Tine cutting face calculation for 175 mm depth cultivation

Narrow tine

Components interacting with the soil at 175 mm: tine foot.

Dimensions

Foot: 175 (h), 25 (w)

= 4375 mm2 (0.004 m2)

Winged tine

Components interacting with the soil at 175 mm: tine foot and wings (x 2).

Dimensions

Wings: 100 (lift height), 160 (w)

Foot: 175 (h), 25 (w)

= 20375 mm2 (0.02 m2)

Modified para-plough

Components interacting with the soil at 175 mm: tine foot (x 2) and bent leg (x 2).

Dimensions

Foot: 75 (h), 25 (w) (x2)

Bent leg: 141 (l) 20 (w) (x2)

= 4965 mm2 (x2)

= 9390 mm2 (0.009 m2)

Narrow with shallow leading tines

Components interacting with the soil at 175 mm: main tine foot, shallow tine foot (x 2).

Dimensions

Shallow leading foot: 120 (h), 25 (w)

=3000 mm2 (x2)

=6000 mm2 + 4375 mm2 (from narrow tine calculation)

= 10375 mm2 (0.01 m2)

Winged with shallow leading tines
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Components interacting with the soil at 175 mm: main tine foot, wings (x 2) and shallow

tine foot (x 2).

Dimensions

Shallow leading foot: 120 (h), 25 (w)

=3000 mm2 (x2)

=6000 mm2 + 36375 mm2 (from winged tine calculation)

= 42375 mm2 (0.042 m2)
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Table_Apx B-4. Results of the Pugh ranking matrix for all cultivation depths.

Performance

criteria

175 mm depth 250 mm depth 300 mm depth

W
T

W
S

L
T

N
T

N
S

L
T

M
P

P

W
T

W
S

L
T

N
T

N
S

L
T

M
P

P

W
T

W
S

L
T

N
T

N
S

L
T

M
P

P

SRP S S S S S S S S S S S + S S S

SRI S - + S S S S + S S S + + + S

SDD S - + + + S S S S S S S S S S

DBG S - - - + S S - + S S S - - S

DAG S S - S + S S - S S S S - - S

BD reduction S S S S S S S S S S S S + S S

Total + 0 0 2 1 3 0 0 1 1 0 0 2 2 1 0

Total - 0 3 2 1 0 0 0 2 0 0 0 0 2 2 0

Total score 0 -3 0 0 3 0 0 -1 1 0 0 2 0 -1 0

Rank 2 5 2 2 1 2 2 5 1 2 2 1 2 5 2



253

Appendix C Phase 2 Field Trials

C.1 Experimental setup

The attached CD contains short films showing the application of SSD in treatment

wheelings using the MPP, NSLT and WT tine configurations.
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C.2 Sampling Period characteristics

Table_Apx C-1. Rainfall characteristics for each Phase 2 Sampling Period.

Sampling Period 1

Rainfall
event no.

Date
Start
time

Duration
(mins)

Total
rainfall
(mm)

%
Total

rainfall

Mean
intensity
(mm hr-1)

Peak
intensity
(mm hr-1)

Data not known.

Sampling Period 2

Rainfall
event no.

Date
Start
time

Duration
(mins)

Total
rainfall
(mm)

%
Total

rainfall

Mean
intensity
(mm hr-1)

Peak
intensity
(mm hr-1)

1 23/07/2013 04:02:00 00:19 15.2 93.80 54 588

Sampling Period 3

Rainfall
event no.

Date
Start
time

Duration
(mins)

Total
rainfall
(mm)

%
Total

rainfall

Mean
intensity
(mm hr-1)

Peak
intensity
(mm hr-1)

1 27/07/2013 20:01:00 00:01 13.2 28.3 792 792

2 28/07/2013 19:17:00 00:11 8.2 17.6 82 432

3 29/07/2013 12:21:00 00:03 2.0 4.3 60 108

4 02/08/2013 20:08:00 00:04 3.6 7.7 43 132

5 02/08/2013 21:38:00 00:04 0.8 1.7 24 36

6 02/08/2013 22:05:00 00:09 1.0 2.1 12 12

7 04/08/2013 12:06:00 00:05 5.2 11.2 78 276

8 05/08/2013 08:57:00 00:00 3.6 7.7 216 216

9 05/08/2013 09:23:00 00:31 5.8 12.4 16 36

10 05/08/2013 14:35:00 00:02 1.0 2.1 30 48

11 05/08/2013 15:00:00 01:05 11.0 23.6 15 36

Sampling Period 4

Rainfall
event no.

Date
Start
time

Duration
(mins)

Total
rainfall
(mm)

%
Total

rainfall

Mean
intensity
(mm hr-1)

Peak
intensity
(mm hr-1)

1 16/08/2013 09:14:00 00:05:00 6.6 19.4% 132 372

2 24/08/2013 00:17:00 00:00:00 7.2 21.2% 432 432

3 09/09/2013 01:01:00 00:04:00 10.2 30.0% 306 600

4 09/09/2013 03:17:00 00:00:00 2.6 7.6% 156 156
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5 09/09/2013 06:07:00 00:06:00 1.0 2.9% 30 48

6 09/09/2013 08:57:00 00:13:00 1.2 3.5% 12 12

Sampling Period 5

Rainfall
event no.

Date
Start
time

Duration
(mins)

Total
rainfall
(mm)

%
Total

rainfall

Mean
intensity
(mm hr-1)

Peak
intensity
(mm hr-1)

1 06/11/2013 14:16:00 00:01:00 3.8 13.2 114 204

2 08/11/2013 12:31:00 00:09:00 4 13.9 120 228

3 14/11/2013 00:12:00 00:10:00 14.4 50 123 792

4 17/11/2013 08:12:00 00:00:00 1.2 4.2 72 72

5 20/11/2013 11:18:00 00:08:00 3.6 12.5 54 180

C.3 Runoff analysis means

Table_Apx C-2. Mean values for runoff sample variables from each treatment

type. Within each Sampling Period, results followed by different letters are

significantly different (p ≤ 0.05) following one-way ANOVA and post-hoc Fisher 

LSD.

No. Treatment code
Total runoff volume (l)

1 2 3 5

1 MPP No mulch 64.0 a 13.1 a 227 a 65.0 a

2 MPP St 67.7 a 43.8 a 252 a 96.9 a

3 Non-SSD Control 75.1 a 25.7 a 267 a 140 a

4 Non-SSD St 66.1 a 7.88 a 216 a 231 a

5 WT No mulch 76.7 a 63.2 a 241 a 53.2 a

6 WT St 105 a 11.5 a 259 a 99.4 a

7 NSLT No mulch 76.5 a 8.87 a 244 a 157 a

8 NSLT St 84.9 a 25.6 a 248 a 54.4 a

No. Treatment code
Total soil loss (kg)

1 2 3 5

1 MPP No mulch 0.11 a 0.92 a 3.03 a 0.04 a

2 MPP St 0.05 a 0.08 a 0.33 c 0.02 a

3 Non-SSD Control 0.12 a 1.31 a 2.00 a 0.10 a

4 Non-SSD St 0.04 a 0.09 a 0.62 b 0.08 a

5 WT No mulch 0.12 a 0.68 a 2.16 a 0.03 a

6 WT St 0.07 a 0.08 a 0.48 bc 0.03 a

7 NSLT No mulch 0.12 a 0.42 a 2.36 a 0.08 a

8 NSLT St 0.07 a 0.15 a 0.61 b 0.02 a
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No. Treatment code Runoff sediment concentration (g l-1)

1 2 3 5

1 MPP No mulch 1.14 d 7.64 cd 5.33 b 0.21 a

2 MPP St 0.49 abc 2.35 abc 0.89 a 0.30 a

3 Non-SSD Control 0.73 bc 10.7 d 5.69 b 0.26 a

4 Non-SSD St 0.24 a 2.47 ab 1.41 a 0.19 a

5 WT No mulch 0.66 bc 7.31 bcd 4.45 b 0.15 a

6 WT St 0.34 a 2.71 ab 1.29 a 0.13 a

7 NSLT No mulch 0.78 c 6.08 abcd 4.81 b 0.27 a

8 NSLT St 0.44 ab 2.29 a 1.23 a 0.12 a
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Table_Apx C-3. Mean values for runoff nutrient analyses from each treatment

type. Within each Sampling Period, results followed by different letters are

significantly different (p ≤ 0.05) following one-way ANOVA and post-hoc Fisher 

LSD.

No. Treatment code TON concentration (mg l-1)

1 3 5

1 MPP No mulch 5.37 b 1.04 a 0.80 abc

2 MPP St 1.76 a 3.20 ab 1.23 d

3 Non-SSD Control 4.43 b 3.80 bc 0.96 bcd

4 Non-SSD St 0.58 a 12.1 c 1.12 cd

5 WT No mulch 4.40 b 1.83 a 0.71 ab

6 WT St 1.42 a 9.62 bc 0.54 a

7 NSLT No mulch 4.69 b 3.19 ab 0.74 ab

8 NSLT St 1.46 a 1.99 ab 0.46 a

No. Treatment code Orthophosphate P concentration (mg l-1)

1 3 5

1 MPP No mulch 0.15 abc 0.17 a 0.13 a

2 MPP St 0.12 ab 0.38 a 0.25 a

3 Non-SSD Control 0.26 bcd 0.39 a 0.20 a

4 Non-SSD St 0.10 a 0.60 a 0.27 a

5 WT No mulch 0.27 cd 0.26 a 0.19 a

6 WT St 0.21 abcd 0.43 a 0.22 a

7 NSLT No mulch 0.34 d 0.33 a 0.18 a

8 NSLT St 0.17 abc 0.41 a 0.30 a

No. Treatment code Sediment-bound P concentration (mg kg-1)

1 3 5

1 MPP No mulch 2112 abc 2067 a 2886 a

2 MPP St 1544 bd 2370 a 1872 a

3 Non-SSD Control 2379 ac 2004 a 2763 a

4 Non-SSD St 1304 d 2407 a 3288 a

5 WT No mulch 2485 a 2154 a 2629 a

6 WT St 2106 abc 2095 a 2486 a

7 NSLT No mulch 2630 a 2259 a 2791 a

8 NSLT St 1803 bcd 2441 a 2455 a
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Table_Apx C-4. Mean values for runoff sample variables for different SSD types.

Within each Sampling Period, results followed by different letters are

significantly different (p ≤ 0.05) following full factorial ANOVA and post-hoc 

Fisher LSD.

No. SSD type
Total runoff volume (l)

1 2 3 5

1 MPP 82.8 a 28.4 a 239 a 80.9 a

2 Non-SSD 70.6 a 16.8 a 241 a 186 a

3 WT 90.8 a 17.2 a 250 a 76.3 a

4 NSLT 80.7 a 39.9 a 246 a 106 a

No. SSD type
Total soil loss (kg)

1 2 3 5

1 MPP 0.08 a 0.50 a 1.68 a 0.03 a

2 Non-SSD 0.08 a 0.70 a 1.31 a 0.09 b

3 WT 0.09 a 0.38 a 1.32 a 0.03 a

4 NSLT 0.09 a 0.29 a 1.48 a 0.05 a

No. SSD type Runoff sediment concentration (g l-1)

1 2 3 5

1 MPP 0.82 b 4.99 a 3.11 a 0.26 a

2 Non-SSD 0.49 a 6.60 a 3.55 a 0.23 a

3 WT 0.50 a 5.01 a 2.87 a 0.14 a

4 NSLT 0.61 ab 4.18 a 3.02 a 0.20 a

Table_Apx C-5. Mean values for runoff nutrient analyses from each SSD type.

Within each Sampling Period, results followed by different letters are

significantly different (p ≤ 0.05) following full factorial ANOVA and post-hoc 

Fisher LSD.

No. SSD type TON concentration (mg l-1)

1 3 5

1 MPP 3.56 a 2.12 a 1.02 b

2 Non-SSD 2.51 a 7.96 b 1.04 b

3 WT 2.91 a 5.73 a 0.63 a

4 NSLT 3.07 a 2.59 a 0.60 a



259

No. SSD type
Orthophosphate P concentration (mg l-1)

1 3 5

1 MPP 0.14 a 0.27 a 0.19 a

2 Non-SSD 0.18 a 0.49 a 0.23 a

3 WT 0.24 a 0.34 a 0.21 a

4 NSLT 0.26 a 0.37 a 0.24 a

No. SSD type

Sediment-bound P concentration (mg kg-

1)

1 3 5

1 MPP 1828 a 2219 a 2379 a

2 Non-SSD 1841 a 2205 a 3025 a

3 WT 2296 a 2124 a 2558 a

4 NSLT 2217 a 2350 a 2623 a

Table_Apx C-6. Mean values for runoff sample variables for different mulch

types. Within each Sampling Period, results followed by different letters are

significantly different (p ≤ 0.05) following full factorial ANOVA and post-hoc 

Fisher LSD.

No. Mulch type
Total runoff volume (l)

1 2 3 5

1 No mulch 73.1 a 18.0 a 245 a 104 a

2 Straw 89.4 a 33.2 a 244 a 120 a

No. Mulch type
Total soil loss (kg)

1 2 3 5

1 No mulch 0.12 b 0.83 b 2.39 b 0.06 a

2 Straw 0.05 a 0.10 a 0.51 a 0.04 a

No. Mulch type
Runoff sediment concentration (g l-1)

1 2 3 5

1 No mulch 0.83 b 7.94 b 5.07 b 0.23 a

2 Straw 0.38 a 2.45 a 1.20 a 0.19 a
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Table_Apx C-7. Mean values for runoff nutrient analyses from each SSD type.

Within each Sampling Period, results followed by different letters are

significantly different (p ≤ 0.05) following full factorial ANOVA and post-hoc 

Fisher LSD.

No. Mulch type TON concentration (mg l-1)

1 3 5

1 No mulch 4.72 b 2.47 a 0.80 a

2 Straw 1.30 a 6.73 b 0.84 a

No. Mulch type
Orthophosphate P concentration (mg l-1)

1 3 5

1 No mulch 0.25 b 0.29 a 0.18 a

2 Straw 0.15 a 0.46 a 0.26 b

No. Mulch type Sediment-bound P concentration (mg kg-1)

1 3 5

1 No mulch 2402 b 2121 a 2767 a

2 Straw 1689 a 2328 b 2525 a

C.4 Event driven hydrological response means

Table_Apx C-8. Mean time to runoff initiation (minutes) of each treatment for the

RE1 of each Sampling Period. Within each Sampling Period values followed by

different letters denote statistical significance (p ≤ 0.2) following one-way 

ANOVA.

Treatment
Sampling Period

1* 2 3 5

1 Non-SSD Control 4.00 a 1.00 a 1.67 a

2 Non-SSD St 6.00 ab 1.00 a 1.33 a

3 NSLT No mulch 4.33 a 1.00 a 1.00 a

4 NSLT St 5.00 a 1.00 a 1.00 a

5 MPP No Mulch 12.0 bc 1.00 a 1.00 a

6 MPP St 4.50 a 1.00 a 1.00 a
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Treatment
Sampling Period

1* 2 3 5

7 WT No mulch 13.5 c 1.00 a

8 WT St 4.50 a 1.00 a 1.00 a

*Data not available due to logging error. N.B. Blank cells exist where no runoff was
initiated.
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Table_Apx C-9. Mean values for runoff cumulative volume and rates for RE1 Sampling Period 2. Within each variable and time

interval, results followed by different letters are significantly different (p ≤ 0.20) following one-way ANOVA and post-hoc Fisher 

LSD.

Time from RE1 initiation (minutes)

No. Treatment 1 3 5 7 9 11 13 15 17 19 21 30

Cumulative volume (l)

1 Non-SSD Control 0.00 † 4.85 ‡ 14.8 ab 25.4 a 27.3 a 28.1 a 29.1 a 32.7 a 34.6 a 35.6 a 36.6 a 38.4 a

2 Non-SSD St 0.00 † 0.00 ‡ 0.00 b 6.60 bc 7.20 a 7.20 a 7.20 a 7.20 a 7.21 a 7.81 a 7.87 a 7.87 a

3 NSLT No mulch 0.00 † 3.63 ‡ 11.2 a 18.9 a 20.5 a 21.7 a 22.9 a 24.1 a 25.3 a 25.9 a 26.6 a 27.3 a

4 NSLT St 0.00 † 0.00 ‡ 34.9 a 48.9 a 51.0 a 51.9 a 52.5 a 53.2 a 54.5 a 55.3 a 55.3 a 55.3 a

5 MPP No Mulch 0.00 † 0.00 ‡ 0.00 b 4.38 bc 5.56 a 6.15 a 6.75 a 7.35 a 7.96 a 11.3 a 11.9 a 12.5 a

6 MPP St 0.00 † 0.00 ‡ 21.6 a 29.2 ac 31.3 a 32.2 a 33.3 a 35.9 a 37.4 a 40.2 a 41.6 a 43.1 a

7 WT No mulch 0.00 † 0.00 ‡ 0.00 b 0.00 b 5.66 a 6.52 a 7.37 a 7.40 a 8.25 a 8.25 a 8.25 a 8.25 a

8 WT St 0.00 † 0.00 ‡ 12.9 a 16.5 a 20.0 a 21.8 a 21.9 a 23.6 a 23.7 a 24.7 a 25.5 a 25.6 a

Runoff rate (l min-1)

1 Non-SSD Control 0.00 ‡ 4.85 ‡ 7.41 a 1.88 a 0.87 ‡ 0.04 ‡ 0.06 ‡ 0.91 ‡ 0.94 a 0.95 ‡ 0.12 ‡ 0.02 ‡

2 Non-SSD St 0.00 ‡ 0.00 ‡ 0.00 a 1.19 a 0.56 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 a 0.56 ‡ 0.05 ‡ 0.00 ‡

3 NSLT No mulch 3.98 ‡ 3.63 ‡ 4.70 a 1.31 a 1.12 ‡ 1.16 ‡ 0.65 ‡ 0.62 ‡ 0.63 a 0.08 ‡ 0.11 ‡ 3.06 ‡

4 NSLT St 0.00 ‡ 0.00 ‡ 15.31 a 6.90 a 0.59 ‡ 0.23 ‡ 0.54 ‡ 0.78 ‡ 0.75 a 0.55 ‡ 0.00 ‡ 0.01 ‡

5 MPP No Mulch 0.00 ‡ 0.00 ‡ 0.00 a 0.57 a 0.56 ‡ 0.56 ‡ 0.56 ‡ 0.56 ‡ 0.56 a 0.05 ‡ 0.00 ‡ 0.00 ‡



264

Time from RE1 initiation (minutes)

No. Treatment 1 3 5 7 9 11 13 15 17 19 21 30

6 MPP St 0.00 ‡ 0.00 ‡ 10.56 a 2.09 a 0.81 ‡ 0.05 ‡ 0.05 ‡ 1.13 ‡ 0.59 a 1.44 ‡ 1.05 ‡ 0.00 ‡

7 WT No mulch 0.00 ‡ 0.00 ‡ 0.00 a 0.00 a 0.86 ‡ 0.03 ‡ 0.01 ‡ 0.01 ‡ 0.85 a 0.00 ‡ 0.00 ‡ 0.00 ‡

8 WT St 0.00 ‡ 0.00 ‡ 7.32 a 1.85 a 1.76 ‡ 0.85 ‡ 0.09 ‡ 0.00 ‡ 0.07 a 0.08 ‡ 0.84 ‡ 0.00 ‡

†No data variance ‡Data not suitable for ANOVA.

Table_Apx C-10. Mean values for runoff cumulative volume and rates for RE1 Sampling Period 3. Within each variable and time

interval, results followed by different letters are significantly different (p ≤ 0.20) following one-way ANOVA and post-hoc Fisher 

LSD.

Time from RE1 initiation (minutes)

No. Treatment 1 3 5 7 9 11 13 22

Cumulative volume (l)

1 Non-SSD Control 68.3 a 72.2 a 73.9 a 73.8 a 73.5 a 73.4 a 73.2 a 73.8 a

2 Non-SSD St 42.1 a 42.1 a 42.1 a 42.1 a 42.1 a 42.1 a 42.1 a 42.1 a

3 NSLT No mulch 41.0 a 41.0 a 41.0 a 41.0 a 41.0 a 41.0 a 41.0 a 41.0 a

4 NSLT St 38.8 a 38.8 a 38.8 a 38.8 a 38.8 a 38.8 a 38.8 a 38.8 a

5 MPP No Mulch 33.3 a 33.3 a 33.3 a 33.3 a 33.3 a 33.3 a 33.3 a 33.3 a

6 MPP St 52.8 a 52.8 a 52.8 a 52.8 a 52.8 a 52.8 a 52.8 a 52.8 a

7 WT No mulch 0.00 a 0.00 a 0.00 a 0.00 a 0.00 a 0.00 a 0.00 a 0.00 a
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Time from RE1 initiation (minutes)

No. Treatment 1 3 5 7 9 11 13 22

8 WT St 21.4 a 21.4 a 21.4 a 21.4 a 21.5 a 21.4 a 21.4 a 21.4 a

Runoff rate (l min-1)

1 Non-SSD Control 68.28 a 0.59 ‡ 1.41 ‡ 0.00 † 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.03 ‡

2 Non-SSD St 42.07 a 0.00 ‡ 0.00 ‡ 0.00 † 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡

3 NSLT No mulch 40.95 a 0.01 ‡ 0.00 ‡ 0.00 † 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡

4 NSLT St 38.81 a 0.01 ‡ 0.00 ‡ 0.00 † 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.01 ‡

5 MPP No Mulch 33.31 a 0.01 ‡ 0.00 ‡ 0.00 † 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡

6 MPP St 59.47 a 0.00 ‡ 0.00 ‡ 0.00 † 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡

7 WT No mulch 0.00 a 0.00 ‡ 0.00 ‡ 0.00 † 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡

8 WT St 21.39 a 0.00 ‡ 0.00 ‡ 0.00 † 0.02 ‡ 0.00 ‡ 0.00 ‡ 0.00 ‡

†No data variance ‡Data not suitable for ANOVA.

Table_Apx C-11. Mean values for runoff cumulative volume and rates for RE1 Sampling Period 5. Within each variable and time

interval, results followed by different letters are significantly different (p ≤ 0.20) following one-way ANOVA and post-hoc Fisher 

LSD.

Time from RE1 initiation (minutes)

No. Treatment 1 3 5 7 9 11 12 21

Cumulative volume (l)
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Time from RE1 initiation (minutes)

No. Treatment 1 3 5 7 9 11 12 21

1 Non-SSD Control 127 a 127 a 127 a 127 a 128 a 132 a 133 a 140 a

2 Non-SSD St 119 a 119 a 119 a 119 a 119 a 120 a 121 a 131 a

3 NSLT No mulch 97.8 a 97.8 a 97.7 a 98.9 a 101 a 104 a 107 a 114 a

4 NSLT St 40.4 a 40.6 a 36.8 a 40.0 a 40.6 a 42.5 a 43.1 a 46.2 a

5 MPP No Mulch 58.7 a 58.7 a 58.7 a 58.7 a 58.7 a 58.7 a 58.7 a 58.7 a

6 MPP St 62.6 a 62.5 a 62.6 a 62.6 a 62.5 a 64.3 a 65.2 a 71.1 a

7 WT No mulch 50.1 a 50.1 a 50.1 a 50.6 a 50.6 a 50.6 a 50.6 a 50.6 a

8 WT St 63.9 a 63.9 a 63.9 a 65.2 a 66.6 a 68.6 a 70.6 a 76.9 a

Runoff rate (l min-1)

1 Non-SSD Control 127 a 0.01 ‡ 0.00 ‡ 0.09 ‡ 1.42 a 1.68 a 1.70 ‡ 0.00 a

2 Non-SSD St 119 a 0.01 ‡ 0.00 ‡ 0.00 ‡ 0.01 a 1.06 a 1.63 ‡ 0.00 a

3 NSLT No mulch 97.8 a 0.00 ‡ 0.00 ‡ 1.13 ‡ 0.42 a 1.99 a 2.83 ‡ 1.34 b

4 NSLT St 40.4 a 0.00 ‡ 0.00 ‡ 0.00 ‡ 0.07 a 1.15 a 0.64 ‡ 0.00 a

5 MPP No Mulch 58.7 a 0.01 ‡ 0.00 ‡ 0.02 ‡ 0.01 a 0.00 a 0.00 ‡ 0.00 a

6 MPP St 62.6 a 0.01 ‡ 0.19 ‡ 0.23 ‡ 0.07 a 0.93 a 0.94 ‡ 0.85 b

7 WT No mulch 50.1 a 0.00 ‡ 0.00 ‡ 0.56 ‡ 0.00 a 0.00 a 0.00 ‡ 0.00 a

8 WT St 63.9 a 0.01 ‡ 0.00 ‡ 0.62 ‡ 0.63 a 1.31 a 2.01 ‡ 0.84 b
†No data variance ‡Data not suitable for ANOVA.
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Figure_Apx C-1. Runoff hydrographs for RE1 of Sampling Period 3. Cumulative runoff volume is shown at set intervals during

the Rainfall Event as well as 1 minute and 10 minutes post Rainfall Event cessation.
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C.5 Treatment observations

Figure_Apx C-2. Shallow soil disturbance degradation over the duration of Phase

2 field trials. Plots from left to right show soil disturbance undertaken by WT,

NSLT and MPP. The top photograph was taken on the 30th April 2013 and the

bottom three photos on the 24th July 2013.
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Appendix D Economic Appraisal

D.1 Phase 2 tine configuration fuel requirement calculations

The following calculations are based on formula sourced from personal communication

with K. Blackburn (2014).

1. Draught power calculation

Draught Power = Force x Speed

Tine configuration Draught force (N) Speed (m s-1) Draught power

(Watts)

MPP 2080 0.58 1206.4

NSLT 1680 0.58 974.4

WT 2550 0.58 1479.0

2. Engine mechanical output calculation

= (Draught Power / 1 – Slip) / Transmission loss

Tine

configuration

Draught power

(Watts)

Slip ratio† Transmission

loss ratio†

Mechanical

power (Watts)

MPP 1206.4 0.1 0.8 1676

NSLT 974.4 0.1 0.8 1353

WT 1479.0 0.1 0.8 2054

†Assumptions based on personal communication with K. Blackburn, 2014.

3. Thermal input power calculation

= Mechanical Power / Thermal input

Tine

configuration

Mechanical power

(Watts)

Thermal

input factor†

Power (energy)

released (Watts)

MPP 1676 3 5027
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Tine

configuration

Mechanical power

(Watts)

Thermal

input factor†

Power (energy)

released (Watts)

NSLT 1353 3 4060

WT 2054 3 6163

†Based on personal communication with K. Blackburn (2014).

4. Fuel required to generate power

= Power released / Specific energy of diesel

Tine

configuration

Power (energy)

released (Watts)

Specific energy of

diesel (J l-1) †

Fuel required

(l s-1)

MPP 5027 38.6 x 10-6 1.38 x 10-4

NSLT 4060 38.6 x 10-6 1.12 x 10-4

WT 6163 38.6 x 10-6 1.69 x 10-4

†Based on a low heating value sourced from the Engineering Tool Box available at:
http://www.engineeringtoolbox.com/fossil-fuels-energy-content-d_1298.html.


