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Abstract

A model of the effect of foliar-applied fungicides on disease-induced yield loss is
described, parameterised and tested. The effects of fungicides on epidemics of Septoria
tritici (leaf blotch), Puccinia striiformis (yellow rust), Blumeria graminis f.sp tritici
(powdery mildew) and Puccinia triticina (brown rust) on winter wheat were simulated
using dose-response curve parameters. Where two or more active substances were
applied together, their joint action was estimated using an additive dose model where
the actives were of the same mode of action or a multiplicative survival model where
the modes of action differed. By coupling the model with models of wheat canopy
growth and foliar disease published previously, it was possible to estimate disease-
induced yield loss for a prescribed fungicide programme. The difference in green
canopy area, and hence interception of photosynthetically active radiation, between
simulated undiseased and diseased (but treated) crop canopies was used to estimate
yield-loss. The model was tested against data from field experiments across a range of
sites, seasons and wheat cultivars, and was shown to predict the observed disease-
induced yield loss with sufficient accuracy to support fungicide treatment decisions. A
simple method of accounting for uncertainty in the predictions of yield loss is described.
Fungicide product, dose and spray timing combinations selected using the coupled
models responded appropriately to disease pressure and cultivar disease resistance.
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Introduction

Fungicide treatment decisions are complex because there are thousands of possible
fungicide product, dose and spray timing combinations which could be used, and
product, dose and timing interact in their effects on disease-induced yield loss (Paveley
1999; Paveley et al. 2000; Bartlett et al., 2002). Here we propose a model which, when
coupled with foliar disease and crop canopy models published previously (Milne et al.
2003; Audsley et al., 2005), describes the effect of foliar fungicide treatment on
epidemic development, loss of green canopy area, absorption of insolation, and yield
loss for a given scenario; where the scenario specifies sowing date, daily weather,
cultivar, and fungicide program. Because yield-loss has an economic value and
fungicides have an economic cost, the models can be used to rank treatment options by
net economic benefit, as part of a decision support system (DSS) for crop managers.
This use imposes certain requirements and constraints on model structure, considered
below.

The model describes the effects of active substances, thus reducing substantially the
task of parameterising fungicide efficacy, because the hundreds of commercially
available fungicide products are formulated from approximately 30 active substances
(either alone or in mixtures). Hence, a simplifying assumption is made here that the
effects of differences in formulation on efficacy are small in comparison with the
differences between active substance.

The biokinetics of different active substances vary substantially, even within the same
class of fungicides (Bartlett et al., 2002), however, this variation can be broadly
categorised as two types of effect on foliar disease development. Protectant effects
reduce infection frequency, often by inhibiting spore germination and germ tube growth.
Non-systemic active substances are predominantly protectant and therefore have to be
applied soon after leaf emergence, before infections occur (Russell, 2005). Eradicant
effects slow the rate of mycelial growth and hence the rate of formation of sporulating
structures (Vyas, 1984). Many systemic fungicides have both protectant and eradicant
properties, although some - for example the ergosterol biosynthesis inhibitors - have
little effect on spore germination, as the pathogen obtains a supply of ergosterol or its
precursors from reserves within the spore (Hanssler & Kuck, 1987). Eradicant
fungicides can still be effective when applied after infection, so the best application
timing depends on the active substance. To simulate these different effects of timing on
efficacy, protectant and eradicant effects need to be modelled for each active substance.

Fungicides have a recommended maximum dose which must not be exceeded.
However, because the cost of treatment rises linearly with dose, whereas efficacy is non-
linearly related to dose, it is often cost effective to apply less than the recommended
dose; particularly when inoculum pressure is low and rate-limiting disease resistance is
constraining the epidemic. Hence, active substance efficacy needs to be modelled using
representative dose-response curves.

For Type II pathosystems (Johnson, 1987), which cause crop damage (Nutter et al.,
1993) predominantly through loss of green canopy area, the slopes of the relationships
of yield on healthy area duration (HAD) or healthy area absorption of insolation (HAA)
are reasonably consistent (Waggoner & Berger, 1987; Bryson et al., 1997; Paveley,
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1997). Hence, despite the difficulties of predicting yield per se (Landau et al., 1999;
Jamieson et al., 1999), there is a reasonable prospect of predicting disease-induced yield
loss, where disease and the effect of fungicides on disease, change HAD and HAA.

Given the uncertainty which surrounds any prediction, it would be unwise to make
decisions on fungicide use solely on the basis of deterministic estimates of yield-loss.
The unpredictability of weather means that future outcomes are variable. Ideally the
coupled models should be run over a large number of future weather scenarios in order
to estimate the resulting yield-loss variability. However, in a decision support
application the models may need to be run thousands of times in a decision algorithm
(Parsons & Te Beest, 2004), so a simple method to estimate yield-loss variability is
proposed in order to minimise run time.

Model structure

The model reported here couples with canopy and disease simulation models reported
in previous papers (Milne et al,. 2003; Audsley et al., 2005). In summary, the canopy
model simulates the growth and senescence of successive leaves on a single shoot as a
function of day length and thermal time. Culm leaves are numbered down the shoot, so
the flag leaf is leaf I, the next leaf down is leaf II, and so on. The foliar disease model
simulates epidemics on the top six leaf layers. Disease is described as a series of daily
infections which results in infectious lesions. The success of infection is dependent on
pathogen species dependent weather variables such as rainfall, relative humidity and
temperature. Lesion growth from an infection is modelled by a logistic function of
thermal time.

Fungicide efficacy

Commercial fungicide products are formulated from one or more chemical active
substances. Fungicide efficacy is modelled by simulating the effect of each active
substance and then combining them.

Active substance model

The protectant effect of an active substance is simulated by reducing the number of
successful infections on a day to a proportion RP. The eradicant effect is simulated by
reducing the rate of growth of the infection to RE. The logistic equation that describes
the growth rate of a lesion from an infection (Audsley et al., 2005) becomes

)1(  ykyR
dT
dy

E with ay )0( (1)

where y is lesion size, expressed as a proportion of its asymptote value, at thermal time
T (°C days, base zero). Parameters a and k are disease dependant. The percentage
symptom severity on a leaf on day t becomes
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where P(i,n) is the number of potential infections occurring on day i on leaf n, T(t)-T(i)
is the thermal time accumulated over the period i to t.

Parameters RP(t) and RE(t) are calculated daily for each leaf layer from dose-response
curves

 ))(exp(11)( tdkatR PPP  and  ))(exp(11)( tdkatR EEE  (3)

where aP, kP, aE and kE are parameters dependent on the active substance and the disease
that is being targeted and d(t) is the effective daily dose, calculated as follows.

When a spray is applied, the dose nD arriving on leaf n is a function of leaf position in
the canopy and the extent to which it has emerged. This is modelled
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where D0 is the applied dose of the active substance, )( sn tA is the proportion of leaf n
that has emerged on the date of application ts, Lj(ts) is the leaf area index (LAI) of leaf j
on day ts and  is a constant parameter. Over time the efficacy of an applied active
substance will decay. On day t, the effective daily dose d(t) on leaf n is given by

))(exp()( sn ttDtd   (5)

where μ is the decay rate of the active substance.

Active substance mixtures

Mixtures of active substances can arise in two ways. Firstly, two or more active
substances can be applied together, either within a single fungicide product formulation
or as a tank mix of products. Secondly, fungicides may be applied in sequence and
active substances from one application may still be present when the next is applied.

An additive dose model (ADM) is used to calculate the joint action of active
substances from the same mode of action group of fungicides and a multiplicative
survival model (MSM) for active substances with different modes of action (Morse,
1978).

Additive dose model: Consider combining the efficacy of the m active substances c1, c2,
… cm against a given disease on day t at effective doses of d1(t), d2(t), … dm(t)
respectively. Firstly, the active substance with the greatest activity at full dose is
identified; say active substance c1. Using Eqn 3, for every other active substance
calculate the effective daily dose jd̂ (t) of active substance c1 that will give the same

efficacy as active substance cj, at effective dose dj, where  mj ,...2 . This is given by
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where )( ja and )( jk are parameters of active substance cj where  mj ,...1 . The doses
in terms of active substance c1 are calculated for each of the active substances and
summed together giving a combined effective dose for day t. This dose is substituted
into Eqn 3 to give the combined efficacy )(ˆ tR for the m active substances
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Multiplicative survival model: Active substances with different modes of action are
assumed to work independently. Each active substance can be thought of as working on
the pathogen population that has survived the effect of the other active substances.
Therefore the combined efficacy )(ˆ tR of m active substances c1, c2, … cm against a
given disease on day t at effective doses of d1(t), d2(t), … dm(t) respectively is given by
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where R(t; j) is given by  ))()(exp(1)(1 tdjkja j from Eqn 3.

Accounting for the variation in shoot development

The wheat canopy is modelled by considering a typical wheat shoot, where a leaf on
the stem represents a layer of leaves over a field (Milne et al. 2003). In reality, tillers
develop at slightly different rates, initially lagging behind the main stem, but tending to
become more synchronous as the crop matures. Hence, a spray applied early in the
canopy expansion will be intercepted by leaves of a given layer that vary more in age
than those that would intercept a spray applied at later growth stages. This is likely to
affect the performance of fungicides, in particular those with protectant effects because,
for example, leaves which emerged earlier may already have become infected at the
time of treatment. This effect is approximated by determining a parameter to reduce the
protectant spray effect according to the equation

)1()(  nSRtR PP


(9)

where S is a disease dependant constant parameter, and n is the leaf number.

Grain yield loss model

Light interception

Each day light energy (MJ m-2) is intercepted by leaves and ears. The energy )(tIn
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intercepted by a leaf n on day t is dependent on the shading from the leaves and ears
above. Interception is calculated by analogy to Beer’s law (Monteith & Unsworth, 1990)
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where kg is the ear extinction coefficient, kl is the leaf extinction coefficient, I0(t) is the
photosynthetically active radiation (PAR) incident on the canopy on day t, Ln(t) is the
simulated LAI of leaf n on day t, and G(t) is the green area index of the ear on day t.

The energy intercepted by green leaf area En(t) is reduced in proportion to the diseased
area. The amount by which interception is reduced is a function of the disease type and
depends partly on the extent to which green area loss exceeds symptom area. For
example, a given leaf area affected by B. graminis lesions will cause less yield loss than
the same area affected by Mycosphaerella graminicola (Septoria tritici) (Cook et al.,
1991). The reduced intercepted energy is given by
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where ),( ntYi is the percentage area of disease i on leaf n, i is a disease dependent
parameter which is usually greater than one (Paveley et al., 2001) (intercepted energy is
never allowed to be less than zero) and f is the number of foliar diseases modelled.

Grain yield loss calculation

The yield lost due to foliar disease which would otherwise be accumulated and
partitioned to grain yield on day t is given by
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where the summation is over all leaf layers. The variable )(tIn is given by Eqn 10, )(tEn

is given by Eqn 11, U is the radiation use efficiency (RUE) parameter, )(~ tU is the
adapted RUE parameter (described in the next section) and B is the dry matter
partitioning constant. In general, yield-loss models based on HAD and HAA should be
applied to the period when the harvested portion of the crop is growing rapidly
(Johnson, 1987), in the case of wheat, during grain filling. However, some carbohydrate
accumulated in the stem pre-anthesis can be translocated to grain post-anthesis (Austin
et al., 1977). To account for this contribution to yield from pre-anthesis photosynthesis,
B is taken as zero before the plant reaches terminal spikelet, b1 between terminal
spikelet and anthesis and b2 after anthesis. The total yield loss due to foliar disease f is
given by summing )(t from terminal spikelet until plant senescence. The dry matter
that can be accumulated prior to anthesis that is considered as contributing to grain yield
is limited to 3t ha-1 to approximate the capacity for stem storage and re-distribution in
modern wheat cultivars (Sylvester-Bradley et al., 1997).
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The effect of strobilurins on yield

As well as suppressing foliar diseases, strobilurin fungicides are thought to enhance
yield (Bartlett et al., 2002) via effects on the crop. Several mechanisms have been
suggested to explain this effect including increased duration of green area, chlorophyll
and radiation use efficiency (RUE) of the leaves.

Distinguishing between the yield gain due to disease suppression and yield gain due to
any direct physiological effects is difficult in field experiments, so quantitative
mechanistic evidence in representative environments is scarce. However the yield
improvements are economically important and cannot be overlooked. Hence,
arbitrarily, after a strobilurin fungicide has been applied, the RUE of each leaf which
was present at the time of spray application is increased by an amount proportional to
the dose of the spray reaching the leaf, up to a maximum of 0.25 of the full
recommended dose. If a leaf emerges after spray application, the RUE for that leaf is
increased by an amount proportional to the remaining dose. These increases remain
until the leaf has senesced. This adapted RUE is notated )(~ tU in Eqn 12.

Margin of grain value over fungicide cost

The margin over spray costs M is calculated

SsfEG CWvCM  ))(1(  (13)

where ζf is the yield loss due to foliar diseases, ζs is the yield loss due to stem diseases,
CS is the cost of fungicides (including application cost), CG is the grain price and v is the
proportional value loss due to ear diseases. Values for the stem and ear disease related
variables can be calculated using a model such as the one described in Bailey (2000).
An estimate of yield in the absence of disease (WE) is entered by the user of the decision
support system (DSS) and included so that the impact of disease on yield and margin
can be reported to the user in relation to a yield which they consider to be realistic.

Parameter evaluation

Fungicide parameters

Two eradicant parameters and two protectant parameters describe the efficacy of each
active substance against each disease. Since 1993, experiments have quantified the
efficacy of the main fungicide active substances against the four predominant foliar
diseases of winter wheat in the UK (Paveley & Clark, 2000; Clark, 2005); namely S.
tritici, Puccinia striiformis, B. graminis and Puccinia. triticina. Randomised and
replicated field plots of winter wheat were established at sites across the UK. Cultivars
susceptible to the four diseases were chosen. Fungicides were applied to the plots
between GS37 and GS39 at a range of doses between a quarter and twice the full
recommended dose. Control plots were also grown where no fungicide was applied.
Disease severity data were collected on leaves I, II and III during grain filling.
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Dose-response curves were obtained by fitting the model

)exp( DY   (14)

to the data, where Y is the percentage symptom severity, D is the dose of the active
substance and α, β, and κ are parameters.  Dose-response data do not exist for all active
substance and disease combinations, for example, where an active substance is not used
primarily to treat a particular disease but may have some limited efficacy against it when
applied to control another disease. In these cases expert opinion was used to estimate
efficacy relative to active substances of known efficacy.

The active substance model parameters were fitted so that the coupled canopy (Milne
et al., 2003), disease (Audsley et al., 2005) and fungicide models gave results reflecting
the experimental and expert data. The half-life parameter μ, is correlated to parameters
kP and kE, so to stabilise the parameter fitting process it was assigned a value based on
expert knowledge of active substance decay. The experimental data provide ten points
but those points are subject to large variability, so it was not possible to fit self-
consistent active substance parameters directly to the data. Instead the parameters were
fitted to smoothed experimental data from the dose-response curves.

The active substance parameter fitting was done by simulating similar field
experiments to those carried out. The application timing of the active substance was
simulated at the correct growth stage at the varying doses. A non-linear optimisation
scheme (using a modified Levenberg Marquart method - Gill et. al., 1981) was used to
find the parameter values that minimised the difference between the simulated disease
and the corresponding value of disease given by the experimental dose-response curve
(Eqn 14).

For each disease, the eradicant, protectant and half-life parameters characterise a
{dose by spray timing by disease} response surface for each leaf layer for a series of
application dates (e.g. Fig. 1). Disease control increases as dose increases and spraying
too early or too late reduces efficacy. Expert opinion was used to check the relative
performance of active substances represented by the resulting dose–timing response
surfaces. A few chemicals are known to have only protectant abilities (e.g.
chlorothalonil). In these cases the eradicant parameters in the model were preset to zero
and the protectant parameters fitted. Examples of parameter values for contrasting active
substances are given in Table 1. Fig 2 shows the dose – response curves for these active
substances on leaves I and II. The figure illustrates that applying chlorothalonil early in
the leaf’s life gives good control whereas delaying reduces its control relative to
epoxiconazole. There were insufficient data available to fit parameter  in Eqn 4 which
characterises the reduction in dose arriving on leaves deeper in the canopy, so it was
given a value 0.25 based on expert judgement.

The reduction in protectant efficacy due to asynchrony of leaf emergence between
shoots early in stem extension was parameterised by simulating the effect of fungicide
on three tillers with phyllocrons 10°C days apart. The structure of the canopy model
(Milne et al., 2003) meant that flag leaves emerged over a period of 60°C days, and
leaves on layer n emerged over a period of 20(n+2) °C days. The parameter S in Eqn 9
was fitted so that a simulation of a single shoot approximated to the simulation with
three tillers. Values of S for S. tritici, P. striiformis, B. graminis and P. triticina are
0.135, 0.03, 0.075 and 0.0225 respectively.
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Yield parameters

The parameters in Eqn 10 were taken from England (1987). The others were evaluated
from experimental data from field experiments reported previously (Milne et. al. 2003,
Audsley et al. 2005). In summary, winter wheat cultivars Riband, Apollo, Slejpner and
Haven were grown in randomised and replicated plots at 12 sites across the England and
Wales. A total of 37 experiments were completed during harvest years 1994 to 1997.
Each replicate block consisted of fungicide treated and untreated plots of each cultivar;
the former receiving a three-spray broad-spectrum fungicide programme, designed to
give full protection to the upper leaves and ears. Growth stages, green leaf area and
diseased leaf area were measured separately for each culm leaf weekly from GS 31 to
maturity, and grain yield was measured. Daily weather data were collected from
meteorological stations, within one kilometre of the site.

The RUE parameter was fitted to the undiseased yield by simulating undiseased growth
at each site. The green leaf area loss parameters σi in Eqn 11 were fitted by simulating
the canopy and disease development at each site where only one disease was observed,
and matching the simulated disease loss with the observed. For each of the four diseases
this was possible in approximately five cases per disease. To be risk-averse, the
parameters were chosen so that the model gave higher than average yield loss. The yield
partitioning coefficients in Eqn 12 were determined from data on the partitioning of dry
matter (Paveley, unpublished). Limited data were available to estimate the strobilurin
RUE increase parameter so the parameter value was estimated by peer assessed expert
opinion. Table 2 summarises the yield model parameter values.

Variability

Because future weather is unknown and variable from season to season, disease risk
will vary, leading to uncertainty surrounding the predicted effect of a grain fungicide
treatment. An intensive fungicide programme will control disease well almost
regardless of disease risk; hence there will be little variability. In contrast, the outcome
from treatments which provide less effective control could vary widely depending on
whether conditions are conducive to epidemic development. However, the spray
programme itself does not provide a good explanatory variable for modelling, because
there is no simple way of assessing the degree of control that will be achieved, other
than using the model. Thus the explanatory variable used was yield-loss. The model was
provided with 15 weather sets representing different years from two sites representing
extremes within the cereal growing areas of the UK. A set of Monte Carlo simulations
(Hammersley & Handscomb, 1979) were carried out in which 2080 spray programmes
were generated at random, varying in chemical selection, dose and timing. Each one was
applied to each weather set to obtain sets of 15 values from which the mean and
standard deviation were calculated, giving 2080 mean-deviation pairs, shown in Fig. 3.
The standard deviation tended to zero at zero yield loss and could be modelled using

 pp rqrs  1 (15)

where r is the mean relative yield loss and s is the standard deviation. The fitted model
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is shown in Fig. 3, with q = 0.27 and p = 0.606. The yield range for a spray programme
is calculated as the mean ±2 standard deviations. When the optimisation compares
alternative programs it uses a risk-adjusted margin M~ given by

)3.01(~ sMM  (16)

Model validation

Materials and methods

The experiments used for validation were those reported by Audsley et al. (2005). In
summary, during the season 1999/2000 randomised and replicated field plots of between
one and three winter wheat cultivars were established at each of eight sites across the
UK. The cultivars were selected to contrast for susceptibility to the four main foliar
diseases. Each replicate block consisted of plots of each cultivar treated with a three-
spray fungicide programme, a single spray or left untreated. Other treatments were
included, but are not reported here. Leaf emergence dates and percentage disease were
recorded weekly from each leaf layer that had emerged (ligule visible) on ten randomly
sampled shoots from each of the three replicate plots of each cultivar. Mean yield loss
for untreated and one-spray plots was estimated by subtracting the respective mean
yields from the mean yield of the three-spray treatment plots.

The canopy and disease models reported in Milne et al. (2003) and Audsley et al.
(2005) were coupled with the fungicide and yield loss model reported here. Two
simulations of each experimental site were carried out. The first with no fungicides
applied and the second with a single spray of fungicide applied. Weather data recorded
at each site were used by the simulations, and canopy and disease observations were
used to update the models at around GS 32 (as would be the case in practical use) so
that they closely simulated the observed canopy and disease growth.

Results

In the field experiments, epidemics of S. tritici, P. striiformis and P. triticina occurred
at a wide range of severities across the sites and varieties, resulting in a wide range of
yield loss values. Fig. 4 compares the simulated and observed yield losses for the
untreated plots and the plots that received a single spray application. The error bars
show ± one standard error about the mean. The comparison tests both yield loss and
active substance simulations. The simulated yield loss values were generally close to the
observed values, often within the scope of one standard error.

Predicting the dose-response surface of a two-spray programme

Paveley et al., (2003) reported experiments to determine dose-response surfaces for the
joint action of two fungicide applications. In summary, two applications of
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tebuconazole were applied to randomized replicate plots of winter wheat as leaves III
and II emerged, at doses of 0.0, 0.25, 0.5, 1.0 and 2.0. A model of the effect of two
spray programmes on disease was proposed and validated. Previously unpublished yield
data from replicate plots were available for the ADAS Rosemaund site in harvest year
1997 (Fig. 5). The yield response surface shown in Fig. 5 is given by

     )exp(11)exp(1 21 kdckdbaW  (17)

where W is yield (t ha-1), d1 and d2 are the doses of tebuconazole applied as leaves III
and II emerge respectively, and a = 6.015, b = 0.528, c = 0.345 and k = 2.199 are model
parameters. These parameters were estimated by fitting Eqn 17 to the yield data. The
experiment was simulated using the model reported here and Fig. 6 shows actual mean
yield loss (across three replicate plots) plotted against simulated yield loss for each
treatment combination. The actual yield loss was calculated by subtracting the mean
yield from 9.66 t ha-1, which was the maximum recorded in the experiment. One
standard error of the mean of the observed data was 0.25. The results show that the
simulation behaved reasonably with two sprays, although actual yield loss increased
more rapidly than simulated yield loss.

Subjective analysis of suggested fungicide product, dose and timing combinations

The model described here was designed to form part of a decision support system of
coupled models to suggest fungicide programmes that are appropriate for a particular
crop; accounting for the host resistance of the cultivar and local disease pressure. The
coupled canopy (Milne et al., 2003), disease (Audsley et al., 2005), fungicide and yield
loss models were therefore tested through an optimisation routine (Parsons and
Te Beest, 2004) which selects and ranks possible fungicide programmes for a prescribed
scenario, based on their relative simulated risk-adjusted (Eqn 16) margins.

Three scenarios were used: Scenarios 1 and 2 were for cultivar Claire (S. tritici
resistant but B. graminis susceptible) under moderate and high B. graminis pressure,
respectively. Scenario 3 was cultivar Savannah (S. tritici susceptible but B. graminis
resistant) under moderate B.graminis pressure. All of the suggested spray programmes
in all scenarios include a fungicide treatment applied within a week of flag leaf
emergence (typically around 22 May), supplemented by a treatment either around the
emergence of Leaf III or the ear. The increase in disease pressure between scenario 1
and 2 resulted in an increase in the total dose units applied from 1.75 to 2.0. Despite
fungicide treatment, the gross margin from Savannah was lower that that of Claire under
equivalent disease pressure, due to the greater damage caused by S .tritici compared
with B. graminis. A subjective analysis of the appropriateness of these treatments is
presented in the discussion.

Discussion

The fungicide model described here provides a method of simulating the effect of
different fungicide active substances, applied at any legal dose and timing, on disease,
and hence on green canopy area. The yield model calculates disease-induced yield loss
according to loss of green area which would otherwise intercept radiation. This
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methodology couples with the canopy and disease models described previously (Milne
et al., 2003, Audsley et al., 2005). The predicted yield loss was greater than an estimate
of the observed yield loss when tested against data from eight experimental sites;
although the reverse was found in the single experiment where two-spray programmes
were tested. The observed yield loss at the eight sites was calculated by subtracting the
mean diseased yield for each cultivar from the mean yield of plots of the same cultivar
treated with a three-spray programme. Such plots would not be entirely disease free.
Therefore we would expect a smaller observed yield loss than simulated. On average the
simulated treated yield loss is 0.5 t ha-1 greater than the observed, whereas the untreated
is 0.1 t ha-1 greater, indicating that the efficacy of fungicides is underrated in some of the
simulated scenarios.

As the actual future weather and hence disease development is unknown at the time of
the decisions, a comparison of the optimal spray programme and the post-harvest
optimum is not appropriate, since the optimal spray programme is the best protection
against all possible future outcomes. One test is whether a decision support system helps
users get closer to the optimum more often than any other method of making decisions,
given the information available at the time of the decision. With the large number of
possible choices of fungicide product, dose and timing, it is infeasible to determine
experimentally via every combination whether the coupled models are identifying the
exact optimal spray programme. However, it was possible to assess subjectively that the
inputs suggested were reasonable on average and responded appropriately to changes in
disease risk and cultivar resistance. Pesticide usage survey data show that commercial
wheat crops in the UK receive approximately three dose units of fungicide, typically
applied as two- or three-spray programmes (Garthwaite et al., 2004). In contrast, the top
treatments selected by the optimisation procedure running the coupled models, were
between 1.0 and 2.75 total dose units, depending on disease pressure and cultivar. The
pesticide usage survey data, together with data collected as part of the annual cereal
disease survey (Hardwick et al., 2001), suggest that application timing and product
choice are often poor in commercial crops. Field experiments could test whether the
lower inputs suggested by the decision support system provide reliable control despite
relatively low total dose inputs, by improving spray timing and product selection. The
suggested treatments reported here show that this might be the case. All of the
suggested spray programmes included a treatment within a week of flag leaf emergence
– a key growth stage for treatment to protect the flag leaf which is vital for
photosynthesis during the grain filling period (Paveley & Clark, 2000). Product choice
responds appropriately to cultivar and disease risk. On the B. graminis susceptible
cultivar Claire, active substances which are specifically active against B. graminis, such
as metrafenone (as Flexity), quinoxyfen (as ‘Fortress’) or morpholines were included in
mixtures with conazoles under high B. graminis pressure. On the septoria-susceptible
cultivar Savannah, all of the suggested programmes included a mixture of a conazole to
provide eradicant activity and a protectant active against S. tritici (such as cholorthalonil
in Bravo, Alto Elite and Impact Excel, or boscalid in Tracker). The type of
unconstrained optimisation described above (which allowed any combination of
treatments within the legal constraints on product use described on the label) also
provides a good test of the performance of the models. Any weakness in model logic or
data would have scope to become apparent. However, further field testing of the
complete decision support system is required across a wide range of cultivars and
environments, to ensure that the treatments suggested provide consistently profitable
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disease control.
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Table 1. Examples of parameter values for two fungicide active substances with
contrasting modes of action. These values were valid for season 2003-2004.

Active substance aP kP aE kE μ

Epoxiconazole 0.71 6.00 0.50 7.01 0.069

Chlorothalonil 0.0 - 1.0 6.49 0.010
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Table 2. Yield-loss model parameter values (units are shown in the glossary, unless
dimensionless)

Eqn Parameter Value

10 kl 0.44

kg 0.2

11 σ 2.3 (P. triticina)

2.2 (P. striiformis)

2.0 (B. graminis)

3.15 (S. tritici)

12 b1 0.375

b2 0.7

U(t) 1.57 (no strobilurin applied)

1.68 (max. value if a strobilurin applied)
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Table 3. Spray programs ranked in order of optimum risk-adjusted margin of grain value minus fungicide cost for three situations, showing effect of varietal resistance and1
difference in disease pressure on choice of fungicide dose and timing. Doses are given as the proportion of the maximum recommended dose for a single application.2

Date 1/5 8/5 15/5 22/5 29/5 12/6 19/6

Fungicide Product Dose units at each suggested spray date
Total dose

units

Margin

(£ ha-1)

Scenario 1 – Variety: Claire (resistance ratings S.tritici = 6, B.graminis = 3); moderate mildew disease pressure

1st Spray 2nd Spray 3rd Spray

Pro Lan+Dia 1.0 0.5+0.25 1.75 548

Fan+Pro Fol+SwG 0.5+0.25 0.75+0.25 1.75 551

Man+ Pro Fol 0.25+0.5 0.75 1.5 546

Lan+Pro AmP+Til 0.25+0.75 0.5+0.5 2.0 542

Opu+Fan Fol 0.25+0.75 0.75 1.75 543

Uni+Tra Lan 0.5+0.75 0.5 1.75 539

Mean 1.75 545

Scenario 2 – Variety: Claire (resistance ratings S.tritici = 6, B.graminis = 3); high mildew disease pressure

1st Spray 2nd Spray 3rd Spray

Fle+Lan Fol 1+0.5 1 2.5 489

Fle+Man Fol 0.75+0.5 0.75 2.0 488

Fle+Man Fol 0.5 0.75 2.25 483
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Pro OpT+For 0.75 0.5+0.75 2.0 479

Por-Bra Pat+Man 0.5+0.25 0.25+0.25 1.25 483

Mean 2.0 484

Scenario 3 – Variety: Savannah (resistance ratings S.tritici = 3, B.graminis = 7); moderate mildew disease pressure

1st Spray 2nd Spray 3rd Spray

Tra+Pro Lan 0.5+0.25 0.5 1.25 523

Bra+Pro Man 0.5+0.75 0.25 1.5 522

Tra+Epi Pro+Man 0.5+0.5 0.5+0.25 1.75 516

Car+Tra Man 0.25+0.5 0.25 1.0 515

AlE+Pro Dia+AlE 0.25+0.75 0.25+0.5 1.75 509

ImE+Pro Opu Bra+Dia 0.25+0.5 0.75 0.75+0.5 2.75 498

Mean 1.67 514

1
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Fungicide product abbreviations1

AlE = Alto Elite; AmP = Amistar Pro; Bra = Bravo; Car = Caramba; Dia = Diablo:2
Epi = Epic: Fan = Fandango; Fle = Flexity; Fol = Folicur: For = Fortress: ImE = Impact3
Excel; Lan = Landmark; Man = Mantra; OpT = Opus Team; Opu = Opus; Pat = Patrol4

Pro = Proline; SwG = Swing Gold; Til = Tilt; Tra = Tracker; Uni = Unix5

6
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Glossary of variables1

t day number

n leaf number

An(t) proportion of leaf n that has emerged on day t

B dry matter partitioning constant

CS spray plan cost including application cost (£)

CG grain price (£)

d(t) effective active substance dose on day t

Dn applied dose of the active substance

E(t) total intercepted energy (MJ) over all leaf layers

En(t) energy intercepted (MJ) by diseased leaf n on day t

G(t) green area index of the ear on day t

I0(t) photosynthetically active substance radiation (MJ m-2) incident on the canopy
on day t

)(tIn energy (MJ) intercepted by undiseased leaf n on day t

Ln(t) leaf area index of leaf n on day t

M margin over spray costs

P(t,n) number of potential infections

RP(t) reduced proportion of successful infections on day t caused by active
substances protectant effect

RE(t) reduced growth rate of infection on day t caused by active substances eradicant
effect

S disease dependent reduction in protectant efficacy

T(t) accumulated thermal time (°C days, base zero)

U(t) radiation use efficiency (RUE) parameter

Y (t,n) percentage symptom severity

y(T) lesion size (%) expressed as a proportion of its asymptote value, at thermal time
T (°C days, base zero)

WE expected yield (t ha-1)

ξ(t) yield lost due to foliar disease on day t (t ha-1)
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ζf yield loss due to foliar diseases (t ha-1)

ζs yield loss due to stem diseases (t ha-1)

V proportional value loss (%) due to ear diseases
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Figure Legends1

Fig. 1. A simulated dose – timing disease response surface for epoxiconazole against2
S tritici on the flag leaf. The x- axis is dose (L ha-1 of commercial product), the y- axis is3
day number since 1 September and the z- axis is the integral of percentage disease on4
the leaf over time (AUDPC). The leaf was fully emerged on day 250.5

6

Fig. 2. Simulated dose-response curves for active substances epoxyconazole (  ) and 7
chlorothalonil (  ▪  ) against S. tritici on leaf I and leaf II, applied when leaf I was8
fully emerged (GS 39). One dose unit is the full recommended dose for the commercial9
product.10

11

Fig. 3. Plot of standard deviation versus mean of relative yield loss for 2080 different12
spray programmes simulated with 15 different weather sets. The solid line shows the13
fitted model (Eqn 15) for a relationship between the two.14

15

Fig. 4.16

Observed mean yield loss plotted against simulated mean yield loss for untreated (—)17
plots and single spray application treated (♦) plots at sites across the UK in season 18
1999/2000. The observed mean yield loss is calculated by subtracting the mean yield of19
the untreated or single spray replicate plots from the mean yield of the plots which were20
treated with a three spray programme. The line through each point shows ± one standard21
error about the mean. The dotted line has a slope of one.22

23

Fig. 5. Dose-response surface for two applications of tebuconazole fitted to data from an24
experiment at Rosemaund in the 1996/1997 season. The first application was carried out25
as leaf III emerged and the second as leaf II emerged. The yield data points that the26
surface was fitted to (Eqn 17) are indicated by the solid dot (●). The dose is L ha-1 of27
commercial product.28

29

Fig. 6. Actual mean yield loss (t ha-1) across three replicate plots of a field experiment30
plotted against simulated yield loss for each dose and spray timing combination. The31
actual yield loss was calculated by subtracting the mean yield from 9.66 t ha-1, which32
was the maximum recorded in the experiment. One standard error mean of the observed33
data was 0.25. The dotted line has a slope of one.34



24

Fig. 1. A simulated dose – timing disease response surface for epoxiconazole against1
S tritici on the flag leaf. The x- axis is dose (L ha-1 of commercial product), the y- axis is2
day number since 1 September and the z- axis is the integral of percentage disease on3
the leaf over time (AUDPC). The leaf was fully emerged on day 250.4

5
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Fig. 2. Simulated dose-response curves for active substances epoxyconazole (  ) and 1
chlorothalonil (  ▪  ) against S. tritici on leaf I and leaf II, applied when leaf I was2
fully emerged (GS 39). One dose unit is the full recommended dose for the commercial3
product.4
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Fig. 3. Plot of standard deviation versus mean of relative yield loss for 2080 different1
spray programmes simulated with 15 different weather sets. The solid line shows the2
fitted model (Eqn 15) for a relationship between the two.3
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Fig. 4.1

Observed mean yield loss plotted against simulated mean yield loss for untreated (—)2
plots and single spray application treated (♦) plots at sites across the UK in season 3
1999/2000. The observed mean yield loss is calculated by subtracting the mean yield of4
the untreated or single spray replicate plots from the mean yield of the plots which were5
treated with a three spray programme. The line through each point shows ± one standard6
error about the mean. The dotted line has a slope of one.7
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Fig. 5. Dose-response surface for two applications of tebuconazole fitted to data from an1
experiment at Rosemaund in the 1996/1997 season. The first application was carried out2
as leaf III emerged and the second as leaf II emerged. The yield data points that the3
surface was fitted to (Eqn 17) are indicated by the solid dot (●). The dose is L ha-1 of4
commercial product.5

6 ADAS Rosemaund 1997
Yield

Yield t/ha

r2 = 90

C = 6.015

b32 = -0.528

b33 = -2.077

k = -2.199

Z=C-b32*(1-EXP(k*GS32dose))-b33*(1-EXP(k*GS33dose))*((C-b32*(1-EXP(k*GS32dose))) /C)
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Fig. 6. Actual mean yield loss (t ha-1) across three replicate plots of a field experiment1
plotted against simulated yield loss for each dose and spray timing combination. The2
actual yield loss was calculated by subtracting the mean yield from 9.66 t ha-1, which3
was the maximum recorded in the experiment. One standard error mean of the observed4
data was 0.25. The dotted line has a slope of one.5
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