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EXECUTIVE SUMMARY 

In both civil and military aviation, maintenance plays a large role in ensuring continued 

safe operation and accounts for a significant portion of operating costs. Typically, a 

conservative planned maintenance (PM) program is initially developed to ensure the 

aircraft reliability but this often leads to over-maintenance. With more in-service 

experience, operators seek to customize the maintenance interval accordingly in order 

to reduce workload and cost without compromising safety. With prevailing use of 

health usage monitoring systems (HUMS), the maintenance can even transit from PM 

to condition-based maintenance (CBM) where further safety and costs benefit may be 

reaped. Whilst some guidance for such changes exists, it remains challenging for 

maintainers in practice as suggested methods often require significant component 

failure or test data; which are unavailable or too expensive to obtain. As such, this 

research reviews the challenges faced by maintainers when extending PM intervals or 

implementing CBM and seeks ways to support decision making for the changes.  

For PM, the challenge to extend the maintenance interval with little or no past failure is 

addressed. Existing reliability methods were reviewed and two improved methods to 

estimate the reliability lower confidence bounds were developed. The first approach 

adopts the use of Monte Carlo simulation applied to the Weibull plot equation while the 

second uses a probabilistic damage accumulation model together with bootstrap 

techniques. Both methods are used to assess the reliability of extending the replacement 

interval of a gearbox bearing and are shown to perform better than existing methods as 

they provide tighter reliability confidence bounds.  

For CBM, a survey on sensor technologies and diagnostic algorithms showed that 

vibration-based sensor is most widely used to detect fault. The study then demonstrates 

a CBM implementation using vibration-based HUMS data from in-service helicopters. 

Analysis of the FFT spectra shows that the fault patterns corresponding to progressing 

stages of bearing wear can be clearly observed. The fault patterns are extracted as 

features for unsupervised classification using Gaussian Mixture Models and used to 

infer the different bearing health states. Signal detection theory was then applied onto 

the classified feature to determine the detection thresholds for fault diagnosis. A 



 

 

simplistic prognostic model using trend extrapolation to determine the replacement 

lead-time is then performed and use for maintenance planning.  

In an effort to ease the implementation of CBM, ways to improve prognostics 

application is explored. The Switching Kalman Filter (SKF) was adapted for both 

diagnostic and prognostic under an autonomous framework that requires little user 

input. The SKF uses multiple dynamical models with each one describing a different 

stage of bearing wear. The most probable wear process is then inferred from the 

extracted feature data using Bayesian estimation. As different stages of bearing wear 

can be tracked using the dynamical behavior of the measurements, pre-established 

threshold for fault detection is no longer required for diagnostics. The SKF approach 

provides maintainers with more information for decision-making as a probabilistic 

measure of the wear processes are available. It also offers the opportunity to predict 

RUL more accurately by distinguishing between the wear stages and performing 

prediction only when rapid and unstable wear is detected. The SKF approach is 

demonstrated using in-service feature data from the AH64D TRGB and the results have 

shown the proposed methods to be a promising tool for maintenance decision-making. 

As an extension of research on methodologies to improve PM and CBM decision 

support, a thioether mist lubrication is explored for its feasibility as a backup 

lubrication system for helicopters. The aim is to reduce the mishap severity category 

which in turn eases the extension of PM interval or its replacement with a CBM task. 

An experimental setup was developed to test the thermal properties of a spur gearbox 

with thioether mist lubrication under various load and speed conditions and it was 

shown that only a very small volumetric flow of lubricant is required to preserve the 

gears from damage in oil starved environment. As such, a thioether based mist backup 

system can potentially reduce the risk of oil starvation failures significantly. 
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1 INTRODUCTION 

When a helicopter is first introduced, its design airworthiness is assured through type 

certification which ensures that the helicopter and its sub-components are designed to 

operate safely within allowable condition. For continued airworthiness and reliability, 

an initial preventive maintenance program is developed before introduction into field 

service to ensure its continued airworthiness and reliability. The main aim of preventive 

maintenance is to avoid the failure of equipment before it actually occurs by restoring 

the equipment reliability through servicing tasks. For equipment with high consequence 

of failure, such as critical aerospace components, preventative maintenance plays a key 

role in ensuring continued safe operation. The types of preventive maintenance task 

further comprises of planned maintenance (PM) and condition-based maintenance 

(CBM).  

PM is a set of fixed tasks carried out at periodic intervals to prevent unscheduled failure 

[1]. The maintenance tasks are developed based on Reliability Centered Maintenance 

(RCM) method to determine the maintenance requirements of the components based on 

their failure modes [2]. Based on the operating context of the mechanical components, 

the task can range from simple lubrication or inspection for defects to restoration works 

such as repairs or replacement of worn components. Components such as bearings and 

gears within transmission systems are critical but they cannot be easily accessed for 

visual inspection. Thus they are typically restored to stringent conditions during 

overhaul to assure its reliability till the next overhaul which can be over a long period 

of time. Therefore, the interval and type of PM tasks to be prescribed has to be 

balanced with the consequence of the component failure and the ease of inspection.  

CBM is a comparatively new concept that has grown with the increasing use of Health 

and Usage Monitoring Systems (HUMS) on aircrafts. In CBM, the on-board HUMS 

would diagnose the component’s health status through embedded sensors and trigger 

for maintenance actions only when potential failure or defect of the component is 

detected. Once a potential failure is detected, the remaining useful life of the 

component could also be predicted using the HUMS data; though this has yet to be 

widely practiced in industry. The use of embedded sensors in CBM has significant 
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advantage over PM for gearboxes as it allows the components within to be monitored 

much more frequently. Besides enhancing safety, CBM allows maintenance to be 

prescribed only when required thus alleviating maintenance effort and costs. These 

benefits however, come with high initial hardware costs and higher complexity in the 

maintenance program.  

For a helicopter transmission system, planned maintenance is pre-dominantly adopted 

as it is a requirement for certification [3] although there is much interest to move 

towards CBM. The US Department of Defense (DoD) in particular is a strong 

proponent of CBM and has launched a CBM+ initiative to integrate maintenance 

processes and relevant technology in an effort to improve platform safety, reliability 

and availability [4]. With more in-service experience, operators and maintainers can 

revise their PM or transit to a CBM program accordingly to reduce maintenance effort 

and lower operating costs. Such initiatives have become increasingly important as 

operating cost can account for up to 65-80% [4] of the helicopter’s entire life cycle and 

rises as the platform ages.  In this research, methods to improve decision-making for 

both PM and CBM development and implementation with focus on helicopter 

transmissions are explored. 
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2 PROBLEM DESCRIPTION 

This chapter elaborates on some problems faced by maintainers in extending their PM 

intervals and transiting from a PM to CBM program for HUMS enabled helicopters. 

Before decisions to change the existing maintenance program can be approved by the 

relevant continued airworthiness authorities, the changes have to be substantiated to 

ensure safety and reliability standards are not compromised. Guidance materials 

providing a logical framework and acceptable means of compliance for substantiation 

exists but it can still be challenging for maintainers to use them to support decision-

making in practice. The specific challenges encountered are described herein. 

2.1 Challenges in extending maintenance intervals 

The maintenance intervals for transmission components are typically determined by the 

Original Equipment Manufacturer (OEM) through engineering analysis during initial 

certification of the aircraft. The initial interval tends to be conservative to ensure a high 

safety level but this also often leads to over-maintenance [5]. With in-service 

experience, maintainers seek to revise the intervals for component overhauls and 

retirement lives to reduce maintenance costs and efforts. In EASA’s requirement for 

management of continuing airworthiness [6], reliability programs to revise maintenance 

tasks and interval based on component failure experience in operation are required.  

The process to develop the PM task and its interval  is well documented in MSG-3 

ATA [2] for civil aircraft and the military adopts their own standards such as MIL-

STD-3034 [1] and DEF-STAN-0045 [7] for the US and UK respectively. The process 

within these documents requires that the reduction in reliability levels from the 

extension is within acceptable safety level and this has to be substantiated by 

engineering analyses. For transmission components, the engineering assessments are 

commonly carried out using reliability models such as Weibull distributions fitted with 

in-service time-to-failure data. However, helicopter components especially Flight 

Safety Critical Aircraft Parts (FSCAP) such as gears and bearings within the 

transmission system have a very high reliability and defect occurrence tends to be rare. 
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As such, traditional reliability models relying on past failure data can seldom be applied 

in practice.  

In recognition of such circumstances, the International Maintenance Review Board 

Policy Board (IMRBPB) released Issue Paper (IP)-44 [5] in 2007 to provide guidelines 

on maintenance interval extension. IP-44 states that extension of a maintenance task is 

allowed if it is substantiated from servicing records that no significant defects were 

found with 95% confidence level. This allows extensions if little or no failures were 

found but it still does not provide guidance on the period of extension, which remains 

largely based on qualitative assessments. For the military, the naval aviation RCM 

guideline recommends for ‘age exploration’ to be carried out to extend maintenance 

intervals or retirement lives [8]. Age exploration involves an incremental approach to 

extend the intervals coupled with appropriate inspections but it also does not have 

guidelines on how those intervals should be determined. As such, an approach to assess 

the risk in the extension quantitatively is still lacking and an alternative that is not 

reliant on past failure data is desired for maintenance decision support. 

2.2 Challenges in transiting from PM to CBM 

For CBM tasks development, the key guidance document is the AC29-MG15 titled 

“Airworthiness Approval of Rotorcraft HUMS” [9], which is the FAA’s advisory 

circular on implementation of HUMS on aircraft. The equivalent document for the 

military can be found in ADS-79B [10] published by the US Army. Through the use of 

HUMS, PM can be replaced by CBM thus alleviating operating costs and maintenance 

effort. Besides cost benefits, CBM also provide higher safety benefits as defects in 

critical components can be monitored and rectified before catastrophic failure with high 

collateral damage occurs. A thorough description of CBM benefits can found in the 

HUMS toolkit developed by the International Helicopter Safety Team (IHST) [11].  

The benefits of CBM are well recognized but before they can be reaped, the HUMS 

system, including the hardware, diagnostics and prognostics algorithms, has to undergo 

a rigorous approving process laid out in AC29-MG15. With respect to transiting from a 

PM to CBM program, the key requirement is for validation of “maintenance credits” - a 
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term commonly used in CBM for credits earned through alleviation of maintenance 

effort such as removal or extension of maintenance tasks. For this validation, the 

physics of failure of the monitored component has to be understood and the diagnostic 

capability of the algorithms used in the maintenance decision-making process has to be 

demonstrated through seeded tests or field defects. The latter requirement has proven to 

be challenging in field application as seeded test are expensive and as previously 

described, the failure of FSCAP components are rare for adequate field data to be 

collected. In lieu of this, there are currently no civil helicopters that are certified with 

maintenance credits based on AC29-MG15 and the FAA is still validating the approach 

based on the S-92 and BK-117C2 helicopter [12] at the time of writing this thesis.  

For the military, the US Army is the operator of the largest fleet of HUMS enabled 

helicopters and they had published some of their experiences on their AH64D and H-60 

helicopters [13; 14]. However, the findings in those case studies are isolated and lack 

repeatability to demonstrate the consistency of the HUMS performance. Therefore, 

evidence to demonstrate the effectiveness of the diagnostics algorithm used is very 

limited despite the huge amount of literature on CBM related research. In addition, the 

limited in-service case studies show only diagnostic capabilities with no prognostic 

application. Like diagnostic algorithms, most prognostics methods require a large 

number of seeded tests or field defects for training the algorithms before they can be 

applied. Validation through in-service field defects is even more difficult as the HUMS 

data throughout the degradation process has to be available. Furthermore, it is more 

difficult to integrate prognostics methods into the maintenance processes as significant 

expert knowledge is often required to select the appropriate method and for the HUMS 

data to be pre-processed accordingly. Therefore, it is desirable for both diagnostics and 

prognostics algorithms to be demonstrated to be effective for in-service applications 

and for prognostics algorithms’ ease of use to be improved so that it can be adopted by 

maintainers more widely.     

2.3 Limitations due to severity categorization 

An underlying factor which has significant impact on a PM task extension or transition 

to CBM task is the mishap severity category of the system itself. Under the system 
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safety framework, the mishap severity of a component is assessed based on its 

probability of failure (or conversely its reliability) and the consequence of its failure 

and for risks to be managed accordingly. The guidelines for assessing the system (and 

subsystem) mishap severity are documented in FAA System Safety Handbook [15] and 

MIL-STD-882D [16] for both civil and military aviation respectively. The types of risk 

are typically identified using tools such as Fault Tree Analysis (FTA) or Failure Mode 

Effects and Criticality Analysis (FMECA) and these are performed before the aircraft 

can be certified. Based on these analyses, the risk of system mishaps are managed 

through planned maintenance to ensure continued airworthiness as mentioned above. 

Any risk that could not be mitigated through design, maintenance or procedures would 

then have to be accepted as residual risk.  

Currently, both AC-29 MG15 and ADS-79B only allows maintenance tasks on systems 

with a ‘Major’ severity category to be replaced with a CBM task. ‘Major’ severity 

category denotes a ‘significant reduction in safety margins and functional capability’ in 

event of failure whilst ‘Hazardous’ severity category denotes a large reduction in both 

safety margins and capability. Most of the helicopter transmission system such as the 

gearboxes and lubrication systems however belongs to ‘hazardous’ category due to 

their direct impact on flight safety. Therefore, CBM can be developed for enhanced 

safety and some logistics planning benefits from prognostics but the PM tasks itself 

cannot be replaced. It is perhaps for this reason that several literature on helicopter 

diagnostics and prognostics were focused on the oil cooler fan bearing [17-19] where 

CBM implementation in compliance to AC-29 MG15 and ADS-79B is more likely. In 

this context, more systems on the helicopter could be candidates for CBM task 

replacement if the mishap severity category of its failure is relaxed to ‘Major’ category. 

For critical systems such as the main and tail rotor gearboxes, this will be unlikely as 

they have direct impact to flight safety and the consequences of failure will remain 

severe despite reducing its probability of failure. For auxiliary systems such as the 

accessory gearboxes or lubrication systems however, it is possible to reduce the impact 

of their failures by improving system reliability or introducing redundancies. The 

mishap severity of these systems could then be reduced which in turn allows CBM task 

to be implemented.  
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Besides easing CBM task replacement, the reduction of the mishap severity category 

eases PM task interval extension as well. In [8], the rigor of the inspections required 

during the age exploratory phase for interval extension is highly dependent on the 

mishap severity category of the system. With higher mishap severity, more engineering 

data is required to ensure safe operation in during the period of extension and 

laboratory testing is called for if in-service data is unavailable. However, reducing the 

mishap severity category for lubrication systems can be challenging as there had been 

several helicopter incidents related to oil starvation. As such, ways to reduce the risk of 

lubrication system failure is needed. Admittedly, reducing system risk of helicopter 

subsystems does not contribute towards maintenance decision support. It is included in 

this research as it serves to enable transition to CBM and/or PM task extension through 

design improvements.   
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3 AIM AND OBJECTIVES  

With ever-increasing competition for resources, aircraft operators have to improve the 

way their fleets are maintained so that both cost and manpower efficiency can be 

achieved without compromising safety of flight. With the challenges discussed in the 

previous chapters, ways to overcome them is explored. The overall aim of this research 

is to improve maintenance decision support for extending preventive maintenance 

intervals and transiting towards a condition-based maintenance program for helicopter 

transmission. The specific objectives of this research are outlined as follows: 

 Evaluate methods for assessing component reliability with little or no failure 

data  

 Improve or develop methods for substantiating escalation of planned 

maintenance interval 

 Survey the existing use of HUMS on in-service helicopters 

 End-to-end development of a CBM task for an in-service helicopter in 

accordance with FAR29 MG-15 and ADS-79B 

 Improve the ease of use of prognostic tools for maintenance 

 Reduce the mishap severity of helicopter lubrication system to ease transition to 

CBM task or PM task extension 

The scope to cover the full range of transmission components for the above objectives 

would be too wide. Therefore, the research is going to focus on rolling element 

bearings as they tend to have shorter service live compared to gears and shafts and is 

often the life limiting factor for transmission overhauls. Despite focusing on the bearing 

only, the challenges faced in practice are multi-faceted in nature. Therefore, this 

research will span across different fields of engineering disciplines including reliability, 

data processing and statistical computing to address the various issues. The 

maintenance data used in this research are gathered from the Republic of Singapore Air 

Force (RSAF) AH64D helicopter. It includes engineering information from technical 

manuals, HUMS data and limited failure data from maintenance records. These types of 

information are typically accessible by maintainers in practice and its use to improve 

maintenance decision-making is presented in this research. 
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4 ESTIMATING BEARING RELIABILITY WITHOUT FAILURE DATA 

FOR PM INTERVAL EXTENSION 

In this chapter, existing methods to estimate a rolling element bearing’s reliability 

without failure data are reviewed. Traditional reliability models uses historical time-to-

failure data fitted onto a parametric distribution such as Normal, Exponential or 

Weibull and are most commonly used. As mentioned previously, the use of these 

methods can be challenging when there is little or no failure data available. For 

improving reliability assessment in such circumstances, alternative methods are 

explored. Specifically, approaches to quantitatively assess the risk from the extension 

of PM task are sought to support maintainers in decision-making. 

4.1 Review of reliability methods requiring little or no failure data 

Although limited, there are approaches that does not rely on past failure data for 

reliability assessment. Nelson’s method is one such approach as described in [20]. In 

his method, truncated test data without failure cases is used to obtain a lower 

confidence bound for reliability. It assumes that the components lives follows a 

Weibull distribution and requires the Weibull slope parameter, β to be known. In a 

maintenance scenario, this method can be applied where bearings replaced without 

defects in past scheduled maintenance are treated as truncated non-failure test data. For 

bearings, a value of 1.11 for β is generally accepted based on observations by Palmgren 

and Lundberg [21]. A limitation of this method is that the lower confidence bound 

tends to be very wide. A small extension in interval will result in a large drop in 

reliability, which renders it unfavorable in maintenance decision-making.  

The use of the 2-parameter Weibull plot equation shown in Eqn (1) is another approach 

which is widely adopted for bearing reliability assessment in the industry. In the 

absence of failure data, the bearing rated life, L10 at which 10% of the bearings are 

expected to fail, is often used as the fatigue life of the bearing. In more safety critical 

applications such as aerospace or automobile components, the rated life adopted can be 

stringently reduced to L1 or even L0.1 [22]. The L10 life of a bearing is often known else 

it can be calculated with bearing geometry and loading conditions using methods 
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described in DIN or BS 281. With L10 known, the reliability of the bearing at any time 

can be determined using Eqn (1). Compared to Nelson’s method, additional 

information, L10 is used in the Weibull plot equation method. A drawback in the direct 

use of this method is that it assumes a fixed β.  As mentioned by Vlcek et al in [23], 

different groups of the same bearings tested under similar condition can result in 

different β values with widely varying L10 lives. As such, the Weibull plot equation by 

itself does not account for variation in β and does not provide a confidence bound in the 

reliability assessment. As such, the uncertainty in the reliability assessment is not 

available to maintainers from the direct use of the Weibull plot equation. 

Besides time-to-failure distribution models, model or physics-based methods may be 

applied as well for reliability assessment. Model-based method adopts a known 

mathematical model of the system’s degradation process such as the Paris’s crack 

growth or bearing life equation. Depending on the model, either health (i.e. vibration 

levels) or usage type data (i.e. applied stress) can be used for reliability prediction. The 

bearing fatigue life equation using Miner’s Rule is well established by Lundberg and 

Palmgren in [21] where the bearing life can be determined from the bearing geometry 

and normal contact loads. The use of Miner’s Rule in evaluating accumulated fatigue 

damage is typically applied as a deterministic process where the damage per load cycle 

and the allowable damage threshold are fixed. However, this degradation process can 

also be described as probabilistic models. Liao et al [24] describes the probabilistic 

modeling of fatigue accumulation where both the accumulated damage and the fatigue 

life limit of the components are modeled as random variables with a known 

distribution. Reliability at a specified time is then assessed as the probability that the 

accumulated damage distribution is greater than the fatigue life distribution. A 

shortcoming of this approach is that both the distributions of the damage accumulation 

process and the allowable damage threshold are required and may not be readily 

available. A direct use of this method also does not provide confidence bound in the 

reliability assessment to handle uncertainties. 

Other methods of bearing reliability assessment using little or no failure events in 

existing literature are limited. R. Sehgal et al [25] developed a procedure based on 

graph theory and matrix approach to model the reliability of the bearing by considering 
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the reliability of its elements and their connections. However, their method was focused 

on obtaining a reliability measure for bearing selection during design and does not 

model the bearing’s reliability against usage time when it is in use. 

4.2 Lower Bound Reliability Estimate of a Gearbox Bearing 

In this study, two methods are proposed to improve the reliability assessment of a 

gearbox bearing. In the first proposed method, Monte Carlo simulation is applied with 

the Weibull plot equation to obtain the variation in the Weibull Slope parameter and 

then estimate the lower confidence bound. In the second proposed method, probabilistic 

damage accumulation model is applied to assess the bearing reliability and Bootstrap 

techniques are applied to obtain the lower confidence bound. The proposed methods are 

built on the work of Vlcek et al [23] and Rathod et al [26] for the two approaches 

respectively.  

In addressing the variation of β and L10 in bearings, Vlcek et al [23] applied Monte 

Carlo simulation testing together with strict series reliability model to determine the 

variation as a function of bearing tested. They compared the results from their approach 

against bearing endurance sets (analyzed by Harris [27; 28]) and found that 98% of the 

bearings have life exceeding the minimum life predicted from the simulation. As such, 

their approach predicts the lower bound variation of the bearing life from the calculated 

L10. A unique aspect of their approach is that it allows the distribution of β and L10 to be 

estimated without using failure data. A Weibull distribution is still assumed for the 

bearing life but the parameters are no longer fixed. It should be noted that the Monte 

Carlo based method predicts a statistical variation in the L10 but not the minimum life 

itself where no failure occurs. A no-failure fatigue life for bearing has been 

approximated by Tallian [29] but it is not employed here as a three parameter Weibull 

distribution is assumed and still requires a significant amount of failure data. In the first 

proposed method, the Monte Carlo Simulation method by Vlcek et al [23] is adopted to 

estimate the confidence interval in β and L10. A lower bound reliability estimate is then 

obtained by using the lower bound set of β and L10 in the Weibull plot equation.  
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In the use of probabilistic damage accumulation models, Rathod et al [26] proposed a 

simplified approach where the damage accumulation distribution may be obtained from 

the component’s fatigue life distribution. For a bearing, the fatigue life distribution 

could in turn be obtained from the Monte Carlo Simulation Testing described above. As 

such, both distributions could be estimated with limited available information. In 

addition, the confidence bound for the reliability for the probabilistic damage 

accumulation model are obtained through bootstrap techniques [30].  

Both proposed methods are described here through a case study performed on data 

adapted from a helicopter gearbox bearing. The increase in risk by extending the 

bearing replacement interval from 2000hrs to 3000hrs is evaluated using both methods 

and compared against Nelson’s method. The specification of this bearing is detailed in 

Table 1. It is assumed that 30 such bearings were previously replaced in the helicopter 

fleet during maintenance at 2000hrs with no defects found. 

Table 1 Bearing Specifications. 

Bearing Type Angular Contact Bearing 

Material AISI M50 

Number of Balls, Z 19 

Ball Diameter (in), d 0.375 

Pitch Diameter (in), dm 2.559 

Contact Angle (deg),  30 

L10 Life (hrs) 14700 

L  Characteristic Life (hrs) 111632 

Weibull Slope, β 1.11 

4.3 Weibull Plot Equation with Monte Carlo Simulation 

The cumulative distribution of bearing life can be represented by the Weibull plot 

equation given by: 

    (
 

    
)     (

 

  
), where 0 < L< ∞, 0 < R < 1 (1) 

where, R(t) is the bearing reliability,  lnln(1/R(t)) is the percentage of bearings 

surviving at time t. L is the characteristic life of the bearing. β is the Weibull slope. For 

bearing replacement interval at L = 2000hrs and β = 1.11, reliability of the bearing can 
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be obtained using Eqn. (1) to be R = 0.9886. If the interval is extended to L = 3000hrs, 

the reliability of the bearing reduces to R = 0.9821. As mentioned, this approach is 

simple to apply but it assumes a fixed L10 life and β = 1.11. If there are variations in 

these parameters, the reliability assessment will change accordingly.  

Vlcek et al [23] applied Monte Carlo simulation for “virtual bearing testing” to 

determine variations in bearing life for any number of bearings tested. Monte Carlo 

simulation is a class of computational algorithms broadly used to obtain numerical 

results through repeated random sampling. It is widely used in problems where closed 

form solutions or deterministic methods are unavailable. In their approach, Vleck et al 

have virtual bins containing the inner race, outer race and ball bearings. Within each 

virtual bin, a large number of the parts (i.e.1000) are assigned an order number (i.e. 1, 

2, 3…1000). Each part is then assumed to have a life according to their order number 

correlated to the Weibull plot for the part (i.e. L0.1, L0.2. L0.3…L100).  A bearing is then 

assembled by randomly selecting parts from each bin and the life of the assembled 

bearing is limited by the part with the lowest life as shown in Figure 1.  

 

Figure 1 Virtual bearing assembly 

This is repeated for N number of bearings tested and a set of β and L10 for the bearing 

set can be determined by fitting the set of N bearings’ life back into the Weibull plot 

equation. This procedure is then repeated for multiple sets of bearings to obtain the 

distribution β and the corresponding L10. The (100C)th percentile of β and L10 can then 
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be determined from the distribution and used in Eqn. (1) to derive the lower bound 

reliability. 

4.3.1 Determination of Bearing Inner & Outer Race Life 

Before performing the Monte Carlo simulation, the rated life of the inner race and outer 

race are first calculated. Based on method described by Harris and Kotzalas [22], the 

inner race life, Lir to outer race life, Lor can be determined to be: 
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where, Cir and Cor are the dynamic load capacity of the inner and outer race. F,ir and For 

are the applied load on the inner and outer race.  is given by dcos(/dm). J1 and J2 are 

the factors relating mean load on a rotating and non-rotating raceway to the maximum 

raceway normal load under nominal load distribution factor, = 0.5. These may be 

obtained from reference tables in [22] based on the bearing geometry. Zaretsky’s rule 

[23] states “For radially loaded ball and roller bearings, the life of the rolling element 

set is equal to or greater than the life of the outer race. Let the life of the rolling element 

set (as a system) be equal to that of the outer race.” The relationship between the 

bearing rated life Lsys and its sub-components based on strict series reliability model is 

then given by: 
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It should be noted that Zaretsky’s rule differs from the method of Lundberg and 

Palmgren as the latter does not include the lives of the rolling elements as they have 

observed that the rolling elements have much longer lives compared to the races. From 

Eqn. (2) the life ratio of the inner to outer race is 0.349. Applying this ratio to Eqn. (3) 
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together with Lsys = L10 = 14700hrs, Lir and Lor are then determined to be 22719hrs and 

65131hrs. 

4.3.2 Monte Carlo Simulation Testing of Bearing Life 

For the Monte Carlo testing, the number of bearings, N to be tested will affect the 

amount of variation in the rated life. With a higher number of bearings tested, the 

variation in the Weibull slope parameter, β and the L10 life will converge towards the 

assumed values as shown by Vlcek et al [23]. A low number of bearings tested will 

conversely result in huge variations. As such, the number is recommended to be 

representative of the number of bearings in the fleet or have undergone replacement. If 

there were any defective bearing found during the replacement, it can used to evaluate 

the lower bound variation of the bearing lives. For this particular investigation, N is set 

at 30 which represents the number of bearings replaced in the fleet during past 

maintenance. The Monte Carlo Simulation is performed using script written in 

MATLAB and the virtual test of the 30 bearings was repeated 1000 times to estimate 

the variation in β with convergence of the parameter achieved. Figure 2(a) shows the 

Weibull plots from Monte Carlo Testing of one set of 30 bearings from which a set of β 

and L10 is obtained. The results from the 1000 repetitions are shown in Figure 2 (b) 

from which distribution of β and L10 are obtained as shown in Figure 2 (c) and (d).  

Assuming a normal distribution, the Weibull plot parameters from the testing are 

β~N(1.187, 0.169) and L10 ~N(17340,5970); with a coefficient of variance, cv of ~0.344 

obtained for L10. This agrees well with experimental results by Rosado et al [31], where 

fatigue life testing on M50 bearings showed a cv of ~0.21 and ~0.36 for heavily and 

lightly loaded bearings respectively. By applying the Monte Carlo simulation, the 

variability in β is considered and a lower confidence bound for the bearing reliability 

can be constructed. The lower 95% confidence bound for β is 0.917 and the 

corresponding L10 is 7520hrs. Using these parameters, the reliability of the bearing 

against time based on the Weibull plot equation and its corresponding 95% lower 

confidence bound can be obtained as shown in Figure 3. Based on this lower bound, the 

change in reliability by extending the replacement interval from 2000hrs to 3000hrs is 

from 0.9692 to 0.9557. 
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Figure 3 Reliability plot using (I) Weibull Plot Equation and (II) with 95% lower 

confidence bounds in Weibull Slope, β 

 

(I) Bearing reliability using 
Weibull plot equation 

(II) 95% lower confidence 
bounds from Monte Carlo 
Testing 

Time (Hrs) 

Figure 2 (a)Weibull Plot for Monte Carlo Simulation for one set of 30 Bearing Test, 

(b)Weibull Plot from Monte Carlo Test of 1000 set of 30 Bearing Tests (c) Distribution 

of β from Monte Carlo Test and (d) Distribution of L10 from Monte Carlo Test 
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4.4 Probabilistic Damage Accumulation (PDA) Model 

The bearing fatigue life can be modeled using Miner’s Rule where the bearing fails 

when the fatigue damage D, accumulates to the threshold, Dcr =1 at its fatigue or L10 

life, given by: 

   ∑
  

   , 

   

   

 ,                   (4) 

The damage accumulation from direct use of Miner’s Rule however, is a deterministic 

approach which does not account for the stochasticity in the process. In Figure 4, the 

damage accumulation is modeled with a probabilistic approach where both the Dc and 

D are treated as random variables with a probability density function (pdf). Reliability 

at a given time is assessed based on the overlap (or interference) between the two 

distributions as shown in Figure 4. In this way, the reliability of the bearing can be 

obtained from the damage accumulated from time in usage. 

 

Figure 4 Probabilistic modeling of damage accumulation (Adapted from [26]) 

Rathod et al [26] proposed a methodology for such probabilistic modeling of fatigue 

damage accumulation. The method employs the linear damage accumulation model of 

Miner’s Rule, a probabilistic S-N curve of the subject component and assumes a one to 



18 

 

one transformation between the damage accumulation pdf and the fatigue life pdf. The 

following assumptions have been made in applying the model: 

(1) Fatigue failure occurs when damage accumulation, D reaches the threshold damage, 

Dc, where E[Dc] = 1. 

(2) The threshold damage or critical damage has the same distribution as the damage 

accumulation measure. 

(3) When usage life is equal to the fatigue failure life, the variability of threshold 

damage accumulation, σDc
2
 is equal to the variability of damage accumulation 

measure, σD
2
. The variability of damage accumulation measure continuously 

increases with usage life but when usage cycle reaches to fatigue failure level, the 

corresponding variability is assumed. 

The S-N curve equation used in fatigue damage accumulation is given by, 

   
    (5) 

, where, Nf is the cycle to failure at stress level, S. m is the slope parameter and A is the 

fatigue strength constant. The bearing life equation can be expressed in similar form as: 

    
              (6) 

, where F is the applied load on the bearing, C is the bearing load capacity and P is the 

load life exponent and is typically 3 for angular contact bearings. In this case, the L10 is 

treated as the fatigue life which is often practiced as mentioned above.  It can be seen 

that the relationship between bearing life and applied load is similar to the S-N curve 

used in fatigue analysis. As such, the method proposed by Rathod et al [26] may be 

adapted for evaluating bearing reliability. For the general case under variable loading, 

the variation or standard deviation of the damage accumulation measure with usage life 

is given by: 
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and the critical damage threshold is given by: 
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, where ti is the total time spent at each different load levels and L10,i is the L10 life at 

each different load level. The reliability of the bearing applying stress strength 

interference method is then given by: 

      

(

 
(   

   )

√   

    
 

)

   

(

 
 
 (1  ∑

 
   , 

 
   )

√   

  ∑ (
 

   , 
(
    , 

   , 
))

 

 
   

)

 
 
 

 

(9) 

4.5 Reliability Assessment of Bearing using PDA model 

Before the probabilistic damage model can be applied, the fatigue life pdf of the 

bearing is required. Without physical test data, the pdf of the bearing fatigue life (or the 

L10 life) obtained from Monte Carlo testing previously is used. For L10 ~N(17340,5970), 

σL10 = 5970hrs from Section 4.3.2, the critical damage threshold can be obtained from 

Eqn. (8) to be σDc = 0.344. In this case, σDc is equal to cv as there is only one load level. 

With these parameters, the reliability of the bearing against usage time can be obtained 

using Eqn. (9). For single load case, Eqn. (9) simplifies to: 
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The reliability of the bearing against time using this approach is shown in Figure 5. The 

change in reliability by extending the replacement interval from 2000hrs to 3000hrs is 

from 0.9947 to 0.9910. 
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4.6 Constructing Confidence Bounds Using Bootstrap Estimates 

The reliability assessment using probabilistic damage accumulation model can be 

further improved upon by constructing confidence bounds using a parametric Bootstrap 

procedure. The Bootstrap technique was first introduced by Elfron and Tibshirani [30] 

and its application is as follows: 

(a) For a given usage time, the pdf for D and Dc are obtained from Eqn. (4), (7) & 

(8) 

(b) From each distribution of D and Dc, random samples d* and dc
*
of size 30 are 

drawn. 

(c) From each sample set, the mean and standard deviation d*, dc*,d* and dc* are 

obtained.  

(d) d*, dc*, d* and dc* are then applied in Eqn. (9) to obtain an estimated 

reliability, R
*
. 

(e) Steps (b) to (d) are repeated for a large number of times. In this example, it is 

repeated 2000 times. A distribution of R
*
 is then obtained. 

(f) The confidence interval can be estimated by taking the percentiles from the R
*
 

distribution. 

 

Figure 5 Reliability plot from PDA model with 95% lower confidence bound obtained 

using bootstrap estimation 

Bearing reliability using 
Probabilistic Damage 
Accumulation model 

95% lower confidence 
bounds using Bootstrap 
estimation 
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The above steps provides the point estimate confidence interval of R(t) at a given usage 

time. They can be repeated across usage time to obtain the confidence bounds.  The 

result is shown in Figure 5 for 95% confidence bounds. The change in reliability by 

extending the replacement interval from 2000hrs to 3000hrs is from 0.9792 to 0.9699. 

4.7 Nelson’s Method 

Nelson [20] shows that the reliability can be assessed using a Weibull analysis method 

based on few or no failure.  It is a method used to estimate the reliability and 

confidence limits that apply to little or no failures in testing with an assumed Weibull 

slope value for the test component.  For a sample of non-failure components size, n, the 

lower bound reliability can be obtained as follows: 

     e  (
            

 

   
) (10) 

where β is the Weibull slope parameter,          
 is the (100C)th percentile of the chi-

square distribution with (2r+2) degrees of freedom, r is the number of failure cases and 

   ∑   
  

   . For n = 30, β =1.11 and t = 2000hrs for each bearing, t’ = 138441hrs. For 

C = 95% confidence limit and r = 0,          
 = 5.992. For an extension of bearing 

replacement interval from 2000hrs to 3000hrs, the change in reliability using Eqn. (10) 

is from 0.9050 to 0.8550. 

4.8 Comparison of Reliability Assessment Methods 

The results from the various methods used to assess the gearbox bearing reliability are 

shown in Figure 6. It can be seen that Nelson’s method gives a very wide lower 

confidence bound. In comparison to Nelson’s method, both approaches using the 

Weibull plot equation and the PDA model yields narrower confidence bounds. It can be 

observed that the reduction in reliability for the PDA model is lower compared to the 

Weibull plot equation for low usage time and increases with usage time. This is 

because the variability in the damage accumulation in the PDA model increases 

proportionally with usage time. As the usage time increases, the variation in damage 
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accumulation increases and the reduction in reliability increase accordingly. For very 

high usage time, the PDA model can even be more severe compared to Nelson’s 

method as shown in Figure 6.  

It should be noted that all three approaches discussed here are very different in nature. 

Nelson’s method used only information from bearing replacement hours and does not 

utilize any other information. The Weibull plot equation uses bearing geometry 

information with bearing life following a distribution. The PDA model assumes the L10 

life as the bearing fatigue life and damage accumulation follows Miner’s Rule. In 

practice, these are the various reliability approaches that can be applied by maintenance 

engineers to assess the risk in extending bearing replacement interval. Depending on 

the extension period and type of information available, a conservative estimate can be 

obtained.  

 

Figure 6 Reliability plot from (a) Nelson’s Method (95% confidence) (b) Weibull plot 

eqn. (c) Weibull plot eqn. lower bound (95% confidence) (d) PDA model (e) PDA 

model lower bound (95% confidence) 

 

 

 

(a) 

(b) 

(c) 

(d) 

(e) 
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Table 2 Comparison of Reliability Assessment Methods 

 

Nelson’s 

Method 

(95% 

confidence) 

Weibull 

Plot Eqn 

Weibull 

Plot Eqn 

lower 

bound 

(95% 

confidence) 

PDA 

Model 

PDA 

Model 

lower 

bound 

(95% 

confidence) 

R at 2000hrs 0.9050 0.9886 0.9692 0.9947 0.9792 

R at 3000hrs 0.8550 0.9821 0.9557 0.9910 0.9699 

R at 8000hrs 0.6280 0.9478 0.8945 0.9757 0.8548 

%  at 3000hrs -5.52% -0.66% -1.39% -0.37% -0.95% 

%  at 8000hrs -30.61% -4.13% -7.71% -1.91% -12.70% 

For this bearing replacement interval extension from 2000hrs to 3000hrs, the results 

from the various methods are shown in Table 2. In practice, maintainers can choose 

between these methods for evaluating the reliability. Although it is the most 

conservative, Nelson’s method is not desired as the lower bound is too wide. For the 

low usage time where PM interval of 2000hrs to 3000hrs being evaluated, the Weibull 

plot equation lower bound approach is recommended as it provides a more conservative 

assessment compared to the PDA model. However, if the usage time is higher with PM 

interval 8000hrs being evaluated, the PDA model lower bound would provide a more 

conservative result.  

4.9 Chapter Summary 

From the case study, a conservative estimate of the change in reliability from interval 

extension can be obtained with limited available information. Realistic figures for 

bearing geometry and replacement times have been used in the case study so that the 

reliability assessment is reflective of in-service application. It is recognized that this 

work is not substantiated by experimental or field data. However, the goal is to develop 

a conservative estimate for the purpose of maintenance interval extension. This work 

could be applied in maintenance interval escalation work where the amount of 

extension needs to be quantitatively substantiated instead of being based on expert 

opinions which can be subjective. In this study, the reliability of a single bearing is 

considered and shown. However, the use of Monte Carlo testing, together with strict 
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series reliability model can be applied to transmissions systems as well. In a separate 

work, Zaretsky et al has extended their Monte Carlo Testing approach to assess 

reliability of turboprop reduction gearboxes [32]. Similarly, the methods proposed in 

this paper may be extended for assessment of such higher assembly system as well. 

Despite the growing prevalence in the use of HUMS capabilities for CBM, such 

methods for extending PM remains useful as not all components on the helicopter can 

be monitored through HUMS and PM will continue to play a significant role in 

helicopter maintenance.  

4.10 Related Publication 

 Reuben Lim, David Mba, (2013), Estimating Lower Bound Reliability without 

failure data, IMechE Part O, Journal of Risk and Reliability 
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5 TRANSITION TO CONDITION-BASED-MAINTENANCE 

With the increasing use of HUMS on helicopters, there is much interest to replace PM 

tasks with CBM ones. The transition from PM to CBM however does not occur with 

the embodiment of HUMS on the helicopter alone. Most helicopter platforms in-service 

today were not designed with HUMS in mind and the maintenance packages would still 

be largely based on PM. The CBM task has to be developed and demonstrated to be 

safe and reliable before it can replace the PM task. In this chapter, an overview of CBM 

is carried out and the technical requirements to develop CBM tasks are focused upon. It 

should be noted that a host of other practical issues such as developing the maintenance 

manuals, organization setup and personnel training will have to be carried out as well 

but these would not be covered in this study. 

5.1 Background on CBM and HUMS Development 

In accordance with [33], CBM is defined as “maintenance performed as governed by 

condition monitoring programs” while condition monitoring itself is defined as 

“acquisition and processing of information and data that indicate the state of a 

machine over time”. The concept of CBM for helicopters itself is not entirely new as 

the use of magnetic chip detector in transmissions and engines and Spectrometric Oil 

Analysis (SOA) of the lubricating oil are common features in existing helicopter 

designs. Both methods monitors the conditions based on the accumulated debris in the 

detector or particles in the oil over time. However, the fidelity of these methods are 

rather low as they are often effective only when the damage is significant. When 

vibration sensors was used for health monitoring of helicopter transmissions operating 

in the North Sea in the 1990s [34], it led to a growth in the use of HUMS to not only 

detect but to diagnose the faulty component and extent of damage as well. Since then, 

the capability of such HUMS has progressed considerably with advances in the 

development of sensors, data acquisition and signal processing technologies. The 

progress is not limited to the HUMS hardware itself but extends to the concepts in 

which they are applied and standards to assure safe implementation as well. For 

implementation policies on helicopter, the UK Civil Aviation Authorities (CAA) was 

the key proponent in the 1990s in advocating the use of HUMS to monitor transmission 
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condition. It was also the UK CAA that developed the first guidance material, CAP 753 

[35] on implementation of HUMS on helicopters which preceded the more 

comprehensive ones by the FAA and US Army. In more recent developments, 

IMRBPB has started to include Structural Health Monitoring (SHM) within the MSG-3 

document to guide development of CBM tasks for airframes maintenance [36].  

For a CBM task to be developed, various processes have to be carried out before the 

embedded sensor data can be meaningful to support maintenance decision-making. The 

data processing flow for a CBM task based on ADS-79B and ISO 13374-1:2003 is 

shown in Figure 7. It should be noted that the processes within state detection and 

health assessment are often referred to as diagnostics. A literature review of the existing 

technologies and methodologies associated with these processes is carried out in this 

chapter. It should be noted that the relevant literature in each process can be very large; 

especially for diagnostics and prognostics, and thus the review here is not exhaustive in 

itself. 

 

Figure 7 Data processing and information flow for CBM task [10; 37] 

5.2 Data acquisition from HUMS Sensors 

Through the years, a wide range of sensors have been developed for monitoring and 

fault detection and several surveys have been carried out by different authors and 

agencies on their effectiveness. The Federal Aviation Administration (FAA) carried out 
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one of the first survey for helicopter HUMS [38]. The National Aeronautics and Space 

Administration (NASA) performed several surveys [39-42] to apply HUMS ranging 

from gearbox to engine health monitoring. The Civil Aviation Administration (CAA) 

from the UK has also conducted a review of rotor system HUMS [43]. From those 

surveys, the types of sensors used for HUMS can be broadly grouped into (1) vibration, 

(2) oil-condition, (3) temperature and (4) strain-based sensors. Each group of sensors 

measures a different phenomenon exhibited when the component is behaving 

abnormally.  

Vibration based sensors, typically accelerometers detects fault patterns in the vibration 

signal when defects are present. Amongst the sensors, the use of accelerometers is most 

commonly used for HUMS, especially for helicopter transmission systems. Oil-

condition based sensors such as chip detectors detect abnormally large particles in the 

lubrication oil when excessive damage occurs. The inductance type debris detection 

which is based on oil-condition has been developed by Goodrich and GASTOP for 

HUMS application on the AH64 helicopter [44] and F22 aircraft [45]. It was shown to 

be effective in detecting gear and bearing damage but is unable to distinguish between 

the two when both share a common lubrication system [46]. Spectrometric oil analysis 

is another common oil-based technique used to determine the type and amount of 

metallic wear. Oil samples from in engines and gearboxes are regularly taken and sent 

to a laboratory where atomic emission spectrometer or atomic absorption 

spectrophotometer determines the type and concentration of particles in the oil [47]. 

Temperature based sensors measures increased operating temperature arising from 

friction due to abnormal wear. It is commonly used as safety alarms to detect rise in 

lubricating oil temperature in event of gearbox failure but not in HUMS as it is not 

suited more measuring the component temperatures itself. Strain based sensors does not 

directly detects defects but monitors applied loads on the component which causes the 

strain and is used for usage rather than condition monitoring. In [48], a wireless strain 

sensor from Microstrain® was installed and flight tested on the pitch link of the MH-

60S helicopter. This allows the structural loads of the pitch link to be monitored and its 

fatigue live to be accurately assessed based on usage.  
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There are new sensors being developed and optic fibers and magnetic stress sensors are 

amongst them. Optical fiber strain sensor works based on the principal that the 

wavelength of the reflected light changes according to the induced strain on the optical 

fiber. The use of optical fiber strain sensors for structural health monitoring is gain 

popularity due to its light weight. In [49], NASA applied the use of optical fiber strain 

sensors to diagnose defects in the OH-58 planetary gearbox test rig. Magnetic stress 

sensor operates based on the principle of that the magnetic permeability of a 

ferromagnetic material changes as it is subjected to mechanical loading also known as 

the inverse magnetostrictive effect. The key advantage of this technique is that it does 

not require contact with the component it is monitoring. In [50], JENTEK Quadri-

Directional Magnetic Stress Gage (QD-MSG™) is used to monitor applied torque, axial 

and bending loads on a rotating shaft.  

5.2.1 HUMS airworthiness qualification 

Besides ADS-79 which guides the CBM program, the HUMS sensor and data 

acquisition system has a host of airworthiness qualifications such as environmental, 

aircraft integration and safety standards to be met. A comprehensive review of these 

qualification requirements was carried out in [51] and shown in Figure 8. In lieu of 

these stringent requirements, helicopter HUMS qualification is a costly affair and only 

there is only a handful of commercially available HUMS system. It is interesting to 

note that the US Army has adopted ground rules that the HUMs system should not 

provide further cockpit indication that is not already present in the aircraft’s baseline 

configuration [52]. The software certification and data processing standards are very 

high for cockpit indications so that information provided to pilots are accurate but they 

also require very stringent and costly testing. The ground rules meant that HUMS 

systems should be mainly used by maintainers on ground only and should not change 

the baseline risks that were accepted during the helicopter type certification. The 

HUMS which have been qualified to requirements in Figure 8 includes IMD-HUMS 

from Goodrich, ZING-HUMS (formerly known as IAC-HUMS) from Honeywell, 

IVHM from GE aviation and EuroHUMS from Eurocopter, all that of which uses 

accelerometers for condition monitoring. 
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ASPECT OF 
CERTIFICATION 

STANDARD/ 
GUIDANCE 

COMMENTS 

Software Development 
(on-board) 

DO-178 
Software assurance level varies from A to D 
depending on criticality 

Software Development 
(ground based) 

DO-178 
Software assurance level varies from AL1 to 
AL6 depending on criticality 

Hardware Development DO-254 
Assurance level varies from A to E 
depending on criticality 

Safety Consideration 
ARP 4754/4761 
MIL-STD-1629A 

MIL-STD-1629A for FMECA 

Environmental DO-160 Standard AMC 

Integrity of Data DO-200A Applicable for data management system 

BIT/BITE Function 
MIL-STD-1591 
MIL-STD-2165 

MIL-STD-2165 for testability 

Integrated Diagnostics 
ARINC 604 
ARINC 624-1 

ARINC 604 for design and use of BITE 
ARINC 624-1 for OMS design guidance 

Verification & Validation 
guidance for ISHM 

AC 29 M-15 
SAE ARP 5783 

FAA Advisory circular for HUMS 
Metric for evaluating diagnostics algorithms 

Overall guidance for 
ISHM 

ADS-79B US Army guidance for HUMS 

Interface across layers 
OSA-CBM 
OSA EAI 

Implementation of the ISO-13374 functional 
specification 

Figure 8 Airworthiness certification basis for HUMS [51] 

5.3 Data processing and Feature Extraction methods  

Data processing is the analysis of the condition monitoring signals and interpreting it 

for decisions to be based upon.  The meaningful descriptors of the processed signals in 

turns are referred to as features or condition indicators. The condition monitoring 

signals depends on the type of sensors being employed and vibration-based sensors is 

the most widely used in commercial HUMS system as shown above. There are several 

vibration-based data processing methods to date for faults diagnosis in rotating 

machines and they can be broadly classified into (1) time domain, (2) frequency domain 

and (3) time-frequency domain. A comprehensive review of these methods is discussed 

in [53] and the common techniques in each domain are discussed briefly here. 
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5.3.1 Time Domain Methods  

Time domain methods use the descriptive statistics of the time-series vibration 

waveform itself to identify faults. As faults develops in such as spalls in bearings or 

shaft imbalance, the statistical behavior of the vibration waveform changes and is used 

to detect the fault. The common statistics used are the root-mean-square (RMS) and 

kurtosis as shown in Eqn (11-12) where xi is the vibration signal,  ̅ is the signal mean, 

 is the signal standard deviation and N is the number of samples in the signal.  

     √
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Common statistics however does not reveal the component that is defective within the 

gearbox or the nature of the defect. It can be unreliable when the measurement contains 

noise in the environment. As such, the time domain signals are processed to extract 

more information. Gear defects commonly use time synchronized signals to obtain 

features such as FM4 to detect damage in gear teeth. FM4 is calculated by the ratio of 

the kurtosis and the square of the difference signal and was developed to detect faults in 

gears. The difference signal is obtained by removing the primary gear mesh frequency 

and its harmonics from the acquired signal. Further descriptions of such features used 

for bearing and gear feature extraction are described in [54; 55].  

Autoregressive (AR) modeling of the vibration time series is another popular time 

domain method and has been applied together with neural networks by Baillie D.C and 

Mathew J. to detect different types of bearing faults in [56]. The key advantage of AR 

modeling is that it does not require a long duration of the vibration waveform to be 

sampled. Besides trial-and-error applied in [56], methods such as least-square 

estimation and Yule-Walker equations can be used to estimate the order of the AR 

model and its parameters but it can still be difficult to obtain an accurate model in 

practice.  
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5.3.2 Frequency Domain methods 

For frequency domain methods, the use of the Fast Fourier Transform (FFT) of the 

vibration signal is widely used to identify fault frequencies in rotating machineries.  

The discrete form of the FFT is shown in Eqn (13), where xi is the vibration signal, X(k) 

is the frequency spectrum, N is the number of samples in the signal. 
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When the vibration is digitally sampled, the sampled waveform will be discontinuous 

as the sample length will not be a multiple integer of the waveform’s frequency content. 

This causes spectral leakage in the FFT and to address it, a windowing function is 

typically applied to weigh down the discontinuity [57]. For feature extraction, statistics 

such as the Root-Mean-Square (RMS) energy of the fault frequencies has been shown 

to be a simple but effective method to diagnose faulty bearings in [58; 59]. Bearing 

fault frequencies, however, can sometime  be masked by more dominant gear mesh 

frequencies and envelope analysis is a popular technique used to identify them by 

demodulating the high frequencies impulses caused by the bearing faults [57]. 

Cepstrum analysis; the FFT of the log of the vibration spectrum, is another method used 

to obtain the bearing fault signal by separating the harmonics associated with the shaft 

and gears from the measured signal [57]. The key disadvantage of direct FFT spectra is 

that it can only handle stationary signals (i.e. the statistical properties of the signal does 

not change) as time information is lost during the transform. Another frequency domain 

method is Bispectrum analysis, which is a higher order statistics used to determine 

nonlinear interactions between frequencies within the signal [60]. It has been applied 

for fault detection in gearboxes [61; 62] and induction motors [63]. The disadvantage of 

this approach is the computational complexity and difficulty in the interpretation of the 

results [63]. 
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5.3.3 Time-Frequency methods 

Unlike frequency domain methods, Time-Frequency methods analyses waveforms in 

both time and frequency domain and is able to handle non-stationarity in the waveform 

signal. Common Time-Frequency methods which have been applied to fault detection 

for gears and bearings include the Short-time Fourier transform (STFT) [64] and 

Wigner–Ville distribution [65]. In STFT, FFT of small segments of the waveform 

signal is taken and combined so that changes in the spectrum can be viewed. This 

approach however suffers from low resolution due to the segmentation. Wigner-Ville 

distribution has higher resolution as it does not suffer from segmentation like the STFT 

but the result can be difficult to interpret due to interference from the transformation 

process [65]. Another time–frequency method is the wavelet transform which is 

actually a time-scale representation of the waveform signal. It has the advantage of 

producing high frequency resolution for low frequency signal and vice versa. The 

selection of wavelet is essential though and commonly used ones are Morlet and Haar 

[53]. In [66], wavelet analysis is adopted for fault detection of planetary gearbox using 

vibration data. In more recent developments, the Hilbert-Huang Transform (HHT) is an 

algorithm-based approach that empirically decomposes a waveform signal into its 

intrinsic oscillatory modes or Intrinsic Mode Functions (IMF)[67]. Hilbert transform is 

applied to these IMF to obtain the instantaneous frequency of the waveform as a 

function of time and has been applied to detect faults in bearings [68; 69]. The 

advantage of the HHT is that it’s self-adaptive and does not require a wavelet selection. 

However, it lacks theoretical foundation and the processing time can be long due to the 

decomposition process [70]. 

5.4 State Detection 

State detection serves to establish normal baseline condition of the monitored 

component and uses decision boundaries or threshold that distinguishes the component 

conditions when new measurements or features are acquired. In a way, state detection 

can be viewed as a classification problem to distinguish between the normal and 

abnormal condition of the component using the extracted features. The simplest 

approach to state detection is the commonly used statistical control process (SPC) 
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approach where an alarm is triggered if the signal is above a pre-defined threshold, i.e. 

3 from the mean. This is often used in initial stages of HUMS implementation where 

field and test data are not available for detection threshold setting.  

For a two-class problem, the prediction outcomes can either be positive (P) or negative 

(N). If the outcome from a prediction is P when the true state is also P, then the 

prediction is a true positive (TP). If the true state is negative, then the prediction is a 

false prediction (FP) which causes false alarms. Conversely, a true negative (TN) is 

when both the prediction and the true state is negative and a false negative (FN) is when 

the prediction outcome is negative while the true state is positive. When defining the 

fault detection threshold, a balance needs to be achieved between the sensitivity to 

detect fault and the false alarm or false positive rates. If a threshold is set low, fault can 

be detected easily but this can lead to more false alarms arising from noise. Conversely, 

a high threshold will reduce false alarm but may lead to missed detection. From the 

regulatory guidance [9; 10], the false alarm rate has to be shown to be <5% from seeded 

testing or field data for the CBM task to be valid. In [14], Dempsey et al illustrated the 

use of such principals in signal detection theory for setting detection threshold. The 

statistical distribution or pdf of condition measurements (or extracted features) from 

normal and defective components are obtain and plotted as shown in Figure 9.  

 

Figure 9 Statistical distribution of feature for normal and defective components in 

threshold setting [71] 

The false alarm and missed detection rates with respect to the threshold can then be 

determined accordingly. Note that the probabilities of the pairs TP/FN and TN/FP each 

sum to one as shown in Figure 9. It can be seen from Figure 10 that increasing the 
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threshold to the right will reduce false alarm but increase missed detection accordingly. 

The use of receiver operating characteristic (ROC) curves is another common method 

used to display the same information [14] as shown in Figure 10. The advantage of 

using ROC curve is that it provides a more intuitive display of the performance of the 

thresholds by comparing the true and false positive detection rates. 

 

Figure 10 Receiver Operating Characteristic Curve [71] 

5.5 Health Assessment 

In state detection above, a single feature is used to classify a component into two 

(binary) state conditions; normal or abnormal. However, a component may be 

monitored by more than one sensor as a lone sensor may not adequately classify the 

health state. Signals from a lone sensor could also be processed in different ways to 

extract different features. Furthermore, a component can have multiple health states to 

be diagnosed due to different failure modes or stages of damage. Heath assessment is 

thus an extension of state detection and serves to diagnoses the current health of the 

component by considering all available state information from different sensors or 

features [37]. A good example of this is seen in [72] where both oil debris and vibration 

signals are used to detect gear damage. The classification problem however becomes 

multi-dimensional where different feature dataset has to be grouped corresponding to 

the component health states. Such a classifier; trained from available datasets, can then 

be used to map new data to determine the health state.  
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In the field of machine learning, there are many techniques available for multi-

dimensional classification and there are two main groups depending on the nature of the 

classification problem. If the feature dataset used for training the classifiers are labeled, 

i.e. each instance within the set of training data corresponds to a known output (or a 

health state for diagnostic application), then supervised classification applies. If the 

dataset is not labeled, then the structure within the dataset has to be inferred and this is 

referred to as unsupervised classification. For diagnostic works on seeded tests, 

supervised classification is most commonly applied such as in [73-75] as the health 

states of the component can be observed directly and labeled against sensor 

measurements or extracted features as damage progresses. In datasets obtained from 

field defects however, the component’s condition could not be observed directly i.e. the 

bearing within the helicopter transmission, and it can only be monitored indirectly via 

the sensor measurements. Therefore, the health states during damage progression are 

not available and unsupervised classification has to be applied to infer them instead. 

5.5.1 Supervised Classification 

There several types of supervised classifiers being used for bearing diagnostic and the 

most commonly applied ones are artificial intelligence (AI) based methods such as 

Artificial Neural Network (ANN) and Support Vector Machine (SVM). AI-based 

methods works by learning the patterns between the input features and output health 

states and can handle high non-linearity in the relationship. Other popular methods 

include Gaussian mixture models (GMM) and Hidden Markov Model (HMM) which 

are statistical based and k-nearest-neighbor (kNN) which is a non-parametric method. 

In [73], Gang N. et al applied a range of different classifiers; SVM, kNN, Linear 

Discriminate Analysis (LDA), Random Forest (a decision tree based classifier) and 

Kohonen Neural Network, on time domain statistical features from an induction motor. 

In that work, SVM, kNN and LDA outperforms the ANN based Kohonen Neural 

Network. In another comparative study conducted by Mendel et al [74], ANN, SVM 

and kNN were applied on features obtained from envelope analysis to diagnose bearing 

faults and it was concluded that ANN has slightly better performance. In [76], Gang Y. 

et al showed that GMM outperforms ANN in diagnosing bearing fault using wavelet 

transform features. As the nature of the experimental setup, defects and feature 
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extraction methods varies widely between studies, it can be difficult to compare the 

relative performance of one classifier against another as each classifier has its own 

strength and weaknesses. 

5.5.2 Unsupervised Classification 

In analyzing data from field defects, the transition in health states cannot be observed 

directly thus unsupervised classification is more suitably applied to investigate the 

health states prior to failure of the component using indirect sensor measurements and 

extracted features. The range of unsupervised classification algorithms are comparably 

smaller and are often an extension of supervised classification. The popular ones 

include hierarchical clustering, k-means, Self-Organizing Maps (SOM) and GMM. In 

all these algorithms, the aim is to find clusters within the datasets through similarity 

measures such as distances or density metrics between data instances within the data 

space. There are several types of distance metric used and the common ones are 

Euclidean and Mahalanobis distance. The advantage of Mahalanobis distance over 

standard Euclidean distance is that it takes into account the correlations between 

features in a multi-dimensional data set and is scale-invariant. A detailed description of 

such distance metrics can be found in [77].  

Both hierarchical clustering and k-means are two common non-parametric, distance-

based methods. Hierarchical clustering work by merging data instances into clusters 

such that the distance between classes are maximized while minimizing the within class 

distances. The hierarchy is built as clusters are progressively merged together at each 

agglomeration. This process is repeated till a specified number of clusters or distance 

between clusters is met. [78]. k-means clustering is similar but it operates by classifying 

observations into k clusters in which each observation belongs to the cluster with the 

nearest mean. Like hierarchical clustering, it too seeks to minimize the within cluster 

distances between observations [79].  

GMM is a statistical-based approach that describes the dataset using a weighted sum of 

probability density function of multiple Gaussian distributions with each distribution 

representing a cluster or health state. In supervised classification above, GMM is 
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typically used to represent labeled classes with complex distributions as a weighted sum 

of Gaussian distributions. In unsupervised learning however, each weighted Gaussian 

distribution is assumed to represent a cluster. In [80], Roulias D. et al applied GMM to 

estimate the normal and abnormal health states in a run-to-failure bearing test. SOM is 

a type of ANN that performs unsupervised classification. It is commonly used to 

visualize high-dimensional features in low dimensions (typically two). The network or 

‘map’ created can preserve the topological relationships within the feature set such that 

similar instances would be close together. In [81], Shahakupar S. et al compared the use 

of SOM with a hybrid approach of both k-means and hierarchical clustering for 

analyzing gene microarray data and found the latter to have better performance. Despite 

being termed “unsupervised”, all these algorithms requires the number of clusters to be 

inferred to be pre-defined by user; with exception of hierarchical clustering which can 

also use a distance criterion.  

5.5.3 Dimensionality Reduction 

When the dimension of features is large (>10), the classification with good separation 

between groups can be difficult to achieve due to the infamous “curse of 

dimensionality” where the amount of data required for training increases exponentially 

with the data dimension. In such circumstances, data reduction methods such as 

Principle Component Analysis (PCA) and LDA are applied. PCA is more commonly 

adopted and it involves reducing the dimension of the features into a smaller set of 

principal components (PC) where the greatest variance in the data is projected onto the 

1
st
 PC with decreasing variance in subsequent PCs. Most of the variance in the original 

features to be captured by a reduced number of PC and this allows better classification 

performance in the PC space [82]. In [83], Silvia M. Z. applied PCA to reduce a large 

dimension dataset of temperature, pressure and vibration measurements in a heat 

exchanger before classification is carried out for fault diagnosis. 

5.6 Prognostics Assessment 

Prognostics involve the analysis of symptoms (typically sensor measurements and 

extracted features) to predict future condition and remaining useful life (RUL) [33]. A 
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comprehensive survey of prognostics methods was conducted by different authors in 

[53; 84-86] and their works showed that there are three main approaches which are 

namely, (1) model-based, (2) AI-based and (3) statistical-based methods. Both AI and 

statistical based methods are also commonly referred to as data-driven methods [87] as 

HUMS data is often used. A brief overview of these methods is discussed herein. 

5.6.1 Model-based methods 

Model-based method uses mathematical representation of the system physical to 

determine the RUL based on its current state. The use of damage tolerance analysis in 

aircraft structures is one such example where the time to fracture can be calculated 

deterministically based on the current crack size, material properties and expected 

usage loading [88]. Such methods require does not require training data from past 

failure cases but knowledge of the systems degradation process is required. Model-

based method is not widely applied in practice however as extensive testing is required 

to develop and validate the analytical models, especially when there are many different 

failure modes. In [89], a comprehensive bearing spall propagation model that is 

adaptive to usage loads was developed by Marble S. for RUL prediction. Besides 

physical models, known degradation behavior can be modeled as well. In [90], 

Gebraeel N. applied the use of exponential trend in the bearing vibration signal for 

RUL prediction. His method can be considered a hybrid of model and statistical-based 

method as the vibration signal is used to update the trend parameters to obtain a more 

accurate prediction. Similarly in [91], Li Y. used bearing vibration signal to adaptively 

update the parameters of the Paris Law equation for crack propagation in bearings.   

5.6.2 Artificial Intelligence-based methods  

While AI is used for classification of discrete states in health assessment, it is used for 

regression in prognostics to approximate continuous functions between feature data and 

a component’s RUL. The technique employed remains largely unchanged from 

diagnostics applications with the key difference that extracted features are now mapped 

to the operating life of the component. As such, the output is no longer the health states 

but a predicted RUL instead. In [92], accelerated bearing run-to-failure test data was 
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used to train the ANN before it is applied for RUL prediction. In [93], ANN is used 

with logic rules to allow the RUL predict to be adaptive to environmental conditions. 

Besides ANN, SVM regression is another popular method used for prognostics and has 

the advantage of being less prone to over-fitting compared to ANN. In [94], SVM was 

applied for bearing RUL prediction. In general, AI-based prognostic methods has the 

same advantage of being able to model highly non-linear problems and suffer from the 

same drawback of requiring a large number of training data. For prognostic application, 

this drawback is more acute as datasets capturing the run-to-failure history of a 

component are even harder to come by. Hidden Markov Models (HMM) is another 

popular statistical-based AI technique that has been employed for prognostics. HMM 

models the condition of the component as a hidden state and they are inferred by 

observing the measurement data [95]. The advantage of HMM is that it can model 

different types of failures but again requires a lot of training data. In [96], Zhang X. H. 

et al applied HMM for bearing prognostics. In [97], Camci F. et al extended a variant of 

the HMM, the hierarchical HMM, for drill bit prognostics. The hierarchical HMM has 

improvements over the conventional HMM as it allows for multiple health states to be 

jointly represented to improve RUL estimation. HMM methods however have the same 

drawback of requiring a lot of training data. 

5.6.3 Statistical-based methods 

Statistical-based method uses the statistical behavior of the HUMS data to predict its 

future value. The trend extrapolation is the widest used of statistical methods for 

prediction of RUL [85]. A trend of the degradation path is obtained through regression 

methods and then extrapolated to determine the time taken to hit a pre-defined failure 

threshold [98; 99]. A weakness of this approach is that it assumes that usage condition 

and the degradation behavior paths between specimens remains the same. To account 

for variation in the degradation, Lu and Meeker [13] applied the use of random 

coefficient regression on several sets of run-to-failure test data for crack growth in 

aluminum to evaluate uncertainties in their degradation path trends. In that method, the 

regression parameters are treated as random variables and their distributions estimated 

using degradation paths from past failure cases. This approach however is seldom 

applied in practice due to limited data availability.  



40 

 

 

In [75], Siegel D. et al, applied the use of robust regression curve fitting approach to 

predict the RUL of helicopter bearings on a test bench. An exponential damage growth 

is adopted and regression is performed with each new measurement for its entire history 

since fault detection. A drawback of this approach is that a fixed degradation path 

model is assumed when it may vary under different failures modes or operating 

environment. The use of the entire measurement history can become unwieldy as the 

number of measurements becomes very large. This can also cause the regression model 

to be insensitive to more recent trends in the measurements. A way to overcome this is 

to use a sliding window of recent measurements for the regression so that it is more 

adaptive. However, a suitable window length to provide a robust yet adaptive prediction 

model would remain challenging.  

A statistical-based approach that is comparatively recent is the use of recursive 

Bayesian techniques such as Kalman and particle filtering. In these techniques, the 

component condition or degradation path is modeled as a state-space model with known 

noise in the measurement data [100]. A more precise state is then recursively estimated 

with the noise filtered. Prognostic is performed by propagating the state into future time 

steps. KF has been applied by Lall P. et al to electronics prognostic for estimating 

remaining useful life of ball grid array connections [101; 102] and similarly by Celaya 

J. to electrolytic capacitors [103]. Particle filtering is based on the same concept but it 

allows for non-linear dynamical process and can accommodate non-Gaussian noise 

[104]. The use of particle filtering however can be very computationally intensive as 

Monte-Carlo simulation is employed heavily in the procedure to estimate the non-

gaussian distributions.  

A problem faced in practice that is common when applying all of the above statistical-

based methods is that the RUL prediction accuracies tend to be poor in the initial period 

after fault detection. This is a reason why confidence bounds of the RUL prediction are 

an important piece of information to aid in decision-making. Expert input is then 

required to decide when the RUL prediction is reasonably accurate based on past 

experience or when an acceptable confidence bounds is achieved.  
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5.7 Advisory Generation 

Advisory generation involves the use of the diagnostic and prognostic information 

gathered for maintenance decision-making and planning. It should be noted that even if 

highly accurate prediction of RUL is achieved, maintainers are unlikely to perform the 

task just before the predicted RUL as that can be disruptive to flight schedules. Instead, 

the RUL is often used to allow time for logistic preparation such as spares demand and 

the task itself would typically be align with other PM tasks to reduce aircraft downtime. 

In addition, the lower confidence bound of the RUL prediction would be of more 

importance to maintainers as it has higher safety implications on the aircraft.  

5.8 CBM applications in helicopters 

In this section, a survey of existing literatures on the use of HUMS for CBM is carried 

out. Only cases where the HUMS application is validated through component seeded 

tests or field defects are considered such that regulatory guidelines in [9; 10] are met. A 

survey of cases where faults were successfully detected on a helicopter platform is 

shown in Table 3 along with the associated data processing technique. It can be seen 

that all of the cases examined in this study were from military aircraft where HUMS 

system is most widely implemented. From these cases, the most commonly adopted 

feature for bearing defects is the vibration energy at the bearing defect frequencies 

obtained from the FFT spectra. For gear defects, the FM4 feature was the most adopted 

feature that is obtained from the kurtosis of the residual vibration signal. Although the 

number of cases in Table 3 shows that HUMS can be effective in detecting faults, the 

nature of the findings in those case studies are isolated and lack repeatability to 

demonstrate the consistency of both the sensor and the diagnostic algorithms. In lieu of 

this, more advance AI and statistical methods are not employed. No prognostics work 

was published as well in both civil and military helicopters. As such, the existing 

literature lacks case studies in which the end-to-end process involved in developing a 

CBM task is demonstrated. Such case studies are essential as it helps to build user 

confidence in the application of HUMS for CBM. 
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Table 3 Published works on helicopter fault detection from seeded testing or field 

defects 

Aircraft  System Fault Method Feature Validation  Ref. 

AH64D Honeywell Aft and Fwd 

Hanger Bearing 

wear & 

corrosion 

Frequency 

Analysis 

Bearing  

Energy  

Seeded 

testing 

[14] 

AH64D Honeywell Main Swashplate 

bearing broken 

cage & spalling 

Frequency 

Analysis 

Bearing  

Energy 

Field defect [13] 

AH64D Honeywell Nose gearbox 

bevel gear 

Time 

Analysis 

FM4 Field defect [14] 

AH64D Honeywell Tail Rotor 

gearbox bevel 

gear tooth crack 

Time-

Frequency 

analysis 

- Seeded 

testing 

[105] 

AH64D Honeywell APU Clutch 

failure 

Time 

Analysis 

Peak 

vibration 

Field defect [13] 

H-60 Goodrich Tail Rotor 

Bearing 

Frequency 

Analysis 

Bearing  

Energy 

Seeded 

testing 

[17] 

H-60 Goodrich Tail Rotor Gear 

scoring 

Time 

Analysis 

FM4 Field defect [14] 

H-60 Goodrich Main gearbox 

Bevel Gear 

coating anomaly 

Time 

Analysis 

Residual 

Kurtosis 

Field defect [14] 

H-60 Goodrich Hanger Bearing Frequency 

Analysis 

Bearing  

Energy 

Seeded 

testing 

[17] 

H-60 Honeywell Oil Cooler Fan 

Bearing spalling 

and pitting 

Frequency 

Analysis 

Bearing  

Energy 

Field defect [18] 

H-60 - Planet gear 

carrier crack 

Time 

Analysis 

FRMS
1
, 

NSDS
2 

Seeded 

testing 

[106] 

AS332 Eurocopter Tail Driveshaft 

double Bearing 

spalling 

Frequency 

Analysis 

Bearing  

Energy 

Field defect [19] 

OH-58 - Main gearbox 

input pinion 

tooth crack 

Time 

Analysis 

FM4 Seeded 

testing 

[107] 

CH-47 Honeywell Main rotor 

swashplate 

bearing  

Frequency 

Analysis 

Bearing  

Energy 

Seeded 

testing 

[108] 

1: Filter Root Mean Square; 2:  Normalised Sum of Difference Signal 

5.9 Chapter Summary 

From the above review, it can be seen that diagnostics and prognostics methods are 

very widely researched. Sensor technologies have comparatively less coverage in CBM 
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literature but it should be noted that an effective sensor reduces the need for complex 

diagnostic and prognostic algorithms to reduce measurement noise or infer the 

component state. As mentioned by Sikorska et al [85], most of the researches in 

diagnostics and prognostics are performed in a laboratory environment with seeded 

fault testing and there are little published works on complex components exposed to 

normal operating environments, especially for helicopters. Notably, there are very 

limited demonstrated cases whereby the diagnostics and prognostics methods are 

applied on in-service helicopters to develop a CBM task in compliance to regulatory 

guidance.  
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6 CBM TASK DEVELOPMENT FOR AH64D TAIL ROTOR GEARBOX 

BEARING 

In this chapter, the end-to-end process for developing a CBM task is demonstrated 

using in-service maintenance and HUMS data collected on the AH64D helicopter 

belonging to the Republic of Singapore Air Force (RSAF). Vibration-based condition 

monitoring data from different helicopters with in-service defects found on their Tail 

Rotor Gearbox (TRGB) are correlated with tear down inspection findings. Frequency 

domain method using descriptive statistics of the FFT spectra is then extracted as 

features and despite its simplicity, it is shown to be effective for diagnostic and 

prognostic of bearing degradation within the gearbox in the field environment. 

6.1 AH64D HUMS Description 

The acquisition of data on the RSAF AH64D helicopter is carried out through the IAC-

HUMS developed by Honeywell. It consists of 18 accelerometer sensor measuring 

vibration levels on different transmission and engine components as shown in Figure 

11. The on-board systems measures vibration levels whenever the aircraft is on ground 

with rotors at flat pitch and rotating at 101% RPM (FPG101). This provides a 

controlled flight condition in which the vibration measurements are taken. The 

accelerometer measurement on the TRGB is acquired at a sampling rate of 48 kHz with 

a window size of 16,384 data points (~0.34 sec) and filtered using a Hanning window to 

reduce spectral leakage. Sixteen sets of measurements are further asynchronously 

averaged with no overlapping applied to reduce sporadic noise in the signal.  Due to 

limited onboard data storage capacity, the time domain data are not stored for post 

flight downloads and only the FFT spectrums are available for further processing and 

analysis. Condition Indicators (CI) are processed on-board using both raw time domain 

data from the accelerometers and the Fast Fourier Transform (FFT) spectrum. For each 

flight flown, a text file containing the FFT data for all the accelerometers’ 

measurements is generated and it may contain more than one set of measurement as the 

FPG101 condition may be met several times in a flight. As the number of files to 

extract is large, a MATLAB script is written to read and extract the FFT data for a 

selected sensor. 
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Figure 11 Accelerometer locations on AH64D HUMS 

6.2 AH64D Tail Rotor Gearbox 

The analysis discussed in this paper focuses on the TRGB output shaft thrust bearing in 

the AH64D helicopter. The TRGB is grease lubricated single stage gearbox and serves 

to transmit drive torque from the intermediate gearbox to the tail rotor system. An 

assembly drawing of the gearbox and the location of the accelerometers used to monitor 

this component are shown in Figure 12. For the TRGB, there are two accelerometers 

measuring both vertical and lateral directions. 

 

Figure 12 AH-64D tail rotor gearbox location & assembly layout [4] 

6.2.1 TRGB Bearing Defect 

From maintenance records, three TRGB was found with grease leaking from the output 

seals and upon further inspection, the output shaft was found with radial play. These 
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TRGBs for the three helicopters had accumulated 1204, 1171 and 962 flying hours 

respectively. They were then removed for disassembly and further teardown inspection. 

After completed disassembly, the ball bearings inside the outboard shaft were found to 

have extensive pitting on ball elements and spalling in the bearing races as shown in 

Figure 13.  Pitting is a phenomenon in which small pits approximately 0.1 mm in depth 

are formed on the raceway surface by rolling fatigue and occurs earlier in the bearing 

damage progression stage. In comparison, spalling (a.k.a flaking in some literatures) is 

a phenomenon in which the bearing surface turns scaly and peels off due to repeated 

contact stress received on the raceway and rolling surface during rotation [109].  

  

  

Figure 13 (Top left) Pitting on ball bearing elements, (Bottom left) Spalling on Inner 

race, (Top right) Spalling on Outer race, (Bottom right) Wear debris from removed 

grease sample 

The running path of the wear pattern in the outer race is axially displaced and the 

pattern in the inner race is the widest in the radial load direction. This is characteristic 

of bearing wear under both axial and radial loads as guided in [110]. There was 

significant amount of wear debris found in the grease and it was evident that the radial 

play of the shaft was caused by the deteriorated bearing. Evidence of heat oxidation 

was found on the quill shaft as well. It is likely that the damage in the bearing is caused 

by corrosion which initiated from moisture intrusion through leaking output seals; a 
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common defect reported for the AH64D TRGB which was also reported in [105]. When 

grease leaks are found, the leak could not be repaired in the field and an unscheduled 

replacement of the TRGB has to be carried out. As the TRGB is a critical flight 

component, the replacement will require follow-on checks and functional check flights 

as well. Such unscheduled replacement causes aircraft unavailability and significant 

man-effort for recovery. As such, it is desired for such defects to be detected earlier and 

for the replacement to be performed during scheduled maintenance. 

6.2.2 TRGB Gear Mesh Frequencies 

As the amplitude of these gear mesh frequencies are much higher, they can ‘drown’ out 

features at other frequencies which may indicate the bearing’s condition. In order to 

mitigate this, known Gear Mesh Frequencies (GMF) are identified from the FFT 

spectrum and removed if necessary. From [28], the GMF for the TRGB is calculated 

using Eqn (14) and the gear transmission data shown in Figure 14. The calculated GMF 

are listed in Table 4. 

 

Figure 14 AH64D Transmission overview 
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                                                         (14) 

Table 4 Dominant Tail Rotor Shaft and Gear Mesh Frequencies 

Description Frequency (Hz) 

Tail Rotor Shaft Frequency 23.6 

Tail Drive Shaft Frequency 80.3 

Tail Gearbox Gear Mesh Frequency 1347 

Intermediate Gearbox Gear Mesh Frequency 3000 

6.2.3 TRGB Bearing Defect Frequencies 

As mentioned in brief earlier, the defect frequencies from the bearing are of interest in 

vibration analysis as defects developing within the bearing sub-components may exhibit 

itself with increasing amplitudes at these frequencies. From [29], the defect frequencies 

of a bearing with a given geometry are as shown in Eqn (15-18). The calculated defect 

frequencies for the tail rotor bearing are as shown in Table 5.  
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Table 5 Tail Rotor Gearbox Bearing Defect Frequencies 

Description  Defect Frequency (Hz) 

Ball Pass Frequency Inner race, BPFI  294 

Ball Pass Frequency Outer race, BPFO 244 

Ball Pass Frequency, BF 107 

Cage Frequency, BF 12.8 
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6.3 Spectral Analysis of vibration data 

The available measurements from the three helicopters prior to and after replacement of 

the defective TRGB were obtained for analysis. For two of the helicopters, gaps in the 

data history exist but it does not affect the study significantly as the trends from the 

FFT spectrum plots can still be clearly observed. HUMS data from another helicopter 

with a serviceable TRGB and with similar operating hours were also obtained for 

comparison with the defective gearbox. In this study, the HUMS data from the lateral 

accelerometer are used as its vibration signature showed a clearer response compared to 

the other two accelerometers. The reason for this is not investigated here though it is 

likely that there is less noise in the lateral direction in the environment. In their work 

using the AH64D Tail Rotor Test Rig, Goodman et al [4] has also observed that the 

lateral accelerometer is more sensitive to conditions within the TRGB.  

Figure 15(a) shows the Time-Frequency plot of the acceleration FFT spectrums against 

flying hours for a serviceable TRGB. Figure 15(b) shows a magnified view at a lower 

frequency range that shows the evident vibration signatures which includes the Tail 

Rotor Shaft Frequency and its harmonics, the Gear Mesh Frequency (GMF) of the 

TRGB and the Intermediate Gearbox (IGB) frequency, together with their harmonics. 

Sidebands modulated at the Tail Rotor Pylon Shaft Frequency can also be observed 

surrounding the TRGB and IGB GMF. Figure 15(c) shows a snapshot of spectral plot at 

t = 800 FH and the mentioned frequency contents. From Figure 15, the magnitude of 

the spectral peaks at the GMF and their sidebands is stationary and does not show any 

trends over time for a serviceable TRGB.  

In comparison, Figure 17 shows the similar Time-Frequency plots of the FFT spectrum 

against time for the defective TRGB #1. The dominant gear mesh and sideband 

signatures are also present but several fault patterns that differ from the serviceable 

TRGB plot are apparent. A key observation is that there are distinct changes in fault 

patterns at different frequency bands. From Figure 17(a), it can be seen that there is a 

steady increase in spectral peaks within the 0 - 5 kHz band. This vibration energy at this 

lower frequency band then falls and this is followed by increase in spectral peaks at 

higher frequency band above 10 kHz. Notably, spectral peaks spaced at the output shaft 
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BPFI and accompanied by sidebands modulated at 1 x tail rotor shaft frequency can be 

readily observed in Figure 17(b).Figure 17(c) shows the snapshot of the FFT spectra at 

700FH. These fault patterns in the FFT spectrum are also consistently observed in 

TRGB #2 and #3, which shared the similar bearing defect findings as shown in Figure 

18 and Figure 19. 

 

Figure 15 Time-Frequency plot of acceleration spectrum across flying hours for a 

serviceable TRGB 

Based on the fault patterns seen in Figure 17 to Figure 19, the bearing has different 

stages of degradation. Such change in the pattern of the vibration spectrum as bearing 

deteriorates through different stages has been described in [111; 112] and shown in 

Figure 16 as follows: 

 In Stage I, micro-defects and crack initiation causes ultra-high frequency activities. 

These activities are typically monitored using Acoustic Emission as such as in [113] 

rather than accelerometers.  

 In Stage II, the micro faults develops into pits which begins to excite bearing 

element parts resulting in signals associated with their natural frequencies to be 

Tail Rotor Shaft 

 

 

TR
G

B
 

2
x 

TR
G

B
 

 

(a
) 

(b
) 

(c
) 



51 

 

 

appear. Enveloping analysis is commonly used to demodulate a selected high 

frequency bandwidth of the FFT spectra and extract the bearing defect frequencies 

in this stage.  

 In Stage III, the pits become larger and the fundamental bearing defect frequencies 

and their harmonics can be observed from the FFT spectra. Depending on the extent 

of the damage, these frequencies can be modulated by the shaft frequency and be 

observed as sidebands as well.  

 Stage IV is the final condition before bearing catastrophic failure. As the defect size 

becomes widespread or as multiple defects merges, the bearing elements vibrate 

more randomly with the higher clearances. The localized defects may also have 

‘smoothen’ out due to wear which reduces the signature of the periodic vibration as 

described in [114]. As such, the distinct bearing defect frequencies diminishes as an 

increase in noise floor or ‘haystack’ rises in the higher frequencies ranges. 

 

Figure 16 Fault patterns of bearing damage stages [111] 

All three TRGB have the same reported defects of grease leak and free play in bearings. 

From their FFT spectrum plots shown in Figure 17 to Figure 19, the fault patterns for 

Stage III and IV bearing damage is evident. The fault patterns that suggest the transition 

from localized to generalized damage in the bearing.as follows: 

 Stage III Fault Pattern. As localized damage initiated by corrosion grows within 

the bearing inner race, the ball bearing elements passing over the defect will 

cause periodic vibration that are observed as peaks spaced at the Ball Pass 
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Frequency Inner-race (BPFI). These peaks spaced at the output shaft BPFI and 

accompanied by sidebands modulated at 1 x tail rotor shaft frequency as shown 

in Figure 17(c). From [112], this is due to the bearing defect frequency acting as 

carrier frequencies for the shaft speed frequency. The presence of multiple 

harmonics of these peaks strongly suggests defects in the bearing inner race. 

This is further ratified from the severe spalling pits found in the inner race as 

seen in Figure 13 above. 

 

 Transition from Stage III to Stage IV. As the defect size becomes widespread or 

as multiple defects merges, the damage becomes generalized and the bearing 

elements vibrate more randomly with the higher clearances. The localized 

defects may also have ‘smoothen’ out due to wear which reduces the signature 

of the periodic vibration as described in [114]. This damage mechanism can 

again be supported by Figure 13, where it can be seen that the damage is 

widespread in the bearing races and the rolling elements. As such, the distinct 

BPFI peaks in the lower frequency band falls as the vibration energy in the 

higher frequency band or ‘haystack’ rises as shown in Figure 17. This behavior 

has been described by Qiu H. in [112] but to the author’s knowledge has not 

been demonstrated in published literature. 

 

 Stage IV Fault Pattern. After the fall in BPFI peaks, several peaks are observed 

in the higher frequency range at 10 – 15 kHz. The frequencies at which these 

peaks occur are similar in Figure 17 to Figure 19. This suggests that the peaks 

are not due to random noise and should correspond to the natural frequency of 

the bearing sub-components, which resonates due to increased impacts within 

the bearing. Concurrently, a broad-based peak centered at 18.5 kHz with a 

bandwidth of 1.5 kHz was noted be have increased relative to the broad 

frequency band. This is again evidently consistent in the three gearboxes as seen 

in Figure 17 to Figure 19. These peaks should correspond to the natural 

frequency of the gearbox assembly which is also rising due to increased impacts 

within the bearing. 
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 Normal Condition after replacement. When the TRGBs were replaced, the fault 

patterns are no longer present and the spectrum reverts to that of a serviceable 

TRGB with the associated gear mesh frequencies as seen in Figure 17. 

The repeatability in the fault pattern strongly suggests that the bearing damage 

progression for this failure mode is consistent and can be reliably monitored. 

Furthermore, the stages of the bearing degradation can be monitored through the fault 

patterns at different frequency bands. Due to in-availability of time domain data, 

envelope analysis to detect incipient fault in Stage II bearing damage cannot be carried 

out. However, it is evident that spectral analysis is effective in diagnosing a defective 

bearing in the TRGB. 

 

Figure 17 Time-Frequency plot of defective TRGB #1 acceleration FFT spectrum over 

time 

 

Bearing resonance 
due to increased 

impacts 



54 

 

 

 

Figure 18 Time-Frequency plot of defective TRGB #2 acceleration FFT spectrum over 

time 

 

Figure 19 Time-Frequency plot of defective TRGB #3 acceleration FFT spectrum over 

time 
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6.4 Feature Extraction and Selection 

From the spectrum plots, descriptive statistics are extracted as features for diagnosis of 

the bearing health state and prognosis of remaining useful life. As the fault patterns can 

be easily observed in the spectrum plots, the use of bearing RMS energy is an effective 

measure of the bearing condition. For the two degraded states; localized and 

generalized damage, a feature is developed for each state. Other statistical features such 

as the commonly used Peak amplitude, RMS energy and kurtosis of the entire FFT 

spectra were also extracted for comparison and selection. The various feature trend 

plots for the three TRGB are shown in Figure 20 to Figure 22. 

6.4.1 Low Band Bearing Energy 

For localized damage, the feature adopted is the RMS energy of the frequency 

magnitudes in the low frequency band of 250 – 2500 Hz to capture the peaks of the 

BPFI harmonics shown in Figure 17. A rejection band of 0 to 250 Hz and 1250 – 1600 

Hz are applied to eliminate effects from the tail shaft frequency, the dominant gear 

mesh frequencies and sidebands calculated earlier. This feature captures the vibration 

caused by localised damage within the bearing. For the low band bearing energy shown 

in Figure 20(b) to Figure 22(b), it can be seen that it rises exponentially before falling 

back to normal levels. The exponential rise in vibration energy is commonly seen in 

bearing tests as shown by Harris and Kotzalas in [115]. The subsequent drop in the 

vibration energy is less frequently seen but tests on bearings performed by Dempsey et 

al [116] and Williams et al [114] had also shown similar drops. In all three instances, 

the low band bearing energy feature is encouraging as they rises monotonically to a 

similar peak value of ~1.5grms which is desirable for setting the failure threshold in 

subsequent prognostic application. The key drawback of this feature is that it falls back 

to normal levels and this can give the false indication that bearing condition is normal. 

There are periods in the data history that are missing due to download errors or ground 

station unavailability but the overall trend of the data from the gearboxes can still be 

clearly observed.  
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Figure 20 Extracted Features from TRGB 1. 
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Figure 21 Extracted Features from TRGB 2. 
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Figure 22 Extracted Features from TRGB 3. 
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6.4.2 High Band Bearing Energy 

For generalized damage, the RMS energy of the frequency magnitudes in the high 

frequency band of 10 kHz to 24 kHz is adopted. It should be noted that this high 

frequency band is often the demodulation band used in envelope analysis to detect 

incipient defects. It is used here however as a measure of generalised damage in the 

bearing. For the high frequency band bearing energy shown in Figure 20(b) to Figure 

22(b), it begins to rise when the low band energy reaches its peak. As the low band 

energy falls back to normal levels, the high band energy rises with increased scatter. 

The increased scatter is likely attributed to the increasing random impact from 

generalized bearing damage. The high band energy does not rise exponentially but 

rather saturates to form an ‘S’ shaped profile. From the high band energy trend, it can 

also be seen that the generalised damage can progress continuously as seen in TRGB 1 

and 2 or in discrete stages can be observed for the progression in TRGB 3. It should be 

noted that the TRGBs are in service for considerable time after the low band energy 

have peaked and for the ‘S’ shape profile from the high band feature to be formed. The 

high band energy feature rises monotonically and is consistent between the three 

TRGBs. However, it only rises after the bearing damage has become widespread and is 

not able to detect the localised damage earlier. This in turn results in shorter detection 

lead-time for maintenance actions to be planned.  

6.4.3 Feature Selection 

In comparison, the RMS energy, kurtosis and peak amplitude of the entire FFT spectra 

does not perform as well compared to the high and low energy features. The RMS 

energy shown in Figure 20(a) to Figure 22(a) does not rise monotonically but rises to a 

peak before dipping and rising again. This pattern is attributed to the sum of the 

behavior of both low and high band bearing energy as described above. As such, the 

separate use of the low and high band energy features can better describe the bearing 

degraded state. Kurtosis shown in Figure 20(c) to Figure 22(c) exhibits a linearly 

decreasing when the low band energy is rising exponentially and flattens out when the 

high band energy rises. This linear trend is simpler compared to the low band bearing 

energy and could be more ideal to monitor localised damage but the magnitude and 
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scatter of the kurtosis value vary widely between the TRGBs which makes it a less 

consistent feature. The peak amplitude shown in Figure 20(d) to Figure 22(d) has the 

worst performance as it does not show any discernible trends. From the different 

features, the low and high band bearing energy features performs well for monitoring 

localised to generalised bearing damage. However, each feature by itself is unable to 

distinguish both localised and generalised damage and they have to be used together to 

monitor both damage states. Furthermore, their sequential behavior presents 

opportunities for effective diagnostic and prognostic model to be developed. 

6.5 State Detection and Threshold Setting 

For diagnosis of the bearing health state, thresholds to distinguish between normal, 

localised and generalised damage have to be established from the selected features. For 

signal detection theory described above to be applied, the features have to be labeled 

according to the relevant health states for the respective pdf to be obtained. However, 

this is not available from the field defect data as the actual transition time between 

normal, localised and generalised damage is not known. Therefore, unsupervised 

classification is applied to determine the cluster of features corresponding to the three 

bearing states. Figure 23 shows the plot of the Low and High Band Feature from the 

three defective TRGBs. It can be seen that both features are highly uncorrelated with 

each other and thus further processing using techniques like PCA to improve 

separability is not required. Inspection of the plot also shows that the amount of the 

feature instances and the densities from the different states varies; with normal 

condition features being the most abundant, followed by generalised damage and then 

localised damage being the most sparse as it’s state is transitory. In this section, both k-

means and GMM classifications are employed and compared for their performance. 
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Figure 23 Plot of Low and against High Band Feature 

6.5.1 k-means Description 

As mentioned earlier, k-means is a popular distance-based unsupervised classification 

technique and is described in detail in [79]. k-means groups a set of N dimensional 

feature set into k clusters with each cluster parameterized by a vector mean,  ⃗   . Using 

Euclidean distance, the distance between any two instances,  ⃗ and  ⃗ in the feature set is 

defined by: 

   ⃗,  ⃗  ‖ ⃗   ⃗‖  (19) 

The k-means algorithm begins by arbitrary assigning an initial mean vector,  ⃗   . An 

assignment step is then performed where each feature instance,  ⃗ , is assigned to a class 

k with their nearest mean such that,  

         { ( ⃗ ,  ⃗
   )}  (20) 

An update step is then carried out where the vector mean is adjusted to match the 

sample means of the instances that they are classified in. The assignment and update 
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steps are then iterated until there is no change to the assignment of the instances to the 

cluster means.  

6.5.2 k-means Classification of high and low band feature 

The k-means algorithm is applied to the low and high band features (N = 2) shown in 

Figure 23 with the number of clusters, k = 3 for the desired states; normal, localised and 

generalised damage. The result of the classification with the clusters and their means 

are shown in Figure 26. It can be seen that k-means can cluster the features into regions 

where the three bearing health states are expected. However, the state detection 

thresholds established from the classification boundaries are considerably high. For 

generalised damage especially, there is a significant portion of instances that are poorly 

classified as normal. The high detection thresholds will provide a good true positive 

rates but it causes a high false negative rates as well. In addition, the high detection 

thresholds will result in reduced remaining useful life prediction due to lower threshold 

to the defined failure limit. 

  

Figure 24 k-means classification of high and low band TRGB features 
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Figure 25 k-means misclassification due to poor initial condition  

k-means performed poorly to this feature set as the clusters are elongated and varies in 

their densities. The k-means algorithm only considers the distance between the means 

and the feature instances and not the density or shape of the clusters. As such, instances 

that actually belong to the Generalised damage cluster are incorrectly assigned to the 

Normal condition cluster. k-means is also sensitive to the initial means and poor 

assignment can behave cause it to perform badly as shown in Figure 25. In this case, 

the entire localised damage instances are misclassified. Another disadvantage of k-

means is that it is a hard classifier, i.e. the feature instances are classified into discrete 

clusters. Intuitively, instances near the classification boundaries should have some 

uncertainty of belonging in other clusters. As such, a direct application of k-means does 

not provide a probabilistic interpretation of which class the instance belongs too. 

Towards this end, a variant such as soft k-means may be applied. Soft k-means is an 

extension of the standard k-means where an additional stiffness parameter is added so 

that each instance now has a weightage of belonging to different clusters based on their 

distances to the cluster means [79]. However, the inability of k-means to represent the 

elongated clusters in this feature set still remain thus other methods are adopted. 
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6.5.3 Gaussian Mixture Model Description 

Amongst the different unsupervised classification algorithms, GMM is adopted here as 

it is less susceptible to misclassification compared to k-means when the clusters sizes 

and densities vary widely [117]. As mentioned, GMM is a statistical model that uses a 

weighted sum of pdfs of multiple Gaussian distributions to describe the states in the 

feature space. A description of the methodology from [76] is adopted here. The GMM 

works by creating a model of each state which is written as: 

     ,   ,           1    (21) 

where λ is the model, w represent the weights assigned to the Gaussian means,  ⃗ is the 

vectot mean, Σ is the covariance matrix and k is the number of states to be modeled. 

For a set of N dimensional feature vector,  ⃗ to be modeled with GMM,     ⃗ ,   

1  , are the pdfs of  ⃗ generated from the ith component of GMM which is denoted by 

λi and is given by: 

   ⃗     ⃗     
1

√         
e   { 

1

 
[  ⃗    ⃗⃗⃗⃗  

   
    ⃗    ⃗⃗⃗⃗  ]} (22) 

A weighted sum of pdfs of all the k components is then used to compute the probability 

that  ⃗ belonged to model λ, where, ∑    1 
   . 

   ⃗    ∑      ⃗ 

 

   

 (23) 

For a given dataset,   (  ⃗⃗ ⃗⃗ ,   ⃗⃗⃗⃗⃗    ⃗⃗⃗⃗ ), the log-likelihood function of the model given 

the dataset is given by: 

   (   ⃗   )     ∏ (  ⃗⃗⃗⃗   )  ∑   (∑    (  ⃗⃗⃗⃗ )
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The estimation of the model parameters ( ⃗ and Σ) of the mixture of Gaussian 

distributions is carried out using the Expectation-Maximization (EM) algorithm. The 

EM algorithm is often used to obtain maximum likelihood estimation from incomplete 

data for various models such as HMM and GMM applied here. The incomplete data in 

this case is the unavailability of the label to determine which Gaussian mixture each 

data instance belongs to. The EM algorithm consists of an Expectation step and a 

Maximization step which are used iteratively to find the maximum likelihood of the 

parameters given the dataset using an initial estimate of the model parameters. k-means 

has been a popular method used to estimate the initial parameters before EM algorithm 

is applied. A detailed description of the EM algorithm can be found in [73; 118]. A 

drawback of GMM classification is that it can be sensitive to its initial parameters like 

k-means and there is no guarantee that it will converge to a global optimum and thus 

mis-classification due to local optimum can occur. 

6.5.4 GMM Classification of High and Low Band Features 

GMM classification is applied to the low and high band features (N = 2) with k = 3 for 

the desired states; normal, localised and generalised damage. The result of the GMM 

classification is shown in Figure 26 and the estimated parameters are shown in Table 6. 

Figure 27 demonstrates a case in which the GMM converged towards a local optimum 

for the TRGB feature set and it can be seen that the features are badly classified. As 

such, it is essential for the classification to be evaluated manually instead of an 

automated routine. From Figure 26, it can be seen that the separation of generalised 

damage state is good but less so between normal and localised damage. The small off -

diagonal values of the covariance matrices again shows that both features are highly 

uncorrelated with each other. Detection thresholds for both localised and generalised 

damage can then be determined from the clustered datasets using Signal Detection 

Theory. As the two features are highly uncorrelated, it is simpler for the thresholds to 

be set independent of each other. The pdfs for both features for normal and damaged 

conditions are shown in Figure 28 with the associated ROC curves plotted in Figure 29.  
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Figure 26 GMM classification of TRGB high and low band features 

 

Figure 27 GMM Misclassification due to local optimum 
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Table 6 GMM Parameter Estimation 

k 1 (Normal) 2 (Localised damage) 3 (Generalised damage) 

wk 0.456 0.132 0.412 

  ⃗⃗⃗⃗⃗ [0  03    0 188]’ [0 648    0   1]’ [0  6     0 99 ]’ 

k [
0 00 9  0

 0 0 00 1
] [

0 118 0 004
0 004 0 00 4

] [
0 00 3 0 0001
0 0001 0 1416

] 

6.5.5 Fault Detection Threshold 

For the low band feature, a lognormal distribution provides a better fit to the feature 

histogram for both normal and damaged conditions. For the high band feature, normal 

distributions were used. For both the low and high band features, the threshold is set 

such that the probability of false alarm from a serviceable TRGB is below the 5% 

allowable limit as required in AC29-MG15 [9] and ADS-79B [10]. As seen in Figure 

28, the damage detection thresholds are set at 0.32 g(rms) and 0.27  g(rms) for the low 

and high band features respectively. Based on these thresholds, the false alarm and true 

detection rate for the low band feature is 2.1% and 92.3%. For the high band feature, 

the false alarm and true detection rates are ~0% and 97.6%. From the ROC curve, it can 

again be seen that the high band feature has higher detection performance compared to 

the low band feature due to better class separation. 
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Figure 28 Probability distribution functions: (Top) Low Band Feature, (Bottom) High 

Band Feature 

 

Figure 29 ROC Curve for both Low & High Band Features 
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6.6 Trend Extrapolation Prognostic Model 

From the feature trend plots and detection thresholds, prognostic models can be 

developed to predict the time to failure of the output shaft bearing. Failure is defined to 

be the degraded state at which bearing replacement is desired. In this application, it is 

before the onset of widespread damage in the bearing that leads to grease leak. As both 

localised and generalized damage in the bearing can be monitored, different prognostic 

models can be developed depending on the damage states of interest. Figure 30 depicts 

the features at the different stages of bearing damage.  

 

Figure 30 Features at different bearing damage states 

If the failure condition used is localised damage, the prognostic model can be 

developed using low band energy feature with exponential damage growth models. 

Bearing replacement is then desired before the low band energy reaches an established 

threshold. Similarly, a prognostic model may be developed using the high band feature 

if the failure condition used is generalised damage. A model using both set of features 

can also be developed to maximize the period of notification prior to bearing 

replacement as seen in Figure 30. As the feature plots shows a similar trends across the 

TRGBs, a prognostic model using simple trend extrapolation is adopted here and this 

can be easily implemented without the use of complex algorithms. In most prognostic 

models, especially those developed from seeded faults or accelerated tests, damage is 

initiated during the start of the test and damage propagation begins immediately. In 
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practice, components are not seeded with defects and the time when damage initiates 

can vary widely and dependent on many operating and environmental factors. From 

Figure 20(b) to Figure 22(b), the variation in damage initiation can be observed as the 

time in which the low band feature begins to rise differs between TRGBs. Therefore, 

the time since new is not evaluated and the time from detectable damage to the defined 

damage state is adopted instead.  

6.6.1 Localised Damage Model 

For the localised damage prognostic model, only the monotonic rising portion of the 

low band energy data (Stage I and II of Figure 30) is considered. The exponential 

function in Eqn. (19) is used to fit the features and estimate the parameters. This is used 

to model the feature degradation path which is stationary for a serviceable gearbox 

followed by exponential increase as damage initiates and progresses. As the trend after 

damage detection is of interest, the curves are aligned at the time when the detectable 

damage threshold is expected to be crossed. Figure 20 shows the low band energy 

exponential fit for the three TRGBs. 

            (19) 

It can be seen from Figure 31 that the three plots correlate very closely which shows 

that the rate of progression for localised damage is consistent. A regression curve is 

fitted to the combined dataset to estimate the overall degradation path in Figure 32. The 

peak values for the low band energy are similar between the three gearboxes at 1.54 

g(rms), 1.36 g(rms) and 1.44 g(rms) respectively. As such, the failure threshold for 

localised damage is conservatively set lower at 1.2 g(rms). From the regression fit in 

Figure 21, the time from detectable damage of 0.32 g(rms) to the defined localised 

damage threshold of 1.2  g(rms) is determined to be 61.1hrs with corresponding 90% 

confidence bounds of 58.1.hrs and 63.8hrs. The 90% confidence bounds was included 

to provide a probabilistic measure of the time-to-failure and is used to aid maintenance 

decision making. 
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Figure 31 

(o) TRGB#3 

 

Figure 32 Exponential fit of the Low Band Energy feature datasets with 90% 

confidence bounds 

6.6.2 Generalised Damage Model 

In most condition based maintenance applications, the use of the low band vibration 

energy feature for prognostic of localised damage as described above would suffice. 

However, the behavior that the low band vibration energy fault pattern follows the low 
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band vibration energy is exploited here to further increase the lead time before bearing 

replacement. In Figure 20(b) to Figure 22(b), the high band feature data displays a ‘S’ 

shaped profile also known as a logistic function with increased scatter. As such, a 5-

parameter logistic (5PL) regression model as shown in Eqn (20) is used for the fitting 

the high band feature data. The 5PL model is used as it can flexibly fit asymmetric 

trends in the data compared to standard logistic regression as described in [119]. 

However, it is noted that the 5PL curve can be difficult to fit as the initial estimate of 

each parameter has to be selected carefully. In this study, the initial estimates are 

selected through trial and error and adjusting the parameters based on their properties 

shown in Table 7.   

       
 

(1  (
 
 )

 

)
  

(20) 

Table 7 Properties of the 5PL parameters 

Parameter Properties of curve 

A Lower asymptote  

B Upper asymptote 

C Affects the position of inflection point 

D Rate of change between asymptotes 

E Asymmetry factor 

The fitted curves for the three gearboxes are shown in Figure 33 and the fitted 

parameters. The curves are aligned at the time when the low band energy reaches their 

peak values. Unlike the low band feature curves, the high band curves do not have 

similar upper limits. The upper asymptotes for the three TRGBs from the fitted curves 

are 1.13 g(rms), 0.65 g(rms) and 1.17 g(rms) respectively. The logistic regression is 

performed on the combined high band feature dataset as shown in Figure 34. Due to the 

increasing variance (or heteroscedasticity) in the data, a robust regression is employed. 

The advantage of using robust regression here is that it is less susceptible to outliers 

skewing the regression fit. Outliers with high residuals will have lower weights thus 

reducing their effect. For a conservative estimate of the generalised damage failure 

time, a low failure threshold of 0.5 g(rms); which is below the upper asymptote of 
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TRGB#2 is set. Based on this threshold, the time to generalised damage failure after 

localised damage has formed is 72.4 hrs corresponding 90% confidence band of 14.3hrs 

and 133.6hrs. Compared to the localised damage model, the generalised damage model 

is less accurate as a prognostic tool as its confidence bounds is much wider. For high 

confidence levels above 90%, the generalised damage model would be ineffective as 

the confidence bounds would be too wide for any predictions on failure time to be 

made. 

Figure 33  

 

Figure 34 5PL fit of the High Band feature datasets with 90% confidence bounds 
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6.7 Implementation in maintenance 

From analysis of the feature data, damage models for predicting localised and 

generalised damage were developed. Assuming a normal distribution, the localised 

damage failure time, tlocalised is ~N(61.6,2.1
2
) and the generalised damage failure time, 

tgeneralised is ~N(72.4,47.7
2
). The sum of both failure times can therefore be evaluated to 

be ttotal~N(134, 47.8
2
). Using both the localised and generalised damage model, the total 

time from detection of localised damage to replacement of bearing from generalised 

damage is 134hrs with 90% confidence bounds of 72.7 hrs and 134.3 hrs. Using the 

lower confidence bound for conservative estimate, the use of both damage models 

allows a 25% improvement in the detection lead time compared to the use of the 

localised damage alone. From these findings, a CBM program for the TRGB output 

shaft bearing can be recommended. The bearing can be monitored for localised damage 

using the detectable damage threshold established. In event that this threshold is 

exceeded, the replacement of the TRGB can be planned for in the next 72.7 hrs. The 

high band feature can also serve as a diagnostic tool as the rise in magnitude and 

increased scatter of the feature are clear indication of generalised damage within the 

bearing. This redundancy can be useful for this TRGB application as the low band 

feature does not rise continuously and will drop back to normal levels after it peaks. If 

the HUMS data during the period in which the low band feature is unavailable, the high 

band feature can still provide indication of bearing damage at a later time. 

6.8 Chapter Summary 

In this chapter, the end-to-end process for development of a CBM task, including both 

diagnostics and prognostics application is shown. The operational HUMS data from 

three TRGBs found with damaged bearings were analyzed and correlated with their 

tear-down inspection findings. From analysis of their vibration spectrum, it was shown 

that there were fault patterns that distinguish the TRGBs with damaged bearings from 

serviceable ones clearly. Notably, this study on field data ratified experimental 

observations on fault patterns in vibration signals for bearing damage progression. It 

was shown that low-band vibration energy levels does not rise monotonously with 

bearing damage progression and can fall back to normal levels. Furthermore, high band 
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vibration energy rises following the fall in low band vibration energy. From these fault 

patterns in the vibration spectrum, the progression from initial damage to localised 

damage and subsequently generalised damage in the bearing can be inferred. Two 

features were then developed using the vibration energy from selected frequency bands 

in the vibration spectrum to monitor localised and generalised bearing damage. From 

the feature data, prognostic models based on trend extrapolation was developed. Using 

both damage models, the lead time between damage detection and bearing replacement 

is improved compared to use of the localised damage model alone. This study shows 

that bearing diagnostics and prognostic can be effectively carried out in the field 

environment using simple methods of FFT spectral analysis and trend extrapolation. 

Admittedly, there are areas in the study that can ideally be further improved. To begin 

with, the lack of time domain data restricts the use of signal processing methods. As 

such, techniques such as envelope analysis which may better detect incipient fault and 

allow a longer detection lead-time cannot be used. Secondly, the TRGB is a relatively 

simple gearbox thus the results here cannot be extended to more complex designs such 

as epicyclic arrangements used in main gearboxes. Lastly, the prognostics using trend 

extrapolation assumes that the operating environment remains the same and the RUL 

prediction is not adaptive to changes. It also requires significant review and 

manipulation of the feature data for trends to be identified and then RUL prediction. In 

practice, an automated process to perform this is desired to reduce the need for trained 

HUMS analyst.     
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7 DIAGNOSTICS AND PROGNOSTICS USING SWITCHING KALMAN 

FILTERS 

In this chapter, ways to improve the ease of use of prognostic applications by 

maintainers is explored. As mentioned several times in this research, the lack of failure 

cases for training data is a key constraint thus the use of AI and statistical methods such 

as ANN and HMM are not further investigated. Conversely, hybrid approaches using 

both model and statistical based methods is adopted as they require less training data. 

In particular, the use of recursive Bayesian estimation techniques such as Kalman 

Filtering is of interest as it is adaptive to change and can handle uncertainty in the 

degradation trend. In this chapter, the use of switching Kalman Filters (SKF) is 

investigated for both fault detection and RUL prediction of rolling element bearing. 

This approach and its benefits they are shown using both simulated and feature data 

extracted from the TRGB bearing.  

7.1 Overview of Kalman Filtering 

The Kalman Filter (KF) is a stochastic filtering process that recursively estimates the 

state of a linear dynamic system in the presence of Gaussian measurement and process 

noise by minimizing the mean squared error [85]. For non-linear systems, the Extended 

Kalman Filter (EKF), which is a linear approximation of the non-linear function is most 

commonly adopted [120; 121]. When the system is highly non-linear where linear 

approximation is inadequate, the Unscented Kalman Filter (UKF) can be adopted [120]. 

Kalman Filtering have been used in a wide range of applications from navigation and 

tracking to economic forecasting. In maintenance application, it has been applied to 

engine health diagnostic [122], rolling element bearings [123] and in recent years to 

electronics prognostic for estimating remaining useful life of ball grid array 

connections [101; 102; 124] and electrolytic capacitors [103]. The key advantage of 

using Kalman Filtering is that it accounts for measurement and system noise in the CM 

data and the system state and parameters of the degradation model can be adaptively 

estimated as they evolve through time [125]. It can also be used for prognostics by 

forecasting the system state into the future using the degradation model and the latest 

available measurement. The algorithms for both KF and EKF are described here. 
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7.1.1 Kalman Filter 

The KF consists of a linear discrete state-space model describing the evolution of a 

process given by: 

                 

           
(21) 

where xt is the true but hidden state of the system and yk is the observable measurement 

of the state. The KF assumes a linear system dynamics and all noise follows a Gaussian 

distribution.  A is the fundamental matrix describing the system dynamics and H is the 

measurement matrix.        0,     is the process noise and        0,     is the 

measurement noise. The KF estimates the value of xt, given the measurement, yt by 

filtering out the noise. This is carried out using the ‘Prediction’ and ‘Update’ steps also 

known as the Ricatti Equations [121] as follows. 

Prediction Step:   

Predicted state estimate:   ̂         
(22) 

Predicted estimate covariance  ̂          
     

Update Step:   

Measurement residual:          ̂      

(23) 

Residual covariance       ̂   
     

Kalman Gain     ̂   
   

  
 

Updated state estimate     ̂       

Updated estimate covariance             ̂  

The Kalman filter can also perform prediction repeating the prediction step in Eqn. (22) 

using the last known state and covariance estimate without updating the state and 

covariance estimate. 

7.1.2 Extended Kalman Filter 

As mentioned, the EKF is a non-linear extension of the KF which uses linear 

approximation of the non-linear function to estimate the state mean and covariance 
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[120; 121]. The linear approximation performed through first and second-order taylor 

series expansion of the non-linear function is most commonly used and the first-order is 

adopted here. The discrete state-space model describing a non-linear process is given 

by: 

                

            
(24) 

where xt is the true but hidden state of the system and yk is the observable measurement 

of the state. f(.) is the fundamental matrix describing the system dynamics and h(.) is 

the measurement matrix and both are functions assumed to be continuously 

differentiable. The ‘Prediction’ and ‘Update’ steps for the EKF are similar to the KF 

except that Jacobian matrixes of the non-linear functions are used instead as shown.  

Prediction Step:   

Predicted state estimate:   ̂        ,   1  
(25) 

Predicted estimate covariance  ̂        ,   1      
      ,   1       

Update Step:   

Measurement residual:          ̂   ,    

(26) 

Residual covariance       ̂ ,    ̂  
   ̂ ,       

Kalman Gain     ̂  
   ̂ ,     

  
 

Updated state estimate     ̂       

Updated estimate covariance            ̂ ,     ̂  

where F(.) and H(.) are the Jacobians of f(.) and h(.) are given by 

      ,   1  
       ,   1 

  
|
 ̂       

 

(27) 

   ̂ ,    
     ,   

  
|
 ̂     
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7.1.3 Limitations of KF and EKF in prognostics 

A limitation of both KF and EKF is that the system’s degradation process has to be 

time-invariant else the model can be unstable and it’s estimations divergent. However, 

the degradation process in components can be uncertain and evolve over time as seen in 

bearing wear tests [115]. For example, in Figure 35, the vibration measurement of a 

serviceable bearing can be stationary with measurement noise. When slow stable wear 

from damage such as surface pitting occurs, the vibration level gradually rises linearly. 

When the accumulated damage is severe, the vibration level then rises exponentially. 

This behavior can also be seen from our TRGB example in Figure 20, the Low Band 

Energy Feature exhibits stationary then linear trend before the exponential trend is 

apparent subsequently. The use of a single degradation model would result in 

inaccurate state estimates and cause RUL predictions to diverge or fluctuate depending 

on whether the underlying degradation process is under or over-fitted by the model. In 

lieu of this, model-based prognostic works often only use portion of the feature data 

that fits the assumed degradation model [80; 90; 102] and this data censoring has to be 

performed manually by a trained analyst. Furthermore, it is difficult to determine when 

the assumed model can be suitably applied in an automated application where the 

complete feature history prior to failure is unknown. Thresholds can be set adequately 

high to only identify unstable wear trends for the model to be fitted correctly such as in 

[80; 90] but this would reduce sensitivity for damage detection. As such, the use of KF 

or EKF for automated analysis can be challenging. 

Figure 35 Evolution of degradation process across time 
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7.2  Switching Kalman Filter 

For the different degradation process to be modeled, the Switching Kalman Filter 

(SKF) is adopted here. The SKF, also known as Linear Dynamic models [126] can 

track system with changes in their dynamical process. It is popularly used to track 

multiple moving targets but has also been applied in meteorology [127] and 

econometric [128].  In maintenance applications, it has been used to diagnostic sensors 

and actuator failures [129] and changes in non-linear stochastic control systems [130]. 

The switching Kalman filter can be represented as a dynamic Bayesian network as 

shown in Figure 36. In each time step, both the model switch variable, St and state 

variable, xt are hidden and have to be inferred from the observations, yt. For a system 

with multiple dynamics which are described with n Kalman filters, the size of the belief 

state will increase exponentially at each time step to n
t
. As such, inferring the 

probability of every state at each time step becomes intractable.  

 

Figure 36 Dynamic Bayesian Network representation of a Switching Kalman 

Filter[126]. 

To overcome this problem, approximation method like the Generalised Pseudo 

Bayseian (GPB) algorithm as described in [120] was adopted. In each time step, the 

state and covariance estimates from all the filters in the previous time step are 

combined with weights assigned according to the mix probabilities of the model switch 

variable,   
   

 and the model transition probability, Zij as shown in Equation (28) and 

(29).  
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Model switching probabilities: 
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Weighted state and covariance estimates: 
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(29) 

With the weighted state and covariance estimates, the usual Kalman filter as shown in 

Equation (2) and (3) is carried out for each filter model with each yielding a predicted 

state,  ̂   
 

 and covariance,  ̂   
 

estimate. The likelihood of each filter is then 

determined with Equation (30) using their measurement residual,  
 . The probability of 

each model at the current time step can then be obtained as shown in Equation (31). 

The weighted state and covariance estimate update for the current time can also be 

determined using Equation (32). A detailed description of SKF is available in [126] and 

a good demonstration of SKF with use of GPB is shown in [131]. 

Likelihood of filter from measurement residual: 

  
      

  0,   
 ) (30) 

Probability of each model: 
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The weighted state and covariance estimate update are computed as follows: 
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{  
 [  

    ][    
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} 

(32) 

A concern from this method is that approximation of the posterior state by combining 

the previous time steps would contain error and that this error will accumulate over 

many time steps as highlighted in [126]. However, it was discussed in [126] and shown 

in [132] that the error will remain bounded regardless of the number of time steps. A 

detailed description of SKF is available in [126] and a good demonstration of SKF with 

use of GPB2 algorithm is shown in [131].  

In the context of degradation modeling, SKF is applied to track the different type of 

bearing degradation processes shown in Figure 35 as it evolves. The different types of 

degradation behaviors have to be known or estimated based on heuristics. The SKF 

consists of multiple state-space models; each of them describing a different degradation 

behavior using the basic KF or EKF depending on its underlying function. The SKF 

then switches between these models based on their likelihood calculated from the 

feature data. In this way, the most probable degradation model is used for RUL 

prediction and reduces errors introduced when an unsuitable degradation model is used 

to model the feature data. It should be noted that by tracking the dynamical behavior of 

different degradation processes, fault detection can be performed without using pre-

established detection thresholds. In addition, this approach helps maintainers to predict 

RUL more accurately by distinguishing between stable and unstable wear and 

performing prediction only when unstable wear is detected.  

7.3 SKF formulation using EKF for tracking varying degradation processes 

As mentioned earlier, the degradation processes has to be known for the SKF method to 

be applied. For bearing degradation, it is well established that its vibration-based 

signals is stationary when functioning normally and exhibits linear or exponential 
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trends when it degrades [92; 93; 133]. It is then assumed that the bearing degradation is 

monotonically increasing and it can evolve from normally operating to stable wear and 

then unstable wear or from normal operating to unstable wear directly. The dynamics of 

these processes are represented using a zero and first order polynomial and an 

exponential model respectively. A Kalman filter is built for each of them and they are 

used together in the SKF. The state equations for each KF are obtained by ‘stacking’ 

the base state, x with the unknown and time-varying parameters,  for the model. The x 

and  are then estimated by each KF using the updated measurements at each time step. 

The SKF then calculates the most likely model for the time step given the 

measurement. For the exponential filter, extended Kalman filter is applied due to its 

non-linear form. The state transition Fi(.) is obtained from the Jacobian of the state 

equations using Eqn (4). It is assumed that the process noise entering the system only 

consists of zero mean white noise qa and qb which models the wear rate parameters at 

and bt stochastically for both stable and unstable wear respectively. The state, transition 

and process noise covariance for each filter are shown below with subscripts 1, 2 and 3 

denoting the zero, first order and exponential Kalman filters respectively. 

Zero Order polynomial model (Normal Operation) 

State:          

(33) 

State Transition:   ,  1 

Process Noise:   ,  0 

Measurement:          

  ,  1 

1
st
 Order polynomial model (Stable Wear) 

State:                

        

(34) State Transition:   ,  [
1   
0 1

] 

Process Noise: 
  ,  [

0 0
0   

] 
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Measurement:          

  ,  [1 0]  

Exponential model (Unstable Wear) 

State:          
       

        

 

(35) 
State Transition: 

  ,  [ 
             

      

0 1
] 

Process Noise: 
  ,  [

0 0
0   

] 

Measurement:          

  ,  [1 0]  

Model transition matrix 

  [
0 999 0 000 0 000 
 0 0 999 0 001
 0  0  1

] (36) 

Initial model probabilities, state and covariance estimate: 

   [0 98 0 01 0 01] 

     , 

   0 

   0 

     

(37) 

For the SKF, the state transition matrix Z is set such that the system tends to remain in 

its own state with Zii ~ 1. It is also assumed that the degradation rate can only progress 

i.e. from normal to stable and unstable degradation but not the reverse. However, Zij is 

assigned a value approximately zero for i>j as a value of zero can cause underflow 

problems in Eqn (31) when implemented as a software program. The initial model 

probability, S0 is set with high probability that it’s in normal condition. The initial state 

estimate, x0 is initialized to the first measurement and initial parameters a0 and b0 are 
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zero. The initial covariance matrix, P0 is set arbitrarily with an identity matrix, I. As 

such, the input parameters required using this approach are the measurement noise, rt 

and the process noise, q from the respective models. 

7.4 Diagnostic using SKF on simulated data 

The SKF approach to diagnose the degradation processes is tested here using simulated 

data. Figure 37 shows three different evolving degradation processes; (1) normally 

operating to stable wear at t = 150hrs, (2) normally operating to unstable wear at t = 

150hrs and (3) normally operating to stable wear at t = 100hrs and then unstable wear 

at t = 200hrs. The simulated degradation measurements are generated using the 

measurement equations from Eqn. (33-35) where they are modeled with a stationary, 

linear and exponential function respectively. An additive measurement noise, 

    0, 0 08   is added all three processes. For stable wear, a wear rate parameter, a = 

0.01 is arbitrarily adopted with process noise,      0, 0 001  . Similarly for unstable 

wear, an arbitrary wear rate parameter, b = 0.04 is adopted with process noise, 

     0, 0 004  . 

Figure 37 Simulated degradation processes with measurement & process noise: (1) 

normal to stable wear at t = 150hrs, (2) normally operating to unstable wear at t = 

150hrs and (3) normally operating to stable wear at t = 100hrs & unstable wear at t 
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Figure 38 Normal to stable wear (Top left) Filtered state and most probable model, 

(Bottom left) Model probabilities, (Top & bottom right) Estimated parameters at & bt 

 

Figure 39 Normal to unstable wear (Top left) Filtered state and most probable model, 

(Bottom left) Model probabilities, (Top & bottom right) Estimated parameters at & bt 
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Figure 40 Normal to stable and unstable wear (Top left) Filtered state and most 

probable model, (Bottom left) Model probabilities, (Top and bottom right) Estimated 

parameters at and bt 

Figure 38 to Figure 40 shows the SKF results in tracking the three evolving degradation 

processes. It can be seen that the SKF is able to track and estimate the most probable 

degradation process well using the dynamical behavior of the measurement. For normal 

to steady wear, the SKF detects the change at 169hrs compared to 150hrs. For normal 

to unsteady wear, the SKF detects the change at 158hrs compared to 150hrs. For 

normal to steady and then unsteady wear, the SKF detects the change at 116hrs and 

208hrs compared to 100hrs and 200hrs respectively. The SKF lags behind the actual 

transition times as it is performing the estimation in real-time and requires adequate 

measurements from the dynamical process. In addition, it can estimate the wear rate 

parameters, a and b well at ~0.001 and ~0.04. It should be noted that the estimation will 

not converge towards the exact parameter value due to inherent noise added to the 

measurements. The ideal case where the dynamical models of the degradation 

processes and their measurement and process noise are known is shown here. In 

practice, the dynamical model has to been selected based on expert knowledge and the 

additive noise has to be estimated. In addition, the noises may be non-Gaussian which 

would not be handled well by using the KF and EKF formulation. 

0 50 100 150 200 250
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

C
M

 M
e

a
s
u

re

Time(Hours)
0 50 100 150 200 250

0

1

2

3

M
o

s
t 
P

ro
b

. 
M

o
d

e
l(
+

)

0 50 100 150 200 250
-5

0

5

10

15

20
x 10

-3

Time(Hours)

a

0 50 100 150 200 250
-0.01

0

0.01

0.02

0.03

0.04

Time(Hours)
b

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

Time(Hours)

M
o

d
e

l p
ro

b
a

b
ili

tie
s

 

 

Normal

Stable wear

Unstable wear

Fe
at

u
re

 M
ea

su
re

 



88 

 

 

7.5 Case study on AH64D Helicopter Tail Rotor Gearbox Bearing 

The SKF approach is applied to extracted feature data from the AH64D Tail Rotor 

Gearboxes (TRGB) to evaluate its performance for an in-service scenario. The Low 

Band Energy feature from the three TRGB obtained earlier is used here and shown in 

Figure 41 with the HUMS monitored hours shown instead of the component hours to 

simplify the time scale. A general trend of stationary, linear and then exponential rise 

can be seen across the TRGBs but the rate and duration in each stage differs between 

individual gearboxes.  

As the actual time at which the bearing degradation processes transits cannot be 

physically observed, they are inferred using piece-wise or segmented regression [134] 

on the complete feature data history of TRGB 1 as shown in Figure 42. The feature 

history is segmented into the three degradation stages with two transition times or 

“breakpoints”. A zero, first order polynomial and an exponential regression is then 

applied to the segmented feature data for each degradation stage and the sum of their 

residuals is obtained. This procedure is repeated iteratively with different sets of 

transition times and the optimal piece-wise regression fit is obtained from the set of 

transition time that minimizes the sum of the residual. Figure 42 shows the transition 

times for the degradation stages are at 87hrs and 202hrs for TRGB 1. Although these 

may not be the real transition time, the piece-wise regression provides the optimal fit 

for each stage of the degradation process. In practice, the complete feature history will 

Figure 41 Feature plot for three defective TRGBs (HUMS monitored hours) 
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not be available thus the SKF is used as a decision support tool to diagnose the 

different stages of bearing degradation. When the degradation is diagnosed to be fast 

and unstable, the RUL of the gearbox bearing is then estimated. RUL estimation is not 

carried out during the stable wear as the prediction will be over-estimated although 

maintainers may choose to monitor the condition more frequently. It is possible to 

establish a threshold limit for the onset of unstable wear if adequate past failure datasets 

are available to predict the time before unstable wear occurs. It is not considered here 

however as the goal is to estimate the RUL. 

7.5.1 Measurement Error 

The measurement error for TRGB 2, r = 3.2e-4 is obtained by taking the variance of 

the stationary measurements when the TRGB is in a good condition. It is noted that the 

variance for this gearbox is smaller than the variance obtained across a range of 

gearboxes as obtained from the GMM classification above as shown in Table 6. In 

practice, the measurement noise is likely to vary between individual gearboxes due to 

slight differences in mechanical properties or transmission path. 

7.5.2 Process Noise 

The process noises, qa and qb contain the uncertainty of the filter in modeling the real 

world. The process noise acts as a ‘memory’ for the respective Kalman filter model 

Figure 42 Degradation transitions for TRGB 2 inferred from piece-wise regression 
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whereby setting it to zero will cause it to remember all past measurements and 

unresponsive to new ones and conversely, a high process noise will cause the filter to 

be more responsive to new measurements [121]. In the SKF approach, the process 

noise for the respective KF, is obtained by tuning the model with past similar defect 

cases and is assumed to be the same across gearboxes. The SKF formulations are 

applied with qa and qb set as a small percent of the estimated or guessed value of the 

parameters [135]. One approach is to estimate the parameters by regression analysis of 

the segment of the feature data which is inspected to fit the parameter’s model. The 

SKF model is then simulated and the parameters tuned till the model is acceptably 

consistent. This is where training of the SKF is required from similar failure cases. In 

this study, the process noises were tuned using feature data from TRGB 2 and 3 before 

being tested on TRGB 1. qa and qb were estimated after tuning to be 1e-7 and 1.5e-6 

respectively. Figure 43 and Figure 44 shows the results of the SKF on TRGB 2 and 3 

after the process noise were tuned and it can be seen that the filter tracks the various 

stages of degradation consistently in both gearboxes. As the wear rate transits, the 

probability of the assumed model changes accordingly. Both the stable and unstable 

wear rate parameter, at and bt are tracked. 

Figure 43(Top left) TRGB 2 Feature data, filtered state and most probable model, 

(Bottom left) Model probabilities, (Top & bottom right) Estimated parameters at & bt. 
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Figure 44 (Top left) TRGB 3 Feature data, filtered state and most probable model, 

(Bottom left) Model probabilities, (Top & bottom right) Estimated parameters at & bt. 

In Figure 43, it can be seen that bt stabilizes as it approaches the failure time which is 

desirable as it allows a more accurate RUL prediction to be made. From both Figure 43 

and Figure 44, it can be seen that the filter does not perform well when the feature data 

are not monotonously rising and it then has to take a longer time before it converges. 

Similar observations have also been made by [103] when using polynomial KF. This 

may cause false alarms of unstable wear in practice and a simple way to reduce it is for 

maintainers to evaluate the probabilities between stable and unstable wear. 

7.6 SKF diagnostics on AH64D TRGB bearing 

The formulated SKF model is applied to the TRGB 3 bearing feature data and the 

results are shown in Figure 45. The SKF can adaptively track the different bearing 

degradation processes with the process noise tuned from the other two gearboxes. 

When compared to the optimal solution from the piece-wise regression, the SKF 

transition time lags behind at 105hrs and 212hrs compared to 87hrs and 202hrs. 

However, it should be noted that the SKF is performing the estimation in real-time and 

requires adequate measurements from the dynamical process. When the features are not 

increasing monotonically at ~200hrs, the SKF has to take a longer time before it 
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converges as mentioned above. Instead of relying on the absolute value of the CM 

measurements, the SKF uses the dynamic behavior between the current and past 

measurement to diagnose the degradation state. Therefore, it is not dependent on a 

fixed threshold which are typically derived from statistical evaluation of large numbers 

of past failure cases.  

Another key advantage of this technique for diagnosis is that it provides the probability 

of the degradation process the bearing is undergoing. In comparison, the widely used, 

statistical process control (SPC) approach only triggers when the feature is above a 

statistical limit and no further information is available. In practice, maintenance 

engineers using SPC would then wait for future measurements to confirm if it’s a fault 

or false alarm before prescribing any tasks. The quantitative probability measure from 

the SKF allows more support for maintenance engineers as the probabilities of the 

bearing conditions can be compared in the event of an outlier measurement.  

 

Figure 45 (Top left) TRGB 1 feature data, filtered state and most probable model, 

(Bottom left) Model probabilities, (Top & bottom right) Estimated parameters at & bt 

7.7 Estimation of remaining useful life 

For prognostics, the RUL of the bearing is predicted whenever an unsteady degradation 

is detected. The SKF infers the most probable dynamic model to be applied at each 
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time step for prediction. The RUL is predicted by propagating the weighted state and 

covariance estimates obtained from the Ricatti Equations at each time step and 

determining the time when the degradation state crosses the failure threshold. Figure 46 

shows the RUL forecast when the SKF detects unstable degradation after 212hrs and it 

can be seen that the accuracy of the RUL estimate improves as time progresses.  

 

Figure 46 RUL forecast using SKF prediction at different times 

7.7.1 Estimation of RUL confidence bounds using Monte Carlo Simulation 

Besides the RUL prediction, its confidence bounds, particularly the lower bound, is 

important information for a prognostic tool to be effective in aiding decision support. In 

this section, the confidence bounds for the RUL predictions are estimated and a 

performance metric is used to assess the overall prognostic capability. For a linear 

process, such as in steady degradation, the RUL probability density function can be 

obtained with closed form solution using a special case of Bernstein distribution [136] 

after which the confidence bounds can be obtained. For non-linear unsteady 

degradation processes however, a closed-form solution is generally not available and a 

Monte-Carlo based approach [136; 137] has to be adopted to estimate the RUL 
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probability density function instead. At each of the prediction steps, a large N sample of 

the states are randomly drawn from the multivariate distribution,    ⃗ ,     and a RUL 

estimate is computed for each sample. A histogram can then be built from the N 

number of RULs and be used to approximate the density function. Figure 47 shows the 

RUL histogram built from the Monte-Carlo method at different time steps and it can be 

seen that the accuracy and precision of the RUL estimates generally improves over 

time. From the RUL pdf, the 90% confidence bound for the RUL is obtained. 

 

Figure 47 RUL probability density function from Monte Carlo Simulation 

7.7.2 Prognostic performance metric  

The - metric [137] is applied to evaluate the performance of this prognostic 

evaluation as shown in Figure 48. The - metric compares the actual RUL to the 

predicted RUL with converging  bounds that provides an accuracy region. The  

bounds are application specific and a prediction is correct if it falls within the alpha 

bounds. Besides, the predicted mean RUL, the upper and lower 90% confidence bounds 

are shown as well. However, there are points on the RUL trajectory that lies outside the 

accuracy zone towards the end of useful life which is a behavior reportedly observed in 

[138] as well. This behavior could be attributed to unsteady vibration levels as the 

accumulated damage in the bearing becomes sizeable and could perhaps be addressed 

by lowering the failure threshold limit. Besides the RUL estimate, most of the lower 
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confidence bound, which is important for conservative estimate of the RUL prediction 

are close to the lower 30% accuracy bound as well 

 

Figure 48  -  performance metric with 90% confidence interval of predicted RUL 

7.8 Comparison with use of EKF 

Figure 49 shows a comparison between the SKF method with the use of EKF with 

exponential formulation alone. A log scale is applied on the feature measure axis so 

that difference in predictions between the two models can be seen more easily. It can be 

seen that the SKF can better adapt to the different degradation processes to yield lower 

prediction errors compared to the use of EKF alone. This is most prominent in the 

normal condition as the exponential model adopted in EKF is more susceptible to 

fluctuations compared to the stationary model used in the SKF. In the stable wear stage, 

the difference from both models is less as the non-linear EKF can approximate the 

linear behavior in this stage as well as the linear model in the SKF. In fact, the EKF 

prediction outperforms the SKF near transition points at 87hrs and 202hrs as the SKF 

takes time to converge. In steady degradation, the prediction RMS errors are at 4.9e-4 

and 4.7e-4 for SKF and EKF respectively. In the time region away from the transition 

points between 110hrs to 190hrs, the prediction RMS error for SKF was lower at 3.9e-4 

against 4.4e-4 for EKF respectively. More importantly, the EKF does not provide 

information on the degradation process compared to the SKF. As mentioned, this is 

useful as it informs maintainers of the probability that the RUL predicted will be 
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accurate. When the EKF is applied alone, there will significantly higher inaccurate 

RUL predictions in the normal and stable wear stages. Notably, both the SKF and EKF 

yield the same results as the state progresses into unstable degradation. This shows that 

the errors from the approximation using the GPB algorithm does not accumulate and 

the SKF will converge towards the underlying state as mentioned earlier,  

 

Figure 49 (Top) Comparison of predicted states using EKF with SKF (log scale) , 

(Bottom) Prediction errors of EKF and SKF from piece-wise regression 

7.9 Polynomial Kalman Filter with SKF 

In the above study, the unsteady wear was represented with an exponential function 

which was then modeled using EKF due to its non-linear state-space form. The EKF is 

also referred to as a suboptimal filter as the optimal solution is not guaranteed, unlike 

the linear Kalman Filter. In this section, the use of a 2
nd

 order polynomial function in 

place of the exponential function is investigated. The advantage of using a higher order 

polynomial function is that its state-space form is linear and the simpler Kalman Filter 

can be applied. As such, there is no need to calculate the Jacobian matrix in each step 

which reduces the computational resources. The formulation and use of polynomial 

Kalman filter in the SKF approach is shown herein.  
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7.9.1 Polynomial Kalman Formulation 

Like in the EKF formulation above, it is assumed that the bearing degradation is 

monotonically increasing and it evolves from serviceable to stable wear and then 

unstable wear.  The dynamics of these processes are represented here using zero, first 

and second order polynomial Kalman filters respectively. The development and 

application of polynomial KF is extensively covered by Zarchan et al in [121]. As 

described in that reference, the state transition matrix for different order polynomials 

can be derived from the Taylor series expansion of the fundamental matrix. Similarly, 

the process noise covariance matrix for different order polynomials can be derived from 

the fundamental matrix as well. The fundamental state, state transition and process 

noise covariance matrices describing the polynomial filters are shown below with 

subscripts 1, 2, 3 denoting the zero, first and second order KF respectively. The model 

transition matrix, Z and the initial model probabilities, state and covariance estimates 

are the same from Eqn. (36) and Eqn. (37) above. 

Zero Order polynomial model (Normal Operation) 

State:          

(38) 

State Transition:   ,  1 

Process Noise:   ,  0 

Measurement:          

  ,  1 

1
st
 Order polynomial model (Stable Wear) 

State:          ̇      

 ̇   ̇    

(39) 

State Transition:   ,  [
1   
0 1

] 

Process Noise: 

  ,    

[
 
 
 
   

3

   

 
   

 
  ]
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Measurement:          

  ,  [1 0]  

2
nd

 Order polynomial model (Unstable Wear) 

State: 
         ̇       ̈   

   

 
 

 ̇   ̇     ̈      

 ̈   ̈    

(40) 

State Transition: 

  ,  [
1   

   

 
0 1   
0 0 1

] 

Process Noise: 

  ,    

[
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Measurement:          

  ,  [1 0 0]  

7.9.2 Application of Polynomial Kalman Filter on AH64D dataset 

The SKF approach using polynomial KF formulation is applied to the same AH64D 

dataset to compare its performance against the use of EKF formulation. Just as before, 

the process noise, qs is set initially as a small percentage of the measurement error, r 

and tuned with the feature data from TRGB 2 and 3 and till the model is acceptably 

consistent yet responsive to changes in the degradation processes. It should be noted 

that both first and second order KF shares the same qs that need to be estimated and 

tuned here. This is in contrast with the EKF approach described above where the 

process noises for the linear and exponential filter are estimated separately. The value 

of qs tuned from the two gearboxes is 5e-8. Figure 50 and Figure 51 shows the results 

of the SKF on TRGB 2 and 3 after the process noise were tuned and it can be seen that 

the SKF model can again track the various stages of bearing degradation consistently in 

both gearboxes. 
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Figure 50 (Top left) TRGB 2 feature data, filtered state and most probable model using 

polynomial SKF, (Bottom left) Model probabilities, (Top & bottom right) Estimated 

states  ̇ &  ̈ 

 

Figure 51 TRGB 3 feature data, filtered state and most probable model using 

polynomial SKF, (Bottom left) Model probabilities, (Top & bottom right) Estimated 

states  ̇ &  ̈ 
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With lower qs, the second-order filter will fit the measured data better compared to the 

first-order filter and the model becomes more sensitive to changes but also prone to 

over-fitting. Conversely, the first-order filter will fit better with higher qs and is less 

sensitive to changes. This means that a lower qs can detect unstable wear earlier but 

this can be undesirable as second-order growth tends to over-predict RUL during initial 

stages. Note that this describes the effect of the process noise on the probabilities 

between the first and second order KF within the SKF method. Within each filter, a 

high process noise will cause the filter to be more responsive to new measurements as 

mentioned above. The upper and lower right plots shown in Figure 50 and Figure 51 

shows the rate and acceleration of the feature and not parameters like in the EKF plots 

above. The process noise, qs is then applied to TRGB 1 with the same measurement 

noise, r = 3.2e-4 applied and the results is shown in Figure 52. 

 

Figure 52 (Top left) TRGB 1 feature data, filtered state and most probable model using 

polynomial SKF, (Bottom left) Model probabilities, (Top & bottom right) Estimated 

states  ̇ &  ̈ 

From Figure 52, it can be seen that the polynomial SKF can generally track the 

different stages of bearing wear well in comparison with the non-linear EKF 

formulation shown in Figure 45. The polynomial SKF tracks a change from normal to 

stable wear at 104hrs but it incorrectly tracks the bearing wear to be unstable at 112hrs 

before converging back at 122hrs. It then tracks stable to unstable bearing wear at 
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212hrs. The tracking error is again attributed to non-monotonous trends within the data 

during which the higher order filter is more dominant. However, this also shows that 

the SKF can correct itself with more measurement updates. The erroneous tracking of 

the bearing wear stage can cause false alarms in practice. A way to mitigate this is for 

maintainers to decide by evaluating the available model probabilities between stable 

and unstable wear. For example, a decision threshold may be designed such that 

unsteady degradation is considered only when the model probability is >0.95. As such, 

the unsteady degradation will only be triggered when the likelihood of the degradation 

model has converged. The drawback however is that lead-time for RUL prediction will 

be reduced as longer time is required to reach convergence.   

7.9.3 Estimation of Remaining Useful Life using Polynomial Kalman Filter 

The RUL is predicted in the same way by propagating the predicted state and 

covariance estimates obtained at each time step using and determining the time when 

the wear state crosses the damage limit threshold.  

 

Figure 53  -  performance metric with 90% confidence interval of predicted RUL 

using polynomial Kalman filter 

Figure 53 shows the RUL forecast when the SKF detects unstable wear after 212 and it 

can be seen that the accuracy of the RUL does improve as time progresses. However, 
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the RUL prediction cannot be carried out at points where the feature wear rate,  ̇ are 

negative as seen in the time period ~200hrs and ~232hrs from the upper and lower right 

plots of Figure 52. The bearing wear state propagated from these points does not 

increase and will not cross the damage threshold; thus a RUL cannot be obtained. As 

such, there are corresponding missing predictions at those times in Figure 53.  

  

Figure 54 Comparison of  -  performance between polynomial Kalman filter and 

Extended Kalman filter 

Figure 54 shows the comparison of the RUL prediction between the polynomial SKF 

with the non-linear EKF formulation. While the polynomial SKF tracks the unsteady 

wear earlier, it is unable to provide predictions when the data trend is non-monotonous. 

It is noted however that the predictions from the EKF formulation tends to be poor at 

the non-monotonous trends also, thus the benefit may not be very significant. As time 

progresses towards the actual failure time, both formulations give close and accurate 

prediction of the RUL. Therefore, the use of polynomial SKF can be a good option as it 

is simpler to implement and require less computational resource due to its linear form.  
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7.10 Chapter Summary 

In this study, the use of SKF is applied for fault detection and remaining useful life 

estimates of a helicopter gearbox bearing is presented with promising results. The SKF 

model allows for degradation processes to evolve through time from which the 

underlying dynamical process would be inferred accordingly. This approach can 

provide maintainers with more information for decision-making as a probabilistic 

measure of the bearing degradation process and its health status is available. From the 

prognostic performance metric, it was shown that the RUL estimates have high 

accuracy when it is inferred that the degradation process is likely to be unstable. This in 

turn can provide maintainers with higher confidence on the predicted RUL for 

maintenance planning. The SKF was developed with EKF formulation used for 

unsteady wear. An alternative formulation using polynomial KF was also investigated 

for use in the SKF model. It was found that the performance of the polynomial KF is 

comparable with EKF formulation and it offers the advantage of simpler 

implementation due to its linear form.  
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8 REDUCING RISK OF LUBRICATION SYSTEM FAILURES IN 

HELICOPTERS 

The lubrication system in a helicopter performs the function of lubricating and cooling 

the transmission bearings and gears. It is a critical system and up to 31% of 

transmission related accidents has been estimated to be related to the lubrication 

system. A review of recent transmission related helicopter accidents showed that 

backup lubrication system were not effective as they have common causal failure 

modes with the main system. As such, lubrication systems and associated subsystem 

such as the accessory gearbox would have ‘Hazardous’ mishap severity category 

despite having redundancies built in. An independent backup lubrication system would 

reduce failure risk significantly but this can be impractical based on existing oil-based 

designs. 

In the 1990s, the National Aeronautics and Space Administration (NASA) proposed a 

thioether-based mist lubrication which showed promising results of thermal stability 

and low gear wear after the gearbox was run dry. In their investigation, the thioether 

liquid is misted and delivered in an airstream to gears operating at such high 

temperatures that the molecules react on the wearing surfaces to generate a lubricious 

deposit which provides effective lubrication. The key benefit of the thioether is that a 

very low volume is required which is ideal in developing a compact backup lubrication 

system. In section, the thermal properties of a thioether-based lubrication in a gearbox 

run-dry situation are investigated. An experimental test rig was setup to measure the 

gear temperature profiles between thioether and a conventional oil lubricant under 

different load and speed conditions. The work here is largely exploratory to study the 

feasibility of thioether based mist lubrication as a viable candidate for a backup 

lubrication system in helicopters. 

8.1 Review of helicopter gearbox failure incidents 

In an early survey conducted in the 1990s, it was shown that an estimated 31% of 

transmission related helicopter accidents are attributed to the failure of the lubrication 

system [139]. In the past five years, there were also a number of helicopter accidents 
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that were due to lubrication failures as shown in Table 8. The key failure modes of 

lubrication systems from Table 8 can be summarized to be either loss of oil or loss of 

oil pressure. Class A helicopters such as the S-92 and the AS332 have backup 

lubrication systems but they did not serve their function in these instances as they have 

common causal failure modes with the main system. Common causal failures exist 

when both main and backup systems share the same critical component or subjected to 

the same failure modes. The designs of backup systems can vary widely between 

helicopters but most have common causal failures. An independent backup lubrication 

system would reduce failure risk significantly but this can be impractical based on 

existing oil-based designs due to costs and impact on payload. In this section, a brief 

review of existing backup lubrication system design is carried out and the feasibility of 

a thioether-based backup system is investigated. 

Table 8 Lubrication System related incidents 

Date Helicopter Country Description Reference 

Apr-05 Sikorsky 

S-92A 

Norway Failure of drive of MGB oil pump [140] 

Jan-08 Sikorsky 

S-92A 

Malaysia MGB input module overheating that led to 

slow oil leak 
[140] 

Feb-08 Schweizer 

269D-1 

UK Seizure of MGB pinion outer bearing due to 

oil starvation 
[141] 

Mar-09 Sikorsky 

S-92A 

Canada Total loss of MGB oil due to fracture of oil 

filter bowl fixing titanium studs 
[140] 

Apr-09 Aerospatiale 

AS332 L2 

UK Loss of MGB oil due to MGB case rupture [142] 

May -

12 

Eurocopter 

EC225 

UK Loss of oil pressure due to fracture of 

shaft driving the oil pumps 

[143] 

8.2 Survey of existing Lubrication System Design 

The function of a lubrication system is to lubricate and cool the transmission bearings 

and gears. Most helicopter lubrication system designs consist of oil sump, oil pump, 

filters and coolers. The oil pump is driven by the helicopter's accessory gearbox and 

provides the pressure head to distribute the oil from the sump to the oil gallery. The oil 

is then filtered and cooled in heat exchangers before being recycled. Common safety 

measures include oil filters, metallic chip detection, oil temperature and pressure 

sensors. The difference in design between helicopters depends largely on the layout and 

redundancies of these common components. For the AS332, the lubrication system 
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consists of a single oil sump, an oil pump and single oil cooler. Its backup features a 

single emergency pump that activates upon low oil pressure in the main oil pump [144]. 

This design has many common causal failures as both systems share the same oil sump 

and filters. The Sea King main lubrication system consists of a single oil sump, two oil 

pumps and single oil cooler. It has an independent backup lubrication system consisting 

of an independent oil sump and emergency pump [145]. The use of independent system 

is also adopted in the military attack helicopter WAH64D, which consists of a dual 

redundancy system with each system consisting of an oil sump, an oil pump and oil 

cooler [146]. Although it can provide higher reliability, an independent system which 

duplicates the main system is costly to install, takes up significant payload space and is 

still exposed to the same type of risks. As such, an emergency lubrication system that is 

light weight and simple in design would be desirable.  

8.3 Thioether based Backup Lubrication System 

NASA had proposed a thioether-based mist lubrication which showed promising results 

of thermal stability and low gear wear under run-dry conditions [147]. In their method, 

the thioether liquid is misted and delivered in an airstream to gears operating at such 

high temperatures that the molecules of the thioether react on the wearing surfaces to 

generate a lubricious deposit which provides effective lubrication. The key advantage 

of this approach is that only a very small volume of thioether is required thus the 

reservoir volume can be kept small. In their work, a flow rate of only 15ml/hr is 

required to cool a set of gear mesh [147]. This delivery mechanism overcomes the need 

to recycle the lubricant which further reduces the dependency on the reliabilities of oil 

pumps and oil coolers. NASA concluded that the use of oil mist-based lubrication was 

suitable for emergency lubrication [148]. In this investigation, a similar experimental 

setup is proposed to investigate the effectiveness of a thioether based mist lubrication 

by comparing the temperature profile of the gears with oil dip and oil mist lubrication. 

8.4 Lubrication System Test Rig Description 

An overview of the experimental setup is depicted in Figure 55 and the physical 

laboratory setup shown in Figure 56. The rig consists of a gearbox and the mist 
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lubrication mechanism. The gearbox arrangement is shown in Figure 57. The gear set 

employed in this test is made of case carburized steel with specifications shown in  

Table 9. An AC three-phase electrical motor (1.1 KW) with speed of 690 rpm was 

employed to drive the gearbox. A simple mechanism that permitted a pair of coupling 

flanges to be rotated relative to each other, thereby applying a pre-torsional load, was 

employed to apply torque load onto the gears. The lubricating oil used in the gearbox 

was Aeroshell 555 which is a common aerospace lubricant for helicopter gearboxes in 

accordance with DOD-L-85734 and DEF STAN 91-100.  

 

Figure 55 Experimental rig overview 

 

Figure 56 Laboratory setup 
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Figure 57 Gearbox back-to-back arrangement 

 

Table 9 Pinion and Gear Specification 

 

Spur 

Number of teeth, pinion: gear 49: 65 

Base diameter, pinion: gear (mm) 138.13: 183.24 

Pitch diameter, pinion: gear (mm) 147: 195 

Tip diameter, pinion: gear (mm) 153: 201 

Root diameter, pinion: gear (mm) 139.5: 187.5 

Contact Ratio 1.33 

Module (mm) 3 

Addendum modification coefficient 0 

Surface roughness, Ra (m) 0.8, 2.00 

Face width (mm) 15,30 

Pressure Angle (degree) 20 

Helix Angle (degree) 0 

Modulus of Elasticity (Gpa) 228 

 

Figure 58 Thermocouple arrangement on gear face 

Type K thermocouples were used to measure the temperature profiles with connection 

via slips rings in the shaft to an analog to digital converter. Five thermocouples are 
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arranged radially as shown in Figure 58 to obtain the temperature profile across the 

gear face. In addition, two additional thermocouples are used to monitor the ambient 

temperature within the gearbox and the gearbox temperature itself. To create the 

thioether mist, ultrasonic nozzles (PNR Part number: MAD 0331 B1) were used to 

dispense the lubricant so that a low flow rate and fine misting can be achieved. The 

system consists of a liquid pressure tank for the lubricant and requires filtered and dry 

air pressure supplied through a compressor as shown in Figure 2. In [147], the thioether 

used is a blend of 4 compounds, (a) 1,1-thiobis [3-phenoxybenzene]; molecular weight, 

(b) 1-phenoxy-3-[[3-(phenylthio) phenyl[thio]benzene, (c) 1,1-thiobis [3-(phenylthio) 

benzene] and (d) 1,3,-bis (phenylthio) benzene. In this experiment, the thioether used is 

Poly(oxy-1,2-ethanediyl), -butyl--hydroxy-,mixed ethers with 2-ethyl-1-hexanol and 

2,2’-thiobis[ethanol] or its product name Vulkanol OT, a commercially available 

compound.  

8.5 Experimental Test Plan 

The gearbox is run under different conditions of lubrication, torque, speed and rotation 

direction as shown in Table 3. The rotational direction of the gears used in the 

experiment is defined in Figure 59. For each test run, the temperatures and time taken 

for the gear temperatures to stabilize were measured. In addition, the gears were 

inspected for damage after the run. In this experiment, the gear temperature is 

considered to have stabilized when the rate of temperature rise is <0.2C/min 

(<12C/hr).  

Table 10 Test Runs and Conditions 

Test RPM Torque Lubrication Mist Rate 
Gear 

Rotation 

1 690 100Nm Oil Dip NA CW 

2 690 100Nm Thioether Mist 12-15ml/hr CW 

3 690 100Nm Thioether Mist 12-15ml/hr CCW 

4 1420 100Nm Thioether Mist 12-15ml/hr CCW 

5 1420 100Nm Oil Dip NA CCW 

6 1420 280Nm Oil Dip NA CCW 

7 1420 280Nm Thioether Mist 12-15ml/hr CCW 

8 1420 280Nm Oil Mist 12-15ml/hr CCW 

9 1420 280Nm Pressurised Air NA CCW 
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For all the tests with mist lubrication, the liquid pressure and air pressure system was 

adjusted to deliver thioether or oil at an approximate rate of 12-15ml/hr which is similar 

to the rate employed in [147]. By comparing Test 1, 4 and 6 against Test 3, 5 and 7, the 

performance of oil dip lubrication against thioether mist lubrication under increasing 

speed and torque load conditions are evaluated. When comparing Test 1 with Test 3, it 

is assumed that gear rotation direction does not affect the temperature profile in oil dip 

lubrication. Test 2 and 3 compares the effects of gear rotation direction on thioether 

lubrication. Test 7, 8 and 9 offer comparisons of the performance of thioether mist 

against oil mist lubrication and pressurized air cooling.  

 

Figure 59 Gear Rotation Direction 

8.6 Test Results and Discussion 

A summary of the test duration and the stabilization temperatures reached in the tests 

runs are shown in Table 11 and the discussions are as follows. 

Table 11 Test Runs Stabilisation Temperature (C) 

  Gear Inner Gear Middle Gear Outer Gearbox Air Gearbox Casing 

1 4.90 Hrs 43.6 43.3 45.5 53.1 41.1 

2 0.90 Hrs
1
 55.3 56.6 64.4 43.3 27.3 

3 2.56 Hrs 56.0 56.8 62.6 56.5 38.4 

4 1.54 Hrs 78.9 80.3 81.5 81.6 51.7 

5 2.99 Hrs 59.4 59.7 59.0 68.6 48.3 

6 1.82 Hrs 64.3 64.8 64.5 69.7 47.2 

7 1.50 Hrs 90.9
2
 95.0 95.9 87.5 51.6 

8 2.37 Hrs 98.5 104.4 103.7 99.4 59.8 

9 0.17 Hrs
1
 71.7 119.7 121.4 63.7 22.8 

1
 Test terminated to prevent gear damage 

2
 Last temperature shown after thermocouple dislodged at 1.36Hrs   
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8.6.1 Comparison of thioether mist lubrication against oil dip lubrication 

The comparison of the measurement from the thermocouple nearest the gear teeth 

between thioether against oil lubrication is shown in Figure 61. It should be noted that 

gear temperatures will rise rapidly in the absence of lubrication as shown in Test 9. It 

can be seen that the thioether mist lubrication is effective in lubricating and cooling the 

gears to allow the gear temperatures to stabilize. The stabilization temperatures 

however are higher compared to oil dip lubrication. From Test Run 1 and 3, the 

temperature stabilizes at 45.5C and 62.6C for the oil-dip and thioether mist 

respectively. With higher speeds and torque loads in Test run 4, 5, 6 and 7, the 

stabilization temperatures are higher for thioether mist lubrication reaching 78.9C and 

90.0C compared to 59.4C and 64.3C using oil dip lubrication. The temperature 

profile normalized to the thioether mist lubrication stabilization temperature is shown 

in Figure 62. It is shown that the stabilization temperature for oil lubrication is 

approximately 30% lower compared to thioether mist lubrication. Besides higher 

stabilization temperature, the stabilization time is longer for thioether mist lubrication 

as well. As shown in Figure 62, at condition of 690RPM and 100Nm, the thioether mist 

took 50mins to achieve temperature rate of <0.2C/min compared to 19mins for oil-dip 

lubrication. At higher speed of 1420RPM, the thioether mist took 70mins to 53 mins 

for oil-dip lubrication. At both higher speed and load of 1420RPM and 280Nm, the 

thioether also took a longer duration of 76mins compared to 45mins using oil 

lubrication. Inspection of the gears after the tests showed only minor scuffing on the 

gear teeth surfaces as shown in Figure 63. A brownish lubricious layer of residue is 

found on the gear teeth surface after the test with thioether mist. Despite the higher 

stabilization temperature and longer stabilization duration, thioether mist lubrication is 

shown to be effective as there were no wear on the gears after operating for duration 

over 30mins. 
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Figure 60 Normalised Temperature profile of oil dip against thioether mist lubrication 

under different speed and torque load conditions (Gear outer temperature shown) 

 

Figure 61 Temperature rate comparison (Gear outer temperature rate shown) 
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Figure 62 Normalised Temperature profile of oil dip against thioether mist lubrication 

under different speed and torque load conditions (Gear outer temperature shown) 

 

Figure 63 Undamaged gear with lubricious residue on teeth surface after Test 3 and 

Test 7 

8.6.2 Comparison of gear rotation direction on thioether lubrication 

The effect of gear rotational direction when using thioether lubrication is shown in 

Figure 64. It is clearly seen that the mist lubrication is not effective when it is sprayed 
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temperature rise rate decreases and stabilizes. As mentioned previously, the poor 

performance of the mist lubrication when it is sprayed after the gear teeth meshing 

could be attributed to the fling off of the thioether lubricant as the gear teeth emerges 

from the mesh. This can be a disadvantage for a mist lubrication based system as the 

spray nozzle has to be placed before the gear teeth meshes. For main rotor gearboxes 

which are pre-dominantly planetary gearbox in design, this drawback may not be 

significant as the mist lubricant can be applied on the static ring gear. However, further 

work to validate the performance on a planetary gearbox would be required.  

 

Figure 64 Effect of gear rotation direction on Thioether mist lubrication (Gear outer 

temperature shown) 

8.6.3 Comparison of mist lubrication at using oil and thioether and air cooling 

The effect of using the Aeroshell 555 lubricating oil as a mist lubricant is also 

investigated in this study. This is to evaluate if the mist lubrication would be effective 

if an alternative lubricant is used. Like the thioether, a low flow rate of 12-15ml/hr of 

oil is used in Test 8 under similar speed and torque load conditions from Test 7. The 

temperature profile comparison between oil and thioether mist lubrication is shown in 

Figure 65.  
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Figure 65 Temperature profile for mist lubrication using oil, thioether and air cooling 

(Gear outer temperature shown) 

It can be seen that the temperature rise rate is slower for oil mist lubrication. However, 

thioether mist lubrication stabilizes at a lower temperature of 95.9C compared to 

103.7C for the oil mist. This shows that oil is also a viable candidate for use in mist 

lubrication. As a comparison, the temperature profile of the gears subjected to only 

pressurized air cooling is also shown in Figure 65 where it rises very rapidly. For a 

thirty minutes requirement for the gearbox to operate safely after loss of primary 

lubrication as per Certification Specification 29.927, the gear mesh in the test requires 

only approximately 6 – 8ml of oil or thioether lubricant to prevent the gears from 

overheating and excessive wear. 

8.6.4 Tests Summary 

A summary of the key observations made from the above tests are as follows:  

 Thioether mist lubrication does provide adequate lubrication for the gears to 

achieve stabilization temperatures although the stabilization temperatures 

reached will be higher compared to oil dip lubrication.  

 The rotational direction of the gears has a significant impact on the performance 

of the mist lubrication. The mist lubrication is not effective when it is not 
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sprayed into the meshing gear teeth (CCW in the experiment) and this could be 

due to the thioether being “fling off” the gear surface. 

 When oil is applied as a mist-lubrication, the rate of temperature rise of the 

gears is slower but it stabilizes at temperatures higher compared to thioether 

mist lubrication. 

 The use of mist lubrication can significantly reduce gear wear by providing 

either thioether or oil lubricant at very low flow rate. This allows the lubricant 

reservoir of an emergency or backup lubrication system to be kept small.  

8.7 Chapter Summary 

From this study, it can be concluded that thioether-based mist lubrication is comparable 

to oil based lubrication in a gearbox run-dry situation. From the tests, oil mist 

lubrication shows a slower rate of temperature rise but it stabilizes at temperatures 

higher compared to thioether mist lubrication. With the very low lubricant flow rate of 

a mist lubrication system, the lubricant reservoir can be kept small which is ideal for a 

backup lubrication system. Notably, this allows a thioether-based backup lubrication to 

be developed that is independent of the main oil-based lubrication system. They do not 

share common failures modes and this in turn provides a lower risk of oil starvation 

failure. The mishap severity category for the lubrication system and associated 

subsystem such as the accessory gearbox may be relaxed and eases the implementation 

of PM interval extension or CBM task development. It is noted however that the 

lubricant to be used is not restricted to thioether however as oil can also be applied with 

mist lubrication. A drawback of the mist lubrication system is that the rotational 

direction of the gears has a significant impact on performance. The mist lubrication is 

not effective when it is sprayed after the gear teeth meshing and may complicate the 

spray system design.  
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9 CONCLUSION 

In the research conducted, methods to improve the maintenance decision support for 

extending PM task interval and implementing CBM tasks has been developed. Notably, 

this research has placed much emphasis on issues relevant to practitioners in aircraft 

maintenance and the methods proposed are meant to be implementable in practice. 

Towards this end, this research considers the resources available to and constraints 

faced by maintainers; such as information availability and regulatory requirements. The 

challenges faced by maintainers are multi-faceted in nature and different methods are 

proposed to address them accordingly. The outline of the research to improve 

maintenance decision support is shown in Figure 66.  

 

Figure 66 Outline of research to improve maintenance decision support 

The key contributions from this research; as described the objectives includes, (1) 

Improvement of reliability methods for substantiating escalation of planned 

maintenance interval, (2) Demonstrated an end-to-end development of a CBM task for 

an in-service helicopter, (3) Improved the ease of use of prognostic tools by adapting 
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the use of SKF and (4) Evaluated the feasible use of thioether based lubrication system 

to reduce mishap severity. 

For PM, the challenge to extend the maintenance interval with little or no past failure 

has been addressed. Existing reliability methods were reviewed and two improved 

methods to estimate the reliability lower confidence bounds were developed. The first 

approach adopts the use of Monte Carlo simulation applied to the Weibull equation 

while the second uses a probabilistic damage accumulation model together with 

bootstrap techniques. Both methods are used to assess the reliability of extending the 

replacement interval of a gearbox bearing and are shown to perform better than existing 

methods. Based on the developed methods, maintainers is able to make better use of 

data from their maintenance reports or usage monitoring system to make better decision 

when extending PM task interval. 

For CBM, a survey on sensor technologies and diagnostic algorithms showed that 

vibration-based sensors and simple FFT spectra statistics is more widely used in 

helicopters and has shown successful implementation in the field. However, a 

comprehensive CBM task development using in-service HUMS data in accordance of 

regulatory guidance is lacking. The study then demonstrates the development of a CBM 

task using HUMS data from the RSAF AH64D helicopters TRGB. Analysis of the FFT 

spectra shows that the fault patterns corresponding to progressing stages of bearing 

wear can be clearly observed. Notably, it is shown that vibration energy at lower 

frequency band does not rise monotonously with damage progression and that high-

band vibration energy rises following the fall in low-band vibration energy. These fault 

patterns can be observed consistently across defective bearings from different 

helicopters and validates observations from past experimental investigations by other 

authors [111; 112]. The study has used both high and low band energy features 

independently to track localised and generalised bearing damage. The fault patterns are 

extracted as features for diagnosis and a prognostic model using trend extrapolation is 

developed to determine the replacement lead-time for maintenance planning. From this 

work, an end-to-end CBM task development; for both diagnostic and prognostics, in 

compliance to the regulatory guidance has been demonstrated and shows the feasibility 

in field applications. 
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As prognostic is critical in reducing maintenance effort in CBM, methods to improve 

prognostics with little or no failure data are further researched. A model-based, 

Bayesian estimation method, the Switching Kalman Filter (SKF) was adapted for both 

diagnostic and prognostic under a single framework. The SKF uses multiple dynamic 

models each describing a different degradation process. The most probable degradation 

process is then inferred from the extracted feature data using Bayesian estimation. By 

using the dynamic behavior, pre-established fault detection threshold is no longer 

required thus less failure data is needed. This approach also provides maintainers with 

more information for decision-making as a probabilistic measure of the degradation 

processes are available. This helps maintainers to predict RUL more accurately by 

distinguishing between the degradation states and performing prediction only when 

unstable degradation is detected. The use of SKF also allows uncertainty in the 

damaged progression to be handled and a probability distribution function of the 

remaining useful life to be obtained. The SKF approach is demonstrated using the in-

service feature data and is shown to be a promising tool for maintenance decision-

making. Using this approach, prognostics task can be made easier as a significant part 

of an analyst’s decision making process has been automated. A drawback of this 

approach however, is that the dynamic behavior of the system’s degradation process as 

to be known. It is also not fully autonomous as the noise process has to be tuned 

manually based on past failures. 

As an extension of this research, an effort to reduce the mishap severity category for 

helicopter lubrication system is explored so that PM interval extension and replacement 

with CBM task can be implemented more easily. Thioether based mist lubrication is 

investigated and it was shown from experiments that only a very small volumetric flow 

of lubricant is required to preserve the gears from damage in oil starved environment. A 

thioether mist lubrication system can thus be designed to be independent of the main 

lubrication system as the thioether lubricant does not need to be recycled and does not 

share the same causal failure modes as the main system.  

In this research, the challenges faced by maintainers on implementing PM task 

extension and CBM task replacement have been investigated and ways to address them 

has been proposed. It is hopeful that the case studies presented and methodologies 
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proposed in this research would be useful to practitioners in some ways towards 

improving helicopter maintenance.  

10 FUTURE WORKS 

In this study, the use of Monte Carlo simulation with Weibull equation and the PDA 

model using Miner’s Rule is applied to evaluate the reliability of extending bearing PM 

interval. As both Weibull equation and Miner’s Rule are commonly adopted in many 

engineering applications, the methods developed to improve the reliability assessment 

can be applied to those applications as well. The use of Monte Carlo simulation may be 

applied together with reliability methods such as Reliability Block Diagrams (RBD) to 

evaluate the risk of complex systems. Besides its use with strict series reliability model, 

ways to expand the method to include parallel and independent systems can be 

investigated. This would allow the method to be applied to more complex systems. For 

the PDA model, the current work is based on a uniform load. The method can be 

further improved upon by applying it to systems with variable load conditions which is 

more reflective of systems in practice. The PDA model allows for the sequence of 

variable loading to be considered and its performance in modelling the effects would be 

examined. 

The SKF is adapted in this study for diagnostics of the bearing degradation state and 

estimation of the RUL. The concept however can be applied to other systems to 

determine their degradation state based on their dynamic behavior. Several rotating 

machinery components such as gears and shafts may also adopt this method to help 

maintenance decision-making as most of them exhibits regression trends in their 

degradation path as well. The SKF approach is not limited to mechanical systems 

however as it can be used to model the dynamical behavior of control systems as well. 

In addition, the concept also allows for other recursive Bayesian estimation methods 

can be explored to be used with the SKF concepts as well. As mentioned before, for 

applications with highly non-linear behavior or the noise present is non-Gaussian, the 

EKF may not provide a good estimate. In further development, the use of other non-

linear filters such as Unscented Kalman Filter and the Particle Filters would be 

explored. In addition, the bearing degradation problem described here consists of a 
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single sensor measurement. In further works, the SKF would be expanded to model 

systems with multiple sensor measurement inputs and this would allow sensor fusion 

for better health assessment as well.   

For the use of thioether mist design for helicopter backup lubrication system, the initial 

results are promising although the work is very much in its infancy. Beyond this stage, 

the thioether mist lubrication should be tested on a helicopter gearbox test rig to 

determine their performance in a representative environment. Notably, the testing in 

this work is based on a commercially available thioether compound which is not the 

same as that used in the experiments by NASA. A comparison of the performance 

between the compounds and their performance against oil-mist lubrication should be 

evaluated should the opportunity arises. Besides the performance of the mist lubrication 

itself, practical aspects of the installation design within a complex gearbox assembly 

needs to be considered as well. For the backup system to be independent, the spray 

nozzle and the thioether delivery system has to be separate from the main lubrication 

system so that there are no common failure modes. The pressure source for the spray 

mist has to be independent as well. Therefore, these sub-systems have to be integrated 

within the gearbox and the feasibility of the designs has to be assessed. 
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