
1089-7798 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LCOMM.2015.2408339, IEEE Communications Letters

IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 9, SEPTEMBER 2014 1

Optimizing the Trickle Algorithm
Badis Djamaa and Mark Richardson

Abstract—The Trickle Algorithm has enjoyed much popularity
and widespread use as a basic network primitive ensuring low-
cost data consistency in lossy networks. Trickle is shaped by the
so-called short-listen problem, hence the imposition of a listen-
only period. Such a period allows Trickle to robustly address the
short-listen problem at the expense of increased latency. In this
letter, we introduce a simple yet powerful optimization to Trickle
that can dramatically decrease Trickle’s latency with virtually no
additional overhead to its scalability and robustness. Extensive
simulation and testbed experiments are reported here, yielding
greater than a factor of 10 decrease in propagation time.

Index Terms—The Trickle algorithm, Low-power and lossy
networks, RPL, MPL.

I. INTRODUCTION

THE Trickle algorithm, first introduced in [1] and later
standardized as RFC 6206 in [2], has gained much

popularity and emerged as a basic network primitive that
can ensure fast and reliable resolution of data inconsistencies
with low maintenance cost while scaling well with network
density. For these attractive features, Trickle makes the basis
of many internet standards [2][3], and it is deployed in many
other applications such as reliable broadcast/dissemination and
distributed service/resource discovery.

The rationale behind Trickle is to provide constrained net-
worked nodes with a local, robust, energy-efficient, simple, and
scalable information exchange primitive. To this end, Trickle
deploys two basic techniques: adaptive transmission periods
and a timer-based suppression mechanism. Dynamically ad-
justing transmission periods to the network context allows
Trickle to achieve quick resolution of inconsistencies, while
only generating few consistency control packets when the
network is in a steady state. On the other hand, a simple timer-
based suppression mechanism allows Trickle’s communication
cost to scale logarithmically with network density. In addition,
Trickle implementations only require very few states in terms
of memory and computational resources.

The final shape of the Trickle algorithm, described below,
is the fruit of years of experimenting and running Trickle
across various application domains. Based on which, [2]
advises not to try to tweak Trickle’s behavior without great
experimental work. Nevertheless, Trickle in its actual final
format suffers from many problems, the principal one being
increased propagation latency. This motivated us to carry out
the present work in order to propose a simple, yet powerful
optimization to Trickle.

This paragraph of the first footnote will contain the date on which you
submitted your paper for review.

Badis Djamaa and Mark Richardson are with the Center for Electronic
Warfare, Cranfield University, Defence Academy of the United Kingdom,
Shrivenham SN6 8LA. Email: {b.djamaa, m.a.richardson}@cranfield.ac.uk

II. THE TRICKLE ALGORITHM

A node using the Trickle algorithm periodically broadcasts
its data unless it has recently heard identical ones (referred
to by the generic term consistent in what follows). As long
as nodes agree on what data they have, Trickle exponentially
increases the transmission window. When data disagreements
(inconsistencies) are detected, Trickle starts transmitting more
quickly. To realize this behavior, and as by [2]’s notation, the
Trickle algorithm maintains three variables; namely:

• A consistency counter c.
• A Trickle interval I .
• A transmission time t within an interval I .

In addition, Trickle defines three configuration parameters:
• The minimum interval size Imin (Imin is defined in

units of time, e.g., milliseconds, seconds).
• The maximum interval size Imax (Imax is described

as a number of doublings of Imin and hence the time
specified by Imax would be Imin× 2Imax).

• The redundancy constant k (k integer greater than zero).
Trickle can be expressed by the six rules (steps) below:

• Step 1: When Trickle starts execution, it picks I uni-
formly at random from [Imin; Imin×2Imax] and begins
the first interval.

• Step 2: When an interval I begins, Trickle resets c to 0
and picks t uniformly at random from the range [I/2; I).

• Step 3: Whenever a node hears a consistent transmission,
Trickle increments the consistency counter c.

• Step 4: At time t, Trickle transmits if and only if c is less
than k (c < k). Otherwise, the transmission is suppressed.

• Step 5: When the interval I expires, Trickle doubles the
interval length up to the time specified by Imax. Trickle
then starts a new interval as in Step 2.

• Step 6: If Trickle hears an inconsistent transmission while
I is greater than Imin, it resets the Trickle timer. To do
so, Trickle sets I to Imin and starts a new interval as
in Step 2. Otherwise, i.e. I was equal to Imin when
detecting the inconsistency, Trickle does nothing. Note
that the Trickle timer can also be reset in response to
external events.

Choosing t from the second half of an interval in Step 2
ensures a half-interval listen-only period, which is introduced
in response to the challenging short-listen problem discussed
in [1]. However, the listen-only period trades off transmission
cost for increased delays accumulated at every hop.

III. THE NEW TRICKLE ALGORITHM

In this section, we introduce the proposed optimization to
Trickle with a description of its rationale and main benefits.



1089-7798 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LCOMM.2015.2408339, IEEE Communications Letters

IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 9, SEPTEMBER 2014 2

 

N2 

N3 

N4 

N1 

���� ����2 × ���� 4 × ���� 2 × ���� 4 × ����

Fig. 1. Trickle (left) and New-Trickle (right). The gray rectangle represents
the listen-only period. Black lines are transmissions, gray ones are suppressed
transmissions and dotted lines are receptions.

A. The New Trickle Algorithm

Replace Step 2 in the Trickle description above as follows:
• Step 2: When an interval I begins, Trickle resets c to 0

and picks t uniformly at random from the range:
– [0; Imin), if the interval began as a result of Step 6

(because of an inconsistency or external events).
– [I/2; I), otherwise (the interval began as a result of

Step 1 or Step 5).
In a nutshell, the proposed optimization says: if a new

interval is started as result from resetting I to Imin (Step
6) then choose the transmission time t from [0; Imin) instead
of [Imin/2; Imin). The rest remains unchanged.

B. Rationale

Choosing t from [0; Imin) if a Trickle interval begins as
a result of Step 6 allows Trickle to resolve inconsistencies
much faster, while does not introduce noticeable extra cost.
This is so thanks to Step 6 in the Trickle algorithm, which
enables the nodes hearing an inconsistency to immediately
shrink their intervals to Imin. This fact can constitute an
implicit synchronization between such nodes in this specific
interval and allow them to choose t from [0; Imin) without
experiencing a short-listen problem with each other as shown
in Fig .1. Note, however, that whichever receiver transmits
(e.g. N2, N3 or N4 in Fig .1), it might experience a short-
listen with the originator (N1). The impact of this does not
affect Trickle’s scalability, as will be discussed in section V.

Although neighbors can experience non-synchronized Imin
intervals as a result of losses and/or the multi-hop nature, an
implicit synchronization in the transmission periods of these
intervals remains valid, as will be shown from the obtained
results and be detailed in a future work. Note that there
is no guarantee of implicit synchronization in the following
intervals, and hence the listen-only period is deployed.

C. Main Advantages

Since Trickle resolves inconsistencies in Imin-sized inter-
vals, the above optimization is expected to drastically decrease
Trickle’s propagation time at virtually no extra cost. At first
glance, one can think of the propagation time to be halved.
However, many parameters (e.g. Imin value) can impact the
propagation time, allowing it to be much faster as will be
discussed in section V. Note that other promising benefits were
also observed and are planned as future work.

TABLE I
EXPERIMENTAL PARAMETERS

Parameter Value
Simulation radio medium Unit Disk Graph Medium (UDGM)

Imin/Imax From 62 ms to 2 seconds / 3 (Imin× 23)
k 1, 2, 3, 5, 7, 9

#nodes 16, 36, 64, 100, 196, 400
Transmission power levels 11, 15, 18, 23, 31

Adaptation layer/MAC 6LoWPAN/CSMA with 100% duty cycle
MAC Retransmissions 0 (Trickle ensures such a task)

IV. METHODOLOGY AND EXPERIMENTAL DESIGN

We used the Contiki OS Trickle library as a basis for our
modifications and evaluations in both cycle-accurate simula-
tions and public testbed platforms. Simulation experiments
give us controlled environments, while public testbed ex-
periments validate the results in real-world deployments. To
put the results into context, we compared the new Trickle
algorithm (New-Trickle) with both Trickle and Short-Trickle:
a version of Trickle that takes t from [0; I).

We used a reference simulation scenario consisting of 400
nodes deployed in a grid topology. In single-hop experiments,
all the nodes were within communication range of each other.
In the multi-hop scenario, we opted for a dense network where
nodes have around 36 neighbors. The network diameter was
about 13 hops. The default value of Imin was one second and
that of k was one. Node 1 in the upper left corner generated a
new packet that gets propagated and exchanged using one of
the three protocols. Starting from this reference scenario, we
varied physical link loss rate (loss probability is proportional
to the square of the sender-receiver distance), network density,
Imin and k, and we measured the number of transmissions per
interval together with the consistency time (time from issuing
an update until all the nodes get updated). Each simulation
runs on 10 virtual minutes and was repeated 25 times. We
plot in the graphs the mean with its standard error. TABLE I
lists the main parameters used/varied in our experiments.

V. RESULTS AND DISCUSSIONS

In this section, we present and discuss the obtained simu-
lation and Indriya’s testbed results.

A. Multi-hop Networks

Fig. 2 presents obtained results in the multi-hop network.
First row of graphs in Fig. 2 shows the performance in the ref-
erence scenario of the three evaluated protocols under losses.
As can be seen from these graphs, New-Trickle approached
the propagation time of Short-Trickle even in a worst case of
90% loss rate. With increasing success rates the two protocols
registered similar propagation time, which is about four times
less than that of Trickle. While Short-Trickle achieved this by
generating more packets, New-Trickle sent approximately the
same packets as Trickle (slightly bigger in lossy networks).
The quantification and reasons behind this extra cost will be
discussed in section V.C.

The second row of graphs shows the performance of the
three evaluated protocols when varying Imin in a physically



1089-7798 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LCOMM.2015.2408339, IEEE Communications Letters

IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 9, SEPTEMBER 2014 3

10% 30% 50% 70% 90% 100%
success rate

0

2

4

6

8

10

12

co
n
si
st
e
n
cy
 t
im

e
 (
s)

10% 30% 50% 70% 90% 100%
success rate

0

10

20

30

40

50

60

70

Tr
a
n
sm

is
si
o
n
s/
In
te
rv
a
l

62 125 250 500 1000 1500 2000
Imin (ms)

0

2

4

6

8

10

12

14

co
n
si
st
e
n
cy
 t
im

e
 (
s)

62 125 250 500 1000 1500 2000
Imin (ms)

0

5

10

15

20

25

30

35

40

45

Tr
a
n
sm

is
si
o
n
s/
In
te
rv
a
l

36 64 100 196
Density (#nodes)

0

5

10

15

20

25

co
n
si
st
e
n
cy
 t
im

e
 (
s)

36 64 100 196
Density (#nodes)

0

2

4

6

8

10

12

14

16

18

Tr
a
n
sm

is
si
o
n
s/
In
te
rv
a
l

1 2 3 5 7 9
k

0

1

2

3

4

5

6

7

8

co
n
si
st
e
n
cy
 t
im

e
 (
s)

1 2 3 5 7 9
k

0

20

40

60

80

100

120

140

160

180

Tr
a
n
sm

is
si
o
n
s/
In
te
rv
a
l

New-Trickle Trickle Short-Trickle

Fig. 2. Performance evaluation in multi-hop networks

lossless network. As expected the propagation time of New-
Trickle approached that of Short-Trickle. Interestingly, unlike
Trickle, the propagation time of New-Trickle does not heavily
depend on Imin, making it propagate seven times faster in an
Imin of two seconds. This gap is expected to increase with
increasing Imin values. The cost of New-Trickle is similar to
that of Trickle with a small increase caused mainly by losses.
Thus, even the physical topology is lossless; losses can occur
as a result of network dynamics, e.g. hidden terminals.

The third row of graphs in Fig. 2 presents the performance
when varying network density. Similarly to previous graphs,
New-Trickle generated as many transmissions as Trickle while
propagating as fast as Short-Trickle, which is about four times
faster than Trickle in a sparse 36-node network.

The fourth row of graphs in Fig. 2 shows the performance
in the reference scenario when increasing k. Increasing k
slightly decreased the propagation time, while considerably
increased the cost of the three protocols. As expected, New-
Trickle propagated about 3.5 times faster than Trickle while
providing similar cost.

B. Single-hop Networks

The first row of graphs in Fig. 3 shows consistency times
and transmission costs of the three evaluated protocols in
a 400-node single-hop network when varying the loss rate.
New-Trickle propagated about five times faster than Trickle
with an approximately similar transmission cost (the small
extra cost will be discussed in the following subsection). Note
that in the particular case of 0% loss, Trickle achieved the
same propagation, and even Short-Trickle transmitted less than

10% 30% 50% 70% 90% 100%
success rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

co
n
si
st
e
n
cy
 t
im
e
 (
s)

10% 30% 50% 70% 90% 100%
success rate

0

1

2

3

4

5

Tr
a
n
sm

is
si
o
n
s/
In
te
rv
a
l

500 1000 1500 2000
Imin (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

co
n
si
st
e
n
cy
 t
im
e
 (
s)

500 1000 1500 2000
Imin (ms)

0

1

2

3

4

5

6

Tr
a
n
sm

is
si
o
n
s/
In
te
rv
a
l

16 36 64 100 196 400
Density (#nodes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
n
si
st
e
n
cy
 t
im
e
 (
s)

16 36 64 100 196 400
Density (#nodes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Tr
a
n
sm

is
si
o
n
s/
In
te
rv
a
l

New-Trickle Trickle Short-Trickle

Fig. 3. Performance evaluation in single-hop networks

Trickle. This is because the network was synchronized as the
inconsistent transmission was simultaneously received by all.

Second row of graphs presents the performance of the eval-
uated protocols when varying Imin in a very lossy network
(90% loss rate). As we can see from these graphs, New-
Trickle propagation is loosely coupled with the value of Imin
allowing it to propagate about 11 times faster than Trickle in
an Imin of two seconds. This is achieved at approximately
the same cost as Trickle. On the other hand, Short-Trickle’s
cost increased drastically with increasing losses.

The third row of graphs in Fig. 3 presents the performance
of the three evaluated protocols in a network with 50% loss
rate when varying the number of nodes. As can be seen from
these graphs, New-Trickle propagated as fast as short-Trickle
with only a very small extra cost when compared to Trickle,
while propagating more than six times faster.

C. Causes of the Additional Cost

As observed previously, a small extra transmission cost is in-
troduced by New-Trickle. Fig. 4 illustrates the reasons behind
that and Fig. 5 quantifies it. Fig. 4 shows that, although the
Imin intervals’ transmissions will not experience short-listen
with each other, Trickle makes sure that such transmissions
coincide with other intervals’ listen-only periods (e.g. N1, N2
and N3 in Fig. 4), and hence might help in deleting their
transmissions. New-Trickle, however; may not provide such a
guarantee. This seems to only affect a few following intervals.
To confirm this, we plot the average number of transmissions
in the second, third and the rest of the intervals with increasing
density in a network with 50% losses. As can be seen from Fig.
5, this small extra cost is degraded such that from the third
interval its effect gets unnoticeable. Thankfully, this cost is
independent of the density and hence does not affect Trickle’s
scalability. Note that a slight modification to New-Trickle by
allowing nodes to start listening at time t of an Imin interval
can mitigate some of this extra cost.



1089-7798 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LCOMM.2015.2408339, IEEE Communications Letters

IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 9, SEPTEMBER 2014 4

 

N2 

N3 

N4 

N1 

���� ����2 × ���� 4 × ���� 2 × ���� 4 × ���� 

Fig. 4. Lossy network, Trickle (left) and New-Trickle (right). The dashed blue
lines show the transmit-listen interplay between Imin-intervals’ transmissions
and following intervals listen-only periods.

16 36 64 100 196 400
Density (#nodes)

0

2

4

6

8

10

12

Tr
a
n
sm
is
si
o
n
s/
In
te
rv
a
l

Second Interval (2*Imin)

16 36 64 100 196 400
Density (#nodes)

0

1

2

3

4

5

6

Tr
a
n
sm
is
si
o
n
s/
In
te
rv
a
l

Third Interval (4*Imin)

16 36 64 100 196 400
Density (#nodes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
a
n
sm
is
si
o
n
s/
In
te
rv
a
l

Remaining Intervals (8*Imin)

New-Trickle
Trickle

Fig. 5. Quantifying the additional cost

D. Testbed Results

The proposed algorithm was also evaluated in the public
large-scale Indriya testbed [5]. Indriya contains around 100
active motes irregularly deployed in a three story building. At
the time of experimentation almost all middle floor nodes were
off, leaving us with 65 motes and a good opportunity to test in
an irregular faulty real-world scenario. The Trickle seed (node
21 in the third floor) injected a new packet every 60 seconds.
This is to create a network dominated by inconsistent traffic
in order to show the impact of the observed small extra cost.
Each experiment run for 30 minutes and was repeated three
times. The default value of Imin was half a second and that
of k was one. Default transmission power level was 31. As in
simulations, we report the mean along with its standard error.

Fig. 6 presents the consistency times and the transmission
costs of the three evaluated protocols. As can be observed
from the first row of graphs, New-Trickle provided the best
of both Trickle and Short-Trickle, even in a faulty irregular
network experiencing heavy inconsistencies. Thus, it propa-
gated even better than Short-Trickle, which is about twice
faster than Trickle at a similar transmission cost with increased
k values. The second row of graphs in Fig. 6 shows New-
Trickle performance when varying Imin. As can be seen from
these graphs, New-Trickle propagated faster than Trickle while
generating similar number of packets. The small additional
cost is due to the fact explained earlier. Note that even
in this irregular faulty network, New-Trickle’s propagation
is less affected by the value of Imin. The third row of
graphs depicts the performance of the evaluated protocols
when varying transmission power. Varying transmission power
plays a double role; it changes both the density and the loss
pattern of the network. New-Trickle propagated about twice
faster than Trickle even in a lossy, less connected network
(power level 15). This propagation time approached that of
Short-Trickle while generating similar overhead to Trickle.

1 2 3 5 7
k

0.0

0.5

1.0

1.5

2.0

co
n
si

st
e
n
cy

 t
im

e
 (
s)

1 2 3 5 7
k

0

20

40

60

80

100

120

Tr
a
n
sm

is
si

o
n
s/

In
te

rv
a
l

62 125 250 500 1000 2000
Imin (ms)

0

1

2

3

4

5

6

7

8

co
n
si

st
e
n
cy

 t
im

e
 (
s)

62 125 250 500 1000 2000
Imin (ms)

0

5

10

15

20

25

30

35

Tr
a
n
sm

is
si

o
n
s/

In
te

rv
a
l

11 15 18 23 31
Transmission power level

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

co
n
si

st
e
n
cy

 t
im

e
 (
s)

11 15 18 23 31
Transmission power level

0

5

10

15

20

25

30

35

40

45

Tr
a
n
sm

is
si

o
n
s/

In
te

rv
a
l

New-Trickle Trickle Short-Trickle

Fig. 6. Performance evaluation in the Indriya testbed

VI. IMPACT OF THE NEW TRICKLE ALGORITHM

All Trickle-based applications can benefit from New-Trickle
by only modifying one line in their codes. Due to brevity, we
focus here on RPL [3] and MPL [4]. Since Trickle is one of the
main factors dictating the convergence of RPL networks, New-
Trickle allows faster network convergence even when opting
for bigger Imin values (for the sake of minimizing collisions
and hidden terminals). On the other hand, MPL will be able to
deliver multicast packets much faster, especially as it heavily
relies on Trickle for both its reactive and proactive modes.

VII. CONCLUSION

In this letter, we introduced a simple, yet very powerful op-
timization to Trickle. Results showed important performance
enhancements in the consistency time of Trickle, yielding a
factor greater than 10 times, while preserving Trickle’s scala-
bility. In-depth analysis of the impact of this optimization on
Trickle-based applications along with other important benefits
and improvements will be the subject of future work.

ACKNOWLEDGMENT

The authors would like to thank Philip Levis for the active
insightful and fruitful discussions.

REFERENCES

[1] P. Levis, N. Patel, D. Culler, and S. Shenker, Trickle: A Self-Regulating
Algorithm for Code Propagation and Maintenance in Wireless Sensor
Networks, in In Proceedings of the First USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI, 2004, pp. 1528.

[2] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, RFC 6206: The
Trickle algorithm, IETF, 2011.

[3] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R.
Struik, J. P. Vasseur, and R. Alexander, RFC 6550: RPL: IPv6 Routing
Protocol for Low-Power and Lossy Networks, IETF, Mar. 2012.

[4] J. Hui and R. Kelsey, Multicast Protocol for Low power and Lossy
Networks (MPL), Internet Draft, IETF, 2014.

[5] M. Doddavenkatappa, M. C. Chan, and A. L. Ananda, Indriya: A low-
cost, 3D wireless sensor network testbed, in Testbeds and Research
Infrastructure. Development of Networks and Communities, Springer,
2012, pp. 302316.


